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Mathematical engineering is an interdisciplinary field devoted to the application of 
mathematical methods and techniques in engineering and industry. This book covers 
methods and techniques that are currently being developed for solving mathematical 
engineering problems. The primary focus of this book is on the real-world applicability 
of mathematical modelling and analysis, as well as optimization problems in engineering 
and industry.
The first part of the book (chapters 1 to 9) includes examples of applications of 
mathematical modelling for solving real-world problems in mechanical engineering 
(chaps. 1 and 2), biomedical industry (chaps. 3 and 4), computational fluid dynamics 
(chaps. 5 and 6),  and other fields of industrial engineering (chaps. 7,8, and 9).
Mechanical Engineering:
  Chapter 1 reviews three mathematical tools (Lie group and Lie algebra; dual 

quaternion and pure dual quaternion; finite screw and instantaneous screw)  and 
their application in the design of mechanisms and robots. The aim of this review 
is to help readers select the appropriate method when implementing the analysis 
and design of robotic mechanisms. 

  Chapter 2 presents a spacecraft reaction wheel mathematical model that utilizes 
a Radial Basis Function Neural Network (RBFNN) and an improved variant of 
the Quantum Behaved Particle Swarm Optimization (QPSO). 

Biomedical Industry:
  Chapter 3 presents a mathematical model of vaporization of water inside organic 

materials for treating liver cancer with laser-induced thermotherapy. 
  Chapter 4 presents a mathematical model for the motion of cilia using non-

linear rheological fluid in a symmetric channel, which is based on an analytical 
perturbation technique.

Computational Fluid Dynamics: 
  Chapter 5 presents a mathematical model for calculating thermal exploration 

efficiency under various geothermal well layout conditions.
  Chapter 6 presents a mathematical model for the stagnation-point flow of 

magnetohydrodynamic Prandtl-Eyring fluid over a stretchable cylinder. This 
has significant applications in natural and industrial phenomena, including a 
flow of fluid over the tips of various objects (e.g., ships, submarines, aircrafts, 
and rockets) and a blood-flow in the blood vessel at the branch/sub-branch that 
separates into two or more directions.
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Other Fields of Industrial Engineering:
  Chapter 7 presents a mathematical model for the reverse supply chain of 

perishable goods, taking into account the sustainable production system. 
  Chapter 8 proposes a mathematical modelling scheme based on the Non-

dominated Sorting genetic Algorithm (NSGA-II) and Multi-Objective Particle 
Swarm Optimization (MOPSO) algorithm for solving a location-routing-
inventory problem in a multi-period closed-loop supply chain in the car industry.

  Chapter 9 presents a mathematical model for evaluating the performance of a 
team associated with I.T. and the optimized size of subteams.

The second part of the book (chapters 10 to 14) includes examples of mathematical 
optimization methods that are relevant to engineering problems:
  Chapter 10 presents a neural network-based method for solving topology 

optimization problems that are relevant to different engineering problems where 
the distribution of materials in a confined domain is distributed in some optimal 
manner, and it is subject to a predefined cost function representing the desired 
properties and constraints.

  Chapter 11 presents the Hybrid Arithmetic Optimization and Golden Sine 
Algorithm (HAGSA ) for solving industrial engineering design problems.

  Chapter 12 utilizes a bounded geometric programming approach for modelling 
and optimizing nonlinear optimization problems in various engineering fields, 
such as gravel-box design, bar–truss region texture, and system reliability 
optimization.

  Chapter 13  offers a comprehensive review of the Isogeometric Topology 
Optimization (ITO) methods and their applications in mechanical metamaterials, 
splines, and computational cost.

  Chapter 14 uses mathematical tools based on the optimal control theory to show 
the possibility of systematically controlling natural and mixed convection flow, 
which is important for the field of engineering and industry.

The third part of the book, chapter 15 is devoted to an overview of fractal mathematics 
and its engineering-driven, industry-oriented, commercial and emerging applications 
(e.g. fractal landscape generation, fractal antennas, fractal image compression, and 
more).
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ABSTRACT
Topology and performance are the two main topics dealt in the development 
of robotic mechanisms. However, it is still a challenge to connect them by 
integrating the modeling and design process of both parts in a unified frame. 
As the properties associated with topology and performance, finite motion 
and instantaneous motion of the robot play key roles in the procedure. On the 
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purpose of providing a fundamental preparation for integrated modeling and 
design, this paper carries out a review on the existing unified mathematic 
frameworks for motion description and computation, involving matrix Lie 
group and Lie algebra, dual quaternion and pure dual quaternion, finite screw 
and instantaneous screw. Besides the application in robotics, the review 
of the work from these mathematicians concentrates on the description, 
composition and intersection operations of the finite and instantaneous 
motions, especially on the exponential-differential maps which connect 
the two sides. Furthermore, an in-depth discussion is worked out by 
investigating the algebraical relationship among these methods and their 
further progress in integrated robotic development. The presented review 
offers insightful investigation to the motion description and computation, 
and therefore would help designers to choose appropriate mathematical tool 
in the integrated design and modeling and design of mechanisms and robots.

INTRODUCTION
Mechanism, serving as the execution unit, is one of the essential subsystems of 
robot. The development of robot meeting the requirements from application 
scenarios depends largely on the analysis and design of robotic mechanism, 
which focus on topology and performance [1, 2]. Topology denotes the 
mechanical structure of the robotic mechanism. Topology analysis and 
design, also named as type synthesis, arrange the limbs and joints according 
to the demands on mechanism mobility, including number, sequence, type 
and axis (or direction) [3, 4]. Performance describes the output motion 
or/and force of the robotic mechanism. Performance analysis studies the 
kinematic, stiffness or dynamic mappings between joint space and operated 
space [5, 6], and performance design searches for the optimal parameters to 
guide the prototyping based on the task requirements [7, 8]. Conventionally, 
type synthesis, performance analysis and design of robotic mechanism are 
carried out in sequence [9]. This development procedure is to firstly invent 
the topological structures, select one type, build the performance models, 
and finally implement the optimal design. In this process, however, the 
type synthesis and performance design were separately implemented. The 
disconnection between topology and performance models leads to: (1) the 
difficulty in choosing particular topological structure as the performance 
features are usually regarded as the selecting criteria, and (2) the failure in 
concerning mechanism types in the optimal design since different topological 
structures behave differently. Therefore, it has long been a desire to unify 
the topology and performance analysis and design of robotic mechanisms.
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Motion is the property considered in every stage of the development 
procedure, which is divided into two categories: finite and instantaneous 
motions [10, 11]. When a robotic mechanism moves along a continuous path, 
finite motion describes the total movement of the mechanism with respect 
to the initial pose [10], and instantaneous motion evaluates the velocity 
(acceleration, jerk, etc.) of the mechanism at current pose [11]. Literature 
review shows that type synthesis starts from predefined mobility described 
either by motion pattern based on finite motion computations [12, 13] or by 
constraint analysis based on instantaneous motion properties. Kinematic, 
stiffness and dynamic performance of the robotic mechanism relates 
directly to the displacement, velocity and acceleration mappings, which are 
analyzed either at finite motion or instantaneous motion level. It indicates 
that the finite and instantaneous motion description and computation are the 
fundamental preparation for the development of robotic mechanism. Hence, 
a unified mathematical framework for the finite and instantaneous motions 
is essential for the integrated topology and performance analysis and design.

The unified mathematical framework involves the analytical description, 
algebraic computation and mapping relations of the finite and instantaneous 
motions. The computations include mainly composition and intersection of 
motions. Composition is the operation for the accumulation of motions that 
can be the successive motions of a rigid body or the resulted motion by 
several rigid bodies connected by joints. For instance, the finite/instantaneous 
motion of a serial mechanism is calculated by the composition of finite/
instantaneous motions of joints [14]. Intersection is to obtain the common 
part of different motions. Such operation is applied in the occasion like the 
finite motion of parallel mechanism whose calculation is performed by the 
intersection of finite motions of limbs [15]. Specially, the mapping relation 
of the finite and instantaneous motions is of vital importance because 
it is the main reason for the disconnection between topology synthesis 
and performance analysis of robotic mechanisms. So far, there are three 
mathematical tools that have been applied to the descriptions, computations 
and mappings of finite and instantaneous motions, i.e. matrix Lie group and 
Lie algebra [16], dual quaternion and pure dual quaternion [17], finite screw 
and instantaneous screw [18].

In the matrix Lie group, a special Euclidean group consisting of a 
rotation matrix and a translation vector is denoted by SE(3), whose element 
is rewritten into a homogenous matrix. The linear transformation can be 
implemented in a homogenous form, resulting in describing any finite motion 
by an element of the matrix representation of SE(3) [16]. By exploring the 
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computation rules, matrix Lie group was introduced to the mobility analysis 
[19,20,21] and type synthesis of mechanism [22,23,24,25,26,27]. The 
matrix form of Lie algebra se(3) was employed to describe instantaneous 
motion of mechanisms. There exists an exponential map between matrix 
representations of SE(3) and se(3) [28].

Dual quaternion is the extension of quaternion from real number to 
dual number. The composition and intersection operations are investigated, 
allowing the dual quaternion being used in displacement modeling 
of mechanism [29]. Pure dual quaternion, the dual vector, describes 
instantaneous motion, which was adopted to the kinematics [30] and 
dynamics [31]. There is an exponential map between the dual quaternion 
and pure dual quaternion [32].

Finite screw is proposed to describe the finite motion of rigid body in the 
framework of screw theory [33]. A screw triangle product [34] was defined 
to accomplish the composition, and the algebraic method [35] to perform 
the intersection of finite motions was investigated, which are employed in 
the type synthesis of mechanism [36]. Instantaneous screw was described 
as the twist of rigid body in the beginning [34]. Twist and wrench, known 
as the infinitesimal displacement and external force, are widely applied 
to the kinematic [37, 38], stiffness [39, 40], dynamic analysis and design 
[41,42,43] of mechanisms. It has been rigorously proved that a differential 
map exists in the finite and instantaneous screws.

Although these three mathematical tools have been applied at different 
stages of mechanism development, their capabilities in unifying the topology 
and performance analysis and design have not been realized. Aiming at 
helping designers find out effective methods in implementing integrated 
analysis and design so as to meet different requirements, this paper provides 
a comprehensive review on the mathematical tools for this topic. The paper 
is organized as follows. In Section 2, motions in integrated topology and 
performance modeling and design is discussed. Section 3 to 5 introduce the 
matrix Lie group and Lie algebra, dual quaternion and pure dual quaternion, 
finite screw and instantaneous screw, respectively, including history of 
development, description, computations and mapping relations of finite and 
instantaneous motions. A comparison of the three mathematic frameworks 
is illustrated from the view of algebraic structures in Section 6 following 
with the applications of unified mathematic tools in integrated topology and 
performance modeling and design. The conclusions are drawn in Section 7.
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RELATIONSHIP BETWEEN DEVELOPMENT  
OF ROBOTIC MECHANISM AND MOTIONS
It is a long-term challenge to unify the topology and performance modeling 
and design in the development of robotic mechanism. To address this 
problem, an integrated mathematical framework should be prepared, for 
which the relationship between topology/performance and motions is firstly 
analyzed.

Topology, considered as the skeleton of a robot, includes the numbers 
and types of kinematic limbs as well as the adjacency and incidence among 
kinematic joints [44]. One particular topology corresponds to a motion 
pattern of the robot. Hence, type synthesis is to obtain all the possible 
topologies according to the expected motion pattern. The description of 
expected motion patterns can be classified into two formats [45, 46]. One 
takes the finite motion form, which expresses the displacement of the robot 
from the initial pose to another. Referred to the summary of the generalized 
procedure of type synthesis by Gao [47], the available limbs are generated 
by the composition and intersection operations of finite motions. The other 
methods begin with the instantaneous motion description. Instantaneous 
motion is the infinitesimal motion of the robot at the given moment. 
Composition operation of instantaneous motions is the basis to get the 
available limbs and assembly conditions in the type synthesis of robotic 
mechanisms. Therefore, the topology model is related with the description 
and calculation of finite or instantaneous motion.

Performance determines the behavior of robots in practical application. 
Denoted by finite and instantaneous motions, the performances of a 
robot can be categorized by displacement, velocity and acceleration. The 
displacement model of the robotic mechanism is sometimes interpreted 
as forward or inverse kinematics, which focuses on the mapping between 
the displacements of actuations and the pose of the end-effector [48]. The 
displacement model is constructed and calculated by the finite motions. 
For example, the displacement model of a serial mechanism is built by 
the composition of finite motions of each kinematic joint. In the case of 
parallel mechanisms, both composition and intersection operations of the 
finite motions are involved. With the displacement model, the reachable 
workspace of the robot can also be analyzed. The next level of performance, 
i.e., the velocity of robotic mechanism, is described and calculated by 
instantaneous motion, because both instantaneous motion and velocity 
denote the infinitesimal motion at given pose. The velocity and force 
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mapping between joint space and operated space lay the foundation of the 
kinematic performance analysis of serial and parallel mechanisms, which 
are carried out by the composition and intersection of instantaneous motions 
of joints and limbs. Regarding the static deformation as the perturbation 
of displacement, stiffness can be classified as the performance at velocity 
level. The stiffness modeling and analysis also rely on the composition 
and intersection of instantaneous motions. Finally, the performance at 
acceleration level refers to the dynamics, in which the velocity, acceleration 
and forces of the robotic mechanisms are involved. Since acceleration 
model is obtained by the first-order of velocity model, the performance at 
acceleration level are analyzed by instantaneous motions. In summary, the 
performance model is formulated by the description and calculation of finite 
or instantaneous motion.

From the above analysis, it is concluded that the topology and 
performance of robotic mechanisms are completely reflected by finite and 
instantaneous motions. Therefore, the kernel of the integrated modeling 
lies in the algebraic derivation between finite and instantaneous motions. 
Because of intrinsic connections between displacement and velocity, finite 
and instantaneous motions could be connected by differential and integral 
mappings. In this manner, if the finite motion of a continuous path is known, 
the instantaneous motion at the given pose could be derived, and vice 
versa. The composition and intersection operations of the resultant finite 
and instantaneous motions can also be connected, which is beneficial for 
implementing the integrated topology and performance modeling and design 
of robotic mechanism. However, these mappings cannot be performed when 
topology and performance models are established by different mathematical 
tools. Consequently, a unified mathematic framework for finite and 
instantaneous motions is essential for the integrated modeling.

As illustrated in Figure 1, the description, computation and mapping of 
finite and instantaneous motions involving in integrated modeling should 
be covered in a unified mathematic framework. Till now, there are three 
mathematical tools that have been applied, including matrix Lie group 
and Lie algebra, dual quaternion and pure dual quaternion, finite screw 
and instantaneous screw. To provide an algebraic foundation of integrated 
modeling and design, these unified mathematic tools are reviewed in terms 
of the topics in the following sections, respectively.



A Survey of Mathematical Tools in Topology and Performance Integrated... 7

Figure 1: Relationship between motions and development of robotic mecha-
nism.

MATRIX LIE GROUP AND LIE ALGEBRA BASED 
METHOD
Among the three methods applied in topology and performance integrated 
modeling and design of robotic mechanisms, i.e., matrix Lie group and 
Lie algebra based method, dual quaternion and pure dual quaternion based 
method, finite screw and instantaneous screw based method, the matrix 
based method is introduced in this section. At first, the developments on 
the applications of matrix Lie group and Lie algebra in robotic mechanisms 
are reviewed in detail, which is followed by the introductions on their 
expressions and computations. Based upon these, the exponential and 
differential mappings between them are illustrated.

Matrix Lie Group and Lie Algebra
When rotation and translation are respectively described by linear 
transformation and translation vector, each 6-dimensional finite motion in 
3-dimensional space is thus represented as a pair of 3-dimensional orthogonal 
matrix and vector. In this way, the entire set of finite motions forms a Lie 
group under motion composition, which is called the special Euclidean group 
(SE(3)). Correspondingly, when 3-dimensional skew-symmetric matrix and 
vector are used to respectively describe angular and linear velocities, the 
entire set of 6-dimensional instantaneous motions constituted by the pairs of 
velocities form the Lie algebra se(3) of SE(3).

The matrix Lie group and Lie algebra are originated from the Erlangen 
program proposed by Klein [16] in the late 19th century, from then, the 
pairs in SE(3) and se(3) are rewritten into homogenous matrices. Both finite 
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motion and instantaneous motion can be expressed in homogenous forms, 
resulting in that any finite motion is described by an element in the matrix 
representation of SE(3), and that any instantaneous motion is described by 
an element in the matrix representation of se(3).

It was Hervé [19] who introduced the matrix Lie group into mobility 
analysis of mechanisms. In the 1980s and 1990s, he had been investigating 
description and calculation of mechanism displacement by the sub-groups 
of SE(3) [20, 49, 50]. The application of matrix Lie group in geometry and 
kinematics of mechanisms was discussed. On this basis, Hervé and Sparacino 
[51] employed matrix Lie group to the type synthesis (structure synthesis) of 
parallel mechanisms. This work was later developed by Li and Hervé [7, 8, 
10, 26, 52], Lee and Hervé [53,54,55,56]. Owing to their efforts, a systematic 
type synthesis method by matrix Lie group was proposed. Specially, Li 
introduced the sub-manifolds of SE(3) as the extension of sub-groups to 
describe the displacements of parallel mechanisms and their limbs. Many 
novel parallel mechanisms were invented, including five degree-of-freedom 
(DoF) parallel mechanisms that could not be synthesized due to the lack of 
5-dimensional sub-groups of SE(3). Besides applying matrix Lie group to 
type synthesis, Fanghella and Galletti [57, 58] discussed the approximate 
computation algorithms of matrix Lie group. Composition of two sub-groups 
was computed by their minimum envelope group, while the intersection of 
two sub-groups was performed by searching for the maximum common 
group. All possible cases of sub-group composition and intersection were 
listed. This computation method is different from the analytical algorithms 
in Baker-Campbell-Hausdorff formula [59, 60] and is easier to be directly 
applied. Meng [61] also engaged in giving the clear intersection algorithms 
of sub-groups. They obtained the intersection of Lie sub-groups by solving 
the intersection of the corresponding Lie sub-algebras. In their work, the 
matrix form of Lie algebra se(3) was employed to describe instantaneous 
motion of mechanisms. The similar method was employed by Wu [62,63,64] 
in type synthesis of quotient mechanisms, and by Liu [65] in type synthesis 
of mechanisms with adjoint-invariant sub-manifolds of SE (3). All these 
contributions lead to the topology modeling by using matrix Lie group 
and its sub-sets. In 1983, Brockett [28, 66] established the framework of 
matrix Lie group and Lie algebra for mechanism modeling and analysis. By 
investigating the exponential mapping between matrix representations of 
SE(3) and se(3), he set up the connection between finite and instantaneous 
motions of mechanisms. His work was further extended by Li [67,68,69], 
Park [70,71,72], Chen [73,74,75], Chen [76,77,78] and their colleagues, 
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leading to an integrated framework for kinematics, dynamics, calibration, 
and control of mechanisms.

Matrix Lie Group and Its Computations
As introduced in Section 2.1, the matrix representation of SE(3) is the entire 
set of homogeneous matrices that describe all the linear transformations in 
the Euclidean space. This matrix Lie group can be used to describe all the 
finite motions of a rigid body or a mechanism. Hence, the finite motion 
description based upon matrix Lie group can be expressed as,

    (1)
where SO(3) denotes the special orthogonal group consisting of the 

orthogonal matrices that describe rotations,  denotes the 3-dimensional 
vector space, R is an arbitrary element in SO(3) which represents the rotation 
matrix about the Chasles’ axis, t is the translation vector along that axis. R and 

t involve the Chasles’ axis  together with the corresponding 
rotational angle θ and translational distance t. The expressions of R and t can 
be referred to Ref. [28], as

    (2)

    (3)

where E3 is a three-order unit matrix,  is the skew-symmetric matrix that 

denotes the cross product of  expresses the position vector of the 
Chasles’ axis.

When the matrix Lie group theory is applied in topology modeling and 
analysis of robotic mechanisms, the finite motion generated by each 1-DoF 
joint can be described by a 1-dimensional sub-group of SE(3). Following 
this manner, the motion of each limb is the composition of all its joints’ 
motions, and the mechanism motion is the intersection of the limbs’ motions.

The composition of matrix Lie sub-groups is performed by matrix 
multiplication. This is because any Lie sub-group can be regarded as the 
composition of several 1-dimensional sub-groups. Hence, the composition 
of finite motions can be expressed by the multiplication of a sequence of 
1-DoF finite motions as,
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      (4)

where  denotes the 1-dimensional sub-group that 
describes the kth finite motion in the sequence.

Consider that the elements in each 1-dimensional sub-group can be 
expressed by exponential expressions, Mk can be obtained as

      (5)
where ξξ~f,kξξ~f,k is the homogenous matrix that represents the Chasles’ 
axis that corresponds to MMkMMk and a pitch, as

     (6)
The denotations of the symbols in Eq. (6) can be referred to those in Eqs. 

(2) and (3).
Taking the exponential form, Eq. (4) can be rewritten as,

   (7)
In order to obtain the expansion form of Eq. (7), the Baker-Campbell-

Hausdorff formula is employed. The composition of two 1-DoF finite 
motions could be performed as,

   (8)
where

Herein,  is defined 
as the Lie bracket. It is found that algebraic computation becomes more 
complicated and difficult because of higher order items, especially for the 
cases of more than two motions.

Intersection of finite motions is the maximum common sub-group or sub-
manifold contained in all motions. By using the property of the exponential 
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expression in Eq. (5), Meng [20] partly solved this problem by mapping the 
intersection of the Lie sub-groups to Lie algebra level. Till now, intersection 
of finite motions by matrix Lie sub-groups and the composited manifolds (the 
product of several Lie sub-groups) is mainly based upon specific principles, 
such as the cases given by Fanghella and Galletti [16, 17]. However, these 
operations are difficult to implement in an analytical manner and be applied 
for all the motion patterns. There is no generic intersection algorithm for 
matrix Lie sub-groups and the composited manifolds yet.

Matrix Lie Algebra and Its Computations
As the counterpart of matrix Lie group SE(3), its matrix Lie algebra se(3) is 
employed to describe the instantaneous motions of robotic mechanisms, as

    (9)
where ω and ν are angular and linear velocities in 3-dimensional vector 
forms.

Any element in se(3) can be rewritten into vector form as

       (10)

     (11)
where ξt is the normalized unit velocity, ω is its amplitude, and pt denotes the 
pitch. rt expresses the position of the Mozzi’s axis.

When the matrix Lie algebra theory is applied in performance modeling 
and analysis of robotic mechanisms, 1-dimensional sub-space of se(3) is 
employed to describe the instantaneous motion generated by 1-DoF joint. 
In this way, the composition of the motions of all joints in a limb leads to 
the limb motion, and the intersection of all the limbs’ motions results in the 
mechanism motion.

As is well known, se(3) is a 6-dimensional vector space. The composition 
of matrix Lie sub-spaces is performed by linear addition as,

     (12)
where ‘⊕’ denotes the combination operation of linear vector spaces. 
The intersection of several sub-spaces can be obtained through linear 
computations, as
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      (13)
where T1, T2, …, Tn denote n sub-spaces of se(3). The computations shown 
in Eqs. (12) and (13) are easy to be conducted because they both fall in the 
area of linear algebra.

Mappings between Matrix Lie Group and Lie Algebra
According to the physical principle, finite motion (displacement) is the 
integral of instantaneous motion (velocity), and velocity is the differential 
of displacement. When the displacement and velocity are described by 
matrix Lie group and Lie algebra, a differential-exponential mapping can be 
formulated between them as follows,

      (14)

       (15)
The interpretations on the above two equations are given as follows:

1. The differential of g at θ = 0 is . As the Chasles’ axis is coinci-
dent with the axis of the velocity when θ = 0, the differential of g at θ 
= 0 is an element of se(3). This is because se(3) is the tangent space 
of SE(3) at the identity element (the unit matrix).

2. The exponential of  with respect to the time results in g, which 
means that the exponential of any elements in se(3) with respect to 
the time leads to the elements in SE(3).

The differential-exponential mapping between matrix Lie group SE(3) and 
Lie algebra se(3) leads to the following 1-DoF case, as



A Survey of Mathematical Tools in Topology and Performance Integrated... 13

    (16)

      (17)
and multi-DoF cases, as

   (18)

   (19)

DUAL QUATERNION AND PURE DUAL  
QUATERNION BASED METHOD
The review of dual quaternion and pure dual quaternion based method is 
provided in this section. Firstly, the application of this method in topology 
and performance modeling and design of robotic mechanisms is traced. 
Secondly, the basic formats together with their composition and intersection 
operations are discussed. Finally, the exponential/Cayley- differential maps 
between finite and instantaneous motions are constructed in the form of 
quaternionic algebras.

Dual Quaternion and Pure Dual Quaternion
As the representations of SE(3) and se(3), respectively, dual quaternion and 
pure dual quaternion are applied to describe the transformation from one 
pose to another and the velocity at any instant. Dual quaternion utilizes eight 
parameters by presenting a scalar with the cosine of half the dual angle 
[17] and further six numbers by integrating the direction and position of the 
motion axis with the sine of half the dual angel. Herein, dual angle integrated 
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the rotational angle and linear displacement by dual operator. Pure dual 
quaternion is also called dual vector, which includes six elements and is 
defined by means of the unit axis and amplitude of instantaneous motion.

The dual quaternion and pure dual quaternion based method can be traced 
back to Euler-Rodrigues’ parameters and Euler-Rodrigues’ formula [79] in 
the 18th century. Hamilton [80] and Rodrigues [81] did some pioneering 
work in this field. Based on that, Clifford [82] transformed rotation about 
an axis into translation parallel to the axis and proposed the concept of 
“biquaternion” in the investigation of geometry and algebra. Biquaternion 
was then applied to motion description and termed as dual quaternion [17].

It was pointed out the dual quaternion is the extension of quaternion 
from real number to dual number. According to the “transference principle” 
[83, 84], the algorithms for quaternions can be applied to the algorithms 
for dual quaternions. In this way, the composition of two dual quaternions 
could be computed by quaternion multiplication [85], i.e., Euler-Rodrigues’ 
formula with dual angles. As for the intersection algorithms, Sun [86] 
employed analytical derivations to deal with the intersection of the sets of 
dual quaternions. Mechanism analysis by dual quaternion was implemented 
by McAulay [87] for the first time who utilized dual quaternion to 
describe rigid body displacement. Later on, dual quaternion was used in 
the kinematics of mechanisms from a geometrical prospective by Refs. 
[88, 89] and Blaschke [90]. Kong studied the method for motion mode 
analysis of single-loop and closed-loop spatial mechanisms by formulating 
a set of kinematic loop equations based on dual quaternions [91, 92]. It 
was proved in ref. [93] that dual quaternions facilitate to avoid singularities 
in the analysis of finite motion. Besides robotic kinematics, joint stiffness 
identification and deformation compensation algorithms for serial robots 
were constructed [94]. Apart from the applications of dual quaternion in 
finite motion description, pure dual quaternion (dual vector) was adopted 
to describe instantaneous motion. For instance, Yang and Freudenstein [29, 
95] combined both dual quaternion and pure dual quaternion to analyze 
the displacement and velocity of a spatial four-link mechanism. Similar 
researches on the mechanism kinematic analysis by dual quaternions can 
be found in [30, 96, 97]. For the mechanism design, McCarthy et al. [98, 
99] formulated forward and inverse kinematic equations of spatial serial 
chains and proposed a semi-analytical design method. These kinematic 
equations are obtained by the exponential map between pure dual quaternion 
and dual quaternion. Selig [32] built the dynamic model of mechanisms 
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using quaternions [31]. In his research, the Cayley map in dual quaternion 
theory was constructed concerning that the entire set of dual quaternions 
is a double cover of SE(3). The intrinsic connections between quaternion 
exponential map and Euler-Rodrigues’ formula were deeply investigated by 
Dai [100], relating dual quaternions with other representations of SE(3). 
Taking advantages of these mappings, the integrated method was also used 
in calibration algorithms [101, 102], path planning and control strategies 
[103, 104]. Motivated by the arithmetic operations of dual quaternions, 
Cohen developed the concept of hyper dual quaternion currently, which was 
applied for the displacement and velocity modeling of serial mechanisms 
[105].

Dual Quaternion and its Computations
The dual quaternion is the extension of quaternion from real number to dual 
number. Rotation axis and rotational angle in quaternion can be replaced 
with dual axis and dual angle. Thus, the 1-DoF finite motion is described by 
dual quaternion as

      (20)

where  denotes the dual angle. It has the cosine and sine functions 
as

where ε is the dual unit and ε2=0. ()∧ in this paper denotes a vector in 

pure dual quaternion form.  is the pure dual quaternion form of 
the Plücker coordinates of the Chasles’ axis, which can be denoted as 

 are the unit direction dual vector 
and position dual vector of the Chasles’ axis.

where  are scalar coefficients of Plücker coordi-
nates. i, j, k are plural units with the properties,
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    (21)
For a serial mechanism or limbs in parallel mechanism, the finite motion 

generated by all 1-DoF joints can be solved by the composition operation, 
which can be rewritten utilizing quaternion multiplication [80, 81],

       (22)

   (23)
It is noted that the motion of moving platform in a parallel mechanism 

and that generated by each limb is in equilibrium. Therefore, having the 
analytical resultant motion of limbs at hand, the finite motion of the moving 
platform can be obtained by the intersection operation as,

  (24)
Thanks to the expression and quaternion multiplication defined in Eqs. 

(20), (21), the finite motion of each limb could be determined by formulating 
equations as Eq. (24).

Pure Dual Quaternion and Its Computations
The velocity of the rigid body at any instant is specified by a dual vector, 
which connects two 3-D vectors by dual operator. In this way, the format of 
pure dual quaternion is introduced here

       (25)

where  is the pure dual quaternion form of the Plücker 
coordinates of the Mozzi’s axis. Herein,  are the unit direction dual 
vector and position dual vector of the Mozzi’s axis.
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where  are scalar coefficients of Plücker 
coordinates.

The pure dual quaternions are Lie algebra elements with both well-
defined addition and multiplication. Thus, when pure dual quaternion is 
applied in the performance modeling and design of robotic mechanisms, the 
composition and intersection operations can be performed as linear algebra, 
referring to Eq. (12) and Eq. (13), respectively.

Mappings between Dual Quaternion and Pure Dual  
Quaternion
Similar to matrix Lie group and Lie algebra, the exponential map and Cayley 
map exist from pure dual quaternion to dual quaternion, which are given by,

   (26)

   (27)
In the modeling process of robots, exponential map facilitates to connect 

the velocity and the possible displacements allowed by the joint. It would 
be convenient to formulate the topology or kinematic models of serial 
mechanisms or open-loop limbs by taking the axes and motion variables 
of joints in an analytical manner. Cayley map is always used in numerical 
methods since it does not need so many trigonometric function calls and will 
avoid cost consuming. For multi-DoF, the maps could be expanded as
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   (28)

    (29)
When the topology/displacement models are obtained at first, differential 

mapping between dual quaternion and pure dual quaternion would help to 
get the velocities. It could be executed by taking differentiations of dual 
quaternion D with respect to time.

     (30)
It indicates that the time derivative of D at the initial pose is exactly the 

corresponding pure dual quaternion  at the instant . This rule is 
also proved in the multi-DoF cases,

   (31)

FINITE SCREW AND INSTANTANEOUS SCREW 
BASED METHOD
In this section, integrated screw theory based method is presented beginning 
with the progress achieved in topology and performance modeling and 
design of robotic mechanisms. Then the description and computation of 
motions by finite and instantaneous screws are introduced. After that, the 
differential mapping between them is formulated.

Finite Srew and Instantaneous Screw
According to Chasles’s theorem [10], a general rigid-body displacement 
could be described as a rotation about a line followed by a translation in 
the same direction as the rotation axis. Such a line is specified by the finite 
motion axis, a rotation angle, and a pitch. Motivated by this point, finite 
screw is invented to describe the finite motion in a 6-D quasi-vector format. 
Meanwhile, instantaneous motion could be expressed by the line in linear 
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subspace, representing instantaneous motion axis with angular and linear 
velocities. Instantaneous screw was proposed based on spatial vectors with 
the definition of pitch. By this means, finite and instantaneous motions are 
depicted in the view of geometry by finite and instantaneous screws.

The finite screw and instantaneous screw based method origins from 
screw theory proposed in the 19th century. In the beginning, Chasles [10] 
proposed the concept of twist motion of a rigid body. It was further developed 
by Poinsot and Plücker [11], in which screw coordinates of infinitesimal 
displacement and external force were involved. They were named as twist 
and wrench, respectively. The reciprocal property of twist and wrench was 
later explored by Ball [106] and Klein [107, 108].

In the book “A treatise on the theory of screws” [109], Ball discussed 
kinematics and dynamics of an arbitrary rigid body by screw theory. It laid 
a solid foundation for the mechanism analysis by Hunt [110] who proposed 
the screw based kinematic and dynamic modeling method for serial, 
parallel and closed-loop mechanisms. Following Hunt’s work, substantial 
researches were carried out for the mechanism analysis and design based on 
instantaneous screw, such as type synthesis [3, 45, 111], statics and kinetics 
[112, 113], performance evaluation and optimization [114, 115]. Besides 
the applications of instantaneous screw, finite screw, termed by Dimentberg 
[116], was proposed to describe the finite motion of rigid body. On this 
track, the format of finite screw, including the pitch and amplitude, was 
intensively studied by Parkin [117, 118], Hunt [119], Dai [33] and Huang 
[120,121,122]. Other than description of finite screw, the computation was 
another difficult problem. To this end, Roth [123] defined screw triangle 
product to accomplish finite screw composition with the aid of Euler-
Rodrigues’ formula. This definition had been widely accepted. From then 
on, many scholars focused on finding out concise algorithm for the screw 
triangle product [124,125,126,127,128,129]. Through the linear combination 
of two original screws, their translational parts and the screw along their 
common perpendicular, Huang [130] simplified the screw triangle product. 
However, the nonlinear intersection of finite screws was analyzed in linear 
subspaces [131], which leads to inappropriate results. In terms of the finite 
screw intersection, Sun [18, 35, 36] presented an algebraic method. For the 
first time, Dai [34] formulated the mapping between finite and instantaneous 
screws, and defined correlations among screw theory, matrix Lie group and 
quaternions [132]. Based on the contribution of Dai, Sun [18, 133] expanded 
the differential mapping to the analysis of spatial mechanisms. For the 
applications of finite screw to mechanism analysis, Huang [120,121,122] 
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built the forward kinematic equations of some serial mechanisms. Sun and 
his colleagues [133,134,135,136] proposed a generic method to formulate 
motion equations for different types of mechanisms. Finite motion based 
type synthesis and instantaneous motion based kinematic analysis of parallel 
mechanisms are integrated by a consistent algebraic manner in their method.

Finite Screw and Its Computations
Finite motion description by screw directly reflect the Chasles’ axis together 
with the angular and linear displacements. The 1-DoF finite motion could be 
parameterized as finite screw in 6-dimensional quasi-vector form as

     (32)
where  have the same meanings as given in Eqs. (2), (3).

Composition operation of finite screws could be performed by screw 
triangle product signed as “△”. The composition of two 1-dimensional 
finite screws results in a linear combination of the two original screws, 
their translational parts and the screw along their common perpendicular. In 
this way, the analytical expression of the composited motion can be easily 
obtained in an approximately linear manner, which simplifies the nonlinear 
composition of finite motions

   (33)
where 
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Similar to the intersection algorithm of dual quaternions, the intersection 
of finite screws is achieved through formulating the simultaneous equations 
and solving the common range of the finite screw expressions

  (34)

Instantaneous Screw and Its Computations
Instantaneous motion description by screw directly reflect the Mozzi’s axis 
together with the amplitude of velocity. The instantaneous motion of rigid 
body could be parameterized as instantaneous screw in 6-D vector form as

   (35)

where  have the same meanings as given in Eq. (11).
For robotic mechanism, the velocity of moving platform relative to 

the fixed platform forms a screw system, which is composed by a set of 
1-DoF screws. In the process of performance modeling and design of robots, 
screw system plays an important role in mobility analysis and Jacobian 
formulation. For serial mechanisms, screw system could be measured as 
the combination of the instantaneous screws producing by each kinematic 
joint. When mechanisms with parallel structures, intersection operation 
of the screw systems generated by a series of connected chains is carried 
out. Due to the work of Rico and Duffy [137,138,139], screw systems were 
classified and proved to be subspaces, sometimes even sub-algebras of the 
Lie algebra se(3) of the Euclidean group SE (3). Therefore, the combination 
and intersection operation could be written as the form in Eq. (12) and Eq. 
(13), respectively.

Mappings between Finite and Instantaneous Screws
As far as we know, the exponential map does not exist between instantaneous 
screw and finite screw. That is because finite screw describes the displacement 
in a Gibson form, which break the linear transformation format of finite 
motion description of matrix Li Group and dual quaternion.

In spite of the lack of exponential map, differential map between 
displacement and velocity can be performed directly by taking differentiations 
of finite screw Sf with respect to time. For 1-DoF or multi-DoF finite screw 
Sf, the corresponding instantaneous screw system would be formulated as
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     (36)

   (37)

DISCUSSIONS
After respectively reviewing the three mathematical tools applied in 
topology and performance modeling and analysis of robotic mechanisms, 
further discussions on comparisons among them and their applications will 
be given in this section.

Comparisons among the Three Methods
Based upon Sections 3–5, it can be seen that the instantaneous screws, matrix 
Lie algebra, and pure dual quaternions for instantaneous motion description 
are all linear vector spaces, and their algebraic structures are isomorphic to 
each other. Thus, only the mathematical tools for finite motion description 
will be compared here. The differences among matrix Lie group, dual 
quaternions, and finite screws rise from their different algebraic structures. 
In order to discuss the differences of these three mathematical tools in 
describing rigid body finite motion, we firstly look into their algebraic 
structures and the relationships among them and SE(3).

Any transformation matrix in the matrix Lie group can be represented 
by a 4 × 4 real matrix, a 6 × 6 real matrix, or a 3 × 3 dual matrix etc. Because 
these three representations are isomorphic with each other, we take 4 × 4 
real matrix representation as an example in Section 3. The entire set of each 
kind of these matrices has the same inner closure and associative properties 
with SE(3). Hence, the matrix Lie group forms a homomorphism of SE(3). 
Furthermore, it is an isomorphism of SE(3), since there exists a bijective 
mapping between them. The matrix Lie group is also a representation of 
SE(3). This is because the matrix operations play as linear transformations 
acting on the 6-dimensional vector space. Dual quaternions have similar 
features. Half part of the entire set of dual quaternions with positive rotational 
angles is also an isomorphism and a representation of SE(3). Thus, the 
entire set of dual quaternion is a double cover of SE(3). The transformation 
matrices in matrix Lie group can be composited by multiplication with 
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linear transformation formats. The same operation can be performed by dual 
quaternions.

Different from transformation matrix and dual quaternion, finite screw 
is invented to break the linear transformation format of finite motion 
description, which can be regarded as a general form of Gibbs vector. Finite 
screw does not act on any vector space, and cannot transform any coordinate 
of geometric point or line. It is a mathematical tool purely for finite motion 
description, and it can express the basic elements of Chasles’ motion in a 
straightforward manner. The composition algorithm of finite screws, i.e., 
screw triangle product, maintains the screw format, which directly leads to 
the expressions of basic elements of the resultant Chasles’ motion. Although 
the entire set of finite screws under screw triangle product has the same 
inner closure and associative properties with SE(3), it is not a representation 
of SE(3). In other words, it only forms a isomorphism of SE(3).

Any element of SE(3) is a combination of rotation matrix and translation 
vector. It is a homogeneous transformation of the coordinates of points. 
In this way, all representations of SE(3) cannot break the inherent linear 
transformation formats. Hence, only finite screw with screw triangle product 
can express and composite finite motions in a non-redundant and direct 
manner.

All the three methods reviewed in Sections 3–5 could be used to 
describe and compute all situations of finite motions. To further investigate 
the relationships among them, we rewrite the element in dual quaternion in 
the following way,

   (38)
Compare the above equation and Eq. (1)–(3) with finite screw in Eq. 

(32). It is noted that the information of a finite motion, i.e., the Chasles’ axis 
and the corresponding rotational angle and translational distance, is involved 
in the 3 × 3 rotation matrix and 3 × 1 translation vector in, and is not easy to 
be extracted. Hence, for elements in matrix Lie group, at least 12 items are 
needed to describe the 6-dimensional finite motion. For dual quaternion, 
8 items are needed, and the dual vector in D covers all the finite motion 
characteristics while the dual scalar is redundant. Finite screw contains 
the whole finite motion characteristics in the 6-dimensional quasi-vector 
form. Thus, it is non-redundant. Motion descriptions by finite screw are 
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more concise. On this basis, the composition of two finite motions could be 
obtained by three cross product computations and their linear combination. 
The redundancy of matrix Lie group and dual quaternions results in more 
operations in the process of computing the composition and intersection of 
finite motions. In the whole, finite and instantaneous screw based method 
has the most concise formats to describe mechanism motions, and provides 
the most explicit algorithms for the computation.

Future Works on Applications of the Three Methods
From the discussion in previous sections, three unified mathematical tools 
are proved to have the abilities of description, computation and mapping of 
finite and instantaneous motions. With the aid of the unified mathematical 
frameworks, the integrated topology and performance modeling and design 
can be studied, which is meaningful but still rarely investigated in the 
current researches. Therefore, the next problem is how to apply the above 
mathematical tools to the integrated modeling and design. Since both the 
topology and performances are considered, the integrated modeling and 
design process can be interpreted as (1) finding out all possible topologies 
having the same desired mobility, (2) formulating the performances of 
every topological structure, and (3) searching for the optimal topology and 
performances. Having the above unified mathematical tools, type synthesis 
and performance modeling can be carried out in the same mathematical 
framework, as shown in Figure 2. For instance, type synthesis can be 
implemented by the finite motion based methods. By the mapping between 
finite and instantaneous motions, the performance model would be done 
by instantaneous motion based methods. Hence, both the topological and 
performance parameters can be defined in the optimal design.

Figure 2: Application of unified mathematic tools in integrated analysis and 
design.
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The detail integrated modeling and design process might be conducted 
as follows. First of all, the expected motion is described in a finite motion 
format based on matrix Lie group, dual quaternion or finite screw. By taking 
the advantages of intersection and composition operations, the available 
limbs and mechanisms would be generated. More details are referred to 
[35, 51, 86]. Because the type synthesis is implemented in an algebraic 
manner, the parameterized topology models are obtained. Then, the finite 
motion based topology model is directly applied as the displacement model 
relative to the initial pose. In order to construct the performance models with 
topology parameters, the differential mapping between matrix Lie group 
and Lie algebra, dual quaternion and pure dual quaternion, finite screw and 
instantaneous screw are utilized. In this way, the velocity model of 1-DoF 
kinematic joint, multi-DoF limbs and end-effector could be obtained in 
the forms of Lie algebra, pure dual quaternion and instantaneous screw, 
respectively. With the velocity model available at hand, the velocity/force 
features, stiffness performance can be further analyzed. By the first-order 
derivation of velocity, accelerations would be further formulated, with which 
the dynamic model is obtained. Up to this point, the integrated modeling 
for topology, kinematic, stiffness and dynamic is captured. Finally, both 
topological and dimensional parameters can be taken as design variables 
in optimal design, resulting in optimized topological structure with its 
dimensions.

Besides the methodology of integrated topology and performance 
modeling and design, another possible application of the reviewed 
mathematical tools is the automatic software development. It could be seen 
that every step of the integrated modeling and design is performed by algebraic 
expressions and computations, which facilitates this procedure to be realized 
in automatic manner using computer programming languages. By applying 
computation software like Matlab and Maple, composition, intersection 
and mapping algorithms of finite and instantaneous motions based on the 
three unified mathematic tools could be compiled as modularized programs. 
In this way, for given motion pattern, type synthesis can be automatically 
implemented to obtain all the feasible robotic mechanisms. The topology 
models are regarded as the displacement models. Then performance models 
in terms of velocity and acceleration can be directly constructed and analyzed 
by taking the first- and second-order derivation of its displacement model. 
The automatic software in the future work will improve the efficiency of 
integrated robot design and make the methods to be easily applied by the 
mechanical engineers without studying the mathematical knowledge.
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CONCLUSIONS
Topology and performance of mechanism are the main focuses in the 
development of robotic mechanism. It has long been a desire to carry out the 
integrated analysis and design as topology and performance are mutually 
affected each other. A unified mathematical framework is the fundamental 
preparation. Three mathematical tools, i.e., Lie group and Lie algebra, dual 
quaternion and pure dual quaternion, finite screw and instantaneous screw, 
are comprehensively reviewed. The history, finite motion, instantaneous 
motion and the mapping relation of each mathematical tool are introduced, 
in which the description, computation and intersection of two types of 
motions are given. A discussion on the three mathematical tools is also 
presented. This paper aims at providing a reference on the mathematical 
tools in topology and performance integrated analysis and design, and helps 
reader select the appropriate method when implementing the analysis and 
design of robotic mechanisms.
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ABSTRACT
Reaction wheels are crucial actuators in spacecraft attitude control subsystem 
(ACS). The precise modeling of reaction wheels is of fundamental need 
in spacecraft ACS for design, analysis, simulation, and fault diagnosis 
applications. The complex nature of the reaction wheel leads to modeling 
difficulties utilizing the conventional modeling schemes. Additionally, the 
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absence of reaction wheel providers’ parameters is crucial for triggering a new 
modeling scheme. The Radial Basis Function Neural Network (RBFNN) has 
an efficient architecture, alluring generalization properties, invulnerability 
against noise, and amazing training capabilities. This research proposes 
a promising modeling scheme for the spacecraft reaction wheel utilizing 
RBFNN and an improved variant of the Quantum Behaved Particle Swarm 
Optimization (QPSO). The problem of enhancing the network parameters 
of the RBFNN at the training phase is formed as a nonlinear constrained 
optimization problem. Thus, it is proposed to efficiently resolve utilizing 
an enhanced version of QPSO with mutation strategy (EQPSO-2M). The 
proposed technique is compared with the conventional QPSO algorithm 
and different variants of PSO algorithms. Evaluation criteria rely upon 
convergence speed, mean best fitness value, stability, and the number of 
successful runs that has been utilized to assess the proposed approach. A 
non-parametric test is utilized to decide the critical contrast between the 
results of the proposed algorithm compared with different algorithms. The 
simulation results demonstrated that the training of the proposed RBFNN-
based reaction wheel model with enhanced parameters by EQPSO-2M 
algorithm furnishes a superior prediction accuracy went with effective 
network architecture.

INTRODUCTION
In spacecraft missions that need a high pointing accuracy, Attitude Control 
Subsystem (ACS) with specific actuators shall be used. The reaction wheel 
(RW) is a vital actuator for the spacecraft ACS [1]. The accurate modeling 
of the spacecraft reaction wheel is recommended for the design, simulation, 
analysis, and fault identification applications. Meanwhile, increasing the 
accuracy of the reaction wheel modeling will improve the overall accuracy 
of the ACS modeling process. There are three common approaches for 
modeling dynamic systems. The noteworthy models are white box, black 
box, and gray box models. The white-box modeling is characterized by a good 
understanding of model parameters compared to black-box modeling that 
needs some measurements for the model inputs and outputs. Furthermore, 
the high accuracy modeling process can be achieved by black-box rather 
than white-box. Despite the black-box modeling accuracy, the generalization 
characteristics are proven to be superior in the case of white-box modeling 
rather than black-box modeling. Due to the complexity of the reaction wheel 
modeling, it is recommended to be in a white-box modeling manner. This 
is to satisfy the appropriate accuracy and generalization characteristics [2]. 
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Unfortunately, many manufacturers provide insufficient information in their 
datasheets, which is needed to accurately model the dynamics of the reaction 
wheel. Therefore, building the white-box mathematical model is very 
difficult. Thus, the researchers have proposed many artificial intelligence 
(AI) schemes for modeling the reaction wheels [3,4,5,6,7,8]. For instance, Al-
Zyoud and Khorasani [3] proposed a dynamic multilayer perceptron scheme 
for modeling the spacecraft reaction wheel. The dynamic properties were 
introduced into the multilayer perceptron network by adding delays between 
layers. Furthermore, the optimal results were obtained using six neurons at 
the hidden layers. Thus, a tiny training error was noticed in order of 0.04. 
However, the simulation results have shown that the dynamic multilayer 
perceptron had an improved performance compared to the linear reaction 
wheel model. There are some limitations for dynamic multilayer perceptron 
like the model complexity and noticeably low modeling accuracy. In [4], the 
three-layer Elman neural network is introduced to model the dynamics of the 
spacecraft reaction wheel. Therefore, the proposed Elman neural network 
had two inputs, 25 hidden neurons, and 1 output. Moreover, the network was 
trained through 5000 epochs to get a small mean square error of about 10−3. 
Furthermore, simulation results have demonstrated the superiority of the 
Elman neural network-based observer compared to the linear observer for 
fault detection and identification. It was noticed that the former model has 
a computational complexity due to a large number of hidden neurons. Thus, 
this imposes a long computation time. Later on, Mousavi and Khorasani [5] 
proposed a reaction wheel model that represents four spacecraft formation 
flight missions. Thus, reaction wheel dynamics have been introduced 
by using an infinite impulse response filter with dynamic hidden layer 
neurons. Therefore, hopeful results were achieved from the four spacecraft 
constellations. The first one has a training error of 0.05 using a neural 
network architecture with ten hidden neurons. Furthermore, the second, 
third, and fourth spacecraft have a training error near of 0.018, 0.015, and 
0.03 with eight, eight, and six neurons at their hidden layers, respectively. 
The drawback of the aforementioned proposed model is the use of the infinite 
impulse response filter that consumes tremendous computational resources.

