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Preface

Welcome!
Welcome to R Packages by Hadley Wickham and Jennifer Bryan. Packages
are the fundamental units of reproducible R code. They include reusable R
functions, the documentation that describes how to use them, and sample
data. In this book you’ll learn how to turn your code into packages that
others can easily download and use. Writing a package can seem
overwhelming at first, so start with the basics and improve it over time. It
doesn’t matter if your first version isn’t perfect as long as the next version is
better.

If you’re familiar with the first edition of the book, this preface describes
the major changes so that you can focus your reading on the new areas.

There are several main goals for this edition:

Update to reflect changes in the devtools package, specifically, its
“conscious uncoupling” into a set of smaller, more focused packages.

Expand coverage of workflow and process, alongside the presentation
of all the important moving parts that make up an R package.

Cover entirely new topics, such as package websites and GitHub
Actions (GHA).

All content has been completely revised and updated. Many chapters are
new or reorganized and a couple have been removed:

New Chapter 1, “The Whole Game” previews the entire package
development process.

New Chapter 2, “System Setup” has been carved out of the previous
Introduction and gained more detail.
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The chapter formerly known as “Package Structure” has been
expanded and split into two chapters, one covering package structure
and state (Chapter 3) and another on workflows and tooling (Chapter
4).

New Chapter 5, “The Package Within” demonstrates how to extract
reusable logic out of data analysis scripts and into a package.

The sections “Organizing Your Functions” and “Code Style,” from
Chapter 6, “R Code” have been removed, in favor of an online style
guide. The style guide is paired with the new styler package,1 which
can automatically apply many of the rules.

The coverage of testing has expanded into three chapters: Chapter 13
for testing basics, Chapter 14 for test suite design, and Chapter 15 for
various advanced topics.

Material around the NAMESPACE file and dependency relationships
has been re-organized into two chapters: Chapter 10 provides technical
context for thinking about dependencies, and Chapter 11 gives practice
instructions for using different types of dependencies in different
settings.

New Chapter 12, “Licensing” expands earlier content on licensing into
its own chapter.

The chapter on C/C++ has been removed. It didn’t have quite enough
information to be useful, and since the first edition of the book, other
materials have arisen that are better learning resources.

The chapter on Git/GitHub has been reframed around the more general
topic of software development practices (Chapter 20). This no longer
includes step-by-step instructions for basic tasks. The use of
Git/GitHub has exploded since the first edition, accompanied by an
explosion of learning resources, both general and specific to R
(e.g., the website Happy Git and GitHub for the useR). Git/GitHub still

https://style.tidyverse.org/
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feature prominently throughout the book, most especially in Chapter
20.

The very short inst chapter has been combined into Chapter 8, with all
the other directories that can be important in specific contexts, but that
aren’t mission critical to all packages.

Introduction
In R, the fundamental unit of shareable code is the package. A package
bundles together code, data, documentation, and tests and is easy to share
with others. As of March 2023, there were over 19,000 packages available
on the Comprehensive R Archive Network, or CRAN, the public
clearinghouse for R packages. This huge variety of packages is one of the
reasons that R is so successful: the chances are that someone has already
solved a problem you’re working on, and you can benefit from their work
by downloading their package.

If you’re reading this book, you already know how to work with packages
in the following ways:

You install them from CRAN with install.packages("x").

You use them in R with library("x") or library(x).

You get help on them with package?x and help(package =
"x").

The goal of this book is to teach you how to develop packages so that you
can write your own, not just use other people’s. Why write a package? One
compelling reason is that you have code that you want to share with others.
Bundling your code into a package makes it easy for other people to use it,
because like you, they already know how to use packages. If your code is in
a package, any R user can easily download it, install it, and learn how to use
it.



But packages are useful even if you never share your code. As Hilary
Parker says in her introduction to packages: “Seriously, it doesn’t have to be
about sharing your code (although that is an added benefit!). It is about
saving yourself time.” Organizing code in a package makes your life easier
because packages come with conventions. For example, you put R code in
R/, you put tests in tests/, and you put data in data/. These conventions are
helpful because:

They save time—you don’t need to think about the best way to
organize a project, you can just follow a template.

Standardized conventions lead to standardized tools—if you buy into
R’s package conventions, you get many tools for free.

It’s even possible to use packages to structure your data analyses (e.g.,
“Packaging Data Analytical Work Reproducibly Using r (and Friends)” in
The American Statistician or PeerJ Preprints),2 although we won’t delve
deeply into that use case here.

Philosophy
This book espouses our philosophy of package development: anything that
can be automated, should be automated. Do as little as possible by hand. Do
as much as possible with functions. The goal is to spend your time thinking
about what you want your package to do rather than thinking about the
minutiae of package structure.

This philosophy is realized primarily through the devtools package, which
is the public face for a suite of R functions that automate common
development tasks. The release of version 2.0.0 in October 2018 marked its
internal restructuring into a set of more focused packages, with devtools
becoming more of a metapackage. The usethis package is the subpackage
you are most likely to interact with directly; we explain the devtools-usethis
relationship in “devtools, usethis, and You”.

As always, the goal of devtools is to make package development as painless
as possible. It encapsulates the best practices developed by Hadley

https://oreil.ly/2oXTp


Wickham, initially from his years as a prolific solo developer. More
recently, he has assembled a team of developers at Posit (formerly known as
RStudio), who collectively look after hundreds of open source R packages,
including those known as the tidyverse. The reach of this team allows us to
explore the space of all possible mistakes at an extraordinary scale.
Fortunately, it also affords us the opportunity to reflect on both the
successes and failures, in the company of expert and sympathetic
colleagues. We try to develop practices that make life more enjoyable for
both the maintainer and users of a package. The devtools metapackage is
where these lessons are made concrete.

devtools works hand-in-hand with RStudio, which we believe is the best
development environment for most R users. The most popular alternative to
RStudio is currently Visual Studio Code (VS Code) with the R extension
enabled. This can be a rewarding and powerful environment; however, it
does require a bit more work to set up and customize.3

RSTUDIO
Throughout the book, we highlight specific ways that RStudio can expedite your package
development workflow, in specially formatted sections like this.

Together, devtools and RStudio insulate you from the low-level details of
how packages are built. As you start to develop more packages, we highly
recommend that you learn more about those details. The best resource for
the official details of package development is always the official Writing R
Extensions manual.4 However, this manual can be hard to understand if
you’re not already familiar with the basics of packages. It’s also exhaustive,
covering every possible package component, rather than focusing on the
most common and useful components, as this book does. Writing R
Extensions is a useful resource once you’ve mastered the basics and want to
learn what’s going on under the hood.

In This Book

https://www.tidyverse.org/
https://code.visualstudio.com/
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The first part of the book is all about giving you the tools you need to start
your package development journey, and we highly recommend that you
read it in order. We begin in Chapter 1 with a run-through of the complete
development of a small package. It’s meant to paint the big picture and
suggest a workflow, before we descend into the detailed treatment of the
key components of an R package. Then in Chapter 2 you’ll learn how to
prepare your system for package development, and in Chapter 3 you’ll learn
the basic structure of a package and how that varies across different states.
Next, in Chapter 4, we’ll cover the core workflows that come up repeatedly
for package developers. The first part of the book ends with another case
study (Chapter 5), this time focusing on how you might convert a script to a
package and discussing the challenges you’ll face along the way.

The remainder of the book is designed to be read as needed. Pick and
choose between the chapters as the various topics come up in your
development process.

First we cover key package components: Chapter 6 discusses where your
code lives and how to organize it, Chapter 7 shows you how to include data
in your package, and Chapter 8 covers a few less important files and
directories that need to be discussed somewhere.

Next we’ll dive into the package metadata, starting with DESCRIPTION in
Chapter 9. We’ll then go deep into dependencies. In Chapter 10, we’ll cover
the costs and benefits of taking on dependencies and provide some technical
background on package namespaces and the search path. In Chapter 11, we
focus on practical matters, such as how to use different types of
dependencies in different parts of your package. This is also where we
discuss exporting functions, which is what makes it possible for other
packages and projects to depend on your package. We’ll finish off this part
with a look at licensing in Chapter 12.

To ensure your package works as designed (and continues to work as you
make changes), it’s essential to test your code, so the next three chapters
cover the art and science of testing. Chapter 13 gets you started with the
basics of testing with the testthat package. Chapter 14 teaches you how to



design and organize tests in the most effective way. Then we finish off our
coverage of testing in Chapter 15, which teaches you advanced skills to
tackle challenging situations.

If you want other people (including future-you!) to understand how to use
the functions in your package, you’ll need to document them. Chapter 16
gets you started using roxygen2 to document the functions in your package.
Function documentation is helpful only if you know what function to look
up, so next in Chapter 17 we’ll discuss vignettes, which help you document
the package as a whole. We’ll finish up documentation with a discussion of
other important markdown files like README.md and NEWS.md in
Chapter 18, and creating a package website with pkgdown in Chapter 19.

The book concludes by zooming back out to consider development
practices, such as the benefit of using version control and continuous
integration (Chapter 20). We wrap things up by discussing the lifecycle
(Chapter 21) of a package, including releasing it on CRAN (Chapter 22).

This is a lot to learn, but don’t feel overwhelmed. Start with a minimal
subset of useful features (e.g., just an R/ directory!) and build up over time.
To paraphrase the Zen monk Shunryu Suzuki: “Each package is perfect the
way it is—and it can use a little improvement.”

What’s Not Here
There are also specific practices that have little to no treatment here simply
because we do not use them enough to have any special insight. Does this
mean that we actively discourage those practices? Probably not, as we try to
be explicit about practices we think you should avoid. So if something is
not covered here, it just means that a couple hundred heavily used R
packages are built without meaningful reliance on that technique. That
observation should motivate you to evaluate how likely it is that your
development requirements truly don’t overlap with ours. But sometimes the
answer is a clear “yes,” in which case you’ll simply need to consult another
resource.



Conventions Used in This Book
Throughout this book, we write fun() to refer to functions, var to refer
to variables and function arguments, and path/ for paths. Larger code blocks
intermingle input and output. Output is commented so that if you have an
electronic version of the book, e.g., https://r-pkgs.org, you can easily copy
and paste examples into R. Output comments look like #> to distinguish
them from regular comments.

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

https://r-pkgs.org/


NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Colophon
This book was authored using Quarto inside RStudio. The website is hosted
with Netlify and automatically updated after every commit by GitHub
Actions. The complete source is available from GitHub. This version of the
book was built with:

library(devtools)
#> Loading required package: usethis
library(roxygen2)
library(testthat)
#>
#> Attaching package: 'testthat'
#> The following object is masked from 'package:devtools':
#>
#>     test_file 
 
devtools::session_info()
#> ─ Session info 
────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.2.2 (2022-10-31)
#>  os       macOS Big Sur ... 10.16
#>  system   x86_64, darwin17.0
#>  ui       X11
#>  language (EN)
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       America/Vancouver
#>  date     2023-06-06
#>  pandoc   2.19.2 @ /Applications/RStudio.app/.../bin/tools/ 
(via rmarkdown)

https://quarto.org/
https://posit.co/products/open-source/rstudio
https://r-pkgs.org/
https://www.netlify.com/
https://github.com/hadley/r-pkgs


#>
#> ─ Packages 
────────────────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  brio          1.1.3   2021-11-30 [1] CRAN (R 4.2.0)
#>  cachem        1.0.8   2023-05-01 [1] CRAN (R 4.2.0)
#>  callr         3.7.3   2022-11-02 [1] CRAN (R 4.2.0)
#>  cli           3.6.1   2023-03-23 [1] CRAN (R 4.2.0)
#>  crayon        1.5.2   2022-09-29 [1] CRAN (R 4.2.0)
#>  devtools    * 2.4.5   2022-10-11 [1] CRAN (R 4.2.0)
#>  digest        0.6.31  2022-12-11 [1] CRAN (R 4.2.0)
#>  ellipsis      0.3.2   2021-04-29 [1] CRAN (R 4.2.0)
#>  evaluate      0.21    2023-05-05 [1] CRAN (R 4.2.0)
#>  fastmap       1.1.1   2023-02-24 [1] CRAN (R 4.2.0)
#>  fs            1.6.2   2023-04-25 [1] CRAN (R 4.2.0)
#>  glue          1.6.2   2022-02-24 [1] CRAN (R 4.2.0)
#>  htmltools     0.5.5   2023-03-23 [1] CRAN (R 4.2.2)
#>  htmlwidgets   1.6.2   2023-03-17 [1] CRAN (R 4.2.0)
#>  httpuv        1.6.9   2023-02-14 [1] CRAN (R 4.2.0)
#>  knitr         1.43    2023-05-25 [1] CRAN (R 4.2.0)
#>  later         1.3.0   2021-08-18 [1] CRAN (R 4.2.0)
#>  lifecycle     1.0.3   2022-10-07 [1] CRAN (R 4.2.0)
#>  magrittr      2.0.3   2022-03-30 [1] CRAN (R 4.2.0)
#>  memoise       2.0.1   2021-11-26 [1] CRAN (R 4.2.0)
#>  mime          0.12    2021-09-28 [1] CRAN (R 4.2.0)
#>  miniUI        0.1.1.1 2018-05-18 [1] CRAN (R 4.2.0)
#>  pkgbuild      1.4.0   2022-11-27 [1] CRAN (R 4.2.0)
#>  pkgload       1.3.2   2022-11-16 [1] CRAN (R 4.2.0)
#>  prettyunits   1.1.1   2020-01-24 [1] CRAN (R 4.2.0)
#>  processx      3.8.1   2023-04-18 [1] CRAN (R 4.2.0)
#>  profvis       0.3.7   2020-11-02 [1] CRAN (R 4.2.0)
#>  promises      1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
#>  ps            1.7.5   2023-04-18 [1] CRAN (R 4.2.0)
#>  purrr         1.0.1   2023-01-10 [1] CRAN (R 4.2.0)
#>  R.cache       0.16.0  2022-07-21 [1] CRAN (R 4.2.0)
#>  R.methodsS3   1.8.2   2022-06-13 [1] CRAN (R 4.2.0)
#>  R.oo          1.25.0  2022-06-12 [1] CRAN (R 4.2.0)
#>  R.utils       2.12.2  2022-11-11 [1] CRAN (R 4.2.0)
#>  R6            2.5.1   2021-08-19 [1] CRAN (R 4.2.0)
#>  Rcpp          1.0.10  2023-01-22 [1] CRAN (R 4.2.0)
#>  remotes       2.4.2   2021-11-30 [1] CRAN (R 4.2.0)
#>  reprex        2.0.2   2022-08-17 [1] CRAN (R 4.2.0)
#>  rlang         1.1.1   2023-04-28 [1] CRAN (R 4.2.0)
#>  rmarkdown     2.22    2023-06-01 [1] CRAN (R 4.2.0)
#>  roxygen2    * 7.2.3   2022-12-08 [1] CRAN (R 4.2.0)
#>  rstudioapi    0.14    2022-08-22 [1] CRAN (R 4.2.0)
#>  sessioninfo   1.2.2   2021-12-06 [1] CRAN (R 4.2.0)
#>  shiny         1.7.4   2022-12-15 [1] CRAN (R 4.2.0)



#>  stringi       1.7.12  2023-01-11 [1] CRAN (R 4.2.0)
#>  stringr       1.5.0   2022-12-02 [1] CRAN (R 4.2.0)
#>  styler        1.10.1  2023-06-05 [1] CRAN (R 4.2.2)
#>  testthat    * 3.1.8   2023-05-04 [1] CRAN (R 4.2.0)
#>  urlchecker    1.0.1   2021-11-30 [1] CRAN (R 4.2.0)
#>  usethis     * 2.2.0   2023-06-06 [1] CRAN (R 4.2.2)
#>  vctrs         0.6.2   2023-04-19 [1] CRAN (R 4.2.0)
#>  withr         2.5.0   2022-03-03 [1] CRAN (R 4.2.0)
#>  xfun          0.39    2023-04-20 [1] CRAN (R 4.2.0)
#>  xml2          1.3.4   2023-04-27 [1] CRAN (R 4.2.0)
#>  xtable        1.8-4   2019-04-21 [1] CRAN (R 4.2.0)
#>  yaml          2.3.7   2023-01-23 [1] CRAN (R 4.2.0)
#>
#>  [1] /Users/jenny/Library/R/x86_64/4.2/library
#>  [2] 
/Library/Frameworks/R.framework/Versions/4.2/Resources/library
#>
#> 
─────────────────────────────────────────────────────────────────
──
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Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/oreillyr-
packages-2e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreilly
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Part I. Getting Started



Chapter 1. The Whole Game

Spoiler alert!

This chapter runs through the development of a small toy package. It’s
meant to paint the Big Picture and suggest a workflow, before we descend
into the detailed treatment of the key components of an R package.

To keep the pace brisk, we exploit the modern conveniences in the devtools
package and the RStudio IDE. In later chapters, we are more explicit about
what those helpers are doing for us.

This chapter is self-contained, in that completing the exercise is not a strict
requirement to continue with the rest of the book; however, we strongly
suggest you follow along and create this toy package with us.

Load devtools and Friends
You can initiate your new package from any active R session. You don’t
need to worry about whether you’re in an existing or new project. The
functions we use ensure that we create a new clean project for the package.

Load the devtools package, which is the public face of a set of packages
that support various aspects of package development. The most obvious of
these is the usethis package, which you’ll see is also being loaded:

library(devtools)
#> Loading required package: usethis

Do you have an old version of devtools? Compare your version against ours
and upgrade if necessary:

packageVersion("devtools")
#> [1] '2.4.5'



Toy Package: regexcite
To help walk you through the process, we use various functions from
devtools to build a small toy package from scratch, with features commonly
seen in released packages:

Functions to address a specific need, in this case helpers for work with
regular expressions

Version control and an open development process

This is completely optional in your work but highly
recommended. You’ll see how Git and GitHub help us expose all
the intermediate stages of our toy package.

Access to established workflows for installation, getting help, and
checking quality

Documentation for individual functions via roxygen2.

Unit testing with testthat.

Documentation for the package as a whole via an executable
README.Rmd.

We call the package regexcite, and it contains a couple of functions that
make common tasks with regular expressions easier. Please note that these
functions are very simple and we’re using them here only as a means to
guide you through the package development process. If you’re looking for
actual helpers for work with regular expressions, there are several proper R
packages that address this problem space:

stringr (which uses stringi)

stringi

rex

rematch2

https://roxygen2.r-lib.org/
https://testthat.r-lib.org/
https://stringr.tidyverse.org/
https://stringi.gagolewski.com/
https://cran.r-project.org/package=rex
https://cran.r-project.org/package=rematch2


Again, the regexcite package itself is just a device for demonstrating a
typical workflow for package development with devtools.

Preview the Finished Product
The regexcite package is tracked during its development with the Git
version control system. This is purely optional, and you can certainly follow
along without implementing this. A nice side benefit is that we eventually
connect it to a remote repository on GitHub, which means you can see the
glorious result we are working toward by visiting regexcite on GitHub. By
inspecting the commit history and especially the diffs, you can see exactly
what changes at each step of the process laid out below.

create_package()
Call create_package() to initialize a new package in a directory on
your computer. create_package() will automatically create that
directory if it doesn’t exist yet (and that is usually the case). See “Create a
Package” for more on creating packages.

Make a deliberate choice about where to create this package on your
computer. It should probably be somewhere within your home directory,
alongside your other R projects. It should not be nested inside another
RStudio Project, R package, or Git repo. Nor should it be in an R package
library, which holds packages that have already been built and installed.
The conversion of the source package we create here into an installed
package is part of what devtools facilitates. Don’t try to do devtools’ job for
it!

Once you’ve selected where to create this package, substitute your chosen
path into a create_package() call like this:

create_package("~/path/to/regexcite")

https://github.com/jennybc/regexcite
https://github.com/jennybc/regexcite/commits/main


For the creation of this book we have to work in a temporary directory,
because the book is built noninteractively in the cloud. Behind the scenes,
we’re executing our own create_package() command, but don’t be
surprised if our output differs a bit from yours:

#> ✔ Creating '/tmp/Rtmpk6VXyE/regexcite/' 
#> ✔ Setting active project to 
'/private/tmp/Rtmpk6VXyE/regexcite' 
#> ✔ Creating 'R/' 
#> ✔ Writing 'DESCRIPTION' 
#> Package: regexcite 
#> Title: What the Package Does (One Line, Title Case) 
#> Version: 0.0.0.9000 
#> Authors@R (parsed): 
#>     * First Last <first.last@example.com> [aut, cre] (YOUR-
ORCID-ID) 
#> Description: What the package does (one paragraph). 
#> License: `use_mit_license()`, `use_gpl3_license()` or friends 
to pick a 
#>     license 
#> Encoding: UTF-8 
#> Roxygen: list(markdown = TRUE) 
#> RoxygenNote: 7.2.3 
#> ✔ Writing 'NAMESPACE' 
#> ✔ Writing 'regexcite.Rproj' 
#> ✔ Adding '^regexcite\\.Rproj$' to '.Rbuildignore' 
#> ✔ Adding '.Rproj.user' to '.gitignore' 
#> ✔ Adding '^\\.Rproj\\.user$' to '.Rbuildignore' 
#> ✔ Setting active project to '<no active project>'

If you’re working in RStudio, you should find yourself in a new instance of
RStudio, opened into your new regexcite package (and RStudio Project). If
you somehow need to do this manually, navigate to the directory and
double-click regexcite.Rproj. RStudio has special handling for packages,
and you should now see a Build tab in the same pane as Environment and
History.

You probably need to call library(devtools) again, because
create_package() has probably dropped you into a fresh R session, in
your new package:

library(devtools)



What’s in this new directory that is also an R package and, probably, an
RStudio Project? Here’s a listing (locally, you can consult your Files pane):

Path Type

.Rbuildignore File

.gitignore File

DESCRIPTION File

NAMESPACE File

R Directory

regexcite.Rproj File

RSTUDIO
In the Files pane, go to More (gear symbol) > Show Hidden Files to toggle the visibility of hidden
files (a.k.a. “dotfiles”). A select few are visible all the time, but sometimes you want to see them
all.

.Rbuildignore lists files that we need to have around but that should
not be included when building the R package from source. If you
aren’t using RStudio, create_package() may not create this file
(nor .gitignore) at first, since there’s no RStudio-related machinery that
needs to be ignored. However, you will likely develop the need for
.Rbuildignore at some point, regardless of what editor you are using.
This is discussed in more detail in “.Rbuildignore”.

.Rproj.user, if you have it, is a directory used internally by RStudio.

https://oreil.ly/cQot3


.gitignore anticipates Git usage and tells Git to ignore some standard,
behind-the-scenes files created by R and RStudio. Even if you do not
plan to use Git, this is harmless.

DESCRIPTION provides metadata about your package. We edit this
shortly, and Chapter 9 covers the general topic of the DESCRIPTION
file.

NAMESPACE declares the functions your package exports for external
use and the external functions your package imports from other
packages. At this point it is empty, except for a comment declaring that
this is a file you should not edit by hand.

The R/ directory is the “business end” of your package. It will soon
contain .R files with function definitions.

regexcite.Rproj is the file that makes this directory an RStudio Project.
Even if you don’t use RStudio, this file is harmless. Or you can
suppress its creation with create_package(..., rstudio =
FALSE). More in “RStudio Projects”.

use_git()
The regexcite directory is an R source package and an RStudio Project.
Now we make it also a Git repository, with use_git(). (By the way,
use_git() works in any project, regardless of whether it’s an R
package.)

use_git()
#> ✔ Initialising Git repo
#> ✔ Adding '.Rhistory', '.Rdata', '.httr-oauth', '.DS_Store' to 
'.gitignore'

In an interactive session, you will be asked if you want to commit some
files here, and you should accept the offer. Behind the scenes, we’ll also
commit those same files.



So what has changed in the package? Only the creation of a .git directory,
which is hidden in most contexts, including the RStudio file browser. Its
existence is evidence that we have indeed initialized a Git repo here:

Path Type

.git Directory

If you’re using RStudio, it probably requested permission to relaunch itself
in this Project, which you should do. You can do so manually by quitting,
then relaunching RStudio by double-clicking regexcite.Rproj. Now, in
addition to package development support, you have access to a basic Git
client in the Git tab of the Environment/History/Build pane.

Click History (the clock icon in the Git pane) and, if you consented, you
will see an initial commit made via use_git().

RSTUDIO
RStudio can initialize a Git repository in any Project, even if it’s not an R package, as long you’ve
set up RStudio + Git integration. Go to Tools > Version Control > Project Setup. Then choose
“Version control system: Git” and “initialize a new git repository for this project.”

Write the First Function
A fairly common task when dealing with strings is the need to split a single
string into many parts. The strsplit() function in base R does exactly
this:

(x <- "alfa,bravo,charlie,delta")
#> [1] "alfa,bravo,charlie,delta"
strsplit(x, split = ",")
#> [[1]]
#> [1] "alfa"    "bravo"   "charlie" "delta"



Take a close look at the return value:

str(strsplit(x, split = ","))
#> List of 1
#>  $ : chr [1:4] "alfa" "bravo" "charlie" "delta"

The shape of this return value often surprises people or, at least,
inconveniences them. The input is a character vector of length one and the
output is a list of length one. This makes total sense in light of R’s
fundamental tendency toward vectorization. But sometimes it’s still a bit of
a bummer. Often you know that your input is morally a scalar, i.e., it’s just a
single string, and really want the output to be the character vector of its
parts.

This leads R users to employ various methods of “unlist”-ing the result:

unlist(strsplit(x, split = ","))
#> [1] "alfa"    "bravo"   "charlie" "delta" 
 
strsplit(x, split = ",")[[1]]
#> [1] "alfa"    "bravo"   "charlie" "delta"

The second, safer solution is the basis for the inaugural function of
regexcite, strsplit1():

strsplit1 <- function(x, split) { 
  strsplit(x, split = split)[[1]]
}

This book does not teach you how to write functions in R. To learn more
about that take a look at the Functions chapter of R for Data Science and the
Functions chapter of Advanced R.

https://r4ds.hadley.nz/functions.xhtml
https://adv-r.hadley.nz/functions.xhtml


TIP
The name of strsplit1() is a nod to the very handy paste0(), which first appeared in R
2.15.0 in 2012. paste0() was created to address the extremely common use case of paste()-
ing strings together without a separator. paste0() has been lovingly described as “statistical
computing’s most influential contribution of the 21st century”.

The strsplit1() function was so inspiring that it’s now a real function in the stringr package:
stringr::str_split_1()!

use_r()
Where should you put the definition of strsplit1()? Save it in a .R file,
in the R/ subdirectory of your package. A reasonable starting position is to
make a new .R file for each user-facing function in your package and name
the file after the function. As you add more functions, you’ll want to relax
this and begin to group related functions together. We’ll save the definition
of strsplit1() in the file R/strsplit1.R.

The helper use_r() creates and/or opens a script below R/. It really
shines in a more mature package, when navigating between .R files and the
associated test file. But even here, it’s useful to keep yourself from getting
too carried away while working in Untitled4:

use_r("strsplit1")
#> • Edit 'R/strsplit1.R'

Put the definition of strsplit1() and only the definition of
strsplit1() in R/strsplit1.R and save it. The file R/strsplit1.R should
not contain any of the other top-level code we have recently executed, such
as the definition of our practice input x, library(devtools), or
use_git(). This foreshadows an adjustment you’ll need to make as you
transition from writing R scripts to R packages. Packages and scripts use
different mechanisms to declare their dependency on other packages and to
store example or test code. We explore this further in Chapter 6.

https://oreil.ly/HcL-1


load_all()
How do we test drive strsplit1()? If this were a regular R script, we
might use RStudio to send the function definition to the R console and
define strsplit1() in the global environment. Or maybe we’d call
source("R/strsplit1.R"). For package development, however,
devtools offers a more robust approach.

Call load_all() to make strsplit1() available for experimentation:

load_all()
#> ℹ Loading regexcite

Now call strsplit1(x) to see how it works:

(x <- "alfa,bravo,charlie,delta")
#> [1] "alfa,bravo,charlie,delta"
strsplit1(x, split = ",")
#> [1] "alfa"    "bravo"   "charlie" "delta"

Note that load_all() has made the strsplit1() function available,
although it does not exist in the global environment:

exists("strsplit1", where = globalenv(), inherits = FALSE)
#> [1] FALSE

If you see TRUE instead of FALSE, that indicates you’re still using a script-
oriented workflow and sourcing your functions. Here’s how to get back on
track:

1. Clean out the global environment and restart R.

2. Reattach devtools with library(devtools) and reload regexcite
with load_all().

3. Redefine the test input x and call strsplit1(x, split = ",")
again. This should work!



4. Run exists("strsplit1", where = globalenv(),
inherits = FALSE) again and you should see FALSE.

load_all() simulates the process of building, installing, and attaching
the regexcite package. As your package accumulates more functions—some
exported, some not, some of which call each other, some of which call
functions from packages you depend on—load_all() gives you a much
more accurate sense of how the package is developing than test driving
functions defined in the global environment. load_all() also allows
much faster iteration than actually building, installing, and attaching the
package. See “Test Drive with load_all()” for more about load_all().

To review what we’ve done so far:

We wrote our first function, strsplit1(), to split a string into a
character vector (not a list containing a character vector).

We used load_all() to quickly make this function available for
interactive use, as if we’d built and installed regexcite and attached it
via library(regexcite).

RSTUDIO
RStudio exposes load_all() in the Build menu, in the Build pane via More > Load All, and in
keyboard shortcuts Ctrl+Shift+L (Windows & Linux) or Cmd-Shift-L (macOS).

Commit strsplit1()
If you’re using Git, use your preferred method to commit the new
R/strsplit1.R file. We do so behind the scenes here, and here’s the associated
diff:

diff --git a/R/strsplit1.R b/R/strsplit1.R 
new file mode 100644 
index 0000000..29efb88 
--- /dev/null 
+++ b/R/strsplit1.R 



@@ -0,0 +1,3 @@ 
+strsplit1 <- function(x, split) { 
+  strsplit(x, split = split)[[1]] 
+}

From this point on, we commit after each step. Remember these commits
are available in the public repository.

check()
We have informal, empirical evidence that strsplit1() works. But how
can we be sure that all the moving parts of the regexcite package still work?
This may seem silly to check, after such a small addition, but it’s good to
establish the habit of checking this often.

R CMD check, executed in the shell, is the gold standard for checking
that an R package is in full working order. check() is a convenient way to
run this without leaving your R session.

Note that check() produces rather voluminous output, optimized for
interactive consumption. We intercept that here and just reveal a summary.
Your local check() output will be different:

check()
── R CMD check results ─────────────────── regexcite 0.0.0.9000 
──── 
Duration: 8.9s 
 
❯ checking DESCRIPTION meta-information ... WARNING 
  Non-standard license specification: 
    `use_mit_license()`, `use_gpl3_license()` or friends to pick 
a 
    license 
  Standardizable: FALSE 
 
0 errors ✔ | 1 warning ✖ | 0 notes ✔

It is essential to actually read the output of the check! Deal with problems
early and often. It’s just like incremental development of .R and .Rmd files.

https://oreil.ly/fZ3Pw


The longer you go between full checks that everything works, the harder it
becomes to pinpoint and solve your problems.

At this point, we expect 1 warning (and 0 errors, 0 notes):

Non-standard license specification: 
  `use_mit_license()`, `use_gpl3_license()` or friends to pick a 
  license

We’ll address that soon, by doing exactly what it says. You can learn more
about check() in “check() and R CMD check”.

RSTUDIO
RStudio exposes check() in the Build menu, in the Build pane via Check, and in keyboard
shortcuts Ctrl+Shift+E (Windows & Linux) or Cmd-Shift-E (macOS).

Edit DESCRIPTION
The DESCRIPTION file provides metadata about your package and is
covered fully in Chapter 9. This is a good time to look at regexcite’s current
DESCRIPTION. You’ll see it’s populated with boilerplate content, which
needs to be replaced.

To add your own metadata, make these edits:

Make yourself the author. If you don’t have an ORCID, you can omit
the comment = ... portion.

Write some descriptive text in the Title and Description fields.

RSTUDIO
Use Ctrl+. in RStudio and start typing DESCRIPTION to activate a helper that makes it easy to
open a file for editing. In addition to a filename, your hint can be a function name. This is very
handy once a package has lots of files.



When you’re done, DESCRIPTION should look similar to this:

Package: regexcite 
Title: Make Regular Expressions More Exciting 
Version: 0.0.0.9000 
Authors@R: 
    person("Jane", "Doe", , "jane@example.com", role = c("aut", 
"cre")) 
Description: Convenience functions to make some common tasks with 
string 
    manipulation and regular expressions a bit easier. 
License: `use_mit_license()`, `use_gpl3_license()` or friends to 
pick a 
    license 
Encoding: UTF-8 
Roxygen: list(markdown = TRUE) 
RoxygenNote: 7.1.2

use_mit_license()
Pick a License, Any License.

—Jeff Atwood

We currently have a placeholder in the License field of DESCRIPTION
that’s deliberately invalid and suggests a resolution:

License: `use_mit_license()`, `use_gpl3_license()` or friends to 
pick a 
    license

To configure a valid license for the package, call use_mit_license():

use_mit_license()
#> ✔ Setting License field in DESCRIPTION to 'MIT + file LICENSE'
#> ✔ Writing 'LICENSE'
#> ✔ Writing 'LICENSE.md'
#> ✔ Adding '^LICENSE\\.md$' to '.Rbuildignore'

This configures the License field correctly for the MIT license, which
promises to name the copyright holders and year in a LICENSE file. Open

https://oreil.ly/MKshG


the newly created LICENSE file and confirm it looks something like this:

YEAR: 2023 
COPYRIGHT HOLDER: regexcite authors

Like other license helpers, use_mit_license() also puts a copy of the
full license in LICENSE.md and adds this file to .Rbuildignore. It’s
considered a best practice to include a full license in your package’s source,
such as on GitHub, but CRAN disallows the inclusion of this file in a
package tarball. You can learn more about licensing in Chapter 12.

document()
Wouldn’t it be nice to get help on strsplit1(), just like we do with
other R functions? This requires that your package have a special R
documentation file, man/strsplit1.Rd, written in an R-specific markup
language that is sort of like LaTeX. Luckily we don’t necessarily have to
author that directly.

We write a specially formatted comment right above strsplit1(), in its
source file, and then let a package called roxygen2 handle the creation of
man/strsplit1.Rd. The motivation and mechanics of roxygen2 are covered in
Chapter 16.

If you use RStudio, open R/strsplit1.R in the source editor and put the
cursor somewhere in the strsplit1() function definition. Now do Code
> Insert roxygen skeleton. A very special comment should appear above
your function, in which each line begins with #'. RStudio inserts only a
barebones template, so you will need to edit it to look something like the
comment below.

If you don’t use RStudio, create the comment yourself. Regardless, you
should modify it to look something like this:

#' Split a string
#'
#' @param x A character vector with one element.

https://roxygen2.r-lib.org/


#' @param split What to split on.
#'
#' @return A character vector.
#' @export
#'
#' @examples
#' x <- "alfa,bravo,charlie,delta"
#' strsplit1(x, split = ",")
strsplit1 <- function(x, split) { 
  strsplit(x, split = split)[[1]]
}

But we’re not done yet! We still need to trigger the conversion of this new
roxygen comment into man/strsplit1.Rd with document():

document()
#> ℹ Updating regexcite documentation
#> Setting `RoxygenNote` to "7.2.3"
#> ℹ Loading regexcite
#> Writing 'NAMESPACE'
#> Writing 'strsplit1.Rd'

RSTUDIO
RStudio exposes document() in the Build menu, in the Build pane via More > Document, and
in keyboard shortcuts Ctrl+Shift+D (Windows & Linux) or Cmd-Shift-D (macOS).

You should now be able to preview your help file like so:

?strsplit1

You’ll see a message like “Rendering development documentation for
‘strsplit1’”, which reminds that you are basically previewing draft
documentation. That is, this documentation is present in your package’s
source but is not yet present in an installed package. In fact, we haven’t
installed regexcite yet, but we will soon. If ?strsplit1 doesn’t work for
you, you may need to call load_all() first, then try again.



Note also that your package’s documentation won’t be properly wired up
until it has been formally built and installed. This polishes off niceties like
the links between help files and the creation of a package index.

NAMESPACE Changes
In addition to converting strsplit1()’s special comment into
man/strsplit1.Rd, the call to document() updates the NAMESPACE file,
based on @export tags found in roxygen comments. Open NAMESPACE
for inspection. The contents should be:

# Generated by roxygen2: do not edit by hand 
 
export(strsplit1)

The export directive in NAMESPACE is what makes strsplit1()
available to a user after attaching regexcite via library(regexcite).
Just as it is entirely possible to author .Rd files “by hand,” you can manage
NAMESPACE explicitly yourself. But we choose to delegate this to devtools
(and roxygen2). You can learn more about dependencies and NAMESPACE
management in Chapters 10 and 11.

check() Again
regexcite should pass R CMD check cleanly now and forever more—0
errors, 0 warnings, 0 notes:

check()
── R CMD check results ─────────────────── regexcite 0.0.0.9000 
──── 
Duration: 11.7s 
 
0 errors ✔ | 0 warnings ✔ | 0 notes ✔

install()



Now that we know we have a minimum viable product, let’s install the
regexcite package into your library via install():

install()
── R CMD build 
───────────────────────────────────────────────────── 
* checking for file 
‘/private/tmp/Rtmpk6VXyE/regexcite/DESCRIPTION’ ... OK 
* preparing ‘regexcite’: 
* checking DESCRIPTION meta-information ... OK 
* checking for LF line-endings in source and make files and shell 
scripts 
* checking for empty or unneeded directories 
* building ‘regexcite_0.0.0.9000.tar.gz’ 
Running /Library/Frameworks/R.framework/Resources/bin/R CMD \ 
  INSTALL /tmp/Rtmpk6VXyE/regexcite_0.0.0.9000.tar.gz \ 
  --install-tests 
* installing to library 
‘/Users/jenny/Library/R/x86_64/4.2/library’ 
* installing _source_ package ‘regexcite’ ... 
** using staged installation 
** R 
** byte-compile and prepare package for lazy loading 
** help 
*** installing help indices 
** building package indices 
** testing if installed package can be loaded from temporary 
location 
** testing if installed package can be loaded from final location 
** testing if installed package keeps a record of temporary 
installation path 
* DONE (regexcite)

RSTUDIO
RStudio exposes similar functionality in the Build menu and in the Build pane via Install and
Restart, and in keyboard shortcuts Ctrl+Shift+B (Windows & Linux) or Cmd-Shift-B (macOS).

After installation is complete, we can attach and use regexcite like any other
package. Let’s revisit our small example from the top. This is also a good
time to restart your R session and ensure you have a clean workspace:



library(regexcite) 
 
x <- "alfa,bravo,charlie,delta"
strsplit1(x, split = ",")
#> [1] "alfa"    "bravo"   "charlie" "delta"

Success!

use_testthat()
We’ve tested strsplit1() informally, in a single example. We can
formalize this as a unit test. This means we express a concrete expectation
about the correct strsplit1() result for a specific input.

First, we declare our intent to write unit tests and to use the testthat package
for this, via use_testthat():

use_testthat()
#> ✔ Adding 'testthat' to Suggests field in DESCRIPTION
#> ✔ Setting Config/testthat/edition field in DESCRIPTION to '3'
#> ✔ Creating 'tests/testthat/'
#> ✔ Writing 'tests/testthat.R'
#> • Call `use_test()` to initialize a basic test file and open 
it for editing.

This initializes the unit testing machinery for your package. It adds
Suggests: testthat to DESCRIPTION, creates the directory
tests/testthat/, and adds the script tests/testthat.R. You’ll notice that testthat
is probably added with a minimum version of 3.0.0 and a second
DESCRIPTION field, Config/testthat/edition: 3. We’ll talk
more about those details in Chapter 13.

However, it’s still up to you to write the actual tests!

The helper use_test() opens and/or creates a test file. You can provide
the file’s basename or, if you are editing the relevant source file in RStudio,
it will be automatically generated. For many of you, if R/strsplit1.R is the
active file in RStudio, you can just call use_test(). However, since this
book is built noninteractively, we must provide the basename explicitly:



use_test("strsplit1")
#> ✔ Writing 'tests/testthat/test-strsplit1.R'
#> • Edit 'tests/testthat/test-strsplit1.R'

This creates the file tests/testthat/test-strsplit1.R. If it had already existed,
use_test() would have just opened it. You will notice there is an
example test in the newly created file—delete that code and replace it with
this content:

test_that("strsplit1() splits a string", { 
  expect_equal(strsplit1("a,b,c", split = ","), c("a", "b", "c"))
})

This tests that strsplit1() gives the expected result when splitting a
string.

Run this test interactively, as you will when you write your own. If
test_that() or strsplit1() can’t be found, that suggests you
probably need to call load_all().

Going forward, your tests mostly will run en masse and at arm’s length via
test():

test()
#> ℹ Testing regexcite
#> ✔ | F W S  OK | Context
#>
#> ⠏ |         0 | strsplit1
#> ✔ |         1 | strsplit1
#>
#> ══ Results 
═════════════════════════════════════════════════════════
#> [ FAIL 0 | WARN 0 | SKIP 0 | PASS 1 ]

RSTUDIO
RStudio exposes test() in the Build menu, in the Build pane via More > Test package, and in
keyboard shortcuts Ctrl+Shift+T (Windows & Linux) or Cmd-Shift-T (macOS).



Your tests are also run whenever you check() the package. In this way,
you basically augment the standard checks with some of your own that are
specific to your package. It is a good idea to use the covr package to track
what proportion of your package’s source code is exercised by the tests.
More details can be found in Chapter 13.

use_package()
You will inevitably want to use a function from another package in your
own package. We will need to use package-specific methods for declaring
the other packages we need (i.e., our dependencies) and for using these
packages in ours. If you plan to submit a package to CRAN, note that this
even applies to functions in packages that you think of as “always
available,” such as stats::median() or utils::head().

One common dilemma when using R’s regular expression functions is
uncertainty about whether to request perl = TRUE or perl = FALSE.
And then there are often, but not always, other arguments that alter how
patterns are matched, such as fixed, ignore.case, and invert. It
can be hard to keep track of which functions use which arguments and how
the arguments interact, so many users never get to the point where they
retain these details without rereading the docs.

The stringr package “provides a cohesive set of functions designed to make
working with strings as easy as possible.” In particular, stringr uses one
regular expression system everywhere (ICU regular expressions) and uses
the same interface in every function for controlling matching behaviors,
such as case sensitivity. Some people find this easier to internalize and
program around. Let’s imagine you decide you’d rather build regexcite
based on stringr (and stringi) than base R’s regular expression functions.

First, declare your general intent to use some functions from the stringr
namespace with use_package():

use_package("stringr")
#> ✔ Adding 'stringr' to Imports field in DESCRIPTION

https://covr.r-lib.org/


#> • Refer to functions with `stringr::fun()`

This adds the stringr package to the Imports field of DESCRIPTION.
And that is all it does.

Let’s revisit strsplit1() to make it more stringr-like. Here’s a new take
on it:1

str_split_one <- function(string, pattern, n = Inf) { 
  stopifnot(is.character(string), length(string) <= 1) 
  if (length(string) == 1) { 
    stringr::str_split(string = string, pattern = pattern, n = n)
[[1]] 
  } else { 
    character() 
  }
}

Notice that we:

Rename the function to str_split_one(), to signal that is a
wrapper around stringr::str_split().

Adopt the argument names from stringr::str_split(). Now
we have string and pattern (and n), instead of x and split.

Introduce a bit of argument checking and edge case handling. This is
unrelated to the switch to stringr and would be equally beneficial in the
version built on strsplit().

Use the package::function() form when calling
stringr::str_split(). This specifies that we want to call the
str_split() function from the stringr namespace. There is more
than one way to call a function from another package, and the one we
endorse here is explained fully in Chapter 11.

Where should we write this new function definition? If we want to keep
following the convention where we name the .R file after the function it
defines, we now need to do some fiddly file shuffling. Because this comes



up fairly often in real life, we have the rename_files() function, which
choreographs the renaming of a file in R/ and its associated companion files
below test/:

rename_files("strsplit1", "str_split_one")
#> ✔ Moving 'R/strsplit1.R' to 'R/str_split_one.R'
#> ✔ Moving 'tests/testthat/test-strsplit1.R' to
#>    'tests/testthat/test-str_split_one.R'

Remember: the filename work is purely aspirational. We still need to update
the contents of these files!

Here are the updated contents of R/str_split_one.R. In addition to changing
the function definition, we’ve also updated the roxygen header to reflect the
new arguments and to include examples that show off the stringr features:

#' Split a string
#'
#' @param string A character vector with, at most, one element.
#' @inheritParams stringr::str_split
#'
#' @return A character vector.
#' @export
#'
#' @examples
#' x <- "alfa,bravo,charlie,delta"
#' str_split_one(x, pattern = ",")
#' str_split_one(x, pattern = ",", n = 2)
#'
#' y <- "192.168.0.1"
#' str_split_one(y, pattern = stringr::fixed("."))
str_split_one <- function(string, pattern, n = Inf) { 
  stopifnot(is.character(string), length(string) <= 1) 
  if (length(string) == 1) { 
    stringr::str_split(string = string, pattern = pattern, n = n)
[[1]] 
  } else { 
    character() 
  }
}

Don’t forget to also update the test file!



Here are the updated contents of tests/testthat/test-str_split_one.R. In
addition to the change in the function’s name and arguments, we’ve added a
couple more tests:

test_that("str_split_one() splits a string", { 
  expect_equal(str_split_one("a,b,c", ","), c("a", "b", "c"))
}) 
 
test_that("str_split_one() errors if input length > 1", { 
  expect_error(str_split_one(c("a,b","c,d"), ","))
}) 
 
test_that("str_split_one() exposes features of 
stringr::str_split()", { 
  expect_equal(str_split_one("a,b,c", ",", n = 2), c("a", "b,c")) 
  expect_equal(str_split_one("a.b", stringr::fixed(".")), c("a", 
"b"))
})

Before we take the new str_split_one() out for a test drive, we need
to call document(). Why? Remember that document() does two main
jobs:

1. Converts our roxygen comments into proper R documentation.

2. (Re)generates NAMESPACE.

The second job is especially important here, since we will no longer export
strsplit1() and we will newly export str_split_one(). Don’t be
dismayed by the warning about "Objects listed as exports,
but not present in namespace: strsplit1". That always
happens when you remove something from the namespace.

document()
#> ℹ Updating regexcite documentation
#> ℹ Loading regexcite
#> Warning: Objects listed as exports, but not present in 
namespace:
#> • strsplit1
#> Writing 'NAMESPACE'
#> Writing 'str_split_one.Rd'
#> Deleting 'strsplit1.Rd'



Try out the new str_split_one() function by simulating package
installation via load_all():

load_all()
#> ℹ Loading regexcite
str_split_one("a, b, c", pattern = ", ")
#> [1] "a" "b" "c"

use_github()
You’ve seen us making commits during the development process for
regexcite. You can see an indicative history at
https://github.com/jennybc/regexcite. Our use of version control and the
decision to expose the development process means you can inspect the state
of the regexcite source at each developmental stage. By looking at so-called
diffs, you can see exactly how each devtools helper function modifies the
source files that constitute the regexcite package.

How would you connect your local regexcite package and Git repository to
a companion repository on GitHub? Here are three approaches:

use_github() is a helper that we recommend for the long term. We
won’t demonstrate it here because it requires some credential setup on
your end. We also don’t want to tear down and rebuild the public
regexcite package every time we build this book.

Set up the GitHub repo first! It sounds counterintuitive, but the easiest
way to get your work onto GitHub is to initiate there, then use RStudio
to start working in a synced local copy. This approach is described in
Happy Git’s workflows New project, GitHub first and Existing project,
GitHub first.

Command-line Git can always be used to add a remote repository post
hoc. This is described in the Happy Git workflow Existing project,
GitHub last.

https://github.com/jennybc/regexcite
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Any of these approaches will connect your local regexcite project to a
GitHub repo, public or private, which you can push to or pull from using
the Git client built into RStudio. In Chapter 20, we elaborate on why
version control (e.g., Git) and, specifically, hosted version control (e.g.,
GitHub) is worth incorporating into your package development process.

use_readme_rmd()
Now that your package is on GitHub, the README.md file matters. It is the
package’s home page and welcome mat, at least until you decide to give it a
website (see Chapter 19), add a vignette (see Chapter 17), or submit it to
CRAN (see Chapter 22).

The use_readme_rmd() function initializes a basic, executable
README.Rmd ready for you to edit:

use_readme_rmd()
#> ✔ Writing 'README.Rmd'
#> ✔ Adding '^README\\.Rmd$' to '.Rbuildignore'
#> • Update 'README.Rmd' to include installation instructions.
#> ✔ Writing '.git/hooks/pre-commit'

In addition to creating README.Rmd, this adds some lines to .Rbuildignore
and creates a Git precommit hook to help you keep README.Rmd and
README.md in sync.

README.Rmd already has sections that prompt you to:

Describe the purpose of the package.

Provide installation instructions. If a GitHub remote is detected when
use_readme_rmd() is called, this section is prefilled with
instructions on how to install from GitHub.

Show a bit of usage.

How to populate this skeleton? Copy stuff liberally from DESCRIPTION
and any formal and informal tests or examples you have. Anything is better



than nothing. This is helpful because people probably won’t install your
package and comb through individual help files to figure out how to use it.

We like to write the README in R Markdown, so it can feature actual
usage. The inclusion of live code also makes it less likely that your
README grows stale and out-of-sync with your actual package.

To make your own edits, if RStudio has not already done so, open
README.Rmd for editing. Make sure it shows some usage of
str_split_one().

Here’s what the README.Rmd file contains:

--- 
output: github_document 
--- 
 
<!-- README.md is generated from README.Rmd. Please edit that 
file --> 
 
```{r, include = FALSE} 
knitr::opts_chunk$set( 
  collapse = TRUE, 
  comment = "#>", 
  fig.path = "man/figures/README-", 
  out.width = "100%" 
) 
``` 
 
**NOTE: This is a toy package created for expository purposes, 
for the second 
edition of [R Packages](https://r-pkgs.org). It is not meant to 
actually be 
useful. If you want a package for factor handling, please see 
[stringr](https://stringr.tidyverse.org), 
[stringi](https://stringi.gagolewski.com/), 
[rex](https://cran.r-project.org/package=rex), and 
[rematch2](https://cran.r-project.org/package=rematch2).** 
 
# regexcite 
 
<!-- badges: start --> 
<!-- badges: end --> 
 
The goal of regexcite is to make regular expressions more 
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exciting! 
It provides convenience functions to make some common tasks with 
string 
manipulation and regular expressions a bit easier. 
 
## Installation 
 
You can install the development version of regexcite from 
[GitHub](https://github.com/) with: 
 
``` r 
# install.packages("devtools") 
devtools::install_github("jennybc/regexcite") 
``` 
 
## Usage 
 
A fairly common task when dealing with strings is the need to 
split a single 
string into many parts. 
This is what `base::strplit()` and `stringr::str_split()` do. 
 
```{r} 
(x <- "alfa,bravo,charlie,delta") 
strsplit(x, split = ",") 
stringr::str_split(x, pattern = ",") 
``` 
 
Notice how the return value is a _list_ of length one, where the 
first element 
holds the character vector of parts. Often the shape of this 
output is 
inconvenient, i.e. we want the un-listed version. 
 
That's exactly what `regexcite::str_split_one()` does. 
 
```{r} 
library(regexcite) 
 
str_split_one(x, pattern = ",") 
``` 
 
Use `str_split_one()` when the input is known to be a single 
string. 
For safety, it will error if its input has length greater than 
one. 
 
`str_split_one()` is built on `stringr::str_split()`, so you can 



use its `n` 
argument and stringr's general interface for describing the 
`pattern` to be 
matched. 
 
```{r} 
str_split_one(x, pattern = ",", n = 2) 
 
y <- "192.168.0.1" 
str_split_one(y, pattern = stringr::fixed(".")) 
```

Don’t forget to render it to make README.md! The precommit hook
should remind you if you try to commit README.Rmd, but not
README.md, and also when README.md appears to be out-of-date.

The very best way to render README.Rmd is with build_readme(),
because it takes care to render with the most current version of your
package, i.e., it installs a temporary copy from the current source:

build_readme()
#> ℹ Installing regexcite in temporary library
#> ℹ Building '/private/tmp/Rtmpk6VXyE/regexcite/README.Rmd'

You can see the rendered README.md simply by visiting regexcite on
GitHub.

Finally, don’t forget to do one last commit. And push, if you’re using
GitHub.

The End: check() and install()
Let’s run check() again to make sure all is still well:

check()
── R CMD check results ─────────────────── regexcite 0.0.0.9000 
──── 
Duration: 13.4s 
 
0 errors ✔ | 0 warnings ✔ | 0 notes ✔

https://github.com/jennybc/regexcite#readme


regexcite should have no errors, warnings, or notes. This would be a good
time to rebuild and install it properly. And celebrate!

install()
── R CMD build 
───────────────────────────────────────────────────── 
* checking for file 
‘/private/tmp/Rtmpk6VXyE/regexcite/DESCRIPTION’ ... OK 
* preparing ‘regexcite’: 
* checking DESCRIPTION meta-information ... OK 
* checking for LF line-endings in source and make files and shell 
scripts 
* checking for empty or unneeded directories 
* building ‘regexcite_0.0.0.9000.tar.gz’ 
Running /Library/Frameworks/R.framework/Resources/bin/R CMD \ 
  INSTALL /tmp/Rtmpk6VXyE/regexcite_0.0.0.9000.tar.gz \ 
  --install-tests 
* installing to library 
‘/Users/jenny/Library/R/x86_64/4.2/library’ 
* installing _source_ package ‘regexcite’ ... 
** using staged installation 
** R 
** tests 
** byte-compile and prepare package for lazy loading 
** help 
*** installing help indices 
** building package indices 
** testing if installed package can be loaded from temporary 
location 
** testing if installed package can be loaded from final location 
** testing if installed package keeps a record of temporary 
installation path 
* DONE (regexcite)

Feel free to visit the regexcite package on GitHub, which appears exactly as
developed here. The commit history reflects each individual step, so use the
diffs to see the addition and modification of files as the package evolved.
The rest of this book goes in greater detail for each step you’ve seen here
and much more.

Review

https://github.com/jennybc/regexcite


This chapter is meant to give you a sense of the typical package
development workflow, summarized as a diagram in Figure 1-1. Everything
you see here has been touched on in this chapter, with the exception of
GitHub Actions, which you will learn more about in “GitHub Actions”.





Figure 1-1. The devtools package development workflow

Here is a review of the key functions you’ve seen in this chapter, organized
roughly by their role in the development process.

These functions set up parts of the package and are typically called once per
package:

create_package()

use_git()

use_mit_license()

use_testthat()

use_github()

use_readme_rmd()

You will call these functions on a regular basis, as you add functions and
tests or take on dependencies:

use_r()

use_test()

use_package()

You will call these functions multiple times per day or per hour, during
development:

load_all()

document()

test()

check()



1  Recall that this example was so inspiring that it’s now a real function in the stringr package:
stringr::str_split_1()!



Chapter 2. System Setup

To get started, make sure you have the latest version of R (at least 4.2.2,
which is the version being used to render this book), then run the following
code to get the packages you’ll need:

install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

Make sure you have a recent version of the RStudio integrated development
environment (IDE). New versions are released regularly, so we recommend
updating often to get access to the latest and greatest features.

Download the current version of RStudio Desktop. Most readers can use the
free, open source version of RStudio Desktop.

devtools, usethis, and You
“I am large, I contain multitudes.”

— Walt Whitman, Song of Myself

As mentioned in “Philosophy”, devtools is a “metapackage,” encompassing
and exposing functionality maintained in several smaller packages.1 For
example, devtools might provide a wrapper function in order to set user-
friendly defaults, introduce helpful interactive behavior, or to combine
functionality from multiple subpackages. In some cases it simply re-exports
a function from another package to make it easily available when devtools
is attached.

What’s our recommended approach to using devtools and its constituent
packages? It varies, depending on your intention:

If you are using the functions interactively to help you develop your
package, you should think of devtools as the provider of your favorite

https://oreil.ly/94MAO


functions for package development. In this case you should attach
devtools with library(devtools) and call the functions without
qualification (e.g., load_all()).

If you are using functions from devtools and friends within the
package code you are writing, you should not depend on devtools but
should instead access functions via the package that is their primary
home.

devtools should rarely appear in the role of pkg in a qualified call
of the form pkg::fcn(). Instead, pkg should be the package
where fcn() is defined. For example, if you are creating a
function in your package in which you need to query the state of
the user’s R session, use sessioninfo::session_info()
in your package instead of devtools::session_info().

If you find bugs, try to report them on the package that is a function’s
primary home. The help for devtools::fcn() usually states when
devtools is re-exporting a function from another package.

The usethis package is the one constituent package that more people may be
aware of and that they may use directly. It holds the functions that act on
the files and folders in an R project, most especially for any project that is
also an R package. devtools makes it easy to access usethis functions
interactively, as when when you call library(devtools), usethis is
also attached. Then you can use any function in usethis without
qualification, e.g., just call use_testthat(). If you choose to specify
the namespace, such as when working in a more programmatic style, then
make sure you qualify the call with usethis, e.g.,
usethis::use_testthat().

Personal Startup Configuration
You can attach devtools like so:

library(devtools)



But it soon grows aggravating to repeatedly attach devtools in every R
session. Therefore, we strongly recommend attaching2 devtools in your
.Rprofile startup file, like so:

if (interactive()) { 
  suppressMessages(require(devtools))
}

For convenience, the function use_devtools() creates .Rprofile, if
needed, opens it for editing, and puts the necessary lines of code on the
clipboard and the screen.

WARNING
In general, it’s a bad idea to attach packages in .Rprofile, as it invites you to create R scripts that
don’t reflect all of their dependencies via explicit calls to library(foo). But devtools is a
workflow package that smooths the process of package development and is, therefore, unlikely to
get baked into any analysis scripts. Note how we still take care to attach only in interactive
sessions.

usethis consults certain options when, for example, creating R packages de
novo. This allows you to specify personal defaults for yourself as a package
maintainer or for your preferred license. Here’s an example of a code
snippet that could go in .Rprofile:

options( 
  usethis.description = list( 
    `Authors@R` = 'person("Jane", "Doe", email = 
"jane@example.com")', 
    License = "MIT + file LICENSE" 
  )
)

The following code shows how to install the development versions of
devtools and usethis. At times, this book may describe new features that are
in the development version of devtools and related packages but that
haven’t been released yet:



devtools::install_github("r-lib/devtools")
devtools::install_github("r-lib/usethis") 
 
# or, alternatively
pak::pak("r-lib/devtools")
pak::pak("r-lib/usethis")

R Build Toolchain
To be fully capable of building R packages from source, you’ll also need a
compiler and a few other command-line tools. This may not be strictly
necessary until you want to build packages containing C or C++ code.
Especially if you are using RStudio, you can set this aside for now. The IDE
will alert you and provide support once you try to do something that
requires you to set up your development environment. Read on for advice
on doing this yourself.

Windows
On Windows the collection of tools needed for building packages from
source is called Rtools.

Rtools is not an R package. It is not installed with
install.packages(). Instead, download it from https://cran.r-
project.org/bin/windows/Rtools and run the installer.

During the Rtools installation you may see a window asking you to “Select
Additional Tasks”:

Do not select the box for “Edit the system PATH.” devtools and
RStudio should put Rtools on the PATH automatically when it is
needed.

Do select the box for “Save version information to registry.” It should
be selected by default.

macOS

https://cran.r-project.org/bin/windows/Rtools


You need to install the Xcode command-line tools, which requires that you
register as an Apple developer (don’t worry, it’s free).

Then, in the shell, do:

xcode-select --install

Alternatively, you can install the current release of full Xcode from the Mac
App Store. This includes a very great deal that you do not need, but it offers
the advantage of App Store convenience.

Linux
Make sure you’ve installed not only R but also the R development tools.
For example, on Ubuntu (and Debian) you need to install the r-base-
dev package with:

sudo apt install r-base-dev

On Fedora and RedHat, the development tools (called R-core-devel)
will be installed automatically when you install with R with sudo dnf
install R.

Verify System Prep
You can request a “(package) development situation report” with
devtools::dev_sitrep():

devtools::dev_sitrep()
#> ── R 
─────────────────────────────────────────────────────────────────
──────
#> • version: 4.1.2
#> • path: 
'/Library/Frameworks/R.framework/Versions/4.1/Resources/'
#> ── RStudio 
─────────────────────────────────────────────────────────────────
#> • version: 2022.2.0.443

https://oreil.ly/vQb87


#> ── devtools 
────────────────────────────────────────────────────────────────
#> • version: 2.4.3.9000
#> • devtools or its dependencies out of date:
#>   'gitcreds', 'gh'
#>   Update them with `devtools::update_packages("devtools")`
#> ── dev package 
─────────────────────────────────────────────────────────────
#> • package: 'rpkgs'
#> • path: '/Users/jenny/rrr/r-pkgs/'
#> • rpkgs dependencies out of date:
#>   'gitcreds', 'generics', 'tidyselect', 'dplyr', 'tidyr', 
'broom', 'gh'
#>  Update them with `devtools::install_dev_deps()`

If this reveals that certain tools or packages are missing or out-of-date, you
are encouraged to update them.

1  At the time of writing, devtools exposes functionality from remotes, pkgbuild, pkgload,
rcmdcheck, revdepcheck, sessioninfo, usethis, testthat, and roxygen2.

2  This is one of the few cases where we recommend using require() over library().
library() will fail with an error if it is unable to attach the package, and thus abort the
execution of your .Rprofile. If require() fails to attach the package it will emit a warning
but will allow the remainder of your .Rprofile to execute. This is discussed further in
“Attaching Versus Loading”.

https://remotes.r-lib.org/
https://pkgbuild.r-lib.org/
https://pkgload.r-lib.org/
https://rcmdcheck.r-lib.org/
https://revdepcheck.r-lib.org/
https://sessioninfo.r-lib.org/
https://usethis.r-lib.org/
https://testthat.r-lib.org/
https://roxygen2.r-lib.org/


Chapter 3. Package Structure
and State

This chapter will start you on the road to package development by
converting the implicit knowledge you’ve gained from using R packages
into the explicit knowledge needed to create and modify them. You’ll learn
about the various states a package can be in and the difference between a
package and library (and why you should care).

Package States
When you create or modify a package, you work on its “source code” or
“source files.” You interact with the in-development package in its source
form. This is not the package form you are most familiar with from day-to-
day use. Package development workflows make much more sense if you
understand the five states an R package can be in:

Source

Bundled

Binary

Installed

In-memory

You already know some of the functions that put packages into these states.
For example, install.packages() can move a package from the
source, bundled, or binary states into the installed state.
devtools::install_github() takes a source package on GitHub
and moves it into the installed state. The library() function loads an



installed package into memory, making it available for immediate and direct
use.

Source Package
A source package is just a directory of files with a specific structure. It
includes particular components, such as a DESCRIPTION file, an R/
directory containing .R files, and so on. Most of the remaining chapters in
this book are dedicated to detailing these components.

If you are new to package development, you may have never seen a
package in source form! You might not even have any source packages on
your computer. The easiest way to see a package in source form right away
is to browse around its code on the web.

Many R packages are developed in the open on GitHub (or GitLab or
similar). The best-case scenario is that you visit the package’s CRAN
landing page, e.g.:

forcats:

readxl:

and one of its URLs links to a repository on a public hosting service, e.g.:

forcats:

readxl:

Some maintainers forget to list this URL, even though the package is
developed in a public repository, but you still might be able to discover it
via search.

Even if a package is not developed on a public platform, you can visit its
source in the unofficial, read-only mirror maintained by R-hub. Examples:

MASS:

car:

https://cran.r-project.org/package=forcats
https://cran.r-project.org/package=readxl
https://github.com/tidyverse/forcats
https://github.com/tidyverse/readxl
https://docs.r-hub.io/#cranatgh
https://github.com/cran/MASS
https://github.com/cran/car


Note that exploring a package’s source and history within the cran GitHub
organization is not the same as exploring the package’s true development
venue, because this source and its evolution is just reverse-engineered from
the package’s CRAN releases. This presents a redacted view of the package
and its history, but, by definition, it includes everything that is essential.

Bundled Package
A bundled package is a package that’s been compressed into a single file.
By convention (from Linux), package bundles in R use the extension .tar.gz
and are sometimes referred to as “source tarballs.” This means that multiple
files have been reduced to a single file (.tar) and then compressed using
gzip (.gz). While a bundle is not that useful on its own, it’s a platform-
agnostic, transportation-friendly intermediary between a source package
and an installed package.

In the rare case that you need to make a bundle from a package you’re
developing locally, use devtools::build(). Under the hood, this calls
pkgbuild::build() and, ultimately, R CMD build, which is
described further in the “Building package tarballs” section of Writing R
Extensions.