Radial Basis Function Neural Networks (RBFNNs) are considered to be 
promising for modeling nonlinear dynamic systems like spacecraft reaction 
wheels. Moreover, RBFNN facilitates the modeling process due to its simple 
architecture, good generalization performance, low sensitivity against noise, 
and training capability [9]. Therefore, to address the drawbacks in related 
researches, this research proposes an efficient high accuracy modeling 
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scheme for spacecraft reaction wheel using RBFNN. Many researchers 
have proposed RBFNN as a modeling paradigm in different research areas 
[9,10,11,12,13,14,15]. For instance, in [9], RBFNN had been used for online 
modeling and adaptive control of nonlinear systems. Furthermore, it is 
proved that RBFNN has a noticeable performance with the effect of noise 
and parameters’ variations. Nevertheless, the results also proved that RBFNN 
has a better performance than the feedforward neural network. Ali N. et al. 
[11] investigated the superiority of RBFNN over multilayer perceptron for 
predicting the welding features. The results proved the effectiveness of the 
high accuracy modeling capability for RBFNN over multilayer perceptron in 
modeling dynamic systems. Recently, Yunguang et al. [13,14,15] suggested 
an optimization module based on radial basis function and particle swarm 
optimization to develop a wheel profile fine-tuning system. Simulation results 
have proven that the proposed optimization algorithm can recommend an 
optimal wheel profile according to train operators’ needs.

Training the RBFNN includes calculating the number of hidden neurons, 
centers of the Radial Basis Function (RBF), widths of the hidden layers, 
and the connection weights. Therefore, determining the optimal values for 
these parameters is a crucial factor for the RBFNN network performance. To 
address this concern, an optimization algorithm shall be used to enhance the 
training performance and then the modeling accuracy. Recently, different 
optimization algorithms have revealed promising performance. When 
compared to other optimization approaches, Particle Swarm Optimization 
(PSO) has a robust search ability, fast computation, and is inexpensive 
in terms of speed and memory [16]. However, it was proven that PSO is 
certifiably not a global optimization algorithm [17]. Therefore, numerous 
variants of PSO have been proposed to work on the performance of PSO 
[18,19,20,21,22,23]. Quantum Behaved Particle Swarm Optimization 
(QPSO) algorithm is another adaptation of the conventional PSO that 
was presented by Sun [24]. It had been started by quantum mechanics 
and the analysis of PSO dynamic behavior. Besides, QPSO is a sort of 
stochastic algorithm that has iterative equations, which differ from that of 
the conventional PSO. Moreover, there are limited QPSO parameters that 
should be adapted compared with conventional PSO. Hence, experimental 
results showed that QPSO has a superior performance compared with 
the standard PSO on various benchmark functions [25]. In any case, 
QPSO is a proper algorithm for global optimization issues, yet it suffers 
from premature convergence. Consequently, this premature convergence 
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enables performance degradation and inefficiency for solving optimization 
problems. This convergence is caused because of catching in local optimal. 
Nevertheless, premature convergence happens because of the consistent 
declination of particles’ diversity [26].

This research proposes a high accuracy modeling scheme for spacecraft 
reaction wheel utilizing RBFNN and a further enhanced version of the 
QPSO algorithm. As an improvement, firstly, two progressive mutations 
were applied to further improve the exploitation process. Besides, a 
diversity control strategy is applied to enhance the particles’ diversity and 
overcome the premature convergence. Subsequently, expanding the chance 
of the swarm to leap out the local minima and discovering new encouraging 
solutions further improve the algorithm performance. Accordingly, an 
improved QPSO algorithm, signified by Enhanced Quantum Particle Swarm 
Optimization – 2 Mutation (EQPSO-2M), is proposed for the training of the 
RBFNNbased reaction wheel model. The enhancement aims to improve the 
search abilities of QPSO and trying not to stick at local optimal. Moreover, 
the proposed reaction wheel mathematical model that was proposed in [27], 
has been implemented to create the dataset that is needed for the testing of 
the RBFNN-based reaction wheel model. The effectiveness of the proposed 
EQPSO-2M algorithm is investigated using convergence speed, mean best 
fitness value, stability, and the number of successful runs. The obtained 
results indicate the superior performance of the EQPSO-2M method. Once 
the optimal parameters of RBFNN are obtained, the performance of the 
proposed reaction wheel model has been tested using the simulation results.

METHODS

Spacecraft Dynamic Model
Attitude Control Subsystem (ACS) is one of the vital systems in the spacecraft 
that provides the in-orbit attitude control and determination functions. ACS 
is conceptually composed of three main parts: attitude sensors, feedback 
control system, and actuators [28]. Figure 1 illustrates the simplified block 
diagram of the ACS subsystem. Spacecraft can be represented as a rigid 
body where the dynamics can be obtained using Euler’s dynamical formulas.
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Figure 1: Attitude control subsystem block diagram.

Euler’s equation is equivalent to Newton’s second law for rotation about 
the center of mass. Thus, the body motion equations about its center of mass 
using reaction wheels as actuators are described by Euler equations as in 
[28] as follows:

   (1)

   (2)

   (3)
where Ixx , Iyy and Izz represent the spacecraft moment of inertia. ωx, ωy, 
and ωz are the spacecraft’s angular velocities in body-fixed axes toward 
inertial coordinate system along x, y, and z axes, respectively. τdx, τdy, and τdz 
represent the disturbances torques, which act on the spacecraft about roll, 
pitch, and yaw axis respectively. τx, τy, and τz represent the torque due to the 
motion of the wheel on each axis. To get the spacecraft’s actual attitude, 
which are the Euler angles roll, pitch, and yaw, the Eqs. 1, 2, and 3 shall be 
integrated twice.

Reaction Wheel Mathematical Model
Reaction wheels are the common actuators for three axes stabilized 
spacecraft ACS, specifically for unmanned spacecraft. They are simply 
flywheels mounted to an electric direct current (DC) motor that can rotate 
in the desired direction to establish one axis control for each RW [29]. 
Furthermore, the reaction wheel is a nonlinear ACS component, which 
consists of several internal loops. Thus, these loops should be considered to 
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ensure accurate mathematical modeling. Figure 2 illustrates the RW internal 
loops, which are described in [27]. The block diagram in Fig. 2 can be 
described mathematically as in [30] by Eqs. 4 and 5 as follows :

Figure 2: Reaction wheel mathematical model.

   (4)

         (5)
In Eq. 4, Im represents the motor current, kt is the motor torque constant, 

wm is the motor angular velocity, Gd is the driver gain, wd is the driver 
bandwidth, and Ψ1, Ψ2, and Ψ3 represent the nonlinearities for back-EMF 
limiting torque, Coulomb friction, and speed limiter circuit. This research 
proposes the use of the ITHACO type-A reaction wheel, which is produced 
by Goodrich Corporation. Table 1 shows the parameters of the ITHACO 
type-A reaction wheel.
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Table 1: ITHACO type-A RW main parameters

reaction wheel, which is produced by Goodrich Corporation. Table 1 shows the param-

eters of the ITHACO type-A reaction wheel.

Radial Basis Function Neural Network Architecture

The RBFNNs were firstly proposed in 1988 [31] based on the principle that the bio-

logical neuron has a local response. Moreover, RBFNN has a simple architecture, fast

training time, and efficient approximation capabilities rather than other neural net-

works [9]. A typical architecture of RBFNN includes three layers: input layer, hidden

layer, and output layer as depicted in Fig. 3. The input layer consists of input nodes

that are connecting the inputs to the neural network. The hidden neurons use radial

basis function such as Gaussian function φi(x) as the activation function as follows:

φi xð Þ ¼ exp −
x−cik k2
σ i

2

 !
ð6Þ

where x represents the network input, σi and ci are width and center of the ith neuron,

respectively, and ‖•‖ is the Euclidean distance between two different vectors. The output

layer has a linear activation function that produces the network output corresponding to

the network input [10]. Thus, the output of the network yj can be addressed as follows:

y j ¼
Xn
i¼1

wiφi xð Þ þ bi ð7Þ

In Eq. 7, bi and wi , are the bias and the weight of the ith neuron respectively. There-

fore, to define the proposed RBFNN-based reaction wheel model, it is mandatory to de-

termine some critical parameters. These parameters include the number of input

neurons, number of hidden neurons, output layer’s neurons, and the weights of all neu-

rons. In addition, other important parameters shall be tuned like the centers and the

widths of the hidden neurons. Generally, the number of the problem inputs will deter-

mine the number of input layer neurons [32]. Thus, the input layer of the proposed

RBFNN-based reaction wheel model comprises a single neuron that represents the

torque command voltage. Furthermore, the number of the output layer neurons is

Table 1 ITHACO type-A RW main parameters
Parameter Description Value

Gd Driver gain 0.19 A/V

Kt Motor torque constant 0.029 N.m/A

Ke Motor back-EMF 0.029 V/rad/s

Ks Over-speed circuit gain 95 V/ rad/s

ws Maximum wheel speed 690 rad/s

wd Driver bandwidth 2000 rad/s

Rin Input resistance 2Ω

Kf Voltage feedback gain 0.5 V/V

N Number of motor poles 36

Tc Torque command range − 5 to + 5 V

τc Coulomb fiction 0.002 N.m

J Flywheel inertia 0.0077 N.m.s2

Abd-Elhay et al. Journal of Engineering and Applied Science            (2022) 69:4 Page 6 of 22

Radial Basis Function Neural Network Architecture
The RBFNNs were firstly proposed in 1988 [31] based on the principle that 
the biological neuron has a local response. Moreover, RBFNN has a simple 
architecture, fast training time, and efficient approximation capabilities 
rather than other neural networks [9]. A typical architecture of RBFNN 
includes three layers: input layer, hidden layer, and output layer as depicted 
in Fig. 3. The input layer consists of input nodes that are connecting the 
inputs to the neural network. The hidden neurons use radial basis function 
such as Gaussian function φi(x) as the activation function as follows:

   (6)

Figure 3: Typical structure of the RBFNN.
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where x represents the network input, σi and ci are width and center of the ith 
neuron, respectively, and ‖•‖ is the Euclidean distance between two different 
vectors. The output layer has a linear activation function that produces the 
network output corresponding to the network input [10]. Thus, the output of 
the network yj can be addressed as follows:

   (7)
In Eq. 7, bi and wi , are the bias and the weight of the ith neuron 

respectively. Therefore, to define the proposed RBFNN-based reaction 
wheel model, it is mandatory to determine some critical parameters. These 
parameters include the number of input neurons, number of hidden neurons, 
output layer’s neurons, and the weights of all neurons. In addition, other 
important parameters shall be tuned like the centers and the widths of the 
hidden neurons. Generally, the number of the problem inputs will determine 
the number of input layer neurons [32]. Thus, the input layer of the 
proposed RBFNN-based reaction wheel model comprises a single neuron 
that represents the torque command voltage. Furthermore, the number of 
the output layer neurons is determined corresponding to the number of 
model outputs. Because the reaction wheel has only one output, which is the 
generated torque, thus the output layer has a single neuron. The number of 
hidden layer neurons has a paramount impact on the RBFNN performance. 
Generally speaking, the more the neurons in the hidden layer, the better 
the network accuracy [33]. However, the addition of hidden neurons after 
the right number is reached will not improve the network accuracy, but 
increase the computational power and architectural complexity. Therefore, 
the optimal number of neurons in the hidden layer needs to be justified 
experimentally and it is based on the network designer experience [34] 
as will be introduced in the experimental results and discussions section. 
Furthermore, the centers, widths, and weights between the hidden neurons 
and the output layer shall be estimated. Thus, this research proposes an 
enhanced version of QPSO, which is EQPSO-2M to estimate the optimal 
values of the centers, widths, and weights.

Standard Particle Swarm Optimization
PSO was proposed by Eberhart and Kennedy [35]. In the PSO algorithm, 
each particle is assumed as a point in an N-dimensional Euclidian 
space. Moreover, at each iteration, there are three vectors, which are 
used to describe the behavior of the particle i that are: the current 
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position vector: ; the velocity vector: 

, and the personal best position vector; 

 ; where (1 ≤ j ≤ N). Therefore, at the (n + 
1) iteration, the particles’ velocity and position vectors are updated as the 
following [36]:

    (8)

      (9)

where c1 and c2 are the acceleration coefficients,  are two different 
random numbers that are distributed uniformly over (0, 1); therefore, 

 
, is the global best position vector. It is noticed that when c1 is greater than 
c2, the swarm has a higher local search ability. On the other hand, the swarm 
explores the search space more globally when c2 is greater than c1 [37]. To 
improve the performance of the standard PSO and minimize the probability 
of trapping in local optimal, many PSO variants have been proposed. For 
instance, Ziyu and Dingxue [21] introduced the Time-varying Adaptive 
PSO (TAPSO) version without using the velocity of the previous iteration. 
Thus, the particle’s velocity update can be formulated as follows:

     (10)
In TAPSO, the reinitialization criterion is based on assuming random 

velocity to avoid premature searching for the velocity of a particle at zero. 
Moreover, the authors introduced an exponential time-varying acceleration 
coefficient to enhance the exploration and exploitation capabilities. 
Therefore, the acceleration coefficients are updated according to the 
following equations:

   (11)

   (12)
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where k represents the current iteration number, and G represents the 
maximum number of iterations. PSO is simple to implement, has a fast 
convergence, and its convergence can be controlled using a few coefficients. 
For this reason, it has been used for solving a wide range of optimization 
problems. However, standard PSO can’t converge to the global optimal 
when it is used with complex optimization problems [38].

Quantum Behaved Particle Swarm Optimization (QPSO)
QPSO algorithm was introduced by Sun in 2004 based on quantum 
mechanics and computing [39]. In QPSO, the particle’s state is represented 
by a wave function. Therefore, the probability of the particles that appear in 

position  can be estimated from the probability density function of its 
position [40]. Regarding PSO convergence analysis, PSO converges when 

each particle converges to the local attractor  that can be represented by:

    (13)

where  represents the jth dimension of the particle local attractor,  is 

the particle best position, and  is the global best position. It is assumed 
that the particle i moves in N-Dimensional space with a δ potential well at 

 to guarantee the algorithm convergence at n iterations. Using the Monte 
Carlo method, the position for the jth dimension of the ith particle at n + 1 
iteration is formulated according to Eq. 14 as follows [40]:

    (14)
where u and m are two random numbers that are uniformly distributed in 
[0,1] and  is the average of the best positions for all 
particles. Thus, it can be calculated by:

     (15)
In Eq. 14, α represents the contraction-expansion (CE) coefficient that 

enhances the performance of QPSO when it is properly selected [39]. Many 
proposed methods were introduced to control the contraction-expansion 
coefficient such as in [41, 42].
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The proposed Enhanced Quantum Behaved Particle Swarm 
Optimization Algorithm
Although the QPSO algorithm has revealed a good performance to find 
the optimal solution for many optimization problems [40]. However, it still 
introduces a deteriorative performance in searching for the global optimal 
solution in complex optimization problems. This performance degradation 
in QPSO occurs due to the premature convergence. To resolve this problem 
for QPSO and other PSO variants, this research proposes an EQPSO-2M 
algorithm that has two significant improvements. First, the diversity of 
particles is enhanced to guarantee a healthy diversity of the particles during 
the search process. Therefore, to avoid the premature convergence of the 
algorithm. The particle diversity is calculated using the following formula:

     (16)
where M represents the swarm size, N represents the dimensions of the 
problem, A denotes the length of the longest diagonal in the search space,  

is the jth component of the ith particle’s position for the nth iteration, and  
represents the particles’ mean best position [42]. Meanwhile, the particles’ 
diversity is monitored during the search process; when it is decreased below 
the threshold value dlow; the particles’ mean best position will be reinitialized 
with values that maximize the diversity again as follows:

    (17)
where Xmax and Xmin represent the maximum and minimum boundaries of 
the search interval respectively. The main idea behind the reassignment 
of the mean best position vector using Eq 17 is to increase the distance 
between the particle’s position and the mean best position as we can. Thus, 
the population diversity will increase monotonically and this would make 
the particle escapes the local optima. The other improvement of the EQPSO-
2M is to overcome the premature convergence by adding two consecutive 
single dimension Gaussian mutations on the particle’s personal best position 
as follows:

   (18)
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where r1 and r2 represent two different arrays of uniform distribution 
random numbers. The two consecutive mutations will help the particles to 
explore extensively different regions of the search space to find the best 
positions. Thus, this is to enhance the convergence speed of the QPSO and 
to avoid premature convergence. Applying the diversity control and the two 
successive single dimension Gaussian mutations will avoid the premature 
convergence that may occur in the conventional QPSO. Moreover, these 
two processes can enhance the convergence speed of QPSO and prevent the 
algorithm from trapping in local minima. The pseudocode for the proposed 
EQPSO-2M is shown in Algorithm 1 as below:

where r1 and r2 represent two different arrays of uniform distribution random numbers.

The two consecutive mutations will help the particles to explore extensively different re-

gions of the search space to find the best positions. Thus, this is to enhance the convergence

speed of the QPSO and to avoid premature convergence. Applying the diversity control and

the two successive single dimension Gaussian mutations will avoid the premature conver-

gence that may occur in the conventional QPSO. Moreover, these two processes can en-

hance the convergence speed of QPSO and prevent the algorithm from trapping in local

minima. The pseudocode for the proposed EQPSO-2M is shown in Algorithm 1 as below:

Abd-Elhay et al. Journal of Engineering and Applied Science            (2022) 69:4 Page 10 of 22
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In the above algorithm, QPSO is firstly initialized with the swarm size M 
and dimensions N. Therefore, the number of particles is set to 20. The swarm 
size selection will be discussed in the next section. The particles’ positions 
and the personal best positions are randomly initialized. Furthermore, the 
initial global best and the mean best positions should be estimated. Thus, 
the value of α shall be set to 0.75 according to [39]. Moreover, the iterative 
process for updating the particle’s current position  should be started 
according to Eq. 14. Therefore, the fitness value is evaluated according to 
Eq. 19. When the fitness of the current particle’s position is better than the 
previous one, the particle’s best position Pi, n should be updated. Hence, two 
consecutive mutations are applied on the particle’s personal best position 
according to equation 18. After each mutation, the fitness of a new personal 
best position should be estimated to update the personal best position and 
the global best position of the particles Pi, n and Gn, respectively. Further, 

the particle’s mean best position  should be calculated using Eq. 15. 
Thus, the diversity of the particle should be evaluated using Eq. 16, and 
then compared with the threshold value dlow. Meanwhile, when the current 
diversity is below the threshold; the mean best position should be estimated 
according to Eq. 17. The searching process will be continued until the 
maximum iterations are met.

RESULTS AND DISCUSSION
In order to evaluate the performance of the proposed modeling scheme, 
simulation experiments should be done to benchmark the proposed RW 
model. Furthermore, a 3-axis ACS nonlinear model was implemented using 
MATLAB/SIMULINK. It includes the spacecraft dynamic model, the 
RW mathematical model, and the Proportional Integral Derivative (PID) 
controller. Therefore, the input to the ACS model is the desired attitude and 
the output is the actual attitude.

The RW input will be the torque command voltage, and the output is 
the generated torque a large number of experiments, the training dataset is 
suggested for the whole simulation to run with perspective angles within the 
range of [−5°, 5°]. Moreover, the simulation time in every iteration is three 
hundred seconds. Figures 4 and 5 show RW input torque command signal 
and output torque, respectively.
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Figure 4: Reaction wheel torque command.

Figure 5: Reaction wheel output torque.

RBFNN Hidden Layer Size Analysis
The determination of the suitable number of hidden neurons significantly 
affects the RBFNN performance. In this research, the number of hidden 
neurons is chosen on the basis that to get the best performance from RBFNN 
and keep the design of RBFNN as simple as could be expected. To choose 
the number of the hidden neurons, we began according to [43] with one 
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hidden neuron and increment the number of neurons progressively by one 
neuron. Table 2 shows the results of this study.

Table 2: QPSO-trained RBFNN performance at different hidden layer neurons

optimization process to fail. Danial J et al. [44] suggested that the population size is

regularly changed from 20 to 50 particles. In addition, to choose the proper population

size, five experiments have been done. Each experiment was executed 20 times with a

most extreme number of cycles up to 3000. Further, the five experiments were analyzed

in terms of standard deviation (STD) of the fitness values, mean of best fitness values,

and success rate (SR)

The SR is computed as follows:

SR ¼ NSR
TNR

�100% ð20Þ

where NSR addresses the number of successful runs and TNR is the total number of

runs, which are 20 runs in runs in all the experiments. Besides, it is considered for the

single run to be effective at the end of 3000 iterations in a manner that MSE ≈6.5E−7.

The results acquired from these trials are given in Table 3 and Fig. 6. As per the results

in Table 3, it can be observed that the QPSO algorithm with 20 particles has a 50%

success rate. The STD of the best fitness value for the four cases is around something

similar. It can be observed from Fig. 6 that the four cases have approximately the same

average fitness values. Although, QPSO with 50 particles has a slightly fast convergence

speed, but expanding the population size will increment the computational time and

the calculation intricacy. Consequently, we chose the population size to be 20 particles.

Fig. 5 Reaction wheel output torque

Table 2 QPSO-trained RBFNN performance at different hidden layer neurons

Hidden layer neurons Performance, mean square error (MSE)

1 1.87E−05

2 6.54E−07

3 6.44E−07

4 6.32E−07

5 6.44E−07
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It can be observed from Table 2 that the performance of the RNFNN 
model is improved when the number of hidden layer neurons increased. 
The RBFNN with only one hidden layer neuron has MSE ≈ 1.87E-05. As 
seen from Table 2, we can notice that RBFNN with two hidden neurons 
decreases the mean square error (MSE) to be 6.54E−07. However, increasing 
the number of hidden neurons to more than two neurons has no significant 
improvement in the model performance. Therefore, it is recommended for 
the number of RBFNN hidden layer neurons for the spacecraft reaction 
wheel model to be two neurons.

Fitness Function
The problem of the RBFNN model training has been defined as a nonlinearly 
constrained optimization problem, which is settled utilizing the proposed 
EQPSO-2M. This optimization problem aims to find the optimal values of 
the RBFNN parameters that minimize the error between the RBFNN model 
output and the target output. Accordingly, to utilize the proposed EQPSO-
2M algorithm for the training of the RBFNN-based reaction wheel model, 
a fitness function ought to be carried out. In this research, the well-known 
MSE has been chosen as the objective function. This function takes the 
difference between the RBFNN output and the actual reaction wheel output 
to compute the mean of the square errors as follows:

  (19)
In Eq. 19, N is the number of the training patterns, ti is the target reaction 

wheel output torque, w1 is the weight among the first hidden neuron and the 
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output neuron, w2 represents weight among the second hidden neuron and 
the output neuron c1 and c2 are the centers of the first and the second hidden 
neuron RBF respectively, σ1 and σ2 are the widths of first and second hidden 
neurons, respectively, and b is the bias. These parameters can be obtained 
when the fitness function in Eq. 19 is minimized.

Swarm Size Selection Assessment
Picking the fitting population size of the QPSO algorithm is a principal factor 
that influences its performance. As a rule, the optimal swarm size relies 
upon the complexity of the optimization problem to be addressed. However, 
increasing the population size might increase the algorithm’s performance, 
but it will increase the computational time. Then again, decreasing the 
number of particles to a specific limit might cause the optimization process 
to fail. Danial J et al. [44] suggested that the population size is regularly 
changed from 20 to 50 particles. In addition, to choose the proper population 
size, five experiments have been done. Each experiment was executed 20 
times with a most extreme number of cycles up to 3000. Further, the five 
experiments were analyzed in terms of standard deviation (STD) of the 
fitness values, mean of best fitness values, and success rate (SR)

The SR is computed as follows:

     (20)
where NSR addresses the number of successful runs and TNR is the total 
number of runs, which are 20 runs in runs in all the experiments. Besides, it 
is considered for the single run to be effective at the end of 3000 iterations 
in a manner that MSE ≈6.5E−7. The results acquired from these trials are 
given in Table 3 and Fig. 6. As per the results in Table 3, it can be observed 
that the QPSO algorithm with 20 particles has a 50% success rate. The STD 
of the best fitness value for the four cases is around something similar. It can 
be observed from Fig. 6 that the four cases have approximately the same 
average fitness values. Although, QPSO with 50 particles has a slightly fast 
convergence speed, but expanding the population size will increment the 
computational time and the calculation intricacy. Consequently, we chose 
the population size to be 20 particles.
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Table 3: Effect of swarm size change on QPSO-RBFNN performance

Figure 6: Convergence speed of QPSO algorithm at different population size.

Experiments and Analysis

Evaluation criteria
In this subsection, the benchmark results of various algorithms including 
EQPSO-2M were compared in terms of convergence speed, mean best 
fitness, STD, SR, Minimum best fitness, and Maximum best fitness. 
Moreover, every one of the outcomes is tested with a nonparametric 
statistical investigation utilizing Wilcoxon rank-sum test. To investigate 
the efficiency of the proposed approach for optimizing the RBFNN 
parameters, it is compared with other optimization algorithms. These 
algorithms incorporate the TAPSO [21], Modified PSO (MPSO) [20], 
Autonomous Groups PSO (AGPSO) [22], enhanced leader PSO (ELPSO) 
ELPSO [23], modified PSO with inertia weight coefficient (PSO-In) [45], 
and the traditional QPSO algorithm [39]. Moreover, the proposed scheme 
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is compared with an enhanced QPSO algorithm (EQPSO-1M) that was 
developed during this research dependent on diversity control and just a one 
mutation strategy. To ensure the fairness of the comparison, every one of the 
outcomes is gotten dependent on the results of 30 free experiments through 
2000 cycles. Meanwhile, all tests are done utilizing a similar PC and with 
similar conditions. MATLAB 2019B software is utilized for creating and 
testing during every one of the investigations.

Parameter settings
The problem dimension is set to seven variables that represent the proposed 
RBFNN architecture. All the control parameters of the algorithms are chosen 
by the suggestions from the original literature. Concerning the TAPSO 
algorithm [21], the acceleration coefficients c1 and c2 are refreshed by Eqs. 
11 and 12. The values of cmax and cmin are set to 2.5 and 0.5, respectively. In 
the MPSO algorithm [20], c1 and c2 are updated during the search process 
utilizing Eqs. 14 and 15. c1max is set to 2.25, and c1max = 1.25, c2max is set to 
2.55, and c2min is set to 0.5. The inertia weight coefficient w is diminished 
linearly from 1 to 0.4. As to the AGPSO algorithm [22], the particles are 
divided into groups, where c1 and c2 for each group are refreshed by Table 
4: In Table 4, T represents the greatest number of iterations, and t shows the 
current iteration.

Table 4: AGPSO coefficients updating strategies

Besides, the inertia weight parameter w is diminished step by step from 
0.9 to 0.4. In the ELPSO calculation c1= c2 = 2, w is decreased linearly 
from 0.9 to 0.4. the STD of the gaussian mutation is set to 1, and the scale 
parameter of Cauchy mutation is 2. In PSO with inertia weight coefficient, 
the inertia weight coefficient is set to 0.5, c1= c2= 1.5. Therefore, the values 
of the coefficients are updated according to the following equation [45]:

      (21)
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For the QPSO algorithm, the upper and lower limits of the search interval 
are [-5, 5], and the threshold of the diversity is set to 1E-05 as experimentally 
seen from the simulation.

Discussion
The statistical results acquired by the proposed EQPSO-2M and different 
algorithms are introduced in Table 5. As can be acquired from the results 
in Table 5, the proposed EQPSO-2M outperforms all other peers in terms 
of Max best fitness value, mean best fitness value, STD, and SR. In the 
meantime, the SR of 96.7% at the proposed algorithm shows that the 
algorithm converges to the global minima at 29 of the 30 experiments. 
Besides, the STD results demonstrate the higher stability of the proposed 
algorithm in optimizing the RBFNN parameters. It very well may be seen 
from Table 5 that the proposed algorithm outperforms any remaining 
peers by 1.6E-07 of STD. The second-best outcomes in terms of STD, SR, 
mean best fitness, and the Max best fitness are acquired by the EQPSO-
1M algorithm. It is obvious that applying the diversity control and a single 
mutation has further improved the SR of the EQPSO-1M by 43% compared 
with conventional QPSO. However, using the diversity control and two 
progressive mutations have enhanced the SR of the EQPSO-2M by 53%. The 
third best outcomes in terms of SR and mean best fitness are accomplished 
by PSO-In, TAPSO, and QPSO algorithms, respectively. Therefore, in light 
of STD, EQPSO-2M is positioned one followed by EQPSO-1M, AGPSO, 
MPSO, ELSPO, TAPSO, PSO-In, and QPSO, respectively. In terms of the 
mean best fitness, the best four outcomes are accomplished by EQPSO-
2M, EQPSO-1M, PSO-In, and TAPSO, individually. The ELPSO and 
MPSO algorithms have a similar SR of ≈13 %. The improvement in the 
results of the PSO-In is because of the legitimate determination of the PSO 
control parameters ω, c1, and c2. Besides, the TAPSO algorithm profits by 
the dramatic time-fluctuating acceleration coefficients that enhanced the 
exploration in the beginning stage and the exploitation in the later period of 
the search cycle. The fundamental justification of the bad outcomes got by 
the ELPSO algorithm is the utilization of constant values for c1 = c2. Hence, 
the algorithm fails to make a balance between global and local searching 
stages, and it is caught in local minima at 26 experiments. Moreover, the 
observed outcomes reveal that the AGPSO and MPSO algorithms failed to 
accomplish a decent harmony among exploration and exploitation. In this 
way, the algorithms get trapped in most of the experiments and have the 
most exceedingly awful mean best fitness.
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Table 5: Comparison results between EQPSO-2M and other algorithms

The convergence speed is a significant factor that can be utilized to assess 
optimization problems. Therefore, to additionally assess the performance 
of the proposed EQPSO-2M strategy, its convergence speed is compared 
with different algorithms. Figure 7 shows the average convergence curves 
that are plotted in a logarithmic scale for the proposed EQPSO-2M and 
different algorithms. As can be seen from Fig. 7, that the average fitness 
of the EQPSO-2 M algorithm is the minimum. In addition, the EQPSO-2M 
algorithm shows the best convergence speed compared with different peers. 
It converges to an average fitness value of ≈ 6.5E-07 at around 300 iterations. 
Besides, EQPSO-1M has the convergence speed after the proposed algorithm. 
Thanks for applying the diversity control and the single mutation. Based on 
the convergence speed, the second-best result is obtained by the PSO-In 
algorithm. This improvement in the results of the PSO-In ensures strong 
relation between the PSO convergence behavior and the control parameters 
selection. The acquired results demonstrate that the other algorithms 
(ELSPO, AGPSO, QPSO, MPSO, and TAPSO) show less performance 
and they have a slow convergence to the optimal minimum value. These 
algorithms have a delay in converging to the minimum best values due to 
stagnation conditions. The main reason for the high convergence rate of the 
proposed EQPSO-2M is that the utilization of the two successive mutations 
mechanism helps the swarm in each iteration to explore the search space 
extensively near the personal best position to find more best positions. In 
addition, the utilization of diversity control improves the diversity of the 
particles. Consequently, it reveals a better performance and more efficacy in 
jumping out from local minima in case of stagnation, and hence obtaining 
more high-quality positions. Consequently, the proposed EQPSO-2M 
achieves a better performance in terms of exploration and exploitation.
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Figure 7: Average fitness curves for different algorithms.

From Table 5 and Fig. 7, the proposed EQPSO-2M algorithm has the best 
results compared to all other algorithms in terms of convergence accuracy 
and speed. The EQPSO-2M benefits from the diversity control and mutation 
strategies that allow the QPSO algorithm to generate a better global search 
ability and converge faster than the other algorithms. Moreover, the proposed 
algorithm achieves a good balance between exploration and exploitation. 
Thus, it has an efficient performance that allows escaping from the local 
minimum for finding the optimal parameters of the RBFNN-based reaction 
wheel model.

Wilcoxon rank-sum test analysis
Wilcoxon rank-sum test is a non-parametric test strategy of the t-test for two 
independent samples. It is utilized primarily to test that there are differences 
between two groups of samples. Moreover, it is utilized to test the invalid 
speculation that two samples are procured from a continuous distribution 
with equivalent means [46]. Additionally, utilizing the mean and STD 
values for assessing the performance of the proposed algorithm compared 
with different algorithms might be questionable. To determine this issue, 
the Wilcoxon rank-sum test as a nonparametric test method is utilized as 
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evidence that the results of the EQPSO-2M mechanism are not the same 
as those of different mechanisms. The significance level α is set to 0.05. In 
the interim, if the p-value is greater than 0.05, this implies that there is no 
huge distinction between the results of the two algorithms [47]. Something 
else, if the p value is lower than the significance level α, it implies that there 
is a huge contrast between the results of the compared algorithms. Table 6 
shows the p values got by Wilcoxon rank total test at 0.05 significance level 
of EQPSO-2M outcomes against the consequences of QPSO-1M, QPSO, 
ELSPO, AGPSO, MPSO, TAPSO, and PSO-In.

Table 6: p-values of Wilcoxon rank sum test comparison between the results of 
EQPSO-2M and other algorithms

As displayed in Table 6, the p values that are lower than 0.05 show the 
predominance of the proposed algorithm. Notwithstanding, there is no huge 
contrast between the proposed algorithm and the PSO-In with coefficients 
controlled by [45]. However, the proposed EQPSO-2M algorithm reveals 
better performance in terms of convergence speed, SR, stability, and the 
mean best fitness.

Modeling Scheme Performance Evaluation
Based on the results of the proposed EQPSO-2M algorithm, three RBF-
NN-based Reaction Wheel models have been created for the spacecraft roll, 
pitch, and yaw axes. In the meantime, the global best positions of EQPSO-
2M represent the optimal values of the RBFNN coefficients. To evaluate 
the performance of the proposed models, they were tested for various tilting 
angles. Figure 8 shows the outputs of the developed RBFNN-based RW 
models compared with the actual reaction wheel outputs for 10° roll, pitch, 
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and yaw tilting angles. Furthermore, from Fig. 8, it very well may be seen 
that there is a good agreement between the models’ outputs and the actual 
RW outputs. Moreover, the MSE error is about 3.9E−07 for roll, 3.5E−07 
for pitch, and 5.9E−07 for yaw angles. Moreover, Fig. 8 reveals the superior 
matching between the models› outputs and the actual RW outputs at various 
working conditions.

Figure 8: Output of reaction wheel model compared to the actual output at 10° 
(a) Roll output, (b) Pitch output, (c) Yaw output.

Modeling Scheme Generalization Evaluation
To explore the generalization of the proposed modeling scheme, the 
performance of the developed models was tested for tilting angles in the 
scope of [− 90°, 90°] for roll, pitch, and yaw. Figure 9 shows how the 
mean square errors between the models› outputs and the actual outputs 
change with the tilting angles. The results show that the three models can 
foresee the RW output torque with high precision. The MSE during the 
interval of [− 20°,20°] is about 6E−7 for roll, pitch, and yaw. It increases 
to arrive at 4E−6 at the interval limits. These tiny MSE values show the 
predominant presentation of the proposed RW models. Furthermore, Fig. 9 
shows the generalization ability of the proposed modeling scheme that has 
demonstrated the ability of the models to work in a wide working scope of 
tilting angles with a high pointing accuracy.
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Figure 9: Performance of the developed RW models measured at tilting angle 
from − 90° to 90° roll, pitch, and yaw.

CONCLUSIONS
This research proposes another modeling scheme for the spacecraft reaction 
wheel utilizing RBFNN with an enhanced version of QPSO. In light of the 
principles of the diversity control and mutation strategy, EQPSO-2M is 
proposed to ameliorate the RBFNN parameters. In this way, the estimation of 
the RBFNN parameters is demonstrated as an optimization problem that was 
settled in terms of the EQPSO-2M algorithm. Additionally, the performance 
of the proposed algorithm was compared with other strategies like ELPSO, 
AGPSO, PSO-In, MPSO, TAPSO, and the conventional QPSO algorithm. 
Statistical benchmark rules dependent on the SR, convergence speed, and 
stability have shown the superiority and effectiveness of the proposed 
EQPSO-2M. Thanks to the EQPSO-2M algorithm for efficient performance 
and to accurately find the best particles’ positions. Consequently, further 
improving the global search ability, helps the particles from stagnation in 
nearby optima and overcomes the premature convergence of the conventional 
QPSO.

In addition, the simulation results revealed that the proposed EQPSO-
2M has a superior performance in terms of stability, mean best fitness value, 
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SR, and convergence speed. Moreover, three RBFNN-based reaction wheel 
models that are roll, pitch, and yaw were developed and then validated with 
MATLAB mathematical model. Extensive simulation has been done to 
evaluate the models’ performance. Therefore, the very small value of MSE, 
which is close to 6.5E−7 indicates a distinct performance and stability of the 
proposed modeling scheme.

To further investigate the generalization of the proposed reaction wheels’ 
models, they were tested for roll, pitch, and yaw angles in the range of [− 90°, 
90°]. The superiority of the proposed approach additionally emanates from the 
MSE value, which is approximately proximate to 4E−6. Thus, the efficiency 
of testing results proves the capability of the proposed RBFNN modeling 
scheme. In fact, the EQPSO-2M algorithm is an efficient mechanism for 
optimizing the RBFNN parameters. Furthermore, the proposed modeling 
scheme is considered to be superior for modeling dynamic systems like 
spacecraft reaction wheels. It is recommended for the future work to utilize 
the developed model for the detection and identification of reaction wheel 
faults.
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porcine livers has shown that the vaporization of the water in the tissue 
must be taken into account when modeling LITT. We extend the model 
used for simulating LITT to account for vaporization using two different 
approaches. Results obtained with these new models are then compared 
with the measurements from the original study.

INTRODUCTION
Thermal ablation methods briefly generate cytotoxic temperatures in 
tumorous tissue in order to destroy it. These minimally invasive methods 
are used for treating cancer, e.g., in lung, liver, or prostate, when surgical 
resection is either not possible or too dangerous for the patient. All of these 
methods utilize the fact that tumorous tissue is more susceptible to heat than 
healthy tissue to destroy as little healthy tissue as possible. Among the most 
common thermal ablation methods are LITT, radio-frequency ablation, and 
microwave ablation.

The principle of LITT [1] is based on the local supply of energy via an 
optical fiber, located in a water-cooled applicator. This applicator is placed 
directly into the tumorous tissue. The LITT treatment can take place under 
MRI control because the laser applicator is sourced by an optical fiber and 
does not include any metal parts. Therefore the patient is not exposed to 
radiation, in contrast to other treatments that can only be carried out under 
CT control.

For the therapy planning of LITT, accurate numerical simulations are 
needed to guide the practitioner in deciding when to stop the treatment. 
Mathematical models for this have been proposed, e.g., in [2, 3]. The liver 
consists of about 80% water which vaporizes if the temperatures during 
the treatment become sufficiently large. The vaporization of this water 
is currently not included in these models but our study in [4, 5] suggests 
that this effect is relevant for an accurate simulation. In this study the ex-
vivo experiments with a larger power of 34 W show a good agreement 
between measured and simulated temperature until the temperature reaches 
approximately 100°C. Then, the measured temperature stagnates while the 
simulated one rises further (cf. [4], Fig. 3). We presume that this happens 
due to phase change of water which was not included in the model we used.

In this paper we use the measurements from [4] and compare two models 
for the vaporization. One of them is the effective specific heat (ESH) model 
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introduced in [6] which modifies the specific heat coefficient to account 
for the phase change. The other one is the enthalpy model which uses an 
additional state equation to model the phase transition. We compare the 
models to experimental data with ex-vivo porcine livers from [4].

Of course the presence of vapor makes the situation far more 
complicated. The vapor expands, pressure builds up and the vapor has its 
own dynamics within the tissue. Once the vapor reaches a cooler region it 
may condensate again. There are many approaches studying this in detail [7, 
8]. The drawback of course is that such a detailed approach makes the model 
far more complex, at the costs of computational time, and introduces new 
tissue dependent parameters, which may not be easily available. Therefore, 
in this study we use and extremly simplified approach to model the vapor 
which was proposed by [6] and does not include any physically motivated 
transport mechanism for the vapor. One purpose of this study is to investigate 
if this simplified approach may be sufficient for modeling LITT or if more 
advanced models are necessary to account for the vapor (see also Remark 
2).

This paper is structured as follows. Our existing mathematical model for 
simulating LITT including heat and radiative transfer is described in Sect. 
2. This model is based on the work of [2] and we have also used it in [4]. In 
Sect. 3 we modify and extend this model in such a way that it also covers 
the effect of vaporization during the treatment. Therefore, we consider 
both the ESH model of [6] as well as an enthalpy model for vaporization. 
Afterwards, we present the details of the numerical solution of our models 
in Sect. 4. Finally, the models are validated with measurement data obtained 
from experiments made with ex-vivo porcine liver tissue (cf. [4]) in Sect. 5.

MATHEMATICAL MODEL

We denote by  the geometry of the liver and by Γ=∂Ω its boundary. 
The latter consists of the radiating surface of the adjacent applicator Γrad, 
the cooled surface of the applicator Γcool, and the ambient surface of the 
liver Γamb (see Fig. 1). The mathematical model is described by a system of 
partial differential equations (PDEs) for the heat transfer inside the liver, the 
radiative transfer from the applicator into the liver tissue, and a model for 
tissue damage (cf. [2–4]).
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Figure 1: Sketch of the geometry including the water-cooled applicator with 
radiating laser fiber.

Heat Transfer
The heat transfer in the liver tissue is modeled by the well-known bio-heat 
equation (cf. [9])

   (1)
where T=T(x,t) denotes the temperature of the tissue, depending on the 
position x∈Ω and the time t∈(0,τ). Here, the end time of the simulation is 
denoted by τ>0. Further, Cp is the specific heat capacity, ρ the density of the 
tissue, and κ the thermal conductivity. The perfusion rate due to blood flow 
is denoted by ξb and the blood temperature by Tb. Note that in the current 
ex-vivo study the perfusion rate ξb is set to zero. Finally, Qrad is the energy 
source term due to the irradiation of the laser fiber and the initial tissue 
temperature distribution is given by Tinit.

For the heat transfer between the tissue and its surroundings, given by 
the ambient surface and the applicator, the following Robin type boundary 
conditions are used
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Here, n is the outer unit normal vector on Γ. Additionally, αcool and αamb 
are the heat transfer coefficients for the water-cooled part of the applicator 
and the surroundings of the liver, respectively. The temperature of the 
cooling water is denoted by Tcool and Tamb is the ambient temperature.

Remark 1
Please note that the temperature Tcool of the water coolant is assumed to be 
known and constant in this study. This is of course a simplification because 
the cooling water is heated up on its way through the applicator. However, 
measurements of the cooling temperature before and after the applicator in 
[4, Fig. 2] show that the temperature of the coolant does not increase by more 
than 5∘C. Therefore, setting Tcool to the measured inlet coolant temperature 
should approximate the problem. Of course it is also possible to model the 
flow through the applicator in detail as done in [2].

We come back to this bio-heat equation in Sect. 3, where we modify it 
such that it also covers the effect of vaporization of water in the tissue. The 
radiative source term Qrad is defined in the next section by (5).

Radiative Transfer
The irradiation of laser light is modeled by the radiative transfer equation

   (2)
where the radiative intensity I=I(s,x) depends on a direction s∈S2 on the 
(unit) sphere and the position x∈Ω, and μa and μs are the absorption and 
scattering coefficients, respectively. In particular, as that radiative transfer 
happens significantly faster than temperature transfer, we neglect the time-
dependence and use this quasi-stationary model. The scattering phase 
function P(s⋅s′) is given by the Henyey-Greenstein term which reads (cf. 
[10])
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Here, g∈[−1,1] is the so-called anisotropy factor that describes backward 
scattering for g=−1, isotropic scattering in case g=0 and forward scattering 
for g=1.

Due to the high dimensionality of the radiative transfer equation (2), we 
use the so-called P1-approximation to model the radiative energy, the details 
of which can be found, e.g., in [11]. Introducing the ansatz

where  is radiative flux vector, one obtains the much 
simpler three-dimensional diffusion equation

      (3)
where φ=φ(x) is the radiative energy and the diffusion coefficient D is given 
by

To derive the boundary conditions we use Marshak’s procedure as 
described in, e.g., [11]. We obtain Robin type boundary conditions

   (4)

where qapp is the laser power entering the tissue and  the surface area 
of the radiating part of the applicator. The former can be written as

where q̂ is the configured laser power and the factor (1−βq) models the 
absorption of energy by the coolant (cf. [4]). Moreover, the parameter b in 
(4) is given as b=0.5 on Γamb and b=0 on Γcool. From the numerical point of 
view the system given by (3) and (4) is much easier to solve than the original 
system given by (2). Finally, the radiative energy is used to define the source 
term for the bio-heat equation in the following way

        (5)
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Tissue Damage and Its Influence on Optical Parameters
The optical parameters μa, μs and g are very sensitive to changes of tissue’s 
state. In particular, once the coagulation of cells starts, their optical 
parameters change and, as a result, the radiation cannot enter the tissue as 
deeply as before. Therefore, we model the damage of the tissue as in, e.g., 
[2, 3] with the help of the Arrhenius law, which is given by

     (6)
with so-called frequency factor A, activation energy Ea, and universal 
gas constant R. This describes the change of optical parameters due to 
coagulation in the following way

where the subscripts n and c indicate properties of native and coagulated 
tissue, respectively (cf. [2]).

MATHEMATICAL MODELING OF VAPORIZATION
Vaporization of water inside organic materials plays an important role in 
many different fields, e.g., in medicine or the food industry. To model the 
temperature distribution in such materials correctly, it is important to take 
the vaporization into account as a significant amount of energy is necessary 
for the phase transition from water to vapor. The basic principle is the 
following (see, e.g., [12]). If energy in the form of heat is added to water 
(under constant pressure), the water’s temperature increases as long as it is 
below the vaporization temperature, i.e., below 100∘C. However, as soon as 
the water reaches this temperature, the temperature does not increase further, 
although heat is still added to the water. At this point, the water starts to boil 
and eventually vaporizes after a sufficient amount of energy was added to it. 
Finally, the temperature of the emerging water vapor increases again after 
all water has been vaporized. This happens due to the fact that the energy 
added to the water at its boiling point is used to change its phase and not to 
increase its temperature, until all water is vaporized.
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In the following, we discuss two vaporization models. First, we take a look 
at the effective specific heat (ESH) model introduced in [6] which uses a 
varying specific heat capacity to model the phase change. In this model the 
phase transition is spread over a reasonably small interval around 100∘C. 
This simplification makes it possible to model the phase transition using a 
single PDE. Second, we propose an enthalpy model with an additional state 
equation for the enthalpy. For this model, the transition happens at a single 
temperature, namely at 100∘C.

The Effective Specific Heat (ESH) Model
The ESH model introduced in [6] considers the following modified bio-heat 
equation

   (7)
with the same initial and boundary conditions as (1). Here, Qvap is a source 
term that models the vaporization of water and Qcond is the source term for 
the condensation (see Sect. 3.2). In [6] this has the following form

        (8)
where λ denotes the latent heat of water and W is the tissue water density. 
Using the chain rule we see that

Substituting this into (8) and (7) gives the following modified heat 
equation

where the effective specific heat capacity  is given by
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Since  for vaporization (the water content decreases with 

temperature), we have that .
Based on experiments that measured water content of bovine liver as a 

function of temperature in [13] the following function is used to describe the 
tissue water density (cf. [6, 13])

where S(T) is the cubic C1 spline that interpolates between the two 
exponential functions, (approximately) given by

The function W and its derivative are depicted in Fig. 2. In particular, 
we get that the effective specific heat is very large in an area around 100∘C. 
Therefore, it holds that

which models the vaporization of the tissue water.

Figure 2: Function W(T)W(T) and derivative dWdT(T)dWdT(T) of tissue wa-
ter density from [6].

Simple Condensation Model for ESH Model
In [6] it is discussed that, in addition to the vaporization of water, one also 
needs to consider the effect of condensation of the water vapor in order to 
obtain an accurate model. There, it was assumed that the water vapor diffuses 
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into a region of lesser temperatures where it condensates and releases its 
latent heat obtained through the vaporization. The authors of [6] describe 
their model for this in the following way. They say that they first calculate 
the total amount of water that was vaporized in the last time step. From 
this, the amount of latent heat generated is computed. Finally, this is added 
uniformly to the tissue region whose temperature is between 60∘C and 80∘C. 
We have implemented this simple condensation model in the following way. 
We compute the total amount of latent heat which is currently consumed 
through the vaporization of water by

where . Additionally, we define the condensation region as

for given temperature boundaries . Uniformly 

distributing  over the condensation region then yields the condensation 
source term

In particular, this implies that our model is energy conserving. This is of 
course a very rough condensation model because there is no real transport 
mechanism for the vapor involved at all. Any vapor will instantaneously 
condensate in another region with lower temperature. This simple model 
shows promising results but there is also room for improvement as discussed 
in Sect. 5.4.

Remark 2
Clearly this approach for dealing with the vapor is a severe simplification 
of what actually happens: the expanding vapor builds up pressure and 
moves through the tissue, thus adding a fluid dynamical component to the 
problem. The vapor transport in the simple model is purely artificial and not 
motivated by physics. The trade-off is between a very simple model and a 
more accurate one which is also far more complex. One goal of this study 
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is to investigate if the simple model may be sufficient for LITT or if more 
advanced models for the vapor are needed [7, 8].

Enthalpy Model
In the section, we present the details of the second model for vaporization, 
which is based on an enthalpy formulation. It consists of two coupled 
equations, one for the temperature of the tissue and one for its enthalpy. For 
the temperature, we have the following, modified bio-heat equation

   (9)
where λvap=0.8λ is the proportion of the enthalpy of vaporization 
corresponding to the tissue’s water content of 80%. Further, the (volumetric) 
enthalpy of the water H, [H] = J m−3, is modeled by the following ODE

   (10)
Equation (9) has the same initial and boundary conditions as (1), and the 

initial condition of the enthalpy is given by H=0 in Ω, i.e., no vaporization 
had happened before the treatment. The term Qcond describes a heat source 
due to the condensation of water vapor in regions with temperatures below 
100∘C, similar to the one of the ESH model (cf. Sect. 3.2). Observe that the 
modified bio-heat equation (9) coincides with the classical bio-heat equation 
(1) and we also have H=0, i.e., no vaporization is happening, as long as we 
have that T<100∘C everywhere. This changes as soon as T=100∘C at some 
point . Then, we see that the bio-heat equation (9) gives  and, 
therefore,  in case , i.e., the temperature at a point 
does not change until the enthalpy exceeds the enthalpy of vaporization 
ρλvap. In the meantime, the energy that would usually lead to an increase 
in temperature now only increases the enthalpy, which models the phase 
change of the water in the tissue. Finally, as soon as the enthalpy reaches the 
enthalpy of vaporization, all water is vaporized and the bio-heat equation is 
valid again.
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Simple Condensation Model for Enthalpy Model
Similar to Sect. 3.2 the simple condensation model suggested in [6] is used. 
In contrast to the ESH model, the total amount of latent heat can be computed 
from the change of enthalpy in the following way

   (11)
Again, the condensation region is defined by

and the condensation source term is

where  denotes the volume of . With this, we get that the 
temperature increase due to condensation corresponds to the energy used 
to change the phase of the water, uniformly distributed over . Finally, 
note that the numerical discretization of this model is described in Sect. 4.2.

NUMERICAL METHODS
In this section, we detail the numerical methods used to discretize and solve 
the governing equations.

Numerical Solution of the Governing PDEs
The mathematical model for radiative heat transfer and the models for 
vaporization described above were used to simulate the behavior of ex-vivo 
porcine liver tissue during LITT. The computational geometry was generated 
using Open Cascade (Open Cascade SAS, Guyancourt, France) and the mesh 
was created with the help of GMSH, version 2.11.0 (cf. [14]). The governing 
equations were solved with the finite element method in Python, version 2.7, 
using the package FEniCS, version 2017.2 (cf. [15, 16]). For the numerical 
solution of the PDEs, we first (semi-)discretize the bio-heat equation in time 
using the implicit Euler method. Then, we use piecewise linear Lagrange 
elements for the spatial discretization of the temperature and radiative 
energy. The resulting sequence of linear systems was then solved with the 
help of PETSc (cf. [17]), where we used the conjugate gradient method with 
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a relative tolerance of 1×10−10. Afterwards, the damage function is computed 
using a right-hand Riemann sum to discretize the time integral of (6).

Discretization of the Enthalpy Model
In the following we describe our discretization of the enthalpy model. In 
particular, to compute the temperature distribution from time t to t+Δt 
we proceed as follows. We first solve (3) to obtain the radiative energy at 
t+Δt. With this, we compute the temperature distribution at t+Δt from (1). 
Subsequently, we iterate over the nodes of the finite element mesh and check, 
whether the temperature exceeds 100∘C. At these nodes, the temperature is 
set to 100∘C and from the excess temperature we compute the corresponding 
increase in enthalpy. If the enthalpy surpasses the limit of ρλvap, we return 
this surplus in the form of heat to the corresponding nodes. After doing so, 
we integrate the (local) changes in enthalpy over Ω to compute the total 
change of enthalpy ΔH. Therefore, we can now compute the source term 

 of (11) as follows

which is then used as the source term for the next time step, simulating the 
release of enthalpy by the condensation of the water vapor. Then, the new 
tissue damage is computed from (6) and the procedure is continued until we 
reach the end time τ.

RESULTS AND DISCUSSION
We use the experiments from the study of [4] to test the vaporization models. 
In this study LITT was applied to ex-vivo porcine livers and the resulting 
temperature was measured with a probe. The experiment was repeated nine 
times with different laser powers and different flow rates for the applicator 
cooling system. For the study in [4], the authors used the mathematical 
model introduced in Sect. 2 which was derived from the one presented in [2]. 
However, the model did not take into account the vaporization of water in 
the tissue. While the general agreement between experiment and simulation 
was good, there were notably two outliers, namely the cases P34F47 and 
P34F70, for which the highest laser power was used. For these cases, the 
simulated probe temperature would rise to well above 100∘C, while the 
measured probe temperature would reach a plateau below 100∘C. Therefore, 
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in [4] the authors suspected that the missing vaporization model was the 
reason for this discrepancy. Now, we test this hypothesis by repeating 
the simulations with the previously introduced modified models that now 
include vaporization and condensation effects.

Experimental Setting
For the validation of our models, we use the measurements from the 
experiments made in [4]. For these, livers were obtained from pigs which 
had been slaughtered approximately 6 hours prior to the experiment. The 
temperature of the samples was room temperature at the beginning of the 
experiments. A laser applicator from Somatex® Medical Technologies 
(Teltow, Germany) was placed into the middle of the liver sample. An 
optical fiber from the same company with a diffuser part of 3 cm at its 
tip was inserted into the applicator for delivering the laser energy from a 
Nd:YAG laser device (MY30; Martin Medizintechnik, Tuttlingen, Germany; 
wavelength 1064 nm) to the tissue. The applicator was equipped with a 
cooling water circulation system to protect the optical fiber and prevent the 
burning of tissue in close proximity to the applicator. A temperature probe 
was introduced into the porcine liver and placed close to the applicator in 
order to generate temperature measurements for validating the models of 
LITT.

The setup for the nine test cases is shown in Table 1. The laser was 
applied with different powers, namely 22, 28, and 34 W, and different flow 
rates of the applicator cooling system. However, it is assumed that the effect 
of the coolant flow rate is negligible (cf. [4]). Furthermore, the position 
of the temperature probe is characterized by its radial distance dr to the 
applicator axis as well as its distance dz from the applicator tip, where the 
applicator itself is contained in the half space with z≥0. We now simulate 
this experiment again using the vaporization models introduced previously, 
and compare the results with the measurement data as well as with the results 
obtained by the original model which does not consider vaporization. The 
optical, thermal, and damage parameters used for the simulation are listed 
in Table 2. They are taken from [4] and the references therein (cf. [18–21]). 
For the condensation region Ωcond we have chosen the points where the 
temperature was between T−=60∘C and T+=80∘C, as proposed in [6].
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Table 1: Experimental setup for nine test cases (from [4])

Table 2: Physical parameters for LITT in ex-vivo porcine liver tissue
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The Case P34F47
Let us start the investigation of the vaporization models with the test case 
P34F47 of [4], where a laser power of 34 W was used. The results for this 
case are shown in Fig. 3, where the measurement from the temperature 
probe, the results for the model of [4] and the results for both vaporization 
models of Sect. 3 are shown. For this specific case, the probe temperature 
simulated without a vaporization model rises well above 100∘C while 
the measured temperature reaches a plateau below 100∘C (see Fig. 3). In 
contrast, both vaporization models do not overestimate the temperature to 
the end of the treatment and predict the occurring plateau correctly. This 
is further visualized in Fig. 4, where the difference of the models from the 
measurement over the entire treatment is depicted. These results show that 
all models are reasonably close to the measured temperature until up to 
about 80∘C. After that point the model without vaporization overestimates 
the temperature significantly. The models that include vaporization give 
considerably better results since their predicted temperatures match the 
measured ones more closely throughout the whole treatment.

Figure 3: Comparison of the models for the case P34F47.
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Figure 4: Difference between simulated and measured temperature for the case 
P34F47.

All Nine Test Cases
After investigating the vaporization models in the context of the previous 
test case, where the original model without vaporization of [2, 4] failed to 
predict the correct temperatures, we now investigate the other test cases 
from the study of [4]. The corresponding results are shown in Fig. 5, where 
the measured and simulated temperature at the probe is shown, and Fig. 
6, which visualizes the difference of the simulated temperatures to the 
measurement. In general, the vaporization models are good in estimating 
the final temperature of the experiment. Especially for the cases P34F47 and 
P34F70, which could not be simulated accurately in [4], the vaporization 
model performs significantly better and does not overestimate the temperature 
to the end of the treatment. However, during the middle of the experiment 
the vaporization models tend to overestimate the temperatures. This can be 
seen, e.g., for the cases P22F70 and P28F70 (cf. Fig. 5). We suspect that the 
simple condensation model is responsible for this discrepancy as we explain 
in Sect. 5.4.
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Figure 5: Comparison of the models with temperature measurements.

Figure 6: Difference between simulated and measured temperature.
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Altogether, the ESH and the enthalpy model both show comparable but 
slightly different temperature curves. Especially the overestimation of the 
temperature during the middle of the experiment is usually higher for the 
enthalpy model. To compensate one could think about adjusting parameters, 
like the exact amount of water in the liver tissue. However, a first step should 
be to improve the simple condensation model.

Discussion of the Simple Condensation Model
The consideration behind the simple condensation model described in Sects. 
3.2 and 3.4 is solely to preserve the conservation of energy. Therefore, all the 
water which was vaporized at a certain time is assumed to instantaneously 
condensate in the condensation region 
. This consideration is strictly global and does not involve any form of 
transport mechanism for the vapor. Hence, it is possible that vapor which 
was generated in one region can instantaneously condensate in another 
region. Through this mechanism temperature can be shifted from one 
region to another without any delay. This effect is possibly the reason for 
the overestimated temperatures during the middle of the experiment. This 
can be seen, e.g., for the case P28F70 (cf. Fig. 6), where all simulated 
temperatures are the same until about 400 s into the experiment. At that 
point the simulated temperatures rise much faster for the models that include 
vaporization than for the one without it. We suspect that at this point of the 
experiment, vaporization occurs in tissue close to the applicator. Due to the 
instantaneous transport mechanism of the simplified condensation model 
heat is then added to regions further away from the applicator, where the 
applicator is placed. This results in the non-physical temperature increase 
that can be seen in this case. Additionally the simple condensation model is 
also rather sensitive with respect to the choice of the condensation region as 
can be seen in Fig. 7, where the temperature at the probe for the case P34F47 
is shown for the condensation region given by T−=60∘C and T+=80∘C in Fig. 
7(a) as well as for T−=70∘C and T+=90∘C in Fig. 7(b).
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Figure 7: Sensitivities with respect to the choice of the condensation region 

.

To resolve this issue, the transport of vapor within the tissue must be 
taken into account. This could for example be done by adding an additional 
diffusion equation similar to the bio-heat equation to the state system. 
Therefore, an effective diffusion coefficient for the vapor must be known 
or estimated from measurements. Alternatively, a more complex solution 
would be to model the tissue as porous medium and to use a pressure based 
formulation for the vapor transport.

CONCLUSION
LITT is a minimally-invasive method in the field of interventional oncology 
used for treating liver cancer. Mathematical modeling and computer 
simulation are important features for treatment planning and simulating 
the necrosis of the tissue. The numerical simulation is in good agreement 
with temperature measurements for ex-vivo porcine liver. In particular, the 
incorporation of vaporization of water in liver tissue improves the simulation. 
Still a refinement of the simple and artificial model for the vapor might be 
necessary. Due to its global nature, this model allows for an undelayed flow 
of temperature from a hot region to a colder one. This is probably the reason 
for the overestimated temperatures during the middle of the experiments. An 
additional physically motivated transport meachanism for the vapor might 
be necessary. In order to use simulations for the monitoring and assistance 
during the treatment of humans it is important to model the blood perfusion, 
because blood vessels have a significant cooling effect. One approach can 
be to identify the blood perfusion rate from MR thermometry during the 
beginning of the treatment and use this information to correctly simulate the 
remaining treatment (cf. [22]).
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ABSTRACT
In the present research, a novel mathematical model for the motion of cilia 
using non-linear rheological fluid in a symmetric channel is developed. The 
strength of analytical perturbation technique is employed for the solution 
of proposed physical process using mectachoronal rhythm based on Cilia 
induced flow for pseudo plastic nano fluid model by considering the low 
Reynolds number and long wave length approximation phenomena. The 
role of ciliary motion for the fluid transport in various animals is explained. 
Analytical expressions are gathered for stream function, concentration, 
temperature profiles, axial velocity, and pressure gradient. Whereas, 
transverse velocity, pressure rise per wave length, and frictional force on 
the wall of the tubule are investigated with aid of numerical computations 
and their outcomes are demonstrated graphically. A comprehensive analysis 
for comparison of Perturb and numerical solution is done. This analysis 
validates the analytical solution.

INTRODUCTION
Three types of cells movement in human beings and in various animals 
have been observed, namely: (i) Amoeboid movement (ii) Muscular 
movement (iii) Ciliary movement. (i) Amoeboid movement: Movement by 
pseudopodia (pseudo means false and podia means feet). Cells in human 
body which exhibit amoeboid movement are: Leucocytes (White blood 
cells), Macrophages (immune system). (ii) Muscular movement: In the 
human body, this movement is shown by movement of limbs and movement 
of jaws, tongue, eyelids etc. (iii) Ciliary movement: Movement by numerous 
hair-like structure. The regions in human body which exhibit this type of 
movement are: Respiratory tract lined by ciliated epithelium and reproductive 
system for the movement of fluid. In respiratory tract, cilia are present in 
trachea which helps to inhale oxygen inside and stop dust and other harmful 
particles and remove them outside. Cilium is a short microscopic hairlike 
vibrating structure, found in large numbers on the surface of certain cells, or 
in some protozoans and other small organisms, providing propulsion. Cilia 
consist of plasma membrane, peripheral microtubules, central microtubule, 
radial spoke, and liner and they contain basal body base. They are found 
in almost all animals, and they provide locomotion to moving fluid along 
internal epithelial tissue and ciliated protozoans. In some animals, many cilia 
may fuse together to form cirri. “The cirri are stiff structures and are used 
as something like legs”. According to Lardner and Shack1, movement of 



A Novel Mathematical Modeling with Solution for Movement of Fluid... 95

cilia plays an important role in many physical procedures i.e., reproduction, 
rotation, inhalation, alimentation and locomotion. The rehological fluid 
motion due to ciliary caused metachoronal wave is exhibited in Fig. 1.

Figure 1: Metachronal wave pattern are exhibited due to ciliary wave motion.

The physiological aspects of ciliary transport has been studied by 
Lodish et al.2. Akbar et al.3 presented a non-Newtonian physiological fluid 
motion in a channel consisting of two parallel oscillating walls. Sadaf and 
Nadeem4 investigated fluid motion produced by cilia and pressure gradient 
through a curved channel along with heat transfer and radial magnetic field 
effects. Akram et al.5 examined the combined effects of peristalsis along 
with electroosmosis induce flow of silver-water nanofluid and silicon 
dioxide–water nanofluid for a permeable channel. Riaz et al.6 carried out a 
computational investigation which is applied on the peristaltic propulsion of 
nanofluid flow for a permeable rectangular duct. The impact of Hall effect 
on the peristaltic motion of Johnson-Segalman fluid in a heated channel with 
elastic boundaries has been investigated by Javed7. Bhatti et al.8 focused 
on transport phenomena of particle-fluid motion through an annular gape 
region. There are two groups in which cilia are divided, namely motile 
and non-motile cilia. Non-motile are identified as primary cilia. Single 
non motile cilium is found in nearly all cells, and plays a role in sensory 
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functions. We will discuss importance of motile cilia here, which don’t 
beat casually(randomly), but through a synchronized way. The behaviour 
of cilia holds some vital features of ciliated epithelium. Mucus layer is 
present on the top of motile cilia. Motile cilia are rarely exists, and they 
are found in respiratory and reproductive system as well as in brain and 
spinal cord. Rivera9 narrated several explanations and implications about 
cilia gill (respiratory organ) for aquatic species, which may be enlisted as 
follow: (i) The beating rate of all the cilia is fairly unvarying, in any given 
tissue. (ii) The flagellation of cilium and cilium on the adjusted cells stay 
greatly synchronized. (iii) Certain movements from one to another place 
are created, whereas a movement in a given row of cells can be defined as 
a movement involving a beat arrangement, from one line to another line of 
cilia and so on.

As it well addressed metachronal rhythm provides concise flow of 
water with time through the surface of cilia, or probable it is unrealistic to 
arise synchronous beat over large area, it’s thought that cilia do not beat 
in a synchronous way, but in a systematic way. Nevertheless, along the 
surface of cilia metachronal rhythm may vary their shape, and this variation 
depending on whether the metachronal rhythm is accelerated toward the 
operative lash of the ciliary beat, or cilia beat is perpendicular to the lash 
of wave movement or may pass in the reverse direction of the of actual 
lash of beat and then in opposite way of flow. Very limited data is available 
about metachronal rhythm velocities, frequencies and wave-lengths. A 
2-dimensional viscous fluid transport of nanoparticles past a channel along 
ciliated walls is investigated by Nadeem and Hina10. According to previous 
observations which revealed through experiments, many biological 
fluids exhibit non-Newtonian behavior11,12,13,14,15,16,17,18,19,20,21. 
For the simple Newtonian fluid non-satisfactory outcomes are analyzed. 
For rheological fluid transport, some of the researchers used Power-Law 
Model14,15,16,17,22. This model mostly rely on the fluid behavior index n 
due to its rheological nature.

Lauga and Powers23, Cordero and Lauga24 emphasized on biophysical 
and mechanical aspect for locomotion of microorganisms. They 
mathematically explored the importance of shear-dependent viscosities for 
the locomotion of flagella and cilia induced motion because of metachronal 
rhythm. Ciliary motion has been studied by the researchers by utilizing two 
models i.e. (i) Envelop model (ii) Sublayer model. The envelope model 
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approach has edge over the other model because of metachronal beats 
on cilia layer by overlooking the particulars of sub-layer dynamic forces. 
Furthermore, the envelope model can be used for quantitative analysis e.g., 
for comparing swimming velocities that are mathematically gauged with 
available data, which are recorded in water for numerous microorganisms24. 
In addition, the perturbation method can be used for analysis and systematic 
study of non-Newtonian effects. Recently, the power-law fluid because of 
ciliary motion has been studied by Siddique et al.25, in the unlimited channel. 
They showed that power-law fluid provides outcomes, which are nearer to 
estimated value 6×10−3 ml/h. One can find some of recent work27,28,29,30.

A problem (non-linear) of Pseudo plastic fluid transference produced 
through cilia beating sequence of cilia in a given row of cells from row-
to-row and metachronal wave movement is of great importance. On basis 
of mathematical study, rate of flow, velocity and pressure change will be 
calculated. Han et al.31 demonstrated that ultracold atomic may initiate 
a super solid phase while interacted with spin-orbit and a spin-dependent 
array of potential. Li et al.32 studied multi variant solutions for the polar 
and ferromagnetic of the universal model of a spinor model of the Bose-
Einstein condensate. Wen et al.33 emphasized on matter rogue wave in 
Bose-Einstein condensates with dynamic inter-atomic contact with the aid 
of approximate and computation techniques. Transport of Non-Newtonian 
fluid in the ductus efferentes has been extensively studied by34,35,36.

There are some useful applications of artificial cilia in microfluidics (a) 
closed-loop channel and (b) open-loop channel with artificial magnetic cilia 
used in microfluidic pumping and also for flow control in tiny bio-sensors26. 
Cilia in the following study will not be assumed as flagella but ciliated 
epithelium. The key aspects of current investigation may me expressed in 
term salient features as:

• To emphasis on the motion of cilia induce mechanism using non-
linear rheological fluidic system past a symmetric channel.

• Viewing the physiology of the problem, a mathematical model 
is developed using low Reynolds number and long wave length 
approximation.

• Analytical expressions for stream function, axial velocity, 
concentration and temperature profiles and pressure gradient are 
explored, whereas an attempt is made to numerically compute 
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transverse velocity, pressure rise and friction force.
• Physical impact of crucial flow parameters are examined on the 

stream function, velocity profile, concentration, temperature 
profile, pressure gradient, pressure rise, frictional force on the 
walls the channel.

Further the paper is designed in following systematic manner.

MODELING OF THE RHEOLOGICAL PROBLEM
A two dimensional, incompressible, rheological Pseudo plastic nanofluid in 
a symmetric channel is analyzed. A cilia induced flow in a channel having 
infinite length is considered. The inside walls of the system based channel 
are assumed to be populated with a ciliated carpet. Further, it is assumed that 
flow is initiated by systematic beating of cilia which creates a metachronal 
wave, at the right side of the channel. We can identify a reference frame 

, in a manner that -axis lies along the center of the channel and 
-axis is in the transverse direction. Both the plates are at 2 h apart.

For physiological problem we take velocity profile in the following form

      (1)

where  components of fluidic velocity profile in the axial and 
transverse direction, respectively.

Considering  the stress tensor for pseudo plastic fluid model is given,

     (2)

        (3)

         (4)
where

         (5)

where μμ represents viscosity of the fluid,  is upper-convected derivative, 

A1 is used for Rivlin-Ericksen tensor of first type,  is material derivative 
and  are the relaxation times. Continuity, momentum, energy and 
concentration equations may narrated in the vector form as:
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         (6)

        (7)

     (8)

        (9)
where ρf is the density of fluid,  is the pressure, τ is the ratio of heat 
capacity of nano particle material to fluid,  is the extra stress tensor, DB is 
the Brownian diffusion coefficient, DT is the thermophoretic diffusion coef-
ficient, Tm is the fluid mean temperature and α1 is the thermal diffusivity.

In order to investigate the problem in a better and simple method, 
laboratory frame is shifted to wave frame, the transformations from moving 

frame of wave frame are ,

where Re is the Reynold number, Nt is thermophoresis number, Nb is 
Brownian motion and Pr is the Prandtl number.

In moving wave frame, by capitalizing the non-dimensional parameter 
along with low Reynolds number and long wavelength approximation the 
equations of motion38,39, take the form as:

       (10)

     (11)

   (12)
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       (13)
with the relaxation time  and the corresponding dimensionless 
boundary conditions40,41 for cilia induced rheological fluid model are

      (14)
at y=0

   (15)
at h=1+cos(2πx).

SOLUTION METHODOLOGY
It is hard to get the exact solution of the Eqs. (10–13), so we will employ 
perturbation method for small parameter ζ

      (16)

      (17)

      (18)
Expressions using perturb solution up to second order for stream 

function, concentration, and temperature are

  (19)
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In Eqs. (20 and 21) γ1, ..., γ4 and δ2, ..., δ4 are variable expressions, and their values are incorporated in the 
“Appendix”.

Velocity profile
Using the relation u =

∂ψ
∂y  one may obtain expression for axial component of velocity from Eq. (19) as:

Pressure gradient is gathered as

One may obtain the expression by integration the continuity equation

The pressure rise per Wavelength is explored as

F� is the frictional force which can be obtained as
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In Eqs. (20 and 21) γ1, ..., γ4 and δ2, ..., δ4 are variable expressions, and their values are incorporated in the 
“Appendix”.

Velocity profile
Using the relation u =

∂ψ
∂y  one may obtain expression for axial component of velocity from Eq. (19) as:

Pressure gradient is gathered as

One may obtain the expression by integration the continuity equation

The pressure rise per Wavelength is explored as

F� is the frictional force which can be obtained as

(20)

σ = γ1 −
γ4Nt

Nb
+ γ2y +

Nt

(

4γ2
2γ3e

−γ2Nb Pr yNb
2 Pr2 +

3Ec(F−2huh)
2y(6+γ2Nb Pr y(−3+γ2Nb Pr y))

h6

)

4γ23Nb
4 Pr3

+ ζ

(

δ1 + δ2y−

1

175δ2
7h18Nb

8 Pr7
Nt

(

−175δ2
6δ3e

−δ2Nb Pr yh18Nb
6

6

Pr+175δ2
7δ4h

18Nb
7

7

Pr

− 91854Ec

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y + 45927δ2EcNb Pr

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y2 − 15309δ2

2EcNb
2

2

Pr

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y3 − 153090δ2

3EcNb
3

3

Pr

(

−25 + δ2
2h2Nb

2
2

Pr

)

(F − huh)
6y4 + 30618δ2

4EcNb
4

4

Pr

(

−25 + δ2
2h2Nb

2
2

Pr

)

(F − huh)
6y5 + 127575δ2

5EcNb
5

5

Pr(F − huh)
6y6 − 18225δ2

6EcNb
6

6

Pr(F − huh)
6y7

))

(21)

θ = γ4 −
4γ2

2γ3e
−γ2Nb Pr yNb

2 Pr2 +
3Ec(F−2huh)

2y(6−3γ2Nb Pr y+γ2
2Nb

2 Pr2 y2)
h6

4γ23Nb
3 Pr3

ζ

(

1

175δ2
7h18Nb

7 Pr7

(

−175δ2
6δ3e

−δ2Nb Pr yh18Nb
6

6

Pr+175δ2
7δ4h

18Nb
7

7

Pr−91854Ec

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y + 45927δ2EcNb Pr

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y2 − 15309δ2

2EcNb
2

2

Pr

(

1000 − 40δ2
2h2Nb

2
2

Pr+δ2
4h4Nb

4
4

Pr

)

(F − huh)
6y3 − 153090δ2

3EcNb
3

3

Pr

(

−25 + δ2
2h2Nb

2
2

Pr

)

(F − huh)
6y4 + 30618δ2

4EcNb
4

4

Pr

(

−25 + δ2
2h2Nb

2
2

Pr

)

(F − huh)
6y5 + 127575δ2

5EcNb
5

5

Pr(F − huh)
6y6 − 18225δ2

6EcNb
6

6

Pr(F − huh)
6y7

))

(22)

u = −
uh

2
+

3
(

2huhy
2 + F(h − y)(h + y)

)

4h3
+

27(−F + huh)
3
(

h4 − 6h2y2 + 5y4
)

ζ

20h9

+
19683(−F + huh)

9(h − y)(h + y)
(

767h8 − 385h6y2 − 21175h4y4 + 48125h2y6 − 38500y8
)

ζ 2

385000h27

(23)
dp

dx
= −

3(F0 − 2huh)

2h3
− ζ

(

3
(

−27F0
3 + 20F1h

4 + 162F0
2huh − 324F0h

2uh
2 + 216h3uh

3
)

40h7

)

(24)v = −

∫

∂u

∂x
dy + c,

(25)�p� =

∫ 1

0

dp

dx
dx.

(26)F� =

∫ 1

0

h

(

−
dp

dx

)

dx.

  (21)
In Eqs. (20 and 21) γ1,...,γ4 and δ2,...,δ4 are variable expressions, and their 

values are incorporated in the “Appendix”.

VELOCITY PROFILE

Using the relation  one may obtain expression for axial component 
of velocity from Eq. (19) as:

  (22)
Pressure gradient is gathered as

  (23)
One may obtain the expression by integration the continuity equation

        (24)
The pressure rise per Wavelength is explored as

        (25)
Fλ is the frictional force which can be obtained as

        (26)
It is hard to get the analytical expression for velocity component in the 

transverse direction, pressure rise, and frictional force. So, they are computed 
numerically and their results are exhibited graphically.
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ANALYSIS OF THE PHYSICAL PROBLEM
Cilia has numerous applications, it has been investigated by various 
researchers that cilia are responsible for fluid locomotion in ductus 
efferentes. Ductus efferentes are various small tubes which establishes 
important relation between testis and epididymis. Composition of these 
tubes is that these tubes are consists of single layer epithelium, this 
structure is strengthened by layer of uniform muscle and adjoining 
tissue1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. These tubes transport sperm via 
rate testis to epididymis and recollect large quantity of fluid arising from 
rete testis. Ductus efferentes epithelium consists of both ciliated non ciliated 
cells. Besides this ciliary activity has great significance in the transport 
of protozoa in which locomotion is done via cilia. Outcomes of current 
investigation may be significant cilia dependent actuator in the function of 
biosensors and in drug delivery systems. It is important to mention here that 
not too much information is available about rate to due ciliary caused flo
ws1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19,20, 21,22,23,24,25,26,27,28,2
9,30,31,32,33,34,35,36,37. For the purpose of quantitative investigation, we 
provide estimate of different physical quantities related to physical study of 
fluid rheology of cilia induce flows. We have used following data to study 
rheological fluid motion. ε=0.1 to 0.2, α=0.2 to 1, δ=0.1 to 0.1, Q=0.1 to 0.5.

Cilia induced flow for pseudo plastic nano fluid model is investigated. 
Flow is modelled by considering the long wave length theory and low 
Reynolds number. Solution for the proposed physical phenomenon is 
obtained by capitalizing the strength of perturbation technique. Analytical 
expressions are gathered for stream function, concentration, temperature 
profiles, axial velocity, and pressure gradient. Whereas, transverse velocity, 
wave length for pressure rise, and frictional force on the walls of the tubule 
are investigated with aid of numerical computations and their outcome are 
demonstrated graphically. Here in this section impacts of ζ relaxation time, 
thermophoresis parameter Nt, Prandtl number Pr on velocity distribution, 
concentration, temperature profiles, pressure gradient, wave length for 
pressure rise and frictional force are investigated. A comprehensive 
investigation in the form of numerical data has been exhibited in the Tables 
1 and 2. In the first table analysis of perturb and numerical solution for axial 
velocity u is made, almost similar values of perturb and numerical solution 
with very small difference is recorded. In the Table 2 comparison of perturb 
and numerical solution for stream function is done and almost identical 
numerical data is obtained. Both the tables prove the authenticity of our 
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analytical solution. Graph of axial component of velocity, for perturb and 
numerical solution is exhibited in Fig. 2, it is worth to mention here that we 
have obtained all most similar curves for both solution, which validates our 
analytical solution. Trapping phenomenon is exhibited in Figs. 3 and 4, it is 
quite evident that as relaxation time is enhanced, the number of circulating 
streamlines increases and some fluctuations occurs in the size of the trapped 
bolus. Variations on the velocity profile with enhancement in the relaxation 
time demonstrated in Fig. 5, it is seen that initially longitudinal component 
of velocity depreciates as relaxation time ζ is increased and surge is observed 
in the velocity because of the no slip phenomenon. Where as, mere a sharp 
decline is seen in the transverse component of velocity with rising values of 
ζ. Actually relaxation time ζ is the measure of fluid inertia, because of this 
factor retardation in the velocity profile is recorded.

Figure 6 portrays the impact of relaxation time on concentration and 
temperature profiles, it is concluded from the plots that concentration falls 
as enhancement in the value of the ζ is made, while opposite behavior is 
observed for the temperature distribution. Figure 7 elucidate that the as 
thermophoresis parameter Nt is enhanced, yields decrease in concentration 
and increase in temperature profile. Which happen due to fact that 
thermophoresis mechanism give rise to the motion of fluid elements, they 
collides with each other due to which energy of fluid element increases, 
which results increase in temperature and decline in the concentration 
profile.

Effect of Prandtl number is investigated in Fig. 8, it is concluded from 
the first figure that concentration profile declines as Prandtle number is 
enhanced, which means that momentum diffusivity become weak and 
thermal diffusivity has dominant role. From Fig. 8b it noted that temperature 
profile become strong as Prandtle number is enhanced.

Plots of pressure gradient as function of relaxation time ζ and wave 
number δ are portrayed in Fig. 9, it is seen from the first figure that as the 
measure of fluid is raised, the pressure gradient profile enhances, on other 
when the wave number δ is extended, then the reverse behavior is seen. 
Figure 10 demonstrates the impact of ζ and δ on pressure rise based on wave 
length △Pλ, remarkable rise is seen in the value of △Pλ with the increase in 
relaxation time while opposite trend is recorded for enhancing the wave 
number δ. Impact of ζ and wall contraction/length ε on friction force Fλ 
over the wall is exhibited in Fig. 11, it is observed that friction force Fλ 
significantly declines with the enhancement in measure of fluid inertia, and 
quit opposite behavior is noted for increasing wall contraction Fλ.
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Table 1: Shows analysis of Perturb solution with numerical solution with 
ζ=0.01,α=0.2, ε=0.15, δ=0.01, F=0.1, x=1
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It is hard to get the analytical expression for velocity component in the transverse direction, pressure rise, and 
frictional force. So, they are computed numerically and their results are exhibited graphically.

Analysis of the physical problem
Cilia has numerous applications, it has been investigated by various researchers that cilia are responsible for fluid 
locomotion in ductus efferentes. Ductus efferentes are various small tubes which establishes important relation 
between testis and epididymis. Composition of these tubes is that these tubes are consists of single layer epithe-
lium, this structure is strengthened by layer of uniform muscle and adjoining  tissue1–17. These tubes transport 
sperm via rate testis to epididymis and recollect large quantity of fluid arising from rete testis. Ductus efferentes 
epithelium consists of both ciliated non ciliated cells. Besides this ciliary activity has great significance in the 
transport of protozoa in which locomotion is done via cilia. Outcomes of current investigation may be significant 
cilia dependent actuator in the function of biosensors and in drug delivery systems. It is important to mention 
here that not too much information is available about rate to due ciliary caused  flows1–37. For the purpose of 
quantitative investigation, we provide estimate of different physical quantities related to physical study of fluid 
rheology of cilia induce flows. We have used following data to study rheological fluid motion. ε = 0.1 to 0.2, 
α = 0.2 to 1, δ = 0.1 to 0.1, Q = 0.1 to 0.5.

Cilia induced flow for pseudo plastic nano fluid model is investigated. Flow is modelled by considering the 
long wave length theory and low Reynolds number. Solution for the proposed physical phenomenon is obtained 
by capitalizing the strength of perturbation technique. Analytical expressions are gathered for stream function, 
concentration, temperature profiles, axial velocity, and pressure gradient. Whereas, transverse velocity, wave 
length for pressure rise, and frictional force on the walls of the tubule are investigated with aid of numerical 
computations and their outcome are demonstrated graphically. Here in this section impacts of ζ relaxation time, 
thermophoresis parameter Nt , Prandtl number Pr on velocity distribution, concentration, temperature profiles, 
pressure gradient, wave length for pressure rise and frictional force are investigated. A comprehensive investiga-
tion in the form of numerical data has been exhibited in the Tables 1 and 2. In the first table analysis of perturb 
and numerical solution for axial velocity u is made, almost similar values of perturb and numerical solution 
with very small difference is recorded. In the Table 2 comparison of perturb and numerical solution for stream 
function is done and almost identical numerical data is obtained. Both the tables prove the authenticity of our 
analytical solution. Graph of axial component of velocity, for perturb and numerical solution is exhibited in 
Fig. 2, it is worth to mention here that we have obtained all most similar curves for both solution, which validates 
our analytical solution. Trapping phenomenon is exhibited in Figs. 3 and 4, it is quite evident that as relaxation 
time is enhanced, the number of circulating streamlines increases and some fluctuations occurs in the size of 
the trapped bolus. Variations on the velocity profile with enhancement in the relaxation time demonstrated in 
Fig. 5, it is seen that initially longitudinal component of velocity depreciates as relaxation time ζ is increased and 
surge is observed in the velocity because of the no slip phenomenon. Where as, mere a sharp decline is seen in 
the transverse component of velocity with rising values of ζ . Actually relaxation time ζ is the measure of fluid 
inertia, because of this factor retardation in the velocity profile is recorded.

Figure 6 portrays the impact of relaxation time on concentration and temperature profiles, it is concluded 
from the plots that concentration falls as enhancement in the value of the ζ is made, while opposite behavior 
is observed for the temperature distribution. Figure 7 elucidate that the as thermophoresis parameter Nt is 
enhanced, yields decrease in concentration and increase in temperature profile. Which happen due to fact that 
thermophoresis mechanism give rise to the motion of fluid elements, they collides with each other due to which 
energy of fluid element increases, which results increase in temperature and decline in the concentration profile.

Effect of Prandtl number is investigated in Fig. 8, it is concluded from the first figure that concentration 
profile declines as Prandtle number is enhanced, which means that momentum diffusivity become weak and 

Table 1.  Shows analysis of Perturb solution with numerical solution with ζ = 0.01,α = 0.2 , ε = 0.15 , 
δ = 0.01 , F = 0.1 , x = 1.

y Perturb solution for u Numerical solution for u Difference

0. 0.564385 0.564638 − 2.53724 × 10-4  

0.1 0.552597 0.552843 − 2.4605 × 10-4

0.2 0.517232 0.517455 − 2.23174 × 10-4

0.3 0.458275 0.458461 − 1.8578 × 10-4

0.4 0.375705 0.375841 − 1.35904 × 10-4

0.5 0.269491 0.269569 − 7.76974 × 10-5

0.6 0.13959 0.139607 − 1.75488 × 10-5

0.7 − 0.0140506 − 0.0140875 3.68592 × 10-5

0.8 − 0.191489 − 0.191567 7.83305 × 10-5

0.9 − 0.392793 − 0.392894 1.01432 × 10-4

1. − 0.618037 − 0.618137 1.00026 × 10-4

1.1 − 0.867319 − 0.867374 5.51864 × 10-5

Table 2: Shows analysis of Perturb solution with numerical solution for stream 
function with α=0.2,ε=0.15,δ=0.01,F=0.1,x=1
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Table 2.  Shows analysis of Perturb solution with numerical solution for stream function with 
α = 0.2, ε = 0.15, δ = 0.01, F = 0.1, x = 1.

y Perturb solution Numerical solution Difference

0. 0. 0. 0.

0.1 0.0560456 0.0560623 − 1.67013 × 10-5

0.2 0.109734 0.109766 − 3.20222 × 10-5

0.3 0.158706 0.15875 − 4.45712 × 10-5

0.4 0.200601 0.200655 − 5.31095 × 10-5

0.5 0.233058 0.233115 − 5.67039 × 10-5

0.6 0.25371 0.253765 − 5.49514 × 10-5

0.7 0.260185 0.260233 − 4.81658 × 10-5

0.8 0.250107 0.250144 − 3.74213 × 10-5

0.9 0.221092 0.221116 − 2.44263 × 10-5

1. 0.17075 0.170762 − 1.14196 × 10-5

1.1 0.0966832 0.0966849 − 1.73212 × 10-6

Figure 2.  Plot of Perturb with numerical solution with ζ = 0.01,α = 0.2 , ε = 0.15 , δ = 0.01 , F = 0 , x = 1.

Figure 3.  Plots of several stream lines with α = 0.2 , ε = 0.15 , F = 0.1 , δ = 0.05 , (a) ζ = 0 , (b) ζ = 0.01.
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Figure 2: Plot of Perturb with numerical solution with ζ=0.01,α=0.2, ε=0.15, 
δ=0.01, F=0, x=1.

Figure 3: Plots of several stream lines with α=0.2, ε=0.15, F=0.1, δ=0.05, (a) 
ζ=0, (b) ζ=0.01.



Applied Mathematics in Engineering106

Figure 4: Plots of several stream lines with α=0.2, ε=0.15, F=0.1, δ=0.05, (a) 
ζ=0.02, (b) ζ=0.03.

Figure 5: Velocity profile variations with (a) and (b) α=0.2, ε=0.15, δ=0.01, 
F=0.1, x=1.

Figure 6: Plots of (a) concentration σ and (b) temperature θ for variations of 
relaxation time, with α=1, ε=0.2, δ=0.1, F=0.5, x=1, Pr=2, Nb=0.8, Nt=1, Ec=1.
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Figure 7: Plots of (a) concentration σσ and (b) temperature θθ for different 
values of thermophoresis parameter with α=1, ε=0.2, δ=0.1, F=0.5, x=1, Pr=2, 
Nb=0.8, ζ=0.01, Ec=1.

Figure 8: Plots of (a) concentration σσ and (b) temperature θ for Prandtle num-
ber with α=1, ε=0.2, δ=0.1, F=0.5, x=1, Ec=1, Nt=1, ζ=0.01, Nb=0.8.

Figure 9: Plots of pressure gradient, impacts of ζ and δ are studied with 
α=1,ε=0.2,Q=0.5 (a) δ=0.05, (b) ζ=0.05.
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Figure 10: Plots of pressure rise per wave length, variations of ζ and δ are ex-
hibited with α=1,ε=0.2,Q=0.5 (a) δ=0.05, (b) ζ=0.02.

Figure 11: Plots of frictional force on wall of tubules, variations of ζζ and εε are 
exhibited with α=1,δ=0.2,Q=0.5 (a) ε=0.2, (b) ζ=0.02.

CONCLUSION
In this investigation an effort is made to explore the Cilia induced flow for 
pseudo plastic nano fluid model which is applicable to ductus efferent of 
human male reproductive tract. For physiological problem, flow is modeled 
by employing low Reynolds number and long wave length approximation. 
A novel solution for the proposed physical phenomenon is obtained by 
capitalizing the strength of perturbation technique. Analytical expressions 
are gathered for stream function, concentration, temperature profiles, axial 
velocity, and pressure gradient. Whereas, transverse velocity, pressure rise 
per wave length, and frictional force on the wall of the tubule are investigated 
with aid of numerical computations. Key finding of the current investigation 
may be elaborated as:
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• Circulating stream lines are remarkably increased with the 
enhancement in the value of fluid inertia ζ.

• Velocity profile deteriorates with increasing relaxation time.
• It is studied that as value of relaxation is enhanced, the 

concentration profile declines and temperature profile become 
strong.

• Concentration profile deteriorates with thermophoresis parameter 
Nt and Brownian motion parameter Nb, whereas temperature 
profile significantly enhances.

• Pressure rise per wave length △Pλ enhances appreciatively with 
relaxation time and decline with wave number δ.

• Frictional force on the wall of the channel decreases with 
increasing relaxation time and contraction/length ε.
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ABSTRACT
The water temperature at the outlet of the production well is an important 
index for evaluating efficient geothermal exploration. The arrangement 
mode of injection wells and production wells directly affects the temperature 
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distribution of the production wells. However, there is little information about 
the effect of different injection and production wells on the temperature field 
of production wells and rock mass, so it is critical to solve this problem. 
To study the influence mechanism of geothermal well arrangement mode 
on thermal exploration efficiency, the conceptual model of four geothermal 
wells is constructed by using discrete element software, and the influence 
law of different arrangement modes of four geothermal wells on rock mass 
temperature distribution is calculated and analyzed. The results indicated 
that the maximum water temperature at the outlet of the production well was 
84.0 °C due to the thermal superposition effect of the rock mass between 
the adjacent injection wells and between the adjacent production wells. 
Inversely, the minimum water temperature at the outlet of the production 
well was 50.4 °C, which was determined by the convection heat transfer 
between the water flow and the rock between the interval injection wells 
and the interval production wells. When the position of the model injection 
well and production well was adjusted, the isothermal number line of rock 
mass was almost the same in value, but the direction of water flow and heat 
transfer was opposite. The study presented a novel mathematical modeling 
approach for calculating thermal exploration efficiency under various 
geothermal well layout conditions.

INTRODUCTION
In the process of geothermal exploration, if the limited groundwater resources 
around the geothermal well cannot replenish pumping capacity through 
runoff, it is then necessary to consider the injection well. This is replenish 
production well-pumping capacity in time to achieve the dynamic balance 
between pumping capacity and injection capacity, allowing for long-term 
geothermal exploration. Underground hot water can be used for heating and 
generating power after being pumped to the ground. The geothermal water 
extraction system is affected not only by the groundwater flow field and 
temperature field but also by the layout of geothermal wells and many other 
factors. Under the combined effect of these factors, how injection wells and 
production wells are scientifically and reasonably arranged has a significant 
impact on the temperature field of the rock mass near the production wells 
and well groups. Therefore it is of great engineering significance to study 
the wellbore temperature field in the exploration and development of 
geothermal resources1,2,3.
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At present, research on geothermal well temperatures primarily 
focuses on numerical simulation analysis. Many scholars have researched 
the influencing factors of fluid, rock temperature field and wellbore 
temperature4, the influence of groundwater flow velocity in sandy aquifer 
on the thermal performance of borehole heat exchanger5, three-dimensional 
thermoporoelastic modeling and analysis of flow, heat transport and 
deformation in fractured rock with applications to a lab-scale geothermal 
system6 and numerical simulation analysis on the influence of different 
factors on the thermal distribution around wellbore7. Groundwater flow 
estimation for temperature monitoring in borehole heat exchangers during 
thermal response tests8, heat extraction analysis of a novel multilateral-
well coaxial closed-loop geothermal system9 and research on the influence 
of borehole heat-water exchanger characteristics on the performance 
of vertical closed-loop ground heat pump systems were carried out10. 
Gao11,12 studied the influence mechanism of geothermal well spacing, 
geothermal temperature and production well depth on the water flow and 
heat transfer temperature of rock masses, but the literature did not consider 
the influence of the interaction of injection wells and production wells on the 
temperature field of production wells and rock masses. Research on outlet 
temperature and temperature field of geothermal well13,14,15,16, sensitivity 
analysis of influencing factors for heat loss of geothermal wells17 and 
wellbore temperature loss model and application for heating geothermal 
mining18. However, the research contents of these scholars did not involve 
the comparative study of the water temperature and temperature field at the 
outlet of geothermal wells under different conditions of the water inlet and 
water outlet. Scholars have carried out researches on the influence of pumping 
and irrigation well layout on the groundwater flow field and temperature 
field19, the influence of pumping and irrigation well distribution mode, and 
pumping and irrigation well water quantity on heat transfer characteristics 
of underground heat exchanger well20,21, and the application of numerical 
simulation of water and heat transport to optimize pumping and irrigation 
well the layout of groundwater source heat pump system22, numerical 
simulation of water-heat coupling of single well ground water source heat 
pump in T2Well23 and optimization of reasonable well spacing and layout 
of shallow source heat pump simulated by sand tank-taking Jiuxi in Fenglin 
as an example24. Sustainable electricity generation from an enhanced 
geothermal system were carried out considering reservoir heterogeneity 
and water losses with a discrete fracture model25 and enhanced geothermal 
systems (EGS): hydraulic fracturing in a thermoporoelastic framework26 and 
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modified zipper fracturing in an enhanced geothermal system reservoir 
and heat extraction optimization via orthogonal design27. Again, Xu et 
al.28 Studied on optimal arrangement of pumping and irrigation systems for 
a groundwater heat pump. Deng et al.29 conducted a simulation study on the 
optimization of middle-deep geothermal recharge wells based on optimal 
recharge efficiency. Olabi et al.30 thought that geothermal-based hybrid 
energy systems are an energy method towards eco-friendliness. Rezaei et 
al.31 researched an enviro-economic optimization of a hybrid energy system 
from biomass and geothermal resources for low-enthalpy areas. The system 
off-design evaluation of geothermal-solar hybrid power and operational 
strategies for its heat pump system was studied32,33. Tian et al.34 studied 
Carbon–neutral hybrid energy systems with deep water source cooling, 
biomass heating, and geothermal heat and power. Chen et al.35 carried out 
Thermodynamic performance analysis and multi-criteria optimization of a 
hybrid combined heat and power system coupled with geothermal energy. 
In summary, although some achievements have been made in the study of 
geothermal well temperature, there are few reports on the complex model 
of thermal recovery efficiency optimization under different geothermal well 
layout conditions. The actual geothermal mining process is closely related 
to the scientific and reasonable layout of geothermal wells. The influence 
of different geothermal well layout conditions on the temperature field 
of production wells and rock masses is directly related to the safety and 
efficiency of geothermal mining. Given this, it is necessary to research the 
optimization of thermal mining efficiency under different geothermal well 
layout conditions.

In this paper, first, the fractured rock mass models of four injection wells 
and production wells are constructed by 3DEC discrete element software. 
The effect of different water inlets and outlets on the temperature field of 
the production well and rock mass, as well as the water temperature of the 
production well outlet, is then calculated under various geothermal well 
layout conditions. Finally, through comparative analysis, the law of the 
influence of different geothermal well layouts on the rock mass water flow 
and heat transfer temperature is revealed.

CONCEPTUAL MODEL OF GEOTHERMAL  
EXPLOITATION
Figure 1 shows a schematic diagram of geothermal resource exploitation. 
Four water injection wells and water output wells were drilled from the 
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ground by using mechanical drills. The hot rock area at the bottom of the 
water injection wells and water output wells was mechanically fractured to 
form a microjoint system to open its fractured channel. The ground injected 
low-temperature water into the water injection well, and the water flowed 
into the well’s bottom. Hot water is stored in the artificial heat reservoir 
area through convection and heat transfer with high-temperature hot rock, 
and high-temperature water is pumped out to the ground through the well 
for comprehensive utilization, such as power generation and heat. In this 
paper, only four injection wells and production wells are considered, and 
engineering fracture systems are ignored.

Figure 1: Schematic diagram of geothermal resource exploitation.

BASIC ASSUMPTIONS OF THE MODEL
The variables involved in heat conduction in 3DEC are temperature and 
the three components of the heat flux. The energy balance equation and 
Fourier law of heat conduction are related to these variables. The differential 
equation of heat conduction is obtained by combining the Fourier law with 
the energy balance equation. The differential equation can be solved under 
specific boundary and initial conditions based on specific geometry and 
properties. The following dimensionless numbers are used to characterize 
transient heat conduction.

Characteristic length:

      (1)
where the characteristic length of the solid is expressed by Lc[m]; the volume 
of the solid is expressed by Vs[m

3], and the surface area of heat exchange is 
expressed by As[m

2].
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Thermal diffusivity:

        (2)
where κ is the thermal diffusivity in [m2/s]; k is the thermal conductivity 
in [W/(m·°C)]; ρ is the density in [kg/m3]; and Cv is the specific heat at 
constant volume in [J/kg·°C].

Characteristic time:

        (3)
where the characteristic time of the solid is expressed by tc[s].

The differential expression of the energy balance has the following form:

       (4)
where qi,i is the heat-flux vector in [W/m3]; qv is the volumetric heat-source 
intensity in [W/m3], and ζ is the heat stored per unit volume in [J/m3].

In general, the temperature change may be caused by variations in both 
energy storage and volumetric strain ε. The constitutive thermal law relating 
those parameters may be expressed.
as:

      (5)
where Mth and βth are material constants and T represents the temperature.

In this law, a particular case of βth = 0 and  is considered, in 
which ρ is the mass density of the medium in [kg/m3] and Cv is the specific 
heat at constant volume in [J/kg·°C]. The change in strain is assumed to 
play a minor role in influencing the temperature validity for quasistatic 
mechanical problems involving solids and liquids.

       (6)
By substituting Eq. (6) for Eq. (4), the energy-balance equation was 

yielded.
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      (7)
For all solids and liquids, the specific heats at constant pressure and 

constant volume are principally equivalent. Accordingly, Cv and Cp can be 
used by each other.

According to the finite-difference approximation principle of spatial 
derivatives, the numbers from 1 to 4 represent each node of the tetrahedron, 
the opposite side of node n is face n, and the value of the superscript (f) is 
related to the relevant variable on the face f.

The temperature changes linearly in the tetrahedron. The temperature 
gradient is represented by the node value of temperature according to the 
Gauss divergence theorem:

     (8)
where the external unit vector perpendicular to surface l is denoted by [n](l), 
the surface area is denoted by S, and the tetrahedral volume is denoted by V.