This should tip you off that a package bundle or “source tarball” is not
simply the result of making a tar archive of the source files, then
compressing with gzip. By convention, in the R world, a few more
operations are carried out when making the .tar.gz file, and this is why
we’ve elected to refer to this form as a package bundle in this book.

Every CRAN package is available in bundled form, via the “Package
source” field of its landing page. Continuing our examples, you could
download the bundles forcats_0.4.0.tar.gz and
readxl_1.3.1.tar.gz (or whatever the current versions may be). You
could unpack such a bundle in the shell (not the R console) like so:

tar xvf forcats_0.4.0.tar.gz

https://oreil.ly/LNdL3


If you decompress a bundle, you’ll see it looks almost the same as a source
package. Figure 3-1 shows the files present in the source, bundled, and
binary forms of a fictional package named zzzpackage. We’ve deliberately
crafted this example to include most of the package parts covered in this
book. Not every package will include every file seen here, nor does this
diagram include every possible file that might appear in a package.





Figure 3-1. Package forms: source versus bundled versus binary

The main differences between a source package and an uncompressed
bundle are:

Vignettes have been built, so rendered outputs, such as HTML, appear
below inst/doc/ and a vignette index appears in the build/ directory.

A local source package might contain temporary files used to save
time during development, like compilation artifacts in src/. These are
never found in a bundle.

Any files listed in .Rbuildignore are not included in the bundle. These
are typically files that facilitate your development process, but they
should be excluded from the distributed product.

.Rbuildignore
You won’t need to contemplate the exact structure of package .tar.gz files
very often, but you do need to understand the .Rbuildignore file. It controls
which files from the source package make it into the downstream forms.

Each line of .Rbuildignore is a Perl-compatible regular expression that is
matched, without regard to case, against the path to each file in the source
package.1 If the regular expression matches, that file or directory is
excluded. Note there are some default exclusions implemented by R itself,
mostly relating to classic version control systems and editors, such as SVN,
Git, and Emacs.

We usually modify .Rbuildignore with the
usethis::use_build_ignore() function, which takes care of easy-
to-forget details, such as regular expression anchoring and escaping. To
exclude a specific file or directory (the most common use case), you must
anchor the regular expression. For example, to exclude a directory called
“notes,” the .Rbuildignore entry must be ^notes$, whereas the
unanchored regular expression notes will match any filename containing
“notes,” e.g., R/notes.R, man/important-notes.R, data/endnotes.Rdata, etc.



We find that use_build_ignore() helps us get more of our
.Rbuildignore entries right the first time.

.Rbuildignore is a way to resolve some of the tension between the practices
that support your development process and CRAN’s requirements for
submission and distribution (Chapter 22). Even if you aren’t planning to
release on CRAN, following these conventions will allow you to make the
best use of R’s built-in tooling for package checking and installation. The
files you should .Rbuildignore fall into two broad, semi-overlapping
classes:

Files that help you generate package contents programmatically.
Examples:

Using README.Rmd to generate an informative and current
README.md (see “README”)

Storing .R scripts to create and update internal or exported data
(see “Preserve the Origin Story of Package Data”)

Files that drive package development, checking, and documentation,
outside of CRAN’s purview. Examples:

Files relating to the RStudio IDE (see “RStudio Projects”)

Using the pkgdown package to generate a website (see
Chapter 19)

Configuration files related to continuous integration/deployment
(see “Continuous Integration”)

Here is a nonexhaustive list of typical entries in the .Rbuildignore file for a
package in the tidyverse:

^.*\.Rproj$         # Designates the directory as an RStudio 
Project 
^\.Rproj\.user$     # Used by RStudio for temporary files 
^README\.Rmd$       # An Rmd file used to generate README.md 
^LICENSE\.md$       # Full text of the license 
^cran-comments\.md$ # Comments for CRAN submission 

https://pkgdown.r-lib.org/


^data-raw$          # Code used to create data included in the 
package 
^pkgdown$           # Resources used for the package website 
^_pkgdown\.yml$     # Configuration info for the package website 
^\.github$          # GitHub Actions workflows

Note that the comments must not appear in an actual .Rbuildignore file;
they are included here only for exposition.

We’ll mention when you need to add files to .Rbuildignore whenever it’s
important. Remember that usethis::use_build_ignore() is an
attractive way to manage this file. Furthermore, many usethis functions that
add a file that should be listed in .Rbuildignore take care of this
automatically. For example, use_read_rmd() adds ^README\.Rmd$
to .Rbuildignore.

Binary Package
If you want to distribute your package to an R user who doesn’t have
package development tools, you’ll need to provide a binary package. The
primary maker and distributor of binary packages is CRAN, not individual
maintainers. But even if you delegate the responsibility of distributing your
package to CRAN, it’s still important for a maintainer to understand the
nature of a binary package.

Like a package bundle, a binary package is a single file. Unlike a bundled
package, a binary package is platform specific and there are two basic
flavors: Windows and macOS. (Linux users are generally required to have
the tools necessary to install from .tar.gz files, although the emergence of
resources like Posit Public Package Manager is giving Linux users the same
access to binary packages as their colleagues on Windows and macOS.)

Binary packages for macOS are stored as .tgz, whereas Windows binary
packages end in .zip. If you need to make a binary package, use
devtools::build(binary = TRUE) on the relevant operating
system. Under the hood, this calls pkgbuild::build(binary =
TRUE) and, ultimately, R CMD INSTALL --build, which is described

https://packagemanager.posit.co/


further in the “Building binary packages” section of Writing R Extensions.
If you choose to release your package on CRAN (Chapter 22), you submit
your package in bundled form, then CRAN creates and distributes the
package binaries.

CRAN packages are usually available in binary form, for both macOS and
Windows, for the current, previous, and (possibly) development versions of
R. Continuing our examples from earlier, you could download binary
packages such as:

forcats for macOS (forcats_0.4.0.tgz)

readxl for Windows (readxl_1.3.1.zip)

and this is, indeed, part of what’s usually going on behind the scenes when
you call install.packages().

If you uncompress a binary package, you’ll see that the internal structure is
rather different from a source or bundled package. Figure 3-1 includes this
comparison, so this is a good time to revisit that diagram. Here are some of
the most notable differences:

There are no .R files in the R/ directory; instead, there are three files
that store the parsed functions in an efficient file format. This is
basically the result of loading all the R code and then saving the
functions with save(). (In the process, this adds a little extra
metadata to make things as fast as possible.)

A Meta/ directory contains a number of .rds files. These files contain
cached metadata about the package, like what topics the help files
cover and a parsed version of the DESCRIPTION file. (You can use
readRDS() to see exactly what’s in those files.) These files make
package loading faster by caching costly computations.

The actual help content appears in help/ and html/ (no longer in man/).

If you had any code in the src/ directory, there will now be a libs/
directory that contains the results of compiling the code.

https://oreil.ly/hIfxL


If you had any objects in data/, they have now been converted into a
more efficient form.

The contents of inst/ are moved to the top-level directory. For example,
vignette files are now in doc/.

Some files and folders have been dropped, such as README.md,
build/, tests/, and vignettes/.

Installed Package
An installed package is a binary package that’s been decompressed into a
package library (described in “Package Libraries”). Figure 3-2 illustrates
the many ways a package can be installed, along with a few other functions
for converting a package from one state to another. This diagram is
complicated! In an ideal world, installing a package would involve stringing
together a set of simple steps: source → bundle, bundle → binary, binary →
installed. In the real world, it’s not this simple because there are often
(faster) shortcuts available.





Figure 3-2. Many methods for converting between package states

The built-in command-line tool R CMD INSTALL powers all package
installation. It can install a package from source files, a bundle (a.k.a. a
source tarball), or a binary package. Details are available in the “Installing
packages” section of R Installation and Administration. Just like with
devtools::build(), devtools provides a wrapper function,
devtools::install(), that makes this tool available from within an
R session.

RSTUDIO
RStudio can also help you install your in-development package via the Install and More drop-
downs in the Build pane and with Install Package in the Build menu.

Most useRs understandably like to install packages from the comfort of an
R session and directly from CRAN. The built-in function
install.packages() meets this need. It can download the package in
various forms, install it, and optionally attend to the installation of
dependencies.

There is a price, however, for the convenience of installing R packages
from within an R session. As you might expect, it can be a bit tricky to
reinstall a package that is already in use in the current session. This actually
works most of the time, but sometimes it does not, especially when
installing an R package with compiled code on Windows. Due to how file
handles are locked on Windows, an attempt to install a new version of a
package that’s in use can result in a corrupt installation where the package’s
R code has been updated, but its compiled code has not. When
troubleshooting, Windows users should strive to install packages in a clean
R session, with as few packages loaded as possible.

The pak package is a relative newcomer (at the time of writing) and
provides a promising alternative to install.packages(), as well as
other more specialized functions such as

https://oreil.ly/pLH_H
https://pak.r-lib.org/


devtools::install_github(). It’s too early to make a blanket
recommendation for using pak for all of your package installation needs,
but we are certainly using it more and more in our personal workflows. One
of pak’s flagship features is that it nicely solves the “locked DLL” problem
just described, i.e., updating a package with compiled code on Windows. As
you get deeper into package development, you will find yourself doing a
whole new set of tasks, such as installing a dependency from an in-
development branch or scrutinizing package dependency trees. pak provides
a rich toolkit for this and many other related tasks. We predict that pak will
soon become our official recommendation for how to install packages (and
more).

However, in the meantime, we describe the status quo. devtools has long
offered a family of install_*() functions to address some needs
beyond the reach of install.packages() or to make existing
capabilities easier to access. These functions are actually maintained in the
remotes package and are re-exported by devtools. (Given what we said
earlier, it is likely that remotes will essentially become superseded, in favor
of pak, but we’re not quite there yet.)

library(remotes) 
 
funs <- as.character(lsf.str("package:remotes"))
grep("^install_.+", funs, value = TRUE)
#>  [1] "install_bioc"      "install_bitbucket" "install_cran"
#>  [4] "install_deps"      "install_dev"       "install_git"
#>  [7] "install_github"    "install_gitlab"    "install_local"
#> [10] "install_remote"    "install_svn"       "install_url"
#> [13] "install_version"

install_github() is the most useful of these functions and is also
featured in Figure 3-2. It is the flagship example of a family of functions
that can download a package from a remote location that is not CRAN and
do whatever is necessary to install it and its dependencies. The rest of the
devtools/remotes install_*() functions are aimed at making things that
are technically possible with base tooling a bit easier or more explicit, such

https://remotes.r-lib.org/


as install_version(), which installs a specific version of a CRAN
package.

Analogous to .Rbuildignore, described in section “.Rbuildignore”,
.Rinstignore lets you keep files present in a package bundle out of the
installed package. However, in contrast to .Rbuildignore, this is rather
obscure and rarely needed.

In-Memory Package
We finally arrive at a command familiar to everyone who uses R:

library(usethis)

Assuming usethis is installed, this call makes its functions available for use;
i.e., now we can do:

create_package("/path/to/my/coolpackage")

The usethis package has been loaded into memory and, in fact, has also
been attached to the search path. The distinction between loading and
attaching packages is not important when you’re writing scripts, but it’s
very important when you’re writing packages. You’ll learn more about the
difference and why it’s important in “Attaching Versus Loading”.

library() is not a great way to iteratively tweak and test drive a package
you’re developing, because it works only for an installed package. In “Test
Drive with load_all()”, you’ll learn how devtools::load_all()
accelerates development by allowing you to load a source package directly
into memory.

Package Libraries
We just discussed the library() function, whose name is inspired by
what it does. When you call library(somepackage), R looks through



the current libraries for an installed package named “somepackage” and, if
successful, it makes somepackage available for use.

In R, a library is a directory containing installed packages, sort of like a
library for books. Unfortunately, in the R world, you will frequently
encounter confused usage of the words “library” and “package.” It’s
common for someone to refer to dplyr, for example, as a library when it is
actually a package. There are a few reasons for the confusion. First, R’s
terminology arguably runs counter to broader programming conventions,
where the usual meaning of “library” is closer to what we mean by
“package.” The name of the library() function itself probably
reinforces the wrong associations. Finally, this vocabulary error is often
harmless, so it’s easy for R users to fall into the wrong habit and for people
who point out this mistake to look like insufferable pedants. But here’s the
bottom line:

We use the library() function to load 2 a package.

The distinction between the two is important and useful as you get involved
in package development.

You can have multiple libraries on your computer. In fact, many of you
already do, especially if you’re on Windows. You can use .libPaths()
to see which libraries are currently active. Here’s how this might look on
Windows:

# on Windows
.libPaths()
#> [1] "C:/Users/jenny/Documents/R/win-library/4.2"
#> [2] "C:/Program Files/R/R-4.2.2/library" 
 
lapply(.libPaths(), list.dirs, recursive = FALSE, full.names = 
FALSE)
#> [[1]]
#>   [1] "abc"           "anytime"       "askpass"       
"assertthat"
#>  ...
#> [145] "zeallot"
#>
#> [[2]]



#>  [1] "base"         "boot"         "class"        "cluster"
#>  [5] "codetools"    "compiler"     "datasets"     "foreign"
#>  [9] "graphics"     "grDevices"    "grid"         "KernSmooth"
#> [13] "lattice"      "MASS"         "Matrix"       "methods"
#> [17] "mgcv"         "nlme"         "nnet"         "parallel"
#> [21] "rpart"        "spatial"      "splines"      "stats"
#> [25] "stats4"       "survival"     "tcltk"        "tools"
#> [29] "translations" "utils"

Here’s a similar look on macOS (but your results may vary):

# on macOS
.libPaths()
#> [1] "/Users/jenny/Library/R/arm64/4.2/library"
#> [2] "/Library/Frameworks/R.framework/Versions/4.2-
arm64/Resources/library" 
 
lapply(.libPaths(), list.dirs, recursive = FALSE, full.names = 
FALSE)
#> [[1]]
#>    [1] "abc"                  "abc.data"             "abind"
#>  ...
#> [1033] "Zelig"                "zip"                  "zoo"
#>
#> [[2]]
#>  [1] "base"         "boot"         "class"        "cluster"
#>  [5] "codetools"    "compiler"     "datasets"     "foreign"
#>  [9] "graphics"     "grDevices"    "grid"         "KernSmooth"
#> [13] "lattice"      "MASS"         "Matrix"       "methods"
#> [17] "mgcv"         "nlme"         "nnet"         "parallel"
#> [21] "rpart"        "spatial"      "splines"      "stats"
#> [25] "stats4"       "survival"     "tcltk"        "tools"
#> [29] "translations" "utils"

In both cases we see two active libraries, consulted in this order:

1. A user library

2. A system-level or global library

This setup is typical on Windows but is something you usually need to opt
into on macOS and Linux.3 With this setup, add-on packages installed from
CRAN (or elsewhere) or under local development are kept in the user
library. In the preceding macOS example, the system is used as a primary



development machine and has many packages here (~1000), whereas the
Windows system is used only occasionally and is much more spartan. The
core set of base and recommended packages that ship with R live in the
system-level library and are the same on all operating systems. This
separation appeals to many developers and makes it easy to, for example,
clean out your add-on packages without disturbing your base R installation.

If you’re on macOS or Linux and only see one library, there is no urgent
need to change anything. But next time you upgrade R, consider creating a
user-level library. By default, R looks for a user library found at the path
stored in the environment variable R_LIBS_USER, which itself defaults to
~/Library/R/m/x.y/library on macOS, and ~/R/m-
library/x.y on Linux (where m is a concise description of your CPU
architecture, and x.y is the R version). You can see this path with
Sys.getenv("R_LIBS_USER"). These directories do not exist by
default, and the use of them must be enabled by creating the directory.
When you install a new version of R, and prior to installing any add-on
packages, use dir.create(Sys.getenv("R_LIBS_USER"),
recursive = TRUE) to create a user library in the default location.
Now you will have the recommended library setup. Alternatively, you could
set up a user library elsewhere and tell R about that by setting the
R_LIBS_USER environment variable in .Renviron. The simplest way to
edit your .Renviron file is with usethis::edit_r_environ(), which
will create the file if it doesn’t exist and open it for editing.

The filepaths for these libraries also make it clear they are associated with a
specific version of R (4.2.x at the time of writing), which is also typical.
This reflects and enforces the fact that you need to reinstall your add-on
packages when you update R from, say, 4.1 to 4.2, which is a change in the
minor version. You generally do not need to reinstall add-on packages for a
patch release, e.g., going from R 4.2.1 to 4.2.2.

As your R usage grows more sophisticated, it’s common to start managing
package libraries with more intention. For example, tools like renv (and its
predecessor packrat) automate the process of managing project-specific
libraries. This can be important for making data products reproducible,

https://rstudio.github.io/renv/
https://rstudio.github.io/packrat/


portable, and isolated from one another. A package developer might
prepend the library search path with a temporary library, containing a set of
packages at specific versions, in order to explore issues with backward and
forward compatibility, without affecting other day-to-day work. Reverse
dependency checks are another example where we explicitly manage the
library search path.

Here are the main levers that control which libraries are active, in order of
scope and persistence:

Environment variables, like R_LIBS and R_LIBS_USER, which are
consulted at startup.

Calling .libPaths() with one or more filepaths.

Executing small snippets of code with a temporarily altered library
search path via withr::with_libpaths().

Arguments to individual functions, like install.packages(lib
=) and library(lib.loc =).

Finally, it’s important to note that library() should never be used inside
a package. Packages and scripts rely on different mechanisms for declaring
their dependencies, and this is one of the biggest adjustments you need to
make in your mental model and habits. We explore this topic fully in
“Imports, Suggests, and Friends” and Chapter 11.

1  To see the set of filepaths that should be on your radar, execute dir(full.names =
TRUE, recursive = TRUE, include.dirs = TRUE, all.files = TRUE)
in the package’s top-level directory.

2  Well, actually, library() loads and attaches a package, but that’s a topic for “Attaching
Versus Loading”.

3  For more details, see the Maintaining R section in What They Forgot To Teach You About R,
Managing Libraries in R Installation and Administration, and the R help files for ?Startup
and ?.libPaths.

https://oreil.ly/G1VuL
https://oreil.ly/db45k


Chapter 4. Fundamental
Development Workflows

Having peeked under the hood of R packages and libraries in Chapter 3,
here we provide the basic workflows for creating a package and moving it
through the different states that come up during development.

Create a Package
Many packages are born out of one person’s frustration at some common
task that should be easier. How should you decide whether something is
package-worthy? There’s no definitive answer, but it’s helpful to appreciate
at least two types of payoff:

Product

Your life will be better when this functionality is implemented formally,
in a package.

Process

Greater mastery of R will make you more effective in your work.

Survey the Existing Landscape
If all you care about is the existence of a product, then your main goal is to
navigate the space of existing packages. Silge, Nash, and Graves organized
a survey and sessions around this at useR! 2017 and their write up for The R
Journal provides a comprehensive roundup of resources.1

If you are looking for ways to increase your R mastery, you should still
educate yourself about the landscape. But there are plenty of good reasons
to make your own package, even if there is relevant prior work. The way



experts got that way is by actually building things, often very basic things,
and you deserve the same chance to learn by tinkering. If you’re only
allowed to work on things that have never been touched, you’re likely
looking at problems that are either very obscure or very difficult.

It’s also valid to evaluate the suitability of existing tools on the basis of user
interface, defaults, and edge-case behavior. A package may technically do
what you need, but perhaps it’s very unergonomic for your use case. In this
case, it may make sense for you to develop your own implementation or to
write wrapper functions that smooth over the sharp edges.

If your work falls into a well-defined domain, educate yourself about the
existing R packages, even if you’ve resolved to create your own package.
Do they follow specific design patterns? Are there specific data structures
that are common as the primary input and output? For example, there is a
very active R community around spatial data analysis that has successfully
self-organized to promote greater consistency across packages with
different maintainers. In modeling, the hardhat package provides
scaffolding for creating a modeling package that plays well with the
tidymodels ecosystem. Your package will get more usage and will need less
documentation if it fits nicely into the surrounding landscape.

Name Your Package
“There are only two hard things in Computer Science: cache invalidation
and naming things.”

— Phil Karlton

Before you can create your package, you need to come up with a name for
it. This can be the hardest part of creating a package! (Not least because no
one can automate it for you.)

Formal requirements
There are three formal requirements:

The name can only consist of letters, numbers, and periods, i.e., ..

https://www.r-spatial.org/
https://hardhat.tidymodels.org/
https://www.tidymodels.org/


It must start with a letter.

It cannot end with a period.

Unfortunately, this means you can’t use either hyphens or underscores, i.e.,
- or _, in your package name. We recommend against using periods in
package names, due to confusing associations with file extensions and S3
methods.

Things to consider
If you plan to share your package with others, it’s important to come up
with a good name. Here are some tips:

Pick a unique name that’s easy to Google. This makes it easy for
potential users to find your package (and associated resources) and for
you to see who’s using it.

Don’t pick a name that’s already in use on CRAN or Bioconductor.
You may also want to consider some other types of name collision:

Is there an in-development package maturing on, say, GitHub that
already has some history and seems to be heading toward release?

Is this name already used for another piece of software or for a
library or framework in, e.g., the Python or JavaScript ecosystem?

Avoid using both upper- and lower-case letters; doing so makes the
package name hard to type and even harder to remember. For example,
it’s hard to remember if it’s Rgtk2 or RGTK2 or RGtk2.

Give preference to names that are pronounceable, so people are
comfortable talking about your package and have a way to hear it
inside their head.

Find a word that evokes the problem and modify it so that it’s unique.
Here are some examples:

lubridate makes dates and times easier.



rvest “harvests” the content from web pages.

r2d3 provides utilities for working with D3 visualizations.

forcats is an anagram of factors, which we use for categorical
data.

Use abbreviations, like the following:

Rcpp = R + C++ (plus plus)

brms = Bayesian Regression Models using Stan

Add an extra R, for example:

stringr provides string tools.

beepr plays notification sounds.

callr calls R, from R.

Don’t get sued.

If you’re creating a package that talks to a commercial service,
check the branding guidelines. For example, rDrop isn’t called
rDropbox because Dropbox prohibits any applications from using
the full trademarked name.

Nick Tierney presents a fun typology of package names in his Naming
Things blog post, which also includes more inspiring examples. He also has
some experience with renaming packages; the post “So, you’ve decided to
change your r package name” is a good resource if you don’t get this right
the first time.

Use the available package
It is impossible to abide by all of the previous suggestions simultaneously,
so you will need to make some trade-offs. The available package has a
function called available() that helps you evaluate a potential package
name from many angles:

https://oreil.ly/TPrwz
https://oreil.ly/pb0Al
https://oreil.ly/xYO5i


library(available) 
 
available("doofus")
#> Urban Dictionary can contain potentially offensive results,
#>   should they be included? [Y]es / [N]o:
#> 1: 1
#> ── doofus 
─────────────────────────────────────────────────────────────────
─
#> Name valid: ✔
#> Available on CRAN: ✔
#> Available on Bioconductor: ✔
#> Available on GitHub:  ✔
#> Abbreviations: http://www.abbreviations.com/doofus
#> Wikipedia: https://en.wikipedia.org/wiki/doofus
#> Wiktionary: https://en.wiktionary.org/wiki/doofus
#> Sentiment:???

available::available() does the following:

Checks for validity.

Checks availability on CRAN, Bioconductor, and beyond.

Searches various websites to help you discover any unintended
meanings. In an interactive session, the URLs displayed by available
are opened in browser tabs.

Attempts to report whether the name has positive or negative
sentiment.

pak::pkg_name_check() is alternative function with a similar
purpose. Since the pak package is under more active development than
available, it may emerge as the better option going forward.

Package Creation
Once you’ve come up with a name, there are two ways to create the
package:

Call usethis::create_package().



In RStudio, do File > New Project > New Directory > R Package.
This ultimately calls usethis::create_package(), so really
there’s just one way.

This produces the smallest possible working package, with three
components:

An R/ directory, which you’ll learn about in Chapter 6.

A basic DESCRIPTION file, which you’ll learn about in Chapter 9.

A basic NAMESPACE file, which you’ll learn about in “The
NAMESPACE File”.

It may also include an RStudio project file, pkgname.Rproj, that makes your
package easy to use with RStudio, as described in “RStudio Projects”. Basic
.Rbuildignore and .gitignore files are also left behind.

WARNING
Don’t use package.skeleton() to create a package. Because this function comes with R,
you might be tempted to use it, but it creates a package that immediately throws errors with R
CMD build. It anticipates a different development process than we use here, so repairing this
broken initial state just makes unnecessary work for people who use devtools (and, especially,
roxygen2). Use create_package().

Where Should You create_package()?
The main and only required argument to create_package() is the path
where your new package will live:

create_package("path/to/package/pkgname")

Remember that this is where your package lives in its source form (see
“Source Package”), not in its installed form (see “Installed Package”).
Installed packages live in a library, and we discussed conventional setups
for libraries in “Package Libraries”.



Where should you keep source packages? The main principle is that this
location should be distinct from where installed packages live. In the
absence of external considerations, a typical user should designate a
directory inside their home directory for R (source) packages. We discussed
this with colleagues, and the source of many tidyverse packages lives inside
directories like ~/rrr/, ~/documents/tidyverse/, ~/r/packages/, or ~/pkg/.
Some of us use one directory for this; others divide source packages among
a few directories based on their development role (contributor versus not),
GitHub organization (tidyverse versus r-lib), development stage (active
versus not), and so on.

These directory conventions probably reflect that we are primarily tool-
builders. An academic researcher might organize their files around
individual publications, whereas a data scientist might organize around data
products and reports. There is no particular technical or traditional reason
for one specific approach. As long as you keep a clear distinction between
source and installed packages, just pick a strategy that works within your
overall system for file organization, and use it consistently.

RStudio Projects
devtools works hand-in-hand with RStudio, which we believe is the best
development environment for most R users. To be clear, you can use
devtools without using RStudio, and you can develop packages in RStudio
without using devtools. But there is a special, two-way relationship that
makes it very rewarding to use devtools and RStudio together.

RSTUDIO
An RStudio Project, with a capital “P,” is a regular directory on your computer that includes some
(mostly hidden) RStudio infrastructure to facilitate your work on one or more projects, with a
lowercase “p”. A project might be an R package, a data analysis, a Shiny app, a book, a blog, etc.

Benefits of RStudio Projects



From “Source Package”, you already know that a source package lives in a
directory on your computer. We strongly recommend that each source
package is also an RStudio Project. Here are some of the payoffs:

Projects are very “launch-able.” It’s easy to fire up a fresh instance of
RStudio in a Project, with the file browser and working directory set
exactly the way you need, ready for work.

Each Project is isolated; code run in one Project does not affect any
other Project.

You can have several RStudio Projects open at once, and code
executed in Project A does not have any effect on the R session
and workspace of Project B.

You get handy code navigation tools like F2 to jump to a function
definition and Ctrl + . to look up functions or files by name.

You get useful keyboard shortcuts and a clickable interface for
common package development tasks, like generating documentation,
running tests, or checking the entire package.



Figure 4-1. Keyboard Shortcut Quick Reference in RStudio

To see the most useful keyboard shortcuts, press Alt+Shift+K or use Help >
Keyboard Shortcuts Help. You should see something like Figure 4-1.

RSTUDIO
RStudio also provides the Command Palette, which gives fast, searchable access to all of the
IDE’s commands. This is especially helpful when you can’t remember a particular keyboard
shortcut. It is invoked via Ctrl+Shift+P (Windows & Linux) or Cmd-Shift-P (macOS).

RSTUDIO
Follow @rstudiotips on Twitter for a regular dose of RStudio tips and tricks.

https://oreil.ly/Hn8hA
https://twitter.com/rstudiotips


How to Get an RStudio Project
If you follow our recommendation to create new packages with
create_package(), each new package will also be an RStudio Project,
if you’re working from RStudio.

If you need to designate the directory of a preexisting source package as an
RStudio Project, choose one of these options:

In RStudio, do File > New Project > Existing Directory.

Call create_package() with the path to the preexisting R source
package.

Call usethis::use_rstudio() with the active usethis project
set to an existing R package. In practice, this probably means you just
need to make sure your working directory is inside the preexisting
package directory.

What Makes an RStudio Project?
A directory that is an RStudio Project will contain an .Rproj file. Typically,
if the directory is named “foo” the Project file is foo.Rproj. And if that
directory is also an R package, then the package name is usually also “foo.”
The path of least resistance is to make all of these names coincide and to
not nest your package inside a subdirectory inside the Project. If you settle
on a different workflow, just know it may feel like you are fighting with the
tools.

An .Rproj file is just a text file. Here is a representative project file you
might see in a Project initiated via usethis:

Version: 1.0 
 
RestoreWorkspace: No 
SaveWorkspace: No 
AlwaysSaveHistory: Default 
 
EnableCodeIndexing: Yes 
Encoding: UTF-8 



 
AutoAppendNewline: Yes 
StripTrailingWhitespace: Yes 
LineEndingConversion: Posix 
 
BuildType: Package 
PackageUseDevtools: Yes 
PackageInstallArgs: --no-multiarch --with-keep.source 
PackageRoxygenize: rd,collate,namespace

You don’t need to modify this file by hand. Instead, use the interface
available via Tools > Project Options (Figure 4-2) or Project Options in the
Projects menu in the top-right corner (Figure 4-3).



Figure 4-2. Project Options in RStudio



Figure 4-3. Projects Menu in RStudio

How to Launch an RStudio Project
Double-click the foo.Rproj file in macOS’s Finder or Windows Explorer to
launch the foo Project in RStudio.

You can also launch Projects from within RStudio via File > Open Project
(in New Session) or the Projects menu in the top-right corner.

If you use a productivity or launcher app, you can probably configure it to
do something delightful for .Rproj files. We both use Alfred for this,2 which



is macOS only, but similar tools exist for Windows. In fact, this is a very
good reason to use a productivity app in the first place.

It is very normal—and productive!—to have multiple Projects open at once.

RStudio Project Versus Active usethis Project
You will notice that most usethis functions don’t take a path: they operate
on the files in the “active usethis project.” The usethis package assumes that
95% of the time all of these coincide:

The current RStudio Project, if using RStudio.

The active usethis project.

Current working directory for the R process.

If things seem funky, call proj_sitrep() to get a “situation report.”
This will identify peculiar situations and propose ways to get back to a
happier state:

# these should usually be the same (or unset)
proj_sitrep()
#> *   working_directory: '/Users/jenny/rrr/readxl'
#> * active_usethis_proj: '/Users/jenny/rrr/readxl'
#> * active_rstudio_proj: '/Users/jenny/rrr/readxl'

Working Directory and Filepath Discipline
As you develop your package, you will be executing R code. This will be a
mix of workflow calls (e.g., document() or test()) and ad hoc calls
that help you write your functions, examples, and tests. We strongly
recommend that you keep the top-level of your source package as the
working directory of your R process. This will generally happen by default,
so this is really a recommendation to avoid development workflows that
require you to fiddle with the working directory.



If you’re totally new to package development, you don’t have much basis
for supporting or resisting this proposal. But those with some experience
may find this recommendation somewhat upsetting. You may be wondering
how you are supposed to express paths when working in subdirectories,
such as tests/. As it becomes relevant, we’ll show you how to exploit path-
building helpers, such as testthat::test_path(), that determine
paths at execution time.

The basic idea is that by leaving the working directory alone, you are
encouraged to write paths that convey intent explicitly (“read foo.csv from
the test directory”) instead of implicitly (“read foo.csv from current working
directory, which I think is going to be the test directory”). A sure sign of
reliance on implicit paths is incessant fiddling with your working directory,
because you’re using setwd() to manually fulfill the assumptions that are
implicit in your paths.

Using explicit paths can design away a whole class of path headaches and
makes day-to-day development more pleasant as well. There are two
reasons why implicit paths are hard to get right:

Recall the different forms that a package can take during the
development cycle (Chapter 3). These states differ from each other in
terms of which files and folders exist and their relative positions within
the hierarchy. It’s tricky to write relative paths that work across all
package states.

Eventually, your package will be processed with built-in tools like R
CMD build, R CMD check, and R CMD INSTALL, by you and
potentially CRAN. It’s hard to keep track of what the working
directory will be at every stage of these processes.

Path helpers like testthat::test_path(),
fs::path_package(), and the rprojroot package are extremely useful
for building resilient paths that hold up across the whole range of situations
that come up during development and usage. Another way to eliminate
brittle paths is to be rigorous in your use of proper methods for storing data

https://rprojroot.r-lib.org/


inside your package (Chapter 7) and to target the session temp directory
when appropriate, such as for ephemeral testing artifacts (Chapter 13).

Test Drive with load_all()
The load_all() function is arguably the most important part of the
devtools workflow:

# with devtools attached and
# working directory set to top-level of your source package ... 
 
load_all() 
 
# ... now experiment with the functions in your package

load_all() is the key step in this “lather, rinse, repeat” cycle of package
development:

1. Tweak a function definition.

2. load_all().

3. Try out the change by running a small example or some tests.

When you’re new to package development or to devtools, it’s easy to
overlook the importance of load_all() and fall into some awkward
habits from a data analysis workflow.

Benefits of load_all()
When you first start to use a development environment, like RStudio or VS
Code, the biggest win is the ability to send lines of code from an .R script
for execution in R console. The fluidity of this is what makes it tolerable to
follow the best practice of regarding your source code as real3 (as opposed
to objects in the workspace) and saving .R files (as opposed to saving and
reloading .Rdata).



load_all() has the same significance for package development and,
ironically, requires that you not test drive package code in the same way as
script code. load_all() simulates the full-blown process for seeing the
effect of a source code change, which is clunky enough4 that you won’t
want to do it very often. Figure 4-4 reinforces that the library()
function can only load a package that has been installed, whereas
load_all() gives a high-fidelity simulation of this, based on the current
package source.

Figure 4-4. devtools::load_all() vs. library()

The main benefits of load_all() include:

You can iterate quickly, which encourages exploration and incremental
progress.

This iterative speedup is especially noticeable for packages with
compiled code.

You get to develop interactively under a namespace regime that
accurately mimics how things are when someone uses your installed
package, with the following additional advantages:

You can call your own internal functions directly, without using
::: and without being tempted to temporarily define your
functions in the global workspace.



You can also call functions from other packages that you’ve
imported into your NAMESPACE, without being tempted to attach
these dependencies via library().

load_all() removes friction from the development workflow and
eliminates the temptation to use workarounds that often lead to mistakes
around namespace and dependency management.

Other Ways to Call load_all()
devtools::load_all() is a thin wrapper around
pkgload::load_all() that adds a bit of user-friendliness. It is
unlikely you will use load_all() programmatically or inside another
package, but if you do, you should probably use
pkgload::load_all() directly.

RSTUDIO
When working in a Project that is a package, RStudio offers several ways to call load_all():

Use the keyboard shortcuts: Cmd-Shift-L (macOS) or Ctrl+Shift+L (Windows, Linux)

Use the Build pane’s More menu

Use the Build > Load All menu option

check() and R CMD check
Base R provides various command-line tools and R CMD check is the
official method for checking that an R package is valid. It is essential to
pass R CMD check if you plan to submit your package to CRAN, but we
highly recommend holding yourself to this standard even if you don’t intend
to release your package on CRAN. R CMD check detects many common
problems that you’d otherwise discover the hard way.



Our recommended way to run R CMD check is in the R console via
devtools:

devtools::check()

We recommend this because it allows you to run R CMD check from
within R, which dramatically reduces friction and increases the likelihood
that you will check() early and often! This emphasis on fluidity and fast
feedback is exactly the same motivation as given for load_all(). In the
case of check(), it really is executing R CMD check for you. It’s not
just a high fidelity simulation, which is the case for load_all().

RSTUDIO
RStudio exposes check() in the Build menu, in the Build pane via Check, and in keyboard
shortcuts Ctrl+Shift+E (Windows & Linux) or Cmd-Shift-E (macOS).

A rookie mistake that we see often in new package developers is to do too
much work on their package before running R CMD check. Then, when
they do finally run it, it’s typical to discover many problems, which can be
very demoralizing. It’s counterintuitive, but the key to minimizing this pain
is to run R CMD check more often: the sooner you find a problem, the
easier it is to fix.5 We model this behavior very intentionally in Chapter 1.

The upper limit of this approach is to run R CMD check every time you
make a change. We don’t run check() manually quite that often, but
when we’re actively working on a package, it’s typical to check()
multiple times per day. Don’t tinker with your package for days, weeks, or
months, waiting for some special milestone to finally run R CMD check.
If you use GitHub (see “Git and GitHub”), we’ll show you how to set things
up so that R CMD check runs automatically every time you push (see
“GitHub Actions”).

Workflow



Here’s what happens inside devtools::check():

Ensures that the documentation is up-to-date by running
devtools:: docu ment().

Bundles the package before checking it (see “Bundled Package”). This
is the best practice for checking packages because it makes sure the
check starts with a clean slate: because a package bundle doesn’t
contain any of the temporary files that can accumulate in your source
package, e.g., artifacts like .so and .o files that accompany compiled
code, you can avoid the spurious warnings such files will generate.

Sets the NOT_CRAN environment variable to "true". This allows
you to selectively skip tests on CRAN. See ?
testthat::skip_on_cran and “Skip a Test” for details.

The workflow for checking a package is simple but tedious:

1. Run devtools::check(), or press Ctrl/Cmd-Shift-E.

2. Fix the first problem.

3. Repeat until there are no more problems.

R CMD check returns three types of messages:

ERRORs

Severe problems that you should fix regardless of whether you’re
submitting to CRAN.

WARNINGs

Likely problems that you must fix if you’re planning to submit to
CRAN (and a good idea to look into even if you’re not).

NOTEs

Mild problems or, in a few cases, just an observation. If you are
submitting to CRAN, you should strive to eliminate all NOTEs, even if



they are false positives. If you have no NOTEs, human intervention is
not required, and the package submission process will be easier. If it’s
not possible to eliminate a NOTE, you’ll need describe why it’s OK in
your submission comments, as described in “The Submission Process”.
If you’re not submitting to CRAN, carefully read each NOTE. If it’s
easy to eliminate the NOTEs, it’s worth it, so that you can continue to
strive for a totally clean result. But if eliminating a NOTE will have a
net negative impact on your package, it is reasonable to just tolerate it.
Make sure that doesn’t lead to you ignoring other issues that really
should be addressed.

R CMD check consists of dozens of individual checks, and it would be
overwhelming to enumerate them here. See our online-only guide to R
CMD check for details.

Background on R CMD check
As you accumulate package development experience, you might want to
access R CMD check directly at some point. Remember that R CMD
check is something you must run in the terminal, not in the R console.
You can see its documentation like so:

R CMD check --help

R CMD check can be run on a directory that holds an R package in source
form (see “Source Package”) or, preferably, on a package bundle (see
“Bundled Package”):

R CMD build somepackage 
R CMD check somepackage_0.0.0.9000.tar.gz

To learn more, see the “Checking packages” section of Writing R
Extensions.

https://r-pkgs.org/R-CMD-check.xhtml
https://oreil.ly/l5SmF


1  Julia Silge, John C. Nash, and Spencer Graves, “Navigating the R Package Universe,” The R
Journal 10, no. 2 (2018): 558–63. https://doi.org/10.32614/RJ-2018-058.

2  Specifically, we configure Alfred to favor .Rproj files in its search results when proposing
apps or files to open. To register the .Rproj file type with Alfred, go to Preferences > Features
> Default Results > Advanced. Drag any .Rproj file onto this space and then close.

3  Quoting the usage philosophy favored by Emacs Speaks Statistics (ESS).

4  The command-line approach is to quit R, go to the shell, do R CMD build foo in the
package’s parent directory, then R CMD INSTALL foo_x.y.x.tar.gz, restart R, and
call library(foo).

5  A great blog post advocating for “if it hurts, do it more often” is FrequencyReducesDifficulty
by Martin Fowler.

https://doi.org/10.32614/RJ-2018-058
https://oreil.ly/Tk3Nn
https://oreil.ly/RMDBG


Chapter 5. The Package Within

This part of the book ends the same way it started, with the development of
a small toy package. Chapter 1 established the basic mechanics, workflow,
and tooling of package development, but it said practically nothing about
the R code inside the package. This chapter focuses primarily on the
package’s R code and how it differs from R code in a script.

Starting with a data analysis script, you learn how to find the package that
lurks within. You’ll isolate and then extract reusable data and logic from the
script, put this into an R package, and then use that package in a much
simplified script. We’ve included a few rookie mistakes along the way, in
order to highlight special considerations for the R code inside a package.

Note that the section headers incorporate the NATO phonetic alphabet (alfa,
bravo, etc.) and have no specific meaning. They are just a convenient way
to mark our progress toward a working package. It is fine to follow along
just by reading, and this chapter is completely self-contained (i.e., it’s not a
prerequisite for material later in the book). But if you wish to see the state
of specific files along the way, they can be found in the source files for the
book.

Alfa: A Script That Works
Let’s consider data-cleaning.R, a fictional data analysis script for a group
that collects reports from people who went for a swim:

Where did you swim and how hot was it outside?

Their data usually comes as a CSV file, such as swim.csv:

name,where,temp 
Adam,beach,95 
Bess,coast,91 
Cora,seashore,28 

https://oreil.ly/_gE6e


Dale,beach,85 
Evan,seaside,31

data-cleaning.R begins by reading swim.csv into a data frame:

infile <- "swim.csv"
(dat <- read.csv(infile))
#>   name    where temp 
#> 1 Adam    beach   95 
#> 2 Bess    coast   91 
#> 3 Cora seashore   28 
#> 4 Dale    beach   85 
#> 5 Evan  seaside   31

They then classify each observation as using American (“US”) or British
(“UK”) English, based on the word chosen to describe the sandy place
where the ocean and land meet. The where column is used to build the
new english column:

dat$english[dat$where == "beach"] <- "US"
dat$english[dat$where == "coast"] <- "US"
dat$english[dat$where == "seashore"] <- "UK"
dat$english[dat$where == "seaside"] <- "UK"

Sadly, the temperatures are often reported in a mix of Fahrenheit and
Celsius. In the absence of better information, they guess that Americans
report temperatures in Fahrenheit and therefore those observations are
converted to Celsius:

dat$temp[dat$english == "US"] <- (dat$temp[dat$english == "US"] - 
32) * 5/9
dat
#>   name    where temp english
#> 1 Adam    beach 35.0      US
#> 2 Bess    coast 32.8      US
#> 3 Cora seashore 28.0      UK
#> 4 Dale    beach 29.4      US
#> 5 Evan  seaside 31.0      UK



Finally, this cleaned (cleaner?) data is written back out to a CSV file. They
like to capture a timestamp in the filename when they do this1:

now <- Sys.time()
timestamp <- format(now, "%Y-%B-%d_%H-%M-%S")
(outfile <- paste0(timestamp, "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile)))
#> [1] "2023-March-31_11-20-41_swim_clean.csv"
write.csv(dat, file = outfile, quote = FALSE, row.names = FALSE)

Here is data-cleaning.R in its entirety:

infile <- "swim.csv"
(dat <- read.csv(infile)) 
 
dat$english[dat$where == "beach"] <- "US"
dat$english[dat$where == "coast"] <- "US"
dat$english[dat$where == "seashore"] <- "UK"
dat$english[dat$where == "seaside"] <- "UK" 
 
dat$temp[dat$english == "US"] <- (dat$temp[dat$english == "US"] - 
32) * 5/9
dat 
 
now <- Sys.time()
timestamp <- format(now, "%Y-%B-%d_%H-%M-%S")
(outfile <- paste0(timestamp, "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile)))
write.csv(dat, file = outfile, quote = FALSE, row.names = FALSE)

Even if your typical analytical tasks are quite different, hopefully you see a
few familiar patterns here. It’s easy to imagine that this group does very
similar preprocessing of many similar data files over time. Their analyses
can be more efficient and consistent if they make these standard data
maneuvers available to themselves as functions in a package, instead of
inlining the same data and logic into dozens or hundreds of data ingest
scripts.

Bravo: A Better Script That Works



The package that lurks within the original script is actually pretty hard to
see! It’s obscured by a few suboptimal coding practices, such as the use of
repetitive copy/paste-style code and the mixing of code and data. Therefore
a good first step is to refactor this code, isolating as much data and logic as
possible in proper objects and functions, respectively.

This is also a good time to introduce the use of some add-on packages, for
several reasons. First, we would actually use the tidyverse for this sort of
data wrangling. Second, many people use add-on packages in their scripts,
so it is good to see how add-on packages are handled inside a package.

Here’s the new and improved version of the script:

library(tidyverse) 
 
infile <- "swim.csv"
dat <- read_csv(infile, col_types = cols(name = "c", where = "c", 
temp = "d")) 
 
lookup_table <- tribble( 
      ~where, ~english, 
     "beach",     "US", 
     "coast",     "US", 
  "seashore",     "UK", 
   "seaside",     "UK"
) 
 
dat <- dat %>% 
  left_join(lookup_table) 
 
f_to_c <- function(x) (x - 32) * 5/9 
 
dat <- dat %>% 
  mutate(temp = if_else(english == "US", f_to_c(temp), temp))
dat 
 
now <- Sys.time()
timestamp <- function(time) format(time, "%Y-%B-%d_%H-%M-%S")
outfile_path <- function(infile) { 
  paste0(timestamp(now), "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile))
}
write_csv(dat, outfile_path(infile))



The key changes to note are:

We are using functions from tidyverse packages (specifically from
readr and dplyr), and we make them available with
library(tidyverse).

The map between different “beach” words and whether they are
considered to be US or UK English is now isolated in a lookup table,
which lets us create the english column in one go with a
left_join(). This lookup table makes the mapping easier to
comprehend and would be much easier to extend in the future with
new “beach” words.

f_to_c(), timestamp(), and outfile_path() are new
helper functions that hold the logic for converting temperatures and
forming the timestamped output file name.

It’s getting easier to recognize the reusable bits of this script, i.e., the bits
that have nothing to do with a specific input file, like swim.csv. This sort of
refactoring often happens naturally on the way to creating your own
package, but if it does not, it’s a good idea to do this intentionally.

Charlie: A Separate File for Helper Functions
A typical next step is to move reusable data and logic out of the analysis
script and into one or more separate files. This is a conventional opening
move, if you want to use these same helper files in multiple analyses.

Here is the content of beach-lookup-table.csv:

where,english 
beach,US 
coast,US 
seashore,UK 
seaside,UK

Here is the content of cleaning-helpers.R:



library(tidyverse) 
 
localize_beach <- function(dat) { 
  lookup_table <- read_csv( 
    "beach-lookup-table.csv", 
    col_types = cols(where = "c", english = "c") 
  ) 
  left_join(dat, lookup_table)
} 
 
f_to_c <- function(x) (x - 32) * 5/9 
 
celsify_temp <- function(dat) { 
  mutate(dat, temp = if_else(english == "US", f_to_c(temp), 
temp))
} 
 
now <- Sys.time()
timestamp <- function(time) format(time, "%Y-%B-%d_%H-%M-%S")
outfile_path <- function(infile) { 
  paste0(timestamp(now), "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile))
}

We’ve added some high-level helper functions, localize_beach() and
celsify_temp(), to the preexisting helpers (f_to_c(),
timestamp(), and outfile_path()).

Here is the next version of the data cleaning script, now that we’ve pulled
out the helper functions (and lookup table):

library(tidyverse)
source("cleaning-helpers.R") 
 
infile <- "swim.csv"
dat <- read_csv(infile, col_types = cols(name = "c", where = "c", 
temp = "d")) 
 
(dat <- dat %>% 
    localize_beach() %>% 
    celsify_temp()) 
 
write_csv(dat, outfile_path(infile))



Notice that the script is getting shorter and, hopefully, easier to read and
modify, because repetitive and fussy clutter has been moved out of sight.
Whether the code is actually easier to work with is subjective and depends
on how natural the “interface” feels for the people who actually preprocess
swimming data. These sorts of design decisions are the subject of a separate
project.

Let’s assume the group agrees that our design decisions are promising,
i.e., we seem to be making things better, not worse. Sure, the existing code
is not perfect, but this is a typical developmental stage when you’re trying
to figure out what the helper functions should be and how they should
work.

Delta: A Failed Attempt at Making a Package
While this first attempt to create a package will end in failure, it’s still
helpful to go through some common missteps, to illuminate what happens
behind the scenes.

Here are the simplest steps that you might take, in an attempt to convert
cleaning-helpers.R into a proper package:

Use usethis::create_package("path/to/delta") to
scaffold a new R package, with the name “delta.”

This is a good first step!

Copy cleaning-helpers.R into the new package, specifically, to
R/cleaning-helpers.R.

This is morally correct, but mechanically wrong in several ways,
as we will soon see.

Copy beach-lookup-table.csv into the new package. But where? Let’s
try the top-level of the source package.

https://design.tidyverse.org/


This is not going to end well. Shipping data files in a package is a
special topic, which is covered in Chapter 7.

Install this package, perhaps using devtools::install() or via
Ctrl+Shift+B (Windows and Linux) or Cmd-Shift-B (macOS) in
RStudio.

Despite all of the problems previously identified, this actually
works! Which is interesting, because we can (try to) use it and see
what happens.

Here is the next version of the data cleaning script that you hope will run
after successfully installing this package (which we’re calling “delta”):

library(tidyverse)
library(delta) 
 
infile <- "swim.csv"
dat <- read_csv(infile, col_types = cols(name = "c", where = "c", 
temp = "d")) 
 
dat <- dat %>% 
  localize_beach() %>% 
  celsify_temp() 
 
write_csv(dat, outfile_path(infile))

The only change from our previous script is that

source("cleaning-helpers.R")

has been replaced by

library(delta)

Here’s what actually happens if you install the delta package and try to run
the data cleaning script:

library(tidyverse)
library(delta) 



 
infile <- "swim.csv"
dat <- read_csv(infile, col_types = cols(name = "c", where = "c", 
temp = "d")) 
 
dat <- dat %>% 
  localize_beach() %>% 
  celsify_temp()
#> Error in localize_beach(.) : could not find function 
"localize_beach" 
 
write_csv(dat, outfile_path(infile))
#> Error in outfile_path(infile) : could not find function 
"outfile_path"

None of the helper functions are actually available for use, even though you
call library(delta)! In contrast to source()ing a file of helper
functions, attaching a package does not dump its functions into the global
workspace. By default, functions in a package are only for internal use. You
need to export localize_beach(), celsify_temp(), and
outfile_path() so your users can call them. In the devtools workflow,
we achieve this by putting @export in the special roxygen comment
above each function (namespace management is covered in “NAMESPACE
Workflow”), like so:

#' @export
celsify_temp <- function(dat) { 
  mutate(dat, temp = if_else(english == "US", f_to_c(temp), 
temp))
}

After you add the @export tag to localize_beach(),
celsify_temp(), and outfile_path(), you run
devtools::document() to (re)generate the NAMESPACE file, and
reinstall the delta package. Now when you re-execute the data cleaning
script, it works!

Correction: it sort of works sometimes. Specifically, it works if and only if
the working directory is set to the top-level of the source package. From
any other working directory, you still get an error:



dat <- dat %>% 
  localize_beach() %>% 
  celsify_temp()
#> Error: 'beach-lookup-table.csv' does not exist in current 
working directory
#>  ('/Users/jenny/tmp').

The lookup table consulted inside localize_beach() cannot be found.
One does not simply dump CSV files into the source of an R package and
expect things to “just work.” We will fix this in our next iteration of the
package (Chapter 7 has full coverage of how to include data in a package).

Before we abandon this initial experiment, let’s also marvel at the fact that
you were able to install, attach, and, to a certain extent, use a fundamentally
broken package. devtools::load_all() works fine, too! This is a
sobering reminder that you should be running R CMD check, probably
via devtools::check(), very often during development. This will
quickly alert you to many problems that simple installation and usage does
not reveal.

Indeed, check() fails for this package and you see this:

 * installing _source_ package ‘delta’ ... 
 ** using staged installation 
 ** R 
 ** byte-compile and prepare package for lazy loading 
 Error in library(tidyverse) : there is no package called 
‘tidyverse’ 
 Error: unable to load R code in package ‘delta’ 
 Execution halted 
 ERROR: lazy loading failed for package ‘delta’ 
 * removing ‘/Users/jenny/rrr/delta.Rcheck/delta’

What do you mean “there is no package called ‘tidyverse’”?!? We’re using
it, with no problems, in our main script! Also, we’ve already installed and
used this package, why can’t R CMD check find it?

This error is what happens when the strictness of R CMD check meets the
very first line of R/cleaning-helpers.R:



library(tidyverse)

This is not how you declare that your package depends on another package
(the tidyverse, in this case). This is also not how you make functions in
another package available for use in yours. Dependencies must be declared
in DESCRIPTION (and that’s not all). Since we declared no dependencies,
R CMD check takes us at our word and tries to install our package with
only the base packages available, which means this
library(tidyverse) call fails. A “regular” installation succeeds,
simply because the tidyverse is available in your regular library, which
hides this particular mistake.

To review, copying cleaning-helpers.R to R/cleaning-helpers.R, without
further modification, was problematic in (at least) the following ways:

Does not account for exported versus nonexported functions.

The CSV file holding our lookup table cannot be found in the installed
package.

Does not properly declare our dependency on other add-on packages.

Echo: A Working Package
We’re ready to make the most minimal version of this package that actually
works.

Here is the new version of R/cleaning-helpers.R:2

lookup_table <- dplyr::tribble( 
      ~where, ~english, 
     "beach",     "US", 
     "coast",     "US", 
  "seashore",     "UK", 
   "seaside",     "UK"
) 
 
#' @export
localize_beach <- function(dat) { 



  dplyr::left_join(dat, lookup_table)
} 
 
f_to_c <- function(x) (x - 32) * 5/9 
 
#' @export
celsify_temp <- function(dat) { 
  dplyr::mutate(dat, temp = dplyr::if_else(english == "US", 
f_to_c(temp), temp))
} 
 
now <- Sys.time()
timestamp <- function(time) format(time, "%Y-%B-%d_%H-%M-%S") 
 
#' @export
outfile_path <- function(infile) { 
  paste0(timestamp(now), "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile))
}

We’ve gone back to defining the lookup_table with R code, since the
initial attempt to read it from CSV created some sort of filepath snafu. This
is OK for small, internal, static data, but remember to see Chapter 7 for
more general techniques for storing data in a package.

All of the calls to tidyverse functions have now been qualified with the
name of the specific package that actually provides the function,
e.g., dplyr::mutate(). There are other ways to access functions in
another package, explained in “Package Is Listed in Imports”, but this is our
recommended default. It is also our strong recommendation that no one
depend on the tidyverse metapackage in a package.3 Instead, it is better to
identify the specific package(s) you actually use. In this case, the package
only uses dplyr.

The library(tidyverse) call is gone and instead we declare the use
of dplyr in the Imports field of DESCRIPTION:

Package: echo 
(... other lines omitted ...) 
Imports: 
    dplyr



This, together with the use of namespace-qualified calls, like
dplyr::left_join(), constitutes a valid way to use another package
within yours. The metadata conveyed via DESCRIPTION is covered in
Chapter 9.

All of the user-facing functions have an @export tag in their roxygen
comment, which means that devtools::document() adds them
correctly to the NAMESPACE file. Note that f_to_c() is currently used
only internally, inside celsify_temp(), so it is not exported (likewise
for timestamp()).

This version of the package can be installed, used, and it technically passes
R CMD check, though with 1 warning and 1 note:

* checking for missing documentation entries ... WARNING 
Undocumented code objects: 
  ‘celsify_temp’ ‘localize_beach’ ‘outfile_path’ 
All user-level objects in a package should have documentation 
entries. 
See chapter ‘Writing R documentation files’ in the ‘Writing R 
Extensions’ manual. 
 
* checking R code for possible problems ... NOTE 
celsify_temp: no visible binding for global variable ‘english’ 
celsify_temp: no visible binding for global variable ‘temp’ 
Undefined global functions or variables: 
  english temp

The “no visible binding” note is a peculiarity of using dplyr and unquoted
variable names inside a package, where the use of bare variable names
(english and temp) looks suspicious. You can add either of these lines
to any file below R/ to eliminate this note (such as the package-level
documentation file described in “Help Topic for the Package”):

# option 1 (then you should also put utils in Imports)
utils::globalVariables(c("english", "temp")) 
 
# option 2
english <- temp <- NULL



We’re seeing that it can be tricky to program around a package like dplyr,
which makes heavy use of nonstandard evaluation. Behind the scenes, that
is the technique that allows dplyr’s end users to use bare (not quoted)
variable names. Packages like dplyr prioritize the experience of the typical
end user, at the expense of making them trickier to depend on. The two
options given for suppressing the “no visible binding” note represent entry-
level solutions. For a more sophisticated treatment of these issues, see
vignette("in-packages", package = "dplyr") and
vignette("programming", package = "dplyr").

The warning about missing documentation is because the exported
functions have not been properly documented. This is a valid concern and
something you absolutely should address in a real package. You’ve already
seen how to create help files with roxygen comments in “document()”, and
we cover this topic thoroughly in Chapter 16.

Foxtrot: Build Time Versus Run Time
The echo package works, which is great, but group members notice
something odd about the timestamps:

Sys.time()
#> [1] "2023-03-26 22:48:48 PDT" 
 
outfile_path("INFILE.csv")
#> [1] "2020-September-03_11-06-33_INFILE_clean.csv"

The datetime in the timestamped filename doesn’t reflect the time reported
by the system. In fact, the users claim that the timestamp never seems to
change at all! Why is this?

Recall how we form the filepath for output files:

now <- Sys.time()
timestamp <- function(time) format(time, "%Y-%B-%d_%H-%M-%S")
outfile_path <- function(infile) { 
  paste0(timestamp(now), "_", sub("(.*)([.]csv$)", 



"\\1_clean\\2", infile))
}

The fact that we capture now <- Sys.time() outside of the definition
of outfile_path() has probably been vexing some readers for a while.
now reflects the instant in time when we execute now <- Sys.time().
In the initial approach, now was assigned when we source()d cleaning-
helpers.R. That’s not ideal, but it was probably a pretty harmless mistake,
because the helper file would be source()d shortly before we wrote the
output file.

But this approach is quite devastating in the context of a package. now <-
Sys.time() is executed when the package is built.4 And never again. It
is very easy to assume your package code is reevaluated when the package
is attached or used. But it is not. Yes, absolutely, the code inside your
functions is run whenever they are called. But your functions—and any
other objects created in top-level code below R/—are defined exactly once,
at build time.

By defining now with top-level code below R/, we’ve doomed our package
to timestamp all of its output files with the same (wrong) time. The fix is to
make sure the Sys.time() call happens at run time.

Let’s look again at parts of R/cleaning-helpers.R:

lookup_table <- dplyr::tribble( 
      ~where, ~english, 
     "beach",     "US", 
     "coast",     "US", 
  "seashore",     "UK", 
   "seaside",     "UK"
) 
 
now <- Sys.time()
timestamp <- function(time) format(time, "%Y-%B-%d_%H-%M-%S")
outfile_path <- function(infile) { 
  paste0(timestamp(now), "_", sub("(.*)([.]csv$)", 
"\\1_clean\\2", infile))
}



There are four top-level <- assignments in this excerpt. The top-level
definitions of the data frame lookup_table and the functions
timestamp() and outfile_path() are correct. It is appropriate that
these be defined exactly once, at build time. The top-level definition of
now, which is then used inside outfile_path(), is regrettable.

Here are better versions of outfile_path():

# always timestamp as "now"
outfile_path <- function(infile) { 
  ts <- timestamp(Sys.time()) 
  paste0(ts, "_", sub("(.*)([.]csv$)", "\\1_clean\\2", infile))
} 
 
# allow user to provide a time, but default to "now"
outfile_path <- function(infile, time = Sys.time()) { 
  ts <- timestamp(time) 
  paste0(ts, "_", sub("(.*)([.]csv$)", "\\1_clean\\2", infile))
}

This illustrates that you need to have a different mindset when defining
objects inside a package. The vast majority of those objects should be
functions, and these functions should generally only use data they create or
that is passed via an argument. There are some types of sloppiness that are
fairly harmless when a function is defined immediately before its use, but
that can be more costly for functions distributed as a package.

Golf: Side Effects
The timestamps now reflect the current time, but the group raises a new
concern. As it stands, the timestamps reflect who has done the data cleaning
and which part of the world they’re in. The heart of the timestamp strategy
is this format string:5

format(Sys.time(), "%Y-%B-%d_%H-%M-%S")
#> [1] "2023-March-31_11-20-42"



This formats Sys.time() in such a way that it includes the month name
(not number) and the local time.6

Table 5-1 shows what happens when such a timestamp is produced by
several hypothetical colleagues cleaning some data at exactly the same
instant in time.

Table 5-1. Timestamp varies by locale and time zone

Location Timestamp LC_TIME tz

Rome, Italy 2020-
Settembre-
05_00-30-00

it_IT.UTF-8 Europe/Rome

Warsaw,
Poland

2020-
września-
05_00-30-00

pl_PL.UTF-8 Europe/Warsaw

Sao Paulo,
Brazil

2020-
Setembro-
04_19-30-00

pt_BR.UTF-8 America/Sao_Paulo

Greenwich,
England

2020-
September-
04_23-30-00

en_GB.UTF-8 Europe/London

“Computer
World!”

2020-
September-
04_22-30-00

C UTC

Note that the month names vary, as does the time, and even the date! The
safest choice is to form timestamps with respect to a fixed locale and time



zone (presumably the nongeographic choices represented by “Computer
World!”).

You do some research and learn that you can force a certain locale via
Sys.setlocale() and force a certain time zone by setting the TZ
environment variable. Specifically, we set the LC_TIME component of the
locale to “C” and the time zone to “UTC” (Coordinated Universal Time).
Here’s your first attempt to improve timestamp():

timestamp <- function(time = Sys.time()) { 
  Sys.setlocale("LC_TIME", "C") 
  Sys.setenv(TZ = "UTC") 
  format(time, "%Y-%B-%d_%H-%M-%S")
}

But your Brazilian colleague notices that datetimes print differently, before
and after she uses outfile_path() from your package.

Before:

format(Sys.time(), "%Y-%B-%d_%H-%M-%S")
#> [1] "2023-Março-31_15-20-43"

After:

outfile_path("INFILE.csv")
#> [1] "2023-March-31_18-20-42_INFILE_clean.csv" 
 
format(Sys.time(), "%Y-%B-%d_%H-%M-%S")
#> [1] "2023-March-31_18-20-43"

Notice that her month name switched from Portuguese to English and the
time is clearly being reported in a different time zone. The calls to
Sys.setlocale() and Sys.setenv() inside timestamp() have
made persistent (and very surprising) changes to her R session. This sort of
side effect is very undesirable and is extremely difficult to track down and
debug, especially in more complicated settings.

Here are better versions of timestamp():



# use withr::local_*() functions to keep the changes local to 
timestamp()
timestamp <- function(time = Sys.time()) { 
  withr::local_locale(c("LC_TIME" = "C")) 
  withr::local_timezone("UTC") 
  format(time, "%Y-%B-%d_%H-%M-%S")
} 
 
# use the tz argument to format.POSIXct()
timestamp <- function(time = Sys.time()) { 
  withr::local_locale(c("LC_TIME" = "C")) 
  format(time, "%Y-%B-%d_%H-%M-%S", tz = "UTC")
} 
 
# put the format() call inside withr::with_*()
timestamp <- function(time = Sys.time()) { 
  withr::with_locale( 
    c("LC_TIME" = "C"), 
    format(time, "%Y-%B-%d_%H-%M-%S", tz = "UTC") 
  )
}

These show various methods to limit the scope of our changes to LC_TIME
and the time zone. A good rule of thumb is to make the scope of such
changes as narrow as is possible and practical. The tz argument of
format() is the most surgical way to deal with the time zone, but nothing
similar exists for LC_TIME. We make the temporary locale modification
using the withr package, which provides a very flexible toolkit for
temporary state changes. This (and base::on.exit()) are discussed
further in “Respect the R Landscape”. Note that if you use withr as we do
here, you would need to list it in DESCRIPTION in Imports (see
Chapter 11, “Dependency Thoughts Specific to the tidyverse”).

This underscores a point from the previous section: you need to adopt a
different mindset when defining functions inside a package. Try to avoid
making any changes to the user’s overall state. If such changes are
unavoidable, make sure to reverse them (if possible) or to document them
explicitly (if related to the function’s primary purpose).



Concluding Thoughts
Finally, after several iterations, we have successfully extracted the repetitive
data cleaning code for the swimming survey into an R package. This
example concludes the first part of book and marks the transition into more
detailed reference material on specific package components. Before we
move on, let’s review the lessons learned in this chapter.

Script Versus Package
When you first hear that expert R users often put their code into packages,
you might wonder exactly what that means. Specifically, what happens to
your existing R scripts, R Markdown reports, and Shiny apps? Does all of
that code somehow get put into a package? The answer is “no,” in most
contexts.