Energy-balance equation formula of nodes. The energy-balance Eq. (7) 
may be expressed as:

       (9)
where

     (10)
is the instantaneous “physical strength” in the mechanical node formula. 
Using a tetrahedron analogy, the nodal heat  in equilibrium 
with its heat flux and body force can be expressed as:

     (11)
where

      (12)
and
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       (13)
In this theory, the node form of the energy-balance equation is required 

at each global node, in which the sum of equivalent node heat  of all 
tetrahedrons and the node contribution  of the applied boundary flux 
and source are zero.

In heat convection, it is presumed that fluid flow occurs within saturated 
fractures while the rock matrix is impermeable. As described in the previous 
section, heat can be transported by fluid convection, conducting in itself, 
and the rock mass. The fluid temperature generally varies in different rocks. 
Therefore, between the fracture fluid and the contacting rock (fluid-thermal 
coupling), heat transfer may occur, according to Newton’s law of cooling. 
Coupling to heat transfer within the rock and the logic for heat transfer 
within the fluid is presented as follows.

Heat convection in the flow planes is described by the following 
equations. Heat is transported.
by conduction in the fracture fluid, according to Fourier’s law:

        (14)

where  is the specific heat flux in the fluid in [W/s2] and  is the fluid 
thermal conductivity in [W/(m·°C)]. The energy-balance equation for the 
fluid obeys the equation.

  (15)
where ρfcf is the fluid density [kg/m3] times the specific heat [J/(g·°C)]; qf is 
the specific fluid discharge.
in [m2/s]; Af is the contact area per unit fluid volume in [m2]; h is the fluid/rock 
heat transfer coefficient in [W/(m2·°C)]; and Tf and Ts are the temperatures of 
the fluid and solid block, respectively.

For the solid blocks, the fluid flow was neglected; the transport of heat 
obeys Fourier’s law as follows:

       (16)
where qT is the specific heat flux in [W/s2] and kT is the rock thermal 
conductivity in [W/(m·°C)]. The energy balance is
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   (17)
where ρscs is the solid density [kg/m3] times the specific heat [J/(g·°C)] 
and As is the contact area per unit volume of solid (from the aspect of fluid, 

there is contact on two sides: ).

EXAMPLE MODEL
In this paper, it is assumed that there is a hot rock with well-developed 
fractures in Northwest China, which has a huge heat reserve but is relatively 
deficient in groundwater resources. As a result, it proposed to inject water 
and effluent to ensure the long-term viability of geothermal exploration and 
provide stable expedition for local businesses. Considering the hydrothermal 
heat storage at approximately 100 m underground, low-temperature 
geothermal resources less than 90 °C are used for heating and technological 
processes. In the process of geothermal exploration, the interaction between 
the injection well and production well affects the water temperature 
distribution at the outlet of the production well and the temperature of the 
rock mass. The geothermal expedition process involves the interaction of 
injection wells, injection wells and production wells, and production wells on 
the outlet water temperature of production wells and rock mass temperature. 
In this paper, it is assumed that there are four geothermal wells in the model, 
and the optimization mechanism of the thermal recovery efficiency under 
different geothermal well layout conditions was studied. The model size was 
10 m [length] × 5 m [width] × 12 m [height], the spacing between geothermal 
wells was set at 2 m, and the distance between the geothermal well and model 
boundary was also set as 2 m. The boundary conditions were as follows: 
the inlet unit temperature of the production well was set as the geothermal 
temperature, the outlet unit was set as the free temperature, then the inlet 
unit temperature of the injection well was set as the normal temperature. 
The outlet unit was set as the free temperature, and the other sides were 
adiabatic. The surrounding rock temperature was approximately 20 °C 
at  − 100 m above the ground, and the model assumed that the initial water 
temperature of the rock and injection well was 20 °C. The numerical model 
size and grid division of the optimization study on the thermal recovery 
efficiency under different geothermal well layout conditions are shown in 
Fig. 2. Here fractures V1, V2, V3 and V4 were simulated in four geothermal 
wells, with different water injection and water outlets.
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Figure 2: Geothermal well model size and mesh generation.

PARAMETERS AND CONTENT
Under conventional conditions, the thermophysical parameters of rock and 
water are listed in Table 1, in which the heat convection coefficient of rock 
and water was 30 W/(m2·°C).

Table 1: Thermophysical parameters of the rock and water

The calculation conditions of the model are shown in Fig. 3. The 
calculation was carried out per the principle of establishing the same 
opening of geothermal wells, ensuring the same flow rate of injection wells 
and production wells and the same water flow velocity of injection wells 
and production wells. The calculation contents of the model are shown in 
Table 2. Here the inlet water temperature of the production well was 90 °C, 
the fracture opening (production well) was 2.5 mm. Fractures V1 and V4 were 
set to inject water, whereas V2 and V3 were set to outlet water, and the water 
flow speed was 2 mm/s. The fractures V1 and V4 were used to outlet water, 
while V2 and V3 were used to inject water, and the water flow speed was 
2 mm/s. Set fractures V1 and V2 to inject water and V3 and V4 to outlet 
water, with a water flow rate of 2 mm/s. Water was injected into fractures 



A New Mathematical Modeling Approach for Thermal Exploration ... 125

V1 and V3, and a water flow velocity of 2 mm/s was applied to fractures 
V2 and V4. Under these four working conditions, the influence of different 
water injections and water flows on the heat transfer temperature of the rock 
mass was simulated, calculated, and analyzed. The data obtained under each 
working condition were processed by postprocessing software into the rock 
mass temperature field and water temperature–time curve at the outlet of the 
production well for comparative analysis.

Figure 3: Model calculation conditions.
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Table 2: Numerical simulation conditions

6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22930  | https://doi.org/10.1038/s41598-021-02286-z

www.nature.com/scientificreports/

Figure 3.  Model calculation conditions.

Table 2.  Numerical simulation conditions.

Calculation content Water injection mode Water velocity/(mm/s)
Inlet water temperature of production 
well/(°C)

Fracture (geothermal well) opening/
(mm)

1 V1,  V4 water injection,  V2,  V3 water outlet

2 90 2.5
2 V1,  V4 water outlet,  V2,  V3 water injection

3 V1  V2 water injection,  V3,  V4 water outlet

4 V1,  V3 water injection,  V2,  V4 water outlet

RESULTS AND DISCUSSION

Influence of Different Injection Wells and Outlet Wells on the 
Temperature Field of the Rock Mass
The temperature field of the rock mass is shown in Fig. 4 under four working 
conditions, when the model reached a steady state.

Figure 4: Temperature field of rock mass.
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Figure 4a, b revealed that, in the initial state, low-temperature water 
(20 °C) was injected into the ground along with injection wells V1 (V2) 
and V4 (V3), while high-temperature water (90 °C) was pumped out from 
production wells V2 (V1) and V3 (V4). When the high-temperature water 
of production wells V2 (V1) and V3 (V4) entered the production well, it 
convected heat transfer with the rock mass on both sides of the production 
well (initial 20 °C); that is, the heat absorption temperature of the rock 
mass on both sides of the production well gradually increased, and the 
heat release temperature of the water flow of the production well decreased 
steadily. As the temperature of the rock mass on both sides of the production 
well increases, the low-temperature water flow of injection wells V1 (V2) 
and V4 (V3) passes through the rock mass with elevated temperature on 
one side and heat convection occurs between them. The three water flow 
heat release processes of production wells (heat convection between water 
flow of production well and its rock mass wall), the production wells water 
absorbed heat by contacting the rock mass wall (respective heat conduction 
of production well water and rock mass wall) and water flow heat absorption 
of injection wells (heat convection between water flow of injection well and 
its rock mass wall) were accompanied by water injection and water pump 
until the model reached a uniform state. At this time, the total amount of 
heat provided by the inlet water of the production wells was equal to the 
heat absorbed by the rock mass at its sidewall. The heat was absorbed by 
the water flow of the injection well, and they reached dynamic equilibrium. 
In addition, the temperature gradient at the edge (middle) of rock under 
working condition 1 was similar to that at the middle (edge) of rock under 
working condition 2. After the injection wells and production wells under 
two working conditions were switched, their temperature gradients were very 
similar, which constituted axial symmetry. The rock temperature gradients 
on both sides of the injection well (production well) were about 1.67 °C/m 
and 4.93 °C/m respectively, and the values of the rock temperature gradients 
were the same, but the temperature gradients’ direction was opposite, which 
was caused by the same boundary conditions.

Comparison Fig. 4a, c showed that after the middle production well and 
edge injection well in Fig. 4a were changed to the left adjacent production 
well and the right adjacent injection well in Fig. 4c, the temperature field 
of rock mass of both sides of the edge formed a central symmetry, and 
the temperature gradient from the middle to both sides of the rock mass 
became smaller and smaller. Also, it showed that the water temperature at 
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the outlet of injection well V1 decreased significantly and that at the outlet of 
production well V4 increased significantly, the water temperature at the outlet 
of injection well V2 decreased slightly, while that at the outlet of production 
well V3 increased slightly. This is due to the thermal superposition effect of 
the adjacent injection well and the production well through the rock mass, 
which led to the higher temperature of the production well. A comparison 
between Fig. 4a,d indicated that from the middle production well in Fig. 4a, 
the edge injection well was changed to the interval between the injection 
well and production well in Fig. 4d. The temperature field of the rock mass 
on both sides of the edge formed a central symmetry, and the temperature 
gradient from the middle to both sides of the rock mass decreased, showing 
that the water temperature at the outlet of injection well V1 decreased 
slightly and that at the outlet of injection well V3 increased significantly. 
Also, the water temperature at the outlet of production well V2 decreased 
significantly, while the water temperature at the outlet of production well 
V4 changed a little, whereas the temperature gradient mainly showed a 
large difference between x (4–6 m). This was because in Fig. 4a, the heat 
superposition effect occurred in the middle production well through the rock 
mass, forming a temperature gradient from the bottom to the top, while in 
Fig. 4d, there was no heat superposition effect between the water injection 
wells and the production wells, but the heat convection between injection 
wells and the production wells was dominant, and the temperature gradient 
was mainly formed from left to right in a steady state.

By comparing Fig. 4b with Fig. 4c, after the production well V1 and 
injection well V3 in Fig. 4b were changed to injection well V1 and production 
well V3 in Fig. 4c, only the temperature field within the range of [x (6–8 m) 
and z (0–12 m)] in Fig. 4b and [x (4–6 m) and z (0–12 m)] in Fig. 4c was 
the same. This is due to the “reverse direction” heat superposition of rocks 
between the injection well and production well under working conditions 2 
and 3, resulting in a large temperature gradient of 4.93 °C/m. The temperature 
gradient of rocks between the injection wells in Fig. 4b was about 1.67 °C/m, 
and that between injection wells in Fig. 4c was 1.23 °C/m, which indicated 
that the heat conduction rate of rocks between injection wells in condition 
3 was lower than that in condition 2. This is due to the different boundary 
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conditions outside the injection wells. According to the comparison between 
Fig. 4b,d, after changing from the production well V1 and injection well 
V2 in Fig. 4b to injection well V1 and production well V2 in Fig. 4d, only 
[x (2–4 m), z (0–12 m)], [x (6–8 m) and z (0–12 m)] in Fig. 4b were the 
same as those in [x (4–6 m), z (0–12 m)], [x (6–8 m) and z (0–12 m)] in 
Fig. 4d, which is due to the “opposite direction” heat superposition of rocks 
between injection wells and production wells in working conditions 2 and 
4. In Fig. 4b, the temperature gradients of rocks from the outside to the 
middle were about 1.67 °C/m、4.93 °C/m and 1.67 °C/m respectively. In 
Fig. 4d, the temperature gradients of rocks from the outside to the middle 
were about 1.25 °C/m、4.93 °C/m and 4.93 °C/m respectively. The average 
temperature gradients under working condition 2 and 4 were about 2.76 °C/m 
and 3.7 °C/m respectively, indicating that the heat conduction rate of rocks 
in working condition 4 was higher than that in working condition 2. This is 
because the rock heat superposition effect between injection wells was less 
than the rock heat conduction effect between injection wells and production 
wells. That is, the rock temperature between injection wells was less than 
that between injection wells and production wells.

Comparing Fig. 4c with Fig. 4d, it can be seen that water injection 
wells V2 and V3 in Fig. 4c were changed into production wells V2 and V3 in 
Fig. 4d; that is, adjacent injection wells and adjacent production wells were 
changed into spaced injection wells and production wells. In Fig. 4c, the 
heat superposition effect between adjacent production wells was dominant, 
which made the water temperature at the production well outlet greatly 
increase, while in Fig. 4d, heat convection was dominant in the injection 
wells and production wells, which greatly decreased the water temperature 
at the outlet of the production well.

Temperature Field Analysis of the Water Injection Well and 
Water Outlet Well
The temperature fields of the injection wells and water outlet wells are 
shown in Figs. 5, 6, 7, and 8 when the model reached a steady-state under 
four working conditions.



Applied Mathematics in Engineering130

Figure 5: Temperature field of the geothermal well plane (working condition 
1).

Figure 6: Temperature field ofthegeothermal well plane (working condition 2).
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Figure 7: Temperature field of the geothermal well plane (working condition 
3).

Figure 8: Temperature field of the geothermal well plane (working condition 
4).



Applied Mathematics in Engineering132

When the model reached a steady state, the production wells V1 and 
V4 and injection wells V2 and V3 were symmetrical, and the theoretical 
isotherms were the same, as shown in Fig. 5. The slight difference between 
the temperature fields of the production well and injection well was due to 
the random distribution of the model calculation grid, which had certain 
errors. The temperature gradients of the overall injection well and the 
production well were similar, and the temperature gradients of production 
wells V1 and V4 and injection wells V2 and V3 were also almost the same 
(approximately 2.13 °C/m). Figure 5 and Fig. 6 indicated that after the 
switch between the production well and water injection well, the temperature 
gradients of production wells V1 and V4 and injection wells V2 and V3 were 
almost the same (approximately 2.15 °C/m). The temperature gradients of 
the production well and injection well under the two working conditions 
were almost the same in numerical terms, but the difference was that 
the temperature gradients were in opposite directions. Again, Fig. 5 and 
Fig. 7 showed that after changing from the middle production well and edge 
injection well in Fig. 5 to the injection well on the left and the production 
well on the right, the temperature gradients of V1 and V2 of the injection well 
were approximately 0.51 °C/m and 1.85 °C/m, respectively. The temperature 
gradients of production wells V3 and V4 were approximately 1.69 °C/m and 
0.47 °C/m, respectively, and the temperature gradient decreased. The reason 
for this was that the boundary conditions of injection and production wells 
had been altered. A comparison between Fig. 5 and Fig. 8 showed that the 
middle production well and marginal injection well in Fig. 5 were changed 
into interval injection wells and production wells in Fig. 8, whereas in Fig. 8, 
the temperature gradients of injection wells V1 and V3 were approximately 
1.95 °C/m and 3.13 °C/m, respectively, and those of production wells 
V2 and V4 were approximately 3.18 °C/m and 1.97 °C/m, respectively. The 
temperature gradients of water injection wells V1 and V4 and V3 and V2 were 
indistinguishable. This is due to the similar boundary conditions between 
interval injection wells and production wells.
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Comparison Figs. 6 and 7 revealed that after the production well V1 and 
injection well V3 in Fig. 6 were changed to injection well V1 and production 
well V3 in Fig. 7, the temperature field of injection well and production well 
plane in Fig. 7 changed greatly. The temperature gradient of the injection 
well and production well in Fig. 6 was 1.67 °C/m whiles the temperature 
gradient of injection well V1 and production well V4 in Fig. 7 became 0. 
The temperature gradient of injection well V2 and production well V3 was 
about 1.25 °C/m, indicating that after the two injection wells adjacent to 
the middle of Fig. 6 became the injection well adjacent to the left and the 
production well adjacent to the right of Fig. 7, the temperature gradient of the 
geothermal well decreased, that is, the water flow and heat transfer rate of the 
geothermal well decreased. When comparing Figs. 6 and 8, the temperature 
gradient of both injection well and production well in Fig. 6 was 1.67 °C/m, 
while that of injection well V1 and production well V4 in Fig. 8 was around 
1.25 °C/m. The temperature gradient of production well V2 and injection 
well V3 was about 2.92 °C/m, and the average temperature gradient was 
about 2.09 °C/m, indicating that the temperature gradient of the geothermal 
well increased after the two injection wells adjacent to the middle part of 
Fig. 6. The central injection wells adjacent became the interval injection 
well and production well respectively, implying that the heat transfer rate of 
water flow increased.

The injection wells V2 and V3 in Fig. 7 were changed into production 
wells V2 and V3 in Fig. 8 based on the comparison of Figs. 7 and 8. That is, 
adjacent injection wells and adjacent production wells were modified into 
spaced injection wells and production wells, and the temperature gradient 
of water flow in injection wells and production wells in Fig. 7 was much 
smaller than that in Fig. 8. This is because heat convection between spaced 
injection wells and production wells was dominant and the water flow and 
the heat transfer speed was faster under the assumption of constant thermal 
resistance between the rock mass and the contact surface of the water flow.
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Water Temperature–time Analysis of Geothermal Well Outlet
The temperature–time curve of the geothermal well outlet is shown in 
Fig. 9 under four conditions.

Figure 9: Temperature–time curve of geothermal well outlet.
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As shown in Fig. 9a, under the condition that the middle part was 
production wells and the edge was injection wells, due to the symmetry of 
the model, the water temperature–time curves of production wells V1 and 
V4 and injection wells V2 and V3 coincided from the beginning to the end. 
It took approximately 7 months for the model to reach a steady state. At 
this time, the water temperature at the outlet of the production well reached 
63.9 °C, the water temperature at the outlet of the injection well reached 
46.1 °C, and the water temperature of the production wells was 38.61% 
higher than that of injection wells. According to the comparison in Fig. 9a, 
b, the model under working condition 2 took approximately 7 months to 
reach a steady-state after switching between injection wells and production 
wells. At this time, the water temperature at the outlet of production wells 
V1 and V4 and injection wells V2 and V3 was the same as that at production 
wells V2 and V3 and injection wells V1 and V4 in working condition 1. As 
shown in Fig. 9c, it took approximately 6 months for the model to reach a 
steady state. At this time, the water temperature at the outlet of production 
wells V3 and V4 reached 68.0 °C and 84.0 °C, respectively, and the water 
temperature at the outlet of injection wells V1 and V2 reached 41.9 °C and 
25.9 °C, respectively. The reason was that the thermal superposition effect 
of the water flow of the adjacent production well was dominant. The heat 
absorption capacity of the rock mass boundary on the right side of production 
well V4 (outside of the model was the adiabatic boundary) was less than that 
on the left side of production well V3 (heat absorption capacity of injection 
well V2). Likewise, although some heat superposition effect would occur in 
the water flow of adjacent production wells V1 and V2, the heat absorption 
capacity of the rock mass boundary on the right side of injection well V2 (heat 
release from the production well V3) was greater than that on the left side of 
injection well V1 (outside the model was the adiabatic boundary). Also, the 
water temperature at the outlet of the production well and the injection well 
changed greatly when production well V2 and water injection well V4 were 
changed modified see Fig. 9a–c. This is because the both the left injection 
wells and the right production wells were adjacent. The water temperature 
at the outlet of the production well in working condition 3 was 4.1 °C (68.0–
63.9 °C) and 20.1 °C (84.0–63.9 °C) higher than that in working condition 1, 
respectively. The average water temperature at the outlet of the production 
well in working condition 3 was approximately 12.1 °C (76.0–63.9 °C) higher 
than that in working condition 1. As shown in Fig. 9d, it took approximately 
10 months for the model to reach a steady state. At this time, the water 
temperature at the outlets of production wells V4 and V2 reached 67.1 °C and 
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50.4 °C, respectively, while the water temperature at the outlets of injection 
wells V3 and V1 reached 59.7 °C and 42.9 °C, respectively. Therefore, the 
water temperature of the injection well outlet (59.7 °C) was higher than that 
of the production wells (50.4 °C) under working condition 4. The reason 
is after the separation between the injection well and production well, one 
side of the boundary of the water flow on both sides of the production well 
V4 was the adiabatic boundary of the rock mass, and the other side was the 
heat absorption boundary of the water flow on injection well V3. Both sides 
of the water flow on the production well V2 were injection wells V3 and 
V1 (the outer side of production well V2 was the endothermic boundary of 
water flow), so the water temperature at the outlet of production well V4 was 
higher than that of production well V2. Both sides of injection well V3 were 
heat release boundaries of production wells V4 and V2. Therefore, the high-
temperature water flow of the two production wells provided the boundary 
conditions for both sides of injection well V3 to absorb more heat. Because 
the water flow of injection well V1 only absorbed heat from production well 
V2 via heat convection, its temperature was the lowest. It can be seen from 
the comparison of Fig. 9a,d that the water temperature of production wells 
and injection wells outlet has changed greatly under two working conditions, 
and water temperature of production wells outlet in working condition 4 
was 3.2 °C (67.1–63.9 °C) and  − 13.5 °C(50.4–63.9 °C) higher than that 
in working condition 1, and the average water temperature at the outlet of 
production well in working condition 4 was approximately 8.35 °C (67.1 °C 
-58.75 °C) lower than that in working condition 1, so working conditions 1 
and 2 were superior to working condition 4.

Furthermore, a comparison between Fig. 9b, c indicated that after 
production well V1 and injection well V3 in Fig. 9b were changed to injection 
well V1 and production well V3 in Fig. 9c, the outlet water temperature of 
production well V3 and V4 in Fig. 9c was about 4.1 °C (68.0–63.9 °C) and 
20.1 °C (84.0–63.9 °C) higher than that of production well V1 and V4 in 
Fig. 9b respectively. The water outlet temperature of working condition 3 
was about 12.1 °C higher than that of working condition 2 with an average 
increase of outlet water temperature of production well of about 18.9%. By 
comparing Fig. 9b with Fig. 9d, after production well V1 and injection well 
V2 in Fig. 9b were changed to injection well V1 and production well V2 in 
Fig. 9d, the water temperature at the outlet of production well V2 and V4 in 
Fig. 9(d) was about − 13.5 °C (50.4–63.9 °C) and 3.2 °C (67.1–63.9 °C) 
higher than that of production well V1 and V4 in Fig. 9b, respectively. The 
average outlet water temperature in working condition 4 was about − 5.15 °C 
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higher than that in working condition 2, and the average increase of outlet 
water temperature in producing well was about − 8.8%. By comparing 
Fig. 9c with Fig. 9d, when the water temperature at the outlet of production 
wells V2 and V4 in Fig. 9d was about − 17.6 °C (50.4–68.0 °C) and  − 16.9 °C 
(67.1–84.0 °C) higher than that of production wells V3 and V4 in Fig. 9c, 
respectively, after the water temperature at the outlet of production wells 
V2 and V4 in Fig. 9c was changed from production well V2 and production 
well V3 in Fig. 9c to production well V2 and production well V3 in Fig. 9d, 
the average water temperature at the outlet of production well in condition 4 
was about − 17.25 °C higher than that in condition 3, and the average increase 
of water temperature at the outlet of production well was about − 29.36%. 
According to the comprehensive comparison of Fig. 9a–d, it can be seen 
that the water temperature at the outlet of the production well, the optimal 
order of the model was working condition 3 > working condition 1 = working 
condition 2 > working condition 4. Furthermore, the time required for the 
model of working condition 3 to reach steady state was the shortest, while 
the time required for the model of working condition 4 to reach a steady 
state was the longest.

CONCLUSION
In this paper, a new mathematical modeling approach was presented to 
improve the thermal exploration efficiency under different geothermal well 
layout conditions. Fractures V1 and V4 were developed as injection wells 
whereas V2 and V3 as production wells. Fractures V1 and V4 were taken as 
production wells, V2 and V3 as injection wells; Fractures V1 and V2 were 
constructed as injection wells, V3 and V4 as production wells; Fractures V1 and 
V3 were constructed as injection wells, V2 and V4 as production wells. Under 
these four working conditions, the influence of different injection wells and 
production wells on rock mass temperature was simulated, calculated, and 
analyzed by the 3DEC program. The calculations revealed that when the 
position of the model injection well and production well was adjusted, the 
isothermal number line of rock mass was almost the same in value, but the 
direction of the water flow and heat transfer was opposite. The maximum 
water temperature at the outlet of the production well was 84.0 °C due to the 
thermal superposition effect of the rock mass between the adjacent injection 
wells and between the adjacent production wells. Conversely, the minimum 
water temperature at the outlet of the production well was 50.4 °C under 
working condition 4, which was determined by the convection heat transfer 
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between the water flow and the rock between the interval injection wells 
and the interval production wells. Under these two working conditions, the 
isotherms of rock mass on both sides of the edge showed central symmetry, 
and the temperature gradient gradually decreased from the middle to both 
ends of the rock mass, indicating that the heat transfer velocity of rock mass 
gradually decreased from the middle to both ends. Working condition 3 took 
approximately 6 months to reach a uniform state while working condition 
4 took approximately 10. Under working conditions 1 and 2, the water 
temperature at the outlet of production well and the time required to reach a 
steady state were between working conditions 3 and 4.
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ABSTRACT
Main concern of current research is to develop a novel mathematical model 
for stagnation-point flow of magnetohydrodynamic (MHD) Prandtl–Eyring 
fluid over a stretchable cylinder. The thermal radiation and convective 
boundary condition are also incorporated. The modeled partial differential 
equations (PDEs) with associative boundary conditions are deduced into 
coupled non-linear ordinary differential equations (ODEs) by utilizing 
proper similarity transformations. The deduced dimensionless set of ODEs 
are solved numerically via shooting method. Behavior of controlling 
parameters on the fluid velocity, temperature fields as well as skin friction 
and Nusselt number are highlighted through graphs. Outcome declared that 
dimensionless fluid temperature boosts up for both the radiation parameter 
and Biot number. It is also revealed that the magnitude of both heat transfer 
rate and skin friction enhance for higher estimation of curvature parameter. 
Furthermore, comparative analysis between present and previous reports are 
provided for some specific cases to verify the obtained results.

INTRODUCTION
In fluid dynamics, the phenomenon of stagnation-point flow has got 
considerable attention of various researchers in the recent past due to its 
significant applications in natural and industrial phenomena. The former 
includes a flow of fluid over the tips of various objects, e.g., ships, 
submarines, aircrafts, rockets etc1. In biology, a blood-flow in the blood 
vessel at the branch/ sub-branch separates into two or more directions and 
corresponds to the stagnation-point flow2. Hiemenz3 in 1911, first proposed 
an exact solution for the stagnation-point flow in a static-rigid surface. In 
this study, Hiemenz utilized appropriate transformation to transform the 
steady two dimensional (2D) Navier-Stokes equations into non-dimensional 
highly ODEs. After the remarkable work of Hiemenz3, many investigators 
considered the stagnation-point flow phenomena by means of different 
physical features4,5,6,7. Recently, Vaidya et al.8 examined the steady 2D 
oblique stagnation-point flow on a stretching plate. They have solved 
analytically dimensionless highly non-linear ODEs using the Optimal 
Homotopy Analysis Method (OHAM). Further, it has been shown there8 
that axial fluid velocity declines with a rise in the viscosity while the dual 
effect of viscosity is found on the transverse fluid velocity. Meanwhile, 
Hayat et al.9 discussed the steady 2D stagnation-point flow with both 
heat generation and thermal radiation. They noticed in9 that variations 
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in the radiation variable and Biot number improve the dimensionless 
fluid temperature. Further, Aly and Pop10 have obtained unique and dual 
solutions for a steady 2D stagnation-point flow associated with dynamic 
hybrid nanofluid. They showed that dual and unique solutions exist for a 
certain estimations of magnetic parameter and revealed that the behavior 
of hybrid nanofluid velocity field and temperature are different along the 
three regions of stability. Additionally, Wain et al.11 comprehended the 
analysis for incompressible stagnation-point flow in a shrinking/stretching 
plate, admitting growth of skin friction and heat transfer due to the melting 
parameter.

Non-Newtonian fluids flow phenomena plays a pivotal role in numerous 
natural, industrial, geophysical and engineering processes. Some common 
examples of these fluids are drilling mud, lubricating oils, liquid crystals, 
paints, silly putty, polymeric liquids, biological fluids and many others. The 
properties of such fluids are hard to define as a single constitutive equation 
but many attempts have been made by the investigators to characterize 
the rheological characteristics of fluids containing non-Newtonian fluid 
behavior. Non-Newtonian fluid models are evidently more complex and 
have a highly nonlinear behavior. Various investigators presented different 
fluid models12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 to describe 
the complex nature of non-Newtonian fluids phenomena. Prandtl–Eyring 
model is a particular type of non-Newtonian fluid which indicates that 
shear stress is proportional to the sine hyperbolic function of strain rate 
to the fluid. Recently, Khan et al.28 proposed the combined impacts of 
Brownian and thermophoresis diffusion on 2D Prandtl–Eyring nanofluid 
with entropy generation through a heated stretchable plate. They revealed 
that for greater estimations of Brinkman number and material parameter, 
the entropy generation rate rises. Further, the influences of heat source and 
thermophoresis on steady incompressible MHD flow of Prandtl–Eyring 
nanofluid in a symmetric channel was analyzed by Akram et al.29. They 
analyzed that Brownian and thermophoresis parameters have opposite 
behavior on both the temperature gradient and heart transfer rate. Meanwhile, 
Uddin et al.30 examined numerically the impact of activation energy on 
dynamical 2D MHD Prandtl–Eyring nonofluid due to the Joule heating 
effect. Additionally, Rehman et al.31 studied scaling group transformation 
method for steady incompressible Prandtl–Eyring fluid through a 2D 
semi-infinite stretching sheet. With the help of scaling transformation they 
obtained new similarity transformations for the analysis of Prandtl–Eyring 
fluid flow. Abdelsalam et al.32 used the Eyring-Powell fluid model as the 
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base fluid to investigate the behavior of a microorganism swimming through 
a cervical canal. Moreover, Shankar and Naduvinamani33 carried out the 
numerical solution for magnetized squeezed unsteady 2D Prandtl–Eyring 
fluid flow through a horizontal sensor sheet. From their investigation it has 
been noticed that fluid velocity boosts with magnetic parameter while the 
fluid temperature diminishes in the flow region with magnetic parameter.

The influence of thermal radiation plays an essential role in space 
technology and in processes with high temperatures. The study of heat 
transfer characteristics on a stretched sheet with radiation was studied by 
a number of researchers. Smith34 was the first researcher who presented 
the aspect of thermal radiation on steady 2D flow. Later on, the influence 
of thermal radiation on fluid temperature and heat transfer in an emitting/
absorbing medium flowing on a wedge was explored by Viskanta and 
Grosh35. Recently, Raza et al.36 numerically elaborated the impacts 
of MHD and thermal radiation on unsteady 2D molybdenum disulfide 
nanoparticle through a porous channel. They revealed that the heat transfer 
rises by enhancing the solid volume fraction for various shapes of nanofluids. 
Gireesha et al.37 analyzed the preparation process of hybrid nanomaterials 
on a porous longitudinal fin with thermal radiation. Wakif38 scrutinized the 
impact of incompressible MHD flow of Casson fluid on a horizontal stretched 
plate with thermal radiation and they show that with radiation parameter 
the nanofluid temperature increases. Additionally, the characteristics of heat 
transfer and MHD nanoparticle on a stretching plate with thermal radiation 
and Joule heating impacts was scrutinized by Dogonchi and Ganji39. They 
observed that with an increase in the volume of nanofluid turn out a linear 
rise in the Nusselt number, whereas, this number shows inverse behavior 
with thermal radiation. Khan and Alzahrani40 proposed the combined 
effects of thermal radiation and viscous dissipation on 2D nanofluid with 
entropy generation through a stretched surface. Raza et al.41 studied the 
thermal radiation impacts on the convective flow of a non-Newtonian fluid 
through a curved surface. Moreover, Ullah et al.42 numerically studied the 
flow pattern followed by hybrid nanoliquids (AA7075, AA7072) using an 
infinite disk in the presence of thermal radiation. Furthermore, the authors 
suggested that Nusselt number shows direct behavior with thermal slip 
and radiation parameters where reverse effect was noticed for large Eckert 
number.

In view of aforementioned literature survey, it is concluded that Prandtl–
Eyring fluid in the cylindrical geometry is not addressed yet. Therefore 
our intention here is to develop a novel mathematical modeling for 
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incompressible MHD43,44 Prandtl–Eyring fluid flow near the stagnation-
point induced by stretching cylinder. Energy expression is characterized 
with thermal radiation. Suitable transformations are utilized to convert the 
set of non-linear PDEs into a system of highly non-linear ODEs. The reduced 
dimensionless system is then solved by Shooting method. The influence of 
various controlling parameters and dimensionless numbers, like curvature, 
magnetic, radiation and fluid parameters, Prandtl and Biot numbers on the 
fluid velocity, temperature as well as skin friction and heat transfer are 
reported via graphs and investigated. The present results of skin friction 
and heat transfer rate are compared with the previous published work in the 
limiting cases which are found to be satisfactory.

MATHEMATICAL MODELING
We consider steady, axisymmetric and 2D MHD stagnation-point flow 
of incompressible Prandtl–Eyring fluid model by a stretching cylinder. 
Radiation is considered in the heat expression. Further, let the cylinder 
is being Stretchable in the xx-axis with linear velocity . Let the 
respective (x, r)-coordinates are presumed in cylinder and normal to it (see 
Fig. 1). Moreover, heat transportation is performed under the convective 
surface condition. The constitutive equation for the Prandtl–Eyring fluid 
model45 is given as

       (1)

Figure 1: Flow configuration.
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In Eq. (1), T, p, I and μ are fluid Cauchy stress tensor, fluid pressure, 
identity tensor, and dynamic viscosity respectively. Where S strands for 
extra stress tensor of Prandtl–Eyring fluid model and given as follows45:

     (2)
In Eq. (2), a1 and c1 denotes the material parameters of fluid and 

A1=∇V+(∇V)T is the first Rivlin-Ericksen tensor. The first Rivlin-Ericksen 
tensor A1 for present study in cylindrical coordinates is expressed as

     (3)
The required component of the present model is given by

     (4)
here sinh−1 is presumed upto second-order estimation and is expressed by

    (5)
Under the above assumption, the flow governing expressions are46,47,48

       (6)

  (7)

  (8)
along with associated boundary conditions47,48

   (9)

     (10)
In which u and v represents the respective velocity in the xx- and rr-directions 
, T, Tw and T∞, indicates fluid, boundary and free stream temperatures 



Mathematical Modeling and Thermodynamics of Prandtl–Eyring Fluid ... 149

respectively, the symbols ν, B0 and σ denotes kinematic viscosity, strength 
of magnetic field and liquid electrical conductivity respectively. The thermal 
diffusivity, coefficient of mean absorption, fluid density, specific heat 
and Stefan-Boltzmann constant are denoted respectively by the symbols 

.
Now, considering the following similarity variables

  (11)
where

      (12)
Using Eq. (11) along with Eq. (12) in Eqs. (6)–(10), gives

  
         (13)

     (14)

     (15)

       (16)

In the above expressions  denoted fluid parameters, 

 indicates the curvature parameter,  means a magnetic 

field parameter,  is the ratio of velocities,  denotes the 

Prandtl number,  denotes radiation parameter and  
is the Biot number.

Finally, the mathematical expressions for the important aspects i.e., skin 
friction coefficient (Cfx)(Cfx) and the Nusselt number NuxNux are given by

      (17)
In Eq. (17), the wall shear stress and heat flux respectively are
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   (18)
Inserting Eq. (11) along with Eq. (12) into Eq. (17) we obtain

   (19)
where represents the local Reynolds number and can be expressed as 

.

NUMERICAL SCHEME
The obtained dimensionless system of ODEs and validation analysis together 
with the appropriate conditions cannot be simulated directly or analytically 
due to highly non-linear nature . Therefore, these non-linear ODEs are solved 
numerically by implementing Shooting iterative technique via Mathematica 
software. Here, in this numerical procedure first higher order ODEs in Eqs. 
(13) and (14) are altered into a set of first order ODEs. In this numerical 
procedure, it is also very significant to assume an appropriate finite value 
for η→∞. Furthermore, we also choose suitable initial guesses of f′′(0) and 
θ′(0) and obtain the solution by adopting Runge-Kutta Fehlberg fifth order 
technique as an initial value problem which has truncation error of order 
5. The accuracy of the current results has been verified and are given in 
Tables 1, 2, 3 by comparing with the existing solutions of49,50,51,52,53,54 
for some particular cases, where it is revealed that the current results and 
their solutions are approximately identical.

Table 1: Comparative values of skin friction  against variations in M 
when A=1,K=β=B=Pr=R=Bi=0.0
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Table 2: Comparison of f′′(0) when A=1,M=K=β=Pr=R=Bi=0.0 for some 
particular values of B

Table 3: Comparison of θ′(0) when A=1,Pr=10,M=K=β=R=B=0.0 for various 
values of Bi

DISCUSSION ON GRAPHICAL OUTCOMES
Here significance of different control physical parameters of the projected 

problem on the flow velocity (f′(η)), Skin friction , temperature 

(θ(η)) and heat transfer  are discussed and presented through 
graphs.
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Figures 2, 3, 4 demonstrated the influences of distinct values of fluid 
parameters A and B1, magnetic parameter M, curvature parameter K and 
ratio of velocities B over velocity gradients. Figure 2a portrays the features 
of fluid parameter A on the fluid velocity for both cases (M=0, and M=1), 
while remaining parameters are kept fixed. It is concluded from this graph 
that a rise in values of A causes boosts up f′(η) and momentum boundary 
layer thickness. Because the higher values of A tend to diminish the viscosity 
and this overcomes the resistance offered to the liquid. Therefore, boundary 
layer thickness enhances. It is further remarked that f′(η) in the absence of 
M shows larger value compared to the velocity field in the presence of M. 
The similar trend was also reported by Hussain et al.45. Figure 2b shows 
that fluid velocity gradient tends to reduce due to rise in fluid parameter β. 
It holds physically because β varies inversely with momentum diffusivity, 
which causes a reduction in velocity gradient. Relatively, the β variation in 
presence of M shows lesser velocity than the absence of magnetic field. The 
influence of curvature parameter K over dimensionless velocity field in both 
cases (M=0, and M=1) is presented in Fig. 3a. Here it is revealed from the 
plot that both the velocity and thickness of the momentum layer rises for K 
in the absence of M. In fact K varies inversely with radius of cylinder. Thus 
larger estimation of K decays the cylinder radius and hence contact zone of 
the cylinder with fluid diminishes. Hence less resistive force occurs for the 
fluid and consequently velocity field improves. Behavior of velocity ratio 
parameter on the dimensionless fluid velocity in the presence/absence of 
M is sketched in Fig. 3b. Here, f′(η) is higher against higher B values due 
to higher free stream velocity. Furthermore, when U0 dominates over U∞, 
then f′(η) diminishes for larger B It is also noted from Fig. 2b that for B=1 
there is no boundary layer as the free stream and stretching velocities are 
equivalent. On the other hand, fluid velocity in case of M=0 diminishes. 
Similarly, Fig. 4 is prepared to show the behavior of magnetic parameter M 
with and without fluid parameter β while retaining the remaining parameters 
fixed on the f′(η) against η. It is revealed from Fig. 4 that an increase in the M 
values causes a rise in both the velocity and thickness of momentum layer. 
It holds physically that a rise in M causes an increase in Lorentz force, thus 
f′(η) declines. Moreover, the flow field is more influenced with M when β=1.
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Figure 2: Variations in f′(η) (a) A for M=0 and M=1 (b) β for M=0 and M=1.

Figure 3: Variations in f′(η) (a) K for M=0 and M=1 (b) B for M=0 and M=1.

Figure 4: Impact of M and β on f′(η).

The effects of radiation parameter R, magnetic parameter M, Prandtl 
number Pr, curvature parameter K and Biot number Bi, over dimensionless 
temperature field are plotted in Figs. 5, 6, 7. Figure 5a is designed to show 
the behavior of Prandtl number Pr on the temperature against η with and 
without radiation parameter R. It is evident that temperature down with 
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improvement in Pr. Because by enhancing Pr, the fluid thermal diffusion 
declines, which accordingly drops the temperature and corresponding thermal 
layer. Additionally, the temperature field with R shows more heat transfer 
compared to the temperature field without radiation. The significance of Biot 
number Bi over the temperature for both cases (M=0 and M=1) is displayed 
in Fig. 5b. It is investigated from the plot that temperature and thickness 
of the related layer are enhancing functions of M and Bi. Higher values of 
Bi results in higher heat transfer coefficient which consequently boosts the 
temperature field. The influence of curvature parameter K in the presence/
absence of magnetic parameter M over dimensionless temperature field is 
witnessed in Fig. 6a. It is clearly analyzed that for higher K near the surface 
thickness of thermal layer declines whereas it rises far away from the surface 
with M. It holds physically that rise in K causes an enhance in heat transfer 
due to which temperature distribution falls adjacent to the surface, on the 
other hand, it is the reason for rising the ambient temperature distribution. 
Figure 6b reveals that fluid temperature declines an increment in the ratio of 
velocities B. However, opposite behavior is found for magnetic parameter M 
on fluid temperature (see Fig. 7a). Because Lorentz force rises for higher M 
and consequently more heat is added which gives rise to temperature field. 
More improvement is observed when radiation parameter R is presented. 
Similarly, Fig. 7b highlight the behavior of fluid temperature against η for 
radiation parameter R in the presence/absence of M. It is witnessed from the 
graph that an increase in R causes a boost in the temperature distribution of 
the flow. This is because a rise in R generates the heat energy to the flow, 
as a result, the thermal layer thicknesses enhances. Also, fluid acquires high 
temperature in the presence of M.

Figure 5: Variations in θ(η) (a) Pr for R=0 and R=1 (b) Bi for M=0 and M=1.
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Figure 6: Variations in θ(η) (a) K for M=0 and M=1 (b) B for M=0 and M=1.

Figure 7: Variations in θ(η) (a) M for R=0 and R=1 (b) R for M=0 and M=1.

The skin friction coefficient  and Nusselt number  
variation due to the change in emerging parameters in the presence/absence 
of M are sketched in Figs. 8 to 9. It is perceived from Fig. 8 that the magnitude 
of the skin friction rises with magnetic parameter M. This is because M creates 
an opposing force which diminishes the fluid velocity and consequently, the 
skin friction rises for larger values of M. The results investigated in Fig. 
8a shows that, the fluid parameters A and β have opposite behavior on the 
skin friction. Additionally, it is detected from Fig. 8b that as K boosts the 

 also boosts. Physically, velocity field at the surface of a cylinder is 
higher compared to that of a flat plate. On the other hand, the magnitude of 
the skin friction declines with rising values of B. Similarly, the behaviors of 
curvature parameter K, Prandtl number Pr, radiation parameter R and Biot 
number Bi in the presence/absence M on Nusselt number are witnessed in 
Fig. 9. It is revealed from Fig. 9 that the magnitude of heat transfer is higher 
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in absence of M. It is further explained in Fig. 9a that the magnitude of heat 
transfer is boosted for an increasing values in curvature parameter K. It is 
evidently analyzed that for higher K near the surface thickness of thermal 
boundary layer declines. From this Figure, it is investigated that with rise 
in Pr heat transfer rises. This is because Pr declines the fluid temperature 
which enhances the gap between fluid and surface temperature. Finally, it is 
revealed from Fig. 9b that the magnitude of heat transfer is higher for larger 
values of Biot number Bi and radiation parameter R.

Figure 8: Variations in  (a) A against β for M=0 and M=1 (b) K against 
B for M=0 and M=1.

Figure 9: Variations in  (a) K against Pr for M=0 and M=1 (b) R 
against Bi for M=0 and M=1.
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CONCLUSION
Here the numerical simulation of a 2D stagnation-point flow of MHD 
Prandtl–Eyring fluid over a stretching cylinder has been inspected. Further, 
convective boundary condition and radiation effect are also considered in this 
study. The computations of converted set of non-linear ODEs are performed 
successfully by Shooting method numerically using Mathematica software 
11. The following are some of the significant findings from the present work:

• It is investigated that fluid velocity decays for higher values of 
magnetic parameter M while the fluid temperature enhances.

• Velocity field improves for fluid parameter A, curvature parameter 
K and ratio of velocities B; while decreasing function of fluid 
parameter B.

• Further, it is revealed that dimensionless fluid velocity and related 
layer thickness are enhancing functions of curvature parameter 
K, Biot number Bi and radiation parameter R; while decreasing 
functions of Prandtl number Pr and ratio of velocities B.

• It is concluded that the skin friction boosts by enhancing the fluid 
parameter A, curvature parameter K and magnetic parameter M.

• The heat transfer rate is boosted for Biot number Bi, radiation 
parameter R, Prandtl number Pr and curvature parameter K.

• Comparative study shows that current outcomes have better 
relevance with existing results.
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problems in the traditional supply chain. Considering the importance of 
evaluating supply chain networks, especially in the field of perishable 
commodities, this paper aimed to design a mathematical model for the 
reverse supply chain of perishable goods, taking into account the sustainable 
production system. In this research, four objective functions were considered 
to maximize profitability and the level of satisfaction with the use of 
technology, minimize costs and measure environmental impacts. The results 
of the implementation of the proposed model for a manufacturing company 
show that objective functions are sensitive to demand, so the change in 
demand changes the objective functions, in particular the profitability 
function.

INTRODUCTION
Reduction in raw materials, increase in pollutants and the extent of pollution 
caused by them have been important issues for organizations in recent 
decades. In addition, failure to observe ethical responsibilities will lead 
to increased costs and thus reduced profitability. Sustainable supply chain 
management is rooted in sustainability and includes an extensive approach to 
supply chain management. Sustainability in the supply chain means pushing 
the supply chain to focus on social, economic and environmental aspects, and 
addressing the existing problems in the traditional supply chain. Sustainable 
supply chain includes all logistics costs from an economic point of view, 
reducing the amount of contaminants released from an environmental point 
of view, and reviewing social responsibility from a social point of view.

The supply chain for perishable products includes products with a 
durable shelf life and limited production, the management of which requires 
making right decisions (Katsaliaki et al. 2014). Rapid food spoilage leads 
to a loss in the volume of many foods and more pressure on FSCs; it also 
reduces the quality, profitability and sustainability of food. Some of the food 
losses that occur after harvesting and in the supply chain transportation are 
inevitable. According to FAO reports, 20–60% of the total production in 
all countries and one-third of food products for human consumption in the 
world (about 1.3 billion tons per year) are lost after harvesting.

With an increase in food demand in the world, production is one of the 
ways to meet these needs; in addition, reducing waste in each stage of the 
food chain can be an option for productivity when increasing production. 
Many cases in manufacturing operations can be effective in causing waste, 
most of which, according to Lemma et al., are inefficiency in production, 
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storage and transportation. In addition, inappropriate planning and supply 
chain management practices are the main operational reasons for wastes in 
different countries (Lemma et al. 2014).

At the strategic level, the key issue is the design or reengineering of 
the supply chain network, which addresses the location and evaluation of 
facilities and the flow of materials through the network. In the meantime, 
supply chain management is seeking to achieve goals such as effective 
economic competitions, time and quality of service, specifically in the 
economic environment characterized by the globalization of transactions and 
acceleration of industrial cycles (Eskandarpour et al. 2015). Coordination, 
integration and management of business processes in the supply chain will 
determine the competitive success of food companies. Sustainable food 
supply chain management includes procurement of raw materials, production 
and distribution, and processes for collecting used or unused products, to 
ensure social, economic and environmental sustainability (Bloemhof and 
Soysal 2017).

According to Bloemhof and Soysal, about 40% of food waste is related 
to supply chain activities, such as transportation that requires specific 
conditions and storage, management and packaging of perishable products. 
So, supply chain sustainability means improving the mix of various and 
sometimes contradictory factors, and how to combine economic, social and 
environmental indicators (Bloemhof and Soysal 2017).

Due to competition, changes in customer demand and legal issues, 
corporate executives need to focus on aspects of the sustainability of value 
creation, including a new set of challenges in decision making. Companies 
are trying to develop products with a certain quality and minimal cost. Today, 
the environmental and social performance of products beyond the entire life 
cycle of the product should be taken into account. From an environmental 
point of view, product design should lead to products that are characterized 
by reducing the severity of harmful substances, less input of toxic materials, 
decomposition, durability, ease of recovery, and less energy consumption 
and life span. Stindt argued that supply chain design is a mutual planning 
issue that involves all processes of the value chain of the core company with 
interfaces with the supplier and consumer that shows the resources and flow 
of materials (Stindt 2017). Recently, more companies have turned to using 
sustainable proactive strategies and management operations of an evolving 
sustainable supply chain. In the meantime, researchers considered closed 
loop supply chain (CLSC) as one of the most important factors for achieving 
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sustainable operations. In the modern world of business, focus is not only on 
reducing costs and increasing profits, but also on achieving sustainability and 
creating a balance between social responsibility, environmental protection 
and economic prosperity; these factors result in sustainability (Sgarbossa 
and Russo 2017).

In the present paper, considering factors such as reverse chain trend, 
sustainability and environment, perishable goods logistics, the use of 
different vehicles with certain speeds, and determining the details of 
supplier and retailers, attention has been paid to the productivity increase 
throughout the chain from beginning to the end, reduction of environmental 
damages and intra-chain productivity by four different objective functions: 
(1) minimization of supply chain design cost; (2) measuring the overall 
environmental impact over the network; (3) maximization of the profitability 
of the chain according to the product’s novelty; (4) maximization of the level 
of satisfaction of using technology. The research also created a potential 
for measuring the performance and predicting the process by creating the 
objective function of satisfaction of the use of technology.

LITERATURE REVIEW
The supply chain of products and services, especially when it comes to 
highly perishable products needing high level of services, is usually difficult 
to handle. In this case, simulation can offer a reliable approach toward 
studying and evaluating the processes and outcomes of such supply chains, 
and presenting suitable alternatives that can achieve optimal performance. 
Spoilage is a common phenomenon. Products may lose their value or quality 
suddenly or gradually. Fruits, vegetables, flowers, medicines, blood, dairy 
products, meat and food are prominent examples. Spoilage is the main 
concern of the supply chain, because the quality or value of most products 
is reduced over the life span. Spoilage is a nonlinear function that affects 
many factors, such as transportation types (Sazvar et al. 2016). Integrating 
objectives includes dimensions of sustainability, economic, environmental 
and social development, which are derived from the needs of stakeholders 
and customers (Galal and Moneim 2016).

Katsaliaki et al. have provided a game-based approach to facilitate 
decision-making on perishable products (Katsaliaki et al. 2014).

Researchers have used different methods to optimize the food supply 
chain and support the decision-making process, with some aiming to model 
food management and productivity, focusing on minimizing food waste 
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along the supply chain. Food supply chains (FSCs) can be considered as a 
component of variable supply chain due to continuous and significant changes 
in the quality of food products throughout the supply chain until the final 
consumption. Also, due to the product’s perishable nature, high volatility in 
demand and price, and increasing consumer concerns for food safety, FSC is 
a more complex chain that is tied to environmental conditions, as compared 
to other supply chains. To reduce food waste, proper study and performance 
is needed to improve the entire supply chain. Many approaches have been 
taken by researchers and practitioners to reduce food wastage. However, 
some studies were made by two-echelon inventory system for perishable 
items in supply chain (AriaNezhad et al. 2013). At the governmental level, 
many countries have taken various approaches to reduce waste. For example, 
at the production stage, the government supports farmers to improve the 
availability of agricultural development services and to improve harvesting 
techniques. In addition, improvement of the availability for storage, process 
improvement and packaging techniques, consumer education campaigns, 
etc., are used in a variety of areas.

In most researches, LP methods have been used to improve the supply 
chain. In addition, some recent researches have used advanced optimization 
techniques, such as an evolutionary optimization approach. This suggests 
that advanced modeling methods are at maturity stage and require further 
studies on perishable food products.

Lemma have considered production, transportation and inventory as the 
main causes of waste generation, which have high impacts on this stage of 
the supply chain. Lots of wastes are generated throughout the supply chain; 
however, little attention is paid to minimizing food waste (Lemma et al. 
2014).

When the market is disturbed, that is, expected demand or variance 
varies from one period to another according to a probability principle, there 
is typically less likelihood of sustaining long-term partnerships in a booming 
market or a market with low demand variations. Further information on 
future fluctuations may not help the supply chain to sustain long-term 
partnerships due to strategic considerations of the partners. With availability 
of the market signal, the overall supply chain profit will increase, but the 
profitability of the retailer may be even worse (Sun and Debo 2014).

Some of the challenges in sustainable supply chain management are 
more important to be analyzed. In the same vein, companies’ survival 
not only needs to make the sustainability issues involved in the plan, but 
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also has to consider their strategic impact. Therefore, appropriate goals or 
functional indicators must be defined to achieve an appropriate decision-
making process. Uncertainty is a factor that can deteriorate each model in 
supporting the decision making and reduce the importance of scheduled 
goals for such models. One of the origins of such uncertainty is the forecast 
mistakes that affect small and medium enterprises, especially in the food 
supply chain (Li et al. 2014).

To assess the sustainability of the Greek dairy chain and the performance 
of individuals, Bourlakis et al. did an analysis using key indicators related 
to the efficiency, flexibility, accountability and product quality. The 
importance of these indicators has been assessed based on the perceptions 
of the key members of this chain. They did a comparative analysis in terms 
of sustainable performance indicators on the members of the Greek dairy 
chain. This analysis depicts many of the major functions of the members 
of this chain. In particular, there are significant differences regarding the 
cost of raw materials, production, operations, storage costs, delivery and 
distribution, flexibility in delivery to an alternative point of sale, the time of 
product protection, and the quality of the product packaging (Bourlakis et 
al. 2014). In general, a good supply chain performance needs awareness of 
customer needs and information changes (Fedrigotti and Fischer 2015). On 
the other hand, selection of sustainable suppliers in supply chain has a great 
importance (Ghoushchi et al. 2018).

Supply chain network design (SCND) models and methods have been 
the subject of many recent studies. Eskandarpour et al. analyzed 87 articles 
in the design of sustainable supply chain network covering mathematical 
models that include economic factors, as well as social or environmental 
dimensions. Nagurney has designed sustainable supply chain design for 
sustainable cities. The supply chain provides the necessary infrastructure 
for the production and distribution of products and services in the network 
economy and serves as a channel for manufacturing, transporting and 
consuming a range of products from food, clothing, automotive and high-
tech products, even to health care products. Cities, as mainstream population 
centers, serve as major demand points, distribution centers and large storage 
facilities, transport providers and even manufacturers. For sustainable supply 
chains, focusing on sustainable cities, we can use a precise mathematical 
modeling with computational framework (Nagurney 2015). In another place, 
Galal and Moneim addressed the development of sustainable supply chain 
in developing countries and used AHP and other indicators to arrive at the 
final solution. They believe that supply chain sustainability is achieved by 
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taking into account the economic, environmental and social aspects of the 
decision-making process. In developing countries where supply chains are 
often labor-intensive and environmental laws are still at their infancy, both 
environmental and social aspects must be taken into account. To achieve 
sustainability objectives, there is need for cooperation between supply chain 
managers. To maintain its position and role in the supply chain, each member 
must comply with environmental and social objectives. Competition must 
also be achieved through the fulfillment of customer requirements and 
economic aspects. It should be considered that the failure of one stage 
or player in the supply chain affects the performance of the entire supply 
chain and its competitions. The supply chain is considered as a system of 
individuals whose performance identifies the overall stability of the supply 
chain (Galal and Moneim 2016). There has been growing concern about 
the environmental and social effects of commercial operations in the last 
decade. The sustainability of the supply chain has attracted the attention of 
the academy and industry at the same time, taking into account the economic, 
environmental and social values. The issues of timely delivery and disposal 
of spoilt products are very worrying, especially for perishable and seasonal 
products such as the fresh crops. Sazvar introduced a multi-objective multi-
supplier supply chain with perishable products in which a multi-objective 
linear mathematical method is used. Some variables, such as final consumer 
demand, the proportion of delayed orders and the rate of corruption are 
uncertain. The model of this paper simultaneously considers the economic 
and environmental objectives of perishable supply chains, emphasizing the 
details of the social aspects of the specific applications of the flower-picking 
industry. Integration of environmental and social aspects with economic 
considerations, which comprise the three dimensions of organizational 
sustainability, has gained importance in management decisions in supply 
chain management. As compared to the old SCM, typically, the focus is 
on financial and economic business performance, sustainable SCM with 
explicit integration of environmental or social objectives for the expansion 
of economic dimensions (Sazvar et al. 2016; Zhang et al. 2016).

Because the wastes in the emerging markets are high from harvesting 
to consumption in the supply chain of perishable food, such as fruit and 
vegetables, Balaji and Arshinder also analyzed the causes of waste 
generation in the supply chain of unsustainable foods. This study was 
conducted to identify the causes of food waste and their interdependencies 
and to analyze the interactions among them. This paper presents a fuzzy 
MICMAC and total interpretive structural modeling (TISM) (Balaji and 
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Arshinder 2016). Fresh fruits and vegetables (FFV) are among the most 
important components of the retail chain and serve as a strategic product in 
attracting customers. The demand for fresh fruits is growing year by year. 
There is also a higher potential for the future. Food products come from a 
farmer’s land to the end customer through a long chain of intermediaries 
like farmers, cooperatives, wholesalers, retailers, commissioners, which can 
cause a lot of waste (Agarwal 2017).

In order to design a sustainable supply chain based on post-harvest losses 
and harvest timing equilibrium, a sustainable two-way optimization model 
was presented by An and Ouyang in which a food company maximizes its 
profit and minimizes the post-harvest waste by expanding process facilities 
and purchases, price determination, a group of non-cooperative early 
distributor farmers, harvesting time, transportation, storage and market 
decisions which have been considered as product uncertainty and market 
equilibrium (An and Ouyang 2016).

Given the evolution of the agricultural sector and the new challenges 
facing it, effective management of agricultural supply chains is an attractive 
topic for research. Therefore, uncertainty management in the supply chain 
for the agricultural crops is important in researches on the latest advances 
in operational research methods to manage the uncertainty that occurs in 
supply chain management issues (Borodin et al. 2016).

In another study, in order to achieve multi-objective optimization for 
the design of a sustainable supply chain network with respect to distribution 
channels, a new method for designing SCN with multiple distribution 
channels (MDCSCN) was presented. By providing direct products and 
services to customers by available facilities, as a substitution for the 
conventional products and services, this model benefits them. Sustainable 
objectives, such as reducing economic costs, increasing customer coverage, 
and mitigating environmental impacts, contribute to MDCSN design. A 
multi-objective artificial bee colony (MOABC) Algorithm for solving the 
MDCSCN model, which integrates the priority paradigm coding mechanism, 
Pareto optimization and the swarm intelligence of the bee colony, was 
provided. The concept of sustainable development would be taken into 
consideration when it can reduce economic costs for chain companies, 
increase the flexibility of customer orders and reduce environmental impacts 
(Zhang et al. 2016).

Because of competition, customer pressure and legal issues, corporate 
executives need to focus, during decision making, on aspects of sustainability 
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of value creation, including a new set of challenges. Companies are striving 
to develop products of a specific quality with minimal cost. Today, the 
environmental and social performance of products beyond its entire life cycle 
should be taken into account. From an environmental point of view, product 
design should result in products that are characterized by reduced material 
severity, lower input of toxic materials, biodegradability, durability, ease of 
recovery and lower energy consumption during the life cycle. Supply chain 
design is a mutual planning issue that involves all value chain processes of 
the core company with interfaces for supplier–consumer that illustrate the 
resources and flow of materials (Stindt 2017).

To optimize the fresh food logistics, an optimization model was 
proposed with three types of decision-making in gardening, which deal 
with the purchase, transportation and storage of fresh produce (Soto-Silva 
et al. 2017). The management of unsophisticated food in retail stores is 
very difficult due to the short life span of products and their spoilage. Many 
elements, such as price, shelf space allocation and quality that can affect the 
rate of consumption, should be considered when designing step for the retail 
chain perishable food. Xiao and Yang designed a retail chain for perishable 
foods and provided a mathematical model for a single-item retail chain, 
and determined the pricing strategy, shelf space allocation, and quantity 
assignment to maximize the overall profitability of the retailer with the use 
of tracer technologies (Xiao and Yang 2016).

In the contemporary business world, focus is not only on reducing costs 
and increasing profits, but also on achieving sustainability and balance 
between social responsibility, environmental protection and economic 
prosperity. These factors lead to sustainability; therefore, a preventive model 
in the food supply chain can be useful (Sgarbossa and Russo 2017).

In recent years, food safety incidents have occurred in many countries, 
and issues related to the quality of food and safety have become more 
socially appealing. Due to the concern about the quality sustainability of 
the food supply chain, many companies have developed a real-time data 
mining system to ensure the quality of the products in the supply chain. For 
food safety and quality issues, the food chain precautionary system helps 
in the analysis of the food safety risk and minimization of the production 
and distribution of poor quality or non-safe products. Precaution also helps 
in improving the quality of food due to ensuring the sustainability of the 
supply chain quality. Therefore, Wang and Yue introduced a data mining 
food safety precautionary system for a sustainable supply chain (Wang and 
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Yue 2017). Other aspects of deteriorating items have been studied by several 
researchers (Singh et al. 2017; Sundara Rajan and Uthayakumar 2017; 
Uthayakumar and Tharani 2017).

PROBLEM STATEMENT AND MATHEMATICAL 
FORMULATION
Considering the problem statement, the assumption considered in the design 
process of the mathematical model as well as the proposed model solution 
is as follows:

• The number of retailers is known.

• The demand for retailer l for the period p specified with  is a 
specific variable, and retailers’ demands are independent of each 
other.

• There are different vehicles with different capacities that should 
be considered.

• Every retailer/open top distribution center is visited at a maximum 
of once per period.

• Soft time windows are included.
• There is more than one vehicle for each route.
• If a retailer or open top distribution center needs service, there 

should be more than one vehicle for servicing.
• The time period is considered as 1 day.
• The capacity of manufacturers and distribution centers is limited.
• At all stages, vehicles are available from the morning and the 

maximum availability time for each vehicle is less than or 
equivalent to working time per day.

• Distribution centers meet retailers’ demand, and manufacturers 
can meet the orders of distribution centers.

• Retailers and distribution centers can order more than they need 
(they also have the permission for storage).

• One type of product is considered.
• In retail and distribution centers, no return can be made.
• The time and cost of dispatching the vehicle are known.
• Travel cost and unit distance are specified.
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• The cost of maintenance is known.
• The service time is specified for each retailer.
• The speed of the vehicle is known.
• Products should be ordered in such a way that none expires in the 

warehouse.
• The first round of work should start and end at the same open top 

production unit.
• The second round should start and end at the same center of the 

open top distribution center.
• Manufacturers cannot directly sell products to retailers.
Before dealing with the mathematical model, the sets, parameters and 

decision variables are described prior to the mathematical model.

Sets
• K: A set of various types of vehicles.
• M1: Set of type 1 vehicles.
• Mk: Set of type K vehicles.
• Tech: Set of manufacturing technologies.
• M: Set of potential producers.
• D: Set of potential distribution centers.
• L: Set of retailers.
• P: Set of time intervals.
• N1: Set of nodes including 
• N2: Set of nodes including 

Parameters
• cij: The average cost of traveling from nodes i to j.
• OCd: The cost of opening the distribution center d.
• OCm: The cost of opening the manufacturing unit m.
• Scme: The cost of technology deployment that must be built in the 

production center m.

• : Customer demand for retailer l over time interval p.
• VCdp: Variable cost for maintaining a product at the distribution 

center l in the time interval p.
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• VCmep: The cost of producing each unit at the production center d 
with technology at the time interval p.

• FVFk: The fixed cost of every vehicle launched in the first round 
for a K-type vehicle.

• FVSk: The fixed cost of every vehicle launched in the second 
round for a K-type vehicle.

• EOme: Environmental effects of the outdoor production unit m 
with the technology e.

• EOd: Environmental impacts of open top distribution center d.
• VEdp: Environmental impacts of preserving each unit in the open 

top distribution center d in the time interval p.
• VEmep: Environmental impacts of manufacturing in each unit 

in the production unit m with the technology level e in the time 
interval p.

• ETij: Average transfer of environmental effects from node i to 
node j.

• DMax: Maximum desirable number of distribution centers.
• MMax: Maximum desirable number of producers.
• Qk: Capacity of vehicle type k.

• : Delivery time specified for vehicle type k.
• Capd: Storage capacity of distribution center d.
• Capme: Producer Capacity m for production with technology e.
• Idp: The amount of product stored at the distribution center d as 

inventory at time interval p.

• : The amount of product stored in retail l as inventory at time 
interval p.

• : A confidence coefficient that allows distribution centers to 
store a percentage of their previous period delivered to retailers.

• : Maximum continuous period to keep a perishable foodstuff.
• Dm;kp: Distance of movement of vehicle Mk type K in time interval 

p.
• WT: Working time per day.
• t: Time index.
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• : A re-run time for a vehicle Mk type K for node i in the time 
interval p.

• disij: The distance between the nodes i and j.
• Sm;k: Average speed of type K vehicle Mk.

• : The delivery distance assigned by a k type vehicle Mk for 
a node i in the time interval p.

• udip: Time to enter distribution center i in time interval p.
• edip: The earliest entry time for the time window for the distribution 

center i at the time interval p.
• ldip: The most delayed entry time for the time window for the 

distribution center i at the time interval p.
• pdep: Cost of waiting penalty or waiting time unit for Distribution 

Centers i at time interval p.
• pdlp: Latency penalty fee or the delayed arrival time for distribution 

centers i at the time interval p.

• : Time window deviation for distribution center i in time 
interval p.

• HCdp: The earliest entry time for the time window for retail i in 
the period p.

• HClp: The most delayed entry time for the time window for retail 
i in the period p.

• pbe: The cost of a waiting time penalty or time unit for retailer i 
at the time interval p.

• : The latency penalty fee or the delayed arrival time for 
retailer i during the period p.

• q: Level of freshness.

• : The level of freshness of the products in the retailer i at the 
time interval p.

• Bip: The quality of retail product i during the period p.
• pddp: The latency penalty fee or the delayed arrival time for the 

manufacturing unit i during the period p.
• uddp: Time to enter the manufacturing unit d in time interval p.
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• prlp: The latency penalty fee or the delayed arrival time for the 
distribution center i during the period p.

• urlp: Time to enter the distribution center l in the time interval p.
• urjp: Time to enter the retail l in the time interval p.
• pded: The latency penalty fee or the delayed arrival time for the 

manufacturing unit i with the technology e.
• prip: The latency penalty fee or the delayed arrival time for 

retailers i during the period p.
• prep: The latency penalty fee with the technology e in the time 

interval p.
• l′: Undefined retailers.
• N′: Prohibition of circulation subsets.

• : The working time for a K type vehicle Mk for the node j in 
the time interval p.

Decision Variables

• : If the vehicle Mk type K, within the time interval p, travels 
the distance between manufacturers and distributors, otherwise 0.

• : If the vehicle Mk type K, within the time interval p, travels 
the distance , otherwise 0.

• : If the vehicle Mk type K, within the time interval p, travels 
the distance arc(i, j) from the retailer 1, N2, otherwise 0.

• : If the vehicle Mk type K, within the time interval p, meets 
the retailer 1. Otherwise 0.

• : If the distribution center d services the retailer l within the 
time interval p. Otherwise 0.

• yd: If the distribution center d is opened. Otherwise 0.
• zme: If the manufacturing unit m with technology e, is opened. 

Otherwise 0.

• : If the vehicle Mk type K, within the time interval p, travels 
the distance between manufacturers and distributors in arc(I, j), 
otherwise 0.
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• : If the vehicle Mk type K, within the time interval p, travels 
the distance arc(I, j) N2, otherwise 0.

• : If the vehicle Mk type K, within the time interval p, meets 
the distribution center d, otherwise 0.

• : The amount of products delivered to the retailer 1 with the 
vehicle Mk type K within the time interval p.

• : The amount of products delivered to the distribution center 
d with the vehicle Mk type K within the time interval p.

• hmep: The amount of product produced in the manufacturing unit 
m with technology t within the time interval p.

Mathematical Modeling
In this section, the four objectives of the research problem were first 
discussed; then, the constraints were introduced suitable to the problem.

rmkk
lip : If the vehicle Mk type K, within the time interval p,

travels the distance arc(i, j) from the retailer 1, N2,

otherwise 0.

gmkk
lp : If the vehicle Mk type K, within the time interval p,

meets the retailer 1. Otherwise 0.

bdlp: If the distribution center d services the retailer

l within the time interval p. Otherwise 0.

yd: If the distribution center d is opened. Otherwise 0.

zme: If the manufacturing unit m with technology e, is

opened. Otherwise 0.

xmkk
mdp: If the vehicle Mk type K, within the time interval p,

travels the distance between manufacturers and distrib-

utors in arc(I, j), otherwise 0.

xmkk
ijp : If the vehicle Mk type K, within the time interval p,

travels the distance arc(I, j) N2, otherwise 0.

qmkk
dp : If the vehicle Mk type K, within the time interval p,

meets the distribution center d, otherwise 0.

gmkk
lp : The amount of products delivered to the retailer 1

with the vehicle Mk type K within the time interval p.

dmkk
dp : The amount of products delivered to the distribu-

tion center d with the vehicle Mk type K within the time

interval p.

hmep: The amount of product produced in the manufac-

turing unit m with technology t within the time interval

p.

Mathematical modeling

In this section, the four objectives of the research problem

were first discussed; then, the constraints were introduced

suitable to the problem.
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ð1Þ
The 1 objective function reduces the overall variable

and fixed costs of supply chain design. The first part is the

fixed cost of opening a production unit, and the second is

the fixed cost of association with the consolidation and

learning of technology. The third part is about the fixed

cost of opening distribution centers. It is important to know

that the above corrections are related to the first stage of a

two-stage model that includes decisions that need to be

made before identifying the demands and vehicle routes in

different periods or the fixed costs of the opening. The

remaining parts are related to the second stage. They show

variable costs, and these decisions are made after demands

have been periodically determined. Parts four and five are

transportation costs for the first and second periods. The

sixth and seventh sections represent variable costs in

manufacturing units and distribution centers. The next two

parts are the fixed costs of each round of the first and

second periods. The next two are the fine of distortion of

the time window and the final two parts of the cost of

inventory of distribution centers and retailers.
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The 2 objective function measures the overall environ-

mental impact over the network. The first two parts are the

environmental impacts related to the opening services of

manufacturing units and distribution centers. The next two

in the second phase are the environmental impacts asso-

ciated with the marine transportation of products from

production units to distribution centers in the first round

and from distribution centers to retailers in the second.

Finally, the two final sums are variable environmental

impacts that arise from executive activities in production

and distribution centers. All variables are described in

constraints (35) to (44).
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The 3 objective function indicates the maximum prof-

itability of the supply chain according to the freshness of

the products. This function consists of two parts; the first

part expresses the demand based on the products’ fresh-

ness, and the second part expresses the cost of production

(constant and variable) based on product quality. The 4

objective function also indicates the maximum level of

satisfaction with the use of technology due to its use in the
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   (1)
The 1 objective function reduces the overall variable and fixed costs of 

supply chain design. The first part is the fixed cost of opening a production 
unit, and the second is the fixed cost of association with the consolidation 
and learning of technology. The third part is about the fixed cost of opening 
distribution centers. It is important to know that the above corrections are 
related to the first stage of a two-stage model that includes decisions that need 
to be made before identifying the demands and vehicle routes in different 
periods or the fixed costs of the opening. The remaining parts are related to 
the second stage. They show variable costs, and these decisions are made 
after demands have been periodically determined. Parts four and five are 
transportation costs for the first and second periods. The sixth and seventh 
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sections represent variable costs in manufacturing units and distribution 
centers. The next two parts are the fixed costs of each round of the first and 
second periods. The next two are the fine of distortion of the time window 
and the final two parts of the cost of inventory of distribution centers and 
retailers.

   (2)
The 2 objective function measures the overall environmental impact 

over the network. The first two parts are the environmental impacts related 
to the opening services of manufacturing units and distribution centers. The 
next two in the second phase are the environmental impacts associated with 
the marine transportation of products from production units to distribution 
centers in the first round and from distribution centers to retailers in the 
second. Finally, the two final sums are variable environmental impacts that 
arise from executive activities in production and distribution centers. All 
variables are described in constraints (35) to (44).

   (3)

     (4)
The 3 objective function indicates the maximum profitability of the 

supply chain according to the freshness of the products. This function 
consists of two parts; the first part expresses the demand based on the 
products’ freshness, and the second part expresses the cost of production 
(constant and variable) based on product quality. The 4 objective function 
also indicates the maximum level of satisfaction with the use of technology 
due to its use in the production process based on the amount of pollutants 
and the construction costs.
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Constraints

     (5)

     (6)

    (7)

    (8)

    (9)

     (10)

     (11)

     (12)

   (13)

    (14)

    (15)

    (16)

       (17)
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       (18)

     (19)

    (20)

    (21)

   (22)

   (23)

   (24)

   (25)

   (26)

   (27)

    (28)

   (29)

   (30)
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   (31)

   (32)

   (33)

   (34)

  (35)

  (36)

   (37)

      (38)

    (39)

  (40)

   (41)

   (42))

   (43)

   (44)
Constraint (5) indicates that each customer has been visited only once. 

Constraint (6) shows the current visit to each retailer at any time interval 
and guarantees that the vehicle will return to the original distribution 
center. Constraint (7) shows that in the second level, each vehicle leaves 
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a maximum of one distribution center. Constraint (8) indicates that the 
capacity of each vehicle should be taken into account. Constraint (9) is 
the constraint of the elimination of circulation sets and ensures that each 
customer has been visited at any time interval. Constraint (10) states that 
each customer has entered a distribution center. The inequality (11) requires 
that in case a distribution center is closed, no retailer enters it. Otherwise, 
the overall demand of retailers by an open top distribution center could 
exceed its capacity. Constraint (12) states that the distribution center d 
serves the retailer if a vehicle Mk type k leaves d and reaches l and  
can also be equal to 1 if no vehicles go from d to l. Constraint (13) shows 
that if the vehicle Mk type k does not visit the retailer l, then the product 
amount transferred from the vehicle Mk type k to l should be zero. Constraint 
(14) shows the total balance in each retailer l. Constraint (15) shows that 
if a circulation enters the distribution center, the circulation must enter the 
retail; then, the distribution center is operationally balanced. Constraint (16) 
indicates that each circulation that leaves the manufacturing unit m should 
be defined. Constraints (17) and (18) limit the maximum distribution centers 
used and open top manufacturing units. Constraint (19) imposes ongoing 
observations in each distribution center at any time interval. Constraint (20) 
prohibits the circulation subsets.

Constraint (21) indicates the capacity of each vehicle. Constraint (22) 
shows that if the vehicle Mk type k does not enter the distribution center 
d, then the amount of product sent to the distribution center d by that 
vehicle must be zero and that the capacity of the vehicles should be taken 
into account. Inequality (23) states that the amount of product sent to the 
distribution center should be in line with its capacity. Constraint (24) requires 
that the product produced in the manufacturing unit m with technology e at 
the time interval p equals the amount of product to be delivered from that 
node. Constraint (25) indicates the capacity of the manufacturing unit m, 
and if no manufacturing unit m is used, then one cannot claim any product. 
Constraint (26) applies balance to each distribution center d. Constraint (27) 
ensures that the distribution center d has no inventory level higher than the 
total aggregate of products delivered by d in the previous continuous time 
period . Constraint (28) ensures that retailer l has no inventory 
levels above the overall demand over the next continuous time period 

. Constraint (29) calculates the delivery distance of each vehicle 
Mk type k in each time interval. Constraint (30) shows that the delivery time 
for a vehicle Mk type k at any time interval p should not exceed the working 
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time of each day. Constraints (31) and (32) show that at each interval, the 
arrival time for the i and j nodes is the same, plus the servicing time for node 
I with the vehicle in the node i, and the time to come from nodes i to j in 
first and second circulations. Finally, constraints (33) and (33) show that, 
for any time interval p, a penalty fee is incurred for the deviation from the 
time window because no arrival time exists for a node in the specified time 
interval in the first and second circulation rounds.

CASE STUDY
In this case study, the manufacturing group B.A was investigated. In this 
study, distribution of all types of ready-made foods of meat products to 
distribution centers was considered. This product should be consumed 
within 6 months from the time of production. Therefore, for this purpose, 
the importance of the subject was first introduced and then the details of the 
problem were addressed (Fig. 1).

Figure 1: The amount of objective function with variation in demand.

As suggested in the mathematical modeling section (Sect. 3), the 
proposed model is a reverse logistical chain network model of the sustainable 
production system of perishable goods, which is used in this section. In this 
study, due to the sensitivity of meat products, it is considered to be a difficult 
type. Before proceeding to solve the model, the sustainable manufacturing 
system in the company under study was briefly described.

The Setareh Yakhi Asia Company delivers all types of Persian and 
Western ready-made food products with the most advanced and up-to-date 
methods of preparation, processing and packaging under the brand B.A. 
B.A production group, using today’s modern technology and specialists, 
as the first and largest producer of ready-made and semi-ready Iranian and 
international halal foods, and according to the current and future needs of the 
stakeholders, aims to satisfy its customers and meet their various needs by 
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tireless endeavor through the implementation of participatory management, 
with the following policies:

• Compliance with national and international regulations and 
implementation of ISO9001-2008 quality management system 
requirements and ISO 22000-2005 Food Safety Management 
System.

• Client-oriented expansion at all levels of the organization 
and satisfying the consumers by implementing CRM system 
(Customer Relationship Management System).

• Continuous improvement of all processes in order to raise the 
level of quality and safety.

• Increasing the ability to “identify, assess, monitor and control” 
the risks to product safety and consumer health, and more efforts 
to maintain and improve GMP/GHPs (desirable conditions for 
construction and sanitation).

• Increasing the employees’ participation and empathy in decision 
making.

• Raising the level of knowledge of employees through practical 
and strategic training.

• Increasing productivity in key processes and achieving 
organizational excellence.

Creating and promoting effective inter- and intra-organizational 
communications: In this regard, all managers and staff are required to work 
toward achieving the above-mentioned goals and try to increase the level 
of satisfaction of the stakeholders and control the risks to the consumers. 
Therefore, the management representative in the quality and food safety 
management system, with sufficient authority, is responsible for continuous 
monitoring, evaluation and ensuring the correct functioning of the above 
systems. For the first time in the country’s food industry, designing products 
aimed at improving texture, taste, color, aroma and quality of food, as well 
as promotion of traditional and healthy Iranian foods that are unfortunately 
less common on the Iranian dining tables, such as vegetable omelet, potato 
omelet and cutlet, has been performed in the B.A. production group. For 
this purpose, in 1388, the formulation of more than 35 types of Iranian and 
foreign foods was performed under the supervision of reliable European 
and Iranian experienced experts in the food industry in cooperation with 
renowned Iranian chefs, and after the market test operations, they were 
gradually prepared for mass production and delivered to the consumer 
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markets. B.A., ready-made foods production group, has been embracing 
the latest technology in the production of fully cooked, frozen foods with 
traditional Iranian cuisine by the highly advanced machines and the expertise 
of managers in a land with an area of over 20,000 sq.m and a subtraction 
of 9000 sq.m in the large industrial complex of Shiraz with various venues 
including the following sections:

• A: The reception section for the red meat, consisting of below zero 
refrigerating room, as well as aging, bone removal, chopping, etc. 
(for warm meat).

• B: The reception section for the white meat consists of above and 
below zero refrigerating room, the initial washing and cleaning, 
in order to prevent microbial contamination (considering that in 
chicken slaughterhouses, chickens are not cleaned completely). 
Then, automatic transference to the chopping system which can 
split up to 6000 chicken carcasses into 2–14 pieces per hour 
automatically.

• C: Processing halls include two production halls: one for 
preparation of raw materials, the other for processing the product 
and packing it with the most advanced machinery and technology 
in the world. Therefore, the raw materials are received in 
compliance with all health conditions and after approval of the 
relevant systems, then stored in the best possible conditions and 
in the manufacturing halls, by using the standards of the USA and 
Japan, which are certainly the world’s leading food producers. 
In order to prevent possible contamination, cold air generation 
and sterilizing equipment are used in the facilities to keep the 
temperature of the halls in all seasons at 12–15 °C. Also, positive 
pressure systems combined with microbial filtration help the 
company comply with all conditions mentioned in HACCP and 
minimize the risk by the highest and most advanced technology 
and novel preparation, processing, packaging and marketing 
methods.

Research Data
Since the company produces a diverse range of products like cooked foods, 
including chicken nugget, chicken and mushroom nugget, potato croquette, 
Krakow, ; semi-cooked foods, including hamburger, chicken burger, 
vegetable omelet, little omelets, ; and raw foods, including chicken kebab, 
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Lari kebab, in various volumes, in this research, the supply chain of fried 
foods (chicken nuggets) was examined.

• Storage conditions: 18° below zero
• Warehousing conditions: 18° below zero, inside the carton and 

plastic pallet
• Package weight: 250 g
• Bulk packaging weight: 2 kg
• Number in the package: 9 pcs
The full list of additives and packaging materials together with the 

amount of consumption per ton of nuggets is shown in Table 1.

Table 1: Additive consumption and inventory of the first period

Type of material Unit Consumption/ton
Active carbon kg 0.12
Anti oxidants kg 0.08
Acid citric kg 0.44
Phosphoric acid kg 0.6
Beta carotene kg 0.025

Propylene glycol kg 0.63
Liquid soda kg 5.5
Catalyst nickel kg 1.6
Aromatics kg 0.75
Monodiglyceride kg 3
Lecithin kg 1.5
Potassium sorbate kg 1
NaCl kg 3
Cartons – 100
Nylon kg 2.7
Adhesives – 0.18

Company planning is usually announced to all of the manufacturing 
departments at the beginning of the year as a forecast for the whole year by 
the planning unit and with the cooperation of the trading department with 
regard to the capacity of the manufacturing equipment. During the year, 
the planning director, production manager and the commercial manager 
accurately determine the amount of the monthly production. In the meat 
industry, production of oil drop is allowed to be between 2 and 5%, and it is 
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3% for this company. The company produces about 4500 to 5000 nuggets 
per month. The demand for nuggets is in an average of 200–250 t/m, which 
is about 5.5% of the total factory production.

Changes in demand are an effective factor in maximizing target functions. 
Table 2 shows how much change in demand affects the target functions.

Table 2: Sensitivity analysis of demand changes

D (demand) Objective function
0 − 121,378
500,000 2,143,146,000
1,000,000 4,234,710,000
2,000,000 8,417,837,000
3,000,000 1,260,096,000
4,000,000 1,409,690,000
5,000,000 1,409,690,000

As shown in Table 2, demand changes lead to changes in the objective 
function, that is, with increase in the amount of demand, the company’s 
profit also increases, and it is clear that when the demand does not exist, 
the amount of the objective function is negated. Therefore, the amount of 
optimized demand is created when the factory production is the same as the 
sales.

Table 3 describes the values of the four objective functions introduced 
in this study. As shown in the table, the two first objectives are minimized 
and the two following objectives are maximized; therefore, in sensitivity 
analysis for the first two functions that are minimized, the minimum and 
maximum values are displaced. Also, the model responses are ensured for 
(the feasibility of) all constraints, meaning that the optimal values obtained 
for all constraints are true.

Table 3: Results of the studied case calculations (together with sensitivity anal-
ysis)

Objective function Minimum Optimized value of the 
objective function

Maximum

Objective 1 2,500,756,000 3,750,009,781 1,570,000,000
Objective 2 3,700,840,000 3,205,685,000 1,764,375,000
Objective 3 2,746,874,000 3,746,870,000 4,005,874,000
Objective 4 89% 95% 95%
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CONCLUSIONS
Reducing costs and increasing the level of service (satisfaction) are the 
most important factors in today’s market competition. In this regard, in 
the framework of a comprehensive systematic approach, supply chain 
management considers the coordination between the members in order 
to reduce costs and increase the level of service in providing a product or 
service to the customers. In this system, the total costs of the facility are a 
special priority. Efforts have been made to model and optimize the supply 
chain design. But there are a few research projects that target the design of 
supply chain networks comprehensively (taking into account both strategic 
and tactical issues simultaneously). Many of these attempts use definitive 
methods, while in the real world, definitive assumption is unreasonable. 
Therefore, it is necessary to consider uncertainty in investigations 
and decisions. On the other hand, taking into account the reduction of 
environmental impacts, considering the importance of the environment and 
pollution prevention is of great significance. Environmental damage is one 
of the most intangible costs that the entire community is its beneficiary.

In the sustainable supply chain, the effects of a chain on the environment 
are also addressed, and this, together with the inclusion of uncertainty and the 
study of the supply chain for perishable goods, forms an efficient collection 
that is addressed in this study. In this paper, introducing two objective 
functions to minimize the cost of supply chain design and environmental 
impacts and two functions to maximize profitability and satisfaction with 
the use of technology, all aspects of a supply chain for perishable goods are 
considered. The proposed model of this research has been implemented for 
the B.A. food production company. This unit uses up-to-date equipment for 
production. The results of the study indicate the effect of demand on the 
objective functions. By analyzing the sensitivity to demand, it was found 
that a change in demand would lead to a change in the level of profitability, 
and the optimal demand would be reached when the production amounts of 
the factory are the same as the sales. In this paper, proper objective functions 
for each of the four objectives were introduced with appropriate constraints 
that consider all aspects. Further research can be done to investigate other 
issues. For example, customer demand maximization functions can be added 
to target functions by using strategic planning and maximizing customer 
satisfaction. For example, customer demand maximization functions by 
strategic planning and maximizing customer satisfaction can be added 
to objective functions. Fuzzy numbers can also be used instead of crisp 
numbers.
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ABSTRACT
This paper studies a location–routing–inventory problem in a multi-period 
closed-loop supply chain with multiple suppliers, producers, distribution 
centers, customers, collection centers, recovery, and recycling centers. 
In this supply chain, centers are multiple levels, a price increase factor 
is considered for operational costs at centers, inventory and shortage 
(including lost sales and backlog) are allowed at production centers, arrival 
time of vehicles of each plant to its dedicated distribution centers and also 
departure from them are considered, in such a way that the sum of system 
costs and the sum of maximum time at each level should be minimized. The 
aforementioned problem is formulated in the form of a bi-objective nonlinear 
integer programming model. Due to the NP-hard nature of the problem, two 
meta-heuristics, namely, non-dominated sorting genetic algorithm (NSGA-
II) and multi-objective particle swarm optimization (MOPSO), are used in 
large sizes. In addition, a Taguchi method is used to set the parameters of 
these algorithms to enhance their performance. To evaluate the efficiency of 
the proposed algorithms, the results for small-sized problems are compared 
with the results of the ε-constraint method. Finally, four measuring metrics, 
namely, the number of Pareto solutions, mean ideal distance, spacing metric, 
and quality metric, are used to compare NSGA-II and MOPSO.

INTRODUCTION
In the 90s, with the improvement of production processes and spreading 
of reengineering patterns, managers of many industries were not satisfied 
only with the improvement of internal processes and flexibility in corporate 
capabilities. They found out that the suppliers of parts and materials have 
to also produce materials with the best quality and cost and distributors of 
the products must have a close relationship with the market development 
policies of the producers. With such an attitude, logistic approaches, supply 
chain, and its management have emerged. Conditions of global competition 
and environmental sensitivity have made corporations responsible for 
collecting the rejected products to recover, recycle, or devastation them to 
maintain the environment and gain the profit of rejected products that have 
been abandoned. Collecting products after the consumption by customers 
and returning them to supply chain or devastating them bring up the closed-
loop supply chain problem. The concept of the closed-loop supply chain has 
gained attention as a result of identification forward and reverse supply chains 
that are managed seamlessly. In the last 3 decades, with the highlighting of 
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the importance of supply chain management to the industrialists, the role 
of coordination and integration of different components of the supply chain 
has become stronger in creating competitive advantages and the concept of 
integration has become one of the most important aspects of the supply chain 
management system. This concept addresses the dependence between the 
location of facilities, allocation of suppliers and customers to the facilities, 
the structure of transport system and routing them, and inventory control 
system.

With respect to the increasing attention to supply chain management 
subjects, the combinations of location, routing and inventory subjects have 
become of great importance in industry. Actually, the interest and attention 
that exist to the subjects of the supply chain have made more critical the 
importance of having an optimized supply chain system. Appropriate 
configuration of the supply chain network is considered as a continuous and 
noticeable competitive advantage and help the corporation against the other 
future problems and difficulties. Applying an integrated location–routing–
inventory approach to optimize the closed-loop supply chain problem can 
be beneficial. Actually, the above decisions are highly dependent and only 
identification of the optimum of these variables in an interactive manner 
can result in finding an optimized supply chain system with the minimum 
possible costs.

In this paper, we present a new mathematical model for the location–
routing–inventory problem in a closed-loop supply chain network that 
consists of multiple suppliers, producers, distribution centers, collecting 
centers, and recovery and recycling centers. Furthermore, we consider 
multiple periods, price increase factor for the operational costs at centers 
through the periods, existence the inventory or shortage (lost sales or backlog) 
at production centers, multiple levels of capacity for centers, arrival time to 
distribution centers and departure from them in the routing, and cost and 
time of transportation. To solve this problem, the ε-constraint method and 
NSGA-II and MOPSO algorithms are applied. To enhance the efficiency of 
these algorithms, the Taguchi method is used to tune their parameters. The 
remainder of this paper is as follows. In “Literature review”, the literature 
is reviewed. In “Problem definition”, the proposed problem is discussed 
and a mathematical model is presented. “Proposed solution methods” uses 
the ε-constraint method, NSGA-II and MOPSO algorithms to solve the 
model. Different comparing factors are expressed in “Comparing factors 
of multi-objective evolutionary algorithms”. In “Computational results”, 
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the computational results are presented. Finally, “Conclusion” provides the 
conclusion.

LITERATURE REVIEW
Some of the recent studies in the context of the location–routing–inventory 
problem, closed-loop supply chain, and their synthesis are presented to show 
the necessity of this research.

In the earliest publications about the location–routing–inventory 
problem, a paper titled integrating routing and inventory costs in strategic 
location problems was presented (Shen and Qi 2007). The intended paper 
considers the supply chain design problem in which the decision maker 
needs to decide on the number and location of distribution centers. The 
demand of the customers is random and each distribution center holds a 
certain amount of the warehouse storage with the purpose of achieving 
the appropriate service level to their dedicated customers. The intended 
problem has been formulated as a nonlinear integer programming model. 
For the first time, Ahmadi Javid and Azad (2010) presented a new model in 
a non-deterministic supply chain that simultaneously optimizes the location, 
allocation, capacity, inventory, and routing decisions. It has been assumed 
that the demand of customers is non-deterministic and follows a normal 
distribution. In addition, each distribution center holds a certain amount of 
warehouse storage.

Hiassat and Diabat (2011) presented a location–routing–inventory 
problem for deteriorating products. In the mentioned paper, one producer 
distributes one deteriorating product with a given imperishability to multiple 
retailers through a number of warehouses. It has been assumed that at each 
period, each vehicle travels at most in one route and all of the customers are 
served. The fleet is homogeneous and all vehicles are identical in capacity. 
Ahmadi Javid and Seddighi (2012) proposed the new location–routing–
inventory model with deterministic demand for multi-resource distribution 
network. The objective of this problem is to minimize the total cost of 
location, routing, and inventory and was formulated in the form of mixed 
integer programming.

Xia (2013) presented a three-level multi-product model, in which 
the capacity and routing decisions, assignment decisions, transportation 
decisions, and routing and inventory decisions were considered. The 
objective of this model was the selection of locations for distribution 
centers, identification of transportation assignment, setup of inventory 
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policy according to the servicing needs, and scheduling the routes of the 
vehicle to meet the customer demands. In the above model, the demand of 
each retailer at each period follows a normal distribution. Nekooghadirli et 
al. (2014) in a two-level supply chain including of distribution centers and 
customers formulated a bi-objective multi-product multi-period location–
routing–inventory problem. In their model, the demand of customers is 
unknown and follows a normal distribution. Each distribution center holds 
a certain amount of safety stock and shortage is not allowed. The objective 
of mentioned model is to minimize total cost and maximize the expected 
time of delivery goods to customers. Four algorithms, including MOICA, 
MOPSA, NSGA-II, and PAES (Pareto archived evolution strategy), were 
applied to solve the model. In the same area, Guerrero et al. (2013) presented 
a synthetic heuristic for a location–routing–inventory problem. They 
considered a multi-depot multi-retailer system with capacitated storage 
during a discrete planning horizon.

Zhang et al. (2014) presented a mathematical model for a two-level 
supply chain network that includes multiple capacitated potential depot and 
a set of customers. This model simultaneously optimizes the decisions of 
location, allocation, inventory, and routing and minimizes the system costs. 
The amount of delivery to customers at each period and their repletion under 
the state of vender-managed inventory (VMI) by the homogenous fleet of 
capacitated vehicles are identified by the model. In the above model, the 
demand during the planning time horizon is deterministic and dynamic and 
inventory are held in the customers’ zones. Chen et al. (2017) published a 
paper for optimization of a multi-stage closed-loop supply chain for solar 
cell industry. The model formulated as a multi-objective mixed integer linear 
programming. Multi-objective particle swarm optimization algorithm with 
non-dominated sorting approach based on crowding distance was developed 
to search the near-optimal solution.

Zhalechian et al. (2016) presented a reliable closed-loop location–
routing–inventory supply chain network under the synthetic uncertainty in 
the form of a new multi-objective linear programming. It has been assumed 
that each retailer has unknown demand which follows a normal distribution. 
Furthermore, different types of products have been considered in the closed-
loop supply chain. Tang et al. (2016) presented a reliable location–routing–
inventory model. They considered the customer environmental behavior. 
Aydin et al. (2016) published a paper on the coordination of closed-loop 
supply change for designing of the production line with considering of 
reproduced products. The NSGA-II algorithm was applied for identification 
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of Pareto optimal solution of multi-objective problems. This paper of 
Kadambala et al. (2017) measured the effective responsiveness of closed-
loop supply chain in the terms of time and energy productivity. This model 
was formulated as a multi-objective mixed integer linear programming and 
multi-objective particle swarm optimization approach and NSGA-II were 
applied to solve it.

The main contributions of this paper, which differentiate our effort from 
related studies, are as follows:

• designing a new multi-objective mathematical model for a 
location–routing–inventory problem in a multi-period closed-
loop supply chain in a car industry;

• minimizing the sum of the maximum time at each level in a 
closed-loop supply chain;

• considering the arrival/departure time of vehicles of each plant 
to/from its dedicated distribution centers;

• determining the percentage of lost sale and backlog of total 
shortage at each period according to the specified policy.

PROBLEM DEFINITION
Our problem is a multi-stage closed-loop supply chain including multiple 
suppliers, producers, distribution centers, customers, collecting centers, 
and recovery and recycling centers. The proposed model of the problem 
minimizes the inventory and shortage costs, production costs, fixed cost of 
the transportation vehicles of each plant at each period, costs of locating 
centers with a certain level of capacity, operational costs at centers at each 
period, and the sum of maximum time at each period.

The objective of this model is to identify the number of opened centers, 
their locations, and capacities, how to allocate centers at subsequent stages, 
amount of inventory or shortage at each opened plant at each period, value 
of production of each opened plant at each period, routes of vehicles with 
starting from an opened plant to serve its opened allocated distribution 
centers, and come back to it. Furthermore, this model calculates the vehicle 
arrival and departure time of each plant to/from distribution centers at each 
period, amount of transferred goods between opened centers at each stage 
during each period, so that the sum of costs and transportation time should 
be minimized. The corresponding decision variables are presented in the 
proposed mathematical model.
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For better understanding of this problem, we consider a closed-loop 
supply chain with four and three levels in the forward and reverse supply 
chains, respectively, as depicted in Fig. 1. Forward supply chain levels 
include multiple suppliers, producers, distribution centers, and customers. 
Reverse supply chain levels consist of some collecting, recovery and 
recycling centers. The proposed model has been designed according to the 
real case study in the car industry in Iran. Some suppliers of spare parts for 
Iran Khodro Company are Ezam, Mehrkam Pars, Crouse group and the like. 
The Iran Khodro Industrial Group sells its products through its authorized 
agents to customers. These agents exist in the most cities of Iran. Using end-
of-life vehicles not only bears a very high expense in the economic aspects 
as well as fuel consumption, but also leads to the extraordinarily heavy costs 
in environmental aspects for Iran. For this reason, Iranian government has 
paid special attention to collect end-of-life vehicles. Parts and components 
of thesis vehicles are disassembled. Recoverable parts are sent to recovery 
centers and recyclable parts are sent to recycle centers. After recycling 
recyclable parts, they are sold to raw materials customers and then delivered 
to suppliers of spare parts.

Figure 1: Closed-loop supply chain network.

Assumptions
Some of the assumptions considered for this model are as follows:

• The intended problem is single product.
• At each period, the factories can have inventory or shortage or 

none of them (inventory = shortage = 0) (Gorji et al. 2014).
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• The shortage includes lost sale and backlog (Mousavi et al. 2015).
• The demand of the distribution centers and customers at each 

period are deterministic.
• The cost of centers opening with certain capacity is specified.
• All opened centers must be served.
• Different levels are considered for centers and eventually one 

capacity level is selected for each center.
• Time horizon planning is multi-period.
• The backlog of each distribution center at each period must be 

supplied at next period by its dedicated factor.
• The lost sale of the plant at each period is not compensable.
• For operational costs at centers, price increase factor is considered.
• It is assumed that production is done at the beginning of the period 

and its sum with the net inventory at the end of the previous 
period is always positive.

• Routing is considered from plant to distribution centers 
(Ahmadizar et al. 2015).