Typically, you identify certain recurring operations that occur across
multiple projects and this is what you extract into an R package. You will
still have R scripts, R Markdown reports, and Shiny apps, but by moving
specific pieces of code into a formal package, your data products tend to
become more concise and easier to maintain.

Finding the Package Within
Although the example in this chapter is rather simple, it still captures the
typical process of developing an R package for personal or organizational
use. You typically start with a collection of idiosyncratic and related R
scripts, scattered across different projects. Over time, you begin to notice
that certain needs come up over and over again.

Each time you revisit a similar analysis, you might try to elevate your game
a bit, compared to the previous iteration. You refactor copy/paste-style code
using more robust patterns and start to encapsulate key “moves” in helper
functions, which might eventually migrate into their own file. Once you
reach this stage, you’re in a great position to take the next step and create a
package.



Package Code Is Different
Writing package code is a bit different from writing R scripts, and it’s
natural to feel some discomfort when making this adjustment. Here are the
most common gotchas that trip many of us up at first:

Package code requires new ways of working with functions in other
packages. The DESCRIPTION file is the principal way to declare
dependencies; we don’t do this via library(somepackage).

If you want data or files to be persistently available, there are package-
specific methods of storage and retrieval. You can’t just put files in the
package and hope for the best.

It’s necessary to be explicit about which functions are user-facing and
which are internal helpers. By default, functions are not exported for
use by others.

A new level of discipline is required to ensure that code runs at the
intended time (build time versus run time) and that there are no
unintended side effects.

1  Sys.time() returns an object of class POSIXct; therefore, when we call format() on
it, we are actually using format.POSIXct(). Read the help for ?format.POSIXct if
you’re not familiar with such format strings.

2  Putting everything in one file, with this name, is not ideal, but it is technically allowed. We
discuss organizing and naming the files below R/ in “Organize Functions Into Files”.

3  The blog post “The tidyverse is for EDA, not packages” elaborates on this.

4  Here we’re referring to when the package code is compiled, which could be either when the
binary is made (for macOS or Windows; see “Binary Package”) or when the package is
installed from source “Installed Package”.

5  Sys.time() returns an object of class POSIXct; therefore, when we call format() on
it, we are actually using format.POSIXct(). Read the help for ?format.POSIXct if
you’re not familiar with such format strings.

6  It would clearly be better to format according to ISO 8601, which encodes the month by
number, but please humor us for the sake of making this example more obvious.

https://rdrr.io/r/base/strptime.xhtml
https://oreil.ly/xZIGP
https://rdrr.io/r/base/strptime.xhtml


Part II. Package Components



Chapter 6. R Code

The first principle of making a package is that all R code goes in the R/
directory. In this chapter, you’ll learn about organizing your functions into
files, maintaining a consistent style, and recognizing the stricter
requirements for functions in a package (versus in a script). We’ll also
remind you of the fundamental workflows for test-driving and formally
checking an in-development package: load_all(), test(), and
check().

Organize Functions Into Files
The only hard rule is that your package must store its function definitions in
R scripts, i.e., files with extension .R, that live in the R/ directory.1
However, a few more conventions can make the source code of your
package easier to navigate and relieve you of re-answering “How should I
name this?” each time you create a new file. The Tidyverse Style Guide
offers some general advice about filenames and also advice that specifically
applies to files in a package. We expand on this here.

The filename should be meaningful and convey which functions are defined
within. While you’re free to arrange functions into files as you wish, the
two extremes are bad: don’t put all functions into one file and don’t put
each function into its own separate file. This advice should inform your
general policy, but there are exceptions to every rule. If a specific function
is very large or has lots of documentation, it can make sense to give it its
own file, named after the function. More often, a single .R file will contain
multiple function definitions: such as a main function and its supporting
helpers, a family of related functions, or some combination of the two.

Table 6-1 presents some examples from the actual source of the tidyr
package at version 1.1.2. There are some departures from the hard-and-fast

https://style.tidyverse.org/files.xhtml
https://style.tidyverse.org/package-files.xhtml
http://tidyr.tidyverse.org/


rules given previously, which illustrates that there’s a lot of room for
judgment here.

Table 6-1. Different ways to organize functions in files

Organizing
principle Source file Comments

One function tidyr/R/uncount.R Defines exactly one function, unc
ount(), that’s not particulary large
but doesn’t fit naturally into any
other .R file

Main function
plus helpers

tidyr/R/separate.R Defines the user-facing separate
() (an S3 generic), a data.frame
method, and private helpers

Family of
functions

tidyr/R/rectangle.R Defines a family of functions for
“rectangling” nested lists (hoist()
and the unnest() functions), all
documented together in a big help
topic, plus private helpers

TIP
Another file you often see in the wild is R/utils.R. This is a common place to define small utilities
that are used inside multiple package functions. Since they serve as helpers to multiple functions,
placing them in R/utils.R makes them easier to rediscover when you return to your package after a
long break.

Bob Rudis assembled a collection of such files and did some analysis in the post Dissecting R
Package “Utility Belts”.

If it’s very hard to predict which file a function lives in, that suggests it’s
time to separate your functions into more files or reconsider how you are

https://oreil.ly/vNeVY
https://oreil.ly/VPdlK
https://oreil.ly/M8h5n
https://oreil.ly/tuMhO


naming your functions and/or files.

RSTUDIO
The organization of functions within files is less important in RStudio, which offers two ways to
jump to the definition of a function:

Press Ctrl + . (the period) to bring up the Go to File/Function tool, as shown in Figure 6-1,
then start typing the name. Keep typing to narrow the list and eventually pick a function (or
file) to visit. This works for both functions and files in your project.

With your cursor in a function name or with a function name selected, press F2. This works
for functions defined in your package or in another package.

After navigating to a function with one of these methods, return to where you started by clicking
the back arrow at the top left of the editor ( ) or by pressing Ctrl+F9 (Windows & Linux) or
Cmd-F9 (macOS).

Figure 6-1. Go to File/Function in RStudio

Fast Feedback via load_all()
As you add or modify functions defined in files below R/, you will naturally
want to try them out. We want to reiterate our strong recommendation to
use devtools::load_all() to make them available for interactive
exploration instead of, for example, source()ing files below R/. The
main coverage of load_all() is in “Test Drive with load_all()” and
load_all() also shows up as one of the natural development tasks in
“load_all()”. The importance of load_all() in the testthat workflow is
explained in “Remove Tension Between Interactive and Automated



Testing”. Compared to the alternatives, load_all() helps you to iterate
more quickly and provides an excellent approximation to the namespace
regime of an installed package.

Code Style
We recommend following the tidyverse style guide, which goes into much
more detail than we can here. Its format also allows it to be a more dynamic
document than this book.

Although the style guide explains the “what” and the “why,” another
important decision is how to enforce a specific code style. For this we
recommend the styler package; its default behavior enforces the tidyverse
style guide. There are many ways to apply styler to your code, depending
on the context:

styler::style_pkg() restyles an entire R package.

styler::style_dir() restyles all files in a directory.

usethis::use_tidy_style() is a wrapper that applies one of
the preceding two functions depending on whether or not the current
project is an R package.

styler::style_file() restyles a single file.

styler::style_text() restyles a character vector.

RSTUDIO
When styler is installed, the RStudio Addins menu will offer several additional ways to style code:

The active selection

The active file

The active package

https://style.tidyverse.org/
https://styler.r-lib.org/


WARNING
If you don’t use Git or another version control system, applying a function like
styler::style_pkg() is nerve-wracking and somewhat dangerous, because you lack a way
to see exactly what changed and to accept/reject such changes in a granular way.

The styler package can also be integrated with various platforms for hosting
source code and doing continuous integration. For example, the tidyverse
packages use a GitHub Action that restyles a package when triggered by a
special comment (/style) on a pull request. This allows maintainers to
focus on reviewing the substance of the pull request, without having to
nitpick small issues of whitespace or indentation.2 3

Understand When Code Is Executed
Up until now, you’ve probably been writing scripts, R code saved in a file
that you execute interactively, perhaps using an IDE and/or source(), or
noninteractively via Rscript. There are two main differences between
code in scripts and packages:

In a script, code is run … when you run it! The awkwardness of this
statement reflects that it’s hard to even think about this issue with a
script. However, we must, in order to appreciate that the code in a
package is run when the package is built. This has big implications for
how you write the code below R/: package code should only create
objects, the vast majority of which will be functions.

Functions in your package will be used in situations that you didn’t
imagine. This means your functions need to be thoughtful in the way
that they interact with the outside world.

We expand on the first point here and the second in the next section. These
topics are also illustrated concretely in “Foxtrot: Build Time Versus Run
Time”.



When you source() a script, every line of code is executed and the
results are immediately made available. Things are different with package
code, because it is loaded in two steps. When the binary package is built
(often, by CRAN) all the code in R/ is executed and the results are saved.
When you attach a package with library(), these cached results are
reloaded and certain objects (mostly functions) are made available for your
use. The full details on what it means for a package to be in binary form are
given in “Binary Package”. We refer to the creation of the binary package
as (binary) “build time” and, specifically, we mean when R CMD
INSTALL --build is run. (You might think that this is what R CMD
build does, but that actually makes a bundled package, a.k.a. a “source
tarball.”) For macOS and Windows users of CRAN packages, build time is
whenever CRAN built the binary package for their OS. For those who
install packages from source, build time is essentially when they (built and)
installed the package.

Consider the assignment x <- Sys.time(). If you put this in a script, x
tells you when the script was source()d. But if you put that same code at
the top-level in a package, x tells you when the package binary was built. In
“Foxtrot: Build Time Versus Run Time”, we show a complete example of
this in the context of forming timestamps inside a package.

The main takeaway is this:

Any R code outside of a function is suspicious and should be carefully
reviewed.

We explore a few real-world examples in the following sections that show
how easy it is to get burned by this “build time versus load time” issue.
Luckily, once you diagnose this problem, it is generally not difficult to fix.

Example: A Path Returned by system.file()
The shinybootstrap2 package once had this code below R/:

dataTableDependency <- list( 
  htmlDependency( 



    "datatables", "1.10.2", 
    c(file = system.file("www/datatables", package = 
"shinybootstrap2")), 
    script = "js/jquery.dataTables.min.js" 
  ), 
  htmlDependency( 
    "datatables-bootstrap", "1.10.2", 
    c(file = system.file("www/datatables", package = 
"shinybootstrap2")), 
    stylesheet = c("css/dataTables.bootstrap.css", 
"css/dataTables.extra.css"), 
    script = "js/dataTables.bootstrap.js" 
  )
)

So dataTableDependency was a list object defined in top-level
package code and its value was constructed from paths obtained via
system.file(). As described in a GitHub issue:

This works fine when the package is built and tested on the same
machine. However, if the package is built on one machine and then used
on another (as is the case with CRAN binary packages), then this will fail
—the dependency will point to the wrong directory on the host.

The heart of the solution is to make sure that system.file() is called
from a function, at runtime. Indeed, this fix was made in commit 138db47
and in a few other packages that had similar code and a related check was
added in htmlDependency() itself. This particular problem would now
be caught by R CMD check, due to changes that came with staged
installation as of R 3.6.0.

Example: Available Colors
The crayon package has a function, crayon::show_ansi_colors(),
that displays an ANSI color table on your screen, basically to show what
sort of styling is possible. In an early version, the function looked
something like this:

show_ansi_colors <- function(colors = num_colors()) { 
  if (colors < 8) { 

https://oreil.ly/GvLGC
https://oreil.ly/C-3GB
https://oreil.ly/c9s2P


    cat("Colors are not supported") 
  } else if (colors < 256) { 
    cat(ansi_colors_8, sep = "") 
    invisible(ansi_colors_8) 
  } else { 
    cat(ansi_colors_256, sep = "") 
    invisible(ansi_colors_256) 
  }
} 
 
ansi_colors_8 <- # code to generate a vector covering basic 
terminal colors 
 
ansi_colors_256 <- # code to generate a vector covering 256 
colors

where ansi_colors_8 and ansi_colors_256 were character
vectors exploring a certain set of colors, presumably styled via ANSI
escapes.

The problem was those objects were formed and cached when the binary
package was built. Since that often happens on a headless server, this likely
happens under conditions where terminal colors might not be enabled or
even available. Users of the installed package could still call
show_ansi_colors() and num_colors() would detect the number
of colors supported by their system (256 on most modern computers). But
then an uncolored object would print to screen (the original GitHub issue is
r-lib/crayon#37).

The solution was to compute the display objects with a function at runtime
(in commit e2b368a):

show_ansi_colors <- function(colors = num_colors()) { 
  if (colors < 8) { 
    cat("Colors are not supported") 
  } else if (colors < 256) { 
    cat(ansi_colors_8(), sep = "") 
    invisible(ansi_colors_8()) 
  } else { 
    cat(ansi_colors_256(), sep = "") 
    invisible(ansi_colors_256()) 
  }

https://oreil.ly/mgGxD
https://oreil.ly/7PSaN


} 
 
ansi_colors_8 <- function() { 
  # code to generate a vector covering basic terminal colors
} 
 
ansi_colors_256 <- function() { 
  # code to generate a vector covering 256 colors
}

Literally, the same code is used; it is simply pushed down into the body of a
function taking no arguments (similar to the shinybootstrap2 example).
Each reference to, e.g., the ansi_colors_8 object is replaced by a call
to the ansi_colors_8() function.

The main takeaway is that functions that assess or expose the capabilities of
your package on a user’s system must fully execute on your user’s system.
It’s fairly easy to accidentally rely on results that were cached at build time,
quite possibly on a different machine.

Example: Aliasing a Function
One last example shows that, even if you are careful to only define
functions below R/, there are still some subtleties to consider. Imagine that
you want the function foo() in your package to basically be an alias for
the function blah() from some other package, e.g., pkgB. You might be
tempted to do this:

foo <- pkgB::blah

However, this will cause foo() in your package to reflect the definition of
pkgB::blah() at the version present on the machine where the binary
package is built (often CRAN), at that moment in time. If a bug is
discovered in pkgB::blah() and subsequently fixed, your package will
still use the older, buggy version, until your package is rebuilt (often by
CRAN) and your users upgrade, which is completely out of your control.
This alternative approach protects you from this:



foo <- function(...) pkgB::blah(...)

Now, when your user calls foo(), they are effectively calling
pkgB::blah(), at the version installed on their machine at that very
moment.

A real example of this affected an older version of knitr, related to how the
default “evaluate” hook was being set to evaluate::evaluate()
(original issue is yihui/knitr#1441, resolved in commit d6b53e0).

Respect the R Landscape
Another big difference between a script and a package is that other people
are going to use your package, and they’re going to use it in situations that
you never imagined. This means you need to pay attention to the R
landscape, which includes not just the available functions and objects but
all the global settings.

You have changed the R landscape if you’ve loaded a package with
library(), or changed a global option with options(), or modified
the working directory with setwd(). If the behavior of other functions
differs before and after running your function, you’ve modified the
landscape. “Golf: Side Effects” has a concrete example of this involving
time zones and the locale-specific printing of datetimes. Changing the
landscape is bad because it makes code much harder to understand.

There are some functions that modify global settings that you should never
use because there are better alternatives:

Don’t use library() or require(). These modify the search
path, affecting what functions are available from the global
environment. Instead, you should use the DESCRIPTION to specify
your package’s requirements, as described in Chapter 9. This also
makes sure those packages are installed when your package is
installed.

https://oreil.ly/U4ZNy
https://oreil.ly/nX8-5


Never use source() to load code from a file. source() modifies
the current environment, inserting the results of executing the code.
There is no reason to use source() inside your package, i.e., in a
file below R/. Sometimes people source() files below R/ during
package development, but as we’ve explained in “Test Drive with
load_all()” and “Fast Feedback via load_all()”, load_all() is a
much better way to load your current code for exploration. If you’re
using source() to create a dataset, it is better to use the methods in
Chapter 7 for including data in a package.

Here is a nonexhaustive list of other functions that should be used with
caution:

options()

par()

setwd()

Sys.setenv()

Sys.setlocale()

set.seed() (or anything that changes the state of the random
number generator)

If you must use them, make sure to clean up after yourself. In the following
section, we show how to do this using functions from the withr package and
in base R.

The flip side of this coin is that you should avoid relying on the user’s
landscape, which might be different from yours. For example, functions that
rely on sorting strings are dangerous, because sort order depends on the
system locale. In the following code, we see that locales one might actually
encounter in practice (C, English, French, etc.) differ in how they sort non-
ASCII strings or uppercase versus lowercase letters:



x <- c("bernard", "bérénice", "béatrice", "boris") 
 
withr::with_locale(c(LC_COLLATE = "fr_FR"), sort(x))
#> [1] "béatrice" "bérénice" "bernard"  "boris"
withr::with_locale(c(LC_COLLATE = "C"), sort(x))
#> [1] "bernard"  "boris"    "béatrice" "bérénice" 
 
x <- c("a", "A", "B", "b", "A", "b") 
 
withr::with_locale(c(LC_COLLATE = "en_CA"), sort(x))
#> [1] "a" "A" "A" "b" "b" "B"
withr::with_locale(c(LC_COLLATE = "C"), sort(x))
#> [1] "A" "A" "B" "a" "b" "b"

If you write your functions as if all users have the same system locale as
you, your code might fail.

Manage State with withr
If you need to modify the R landscape inside a function, then it is important
to ensure your change is reversed on exit of that function. This is exactly
what base::on.exit() is designed to do. You use on.exit() inside
a function to register code to run later, that restores the landscape to its
original state. It is important to note that proper tools, such as on.exit(),
work even if we exit the function abnormally, i.e., due to an error. This is
why it’s worth using the official methods described here over any do-it-
yourself solution.

We usually manage state using the withr package, which provides a
flexible, on.exit()-like toolkit (on.exit() itself is covered in the
next section). withr::defer() can be used as a drop-in replacement for
on.exit(). Why do we like withr so much? First, it offers many prebuilt
convenience functions for state changes that come up often. We also
appreciate withr’s default stack-like behavior (LIFO = last in, first out), its
usability in interactive sessions, and its envir argument (in more
advanced usage).

The general pattern is to capture the original state, schedule its eventual
restoration “on exit,” then make the state change. Some setters, such as

https://withr.r-lib.org/


options() or par(), return the old value when you provide a new
value, leading to usage that looks like this:

f <- function(x, y, z) { 
  ...                        # width option "as found" 
  old <- options(width = 20) # width option is 20 
  defer(options(old))        # width option is 20 
  ...                        # width option is 20
}                            # original width option restored

Certain state changes, such as modifying session options, come up so often
that withr offers premade helpers. Table 6-2 shows a few of the state change
helpers in withr that you are most likely to find useful.

Table 6-2. Selected functions from withr

Do / undo this withr functions

Set an R option with_options(), local_options()

Set an environment variable with_envvar(), local_envvar()

Change working directory with_dir(), local_dir()

Set a graphics parameter with_par(), local_par()

You’ll notice each helper comes in two forms that are useful in different
situations:

with_*() functions are best for executing small snippets of code
with a temporarily modified state. (These functions are inspired by
how base::with() works.)

f <- function(x, sig_digits) { 

  # imagine lots of code here 



  withr::with_options( 

    list(digits = sig_digits), 

    print(x) 

  ) 

  # ... and a lot more code here

}

local_*() functions are best for modifying state “from now until
the function exits”:

g <- function(x, sig_digits) { 

  withr::local_options(list(digits = sig_digits)) 

  print(x) 

  # imagine lots of code here

}

Developing code interactively with withr is pleasant, because deferred
actions can be scheduled even on the global environment. Those cleanup
actions can then be executed with withr::deferred_run() or
cleared without execution with withr::deferred_clear(). Without
this feature, it can be tricky to experiment with code that needs cleanup “on
exit,” because it behaves so differently when executed in the console versus
at arm’s length inside a function.

More in-depth coverage is given in the withr vignette Changing and
restoring state and withr will also prove useful when we talk about testing
in Chapter 13.

Restore State with base::on.exit()
Here is how the general “save, schedule restoration, change” pattern looks
when using base::on.exit():

f <- function(x, y, z) { 
  ... 
  old <- options(mfrow = c(2, 2), pty = "s") 

https://oreil.ly/OQPuO


  on.exit(options(old), add = TRUE) 
  ...
}

Other state changes aren’t available with that sort of setter and you must
implement it yourself:

g <- function(a, b, c) { 
  ... 
  scratch_file <- tempfile() 
  on.exit(unlink(scratch_file), add = TRUE) 
  file.create(scratch_file) 
  ...
}

Note that we specify on.exit(..., add = TRUE), because you
almost always want this behavior; i.e., to add to the list of deferred cleanup
tasks rather than to replace them entirely. This (and the default value of
after) are related to our preference for withr::defer(), when we’re
willing to take a dependency on withr. These issues are explored in a withr
vignette.

Isolate Side Effects
Creating plots and printing output to the console are two other ways of
affecting the global R environment. Often you can’t avoid these (because
they’re important!) but it’s good practice to isolate them in functions that
only produce output. This also makes it easier for other people to repurpose
your work for new uses. For example, if you separate data preparation and
plotting into two functions, others can use your data prep work (which is
often the hardest part!) to create new visualizations.

When You Do Need Side Effects
Occasionally, packages do need side effects. This is most common if your
package talks to an external system—you might need to do some initial
setup when the package loads. To do that, you can use two special

https://oreil.ly/eDpcF


functions: .onLoad() and .onAttach(). These are called when the
package is loaded and attached. You’ll learn about the distinction between
the two in “Attaching Versus Loading”. For now, you should always use
.onLoad() unless explicitly directed otherwise.

Some common uses of .onLoad() and .onAttach() are:

To set custom options for your package with options(). To avoid
conflicts with other packages, ensure that you prefix option names
with the name of your package. Also be careful not to override options
that the user has already set. Here’s a (highly redacted) version of
dplyr’s .onLoad() function, which sets an option that controls
progress reporting:

.onLoad <- function(libname, pkgname) { 

  op <- options() 

  op.dplyr <- list( 

    dplyr.show_progress = TRUE 

  ) 

  toset <- !(names(op.dplyr) %in% names(op)) 

  if (any(toset)) options(op.dplyr[toset]) 

 

  invisible()

}

This allows functions in dplyr to use
getOption("dplyr.show_progress") to determine whether
to show progress bars, relying on the fact that a sensible default value
has already been set.

To display an informative message when the package is attached. This
might make usage conditions clear or display package capabilities
based on current system conditions. Startup messages are one place
where you should use .onAttach() instead of .onLoad(). To
display startup messages, always use



packageStartupMessage(), and not message(). (This allows
suppress PackageStartupMessages() to selectively
suppress package startup messages).

.onAttach <- function(libname, pkgname) { 

  packageStartupMessage("Welcome to my package")

}

As you can see in the examples, .onLoad() and .onAttach() are
called with two arguments: libname and pkgname. They’re rarely used
(they’re a holdover from the days when you needed to use
library.dynam() to load compiled code). They give the path where
the package is installed (the “library”) and the name of the package.

If you use .onLoad(), consider using .onUnload() to clean up any
side effects. By convention, .onLoad() and friends are usually saved in a
file called R/zzz.R. (Note that .First.lib() and .Last.lib() are
old versions of .onLoad() and .onUnload() and should no longer be
used.)

One especially hairy thing to do in a function like .onLoad() or
.onAttach() is to change the state of the random number generator.
Once upon a time, ggplot2 used sample() when deciding whether to
show a startup message, but only in interactive sessions. This, in turn,
created a reproducibility puzzle for users who were using set.seed()
for their own purposes, prior to attaching ggplot2 with
library(ggplot2), and running the code both interactively and
noninteractively. The chosen solution was to wrap the offending startup
code inside withr::with_ preserve_seed(), which leaves the
user’s random seed as it found it.

Constant Health Checks



Here is a typical sequence of calls when using devtools for package
development:

1. Edit one or more files below R/.

2. document() (if you’ve made any changes that impact help files or
NAMESPACE).

3. load_all().

4. Run some examples interactively.

5. test() (or test_active_file()).

6. check().

An interesting question is how frequently and rapidly you move through
this development cycle. We often find ourselves running through the
preceding sequence several times in an hour or in a day while adding or
modifying a single function.

Those newer to package development might be most comfortable slinging
R code and much less comfortable writing and compiling documentation,
simulating package build and installation, testing, and running R CMD
check. And it is human nature to embrace the familiar and postpone the
unfamiliar. This often leads to a dysfunctional workflow where the full
sequence unfolds infrequently, maybe once per month or every couple of
months, very slowly and often with great pain:

1. Edit one or more files below R/.

2. Build, install, and use the package. Iterate occasionally with previous
step.

3. Write documentation (once the code is “done”).

4. Write tests (once the code is “done”).

5. Run R CMD check right before submitting to CRAN or releasing in
some other way.



We’ve already talked about the value of fast feedback, in the context of
load_all(). But this also applies to running document(), test(),
and check(). There are defects you just can’t detect from using
load_all() and running a few interactive examples that are immediately
revealed by more formal checks. Finding and fixing five bugs, one at a
time, right after you created each one is much easier than troubleshooting
all five at once (possibly interacting with each other), weeks or months after
you last touched the code.



SUBMITTING TO CRAN
If you’re planning on submitting your package to CRAN, you must use only ASCII characters in
your .R files. In practice, this means you are limited to the digits 0 to 9, lowercase letters “a” to
“z,” uppercase letters “A” to “Z,” and common punctuation.

But sometimes you need to inline a small bit of character data that includes, e.g., a Greek letter
(µ), an accented character (ü), or a symbol (30°). You can use any Unicode character as long as
you specify it in the special Unicode escape "\u1234" format. The easiest way to find the
correct code point is to use stringi::stri_escape_unicode():

x <- "This is a bullet •"
y <- "This is a bullet \u2022"
identical(x, y)
#> [1] TRUE
cat(stringi::stri_escape_unicode(x))
#> This is a bullet \u2022

Sometimes you have the opposite problem. You don’t intentionally have any non-ASCII
characters in your R code, but automated checks reveal that you do:

W  checking R files for non-ASCII characters ... 
   Found the following file with non-ASCII characters: 
     foo.R 
   Portable packages must use only ASCII characters in 
   their R code, except perhaps in comments. 
   Use \uxxxx escapes for other characters.

The most common offenders are “curly” or “smart” single and double quotes that sneak in through
copy/paste. The functions tools::showNonASCII() and
tools::showNonASCIIfile(file) help you find the offending file(s) and line(s):

tools::showNonASCIIfile("R/foo.R")
#> 666: #' If you<e2><80><99>ve copy/pasted quotes,
#> watch out!

1  Unfortunately you can’t use subdirectories inside R/. The next best thing is to use a common
prefix, e.g., abc-*.R, to signal that a group of files are related.

2  See the Commands workflow in the GitHub Actions for the R language repository.

3  The “Robot Pedantry, Human Empathy” blog post by Mike McQuaid does an excellent job
summarizing the benefit of automating tasks like code restyling.

https://oreil.ly/0cb-Q
https://github.com/r-lib/actions
https://oreil.ly/wPWpp


Chapter 7. Data

It’s often useful to include data in a package. If the primary purpose of a
package is to distribute useful functions, example datasets make it easier to
write excellent documentation. These datasets can be handcrafted to
provide compelling use cases for the functions in the package. Here are
some examples of this type of package data:

tidyr

billboard (song rankings), who (tuberculosis data from the World
Health Organization)

dplyr

starwars (Star Wars characters), storms (storm tracks)

At the other extreme, some packages exist solely for the purpose of
distributing data, along with its documentation. These are sometimes called
“data packages.” A data package can be a nice way to share example data
across multiple packages. It is also a useful technique for getting relatively
large, static files out of a more function-oriented package, which might
require more frequent updates. Here are some examples of data packages:

nycflights13

babynames

Finally, many packages benefit from having internal data that is used for
internal purposes, but that is not directly exposed to the users of the
package.

In this chapter we describe useful mechanisms for including data in your
package. The practical details differ depending on who needs access to the
data, how often it changes, and what they will do with it:

https://nycflights13.tidyverse.org/
http://hadley.github.io/babynames


If you want to store R objects and make them available to the user, put
them in data/. This is the best place to put example datasets. All the
concrete examples we’ve given so far for data in a package and data as
a package use this mechanism. See section “Exported Data”.

If you want to store R objects for your own use as a developer, put
them in R/sysdata.rda. This is the best place to put internal data that
your functions need. See “Internal Data”.

If you want to store data in some raw, non-R-specific form and make it
available to the user, put it in inst/extdata/. For example, readr and
readxl each use this mechanism to provide a collection of delimited
files and Excel workbooks, respectively. See “Raw Data File”.

If you want to store dynamic data that reflects the internal state of your
package within a single R session, use an environment. This technique
is not as common or well-known as the previous ones but can be very
useful in specific situations. See “Internal State”.

If you want to store data persistently across R sessions, such as
configuration or user-specific data, use one of the officially sanctioned
locations. See “Persistent User Data”.

Exported Data
The most common location for package data is (surprise!) data/. We
recommend that each file in this directory be an .rda file created by
save() containing a single R object, with the same name as the file. The
easiest way to achieve this is to use usethis::use_data():

my_pkg_data <- sample(1000)
usethis::use_data(my_pkg_data)

Let’s imagine we are working on a package named “pkg.” The preceding
snippet creates data/my_pkg_data.rda inside the source of the pkg package
and adds LazyData: true in your DESCRIPTION. This makes the



my_pkg_data R object available to users of pkg via
pkg::my_pkg_data or, after attaching pkg with library(pkg), as
my_pkg_data.

The preceding snippet is something the maintainer executes once (or every
time they need to update my_pkg_data). This is workflow code and
should not appear in the R/ directory of the source package. (We’ll talk
about a suitable place to keep this code shortly.) For larger datasets, you
may want to experiment with the compression setting, which is under the
control of the compress argument. The default is “bzip2,” but sometimes
“gzip” or “xz” can create smaller files.

It’s possible to use other types of files below data/, but we don’t
recommend it because .rda files are already fast, small, and explicit. The
other possibilities are described in the documentation for
utils::data() and in the “Data in packages” section of Writing R
Extensions. In terms of advice to package authors, the help topic for
data() seems to implicitly make the same recommendations as we do:

Store one R object in each data/*.rda file.

Use the same name for that object and its .rda file.

Use lazy-loading, by default.

If the DESCRIPTION contains LazyData: true, then datasets will be
lazily loaded. This means that they won’t occupy any memory until you use
them. The following example shows memory usage before and after loading
the nycflights13 package. You can see that memory usage doesn’t change
significantly until you inspect the flights dataset stored inside the
package:

lobstr::mem_used()
#> 56.81 MB
library(nycflights13)
lobstr::mem_used()
#> 58.73 MB 
 
invisible(flights)

https://oreil.ly/_X0fI


lobstr::mem_used()
#> 99.43 MB

We recommend that you include LazyData: true in your
DESCRIPTION if you are shipping .rda files below data/. If you use
use_data() to create such datasets, it will automatically make this
modification to DESCRIPTION for you.

WARNING
It is important to note that lazily loaded datasets do not need to be preloaded with
utils::data() and, in fact, it’s usually best to avoid doing so. In the preceding example, once
we did library(nycflights13), we could immediately access flights. There is no call
to data(flights), because it is not necessary.

There are specific downsides to data(some_pkg_data) calls that support a policy of using
data() only when it is actually necessary, i.e., for datasets that would not be available
otherwise:

By default, data(some_pkg_data) creates one or more objects in the user’s global
workspace. There is the potential to silently overwrite preexisting objects with new values.

There is also no guarantee that data(foo) will create exactly one object named “foo.” It
could create more than one object and/or objects with totally different names.

One argument in favor of calls like data(some_pkg_data, package = "pkg") that are
not strictly necessary is that it clarifies which package provides some_pkg_data. We prefer
alternatives that don’t modify the global workspace, such as a code comment or access via
pkg::some_pkg_data.

This excerpt from the documentation of data() conveys that it is largely of historical
importance:

data() was originally intended to allow users to load datasets from packages for use in their
examples, and as such it loaded the datasets into the workspace .GlobalEnv. This avoided
having large datasets in memory when not in use: that need has been almost entirely
superseded by lazy-loading of datasets.

Preserve the Origin Story of Package Data
Often, the data you include in data/ is a cleaned-up version of raw data
you’ve gathered from elsewhere. We highly recommend taking the time to



include the code used to do this in the source version of your package. This
makes it easy for you to update or reproduce your version of the data. This
data-creating script is also a natural place to leave comments about
important properties of the data, i.e., which features are important for
downstream usage in package documentation.

We suggest that you keep this code in one or more .R files below data-raw/.
You don’t want it in the bundled version of your package, so this folder
should be listed in .Rbuildignore. usethis has a convenience function that
can be called when you first adopt the data-raw/ practice or when you add
an additional .R file to the folder:

usethis::use_data_raw() 
 
usethis::use_data_raw("my_pkg_data")

use_data_raw() creates the data-raw/ folder and lists it in
.Rbuildignore. A typical script in data-raw/ includes code to prepare a
dataset and ends with a call to use_data().

These data packages all use the approach recommended here for data-raw/:

babynames

nycflights13

gapminder

GGPLOT2: A CAUTIONARY TALE
We have a confession to make: the origins of many of ggplot2’s example datasets have been lost
in the sands of time. In the grand scheme of things, this is not a huge problem, but maintenance is
certainly more pleasant when a package’s assets can be reconstructed de novo and easily updated
as necessary.

https://github.com/hadley/babynames
https://github.com/hadley/nycflights13
https://github.com/jennybc/gapminder


SUBMITTING TO CRAN
Generally, package data should be smaller than a megabyte—if it’s larger you’ll need to argue for
an exemption. This is usually easier to do if the data is in its own package and won’t be updated
frequently, i.e., if you approach this as a dedicated “data package.” For reference, the babynames
and nycflights packages have had a release once every one to two years since they first appeared
on CRAN.

If you are bumping up against size issues, you should be intentional about the method of data
compression. The default for usethis::use_data(compress =) is “bzip2” whereas the
default for save(compress =) is (effectively) “gzip,” and “xz” is yet another valid option.

You’ll have to experiment with different compression methods and make this decision empirically.
tools::resaveRdaFiles("data/") automates this process but doesn’t inform you of
which compression method was chosen. You can learn this after the fact with
tools::checkRdaFiles(). Assuming you are keeping track of the code to generate your
data, it would be wise to update the corresponding use_data(compress =) call below data-
raw/ and re-generate the .rda cleanly.

Documenting Datasets
Objects in data/ are always effectively exported (they use a slightly
different mechanism than NAMESPACE but the details are not important).
This means that they must be documented. Documenting data is like
documenting a function with a few minor differences. Instead of
documenting the data directly, you document the name of the dataset and
save it in R/. For example, the roxygen2 block used to document the who
data in tidyr is saved in R/data.R and looks something like this:

#' World Health Organization TB data
#'
#' A subset of data from the World Health Organization Global 
Tuberculosis
#' Report ...
#'
#' @format ## `who`
#' A data frame with 7,240 rows and 60 columns:
#' \describe{
#'   \item{country}{Country name}
#'   \item{iso2, iso3}{2 & 3 letter ISO country codes}
#'   \item{year}{Year}
#'   ...



#' }
#' @source <https://www.who.int/teams/global-tuberculosis-
programme/data>
"who"

Two roxygen tags are especially important for documenting datasets:

@format gives an overview of the dataset. For data frames, you
should include a definition list that describes each variable. It’s usually
a good idea to describe variables’ units here.

@source provides details of where you got the data, often a URL.

Never @export a dataset.

Non-ASCII Characters in Data
The R objects you store in data/*.rda often contain strings, with the most
common example being character columns in a data frame. If you can
constrain these strings to only use ASCII characters, it certainly makes
things simpler. But of course, there are plenty of legitimate reasons why
package data might include non-ASCII characters.

In that case, we recommend that you embrace the UTF-8 Everywhere
manifesto and use the UTF-8 encoding. The DESCRIPTION file placed by
usethis::create_package() always includes Encoding: UTF-
8, so by default a devtools-produced package already advertises that it will
use UTF-8.

Making sure that the strings embedded in your package data have the
intended encoding is something you accomplish in your data preparation
code, i.e., in the R scripts below data-raw/. You can use Encoding() to
learn the current encoding of the elements in a character vector and
functions such as enc2utf8() or iconv() to convert between
encodings.

http://utf8everywhere.org/


SUBMITTING TO CRAN
If you have UTF-8-encoded strings in your package data, you may see this from R CMD check:

-   checking data for non-ASCII characters ... NOTE 
    Note: found 352 marked UTF-8 strings

This NOTE is truly informational. It requires no action from you. As long as you actually intend to
have UTF-8 strings in your package data, all is well.

Ironically, this NOTE is actually suppressed by R CMD check --as-cran, despite the fact
that this NOTE does appear in the check results once a package is on CRAN (which implies that
CRAN does not necessarily check with --as-cran). By default, devtools::check() sets
the --as-cran flag and therefore does not transmit this NOTE. But you can surface it with
check(cran = FALSE, env_vars =
c("R_CHECK_PACKAGE_DATASETS_SUPPRESS_NOTES" = "false")).

Internal Data
Sometimes your package functions need access to precomputed data. If you
put these objects in data/, they’ll also be available to package users, which
is not appropriate. Sometimes the objects you need are small and simple
enough that you can define them with c() or data.frame() in the code
below R/, perhaps in R/data.R. Larger or more complicated objects should
be stored in your package’s internal data in R/sysdata.rda.

Here are some examples of internal package data:

Two color-related packages, munsell and dichromat, use R/sysdata.rda
to store large tables of color data.

googledrive and googlesheets4 wrap the Google Drive and Google
Sheets APIs, respectively. Both use R/sysdata.rda to store data derived
from a so-called Discovery Document, which “describes the surface of
the API, how to access the API and how API requests and responses
are structured.”

https://oreil.ly/SWNuh
https://oreil.ly/brhL8
https://oreil.ly/e3UsU
https://oreil.ly/66Key
https://oreil.ly/k1cxc


The easiest way to create R/sysdata.rda is to use
usethis::use_data(internal = TRUE):

internal_this <- ...
internal_that <- ... 
 
usethis::use_data(internal_this, internal_that, internal = TRUE)

Unlike data/, where you use one .rda file per exported data object, you store
all of your internal data objects together in the single file R/sysdata.rda.

Let’s imagine we are working on a package named “pkg.” The preceding
snippet creates R/sysdata.rda inside the source of the pkg package. This
makes the objects internal_this and internal_that available for
use inside of the functions defined below R/ and in the tests. During
interactive development, internal_this and internal_that are
available after a call to devtools::load_all(), just like an internal
function.

Much of the advice given for external data holds for internal data as well:

It’s a good idea to store the code that generates your individual internal
data objects, as well as the use_data() call that writes all of them
into R/sysdata.rda. This is workflow code that belongs below data-
raw/, not below R/.

usethis::use_data_raw() can be used to initiate the use of
data-raw/ or to initiate a new .R script there.

If your package is uncomfortably large, experiment with different
values of compress in use_data(internal = TRUE).

There are also key distinctions, where the handling of internal and external
data differs:

Objects in R/sysdata.rda are not exported (they shouldn’t be), so they
don’t need to be documented.



Usage of R/sysdata.rda has no impact on DESCRIPTION, i.e., the
need to specify the LazyData field is strictly about the exported data
below data/.

Raw Data File
If you want to show examples of loading/parsing raw data, put the original
files in inst/extdata/. When the package is installed, all files (and folders) in
inst/ are moved up one level to the top-level directory, which is why they
can’t have names that conflict with standard parts of an R package, like R/
or DESCRIPTION. The files below inst/extdata/ in the source package will
be located below extdata/ in the corresponding installed package. You may
want to revisit Figure 3-1 to review the file structure for different package
states.

The main reason to include such files is when a key part of a package’s
functionality is to act on an external file. Examples of such packages
include:

readr, which reads rectangular data out of delimited files

readxl, which reads rectangular data out of Excel spreadsheets

xml2, which can read XML and HTML from file

archive, which can read archive files, such as tar or ZIP

All of these packages have one or more example files below inst/extdata/,
which are useful for writing documentation and tests.

It is also common for data packages to provide, e.g., a CSV version of the
package data that is also provided as an R object. Examples of such
packages include:

palmerpenguins

penguins and penguins_raw are also represented as
extdata/penguins.csv and extdata/penguins_raw.csv



gapminder

gapminder, continent_colors, and country_colors are
also represented as extdata/gapminder.tsv, extdata/continent-colors.tsv,
and extdata/country-colors.tsv

This has two payoffs: First, it gives teachers and other expositors more to
work with once they decide to use a specific dataset. If you’ve started
teaching R with palmerpenguins::penguins or
gapminder::gapminder and you want to introduce data import, it can
be helpful to students if their first use of a new command, like
readr::read_csv() or read.csv(), is applied to a familiar dataset.
They have preexisting intuition about the expected result. Finally, if
package data evolves over time, having a CSV or other plain-text
representation in the source package can make it easier to see what’s
changed.

Filepaths
The path to a package file found below extdata/ clearly depends on the local
environment, i.e., it depends on where installed packages live on that
machine. The base function system.file() can report the full path to
files distributed with an R package. It can also be useful to list the files
distributed with an R package:

system.file("extdata", package = "readxl") |> list.files()
#>  [1] "clippy.xls"    "clippy.xlsx"   "datasets.xls"  
"datasets.xlsx"
#>  [5] "deaths.xls"    "deaths.xlsx"   "geometry.xls"  
"geometry.xlsx"
#>  [9] "type-me.xls"   "type-me.xlsx" 
 
system.file("extdata", "clippy.xlsx", package = "readxl")
#> [1] 
"/Users/jenny/Library/R/x86_64/4.2/library/readxl/extdata/clippy.
xlsx"



These filepaths present yet another workflow dilemma: when you’re
developing your package, you engage with it in its source form, but your
users engage with it as an installed package. Happily, devtools provides a
shim for base::system.file() that is activated by load_all().
This makes interactive calls to system.file() from the global
environment and calls from within the package namespace “just work.”

Be aware that, by default, system.file() returns the empty string, not
an error, for a file that does not exist:

system.file("extdata", "I_do_not_exist.csv", package = "readr")
#> [1] ""

If you want to force a failure in this case, specify mustWork = TRUE:

system.file("extdata", "I_do_not_exist.csv", package = "readr", 
mustWork = TRUE)
#> Error in system.file("extdata", "I_do_not_exist.csv", package 
= "readr",
#> : no file found

The fs package offers fs::path_package(). This is essentially
base::system.file() with a few added features that we find
advantageous, whenever it’s reasonable to take a dependency on fs:

It errors if the filepath does not exist.

It throws distinct errors when the package does not exist versus when
the file does not exist within the package.

During development, it works for interactive calls, calls from within
the loaded package’s namespace, and even for calls originating in
dependencies:

fs::path_package("extdata", package = "idonotexist")
#> Error: Can't find package `idonotexist` in library locations:
#>   - '/Users/jenny/Library/R/x86_64/4.2/library'
#>   - 
'/Library/Frameworks/R.framework/Versions/4.2/Resources/library' 

https://fs.r-lib.org/


 
fs::path_package("extdata", "I_do_not_exist.csv", package = 
"readr")
#> Error: File(s) '/Users/jenny/.../extdata/I_do_not_exist.csv' 
do not exist 
 
fs::path_package("extdata", "chickens.csv", package = "readr")
#> 
/Users/jenny/Library/R/x86_64/4.2/library/readr/extdata/chickens.
csv

pkg_example() Path Helpers
We like to offer convenience functions that make example files easy to
access. These are just user-friendly wrappers around system.file() or
fs::path_package(), but they can have added features, such as the
ability to list the example files. Here’s the definition and some usage of
readxl::readxl_example():

readxl_example <- function(path = NULL) { 
  if (is.null(path)) { 
    dir(system.file("extdata", package = "readxl")) 
  } else { 
    system.file("extdata", path, package = "readxl", mustWork = 
TRUE) 
  }
}
readxl::readxl_example()
#>  [1] "clippy.xls"    "clippy.xlsx"   "datasets.xls"  
"datasets.xlsx"
#>  [5] "deaths.xls"    "deaths.xlsx"   "geometry.xls"  
"geometry.xlsx"
#>  [9] "type-me.xls"   "type-me.xlsx" 
 
readxl::readxl_example("clippy.xlsx")
#> [1] 
"/Users/jenny/Library/R/x86_64/4.2/library/readxl/extdata/clippy.
xlsx"

Internal State



Sometimes there’s information that multiple functions from your package
need to access that:

Must be determined at load time (or even later), not at build time. It
might even be dynamic.

Doesn’t make sense to pass in via a function argument. Often it’s some
obscure detail that a user shouldn’t even know about.

A great way to manage such data is to use an environment.1 This
environment must be created at build time, but you can populate it with
values after the package has been loaded and update those values over the
course of an R session. This works because environments have reference
semantics (whereas more pedestrian R objects, such as atomic vectors, lists,
or data frames have value semantics).

Consider a package that can store the user’s favorite letters or numbers. You
might start out with code like this in a file below R/:

favorite_letters <- letters[1:3] 
 
#' Report my favorite letters
#' @export
mfl <- function() { 
  favorite_letters
} 
 
#' Change my favorite letters
#' @export
set_mfl <- function(l = letters[24:26]) { 
  old <- favorite_letters 
  favorite_letters <<- l 
  invisible(old)
}

favorite_letters is initialized to (“a”, “b”, “c”) when the package is
built. The user can then inspect favorite_letters with mfl(), at
which point they’ll probably want to register their favorite letters with
set_mfl(). Note that we’ve used the super assignment operator <<- in
set_mfl() in the hope that this will reach up into the package



environment and modify the internal data object favorite_letters.
But a call to set_mfl() fails like so:2

mfl()
#> [1] "a" "b" "c" 
 
set_mfl(c("j", "f", "b"))
#> Error in set_mfl() :
#>   cannot change value of locked binding for 'favorite_letters'

Because favorite_letters is a regular character vector, modification
requires making a copy and rebinding the name favorite_letters to
this new value. And that is what’s disallowed: you can’t change the binding
for objects in the package namespace (well, at least not without trying
harder than this). Defining favorite_letters this way only works if
you will never need to modify it.

However, if we maintain state within an internal package environment, we
can modify objects contained in the environment (and even add completely
new objects). Here’s an alternative implementation that uses an internal
environment named “the”:

the <- new.env(parent = emptyenv())
the$favorite_letters <- letters[1:3] 
 
#' Report my favorite letters
#' @export
mfl2 <- function() { 
  the$favorite_letters
} 
 
#' Change my favorite letters
#' @export
set_mfl2 <- function(l = letters[24:26]) { 
  old <- the$favorite_letters 
  the$favorite_letters <- l 
  invisible(old)
}

Now a user can register their favorite letters:



mfl2()
#> [1] "a" "b" "c" 
 
set_mfl2(c("j", "f", "b")) 
 
mfl2()
#> [1] "j" "f" "b"

Note that this new value for the$favorite_letters persists only for
the remainder of the current R session (or until the user calls set_mfl2()
again). More precisely, the altered state persists only until the next time the
package is loaded (including via load_all()). At load time, the
environment the is reset to an environment containing exactly one object,
named favorite_letters, with value (“a”, “b”, “c”). It’s like the
movie Groundhog Day. (We’ll discuss more persistent package- and user-
specific data in the next section.)

Jim Hester introduced our group to the nifty idea of using “the” as the name
of an internal package environment. This lets you refer to the objects inside
in a very natural way, such as the$token, meaning “the token.” It is also
important to specify parent = emptyenv() when defining an internal
environment, as you generally don’t want the environment to inherit from
any other (nonempty) environment.

As seen in the favorite letters example, the definition of the environment
should happen as a top-level assignment in a file below R/. (In particular,
this is a legitimate reason to define a nonfunction at the top-level of a
package; see “Understand When Code Is Executed” for why this should be
rare.) As for where to place this definition, there are two considerations:

Define it before you use it. If other top-level calls refer to the
environment, the definition must come first when the package code is
being executed at build time. This is why R/aaa.R is a common and
safe choice.

Make it easy to find later when you’re working on related
functionality. If an environment is only used by one family of



functions, define it there. If environment usage is sprinkled around the
package, define it in a file with package-wide connotations.

Here are some examples of how packages use an internal environment:

googledrive

Various functions need to know the file ID for the current user’s home
directory on Google Drive. This requires an API call (a relatively
expensive and error-prone operation), which yields an eye-watering
string of ~40 seemingly random characters that only a computer can
love. It would be inhumane to expect a user to know this or to pass it
into every function. It would also be inefficient to rediscover the ID
repeatedly. Instead, googledrive determines the ID upon first need, then
caches it for later use.

usethis

Most functions need to know the active project, i.e., which directory to
target for file modification. This is often the current working directory,
but that is not an invariant usethis can rely upon. One potential design is
to make it possible to specify the target project as an argument of every
function in usethis. But this would create significant clutter in the user
interface, as well as internal fussiness. Instead, we determine the active
project upon first need, cache it, and provide methods for (re)setting it.

The blog post Package-Wide Variables/Cache in R Packages gives a more
detailed development of this technique.

Persistent User Data
Sometimes there is data that your package obtains, on behalf of itself or the
user, that should persist even across R sessions. This is our last and
probably least common form of storing package data. For the data to persist
this way, it has to be stored on disk and the big question is where to write
such a file.

https://oreil.ly/-8-zo


This problem is hardly unique to R. Many applications need to leave notes
to themselves. It is best to comply with external conventions, which in this
case means the XDG Base Directory Specification. You need to use the
official locations for persistent file storage, because it’s the responsible and
courteous thing to do and also to comply with CRAN policies.

SUBMITTING TO CRAN
You can’t just write persistent data into the user’s home directory. Here’s a relevant excerpt from
the CRAN policy at the time of writing:

Packages should not write in the user’s home filespace (including clipboards), nor anywhere
else on the file system apart from the R session’s temporary directory ….

For R version 4.0 or later (hence a version dependency is required or only conditional use is
possible), packages may store user-specific data, configuration and cache files in their
respective user directories obtained from tools::R_user_dir(), provided that by [sic]
default sizes are kept as small as possible and the contents are actively managed (including
removing outdated material).

The primary function you should use to derive acceptable locations for user
data is tools::R_user_dir().3 Here are some examples of the
generated filepaths:

tools::R_user_dir("pkg", which = "data")
#> [1] "/Users/jenny/Library/Application Support/org.R-
project.R/R/pkg"
tools::R_user_dir("pkg", which = "config")
#> [1] "/Users/jenny/Library/Preferences/org.R-project.R/R/pkg"
tools::R_user_dir("pkg", which = "cache")
#> [1] "/Users/jenny/Library/Caches/org.R-project.R/R/pkg"

One last thing you should consider with respect to persistent data is: does
this data really need to persist? Do you really need to be the one responsible
for storing it?

If the data is potentially sensitive, such as user credentials, it is
recommended to obtain the user’s consent to store it, i.e., to require
interactive consent when initiating the cache. Also consider that the user’s

https://oreil.ly/SC63H


operating system or command-line tools might provide a means of secure
storage that is superior to any DIY solution that you might implement. The
packages keyring, gitcreds, and credentials are examples of packages that
tap into externally provided tooling. Before embarking on any creative
solution for storing secrets, consider that your effort is probably better spent
integrating with an established tool.

1  If you don’t know much about R environments and what makes them special, a great resource
is the Environments chapter of Advanced R.

2  This example will execute without error if you define favorite_letters, mfl(), and
set_mfl() in the global workspace and call set_mfl() in the console. But this code will
fail once favorite_letters, mfl(), and set_mfl() are defined inside a package.

3  Note that tools::R_user_dir() first appeared in R 4.0. If you need to support older
versions of R, then you should use the rappdirs package, which is a port of the Python appdirs
module, and which follows the tidyverse policy regarding R version support, meaning the
minimum supported R version is advancing and will eventually slide past R 4.0. rappdirs
produces different filepaths than tools::R_user_dir(). However, both tools implement
something that is consistent with the XDG spec, just with different opinions about how to
create filepaths beyond what the spec dictates.

https://oreil.ly/9ZIiH
https://gitcreds.r-lib.org/
https://oreil.ly/7FaLZ
https://adv-r.hadley.nz/environments.xhtml
https://rappdirs.r-lib.org/
https://oreil.ly/B5uUW


Chapter 8. Other Components

The first two chapters in this part of the book cover the two most obvious
things that people distribute via an R package: functions (Chapter 6) and
data (Chapter 7). But that’s not all it takes to make an R package. There are
other package components that are either required, such as a
DESCRIPTION file, or highly recommended, such as tests and
documentation.

The next few parts of the book are organized around important concepts:
dependencies, testing, and documentation. But before we dig into those
topics, this chapter demystifies some package parts that are not needed in
every package, but that are nice to be aware of.

Other Directories
Here are some top-level directories you might encounter in an R source
package, in rough order of importance and frequency of use:

src/

This directory contains source and header files for compiled code, most
often C and C++. This is an important technique that is used to make R
packages more performant and to unlock the power of external libraries
for R users. As of the second edition, the book no longer covers this
topic, since a truly useful treatment of compiled code requires more
space than we can give it here. The tidyverse generally uses the cpp11
package to connect C++ to R; most other packages use Rcpp, the most
well-established package for integrating R and C++.

inst

https://cpp11.r-lib.org/
https://www.rcpp.org/


This directory can hold arbitrary additional files that you want include
in your package. This includes a few special files, like the CITATION,
described in the next section. Other examples of files that might appear
below inst/ include R Markdown templates (see
usethis::use_rmarkdown_template()) or RStudio add-ins.

tools/

This directory can contain auxiliary files needed during configuration,
usually found in the company of a configure script. We discuss this
more in “Configuration Tools”.

demo/

This directory is for package demos. We regard demos as a legacy
phenomenon, whose goals are now better met by vignettes (Chapter 17).
For actively maintained packages, it probably makes sense to repurpose
the content in any existing demos somewhere that’s more visible,
e.g., in README.Rmd (see “README”) or in vignettes (see
Chapter 17). These other locations offer other advantages, such as
making sure that the code is exercised regularly. This is not true of
actual demos, leaving them vulnerable to rot.

exec/

This directory can contain executable scripts. Unlike files placed in
other directories, files in exec/ are automatically flagged as executable.
Empirically, to the extent that R packages are shipping scripts for
external interpreters, the inst/ directory seems to be the preferred
location these days.

po/

This directory provides translations for messages. This is useful but
beyond the scope of this book. See the “Internationalization” chapter of
Writing R Extensions and the potools package for more details.

https://oreil.ly/1keh5
https://oreil.ly/5AJYr
https://oreil.ly/IL9y1


Installed Files
When a package is installed, everything in inst/ is copied into the top-level
directory of the installed package (see Figure 3-1). In some sense inst/ is the
opposite of .Rbuildignore; where .Rbuildignore lets you remove arbitrary
files and directories from the built package, inst/ lets you add them.

WARNING
You are free to put anything you like in inst/ with one caution: because inst/ is copied into the top-
level directory, don’t create a subdirectory that collides with any of the directories that make up
the official structure of an R package. We recommend avoiding directories with special
significance in either the source or installed form of a package, such as inst/data, inst/help,
inst/html, inst/libs, inst/man, inst/Meta, inst/R, inst/src, inst/tests, inst/tools, and inst/vignettes. In
most cases, this prevents you from having a malformed package. And even though some of these
directories are technically allowed, they can be an unnecessary source of confusion.

Here are some of the most common files and folders found in inst/:

inst/CITATION

How to cite the package, see “Package Citation” for details.

inst/extdata

Additional external data for examples and vignettes. See “Raw Data
File” for more details.

What if you need a path to the file at inst/foo to use in, e.g., the code below
R/ or in your documentation? The default solution is to use
system.file("foo", package = "yourpackage"). But this
presents a workflow dilemma: when you’re developing your package, you
engage with it in its source form (inst/foo), but your users engage with its
installed form (/foo). Happily, devtools provides a shim for
system.file() that is activated by load_all(). “Filepaths” covers
this in more depth and includes an interesting alternative,
fs::path_package() .



Package Citation
The CITATION file lives in the inst directory and is intimately connected to
the citation() function, which tells you how to cite R and R packages.
Calling citation() without any arguments tells you how to cite base R:

citation()
#>
#> To cite R in publications use:
#>
#>   R Core Team (2022). R: A language and environment for
#>   statistical computing. R Foundation for Statistical
#>   Computing, Vienna, Austria. URL
#>   https://www.R-project.org/.
#>
#> A BibTeX entry for LaTeX users is
#>
#>   @Manual{,
#>     title = {R: A Language and Environment for Statistical 
Computing},
#>     author = {{R Core Team}},
#>     organization = {R Foundation for Statistical Computing},
#>     address = {Vienna, Austria},
#>     year = {2022},
#>     url = {https://www.R-project.org/},
#>   }
#>
#> We have invested a lot of time and effort in creating R,
#> please cite it when using it for data analysis. See also
#> 'citation("pkgname")' for citing R packages.

Calling it with a package name tells you how to cite that package:

citation("tidyverse")
#>
#> To cite package 'tidyverse' in publications use:
#>
#>   Wickham H, Averick M, Bryan J, Chang W, McGowan LD,
#>   François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn
#>   M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J,
#>   Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D,
#>   Wilke C, Woo K, Yutani H (2019). "Welcome to the
#>   tidyverse." _Journal of Open Source Software_, 4(43),
#>   1686. doi:10.21105/joss.01686
#>   <https://doi.org/10.21105/joss.01686>.



#>
#> A BibTeX entry for LaTeX users is
#>
#>   @Article{,
#>     title = {Welcome to the {tidyverse}},
#>     author = {Hadley Wickham and Mara Averick and Jennifer 
Bryan and...},
#>     year = {2019},
#>     journal = {Journal of Open Source Software},
#>     volume = {4},
#>     number = {43},
#>     pages = {1686},
#>     doi = {10.21105/joss.01686},
#>   }

The associated inst/CITATION file looks like this:

bibentry( 
  "Article", 
  title = "Welcome to the {tidyverse}", 
  author = "Hadley Wickham, Mara Averick, Jennifer Bryan, Winston 
Chang..., 
  year = 2019, 
  journal = "Journal of Open Source Software", 
  volume = 4, 
  number = 43, 
  pages = 1686, 
  doi = "10.21105/joss.01686", 
)

You can call usethis::use_citation() to initiate this file and fill in
your details. Read the ?bibentry help topic for more details.

Configuration Tools
If a package has a configuration script (configure on Unix-alikes,
configure.win on Windows), it is executed as the first step by R CMD
INSTALL. This is typically associated with a package that has an src/
subdirectory containing C/C++ code and the configure script is needed
at compile time. If that script needs auxiliary files, those should be located
in the tools/ directory. The scripts below tools/ can have an effect on the



installed package, but the contents of tools/ will not ultimately be present in
the installed package. In any case, this is mostly (but not solely) relevant to
packages with compiled code, which is beyond the scope of this book.

We bring this up because, in practice, some packages use the tools/
directory for a different but related purpose. Some packages have periodic
maintenance tasks for which it is helpful to record detailed instructions. For
example, many packages embed some sort of external resource, e.g., code
or data:

Source code and headers for an embedded third-party C/C++ library

Web toolkits

R code that’s inlined (as opposed to imported)

Specification for a web API

Color palettes, styles, and themes

These external assets are also usually evolving over time, so they need to be
re-ingested on a regular basis. This makes it particularly rewarding to
implement such housekeeping programmatically.

This is the second, unofficial use of the tools/ directory, characterized by
two big differences with its official purpose: the packages that do this
generally do not have a configure script and they list tools/ in
.Rbuildignore, meaning that these scripts are not included in the package
bundle. These scripts are maintained in the source package for developer
convenience but are never shipped with the package.

This practice is closely related to our recommendation to store the
instructions for the creation of package data in data-raw/ (see “Preserve the
Origin Story of Package Data”) and to record the method of construction
for any test fixtures (see “Store a Concrete useful_thing Persistently”).



Part III. Package Metadata



Chapter 9. DESCRIPTION

DESCRIPTION and NAMESPACE are two important files that provide
metadata about your package. The DESCRIPTION file provides overall
metadata about the package, such as the package name and which other
packages it depends on. The NAMESPACE file specifies which functions
your package makes available for others to use and, optionally, imports
functions from other packages.

In this chapter, you’ll learn about the most important fields found in
DESCRIPTION. The next two chapters cover the topic of package
dependencies, which is where the importance of the NAMESPACE file will
become clear. First, in Chapter 10, we discuss the costs and benefits of
dependencies and also provide the relevant technical context around how R
finds objects. In Chapter 11, we explain the practical moves necessary to
use your dependencies within your package. The metadata part of the book
concludes with Chapter 12, which covers licensing.

The DESCRIPTION File
The job of the DESCRIPTION file is to store important metadata about your
package. When you first start writing packages, you’ll mostly use this
metadata to record what packages are needed to run your package.
However, as time goes by, other aspects of the metadata file will become
useful to you, such as revealing what your package does (via the Title
and DESCRIPTION) and whom to contact (you!) if there are any problems.

Every package must have a DESCRIPTION. In fact, it’s the defining feature
of a package (RStudio and devtools consider any directory containing
DESCRIPTION to be a package).1 To get you started,
usethis::create_package("mypackage") automatically adds a
bare-bones DESCRIPTION file. This will allow you to start writing the



package without having to worry about the metadata until you need to. This
minimal DESCRIPTION will vary a bit depending on your settings, but
should look something like this:

Package: mypackage
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:
    person("First", "Last", , "first.last@example.com", role = 
c("aut", "cre"),
           comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to 
pick a
    license
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3

If you create a lot of packages, you can customize the default content of
new DESCRIPTION files by setting the global option
usethis.description to a named list. You can preconfigure your
preferred name, email, license, etc. See the article on usethis setup for more
details.

DESCRIPTION uses a simple file format called DCF, the Debian control
format. You can see most of the structure in the examples in this chapter.
Each line consists of a field name and a value, separated by a colon. When
values span multiple lines, they need to be indented:

Description: The description of a package usually spans multiple 
lines.
    The second and subsequent lines should be indented, usually 
with four
    spaces.

If you ever need to work with a DESCRIPTION file programmatically, take
a look at the desc package, which usesthis uses heavily under-the-hood.

This chapter shows you how to use the most important DESCRIPTION
fields.

https://usethis.r-lib.org/articles/articles/usethis-setup.xhtml
https://desc.r-lib.org/


Title and Description: What Does Your
Package Do?
The Title and Description fields describe what the package does.
They differ only in length:

Title is a one-line description of the package and is often shown in a
package listing. It should be plain text (no markup), capitalized like a
title, and not end in a period. Keep it short: listings will often truncate
the title to 65 characters.

DESCRIPTION is more detailed than the title. You can use multiple
sentences, but you are limited to one paragraph. If your description
spans multiple lines (and it should!), each line must be no more than
80 characters wide. Indent subsequent lines with 4 spaces.

The Title and DESCRIPTION for ggplot2 are:

Title: Create Elegant Data Visualizations Using the Grammar of 
Graphics
Description: A system for 'declaratively' creating graphics,
    based on "The Grammar of Graphics". You provide the data, 
tell 'ggplot2'
    how to map variables to aesthetics, what graphical primitives 
to use,
    and it takes care of the details.

A good title and description are important, especially if you plan to release
your package to CRAN, because they appear on the package’s CRAN
landing page as shown in Figure 9-1.





Figure 9-1. How Title and Description appear on ggplot2’s CRAN page

SUBMITTING TO CRAN
Both the Title and Description are a frequent source of rejections for reasons not covered
by the automated R CMD check. In addition to the basics already discussed, here are a few more
tips:

Put the names of R packages, software, and APIs inside single quotes. This goes for both
the Title and the Description. See the ggplot2 example in Figure 9-1.

If you need to use an acronym, try to do so in Description, not in Title. In either
case, explain the acronym in Description, i.e., fully expand it.

Don’t include the package name, especially in Title, which is often prefixed with the
package name.

Do not start with “A package for …” or “This package does …”. This rule makes sense
once you look at the list of CRAN packages by name. The information density of such a
listing is much higher without a universal prefix like “A package for …”.

If these constraints give you writer’s block, it often helps to spend a few minutes reading the
Title and Description of packages already on CRAN. Once you read a couple dozen, you
can usually find a way to say what you want to say about your package that is also likely to pass
CRAN’s human-enforced checks.

You’ll notice that DESCRIPTION gives you only a small amount of space
to describe what your package does. This is why it’s so important to also
include a README.md file that goes into much more depth and shows a
few examples. You’ll learn about that in “README”.

Author: Who Are You?
Use the Authors@R field to identify the package’s author, and whom to
contact if something goes wrong. This field is unusual because it contains
executable R code rather than plain text. Here’s an example:

Authors@R: person("Hadley", "Wickham", email = "hadley@posit.co",
  role = c("aut", "cre"))

https://oreil.ly/eXcIj


person("Hadley", "Wickham", email = "hadley@posit.co", 
  role = c("aut", "cre"))
#> [1] "Hadley Wickham <hadley@posit.co> [aut, cre]"

This command says that Hadley Wickham is both the maintainer (cre) and
an author (aut) and that his email address is hadley@posit.co. The
person() function has four main inputs:

The name, specified by the first two arguments, given and family
(these are normally supplied by position, not name). In English
cultures, given (first name) comes before family (last name). In
many cultures, this convention does not hold. For a nonperson entity,
such as “R Core Team” or “Posit Software, PBC,” use the given
argument (and omit family).

The email address, which is an absolute requirement only for the
maintainer. It’s important to note that this is the address CRAN uses to
let you know if your package needs to be fixed in order to stay on
CRAN. Make sure to use an email address that’s likely to be around
for a while. CRAN policy requires that this be for a person, as opposed
to, e.g., a mailing list.

One or more three-letter codes specifying the role. These are the
most important roles to know about:

cre

The creator or maintainer, the person you should bother if you have
problems. Despite being short for “creator,” this is the correct role
to use for the current maintainer, even if they are not the initial
creator of the package.

aut

Authors, those who have made significant contributions to the
package.

ctb



Contributors, those who have made smaller contributions, like
patches.

cph

Copyright holder. This is used to list additional copyright holders
who are not authors, typically companies, like an employer of one
or more of the authors.

fnd

Funder, the people or organizations that have provided financial
support for the development of the package.

The optional comment argument has become more relevant, since
person() and CRAN landing pages have gained some nice features
around ORCID identifiers. Here’s an example of such usage (note the
autogenerated URI):

person( 

  "Jennifer", "Bryan", 

  email = "jenny@posit.co", 

  role = c("aut", "cre"), 

  comment = c(ORCID = "0000-0002-6983-2759")

)

#> [1] "Jennifer Bryan <jenny@posit.co> [aut, cre]

#> (<https://orcid.org/0000-0002-6983-2759>)"

You can list multiple authors with c():

Authors@R: c(
    person("Hadley", "Wickham", email = "hadley@posit.co", role = 
"cre"),
    person("Jennifer", "Bryan", email = "jenny@posit.co", role = 
"aut"),
    person("Posit Software, PBC", role = c("cph", "fnd")))

https://orcid.org/


Every package must have at least one author (aut) and one maintainer
(cre), and they might be the same person. The maintainer (cre) must have
an email address. These fields are used to generate the basic citation for the
package (e.g., citation("pkgname")). Only people listed as authors
will be included in the auto-generated citation (see “Package Citation”).
There are a few extra details if you’re including code that other people have
written, which you can learn about in “Code You Bundle”.

An older, still valid approach is to have separate Maintainer and
Author fields in DESCRIPTION. However, we strongly recommend the
more modern approach of Authors@R and the person() function,
because it offers richer metadata for various downstream uses.

URL and BugReports
As well as the maintainer’s email address, it’s a good idea to list other
places people can learn more about your package. The URL field is
commonly used to advertise the package’s website (see Chapter 19) and to
link to a public source repository, where development happens. Multiple
URLs are separated with a comma. BugReports is the URL where bug
reports should be submitted, e.g., as GitHub issues. For example, devtools
has:

URL: https://devtools.r-lib.org/, https://github.com/r-
lib/devtools
BugReports: https://github.com/r-lib/devtools/issues

If you use usethis::use_github() to connect your local package to
a remote GitHub repository, it will automatically populate URL and
BugReports for you. If a package is already connected to a remote
GitHub repository, usethis::use_github_links() can be called to
just add the relevant links to DESCRIPTION.

The License Field



The License field is mandatory and must specify your package’s license
in a standard form recognized by R. The official tooling aims to identify
standard open source licenses, so it’s important to appreciate that License
is basically a machine-readable field. See Chapter 12 for a full discussion.

Imports, Suggests, and Friends
Two of the most important and commonly used DESCRIPTION fields are
Imports and Suggests, which list other packages that your package
depends on. Packages listed in Imports are needed by your users at
runtime and will be installed (or potentially updated) when users install
your package via install.packages(). The following lines indicate
that your package absolutely needs both dplyr and tidyr to work:

Imports:
    dplyr,
    tidyr

Packages listed in Suggests are either needed for development tasks or
might unlock optional functionality for your users. The following lines
indicate that, while your package can take advantage of ggplot2 and
testthat, they’re not absolutely required:

Suggests:
    ggplot2,
    testthat

Both Imports and Suggests take a comma-separated list of package
names. We recommend putting one package on each line, and keeping them
in alphabetical order. A non-haphazard order makes it easier for humans to
parse this field and appreciate changes.

The easiest way to add a package to Imports or Suggests is with
usethis::use_ package(). If the dependencies are already in
alphabetical order, use_package() will keep it that way. In general, it
can be nice to run usethis::use_tidy_description() regularly,



which orders and formats DESCRIPTION fields according to a fixed
standard.

If you add packages to DESCRIPTION with
usethis::use_package(), it will also remind you of the
recommended way to call them (explained more in Chapter 11):

usethis::use_package("dplyr") # Default is "Imports"
#> ✔ Adding 'dplyr' to Imports field in DESCRIPTION
#> • Refer to functions with `dplyr::fun()` 
 
usethis::use_package("ggplot2", "Suggests")
#> ✔ Adding 'ggplot2' to Suggests field in DESCRIPTION
#> • Use `requireNamespace("ggplot2", quietly = TRUE)` to test if 
package
#>   is installed
#> • Then directly refer to functions with `ggplot2::fun()`

Minimum Versions
If you need a specific version of a package, specify it in parentheses after
the package name:

Imports:
    dplyr (>= 1.0.0),
    tidyr (>= 1.1.0)

The usethis::use_package() convenience function also helps you
to set a minimum version:

# specific version
usethis::use_package("dplyr", min_version = "1.0.0") 
 
# min version = currently installed version
usethis::use_package("dplyr", min_version = TRUE)

You always want to specify a minimum version (dplyr (>= 1.0.0))
rather than an exact version (dplyr (== 1.0.0)). Since R can’t have
multiple versions of the same package loaded at the same time, specifying



an exact dependency dramatically increases the chance of conflicting
versions.2

Versioning is most important if you will release your package for use by
others. Usually people don’t have exactly the same versions of packages
installed that you do. If someone has an older package that doesn’t have a
function your package needs, they’ll get an unhelpful error message if your
package does not advertise the minimum version it needs. However, if you
state a minimum version, they’ll automatically get an upgrade when they
install your package.

Think carefully if you declare a minimum version for a dependency. In
some sense, the safest thing to do is to require a version greater than or
equal to the package’s current version. For public work, this is most
naturally defined as the current CRAN version of a package; private or
personal projects may adopt some other convention. But it’s important to
appreciate the implications for people who try to install your package: if
their local installation doesn’t fulfill all of your requirements around
versions, installation will force upgrades of these dependencies. This is
desirable if your minimum version requirements are genuine, i.e., your
package would be broken otherwise. But if your stated requirements have a
less solid rationale, this may be unnecessarily conservative and
inconvenient.

In the absence of clear, hard requirements, you should set minimum
versions (or not) based on your expected user base, the package versions
they are likely to have, and a cost-benefit analysis of being too lax versus
too conservative. The de facto policy of the tidyverse team is to specify a
minimum version when using a known new feature or when someone
encounters a version problem in authentic use. This isn’t perfect, but we
don’t currently have the tooling to do better, and it seems to work fairly
well in practice.

Depends and LinkingTo
Three other fields allow you to express more specialized dependencies:



Depends

Prior to the roll-out of namespaces in R 2.14.0 in 2011, Depends was
the only way to “depend” on another package. Now, despite the name,
you should almost always use Imports, not Depends. You’ll learn
why, and when you should still use Depends, in “Whether to Import or
Depend”.

The most legitimate current use of Depends is to state a minimum
version for R itself, e.g., Depends: R (>= 4.0.0). Again, think
carefully if you do this. This raises the same issues as setting a
minimum version for a package you depend on, except the stakes are
much higher when it comes to R itself. Users can’t simply consent to the
necessary upgrade, so, if other packages depend on yours, your
minimum version requirement for R can cause a cascade of package
installation failures.

The backports package is useful if you want to use a function like
tools::R_user_dir(), which was introduced in 4.0.0 in 2020,
while still supporting older R versions.

The tidyverse packages officially support the current R version, the
devel version, and four previous versions.3 We proactively test this
support in the standard build matrix we use for continuous
integration.

Packages with a lower level of use may not need this level of rigor.
The main takeaway is: if you state a minimum of R, you should
have a reason and you should take reasonable measures to test your
claim regularly.

LinkingTo

If your package uses C or C++ code from another package, you need to
list it here.

Enhances

https://cran.r-project.org/package=backports


Packages listed here are “enhanced” by your package. Typically, this
means you provide methods for classes defined in another package (a
sort of reverse Suggests). But it’s hard to define what that means, so
we don’t recommend using Enhances.

An R Version Gotcha
Before we leave this topic, we give a concrete example of how easily an R
version dependency can creep in and have a broader impact than you might
expect. The saveRDS() function writes a single R object as an .rds file,
an R-specific format. For almost 20 years, .rds files used the “version 2”
serialization format. “Version 3” became the new default in R 3.6.0
(released April 2019) and cannot be read by R versions prior to 3.5.0
(released April 2018).

Many R packages have at least one .rds file lurking within and, if that gets
re-generated with a modern R version, by default, the new .rds file will
have the “version 3” format. When that R package is next built, such as for
a CRAN submission, the required R version is automatically bumped to
3.5.0, signaled by this message:

NB: this package now depends on R (>= 3.5.0)
  WARNING: Added dependency on R >= 3.5.0 because serialized 
objects in
  serialize/load version 3 cannot be read in older versions of R.
  File(s) containing such objects:
    'path/to/some_file.rds'

Literally, the DESCRIPTION file in the bundled package says Depends:
R (>= 3.5.0), even if DESCRIPTION in the source package says
differently.4

When such a package is released on CRAN, the new minimum R version is
viral, in the sense that all packages listing the original package in Imports
or even Suggests have, to varying degrees, inherited the new dependency
on R >= 3.5.0.



The immediate takeaway is to be very deliberate about the version of
.rds files until R versions prior to 3.5.0 have fallen off the edge of what you
intend to support. This particular .rds issue won’t be with us forever, but
similar issues crop up elsewhere, such as in the standards implicit in
compiled C or C++ source code. The broader message is that the more
reverse dependencies your package has, the more thought you need to give
to your package’s stated minimum versions, especially for R itself.

Other Fields
A few other DESCRIPTION fields are heavily used and worth knowing
about:

Version is very important as a way of communicating where your
package is in its lifecycle and how it is evolving over time. Learn more
in Chapter 21.

LazyData is relevant if your package makes data available to the
user. If you specify LazyData: true, the datasets are lazy-loaded,
which makes them more immediately available, i.e., users don’t have
to use data(). The addition of LazyData: true is handled
automatically by usethis::use_data(). More detail is given in
Chapter 7.

Encoding describes the character encoding of files throughout your
package. Our tooling will set this to Encoding: UTF-8 as this is
the most common encoding in use today, and we are not aware of any
reasons to use a different value.

Collate controls the order in which R files are sourced. This only
matters if your code has side effects—most commonly because you’re
using S4. If needed, Collate is typically generated by roxygen2
through use of the @include tag. See ?
roxygen2::update_collate for details.



VignetteBuilder lists any package that your package needs as a
vignette engine. Our recommended vignette workflow is described in
“Workflow for Writing a Vignette”, which will list the knitr package in
VignetteBuilder.

SystemRequirements is where you describe dependencies
external to R. This is a plain-text field and does not, for example,
actually install or check for anything, so you might need to include
additional installation details in your README (see “README”).
The most common usage is in the context of a package with compiled
code, where SystemRequirements is used to declare the C++
standard, the need for GNU make, or some other external dependency.
Examples:

SystemRequirements: C++17

SystemRequirements: GNU make

SystemRequirements: TensorFlow (https://www.tensorflow.org/

We discourage the explicit use of the Date field, as it is extremely easy to
forget to update it if you manage Date by hand. This field will be
populated in the natural course of bundling the package—e.g., when
submitting to CRAN—and we recommend that you just let that happen.

There are many other DESCRIPTION fields that are used less frequently. A
complete list can be found in the “The DESCRIPTION file” section of
Writing R Extensions.

Custom Fields
There is also some flexibility to create your own fields to add additional
metadata. In the narrowest sense, the only restriction is that you shouldn’t
repurpose the official field names used by R. You should also limit yourself
to valid English words, so the field names aren’t flagged by the spellcheck.

https://oreil.ly/Yqw62


In practice, if you plan to submit to CRAN, we recommend that any custom
field name should start with Config/. We’ll revisit this later when we
explain how Config/Needs/website is used to record additional
packages needed to build a package’s website (see “Package Is a
Nonstandard Dependency”).

You might notice that create_package() writes two more fields we
haven’t discussed yet, relating to the use of the roxygen2 package for
documentation:

Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.1

You will learn more about these in Chapter 16. The use of these specific
field names is basically an accident of history and, if it were redone today,
they would follow the Config/* pattern recommended previously.

1  The relationship between “has a DESCRIPTION file” and “is a package” is not quite this
clear-cut. Many nonpackage projects use a DESCRIPTION file to declare their dependencies,
i.e., which packages they rely on. In fact, the project for this book does exactly this! This off-
label use of DESCRIPTION makes it easy to piggy-back on package development tooling to
install all the packages necessary to work with a nonpackage project.

2  The need to specify the exact versions of packages, rather than minimum versions, comes up
more often in the development of nonpackage projects. The renv package provides a way to do
this, by implementing project-specific environments (package libraries). renv is a reboot of an
earlier package called packrat. If you want to freeze the dependencies of a project at exact
versions, use renv instead of (or possibly in addition to) a DESCRIPTION file.

3  See this blog post for more.

4  The different package states, such as source versus bundled, are explained in “Package
States”.

https://rstudio.github.io/renv
https://www.tidyverse.org/blog/2019/04/r-version-support


Chapter 10. Dependencies:
Mindset and Background

You take a dependency when your package uses functionality from another
package (or other external tool). In “Imports, Suggests, and Friends”, we
explained how to declare a dependency on another package by listing it in
DESCRIPTION, usually in Imports or Suggests. But that still leaves
many issues for you to think about:

When should you take a dependency? What are the risks and rewards?
In “When Should You Take a Dependency?” we provide a framework
for deciding whether a dependency is worth it. This chapter also
includes specific sections for deciding between Imports and
Suggests (see “Whether to Import or Suggest”) and between
Imports and Depends (see “Whether to Import or Depend”).

How should you use different kinds of dependencies in different
contexts? That is, imported versus suggested packages, used inside
your functions versus tests versus documentation. We have to defer
this to the next chapter (Chapter 11), because the justification for those
recommendations relies on some additional technical background that
we develop here.

A key concept for understanding how packages are meant to work together
is that of a namespace (see “Namespace”). Although it can be a bit
confusing, R’s namespace system is vital for the package ecosystem. It is
what ensures that other packages won’t interfere with your code, that your
code won’t interfere with other packages, and that your package works
regardless of the environment in which it’s run. We will show how the
namespace system works alongside and in concert with the user’s search
path (see “Search Path”).



This chapter contains material that could be skipped (or skimmed) when
making your first package, when you’re probably happy just to make a
package that works! But you’ll want to revisit the material in this chapter as
your packages get more ambitious and sophisticated.

When Should You Take a Dependency?
This section is adapted from the “It Depends” blog post and talk authored
by Jim Hester.

Software dependencies are a double-edged sword. On one hand, they let
you take advantage of others’ work, giving your software new capabilities
and making its behavior and interface more consistent with other packages.
By using a preexisting solution, you avoid reimplementing functionality,
which eliminates many opportunities for you to introduce bugs. On the
other hand, your dependencies will likely change over time, which could
require you to make changes to your package, potentially increasing your
maintenance burden. Your dependencies can also increase the time and disk
space needed when users install your package. These downsides have led
some to suggest a “dependency zero” mindset. We feel that this is bad
advice for most projects and likely to lead to lower functionality, increased
maintenance, and new bugs.

Dependencies Are Not Equal
One problem with simply minimizing the absolute number of dependencies
is that it treats all dependencies as equivalent, as if they all have the same
costs and benefits (or even, infinite cost and no benefit). However, in
reality, this is far from the truth. There are many axes upon which
dependencies can differ, but some of the most important include:

The type of the dependency

Some dependencies come bundled with R itself (e.g., base, utils, stats)
or are one of the “Recommended” packages (e.g., Matrix, survival).
These packages are very low cost to depend on, as they are (nearly)

https://oreil.ly/B8-Wp
https://oreil.ly/2uQZL


universally installed on all users’ systems, and mostly they change only
with new R versions. In contrast, there is a higher cost for a dependency
that comes from, e.g., a non-CRAN repository, which requires users to
configure additional repositories before installation.

The number of upstream dependencies, i.e., recursive dependencies

For example, the rlang package is intentionally managed as a low-level
package and has no upstream dependencies apart from R itself. At the
other extreme, there are packages on CRAN with ~250 recursive
dependencies.

Already fulfilled dependencies

If your package depends on dplyr, then taking a dependency on tibble
does not change the dependency footprint, as dplyr itself already
depends on tibble. Additionally, some of the most popular packages
(e.g., ggplot2) will already be installed on the majority of users’
machines. So adding a ggplot2 dependency is unlikely to incur
additional installation costs in most cases.

The burden of installing the package

Various factors make a package more costly to install, in terms of time,
space, and human aggravation:

Time to compile

Packages that contain C/C++ can take very different amounts of
time to install depending on the complexity of the code. For
example, the glue package takes ~5 seconds to compile on CRAN’s
build machines, whereas the readr package takes ~100 seconds to
install on the same machines.

Binary package size

https://rlang.r-lib.org/
https://glue.tidyverse.org/
https://readr.tidyverse.org/


Users installing binary packages need to download them, so the size
of the binary is relevant, particularly for those with slow internet
connections. This also varies a great deal across packages. The
smallest packages on CRAN are around 1 Kb in size, while the h2o
package is 170 Mb, and there are Bioconductor binaries that are
over 4 Gb!

System requirements

Some packages require additional system dependencies in order to
be used. For instance, the rjags package requires a matching
installation of the JAGS library. Another example is rJava, which
requires a Java SDK and also has additional steps needed to
configure R for the proper Java installation, which has caused
installation issues for many people.

Maintenance capacity

It is reasonable to have higher confidence in a package that is well-
established and that is maintained by developers or teams with a long
track record and that maintain many other packages. This increases the
likelihood that the package will remain on CRAN without interruptions
and that the maintainer has an intentional approach to the software
lifecycle (see Chapter 21).

Functionality

Some packages implement a critical piece of functionality that is used
across many packages. In the tidyverse, broadly defined, the rlang,
tidyselect, vctrs, and tibble packages are all examples of this. By using
these packages for tricky tasks like nonstandard evaluation or
manipulation of vectors and data frames, package authors can avoid
reimplementing basic functionality. It’s easy to think “how hard can it
be to write my own X?” when you are focused on the Happy Path.1 But
a huge part of the value brought by packages like vctrs or tibble is
letting someone else worry about edge cases and error handling.2 There

https://cran.r-project.org/package=h2o
https://cran.r-project.org/package=rjags
https://cran.r-project.org/package=rJava
https://oreil.ly/T83MM


is also value in having shared behavior with other packages, e.g., the
tidyverse rules for name repair or recycling.

These specifics hopefully make it clear that package dependencies are not
equal.

Prefer a Holistic, Balanced, and Quantitative Approach
Instead of striving for a minimal number of dependencies, we recommend a
more holistic, balanced, and quantitative approach.

A holistic approach looks at the project as a whole and asks “who is the
primary audience?” If the audience is other package authors, then a leaner
package with fewer dependencies may be more appropriate. If, instead, the
target user is a data scientist or statistician, they will likely already have
many popular dependencies installed and would benefit from a more
feature-full package.

A balanced approach understands that adding (or removing) dependencies
comes with trade-offs. Adding a dependency gives you additional features,
bug fixes, and real-world testing, at the cost of increased installation time,
disk space, and maintenance, if the dependency has breaking changes. In
some cases it makes sense to increase dependencies for a package, even if
an implementation already exists. For instance, base R has a number of
different implementations of nonstandard evaluation with varying semantics
across its functions. The same used to be true of tidyverse packages as well,
but now they all depend on the implementations in the tidyselect and rlang
packages. Users benefit from the improved consistency of this feature and
individual package developers can let the maintainers of tidyselect and
rlang worry about the technical details.

In contrast, removing a dependency lowers installation time, disk space, and
avoids potential breaking changes. However, it means your package will
have fewer features or that you must reimplement them yourself. That, in
turn, takes development time and introduces new bugs. One advantage of
using an existing solution is that you’ll get the benefit of all the bugs that

https://oreil.ly/uxzxc
https://oreil.ly/s0_Ao
https://tidyselect.r-lib.org/
https://rlang.r-lib.org/


have already been discovered and fixed. Especially if the dependency is
relied on by many other packages, this is a gift that keeps on giving.

Similar to optimizing performance, if you are worried about the burden of
dependencies, it makes sense to address those concerns in a specific and
quantitative way. The experimental itdepends package was created for the
talk and blog post this section is based on. It is still a useful source of
concrete ideas (and code) for analyzing how heavy a dependency is. The
pak package also has several functions that are useful for dependency
analysis:

pak::pkg_deps_tree("tibble")
#> tibble 3.1.8 ✨
#> ├─fansi 1.0.3 ✨
#> ├─lifecycle 1.0.3 ✨
#> │ ├─cli 3.4.1 ✨ ⬇ (1.28 MB)
#> │ ├─glue 1.6.2 ✨
#> │ └─rlang 1.0.6 ✨ ⬇ (1.81 MB)
#> ├─magrittr 2.0.3 ✨
#> ├─pillar 1.8.1 ✨ ⬇ (673.95 kB)
#> │ ├─cli
#> │ ├─fansi
#> │ ├─glue
#> │ ├─lifecycle
#> │ ├─rlang
#> │ ├─utf8 1.2.2 ✨
#> │ └─vctrs 0.5.1 ✨ ⬇ (1.82 MB)
#> │   ├─cli
#> │   ├─glue
#> │   ├─lifecycle
#> │   └─rlang
#> ├─pkgconfig 2.0.3 ✨
#> ├─rlang
#> └─vctrs
#>
#> Key:  ✨ new |  ⬇ download 
 
pak::pkg_deps_explain("tibble", "rlang")
#> tibble -> lifecycle -> rlang
#> tibble -> pillar -> lifecycle -> rlang
#> tibble -> pillar -> rlang
#> tibble -> pillar -> vctrs -> lifecycle -> rlang
#> tibble -> pillar -> vctrs -> rlang
#> tibble -> rlang

https://github.com/r-lib/itdepends
https://oreil.ly/f7W4g
https://oreil.ly/ESju6
https://pak.r-lib.org/


#> tibble -> vctrs -> lifecycle -> rlang
#> tibble -> vctrs -> rlang

Dependency Thoughts Specific to the tidyverse
The packages maintained by the tidyverse team play different roles in the
ecosystem and are managed accordingly. For example, the tidyverse and
devtools packages are essentially metapackages that exist for the
convenience of an end user. Consequently, it is recommended that other
packages should not depend on tidyverse3 or devtools (see “devtools,
usethis, and You”), i.e., these two packages should almost never appear in
Imports. Instead, a package maintainer should identify and depend on the
specific package that actually implements the desired functionality.

In the previous section, we talked about different ways to gauge the weight
of a dependency. Both the tidyverse and devtools can be seen as heavy due
to the very high number of recursive dependencies:

n_hard_deps <- function(pkg) { 
  deps <- tools::package_dependencies(pkg, recursive = TRUE) 
  sapply(deps, length)
} 
 
n_hard_deps(c("tidyverse", "devtools"))
#> tidyverse  devtools
#>       114       101

In contrast, several packages are specifically conceived as low-level
packages that implement features that should work and feel the same across
the whole ecosystem. At the time of writing, these include:

rlang, to support tidy eval and throw errors

cli and glue, for creating a rich user interface (which includes errors)

withr, for managing state responsibly

lifecycle, for managing the lifecycle of functions and arguments



These are basically regarded as free dependencies and can be added to
DESCRIPTION via usethis::use_tidy_dependencies() (which
also does a few more things). It should come as no surprise that these
packages have a very small dependency footprint:

tools::package_dependencies(c("rlang", "cli", "glue", "withr", 
"lifecycle"))
#> $rlang
#> [1] "utils"
#>
#> $cli
#> [1] "utils"
#>
#> $glue
#> [1] "methods"
#>
#> $withr
#> [1] "graphics"  "grDevices" "stats"
#>
#> $lifecycle
#> [1] "cli"   "glue"  "rlang"

SUBMITTING TO CRAN
Under certain configurations, including those used for incoming CRAN submissions, R CMD
check issues a NOTE if there are 20 or more “non-default” packages in Imports:

N  checking package dependencies (1.5s) 
   Imports includes 29 non-default packages. 
   Importing from so many packages makes the package 
   vulnerable to any of them becoming unavailable. 
   Move as many as possible to Suggests and use 
   conditionally.

Our best advice is to try hard to comply, as it should be rather rare to need so many dependencies
and it’s best to eliminate any NOTE that you can. Of course, there are exceptions to every rule and
perhaps your package is one them. In that case, you may need to argue your case. It is certainly
true that many CRAN packages violate this threshold.

Whether to Import or Suggest



The withr package is a good case study for deciding whether to list a
dependency in Imports or Suggests. Withr is very useful for writing
tests that clean up after themselves. Such usage is compatible with listing
withr in Suggests, since regular users don’t need to run the tests. But
sometimes a package might also use withr in its own functions, perhaps to
offer its own with_*() and local_*() functions. In that case, withr
should be listed in Imports.

Imports and Suggests differ in the strength and nature of dependency:

Imports

Packages listed here must be present for your package to work. Any
time your package is installed, those packages will also be installed, if
not already present. devtools::load_all() also checks that all
packages in Imports are installed.

It’s worth pointing out that adding a package to Imports ensures it
will be installed and that is all it does. It has nothing to do with actually
importing functions from that package. See “Package Is Listed in
Imports” for more about how to use a package in Imports.

Suggests

Your package can use these packages, but doesn’t require them. You
might use suggested packages for example datasets to run tests, build
vignettes, or maybe there’s only one function that needs the package.

Packages listed in Suggests are not automatically installed along
with your package. This means that you can’t assume that your users
have installed all the suggested packages, but you can assume that
developers have. See “Package Is Listed in Suggests” for how to check
whether a suggested package is installed.

Suggests isn’t terribly relevant for packages where the user base is
approximately equal to the development team or for packages that are used
in a very predictable context. In that case, it’s reasonable to just use

https://withr.r-lib.org/


Imports for everything. Using Suggests is mostly a courtesy to
external users or to accommodate very lean installations. It can free users
from downloading rarely needed packages (especially those that are tricky
to install) and lets them get started with your package as quickly as
possible.

Namespace
So far, we’ve explained the mechanics of declaring a dependency in
DESCRIPTION (see “Imports, Suggests, and Friends”) and how to analyze
the costs and benefits of dependencies (see “When Should You Take a
Dependency?”). Before we explain how to use your dependencies in
various parts of your package in Chapter 11, we need to establish the
concepts of a package namespace and the search path.

Motivation
As the name suggests, namespaces provide “spaces” for “names.” They
provide a context for looking up the value of an object associated with a
name.

Without knowing it, you’ve probably already used namespaces. Have you
ever used the :: operator? It disambiguates functions with the same name.
For example, both the lubridate and here packages provide a here()
function. If you attach lubridate, then here, here() will refer to the here
version, because the last package attached wins. But if you attach the
packages in the opposite order, here() will refer to the lubridate version:

library(lubridate)    |  library(here)
library(here)         |  library(lubridate) 
 
here() # here::here() |  here() # lubridate::here()

This can be confusing. Instead, you can qualify the function call with a
specific namespace: lubridate::here() and here::here(). Then



the order in which the packages are attached won’t matter:4

lubridate::here() # always gets lubridate::here()
here::here()      # always gets here::here()

As you will see in “Package Is Listed in Imports”, the
package::function() calling style is also our default
recommendation for how to use your dependencies in the code below R/,
because it eliminates all ambiguity.

But, in the context of package code, the use of :: is not really our main line
of defense against the confusion seen in the previous example. In packages,
we rely on namespaces to ensure that every package works the same way
regardless of what packages are attached by the user.

Consider the sd() function from the stats package that is part of base R:

sd
#> function (x, na.rm = FALSE)
#> sqrt(var(if (is.vector(x) || is.factor(x)) x else 
as.double(x),
#>     na.rm = na.rm))
#> <bytecode: 0x7fd700fb78b0>
#> <environment: namespace:stats>

It’s defined in terms of another function, var(), also from the stats
package. So what happens if we override var() with our own definition?
Does it break sd()?

var <- function(x) -5
var(1:5)
#> [1] -5 
 
sd(1:5)
#> [1] 1.58

Surprisingly, it does not! That’s because when sd() looks for an object
called var(), it looks first in the stats package namespace, so it finds
stats::var(), not the var() we created in the global environment. It



would be chaos if functions like sd() could be broken by a user redefining
var() or by attaching a package that overrides var(). The package
namespace system is what saves us from this fate.

The NAMESPACE File
The NAMESPACE file plays a key role in defining your package’s
namespace. Here are selected lines from the NAMESPACE file in the
testthat package:

# Generated by roxygen2: do not edit by hand 
 
S3method(compare,character) 
S3method(print,testthat_results) 
export(compare) 
export(expect_equal) 
import(rlang) 
importFrom(brio,readLines) 
useDynLib(testthat, .registration = TRUE)

The first line announces that this file is not written by hand, but rather is
generated by the roxygen2 package. We’ll return to this topic soon, after we
discuss the remaining lines.

You can see that the NAMESPACE file looks a bit like R code (but it is not).
Each line contains a directive: S3method(), export(),
importFrom(), and so on. Each directive describes an R object and says
whether it’s exported from this package to be used by others, or it’s
imported from another package to be used internally.

These directives are the most important in our development approach, in
order of frequency:

export()

Exports a function (including S3 and S4 generics).

S3method()

Exports an S3 method.



importFrom()

Imports selected object from another namespace (including S4
generics).

import()

Imports all objects from another package’s namespace.

useDynLib()

Registers routines from a DLL (this is specific to packages with
compiled code).

There are other directives that we won’t cover here, because they are
explicitly discouraged or they just rarely come up in our development work:

exportPattern()

Exports all functions that match a pattern. We feel it’s safer always to
use explicit exports, and we avoid the use of this directive.

exportClasses(), exportMethods(),
importClassesFrom(), importMethodsFrom()

Export and import S4 classes and methods. We work in the S4 system
only when necessary for compatibility with another package, i.e., we
generally don’t implement methods or classes that we own with S4.
Therefore the S4 coverage in this book is very minimal.

In the devtools workflow, the NAMESPACE file is not written by hand!
Instead, we prefer to generate NAMESPACE with the roxygen2 package,
using specific tags located in a roxygen comment above each function’s
definition in the R/*.R files (see “NAMESPACE Workflow”). We will have
much more to say about roxygen comments and the roxygen2 package
when we discuss package documentation in Chapter 16. For now, we just



lay out the reasons we prefer this method of generating the NAMESPACE
file:

Namespace tags are integrated into the source code, so when you read
the code it’s easier to see what’s being exported and imported and why.

Roxygen2 abstracts away some of the details of NAMESPACE. You
only need to learn one tag, @export, and roxygen2 will figure out
which specific directive to use, based on whether the associated object
is a regular function, S3 method, S4 method, or S4 class.

Roxygen2 keeps NAMESPACE tidy. No matter how many times
@importFrom foo bar appears in your roxygen comments,
you’ll only get one importFrom(foo, bar) in your
NAMESPACE. Roxygen2 also keeps NAMESPACE organized in a
principled order, sorting first by the directive type and then
alphabetically. Roxygen2 takes away the burden of writing
NAMESPACE, while also trying to keep the file as readable as
possible. This organization also makes Git diffs much more
informative.

Note that you can choose to use roxygen2 to generate just NAMESPACE,
just man/*.Rd (see Chapter 16), or both (as is our practice). If you don’t use
any namespace-related tags, roxygen2 won’t touch NAMESPACE. If you
don’t use any documentation-related tags, roxygen2 won’t touch man/.

Search Path
To understand why namespaces are important, you need a solid
understanding of search paths. To call a function, R first has to find it. This
search unfolds differently for user code than for package code, and that is
because of the namespace system.

Function Lookup for User Code



The first place R looks for an object is the global environment. If R doesn’t
find it there, it looks in the search path, the list of all the packages you have
attached. You can see this list by running search(). For example, here’s
the search path for the code in this book:

search()
#> [1] ".GlobalEnv"        "package:stats"     "package:graphics"
#> [4] "package:grDevices" "package:utils"     "package:datasets"
#> [7] "package:methods"   "Autoloads"         "package:base"

This has a specific form (see Figure 10-1):

1. The global environment.

2. The packages that have been attached, e.g., via library(), from
most recently attached to least.

3. Autoloads, a special environment that uses delayed bindings to save
memory by only loading package objects (like big datasets) when
needed.

4. The base environment, by which we mean the package environment of
the base package.



Figure 10-1. Typical state of the search path

Each element in the search path has the next element as its parent, i.e., this
is a chain of environments that is searched in order. In the diagram, this
relationship is shown as a small blue circle with an arrow that points to the
parent. The first environment (the global environment) and the last two
(Autoloads and the base environment) are special and maintain their
position.

But the middle section of attached packages is more dynamic. When a new
package is attached, it is inserted right after and becomes the parent of the
global environment. When you attach another package with library(),
it changes the search path, as shown in Figure 10-2.



Figure 10-2. A newly attached package is inserted into the search path

The main gotcha around how the user’s search path works is the scenario
we explored in “Motivation”, where two packages (lubridate and here) offer
competing functions by the same name (here()). It should be very clear
now why a user’s call to here() can produce a different result, depending
on the order in which they attached the two packages.

This sort of confusion would be even more damaging if it applied to
package code, but luckily it does not. Now we can explain how the
namespace system designs this problem away.



Function Lookup Inside a Package
In “Motivation”, we proved that a user’s definition of a function named
var() does not break stats::sd(). Somehow, to our immense relief,
stats::sd() finds stats::var() when it should. How does that
work?

This section is somewhat technical and you can absolutely develop a
package with a well-behaved namespace without fully understanding these
details. Consider this optional reading that you can consult when and if
you’re interested. You can learn even more in Advanced R, especially in the
chapter on environments, from which we have adapted some of this
material.

Every function in a package is associated with a pair of environments—the
package environment, which is what appears in the user’s search path, and
the namespace environment:

The package environment is the external interface to the package. It’s
how a regular R user finds a function in an attached package or with
::. Its parent is determined by search path, i.e., the order in which
packages have been attached. The package environment exposes only
exported objects.

The namespace environment is the internal interface of the package. It
includes all objects in the package, both exported and nonexported.
This ensures that every function can find every other function in the
package. Every binding in the package environment also exists in the
namespace environment, but not vice versa.

Figure 10-3 depicts the sd() function as a rectangle with a rounded end.
The arrows from package:stats and namespace:stats show that
sd() is bound in both. But the relationship is not symmetric. The black
circle with an arrow pointing back to namespace:stats indicates where
sd() will look for objects that it needs: in the namespace environment, not
the package environment.

https://adv-r.hadley.nz/


Figure 10-3. An exported function is bound in the package environment and in the namespace, but
binds only the namespace

The package environment controls how users find the function; the
namespace controls how the function finds its variables.

Every namespace environment has the same set of ancestors, as depicted in
Figure 10-4:

Each namespace has an imports environment that can contain bindings
to functions used by the package that are defined in another package.
The imports environment is controlled by the package developer with
the NAMESPACE file. Specifically, directives such as
importFrom() and imports() populate this environment.

Explicitly importing every base function would be tiresome, so the
parent of the imports environment is the base namespace. The base
namespace contains the same bindings as the base environment, but it
has a different parent.



The parent of the base namespace is the global environment. This
means that if a binding isn’t defined in the imports environment the
package will look for it in the usual way. This is usually a bad idea
(because it makes code depend on other loaded packages), so R CMD
check automatically warns about such code. It is needed primarily for
historical reasons, particularly due to how S3 method dispatch works.

Figure 10-4. The namespace environment has the imports environment as parent, which inherits from
the namespace environment of the base package and, ultimately, the global environment

Finally, we can put it all together in this last diagram, Figure 10-5. This
shows the user’s search path, along the bottom, and the internal stats search
path, along the top.



Figure 10-5. For user code, objects are found using the search path, whereas package code uses the
namespace

A user (or some package they are using) is free to define a function named
var(). But when that user calls sd(), it will always call
stats::var() because sd() searches in a sequence of environments
determined by the stats package, not by the user. This is how the namespace
system ensures that package code always works the same way, regardless of
what’s been defined in the global environment or what’s been attached.

Attaching Versus Loading



It’s common to hear something like “we use library(somepackage)
to load somepackage.” But technically library() attaches a package to
the search path. This casual abuse of terminology is often harmless and can
even be beneficial in some settings. But sometimes it’s important to be
precise and pedantic, and this is one of those times. Package developers
need to know the difference between attaching and loading a package and
when to care about this difference.

If a package is installed:

Loading will load code, data, and any DLLs; register S3 and S4
methods; and run the .onLoad() function. After loading, the
package is available in memory, but because it’s not in the search path,
you won’t be able to access its components without using ::.
Confusingly, :: will also load a package automatically if it isn’t
already loaded.

Attaching puts the package in the search path (see “Function Lookup
for User Code”). You can’t attach a package without first loading it, so
library() (or require()) load then attach the package. This also
runs the .onAttach() function.

There are four functions that make a package available, shown in Table 10-
1. They differ based on whether they load or attach, and what happens if the
package is not found (i.e., throws an error or returns FALSE).

Table 10-1. Functions that load or attach a package

Throws error Returns FALSE

Load loadNamespace

("x")

requireNamespace("x", quietly =

TRUE)

Attach library(x) require(x, quietly = TRUE)



Of the four, these two functions are by far the most useful:

Use library(x) in, e.g., a data analysis script or a vignette. It will
throw an error if the package is not installed and will terminate the
script. You want to attach the package to save typing. Never use
library() in package code below R/ or tests/.

Use requireNamespace("x", quietly = TRUE) inside a
package if you want to specify different behavior depending on
whether a suggested package is installed. Note that this also loads the
package. We give examples in “In Code Below R/”.

loadNamespace() is somewhat esoteric and is really needed only for
internal R code.

require(pkg) is almost never a good idea5 and, we suspect, may come
from people projecting certain hopes and dreams onto the function name.
Ironically, require(pkg) does not actually require success in attaching
pkg, and your function or script will soldier on even in the case of failure.
This, in turn, often leads to a very puzzling error much later. If you want to
“attach or fail,” use library(). If you want to check whether pkg is
available and proceed accordingly, use require Name space("pkg",
quietly = TRUE).

One reasonable use of require() is in an example that uses a package
your package Suggests, which is further discussed in “In Examples and
Vignettes”.

The .onLoad() and .onAttach() functions mentioned previously are
two of several hooks that allow you to run specific code when your package
is loaded or attached (or, even, detached or unloaded). Most packages don’t
need this, but these hooks are useful in certain situations. See “When You
Do Need Side Effects” for some use cases for .onLoad() and
.onAttach().

Whether to Import or Depend



We are now in a position to lay out the difference between between
Depends and Imports in the DESCRIPTION. Listing a package in
either Depends or Imports ensures that it’s installed when needed. The
main difference is that a package you list in Imports will just be loaded
when you use it, whereas a package you list in Depends will be attached
when your package is attached.

Unless there is a good reason otherwise, you should always list packages in
Imports, not Depends. That’s because a good package is self-contained
and minimizes changes to the global landscape, including the search path.6

Users of devtools are actually regularly exposed to the fact that devtools
Depends on usethis:

library(devtools)
#> Loading required package: usethis 
 
search()
#>  [1] ".GlobalEnv"        "package:devtools"  "package:usethis"
#>  ...

This choice is motivated by backward compatibility. When devtools was
split into several smaller packages (see “devtools, usethis, and You”), many
of the user-facing functions moved to usethis. Putting usethis in Depends
was a pragmatic choice to insulate users from keeping track of which
function ended up where.

A more classic example of Depends is how the censored package depends
on the parsnip and survival packages. Parsnip provides a unified interface
for fitting models, and censored is an extension package for survival
analysis. The censored package is not useful without parsnip and survival,
so it makes sense to list them in Depends.

1  In programming, the Happy Path is the scenario where all the inputs make sense and are
exactly how things “should be.” The Unhappy Path is everything else (objects of length or
dimension zero, objects with missing data or dimensions or attributes, objects that don’t exist,
etc.).

https://oreil.ly/BCZVu
https://oreil.ly/UUXO_
https://oreil.ly/xC-wd


2  Before writing your own version of X, have a good look at the bug tracker and test suite for
another package that implements X. This can be useful for appreciating what is actually
involved.

3  There is a blog post that warns people away from depending on the tidyverse package.

4  We’re going to stay focused on packages in this book, but there are other ways than using ::
to address conflicts in end-user code: the conflicted package and the
"conflicts.policy" option introduced in base R v3.6.0.

5  The classic blog post “library() vs require() in R” by Yihui Xie is another good
resource on this.

6  Thomas Leeper created several example packages to demonstrate the puzzling behavior that
can arise when packages use Depends and shared the work at
https://github.com/leeper/Depends. This demo also underscores the importance of using :: (or
importFrom()) when using external functions in your package, as recommended in
Chapter 11.

https://oreil.ly/PShpm
https://conflicted.r-lib.org/
https://oreil.ly/Fb0HO
https://oreil.ly/kE65s
https://github.com/leeper/Depends


Chapter 11. Dependencies: In
Practice

This chapter presents the practical details of working with your
dependencies inside your package. If you need a refresher on any of the
background:

Chapter 9 covers the DESCRIPTION file. Listing a dependency in that
file, such as in Imports, is a necessary first step when taking a
dependency.

“When Should You Take a Dependency?” provides a decision-making
framework for dependencies.

The technical details of package namespaces, the search path, and
attaching versus loading are laid out in “Namespace”, “Search Path”,
and “Attaching Versus Loading”.

We’re finally ready to talk about how to use different types of dependencies
within the different parts of your package:

In your functions, below R/

In your tests, below tests/testthat

In your examples, in the help topics, below man/

In your vignettes and articles, below vignettes/

Confusion About Imports
Let’s make this crystal clear:



Listing a package in Imports in DESCRIPTION does not “import”
that package.

It is natural to assume that listing a package in Imports actually
“imports” the package, but this is just an unfortunate choice of name for the
Imports field. The Imports field makes sure that the packages listed
there are installed when your package is installed. It does not make those
functions available to you, e.g., below R/, or to your user.

It is neither automatic nor necessarily advisable that a package listed in
Imports also appears in NAMESPACE via imports() or
importFrom(). It is common for a package to be listed in Imports in
DESCRIPTION but not in NAMESPACE. The converse is not true. Every
package mentioned in NAMESPACE must also be present in the Imports
or Depends fields.

Conventions for This Chapter
Sometimes our examples can feature real functions from real packages. But
if we need to talk about a generic package or function, here are the
conventions we use:

pkg

The name of your hypothetical package

aaapkg or bbbpkg

The name of a hypothetical package your package depends on

aaa_fun()

The name of a function exported by aaapkg

NAMESPACE Workflow



In the following sections, we give practical instructions on how (and when)
to import functions from another package into yours and how to export
functions from your package. The file that keeps track of all this is the
NAMESPACE file (more details in “The NAMESPACE File”).

In the devtools workflow and this book, we generate the NAMESPACE file
from special comments in the R/*.R files. Since the package that ultimately
does this work is roxygen2, these are called “roxygen comments.” These
roxygen comments are also the basis for your package’s help topics, which
is covered in “The Documentation Workflow”.

The NAMESPACE file starts out with a single commented-out line
explaining the situation (and hopefully discouraging any manual edits):

# Generated by roxygen2: do not edit by hand

As you incorporate roxygen tags to export and import functions, you need
to regenerate the NAMESPACE file periodically. Here is the general
workflow for regenerating NAMESPACE (and your documentation):

1. Add namespace-related tags to the roxygen comments in your R/*.R
files. This is an artificial example, but it gives you the basic idea:

#' @importFrom aaapkg aaa_fun

#' @import bbbpkg

#' @export

foo <- function(x, y, z) { 

  ...

}

2. Run devtools::document() (or press Ctrl/Cmd-Shift-D in
RStudio) to “document” your package. By default, two things happen:

The help topics in the man/*.Rd files are updated (covered in
Chapter 16).



The NAMESPACE file is regenerated. In our example, the
NAMESPACE file would look like:

# Generated by roxygen2: do not edit by hand 

 

export(foo) 

import(bbbpkg) 

importFrom(aaapkg,aaa_fun)

Roxygen2 is quite smart and will insert the appropriate directive in
NAMESPACE, i.e., it can usually determine whether to use export() or
S3method().

RSTUDIO
Press Ctrl/Cmd-Shift-D to generate your package’s NAMESPACE (and man/*.Rd files). This is
also available via Document in the Build menu and pane.

Package Is Listed in Imports
Consider a dependency that is listed in DESCRIPTION in Imports:

Imports:
    aaapkg

The code inside your package can assume that aaapkg is installed whenever
pkg is installed.

In Code Below R/
Our recommended default is to call external functions using the
package::  func tion() syntax:

somefunction <- function(...) { 
  ... 



  x <- aaapkg::aaa_fun(...) 
  ...
}

Specifically, we recommend that you default to not importing anything
from aaapkg into your namespace. This makes it very easy to identify
which functions live outside of your package, which is especially useful
when you read your code in the future. This also eliminates any concerns
about name conflicts between aaapkg and your package.

Of course there are reasons to make exceptions to this rule and to import
something from another package into yours:

An operator

You can’t call an operator from another package via ::, so you must
import it. Examples: the null-coalescing operator %||% from rlang or
the original pipe %>% from magrittr.

A function that you use a lot

If importing a function makes your code much more readable, that’s a
good enough reason to import it. This literally reduces the number of
characters required to call the external function. This can be especially
handy when generating user-facing messages, because it makes it more
likely that lines in the source correspond to lines in the output.

A function that you call in a tight loop

There is a minor performance penalty associated with ::. It’s on the
order of 100ns, so it will matter only if you call the function millions of
times.

A handy function for your interactive workflow is
usethis::use_import_from():

usethis::use_import_from("glue", "glue_collapse")



The preceding call writes this roxygen tag into the source code of your
package:

#' @importFrom glue glue_collapse

Where should this roxygen tag go? There are two reasonable locations:

As close as possible to the usage of the external function. With this
mindset, you would place @importFrom in the roxygen comment
above the function in your package where you use the external
function. If this is your style, you’ll have to do it by hand. We have
found that this feels natural at first, but starts to break down as you use
more external functions in more places.

In a central location. This approach keeps all @importFrom tags
together, in a dedicated section of the package-level documentation file
(which can be created with usethis::use_package_doc(); see
“Help Topic for the Package”). This is what use_import_from()
implements. So, in R/pkg-package.R, you’ll end up with something
like this:

# The following block is used by usethis to automatically 

manage

# roxygen namespace tags. Modify with care!

## usethis namespace: start

#' @importFrom glue glue_collapse

## usethis namespace: end

NULL

Recall that devtools::document() processes your roxygen
comments (see “NAMESPACE Workflow”), which writes help topics to
man/*.Rd and, relevant to our current goal, generates the NAMESPACE file.
If you use use_import_from(), it does this for you and also calls
load_all(), making the newly imported function available in your
current session.



The roxygen tag in the preceding code causes this directive to appear in the
NAMESPACE file:

importFrom(glue, glue_collapse)

Now you can use the imported function directly in your code:

somefunction <- function(...) { 
  ... 
  x <- glue_collapse(...) 
  ...
}

Sometimes you make such heavy use of so many functions from another
package that you want to import its entire namespace. This should be
relatively rare. In the tidyverse, the package we most commonly treat this
way is rlang, which functions almost like a base package for us.

Here is the roxygen tag that imports all of rlang. This should appear
somewhere in R/*.R, such as the dedicated space described previously for
collecting all of your namespace import tags:

#' @import rlang

After calling devtools::document(), this roxygen tag causes this
directive to appear in the NAMESPACE file:

import(rlang)

This is the least recommended solution because it can make your code
harder to read (you can’t tell where a function is coming from), and if you
@import many packages, it increases the chance of function name
conflicts. Save this for very special situations.

How to not use a package in Imports
Sometimes you have a package listed in Imports, but you don’t actually
use it inside your package or, at least, R doesn’t think you use it. That leads



to a NOTE from R CMD check:

* checking dependencies in R code ... NOTE 
Namespace in Imports field not imported from: ‘aaapkg’ 
  All declared Imports should be used.

This can happen if you need to list an indirect dependency in Imports,
perhaps to state a minimum version for it. The tidyverse metapackage has
this problem on a large scale, since it exists mostly to install a bundle of
packages at specific versions. Another scenario is when your package uses
a dependency in such a way that requires another package that is only
suggested by the direct dependency.1 There are various situations where it’s
not obvious that your package truly needs every package listed in
Imports, but in fact it does.

How can you get rid of this NOTE?

Our recommendation is to put a namespace-qualified reference (not a call)
to an object in aaapkg in some file below R/, such as a .R file associated
with package-wide setup:

ignore_unused_imports <- function() { 
  aaapkg::aaa_fun
}

You don’t need to call ignore_unused_imports() anywhere. You
shouldn’t export it. You don’t have to actually exercise
aaapkg::aaa_fun(). What’s important is to access something in
aaapkg’s namespace with ::.

Another approach you might be tempted to use is to import
aaapkg::aaa_fun() into your package’s namespace, probably with the
roxygen tag @importFrom aaapkg aaa_fun. This does suppress the
NOTE, but it also does more. This causes aaapkg to be loaded whenever
your package is loaded. In contrast, if you use the approach we recommend,
the aaapkg will be loaded only if your user does something that actually



requires it. This rarely matters in practice, but it’s always nice to minimize
or delay the loading of additional packages.

In Test Code
Refer to external functions in your tests just as you refer to them in the code
below R/. Usually this means you should use aaapkg::aaa_fun(). But
if you have imported a particular function, either specifically or as part of
an entire namespace, you can just call it directly in your test code.

It’s generally a bad idea to use library(aaapkg) to attach one of your
dependencies somewhere in your tests, because it makes the search path in
your tests different from how your package actually works. This is covered
in more detail in “Remove Tension Between Interactive and Automated
Testing”.

In Examples and Vignettes
If you use a package that appears in Imports in one of your examples or
vignettes, you’ll need to either attach the package with
library(aaapkg) or use a aaapkg::aaa_fun()-style call. You can
assume that aaapkg is available, because that’s what Imports guarantees.
Read more in “Dependencies and Conditional Execution” and “Special
Considerations for Vignette Code”.

Package Is Listed in Suggests
Consider a dependency that is listed in DESCRIPTION in Suggests:

Suggests:
    aaapkg

You cannot assume that every user has installed aaapkg (but you can
assume that a developer has). Whether a user has aaapkg will depend on
how they installed your package. Most of the functions that are used to



install packages support a dependencies argument that controls whether
to install just the hard dependencies or to take a more expansive approach,
which includes suggested packages:

install.packages(dependencies =)
remotes::install_github(dependencies =)
pak::pkg_install(dependencies =)

Broadly speaking, the default is to not install packages in Suggests.

In Code Below R/
Inside a function in your own package, check for the availability of a
suggested package with requireNamespace("aaapkg", quietly
= TRUE). There are two basic scenarios—the dependency is absolutely
required or your package offers some sort of fallback behavior:

# the suggested package is required
my_fun <- function(a, b) { 
  if (!requireNamespace("aaapkg", quietly = TRUE)) { 
    stop( 
      "Package \"aaapkg\" must be installed to use this 
function.", 
      call. = FALSE 
    ) 
  } 
  # code that includes calls such as aaapkg::aaa_fun()
} 
 
# the suggested package is optional; a fallback method is 
available
my_fun <- function(a, b) { 
  if (requireNamespace("aaapkg", quietly = TRUE)) { 
    aaapkg::aaa_fun() 
  } else { 
    g() 
  }
}

The rlang package has some useful functions for checking package
availability: rlang::check_installed() and



rlang::is_installed(). Here’s how the checks around a suggested
package could look if you use rlang:

# the suggested package is required
my_fun <- function(a, b) { 
  rlang::check_installed("aaapkg", reason = "to use `aaa_fun()`") 
  # code that includes calls such as aaapkg::aaa_fun()
} 
 
# the suggested package is optional; a fallback method is 
available
my_fun <- function(a, b) { 
  if (rlang::is_installed("aaapkg")) { 
    aaapkg::aaa_fun() 
  } else { 
    g() 
  }
}

These rlang functions have handy features for programming, such as
vectorization over pkg, classed errors with a data payload, and, for
check_installed(), an offer to install the needed package in an
interactive session.

In Test Code
The tidyverse team generally writes tests as if all suggested packages are
available. That is, we use them unconditionally in the tests.

The motivation for this posture is self-consistency and pragmatism. The key
package needed to run tests is testthat and it appears in Suggests, not in
Imports or Depends. Therefore, if the tests are actually executing, that
implies an expansive notion of package dependencies has been applied.

Also, empirically, in every important scenario of running R CMD check,
the suggested packages are installed. This is generally true for CRAN, and
we ensure that it’s true in our own automated checks. However, it’s
important to note that other package maintainers take a different stance and
choose to protect all usage of suggested packages in their tests and
vignettes.



Sometimes even we make an exception and guard the use of a suggested
package in a test. Here’s a test from ggplot2, which uses
testthat::skip_if_not_installed() to skip execution if the
suggested sf package is not available:

test_that("basic plot builds without error", { 
  skip_if_not_installed("sf") 
 
  nc_tiny_coords <- matrix( 
    c(-81.473, -81.741, -81.67, -81.345, -81.266, -81.24, 
-81.473, 
      36.234, 36.392, 36.59, 36.573, 36.437, 36.365, 36.234), 
    ncol = 2 
  ) 
 
  nc <- sf::st_as_sf( 
    data_frame( 
      NAME = "ashe", 
      geometry = sf::st_sfc(sf::st_polygon(list(nc_tiny_coords)), 
crs = 4326) 
    ) 
  ) 
 
  expect_doppelganger("sf-polygons", ggplot(nc) + geom_sf() + 
coord_sf())
})

What might justify the use of skip_if_not_installed()? In this
case, the sf package can be nontrivial to install, and it is conceivable that a
contributor would want to run the remaining tests, even if sf is not
available.

Finally, note that testthat::skip_if_not_installed(pkg,
minimum_version = "x.y.z") can be used to conditionally skip a
test based on the version of the other package.

In Examples and Vignettes
Another common place to use a suggested package is in an example, and
here we often guard with require() or requireNamespace(). This



example is from ggplot2::coord_map(). ggplot2 lists the maps
package in Suggests:

#' @examples
#' if (require("maps")) {
#'   nz <- map_data("nz")
#'   # Prepare a map of NZ
#'   nzmap <- ggplot(nz, aes(x = long, y = lat, group = group)) +
#'     geom_polygon(fill = "white", colour = "black")
#'
#'   # Plot it in cartesian coordinates
#'   nzmap
#' }

An example is basically the only place where we would use require()
inside a package. Read more in “Attaching Versus Loading”.

Our stance regarding the use of suggested packages in vignettes is similar to
that for tests. The key packages needed to build vignettes (rmarkdown and
knitr) are listed in Suggests. Therefore, if the vignettes are being built,
it’s reasonable to assume that all of the suggested packages are available.
We typically use suggested packages unconditionally inside vignettes.

But if you choose to use suggested packages conditionally in your
vignettes, the knitr chunk option eval is very useful for achieving this. See
“Special Considerations for Vignette Code” for more.

Package Is Listed in Depends
Consider a dependency that is listed in DESCRIPTION in Depends:

Depends:
    aaapkg

This situation has a lot in common with a package listed in Imports. The
code inside your package can assume that aaapkg is installed on the system.
The only difference is that aaapkg will be attached whenever your package
is.



In Code Below R/ and in Test Code
Your options are exactly the same as using functions from a package listed
in Imports:

Use the aaapkg::aaa_fun() syntax.

Import an individual function with the @importFrom aaapkg
aaa_fun roxygen tag and call aaa_fun() directly.

Import the entire aaapkg namespace with the @import aaapkg
roxygen tag and call any function directly.

The main difference between this situation and a dependency listed in
Imports is that it’s much more common to import the entire namespace of
a package listed in Depends. This often makes sense, due to the special
dependency relationship that motivated listing it in Depends in the first
place.

In Examples and Vignettes
This is the most obvious difference with a dependency in Depends versus
Imports. Since your package is attached when your examples are
executed, so is the package listed in Depends. You don’t have to attach it
explicitly with library(aaapkg).

The ggforce package Depends on ggplot2 and the examples for
ggforce::geom_mark_rect() use functions like
ggplot2::ggplot() and ggplot2::geom_point() without any
explicit call to library(ggplot2):

ggplot(iris, aes(Petal.Length, Petal.Width)) + 
  geom_mark_rect(aes(fill = Species, filter = Species != 
'versicolor')) + 
  geom_point()
# example code continues ...



The first line of code executed in one of your vignettes is probably
library(pkg), which attaches your package and, as a side effect,
attaches any dependency listed in Depends. You do not need to explicitly
attach the dependency before using it. The censored package Depends on
the survival package and the code in vignette("examples",
package = "censored") starts out like so:

library(tidymodels)
library(censored)
#> Loading required package: survival 
 
# vignette code continues ...

Package Is a Nonstandard Dependency
In packages developed with devtools, you may see DESCRIPTION files
that use a couple other nonstandard fields for package dependencies
specific to development tasks.

Depending on the Development Version of a Package
The Remotes field can be used when you need to install a dependency
from a nonstandard place, i.e., from somewhere besides CRAN or
Bioconductor. One common example of this is when you’re developing
against a development version of one of your dependencies. During this
time, you’ll want to install the dependency from its development repository,
which is often GitHub. The way to specify various remote sources is
described in a devtools vignette and in a pak help topic.

The dependency and any minimum version requirement still need to be
declared in the normal way in, e.g., Imports.
usethis::use_dev_package() helps to make the necessary changes
in DESCRIPTION. If your package temporarily relies on a development
version of aaapkg, the affected DESCRIPTION fields might evolve like
this:

https://oreil.ly/tY-Bc
https://oreil.ly/5Z40P


Stable -->               Dev -->                       Stable 
again 
----------------------   ---------------------------   ----------
------------ 
Package: pkg             Package: pkg                  Package: 
pkg 
Version: 1.0.0           Version: 1.0.0.9000           Version: 
1.1.0 
Imports:                 Imports:                      Imports: 
    aaapkg (>= 2.1.3)       aaapkg (>= 2.1.3.9000)       aaapkg 
(>= 2.2.0) 
                         Remotes: 
                             jane/aaapkg

CRAN
It’s important to note that you should not submit your package to CRAN in the intermediate state,
meaning with a Remotes field and with a dependency required at a version that’s not available
from CRAN or Bioconductor. For CRAN packages, this can only be a temporary development
state, eventually resolved when the dependency updates on CRAN and you can bump your
minimum version accordingly.

Config/Needs/* Field
You may also see devtools-developed packages with packages listed in
DESCRIPTION fields in the form of Config/Needs/*, which we
described in “Custom Fields”.

The use of Config/Needs/* is not directly related to devtools. It’s more
accurate to say that it’s associated with continuous integration workflows
made available to the community at https://github.com/r-lib/actions/ and
exposed via functions such as usethis::use_github_actions().
A Config/Needs/* field tells the setup-r-dependencies GitHub
Action about extra packages that need to be installed.

Config/Needs/website is the most common, and it provides a place
to specify packages that aren’t a formal dependency but that must be
present in order to build the package’s website (see Chapter 19). The readxl
package is a good example. It has a nonvignette article on workflows that
shows readxl working in concert with other tidyverse packages, such as

https://github.com/r-lib/actions/
https://oreil.ly/w9KLZ
https://oreil.ly/K8ZR-


readr and purrr. But it doesn’t make sense for readxl to have a formal
dependency on readr or purrr or (even worse) the tidyverse!

On the left is what readxl has in the Config/Needs/website field of
DESCRIPTION to indicate that the tidyverse is needed to build the
website, which is also formatted with styling that lives in the
tidyverse/template GitHub repo. On the right is the corresponding
excerpt from the configuration of the workflow that builds and deploys the
website:

in DESCRIPTION                  in .github/workflows/pkgdown.yaml 
--------------------------      --------------------------------- 
Config/Needs/website:           - uses: r-lib/actions/setup-r-
dependencies@v2 
    tidyverse,                    with: 
    tidyverse/tidytemplate          extra-packages: pkgdown 
                                    needs: website

Package websites and continuous integration are discussed more in
Chapter 19 and “Continuous Integration”, respectively.

The Config/Needs/* convention is handy because it allows a developer
to use DESCRIPTION as their definitive record of package dependencies,
while maintaining a clean distinction between true runtime dependencies
versus those that are needed only for specialized development tasks.

Exports
For a function to be usable outside of your package, you must export it.
When you create a new package with usethis::create_package(),
nothing is exported at first, even once you add some functions. You can still
experiment interactively with load_all(), since that loads all functions,
not just those that are exported. But if you install and attach the package
with library(pkg) in a fresh R session, you’ll notice that no functions
are available.



What to Export
Export functions that you want other people to use. Exported functions
must be documented, and you must be cautious when changing their
interface—other people are using them! Generally, it’s better to export too
little than too much. It’s easy to start exporting something that you
previously did not; it’s hard to stop exporting a function because it might
break existing code. Always err on the side of caution and simplicity. It’s
easier to give people more functionality than it is to take away stuff they’re
used to.

We believe that packages that have a wide audience should strive to do one
thing and do it well. All functions in a package should be related to a single
problem (or a set of closely related problems). Any functions not related to
that purpose should not be exported. For example, most of our packages
have a utils.R file (“Organize Functions Into Files”) that contains small
utility functions that are useful internally but aren’t part of the core purpose
of those packages. We don’t export such functions. There are at least two
reasons for this:

Freedom to be less robust and less general. A utility for internal use
doesn’t have to be implemented in the same way as a function used by
others. You just need to cover your own use case.

Regrettable reverse dependencies. You don’t want people depending
on your package for functionality and functions that are unrelated to its
core purpose.

That said, if you’re creating a package for yourself, it’s far less important to
be this disciplined. Because you know what’s in your package, it’s fine to
have a local “miscellany” package that contains a hodgepodge of functions
that you find useful. But it is probably not a good idea to release such a
package for wider use.

Sometimes your package has a function that could be of interest to other
developers extending your package, but not to typical users. In this case,
you want to export the function but also give it a very low profile in terms



of public documentation. This can be achieved by combining the roxygen
tags @export and @keywords internal. The internal keyword
keeps the function from appearing in the package index, but the associated
help topic still exists and the function still appears among those exported in
the NAMESPACE file.

Re-exporting
Sometimes you want to make something available to users of your package
that is actually provided by one of your dependencies. When devtools was
split into several smaller packages (see “devtools, usethis, and You”), many
of the user-facing functions moved elsewhere. For usethis, the chosen
solution was to list it in Depends (see “Whether to Import or Depend”),
but that is not a good general solution. Instead, devtools now re-exports
certain functions that actually live in a different package.

Here is a blueprint for re-exporting an object from another package, using
the session_info() function as our example:

1. List the package that hosts the re-exported object in Imports in
DESCRIPTION.2 In this case, the session_info() function is
exported by the sessioninfo package:

Imports:

    sessioninfo

2. In one of your R/*.R files, have a reference to the target function,
preceded by roxygen tags for both importing and exporting:

#' @export

#' @importFrom sessioninfo session_info

sessioninfo::session_info

That’s it! Next time you regenerate NAMESPACE, these two lines will be
there (typically interspersed with other exports and imports):



... 
export(session_info) 
... 
importFrom(sessioninfo,session_info) 
...

And this explains how library(devtools) makes
session_info() available in the current session. This will also lead to
the creation of the man/reexports.Rd file, which finesses the requirement
that your package must document all of its exported functions. This help
topic lists all re-exported objects and links to their primary documentation.

Imports and Exports Related to S3
R has multiple object-oriented programming (OOP) systems:

S3 is currently the most important for us and is what’s addressed in
this book. The S3 chapter of Advanced R is a good place to learn more
about S3 conceptually, and the vctrs package is worth studying for
practical knowledge.

S4 is very important within certain R communities, most notably
within the Bioconductor project. We use S4 only when it’s necessary
for compatibility with other packages. If you want to learn more, the
S4 chapter of Advanced R is a good starting point and has
recommendations for additional resources.