Sets
I :Set of plants
S :Set of distribution centers
K :Set of demand zones of customers
L :Set of collecting centers
M :Set of recovery centers
N :Set of recycle centers
λ :Set of suppliers
T :Set of time period
V :Set of vehicles
b j :Set of capacity levels available to center j (j ∈ i, s, l, m, n, λ)

Parameters

 : Fixed cost of opening and operating plant i with capacity level b 
i

 : Fixed cost of opening and operating distribution center s with capacity 
level b 

s
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 : Fixed cost of opening and operating collecting center l with capacity 
level b 

l

 : Fixed cost of opening and operating recovery center M with capacity 
level b 

M

 : Fixed cost of opening and operating recycle center N with capacity 
level b 

N

 : Fixed cost of opening and operating supplier λ with capacity level b λ
es : Price increase factor for processing each product unit at each distribution 
center s
eL : Price increase factor for processing each product unit at each collecting 
center L
eM : Price increase factor for recovery each product unit at each recovery 
center M
eN : Price increase factor for recycle each product unit at each recycle center 
N
eλ : Price increase factor for production each part at each supplier λ
ei : Price increase factor for production each product unit at each plant i
Ps : Processing cost of each product unit at each distribution center s at the 
beginning of time horizon planning
PL : Processing cost of each product unit at each collecting center L at the 
beginning of time horizon planning
PM : Processing cost of each product unit at each recovery center M at the 
beginning of time horizon planning
PN : Processing cost of each product unit at each recycle center N at the 
beginning of time horizon planning
Pλ : Expected value of production cost of one part at each supplier λ at the 
beginning of time horizon planning
Pi : Production cost of each product unit at each plant i at the beginning of 
time horizon planning
TKS : Time between customer K and distribution center S (time is considered 
as a distance function)
TKL : Time between customer K and collecting center L (time is considered 
as a distance function)
TLM : Time between collecting center L and recovery center M (time is 
considered as a distance function)
TLN : Time between collecting center L and recycle center N (time is 
considered as a distance function)
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Tλi : Time between supplier λ and plant i (time is considered as a distance 
function)
TNλ : Time between recycle center N and supplier λ (time is considered as a 
distance function)
TMi : Time between recovery center M and plant i (time is considered as a 
distance function)

 : Departure time of vehicle ν from plant i at period t
 : Distance traveled between plant i and distribution center s
 : Average speed of vehicle ν of plant i
 : Distance traveled between distribution center s and s′
 : Required time for unloading each product unit from vehicle ν of plant 

i at distribution center s
 : Percent of the shortage at distribution center s to the total shortage at 

plant i at period t

 : Capacity of vehicle ν of plant i
αit : Percent of backlog to the total shortage at plant i at period t
T : The time of each period
ht : Holding cost of each unit of inventory at period t

 : A party of the period t that inventory exist
 : A party of the period t that shortage exist

 : Cost of one unit of backlog at period t
 : Cost of one unit of lost sale at period t
 : Unit transportation cost of vehicle ν of plant i at period t

 : Fixed cost of vehicle ν of plant i
uit : Available budget for plant i at period t
dkt : Amount of customer’s demand of zone k in period t
ε : Number of used parts in one product
δ : Percent of recyclable parts of each product
ωl : Capacity of collecting center l
ωM : Capacity of recovery center M
ωN : Capacity of recycle center N
ωλ : Capacity of supplier λ
ωi : Capacity of plant i
SP1 : Volume of each product
SP2 : Average volume of each part
Fit : Maximum number of producible products at plant i at each period with 
regard to available resources at that period
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N : A large unbounded positive number
K′: A fixed number determined by plants as a bonus given to distribution 

centers

Decision Variables

 : 1, if plant i with capacity level b 
i is opened; 0, otherwise

 : 1, if distribution center s with capacity level b 
s is opened; 0, otherwise

 : 1, if collecting center L with capacity level b 
L is opened; 0, otherwise

 : 1, if recovery center M with capacity level b 
M is opened; 0, otherwise

 : 1, if recycle center N with capacity level b 
N is opened; 0, otherwise

 : 1, if supplier λ with capacity level b λ is opened; 0, otherwise
XKST : 1, if customer K assigned to distribution center S at period t; 0, oth-
erwise
XKLT : 1, if collecting center L assigned to customer K at period t; 0, other-
wise
XLMT : 1, if collecting center L assigned to recovery center M at period t; 0, 
otherwise
XLNT : 1, if collecting center L assigned to recycle center N at period t; 0, 
otherwise
Xλit : 1, if supplier λ assigned to plant i at period t; 0, otherwise
XNλt : 1, if recycle center N assigned to supplier λ at period t; 0, otherwise
XMit : 1, if recovery center M assigned to plant i at period t; 0, otherwise
Xivst : 1, if distribution center s be the first one met by vehicle ν of plant i at 
period t; 0, otherwise

 : 1, if distribution center s be the last one met by vehicle ν of plant i at 
period t; 0, otherwise

 : 1, if distribution center s is served by vehicle ν of plant i at period t; 
0, otherwise

 : 1, if distribution center s is met immediately after distribution center 
s′ with vehicle ν of plant i at period t; 0, otherwise
Yit : 1, if plant i have inventory at the end of period t; 0, otherwise
NSit : Net value of inventory of plant i at the end of period t
Qit : Amount of production in plant i at period t
dst : Demand of distribution center s at period t
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Oskt : Amount of transferred product from distribution center s to customer 
K at period t
OkLt : Amount of transferred product from customer K to collecting center 
L at period t
OLMt : Amount of transferred product from collecting center L to recovery 
center M at period t
OLNt : Amount of transferred product from collecting center L to recycle 
center N at period t

 : Arrival time of vehicle ν of plant i to distribution center s at period t
 : Departure time of vehicle ν of plant i from distribution center s at 

period t
 : Total cost of inventory, shortage (lost sale and backlog), production, 

fixed cost of vehicle, and transportation of plant i at period t:

ωit: 

Mist: 

Mathematical Model

s.t.

   (1)
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     (2)

      (3)

      (4)

      (5)

      (6)

     (7)

     (8)

   (9)

   (10)

   (11)

   (12)

     (13)

    (14)
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   (15)

       (16)

   (17)

      (18)

     (19)

    (20)

    (21)

      (22)

     (23)

   (24)

    (25)

      (26)

     (27)

       (28)
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    (29)

    (30)

   (31)

   (32)

    (33)

    (34)

     (35)

     (36)

     (37)

    (38)

     (39)

     (40)

  (41)
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    (42)

    (43)

   (44)

     (45)

     (46)

    (47)

     (48)

     (49)

     (50)

       (51)

      (52)

      (53)

      (54)

       (55)
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   (56)

     (57)

     (58)

     (59)

      (60)

     (61)

     (62)

      (63)

    (64)

   (65)
The first objective function minimizes the sum of maximum time 

between the centers of two subsequent stage dedicated together. The second 
objective function of the model minimizes the cost of centers construction 
with a certain capacity, inventory costs, shortage (lost sale and backlog), 
production, fixed cost of transportation vehicle of plant i, and operational 
costs of centers. Constraint (1) identifies the maximum time between 
factories and their last allocated distribution center on the route of the 
vehicle of that plant at levels between the factories and distribution centers. 
Constraint (2) identifies the maximum time between the distribution centers 
and their allocated customers at levels between the distribution centers and 
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customers. Constraint (3) identifies the maximum time between customers 
and their allocated collecting centers at levels between the customers and 
collecting centers. Constraint (4) identifies the maximum time between 
collecting centers and their allocated recovery centers at levels between 
the collecting centers and recovery centers. Constraint (5) identifies the 
maximum time between collecting centers and their allocated recycling 
centers at levels between the collecting centers and recycling centers. 
Constraint (6) represents the maximum time between plant i and its allocated 
supplier λ at levels between factories and suppliers.

Constraint (7) represents the maximum time between supplier λ and 
its allocated recycling centers at levels between suppliers and recycling 
centers. Constraint (8) represents the maximum time between plant i and 
its allocated recovery center M at levels between factories and recovery 
centers. Constraint (9) identifies the arrival time of vehicle ν of plant i to 
distribution center S at period t. Constraint (10) identifies the departure time 
of vehicle ν of plant i from distribution center S at period t. Constraint (11) 
means that the sum of shortages of dedicated distribution centers of plant 
i at period t is equal to the shortage at plant i at period t. Constraint (12) 
ensures the path continuity. If vehicle ν arrives a node, it must exit from 
it. Constraint (13) implies that vehicle of each plant at the start of its route 
only has one first visited distribution center. Constraint (14) implies that 
the amount of product transferred by vehicle ν of plant i must be at most 
equal to its capacity. Constraint (15) implies the costs of plant i, including 
inventory holding costs, shortage (lost sales and backlog), production, fixed 
cost of transportation vehicle of plant i, and transportation costs of plant i. 
Constraint (16) represents the maximum budget that is available for plant i 
at period t. Constraint (17) identifies the net inventory of plant i at the end 
of period t. Constraints (18) and (19) relate the net inventory of plant i at 
the end of period t with the binary variable Y 

it . Constraints (20) and (21) 
represent the relationship of distribution center S at period t with constant k ′.

Constraints (22) and (23) represent the relationship between the net 
inventory of plant i at the end of period t and binary variable w 

it . Constraint 
(25) implies that the demand of plant i is equal to the total demands of 
distribution centers dedicated to it. Constraint (26) means that the demand of 
distribution center s is equal to the total demands of its dedicated customers. 
Constraint (27) ensures that the total time under the shortage and inventory 
state at each period is T. Constraint (28) ensures that each customer is served 
only by one distribution centers. Constraint (29) ensures that each customer 



New Mathematical Modeling for a Location–routing–inventory Problem ... 211

must be assigned to one collecting center. Constraint (30) means that if 
collecting center L is opened with capacity b 

L , then it must be assigned 
definitely to a recovery center. Constraint (31) implies that if collecting 
center L is opened with capacity b 

L , then it must be assigned certainly 
to a recycling center. Constraint (32) implies that if plant i is opened with 
capacity b 

i , then it must be assigned to a recovery center. Constraint (33) 
implies that if supplier λ is opened with capacity b λ , then it must be supplied 
with a recycling center. Constraint (34) implies that if plant i is opened with 
capacity b 

i , then it must be assigned certainly to a supplier λ. Constraint 
(35) implies that if plant i is opened, then it certainly assigned a capacity. 
Constraint (36) implies that if distribution center s is opened, then it certainly 
assigned a capacity. Constraint (37) implies that if collecting center s is 
opened, then it certainly assigned a capacity.

Constraint (38) identifies that if recovery center M is opened, then it 
certainly assigned a capacity. Constraint (39) identifies that if recycling center 
N is opened, then it certainly assigned a capacity. Constraint (40) identifies 
that if supplier λ is opened, then it certainly assigned a capacity. Constraint 
(41) implies that if distribution center s is opened, then it is supplied with a 
plant and that plant has certainly a first met distribution center in its vehicle 
route. Constraint (42) identifies that if plant i visits the first distribution 
center in its route to distribution centers, then it certainly visits the last one. 
Constraint (43) means that if distribution center s is supplied with plant 
i, then that center is certainly on the vehicle route of that plant (the first 
distribution center on the route, or the last distribution center on the route, 
or the first and the last distribution centers on the route, or between the 
first and the last distribution centers on the route). Constraint (44) is about 
the maximum warehouse space of plant i. Constraint (45) implies that the 
number of products that delivered to customer k is delivered to its assigned 
collecting center. Constraints (46) and (47) imply that a part of collected 
products at collecting center L is sent to the recycling center and the other 
part is sent to a recovery center.

Constraint (48) ensures the balance between entrance and outputs at 
recycling centers using a transformation factor. Constraint (49) ensures the 
balance between entrance and outputs at supplier λ using a transformation 
factor. Constraint (50) ensures the entrance and output balance at recovery 
centers using a transformation factor. Constraint (51) shows that collected 
products at collecting center L are at most equal to its capacity. Constraints 
(52), (53), and (54) show the capacity constraint of recovery, recycling, and 
supplier λ. Constraint (55) is about the maximum production quantity of 



Applied Mathematics in Engineering212

plant i at period t. Constraint (56) means that the sum of production of plant 
i at each period with the net inventory of its previous period is positive. 
Constraints (57)–(63) show that if two centers at two consecutive levels 
are assigned together, then products, materials, or parts are transferred 
between them. Ultimately, constraints (64) and (65) represent the type of 
the variables.

PROPOSED SOLUTION METHODS
To show the applicability and validity of the presented model, we have solved 
a number of small-sized test problems by the ε-constraint method through 
a branch-and-bound module in the GAMS (General Algebraic Modeling 
System) software. Because the mentioned model is NP-hard, NSGA-II 
and MOPSO algorithms have been used to solve large-scale problems. To 
show the efficiency of the proposed algorithms, their results have been 
compared with the results obtained by the ε-constraint method in small-
sized test problems. Notably, all the computations have been performed on a 
laptop with 2.09 GHz CPU and 1.92 GB RAM. Furthermore, the mentioned 
algorithms are coded in MATLAB R2009a.

Non-dominated Sorting Genetic Algorithm (NSGA-II)
The initial population consists of a number of solutions generated randomly. 
Matrices are used to represent solutions. Each solution contains several 
matrices designed in accordance with model outputs. For example, for 
variable Xijl1tXijl1t, a four-dimensional matrix I × J × l 

1  × T is defined. 
In the same way, matrices are defined for other outputs. In addition, after 
the generation of each solution, the constraints are checked and the solution 
is accepted if all constraints are satisfied, and otherwise, it is rejected. In 
the proposed algorithm, the objective value is used for fitness function to 
evaluation of solutions.

The selection strategy of parent population is done by the use of crowded 
tournament selection operator. In crowded tournament selection operator, 
solution i dominates solution j in the tournament if and only if one of the 
following conditions are met:

• Solution i has a better rank.
• Solutions i and j be of the same rank that solution i has a better 

crowd distance to solution j.
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The crossover operator used in this algorithm is selected by a guideline 
matrix. This guideline matrix includes binary elements, and for each part, 
there is a separate chromosome with an equal dimension to that part. Thus, for 
each element of each part of chromosome, there is a corresponding element 
in guideline matrix. To produce a new offspring, if the corresponding element 
in guideline matrix is 1, then the related values of that element are replaced 
in two parents, otherwise, that element will be left unchanged. In proposed 
algorithm for mutation operator, a number of chromosome elements are 
randomly selected and their values are generated randomly.

The mechanism of Elitism operator is from lower fronts toward higher 
ones and among the solutions of one front is from larger crowd distance 
to smaller one. In the corrective procedure, the produced off springs are 
compared to the solutions in the last non-dominated front. If the produced 
offspring is dominated with none of the solutions of the last front, it is 
allowed to enter the new generation. Achievement to a certain number of 
repetitions has been considered as the stopping criterion.

Multi-objective Particle Swarm Optimization (MOPSO)
The representation of the solutions is the same as the structure presented in 
the NSGA-II section. To evaluate existing solutions in the population and 
integrate the objective functions, the general procedure of the algorithm is 
as follows:

The new position and velocity of the particles are calculated by Eqs. 
(66) and (67), and with regard to the objective function, a competence 
value is assigned. This process continues to reach the stopping criterion, 
and ultimately, the best position found by the particles is presented as the 
solution:

   (66)

   (67)
Achievement to a certain number of repetitions has been considered as 

the stopping criterion.
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Comparing Factors of Multi-objective Evolutionary  
Algorithms

•	 Number	of	Pareto	solutions	(NPS) The number of non-dominated 
solutions shows the number of alternatives that can be reported to 
the decision maker.

•	 Mean	 ideal	 distance	 (MID) This measure is a measurement of 
Pareto solutions closeness to the ideal solution (f1-Best and f2-
Best).

•	 Spacing	metric	(SM) This measure identifies the uniformity of the 
width of non-dominated solutions.

•	 Quality	 metric	 (QM) The percent (rate) of the dominance of 
Pareto solutions of each algorithm indicate the solution quality of 
algorithms together.

COMPUTATIONAL RESULTS
According to the given assumptions and parameters in the proposed 
mathematical model and the size of existing problems in the literature, some 
small-, medium-, and large-scale problems have been randomly defined. To 
solve the problem, meta-heuristic algorithms NSGA-II and MOPSO have 
been applied and to validate results of the proposed algorithms in small-size 
problems, they are compared to the results of ε-constraint method obtained 
by GAMS software. To increase the efficiency of these algorithms, a Taguchi 
method is used to tune the parameters.

Setting the parameters of the proposed meta-heuristics
To increase the efficiency of the proposed meta-heuristic algorithm, we 

set some of their input parameters by use of the Taguchi method. The levels 
of factors of NSGA-II and MOPSO algorithms are demonstrated in Table 1.

Table 1: Factors of NSGA-II and MOPSO algorithms with their levels

The required degrees of freedom for the algorithms corresponding to 
these four factors is 4 × 2 + 1 = 9. The most appropriate element for both 
NSGA-II and MOPSO algorithms is accordance with Table 2 that have 
necessary conditions for setting up algorithms parameters.
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Table 2: Orthogonal array L

As it can be seen from Fig. 2, deviation reduction for this algorithm is 
when the parameters are set as follows: the population size is on level 3, the 
number of generation is on level 2, the crossover rate is on level 3, the and 
mutation rate is on level 1.

Figure 2: Chart of S/N rate of objective functions at different levels of NSGA-
II algorithm factors.

Values of S/N rate for different levels of MOPSO parameters are 
presented in Fig. 3. As obvious in the figure, deviation reduction in this 
algorithm is when its parameters are set as follows: the number of initial 
particles on level 1, the number of repetitions on level 2, the maximum 
velocity of particles on level 1, and the inertia weight on level 3.
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Figure 3: Chart of S/N rate of objective functions at different levels of MOPSO 
algorithm factors.

ϕ1ϕ1 and ϕ2ϕ2 are constants named cognitive and social parameters, 
respectively. In this study, the two parameters have been considered equal 
to 2.

Comparison of the Results for Small-sized Problem
In this section, a problem has been created with two suppliers, two 
distributers, three customers, two collecting centers, two recycling centers, 
two recovery centers, and three capacity levels for each of the centers, three 
types of vehicles, and three period time. We consider the first objective 
function as a baseline and the epsilon value equal to 28.9. For validation of 
presented NSGA-II and MOPSO algorithms, the problem has been solved 
by ε–constraints method and two proposed algorithms and the obtained 
points in their final Pareto front have been compared. The result of this 
comparison is demonstrated in Fig. 4. As it can be seen, two algorithms have 
conformity with ε–constraints method at some points and for other points 
are not dominated that indicates the validity of the proposed algorithms.
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Figure 4: Obtained Pareto front of ε-constraints, NSGA-II and MOPSO meth-
ods.

Comparison of the Results for the Proposed Algorithms
In total, 27 problems have been solved and their results, as presented in 
Tables 3, 4, and 5. The considered range of the parameters is as follows:
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• Transportation time of products among all of the centers has been 
considered in the uniform range [1…100].

• Required time for unloading has been considered in the uniform 
range [5…15].

• Annual costs of opening centers for all centers have been 
considered in the uniform range [1…40].

• Vehicles’ cost has been considered in the uniform range 
[3000…6000].

• Centers’ operational costs have been considered in the uniform 
range [1…20].

• Inventory holding cost has been considered in the uniform range 
[20…50].

• Backlog cost has been considered in the uniform range [30…50].
• Lost sale cost has been considered in the uniform range [50…100].
• Customers’ demand has been considered in the uniform range 

[20…100].
• The speed of vehicles has been considered in the uniform range 

[20…50].
• Number of existed parts in a product has been considered 3.
• Total centers’ capacity at all levels has been considered in the 

uniform range [1…1000].
• Price increase factor for the operations at each center has been 

considered in the uniform range [10…30%].
• The percent of existed parts in a product that is recyclable has 

been considered 0.5.
Results of the proposed algorithms according to NPS, MID, SM, and 

QM criteria are shown in Figs. 5, 6, 7, 8, 9, 10, 11, and 12. By comparing 
two algorithms according to the NPS criterion, it can be understood for 
medium- and large-size dimensions that in most cases, MOPSO algorithm 
has better performance than NSGA-II algorithm, especially for the growing 
scale of the problem. The average distance from the ideal point has a smaller 
value in NSGA-II algorithm that identifies its better performance to MOPSO 
algorithm. In comparison according to the SM criterion, the performance 
of NSGA-II algorithm is completely better for small size and is better for 
more than 60% for large-size problems to the MOPSO algorithm. From the 
comparison of the algorithms in the terms of QM criterion, it can be seen 
that MOPSO provides better solutions to in all problems, without exception.
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Figure 5: Comparison of the algorithms according to the NPS evaluation crite-
rion for small-sized problems.

Figure 6: Comparison of the algorithms according to the NPS evaluation crite-
rion for large-sized problems.

Figure 7: Comparison of the algorithms according to the MID evaluation crite-
rion for small-sized problems.
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Figure 8: Comparison of the algorithms according to the MID evaluation crite-
rion for large-sized problems.

Figure 9: Comparison of the algorithms according to the SM evaluation crite-
rion for small-sized problems.

Figure 10: Comparison of the algorithms according to the SM evaluation crite-
rion for large-sized problems.
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Figure 11: Comparison of the algorithms according to the QM evaluation crite-
rion for small-sized problems.

Figure 12: Comparison of the algorithms according to the QM evaluation cri-
terion for large-sized problems.

For more results analysis, the expected value chart along with LSD 
distances has been presented for the two proposed algorithms in Figs. 13, 
14, and 15 according to the NPS, MID, and SM criteria. The obtained results 
of MID criterion identify the existence of significant differences between 
them and statistical superiority of the MOPSO algorithm.

Figure 13: Expected value and LSD distances chart for proposed algorithms 
according to the NPS criterion.
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Figure 14: Expected value and LSD distances chart for proposed algorithms 
according to the MID criterion.

Figure 15: Expected value and LSD distances chart for proposed algorithms 
according to the SM criterion.

For a closer look at the results of two algorithms, we test the following 
hypothesis according to two SM and NPS criteria that their difference is not 
substantial. The t test is applied for this purpose.

Test 1: (in terms of NPS)
H 0 : The average NPS of MOPSO = the average NPS of NSGA-II.
H 1 : The average NPS of MOPSO < the average NPS of NSGA-II.
The statistic method of this test is as follows:
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   (68)
The acceptance limits are as follows:

Because the statistic is in the acceptance region and we accept the null 
hypothesis at confidence level 95%. This emphasizes that the NPS average 
for MOPSO is statistically higher than NSGA-II. In other words, the number 
of non-dominated solutions of MOPSO method is more.

Test 1: (in terms of SM)
H 0 : The average SM of MOPSO = the average SM of NSGA-II.
H1 : The average SM of MOPSO < the average SM of NSGA-II.
The statistic method of this test is as follows:

   (69)
The acceptance limits are as follows:

Because the statistic is in the acceptance region and we accept the null 
hypothesis at confidence level 95%. This emphasizes that the SM average 
for MOPSO is statistically higher than NSGA-II.

The charts and statistical analysis of two algorithms MOPSO and 
NSGA-II identify that in the considered problem, MOPSO is better than 
NSGA-II in the terms of NPS and QM criterions. On the other hand, NSGA-
II is superior in the terms of MID and SM criterions.

Sensitivity Analysis
To investigate the sensitivity analysis, the following two small- and large-
sized test instances are considered to show the impact of parameter  on 
the objective functions of the proposed model.
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Instance No. of 
suppliers

No. of 
plants

No. of 
DCs

No. of 
customers’ 
centers

No. of 
collecting 
centers

No. of 
recovery 
centers

No. of 
recycle 
centers

No. of 
period

1 5 6 8 10 8 6 5 2
2 10 15 40 70 35 12 10 2

Figures 16, 17 illustrate the sensitivity of the first and second objective 
functions on parameter  (i.e., average speed of vehicle ν of plant i) for 
above two small- and large-sized instances, respectively. As shown in these 
figures, when  (i.e., average speed of vehicle ν of plant i) is increased, the 
value of the first objective function (i.e., time) is decreased. By increasing 

, the value of the second objective function (i.e., cost) is increased.

Figure 16: Sensitivity of the time and cost on parameter  for small-sized 
instances.

Figure 17: Sensitivity of the time and cost on parameter  for large-sized 
instances.
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CONCLUSION
The proposed model represents a location–routing–inventory problem in a 
multi-period closed-loop supply chain with the consideration of shortage, 
price increase factor, arrival time to distribution centers, and departure time 
of them, so that the cost and maximum transportation time of the chain are 
minimized. The proposed model includes multiple producers, distribution 
centers, customers, collecting centers, recovery centers, and recycling 
centers. The percent of backlog and lost sales of the total shortage at each 
period is identified according to the predefined policies. Due to the NP-
hard nature of the problem, NSGA-II and MOPSO algorithms have been 
applied and Taguchi approach has been used to increase the efficiency of 
these algorithms. A number of small-, medium-, and large-scale problems 
have been generated randomly. To evaluate the performance of the proposed 
algorithms, the results of produced small-size test problems with the results 
of ε-constraint method solved by the GAMS software. Finally, to identify the 
performance of the proposed algorithms, their performances were compared. 
The charts and statistical analysis of two algorithms (i.e., MOPSO and 
NSGA-II) identify that in the considered problem, MOPSO is better than 
NSGA-II in the terms of NPS and QM criterions. On the other hand, NSGA-II 
is superior in the terms of MID and SM criterions. Considering flexible time 
window, probabilistic nature for the input parameters, developing a model 
by considering all-unit and incremental discount policies, and applying and 
developing other meta-heuristic algorithms for large-scale multi-objective 
problems are suggested for future research.
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regard. Team size may represent the effectiveness of a team and it is of 
paramount importance to determine what the ideal team size exactly should 
be. In addition, information technology increasingly plays a differentiating 
role in productivity and adopting appropriate information sharing systems 
may contribute to improvement in efficiency especially in competitive 
markets when there are numerous producers that compete with each other. 
The significance of transmitting information to individuals is inevitable 
to assure an improvement in team performance. In this paper, a model of 
teamwork and its organizational structure are presented. Furthermore, a 
mathematical model is proposed in order to characterize a group of sub-
teams according to two criteria: team size and information technology. The 
effect of information technology on performance of team and sub-teams 
as well as optimum size of those team and sub-teams from a productivity 
perspective are studied. Moreover, a quantitative sensitivity analysis is 
presented in order to analyze the interaction between these two factors 
through a sharing system.

INTRODUCTION
Productivity is a proof of total efficiency of production process and also a 
subject of maximization. It is determined by comparing the quantity of output 
and input and is also considered to be a significant measure of any economy, 
industry, and company’s development. However, it requires an appropriate 
identification of real inputs and outputs within a business. Productivity is 
one of the considerable concerns of engineering management, so that it has 
been causing companies to follow procedures of collecting and analyzing 
data in order to evaluate their performance. Productivity improvement stems 
from a certain degree of complex interaction among factors. Teamwork 
and IT are two decisive factors which may cause immediate effect on the 
way productivity can be improved. Investing in ICT capital increases firm 
productivity by increasing the productivity of labor (Kılıçaslan et al. 2017).

Historically, teamwork has been defined as a process of working 
collaboratively within a group of individuals when team members pursue an 
identified goal. Teamwork is an integral part of progress in today’s world. 
It has increasingly become prevalent among enterprises to benefit from 
teamwork. However, team members play a prominent role in consequences 
of teamwork. Every team member has particular responsibilities in order to 
accomplish tasks.
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Information technology (IT), typically, refers to a set of applications to 
transmit, save, recover, and report data in the context of a business. However, 
it is mistakenly used in reference to personal or home computers. It actually 
involves all facets of managing information, data manipulation, and data 
storage architectures and methodologies. IT may contribute to improving 
organizational performance and productivity by assuming different 
variables. IT is a broad subject concerned with a range of attributes from 
personal computing and networking to information sharing system (ISS) 
within an organization. ISS consists of all layers of system from hardware to 
database and data management techniques. It is shown that the impact of IT 
capital on productivity is larger by about 25–50% than that of conventional 
capital. This contribution of IT capital is higher than that of non-ICT capital 
for small sized and low-tech firms (Kılıçaslan et al. 2017).

Team size is an effective parameter in teamwork. Studies in this field 
have shown that as team size increases the outcome will improve. However, 
team size contributes to productivity, but after a certain point the law of 
diminishing returns occurs which means adding to the team members will 
not result in a better team performance and improvement in productivity 
because of the irrational additional team size. Value-added analysis may be 
the solution in this regard.

In this research, a mathematical model is proposed to explain how 
teamwork may affect the productivity while considering information 
technology and optimized size of team and sub-teams as two effective 
factors. Teamwork may be processed within either a team or a group of 
sub-teams. In this study, a team with a group of sub-teams is presented. 
Furthermore, the size of team and sub-teams are investigated.

The related work is categorized according to two primary themes: 
productivity affected by teamwork and productivity affected by information 
technology. The following subsections address the mentioned research 
interests.

Productivity affected by Teamwork
Literatures on efficiency and productivity mainly focus on relations between 
teamwork and productivity and the importance of team size is not addressed. 
Stewart and Barrick (2000) examined data from many different teams 
including individuals and supervisors to resolve the appropriate structure. 
They studied the relationships between all characteristics and performances 
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for both conceptual and behavioral tasks and how the nature of the tasks may 
affect the consequences. Salas et al. (2008) reviewed the developments in 
team performance in five recent decades. They studied the shared cognition, 
team training, and task environments mainly from a human factor perspective. 
Moses and Stahelski (1999) studied the relation between productivity in an 
aluminum plant and problem-solving teams. Five productivity measures and 
four time periods in 1980s and 1990s were analyzed and significant and non-
significant changes between the time periods were evaluated. The results 
were compared with three factors, technology improvements, changes in the 
price of finished aluminum, and changes in the number of employees. It was 
concluded that the study was not affected by those factors. Hatcher and Ross 
(1991) used different methodologies to analyze the changes in a transition 
from individual piecework plan to a gain-sharing plan at a company. The 
data observed in 4 years of operating presented a decrease in grievances and 
increase in final quality. Galegher and Kraut (1994) studied contingency 
theory to prove the difficulties of computer-based communication in 
order to reach complex collaborative work. A group of 67 MBA students 
was considered to do two writing projects in three different conditions; 
Computer, Computer plus Phone, and Face-to-Face. That study presented 
the difficulty of tasks which involve ambiguous goals, multiple perspectives, 
and multi-interpretation information using contingency hypothesis. Powell 
(2000) modeled a production process including variable processing times 
for different tasks in order to determine the optimal size of teams. In this 
research, the conditions under which assigning small tasks to individuals 
in comparison with assigning complex tasks to large teams were addressed. 
It was found that depending on the parameters different structures may be 
preferred.

Productivity affected by IT
IT has received increasing academic attention in the last two decades. Explained 
ahead, improving IT may cause improvement in efficiency. Bharadwaj (2000) 
studied IT capabilities and firm performance based on experiments by using 
a matched-sample methodology and ratings. IT resources in the area of firm 
were categorized into IT infrastructure, human IT resources, and IT-enabled 
intangibles. It was demonstrated that firms with high IT capability may 
contribute to cost-based performance measures. Whelan (2002) examined 
the importance of IT in general and computer in particular in productivity, 
calculated the computer-usage effect in US economic growth, and developed 
a theoretical framework to study the technological obsolescence. Bartel et 
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al. (2005) presented new empirical indications regarding the investments 
in new computer-based IT and productivity. In this research, a set of data 
was reviewed to examine the effects of new IT on production innovation, 
process improvements, employee skills, and work practices. The authors 
showed how new IT adoption may be defined more than new equipment 
installation. Furthermore, IT was studied as a factor which alters business 
strategies, improves the efficiency of production process, and increases 
the skill requirements of members. Badescu and Garcés-Ayerbe (2009) 
collected data from 341 medium size and large firms to evaluate the effects 
of investment in IT on productivity by using a Cobb–Douglas function. In 
this research, the effect of IT was categorized into firm-specific and period-
specific and a significant improvement in productivity derived from IT was 
not observed within the defined time periods. Dehning and Richardson 
(2002) developed a model to assess investment in IT based on the data 
gathered from firm accounting and market performance. However, the 
relation between IT and business process on one hand, and business process 
and firm performance on the other hand were examined. Furthermore, the 
effects of contextual factors on performance of IT and IT management on 
performance of firm were reviewed. Wu et al. (2014) focused on two main 
concerns, information sharing and collaborative effort but in a supply chain 
context and identified the rudiments of implementing them in terms of issues 
related to partner exchanges including trust, commitment, reciprocity, and 
power. Finally, a positive relation between set-based variables, information 
sharing and collaboration, and supply chain performance was concluded. 
Martίnez-Lorente et al. (2004) presented a survey-based research on the 
significant relationships between information technology (IT) and total 
quality management (TQM). However, the survey was conducted within the 
largest industrial companies in Spain and the results showed that intensive IT 
users observe the effect of IT on their TQM dimensions more significantly. 
Shao and Lin (2016) evaluated the performance of IT service industries of 
Organization of Economic Cooperation and Development (OECD) countries 
by using Malmquist Productivity Index (MPI) as a metric and Stochastic 
Production Frontier (SPF) as an approach and an annual rate of 7.4% growth 
in productivity in IT service industries was observed. The reported growth 
in productivity was mainly caused by technological advance process of IT 
services. Jones et al. (2011) studied the impact of implementing an Enterprise 
Resource Planning (ERP) system in a retail chain and firm and employee 
effects of an appropriate information system. It was found that employees 
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need to be informed of implementation of such an information system and 
the negative outcomes associated with them.

These literatures on productivity only deal with the approaches and 
models considering either IT or teamwork, and did not present the effect 
of both issues on production. Explained ahead, there are few researches 
considering both IT and teamwork at the same time. Tohidi and Tarokh 
(2006) studied the effect of changing IT on team output. They described 
the best coordination to increase team output and provided a good example 
of a team including two assembly lines and a supervisor. In addition, they 
categorized the factors which impact on coordination to hardware and 
software. In their research, they addressed the appropriate combination of 
those two factors from the output perspective. They proposed and analyzed 
a mathematical model in which productivity is driven by teamwork and 
information technology. They presented a sensitivity analysis to examine 
how IT and team size may increase the ultimate output. To the best of our 
knowledge this work is one of few studies about productivity considering 
both IT and teamwork. However, a structured model for a team with sub-
teams has been lacking. The rest of the paper is organized as follows: first 
of all a model of teamwork is proposed. Then a mathematical model is 
produced. After that, interaction between IT and sub-teams is presented. To 
show the results of the paper as well as possible a sensitivity analysis is 
prepared in the next step. Finally, conclusion remarks are presented.

THE PROPOSED MODEL AND PROBLEM  
STATEMENT
Each team member affects output by collaborating with other team members 
to pursue team objectives. Coordination between team members is expected 
to lead to a considerable output. The issue of concern is how we can provide 
the best coordinated teamwork to improve output. With additional effort, 
according to the law of diminishing returns it will result in a decrease in 
output. This should be studied in order to determine the optimum size of 
each sub-team, and value of information related to each individual to benefit 
from a better collaboration.

As depicted in Fig. 1, in the presented model we assume a team size 
of n which contains m subgroups with n s individuals in each of them 
producing product X.
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Figure 1: A team including sub-teams to produce product X

If several options were available in order to improve IT, the most cost-
effective scenario would be the one with a combination of improving IT and 
increasing team size.

If the cost of adding new members to the team is more than the cost of 
improving IT, focusing on IT will be the best decision.

If the product demand is constant, organizations may achieve efficiency 
by investment in IT, and reducing the team size.

The above discussion has highlighted the importance of investment in 
IT. By doing so, the coordination and collaboration of activities among team 
members or sub-teams are facilitated.

The model assumptions are as follows:
• Sizes of sub-teams are the same.
• Each member spends their time on either production or 

information processing.
• IT as a parameter affects individuals and sub-teams in order to 

develop the output.
• There is exceptional value for the most effective coordination 

between individuals and sub-teams.
• Changes in IT contribute to changes in output.
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• There is a one-to-one relation between each unit of product, IT, 
and team size.

• Individuals and sub-teams process all information received from 
other individuals and sub-teams, respectively.

• One unit of information is processed within one or less than a 
time unit.

The question that needs to be addressed is: how will you be able to 
predict the effect of IT on output and appropriate size of each sub-team by 
a mathematical model?

Mathematical Model
In this study, a mathematical model to evaluate the performance of a team 
associated with IT and optimized size of sub-teams is presented. Consider a 
team member who splits his/her time between information processing and 
production. Suppose that if one unit is exclusively dedicated to production, 
exactly one unit of output is produced. There is also exactly a unit of 
information generated, per each unit of output (Tohidi 2006).

It is assumed that a unit of information takes less than one unit of time to 
be produced. The time required to produce a particular piece of information 
by individuals is longer than the time consumed by team members if they 
work as a team to generate the same piece of information.

The model parameters are as follows:
• n: Team size.
• ns: Size of each sub-team.
• m: Number of sub-teams.
• α: The rate of processing information created by members of a 

sub-team regarding the production.
• β: The rate of processing information created by another sub-

team.
• t1: The period of time required to create a report regardless of its 

size.
• t2: The period of time required to generate a report.
• Ω(ns): A fraction of the time that each member may spend on 

production after processing the information received from the 
other members of a sub-team (Tohidi 2008).
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• p(n): The quantity of production of a team during one time period 
(Tohidi 2008).

It is assumed that the value of α is greater than the value of ββ and both 
variables are positive and less than 1. On the other hand, the coordination 
between internal sub-team requires more work than sub-teams coordination. 
Team size n is always more than sub-team size ns.

      (1)

      (2)
As was discussed earlier, each individual spends his/her time on either 

information sharing or production. Individuals spend a fraction of their 
time on processing information received from others and spend the rest of 
their time on production which is defined by Ω(ns) and calculated by the 
following equation:

   (3)
Equation (3) is simplified to Eq. (4).

     (4)
The fraction of the time that each member may spend on 

production Ω(ns) is between 0 and 1.

       (5)
The optimum size of a sub-team is determined by the following equation, 

which is derived from Eq. (4).

   (6)
In Fig. 2, it can be seen how sub-team size, the rate of processing 

information created by other sub-teams, and team size are interrelated and 
the following observations can be expressed.



Applied Mathematics in Engineering240

Figure 2: Size of sub-teams for different beta factors and team sizes.

• When α approaches β, it means the time it takes to process 
information created by members of a sub-team approaches the 
time to process information created by another sub-team, the 
optimum sub-team size goes to n, pointing that team dividing 
does not provide any benefits.

• As the constant time to process a report approaches 0, the optimum 
sub-team size approaches 1 That is, each team member becomes 
a sub-team of size one, pointing to perfect specialization on part 
of the individuals.

• When size of a team increases, an efficient sub-team size is 
the result. So there will be a trade-off between team members 
coordination and sub-teams coordination. By adding sub-teams 
to an organization, the coordination endeavor will increase since 
they will enhance the volume of information that needs to be 
processed.

The optimum quantity of production is a function of team size and 

. It is concluded that by adding to the team members, productivity 
increases.

      (7)
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Theorem 1

 is a monotonically and increasing function in n for all values 
of 0 < β<α < 1.
Proof

   (8)
where R and S are calculated by Eqs. (9) and (10).

   (9)

   (10)

       (11)

Hence,  is monotonically increasing function in n.
Theorem 1 indicates that team output can be increased by adding 

members to the team. However, the marginal product of team members is 
decreasing due to the increased coordination effort required, so that, for 
each added team member, there is a smaller and smaller increase in output. 
Beyond some value of n, the marginal cost of an additional team member 
exceeds the marginal value of the team’s production (Tohidi 2006).

Theorem 2

For all values of 0 < β<α < 1,  is a bounded function.

Proof

From Theorem 1,  is a concave and monotonically increasing 

function of n. Also, .
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   (12)

Hence,  is a bounded function.
The practical implication of Theorem 2 is that the maximum total 

production of a team during one time period depends on the speed at 
which the team members can coordinate their activities with their peers. To 
increase the team’s maximum production capacity, it is necessary to change 
the communication and processing technology (i.e., decrease the value of α 
and β) or the work has to be re-organized so that each team member does not 
process all of the information provided by the other members (Tohidi 2008).

Theorem 3
The marginal product of team size is asymptotically zero.

Proof

       (13)
According to Eq. (13), if taken to a certain extent, adding to the team 

members may not result in productivity. Therefore, in order to increase total 
production units information sharing will need to be improved.

It can be understood from Eqs. 8 and 13 that management can grow the 
organization output by adding to the team members.

Figure 3 illustrates how  performs in different team size and the 
rate of processing information created by other sub-teams.
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Figure 3:  for beta factors and team sizes.

Interaction between IT and Sub-teams
IT system may change team members’ interactions through changing in one 
or some of the three information parameters α, β and t1.

The derivative of sub-team size with respect to IT parameter α is 
calculated in Eq. (14).

   (14)

The value of  by dα is negative.

         (15)
Equation 15 indicates, when sub-team’s communication capabilities 

develop, the size of sub-team increases.

Figure 4 shows how , the rate of processing information created by 
other sub-teams, and team size affect each other.
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Figure 4:  for different beta factors and team sizes.

The derivative of sub-team size with respect to IT parameter β is 
calculated in Eq. (16).

   (16)

The value of  by dβ is positive.

   (17)
Equation 17 indicates, as the inter-sub-team coordination is simplified 

by using the new technology, the optimum sub-team size decreases.

Figure 5 shows how , the rate of processing information created by 
other sub-teams, and team size affect each other.
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Figure 5:  for different beta factors and team sizes.

The derivative of sub-team size with respect to the period of time 
required to create a report regardless of its size is calculated in Eq. (18).

   (18)

The value of  by dt1 is positive.

         (19)
Equation 19 indicates as the time spent to process the information, the 

coordination time of tasks decreases, the size of organizational units will 
change. This change depends on changing the three information parameters. 
Of course, in all cases the coordination time decreases and the time spent on 
production increases.
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Figure 6 illustrates how  performs with variation in β and n.

Figure 6:  for different beta factors and team sizes.

Sensitivity Analysis
Equations 15, 17 and 19 emphasize the significance of investments in IT. By 
investing in IT that simplifies activities coordination among team members, 
the organization’s production can be increased by management. The IT 
investment that adds intra-sub-team coordination, improves inter-sub-team 
coordination, or both. The suitable combination of investments depends on 
the labor cost, the task, and the price of the product at which the organization 
can sell.

Once the parameters, variables, and equations are defined and the results 
are obtained, a sensitivity analysis is performed to validate the presented 
mathematical model. The sensitivity analysis is developed in order to 
identify the variable which has the highest impact on the outcome of the 
model.

Three trials are reviewed and their numerical results are analyzed. The 
rate of processing information created by other sub-teams (β) and team 
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size (n) are varied in turn while the other variables remained the same. The 
results of the 2nd and 3rd trials are compared with outcomes of the 1st trial 
to determine how team size and information sharing system among sub-
team members may affect the consequences, respectively.

As depicted in Table 1, in the original trial a team size of 21 is studied 
when the rate of processing information created by other sub-teams equals 
0.03. According to the model, this team contributes to 9 units of product X. 
In the next trial, in order to increase P(n) from 9 to 12 units, team size needs 
to be changed to 54 while keeping the other variables unchanged. In the last 
trial, 12 units of product were obtained by improving information sharing 
system among sub-team members from 0.03 to 0.006. In other words, the 
same level of production may be achieved by 80% improvement in IT 
instead of adding 33 members to the team which is almost 157% more than 
the original team size.

Table 1: Values of parameters for three different trials

CONCLUSION
In this study, a mathematical model has been proposed through which team 
performance was overviewed. The model is aimed at saving costs and 
improving productivity by collaboration and coordination of individuals 
within sub-teams and sub-teams within the whole team. Such a team is 
difficult to build and maintain, and it requires determining of optimum team 
size and sub-team size and the role that IT may possibly play. It has been 
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found that productivity increases with the increment of team size. However, 
increasing team size is not always cost-effective; beyond a certain point the 
cost of adding to the team members exceeds the value added to productivity. 
Investment in IT may also result in improvement in productivity. Hence, 
there should be a balance between increasing team size and improving 
IT in order to improve productivity. It is concluded that same numbers of 
product units may be attained by improving IT and increasing team size. 
Therefore, IT is an alternative for increasing team size. In summary, if 
improving information sharing system is more cost efficient then adding to 
the members of sub-teams and team is not the best scenario.

It is also concluded that if we separate a team into sub-teams and 
invest in IT, the efficiency and capacity of organization will be increased. 
Those interested in further studies in this research may investigate the 
methodologies and estimation approaches and measurement of IT parameters. 
Another future work in this research would be searching and providing an 
appropriate model which could be applied to a team with structured sub-
teams, under the specific circumstances. There might be many uncertainties 
in more progressive cases in practice. Hence, the experiment may be further 
extended to test the improvement of productivity by increasing team size 
and IT using fuzzy logic.
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ABSTRACT
Topology optimisation is a mathematical approach relevant to different 
engineering problems where the distribution of material in a defined domain 
is distributed in some optimal way, subject to a predefined cost function 
representing desired (e.g., mechanical) properties and constraints. The 
computation of such an optimal distribution depends on the numerical 
solution of some physical model (in our case linear elasticity) and robustness 
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is achieved by introducing uncertainties into the model data, namely the 
forces acting on the structure and variations of the material stiffness, 
rendering the task high-dimensional and computationally expensive. 
To alleviate this computational burden, we develop two neural network 
architectures (NN) that are capable of predicting the gradient step of the 
optimisation procedure. Since state-of-the-art methods use adaptive mesh 
refinement, the neural networks are designed to use a sufficiently fine 
reference mesh such that only one training phase of the neural network 
suffices. As a first architecture, a convolutional neural network is adapted 
to the task. To include sequential information of the optimisation process, a 
recurrent neural network is constructed as a second architecture. A common 
2D bridge benchmark is used to illustrate the performance of the proposed 
architectures. It is observed that the NN prediction of the gradient step 
clearly outperforms the classical optimisation method, in particular since 
larger iteration steps become viable.

Keywords:	topology optimisation; deep neural networks; model uncertain-
ties; random fields; convolutional neural networks; recurrent neural net-
works

INTRODUCTION
Structural topology optimisation is the (engineering-oriented) process of 
designing a construction part using optimisation algorithms under certain 
constraints. The resulting designs usually have a large influence on the 
subsequent production costs. The starting point of the process is a design 
domain that represents the maximum space available for the optimised 
component to be developed. The outcome presents information about which 
parts of the design space are occupied by material and which are void. 
Often, the task is motivated by mechanical requirements, e.g., sufficient 
stiffness of the constructed part with respect to assumed forces acting on 
it while certain predetermined points or surfaces should connect to other 
parts. A typical physical model for this comes from linear elasticity, 
describing the displacement field given material properties and forces. For 
the mathematical optimisation, it is repeatedly necessary to compute the 
stress distribution determined by the physical model in the design domain 
(more precisely, in the parts of the domain with material). This potentially 
complex computational task usually relies on the finite element method 
(FEM), which is based on a discretisation of the domain into elements. 
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Most commonly, the domain is represented as mesh consisting of disjoint 
simplices, i.e., triangles in 2D and tetrahedra in 3D.

Since the optimisation process easily requires several hundred evaluations 
of the state equation to evolve the material distribution, it is of significant 
interest to develop techniques that reduce this computational burden. This 
becomes much more pronounced when uncertainties of the model data 
should be considered in the computations. The treatment of uncertainties 
has been developed extensively from a theoretical and practical point of 
view over the last decade in the area of Uncertainty Quantification (UQ). A 
common way to describe uncertainties is by means of random fields, whose 
(Karhunen-Loève) expansions depend on a possibly very large number of 
random variables. The parameter space spanned by these random variables 
leads to very high-dimensional state problems for which the derived 
optimisation problems are very difficult to solve.

This paper investigates the application of a trend in scientific computing 
for current topology optimisation methods, namely the use of modern 
machine learning techniques. More precisely, our objective is to improve 
the efficiency of the structural topology optimisation problem by predicting 
gradient steps based on generated training data. This efficiency gain 
directly transfers to our ability to compute much more involved risk-averse 
stochastic topology optimisation problems with random data. In this case, 
the topology is optimised with an adjusted cost functional including the 
CVaR (conditional value at risk), by which unlikely events can be taken into 
account in contrast to simply optimising with the mean value of possible 
load scenarios. In addition to random loads, we also include random material 
properties which, e.g., can enter the model in terms of material errors or 
impurities. We emphasise that risk-averse optimisation based on some risk 
measure is a timely topic, which plays a role in many application areas. 
Despite its relevance, this type of problem has not been covered widely in 
the literature yet. In fact, the authors are not aware of any other machine-
learning-assisted approach for risk-averse topology optimisation. This might 
be due to the more involved mathematical framework and substantially 
higher computational complexity. To achieve performance benefits with 
topology optimisation in this paper, we adapt concepts from the field of 
deep learning to approximate multiple iterations of the optimisation process 
and render the overall optimisation more efficient.

The goal of topology optimisation is to satisfy the technical requirements 
of a component (for instance, stiffness with respect to certain loading 
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scenarios) with minimal use of material. There are different approaches to 
describe the topology in a flexible way such that substantial changes are 
possible. We follow our previous work in [1] and use a phase field model 
which describes the density of material with a value in [0,1]. The starting 
point is the definition of a physical design space available for the component 
under consideration. This space is completely filled with a material in the 
sense of an initial solution. Furthermore, all points at which loads act on 
the component, as well as the type of the respective load, are prescribed. 
The optimisation aims to achieve a homogeneous, minimum possible 
deformation at all optimised points of the component under the imposed 
(possibly continuous and thus infinitely many) loading scenarios. Here, 
a minimum compliance corresponds to a maximum stiffness. In general, 
even solving the underlying partial differential equation (PDE) of this 
problem for deterministic coefficients of the PDE presents a complex task. 
Furthermore, PDE coefficients which describe material and the loads have 
a strong influence on the resulting topology, i.e., even small changes in 
these coefficients can lead to large differences in the resulting topology. 
This results in considerable computational effort in the stochastic settings, 
since the solution has to be calculated for a sufficient number of data 
realisations to become reliable. Hence, the modelling of these stochastic 
settings for example (with the most obvious approach) by a Monte Carlo 
(MC) simulation increases the required iteration steps linearly in the number 
of simulations.

A method to numerically tackle topology optimisation uncertainty was 
presented in [2]. In this paper, we extend the previous work by introducing 
Deep Neuronal Networks (DNN) that are designed to provide a prediction 
of the next gradient step. Since topologies discretised with finite elements 
can be represented as images, Convolutional Neural Networks (CNN) seem 
natural candidate architectures for this task and there has already been some 
research on this approach for the deterministic setting. An introduction is 
presented in [3] where the conventional topology optimisation algorithms 
are replicated in a computationally inexpensive way. Furthermore, a CNN 
is used in [4] to approximate the last iteration steps of a gradient method 
of a topology optimisation after a fixed number of steps to refine a “fuzzy” 
solution. A CNN architecture is also used in [5] to solve a topology 
optimisation problem and trained with large amounts of data. The resulting 
NNs were able to solve problems with boundary conditions different to their 
training data. In [6], the problem is stated as an image segmentation task 
and a deep NN with encoder–decoder architecture is leveraged for pixel-
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wise labeling of the predicted topology. Another encoding–decoding U-Net 
CNN architecture is presented in [7], providing up- and down-sampling 
operators based on training with large datasets. In [8] a multilevel topology 
optimisation is considered where the macroscale elastic structure is optimised 
subject to spatially varying microscale metamaterials. Instead of density, 
the parameters of the micromaterial are optimised in the iteration, using 
a single-layer feedforward Gaussian basis function network as surrogate 
model for the elastic response of the microscale material.

A discussion on solving PDEs with the help of Neural Networks (NN) 
for instance of the Poisson equation and the steady Navier–Stokes equations 
is provided in [9]. In a relatively new approach, through a combination of 
Deep Learning and conventional topology optimisation, the Solid Isotropic 
Material with Penalisation (SIMP) was presented in [10], which could 
reduce the computational time compared to the classical approach. The 
authors use a similar method as [4] except that the underlying optimisation 
algorithm performs a mesh refinement after a fixed number of iterations. 
To improve this step, separately trained NNs are applied to the respective 
mesh in order to approximate the last steps of the optimisation on the 
corresponding mesh. The result is then projected to the next finer mesh and 
the procedure is repeated a fixed number of times. A SIMP density field 
topology optimisation is directly performed in [11]. The problem can be 
represented in terms of the NN activation function. Different beam problems 
comparable to our experiments are depicted. Fully connected DNNs are 
used in [12] to represent implicit level set function describing the topology. 
For optimisation, a system of parameterised ODEs is used. A two-stage 
NN architecture which by construction reduces the problem of structural 
disconnections is developed in [13]. Deep generative models for topology 
optimisation problems with varying design constraints and data scenarios 
are explored in [14]. In [15], direct predictions without any iteration scheme 
and also the nonlinear elastic setting are considered. Examples are only 
shown for a coarse mesh discretisation of the design domain. In [16], an 
NN-assisted design method for topology optimisation is devised, which 
does not require any optimised data. A predictor NN provides the designs on 
the basis of boundary conditions and degree of filling as input data for which 
no optimisation training data are required.

The main goal of this paper is to devise new NN architectures that 
lower the computational burden of structural topology optimisation based 
on a continuous phase-field description of the density in the design domain. 
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In particular, the approach should be able to cope with adaptive mesh 
refinements during the optimisation process, which has shown to significantly 
improve the performance of the optimisation. Moreover, as a consequence 
of an efficient computation in a deterministic setting, a goal is to transfer the 
developed techniques to the stochastic setting for the risk-averse topology 
optimisation task. The general strategy is to combine conventional topology 
optimisation methods and NNs in order to reduce the number of required 
iteration steps within the optimisation procedure, increasing the overall 
performance.

The main achievements of this paper are two new NN architectures that 
are demonstrated to yield state-of-the-art numerical results with a much 
lower number of iterations than with a classical optimisation. Moreover, in 
contrast to several other works that are solely founded on the image level 
of topology, our architectures make use of a very versatile functional phase-
field description of the material distribution, which we have not observed in 
the literature with regard to NNs. This also holds true for the stochastic risk-
averse framework, which to our knowledge has not been considered with 
NN predictions yet. Another novelty is the mixture of a fine reference mesh 
and adaptive iteration meshes during optimisation.

Inspired by the work of [5,10], as a first new NN architecture we 
develop a new CNN approach and show that it can replicate the reference 
results of [1,2]. In contrast to [10], we only have to train one NN for the 
entire optimisation despite mesh refinement being carried out in the iterative 
procedure. We subsequently extend this approach to the stochastic setting 
with risk-averse optimisation from [2]. Based on the CNN, we further extend 
the optimisation with a Long Short-Term Memory (LSTM) architecture as 
a second novel method. It encodes the change of the topology over several 
iteration steps, thus resulting in a more accurate prediction of the next 
gradient step.

In the numerical experiments, it can be observed that the two presented 
architectures perform equally well as our reference implementation. 
However, fewer iteration steps are required (i.e., larger steps can be used) 
since the gradient step predictions seem to be better than when computed 
with a classical optimisation algorithm.

The structure of the paper is as follows. In Section 2, we introduce the 
underlying setting from [1,2] and discuss the algorithms used for phase-
field-based topology optimisation. In this context, we introduce the linear 
elasticity model and derive a state equation, the adjoint equation and a 
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gradient equation, whose joint solution constitutes the optimisation problem 
under consideration. In Section 3, we present two different architectures 
of the NNs approximating multiple steps of the gradient equation. We start 
with a CNN that is well suited for processing the discretised solutions of the 
equations from Section 2. This is then extended to a long short-term memory 
NN, which is able to process a sequence of these solutions simultaneously 
and thus achieves a higher prediction quality. Since the data of the finite 
element simulation do not directly match the required structure of NNs, we 
provide a discussion of the data preparation for both architectures. Section 
4 illustrates the practical performance of the developed NN architectures 
with a standard benchmark (a 2D bridge problem). The work ends with a 
summary and discussion of the results and some ideas for further research 
in Section 5. The appendix provides some background on the used problem, 
in particular the standard benchmark problem in Appendix A and the finite 
element discretisation in Appendix B. The implementation and codes for the 
generation of graphics and data to reproduce this work are publicly available 
(https://github.com/MarvinHaa/DeepNNforTopoOptisation accessed at 1 
June 2022).

TOPOLOGY OPTIMISATION UNDER  
UNCERTAINTIES
We are concerned with the task of topology optimisation with respect to 
a state equation of linear elasticity. This problem becomes more involved 
when stochastic data are assumed. In our case, this concerns material 
properties and the forces acting on the designed structure. These translate 
into the engineering world as material imperfections or fluctuations and 
natural forces such as wind or ocean waves. Such random phenomena are 
modelled in terms of random fields that often are assumed to be Gaussian 
with certain mean and covariance.

It is instructive to first present the deterministic topology optimisation 
task, which we discuss in the following Section 2.1. Subsequently, in Section 
2.2 we extend the model to exhibit random data, allowing an extension of the 
cost functional to also include the fluctuations of the data in terms of a risk 
measure. In our case, this is the so-called conditional value at risk (CVaR).

For the sake of a self-contained presentation, we provide all equations 
that lead to the actual optimisation problem, which is given in terms of a 
gradient that evolves a phase field. Thus, the entire problem formulation 
can be understood and the required extensions to obtain the risk-averse 
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formulation become clear. However, in case the reader is only interested in 
the proposed NN architectures, it might be sufficient to simply gloss over 
the most important parts of the problem definition, for which we provide 
a guideline as follows: The linear state equation is given in Equation (1), 
leading to the weak form in Equation (2) that is used for the computation of 
finite element solutions. These are required in the deterministic minimisation 
problem given in Equation (4), which is solved iteratively by computing 
the gradient step defined by Equation (6). A similar problem formulation, 
extended by an approximation of the CVaR risk measure, can be obtained in 
case of the risk-averse optimisation. This is given in Equation (9) and can be 
solved iteratively with gradient steps defined by Equation (11).

The presentation of this section is based on [1,2] where the optimisation 
problem computes the distribution of material in a given design domain 
described by a continuous phase field depending on the realisation of the 
random parameters. The optimum of this problem maximises stiffness while 
minimising the volume of material for the given data.

Deterministic Model Formulation
The goal is to determine an optimal distribution of a material (with density 
or probability) m∈[0,1] in a compact design domain . We 
further assume that D satisfies sufficient regularity assumptions such that 
the PDE state equation exhibits a unique solution. The desired optimality of 
the task means that the resulting topology is as resilient (or stiff) as possible 
with respect to the deformation caused by the expected forces acting on it, 
which are described by a differentiable vector field u: .

Definition 1. 

The	distribution	of	a	material	m∈[0,1]	in	 	is	represented	by	
a	phase	field	φ:D→ 	with	0≤φ(x)≤1	for	all	x∈D,	where	φ(x)=1	if	there	is	
material	at	position	x	and	φ(x)=0	if	there	is	no	material	at	position	x.	At	the	
phase	 transitions	we	 allow	0<φ(x)<1	 to	 ensure	 sufficient	 smoothness	 for	
phase	shift.	We	call	the	evaluation	of	φ	topology.

Note that the actual topology is reconstructed in a post-processing step 
by choosing some threshold in (0,1) to fix the interface between material and 
void phase of the phase field.
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Linear Elasticity Model
The state equation corresponding to the above problem is described by the 
standard linear elasticity model [17]. To define the material tensor, we first 
define the strain	displacement (or strain tensor)  by

which specifies the displacement of the medium in the vicinity of position x. 
Moreover, a so-called blend function  is given by

ensuring a smooth transition between the phases. According to Hooke’s law 
and by using the Lamé	coefficients μmat>0 and λmat>0, the isotropic	material	
tensor σmat:  for the solid phase is given by

This material tensor describes the acting forces between adjacent 
positions in the connected material, where λmat and μmat are two material 
parameters characterising the strain–stress relationship. For the void phase, 
to ensure solvability of the state equation in entire domain D, we define 
the tensor as a fraction of the material phases. More precisely, we set 

 with some small ε>0. Hence, the material	tensor 
(or stress tensor)  is given by

Using the material tensor σ, a force with load  (a pressure field) 
and the phase field φ, the displacement vector field u is described by the 
state equation of the standard linear elasticity model given by

   (1)
This implies that on boundary subspace ΓD⊂D the material is fixed 

while on Γg⊂D the force g acts on the material. On the boundary Γs⊂D the 
material is barred from movement in normal direction n. In the following, 
equality is to be generally understood in a pointwise manner.
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State Equation
The weak formulation of the state Equation (1) can be formulated as: find 

 such that

   (2)

where  is the usual Sobolev space and dμ the Lebesgue measure and

and

These definitions are in particular used for the finite element discretisation 
described in Appendix B.

Adjoint Equation
To define the optimisation problem, we introduce the Ginsburg–Landau	
functional , which serves as a penalty term for undesired 
variations and is defined by

where |⋅| is the Euclidean norm. This ensures that the solution to the 
optimisation problem can be interpreted as an actual smooth shape. The 

double	well	functional  with  
penalises values of φ that differ from 0 or 1 and the leading term limits the 
changes of φ. This results in the cost functional  to be minimised,

   (3)
The adaptivity parameter γ controls the weight of the interface 

penalty and hence has a direct influence on the minimum respective to the 
characteristics of the resulting shape of φ. In fact, γ is chosen adaptively to 
avoid non-physical or highly porous topologies, see [2]. Additionally, we 
require the volume constraint ∫Dφdμ=m|D| with m∈[0,1] to limit the amount 
of overall material.
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The (displacement) state u from Equation (3) is obtained by solving the 
state Equation (2), which is used in the optimisation problem

    (4)

s.t.Equation (2)holds, .
The Allen–Cahn	 gradient	 flow	 approach is used to determine the 

solution φ for which the adjoint problem of Equation (4) is used to avoid 
the otherwise more costly calculation. It is shown in [2] that for Jε the 
corresponding adjoint problem can be formulated as: find p∈H1(D) such that

   (5)
which is identical to the state equation. Hence, the respective adjoint solution 
p is equal to the solution u of Equation (2) and no additional system has to 
be solved.

Gradient Equation
With the solutions u respective to p one gradient step with adaptive step size 
τ can be characterised by the unique solution (φ,λ)∈H1(D)×  such that, 

for all (vφ,vλ)∈ 

   (6)
The restriction on 0≤φ≤1 for all x∈D is realised by 

φ(x):=min{max{0,φ∗(x)},1} in every iteration step. For the calculation of 
the minimum of Equation (4), the state Equation (1), the adjoint Equation 
(5) and subsequently the gradient Equation (6) are solved iteratively until 
φ converges. We always assume that solutions u and φ exist, which in 
fact can be observed numerically. The proposed procedure is described by 
Algorithm A1 where the solution of the integral equations takes place on 
a discretisation of D. The algorithm solves the state, adjoint and gradient 
equations in a loop until the solutions of the gradient equations only change 
slightly. The discretisation mesh is subsequently refined and the iterative 
process is restarted on this adjusted discretisation.
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Stochastic Model Formulation
In the stochastic setting, the Lamé coefficients 
(determining the material properties) 

 
are treated as random variables on some probability space (Ω,P). The 
randomness of the data is inherited by the solution of the state equation as 
well as the adjoint equation. As a result, the gradient step can be considered as 
a random distribution, see again [1,2]. The goal is to minimise the functional 
for the expected value of φ as well as for particularly unlikely events. For 
the formulation of an adequate risk-averse cost functional, we introduce the 
conditional	value	at	risk (CVaR). The CVaR, a common quantity in financial 
mathematics, is defined for a random variable X by

with VaRβ[X]:=inf{t∈ |P(X≤t)≥β} and 1>β≥0. It characterises the 
expectation of the β-tail quantile distribution of X, hence accounting for bad 
outliers that may occur with low probability. The stochastic	state	equation 
can be formulated analogously to Equation (5) in the deterministic setting.

Adjoint Equation
For the risk-aware version of Equation (3) with respect to the CVaR 

parameter β, we define the cost  by

   (7)
In the special case β=0, the CVaR is nothing else than the mean, i.e.,

This results in the stochastic	 minimisation	 problem analogous to 
Equation (4) given by

    (8)

s.t. Equation (2)holdsa.s., .
Following [2], the CVaR can be approximated in terms of the plus 
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function. The solution of Equation (8) can hence be rewritten as

  (9)
An obvious approach to solve this optimisation problem is a Monte 

Carlo simulation, i.e., for each iteration step n∈  with evaluation of un, 
state Equation (1) have to be solved for different parameter realisations. The 
associated adjoint problem to Equation (9) reads

   (10)
Consequently, the solution of Equation (10) is given by

Gradient Equation
Analogous to the deterministic approach, the gradient can be defined 
corresponding to Equation (9) by the solution (φ,λ,t)∈H1(D)× × , such 

that for all (vφ,vλ,vt)∈ ×  the following equation holds,

   (11)
The actual solution for one gradient step of the minimisation problem in 

Equation (8) with respect to (9) follows from

   (12)

where S∈  is the number of samples of the Monte Carlo simulation. The 
larger β chosen, the larger t becomes, and thus the number of evaluations of 

u for which −t≤0 holds true increases. In order to ensure a valid 
simulation of Equation (12), N must be chosen sufficiently large so that an 
adequate number of evaluations of u in each gradient step fulfils condition 
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−t>0. The described procedure is depicted in Algorithm A2 where 
the optimisation process is basically the same as in Algorithm A1. The 
central difference is that N∈  realisations of the optimisation problem have 
to be computed in each iteration. In practice, these are solved in parallel for 
N different ω∈Ω and the results are then averaged. The large computational 
efforts caused by the slow Monte Carlo convergence are alleviated by the 
neural-network-based machine learning approaches presented in Section 
3. In particular, gradient steps for arbitrary parameter realisations can be 
evaluated very efficiently and significantly fewer iterations (i.e., optimisation 
iterations) are required.

NEURAL NETWORK ARCHITECTURES
In modern scientific and engineering computing, machine learning 
techniques have become indispensable in recent years. The central goal of 
this work is to devise neural network architectures to facilitate an efficient 
computation of the risk-averse stochastic topology optimisation task. In 
this section, we develop two such architectures. The first one described in 
Section 3.1 is based on the popular convolutional neural networks (CNN) 
that were originally designed for the treatment of image data. In Section 
3.2, a classical long short-term memory architecture (LSTM) is adapted to 
predict the gradient step.

The usage of deep neural networks with topology optimisation tasks 
have been previously examined in [4,10]. However, in contrast to other 
approaches, our architecture aims at a single NN that can be trained to 
handle arbitrarily fine meshes in terms of the requirements warranted during 
the topology optimisation process. More precisely, we seek an NN that 
predicts the gradient step  from Equation (6) discretised on 
an arbitrarily fine mesh Tm at an arbitrary iteration step n∈  with given k∈

, for  such that

   (13)
Thus, the total number of iterations required for the topology optimisation 

iteration should ideally be reduced, resulting in improved practical 
performance. For the sake of a convenient presentation, we consider all 
other coefficients of Equation (6) as constant in the following analyses. 
Alternatively, one would have to increase the complexity in the number of 
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degrees of freedom which are the weights describing the NN as well as the 
required training data. It can be assumed that with more information in the 
form of coefficients provided to the NN during training the accuracy of the 
resulting approximation of φn increases. Within the optimisation procedure, 
the actual calculation of the gradient step given in Equation (6) is performed 
on the basis of variable coefficients (e.g., τ and γ).

Since the discretisation  can be rewritten rather 
easily in tensor form, which represents the input of a CNN, this is the first 
architecture we consider in the next section.

Topology Convolutional Neural Networks (TCNN)
When using a visual representation of topologies as images (as they can 
be generated as output of a finite element simulation), the solution of 
Equation (6) can be easily transferred to the data structures used in CNNs. 
Consequently, predicting the gradient step with a CNN can be understood 
as a projection of the optimisation problem into a pixel-structured image 
classification problem. Here we assume that the calculation of the learned 
gradient step is encoded in the weights that characterise the NN.

In principle, the structure of a classical CNN consists of one or more 
convolutional layers followed by a pooling layer. This basic processing unit 
can repeat itself as often as desired. If there are at least three repetitions, we 
speak of a deep CNN and a deep learning architecture. In the convolutional 
layers a convolution matrix is applied to the input. The pooling layers are to 
be understood as a dimensional reduction of their input. Although common 
for image classification tasks, pooling layers are not used in the presented 
architecture.

TCNN Architecture
We follow the presentation of the pytorch documentation [18]. The input of 
a layer of the CNN architecture is a tensor . Here, S∈

 is the number of input samples, in our case the evaluations of φ and u as 
presented in Section 3.1.2. It is therefore possible to calculate the gradient 
step φn from Equation (6) for several different loads g simultaneously. This 
way, Monte Carlo estimates become very efficient. Cin∈  corresponds to 
the number of input channels and each channel represents one dimension of 
an input (φ or u). H∈  and W∈  provide information about the dimension 
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of the discretisation of the space D. The output of one CNN layer is specified 
by . For fixed s≤S and i≤Cout∈  with Cout the number of 
output channels is given as

   (14)

Here, * denotes the cross-correlation operator,  
and Is,k with s≤S,k≤Cin is a cutout of I. The weight tensor 

 determines the dimensions of the kernel 
(or convolution matrix) of the layers with .

For simplicity, we henceforth assume S=1 unless otherwise specified. 
In particular, the entries of the weight tensor W are parameters that are 
optimised during the training of the CNN. Depending on the architecture of 

the CNN, an activation function  evaluated element-wise can 
additionally be applied to Equation (14).

Definition 2. 

Let	

	be	given	by	one	parameter	vector	 	with

Furthermore,	let	σ	be	a	continuously	differentiable	activation	function.	We	
call	a	function

   (15)
a	convolution	layer	with	activation	function	σ	if	it	satisfies

   (16)
with	i=1,…,Cout.

A sequential coupling of this layer structure provides the framework for 
the CNN. Specifically, for ,
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  (17)

Definition 3 

(CNN architecture). Let	

for	 1	 <	 l	 ≤	 L	 and	 	 for	 l≤L	 with	 L,H,W, 

	be	given	by	some	parameter	vector	

	with

Furthermore,	let	σ1,…,σL	be	given	continuously	differentiable	activation	
functions.	We	call	an	NN	of	the	form	of	Equation	(17)	an	L-layer	topology	
convolutional	neural	network	(TCNN)	and	characterise	it	as	the	mapping

The approximation of NCNN is hence determined by its parameter vector 
θ. For general CNNs, the dimension H×W does not have to be constant 
across the different layers. The same holds true for the dimensions HK×WK 
of the kernel matrices. In fact, before implementing the convolution, we 

embed each channel of our input in a  
space to preserve the dimension in the output.

Example 1. 
The	 following	 specific	 TCNN	 has	 proved	 to	 be	 the	 most	 suitable	 for	
integration	into	Algorithm	A1	for	the	selections	of	hyperparameters	we	have	
investigated.	The	architecture	 is	given	as	an	L=6	 layer	TCNN	with	Cin=3	

input	 channels,	 	 for	 1<l<5	 hidden	 channel,	 	 output	
channel	and	kernel	size	HK=WK=3	as	well	as	trained	weights	described	by	

	which	determine	the	mapping	by
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   (18)
with	 activation	 function	 σ6(x):=min{max{x,0},1}.	 In	 contrast	 to	 many	
standard	 architectures,	 only	 the	 activation	 function	 of	 the	 output	 layer	
is	not	 the	 identity.	We	chose	 	as	 input	 space	 in	anticipation	of	
the	setting	 in	Example	2,	reflecting	our	mesh	choice	 to	discretise	domain	
D=[−1,1]×[0,1]	with	201×101	nodes,	which	 for	 first-order	 finite	elements	
then	is	the	dimension	of	the	discrete	functions	u	and	φ.	The	architecture	is	
depicted	in	Figure	1.

Figure 1: Visualisation of the TCNN from Example 1.

Data Preparation
On the algorithmic level, our goal is to replace the computationally costly 
lines 5 and 6 of all cm∈  loop iterations of Algorithm A1 with a TCNN. 
This is not directly possible (at least for a TCNN) since the input space 

 of a TCNN does not match the mesh Tm on which the finite 
element discretisation and thus the optimisation of φn takes place in the 
current optimisation step t. Hence, it is necessary to project the evaluation 
of φ onto the format of a CNN. For this we define a transformation 

between  and the input tensor . As 
described in Appendix B, we do not assume that the mesh Tm stays fixed in 
the optimisation algorithm and we instead generate a sequence of different 
meshes Tm by some adaptive mesh refinement, which has led to significant 
efficiency improvements in [1]. To obtain unique transformations between 
the discretisation finite element space and the input space of the NN, one 
can interpolate the current solutions of φn and un+1 from Tm onto a constant 
reference mesh Tconst by polynomial interpolations
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Hence, during the optimisation, the current solutions are interpolated via 
the operator p to the reference mesh, rendering the prediction independent 
from the actual adaptive mesh. After the NCNN prediction of the gradient step 
on the reference mesh, it is mapped back to the actual computation mesh 
via q.

Consequently, we define the reference mesh 

 with vertices V and edges E as a graph 
such that ⋅W. Each node  corresponds to the values 
of  
at node vi. The features of the nodes can hence be interpreted as rows of a 
feature matrix,

   (19)
The structure of Tconst is illustrated in Figure 2.

Figure 2:  to transform NTCNN from Example 1.



Applied Mathematics in Engineering270

One can now define a transformation between  by

     (20)
Hence, the approximation of the gradient step 6 of Algorithm A1 is 

basically a coupling of the mappings p, Φ and NCNN, namely

   (21)

Example 2 
(Illustrating the TCNN). The	 NN	 given	 by	 the	 coupling	 of	 functions	 in	
Equation	(21)	with	NCNN	given	as	in	Example	1	can	be	described	by

     (22)
with

      (23)

for	 	defined	on	Tm.	Hence,	
this	NN	can	be	applied	directly	to	the	finite	element	discretisations	φn	and	
un	used	in	Algorithms	A1	and	A2.

With the TCNN from the example in Equation (23) we have extended 
Algorithm A1. More precisely, we have inserted an NN approximation 

 in each of the cm∈  steps, which predicts k 
iteration steps by just one evaluation. For this, the sequence cm has to be 
defined in advance. We leave it to future research to adaptively control the 
sequence cm dynamically within the optimisation algorithm. This extension 
of Algorithm A1 is described by Algorithm 1. In an analogous way, we also 
extend Algorithm A2 by the TCNN given in Equation (23). In particular, 
we are able to evaluate all samples S∈  in parallel by adding additional 
sample dimensions to the input tensor of the TCNN given in Equation (14). 
This procedure is illustrated in Algorithm 2. Again, the parameter cm has to 
be chosen in advance.
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Algorithm 1: Deterministic optimisation algorithm with TCNN approximated 
gradient step

Algorithm 2: Stochastic optimisation algorithm with TCNN approximated gra-
dient step



Applied Mathematics in Engineering272

Topology Long Short-Term Memory Neural Networks  
(TLSTM)
One possible approach to improve the prediction of φn using an NN is to 
provide the classifier not just one tuple (φn,un+1) as an inpu, but to have it 
process a larger amount of information by a sequence of these tuples of the 
last T∈  iteration steps, i.e.,

Through this, the shift of the phase field or the change of the topology 
φn over time is also transferred as input to the NN. The sequence prediction 
problem considered in this case differs from the single step time prediction 
in the sense that the prediction target is now a sequence that contains both 
spatial and temporal information. Theoretically, this information can also 
be learned directly from the NN. However, in practice it is more effective 
to adapt the architecture to the information we have in advance (in our case 
with respect to the time dependency) to achieve better results. An NN that 
allows exactly this is a recurrent Neural Network (RNN). Unfortunately, 
standard RNNs often suffer from the vanishing gradient problem [19,20] 
which we try to prevent from the beginning. Therefore, we build on the 
special RNN concept of a Long Short-Term Memory (LSTM) in the context 
of our problem, which is more robust against the vanishing gradient issue 
and provides promising results, especially in the analysis of time series. For 
a background on time series analysis and a review of the different methods, 
we refer to the survey article [21]. In practice, time series are usually stored 
as one-dimensional sequences in vector format. Consequently, there is no 
out-of-the-box LSTM layer implementation for structures such as the input 
tensor we require in Equation (14). Nevertheless, we still do not wish to 
abandon the mechanism of convolution within the NN in order to keep the 
structural information of φ and u. An LSTM layer with a convolutional 
structure can be constructed by replacing the matrix vector multiplication 
within a standard LSTM layer by convolutional layers. The unique 
advantage of an LSTM according to [20] is its cell-gate architecture, which 
mitigates the vanishing gradient problem. More precisely, it consists of a 

“memory cell”  that serves as an accumulator of the 
current state t≤T,t∈ , in the processed sequence. The information capacity 
of the last status ct−1 within ct is controlled by the activation of the so-called 

“forget gate” . The information capacity of the input 
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state  is controlled by the activation of the input gate it. Which 
information (or whether any at all) gets transferred from memory cell ct to 

state  is in turn controlled by the activation of the 
output gate ot. From a technical point of view, the gates can be understood 
as learning forward layers.

TLSTM Architecture
An ordinary LSTM layer to generate complex sequences with long-range 
structure as presented in [22] corresponds to the described logic above and 
can be formulated numerically for a sequence of one-dimensional input state 

 and output vector  as an equation system

  (24)

where  and tanh are evaluated element-wise. The 
operation ⊙ denotes the Hadamard product and the subscripts of the weight 
matrices  describe the affiliation to the gates. For example, 
Wxi is the weight matrix to input xt of gate it. This illustrates how the weights 
of the LSTMs are transferred to the weights of convolution LSTMs in the 
following.

We want to reformulate Equation (24) by replacing all matrix-vector 
multiplications (i.e., the forward layer) with a convolution layer from 
Definition 2. This is inspired by [23], which has already provided the 
theoretic architecture of a convolutional LSTM layer with the approach on 
precipitation forecasting. Let Conv(⋅;θ):  be a 
convolutional layer and  a sequence of inputs ordered by 
the discrete time dimension T∈ . A convolutional LSTM layer to an input 
sequence It≤T and  (since at 
t=1 we do not yet have any information about earlier steps in the sequence) 
is given by a system of equations,
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   (25)

with t≤T,t∈  and  the output of the convolutional LSTM 

layer as well as  in Equation 
(24). The subscript t indicates a cutout of the t-th element of sequence 
dimension T of the respective tensor.

Definition 4 

(LSTM layer). Let	 L,H,W,T,Cin,Cout∈ 	 as	 well	 as	
	and	parameter	vectors,	specifying	the	convolutional	layer	

as	in	Definition	3	for	L=1	from	Equation	(25),

and	described	by	the	parameter	vector	 ,	with

Furthermore,	 let	 	 and	 tanh	 be	 evaluated	 element-
wise.	We	call	a	function,

an LSTM layer, if it satisfies the mapping rule given by the system of 
Equation (25).

For the forecasting of our gradient sequence, we use an encoder–decoder 
architecture (i.e., an “autoencoder”) consisting of 2L,L∈ , LSTM layers,

that satisfies the mapping rule given by the equation system (25) with 
1≤l≤2L. Therefore, the encoding and decoding blocks of the autoencoder 
have the same number of layers L∈ . The autoencoder for an input 
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sequence  can be described by the following system 
of equations of the encoder block,

  (26)
with 1≤t≤Ten,t∈ . This is combined with the following decoder block by setting 

,

   (27)
with 1≤t≤Tdec,t∈ .

It should be mentioned that the input and output sequences do not have 
to be of the same length (in fact, in general Ten≠Tdec). Furthermore,  
holds for individual LSTM layers 2≤l≤2L defined in Equations (26) and (27). 
Especially, since the output sequence  is also input of LSTML+1, it holds that 

. In order to be able to select the dimensions of the output tensor 
 completely independently of the hidden channels, we additionally apply a 

convolutional layer  

with activation function  to concatenate the hidden channel 
to an arbitrary number of output channels  given by

   (28)

Definition 5 



Applied Mathematics in Engineering276

(TLSTM architecture). Let	 L,H,W, 	 as	 well	 as	

,	with	1≤l≤2L	be	given.	Hence,	 the	respective	LSTM	layers	 from	
the	encoder	defined	in	Equation	(26)	and	decoder	in	(27)	block	as	well	as	
the	output	layer	in	Equation	(28)	can	be	described	by	the	parameter	vec-
tors	of	the	CNN	and	LSTM	layers	(see	Definition	3	for	L=1	and	Definition	
4)	 	 for	 1≤l≤2L	 and	 an	 activation	
function	 	of	the	output	layer.	These	parameter	vectors	as	well	

as	 the	 weight	 tensors	 	 for	

l≤2L	can	in	turn	be	described	collectively	by	the	parameter	vector	
,	where

We call an NN as described in Equations (26)–(28) Convolutional 
Topology Long Short-Term Memory (TLSTM) and characterise it by

The difference between a TLSTM and an LSTM is therefore the structure 

of the input tensor  of a TLSTM instead of  
and the internal calculation carried out with convolutional layers instead of 
standard multiplications.

Example 3. 
For	the	experiments	in	Section	4.2,	the	underlying	L=4	layer	TLSTM	with	

Cin=3	input	channels,	 ,l≤4	hidden	channels,	Cfinal=1	output	channel,	
kernel	 size	 of	 all	 included	 convolutional	 layers	HK=WK=3	 and	 sequence	
lengths	Ten=5,	Tdec=10	with	 trained	weights	described	by	 	are	
given	as

   (29)

with	 activation	 function	 .	 The	
autoencoder	structure	 for	an	8-layer	LSTM	described	 in	Equations	 (26)–
(28)	for	(29)	is	visualised	in	Figure	3.
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Figure 3: Autoencoder architecture NLSTM of Example 3.

Data Preparation
As in the case of the integration of the NCNN proposed in Section 3.1, 
we want to replace lines 5 and 6 in Algorithm A1 with the approximation 
of the NLSTM from Definition 5. In case of a TLSTM, the evaluations of φ 
and u have to be transformed from the graph structure of the finite element 
simulation into an appropriate tensor format. This in principle is analogous 
to the composition  in Equation (21). The only difference is that now 

this is performed on a sequence of evaluations  of length 
. As the subscripts suggest, such a sequence does not necessarily 

have to be evaluated on a fixed mesh Tm, it may extend over a sequence of 
meshes Tm. However, since we use polynomial interpolations

to transfer the sequence φn−T,…,φn and un−T+1,…,un+1 onto some reference 
mesh .

We intend to process Ten feature matrices of the form of Equation (19). 
Hence, we define transformations
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    (30)
Thus, the approximation of a gradient step in Algorithm A1 by a TLSTM 

can be understood as a concatenation of the form

  (31)

Example 4 
(The TLSTM). The	NN	given	by	 the	coupling	of	 functions	 from	Equation	
(31),	where	NLSTM	as	given	in	Example	3,	can	be	described	by

    (32)
and

for	 	defined	on	mesh	Tm.
The TLSTM from Example 4 can directly be integrated into Algorithm 

A1 as with the previous integration with Algorithm 1. In fact, since in 
Algorithm A1 only the most recent gradient step is relevant, in practice we 
restrict the inverse mapping on the last element of the predicted sequences 
to save calculation time. The only difference is that the sequences φn−T,…,φn 
and un−T+1,…,un+1 have to be stored in a list. We chose c1=125 and cm=50 for 
all 2≤m∈N. This procedure is described in Algorithm 3. As in the case of the 
TCNN, we are able to include the extra sample dimension S to approximate 
gradient steps from multiple problems at once.
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Algorithm 3: Deterministic optimisation algorithm with TLSTM approximat-
ed gradient step

RESULTS
This section is devoted to numerical results of the two previously described 
neural network architectures. The implementations were conducted with the 
open source packages PyTorch [18] for the NN part and FEniCS [24] for 
the FE simulations (see introduction for the link to the code repository). 
We first illustrate the performance of the TCNN in Section 4.1 with a 
deterministic bridge example compared to a classical optimisation. The 
important observation is that with the TCNN the optimisation can be carried 
out with far fewer optimisation steps while still leading to the reference 
topologies from [1]. Similar results can be observed for the risk-averse 
stochastic optimisation. In Section 4.2, numerical experiments of the TLSTM 
architecture are presented. The performance is revealed to be comparable to 
the TCNN architecture and the optimisation appears to be more robust with 
respect to the data realisations.
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TCNN Examples
Before we can use the TCNN architecure for the optimisation in Algorithm 
1, we have to train it on data that describe the system response of Equation 
(6). Note that it would not be useful to allow the NCNN to learn the gradient 
steps of a fixed setting since different settings of the bridge problem from 
Appendix A.1 should efficiently be tackled. In considering the stochastic 
setting of the problem as defined in Section 2.2, the TCNN is trained to learn 
the gradient steps φ for a random .

Sampling the Data
To train the architecture, appropriate training data have to be generated. 
In order to achieve this, we chose the same setting for g as in Appendix 
A.2. Using the optimiser in Algorithm A1, we can generate S∈  different 
sample paths of gradient steps φn(g) and solutions of the state equation 
un(g) by generating S samples of g. In this procedure, we store every k∈  
iteration step of φn and un in order to approximate k gradient steps at once. 
More precisely, we store  tuples

   (33)

with 0≤n≤Nmax−k, where Nmax∈  is fixed in advance, representing the 
maximum number of iterations of an optimisation. For the training of the 
models in the following experiments, we have chosen Nmax=500 since the 
topologies have mostly converged after this number of iterations. The 

overall number of S( ) tuples are merged into an unsorted data 
set DCNN.

TCNN Predictions
The following experiment validates that the performance of Algorithm A1 
can be replicated or (desirably) improved by including a CNN as described 
in Algorithm 1. As a first test, we illustrate that the proposed new architecture 
is indeed capable of predicting the gradients of the optimisation procedure.

Figure 4 shows the evaluations of the model Equation (22) after 
determining θ within the training of the NN on the data set DCNN. Here, 
the prediction  and the actual gradient step φn+k 
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generated by Algorithm A1 are compared for different loads sampled from 
a truncated normally distributed g. Since the predictions of  are hardly 
distinguishable from the reference fields, we have also trained Equation (22) 
to predict larger time steps (for 25 and 100 iteration steps at once). However, 
these NNs have proved to be less reliable in practice as prediction quality 
decreases. An illustrative selection of some predictions is provided in Figure 
A5 and Figure A6 in Appendix C.

Figure 4:  (top row) in comparison with φn+5 (bottom row).

Deterministic Bridge Optimisation
In these experiments we compare the performance of Algorithm 1 with that 
of Algorithm A1 in the setting of Appendix A.1. For the NN in Algorithm 
1, we use Equation (22) from Example 2. For cm∈  in Algorithm 1 we 
chose cm=55 for all m∈ . In order to train Equation (22), data of the 
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form of Equation (33) from Section 4.1.1 are used. We expect that the best 
(reference) results in the setting from experiment A.1 can be obtained, 
since the distribution of the training data is a truncated normal distribution 
around this expected value and we thereby have an accumulation of training 
points around the load g=(0,−5000)T. As a convergence criterion, we used 
the convergence criterion of the mesh refinement of Equation (A1) on a 
maximally fine mesh with |V(Tm)|≤15,000. A sub-sequence generated by 
Algorithm 1 is shown in Figure A7a in comparison to that of Appendix A.1 
in Figure A7b in Appendix C. There, it can be observed that the classical 
and CNN-assisted optimisation results essentially appear identical with the 
faster CNN convergence.

The metrics for evaluating our algorithms have also improved through 
the application of the CNN as can be observed in Figure 5. For better 
comparability, we ran both algorithms 10 times and averaged all metrics. 
To be more precise, this is only the average of the calculation time, as the 
remaining metrics are deterministic and therefore always the same. It is 
easy to see how the metrics diverge with the first application of the CNN at 
iteration step 55, especially by the computation time required per iteration. 
The most significant indicator is the evaluation of Jε(φn) per iteration of 
Equation (3) at the top-right of Figure 5. The graph for Algorithm 1 reaches 
a constant lower level than that of Algorithm A1 after about 250 iterations 
and thus fulfils the convergence criterion earlier. Accordingly, the step size 
criterion for τn applies earlier by using the CNN, which further accelerates 
convergence. An interesting insight is provided by the calculation time, 
which shows that the actual time required per iteration step is more or less 
the same, except for the iteration steps in which Equation (22) is applied. 
This is indicated by the upward outliers in the computation time series. This 
additional computation cost can be explained by the application of the mesh 
projection of Equation (21), which represents an aspect requiring further 
improvements. Nevertheless, in total we achieve a shorter total run-time due 
to the faster convergence of Algorithm 1.
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Figure 5. Comparison of metrics between Algorithms A1 and 1.

A detailed list of the run-times and target value metrics for the functional 

Jε(φn) is provided in Table 1. The evaluation of  denotes the value 
of the functional for the topology  converged after nfinal∈  iteration 
steps. The compliance is the value that is actually minimised in terms of 

the functional . Algorithm 1 requires less computing time than 
the reference procedure after extending it with the CNN architecture from 
Equation (22).

Table 1: Comparison of metrics between Algorithms A1 and 1

Stochastic Bridge Optimisation
Algorithm A2 can easily be extended by the TCNN of Equation (22) in order 
to improve the efficiency for topology optimisation under uncertainties. 
The corresponding procedure is shown in Algorithm 2 where we chose 
cm=55 for all m∈ . Note that the predictions of the different realisations 
of φn(ωi),ωi∈Ω for i=1,…,S∈  (where an evaluation φn(ωi) are to be 
interpreted as transformation of an evaluation from g(ωi)) are actually not 



Applied Mathematics in Engineering284

executed within a loop but in parallel (lines 8–12 of Algorithm 2). This 
is possible because NNs are generally able to process batches of data in 
parallel. We have also implemented parallelisation for Algorithm A2, which 
is limited by the number of processor cores of the actual compute cluster. 
We want to compare the performance of Algorithm A2 and Algorithm 2 
using the same setting as in Appendix A.2. To ensure comparable results 
despite stochastic parameters, we set the random seed to 42 before running 
both algorithms. The resulting sub-sequences of φn are compared side by 
side in Figure 6. Although the topology converges after fewer iterations with 
Algorithm A2, one can see that the topology resulting from Algorithm 2 
has a more stable shape since the topology does not lose material to the 
unnecessary extra spoke. This is confirmed by the metrics in Table 2 where 
one can see that Algorithm 2 achieved a lower compliance after fewer 
iteration steps. Additionally, the optimisation of Algorithm 2 is stopped after 
500 iterations to show that it achieves a better result in less time as shown 
in Figure 7. A notable observation is that the times of applying Equation 
(22) in Algorithm 2 can be identified by the spikes in the computation time 
of the iterations. It can be seen that despite the additional time required by 
the transformation in Equation (21), the calculation of a stochastic gradient 
step using Equation (22) is generally faster. This is due to the dynamic 
parallelisation that PyTorch provides when processing batches (in our case 
the approximation of multiple evaluations from φn(ωi) with NNs). However, 
the amount of evaluations of φn(ωi) that Algorithm A2 can process at once is 
limited by the number of available processors. Since the calculation time for 
the evaluation of an optimisation step φn+1(ωi) increases with finer meshes, 
the evaluation of the approximation of all gradient steps φn+1(ω1),…,φn+1(ωS) 
at once results in a processing time advantage for the NN. It is to be expected 
that this time saving increases with the number of examples S.

Figure 6: Classical risk-averse stochastic optimisation (top) and NCNN accel-

erated (bottom). (a) Sequence  from Algorithm 2. 

(b) Sequence  from Algorithm A2.



Topology Optimisation under Uncertainties with Neural Networks 285

Figure 7: Comparison of metrics between Algorithms A2 and 2.

Table 2: Comparison of metrics between Algorithms A2 and 2

As mentioned at the beginning of the experiment, we expect to achieve 
good results close to the mean of g=(0,−5000)T. In order to obtain a more 
general view of the quality of Algorithm 1, we have compiled a selection 
of extreme cases for the distribution of g (e.g., evaluations from g that 
deviate strongly from (0,−5000)T) in Figure 8 and Table 3. The figure shows 
the sequence of φn in hundreds of steps as well as the final distribution of 
material  for the specific loads g. Table 3 indicates a 
noticeable saving in calculation time, but there is no guaranteed improvement 
in the results. In particular, when the topology “collapses” (i.e., the NN cannot 
generalise to the input data with strong deviations from the training data), 
the application of the CNN leads to worse results. Nevertheless, it can be 
seen that the NN extension gives the algorithm a greater robustness against 
porous fragments (see Figure 8b) in the optimisation of the topology and 
thus a higher stability against collapsing of the topology in the optimisation 
can be assumed. Finally, a critical aspect to be mentioned is the step size cm. 
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The time at which Equation (22) is applied and which is controlled by cm∈
 has a crucial impact on the viability or “compatibility” between the state 

of the optimisation procedure and the CNN. In some cases, a cm that is too 
small or too large can lead to the collapse of the topology, i.e., the topology 
deteriorates and does not recover. For the reliable use of Algorithm 1, a 
method for controlling cm would have to be devised.

Figure 8: Comparison of metrics between Algorithms A1 (top row) and 1 (bot-
tom row) for different loads g.

Table 3: Comparison of metrics between Algorithms A1 and 1

TLSTM Examples
As in Section 4.1.3, randomly generated training data should be used in the 
following experiment with the derived LSTM transformation of Equation 
(31). The data tuples consist of input and output from NLSTM according to 
Example 4.
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Sampling the Data
Again, we assume an expected load g=(0,−5000)T and a random rotation 
characterised by a truncated normal distribution with bounds , 
standard deviation 0.3 and mean 0. Using the optimiser in Algorithm A1, 
S∈N sample paths of gradient steps φ(g) and solutions of the state equation 
u(g) are generated by drawing S realisations of g. In contrast to Section 
4.1.1, this time we do not only store every T∈  iteration step of φn and 
un but instead store all iteration steps of the optimisation of Algorithms A1. 
Afterwards, these are merged into disjoint subsets, each consisting of a 
sequence of T iteration steps. Thus, the feature or the sequence φn+1,…,φn+T 
is the label for the assembled sequence from φn−T,…,φn and un−T+1,…,un+1. 
More precisely, with

for 0≤n≤N−(T−1), a total of  tuples are stored in an unsorted 
dataset DLSTM.

TLSTM Predictions
After training the TLSTM from Equation (29) with the data set DLSTM 
generated in Section 4.2.1, we wish to investigate its predictive ability of 

 
compared to the real sequence (φn+T)n. For this purpose we have visualised 
both sub-sequences for T=10 in Figure 9 using the iteration sequence 
generated for a load g=(0,−5000). The distorted topology in the first forecasts 
is striking. This can be attributed to the comparatively low weighting of 
training data in which the distribution of the material is constant φn(x)=0,5 
for all x∈D or almost constant. This forces us to choose a correspondingly 
high cm∈  in Algorithm 3. Furthermore, it can be seen that especially in 
early phases of the partial sequence in which the change ∥φn−φn+1∥ is very 
high,  provides a better forecast from a visual perspective, i.e., 
the topology  has already converged further than the target image 
φn+10. Since the topologies on the finer meshes no longer show any major 
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visual changes and therefore the differences in the predictions are no longer 
recognisable, we have decided not to present them at this point.

Figure 9: Input φ (top row),  (center row) in comparison with φn+10 
(bottom row).

The architecture of the TLSTM allows the length of the input sequence 
as well as the output sequence to be chosen independently of the training 
data. The expected consequence is a decrease in prediction quality. Despite 
this, Figure 10 depicts the prediction results of Equation (29) with unchanged 
input sequence (Ten=5) and output sequence of length 40. Since a shorter 
output sequence (Tdes=10) is used to train Equation (29), the results of the 
longer output sequence indicate that NLSTM has indeed learned to predict a 
gradient step for the given setting and that the training data from Section 
4.2.1 describe the problem correctly.

Figure 10: Input φ (top row),  (center row) in comparison with 
φn+20 (bottom row).
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Analogous to Section 3.1.1, the intention behind the construction of 
NLSTM is to replace the gradient step in reference Algorithm A1 with Example 
3. Algorithm 3 describes the integration of the LSTM prediction. When 
evaluating , only the last iteration step φn+T of the predicted sequence 
is projected back to the current mesh Tm in order to save computational 
resources. We examine the performance of Algorithm 3 in the following 
deterministic experiment. As for the TCNN above, the beneficial performance 
of a single-gradient prediction transfers to the stochastic setting since it 
consists of a Monte Carlo estimator with N∈  samples in each step. It is 
hence not necessary to examine this in more detail.

Deterministic Bridge Optimisation
The motivation for the design of the TLSTM architecture was that the 
information contained in the time series of φn and un could ideally lead to an 
improvement in the forecast capabilities of the NN. This can be investigated 
as in Section 4.1.4 by calculating the optimal topology for different loading 
scenarios for g by Algorithm 3. Again, all results are based on the ten-fold 
averaged performance of the algorithms for each load g. Figure 11 shows the 
results in the setting similar to Appendix A.1 and compares the respective 
metrics. Analogous to Section 4.1.3 the sequence φn of the optimisation by 
Algorithm 3 is also more resilient to porous fragments in the structures than 
the reference optimisation procedure. In general, the pictures of φn hardly 
differ between Algorithms 1 and 3. Hence, apart from Figure 11, no further 
visualisations are presented. It should also be noted that the optimisation 
by Algorithm 3 is much less stable than the optimisation using NCNN from 
Equation (23). This becomes apparent when the structure collapses which 
was the case in each of our test runs if the cm∈  chosen was too small 
in Algorithm 3. Furthermore, it could be observed that the convergence 
criterion of Equation (A1) was not reached after applying NLSTM because φn 
diverged too far from the actual minimum on Tm. In conclusion, the stability 
of Algorithm 3 is even more dependent on cm than it is with Algorithm 1, 
which renders parameter calibration more difficult. However, the metrics in 
Figure 11 show that Algorithm 3 converges faster than Algorithm A1 and 
often achieves better results.
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Figure 11: Comparison of  between Algorithms A1 
(top row) and 3 (bottom row).

One conspicuous feature is the high fluctuation in the calculation time 
per iteration in the applications of NLSTM(⋅;θ) during the optimisation when 
compared to Algorithm 1. On the one hand, this is due to the comparatively 
high complexity of the TLSTM. In this context, high complexity means a 
high dimension d∈  of the parameter vector . On the other hand, 
the main driver of the higher calculation time is the transformation given 
by Equation (31) since on an algorithmic level the entire input sequence 

 has to be stored and transformed. In 
general, it becomes apparent at this point that the transformations in Equations 
(21) and (31) are the critical aspects that compromise the performance of 
Algorithms 1 and 3.

Table 4 compares the performance of the three presented algorithms. In 
overall terms, Algorithm 3 achieves better compliance, whereas Algorithm 
1 stands out owing to its shorter calculation time.
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Table 4: Comparison of metrics between Algorithms A1, 1 and 3

DISCUSSION AND CONCLUSIONS
The objective of this work is to devise neural network architectures that 
can be used for efficient topology optimisation problems. These tasks are 
computationally burdensome and typically are inevitably carried out with a 
large number of optimisation steps, each requiring (depending on the chosen 
method) the solution of state and adjoint equations to determine the gradient 
direction. Instead of learning a surrogate for state and adjoint equations, we 
present NN architectures that directly predict this gradient, leading to very 
efficient optimisation schemes. A noteworthy aspect of our investigation is 
the consideration of uncertainties of model data in a risk-averse optimisation 
formulation. This is a generalisation of the notion of “loading scenarios” that 
are commonly used in practice for a fixed set of parameter realisations. With 
our continuous presentation of uncertainties in the material and of the load 
acting on the considered structure, the robustness of the computed design 
with respect to these uncertainties can be controlled by the parameter of the 
CVaR used in the cost functional. Since computations with uncertainties 
require a substantial computational effort, our central goal is to extend 
the algorithms used in [1,2] by introducing appropriate NN predictions, 
reducing the iteration steps required. In contrast to other machine learning 
approaches, our aim is to achieve this even for adaptively adjusted finite 
element meshes since this has proven to be crucial for good performance in 
previous work. For this to function, an underlying sufficiently fine reference 
mesh is assumed for the training data and the prediction. Moreover, in 
contrast to other NN approaches for this problem, we consider the evolution 
of a continuous (functional) representation of a phase field determining the 
material distribution.
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Ideally, the NN architectures should hasten the deterministic topology 
optimisation problem and consequently the risk-averse optimisation under 
uncertainties. This is achieved in Section 3.1 by embedding a CNN in the 
optimisation for both the deterministic and the stochastic setting.

The observed numerical results for a common 2D bridge benchmark are 
on par with the reference method presented in [1]. However, the gradient 
step predicted by the NN architectures allows for significantly larger 
iteration steps, rendering the optimisation procedure more efficient. This 
directly transfers to the Monte-Carlo-based risk-averse optimisation under 
uncertainties as defined by Algorithm 2 since the samples for the statistical 
estimation are obtained with minimal cost. In addition to the CNN, a second 
architecture is illustrated in terms of an LSTM. This generally leads to a 
better quality of the optimisation and is motivated by the idea that a memory 
of previous gradients may lead to a more accurate prediction of the next 
gradient step. However, it comes at the cost of longer computation times 
due to the transformation between the different adapted computation meshes 
(see Section 4.4). Hence, a substantial performance improvement could be 
achieved by reducing the complexity of the transformations of Equations 
(21) and (31).

There are several interesting research directions from the presented 
approach and observed numerical results. Regarding the chosen architectures, 
an interesting extension would be to consider graph neural networks (GNN) 
since there, the underlying mesh structure is mapped directly to the NN. 
Consequently, the costly transfer operators from current mesh to reference 
mesh of the design space could be alleviated, removing perhaps the largest 
computational burden of our approach. Moreover, transformer architectures 
have probably superseded LSTMs and it would be worth examining this 
modern architecture in the context of this work.

The loss function used in the training also leaves room for improvements. 
For example, instead of the simple mean squared error used here, one could 
approximate the objective functional of Equation (5) directly in the loss 
function. Regarding the training process, there are modern techniques to 
improve the efficiency and alleviate over-fitting such as early stopping, 
gradient clipping, adaptive learning rates and data augmentation as 
discussed in [25]. Moreover, transfer learning in a limited-data setting could 
substantially reduce the amount of training data required.