R6 is used in many tidyverse packages (broadly defined) but is out of
scope for this book. Good places to learn more include the R6 package
website, the R6 chapter of Advanced R, and the roxygen2
documentation related to R6.

In terms of namespace issues around S3 classes, the main things to consider
are generic functions and their class-specific implementations known as
methods. If your package “owns” an S3 class, it makes sense to export a
user-friendly constructor function. This is often just a regular function and
there is no special S3 angle.

https://oreil.ly/HtLIb
https://oreil.ly/2ZlPL
https://oreil.ly/4_be0
https://oreil.ly/FSawp
https://oreil.ly/A5VdR
https://oreil.ly/XoNI8


If your package “owns” an S3 generic and you want others to be able to use
it, you should export the generic. For example, the dplyr package exports
the generic function dplyr::count() and also implements and exports
a specific method, count.data.frame():

#' ... all the usual documentation for count() ...
#' @export
count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) { 
  UseMethod("count")
} 
 
#' @export
count.data.frame <- function(x, 
                             ..., 
                             wt = NULL, 
                             sort = FALSE, 
                             name = NULL, 
                             .drop = group_by_drop_default(x)) { 
... }

The corresponding lines in dplyr’s NAMESPACE file look like this:

... 
S3method(count,data.frame) 
... 
export(count) 
...

Now imagine that your package implements a method for count() for a
class you “own” (not data.frame). A good example is the dbplyr
package, which implements count() for the tbl_lazy class. An add-on
package that implements an S3 generic for a new class should list the
generic-providing package in Imports, import the generic into its
namespace, and export its S3 method. Here’s part of dbplyr’s
DESCRIPTION file:

Imports: 
    ..., 
    dplyr, 
    ...



In dbplyr/R/verb-count.R, we have:

#' @importFrom dplyr count
#' @export
count.tbl_lazy <- function(x, ..., wt = NULL, sort = FALSE, name 
= NULL) { ... }

In NAMESPACE, we have:

S3method(count,tbl_lazy) 
... 
importFrom(dplyr,count)

dbplyr also provides methods for various generics provided by the base
package, such as dim() and names(). In this case, there is no need to
import those generics, but it’s still necessary to export the methods. In
dbplyr/R/tbl_lazy.R, we have:

#' @export
dim.tbl_lazy <- function(x) { 
  c(NA, length(op_vars(x$lazy_query)))
} 
 
#' @export
names.tbl_lazy <- function(x) { 
  colnames(x)
}

In NAMESPACE, this produces:

S3method(dim,tbl_lazy) 
... 
S3method(names,tbl_lazy)

The last and trickiest case is when your package offers a method for a
generic “owned” by a package you’ve listed in Suggests. The basic idea
is that you want to register the availability of your S3 method conditionally,
when your package is being loaded. If the suggested package is present,
your S3 method should be registered, but otherwise it should not.



We’ll illustrate this with an example. Within the tidyverse, the glue package
is managed as a low-level package that should have minimal dependencies
(see “Dependency Thoughts Specific to the tidyverse”). Glue functions
generally return a character vector that also has the "glue" S3 class:

library(glue)
name <- "Betty"
(ret <- glue('My name is {name}.'))
#> My name is Betty.
class(ret)
#> [1] "glue"      "character"

The motivation for this is that it allows glue to offer special methods for
print(), the + operator, and subsetting via [ and [[. One downside,
though, is that this class attribute complicates string comparisons:

identical(ret, "My name is Betty.")
#> [1] FALSE
all.equal(ret, "My name is Betty.")
#> [1] "Attributes: < Modes: list, NULL >"
#> [2] "Attributes: < Lengths: 1, 0 >"
#> [3] "Attributes: < names for target but not for current >"
#> [4] "Attributes: < current is not list-like >"
#> [5] "target is glue, current is character"

Therefore, for testing, it is helpful if glue offers a method for
testthat::compare(), which explains why this expectation
succeeds:

testthat::expect_equal(ret, "My name is Betty.")

But glue can’t list testthat in Imports! It must go in Suggests. The
solution is to register the method conditionally when glue is loaded. Here is
a redacted version of glue’s .onLoad() function, where you’ll see that it
conditionally registers some other methods as well:

.onLoad <- function(...) { 
  s3_register("testthat::compare", "glue") 
  s3_register("waldo::compare_proxy", "glue") 



  s3_register("vctrs::vec_ptype2", "glue.glue") 
  ... 
  invisible()
}

The s3_register() function comes from the vctrs package. If you
don’t have an organic need to depend on vctrs, it is common (and
encouraged) to simply inline the s3_register() source into your own
package. You can’t always copy code from other people’s packages and
paste it into yours, but you can in this case. This usage is specifically
allowed by the license of the source code of s3_register(). This
provides a great segue into Chapter 12, which is all about licensing.

1  For example, if your package needs to call ggplot2::geom_hex(), you might choose to
list hexbin in Imports, since ggplot2 only lists it in Suggests.

2  Remember usethis::use_package() is helpful for adding dependencies to
DESCRIPTION.

https://oreil.ly/X0aux


Chapter 12. Licensing

The goal of this chapter is to give you the basic tools to manage licensing
for your R package. Obviously, we are R developers and not lawyers, and
none of this is legal advice. But fortunately, if you’re writing either an open
source package or a package used only within your organization,1 you don’t
need to be an expert to do the right thing. You need to pick a license that
declares how you want your code to be used, and if you include code
written by someone else, you need to respect the license that it uses.

This chapter begins with an overview of licensing, and how to license your
own code. We’ll then discuss the most important details of accepting code
given to you (e.g., in a pull request) and how to bundle code written by
other people. We’ll finish off with a brief discussion of the implications of
using code from other packages.

Big Picture
To understand the author’s wishes, it’s useful to understand the two major
camps of open source licenses:

Permissive licenses are very easygoing. Code with a permissive
license can be freely copied, modified, and published, and the only
restriction is that the license must be preserved. The MIT and Apache
licenses are the most common modern permissive licenses; older
permissive licenses include the various forms of the BSD license.

Copyleft licenses are stricter. The most common copyleft license is the
GPL, which allows you to freely copy and modify the code for
personal use, but if you publish modified versions or bundle with other
code, the modified version or complete bundle must also be licensed
with the GPL.

https://choosealicense.com/licenses/mit
https://choosealicense.com/licenses/apache-2.0
https://oreil.ly/vHmcP


When you look across all programming languages, permissive licenses are
the most common. For example, a 2015 survey of GitHub repositories
found that ~55% used a permissive license and ~20% used a copyleft
license. The R community is rather different: as of 2022, our analysis2
found that ~70% of CRAN packages use a copyleft license and ~20% use a
permissive license. This means licensing your R package requires a little
more care than for other languages.

Code You Write
We’ll start by talking about code that you write, and how to license it to
make clear how you want people to treat it. It’s important to use a license
because if you don’t, the default copyright laws apply, which means that no
one is allowed to make a copy of your code without your express
permission.

In brief:

If you want a permissive license so people can use your code with
minimal restrictions, choose the MIT license with
use_mit_license().

If you want a copyleft license so that all derivatives and bundles of
your code are also open source, choose the GPLv3 license with
use_gpl_license().

If your package primarily contains data, not code, and you want
minimal restrictions, choose the CC0 license with
use_cc0_license(). Or if you want to require attribution when
your data is used, choose the CC BY license by calling
use_ccby_license().

If you don’t want to make your code open source, call
use_proprietary_license(). Such packages cannot be
distributed by CRAN.

https://oreil.ly/QDSux
https://choosealicense.com/licenses/mit
https://choosealicense.com/licenses/gpl-3.0
https://choosealicense.com/licenses/cc0-1.0
https://choosealicense.com/licenses/cc-by-4.0


We’ll come back to more details and present a few other licenses in “More
Licenses for Code”.

Key Files
There are three key files used to record your licensing decision:

Every license sets the License field in the DESCRIPTION. This
contains the name of the license in a standard form so that R CMD
check and CRAN can automatically verify it. It comes in four main
forms:

A name and version specification, e.g., GPL (>= 2), or
Apache License (== 2.0).

A standard abbreviation, e.g., GPL-2, LGPL-2.1, Artistic-
2.0.

A name of a license “template” and a file containing specific
variables. The most common case is MIT + file LICENSE,
where the LICENSE file needs to contain two fields: the year and
copyright holder.

Pointer to the full text of a nonstandard license, file
LICENSE.

More complicated licensing structures are possible but outside the
scope of this text. See the “Licensing” section of Writing R
Extensions for details.

As described, the LICENSE file is used in one of two ways. Some
licenses are templates that require additional details to be complete in
the LICENSE file. The LICENSE file can also contain the full text of
nonstandard and non-open source licenses. You are not permitted to
include the full text of standard licenses.

LICENSE.md includes a copy of the full text of the license. All open
source licenses require a copy of the license to be included, but CRAN

https://oreil.ly/Niq0u


does not permit you to include a copy of standard licenses in your
package, so we also use .Rbuildignore to make sure this file is not sent
to CRAN.

There is one other file that we’ll come back to in “How to Include”:
LICENSE.note. This is used when you have bundled code written by other
people, and parts of your package have more permissive licenses than the
whole.

More Licenses for Code
We gave you the absolute minimum you need to know. But it’s worth
mentioning a few more important licenses roughly ordered from most
permissive to least permissive:

use_apache_license()

The Apache License is similar to the MIT license, but it also includes an
explicit patent grant. Patents are another component of intellectual
property distinct from copyrights, and some organizations also care
about protection from patent claims.

use_lgpl_license()

The LGPL is a little weaker than the GPL, allowing you to bundle
LPGL code using any license for the larger work.

use_gpl_license()

We’ve discussed the GPL already, but there’s one important wrinkle to
note: the GPL has two major versions, GPLv2 and GPLv3, and they’re
not compatible (i.e., you can’t bundle GPLv2 and GPLv3 code in the
same project). To avoid this problem it’s generally recommended to
license your package as GPL >=2 or GPL >= 3 so that future versions of
the GPL license also apply to your code. This is what
use_gpl_license() does by default.

use_agpl_license()

https://choosealicense.com/licenses/apache-2.0
https://choosealicense.com/licenses/lgpl-3.0
https://choosealicense.com/licenses/gpl-3.0


The AGPL defines distribution to include providing a service over a
network, so that if you use AGPL code to provide a web service, all
bundled code must also be open sourced. Because this is a considerably
broader claim than the GPL, many companies expressly forbid the use
of AGPL software.

Many other licenses are available. To get a high-level view of the open
source licensing space, and the details of individual licenses, we highly
recommend https://choosealicense.com, which we’ve used in the preceding
links. For more details about licensing R packages, we recommend
Licensing R by Colin Fay. The primary downside of choosing a license not
in the preceding list is that fewer R users will understand what it means,
making it harder for them to use your code.

Licenses for Data
All these licenses are designed specifically to apply to source code, so if
you’re releasing a package that primarily contains data, you should use a
different type of license. We recommend one of two Creative Commons
licenses:

If you want to make the data as freely available as possible, you use
the CC0 license with use_cc0_license(). This is a permissive
license that’s equivalent to the MIT license, but it applies to data, not
code.3

If you want to require attribution when someone else uses your data,
you can use the CC-BY license, with use_ccby_license().

Relicensing
Changing your license after the fact is hard because it requires the
permission of all copyright holders, and unless you have taken special steps
(more on that shortly) this will include everyone who has contributed a
nontrivial amount of code.

https://choosealicense.com/licenses/agpl-3.0
https://choosealicense.com/
https://thinkr-open.github.io/licensing-r
http://creativecommons.org/


If you do need to relicense a package, we recommend the following steps:

1. Check the Authors@R field in the DESCRIPTION to confirm that the
package doesn’t contain bundled code (which we’ll talk about in
“Code You Bundle”).

2. Find all contributors by looking at the Git history or the contributors
display on GitHub.

3. Optionally, inspect the specific contributions and remove people who
only contributed typo fixes and similar.4

4. Ask every contributor if they’re OK with changing the license. If every
contributor is on GitHub, the easiest way to do this is to create an issue
where you list all contributors and ask them to confirm that they’re OK
with the change.

5. Once all copyright holders have approved, make the change by calling
the appropriate license function.

You can read about how the tidyverse followed this process to unify on the
MIT license at https://oreil.ly/p10Vv.

Code Given to You
Many packages include code not written by the author. There are two main
ways this happens: other people might choose to contribute to your package
using a pull request or similar, or you might find some code and choose to
bundle it. This section will discuss code that others give to you, and the
next section will discuss code that you bundle.

When someone contributes code to your package using a pull request or
similar, you can assume that the author is happy for their code to use your
license. This is explicit in the GitHub terms of service but is generally
considered to be true regardless of how the code is contributed.5

https://oreil.ly/p10Vv
https://oreil.ly/qb2St


However, the author retains copyright of their code, which means that you
can’t change the license without their permission. If you want to retain the
ability to change the license, you need an explicit “contributor license
agreement” or CLA, where the author explicitly reassigns the copyright.
This is most important for dual open source/commercial projects because it
easily allows for dual licensing where the code is made available to the
world with a copyleft license, and to paying customers with a different,
more permissive, license.

It’s also important to acknowledge the contribution, and it’s good practice
to be generous with thanks and attribution. In the tidyverse, we ask that all
code contributors include a bullet in NEWS.md with their GitHub username,
and we thank all contributors in release announcements. We add only core
developers6 to the DESCRIPTION file; but some projects choose to add all
contributors no matter how small the contribution.

Code You Bundle
There are three common reasons that you might choose to bundle code
written by someone else:

You’re including someone else’s CSS or JS library to create a useful
and attractive web page or HTML widgets. Shiny is a great example of
a package that does this extensively.

You’re providing an R wrapper for a simple C or C++ library. (For
complex C/C++ libraries, you don’t usually bundle the code in your
package, but instead link to a copy installed elsewhere on the system).

You’ve copied a small amount of R code from another package to
avoid taking a dependency. Generally, taking a dependency on another
package is the right thing to do because you don’t need to worry about
licensing, and you’ll automatically get bug fixes. But sometimes you
need only a very small amount of code from a big package, and
copying and pasting it into your package is the right thing to do.



License Compatibility
Before you bundle someone else’s code into your package, you need to first
check that the bundled license is compatible with your license. When
distributing code, you can add additional restrictions, but you cannot
remove restrictions, which means that license compatibility is not
symmetric. For example, you can bundle MIT licensed code in a GPL
licensed package, but you can not bundle GPL licensed code in an MIT
licensed package.

There are five main cases to consider:

If your license and their license are the same: it’s OK to bundle.

If their license is MIT or BSD, it’s OK to bundle.

If their code has a copyleft license and your code has a permissive
license, you can’t bundle their code. You’ll need to consider an
alternative approach, either looking for code with a more permissive
license or putting the external code in a separate package.

If the code comes from Stack Overflow, it’s licensed with the Creative
Common CC BY-SA license, which is compatible only with GPLv3.
This means that you need to take extra care when using Stack
Overflow code in open source packages. Learn more at
https://oreil.ly/qlyFh.

Otherwise, you’ll need to do a little research. Wikipedia has a useful
diagram, and Google is your friend. It’s important to note that different
versions of the same license are not necessarily compatible, e.g.,
GPLv2 and GPLv3 are not compatible.

If your package isn’t open source, things are more complicated. Permissive
licenses are still easy, and copyleft licenses generally don’t restrict use as
long as you don’t distribute the package outside your company. But this is a
complex issue and opinions differ, and you should check with your legal
department first.

https://oreil.ly/Iz2Yr
https://oreil.ly/Rvsvt
https://oreil.ly/qlyFh
https://oreil.ly/kv5GQ


How to Include
Once you’ve determined that the licenses are compatible, you can bring the
code in your package. When doing so, you need to preserve all existing
license and copyright statements and make it as easy as possible for future
readers to understand the licensing situation:

If you’re including a fragment of another project, it’s generally best to
put in its own file and ensure that file has copyright statements and
license description at the top.

If you’re including multiple files, put in a directory, and put a
LICENSE file in that directory.

You also need to include some standard metadata in Authors@R. You
should use role = "cph" to declare that the author is a copyright
holder, with a comment describing what they’re the author of.

If you’re submitting to CRAN and the bundled code has a different (but
compatible) license, you also need to include a LICENSE.note file that
describes the overall license of the package, and the specific licenses of
each individual component. For example, the diffviewer package bundles
six JavaScript libraries all of which use a permissive license. The
DESCRIPTION lists all copyright holders, and the LICENSE.note describes
their licenses. (Other packages use other techniques, but we think this is the
simplest approach that will fly with CRAN.)

Code You Use
Obviously all the R code you write uses R, and R is licensed with the GPL.
Does that mean your R code must always be GPL licensed? No, and the R
Foundation made this clear in 2009. Similarly, it’s our personal opinion that
the license of your package doesn’t need to be compatible with the licenses
of R packages that you use merely by calling their exported R functions
(i.e., via Suggests or Imports).

https://oreil.ly/nkoTK
https://oreil.ly/_6Wth
https://oreil.ly/PPvyK


Things are different in other languages, like C, because creating a C
executable almost invariably ends up copying some component of the code
you use into the executable. This can also come up if your R package has
compiled code and you link to (using the LinkingTo in your
DESCRIPTION): you’ll need to do more investigation to make sure your
license is compatible. However, if you’re just linking to R itself, you are
generally free to license as you wish because R headers are licensed with
the Lesser GPL.

Of course, any user of your package will have to download all the packages
that your package depends on (as well as R itself), so they will still have to
comply with the terms of those licenses.

1  If you’re selling your package, however, we’d highly recommend that you consult a lawyer.

2  Inspired by that of Sean Kross.

3  If you are concerned about the implications of the CC0 license with respect to citation, you
might be interested in the Dryad blog post “Why does Dryad use CC0?”.

4  Very simple contributions like typo fixes are generally not protected by copyright because
they’re not creative works. But even a single sentence can be considered a creative work, so err
on the side of safety, and if you have any doubts leave the contributor in.

5  Some particularly risk-averse organizations require contributors to provide a developer
certificate of origin, but this is relatively rare in general, and we haven’t seen it in the R
community.

6  That is, people responsible for ongoing development. This is best made explicit in the ggplot2
governance document, GOVERNANCE.md.

https://oreil.ly/7qmHn
https://oreil.ly/6IYBa
https://oreil.ly/61dS7
https://developercertificate.org/
https://oreil.ly/hNtaJ


Part IV. Testing



Chapter 13. Testing Basics

Testing is a vital part of package development: it ensures that your code
does what you want. Testing, however, adds an additional step to your
workflow. To make this task easier and more effective this chapter will
show you how to do formal automated testing using the testthat package.

The first stage of your testing journey is to become convinced that testing
has enough benefits to justify the work. For some of us, this is easy to
accept. Others must learn the hard way.

Once you’ve decided to embrace automated testing, it’s time to learn some
mechanics and figure out where testing fits into your development
workflow.

As you and your R packages evolve, you’ll start to encounter testing
situations where it’s fruitful to use techniques that are somewhat specific to
testing and differ from what we do below R/.

Why Is Formal Testing Worth the Trouble?
Up until now, your workflow probably looks like this:

1. Write a function.

2. Load it with devtools::load_all(), maybe via Ctrl/Cmd-Shift-
L.

3. Experiment with it in the console to see if it works.

4. Rinse and repeat.

While you are testing your code in this workflow, you’re only doing it
informally. The problem with this approach is that when you come back to
this code in 3 months to add a new feature, you’ve probably forgotten some



of the informal tests you ran the first time around. This makes it very easy
to break code that used to work.

Many of us embrace automated testing when we realize we’re refixing a
bug for the second or fifth time. While writing code or fixing bugs, we
might perform some interactive tests to make sure the code we’re working
on does what we want. But it’s easy to forget all the different use cases you
need to check, if you don’t have a system for storing and rerunning the
tests. This is a common practice among R programmers. The problem is not
that you don’t test your code, it’s that you don’t automate your tests.

In this chapter you’ll learn how to transition from informal ad hoc testing,
done interactively in the console, to automated testing (also known as unit
testing). While turning casual interactive tests into formal tests requires a
little more work up front, it pays off in four ways:

Fewer bugs

Because you’re explicit about how your code should behave, you will
have fewer bugs. The reason is a bit like why double entry book
keeping works: because you describe the behavior of your code in two
places, both in your code and in your tests, you are able to check one
against the other.

With informal testing, it’s tempting to just explore typical and authentic
usage, similar to writing examples. However, when writing formal tests,
it’s natural to adopt a more adversarial mindset and to anticipate how
unexpected inputs could break your code.

If you always introduce new tests when you add a new feature or
function, you’ll prevent many bugs from being created in the first place,
because you will proactively address pesky edge cases. Tests also keep
you from (re-)breaking one feature when you’re tinkering with another.

Better code structure

Code that is well designed tends to be easy to test, and you can turn this
to your advantage. If you are struggling to write tests, consider if the



problem is actually the design of your function(s). The process of
writing tests is a great way to get free, private, and personalized
feedback on how well-factored your code is. If you integrate testing into
your development workflow (versus planning to slap tests on “later”),
you’ll subject yourself to constant pressure to break complicated
operations into separate functions that work in isolation. Functions that
are easier to test are usually easier to understand and recombine in new
ways.

Call to action

When we start to fix a bug, we first like to convert it into a (failing) test.
This is wonderfully effective at making your goal very concrete: make
this test pass. This is basically a special case of a general methodology
known as test driven development.

Robust code

If you know that all the major functionality of your package is well
covered by the tests, you can confidently make big changes without
worrying about accidentally breaking something. This provides a great
reality check when you think you’ve discovered some brilliant new way
to simplify your package. Sometimes such “simplifications” fail to
account for some important use case and your tests will save you from
yourself.

Introducing testthat
This chapter describes how to test your R package using the testthat
package.

If you’re familiar with frameworks for unit testing in other languages, you
should note that there are some fundamental differences with testthat. This
is because R is, at heart, more a functional programming language than an
object-oriented programming language. For instance, because R’s main

https://testthat.r-lib.org/


object-oriented systems (S3 and S4) are based on generic functions (i.e.,
methods belong to functions not classes), testing approaches built around
objects and methods don’t make much sense.

testthat 3.0.0 (released 2020-10-31) introduced the idea of an edition of
testthat, specifically the third edition of testthat, which we refer to as
testthat 3e. An edition is a bundle of behaviors that you have to explicitly
choose to use, allowing us to make otherwise backward incompatible
changes. This is particularly important for testthat since it has a very large
number of packages that use it (almost 5,000 at last count). To use testthat
3e, you must have a version of testthat >= 3.0.0 and explicitly opt-in to the
third edition behaviors. This allows testthat to continue to evolve and
improve without breaking historical packages that are in a rather passive
maintenance phase. You can learn more in the testthat 3e article and the
blog post “Upgrading to testthat edition 3”.

We recommend testthat 3e for all new packages, and we recommend
updating existing, actively maintained packages to use testthat 3e. Unless
we say otherwise, this chapter describes testthat 3e.

Test Mechanics and Workflow
To use testthat, there is some one-time setup, followed by the ongoing
creation of new tests. To get the promised benefits of formal testing, it is
important that you run these tests regularly.

Initial Setup
To set up your package to use testthat, run:

usethis::use_testthat(3)

This will:

1. Create a tests/testthat/ directory.

https://oreil.ly/NUmqk
https://oreil.ly/1RPSO


2. Add testthat to the Suggests field in the DESCRIPTION and specify
testthat 3e in the Config/testthat/edition field. The affected
DESCRIPTION fields might look like:

Suggests: testthat (>= 3.0.0) 

Config/testthat/edition: 3

3. Create a file tests/testthat.R that runs all your tests when R CMD
check runs (see “check() and R CMD check”). For a package named
“pkg” the contents of this file will be something like:

library(testthat)

library(pkg) 

 

test_check("pkg")

This initial setup is usually something you do once per package. However,
even in a package that already uses testthat, it is safe to run
use_testthat(3) when you’re ready to opt-in to testthat 3e.

Do not edit tests/testthat.R! It is run during R CMD check (and, therefore,
devtools::check()), but is not used in most other test-running
scenarios (such as devtools::test() or
devtools::test_active_file()). If you want to do something
that affects all of your tests, there is almost always a better way than
modifying the boilerplate tests/testthat.R script. This chapter details many
different ways to make objects and logic available during testing.

Create a Test
As you define functions in your package, in the files below R/, you add the
corresponding tests to .R files in tests/testthat/. We strongly recommend that
the organization of test files matches the organization of R/ files, discussed
in “Organize Functions Into Files”—the foofy() function (and its friends



and helpers) should be defined in R/foofy.R and their tests should live in
tests/testthat/test-foofy.R.

R                                     tests/testthat 
└── foofy.R                           └── test-foofy.R 
    foofy <- function(...) {...}          test_that("foofy does 
this", {...}) 
                                          test_that("foofy does 
that", {...})

Even if you have different conventions for file organization and naming,
note that testthat tests must live in files below tests/testthat/ and these
filenames must begin with test. The test filename is displayed in testthat
output, which provides helpful context.1

usethis offers a helpful pair of functions for creating or toggling between
files:

usethis::use_r()

usethis::use_test()

Either one can be called with a file (base) name, to create a file de novo and
open it for editing:

use_r("foofy")    # creates and opens R/foofy.R
use_test("blarg") # creates and opens tests/testthat/test-blarg.R

The use_r() / use_test() duo has some convenience features that
make them “just work” in many common situations:

When determining the target file, they can deal with the presence or
absence of the .R extension and the test- prefix.

Equivalent: use_r("foofy.R"), use_r("foofy")

Equivalent: use_test("test-blarg.R"),
use_test("blarg.R"), use_test("blarg")



If the target file already exists, it is opened for editing. Otherwise, the
target is created and then opened for editing.

RSTUDIO
If R/foofy.R is the active file in your source editor, you can even call use_test() with no
arguments! The target test file can be inferred: if you’re editing R/foofy.R, you probably want to
work on the companion test file, tests/testthat/test-foofy.R. If it doesn’t exist yet, it is created and,
either way, the test file is opened for editing. This all works the other way around also. If you’re
editing tests/testthat/test-foofy.R, a call to use_r() (optionally, creates and) opens R/foofy.R.

Bottom line: use_r()/use_test() are handy for initially creating these
file pairs and, later, for shifting your attention from one to the other.

When use_test() creates a new test file, it inserts an example test:

test_that("multiplication works", { 
  expect_equal(2 * 2, 4)
})

You will replace this with your own description and logic, but it’s a nice
reminder of the basic form:

A test file holds one or more test_that() tests.

Each test describes what it’s testing, e.g., “multiplication works.”

Each test has one or more expectations, e.g., expect_equal(2 *
2, 4).

In the following sections and chapters, we go into much more detail about
how to test your own functions.

Run Tests
Depending on where you are in the development cycle, you’ll run your tests
at various scales. When you are rapidly iterating on a function, you might



work at the level of individual tests. As the code settles down, you’ll run
entire test files and eventually the entire test suite.

Micro-Iteration
This is the interactive phase where you initiate and refine a function and its
tests in tandem. Here you will run devtools::load_all() often, and
then execute individual expectations or whole tests interactively in the
console. Note that load_all() attaches testthat, so it puts you in the
perfect position to test drive your functions and to execute individual tests
and expectations:

# tweak the foofy() function and re-load it
devtools::load_all() 
 
# interactively explore and refine expectations and tests
expect_equal(foofy(...), EXPECTED_FOOFY_OUTPUT) 
 
testthat("foofy does good things", {...})

Mezzo-Iteration
As one file’s-worth of functions and their associated tests start to shape up,
you will want to execute the entire file of associated tests, perhaps with
testthat::test_file():

testthat::test_file("tests/testthat/test-foofy.R")

RSTUDIO
In RStudio, you have a couple shortcuts for running a single test file.

If the target test file is the active file, you can use the “Run Tests” button in the upper-right corner
of the source editor.

There is also a useful function, devtools::test_active_file(). It infers the target test
file from the active file and, similar to how use_r() and use_test() work, it works
regardless of whether the active file is a test file or a companion R/*.R file. You can invoke this
via “Run a test file” in the Addins menu. However, for heavy users (like us!), we recommend
binding this to a keyboard shortcut; we use Ctrl/Cmd-T.

https://oreil.ly/26n4o


Macro-Iteration
As you near the completion of a new feature or bug fix, you will want to
run the entire test suite.

Most frequently, you’ll do this with devtools::test():

devtools::test()

Then eventually, as part of R CMD check with devtools::check():

devtools::check()

RSTUDIO
devtools::test() is mapped to Ctrl/Cmd-Shift-T.

devtools::check() is mapped to Ctrl/Cmd-Shift-E.

The output of devtools::test() looks like this:

devtools::test() 
ℹ Loading usethis 
ℹ Testing usethis 
✓ | F W S  OK | Context 
✓ |         1 | addin [0.1s] 
✓ |         6 | badge [0.5s] 
   ... 
✓ |        27 | github-actions [4.9s] 
   ... 
✓ |        44 | write [0.6s] 
 
══ Results 
═════════════════════════════════════════════════════════════════ 
Duration: 31.3 s 
 
── Skipped tests  
────────────────────────────────────────────────────────── 
• Not on GitHub Actions, Travis, or Appveyor (3) 
 
[ FAIL 1 | WARN 0 | SKIP 3 | PASS 728 ]



Test failure is reported like this:

Failure (test-release.R:108:3): get_release_data() works if no 
file found 
res$Version (`actual`) not equal to "0.0.0.9000" (`expected`). 
 
`actual`:   "0.0.0.1234" 
`expected`: "0.0.0.9000"

Each failure gives a description of the test (e.g., “get_release_data() works
if no file found” ), its location (e.g., test-release.R:108:3), and the
reason for the failure (e.g., “res$Version (actual) not equal to “0.0.0.9000”
(expected)”).

The idea is that you’ll modify your code (either the functions defined below
R/ or the tests in tests/testthat/) until all tests are passing.

Test Organization
A test file lives in tests/testthat/. Its name must start with test. We will
inspect and execute a test file from the stringr package.

But first, for the purposes of rendering this book, we must attach stringr and
testthat. Note that in real-life test-running situations, this is taken care of by
your package development tooling:

During interactive development, devtools::load_all() makes
testthat and the package-under-development available (both its
exported and unexported functions).

During arms’ length test execution, this is taken care of by
devtools::test_active_file(), devtools::test(),
and tests/testthat.R.



WARNING
Your test files should not include these library() calls. We also explicitly request testthat
edition 3, but in a real package this will be declared in DESCRIPTION:

library(testthat)
library(stringr)
local_edition(3)

Here are the contents of tests/testthat/test-dup.r from stringr:

  test_that("basic duplication works", { 
    expect_equal(str_dup("a", 3), "aaa") 
    expect_equal(str_dup("abc", 2), "abcabc") 
  expect_equal(str_dup(c("a", "b"), 2), c("aa", "bb")) 
  expect_equal(str_dup(c("a", "b"), c(2, 3)), c("aa", "bbb")) 
  }) 
  #> Test passed  
  test_that("0 duplicates equals empty string", { 
  expect_equal(str_dup("a", 0), "") 
  expect_equal(str_dup(c("a", "b"), 0), rep("", 2)) 
  }) 
  #> Test passed  
  test_that("uses tidyverse recycling rules", { 
  expect_error(str_dup(1:2, 1:3), class = 
"vctrs_error_incompatible_size") 
  }) 
  #> Test passed 

This file shows a typical mix of tests:

“basic duplication works” tests typical usage of str_dup().

“0 duplicates equals empty string” probes a specific edge case.

“uses tidyverse recycling rules” checks that malformed input results in
a specific kind of error.



Tests are organized hierarchically: expectations are grouped into tests,
which are organized in files:

A file holds multiple related tests. In this example, the file
tests/testthat/test-dup.r has all of the tests for the code in R/dup.r.

A test groups together multiple expectations to test the output from a
simple function, a range of possibilities for a single parameter from a
more complicated function, or tightly related functionality from across
multiple functions. This is why they are sometimes called unit tests.
Each test should cover a single unit of functionality. A test is created
with test_that(desc, code).

It’s common to write the description (desc) to create something that
reads naturally, e.g., test_that("basic duplication
works", { ... }). A test failure report includes this description,
which is why you want a concise statement of the test’s purpose, e.g., a
specific behavior.

An expectation is the atom of testing. It describes the expected result
of a computation: Does it have the right value and right class? Does it
produce an error when it should? An expectation automates visual
checking of results in the console. Expectations are functions that start
with expect_.

You want to arrange things such that, when a test fails, you’ll know what’s
wrong and where in your code to look for the problem. This motivates all
our recommendations regarding file organization, file naming, and the test
description. Finally, try to avoid putting too many expectations in one test—
it’s better to have more smaller tests than fewer larger tests.

Expectations
An expectation is the finest level of testing. It makes a binary assertion
about whether or not an object has the properties you expect. This object is
usually the return value from a function in your package.



All expectations have a similar structure:

They start with expect_.

They have two main arguments: the first is the actual result, the second
is what you expect.

If the actual and expected results don’t agree, testthat throws an error.

Some expectations have additional arguments that control the finer
points of comparing an actual and expected result.

While you’ll normally put expectations inside tests inside files, you can also
run them directly. This makes it easy to explore expectations interactively.
There are more than 40 expectations in the testthat package, which can be
explored in testthat’s reference index. We’re going to cover only the most
important expectations here.

Testing for Equality
expect_equal() checks for equality, with some reasonable amount of
numeric tolerance:

expect_equal(10, 10)
expect_equal(10, 10L)
expect_equal(10, 10 + 1e-7)
expect_equal(10, 11)
#> Error: 10 (`actual`) not equal to 11 (`expected`).
#>
#>   `actual`: 10
#> `expected`: 11

If you want to test for exact equivalence, use expect_identical():

expect_equal(10, 10 + 1e-7)
expect_identical(10, 10 + 1e-7)
#> Error: 10 (`actual`) not identical to 10 + 1e-07 (`expected`).
#>
#>   `actual`: 10.0000000
#> `expected`: 10.0000001 
 

https://testthat.r-lib.org/reference/index.xhtml


expect_equal(2, 2L)
expect_identical(2, 2L)
#> Error: 2 (`actual`) not identical to 2L (`expected`).
#>
#> `actual` is a double vector (2)
#> `expected` is an integer vector (2)

Testing Errors
Use expect_error() to check whether an expression throws an error.
It’s the most important expectation in a trio that also includes
expect_warning() and expect_ message(). We’re going to
emphasize errors here, but most of this also applies to warnings and
messages.

Usually you care about two things when testing an error:

Does the code fail? Specifically, does it fail for the right reason?

Does the accompanying message make sense to the human who needs
to deal with the error?

The entry-level solution is to expect a specific type of condition:

1 / "a"
#> Error in 1/"a": non-numeric argument to binary operator
expect_error(1 / "a") 
 
log(-1)
#> Warning in log(-1): NaNs produced
#> [1] NaN
expect_warning(log(-1))

This is a bit dangerous, though, especially when testing an error. There are
lots of ways for code to fail! Consider the following test:

expect_error(str_duq(1:2, 1:3))

This expectation is intended to test the recycling behavior of str_dup().
But, due to a typo, it tests behavior of a nonexistent function, str_duq().



The code throws an error and, therefore, the test passes, but for the wrong
reason. Due to the typo, the actual error thrown is about not being able to
find the str_duq() function:

str_duq(1:2, 1:3)
#> Error in str_duq(1:2, 1:3): could not find function "str_duq"

Historically, the best defense against this was to assert that the condition
message matches a certain regular expression, via the second argument,
regexp:

expect_error(1 / "a", "non-numeric argument")
expect_warning(log(-1), "NaNs produced")

This does, in fact, force our typo problem to the surface:

expect_error(str_duq(1:2, 1:3), "recycle")
#> Error in str_duq(1:2, 1:3): could not find function "str_duq"

Recent developments in both base R and rlang make it increasingly likely
that conditions are signaled with a class, which provides a better basis for
creating precise expectations. That is exactly what you’ve already seen in
this stringr example. This is what the class argument is for:

# fails, error has wrong class
expect_error(str_duq(1:2, 1:3), class = 
"vctrs_error_incompatible_size")
#> Error in str_duq(1:2, 1:3): could not find function "str_duq" 
 
# passes, error has expected class
expect_error(str_dup(1:2, 1:3), class = 
"vctrs_error_incompatible_size")

If you have the choice, express your expectation in terms of the condition’s
class, instead of its message. Often this is under your control, i.e., if your
package signals the condition. If the condition originates from base R or
another package, proceed with caution. This is often a good reminder to



reconsider the wisdom of testing a condition that is not fully under your
control in the first place.

To check for the absence of an error, warning, or message, use
expect_no_error():

expect_no_error(1 / 2)

Of course, this is functionally equivalent to simply executing 1 / 2 inside
a test, but some developers find the explicit expectation expressive.

If you genuinely care about the condition’s message, testthat 3e’s snapshot
tests are the best approach, which we describe next.

Snapshot Tests
Sometimes it’s difficult or awkward to describe an expected result with
code. Snapshot tests are a great solution to this problem, and this is one of
the main innovations in testthat 3e. The basic idea is that you record the
expected result in a separate, human-readable file. Going forward, testthat
alerts you when a newly computed result differs from the previously
recorded snapshot. Snapshot tests are particularly suited to monitoring your
package’s user interface, such as its informational messages and errors.
Other use cases include testing images or other complicated objects.

We’ll illustrate snapshot tests using the waldo package. Under the hood,
testthat 3e uses waldo to do the heavy lifting of “actual versus expected”
comparisons, so it’s good for you to know a bit about waldo anyway. One
of waldo’s main design goals is to present differences in a clear and
actionable manner, as opposed to a frustrating declaration that “this differs
from that and I know exactly how, but I won’t tell you.” Therefore, the
formatting of output from waldo::compare() is very intentional and is
well-suited to a snapshot test. The binary outcome of TRUE (actual ==
expected) versus FALSE (actual != expected) is fairly easy to check and
could get its own test. Here we’re concerned with writing a test to ensure
that differences are reported to the user in the intended way.



waldo uses a few different layouts for showing diffs, depending on various
conditions. Here we deliberately constrain the width, in order to trigger a
side-by-side layout.2 (We talk more about the withr package elsewhere in
the book, including later in this chapter.)

withr::with_options( 
  list(width = 20), 
  waldo::compare(c("X", letters), c(letters, "X"))
)
#>     old | new
#> [1] "X" -
#> [2] "a" | "a" [1]
#> [3] "b" | "b" [2]
#> [4] "c" | "c" [3]
#>
#>      old | new
#> [25] "x" | "x" [24]
#> [26] "y" | "y" [25]
#> [27] "z" | "z" [26]
#>          - "X" [27]

The two primary inputs differ at two locations: once at the start and once at
the end. This layout presents both of these, with some surrounding context,
which helps the reader orient themselves.

Here’s how this would look as a snapshot test:

test_that("side-by-side diffs work", { 
  withr::local_options(width = 20) 
  expect_snapshot( 
    waldo::compare(c("X", letters), c(letters, "X")) 
  )
})

If you execute expect_snapshot() or a test containing
expect_snapshot() interactively, you’ll see this:

Can't compare snapshot to reference when testing interactively 
ℹ Run `devtools::test()` or `testthat::test_file()` to see 
changes



followed by a preview of the snapshot output.

This reminds you that snapshot tests function only when executed
noninteractively, i.e., while running an entire test file or the entire test suite.
This applies both to recording snapshots and to checking them.

The first time this test is executed via devtools::test() or similar,
you’ll see something like this (assume the test is in tests/testthat/test-diff.R):

── Warning (test-diff.R:63:3): side-by-side diffs work 
───────────────────── 
Adding new snapshot: 
Code 
  waldo::compare(c( 
    "X", letters), c( 
    letters, "X")) 
Output 
      old | new 
  [1] "X" - 
  [2] "a" | "a" [1] 
  [3] "b" | "b" [2] 
  [4] "c" | "c" [3] 
 
       old | new 
  [25] "x" | "x" [24] 
  [26] "y" | "y" [25] 
  [27] "z" | "z" [26] 
           - "X" [27]

There is always a warning upon initial snapshot creation. The snapshot is
added to tests/testthat/_snaps/diff.md, under the heading “side-by-side diffs
work,” which comes from the test’s description. The snapshot looks exactly
like what a user sees interactively in the console, which is the experience
we want to check for. The snapshot file is also very readable, which is
pleasant for the package developer. This readability extends to snapshot
changes, i.e., when examining Git diffs and reviewing pull requests on
GitHub, which helps you keep tabs on your user interface. Going forward,
as long as your package continues to recapitulate the expected snapshot,
this test will pass.



If you’ve written a lot of conventional unit tests, you can appreciate how
well-suited snapshot tests are for this use case. If we were forced to inline
the expected output in the test file, there would be a great deal of quoting,
escaping, and newline management. Ironically, with conventional
expectations, the output you expect your user to see tends to get obscured
by a heavy layer of syntactical noise.

What about when a snapshot test fails? Let’s imagine a hypothetical internal
change where the default labels switch from “old” and “new” to “OLD” and
“NEW.” Here’s how this snapshot test would react:

── Failure (test-diff.R:63:3): side-by-side diffs 
work────────────────────────── 
Snapshot of code has changed: 
old[3:15] vs new[3:15] 
  "    \"X\", letters), c(" 
  "    letters, \"X\"))" 
  "Output" 
- "      old | new    " 
+ "      OLD | NEW    " 
  "  [1] \"X\" -        " 
  "  [2] \"a\" | \"a\" [1]" 
  "  [3] \"b\" | \"b\" [2]" 
  "  [4] \"c\" | \"c\" [3]" 
  "  " 
- "       old | new     " 
+ "       OLD | NEW     " 
and 3 more ... 
 
* Run `snapshot_accept('diff')` to accept the change 
* Run `snapshot_review('diff')` to interactively review the 
change

This diff is presented more effectively in most real-world usage, e.g., in the
console, by a Git client, or via a Shiny app (see the next paragraph). But
even this plain-text version highlights the changes quite clearly. Each of the
two loci of change is indicated with a pair of lines marked with - and +,
showing how the snapshot has changed.

You can call testthat::snapshot_review('diff') to review
changes locally in a Shiny app, which lets you skip or accept individual



snapshots. Or, if all changes are intentional and expected, you can go
straight to testthat::snapshot_accept('diff'). Once you’ve
resynchronized your actual output and the snapshots on file, your tests will
pass once again. In real life, snapshot tests are a great way to stay informed
about changes to your package’s user interface, due to your own internal
changes or due to changes in your dependencies or even R itself.

expect_snapshot() has a few arguments worth knowing about:

cran = FALSE

By default, snapshot tests are skipped if it looks like the tests are
running on CRAN’s servers. This reflects the typical intent of snapshot
tests, which is to proactively monitor user interface but not to check for
correctness, which presumably is the job of other unit tests that are not
skipped. In typical usage, a snapshot change is something the developer
will want to know about, but it does not signal an actual defect.

error = FALSE

By default, snapshot code is not allowed to throw an error. See
expect_error(), described previously, for one approach to testing
errors. But sometimes you want to assess “Does this error message
make sense to a human?” and having it laid out in context in a snapshot
is a great way to see it with fresh eyes. Specify error = TRUE in this
case:

expect_snapshot(error = TRUE, 

  str_dup(1:2, 1:3)

)

transform

Sometimes a snapshot contains volatile, insignificant elements, such as
a temporary filepath or a timestamp. The transform argument
accepts a function, presumably written by you, to remove or replace



such changeable text. Another use of transform is to scrub sensitive
information from the snapshot.

variant

Sometimes snapshots reflect the ambient conditions, such as the
operating system or the version of R or one of your dependencies, and
you need a different snapshot for each variant. This is an experimental
and somewhat advanced feature, so if you can arrange things to use a
single snapshot, you probably should.

In typical usage, testthat will take care of managing the snapshot files below
tests/testthat/_snaps/. This happens in the normal course of you running
your tests and, perhaps, calling testthat::snapshot_accept().

Shortcuts for Other Common Patterns
We conclude this section with a few more expectations that come up
frequently. But remember that testthat has many more prebuilt expectations
than we can demonstrate here.

Several expectations can be described as “shortcuts,” i.e., they streamline a
pattern that comes up often enough to deserve its own wrapper:

expect_match(object, regexp, ...) is a shortcut that
wraps grepl(pattern = regexp, x = object, ...). It
matches a character vector input against a regular expression regexp.
The optional all argument controls whether all elements or just one
element needs to match. Read the expect_match() documentation
to see how additional arguments, like ignore.case = FALSE or
fixed = TRUE, can be passed down to grepl():

string <- "Testing is fun!" 

 

expect_match(string, "Testing") 

 

https://testthat.r-lib.org/reference/index.xhtml


# Fails, match is case-sensitive

expect_match(string, "testing")

#> Error: `string` does not match "testing".

#> Actual value: "Testing is fun!" 

 

# Passes because additional arguments are passed to grepl():

expect_match(string, "testing", ignore.case = TRUE)

expect_length(object, n) is a shortcut for
expect_equal(length(object), n).

expect_setequal(x, y) tests that every element of x occurs in
y, and that every element of y occurs in x. But it won’t fail if x and y
happen to have their elements in a different order.

expect_s3_class() and expect_s4_class() check that an
object inherit() from a specified class. expect_type() checks the
typeof() an object:

model <- lm(mpg ~ wt, data = mtcars)

expect_s3_class(model, "lm")

expect_s3_class(model, "glm")

#> Error: `model` inherits from 'lm' not 'glm'.

expect_true() and expect_false() are useful catchalls if none of
the other expectations does what you need.

1  The legacy function testthat::context() is superseded now and its use in new or
actively maintained code is discouraged. In testthat 3e, context() is formally deprecated;
you should just remove it. Once you adopt an intentional, synchronized approach to the
organization of files below R/ and tests/testthat/, the necessary contextual information is right
there in the filename, rendering the legacy context() superfluous.

2  The actual waldo test that inspires this example targets an unexported helper function that
produces the desired layout. But this example uses an exported waldo function for simplicity.



Chapter 14. Designing Your
Test Suite

This chapter runs a few small bits of testthat code, so we must do some
setup that is not necessary in organic testthat usage.

WARNING
Your test files should not include these library() calls. We also explicitly request testthat
edition 3, but in a real package this will be declared in DESCRIPTION:

library(testthat)
local_edition(3)

What to Test
Whenever you are tempted to type something into a print statement or a
debugger expression, write it as a test instead. — Martin Fowler

There is a fine balance to writing tests. Each test that you write makes your
code less likely to change inadvertently; but it also can make it harder to
change your code on purpose. It’s hard to give good general advice about
writing tests, but you might find these points helpful:

Focus on testing the external interface to your functions—if you test
the internal interface, then it’s harder to change the implementation in
the future because as well as modifying the code, you’ll also need to
update all the tests.

Strive to test each behavior in one and only one test. Then if that
behavior later changes you need to update only a single test.



Avoid testing simple code that you’re confident will work. Instead
focus your time on code that you’re not sure about, is fragile, or has
complicated interdependencies. That said, we often find we make the
most mistakes when we falsely assume that the problem is simple and
doesn’t need any tests.

Always write a test when you discover a bug. You may find it helpful
to adopt the test-first philosophy. There you always start by writing the
tests, and then write the code that makes them pass. This reflects an
important problem-solving strategy: start by establishing your success
criteria, or how you know if you’ve solved the problem.

Test Coverage
Another concrete way to direct your test writing efforts is to examine your
test coverage. The covr package can be used to determine which lines of
your package’s source code are (or are not!) executed when the test suite is
run. This is most often presented as a percentage. Generally speaking, the
higher the better.

In some technical sense, 100% test coverage is the goal; however, this is
rarely achieved in practice and that’s often OK. Going from 90% or 99%
coverage to 100% is not always the best use of your development time and
energy. In many cases, that last 10% or 1% often requires some awkward
gymnastics to cover. Sometimes this forces you to introduce mocking or
some other new complexity. Don’t sacrifice the maintainability of your test
suite in the name of covering some weird edge case that hasn’t yet proven
to be a problem. Also remember that not every line of code or every
function is equally likely to harbor bugs. Focus your testing energy on code
that is tricky, based on your expert opinion and any empirical evidence
you’ve accumulated about bug hot spots.

We use covr regularly, in two different ways:

Local, interactive use

https://covr.r-lib.org/


We mostly use devtools::test_coverage_active_file()
and devtools::test_coverage() for exploring the coverage of
an individual file or the whole package, respectively.

Automatic, remote use via GitHub Actions (GHA)

We cover continuous integration and GHA more thoroughly in
Chapter 20, but we will at least mention here that
usethis::use_github_action("test-coverage")
configures a GHA workflow that constantly monitors your test
coverage. Test coverage can be an especially helpful metric when
evaluating a pull request (either your own or from an external
contributor). A proposed change that is well-covered by tests is less
risky to merge.

High-Level Principles for Testing
In later sections, we offer concrete strategies for how to handle common
testing dilemmas in R. Here we lay out the high-level principles that
underpin these recommendations:

A test should ideally be self-sufficient and self-contained.

The interactive workflow is important, because you will mostly
interact with your tests when they are failing.

It’s more important that test code be obvious, e.g., as DRY (“don’t
repeat yourself”) as possible.

However, the interactive workflow shouldn’t “leak” into and
undermine the test suite.

Writing good tests for a code base often feels more challenging than writing
the code in the first place. This can come as a bit of a shock when you’re
new to package development and you might be concerned that you’re doing
it wrong. Don’t worry, you’re not! Testing presents many unique challenges
and maneuvers, which tend to get much less air time in programming



communities than strategies for writing the “main code,” i.e., the stuff
below R/. As a result, it requires more deliberate effort to develop your
skills and taste around testing.

Many of the packages maintained by our team violate some of the advice
you’ll find here. There are (at least) two reasons for that:

testthat has been evolving for more than twelve years, and this chapter
reflects the cumulative lessons learned from that experience. The tests
in many packages have been in place for a long time and reflect typical
practices from different eras and different maintainers.

These aren’t hard-and-fast rules but are, rather, guidelines. There will
always be specific situations where it makes sense to bend the rule.

This chapter can’t address all possible testing situations, but hopefully these
guidelines will help your future decision-making.

Self-Sufficient Tests
All tests should strive to be hermetic: a test should contain all of the
information necessary to set up, execute, and tear down its environment.
Tests should assume as little as possible about the outside environment
….

—From the book Software Engineering at Google,
Chapter 11 (https://oreil.ly/9U0Nc)

Recall this advice found in “Respect the R Landscape”, which covers your
package’s “main code,” i.e., everything below R/:

The .R files below R/ should consist almost entirely of function
definitions. Any other top-level code is suspicious and should be carefully
reviewed for possible conversion into a function.

We have analogous advice for your test files:



The test-*.R files below tests/testthat/ should consist almost entirely of
calls to test_that(). Any other top-level code is suspicious and
should be carefully considered for relocation into calls to
test_that() or to other files that get special treatment inside an R
package or from testthat.

Eliminating (or at least minimizing) top-level code outside of
test_that() will have the beneficial effect of making your tests more
hermetic. This is basically the testing analogue of the general programming
advice that it’s wise to avoid unstructured sharing of state.

Logic at the top-level of a test file has an awkward scope: objects or
functions defined here have what you might call “test file scope,” if the
definitions appear before the first call to test_that(). If top-level code
is interleaved between test_that() calls, you can even create “partial
test file scope.”

While writing tests, it can feel convenient to rely on these file-scoped
objects, especially early in the life of a test suite, e.g., when each test file
fits on one screen. But we find that implicitly relying on objects in a test’s
parent environment tends to make a test suite harder to understand and
maintain over time.

Consider a test file with top-level code sprinkled around it, outside of
test_that():

dat <- data.frame(x = c("a", "b", "c"), y = c(1, 2, 3)) 
 
skip_if(today_is_a_monday()) 
 
test_that("foofy() does this", { 
  expect_equal(foofy(dat), ...)
}) 
 
dat2 <- data.frame(x = c("x", "y", "z"), y = c(4, 5, 6)) 
 
skip_on_os("windows") 
 
test_that("foofy2() does that", { 
  expect_snapshot(foofy2(dat, dat2))
})



We recommend relocating file-scoped logic to either a narrower scope or to
a broader scope. Here’s what it would look like to use a narrow scope,
i.e., to inline everything inside test_that() calls:

test_that("foofy() does this", { 
  skip_if(today_is_a_monday()) 
 
  dat <- data.frame(x = c("a", "b", "c"), y = c(1, 2, 3)) 
 
  expect_equal(foofy(dat), ...)
}) 
 
test_that("foofy() does that", { 
  skip_if(today_is_a_monday()) 
  skip_on_os("windows") 
 
  dat <- data.frame(x = c("a", "b", "c"), y = c(1, 2, 3)) 
  dat2 <- data.frame(x = c("x", "y", "z"), y = c(4, 5, 6)) 
 
  expect_snapshot(foofy(dat, dat2))
})

Later, we will discuss techniques for moving file-scoped logic to a broader
scope.

Self-Contained Tests
Each test_that() test has its own execution environment, which makes
it somewhat self-contained. For example, an R object you create inside a
test does not exist after the test exits:

exists("thingy")
#> [1] FALSE 
 
test_that("thingy exists", { 
  thingy <- "thingy" 
  expect_true(exists(thingy))
})
#> Test passed  
 



exists("thingy")
#> [1] FALSE

The thingy object lives and dies entirely within the confines of
test_that(). However, testthat doesn’t know how to clean up after
actions that affect other aspects of the R landscape:

The filesystem

Creating and deleting files, changing the working directory, etc.

The search path

Changing the search path with library() or attach().

Global options, graphical parameters, and environment variables

modifying options, parameters, and environment variables with
options(), par(), and Sys.setenv().

Watch how calls like library(), options(), and Sys.setenv()
have a persistent effect after a test, even when they are executed inside
test_that():

grep("jsonlite", search(), value = TRUE)
#> character(0)
getOption("opt_whatever")
#> NULL
Sys.getenv("envvar_whatever")
#> [1] "" 
 
test_that("landscape changes leak outside the test", { 
  library(jsonlite) 
  options(opt_whatever = "whatever") 
  Sys.setenv(envvar_whatever = "whatever") 
 
  expect_match(search(), "jsonlite", all = FALSE) 
  expect_equal(getOption("opt_whatever"), "whatever") 
  expect_equal(Sys.getenv("envvar_whatever"), "whatever")
})
#> Test passed  



 
grep("jsonlite", search(), value = TRUE)
#> [1] "package:jsonlite"
getOption("opt_whatever")
#> [1] "whatever"
Sys.getenv("envvar_whatever")
#> [1] "whatever"

These changes to the landscape persist even beyond the current test file,
i.e., they carry over into all subsequent test files.

If it’s easy to avoid making such changes in your test code, that is the best
strategy! But if it’s unavoidable, then you have to make sure that you clean
up after yourself. This mindset is very similar to one we advocated in
“Respect the R Landscape”, when discussing how to design well-mannered
functions.

We like to use the withr package to make temporary changes in global state,
because it automatically captures the initial state and arranges the eventual
restoration. You’ve already seen an example of its usage, when we explored
snapshot tests:

test_that("side-by-side diffs work", { 
  withr::local_options(width = 20) # <-- (°_°) look here! 
  expect_snapshot( 
    waldo::compare(c("X", letters), c(letters, "X")) 
  )
})

This test requires the display width to be set at 20 columns, which is
considerably less than the default width.
withr::local_options(width = 20) sets the width option to
20 and, at the end of the test, restores the option to its original value. withr
is also pleasant to use during interactive development: deferred actions are
still captured on the global environment and can be executed explicitly via
withr::deferred_run() or implicitly by restarting R.

We recommend including withr in Suggests, if you’re only going to use
it in your tests, or in Imports, if you also use it below R/. Call withr

https://withr.r-lib.org/


functions as we do in the previous snippet, e.g., like
withr::local_whatever(), in either case. See “Whether to Import
or Depend” and “In Test Code” for more.

TIP
The easiest way to add a package to DESCRIPTION is with, e.g.,
usethis::use_package("withr", type = "Suggests"). For tidyverse packages,
withr is considered a “free dependency,” i.e., the tidyverse uses withr so extensively that we don’t
hesitate to use it whenever it would be useful.

withr has a large set of pre-implemented local_*() / with_*()
functions that should handle most of your testing needs, so check there
before you write your own. If nothing exists that meets your need,
withr::defer() is the general way to schedule some action at the end
of a test.1

Here’s how we would fix the problems in the previous example using withr.
Behind the scenes, we reversed the landscape changes, so we can try this
again:

grep("jsonlite", search(), value = TRUE)
#> character(0)
getOption("opt_whatever")
#> NULL
Sys.getenv("envvar_whatever")
#> [1] "" 
 
test_that("withr makes landscape changes local to a test", { 
  withr::local_package("jsonlite") 
  withr::local_options(opt_whatever = "whatever") 
  withr::local_envvar(envvar_whatever = "whatever") 
 
  expect_match(search(), "jsonlite", all = FALSE) 
  expect_equal(getOption("opt_whatever"), "whatever") 
  expect_equal(Sys.getenv("envvar_whatever"), "whatever")
})
#> Test passed  
 



grep("jsonlite", search(), value = TRUE)
#> character(0)
getOption("opt_whatever")
#> NULL
Sys.getenv("envvar_whatever")
#> [1] ""

testthat leans heavily on withr to make test execution environments as
reproducible and self-contained as possible. In testthat 3e,
testthat::local_reproducible_output() is implicitly part of
each test_that() test:

test_that("something specific happens", { 
  local_reproducible_output() # <-- this happens implicitly 
 
  # your test code, which might be sensitive to ambient 
conditions, such as 
  # display width or the number of supported colors
})

local_reproducible_output() temporarily sets various options
and environment variables to values favorable for testing, e.g., it suppresses
colored output, turns off fancy quotes, sets the console width, and sets
LC_COLLATE = "C". Usually, you can just passively enjoy the benefits
of local_reproducible_output(). But you may want to call it
explicitly when replicating test results interactively or if you want to
override the default settings in a specific test.

Plan for Test Failure
We regret to inform you that most of the quality time you spend with your
tests will be when they are inexplicably failing:



In its purest form, automating testing consists of three activities: writing
tests, running tests, and reacting to test failures….

Remember that tests are often revisited only when something breaks.
When you are called to fix a broken test that you have never seen before,
you will be thankful someone took the time to make it easy to understand.
Code is read far more than it is written, so make sure you write the test
you’d like to read!

—From the book Software Engineering at Google,
Chapter 11 (https://oreil.ly/9U0Nc)

Most of us don’t work on a code base the size of Google. But even in a
team of one, tests that you wrote six months ago might as well have been
written by someone else. Especially when they are failing.

When we do reverse dependency checks, often involving hundreds or
thousands of CRAN packages, we have to inspect test failures to determine
if changes in our packages are to blame. As a result, we regularly engage
with failing tests in other people’s packages, which leaves us with lots of
opinions about practices that create unnecessary testing pain.

Test troubleshooting nirvana looks like this: in a fresh R session, you can do
devtools::load_all() and immediately run an individual test or
walk through it line-by-line. There is no need to hunt around for setup code
that has to be run manually first, that is found elsewhere in the test file or
perhaps in a different file altogether. Test-related code that lives in an
unconventional location causes extra self-inflicted pain when you least need
it.

Consider this extreme and abstract example of a test that is difficult to
troubleshoot due to implicit dependencies on free-range code:

# dozens or hundreds of lines of top-level code, interspersed 
with other tests,
# which you must read and selectively execute 
 
test_that("f() works", { 
  x <- function_from_some_dependency(object_with_unknown_origin) 



  expect_equal(f(x), 2.5)
})

This test is much easier to drop in on if dependencies are invoked in the
normal way, i.e., via ::, and test objects are created inline:

# dozens or hundreds of lines of self-sufficient, self-contained 
tests,
# all of which you can safely ignore! 
 
test_that("f() works", { 
  useful_thing <- ... 
  x <- somePkg::someFunction(useful_thing) 
  expect_equal(f(x), 2.5)
})

This test is self-sufficient. The code inside { ... } explicitly creates any
necessary objects or conditions and makes explicit calls to any helper
functions. This test doesn’t rely on objects or dependencies that happen to
be ambiently available.

Self-sufficient, self-contained tests are a win-win: it is literally safer to
design tests this way, and it also makes tests much easier for humans to
troubleshoot later.

Repetition Is OK
One obvious consequence of our suggestion to minimize code with “file
scope” is that your tests will probably have some repetition. And that’s OK!
We’re going to make the controversial recommendation that you tolerate a
fair amount of duplication in test code, i.e., you can relax some of your
DRY (“don’t repeat yourself”) tendencies.

Keep the reader in your test function. Good production code is well-
factored; good test code is obvious. … think about what will make the
problem obvious when a test fails.

—From the blog post “Why Good Developers Write Bad
Unit Tests” (https://oreil.ly/9kDBl)



Here’s a toy example to make things concrete:

test_that("multiplication works", { 
  useful_thing <- 3 
  expect_equal(2 * useful_thing, 6)
})
#> Test passed  
 
test_that("subtraction works", { 
  useful_thing <- 3 
  expect_equal(5 - useful_thing, 2)
})
#> Test passed 

In real life, useful_thing is usually a more complicated object that
somehow feels burdensome to instantiate. Notice how useful_thing
<- 3 appears in more than one place. Conventional wisdom says we
should DRY this code out. It’s tempting to just move useful_thing’s
definition outside of the tests:

useful_thing <- 3 
 
test_that("multiplication works", { 
  expect_equal(2 * useful_thing, 6)
})
#> Test passed  
 
test_that("subtraction works", { 
  expect_equal(5 - useful_thing, 2)
})
#> Test passed 

But we really do think the first form, with the repetition, is often the better
choice.

At this point, many readers might be thinking “but the code I might have to
repeat is much longer than 1 line!” Later we describe the use of test
fixtures. This can often reduce complicated situations back to something
that resembles this simple example.



Remove Tension Between Interactive and Automated
Testing
Your test code will be executed in two different settings:

Interactive test development and maintenance, which includes tasks
like:

Initial test creation

Modifying tests to adapt to change

Debugging test failure

Automated test runs, which are accomplished with functions such as:

Single file: devtools::test_active_file(),
testthat::test_file()

Whole package: devtools::test(),
devtools::check()

Automated testing of your whole package is what takes priority. This is
ultimately the whole point of your tests. However, the interactive
experience is clearly important for the humans doing this work. Therefore
it’s important to find a pleasant workflow but also to ensure that you don’t
rig anything for interactive convenience that actually compromises the
health of the test suite.

These two modes of test-running should not be in conflict with each other.
If you perceive tension between these two modes, this can indicate you’re
not taking full advantage of some of testthat’s features and the way it’s
designed to work with devtools::load_all().

When working on your tests, use load_all(), just like you do when
working below R/. By default, load_all() does all of these things:

Simulates rebuilding, reinstalling, and reloading your package.



Makes everything in your package’s namespace available, including
unexported functions and objects and anything you’ve imported from
another package.

Attaches testthat, i.e., does library(testthat).

Runs test helper files, i.e., executes test/testthat/helper.R (more on that
soon).

This eliminates the need for any library() calls below tests/testthat/, for
the vast majority of R packages. Any instance of library(testthat)
is clearly no longer necessary. Likewise, any instance of attaching one of
your dependencies via library(somePkg) is unnecessary. In your tests,
if you need to call functions from somePkg, do it just as you do below R/. If
you have imported the function into your namespace, use fun(). If you
have not, use somePkg::fun(). It’s fair to say that
library(somePkg) in the tests should be about as rare as taking a
dependency via Depends, i.e., there is almost always a better alternative.

Unnecessary calls to library(somePkg) in test files have a real
downside, because they actually change the R landscape. library()
alters the search path. This means the circumstances under which you are
testing may not necessarily reflect the circumstances under which your
package will be used. This makes it easier to create subtle test bugs, which
you will have to unravel in the future.

One other function that should almost never appear below tests/testhat/ is
source(). There are several special files with an official role in testthat
workflows (see the next section), not to mention the entire R package
machinery, that provide better ways to make functions, objects, and other
logic available in your tests.

Files Relevant to Testing
Here we review which package files are especially relevant to testing and,
more generally, best practices for interacting with the filesystem from your



tests.

Hiding in Plain Sight: Files Below R/
The most important functions you’ll need to access from your tests are
clearly those in your package! Here we’re talking about everything that’s
defined below R/. The functions and other objects defined by your package
are always available when testing, regardless of whether or not they are
exported. For interactive work, devtools::load_all() takes care of
this. During automated testing, this is taken care of internally by testthat.

This implies that test helpers can absolutely be defined below R/ and used
freely in your tests. It might make sense to gather such helpers in a clearly
marked file, such as one of these:

. 
├── ... 
└── R 
    ├── ... 
    ├── test-helpers.R 
    ├── test-utils.R 
    ├── testthat.R 
    ├── utils-testing.R 
    └── ...

For example, the dbplyr package uses R/testthat.R to define a couple of
helpers to facilitate comparisons and expectations involving tbl objects,
which is used to represent database tables:

compare_tbl <- function(x, y, label = NULL, expected.label = 
NULL) { 
  testthat::expect_equal( 
    arrange(collect(x), dplyr::across(everything())), 
    arrange(collect(y), dplyr::across(everything())), 
    label = label, 
    expected.label = expected.label 
  )
} 
 
expect_equal_tbls <- function(results, ref = NULL, ...) { 
  # code that gets things ready ... 

https://oreil.ly/dN0iQ


 
  for (i in seq_along(rest)) { 
    compare_tbl( 
      rest[[i]], ref, 
      label = names(rest)[[i]], 
      expected.label = ref_name 
    ) 
  } 
 
  invisible(TRUE)
}

tests/testthat.R
Recall the initial testthat setup described in “Test Mechanics and
Workflow”. The standard tests/testthat.R file looks like this:

library(testthat)
library(pkg) 
 
test_check("pkg")

We repeat the advice to not edit tests/testthat.R. It is run during R CMD
check (and, therefore, devtools::check()) but is not used in most
other test-running scenarios (such as devtools::test() or
devtools::test_active_file() or during interactive
development). Do not attach your dependencies here with library().
Call them in your tests in the same manner as you do below R/ (“In Test
Code”, and “In Test Code”).

testthat Helper Files
Another type of file that is always executed by load_all() and at the
beginning of automated testing is a helper file, defined as any file below
tests/testthat/ that begins with helper. Helper files are a mighty weapon in
the battle to eliminate code floating around at the top-level of test files.
Helper files are a prime example of what we mean when we recommend
moving such code into a broader scope. Objects or functions defined in a
helper file are available to all of your tests.



If you have just one such file, you should probably name it helper.R. If you
organize your helpers into multiple files, you could include a suffix with
additional info. Here are examples of how such files might look:

. 
├── ... 
└── tests 
    ├── testthat 
    │   ├── helper.R 
    │   ├── helper-blah.R 
    │   ├── helper-foo.R 
    │   ├── test-foofy.R 
    │   └── (more test files) 
    └── testthat.R

Many developers use helper files to define custom test helper functions,
which we describe in detail in Chapter 15. Compared to defining helpers
below R/, some people find that tests/testthat/helper.R makes it more clear
that these utilities are specifically for testing the package. This location also
feels more natural if your helpers rely on testthat functions. For example,
usethis and vroom both have fairly extensive tests/testthat/helper.R files that
define many custom test helpers. Here are two very simple usethis helpers
that check that the currently active project (usually an ephemeral test
project) has a specific file or folder:

expect_proj_file <- function(...) 
expect_true(file_exists(proj_path(...)))
expect_proj_dir <- function(...) 
expect_true(dir_exists(proj_path(...)))

A helper file is also a good location for setup code that is needed for its side
effects. This is a case where tests/testthat/helper.R is clearly more
appropriate than a file below R/. For example, in an API-wrapping package,
helper.R is a good place to (attempt to) authenticate with the testing
credentials.2

testthat Setup Files

https://oreil.ly/582ha
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testthat has one more special file type: setup files, defined as any file below
test/testthat/ that begins with setup. Here’s an example of how that might
look:

. 
├── ... 
└── tests 
    ├── testthat 
    │   ├── helper.R 
    │   ├── setup.R 
    │   ├── test-foofy.R 
    │   └── (more test files) 
    └── testthat.R

A setup file is handled almost exactly like a helper file, but with two big
differences:

Setup files are not executed by devtools::load_all().

Setup files often contain the corresponding teardown code.

Setup files are good for global test setup that is tailored for test execution in
non-interactive or remote environments. For example, you might turn off
behavior that’s aimed at an interactive user, such as messaging or writing to
the clipboard.

If any of your setup should be reversed after test execution, you should also
include the necessary teardown code in setup.R.3 We recommend
maintaining teardown code alongside the setup code, in setup.R, because
this makes it easier to ensure they stay in sync. The artificial environment
teardown_env() exists as a magical handle to use in
withr::defer() and withr::local_*() / withr::with_*().

Here’s a setup.R example from the reprex package, where we turn off
clipboard and HTML preview functionality during testing:

op <- options(reprex.clipboard = FALSE, reprex.xhtml_preview = 
FALSE) 
 
withr::defer(options(op), teardown_env())



Since we are just modifying options here, we can be even more concise and
use the prebuilt function withr::local_options() and pass
teardown_env() as the .local_envir:

withr::local_options( 
  list(reprex.clipboard = FALSE, reprex.xhtml_preview = FALSE), 
  .local_envir = teardown_env()
)

Files Ignored by testthat
testthat automatically executes files only where these are both true:

File is a direct child of tests/testthat/

Filename starts with one of the specific strings:

helper

setup

test

It is fine to have other files or directories in tests/testthat/, but testthat won’t
automatically do anything with them (other than the _snaps directory,
which holds snapshots).

Storing Test Data
Many packages contain files that hold test data. Where should these be
stored? The best location is somewhere below tests/testthat/, often in a
subdirectory, to keep things neat. Following is an example, where
useful_thing1.rds and useful_thing2.rds hold objects used in the test files:

. 
├── ... 
└── tests 
    ├── testthat 
    │   ├── fixtures 
    │   │   ├── make-useful-things.R 

│ │ ├



    │   │   ├── useful_thing1.rds 
    │   │   └── useful_thing2.rds 
    │   ├── helper.R 
    │   ├── setup.R 
    │   └── (all the test files) 
    └── testthat.R

Then, in your tests, use testthat::test_path() to build a robust
filepath to such files:

test_that("foofy() does this", { 
  useful_thing <- readRDS(test_path("fixtures", 
"useful_thing1.rds")) 
  # ...
})

testthat::test_path() is extremely handy, because it produces the
correct path in the two important modes of test execution:

Interactive test development and maintenance, where the working
directory is presumably set to the top-level of the package.

Automated testing, where the working directory is usually set to
something below tests/.

Where to Write Files During Testing
If it’s easy to avoid writing files from your tests, that is definitely the best
plan. But many times you really must write files.

You should write files only inside the session temp directory. Do not write
into your package’s tests/ directory. Do not write into the current working
directory. Do not write into the user’s home directory. Even though you are
writing into the session temp directory, you should still clean up after
yourself, i.e., delete any files you’ve written.

Most package developers don’t want to hear this, because it sounds like a
hassle. But it’s not that burdensome once you get familiar with a few
techniques and build some new habits. A high level of filesystem discipline



also eliminates various testing bugs and will absolutely make your CRAN
life run more smoothly.

This test is from roxygen2 and demonstrates everything we recommend:

test_that("can read from file name with utf-8 path", { 
  path <- withr::local_tempfile( 
    pattern = "Universit\u00e0-", 
    lines = c("#' @include foo.R", NULL) 
  ) 
  expect_equal(find_includes(path), "foo.R")
})

withr::local_tempfile() creates a file within the session temp
directory whose lifetime is tied to the “local” environment—in this case, the
execution environment of an individual test. It is a wrapper around
base::tempfile() and passes, e.g., the pattern argument through,
so you have some control over the filename. You can optionally provide
lines to populate the file at creation time or you can write to the file in all
the usual ways in subsequent steps. Finally, with no special effort on your
part, the temporary file will automatically be deleted at the end of the test.

Sometimes you need even more control over the filename. In that case, you
can use withr::local_tempdir() to create a self-deleting temporary
directory and write intentionally named files inside this directory.

1  Base R’s on.exit() is another alternative, but it requires more from you. You need to
capture the original state and write the restoration code yourself. Also remember to do
on.exit(..., add = TRUE) if there’s any chance a second on.exit() call could be
added in the test. You probably also want to default to after = FALSE.

2  googledrive does this in https://oreil.ly/fWgjm.

3  A legacy approach (which still works but is no longer recommended) is to put teardown code
in tests/testthat/teardown.R.

https://oreil.ly/fWgjm


Chapter 15. Advanced Testing
Techniques

This chapter runs a few small bits of testthat code, so we must do some
setup that is not necessary in organic testthat usage.

WARNING
Your test files should not include these library() calls. We also explicitly request testthat
edition 3, but in a real package this will be declared in DESCRIPTION:

library(testthat)
local_edition(3)

Test Fixtures
When it’s not practical to make your test entirely self-sufficient, prefer
making the necessary object, logic, or conditions available in a structured,
explicit way. There’s a preexisting term for this in software engineering: a
test fixture.

A test fixture is something used to consistently test some item, device, or
piece of software. — Wikipedia

The main idea is that we need to make it as easy and obvious as possible to
arrange the world into a state that is conducive to testing. We describe
several specific solutions to this problem:

Put repeated code in a constructor-type helper function. Memoise it, if
construction is demonstrably slow.



If the repeated code has side effects, write a custom local_*()
function to do what’s needed and clean up afterwards.

If the preceding approaches are too slow or awkward and the thing you
need is fairly stable, save it as a static file and load it.

Create useful_things with a Helper Function
Is it fiddly to create a useful_thing? Does it take several lines of code
but not much time or memory? In that case, write a helper function to create
a useful_thing on-demand:

new_useful_thing <- function() { 
  # your fiddly code to create a useful_thing goes here
}

and call that helper in the affected tests:

test_that("foofy() does this", { 
  useful_thing1 <- new_useful_thing() 
  expect_equal(foofy(useful_thing1, x = "this"), 
EXPECTED_FOOFY_OUTPUT)
}) 
 
test_that("foofy() does that", { 
  useful_thing2 <- new_useful_thing() 
  expect_equal(foofy(useful_thing2, x = "that"), 
EXPECTED_FOOFY_OUTPUT)
})

Where should the new_useful_thing() helper be defined? This
comes back to what we outlined in “Files Relevant to Testing”. Test helpers
can be defined below R/, just like any other internal utility in your package.
Another popular location is in a test helper file, e.g., tests/testthat/helper.R.
A key feature of both options is that the helpers are made available to you
during interactive maintenance via devtools::load_all().

If it’s fiddly and costly to create a useful_thing, your helper function
could even use memoisation to avoid unnecessary recomputation. Once you



have a helper like new_useful_thing(), you often discover that it has
uses beyond testing, e.g., behind-the-scenes in a vignette. Sometimes you
even realize you should just define it below R/ and export and document it,
so you can use it freely in documentation and tests.

Create (and Destroy) a Local useful_thing
So far, our example of a useful_thing was a regular R object, which is
cleaned up automatically at the end of each test. What if the creation of a
useful_thing has a side effect on the local filesystem, on a remote
resource, R session options, environment variables, or the like? Then your
helper function should create a useful_thing and clean up afterwards.
Instead of a simple new_useful_thing() constructor, you’ll write a
customized function in the style of withr’s local_*() functions:

local_useful_thing <- function(..., env = parent.frame()) { 
  # your fiddly code to create a useful_thing goes here 
  withr::defer( 
    # your fiddly code to clean up after a useful_thing goes here 
    envir = env 
  )
}

Use it in your tests like this:

test_that("foofy() does this", { 
  useful_thing1 <- local_useful_thing() 
  expect_equal(foofy(useful_thing1, x = "this"), 
EXPECTED_FOOFY_OUTPUT)
}) 
 
test_that("foofy() does that", { 
  useful_thing2 <- local_useful_thing() 
  expect_equal(foofy(useful_thing2, x = "that"), 
EXPECTED_FOOFY_OUTPUT)
})

Where should the local_useful_thing() helper be defined? All the
advice given previously for new_useful_thing() applies: define it



below R/ or in a test helper file.

To learn more about writing custom helpers like
local_useful_thing(), see the testthat vignette on test fixtures.

Store a Concrete useful_thing Persistently
If a useful_thing is costly to create, in terms of time or memory,
maybe you don’t actually need to re-create it for each test run. You could
make the useful_thing once, store it as a static test fixture, and load it
in the tests that need it. Here’s a sketch of how this could look:

test_that("foofy() does this", { 
  useful_thing1 <- readRDS(test_path("fixtures", 
"useful_thing1.rds")) 
  expect_equal(foofy(useful_thing1, x = "this"), 
EXPECTED_FOOFY_OUTPUT)
}) 
 
test_that("foofy() does that", { 
  useful_thing2 <- readRDS(test_path("fixtures", 
"useful_thing2.rds")) 
  expect_equal(foofy(useful_thing2, x = "that"), 
EXPECTED_FOOFY_OUTPUT)
})

Now we can revisit a file listing from earlier, which addressed exactly this
scenario:

. 
├── ... 
└── tests 
    ├── testthat 
    │   ├── fixtures 
    │   │   ├── make-useful-things.R 
    │   │   ├── useful_thing1.rds 
    │   │   └── useful_thing2.rds 
    │   ├── helper.R 
    │   ├── setup.R 
    │   └── (all the test files) 
    └── testthat.R

https://oreil.ly/2nJm-


This shows static test files stored in tests/testthat/fixtures/, but also notice
the companion R script, make-useful-things.R. From data analysis, we all
know there is no such thing as a script that is run only once. Refinement
and iteration are inevitable. This also holds true for test objects like
useful_thing1.rds. We highly recommend saving the R code used to create
your test objects, so that they can be re-created as needed.

Building Your Own Testing Tools
Let’s return to the topic of duplication in your test code. We’ve encouraged
you to have a higher tolerance for repetition in test code, in the name of
making your tests obvious. But there’s still a limit to how much repetition
to tolerate. We’ve covered techniques such as loading static objects with
test_path(), writing a constructor like new_useful_thing(), or
implementing a test fixture like local_useful_thing(). There are
even more types of test helpers that can be useful in certain situations.

Helper Defined Inside a Test
Consider this test for the str_trunc() function in stringr:

# from stringr (hypothetically)
test_that("truncations work for all sides", { 
  expect_equal( 
    str_trunc("This string is moderately long", width = 20, side 
= "right"), 
    "This string is mo..." 
  ) 
  expect_equal( 
    str_trunc("This string is moderately long", width = 20, side 
= "left"), 
    "...s moderately long" 
  ) 
  expect_equal( 
    str_trunc("This string is moderately long", width = 20, side 
= "center"), 
    "This stri...ely long" 
  )
})



There’s a lot of repetition here, which increases the chance of copy/paste
errors and generally makes your eyes glaze over. Sometimes it’s nice to
create a hyper-local helper, inside the test. Here’s how the test actually
looks in stringr:

# from stringr (actually)
test_that("truncations work for all sides", { 
 
  trunc <- function(direction) str_trunc( 
    "This string is moderately long", 
    direction, 
    width = 20 
  ) 
 
  expect_equal(trunc("right"),   "This string is mo...") 
  expect_equal(trunc("left"),    "...s moderately long") 
  expect_equal(trunc("center"),  "This stri...ely long")
})

A hyper-local helper like trunc() is particularly useful when it allows
you to fit all the important business for each expectation on one line. Then
your expectations can be read almost like a table of actual versus expected,
for a set of related use cases. In the preceding example, it’s very easy to
watch the result change as we truncate the input from the right, left, and in
the center.

Note that this technique should be used in extreme moderation. A helper
like trunc() is yet another place where you can introduce a bug, so it’s
best to keep such helpers extremely short and simple.

Custom Expectations
If a more complicated helper feels necessary, it’s a good time to reflect on
why that is. If it’s fussy to get into position to test a function, that could be a
sign that it’s also fussy to use that function. Do you need to refactor it? If
the function seems sound, then you probably need to use a more formal
helper, defined outside of any individual test, as described earlier.



One specific type of helper you might want to create is a custom
expectation. Here are two very simple ones from usethis:

expect_usethis_error <- function(...) { 
  expect_error(..., class = "usethis_error")
} 
 
expect_proj_file <- function(...) { 
  expect_true(file_exists(proj_path(...)))
}

expect_usethis_error() checks that an error has the
"usethis_error" class. expect_proj_file() is a simple
wrapper around file_exists() that searches for the file in the current
project. These are very simple functions, but the sheer amount of repetition
and the expressiveness of their names makes them feel justified.

It is somewhat involved to make a proper custom expectation, i.e., one that
behaves like the expectations built into testthat. We refer you to the
“Custom expectations” vignette if you wish to learn more about that.

Finally, it can be handy to know that testthat makes specific information
available when it’s running:

The environment variable TESTTHAT is set to "true".
testthat::is_testing() is a shortcut:

is_testing <- function() { 

  Sys.getenv("TESTTHAT")

}

The package-under-test is available as the environment variable
TESTTHAT_PKG and testthat::testing_package() is a
shortcut:

testing_package <- function() { 

  Sys.getenv("TESTTHAT_PKG")

https://oreil.ly/G1vfN


}

In some situations, you may want to exploit this information without taking
a run-time dependency on testthat. In that case, just inline the source of
these functions directly into your package.

When Testing Gets Hard
Despite all the techniques we’ve covered so far, there remain situations
where it still feels very difficult to write tests. In this section, we review
more ways to deal with challenging situations:

Skipping a test in certain situations

Mocking an external service

Dealing with secrets

Skipping a Test
Sometimes it’s impossible to perform a test—you may not have an internet
connection or you may not have access to the necessary credentials.
Unfortunately, another likely reason follows from this simple rule: the more
platforms you use to test your code, the more likely it is that you won’t be
able to run all of your tests, all of the time. In short, there are times when,
instead of getting a failure, you just want to skip a test.

testthat::skip()
Here we use testthat::skip() to write a hypothetical custom
skipper, skip_if_no_api():

skip_if_no_api() <- function() { 
  if (api_unavailable()) { 
    skip("API not available") 
  }
} 
 



test_that("foo api returns bar when given baz", { 
  skip_if_no_api() 
  ...
})

skip_if_no_api() is yet another example of a test helper, and the
advice already given about where to define it applies here too.

skip()s and the associated reasons are reported inline as tests are
executed and are also indicated clearly in the summary:

devtools::test()
#> ℹ Loading abcde
#> ℹ Testing abcde
#> ✔ | F W S  OK | Context
#> ✔ |         2 | blarg
#> ✔ |     1   2 | foofy
#> 
─────────────────────────────────────────────────────────────────
───────────
#> Skip (test-foofy.R:6:3): foo api returns bar when given baz
#> Reason: API not available
#> 
─────────────────────────────────────────────────────────────────
───────────
#> ✔ |         0 | yo
#> ══ Results 
═════════════════════════════════════════════════════════════════
#>> ── Skipped tests  
──────────────────────────────────────────────────────────
#> • API not available (1)
#>
#> [ FAIL 0 | WARN 0 | SKIP 1 | PASS 4 ]
#>
#> 

Something like skip_if_no_api() is likely to appear many times in
your test suite. This is another occasion where it is tempting to DRY things
out, by hoisting the skip() to the top-level of the file. However, we still
lean toward calling skip_if_no_api() in each test where it’s needed:



# we prefer this:
test_that("foo api returns bar when given baz", { 
  skip_if_no_api() 
  ...
}) 
 
test_that("foo api returns an errors when given qux", { 
  skip_if_no_api() 
  ...
}) 
 
# over this:
skip_if_no_api() 
 
test_that("foo api returns bar when given baz", {...}) 
 
test_that("foo api returns an errors when given qux", {...})

Within the realm of top-level code in test files, having a skip() at the
very beginning of a test file is one of the more benign situations. But once a
test file does not fit entirely on your screen, it creates an implicit yet easy-
to-miss connection between the skip() and individual tests.

Built-In skip() functions
Similar to testthat’s built-in expectations, a family of skip() functions
anticipates some common situations. These functions often relieve you of
the need to write a custom skipper. Here are some examples of the most
useful skip() functions:

test_that("foo api returns bar when given baz", { 
  skip_if(api_unavailable(), "API not available") 
  ...
})
test_that("foo api returns bar when given baz", { 
  skip_if_not(api_available(), "API not available") 
  ...
}) 
 
skip_if_not_installed("sp")
skip_if_not_installed("stringi", "1.2.2") 
 
skip_if_offline()



skip_on_cran()
skip_on_os("windows")

Dangers of skipping
One challenge with skips is that they are currently completely invisible in
CI—if you automatically skip too many tests, it’s easy to fool yourself that
all your tests are passing when in fact they’re just being skipped! In an ideal
world, your CI/CD would make it easy to see how many tests are being
skipped and how that changes over time.

It’s a good practice to regularly dig into the R CMD check results,
especially on CI, and make sure the skips are as you expect. But this tends
to be something you have to learn through experience.

Mocking
In the practice known as mocking, we replace something that’s complicated
or unreliable or out of our control with something simpler, that’s fully
within our control. Usually we are mocking an external service, such as a
REST API, or a function that reports something about session state, such as
whether the session is interactive.

The classic application of mocking is in the context of a package that wraps
an external API. In order to test your functions, technically you need to
make a live call to that API to get a response, which you then process. But
what if that API requires authentication or what if it’s somewhat flaky and
has occasional downtime? It can be more productive to just pretend to call
the API but, instead, to test the code under your control by processing a
prerecorded response from the actual API.

Our main advice about mocking is to avoid it if you can. This is not an
indictment of mocking, just a realistic assessment that mocking introduces
new complexity that is not always justified by the payoffs.

Since most R packages do not need full-fledged mocking, we do not cover
it here. Instead we’ll point you to the packages that represent the state-of-
the-art for mocking in R today:



mockery

mockr

httptest

httptest2

webfakes

Note also that, at the time of writing, it seems likely that the testthat
package will reintroduce some mocking capabilities (after getting out of the
mocking business once already). Version v3.1.7 has two new experimental
functions: testthat::with_mocked_bindings() and
testthat::local_mocked_bindings().

Secrets
Another common challenge for packages that wrap an external service is
the need to manage credentials. Specifically, it is likely that you will need to
provide a set of test credentials to fully test your package.

Our main advice here is to design your package so that large parts of it can
be tested without live, authenticated access to the external service.

Of course, you still want to be able to test your package against the actual
service that it wraps, in environments that support secure environment
variables. Since this is also a very specialized topic, we won’t go into more
detail here. Instead we refer you to the Wrapping APIs vignette in the httr2
package, which offers substantial support for secret management.

Special Considerations for CRAN Packages
CRAN runs R CMD check on all contributed packages, both upon
submission and on a regular basis after acceptance. This check includes, but
is not limited to, your testthat tests. We discuss the general challenge of
preparing your package to face all of CRAN’s check “flavors” in “CRAN

https://github.com/r-lib/mockery
https://krlmlr.github.io/mockr
https://enpiar.com/r/httptest
https://enpiar.com/httptest2
https://webfakes.r-lib.org/
https://oreil.ly/NYmvQ


Check Flavors and Related Services”. Here we focus on CRAN-specific
considerations for your test suite.

When a package runs afoul of the CRAN Repository Policy, the test suite is
very often the culprit (although not always). If your package is destined for
CRAN, this should influence how you write your tests and how (or
whether) they will be run on CRAN.

Skip a Test
If a specific test simply isn’t appropriate to be run by CRAN, include
skip_on_cran() at the very start:

test_that("some long-running thing works", { 
  skip_on_cran() 
  # test code that can potentially take "a while" to run
})

Under the hood, skip_on_cran() consults the NOT_CRAN environment
variable. Such a test will run when NOT_CRAN has been explicitly defined
as "true". This variable is set by devtools and testthat, allowing those
tests to run in environments where you expect success (and where you can
tolerate and troubleshoot occasional failure).

In particular, the GitHub Actions workflows that we recommend in
“GitHub Actions” will run tests with NOT_CRAN = "true". For certain
types of functionality, there is no practical way to test it on CRAN and your
own checks, on GitHub Actions or an equivalent continuous integration
service, are your best method of quality assurance.

In rare cases it makes sense to maintain tests outside of your package
altogether. The tidymodels team uses this strategy for integration-type tests
of their whole ecosystem that would be impossible to host inside an
individual CRAN package.

Speed

https://oreil.ly/NbCYF


Your tests need to run relatively quickly—ideally, less than a minute, in
total. Use skip_on_cran() in a test that is unavoidably long-running.

Reproducibility
Be careful about testing things that are likely to be variable on CRAN
machines. It’s risky to test how long something takes (because CRAN
machines are often heavily loaded) or to test parallel code (because CRAN
runs multiple package tests in parallel, multiple cores will not always be
available). Numerical precision can also vary across platforms, so use
expect_equal() unless you have a specific reason for using
expect_identical().

Flaky Tests
Due to the scale at which CRAN checks packages, there is basically no
latitude for a test that’s “just flaky,” i.e., sometimes fails for incidental
reasons. CRAN does not process your package’s test results the way you
do, where you can inspect each failure and exercise some human judgment
about how concerning it is.

It’s probably a good idea to eliminate flaky tests, just for your own sake!
But if you have valuable, well-written tests that are prone to occasional
nuisance failure, definitely put skip_on_cran() at the start.

The classic example is any test that accesses a website or web API. Given
that any web resource in the world will experience occasional downtime,
it’s best to not let such tests run on CRAN. The CRAN Repository Policy
says:

Packages which use Internet resources should fail gracefully with an
informative message if the resource is not available or has changed (and
not give a check warning nor error).

Often making such a failure “graceful” would run counter to the behavior
you actually want in practice, i.e., you would want your user to get an error



if their request fails. This is why it is usually more practical to test such
functionality elsewhere.

Recall that snapshot tests (see Chapter 13), by default, are also skipped on
CRAN. You typically use such tests to monitor, e.g., how various
informational messages look. Slight changes in message formatting are
something you want to be alerted to, but they do not indicate a major defect
in your package. This is the motivation for the default skip_on_cran()
behavior of snapshot tests.

Finally, flaky tests cause problems for the maintainers of your
dependencies. When the packages you depend on are updated, CRAN runs
R CMD check on all reverse dependencies, including your package. If
your package has flaky tests, your package can be the reason another
package does not clear CRAN’s incoming checks and can delay its release.

Process and Filesystem Hygiene
In “Where to Write Files During Testing”, we urged you to write only into
the session temp directory and to clean up after yourself. This practice
makes your test suite much more maintainable and predictable. For
packages that are (or aspire to be) on CRAN, this is absolutely required per
the CRAN repository policy:

Packages should not write in the user’s home filespace (including
clipboards), nor anywhere else on the file system apart from the R
session’s temporary directory (or during installation in the location
pointed to by TMPDIR: and such usage should be cleaned up)…. Limited
exceptions may be allowed in interactive sessions if the package obtains
confirmation from the user.

Similarly, you should make an effort to be hygienic with respect to any
processes you launch:

Packages should not start external software (such as PDF viewers or
browsers) during examples or tests unless that specific instance of the
software is explicitly closed afterwards.



Accessing the clipboard is the perfect storm that potentially runs afoul of
both of these guidelines, as the clipboard is considered part of the user’s
home filespace and, on Linux, can launch an external process (e.g., xsel or
xclip). Therefore it is best to turn off any clipboard functionality in your
tests (and to ensure that, during authentic usage, your user is clearly opting-
in to that).



Part V. Documentation



Chapter 16. Function
Documentation

In this chapter, you’ll learn about function documentation, which users
access with ?somefunction or help("somefunction"). Base R
provides a standard way of documenting a package where each function is
documented in a topic, an .Rd file (“R documentation”) in the man/
directory. .Rd files use a custom syntax, loosely based on LaTeX, and can
be rendered to HTML, plain text, or PDF, as needed, for viewing in
different contexts.

In the devtools ecosystem, we don’t edit .Rd files directly. Instead, we
include specially formatted “roxygen comments” above the source code for
each function.1 Then we use the roxygen2 package to generate the .Rd files
from these special comments.2 There are a few advantages to using
roxygen2:

Code and documentation are co-located. When you modify your code,
it’s easy to remember to also update your documentation.

You can use markdown, rather than having to learn a one-off markup
language that only applies to .Rd files. In addition to formatting, the
automatic hyperlinking functionality makes it much, much easier to
create richly linked documentation.

There’s a lot of .Rd boilerplate that’s automated away.

roxygen2 provides a number of tools for sharing content across
documentation topics and even between topics and vignettes.

In this chapter we’ll focus on documenting functions, but the same ideas
apply to documenting datasets (see “Documenting Datasets”), classes and

https://oreil.ly/ygJdd


generics, and packages. You can learn more about those important topics in
vignette("rd-other", package = "roxygen2").

roxygen2 Basics
To get started, we’ll work through the basic roxygen2 workflow and discuss
the overall structure of roxygen2 comments, which are organized into
blocks and tags. We also highlight the biggest wins of using markdown with
roxygen2.

The Documentation Workflow
Unlike with testthat, there’s no obvious opening move to declare that you’re
going to use roxygen2 for documentation. That’s because the use of
roxygen2 is purely a matter of your development workflow. It has no effect
on, e.g., how a package gets checked or built. We think the roxygen
approach is the best way to generate your .Rd files, but officially R only
cares about the files themselves, not how they came to be.

Your documentation workflow truly begins when you start to add roxygen
comments above your functions. Roxygen comment lines always start with
#' , the usual # for a comment, followed immediately by a single quote ':

#' Add together two numbers
#'
#' @param x A number.
#' @param y A number.
#' @returns A numeric vector.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) { 
  x + y
}



RSTUDIO
Usually you write your function first, then its documentation. Once the function definition exists,
put your cursor somewhere in it and do Code > Insert Roxygen Skeleton to get a great head start
on the roxygen comment.

Once you have at least one roxygen comment, run
devtools::document() to generate (or update) your package’s .Rd
files.3 Under the hood, this ultimately calls
roxygen2::roxygenise(). The preceding roxygen block generates a
man/add.Rd file that looks like this:

% Generated by roxygen2: do not edit by hand 
% Please edit documentation in R/add.R 
\name{add} 
\alias{add} 
\title{Add together two numbers} 
\usage{ 
add(x, y) 
} 
\arguments{ 
\item{x}{A number.} 
 
\item{y}{A number.} 
} 
\value{ 
A numeric vector. 
} 
\description{ 
Add together two numbers 
} 
\examples{ 
add(1, 1) 
add(10, 1) 
}

RSTUDIO
You can also run devtools::document() with the keyboard shortcut Ctrl/Cmd-Shift-D or
via the Build menu or pane.



If you’ve used LaTeX before, this should look vaguely familiar since the
.Rd format is loosely based on LaTeX. If you are interested in the .Rd
format, you can read more in Writing R Extensions. But generally you’ll
never need to look at .Rd files, except to commit them to your package’s Git
repository.

How does this .Rd file correspond to the documentation you see in R?
When you run ?add, help("add"), or example("add"), R looks for
an .Rd file containing \alias{add}. It then parses the file, converts it
into HTML, and displays it. Figure 16-1 shows how this help topic would
look in RStudio.
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Figure 16-1. Help topic rendered to HTML

R CMD CHECK WARNING
You should document all exported functions and datasets. Otherwise, you’ll get this warning from
R CMD check:

W  checking for missing documentation entries (614ms) 
  Undocumented code objects: 
    ‘somefunction’ 
  Undocumented data sets: 
    ‘somedata’ 
  All user-level objects in a package should have 
  documentation entries.

Conversely, you probably don’t want to document unexported functions. If you want to use
roxygen comments for internal documentation, include the @noRd tag to suppress the creation of
the .Rd file.

This is also a good time to explain something you may have noticed in your
DESCRIPTION file:

Roxygen: list(markdown = TRUE)

devtools/usethis includes this by default when initiating a DESCRIPTION
file and it gives roxygen2 a heads-up that your package uses markdown
syntax in its roxygen comments.4

The default help-seeking process looks inside installed packages, so to see
your package’s documentation during development, devtools overrides the
usual help functions with modified versions that know to consult the current
source package. To activate these overrides, you’ll need to run
devtools::load_all() at least once. If it feels like your edits to the
roxygen comments aren’t having an effect, double-check that you have
actually regenerated the .Rd files with devtools::document() and
that you’ve loaded your package. When you call ?function, you should
see “Rendering development documentation …”



To summarize, there are four steps in the basic roxygen2 workflow:

1. Add roxygen2 comments to your .R files.

2. Run devtools::document() or press Ctrl/Cmd-Shift-D to
convert roxygen2 comments to .Rd files.

3. Preview documentation with ?function.

4. Rinse and repeat until the documentation looks the way you want.

roxygen2 Comments, Blocks, and Tags
Now that you understand the basic workflow, we’ll go into more detail
about the syntax. roxygen2 comments start with #' and all the roxygen2
comments preceding a function are collectively called a block. Blocks are
broken up by tags, which look like @tagName tagValue, and the
content of a tag extends from the end of the tag name to the start of the next
tag.5 A block can contain text before the first tag, which is called the
introduction. By default, each block generates a single documentation topic,
i.e., a single .Rd file6 in the man/ directory.

Throughout this chapter we’ll show you roxygen2 comments from real
tidyverse packages, focusing on stringr, since the functions there tend to be
fairly straightforward, leading to documentation that’s understandable with
relatively little context. We attach stringr here so that its functions are
hyperlinked in the rendered book (more on that in “Key Markdown
Features”):

library(stringr)

Here’s a simple first example—the documentation for str_unique():

#' Remove duplicated strings
#'
#' `str_unique()` removes duplicated values, with optional 
control over
#' how duplication is measured.

https://stringr.tidyverse.org/


#'
#' @param string Input vector. Either a character vector, or 
something
#'  coercible to one.
#' @param ... Other options used to control matching behavior 
between duplicate
#'   strings. Passed on to [stringi::stri_opts_collator()].
#' @returns A character vector, usually shorter than `string`.
#' @seealso [unique()], [stringi::stri_unique()] which this 
function wraps.
#' @examples
#' str_unique(c("a", "b", "c", "b", "a"))
#'
#' # Use ... to pass additional arguments to stri_unique()
#' str_unique(c("motley", "mötley", "pinguino", "pingüino"))
#' str_unique(c("motley", "mötley", "pinguino", "pingüino"), 
strength = 1)
#' @export
str_unique <- function(string, ...) { 
  ...
}

Here the introduction includes the title (“Remove duplicated strings”) and a
basic description of what the function does. The introduction is followed by
five tags: two @params, one @returns, one @seealso, one
@examples, and one @export.

Note that the block has an intentional line length (typically the same as that
used for the surrounding R code) and the second and subsequent lines of the
long @param tag are indented, which makes the entire block easier to scan.
You can get more roxygen2 style advice in the tidyverse style guide.

RSTUDIO
It can be aggravating to manually manage the line length of roxygen comments, so be sure to try
out Code > Reflow Comment (Ctrl/Cmd-Shift-/).

Note also that the order in which tags appear in your roxygen comments (or
even in handwritten .Rd files) does not dictate the order in rendered
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documentation. The order of presentation is determined by tooling within
base R.

The following sections go into more depth for the most important tags. We
start with the introduction, which provides the title, description, and details.
Then we cover the inputs (the function arguments), outputs (the return
value), and examples. Next we discuss links and cross-references, then
finish off with techniques for sharing documentation between topics.

Key Markdown Features
For the most part, general markdown and R Markdown knowledge suffice
for taking advantage of markdown in roxygen2. But there are a few pieces
of syntax that are so important we want to highlight them here. You’ll see
these in many of the examples in this chapter:

Backticks for inline code

Use backticks to format a piece of text as code, i.e., in a fixed width
font. Example:

#' I like `thisfunction()`, because it's great.

Square brackets for an auto-linked function

Enclose text like somefunction() and
somepackage::somefunction() in square brackets to get an
automatic link to that function’s documentation. Be sure to include the
trailing parentheses, because it’s good style and it causes the function to
be formatted as code, i.e., you don’t need to add backticks. Example:

#' It's obvious that `thisfunction()` is better than

#' [otherpkg::otherfunction()] #' or even our own

#' [olderfunction()].



Vignettes

If you refer to a vignette with an inline call to vignette("some-
topic"), it serves a dual purpose. First, this is literally the R code you
would execute to view a vignette locally. But wait, there’s more! In
many rendered contexts, this automatically becomes a hyperlink to that
same vignette in a pkgdown website. Here we use that to link to some
very relevant vignettes:7

vignette("rd-formatting", package =
"roxygen2")

vignette("reuse", package = "roxygen2")

vignette("linking", package = "pkgdown")

Lists

Bullet lists break up the dreaded “wall of text” and can make your
documentation easier to scan. You can use them in the description of the
function or of an argument and also for the return value. It is not
necessary to include a blank line before the list, but that is also allowed.

#' Best features of `thisfunction()`:

#' * Smells nice

#' * Has good vibes

Title, Description, Details
The introduction provides a title, description, and, optionally, details for the
function. While it’s possible to use explicit tags in the introduction, we
usually rely on implicit tags when possible:

The title is taken from the first sentence. It should be written in
sentence case, not end in a full stop, and be followed by a blank line.
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The title is shown in various function indexes (e.g., help(package
= "somepackage")) and is what the user will usually see when
browsing multiple functions.

The description is taken from the next paragraph. It’s shown at the top
of documentation and should briefly describe the most important
features of the function.

Additional details are anything after the description. Details are
optional, but can be any length; they are useful if you want to dig deep
into some important aspect of the function. Note that, even though the
details come right after the description in the introduction, they appear
much later in rendered documentation.

The following sections describe each component in more detail, and then
discuss a few useful related tags.

Title
When writing the title, it’s useful to think about how it will appear in the
reference index. When a user skims the index, how will they know which
functions will solve their current problem? This requires thinking about
what your functions have in common (which doesn’t need to be repeated in
every title) and what is unique to that function (which should be highlighted
in the title).

When we wrote this chapter, we found the function titles for stringr to be
somewhat disappointing. But they provide a useful negative case study:

str_detect()

Detect the presence or absence of a pattern in a string

str_extract()

Extract matching patterns from a string

str_locate()



Locate the position of patterns in a string

str_match()

Extract matched groups from a string

There’s a lot of repetition (“pattern,” “from a string”) and the verb used for
the function name is repeated in the title, so if you don’t understand the
function already, the title seems unlikely to help much. Hopefully we’ll
have improved those titles by the time you read this!

In contrast, these titles from dplyr are much better:8

mutate()

Create, modify, and delete columns

summarize()

Summarize each group down to one row

filter()

Keep rows that match a condition

select()

Keep or drop columns using their names and types

arrange()

Order rows using column values

Here we try to succinctly describe what the function does, making sure to
describe whether it affects rows, columns, or groups. We do our best to use
synonyms, instead of repeating the function name, to hopefully give folks
another chance to understand the intent of the function.

Description



The purpose of the description is to summarize the goal of the function,
usually in a single paragraph. This can be challenging for simple functions,
because it can feel like you’re just repeating the title of the function. Try to
find a slightly different wording, if you can. It’s OK if this feels a little
repetitive; it’s often useful for users to see the same thing expressed in two
different ways. It’s a little extra work, but the extra effort is often worth it.
Here’s the description for str_detect():

#' Detect the presence/absence of a match
#'
#' `str_detect()` returns a logical vector with `TRUE` for each 
element of
#' `string` that matches `pattern` and `FALSE` otherwise. It's 
equivalent to
#' `grepl(pattern, string)`.

If you want more than one paragraph, you must use an explicit
@description tag to prevent the second (and subsequent) paragraphs
from being turned into the @details. Here’s a two-paragraph
@description from str_view():

#' View strings and matches
#'
#' @description
#' `str_view()` is used to print the underlying representation of 
a string and
#' to see how a `pattern` matches.
#'
#' Matches are surrounded by `<>` and unusual whitespace (i.e. 
all whitespace
#' apart from `" "` and `"\n"`) are surrounded by `{}` and 
escaped. Where
#' possible, matches and unusual whitespace are coloured blue and 
`NA`s red.

Here’s another example from str_like(), which has a bullet list in
@description:

#' Detect a pattern in the same way as `SQL`'s `LIKE` operator
#'



#' @description
#' `str_like()` follows the conventions of the SQL `LIKE` 
operator:
#'
#' * Must match the entire string.
#' * `&#x5f;` matches a single character (like `.`).
#' * `%` matches any number of characters (like `.*`).
#' * `\%` and `\&#x5f;` match literal `%` and `&#x5f;`.
#' * The match is case insensitive by default.

Basically, if you’re going to include an empty line in your description,
you’ll need to use an explicit @description tag.

Finally, it’s often particularly hard to write a good description if you’ve just
written the function, because the purpose often seems very obvious. Do
your best, and then come back later, when you’ve forgotten exactly what
the function does. Once you’ve re-derived what the function does, you’ll be
able to write a better description.

Details
The @details are just any additional details or explanation that you think
your function needs. Most functions don’t need details, but some functions
need a lot. If you have a lot of information to convey, it’s a good idea to use
informative markdown headings to break the details up into manageable
sections.9 Here’s an example from dplyr::mutate(). We’ve elided
some of the details to keep this example short, but you should still get a
sense of how we used headings to break up the content into skimmable
chunks:

#' Create, modify, and delete columns
#'
#' `mutate()` creates new columns that are functions of existing 
variables.
#' It can also modify (if the name is the same as an existing
#' column) and delete columns (by setting their value to `NULL`).
#'
#' @section Useful mutate functions:
#'
#' * [`+`], [`-`], [log()], etc., for their usual mathematical 



meanings
#'
#' ...
#'
#' @section Grouped tibbles:
#'
#' Because mutating expressions are computed within groups, they 
may
#' yield different results on grouped tibbles. This will be the 
case
#' as soon as an aggregating, lagging, or ranking function is
#' involved. Compare this ungrouped mutate:
#'
#' ...

This is a good time to remind ourselves that, even though a heading like
Useful mutate functions in the previous example comes
immediately after the description in the roxygen block, the content appears
much later in the rendered documentation. The details (whether they use
section headings or not) appear after the function usage, arguments, and
return value.

Arguments
For most functions, the bulk of your work will go toward documenting how
each argument affects the output of the function. For this purpose, you’ll
use @param (short for parameter, a synonym of argument) followed by the
argument name and a description of its action.

The highest priority is to provide a succinct summary of the allowed inputs
and what the parameter does. For example, here’s how str_detect()
documents string:

#' @param string Input vector. Either a character vector, or 
something
#'  coercible to one.

And here are three of the arguments to str_flatten():



#' @param collapse String to insert between each piece. Defaults 
to `""`.
#' @param last Optional string to use in place of the final 
separator.
#' @param na.rm Remove missing values? If `FALSE` (the default), 
the result
#'   will be `NA` if any element of `string` is `NA`.

Note that @param collapse and @param na.rm describe their
default arguments. This is often a good practice because the function usage
(which shows the default values) and the argument description are often
quite far apart in the rendered documentation. But there are downsides. The
main one is that this duplication means you’ll need to make updates in two
places if you change the default value; we believe this small amount of
extra work is worth it to make the life of the user easier.

If an argument has a fixed set of possible parameters, you should list them.
If they’re simple, you can just list them in a sentence, like in
str_trim():

#' @param side Side on which to remove whitespace: `"left"`, 
`"right"`, or
#'   `"both"` (the default).

If they need more explanation, you might use a bulleted list, as in
str_wrap():

#' @param whitespace_only A boolean.
#'   * `TRUE` (the default): wrapping will only occur at 
whitespace.
#'   * `FALSE`: can break on any non-word character (e.g. `/`, `-
`).

The documentation for most arguments will be relatively short, often one or
two sentences. But you should take as much space as you need, and you’ll
see some examples of multiparagraph argument docs shortly.

Multiple Arguments



If the behavior of multiple arguments is tightly coupled, you can document
them together by separating the names with commas (with no spaces). For
example, x and y are interchangeable in str_equal(), so they’re
documented together:

#' @param x,y A pair of character vectors.

In str_sub(), start and end define the range of characters to replace.
But instead of supplying both, you can use just start if you pass in a two-
column matrix. So it makes sense to document them together:

#' @param start,end A pair of integer vectors defining the range 
of characters
#'   to extract (inclusive).
#'
#'   Alternatively, instead of a pair of vectors, you can pass a 
matrix to
#'   `start`. The matrix should have two columns, either labelled 
`start`
#'   and `end`, or `start` and `length`.

In str_wrap(), indent and exdent define the indentation for the first
line and all subsequent lines, respectively:

#' @param indent,exdent A non-negative integer giving the indent 
for the
#'   first line (`indent`) and all subsequent lines (`exdent`).

Inheriting Arguments
If your package contains many closely related functions, it’s common for
them to have arguments that share the same name and meaning. It would be
both annoying and error prone to copy and paste the same @param
documentation to every function, so roxygen2 provides
@inheritParams, which allows you to inherit argument documentation
from another function, possibly even in another package.



stringr uses @inheritParams extensively because most functions have
string and pattern arguments. The detailed and definitive
documentation belongs to str_detect():

#' @param string Input vector. Either a character vector, or 
something
#'  coercible to one.
#' @param pattern Pattern to look for.
#'
#'   The default interpretation is a regular expression, as 
described in
#'   `vignette("regular-expressions")`. Use [regex()] for finer 
control of the
#'   matching behaviour.
#'
#'   Match a fixed string (i.e. by comparing only bytes), using
#'   [fixed()]. This is fast, but approximate. Generally,
#'   for matching human text, you'll want [coll()] which
#'   respects character matching rules for the specified locale.
#'
#'   Match character, word, line and sentence boundaries with
#'   [boundary()]. An empty pattern, "", is equivalent to
#'   `boundary("character")`.

Then the other stringr functions use @inheritParams str_detect to
get this detailed documentation for string and pattern without having
to duplicate that text.

@inheritParams inherits only docs for arguments that the function
actually uses and that aren’t already documented, so you can document
some arguments locally and inherit others. str_match() uses this to
inherit str_detect()’s standard documentation for the string
argument, while providing its own specialized documentation for
pattern:

#' @inheritParams str_detect
#' @param pattern Unlike other stringr functions, `str_match()` 
only supports
#'   regular expressions, as described `vignette("regular-
expressions")`.
#'   The pattern should contain at least one capturing group.



Now that we’ve discussed default values and inheritance we can bring up
one more dilemma. Sometimes there’s tension between giving detailed
information on an argument (acceptable values, default value, how the
argument is used, etc.) and making the documentation amenable to reuse in
other functions (which might differ in some specifics). This can motivate
you to assess whether it’s truly worth it for related functions to handle the
same input in different ways or if standardization would be beneficial.

You can inherit documentation from a function in another package by using
the standard :: notation, i.e., @inheritParams
anotherpackage::function. This does introduce one small
annoyance: now the documentation for your package is no longer self-
contained and the version of anotherpackage can affect the generated
docs. Beware of spurious diffs introduced by contributors who run
devtools:: document() with a different installed version of the
inherited-from package.

Return Value
A function’s output is as important as its inputs. Documenting the output is
the job of the @returns10 tag. Here the priority is to describe the overall
“shape” of the output, i.e., what sort of object it is, and its dimensions (if
that makes sense). For example, if your function returns a vector you might
describe its type and length, or if your function returns a data frame you
might describe the names and types of the columns and the expected
number of rows.

The @returns documentation for functions in stringr is straightforward
because almost all functions return some type of vector with the same
length as one of the inputs. For example, here’s how str_like()
describes its output:

#' @returns A logical vector the same length as `string`.



A more complicated case is the joint documentation for str_locate()
and str_locate_all().11 str_locate() returns an integer matrix,
and str_locate_all() returns a list of matrices, so the text needs to
describe what determines the rows and columns:

#' @returns
#' * `str_locate()` returns an integer matrix with two columns 
and
#'   one row for each element of `string`. The first column, 
`start`,
#'   gives the position at the start of the match, and the second 
column, `end`,
#'   gives the position of the end.
#'
#'* `str_locate_all()` returns a list of integer matrices with 
the same
#'   length as `string`/`pattern`. The matrices have columns 
`start` and `end`
#'   as above, and one row for each match.
#' @seealso
#'   [str_extract()] for a convenient way of extracting matches,
#'   [stringi::stri_locate()] for the underlying implementation.

In other cases it can be easier to figure out what to highlight by thinking
about the set of functions and how they differ. For example, most dplyr
functions return a data frame, so just saying @returns A data frame
is not very useful. Instead, we tried to identify exactly what makes each
function different. We decided it makes sense to describe each function in
terms of how it affects the rows, the columns, the groups, and the attributes.
For example, this describes the return value of dplyr::filter():

#' @returns
#' An object of the same type as `.data`. The output has the 
following
#' properties:
#'
#' * Rows are a subset of the input, but appear in the same 
order.
#' * Columns are not modified.
#' * The number of groups may be reduced (if `.preserve` is not 
`TRUE`).
#' * Data frame attributes are preserved.



@returns is also a good place to describe any important warnings or
errors that the user might see. For example, readr::read_csv()
mentions what happens if there are any parsing problems:

#' @returns A [tibble()]. If there are parsing problems, a 
warning will
#'  alert you. You can retrieve the full details by calling 
[problems()]
#'  on your dataset.

SUBMITTING TO CRAN
For your initial CRAN submission, all functions must document their return value. While this may
not be scrutinized in subsequent submissions, it’s still a good practice. There’s currently no way to
check that you’ve documented the return value of every function (we’re working on it), which is
why you’ll notice some tidyverse functions lack output documentation. But we certainly aspire to
provide this information across the board.

Examples
Describing what a function does is great, but showing how it works is even
better. That’s the role of the @examples tag, which uses executable R
code to demonstrate what a function can do. Unlike other parts of the
documentation where we’ve focused mainly on what you should write, here
we’ll briefly give some content advice and then focus mainly on the
mechanics.

The main dilemma with examples is that you must jointly satisfy two
requirements:

Your example code should be readable and realistic. Examples are
documentation that you provide for the benefit of the user, i.e., a real
human, working interactively, trying to get their actual work done with
your package.

Your example code must run without error and with no side effects in
many noninteractive contexts over which you have limited or no
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control, such as when CRAN runs R CMD check or when your
package website is built via GitHub Actions.

It turns out that there is often tension between these goals and you’ll need to
find a way to make your examples as useful as you can for users, while also
satisfying the requirements of CRAN (if that’s your goal) or other
automated infrastructure.

The mechanics of examples are complex because they must never error and
they’re executed in four different situations:

Interactively using the example() function.

During R CMD check on your computer, or another computer you
control (e.g., in GitHub Actions).

During R CMD check run by CRAN.

When your pkgdown website is being built, often via GitHub Actions
or similar.

After discussing what to put in your examples, we’ll talk about keeping
your examples self-contained, how to display errors if needed, handling
dependencies, running examples conditionally, and alternatives to the
@examples tag for including example code.

RSTUDIO
When preparing .R scripts or .Rmd/.qmd reports, it’s handy to use Ctrl/Cmd-Enter or the Run
button to send a line of R code to the console for execution. Happily, you can use the same
workflow for executing and developing the @examples in your roxygen comments. Remember
to do devtools::load_all() often, to stay synced with the package source.

Contents
Use examples to first show the basic operation of the function, then to
highlight any particularly important properties. For example,
str_detect() starts by showing a few simple variations and then



highlights a feature that’s easy to miss—as well as passing a vector of
strings and one pattern, you can also pass one string and vector of patterns:

#' @examples
#' fruit <- c("apple", "banana", "pear", "pineapple")
#' str_detect(fruit, "a")
#' str_detect(fruit, "^a")
#' str_detect(fruit, "a$")
#'
#' # Also vectorised over pattern
#' str_detect("aecfg", letters)

Try to stay focused on the most important features without getting into the
weeds of every last edge case: if you make the examples too long, it
becomes hard for the user to find the key application they’re looking for. If
you find yourself writing very long examples, it may be a sign that you
should write a vignette instead.

There aren’t any formal ways to break up your examples into sections, but
you can use sectioning comments that use many hyphens to create a visual
breakdown. Here’s an example from tidyr::chop():

#' @examples
#' # Chop -------------------------------------------------------
---------------
#' df <- tibble(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1)
#' # Note that we get one row of output for each unique 
combination of
#' # non-chopped variables
#' df %>% chop(c(y, z))
#' # cf nest
#' df %>% nest(data = c(y, z))
#'
#' # Unchop -----------------------------------------------------
---------------
#' df <- tibble(x = 1:4, y = list(integer(), 1L, 1:2, 1:3))
#' df %>% unchop(y)
#' df %>% unchop(y, keep_empty = TRUE)

Strive to keep the examples focused on the specific function that you’re
documenting. If you can make the point with a familiar built-in dataset, like



mtcars, do so. If you find yourself needing to do a bunch of setup to
create a dataset or object to use in the example, it may be a sign that you
need to create a package dataset or even a helper function. See Chapter 7,
“pkg_example() Path Helpers”, and “Create useful_things with a Helper
Function” for ideas. Making it easy to write (and read) examples will
greatly improve the quality of your documentation.

Also, remember that examples are not tests. Examples should be focused on
the authentic and typical usage you’ve designed for and that you want to
encourage. The test suite is the more appropriate place to exhaustively
exercise all of the arguments and to explore weird, pathological edge cases.

Leave the World as You Found It
Your examples should be self-contained. For example, this means:

If you modify options(), reset them at the end of the example.

If you create a file, create it somewhere in tempdir(), and make
sure to delete it at the end of the example.

Don’t change the working directory.

Don’t write to the clipboard (unless a user is present to provide some
form of consent).

This has a lot of overlap with our recommendations for tests (see “Self-
Contained Tests”) and even for the R functions in your package (see
“Respect the R Landscape”). However, due to the way that examples are
run during R CMD check, the tools available for making examples self-
contained are much more limited. Unfortunately, you can’t use the withr
package or even on.exit() to schedule clean up, like restoring options
or deleting a file. Instead, you’ll need to do it by hand. If you can avoid
doing something that must then be undone, that is the best way to go and
especially true for examples.

These constraints are often in tension with good documentation, if you’re
trying to document a function that somehow changes the state of the world.



For example, you have to “show your work,” i.e., all of your code, which
means that your users will see all of the setup and teardown, even if it is not
typical for authentic usage. If you’re finding it hard to follow the rules, this
might be another sign to switch to a vignette (see Chapter 17).

SUBMITTING TO CRAN
Many of these constraints are also mentioned in the CRAN repository policy, which you must
adhere to when submitting to CRAN. Use the “find in page” feature to locate “malicious or anti-
social” to see the details.

Additionally, you want your examples to send the user on a short walk, not
a long hike. Examples need to execute relatively quickly so users can
quickly see the results, it doesn’t take ages to build your website, automated
checks happen quickly, and it doesn’t take up computing resources when
submitting to CRAN.

SUBMITTING TO CRAN
All examples must run in under 10 minutes.

Errors
Your examples cannot throw any errors, so don’t include flaky code that can
fail for reasons beyond your control. In particular, it’s best to avoid
accessing websites, because R CMD check will fail whenever the website
is down.

What can you do if you want to include code that causes an error for the
purposes of teaching? There are two basic options:

You can wrap the code in try() so that the error is shown but doesn’t
stop execution of the examples. For example,
dplyr::bind_cols() uses try() to show you what happens if

https://oreil.ly/eQor-


you attempt to column-bind two data frames with different numbers of
rows:

#' @examples

#' ...

#' # Row sizes must be compatible when column-binding

#' try(bind_cols(tibble(x = 1:3), tibble(y = 1:2)))

You can wrap the code in \dontrun{},12 so it is never run by
example(). The preceding example would look like this if you used
\dontrun{} instead of try():

#' # Row sizes must be compatible when column-binding

#' \dontrun{

#' bind_cols(tibble(x = 1:3), tibble(y = 1:2)))

#' }

We generally recommend using try() so that the reader can see an
example of the error in action.

SUBMITTING TO CRAN
For the initial CRAN submission of your package, all functions must have at least one example
and the example code can’t all be wrapped inside \dontrun{}. If the code can only be run
under specific conditions, use the techniques in the next section to express those preconditions.

Dependencies and Conditional Execution
An additional source of errors in examples is the use of external
dependencies: you can only use packages in your examples that your
package formally depends on (i.e., that appear in Imports or
Suggests). Furthermore, example code is run in the user’s environment,
not the package environment, so you’ll have to either explicitly attach the
dependency with library() or refer to each function with ::. For



example, dbplyr is a dplyr extension package, so all of its examples start
with library(dplyr):

#' @examples
#' library(dplyr)
#' df <- data.frame(x = 1, y = 2)
#'
#' df_sqlite <- tbl_lazy(df, con = simulate_sqlite())
#' df_sqlite %>% summarise(x = sd(x, na.rm = TRUE)) %>% 
show_query()

In the past, we recommended using code only from suggested packages
inside a block like this:

#' @examples
#' if (requireNamespace("suggestedpackage", quietly = TRUE)) {
#'   # some example code
#' }

We no longer believe that approach is a good idea, because:

Our policy is to expect that suggested packages are installed when
running R CMD check13 and this informs what we do in examples,
tests, and vignettes.

The cost of putting example code inside { … } is high: you can no
longer see intermediate results, such as when the examples are
rendered in the package’s website. The cost of a package not being
installed is low: users can usually recognize the associated error and
resolve it themselves, i.e., by installing the missing package.

In other cases, your example code may depend on something other than a
package. For example, if your examples talk to a web API, you probably
want to run them for an authenticated user, and you never want such code to
run on CRAN. In this case, you really do need conditional execution. The
entry-level solution is to express this explicitly:

#' @examples
#' if (some_condition()) {



#'   # some example code
#' }

The condition could be quite general, such as interactive(), or very
specific, such as a custom predicate function provided by your package. But
this use of if() still suffers from the downside highlighted previously,
where the rendered examples don’t clearly show what’s going on inside the
{ … } block.

The @examplesIf tag is a great alternative to @examples in this case:

#' @examplesIf some_condition()
#' some_other_function()
#' some_more_functions()

This looks almost like the previous snippet, but it has several advantages:

Users won’t actually see the if() { … } machinery when they are
reading your documentation from within R or on a pkgdown website.
Users see only realistic code.

The example code renders fully in pkgdown.

The example code runs when it should and does not run when it should
not.

This doesn’t run afoul of CRAN’s prohibition of putting all your
example code inside \dontrun{}.

For example, googledrive uses @examplesIf in almost every function,
guarded by googledrive::drive_has_token(). Here’s how the
examples for googledrive::drive_publish() begin:

#' @examplesIf drive_has_token()
#' # Create a file to publish
#' file <- drive_example_remote("chicken_sheet") %>%
#'   drive_cp()
#'
#' # Publish file

https://oreil.ly/pvXrL


#' file <- drive_publish(file)
#' ...

The example code doesn’t run on CRAN, because there’s no token. It does
run when the pkgdown site is built, because we can set up a token securely.
And, if a normal user executes this code, they’ll be prompted to sign in to
Google, if they haven’t already.

Intermixing Examples and Text
An alternative to examples is to use R Markdown code blocks elsewhere in
your roxygen comments, either ```R if you just want to show some code,
or ```{r} if you want the code to be run. These can be effective
techniques, but there are downsides to each:

The code in ```R blocks is never run; this means it’s easy to
accidentally introduce syntax errors or to forget to update it when your
package changes.

The code in ```{r} blocks is run every time you document the
package. This has the nice advantage of including the output in the
documentation (unlike examples), but the code can’t take very long to
run or your iterative documentation workflow will become quite
painful.

Reusing Documentation
roxygen2 provides a number of features that allow you to reuse
documentation across topics. They are documented in
vignette("reuse", package = "roxygen2"), so here we’ll
focus on the three most important:

Documenting multiple functions in one topic.

Inheriting documentation from another topic.



Using child documents to share prose between topics, or to share
between documentation topics and vignettes.

Multiple Functions in One Topic
By default, each function gets its own documentation topic, but if two
functions are very closely connected, you can combine the documentation
for multiple functions into a single topic. For example, take
str_length() and str_width(), which provide two different ways
of computing the size of a string. As you can see from the description, both
functions are documented together, because this makes it easier to see how
they differ:

#' The length/width of a string
#'
#' @description
#' `str_length()` returns the number of codepoints in a string. 
These are
#' the individual elements (which are often, but not always 
letters) that
#' can be extracted with [str_sub()].
#'
#' `str_width()` returns how much space the string will occupy 
when printed
#' in a fixed width font (i.e. when printed in the console).
#'
#' ...
str_length <- function(string) { 
  ...
}

To merge the two topics, str_width() uses @rdname str_length
to add its documentation to an existing topic:

#' @rdname str_length
str_width <- function(string) { 
  ...
}



This technique works best for functions that have a lot in common,
i.e., similar return values and examples, in addition to similar arguments.

Inheriting Documentation
In other cases, functions in a package might share many related behaviors,
but aren’t closely enough connected that you want to document them
together. We’ve discussed @inheritParams previously, but three
variations allow you to inherit other things:

@inherit source_function will inherit all supported
components from source_function().

@inheritSection source_function Section title
will inherit the single section with title “Section title” from
source_function().

@inheritDotParams automatically generates parameter
documentation for ... for the common case where you pass ... on
to another function.

See https://oreil.ly/4DeYr for more details.

Child Documents
Finally, you can reuse the same .Rmd or .md document in the function
documentation, README.Rmd, and vignettes by using R Markdown child
documents. The syntax looks like this:

#' ```{r child = "man/rmd/filename.Rmd"}
#' ```

This is a feature we use very sparingly in the tidyverse, but one place we do
use it is in dplyr, because a number of functions use the same syntax as
select() and we want to provide all the info in one place:

https://oreil.ly/4DeYr


#' # Overview of selection features
#'
#' ```{r, child = "man/rmd/overview.Rmd"}
#' ```

Then man/rmd/overview.Rmd contains the repeated markdown:

Tidyverse selections implement a dialect of R where operators 
make 
it easy to select variables: 
 
- `:` for selecting a range of consecutive variables.
- `!` for taking the complement of a set of variables.
- `&` and `|` for selecting the intersection or the union of two 
  sets of variables.
- `c()` for combining selections. 
 
...

If the .Rmd file contains roxygen (markdown-style) links to other help
topics, then some care is needed. See https://oreil.ly/YmsIh for details.

Help Topic for the Package
This chapter focuses on function documentation, but remember you can
document other things, as detailed in vignette("rd-other",
package = "roxygen2"). In particular, you can create a help topic
for the package itself by documenting the special sentinel "_PACKAGE".
The resulting .Rd file automatically pulls in information parsed from the
DESCRIPTION, including title, description, list of authors, and useful
URLs. This help topic appears alongside all your other topics and can also
be accessed with package?pkgname, e.g., package?usethis, or
even just ?usethis.

We recommend calling usethis::use_package_doc() to set up this
package-level documentation in a dummy file R/{pkgname}-package.R,
whose contents will look something like:

https://oreil.ly/YmsIh


#' @keywords internal
"_PACKAGE"

The R/{pkgname}-package.R file is the main reason we wanted to mention
use_package_doc() and package-level documentation here. It turns
out there are a few other package-wide housekeeping tasks for which this
file is a very natural home. For example, it’s a sensible, central location for
import directives, i.e., for importing individual functions from your
dependencies or even entire namespaces. In “In Code Below R/”, we
recommend importing specific functions via
usethis::use_import_from() and this function is designed to
write the associated roxygen tags into the R/{pkgname}-package.R file
created by use_package_doc(). So, putting it all together, this is a
minimal example of how the R/{pkgname}-package.R file might look:

#' @keywords internal
"_PACKAGE" 
 
# The following block is used by usethis to automatically manage
# roxygen namespace tags. Modify with care!
## usethis namespace: start
#' @importFrom glue glue_collapse
## usethis namespace: end
NULL

1  The name “roxygen” is a nod to the Doxygen documentation generator, which inspired the
development of an R package named roxygen. Then that original concept was rebooted as
roxygen2, similar to ggplot2.

2  The NAMESPACE file is also generated from these roxygen comments. Or, rather, it can be
and that is the preferred devtools workflow (see “NAMESPACE Workflow”).

3  Running devtools::document() also affects another field in DESCRIPTION, which
looks like this: RoxygenNote: 7.2.1. This records which version of roxygen2 was last
used in a package, which makes it easier for devtools (and its underlying packages) to make an
intelligent guess about when to re-document() a package and when to leave well enough
alone. In a collaborative setting, this also reduces nuisance changes to the .Rd files, by making
the relevant roxygen2 version highly visible.



4  This is part of the explanation promised in “Custom Fields”, where we also clarify that, with
our current conventions, this field should really be called Config/Needs/roxygen,
instead of Roxygen. We highly recommend that you use markdown in all new packages and
that you migrate older-but-actively-maintained packages to markdown syntax. In this case, you
can call usethis::use_roxygen_md() to update DESCRIPTION and get a reminder
about the roxygen2md package, which can help with conversion.

5  Or the end of the block, if it’s the last tag.

6  The name of the file is automatically derived from the object you’re documenting.

7  These calls include an explicit specification of package = "somepackage", since it
can’t be inferred from context, i.e., the context is a Quarto book, not package documentation.

8  Like all the examples, these might have changed a bit since we wrote this book, because
we’re constantly striving to do better. You might compare what’s in the book to what we now
use, and consider if you think if it’s an improvement.

9  In older code, you might see the use of @section title: which was used to create
sections before roxygen2 had full markdown support. If you’ve used these in the past, you can
now turn them into markdown headings.

10  For historical reasons, you can also use @return, but we now favor @returns because it
reads more naturally.

11  We’ll come back how to document multiple functions in one topic in “Multiple Functions in
One Topic”.

12  You used to be able to use \donttest{} for a similar purpose, but we no longer
recommend it because CRAN sets a special flag that causes the code to be executed anyway.

13  This is certainly true for CRAN and is true in most other automated checking scenarios, such
as our GitHub Actions workflows.



Chapter 17. Vignettes

A vignette is a long-form guide to your package. Function documentation is
great if you know the name of the function you need, but it’s useless
otherwise. In contrast, a vignette can be framed around a target problem that
your package is designed to solve. The vignette format is perfect for
showing a workflow that solves that particular problem, start to finish.
Vignettes afford you different opportunities than help topics: you have
much more control over the integration of code and prose, and it’s a better
setting for showing how multiple functions work together.

Many existing packages have vignettes, and you can see all the vignettes
associated with your installed packages with browseVignettes(). To
limit that to a particular package, you can specify the package’s name like
so: browseVignettes("tidyr"). You can read a specific vignette
with the vignette() function, e.g., vignette("rectangle",
package = "tidyr"). To see vignettes for a package that you haven’t
installed, look at the “Vignettes” listing on its CRAN page.

However, we much prefer to discover and read vignettes from a package’s
website, which is the topic of Chapter 19.1 Compare the vignette experience
of tidyr’s CRAN page to what it feels like to access tidyr’s vignettes from
its website. Note that pkgdown uses the term “article,” which feels like the
right vocabulary for package users. The technical distinction between a
vignette (which ships with a package) and an article (which is available
only on the website; see “Article Instead of Vignette”) is something the
package developer needs to think about. A pkgdown website presents all of
the documentation of a package in a cohesive, interlinked way that makes it
more navigable and useful. This chapter is ostensibly about vignettes, but
the way we do things is heavily influenced by how those vignettes fit into a
pkgdown website.

https://oreil.ly/l4Fca
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In this book, we’re going to use R Markdown to write our vignettes,2 just as
we did for function documentation in “Key Markdown Features”. If you’re
not already familiar with R Markdown you’ll need to learn the basics
elsewhere; a good place to start is https://rmarkdown.rstudio.com.

In general, we embrace a somewhat circumscribed vignette workflow,
i.e., there are many things that base R allows for that we simply don’t
engage in. For example, we treat inst/doc/3 in the same way as man/ and
NAMESPACE, i.e., as something semi-opaque that is managed by
automated tooling and that we don’t modify by hand. Base R’s vignette
system allows for various complicated maneuvers that we just try to avoid.
In vignettes, more than anywhere else, the answer to “But how do I do X?”
is often “Don’t do X.”

Workflow for Writing a Vignette
To create your first vignette, run:

usethis::use_vignette("my-vignette")

This does the following:

1. Creates a vignettes/ directory.

2. Adds the necessary dependencies to DESCRIPTION, i.e., adds knitr to
the VignetteBuilder field and adds both knitr and rmarkdown to
Suggests.

3. Drafts a vignette, vignettes/my-vignette.Rmd.

4. Adds some patterns to .gitignore to ensure that files created as a side
effect of previewing your vignettes are kept out of source control
(we’ll say more about this later).

This draft document has the key elements of an R Markdown vignette and
leaves you in a position to add your content. You also call

https://rmarkdown.rstudio.com/


use_vignette() to create your second and all subsequent vignettes; it
will just skip any setup that’s already been done.

Once you have the draft vignette, the workflow is straightforward:

1. Start adding prose and code chunks to the vignette. Use
devtools::load_all() as needed and use your usual interactive
workflow for developing the code chunks.

2. Render the entire vignette periodically.

This requires some intention, because unlike tests, by default, a
vignette is rendered using the currently installed version of your
package, not with the current source package, thanks to the initial call
to library(yourpackage).

One option is to properly install your current source package with
devtools::install() or, in RStudio, Ctrl/Cmd-Shift-B. Then
use your usual workflow for rendering an .Rmd file. For example,
press Ctrl/Cmd-Shift-K or click .

Or you could properly install your package and request that vignettes
be built, with install(build_vignettes = TRUE), then use
browseVignettes().

Another option is for you to use
devtools::build_rmd("vignettes/my-
vignette.Rmd") to render the vignette. This builds your vignette
against a (temporarily installed) development version of your package.

It’s very easy to overlook this issue and be puzzled when your vignette
preview doesn’t seem to reflect recent developments in the package.
Double-check that you’re building against the current version!

3. Rinse and repeat until the vignette looks the way you want.

If you’re regularly checking your entire package (see “check() and R CMD
check”), which we strongly recommend, this will help to keep your
vignettes in good working order. In particular, this will alert you if a



vignette uses a package that’s not a formal dependency. We will come back
to these package-level workflow issues in “How Vignettes Are Built and
Checked”.

Metadata
The first few lines of the vignette contain important metadata. The default
template contains the following information:

--- 
title: "Vignette Title" 
output: rmarkdown::html_vignette 
vignette: > 
  %\VignetteIndexEntry{Vignette Title} 
  %\VignetteEngine{knitr::rmarkdown} 
  %\VignetteEncoding{UTF-8} 
---

This metadata is written in YAML, a format designed to be both human and
computer readable. YAML frontmatter is a common feature of R Markdown
files. The syntax is much like that of the DESCRIPTION file, where each
line consists of a field name, a colon, then the value of the field. The one
special YAML feature we’re using here is >. It indicates that the following
lines of text are plain text and shouldn’t use any special YAML features.

The default vignette template uses these fields:

title

This is the title that appears in the vignette. If you change it, make sure
to make the same change to VignetteIndexEntry{}. They should
be the same, but unfortunately that’s not automatic.

output

This specifies the output format. There are many options that are useful
for regular reports (including HTML, PDF, slideshows, etc.), but
rmarkdown::html_vignette has been specifically designed for

https://yaml.org/


this exact purpose. See ?rmarkdown::html_vignette for more
details.

vignette

This is a block of special metadata needed by R. Here, you can see the
legacy of LaTeX vignettes: the metadata looks like LaTeX comments.
The only entry you might need to modify is the
\VignetteIndexEntry{}. This is how the vignette appears in the
vignette index, and it should match the title. Leave the other two
lines alone. They tell R to use knitr to process the file and that the file
is encoded in UTF-8 (the only encoding you should ever use for a
vignette).

We generally don’t use these fields, but you will see them in other
packages:

author

We don’t use this unless the vignette is written by someone not already
credited as a package author.

date

We think this usually does more harm than good, since it’s not clear
what the date is meant to convey. Is it the last time the vignette source
was updated? In that case you’ll have to manage it manually and it’s
easy to forget to update it. If you manage date programmatically with
Sys.date(), the date reflects when the vignette was built, i.e., when
the package bundle was created, which has nothing to do with when the
vignette or package was last modified. We’ve decided it’s best to omit
the date.

The draft vignette also includes two R chunks. The first one configures our
preferred way of displaying code output and looks like this:



```{r, include = FALSE} 
knitr::opts_chunk$set( 
  collapse = TRUE, 
  comment = "#>" 
) 
```

The second chunk just attaches the package the vignette belongs to:

```{r setup} 
library(yourpackage) 
```

You might be tempted to (temporarily) replace this library() call with
load_all(), but we advise that you don’t. Instead, use the techniques
given in “Workflow for Writing a Vignette” to exercise your vignette code
with the current source package.

Advice on Writing Vignettes
If you’re thinking without writing, you only think you’re thinking.

—Leslie Lamport

When writing a vignette, you’re teaching someone how to use your
package. You need to put yourself in the reader’s shoes and adopt a
“beginner’s mind.” This can be difficult because it’s hard to forget all of the
knowledge that you’ve already internalized. For this reason, we find in-
person teaching to be a really useful way to get feedback. You’re
immediately confronted with what you’ve forgotten that only you know.

A useful side effect of this approach is that it helps you improve your code.
It forces you to re-see the initial onboarding process and to appreciate the
parts that are hard. Our experience is that explaining how code works often
reveals some problems that need fixing.

In fact, a key part of the tidyverse package release process is writing a blog
post: we now do that before submitting to CRAN, because of the number of
times it’s revealed some subtle problem that requires a fix. It’s also fair to



say that the tidyverse and its supporting packages would benefit from more
“how-to” guides, so that’s an area where we are constantly trying to
improve.

Writing a vignette also makes a nice break from coding. Writing seems to
use a different part of the brain from programming, so if you’re sick of
programming, try writing for a bit.

Here are some resources we’ve found helpful:

Literally anything written by Kathy Sierra. She is not actively writing
at the moment, but her content is mostly timeless and is full of advice
about programming, teaching, and how to create valuable tools. See
her original blog, Creating Passionate Users, or the site that came after,
Serious Pony.

Style: Lessons in Clarity and Grace by Joseph M. Williams and Joseph
Bizup (Pearson Longman). This book helps you understand the
structure of writing so that you’ll be better able to recognize and fix
bad writing.

Diagrams
It’s a great idea to include relevant visualizations in your vignette, but these
files can be fairly large.

SUBMITTING TO CRAN
You’ll need to watch the file size. If you include a lot of graphics, it’s easy to create a very large
file. Be on the lookout for a NOTE that complains about an overly large directory. You might need
to take explicit measures, such as lowering the resolution, reducing the number of figures, or
switching from a vignette to an article (see “Article Instead of Vignette”).

Links
There is no official way to link to help topics from vignettes or vice versa or
from one vignette to another.

https://headrush.typepad.com/
https://seriouspony.com/blog


This is a concrete example of why we think pkgdown sites are a great way
to present package documentation, because pkgdown makes it easy
(literally zero effort, in many cases) to get these hyperlinked cross-
references. This is documented in vignette("linking", package
= "pkgdown"). If you’re reading this book online, the inline call to
vignette() in the previous sentence should be hyperlinked to the
corresponding vignette in pkgdown,4 using the same toolchain that will
create automatic links in your pkgdown websites! We discussed this syntax
previously in “Key Markdown Features”, in the context of function
documentation.

Automatic links are generated for functions in the host package,
namespace-qualified functions in another package, vignettes, and more.
Here are the two most important examples of automatically linked text:

`some_function()`

Autolinked to the documentation of some_function(), within the
pkgdown site of its host package. Note the use of backticks and the
trailing parentheses.

`vignette("fascinating-topic")`

Autolinked to the “fascinating-topic” article within the pkgdown site of
its host package. Note the use of backticks.

Filepaths
Sometimes it is necessary to refer to another file from a vignette. The best
way to do this depends on the application:

A figure created by code evaluated in the vignette

By default, in the .Rmd workflow that we recommend, this takes care of
itself. Such figures are automatically embedded into the .xhtml using
data URIs. You don’t need to do anything. Example:
vignette("extending-ggplot2", package =
"ggplot2") generates a few figures in evaluated code chunks.



An external file that could be useful to users or elsewhere in the package
(not just in vignettes)

Put such a file in inst/ (see “Installed Files”), perhaps in inst/extdata/
(see “Raw Data File”), and refer to it with system.file() or
fs::path_package() (see “Filepaths”). Example from
vignette("sf2", package = "sf"):

```{r} 

library(sf) 

fname <- system.file("shape/nc.shp", package="sf") 

fname 

nc <- st_read(fname) 

```

An external file whose utility is limited to your vignettes

Put it alongside the vignette source files in vignettes/ and refer to it with
a filepath that is relative to vignettes/.

Example: The source of vignette("tidy-data", package =
"tidyr") is found at vignettes/tidy-data.Rmd and it includes a chunk that
reads a file located at vignettes/weather.csv like so:

```{r} 
weather <- as_tibble(read.csv("weather.csv", stringsAsFactors = 
FALSE)) 
weather 
```

An external graphics file

Put it in vignettes/, refer to it with a filepath that is relative to vignettes/
and use knitr::include_graphics() inside a code chunk.



Example from vignette("sheet-geometry", package =
"readxl"):

```{r out.width = '70%', echo = FALSE} 

knitr::include_graphics("img/geometry.png") 

```

How Many Vignettes?
For simpler packages, one vignette is often sufficient. If your package is
named “somepackage,” call this vignette somepackage.Rmd. This takes
advantage of a pkgdown convention, where the vignette that’s named after
the package gets an automatic “Get started” link in the top navigation bar.

More complicated packages probably need more than one vignette. It can
be helpful to think of vignettes like chapters of a book—they should be self-
contained but still link together into a cohesive whole.

Scientific Publication
Vignettes can also be useful if you want to explain the details of your
package. For example, if you have implemented a complex statistical
algorithm, you might want to describe all the details in a vignette so that
users of your package can understand what’s going on under the hood and
be confident that you’ve implemented the algorithm correctly. In this case,
you might also consider submitting your vignette to the Journal of
Statistical Software or The R Journal. Both journals are electronic only and
peer-reviewed. Comments from reviewers can be very helpful for
improving your package and vignette.

If you just want to provide something very lightweight so folks can easily
cite your package, consider the Journal of Open Source Software. This
journal has a particularly speedy submission and review process, and it is
where we published “Welcome to the Tidyverse,” a paper we wrote so that

http://jstatsoft.org/
http://journal.r-project.org/
https://joss.theoj.org/
https://oreil.ly/I8ogw


folks could have a single paper to cite and all the tidyverse authors would
get some academic credit.

Special Considerations for Vignette Code
A recurring theme is that the R code inside a package needs to be written
differently from the code in your analysis scripts and reports. This is true
for your functions (see “Understand When Code Is Executed”), tests (see
“High-Level Principles for Testing”), and examples (see “Examples”), and
it’s also true for vignettes. In terms of what you can and cannot do,
vignettes are fairly similar to examples, although some of the mechanics
differ.

Any package used in a vignette must be a formal dependency, i.e., it must
be listed in Imports or Suggests in DESCRIPTION. Similar to our
stance in tests (see “In Test Code”), our policy is to write vignettes under
the assumption that suggested packages will be installed in any context
where the vignette is being built (see “In Examples and Vignettes”). We
generally use suggested packages unconditionally in vignettes. But, as with
tests, if a package is particularly hard to install, we might make an
exception and take extra measures to guard its use.

There are many other reasons why it might not be possible to evaluate all of
the code in a vignette in certain contexts, such as on CRAN’s machines or
in CI/CD. These include all the usual suspects: lack of authentication
credentials, long-running code, or code that is vulnerable to intermittent
failure.

The main method for controlling evaluation in an .Rmd document is the
eval code chunk option, which can be TRUE (the default) or FALSE.
Importantly, the value of eval can be the result of evaluating an
expression. Here are some relevant examples:

eval = requireNamespace("somedependency")



eval =
!identical(Sys.getenv("SOME_THING_YOU_NEED"),
"")

eval = file.exists("credentials-you-need")

The eval option can be set for an individual chunk, but in a vignette it’s
likely that you’ll want to evaluate most or all of the chunks or practically
none of them. In the latter case, you’ll want to use
knitr::opts_chunk$set(eval = FALSE) in an early, hidden
chunk to make eval = FALSE the default for the remainder of the
vignette. You can still override with eval = TRUE in individual chunks.

In vignettes, we use the eval option in a similar way as @examplesIf in
examples (see “Dependencies and Conditional Execution”). If the code can
be run only under specific conditions, you must find a way to check for
those preconditions programmatically at runtime and use the result to set
the eval option.

Here are the first few chunks in a vignette from googlesheets4, which wraps
the Google Sheets API. The vignette code can only be run if we are able to
decrypt a token that allows us to authenticate with the API. That fact is
recorded in can_decrypt, which is then set as the vignette-wide default
for eval:

```{r setup, include = FALSE} 
can_decrypt <- gargle:::secret_can_decrypt("googlesheets4") 
knitr::opts_chunk$set( 
  collapse = TRUE, 
  comment = "#>", 
  error = TRUE, 
  eval = can_decrypt 
) 
``` 
 
```{r eval = !can_decrypt, echo = FALSE, comment = NA} 
message("No token available. Code chunks will not be evaluated.") 
``` 
 
```{r index-auth, include = FALSE} 



googlesheets4:::gs4_auth_docs() 
``` 
 
```{r} 
library(googlesheets4) 
```

Notice the second chunk uses eval = !can_decrypt, which prints an
explanatory message for anyone who builds the vignette without the
necessary credentials.

The preceding example shows a few more handy chunk options. Use
include = FALSE for chunks that should be evaluated but not seen in
the rendered vignette. The echo option controls whether code is printed, in
addition to output. Finally, error = TRUE is what allows you to
purposefully execute code that could throw an error. The error will appear
in the vignette, just as it would for your user, but it won’t prevent the
execution of the rest of your vignette’s code, nor will it cause R CMD
check to fail. This is something that works much better in a vignette than
in an example.

Many other options are described at https://yihui.name/knitr/options.

Article Instead of Vignette
There is one last technique, if you don’t want any of your code to execute
on CRAN. Instead of a vignette, you can create an article, which is a term
used by pkgdown for a vignette-like .Rmd document that is not shipped
with the package, but that appears only in the website. An article will be
less accessible than a vignette, for certain users, such as those with limited
internet access, because it is not present in the local installation. But that
might be an acceptable compromise, for example, for a package that wraps
a web API.

You can draft a new article with usethis::use_article(), which
ensures the article will be .Rbuildignored. A great reason to use an
article instead of a vignette is to show your package working in concert
with other packages that you don’t want to depend on formally. Another

https://yihui.name/knitr/options


compelling use case is when an article really demands lots of graphics. This
is problematic for a vignette, because the large size of the package causes
problems with R CMD check (and, therefore, CRAN) and is also
burdensome for everyone who installs it, especially those with limited
internet.

How Vignettes Are Built and Checked
We close this chapter by returning to a few workflow issues we didn’t cover
in “Workflow for Writing a Vignette”: How do the .Rmd files get turned
into the vignettes consumed by users of an installed package? What does R
CMD check do with vignettes? What are the implications for maintaining
your vignettes?

It can be helpful to appreciate the big difference between the workflow for
function documentation and vignettes. The source of function
documentation is stored in roxygen comments in .R files below R/. We use
devtools::document() to generate .Rd files below man/. These
man/*.Rd files are part of the source package. The official R machinery
cares only about the .Rd files.

Vignettes are very different because the .Rmd source is considered part of
the source package, and the official machinery (R CMD build and
check) interacts with vignette source and built vignettes in many ways.
The result is that the vignette workflow feels more constrained, since the
official tooling basically treats vignettes somewhat like tests, instead of
documentation.

R CMD build and Vignettes
First, it’s important to realize that the vignettes/*.Rmd source files exist only
when a package is in source (see “Source Package”) or bundled form (see
“Bundled Package”). Vignettes are rendered when a source package is
converted to a bundle via R CMD build or a convenience wrapper such
as devtools::build(). The rendered products (.xhtml) are placed in



inst/doc/, along with their source (.Rmd) and extracted R code (.R;
discussed in “R CMD check and Vignettes”). Finally, when a package
binary is made (see “Binary Package”), the inst/doc/ directory is promoted
to a top-level doc/ directory, as happens with everything below inst/.

The key takeaway is that it is awkward to keep rendered vignettes in a
source package, and this has implications for the vignette development
workflow. It is tempting to fight this (and many have tried), but based on
years of experience and discussion, the devtools philosophy is to accept this
reality.

Assuming that you don’t try to keep built vignettes around persistently in
your source package, here are our recommendations for various scenarios:

Active, iterative work on your vignettes. Use your usual interactive
.Rmd workflow (such as the  button) or
devtools::build_rmd("vignettes/my-
vignette.Rmd") to render a vignette to .xhtml in the vignettes/
directory. Regard the .xhtml as a disposable preview. (If you initiate
vignettes with use_vignette(), this .xhtml will already be
gitignored.)

Make the current state of vignettes in a development version available
to the world:

Offer a pkgdown website, preferably with automated “build and
deploy,” such as using GitHub Actions to deploy to GitHub
Pages. Here are tidyr’s vignettes in the development version (note
the “dev” in the URL):
https://tidyr.tidyverse.org/dev/articles/index.xhtml.

Be aware that anyone who installs directly from GitHub will need
to explicitly request vignettes, e.g., with
devtools::install_github(dependencies =
TRUE, build_vignettes = TRUE).

https://tidyr.tidyverse.org/dev/articles/index.xhtml


Make the current state of vignettes in a development version available
locally:

Install your package locally and request that vignettes be built and
installed, e.g., with devtools::install(dependencies
= TRUE, build_vignettes = TRUE).

Prepare built vignettes for a CRAN submission. Don’t try to do this by
hand or in advance. Allow vignette (re-)building to happen as part of
devtools::submit_cran() or devtools::release(),
both of which build the package.

If you really do want to build vignettes in the official manner on an ad hoc
basis, devtools::build_vignettes() will do this. But we’ve seen
this lead to developer frustration, because it leaves the package in a peculiar
form that is a mishmash of a source package and an unpacked package
bundle. This nonstandard situation can then lead to even more confusion.
For example, it’s not clear how these not-actually-installed vignettes are
meant to be accessed. Most developers should avoid using
build_vignettes() and, instead, pick one of the approaches just
outlined.



PREBUILT VIGNETTES (OR OTHER DOCUMENTATION)
We highly recommend treating inst/doc/ as a strictly machine-writable directory for vignettes. We
recommend that you do not take advantage of the fact that you can place arbitrary prebuilt
documentation in inst/doc/. This opinion permeates the devtools ecosystem which, by default,
cleans out inst/doc/ during various development tasks, to combat the problem of stale
documentation.

However, we acknowledge that there are exceptions to every rule. In some domains, it might be
impractical to rebuild vignettes as often as our recommended workflow implies. Here are a few
tips:

You can prevent the cleaning of inst/doc/ with pkgbuild::build(clean_doc =).
You can put Config/build/clean-inst-doc: FALSE in DESCRIPTION to
prevent pkgbuild and rcmdcheck from cleaning inst/doc/.

The rOpenSci tech note How to precompute package vignettes or pkgdown articles
describes a clever, lightweight technique for keeping a manually updated vignette in
vignettes/.

The R.rsp package offers explicit support for static vignettes.

R CMD check and Vignettes
We conclude with a discussion of how vignettes are treated by R CMD
check. This official checker expects a package bundle created by R CMD
build, as described previously. In the devtools workflow, we usually rely
on devtools::check(), which automatically does this build step for
us, before checking the package. R CMD check has various command-
line options and also consults many environment variables. We’re taking a
maximalist approach here, i.e., we describe all the checks that could
happen.

R CMD check does some static analysis of vignette code and scrutinizes
the existence, size, and modification times of various vignette-related files.
If your vignettes use packages that don’t appear in DESCRIPTION, that is
caught here. If files that should exist don’t exist or vice versa, that is caught
here. This should not happen if you use the standard vignette workflow
outlined in this chapter and is usually the result of some experiment that
you’ve done, intentionally or not.

https://oreil.ly/Xkwjd
https://oreil.ly/4tdxw


The vignette code is then extracted into a .R file, using the “tangle” feature
of the relevant vignette engine (knitr, in our case), and run. The code
originating from chunks marked as eval = FALSE will be commented
out in this file and, therefore, is not executed. Then the vignettes are rebuilt
from source, using the “weave” feature of the vignette engine (knitr, for us).
This executes all the vignette code yet again, except for chunks marked
eval = FALSE.

SUBMITTING TO CRAN
CRAN’s incoming and ongoing checks use R CMD check which, as described, exercises
vignette code up to two times. Therefore, it is important to conditionally suppress the execution of
code that is doomed to fail on CRAN.

However, it’s important to note that the package bundle and binaries distributed by CRAN
actually use the built vignettes included in your submission. Yes, CRAN will attempt to rebuild
your vignettes regularly, but this is for quality control purposes. CRAN distributes the vignettes
you built.

1  This obviously depends on the quality of one’s internet connection, so we make an effort to
recommend behaviors that are compatible with base R’s tooling around installed vignettes.

2  Sweave is the original system used for authoring vignettes (Sweave files usually have
extension .Rnw). Similar to our advice about how to author function documentation (see
Chapter 16), we think it makes more sense to use a markdown-based syntax for vignettes than
a one-off, LaTeX-associated format. This choice also affects the form of rendered vignettes:
Sweave vignettes render to PDF, whereas R Markdown vignettes render to HTML. We
recommend converting Sweave vignettes to R Markdown.

3  The inst/doc/ folder is where vignettes go once they’re built, when R CMD build makes the
package bundle.

4  And, for anyone else, executing this code in the R console will open the vignette, if the host
package is installed.



Chapter 18. Other Markdown
Files

In this chapter we highlight two files that are conventionally used to
provide some package-level documentation. These two are important,
because they are featured on both the CRAN landing page and the pkgdown
site for a package:

README.md, which describes what the package does (see
“README”). The README plays an especially important role on
GitHub or similar platforms.

NEWS.md, which describes how the package has changed over time
(see “NEWS”).

Even if your package is intended for a very limited audience and might not
ever be released on CRAN, these files can be very useful. These two files
don’t have to be written in markdown, but they can be. In keeping with our
practices for help topics and vignettes, it’s our strong recommendation and
it’s what we describe here.

README
First, we’ll talk about the role of the README file and we leave off the file
extension, until we’re ready to talk about mechanics.

The goal of the README is to answer the following questions about your
package:

Why should I use it?

How do I use it?

How do I get it?



The README file is a long-established convention in software, going back
decades. Some of its traditional content is found elsewhere in an R package;
for example, we use the DESCRIPTION file to document authorship and
licensing.

When you write your README, try to put yourself in the shoes of someone
who has come across your package and is trying to figure out if it solves a
problem they have. If they decide that your package looks promising, the
README should also show them how to install it and how to do one or two
basic tasks. Here’s a good template for README:

1. A paragraph that describes the high-level purpose of the package.

2. An example that shows how to use the package to solve a simple
problem.

3. Installation instructions, giving code that can be copied and pasted into
R.

4. An overview that describes the main components of the package. For
more complex packages, this will point to vignettes for more details.
This is also a good place to describe how your package fits into the
ecosystem of its target domain.

README.Rmd and README.md
As mentioned previously, we prefer to write README in markdown, i.e., to
have README.md. This will be rendered as HTML and displayed in
several important contexts:

The repository home page, if you maintain your package on GitHub
(or a similar host).

https://github.com/tidyverse/dplyr

On CRAN, if you release your package there.

https://cran.r-project.org/web/packages/dplyr/index.xhtml

https://github.com/tidyverse/dplyr
https://cran.r-project.org/web/packages/dplyr/index.xhtml


Notice the hyperlinked “README” under “Materials.”

As the home page of your pkgdown site, if you have one.

https://dplyr.tidyverse.org

Given that it’s best to include a couple of examples in README.md, ideally
you would generate it with R Markdown. That is, it works well to have
README.Rmd as the main source file, which you then render to
README.md.

The easiest way to get started is to use
usethis::use_readme_rmd().1 This creates a template
README.Rmd and adds it to .Rbuildignore, since only README.md
should be included in the package bundle. The template looks like this:

---
output: github_document
--- 
 
<!-- README.md is generated from README.Rmd. Please edit that 
file --> 
 
```{r, include = FALSE} 
knitr::opts_chunk$set( 
  collapse = TRUE, 
  comment = "#>", 
  fig.path = "man/figures/README-", 
  out.width = "100%" 
)
``` 
 
 
 
# somepackage 
 
<!-- badges: start --> 
 
<!-- badges: end --> 
 
The goal of somepackage is to ... 
 
## Installation 
 

https://dplyr.tidyverse.org/


You can install the development version of somepackage from
[GitHub](https://github.com/) with: 
 
``` r
# install.packages("devtools")
devtools::install_github("jane/somepackage")
``` 
 
## Example 
 
This is a basic example which shows you how to solve a common 
problem: 
 
```{r example} 
library(somepackage)
## basic example code
``` 
 
 
 
What is special about using `README.Rmd` instead of just 
`README.md`?
You can include R chunks like so: 
 
```{r cars}
summary(cars)
``` 
 
 
 
You'll still need to render `README.Rmd` regularly, to keep 
`README.md` 
up-to-date. `devtools::build_readme()` is handy for this. 
 
You can also embed plots, for example: 
 
```{r pressure, echo = FALSE} 
plot(pressure) 
``` 
 
 
 
In that case, don't forget to commit and push the resulting 
figure files, 
so they display on GitHub and CRAN.

A few things to note about this starter README.Rmd:



It renders to GitHub Flavored Markdown.

It includes a comment to remind you to edit README.Rmd, not
README.md.

It sets up our recommended knitr options, including saving images to
man/figures/README—which ensures that they’re included in your
built package. This is important so that your README works when it’s
displayed by CRAN.

It sets up a place for future badges, such as results from automatic
continuous integration checks (see “Continuous Integration”).
Examples of functions that insert development badges:

usethis::use_cran_badge() reports the current version
of your package on CRAN.

usethis::use_coverage() reports test coverage.

use_github_actions() and friends report the R CMD
check status of your development package.

It includes placeholders where you should provide code for package
installation and for some basic usage.

It reminds you of key facts about maintaining your README.

You’ll need to remember to rerender README.Rmd periodically and, most
especially, before release. The best function to use for this is
devtools::build_readme(), because it is guaranteed to render
README.Rmd against the current source code of your package.

The devtools ecosystem tries to help you keep README.Rmd up-to-date in
two ways:

If your package is also a Git repo, use_readme_rmd()
automatically adds the following precommit hook:

https://github.github.com/gfm


#!/bin/bash

if [[ README.Rmd -nt README.md ]]; then

  echo "README.md is out of date; please re-knit README.Rmd"

  exit 1

fi

This prevents a git commit if README.Rmd is more recently
modified than README.md. If the hook is preventing a commit you
really want to make, you can override it with git commit --no-
verify. Note that Git commit hooks are not stored in the repository,
so this hook needs to be added to any fresh clone. For example, you
could rerun usethis::use_readme_rmd() and discard the
changes to README.Rmd.

The release checklist placed by
usethis::use_release_issue() includes a reminder to call
devtools::build_readme().

NEWS
The README is aimed at new users, whereas the NEWS file is aimed at
existing users: it should list all the changes in each release that a user might
notice or want to learn more about. As with README, it’s a well-
established convention for open source software to have a NEWS file,
sometimes called a changelog.

As with README, base R tooling does not require that NEWS be a
markdown file, but it does allow for that and it’s our strong preference. A
NEWS.md file is pleasant to read on GitHub, on your pkgdown site, and is
reachable from your package’s CRAN landing page. We demonstrate this
again with dplyr:

NEWS.md in dplyr’s GitHub repo:

https://github.com/tidyverse/dplyr/blob/main/NEWS.md

https://github.com/tidyverse/dplyr/blob/main/NEWS.md


On CRAN, if you release your package there:

https://cran.r-project.org/web/packages/dplyr/index.xhtml

Notice the hyperlinked “NEWS” under “Materials.”

On your package site, available as the “Changelog” from the “News”
drop-down menu in the main navbar:

https://dplyr.tidyverse.org/news/index.xhtml

You can use usethis::use_news_md() to initiate the NEWS.md file;
many other lifecycle- and release-related functions in the devtools
ecosystem will make appropriate changes to NEWS.md as your package
evolves.

Here’s a hypothetical NEWS.md file:

# foofy (development version) 
 
* Better error message when grooving an invalid grobble (#206). 
 
# foofy 1.0.0 
 
## Major changes 
 
* Can now work with all grooveable grobbles! 
 
## Minor improvements and bug fixes 
 
* Printing scrobbles no longer errors (@githubusername, #100). 
 
* Wibbles are now 55% less jibbly (#200).

This example demonstrates some organizing principles for NEWS.md:

Use a top-level heading for each version: e.g., # somepackage
1.0.0. The most recent version should go at the top. Typically the
top-most entry in NEWS.md of your source package will read #
somepackage (development version).2

https://cran.r-project.org/web/packages/dplyr/index.xhtml
https://dplyr.tidyverse.org/news/index.xhtml


Each change should be part of a bulleted list. If you have a lot of
changes, you might want to break them up using subheadings—##
Major changes, ## Bug fixes, etc.

We usually stick with a simple list until we’re close to a release, at
which point we organize into sections and refine the text. It’s hard to
know in advance exactly what sections you’ll need. The release
checklist placed by usethis::use_release_issue() includes
a reminder to polish the NEWS.md file. In that phase, it can be helpful
to remember that NEWS.md is a user-facing record of change, in
contrast to, e.g., commit messages, which are developer-facing.

If an item is related to an issue in GitHub, include the issue number in
parentheses, e.g., (# 10). If an item is related to a pull request, include
the pull request number and the author, e.g., (# 101, @hadley).
This helps an interested reader to find relevant context on GitHub and,
in your pkgdown site, these issue and pull request numbers and
usernames will be hyperlinks. We generally omit the username if the
contributor is already recorded in DESCRIPTION.

The main challenge with NEWS.md is getting into the habit of noting any
user-visible change when you make it. It’s especially easy to forget this
when accepting external contributions. Before release, it can be useful to
use your version control tooling to compare the source of the release
candidate to the previous release. This often surfaces missing NEWS items.

1  If it really doesn’t make sense to include any executable code chunks,
usethis::use_readme_md() is similar, except that it gives you a basic README.md
file.

2  pkgdown supports a few other wording choices for these headings; see more at
https://pkgdown.r-lib.org/reference/build_news.xhtml.

https://pkgdown.r-lib.org/reference/build_news.xhtml


Chapter 19. Website

At this point, we’ve discussed many ways to document your package:

Function documentation or, more generally, help topics (see
Chapter 16).

Documentation of datasets (see “Documenting Datasets”).

Vignettes (and articles) (see Chapter 17).

README and NEWS (see Chapter 18).

Wouldn’t it be divine if all of that somehow got bundled up together into a
beautiful website for your package? The pkgdown package is meant to
provide exactly this magic, and that is the topic of this chapter.

Initiate a Site
Assuming your package has a valid structure, pkgdown should be able to
make a website for it. Obviously that website will be more substantial if
your package has more of the documentation elements just listed. But
something reasonable should happen for any valid R package.

TIP
We hear that some folks put off “learning pkgdown,” because they think it’s going to be a lot of
work. But then they eventually execute the two commands we show next and have a decent
website in less than five minutes!

usethis::use_pkgdown() is a function you run once and it does the
initial, minimal setup necessary to start using pkgdown:

usethis::use_pkgdown()

https://pkgdown.r-lib.org/


#> ✔ Setting active project to 
'/private/tmp/RtmpRf8Oqf/mypackage' 
#> ✔ Adding '^_pkgdown\\.yml$', '^docs$', '^pkgdown$' to 
'.Rbuildignore' 
#> ✔ Adding 'docs' to '.gitignore' 
#> ✔ Writing '_pkgdown.yml' 
#> • Edit '_pkgdown.yml' 
#> ✔ Setting active project to '<no active project>'

Here’s what use_pkgdown() does:

Creates _pkgdown.yml, which is the main configuration file for
pkgdown. In an interactive session, _pkgdown.yml will be opened for
inspection and editing. But there’s no immediate need to change or add
anything here.

Adds various patterns to .Rbuildignore, to keep pkgdown-specific files
and directories from being included in your package bundle.

Adds docs, the default destination for a rendered site, to .gitignore.
This is harmless for those who don’t use Git. For those who do, this
opts you in to our recommended lifestyle, where the definitive source
for your pkgdown site is built and deployed elsewhere (probably via
GitHub Actions and Pages; more on this soon). This means the
rendered website at docs/ just serves as a local preview.

pkgdown::build_site() is a function you’ll call repeatedly to
rerender your site locally. In an extremely barebones package, you’ll see
something like this:

pkgdown::build_site()
#> ✔ Setting active project to 
'/private/tmp/RtmpRf8Oqf/mypackage' 
#> -- Installing package into temporary library -----------------
------ 
#> == Building pkgdown site 
==================================================== 
#> Reading from: '/private/tmp/RtmpRf8Oqf/mypackage' 
#> Writing to:   '/private/tmp/RtmpRf8Oqf/mypackage/docs' 
#> -- Initialising site -----------------------------------------
--------------- 



#> Copying '../../../../Users/jenny/Library/R/...link.svg' to 
'link.svg' 
#> Copying '../../../../Users/jenny/Library/R/...pkgdown.js' to 
'pkgdown.js' 
#> -- Building home ---------------------------------------------
--------------- 
#> Writing 'authors.xhtml' 
#> Writing '404.xhtml' 
#> -- Building function reference -------------------------------
--------------- 
#> Writing 'reference/index.xhtml' 
#> Writing 'sitemap.xml' 
#> -- Building search index -------------------------------------
--------------- 
#> == DONE 
=================================================================
==== 
#> ✔ Setting active project to '<no active project>'

In an interactive session your newly rendered site should appear in your
default web browser.

RSTUDIO
Another nice gesture to build your site is via Addins > pkgdown > Build pkgdown.

You can look in the local docs/ directory to see the files that constitute your
package’s website. To manually browse the site, open docs/index.xhtml in
your preferred browser.

This is almost all you truly need to know about pkgdown. It’s certainly a
great start and, as your package and ambitions grow, the best place to learn
more is the pkgdown-made website for the pkgdown package itself.

Deployment
Your next task is to deploy your pkgdown site somewhere on the web, so
that your users can visit it. The path of least resistance looks like this:

https://pkgdown.r-lib.org/


Use Git and host your package on GitHub. The reasons to do this go
well beyond offering a package website, but this will be one of the
major benefits to adopting Git and GitHub, if you’re on the fence.

Use GitHub Actions (GHA) to build your website, i.e., to run
pkgdown::build_site(). GHA is a platform where you can
configure certain actions to happen automatically when some event
happens. We’ll use it to rebuild your website every time you push to
GitHub.

Use GitHub Pages to serve your website, i.e., the files you see below
docs/ locally. GitHub Pages is a static website hosting service that
creates a site from files found in a GitHub repo.

The advice to use GitHub Action and Pages are implemented for you in the
function usethis::use_pkgdown_github_pages(). It’s not an
especially difficult task, but there are several steps, and it would be easy to
miss or flub one. The output of use_pkgdown_github_pages()
should look something like this:

usethis::use_pkgdown_github_pages()
#> ✔ Initializing empty, orphan 'gh-pages' branch in GitHub repo
#>   'jane/mypackage'
#> ✔ GitHub Pages is publishing from:
#> • URL: 'https://jane.github.io/mypackage/'
#> • Branch: 'gh-pages'
#> • Path: '/'
#> ✔ Creating '.github/'
#> ✔ Adding '^\\.github$' to '.Rbuildignore'
#> ✔ Adding '*.xhtml' to '.github/.gitignore'
#> ✔ Creating '.github/workflows/'
#> ✔ Saving 'r-lib/actions/examples/pkgdown.yaml@v2' to
#>   '.github/workflows/pkgdown.yaml'
#> • Learn more at <https://github.com/r-
lib/actions/blob/v2/examples/README.md>.
#> ✔ Recording 'https://jane.github.io/mypackage/' as site's url 
in
#>   '_pkgdown.yml'
#> ✔ Adding 'https://jane.github.io/mypackage/' to URL field in 
DESCRIPTION
#> ✔ Setting 'https:/jane.github.io/mypackage/' as homepage of 



GitHub repo
#>   'jane/mypackage'

Like use_pkgdown(), this is a function you basically call once, when
setting up a new site. In fact, the first thing it does is to call
use_pkgdown() (it’s OK if you’ve already called use_pkgdown()),
so we usually skip straight to use_pkgdown_github_pages() when
setting up a new site.

Let’s walk through what use_pkgdown_github_pages() actually
does:

Initializes an empty, “orphan” branch in your GitHub repo, named
gh-pages (for “GitHub Pages”). The gh-pages branch will live
only on GitHub (there’s no reason to fetch it to your local computer)
and it represents a separate, parallel universe from your actual package
source. The only files tracked in gh-pages are those that constitute
your package’s website (the files that you see locally below docs/).

Turns on GitHub Pages for your repo and tells it to serve a website
from the files found in the gh-pages branch.

Copies the configuration file for a GHA workflow that does pkgdown
“build and deploy.” The file shows up in your package as
.github/workflows/pkgdown.yaml. If necessary, some related additions
are made to .gitignore and .Rbuildignore.

Adds the URL for your site as the home page for your GitHub repo.

Adds the URL for your site to DESCRIPTION and _pkgdown.yml. The
autolinking behavior we’ve touted elsewhere relies on your package
listing its URL in these two places, so this is a high-value piece of
configuration.

After successful execution of use_pkgdown_github_pages(), you
should be able to visit your new site at the URL displayed in the previous
output.1 By default the URL has this general form:
https://USERNAME.github.io/REPONAME/.

https://username.github.io/REPONAME/


Now What?
For a typical package, you could stop here—after creating a basic pkgdown
site and arranging for it to be rebuilt and deployed regularly—and people
using (or considering using) your package would benefit greatly.
Everything beyond this point is a “nice to have.”

Overall, we recommend vignette("pkgdown", package =
"pkgdown") as a good place to start, if you think you want to go beyond
the basic defaults.

In the following sections, we highlight a few areas that are connected to
other topics in the book or customizations that are particularly rewarding.

Logo
It’s fun to have a package logo! In the R community, we have a strong
tradition of hex stickers, so it can be nice to join in with a hex logo of your
own. Keen R user Amelia McNamara made herself a dress out of custom
hex logo fabric, and useR! 2018 featured a spectacular hex photo wall.

Here are some resources to guide your logo efforts:

The convention is to orient the logo with a vertex at the top and
bottom, with flat vertical sides, as shown in Figure 19-1.

If you think you might print stickers, make sure to comply with the de
facto standard for sticker size. hexb.in is a reliable source for the
dimensions and also provides a list of potential vendors for printed
stickers Figure 19-1.

https://oreil.ly/FevdZ
https://oreil.ly/J2q4_
http://hexb.in/sticker.xhtml


Figure 19-1. Standard dimensions of a hex sticker

The hexSticker package helps you make your logo from within the
comfort of R.

Once you have your logo, the usethis::use_logo() function places
an appropriately scaled copy of the image file at man/figures/logo.png and
provides a copy-paste-able markdown snippet to include your logo in your
README. pkgdown will also discover a logo placed in the standard
location and incorporate it into your site.

https://oreil.ly/1WuiT


Reference Index
pkgdown creates a function reference in reference/ that includes one page
for each .Rd help topic in man/. This is one of the first pages you should
admire in your new site. As you look around, there are a few things to
contemplate, which we review in the following sections.

Rendered Examples
pkgdown executes all your examples (see “Examples”) and inserts the
rendered results. We find this is a fantastic improvement over just showing
the source code. This view of your examples can be eye-opening and often
you’ll notice things you want to add, omit, or change. If you’re not satisfied
with how your examples appear, this is a good time to review techniques for
including code that is expected to error (see “Errors”) or that can be
executed only under certain conditions (see “Dependencies and Conditional
Execution”).

Linking
These help topics will be linked to from many locations within and,
potentially, beyond your pkgdown site. This is what we are talking about in
“Key Markdown Features” when we recommend putting functions inside
square brackets when mentioning them in a roxygen comment:

#' I am a big fan of [thisfunction()] in my package. I
#' also have something to say about [otherpkg::otherfunction()]
#' in somebody else's package.

On pkgdown sites, those square-bracketed functions become hyperlinks to
the relevant pages in your pkgdown site. This is automatic within your
package. But inbound links from other people’s packages (and websites,
etc.) require two things:2

The URL field of your DESCRIPTION file must include the URL of
your pkgdown site (preferably followed by the URL of your GitHub



repo):

URL: https://dplyr.tidyverse.org, 

https://github.com/tidyverse/dplyr

Your _pkgdown.yml file must include the URL for your site:

url: https://dplyr.tidyverse.org

devtools takes every chance it gets to do this sort of configuration for you.
But if you elect to do things manually, this is something you might
overlook. A general resource on auto-linking in pkgdown is
vignette("linking", package = "pkgdown").

Index Organization
By default, the reference index is just an alphabetically ordered list of
functions. For packages with more than a handful of functions, it’s often
worthwhile to curate the index and organize the functions into groups. For
example, dplyr uses this technique.

You achieve this by providing a reference field in _pkgdown.yml.
Here’s a redacted excerpt from dplyr’s _pkgdown.yml file that gives you a
sense of what’s involved:

reference:
- title: Data frame verbs 
 
- subtitle: Rows
  desc: >
    Verbs that principally operate on rows.
  contents:
  - arrange
  - distinct
  ... 
 
- subtitle: Columns
  desc: >
    Verbs that principally operate on columns.

https://oreil.ly/f-eSp.


  contents:
  - glimpse
  - mutate
  ... 
 
- title: Vector functions
  desc: >
    Unlike other dplyr functions, these functions work on 
individual vectors,
    not data frames.
  contents:
  - between
  - case_match
  ... 
 
- title: Built in datasets
  contents:
  - band_members
  - starwars
  - storms
  ... 
 
- title: Superseded
  desc: >
    Superseded functions have been replaced by new approaches 
that we believe
    to be superior, but we don't want to force you to change 
until you're
    ready, so the existing functions will stay around for several 
years.
  contents:
  - sample_frac
  - top_n
  ...

To learn more, see ?pkgdown::build_reference.

Vignettes and Articles
Chapter 17 deals with vignettes, which are long-form guides for a package.
They afford various opportunities beyond what’s possible in function
documentation. For example, you have much more control over the
integration of prose and code and over the presentation of code itself;



e.g., code can be executed but not seen, seen but not executed, and so on.
It’s much easier to create the reading experience that best prepares your
users for authentic usage of your package.

A package’s vignettes appear, in rendered form, in its website, in the
Articles dropdown menu. “Vignette” feels like a technical term that we
might not expect all R users to know, which is why pkgdown uses the term
“articles” here. To be clear, the Articles menu lists your package’s official
vignettes (the ones that are included in your package bundle) and,
optionally, other nonvignette articles (see “Article Instead of Vignette”),
which are only available on the website.

Linking
Like function documentation, vignettes also can be the target of automatic
inbound links from within your package and, potentially, beyond. We’ve
talked about this elsewhere in the book. In “Key Markdown Features”, we
introduced the idea of referring to a vignette with an inline call like
vignette("some-topic"). The rationale behind this syntax is
because the code can literally be copied, pasted, and executed for local
vignette viewing. So it “works” in any context, even without automatic
links. But, in contexts where the auto-linking machinery is available, it
knows to look for this exact syntax and turn it into a hyperlink to the
associated vignette, within a pkgdown site.

The need to specify the host package depends on the context:

vignette("some-topic")

Use this form in your own roxygen comments, vignettes, and articles to
refer to a vignette in your package. The host package is implied.

vignette("some-topic", package = "somepackage")

Use this form to refer to a vignette in some other package. The host
package must be explicit.



Note that this shorthand does not work for linking to nonvignette articles.
Since the syntax leans so heavily on the vignette() function, it would
be too confusing; i.e., evaluating the code in the console would fail because
R won’t be able to find such a vignette. Nonvignette articles must be linked
like any other URL.

When you refer to a function in your package, in your vignettes and articles
make sure to put it inside backticks and to include parentheses. Qualify
functions from other packages with their namespace. Here’s an example of
prose in one of your own vignettes or articles:

I am a big fan of `thisfunction()` in my package. I also have 
something to 
say about `otherpkg::otherfunction()` in somebody else's package.

Remember that automatic inbound links from other people’s packages (and
websites, etc.) require that your package advertises the URL of its website
in DESCRIPTION and _pkgdown.yaml, as configured by
usethis::use_pkgdown_github_pages() and as described in
“Linking”.

Index Organization
As with the reference index, the default listing of the articles (broadly
defined) in a package is alphabetical. But if your package has several
articles, it can be worthwhile to provide additional organization. For
example, you might feature the articles aimed at the typical user and tuck
those meant for advanced users or developers behind “More articles …”.
You can learn more about this in ?pkgdown::build_articles.

NonVignette Articles
In general, Chapter 17 is our main source of advice on how to approach
vignettes and that also includes some coverage of nonvignette articles
(“Article Instead of Vignette”). Here we review some reasons to use a
nonvignette article and give some examples.



An article is morally like a vignette (e.g., it tells a story that involves
multiple functions and is written with R Markdown), except it does not ship
with the package bundle. usethis::use_article() is the easiest
way to create an article. The main reason to use an article is when you want
to show code that is impossible or very painful to include in a vignette or
official example. Possible root causes of this pain include:

Use of a package you don’t want to formally depend on. In vignettes
and examples, it’s forbidden to show your package working with a
package that you don’t list in DESCRIPTION, e.g., in Imports or
Suggests.

There is a detailed example of this in “Config/Needs/* Field”,
featuring a readxl article that uses the tidyverse metapackage. The key
idea is to list such a dependency in the Config/Needs/website
field of DESCRIPTION. This keeps tidyverse out of readxl’s
dependencies, but ensures it’s installed when the website is built.

Code that requires authentication or access to specific assets, tools, or
secrets that are not available on CRAN.

The googledrive package has no true vignettes, only nonvignette
articles, because it’s essentially impossible to demonstrate usage
without authentication. It is possible to access secure environment
variables on GitHub Actions, where the pkgdown site is built and
deployed, but this is impossible to do on CRAN.

Content that involves a lot of figures, which cause your package to
bump up against CRAN’s size constraints.

The ggplot2 package presents several FAQs as articles for this reason.

Development Mode
Every pkgdown site has a so-called development mode, which can be
specified via the development field in _pkgdown.yml. If unspecified, the
default is mode: release, which results in a single pkgdown site.

https://oreil.ly/ZVtJk
https://oreil.ly/vaqWC
https://oreil.ly/hNmQK


Despite the name, this single site reflects the state of the current source
package, which could be either a released state or a development state. The
diagram below shows the evolution of a hypothetical package that is on
CRAN and that has a pkgdown site in “release” mode:

... 
 | 
 V 
Tweaks before release     v0.1.9000 
 | 
 V 
Increment version number  v0.2.0     <-- install.packages() gets 
this 
 | 
 V 
Increment version number  v0.2.9000 
 | 
 V 
Improve error message     v0.2.9000  <-- site documents this 
 | 
 V 
...

Users who install from CRAN get version 0.2.0. But the pkgdown site is
built from the development version of the package.

This creates the possibility that users will read about some new feature on
the website that is not present in the package version they have installed
with install. packages(). We find that the simplicity of this setup
outweighs the downsides, until a package has a broad user base, i.e., lots of
users of varying levels of sophistication. It’s probably safe to stay in
“release” mode until you actually hear from a confused user.

Packages with a substantial user base should use “auto” development mode:

development:
  mode: auto

This directs pkgdown to generate a top-level site from the released version
and to document the development version in a dev/ subdirectory. We revisit



the same hypothetical package as before, but we assume the pkdown site is
in “auto” mode.

... 
 | 
 V 
Tweaks before release     v0.1.9000 
 | 
 V 
Increment version number  v0.2.0     <-- install.packages() gets 
this 
 |                                       main site documents this 
 V 
Increment version number  v0.2.9000 
 | 
 V 
Improve error message     v0.2.9000  <-- dev/ site documents this 
 | 
 V 
...

All of the core tidyverse packages use “auto” mode. For example, consider
the website of the readr package:

https://readr.tidyverse.org documents the released version, i.e. what
install. packages("readr") delivers.

https://readr.tidyverse.org/dev documents the dev version, i.e., what
install_github("tidyverse/readr") delivers.

Automatic development mode is recommended for packages with a broad
user base, because it maximizes the chance that a user will read web-based
documentation that reflects the package version that is locally installed.

1  Sometimes there’s a small delay, so give it up to a couple of minutes to deploy.

2  Another prerequisite is that your package has been released on CRAN, because the auto-
linking machinery has to look up the DESCRIPTION somewhere. It is possible to allow locally
installed packages to link to each other, which is described in vignette("linking",
package = "pkgdown").

https://readr.tidyverse.org/
https://readr.tidyverse.org/dev


Part VI. Maintenance and
Distribution



Chapter 20. Software
Development Practices

In this last part of the book, we zoom back out to consider development
practices that can make you more productive and raise the quality of your
work. Here we’ll discuss the use of version control and continuous
integration. In Chapter 21 we discuss how the nature of package
maintenance varies over the lifecycle of a package.

You will notice that we recommend using certain tools:

An integrated development environment (IDE)

In “RStudio Projects” we encouraged the use of the RStudio IDE for
package development work. That’s what we document, since it’s what
we use and devtools is developed to work especially well with RStudio.
But even if it’s not RStudio, we strongly recommend working with an
IDE that has specific support for R and R package development.

Version control

We strongly recommend the use of formal version control and, at this
point in time, Git is the obvious choice. We say that based on Git’s
general prevalence and, specifically, its popularity within the R package
ecosystem. In “Git and GitHub”, we explain why we think version
control is so important.

Hosted version control

We strongly recommend syncing your local Git repositories to a hosted
service and, at this time, GitHub is “the” or at least “an” obvious choice.
This is also covered in “Git and GitHub”.

Continuous integration and deployment, a.k.a. CI/CD (or even just CI)



This terminology comes from the general software engineering world
and can sound somewhat grandiose or intimidating when applied to
your personal R package. All this really means is that you set up
specific package development tasks to happen automatically when you
push new work to your hosted repository. Typically you’ll want to run R
CMD check and to rebuild and deploy your package website. In
“Continuous Integration”, we show how to do this with GitHub Actions.

You might think that these pro-style tools are overkill for someone who
doesn’t do software development for a living. While we don’t recommend
forcing yourself to do everything just listed on day one of your first “hello
world” project, we actually do believe these tools are broadly applicable for
R package development.

The main reason is that these tools make it so much easier to do the right
thing, e.g., to experiment, document, test, check, and collaborate. By
adopting a shared toolkit, part-time and newer package developers gain
access to the same workflows used by experts. This requires a certain
amount of faith and upfront investment, but we believe this pays off.

Git and GitHub
Git is a version control system that was originally built to coordinate the
work of a global group of developers working on the Linux kernel. Git
manages the evolution of a set of files—called a repository—in a highly
structured way, and we recommend that every R package should also be a
Git repository (and also, probably, an RStudio Project; see “RStudio
Projects”).

A solo developer, working on a single computer, will benefit from adopting
version control. But, for most of us, that benefit is not nearly large enough
to make up for the pain of installing and using Git. In our opinion, for most
folks, the pros of Git only outweigh the cons once you take the additional
step of hooking your local repository up to a remote host like GitHub. The

https://git-scm.com/
https://github.com/


joint use of Git and GitHub offers many benefits that more than justify the
learning curve.

Standard Practice
This recommendation is well aligned with the current, general practices in
software development. Here are a few relevant facts from the 2022 Stack
Overflow developer survey, which is based on about 70K responses:

94% report using Git. The second-most used version control system
was SVN, used by 5% of respondents.

For personal projects, 87% of respondents report using GitHub,
followed by GitLab (21%) and Bitbucket (11%). The ranking is the
same albeit less skewed for professional work: GitHub still dominates
with 56%, followed by GitLab (29%) and Bitbucket (18%).

We can even learn a bit about the habits of R package developers, based on
the URLs found in the DESCRIPTION files of CRAN packages. As of
March 2023, there are about 19K packages on CRAN, about 55% of which
have a nonempty URL field (over 10K). Of those, 80% have a GitHub URL
(over 8K), followed by GitLab (just over 1%) and Bitbucket (around 0.5%).

The prevalence of Git/GitHub, both within the R community and beyond,
should help you feel confident that adoption will have tangible benefits.
Furthermore, the sheer popularity of these tools means there are lots of
resources available for learning how to use Git and GitHub and for getting
unstuck.1

Two specific resources that address the intersection of Git/GitHub and the R
world are the website Happy Git and GitHub for the useR and the article
“Excuse me, do you have a moment to talk about version control?”2

We conclude this section with a few examples of why Git/GitHub can be
valuable specifically for R package development:

Communication with users

https://oreil.ly/TIdWx
https://oreil.ly/bl1Eo


GitHub Issues are well-suited for taking bug reports and feature
requests. Unlike email sent to the maintainer, these conversations are
accessible to others and searchable.

Collaboration

GitHub pull requests are a very low-friction way for outside
contributors to help fix bugs and add features.

Distribution

Functions like devtools::install_github("r-
lib/devtools") and  pak::pak ("r-lib/devtools") allow
people to easily install the development version of your package, based
on a source repository. More generally, anyone can install your package
from any valid Git ref, such as a branch, specific SHA, pull request, or
tag.

Website

GitHub Pages is one of the easiest ways to offer a website for your
package (see “Deployment”).

Continuous integration

This is actually the topic of the next section, so read on for more.

Continuous Integration
As we said in the introduction, continuous integration and deployment is
commonly abbreviated as CI/CD or just CI. For R package development,
what this means in practice is:

You host your source package on a platform like GitHub. The key
point is that the hosted repository provides the formal structure for
integrating the work of multiple contributors. Sometimes multiple
developers have permission to push (this is how tidyverse and r-lib



packages are managed). In other cases, only the primary maintainer
has push permission. In either model, external contributors can
propose changes via a pull request.

You configure one or more development tasks to execute automatically
when certain events happen in the hosted repository, such as a push or
a pull request. For example, for an R package, it’s extremely valuable
to configure an automatic run of R CMD check. This helps you
discover breakage quickly, when it’s easier to diagnose and fix, and is
a tremendous help for evaluating whether to accept an external
contribution.

Overall, the use of hosted version control and continuous integration can
make development move more smoothly and quickly.

Even for a solo developer, having R CMD check run remotely, possibly
on a couple of different operating systems, is a mighty weapon against the
dreaded “works on my machine” problem. Especially for packages destined
for CRAN, the use of CI decreases the chance of nasty surprises right
before release.

GitHub Actions
The easiest way to start using CI is to host your package on GitHub and use
its companion service, GitHub Actions (GHA). Then you can use various
functions from usethis to configure so-called GHA workflows. usethis
copies workflow configuration files from r-lib/actions, which is
where the tidyverse team maintains GHA infrastructure useful to the R
community.

R CMD check via GHA
If you use CI for only one thing, it should be to run R CMD check. If you
call usethis::use_github_action() with no arguments, you can
choose from a few of the most useful workflows. Here’s what that menu
looks like at the time of writing:

https://github.com/r-lib/actions/#readme


> use_github_action()
Which action do you want to add? (0 to exit)
(See <https://github.com/r-lib/actions/tree/v2/examples> for 
other options) 
 
1: check-standard: Run `R CMD check` on Linux, macOS, and Windows
2: test-coverage: Compute test coverage and report to 
https://about.codecov.io
3: pr-commands: Add /document and /style commands for pull 
requests 
 
Selection:

check-standard is highly recommended, especially for any package
that is (or aspires to be) on CRAN. It runs R CMD check across a few
combinations of operating system and R version. This increases your
chances of quickly detecting code that relies on the idiosyncrasies of a
specific platform, while it’s still easy to make the code more portable.

After making that selection, you will see some messages along these lines:

#> ✔ Creating '.github/'
#> ✔ Adding '*.xhtml' to '.github/.gitignore'
#> ✔ Creating '.github/workflows/'
#> ✔ Saving 'r-lib/actions/examples/check-standard.yaml@v2' to
#>    .github/workflows/R-CMD-check.yaml'
#> • Learn more at <https://github.com/r-
lib/actions/blob/v2/examples/README.md>.
#> ✔ Adding R-CMD-check badge to 'README.md'

The key things that happen here are:

A new GHA workflow file is written to .github/workflows/R-CMD-
check.yaml. GHA workflows are specified via YAML files. The
message reveals the source of the YAML and gives a link to learn
more.

Some helpful additions may be made to various “ignore” files.

A badge reporting the R CMD check result is added to your
README, if it has been created with usethis and has an identifiable



badge “parking area.” Otherwise, you’ll be given some text you can
copy and paste.

Commit these file changes and push to GitHub. If you visit the “Actions”
section of your repository, you should see that a GHA workflow run has
been launched. In due course, its success (or failure) will be reported there,
in your README badge, and in your GitHub notifications (depending on
your personal settings).

Congratulations! Your package will now benefit from even more regular
checks.

Other Uses for GHA
As suggested by the interactive menu,
usethis::use_github_action() gives you access to premade
workflows other than R CMD check. In addition to the featured choices,
you can use it to configure any of the example workflows in r-
lib/actions by passing the workflow’s name. For example,
use_github_action("test-coverage") configures a workflow
to track the test coverage of your package, as described in “Test Coverage”.

Since GHA allows you to run arbitrary code, you can use it for other things:

Building your package’s website and deploying the rendered site to
GitHub Pages, as described in “Deployment”. See also ?use this:: 
use_pkgdown_github_pages().

Republishing a book website every time you make a change to the
source. (Like we do for this book!).

If the example workflows don’t cover your exact use case, you can also
develop your own workflow. Even in this case, the example workflows are
often useful as inspiration. The r-lib/actions repository also contains
important lower-level building blocks, such as actions to install R or to
install all of the dependencies indicated in a DESCRIPTION file.

https://oreil.ly/Gjxh3
https://oreil.ly/mwPYg


1  We feature GitHub here, for hosted version control, because it’s what we use and what has the
best support in devtools. However, all the big-picture principles and even some details hold up
for alternative platforms, such as GitLab and Bitbucket.

2  Jennifer Bryan, “Excuse Me, Do You Have a Moment to Talk about Version Control?” The
American Statistician 72, no. 1 (2018):20–27.
https://doi.org/10.1080/00031305.2017.1399928.

https://doi.org/10.1080/00031305.2017.1399928


Chapter 21. Lifecycle

This chapter is about managing the evolution of your package. The trickiest
part of managing change is balancing the interests of various stakeholders:

The maintainer(s), which includes you and possibly others, especially
in the future.

The existing users, which could be just you or a small group of
colleagues or it could be tens or hundreds of thousands of people.

The future users, which hopefully includes the existing users, but
could potentially include many more people.

It’s impossible to optimize for all of these folks, all of the time, all at once.
So we’ll describe how we think about various trade-offs. Even if your
priorities differ from those of the tidyverse team, this chapter still should
help you identify issues you want to consider.

Very few users complain when a package gains features or gets a bug fix.
Instead, we’re mostly going to talk about so-called breaking changes, such
as removing a function or narrowing the acceptable inputs for a function. In
“Backward Compatibility and Breaking Change”, we explore how to
determine whether something is a breaking change or, more realistically, to
gauge where it lies on a spectrum of “breakingness.” Even though it can be
painful, sometimes a breaking change is beneficial for the long-term health
of a package (see “Pros and Cons of Breaking Change”).

Since change is inevitable, the kindest thing you can do for your users is to
communicate clearly and help them adapt to change. Several practices work
together to achieve this:

Package version number

The main form of user-facing change is a package release. Be
intentional about what sort of changes are included in, e.g., a patch



release versus a major release (see “Package Version Number”, and
“Major Versus Minor Versus Patch Release”).

Lifecycle stage

Be explicit when a function or argument is regarded as experimental,
superseded, or deprecated, as opposed to stable (the assumed default)
(see “Lifecycle Stages and Supporting Tools”).

Deprecation process

Enact change in a phased way, which makes it easier for users to adjust
their code (see “Lifecycle Stages and Supporting Tools”).

Package Evolution
First we should establish a working definition of what it means for your
package to change. Technically, you could say that the package has changed
every time any file in its source changes. This level of pedantry isn’t
terribly useful, though. The smallest increment of change that’s meaningful
is probably a Git commit. This represents a specific state of the source
package that can be talked about, installed from, compared to, subjected to
R CMD check, reverted to, and so on. This level of granularity is really of
interest only to developers. But the package states accessible via the Git
history are genuinely useful for the maintainer, so if you needed any
encouragement to be more intentional with your commits, let this be it.

The primary signal of meaningful change is to increment the package
version number and release it, for some definition of release, such as
releasing on CRAN (see Chapter 22). Recall that this important piece of
metadata lives in the Version field of the DESCRIPTION file:

Package: usethis
Title: Automate Package and Project Setup
Version: 2.1.6
...



If you visit the CRAN landing page for usethis, you can access its history
via Downloads > Old sources > usethis archive. That links to a folder of
package bundles (see “Bundled Package”), reflecting usethis’s source for
each version released on CRAN, presented in Table 21-1.

https://oreil.ly/ayCWm


Table 21-1. Releases of the usethis
package

Version Date

1.0.0 2017-10-22
17:36:29 UTC

1.1.0 2017-11-17
22:52:07 UTC

1.2.0 2018-01-19
18:23:54 UTC

1.3.0 2018-02-24
21:53:51 UTC

1.4.0 2018-08-14
12:10:02 UTC

1.5.0 2019-04-07
10:50:44 UTC

1.5.1 2019-07-04
11:00:05 UTC

1.6.0 2020-04-09
04:50:02 UTC

1.6.1 2020-04-29
05:50:02 UTC



This is the type of package evolution we’re going to address in this chapter.
In “Package Version Number”, we’ll delve into the world of software
version numbers, which is a richer topic than you might expect. R also has
some specific rules and tools around package version numbers. Finally,

Version Date

1.6.3 2020-09-17
17:00:03 UTC

2.0.0 2020-12-10
09:00:02 UTC

2.0.1 2021-02-10
10:40:06 UTC

2.1.0 2021-10-16
23:30:02 UTC

2.1.2 2021-10-25
07:30:02 UTC

2.1.3 2021-10-27
15:00:02 UTC

2.1.5 2021-12-09
23:00:02 UTC

2.1.6 2022-05-25
20:50:02 UTC



we’ll explain the conventions we use for the version numbers of tidyverse
packages (see “Tidyverse Package Version Conventions”).

But first, this is a good time to revisit a resource we first pointed out in
“Source Package”, when introducing the different states of an R package.
Recall that the (unofficial) cran organization on GitHub provides a read-
only history of all CRAN packages. For example, you can get a different
view of usethis’s released versions at https://github.com/cran/usethis.

The archive provided by CRAN itself allows you to download older
versions of usethis as .tar.gz files, which is useful if you truly want to get
your hands on the source of an older version. However, if you just want to
quickly check something about a version or compare two versions of
usethis, the read-only GitHub mirror is much more useful. Each commit in
this repo’s history represents a CRAN release, which makes it easy to see
exactly what changed. Furthermore, you can browse the state of all the
package’s source files at any specific version, such as usethis’s initial
release at version 1.0.0.1

This information is technically available from the repository where usethis
is actually developed. But you have to work much harder to zoom out to the
level of CRAN releases, amid the clutter of the small incremental steps in
which development actually unfolds. These three different views of
usethis’s evolution are all useful for different purposes:

https://cran.r-project.org/src/contrib/Archive/usethis

The official CRAN package bundles.

https://github.com/cran/usethis/commits/HEAD

The unofficial read-only CRAN mirror, obtained by unpacking CRAN’s
bundles.

https://github.com/r-lib/usethis/commits/HEAD

The official development home for usethis.

https://github.com/cran/usethis
https://oreil.ly/6qKT3
https://oreil.ly/turrl
https://oreil.ly/2Ujtu
https://cran.r-project.org/src/contrib/Archive/usethis
https://github.com/cran/usethis/commits/HEAD
https://github.com/r-lib/usethis/commits/HEAD


Package Version Number
Formally, an R package version is a sequence of at least two integers
separated by either . or -. For example, 1.0 and 0.9.1-10 are valid
versions, but 1 and 1.0-devel are not. Base R offers the
utils::package_version()2 function to parse a package version
string into a proper S3 class by the same name. This class makes it easier to
do things like compare versions:

package_version(c("1.0", "0.9.1-10"))
#> [1] '1.0'      '0.9.1.10'
class(package_version("1.0"))
#> [1] "package_version" "numeric_version" 
 
# these versions are not allowed for an R package
package_version("1")
#> Error: invalid version specification '1'
package_version("1.0-devel")
#> Error: invalid version specification '1.0-devel' 
 
# comparing package versions
package_version("1.9") == package_version("1.9.0")
#> [1] TRUE
package_version("1.9") < package_version("1.9.2")
#> [1] TRUE
package_version(c("1.9", "1.9.2")) < package_version("1.10")
#> [1] TRUE TRUE

The previous examples make it clear that R considers version 1.9 to be
equal to 1.9.0 and to be less than 1.9.2. And both 1.9 and 1.9.2 are
less than 1.10, which you should think of as version “one point ten,” not
“one point one zero.”

If you’re skeptical that the package_version class is really necessary,
check out this example:

"2.0" > "10.0"
#> [1] TRUE
package_version("2.0") > package_version("10.0")
#> [1] FALSE



The string 2.0 is considered to be greater than the string 10.0, because
the character 2 comes after the character 1. By parsing version strings into
proper package_version objects, we get the correct comparison,
i.e., that version 2.0 is less than version 10.0.

R offers this support for working with package versions, because it’s
necessary, for example, to determine whether package dependencies are
satisfied (see “Minimum Versions”). Under-the-hood, this tooling is used to
enforce minimum versions recorded like this in DESCRIPTION:

Imports:
    dplyr (>= 1.0.0),
    tidyr (>= 1.1.0)

In your own code, if you need to determine which version of a package is
installed, use utils::packageVersion():3

packageVersion("usethis")
#> [1] '2.2.0'
str(packageVersion("usethis"))
#> Classes 'package_version', 'numeric_version'  hidden list of 1
#>  $ : int [1:3] 2 2 0 
 
packageVersion("usethis") > package_version("10.0")
#> [1] FALSE
packageVersion("usethis") > "10.0"
#> [1] FALSE

The return value of packageVersion() has the package_version
class and is therefore ready for comparison to other version numbers. Note
the last example where we seem to be comparing a version number to a
string. How can we get the correct result without explicitly converting
10.0 to a package version? It turns out this conversion is automatic as long
as one of the comparators has the package_version class.

Tidyverse Package Version Conventions



R considers 0.9.1-10 to be a valid package version, but you’ll never see
a version number like that for a tidyverse package. Here is our
recommended framework for managing the package version number:

Always use . as the separator, never -.

A released version number consists of three numbers,  <major>. 
<minor>.<patch>. For version number 1.9.2, 1 is the major
number, 9 is the minor number, and 2 is the patch number. Never use
versions like 1.0. Always spell out the three components, 1.0.0.

An in-development package has a fourth component: the development
version. This should start at 9000. The number 9000 is arbitrary, but
provides a clear signal that there’s something different about this
version number. There are two reasons for this practice: First, the
presence of a fourth component makes it easy to tell if you’re dealing
with a released or in-development version. Also, the use of the fourth
place means that you’re not limited to what the next released version
will be. 0.0.1, 0.1.0, and 1.0.0 are all greater than
0.0.0.9000.

Increment the development version, e.g., from 9000 to 9001, if
you’ve added an important feature and you (or others) need to be able
to detect or require the presence of this feature. For example, this can
happen when two packages are developing in tandem. This is generally
the only reason that we bother to increment the development version.
This makes in-development versions special and, in some sense,
degenerate. Since we don’t increment the development component
with each Git commit, the same package version number is associated
with many different states of the package source, in between releases.

The preceding advice is inspired in part by Semantic Versioning and by the
X.Org versioning schemes. Read them if you’d like to understand more
about the standards of versioning used by many open source projects. But
we should underscore that our practices are inspired by these schemes and

https://semver.org/
https://oreil.ly/i3yi4


are somewhat less regimented. Finally, know that other maintainers follow
different philosophies on how to manage the package version number.

Backward Compatibility and Breaking
Change
The version number of your package is always increasing, but it’s more
than just an incrementing counter—the way the number changes with each
release can convey information about the nature of the changes. The
transition from 0.3.1 to 0.3.2, which is a patch release, has a very different
vibe from the transition from 0.3.2 to 1.0.0, which is a major release. A
package version number can also convey information about where the
package is in its lifecycle. For example, the version 1.0.0 often signals that
the public interface of a package is considered stable.

How do you decide which type of release to make, i.e., which component(s)
of the version should you increment? A key concept is whether the
associated changes are backward compatible, meaning that preexisting code
will still “work” with the new version. We put “work” in quotes, because
this designation is open to a certain amount of interpretation. A hardliner
might take this to mean “the code works in exactly the same way, in all
contexts, for all inputs.” A more pragmatic interpretation is that “the code
still works but could produce a different result in some edge cases.” A
change that is not backward compatible is often described as a breaking
change. Here we’re going to talk about how to assess whether a change is
breaking. In “Pros and Cons of Breaking Change” we’ll talk about how to
decide if a breaking change is worth it.

In practice, backward compatibility is not a clear-cut distinction. It is
typical to assess the impact of a change from a few angles:

Degree of change in behavior

The most extreme is to make something that used to be possible into an
error, i.e., impossible.



How the changes fit into the design of the package

A change to low-level infrastructure, such as a utility that gets called in
all user-facing functions, is more fraught than a change that affects only
one parameter of a single function.

How much existing usage is affected

This is a combination of how many of your users will perceive the
change and how many existing users there are to begin with.

Here are some concrete examples of breaking change:

Removing a function

Removing an argument

Narrowing the set of valid inputs to a function

Conversely, these are usually not considered breaking:

Adding a function. Caveat: there’s a small chance this could introduce
a conflict in user code.

Adding an argument. Caveat: this could be breaking for some usage,
e.g., if a user is relying on position-based argument matching. This
also requires some care in a function that accepts ...

Increasing the set of valid inputs.

Changing the text of a print method or error. Caveat: This can be
breaking if other packages depend on yours in fragile ways, such as
building logic or a test that relies on an error message from your
package.

Fixing a bug. Caveat: It really can happen that users write code that
“depends” on a bug. Sometimes such code was flawed from the
beginning, but the problem went undetected until you fixed your bug.



Other times this surfaces code that uses your package in an unexpected
way, i.e., it’s not necessarily wrong, but neither is it right.

If reasoning about code was a reliable way to assess how it will work in real
life, the world wouldn’t have so much buggy software. The best way to
gauge the consequences of a change in your package is to try it and see
what happens. In addition to running your own tests, you can also run the
tests of your reverse dependencies and see if your proposed change breaks
anything. The tidyverse team has a fairly extensive set of tools for running
so-called reverse dependency checks (see “Reverse Dependency Checks”),
where we run R CMD check on all the packages that depend on ours.
Sometimes we use this infrastructure to study the impact of a potential
change, i.e., reverse dependency checks can be used to guide development,
not only as a last-minute, prerelease check. This leads to yet another, deeply
pragmatic definition of a breaking change:

A change is breaking if it causes a CRAN package that was previously
passing R CMD check to now fail AND the package’s original usage
and behavior is correct.

This is obviously a narrow and incomplete definition of breaking change,
but at least it’s relatively easy to get solid data.

Hopefully we’ve made the point that backward compatibility is not always
a clearcut distinction. But hopefully we’ve also provided plenty of concrete
criteria to consider when thinking about whether a change could break
someone else’s code.

Major Versus Minor Versus Patch Release
Recall that a version number will have one of these forms, if you’re
following the conventions described in “Tidyverse Package Version
Conventions”:

<major>.<minor>.<patch>        # released version 
<major>.<minor>.<patch>.<dev>  # in-development version



If the current package version is 0.8.1.9000, here’s our advice on how
to pick the version number for the next release:

Increment patch, e.g., 0.8.2 for a patch release

You’ve fixed bugs, but you haven’t added any significant new features
and there are no breaking changes. For example, if we discover a show-
stopping bug shortly after a release, we would make a quick patch
release with the fix. Most releases will have a patch number of 0.

Increment minor, e.g., 0.9.0, for a minor release

A minor release can include bug fixes, new features, and changes that
are backward compatible.4 This is the most common type of release. It’s
perfectly fine to have so many minor releases that you need to use two
(or even three!) digits, e.g., 1.17.0.

Increment major, e.g., 1.0.0, for a major release

This is the most appropriate time to make changes that are not backward
compatible and that are likely to affect many users. The 1.0.0 release
has special significance and typically indicates that your package is
feature complete with a stable API.

The trickiest decision you are likely to face is whether a change is
“breaking” enough to deserve a major release. For example, if you make an
API-incompatible change to a rarely used part of your code, it may not
make sense to increase the major number. But if you fix a bug that many
people depend on (it happens!), it will feel like a breaking change to those
folks. It’s conceivable that such a bug fix could merit a major release.

We’re mostly dwelling on breaking changes, but let’s not forget that
sometimes you also add exciting new features to your package. From a
marketing perspective, you probably want to save these for a major release,
because your users are more likely to learn about the new goodies from
reading a blog post or NEWS.



Here are a few tidyverse blog posts that have accompanied different types
of package releases:

Major release: dplyr 1.0.0, purrr 1.0.0, pkgdown 2.0.0, readr 2.0.0

Minor release: stringr 1.5.0, ggplot2 3.4.0

Patch release: These are usually not considered worthy of a blog post.

Package Version Mechanics
Your package should start with version number 0.0.0.9000.
usethis::create_ package() starts with this version, by default.

From that point on, you can use usethis::use_version() to
increment the package version. When called interactively, with no
argument, it presents a helpful menu:

usethis::use_version()
#> Current version is 0.1.
#> What should the new version be? (0 to exit)
#>
#> 1: major --> 1.0
#> 2: minor --> 0.2
#> 3: patch --> 0.1.1
#> 4:   dev --> 0.1.0.9000
#>
#> Selection:

In addition to incrementing Version in DESCRIPTION (see Chapter 9),
use_version() also adds a new heading in NEWS.md (“NEWS”).

Pros and Cons of Breaking Change
The big difference between major and minor releases is whether or not the
code is backward compatible. In the general software world, the idea is that
a major release signals to users that it may contain breaking changes and
they should upgrade only when they have the capacity to deal with any
issues that emerge.

https://oreil.ly/W2LMJ
https://oreil.ly/QtwDi
https://oreil.ly/4c3K4
https://oreil.ly/rEJpo
https://oreil.ly/A6faU
https://oreil.ly/DgldB


Reality is a bit different in the R community, because of the way most users
manage package installation. If we’re being honest, most R users don’t
manage package versions in a very intentional way. Given the way
update.packages() and install.packages() work, it’s quite
easy to upgrade a package to a new major version without really meaning
to, especially for dependencies of the target package. This, in turn, can lead
to unexpected exposure to breaking changes in code that previously
worked. This unpleasantness has implications both for users and for
maintainers.

If it’s important to protect a data product against change in its R package
dependencies, we recommend the use of a project-specific package library.
In particular, we like to implement this approach using the renv package.
This supports a lifestyle where a user’s default package library is managed
in the usual, somewhat haphazard way. But any project that has a specific,
higher requirement for reproducibility is managed with renv. This keeps
package updates triggered by work in project A from breaking the code in
project B and also helps with collaboration and deployment.

We suspect that package-specific libraries and tools like renv are currently
under-utilized in the R world. That is, lots of R users still use just one
package library. Therefore, package maintainers still need to exercise
considerable caution and care when they introduce breaking changes,
regardless of what’s happening with the version number. In the next section,
we describe how tidyverse packages approach this, supported by tools in
the lifecycle package.

As with dependencies (see “When Should You Take a Dependency?”), we
find that extremism isn’t a very productive stance. Extreme resistance to
breaking change puts a significant drag on ongoing development and
maintenance. Backward compatible code tends to be harder to work with
because of the need to maintain multiple paths to support functionality from
previous versions. The harder you strive to maintain backward
compatibility, the harder it is to develop new features or fix old mistakes.
This, in turn, can discourage adoption by new users and can make it harder
to recruit new contributors. On the other hand, if you constantly make

https://rstudio.github.io/renv/


breaking changes, users will become very frustrated with your package and
will decide they’re better off without it. Find a happy medium. Be
concerned about backward compatibility, but don’t let it paralyze you.

The importance of backward compatibility is directly proportional to the
number of people using your package: you are trading your time and pain
for that of your users. There are good reasons to make backward
incompatible changes. Once you’ve decided it’s necessary, your main
priority is to use a humane process that is respectful of your users.

Lifecycle Stages and Supporting Tools
The tidyverse team’s approach to package evolution has become more
structured and deliberate over the years. The associated tooling and
documentation lives in the lifecycle package. The approach relies on two
major components:

Lifecycle stages, which can be applied at different levels, i.e., to an
individual argument or function or to an entire package. These stages
are depicted in Figure 21-1.

Conventions and functions to use when transitioning a function from
one lifecycle stage to another. The deprecation process is the one that
demands the most care.

We won’t duplicate too much of the lifecycle documentation here. Instead,
we highlight the general principles of lifecycle management and present
specific examples of successful lifecycle “moves.”

Lifecycle Stages and Badges

https://lifecycle.r-lib.org/index.xhtml


Figure 21-1. The four primary stages of the tidyverse lifecycle: stable, deprecated, superseded, and
experimental

The four lifecycle stages are:

Stable

This is the default stage and signals that users should feel comfortable
relying on a function or package. Breaking changes should be rare and
should happen gradually, giving users sufficient time and guidance to
adapt their usage.

Experimental

This is appropriate when a function is first introduced and the
maintainer reserves the right to change it without much of a deprecation
process. This is the implied stage for any package with a major version
of 0, i.e., that hasn’t had a 1.0.0 release yet.

Deprecated

This applies to functionality that is slated for removal. Initially, it still
works, but it triggers a deprecation warning with information about



preferred alternatives. After a suitable amount of time and with an
appropriate version change, such functions are typically removed.

Superseded

This is a softer version of deprecated, where legacy functionality is
preserved as if in a time capsule. Superseded functions receive only
minimal maintenance, such as critical bug fixes.

You can get much more detail in vignette("stages", package =
"lifecycle").

The lifecycle stage is often communicated through a badge. If you’d like to
use lifecycle badges, call usethis::use_lifecycle() to do some
one-time setup:

usethis::use_lifecycle()
#> ✔ Adding 'lifecycle' to Imports field in DESCRIPTION
#> • Refer to functions with `lifecycle::fun()`
#> ✔ Adding '@importFrom lifecycle deprecated' to 'R/somepackage-
package.R'
#> ✔ Writing 'NAMESPACE'
#> ✔ Creating 'man/figures/'
#> ✔ Copied SVG badges to 'man/figures/'
#> • Add badges in documentation topics by inserting one of:
#>   #' `r lifecycle::badge('experimental')`
#>   #' `r lifecycle::badge('superseded')`
#>   #' `r lifecycle::badge('deprecated')`

This leaves you in a position to use lifecycle badges in help topics and to
use lifecycle functions, as described in the remainder of this section.

For a function, include the badge in its @description block. Here’s how
we indicate that dplyr::top_n() is superseded:

#' Select top (or bottom) n rows (by value)
#'
#' @description
#' `r lifecycle::badge("superseded")`
#' `top_n()` has been superseded in favour of ...



For a function argument, include the badge in the @param tag. Here’s how
the deprecation of readr::write_file(path =) is documented:

#' @param path `r lifecycle::badge("deprecated")` Use the `file` 
argument
#'   instead.

Call usethis::use_lifecycle_badge() if you want to use a
badge in README to indicate the lifecycle of an entire package (see
“README”).

If the lifecycle of a package is stable, it’s not really necessary to use a
badge, since that is the assumed default stage. Similarly, we typically use a
badge for a function only if its stage differs from that of the associated
package and likewise for an argument and the associated function.

Deprecating a Function
If you’re going to remove or make significant changes to a function, it’s
usually best to do so in phases. Deprecation is a general term for the
situation where something is explicitly discouraged, but it has not yet been
removed. Various deprecation scenarios are explored in
vignette("communicate", package = "lifecycle"); we’re
just going to cover the main idea here.

The lifecycle::deprecate_warn() function can be used inside a
function to inform your user that they’re using a deprecated feature and,
ideally, to let them know about the preferred alternative. In this example,
the plus3() function is being replaced by add3():

# new function
add3 <- function(x, y, z) { 
  x + y + z
} 
 
# old function
plus3 <- function(x, y, z) { 
  lifecycle::deprecate_warn("1.0.0", "plus3()", "add3()") 
  add3(x, y, z)



} 
 
plus3(1, 2, 3)
#> Warning: `plus3()` was deprecated in somepackage 1.0.0.
#> ℹ Please use `add3()` instead.
#> [1] 6

At this point, a user who calls plus3() sees a warning explaining that the
function has a new name, but we go ahead and call add3() with their
inputs. Preexisting code still “works.” In some future major release,
plus3() could be removed entirely.

lifecycle::deprecate_warn() and friends have a few features
that are worth highlighting:

The warning message is built up from inputs like when, what, with,
and details, which gives deprecation warnings a predictable form
across different functions, packages, and time. The intent is to reduce
the cognitive load for users who may already be somewhat stressed.

By default, a specific warning is issued once every 8 hours, in an effort
to cause just the right amount of aggravation. The goal is to be just
annoying enough to motivate the user to update their code before the
function or argument goes away, but not so annoying that they fling
their computer into the sea. Near the end of the deprecation process,
the always argument can be set to TRUE to warn on every call.

If you use lifecycle::deprecate_soft(), instead of
lifecycle::deprecate_warn(), the warning is issued only if
the person reading it is the one who can actually do something about it,
i.e., update the offending code. If a user calls a deprecated function
indirectly, i.e., because they are using a package that’s using a
deprecated function, by default that user doesn’t get a warning. (But
the maintainer of the guilty package will see these warnings in their
test results.)

Here’s a hypothetical schedule for removing a function fun():



Package version 1.5.0: fun() exists

The lifecycle stage of the package is stable, as indicated by its post-
1.0.0 version number and, perhaps, a package-level badge. The
lifecycle stage of fun() is also stable, by extension, since it hasn’t
been specifically marked as experimental.

Package version 1.6.0

The deprecation process of fun() begins. We insert `r
lifecycle::badge ("dep recated")` in its @description
to place a badge in its help topic. In the body of fun(), we add a call
to lifecycle::deprecate_warn() to inform users about the
situation. Otherwise, fun() still works as it always has.

Package version 1.7.0 or 2.0.0

fun() is removed. Whether this happens in a minor or major release
will depend on the context, i.e., how widely used this package and
function are.

If you’re using base R only, the .Deprecated() and .Defunct()
functions are the closest substitutes for
lifecycle::deprecate_warn() and friends.

Deprecating an Argument
lifecycle::deprecate_warn() is also useful when deprecating an
argument. In this case, it’s also handy to use
lifecycle::deprecated() as the default value for the deprecated
argument. Here we continue an example from the preceding section, i.e., the
switch from path to file in readr::write_file():

write_file <- function(x, 
                       file, 
                       append = FALSE, 



                       path = deprecated()) { 
  if (is_present(path)) { 
    lifecycle::deprecate_warn("1.4.0", "write_file(path)", 
"write_file(file)") 
    file <- path 
  } 
  ...
}

Here’s what a user sees if they use the deprecated argument:

readr::write_file("hi", path = tempfile("lifecycle-demo-"))
#> Warning: The `path` argument of `write_file()` is deprecated 
as of readr
#> 1.4.0.
#> ℹ Please use the `file` argument instead.

The use of deprecated() as the default accomplishes two things. First,
if the user reads the documentation, this is a strong signal that an argument
is deprecated. But deprecated() also has benefits for the package
maintainer. Inside the affected function, you can use
lifecycle::is_present() to determine if the user has specified the
deprecated argument and proceed accordingly, as shown in the preceding
code.

If you’re using base R only, the missing() function has substantial
overlap with lifecycle::is_present(), although it can be trickier
to finesse issues around default values.

Deprecation Helpers
Sometimes a deprecation affects code in multiple places and it’s clunky to
inline the full logic everywhere. In this case, you might create an internal
helper to centralize the deprecation logic.

This happened in googledrive, when we changed how to control the
package’s verbosity. The original design let the user specify this in every
single function, via the verbose = TRUE/FALSE argument. Later, we
decided it made more sense to use a global option to control verbosity at the



package level. This is a case of (eventually) removing an argument, but it
affects practically every single function in the package. Here’s what a
typical function looks like after starting the deprecation process:

drive_publish <- function(file, ..., verbose = deprecated()) { 
  warn_for_verbose(verbose) 
  # rest of the function ...
}

Note the use of verbose = deprecated(). Here’s a slightly
simplified version of warn_for_verbose():

warn_for_verbose <- function(verbose = TRUE, 
                             env = rlang::caller_env(), 
                             user_env = rlang::caller_env(2)) { 
  # This function is not meant to be called directly, so don't 
worry about its 
  # default of `verbose = TRUE`. 
  # In authentic, indirect usage of this helper, this picks up on 
whether 
  # `verbose` was present in the **user's** call to the calling 
function. 
  if (!lifecycle::is_present(verbose) || isTRUE(verbose)) { 
    return(invisible()) 
  } 
 
  lifecycle::deprecate_warn( 
    when = "2.0.0", 
    what = I("The `verbose` argument"), 
    details = c( 
      "Set `options(googledrive_quiet = TRUE)` to suppress all 
googledrive
         messages.", 
      "For finer control, use `local_drive_quiet()` or 
`with_drive_quiet()`.", 
      "googledrive's `verbose` argument will be removed in the 
future." 
    ), 
    user_env = user_env 
  ) 
  # only set the option during authentic, indirect usage 
  if (!identical(env, global_env())) { 
    local_drive_quiet(env = env) 
  } 



  invisible()
}

The user calls a function, such as drive_publish(), which then calls
warn_for_verbose(). If the user leaves verbose unspecified or if
they request verbose = TRUE (default behavior),
warn_for_verbose() does nothing. But if they explicitly ask for
verbose = FALSE, we throw a warning with advice on the preferred
way to suppress googledrive’s messaging. We also go ahead and honor their
wishes for the time being, via the call to
googledrive::local_drive_quiet(). In the next major release,
the verbose argument can be removed everywhere, and this helper can be
deleted.

Dealing with Change in a Dependency
What if you want to use functionality in a new version of another package?
Or the less happy version: what if changes in another package are going to
break your package? There are a few possible scenarios, depending on
whether the other package has been released and the experience you want
for your users. We’ll start with the simple, happier case of using features
newly available in a dependency.

If the other package has already been released, you could bump the
minimum version you declare for it in DESCRIPTION and use the new
functionality unconditionally. This also means that users who update your
package will be forced to update the other package, which you should at
least contemplate. Also note that this works only for a dependency in
Imports. While it’s a good idea to record a minimum version for a
suggested package, it’s not generally enforced the same as for Imports.

If you don’t want to require your users to update this other package, you
could make your package work with both new and old versions. This means
you’ll check its version at runtime and proceed accordingly. Here is a
sketch of how that might look in the context of an existing or new function:



your_existing_function <- function(..., cool_new_feature = FALSE) 
{ 
  if (isTRUE(cool_new_feature) && packageVersion("otherpkg") < 
"1.0.0") { 
    message("otherpkg >= 1.0.0 is needed for cool_new_feature") 
    cool_new_feature <- FALSE 
  } 
  # the rest of the function
} 
 
your_new_function <- function(...) { 
  if (packageVersion("otherpkg") < "1.0.0") { 
    stop("otherpkg >= 1.0.0 needed for this function.") 
  } 
  # the rest of the function
}

Alternatively, this would also be a great place to use
rlang::is_installed() and rlang::check_installed()
with the version argument (see examples of usage in “In Code Below
R/”).

This approach can also be adapted if you’re responding to not-yet-released
changes that are coming soon in one of your dependencies. It’s helpful to
have a version of your package that works both before and after the change.
This allows you to release your package at any time, even before the other
package. Sometimes you can refactor your code to make it work with either
version of the other package, in which case you don’t need to condition on
the other package’s version at all. But sometimes you might really need
different code for the two versions. Consider this example:

your_function <- function(...) { 
  if (packageVersion("otherpkg") >= "1.3.9000") { 
    otherpkg::their_new_function() 
  } else { 
    otherpkg::their_old_function() 
  } 
  # the rest of the function
}



The hypothetical minimum version of 1.3.9000 suggests a case where
the development version of otherpkg already has the change you’re
responding to, which is a new function in this case. Assuming
their_new_function() doesn’t exist in the latest release of otherpkg,
you’ll get a note from R CMD check stating that
their_new_function() doesn’t exist in otherpkg’s namespace. If
you’re submitting such a version to CRAN, you can explain that you’re
doing this for the sake of backward and forward compatibility with
otherpkg, and they are likely to be satisfied.

Superseding a Function
The last lifecycle stage that we’ll talk about is superseded. This is
appropriate when you feel like a function is no longer the preferred solution
to a problem, but it has enough usage and history that you don’t want to
initiate the process of removing it. Good examples of this are
tidyr::spread() and tidyr::gather(). Those functions have
been superseded by tidyr::pivot_wider() and
tidyr::pivot_longer(). But some users still prefer the older
functions, and it’s likely that they’ve been used a lot in projects that are not
under active development. Thus spread() and gather() are marked as
superseded; they don’t receive any new innovations, but they aren’t at risk
of removal.

A related phenomenon is when you want to change some aspect of a
package, but you also want to give existing users a way to opt-in to the
legacy behavior. The idea is to provide users a band-aid they can apply to
get old code working quickly, until they have the bandwidth to do a more
thorough update (which might not ever happen, in some cases). Here are
some examples where legacy behavior was preserved for users who opt-in:

In tidyr 1.0.0, the interface of tidyr::nest() and
tidyr::unnest() changed. Most authentic usage can be
translated to the new syntax, which tidyr does automatically, along
with conveying the preferred modern syntax via a warning. But the old



interface remains available via tidyr:: nest_legacy() and
tidyr::unnest_legacy(), which were marked superseded upon
creation.

dplyr 1.1.0 takes advantage of a much faster algorithm for computing
groups. But this speedier method also sorts the groups with respect to
the C locale, whereas previously the system locale was used. The
global option dplyr.legacy_locale allows a user to explicitly
request the legacy behavior.5

The tidyverse packages have been standardizing on a common
approach to name repair, which is implemented in
vctrs::vec_as_names(). The vctrs package also offers
vctrs::vec_as_names_legacy(), which makes it easier to get
names repaired with older strategies previously used in packages like
tibble, tidyr, and readxl.

readr 2.0.0 introduced a so-called second edition, marking the switch
to a backend provided by the vroom package. Functions like
readr::with_edition(1, ...) and
readr::local_edition(1) make it easier for a user to request
first-edition behavior for a specific bit of code or for a specific script.

1  It’s unusual for an initial release to be version 1.0.0, but remember that usethis was basically
carved out of a very mature package (devtools).

2  We can call package_version() directly here, but in package code, you should use the
utils::package_version() form and list the utils package in Imports.

3  As with package_version(), in package code, you should use the
utils::packageVersion() form and list the utils package in Imports.

4  For some suitably pragmatic definition of “backward compatible.”

5  You can learn more about the analysis leading up to this change in https://oreil.ly/eJ_8w.

https://oreil.ly/eJ_8w


Chapter 22. Releasing to CRAN

We’ve been calling out CRAN-specific concerns throughout the book, on
our journey through the various parts of a package, such as tests and
examples. In this chapter, we focus on the actual process of releasing a
package to CRAN, for the first time or as an update.

The most concrete expression of our release process is the checklist
produced by usethis::use_release_issue(), which opens a
GitHub issue containing a list of to-do’s. This checklist is constantly
evolving and is responsive to a few characteristics of the package, so don’t
be shocked if you see something a bit different than what we show here.
The main concerns are fairly timeless, and we’ll use this checklist to help
structure this chapter.

But first: note that you will have deep regrets if you approach preparing
your package for CRAN as a separate activity that you do after completing
the planned development for a release. This advice is extremely relevant
here:

If it hurts, do it more often.1

—Martin Fowler

In the current context, interpret this to mean that you should be running R
CMD check regularly, preferably on multiple platforms, and promptly
addressing any issues that surface. Recall that our preferred way to do this
is via devtools::check() (see “check() and R CMD check”).

Why would you want to do something that is painful more often? Because it
leads to less pain overall. First, solving five problems is more than five
times as hard as solving one. It’s demoralizing to be blocked by several
errors and the potential for unsavory interactions between them makes each
one harder to isolate and fix. Second, fast feedback tends to reduce your
total number of mistakes. Once you learn some lesson the hard way, you are



unlikely to make that same mistake dozens of times elsewhere in your
package. Finally, practice makes perfect! With greater exposure, you will
get better at interpreting and responding to problems that surface in R CMD
check.

Another natural reaction is: why don’t I eliminate this pain completely by
not releasing my package on CRAN at all? For certain types of packages,
this may be the right call. One such example is a personal package of helper
functions. Another example is a package that supports a specific
organization, as long as you also have a reasonable method of distributing
that package to its users. The main reason to have your package on CRAN
is to give your package greater reach. The vast majority of R users only
install packages from CRAN, either due to personal or company policy or
just from a lack of awareness about alternatives. CRAN provides
discoverability, ease of installation, and a stamp of authenticity. The CRAN
submission process can be frustrating, but it has many payoffs, and this
chapter aims to make it as painless as possible.

The release process we describe here is best used as a preflight checklist
that complements your ongoing efforts to keep your package passing R
CMD check cleanly and CRAN-compliant. Two big realizations often
come with a CRAN release process:

If you’ve been turning a blind eye to WARNINGs and ERRORs from
R CMD check, you really do have to study and eliminate those now.
You should even eliminate as many NOTEs as possible.

Even if your package passes R CMD check cleanly on your
machine, it can be eye-opening when it leaves these cozy, familiar
surroundings and is, instead, checked on a remote server, configured
by someone else, running an entirely different operating system. This
is why it is so valuable to use a continuous integration service like
GitHub Actions (see “GitHub Actions”) to regularly check your
package on macOS, Windows, and Linux.

These are the major steps in the release process:



1. Determine the release type, which dictates the version number.

2. If the package is already on CRAN: do due diligence on existing
CRAN results. If this is a first release: confirm you are in compliance
with CRAN policies.

3. Freshen up documentation files, such as README.md and NEWS.md.

4. Double check() that your package is passing cleanly on multiple
operating systems and on the released and development version of R.

5. Perform reverse dependency checks, if other packages depend on
yours.

6. Submit the package to CRAN and wait for acceptance.

7. Create a GitHub release and prepare for the next version by
incrementing the version number.

8. Publicize the new version.

Decide the Release Type
When you call use_release_issue(), you’ll be asked which type of
release you intend to make:

> use_release_issue() 
✔ Setting active project to '/Users/jenny/rrr/usethis'
Current version is 2.1.6.9000.
What should the release version be? (0 to exit) 
 
1: major --> 3.0.0
2: minor --> 2.2.0
3: patch --> 2.1.7 
 
Selection:

The immediate question feels quite mechanical: which component of the
version number do you want to increment? But remember that we discussed



the substantive differences in release types in “Major Versus Minor Versus
Patch Release”.

In our workflow, this planned version number is recorded in the GitHub
issue that holds the release checklist, but we don’t actually increment the
version in DESCRIPTION until later in the process (see “The Submission
Process”). However, it’s important to declare the release type up front,
because the process (and, therefore, the checklist) looks different e.g., for a
patch release versus a major release.

Initial CRAN Release: Special Considerations
Every new package receives a higher level of scrutiny from CRAN. In
addition to the usual automated checks, new packages are also reviewed by
a human, which inevitably introduces a certain amount of subjectivity and
randomness. There are many packages on CRAN that would not be
accepted in their current form, if submitted today as a completely new
package. This isn’t meant to discourage you. But you should be aware: just
because you see some practice in an established package (or even in base
R), that doesn’t mean you can do the same in your new package.

Luckily, the community maintains lists of common “gotchas” for new
packages. If your package is not yet on CRAN, the checklist begins with a
special section that reflects this recent collective wisdom. Attending to
these checklist items has dramatically improved our team’s success rate for
initial submissions.

First release:

usethis::use_news_md()

usethis::use_cran_comments()

Update (aspirational) install instructions in README

Proofread Title: and Description:

Check that all exported functions have @returns and @examples



Check that Authors@R: includes a copyright holder (role “cph”)

Check licensing of included files

Review https://github.com/DavisVaughan/extrachecks

If you don’t already have a NEWS.md file, you are encouraged to create one
now with usethis::use_news_md(). You’ll want this file eventually,
and this anticipates the fact that the description of your eventual GitHub
release (see “Celebrating Success”) is drawn from NEWS.md.

usethis::use_cran_comments() initiates a file to hold submission
comments for your package. It’s very barebones at first, e.g.:

## R CMD check results 
 
0 errors | 0 warnings | 1 note 
 
* This is a new release.

In subsequent releases, this file becomes less pointless; for example, it is
where we report the results of reverse dependency checks. This is not a
place to wax on with long explanations about your submission. In general,
you should eliminate the need for such explanations, especially for an initial
submission.

We highly recommend that your package have a README file (see
“README”). If it does, this is a good time to check the installation
instructions provided there. You may need to switch from instructions to
install it from GitHub, in favor of installing from CRAN, in anticipation of
your package’s acceptance.

The Title and Description fields of DESCRIPTION are real hotspots
for nitpicking during CRAN’s human review. Carefully review the advice
given in “Title and Description: What Does Your Package Do?”. Also check
that Authors@R includes a copyright holder, indicated by the “cph” role.
The two most common scenarios are that you add “cph” to your other roles
(probably “cre” and “aut”) or that you add your employer to Authors@R:

https://github.com/DavisVaughan/extrachecks


with the “cph” and, perhaps, “fnd” role. (When you credit a funder via the
“fnd” role, they are acknowledged in the footer of your pkgdown website.)
This is also a good time to ensure that the maintainer’s e-mail address is
appropriate. This is the only way that CRAN can correspond with you. If
there are problems and they can’t get in touch with you, they will remove
your package from CRAN. Make sure this email address is likely to be
around for a while and that it’s not heavily filtered.

Double-check that each of your exported functions documents its return
value (with the @returns tag; see “Return Value”) and has an
@examples section (see “Examples”). If you have examples that cannot
be run on CRAN, you absolutely must use the techniques in “Dependencies
and Conditional Execution” to express the relevant preconditions properly.
Do not take shortcuts, such as having no examples, commenting out your
examples, or putting all of your examples inside \dontrun{}.

If you have embedded third-party code in your package, check that you are
correctly abiding by and declaring its license (see “Code You Bundle”).

Finally, take advantage of any list of ad hoc checks that other package
developers have recently experienced with CRAN. At the time of writing,
https://github.com/DavisVaughan/extrachecks is a good place to find such
firsthand reports. Reading such a list and preemptively modifying your
package often can make the difference between a smooth acceptance and a
frustrating process requiring multiple attempts.

CRAN Policies
We alert you to specific CRAN policies throughout this book and,
especially, through this chapter. However, this is something of a moving
target, so it pays to make some effort to keep yourself informed about future
changes to CRAN policy.

The official home of CRAN policy is https://cran.r-
project.org/web/packages/policies.xhtml. However, it’s not very practical to
read this document, e.g., once a week and simply hope that you’ll notice
any changes. The GitHub repository https://github.com/eddelbuettel/crp

https://github.com/DavisVaughan/extrachecks
https://cran.r-project.org/web/packages/policies.xhtml
https://github.com/eddelbuettel/crp


monitors the CRAN Repository Policy by tracking the evolution of the
underlying files in the source of the CRAN website. Therefore the commit
history of that repository makes policy changes much easier to navigate.
You also may want to follow the CRAN Policy Watch Mastodon account,
which toots whenever a change is detected.

The R-package-devel mailing list is another good resource for learning
more about package development. You could subscribe to it to keep tabs on
what other maintainers are talking about. Even if you don’t subscribe, it can
be useful to search this list when you’re researching a specific topic.

Keeping Up with Change
Now we move into the main checklist items for a minor or major release of
a package that is already on CRAN. Many of these items also appear in the
checklist for a patch or initial release.

Check current CRAN check results

Check if any deprecation processes should be advanced, as described
in Gradual deprecation

Polish NEWS

urlchecker::url_check()

devtools::build_readme()

These first few items confirm that your package is keeping up with its
surroundings and with itself. The first item, “Check current CRAN check
results,” will be a hyperlink to the CRAN check results for the version of
the package that is currently on CRAN. If there are any WARNINGs or
ERRORs or NOTEs there, you should investigate and determine what’s
going on. Occasionally there can be an intermittent hiccup at CRAN, but
generally speaking, any result other than “OK” is something you should
address with the release you are preparing. You may discover your package

https://mas.to/@CRANberriesFeed
https://oreil.ly/NnCkR
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is in a dysfunctional state due to changes in base R, CRAN policies, CRAN
tooling, or packages you depend on.

If you are in the process of deprecating a function or an argument, a minor
or major release is a good time to consider moving that process along as
described in “Lifecycle Stages and Supporting Tools”. This is also a good
time to look at all the NEWS bullets that have accumulated since the last
release (“Polish NEWS”). Even if you’ve been diligent about jotting down
all the newsworthy changes, chances are these bullets will benefit from
some reorganization and editing for consistency and clarity (see “NEWS”).

Another very important check is to run urlchecker::url_check().
CRAN’s URL checks are described at https://cran.r-
project.org/web/packages/URL_checks.xhtml and are implemented by code
that ships with R itself. However, these checks are not exposed in a very
usable way. The urlchecker package was created to address this and exposes
CRAN’s URL-checking logic in the url_check() function. The main
problems that surface tend to be URLs that don’t work anymore or URLs
that use redirection. Obviously, you should update or remove any URL that
no longer exists. Redirection, however, is trickier. If the status code is “301
Moved Permanently,” CRAN’s view is that your package should use the
redirected URL. The problem is that many folks don’t follow RFC7231 to
the letter and use this sort of redirect even when they have a different intent,
i.e., their intent is to provide a stable, user-friendly URL that then redirects
to something less user-friendly or more volatile. If a legitimate URL you
want to use runs afoul of CRAN’s checks, you’ll have to choose between a
couple of less-than-appealing options. You could try to explain the situation
to CRAN, but this requires human review, and thus is not recommended. Or
you can convert such URLs into nonhyperlinked, verbatim text. Note also
that even though urlchecker is using the same code as CRAN, your local
results may still differ from CRAN’s, due to differences in other ambient
conditions, such as environment variables and system capabilities.

If you have a README.Rmd file, you will also want to rebuild the static
README.md file with the current version of your package. The best
function to use for this is devtools::build_readme(), because it is

https://cran.r-project.org/web/packages/URL_checks.xhtml
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guaranteed to render README.Rmd against the current source code of your
package.

Double R CMD Checking
Next come a couple of items related to R CMD check. Remember that
this should not be the first time you’ve run R CMD check since the
previous release! Hopefully, you are running R CMD check often during
local development and are using a continuous integration service, like
GitHub Actions. This is meant to be a last-minute, final reminder to double-
check that all is still well:

devtools::check(remote = TRUE, manual = TRUE)

This happens on your primary development machine, presumably with
the current version of R, and with some extra checks that are usually
turned off to make day-to-day development faster.

devtools::check_win_devel()

This sends your package off to be checked with CRAN’s win-builder
service, against the latest development version of R (a.k.a. r-devel). You
should receive an email within about 30 minutes with a link to the check
results. It’s a good idea to check your package with r-devel, because
base R and R CMD check are constantly evolving. Checking with r-
devel is required by CRAN policy, and it will be done as part of
CRAN’s incoming checks. There is no point in skipping this step and
hoping for the best.

Note that the brevity of this list implicitly reflects that tidyverse packages
are checked after every push via GitHub Actions, across multiple operating
systems and versions of R (including the development version), and that
most of the tidyverse team develops primarily on macOS. CRAN expects
you to “make all reasonable efforts” to get your package working across all



of the major R platforms, and packages that don’t work on at least two will
typically not be accepted.

The next subsection is optional reading with more details on all the
platforms that CRAN cares about and how you can access them. If your
ongoing checks are more limited than ours, you may want to make up for
that with more extensive presubmission checks. You may also need this
knowledge to troubleshoot a concrete problem that surfaces in CRAN’s
checks, either for an incoming submission or for a package that’s already on
CRAN.

When running R CMD check for a CRAN submission, you have to
address any problems that show up:

You must fix all ERRORs and WARNINGs. A package that contains
any errors or warnings will not be accepted by CRAN.

Eliminate as many NOTEs as possible. Each NOTE requires human
oversight, which creates friction for both you and CRAN. If there are
notes that you do not believe are important, it is almost always easier
to fix them (even if the fix is a bit of a hack) than to persuade CRAN
that they’re OK. See our online-only guide to R CMD check for
details on how to fix individual problems.

If you can’t eliminate a NOTE, list it in cran-comments.md and explain
why you think it is spurious. We discuss this file further in “Update
Comments for CRAN”.

Note that there will always be one NOTE when you first submit your
package. This reminds CRAN that this is a new submission and that
they’ll need to do some extra checks. You can’t eliminate this NOTE,
so just mention in cran-comments.md that this is your first submission.

CRAN Check Flavors and Related Services
CRAN runs R CMD check on all contributed packages upon submission
and on a regular basis, on multiple platforms or what they call “flavors”.

https://r-pkgs.org/R-CMD-check.xhtml


You can see CRAN’s current check flavors page. There are various
combinations of:

Operating system and CPU: Windows, macOS (x86_64, arm64),
Linux (various distributions)

R version: r-devel, r-release, r-oldrel

C, C++, FORTRAN compilers

Locale, in the sense of the LC_CTYPE environment variable (this is
about which human language is in use and character encoding)

CRAN’s check flavors almost certainly include platforms other than your
preferred development environment(s), so you will eventually need to make
an explicit effort to check and perhaps troubleshoot your package on these
other flavors.

It would be impractical for individual package developers to personally
maintain all of these testing platforms. Instead, we turn to various
community- and CRAN-maintained resources for this. Here is a selection,
in order of how central they are to our current practices:

GitHub Actions (GHA) is our primary means of testing packages on
multiple flavors, as covered in “GitHub Actions”.

R-hub builder (R-hub) is a service supported by the R Consortium
where package developers can submit their package for checks that
replicate various CRAN check flavors.

You can use R-hub via a web interface or, as we recommend, through
the rhub R package.

rhub::check_for_cran() is a good option for a typical CRAN
package and is morally similar to the GHA workflow configured by
usethis::use_github_action("check-standard").
However, unlike GHA, R-hub currently does not cover macOS, only
Windows and Linux.

https://oreil.ly/OdfzX
https://builder.r-hub.io/
https://r-hub.github.io/rhub/


rhub also helps you access some of the more exotic check flavors and
offers specialized checks relevant to packages with compiled code,
such as rhub::check_with_sanitizers().

macOS builder is a service maintained by the CRAN personnel who
build the macOS binaries for CRAN packages. This is a relatively new
addition to the list and checks packages with “the same setup and
available packages as the CRAN M1 build machine.”

You can submit your package using the web interface or with
devtools::check_mac_release().

Reverse Dependency Checks
revdepcheck::revdep_check(num_workers = 4)

This innocuous checklist item can actually represent a considerable amount
of effort. At a high level, checking your reverse dependencies (“revdeps”)
breaks down into:

Form a list of your reverse dependencies. These are CRAN packages
that list your package in their Depends, Imports, Suggests, or
LinkingTo fields.

Run R CMD check on each one.

Make sure you haven’t broken someone else’s package with the
planned changes in your package.

Each of these steps can require considerable work and judgment. So, if you
have no reverse dependencies, you should rejoice that you can skip this
step. If you have only a couple of reverse dependencies, you can probably
do this “by hand,” i.e., download each package’s source and run R CMD
check.

Here we explain ways to do reverse dependency checks at scale, which is
the problem we face. Some of the packages maintained by our team have

https://mac.r-project.org/macbuilder/submit.xhtml


thousands of reverse dependencies and even some of the lower-level
packages have hundreds. We have to approach this in an automated fashion,
and this section will be most useful to other maintainers in the same boat.

All of our reverse dependency tooling is concentrated in the revdepcheck
package. Note that, at least at the time of writing, the revdepcheck package
is not on CRAN. You can install it from Github via
devtools::install_github("r-lib/revdepcheck") or
pak::pak ("r-lib/revdepcheck").

Do this when you’re ready to do revdep checks for the first time:

usethis::use_revdep()

This does some one-time setup in your package’s .gitignore and
.Rbuildignore files. Revdep checking will create some rather large folders
below revdep/, so you definitely want to configure these ignore files.
You will also see this reminder to actually perform revdep checks like so, as
the checklist item suggests:

revdepcheck::revdep_check(num_workers = 4)

This runs  R CMD check  on all of your reverse dependencies, with our
recommendation to use four parallel workers to speed things along. The
output looks something like this:

> revdepcheck::revdep_check(num_workers = 4) 
── INIT ───────────────────────────────────── Computing revdeps 
── 
── INSTALL ───────────────────────────────────────── 2 versions 
── 
Installing CRAN version of cellranger 
also installing the dependencies 'cli', 'glue', 'utf8', 'fansi', 
'lifecycle', 
'magrittr', 'pillar', 'pkgconfig', 'rlang', 'vctrs', 'rematch', 
'tibble' 
 
Installing DEV version of cellranger 
Installing 13 packages: rlang, lifecycle, glue, cli, vctrs, utf8, 
fansi, 

https://revdepcheck.r-lib.org/


pkgconfig, pillar, magrittr, tibble, rematch2, rematch 
── CHECK ─────────────────────────────────────────── 8 packages 
── 
✔ AOV1R 0.1.0                     ── E: 0     | W: 0     | N: 0 
✔ mschart 0.4.0                   ── E: 0     | W: 0     | N: 0 
✔ googlesheets4 1.0.1             ── E: 0     | W: 0     | N: 1 
✔ readODS 1.8.0                   ── E: 0     | W: 0     | N: 0 
✔ readxl 1.4.2                    ── E: 0     | W: 0     | N: 0 
✔ readxlsb 0.1.6                  ── E: 0     | W: 0     | N: 0 
✔ unpivotr 0.6.3                  ── E: 0     | W: 0     | N: 0 
✔ tidyxl 1.0.8                    ── E: 0     | W: 0     | N: 0 
OK: 8 
BROKEN: 0 
Total time: 6 min 
── REPORT 
──────────────────────────────────────────────────────── 
Writing summary to 'revdep/README.md' 
Writing problems to 'revdep/problems.md' 
Writing failures to 'revdep/failures.md' 
Writing CRAN report to 'revdep/cran.md'

To minimize false positives, revdep_check() runs  R CMD check 
twice per revdep: once with the released version of your package currently
on CRAN and again with the local development version, i.e., with your
release candidate. Why two checks? Because sometimes the revdep is
already failing R CMD check and it would be incorrect to blame your
planned release for the breakage. revdep_check() reports the packages
that can’t be checked and, most importantly, those where there are so-called
“changes to the worse,” i.e., where your release candidate is associated with
new problems. Note also that revdep_check() always works with a
temporary, self-contained package library, i.e., it won’t modify your default
user or system library.



TIDYVERSE TEAM
We actually use a different function for our reverse dependency checks:
revdepcheck::cloud_check(). This runs the checks in the cloud, massively in parallel,
making it possible to run revdep checks for packages like testthat (with >10,000 revdeps) in just a
few hours!

cloud_check() has been a gamechanger for us, allowing us to run revdep checks more often.
For example, we even do this now when assessing the impact of a potential change to a package
(see “Backward Compatibility and Breaking Change”), instead of only right before a release.

At the time of writing, cloud_check() is only available for package maintainers at Posit, but
we hope to offer this service for the broader R community in the future.

In addition to some interactive messages, the revdep check results are
written to the revdep/ folder:

revdep/README.md

This is a high-level summary aimed at maintainers. The filename and
markdown format are very intentional, in order to create a nice landing
page for the revdep folder on GitHub.

revdep/problems.md

This lists the revdeps that appear to be broken by your release
candidate.

revdep/failures.md

This lists the revdeps that could not be checked, usually because of an
installation failure, either of the revdep itself or one of its dependencies.

revdep/cran.md

This is a high-level summary aimed at CRAN. You should copy and
paste this into cran-comments.md (see “Update Comments for CRAN”).

checks.noindex, data.sqlite, library.noindex, and other files and folders



These are for revdepcheck’s internal use and we won’t discuss them
further.

The easiest way to get a feel for these different files is to look around at the
latest revdep results for some tidyverse packages, such as dplyr or tidyr.

The revdep check results—local, cloud, or CRAN—are not perfect, because
this is not a simple task. There are various reasons a result might be
missing, incorrect, or contradictory in different runs:

False positives

Sometimes revdepcheck reports a package has been broken, but things
are actually fine (or, at least, no worse than before). This most
commonly happens because of flaky tests that fail randomly (see “Skip
a Test”), such as HTTP requests. This can also happen because the
instance runs out of disk space or other resources, so the first check
using the CRAN version succeeds and the second check using the dev
version fails. Sometimes it’s obvious that the problem is not related to
your package.

False negatives

Sometimes a package has been broken, but you don’t detect that. For us,
this usually happens when cloud_check() can’t check a revdep
because it can’t be installed, typically because of a missing system
requirement (e.g., Java). These are separately reported as “failed to test”
but are still included in problems.md, because this could still be
direct breakage caused by your package. For example, if you remove an
exported function that’s used by another package, installation will fail.

Generally these differences are less of a worry now that CRAN’s own
revdep checks are well automated, so new failures typically don’t involve a
human.

Revdeps and Breaking Changes

https://oreil.ly/g4p2A
https://oreil.ly/In5Gp


If the revdep check reveals breakages, you need to examine each failure and
determine if it’s:

A false positive.

A nonbreaking change, i.e., a failure caused by off-label usage of your
package.

A bug in your package that you need to fix.

A deliberate breaking change.

If your update will break another package (regardless of why), you need to
inform the maintainer, so they hear it first from you, rather than CRAN. The
nicest way to do this is with a patch that updates their package to play
nicely with yours, perhaps in the form of a pull request. This can be a
decent amount of work and is certainly not feasible for all maintainers. But
working through a few of these can be a good way to confront the pain that
breaking change causes and to reconsider whether the benefits outweigh the
costs. In most cases, a change that affects revdeps is likely to also break less
visible code that lives outside of CRAN packages, such as scripts, reports,
and Shiny apps.

If you decide to proceed, functions such as
revdepcheck::revdep_maintainers() and
revdepcheck::revdep_email() can help you notify revdep
maintainers en masse. Make sure the email includes a link to documentation
that describes the most common breaking changes and how to fix them. You
should let the maintainers know when you plan to submit to CRAN (we
recommend giving at least two weeks’ notice), so they can submit their
updated version before that. When your release date rolls around, re-run
your checks to see how many problems have been resolved. Explain any
remaining failures in cran-comments.md as demonstrated in “Update
Comments for CRAN”. The two most common cases are that you are
unable to check a package because you aren’t able to install it locally or a
legitimate change in the API that the maintainer hasn’t addressed yet. As



long as you have given sufficient advance notice, CRAN will accept your
update, even if it breaks some other packages.

TIDYVERSE TEAM
Lately the tidyverse team is trying to meet revdep maintainers more than halfway in terms of
dealing with breaking changes. For example, in GitHub issue tidyverse/dplyr#6262, the dplyr
maintainers tracked hundreds of pull requests in the build-up to the release of dplyr v1.1.0. As the
PRs are created, it’s helpful to add links to those as well. As the revdep maintainers merge the
PRs, they can be checked off as resolved. If some PRs are still in-flight when the announced
submission date rolls around, the situation can be summarized in cran-comments.md, as was true
in the case of dplyr v1.1.0.

Update Comments for CRAN
Update cran-comments.md

We use the cran-comments.md file to record comments about a submission,
mainly just the results from R CMD check and revdep checks. If you are
making a specific change at CRAN’s request, possibly under a deadline,
that would also make sense to mention. We like to track this file in Git, so
we can see how it changes over time. It should also be listed in
.Rbuildignore, since it should not appear in your package bundle. When
you’re ready to submit, devtools::submit_cran() (see “The
Submission Process”) incorporates the contents of cran-comments.md when
it uploads your submission.

The target audience for these comments is the CRAN personnel, although
there is no guarantee that they will read the comments (or when in the
submission process they read them). For example, if your package breaks
other packages, you will likely receive an automated email about that, even
if you’ve explained it in the comments. Sometimes a human at CRAN then
reads the comments, is satisfied, and accepts your package anyway, without
further action from you. At other times, your package may be stuck in the
queue until you copy cran-comments.md and paste it into an email

https://oreil.ly/kdKSi
https://oreil.ly/I7K-F


exchange to move things along. In either case, it’s worth keeping these
comments in their own, version-controlled file.

Here is a fairly typical cran-comments.md from a recent release of forcats.
Note that the R CMD check results are clean, i.e., there is nothing that
needs to be explained or justified, and there is a concise summary of the
revdep process:

## R CMD check results 
 
0 errors | 0 warnings | 0 notes 
 
## revdepcheck results 
 
We checked 231 reverse dependencies (228 from CRAN + 3 from 
Bioconductor), 
comparing R CMD check results across CRAN and dev versions of 
this package. 
 
We saw 2 new problems: 
 
* epikit
* stevemisc 
 
Both maintainers were notified on Jan 12 (~2 week ago) and 
supplied with patches. 
 
We failed to check 3 packages 
 
* genekitr     (NA)
* OlinkAnalyze (NA)
* SCpubr       (NA)

This layout is designed to be easy to skim, and easy to match up to the R
CMD check results seen by CRAN maintainers. It includes two sections:

Check results

We always state that there were no errors or warnings (and we make
sure that’s true!). Ideally we can also say there were no notes. But if not,
any NOTEs are presented in a bulleted list. For each NOTE, we include



the message from R CMD check and a brief description of why we
think it’s OK.

Here is how a NOTE is explained for the nycflights13 data package:

## R CMD check results 

 

0 errors | 0 warnings | 1 note 

 

* Checking installed package size: 

  installed size is  6.9Mb 

  sub-directories of 1Mb or more: 

    data   6.9Mb 

 

  This is a data package that will be rarely updated.

Reverse dependencies

If there are revdeps, this is where we paste the contents of
revdep/cran.md (see “Reverse Dependency Checks”). If there are no
revdeps, we recommend that you keep this section, but say something
like: “There are currently no downstream dependencies for this
package.”

The Submission Process
usethis::use_version('minor') (or 'patch' or
'major')

devtools::submit_cran()

Approve email



When you’re truly ready to submit, it’s time to actually bump the version
number in DESCRIPTION. This checklist item will reflect the type of
release declared at the start of this process (patch, minor, or major), in the
initial call to use_release_issue().

We recommend that you submit your package to CRAN by calling
devtools:: submit_cran(). This convenience function wraps up a
few steps:

Creates the package bundle (see “Bundled Package”) with
pkgbuild::build(manual = TRUE), which ultimately calls R
CMD build.

Posts the resulting *.tar.gz file to CRAN’s official submission form,
populating your name and email from DESCRIPTION and your
submission comments from cran-comments.md.

Confirms that the submission was successful and reminds you to check
your email for the confirmation link.

Writes submission details to a local CRAN-SUBMISSION file, which
records the package version, SHA, and time of submission. This
information is used later by
usethis::use_github_release() to create a GitHub release
once your package has been accepted. CRAN-SUBMISSION will be
added to .Rbuildignore. We generally do not gitignore this file, but
neither do we commit it. It’s an ephemeral note that exists during the
interval between submission and (hopefully) acceptance.

After a successful upload, you should receive an email from CRAN within
a few minutes. This email notifies you, as maintainer, of the submission and
provides a confirmation link. Part of what this does is confirm that the
maintainer’s email address is correct. At the confirmation link, you are
required to reconfirm that you’ve followed CRAN’s policies and that you
want to submit the package. If you fail to complete this step, your package
is not actually submitted to CRAN!

https://cran.r-project.org/submit.xhtml


Once your package enters CRAN’s system it is automatically checked on
Windows and Linux, probably against both the released and development
versions of R. You will get another email with links to these check results,
usually within a matter of hours. An initial submission (see “Initial CRAN
Release: Special Considerations”) will receive additional scrutiny from
CRAN personnel. The process is potentially fully automated when updating
a package that is already on CRAN. If a package update passes its initial
checks, CRAN will then run reverse dependency checks.

Failure Modes
There are at least three ways for your CRAN submission to fail:

It does not pass R CMD check. This is an automated result.

Human review finds the package to be in violation of CRAN policies.
This applies mostly to initial submissions, but sometimes CRAN
personnel decide to engage in ad hoc review of updates to existing
packages that fail any automated checks.

Reverse dependency checks suggest there are “changes to the worse.”
This is an automated result.

Failures are frustrating and the feedback may be curt and may feel
downright insulting. Take comfort in the fact that this a widely shared
experience across the R community. It happens to us on a regular basis.
Don’t rush to respond, especially if you are feeling defensive.

Wait until you are able to focus your attention on the technical issues that
have been raised. Read any check results or emails carefully and investigate
the findings. Unless you feel extremely strongly that discussion is merited,
don’t respond to the e-mail. Instead:

Fix the identified problems and make recommended changes. Rerun
devtools::check() on any relevant platforms to make sure you
didn’t accidentally introduce any new problems.



Increase the patch version of your package. Yes, this means that there
might be gaps in your released version numbers. This is not a big deal.

Add a “Resubmission” section at the top of cran-comments.md. This
should clearly identify that the package is a resubmission, and list the
changes that you made:

## Resubmission 

This is a resubmission. In this version I have: 

 

* Converted the DESCRIPTION title to title case. 

 

* More clearly identified the copyright holders in the 

DESCRIPTION 

  and LICENSE files.

If necessary, update the check results and revdep sections.

Run devtools::submit_cran() to resubmit the package.

If your analysis indicates that the initial failure was a false positive, reply to
CRAN’s email with a concise explanation. For us, this scenario mostly
comes up with respect to revdep checks. It’s extremely rare for us to see
failure for CRAN’s initial R CMD check runs and, when it happens, it’s
often legitimate. On the other hand, for packages with a large number of
revdeps, it’s inevitable that a subset of these packages have some flaky tests
or brittle examples. Therefore it’s quite common to see revdep failures that
have nothing to do with the proposed package update. In this case, it is
appropriate to send a reply email to CRAN explaining why you think these
are false positives.

Celebrating Success
Now we move into the happiest section of the checklist:



Accepted 

git push

usethis::use_github_release()

usethis::use_dev_version()

git push

Finish blog post, share on social media, etc.

Add link to blog post in pkgdown news menu

CRAN will notify you by email once your package is accepted. This is
when we first push to GitHub with the new version number, i.e., we wait
until it’s certain that this version will actually be released on CRAN. Next
we create a GitHub release corresponding to this CRAN release, using
usethis::use_github_release(). A GitHub release is basically a
glorified Git tag. The only aspect of GitHub releases that we regularly take
advantage of is the release notes.
usethis::use_github_release() creates release notes from the
NEWS bullets relevant to the current release. Note that
usethis::use_github_release() depends crucially on the
CRAN-SUBMISSION file that was written by
devtools::submit_cran(): that’s how it knows which SHA to tag.
After the successful creation of the GitHub release,
use_github_release() deletes this temporary file.

Now we prepare for the next release by incrementing the version number
yet again, this time to a development version using
usethis::use_dev_version(). It makes sense to immediately push
this state to GitHub so that, for example, any new branches or pull requests
clearly have a development version as their base.

After the package has been accepted by CRAN, binaries are built for
macOS and Windows. It will also be checked across the panel of CRAN
check flavors. These processes unfold over a few days post-acceptance, and



sometimes they uncover errors that weren’t detected by the less
comprehensive incoming checks. It’s a good idea to visit your package’s
CRAN landing page a few days after release and just make sure that all still
seems to be well. Figure 22-1 highlights where these results are linked from
a CRAN landing page.





Figure 22-1. Link to CRAN check results

If there is a problem, prepare a patch release to address it and submit using
the same process as before. If this means you are making a second
submission less than a week after the previous, explain the situation in
cran-comments.md. Getting a package established on CRAN can take a
couple of rounds, although the guidance in this chapter is intended to
maximize the chance of success on the first try. Future releases, initiated
from your end, should be spaced at least one or two months apart, according
to CRAN policy.

Once your package’s binaries are built and it has passed checks across
CRAN’s flavors, it’s time for the fun part: publicizing your package. This
takes different forms, depending on the type of release. If this is your initial
release (or, at least, the first release for which you really want to attract
users), it’s especially important to spread the word. No one will use your
helpful new package if they don’t know it exists. There are a number of
places to announce your package, such as Twitter, Mastodon, LinkedIn,
Slack communities, etc. Make sure to use any relevant tags, such as the
#rstats hashtag. If you have a blog, it’s a great idea to write a post about
your release.

When introducing a package, the vibe should be fairly similar to writing
your README or a “Get Started” vignette. Make sure to describe what the
package does, so that people who haven’t used it before can understand
why they should even care. For existing packages, we tend to write blog
posts for minor and major releases, but not for a patch release. In all cases,
we find that these blog posts are most effective when they include lots of
examples, i.e., “show, don’t tell.” For package updates, remember that the
existence of a comprehensive NEWS file frees you from the need to list
every last change in your blog post. Instead, you can focus on the most
important changes and link to the full release notes, for those who want the
gory details.

If you do blog about your package, it’s good to capture this as yet another
piece of documentation in your pkgdown website. A typical pkgdown site



has a “News” item in the top navbar, linking to a “Changelog,” which is
built from NEWS.md. This drop-down menu is a common place to insert
links to any blog posts about the package. You can accomplish this by
having YAML like this in your _pkgdown.yml configuration file:

news:
  releases:
  - text: "Renaming the default branch (usethis >= 2.1.2)"
    href: https://www.tidyverse.org/blog/2021/10/renaming-
default-branch/
  - text: "usethis 2.0.0"
    href: https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
  - text: "usethis 1.6.0"
    href: https://www.tidyverse.org/blog/2020/04/usethis-1-6-0/

Congratulations! You have released your first package to CRAN and made
it to the end of the book!

1  Fowler’s blog post “FrequencyReducesDifficulty” is a great read on this topic.

https://oreil.ly/rLiMh
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