This work mainly serves as a proof of concept for treating the considered 
type of optimisation problems with modern NN architectures. An important 
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step towards practicability is the further generalisation of this model, e.g., 
to arbitrary problems (with parameterised boundary data and constraints), 
determined by descriptive parameters drawn from arbitrary distributions 
according to the problem at hand. Moreover, the models presented here can 
be used as a basis for theoretical proofs (e.g., regarding the complexity of 
the representation) and further systematic experiments.   
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APPENDIX A. BRIDGE BENCHMARK PROBLEM

Appendix A.1. Deterministic Bridge Optimisation
For a comparison between Algorithm A1 from [1,2] and its extension to NNs, 
we make use of a bridge benchmark problem at selected locations. The name 
comes from the optimal shape resembling a bridge, which exhibits the best 
stiffness under the given constraints and forces acting on it. To be specific, 
the parameters are given as follows: Assume design domain D=[−1,1]×[0,1] 
with boundaries ΓD=[−1,−0.9]×{0}, Γg=[−0.02,0.02]×{0} on which the load 
g=(0,−5000)T is applied and the slip condition ΓS=[0.9,1.0]×{0} is set. The 
Lamé coefficients are given by μmat=λmat=150. Furthermore, the volume 
constraint is m=0.4 and ε=116. This is the same setting as in the deterministic 
experiment in [1,2].

The initial material distribution is given by φ0(x)=0.5∀x∈D. Several 
iteration results of φn from Algorithm A1 are depicted in Figure A1. As can 
be seen by the finer edges in the images, in the course of optimising the 
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topology (compare, e.g., φ200 and φ538), an adapted mesh is used which is 
refined depending on φn in order resolve fine details of the topology and to 
save computational costs (see Appendix B).

Figure A1: Iterations φ100,φ200,φ300,φ538 from Algorithm A1.

Algorithm A1 took 538 iterations to converge. Figure A2 illustrates 
other metrics in the optimisation. The convergence of Jε(φ) is clearly visible. 
Through the adaptation method of the step size τn (see [2]), it becomes 
increasingly larger when φn begins to converge towards the optimal mesh 
Tm. The small spikes in all time series are due to the refinement of the 
mesh Tm. In the lower-right corner, it can be seen that the calculation time 
increases with the fineness of the mesh Tm. The lower-left part of Figure A2 
shows γn, which stabilises the form of φn, but plays no further role in our 
investigations.

Figure A2: Metrics of the optimisation of Equation (4) using Algorithm A1.

Appendix A.2. Stochastic Bridge Problem
This modification of the experiment described in Appendix A.1 introduces 
uncertainties in the data, which render the problem much more involved. 
The Lamé–coefficients μmat=λmat are modelled as a truncated lognormal 
Karhunen–Loève expansion with 10 modes, a mean value of 150 and a 
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covariance length of 0.1 which is scaled by a factor of 100. The load g 
is assumed as a vector with mean (0,−5000) and a random rotation angle 
simulated through a truncated normal distribution with bounds , 
standard deviation 0.3 and mean 0. In each iteration we use N=224 samples 
for the evaluation of the risk functional.

Some of the resulting iterations of the optimisation process are depicted 
in Figure A3. By calculating the expected value of the functional in Equation 
(7) (with parameter β=0), one can see a loss of symmetry in the resulting 
topology compared to the deterministic setting from Example 2 since the 
load is almost always not perpendicular to the load-bearing boundaries. The 
main difference is the strain on the Dirichlet boundary, which is introduced 
by the moved left-most spoke. In contrast to this, the right-hand side closely 
resembles the deterministic case since the slip boundary cannot absorb 
energy in the tangential direction. In this particular stochastic setting, an 
additional spoke is formed.

Figure A3: Iterations  from Algorithm A2.

Algorithm A1: Deterministic optimisation algorithm from [2]

Algorithm A2: Stochastic optimisation algorithm from [2]
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APPENDIX B. FINITE ELEMENT DISCRETIZATION
The physical space  is discretised with first-order conforming finite 
elements with the FEniCS framework [24]. The reason for the favourable 
performance of the optimiser from [1,2] is the adaptive mesh refinement 
based on gradient information of the phase field. The idea is that the 
optimisation is started on a coarse mesh and refined over the course of 
the optimisation depending on the topology (more precisely on the phase 
transitions of φ). For this purpose it is assumed that the domain D is a convex 
polygon and is described with first-order conforming elements by the mesh 
Tm=(V(Tm),E(Tm)) at iteration step m∈ , which also can be understood as a 
graph. The mesh consists of triangles T∈Tm and an associated set of edges 
E(T)⊂E(Tm)⊂D×D and vertices V(T)⊂V(Tm)⊂D. Based on this mesh, the 
next mesh Tm+1 is generated with a simple error indicator using the bulk 
criterion for the Dörfler marking [26] to determine which triangles T should 
be refined. Since φ moves within the domain D, the mesh refinement 
necessarily reflects this. So instead of simply refining the previous mesh, 
for every refinement we start with the initial mesh T0, interpolate the current 
solution and displacement onto that mesh, refine according to the associated 
indicators and interpolate the current solutions φn and un onto the finer 
mesh. We repeat this process until a mesh Tm+1 is obtained that is adequately 
finer than Tm. This refinement takes place whenever φn converges on the 
current mesh Tm. The refinement across an optimisation with Algorithm A1 
is shown in Figure A4. It can be observed that the mesh is refined along the 
edges of φ. This dynamic characterisation (depending on φ and thus on the 
coefficients of the associated PDE) of the domain by the mesh Tm poses a 
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special challenge for the presented NN architectures when solving Equation 

(6) or (11), respectively. The relative change  in 
combination with the step size τn is used as convergence criterion, i.e.,

       (A1)
This means that as soon as φ on a mesh Tm does not change significantly 

in relation to the step size τn, ϕn is considered converged. The refinement of 
the mesh is bounded by a chosen maximum of vertices |V(Tm)|≤b∈ .

We understand as discretisation 
on Tm at iteration step n∈  in the sense that the value at every node 
vi∈V(Tm),i≤|V(Tm)| is evaluated according to

in this node.

Figure A4: Iteration of adaptive mesh Tm from Appendix A.1.

APPENDIX C. ADDITIONAL EXPERIMENTS
Figure A5 and Figure A6 numerically illustrate less robust TCNN predictions 
for large gradient step sizes as mentioned in Section 4.1.2. In Figure A7, 
some iterations of a classical optimisation in comparison with the CNN as-
sisted optimisation are depicted, showing basically identical results. How-
ever, it can also be observed that the distribution of the material converges 
faster when using the CNN. After 100 iterations, the first spokes for stabilis-
ing the arc can already be seen.
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Figure A5:  (top row) in comparison with φn+25 (bottom row).

Figure A6:  (top row) in comparison with φn+100 (bottom 
row).

Figure A7: Optimisation without and with NCNN. Sequence 
 from Algorithm A1 (top row). Sequence 

 from Algorithm 1 (bottom row).
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ABSTRACT
Arithmetic Optimization Algorithm (AOA) is a physically inspired 
optimization algorithm that mimics arithmetic operators in mathematical 
calculation. Although the AOA has an acceptable exploration and exploitation 
ability, it also has some shortcomings such as low population diversity, 
premature convergence, and easy stagnation into local optimal solutions. The 
Golden Sine Algorithm (Gold-SA) has strong local searchability and fewer 
coefficients. To alleviate the above issues and improve the performance of 
AOA, in this paper, we present a hybrid AOA with Gold-SA called HAGSA 
for solving industrial engineering design problems. We divide the whole 
population into two subgroups and optimize them using AOA and Gold-
SA during the searching process. By dividing these two subgroups, we can 
exchange and share profitable information and utilize their advantages to 
find a satisfactory global optimal solution. Furthermore, we used the Levy 
flight and proposed a new strategy called Brownian mutation to enhance 
the searchability of the hybrid algorithm. To evaluate the efficiency of the 
proposed work, HAGSA, we selected the CEC 2014 competition test suite 
as a benchmark function and compared HAGSA against other well-known 
algorithms. Moreover, five industrial engineering design problems were 
introduced to verify the ability of algorithms to solve real-world problems. 
The experimental results demonstrate that the proposed work HAGSA is 
significantly better than original AOA, Gold-SA, and other compared 
algorithms in terms of optimization accuracy and convergence speed.

Keywords: Meta-heuristics; arithmetic optimization algorithm; golden sine 
algorithm; hybrid optimization algorithm; industrial engineering design 
problem

INTRODUCTION
The main optimization process can be considered to obtain the best 
solution among all potential solutions according to the various NP-hard and 
engineering problems. Many real-world problems, such as image processing 
[1,2,3], engineering design [4,5,6,7,8], and job shop scheduling [9], can 
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be expressed as optimization problems and solved using optimization 
techniques. In the past two decades, the complexity of real-world optimization 
problems has increased sharply. However, the traditional (mathematical) 
methods cannot find the optimal solution or near-optimal solution in many 
cases [10]. Therefore, many researchers have turned their attention to meta-
heuristic algorithms (MAs). Unlike traditional techniques, MAs are flexible 
and reliable in solving complex optimization problems [11].

Over the past few decades, various MAs had been proposed according 
to natural phenomena, physical principles, biological behaviors, etc. [12]. 
MAs can be separated into three main categories (as shown in Figure 1): 
(1) swarm intelligence-based methods, (2) physics-based methods, and (3) 
evolution-based methods. The first kind of method mimics the biological 
entities in nature that have collaboration behavior to finish hunting, 
migrating, etc. [13]. Developed algorithms in this category are Whale 
Optimization Algorithm (WOA) [14], Particle Swarm Optimization (PSO) 
[15], Grey Wolf Optimizer (GWO) [16], Salp Swarm Algorithm (SSA) 
[17], Ant Lion Optimization (ALO) [18], Moth Flame Optimization (MFO) 
[19], Slime Mould Algorithm (SMA) [20], Harris Hawks Optimization 
(HHO) [21], Reptile Search Algorithm (RSA) [22], and Aquila Optimizer 
(AO) [23]. The second type of method mainly simulates the physical 
phenomena of the universe and methods designed based on these laws are 
Multi-Verse Optimizer (MVO) [24], Sine Cosine Algorithm (SCA) [25], 
Arithmetic Optimization Algorithm (AOA) [26], Golden Sine Algorithm 
(Gold-SA) [27], Henry Gas Solubility Optimization (HGSO) [28], Gravity 
Search Algorithm (GSA) [29], Atom Search Optimization (ASO) [30], 
and Equilibrium Optimizer (EO) [31]. The evolution-based methods stem 
from the biological evolution process in nature. Some of the well-known 
algorithms developed by this behavior are Genetic Algorithm (GA) [32], 
Bio-geography-Based Optimizer (BBO) [33], Differential Evolution (DE) 
[34], and Evolution Strategy (ES) [35]. However, considering the No-Free-
Lunch (NFL) theorem [36], no specific optimization algorithm can solve all 
real-world problems, which motivates us to design more efficient methods 
to solve them well.
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Figure 1. Classification of MAs.

The Arithmetic Optimization Algorithm (AOA) [26] is a physics-based 
and gradient-free method proposed by Abualigah et al. in 2021. It originated 
from the commonly used mathematical operators including Addition 
(+), Subtraction (−), Multiplication (×), and Division (÷). This approach 
integrates these four operators to realize different search mechanisms 
(exploration and exploitation) in the search space. Specifically, AOA uses 
the high distribution characteristics of (× and ÷) operators to realize the 
exploration approach. In the same way, the (+ and −) operators are used 
to obtain the high-dense results (exploitation approach). However, some 
researches denote that the original AOA has some defects, such as it easily 
suffering from a local optimal and slow convergence speed. Therefore, 
many variant versions of AOA were proposed to improve its searchability. 
For example, Azizi et al. [37] proposed an improved AOA based on Levy 
flight to determine the steel structure’s optimal fuzzy controller parameters. 
Agushaka et al. [38] proposed an improved version of AOA called nAOA, 
which integrated the high-density values and beta distribution to enhance 
searchability. An Adaptive AOA, called APAOA, was proposed by Wang 
et al. [39]. In the APAOA, the parallel communication strategy was used 
to balance the exploration and exploitation ability of the original AOA. 
Another improved AOA that utilized a hybrid mechanism, named DAOA, 
was proposed by Abualigah et al. [40]. In DAOA, the differential evolution 
technique was integrated to enhance the local search ability of AOA, and to 
help it to jump out of the local optimal solution. Elkasem et al. [41] presented 
an eagle strategy AOA called ESAOA. In this work, the eagle strategy is 
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used to avoid premature convergence and increase the population’s efficacy 
to obtain the optimal solution. Sharma et al. [42] introduced an opposition-
based AOA namely OBAOA for identifying the parameters of PEMFCs. The 
opposition-based learning strategy is used to promote the algorithm to find 
the high-precision solution and improve the convergence rate. Abbassi et al. 
[43] developed an improved AOA to determine the solar cell parameters. 
In this work, the new operator called narrowed exploitation was used to 
narrow the search space and focus on the potential area to find the optimal or 
near-optimal solutions. Zhang et al. [44] proposed an improved AOA called 
IAO, which integrated the chaotic theory. The chaotic theory improves the 
algorithm to escape the optimal solution with a suitable convergence speed. 
Moreover, the IAO was used to optimize the weight of neural network.

Given the above discussion, some of the variants of AOA have strong 
searchability, but they cannot converge to the optimal solution at an 
appropriate time, i.e., they still easily fall into the local optimal solution. 
Furthermore, by considering the NFL theorem and increasingly complex real-
world problems, the development of new and improved versions of MAs is 
ongoing. In general, a single optimizer also exposes some shortcomings; for 
example, it neglects to share useful information between populations, which 
may cause the algorithm to have insufficient search capability. Therefore, 
many researchers utilized the characteristic of two Mas, i.e., designing a 
hybrid algorithm to improve performance and applying it to solve complex 
real-world optimization problems. Unlike the single algorithm, the hybrid 
algorithm alleviates these shortcomings and increases diversity, and shares 
more helpful information within the population. Thus, the hybrid algorithm 
has more powerful searchability than the single algorithm. Gold-SA is a 
physics-based technique with a good exploitation ability to find the near-
optimal solution. Furthermore, Gold-SA also has fewer parameters and 
is easy to program. Motivated by these considerations, in this paper, we 
propose an improved hybrid version of AOA called HAGSA that combines 
both AOA and Gold-SA. The proposed method uses Gold-SA to increase 
the population diversity and share more useful information between search 
agents. At the same time, Levy flight and a new strategy called Brownian 
mutation are used to enhance the exploration and exploitation capability of 
hybrid algorithms, respectively. To evaluate the effectiveness of the proposed 
method, we selected the CEC 2014 competition test suite as the benchmark 
function and compared the results with seven well-known methods, including 
AOA and Gold-SA. In addition, five classical engineering design problems, 
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including the car side crash design problem, pressure vessel design problem, 
tension spring design problem, speed reducer design problem, and cantilever 
beam design problem, were also used to evaluate HAGSA’s ability to solve 
real-world problems. Experimental results demonstrate that the proposed 
work can provide complete results and achieve a faster convergence speed 
compared to other optimizers. The main contributions of this paper are as 
follows:

We propose a new hybrid algorithm based on the Arithmetic Optimization 
Algorithm and Golden Sine Algorithm (HAGSA).

• Levy flight and a new mechanism called Brownian mutation are 
carried out to enhance the exploration and exploitation ability of 
the hybrid algorithm.

• The performance of the proposed work is assessed on the CEC 
2014 competition test suite and five classical engineering design 
problems.

• Several well-known MAs are compared with the proposed 
method.

• Experimental results indicate that HAGSA has more reliable 
performance than that of other well-known algorithms.

The remainder of this paper is structured as follows: Section 2 briefly 
illustrates the concepts of AOA and Gold-SA. Section 3 describes Levy 
flight, Brownian mutation, and the details of HAGSA. Section 4 presents 
and analyzes the experimental results of the proposed work. Finally, this 
paper’s conclusion and potential research directions are discussed in Section 
5.

PRELIMINARIES
This section introduces the inspiration and mathematical model of the 
original AOA and Gold-SA, in turn.

Arithmetic Optimization Algorithm (AOA)
The theory of AOA is described in this section. The main inspiration of 
AOA originates from the use of arithmetic operators such as Addition (A), 
Subtraction (S), Multiplication (M), and Division (D) to solve optimization 
problems [33]. In the following subsections, we discuss the different 
influences of these operators on optimization problems and the search 
method of AOA, as shown in Figure 2.
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Figure 2. The different search phases of AOA.

Initialization Phase
Like other meta-heuristic optimization algorithms, AOA is based on 
population behavior. The set of a population X containing N search agents is 
illustrated in Equation (1). In the matrix, each row indicates a search agent 
[33].

   (1)
After generating the population, the fitness of each search agent is 

computed, and the best one will be determined. Next, AOA decides to 
perform exploration or exploitation through the Math Optimizer Accelerated 
(MOA) value, which is defined as follows:

   (2)
where MOA(t) indicates the value of MOA at 
the t-th iteration. Min and Max denote the minimum and maximum values 
of the accelerated function, respectively. t denotes the current iteration, 
and T denotes the maximum iteration. The search agent performs the 
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exploration phase when r1 > MOA, otherwise the exploitation phase will be 
executed.

Exploration Phase
In this section, the exploration phase of AOA is described. According to 
the main inspiration, the Division (D) and Multiplication (M) operators are 
introduced to achieve high distributed values or decisions [33]. The Division 
and Multiplication operators can be mathematically described as follows:

   (3)
where Xi,j(t + 1) denotes the jth position of the ith solution in the next 
iteration. Xbest,j(t) denotes the best solution obtained so far in the jth 
position. LBj and UBj denote the lower and upper boundaries, respectively, 
of the search space at the jth dimension. ε is a small integer number, 
and r2 denotes the random value between 0 and 1. μ = 0.5, which represents 
the control function. Moreover, the Math Optimizer can be calculated as 
follows:

        (4)
where α = 0.5 denotes the dynamic parameter, which determines the accuracy 
of the exploitation phase throughout iterations.

Exploitation Phase
In this section, we discuss the exploitation phase of AOA. In contrast to 
the D and M operator, AOA utilizes the Addition (A), and Subtraction (S) 
operators to derive high density solutions because (S and A) can easily 
approach the target region due to their low dispersion [33]. The mathematical 
formula can be described as follows:

  (5)
where r3 denotes a random value in the range 0 to 1.

The pseudo-code of AOA is illustrated in Algorithm 1.
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Algorithm 1: pseudo-code of AOA [33]

1. Input: The parameter of AOA such as control function (μ), dy-
namic parameter (α), number of search agents (N), and maximum 
iteration (T)

2. Output: the best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5.    Check if any search agent goes beyond the search space and 

amend it.
6.    Calculate fitness for the given search agent.
7.    Update the MOA and MOP using Equations (2) and (4), 

respectively.
8.    For i = 1 to N do
9.      For j = 1 to D do
10.         Update the random value r1, r2, r3.
11.         If r1 > MOA then
12.           If r2 > 0.5 then
13.               Update position by Division (÷) operator in Equation (3).
14.           Else
15.               Update position by Multiplication (×) operator in Equation 

(3).
16.           End if
17.       Else
18.           If r3 > 0.5 then
19.               Update position by Addition (+) operator in Equation (5).
20.         Else
21.               Update position by Subtraction (−) operator in Equation 

(5).
22.         End if
23.       End if
24.     End for
25.    End for
26.    t = t + 1.
27. End while

Golden Sine Algorithm (Gold-SA)
This section introduces the basic theory of the Golden Sine Algorithm 
(Gold-SA). The inspiration of Gold-SA is a sine function in mathematics, 
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and the individuals explore the approximate optimal solution in the search 
space according to the golden ratio [27]. The range of the sine function is 
[−1, 1], with period 2π. When the value of x1 changes, the corresponding 
variable y1 also changes. Combining the sine function and golden ratio 
helps to continuously reduce the search space and search in regions where 
the optimal values are more likely to be generated, thereby improving the 
convergence speed [27]. The calculation formula is as follows:

  (6)
where p1 is the random value between [0, 2π], and p2 is the random between 
[0, π], and d1 and d2 are the coefficient factors, which are obtained by the 
following equation:

       (7)

      (8)
where a and b are the initial values, which are −π and π. τ denotes the 
golden ratio, which is (5–√−1)/2. The pseudo-code of Gold-SA is shown in 
Algorithm 2.

Algorithm 2: pseudo-code of Gold-SA [27]

1. Input: The parameter of Gold-SA, such as the number of search 
agents (N), and maximum iteration (T).

2. Output: The best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5.     Check if any search agent goes beyond the search space and 

amend it.
6.     Calculate fitness for the given search agent.
7.     For i = 1 to N do
8.         Update the random value p1 and p2, respectively.
9.         For j = 1 to D do
10.             Update position of search agent by the Equation (6).
11.         End for
12.     End for
13.     t = t + 1.
14. End while
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THE PROPOSED ALGORITHM
In this section, we describe the proposed method. First, Levy flight is 
presented. Second, we propose a new strategy called Brownian mutation. 
Then, the details of the proposed work, HAGSA, are discussed and analyzed.

Levy Flight
Numerous studies reveal that the flight trajectories of many flying animals 
are consistent with characteristics typical of Levy flight. Levy flight is a 
class of non-Gaussian random walk that follows the Levy distribution 
[41,42]. It performs occasional long-distance walking with frequent short-
distance steps, as shown in Figure 3. The mathematical formula for Levy 
flight is as follows:

       (9)

      (10)
where r4 and r5 are random values between [0, 1], and β is a constant equal 
to 1.5.

Figure 3: Levy distribution and 2D Levy trajectory.
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Brownian Mutation
This paper proposes a Brownian mutation mechanism based on the mutation 
operator and Brownian motion. In 1995, differential evolution (DE) was 
proposed by Storn et al. [34], which was inspired by the mutation, crossover, 
and selection mechanisms in nature. Thus, DE obtains the optimal or near-
optimal solution according to these operators. However, the crossover and 
mutation operators generate only one candidate solution in each iteration, 
limiting the population diversity and searchability of MAs [8]. Brownian 
motion (BM) is a stochastic process with a step size derived from a 
probability function defined by a normal distribution with μ = 0 and σ2 = 1 
[43]. The formula of BM is listed as follows:

  (11)
where x indicates a point following this motion, and the distribution and 
2D trajectory of BM as shown in Figure 4. We can see that BM’s trajectory 
can explore distant areas of the neighborhood, which shows more efficiency 
than a uniform random search in the search space. Therefore, considering 
the high performance of Brownian motion and the limitation of the mutation 
operator, we propose Brownian mutation, which generates two trail vectors 
with the Brownian motion strategy. This method generates two candidate 
solutions V1 and V2 of the i-th search agent in parallel through Equations 
(12) and (13), respectively.

Figure 4: Brownian distribution and 2D Brownian trajectory.
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The first mutation candidate solution V1 is calculated as follows:

   (12)
where r6, r7, and r8 denote random values between 0 and 1. mr1 is the mutation 
rate, and its value is 0.3. Brownian indicates the Brownian motion.

The second mutation candidate solution V2 is calculated as follows:

   (13)
where r9, r10, and r11 denote random values between 0 and 1. mr2 is the 
mutation rate equal to 0.5.

When two candidate solutions V1 and V2 are generated, they are first 
modified according to the lower and upper boundaries. Then, the best 
candidate solution Vbest is selected using Equation (14) (lowest fitness as the 
criterion).

      (14)
Afterward, the best solution between Vbest and Xi is selected as the ith 

search agent in the next iteration. The following equation describes this 
behavior:

     (15)

The Details of HAGSA
As mentioned above, single MAs have low diversity and cannot share 
useful information within the population. Moreover, the original AOA has 
shortcomings, such as easily stagnating into optimal local solutions and 
slow convergence speed. The Gold-SA has strong local searchability in the 
search space. Thus, to overcome the disadvantages of the original AOA and 
take full advantage of the benefits of Gold-SA, in this paper, we present a 
hybrid algorithm based on the AOA and Gold-SA, namely HAGSA. We 
divided the whole population into two subgroups, Group A and Group B, 
and optimized them using AOA and Gold-SA, respectively. Integrating both 
AOA and Gold-SA can increase population diversity and all the exchange 
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pf useful search information between search agents. This operation aims to 
enable search agents to find the valuable solution in the search space based 
on two MAs (AOA and Gold-SA) in less time and increase the diversity 
throughout the entire iterations. Furthermore, to enhance the searchability 
of the hybrid algorithm, it was integrated with Levy flight and Brownian 
mutation. Levy flight can improve the hybrid algorithm’s exploration ability, 
allowing search agents to explore more potential regions in the search space. 
Thus, the improved exploration phase can be calculated by Equation (16). 
Furthermore, the Brownian mutation is used to strengthen the exploitation 
capability of the hybrid algorithm and help the individuals escape the local 
optimal solution.

  (16)
The pseudo-code of HAGSA is expressed in Algorithm 3, and the 

flowchart of the proposed work is shown in Figure 5.

Algorithm 3: pseudo-code of HAGSA

1. Input: The parameter such as control function (μ), dynamic parameter (α), num-
ber of search agent (N), and maximum iteration (T).

2. Output: best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5.     Check if any search agent goes beyond the search space and amend it.
6.     Calculate fitness for the given search agent.
7.     Update the MOA and MOP using Equations (2) and (4), respectively.
8.     For i = 1 to N do
9.         For j = 1 to D do
10.             Update the random value r1, r2, r3.
11.             If i < N/2 then
12.                 If r1 > MOA then
13.                     If r2 > 0.5 then
14.                         Update position by Division (÷) operator in Equation (16).
15.                     Else
16.                         Update position by Multiplication (×) operator in Equation (16).
17.                     End if
18.                 Else
19.                     If r3 > 0.5 then
20.                         Update position by Addition (+) operator in Equation (5).
21.                     Else
22.                         Update position by Subtraction (−) operator in Equation (5).
23.                     End if
24.                 End if
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25.             Else

26.                 Update position by Gold-SA operator in Equation (6).

27.             End if

28.             Generate candidate solution V1 and V2 by Equations (12) and (13).

29.             Check if V1 and V2 goes beyond the search space and amend it.

30.             Choose the best solution as V
best

 with the lower fitness from V1 and V2.

31.             If f(V
best

) < f(X
i
) then

32.                 X
i
 = V

i
.

33.                 End if

34.             End for

35.         End for

36.         t = t + 1.

37. End while

Figure 5: Flowchart of HAGSA.

Computational Complexity Analysis
In the initialization phase, HAGSA produces the search agents randomly in 
the search space, so the computational complexity of this phase is O(N × D), 
where N denotes the number of population and D denotes the dimension size. 
Afterward, HAGSA evaluates each individual’s fitness during the whole 
iteration with the complexity O(T × N × D), where T indicates the number 
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of iterations. Finally, we used AOA, Gold-SA, Levy flight, and Brownian 
mutation to obtain the best solution. Thus, the computational complexities 
of these phases are O(3 × T × N × D). In summary, the total computational 
complexity of HAGSA is O(T × N × D).

EXPERIMENTAL RESULTS AND DISCUSSION
This section evaluates the effectiveness of the proposed HAGSA algorithm 
using the CEC 2014 competition test suite and five industrial engineering 
design problems. First, the benchmark functions and experimental setup are 
described. Next, the statistical results of the CEC 2014 benchmark functions 
are analyzed and discussed. Finally, the five industrial engineering design 
problems are used to prove the advantages of HAGSA.

Definition of CEC 2014 Benchmark Functions
To validate the searchability of the proposed HAGSA, we considered 
the CEC 2014 competition test suite as a benchmark function to evaluate 
the performance of HAGSA and its peers, which include 30 extremely 
complex functions [44]. The details of the benchmark functions are listed 
in Table 1, where fmin denotes the theoretical optimal fitness. According to 
their characteristics, the CEC 2014 test suite can be categorized into four 
classes. C01–C03 are unimodal functions with only one global optimum 
without any local optima, and are suitable for evaluating algorithms’ 
exploitation capability. C04–C15 are multimodal functions with only one 
global optimal value with many local optimal values, and can evaluate 
algorithms’ exploration and local minima avoidance ability. C16–C22 are 
hybrid functions, including both unimodal and multimodal functions, and 
can simultaneously examine the exploration and exploitation capability of 
algorithms. C23–C30 are composition functions that maintain continuity 
around the local and global optima. All these functions are rotated and 
shifted, so their complexity increases dramatically. Figure 6 provides a 2D 
visualization of some functions of the CEC 2014 test suite to understand its 
characteristics.
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Figure 6: View of some CEC 2014 benchmark functions.

Table 1: CEC 2014 benchmark functions

Function 
Types

No. Name of the Function D Range fmin

Unimodal C01 Rotated High Conditioned Elliptic Func-
tion

30 [−100, 100] 100

C02 Rotated Bent Cigar Function 30 [−100, 100] 200

C03 Rotated Discus Function 30 [−100, 100] 300

Multimodal C04 Shifted and Rotated Rosenbrock Func-
tion

30 [−100, 100] 400

C05 Shifted and Rotated Ackley Function 30 [−100, 100] 500

C06 Shifted and Rotated Weierstrass Func-
tion

30 [−100, 100] 600

C07 Shifted and Rotated Griewank Function 30 [−100, 100] 700

C08 Shifted Rastrigin Function 30 [−100, 100] 800

C09 Shifted and Rotated Rastrigin Function 30 [−100, 100] 900
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C10 Shifted Schwefel Function 30 [−100, 100] 1000

C11 Shifted and Rotated Schwefel Function 30 [−100, 100] 1100

C12 Shifted and Rotated Katsuura Function 30 [−100, 100] 1200

C13 Shifted and Rotated HappyCat Function 30 [−100, 100] 1300

C14 Shifted and Rotated HGBat Function 30 [−100, 100] 1400

C15 Shifted and Rotated Expanded Griewank 
plus Rosenbrock Function

30 [−100, 100] 1500

Hybrid C16 Shifted and Rotated Expanded Scaffer 
F6 Function

30 [−100, 100] 1600

C17 Hybrid Function 1(N = 3) 30 [−100, 100] 1700

C18 Hybrid Function 2(N = 3) 30 [−100, 100] 1800

C19 Hybrid Function 3(N = 4) 30 [−100, 100] 1900

C20 Hybrid Function 4(N = 4) 30 [−100, 100] 2000

C21 Hybrid Function 5(N = 5) 30 [−100, 100] 2100

C22 Hybrid Function 6(N = 5) 30 [−100, 100] 2200

Composition C23 Composition Function 1(N = 5) 30 [−100, 100] 2300

C24 Composition Function 2(N = 3) 30 [−100, 100] 2400

C25 Composition Function 3(N = 3) 30 [−100, 100] 2500

C26 Composition Function 4(N = 5) 30 [−100, 100] 2600

C27 Composition Function 5(N = 5) 30 [−100, 100] 2700

C28 Composition Function 6(N = 5) 30 [−100, 100] 2800

C29 Composition Function 7(N = 3) 30 [−100, 100] 2900

C30 Composition Function 8(N = 3) 30 [−100, 100] 3000

Experimental Setup
As stated above, the CEC 2014 test suite was utilized to evaluate HAGSA’s 
optimization performance. To demonstrate the validity of the experimental 
results, the proposed algorithm HAGSA was compared with the basic 
AOA [26], Gold-SA [27], Remora Optimization Algorithm (ROA) [45], 
Aquila Optimizer (AO) [23], Sine Cosine Algorithm (SCA) [25], Whale 
Optimization Algorithm (WOA) [14], Flower Pollination Algorithm (FPA) 
[46], Differential Evolution (DE) [8], and Genetic Algorithm (GA) [47]. 
We set the maximum iteration T = 500, population size N = 50, dimension 
size D = 30, and 30 independent runs. The best results are highlighted in bold. 
All the experiments were conducted on a PC with an Intel (R) Core (TM) 
i5-11300H CPU @ 3.10 GHz, 16 GB RAM, Windows 10, and MATLAB 
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R2016b. Table 2 denotes the parameter setting of algorithms, and the details 
of the compared algorithms can be listed as follows:

• AOA: simulates four commonly used arithmetic operators as 
Division (÷), Multiplication (×), Subtraction (−), and Addition 
(+).

• Gold-SA: inspired by the sine function with the golden section 
search in mathematics compute.

• ROA: simulates remora’s parasitism behavior on different hosts 
including whales and swordfish during the hunting process.

• AO: inspired by Aquila’s four different hunting methods.
• SCA: simulates the distribution characteristics of sine and cosine 

functions.
• WOA: simulates the hunting behavior of humpback whales in 

oceans.
• FPA: simulates the pollination process of flowering plants in 

nature.
• DE: integrates the differential mutation, crossover, and selection 

mechanisms.
• GA: mimics the Darwinian evolution law and biological evolution 

of genetic mechanism in nature.

Table 2: Parameter setting of each algorithm

Algorithm Parameters
AOA [26] α = 5; μ = 0.5;
Gold-SA [27] c1 = [1, 0]; c2 ∈ [0, 1]; c3 ∈ [0, 1]
ROA [45] C = 0.1
AO [23] U = 0.00565; r1 = 10; ω = 0.005; α = 0.1; δ = 0.1;
SCA [25] a ∈ [2, 0]
WOA [14] a1 ∈ [2, 0]; a2 ∈ [−1, −2]; b = 1
FPA [46] p = 0.8; β = 1.5
DE [8] Fmin = 0.2; Fmax = 0.8; CR = 0.1
GA [47] Pc = 0.85; Pm = 0.01

Statistical Results on CEC 2014 Benchmark Functions
Table 3 denotes the mean and standard deviation (std) values obtained by 
HAGSA and other competed algorithms for each CEC 2014 function with D 
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= 30. According to Table 3, the statistical results illustrate that the HAGSA 
provides better searchability than its peers. For unimodal functions, HAGSA 
better obtains the global optimal solution on C01 and C03 than others. For 
multimodal functions, HAGSA outperforms all other well-known algorithms 
on nine functions, except functions C07–08, C11, and C14; FPA, DE, ROA, 
and AO find the global optimal solution for these functions, respectively. For 
hybrid functions, HAGSA achieves the best results for C16, C19, C20, and 
C22 among all algorithms. Finally, HAGSA also outperforms the results for 
composition functions compared to the original AOA, Gold-SA, and other 
compared algorithms on C23–25 and C28–C30, but not on C26. Figure 
7 shows HAGSA and competitor algorithms’ ranking in various functions of 
the CEC 2014 test suite. In light of these results, HAGSA exhibits excellent 
performance by obtaining the best average over 21 functions.

Figure 7: The radar graphs of algorithms on CEC 2014 benchmark functions.
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Table 3: The mean fitness and std obtained with the different algorithms on the 
CEC 2014 test suite

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01 Mean 1.94 × 108 1.08 × 109 6.73 × 108 3.59 × 108 7.85 × 108 5.11 × 108 1.97 × 109 4.63 × 108 5.30 × 109 2.77 × 109

Std 7.50 × 107 3.49 × 108 2.21 × 108 1.63 × 108 3.92 × 107 1.26 × 108 3.25 × 108 1.97 × 108 2.23 × 108 1.07 × 108

C02 Mean 2.40 × 1010 6.81 × 1010 6.18 × 1010 6.80 × 1010 6.83 × 1010 2.93 × 1010 8.59 × 1010 6.99 × 1010 5.09 × 1010 1.03 × 1011

Std 7.78 × 109 1.18 × 1010 9.47 × 109 7.53 × 109 1.27 × 109 5.26 × 109 7.45 × 109 2.39 × 109 1.02 × 1010 0.00

C03 Mean 8.55 × 104 8.19 × 104 8.73 × 104 6.60 × 104 8.72 × 104 7.58 × 104 9.20 × 104 1.26 × 105 7.01 × 104 1.42 × 107

Std 2.10 × 103 6.52 × 103 2.50 × 103 7.55 × 103 7.66 × 103 1.61 × 104 1.22 × 104 6.25 × 104 1.56 × 104 1.25 × 104

C04 Mean 1.45 × 104 1.05 × 104 1.27 × 104 2.54 × 103 1.40 × 104 2.57 × 103 1.73 × 104 1.74 × 103 6.37 × 103 2.58 × 104

Std 7.37 × 102 2.84 × 103 3.47 × 103 1.17 × 103 1.95 × 102 6.06 × 102 2.18 × 103 3.95 × 102 2.59 × 103 5.19 × 102

C05 Mean 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

Std 8.39 × 102 8.06 × 102 7.03 × 102 1.07 × 10−1 8.92 × 10−2 7.53 × 10−2 8.15 × 10−2 8.17 × 10−2 6.61 × 10−2 8.05 × 10−2

C06 Mean 6.17 × 102 6.38 × 102 6.42 × 102 6.35 × 102 6.42 × 102 6.39 × 102 6.45 × 102 6.39 × 102 6.34 × 102 6.50 × 102

Std 3.56 2.45 2.42 3.07 2.76 1.97 1.43 2.82 2.63 2.05

C07 Mean 1.47 × 103 1.34 × 103 1.13 × 103 9.16 × 102 1.19 × 103 9.50 × 102 1.56 × 103 7.41 × 102 1.16 × 103 1.75 × 103

Std 7.04 × 10 1.06 × 102 9.78 × 10 9.09 × 10 1.24 × 10 3. × 10 6.79 × 10 1.56 × 10 1.12 × 102 7.10 × 10

C08 Mean 1.09 × 103 1.14 × 103 1.12 × 103 1.13 × 103 1.13 × 103 1.19 × 103 1.18 × 103 1.13 × 103 1.08 × 103 1.31 × 103

Std 2.42 × 10 3.04 × 10 3.10 × 10 2.57 × 10 2.02 × 10 2.22 × 10 1.37 × 10 4.63 × 10 2.32 × 10 2.23 × 10

C09 Mean 1.14 × 103 1.22 × 103 1.26 × 103 1.37 × 103 1.26 × 103 1.22 × 103 1.29 × 103 1.20 × 103 1.20 × 103 1.38 × 103

Std 1.65 × 10 2.17 × 10 2.71 × 10 2.23 × 10 1.89 × 10 2.49 × 10 1.67 × 10 5.07 × 10 2.70 × 10 2.31 × 10−13

C10 Mean 6.12 × 103 7.26 × 103 8.04 × 103 6.34 × 103 8.16 × 103 7.97 × 103 9.45 × 103 6.57 × 103 8.93 × 103 1.07 × 104

Std 6.25 × 102 3.79 × 102 5.47 × 102 7.11 × 102 5.84 × 102 4.49 × 102 3.61 × 102 7.50 × 102 2.87 × 102 5.36 × 102

C11 Mean 7.56 × 103 7.85 × 103 8.90 × 103 7.28 × 103 7.81 × 103 8.96 × 103 1.01 × 104 7.47 × 103 9.31 × 103 1.10 × 104

Std 7.10 × 102 4.20 × 102 5.68 × 102 6.88 × 102 6.68 × 102 2.55 × 102 3.79 × 102 7.89 × 102 4.51 × 102 4.69 × 102

C12 Mean 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.21 × 103

Std 5.52 × 10 5.78 × 10−1 5.35 × 10−1 5.62 × 10−1 5.98 × 10−1 5.89 × 10−1 6.48 × 10−1 6.75 × 10−1 5.80 × 10−1 9.19 × 10−1

C13 Mean 1.30 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103

Std 8.34 × 10−1 9.07 × 10−1 8.99 × 10−1 8.64 × 10−1 4.09 × 10−1 3.93 × 10−1 8.37 × 10−1 9.22 × 10−1 7.67 × 10−1 4.48 × 10−1

C14 Mean 1.45 × 103 1.63 × 103 1.57 × 103 1.47 × 103 1.41 × 103 1.49 × 103 1.73 × 103 1.42 × 103 1.59 × 103 1.79 × 103

Std 1.44 × 10 4.41 × 10 4.36 × 10 2.20 × 10 5.87 × 10 1.99 × 10 2.46 × 10 9.00 3.95 × 10 3.58 × 10

C15 Mean 4.34 × 103 2.50 × 105 4.92 × 104 9.04 × 103 8.92 × 104 2.54 × 104 5.38 × 105 4.74 × 103 1.03 × 105 9.16 × 105

Std 2.25 × 103 1.31 × 105 3.55 × 104 8.15 × 103 3.54 × 10 1.62 × 104 1.55 × 105 2.24 × 103 1.35 × 105 4.74 × 10−10

C16 Mean 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103

Std 3.71 × 10−1 3.70 × 10−1 3.21 × 10−1 4.71 × 10−1 4.08 × 10−1 1.95 × 10−1 2.08 × 10−1 4.66 × 10−1 2.37 × 10−1 1.88 × 10−1

C17 Mean 8.59 × 107 8.90 × 107 1.36 × 108 1.61 × 107 1.64 × 108 1.56 × 107 2.47 × 108 2.35 × 107 9.17 × 106 5.48 × 108

Std 7.10 × 106 6.17 × 107 8.13 × 107 1.40 × 107 5.24 × 106 5.76 × 106 6.66 × 107 2.13 × 107 1.30 × 107 2.33 × 108

C18 Mean 1.36 × 107 2.44 × 109 2.78 × 109 2.90 × 108 3.80 × 109 4.77 × 108 7.52 × 109 6.11 × 106 2.65 × 108 1.20 × 1010

Std 2.06 × 107 2.04 × 109 1.67 × 109 6.85 × 108 2.05 × 106 2.52 × 108 2.30 × 109 7.19 × 106 3.73 × 108 3.82 × 109

C19 Mean 2.01 × 103 2.24 × 103 2.27 × 103 2.30 × 103 2.30 × 103 2.25 × 103 2.49 × 103 2.32 × 103 2.10 × 103 2.80 × 103

Std 5.12 × 10 1.05 × 102 9.98 × 101 9.65 × 10 3.15 × 10 3.29 × 10 7.58 × 10 5.24 × 10 6.27 × 10 2.51 × 10

C20 Mean 3.67 × 104 1.86 × 105 2.45 × 105 9.06 × 104 4.34 × 105 5.90 × 104 3.43 × 106 4.97 × 105 2.75 × 104 1.07 × 108

Std 3.96 × 104 9.23 × 104 1.27 × 105 6.04 × 104 5.11 × 104 2.94 × 104 4.51 × 106 7.78 × 105 2.08 × 104 2.87 × 107
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C21 Mean 1.12 × 106 3.36 × 107 5.47 × 107 9.65 × 106 5.65 × 107 5.18 × 106 1.07 × 108 1.25 × 107 5.17 × 105 2.80 × 108

Std 6.21 × 105 2.39 × 107 2.92 × 107 9.83 × 106 1.66 × 106 2.86 × 106 5.82 × 107 9.65 × 106 7.13 × 105 2.14 × 108

C22 Mean 2.85 × 103 4.93 × 103 4.69 × 103 3.28 × 103 6.49 × 103 3.37 × 103 3.08 × 104 3.32 × 103 3.08 × 103 1.68 × 105

Std 2.12 × 102 2.12 × 107 1.78 × 103 7.41 × 102 2.78 × 102 1.72 × 102 3.05 × 104 2.89 × 102 2.52 × 102 7.01 × 104

C23 Mean 2.50 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.72 × 103 2.50 × 103 2.72 × 103 2.84 × 103 2.50 × 103

Std 0.00 0.00 0.00 0.00 0.00 3.17 × 10 0.00 4.01 × 10 9.01 × 10 0.00

C24 Mean 2.60 × 103 2.60 × 103 2.60 × 103 2.60 × 103 2.60 × 103 2.63 × 103 2.60 × 103 2.61 × 103 2.69 × 103 2.60 × 103

Std 0.00 8.87 × 10−2 0.00 1.46 × 10−7 2.34 × 10−5 1.87 × 10 0.00 5.81 1.34 × 10 0.00

C25 Mean 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.75 × 103 2.70 × 103 2.72 × 103 2.73 × 103 2.70 × 103

Std 0.00 0.00 0.00 0.00 0.00 1.15 × 10 0.00 1.83 × 10 8.74 0.00

C26 Mean 2.77 × 103 2.77 × 103 2.77 × 103 2.77 × 103 2.78 × 103 2.70 × 103 2.79 × 103 2.74 × 103 2.73 × 103 2.79 × 103

Std 4.33 × 10 4.41 × 10 4.25 × 10 4.62 × 10 4.99 × 10 4.96 × 10−1 2.35 × 101 8.00 × 10 4.33 × 10 2.39 × 10

C27 Mean 2.90 × 103 4.05 × 103 2.90 × 103 2.90 × 103 2.90 × 103 3.91 × 103 2.90 × 103 3.99 × 10 3.86 × 103 2.90 × 103

Std 0.00 3.71 × 102 0.00 0.00 3.98 2.65 × 102 0.00 2.42 × 102 2.46 × 102 0.00

C28 Mean 3.00 × 103 5.34 × 103 3.00 × 103 3.00 × 103 3.00 × 103 5.95 × 103 3.00 × 103 5.40 × 103 5.36 × 103 3.00 × 103

Std 0.00 2.75 × 103 0.00 0.00 0.00 6.11 × 102 0.00 8.95 × 102 4.64 × 102 0.00

C29 Mean 3.10 × 103 4.32 × 108 3.10 × 103 7.17 × 106 1.46 × 104 4.43 × 107 3.10 × 103 1.79 × 107 6.87 × 107 3.10 × 103

Std 0.00 1.80 × 108 0.00 7.00 × 106 6.28 × 104 1.75 × 107 0.00 1.63 × 107 5.50 × 107 0.00

C30 Mean 3.20 × 103 4.16 × 106 3.20 × 103 3.29 × 105 1.66 × 105 6.97 × 105 3.20 × 103 4.02 × 105 4.17 × 105 3.20 × 103

Std 0.00 2.65 × 106 0.00 2.80 × 105 1.44 × 105 2.87 × 105 0.00 2.76 × 105 2.34 × 105 0.00

Boxplot Behavior Analysis
The distribution characteristics of data can be displayed through boxplot 
analysis. The boxplot describes the data distribution as quartiles. The lowest 
and largest points of the edges of the boxplot are the minimum and maximum 
values obtained by the algorithm. The lower and upper quartiles are separated 
by the endpoints of the rectangle [5]. In this subsection, we use boxplot 
behavior to represent each algorithm’s distribution of the obtained value. 
Each sample runs 30 times independently for each CEC 2014 benchmark 
function with D = 30. The boxplot behavior of each algorithm is shown 
in Figure 8. HAGSA has better stability for most benchmark functions 
and shows excellent performance compared to the others. In particular, for 
C01, C04, C05, C08, C09, C12, C13, and C15, the boxplot of the proposed 
HAGSA method is very narrow compared to others and shows lower values. 
For C06, C14, and C16, HAGSA achieves the lower values obtained than 
most algorithms. However, the performance is not obvious when solving 
C10, C17, C18, C19, C21, C23, C25, C27, and C30.
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Figure 8: Boxplot behavior of algorithms on some functions.
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Convergence Behavior Analysis
In this subsection, we analyze the convergence behavior of each algorithm 
used over some benchmark functions. Figure 9 shows the convergence 
behavior of HAGSA, AOA, Gold-SA, ROA, AO, SCA, WOA, FPA, DE, and 
GA for selected functions. As can be seen from this figure, HAGSA achieves 
excellent behavior for most functions, which suggests the convergence of 
the proposed method. For unimodal functions (C01 and C03), although the 
convergence speed is slower than WOA in the early iteration (for C01), the 
convergence accuracy is higher than WOA at the end of the iteration. For 
C03, HAGSA has the fastest convergence speed and highest convergence 
accuracy. On the multimodal functions, HAGSA still maintains the fastest 
convergence speed and highest accuracy on most functions. In particular, 
for C05 and C06, although the global optimal is not found, HAGSA still has 
excellent performance compared to the others. However, the optimal value 
of HAGSA is ranked third and the WOA and AO are ranked first and second, 
respectively, when solving C07. For C10 and C11, it can be seen that the 
convergence curve of HAGSA is accelerated in the later stage of iteration; 
this is due to the excellent ability to jump out of the local optimal as a result 
of Brownian mutation. On hybrid functions, the convergence accuracy is 
still good compared to the others. For C16, C20, C21, and C22, the proposed 
HAGSA algorithm demonstrates its better performance compared to the 
original AOA and Gold-SA. On composition functions, the improvement 
is not obvious compared to the original Gold-SA and other well-known 
algorithms such as GA and FPA.
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Figure 9: Convergence curve of algorithms on some functions.

Wilcoxon Rank-Sum Test
Because the results obtained by each algorithm are random, in this 
subsection, we utilize the Wilcoxon rank-sum test (WRS) to evaluate the 
statistical significance difference between two samples at a significance 
level of 5% [2]. Specifically, if the p-value is less than 0.05, it indicates the 
statistical difference is significant; otherwise, the difference is not obvious. 



Applied Mathematics in Engineering328

Furthermore, NaN denotes there is no difference between the two samples. 
The statistical results of the Wilcoxon rank-sum test are listed in Table 4; 
from this table, we can see that the proposed HAGSA algorithm shows 
better significant performance than the other algorithms on most benchmark 
functions.

Table 4: Statistical results of Wilcoxon rank-sum test obtained by each algo-
rithm

Function HAGSA vs.

AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01 3.02 × 10−11 3.02 × 10−11 2.71 × 10−2 2.13 × 10−4 4.08 × 10−11 2.64 × 10−1 3.02 × 10−11 1.29 × 10−9 2.37 × 10−12

C02 3.02 × 10−11 3.02 × 10−11 7.01 × 10−2 3.02 × 10−11 5.83 × 10−13 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12

C03 3.02 × 10−11 3.02 × 10−11 3.32 × 10−6 2.49 × 10−6 2.00 × 10−5 6.52 × 10−9 3.02 × 10−11 3.82 × 10−10 3.02 × 10−11

C04 3.02 × 10−11 3.02 × 10−11 2.06 × 10−2 2.61 × 10−10 4.71 × 10−4 1.31 × 10−8 3.02 × 10−11 3.69 × 10−11 1.21 × 10−12

C05 1.78 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C06 4.62 × 10−10 3.02 × 10−11 2.75 × 10−3 7.73 × 10−2 2.23 × 10−9 1.29 × 10−11 3.02 × 10−11 1.30 × 10−1 2.95 × 10−11

C07 3.02 × 10−11 6.07 × 10−11 1.45 × 10−1 3.02 × 10−11 2.13 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.16 × 10−12

C08 3.02 × 10−11 3.02 × 10−11 1.73 × 10−6 1.25 × 10−7 3.02 × 10−11 2.84 × 10−4 3.02 × 10−11 5.49 × 10−11 9.40 × 10−12

C09 3.02 × 10−11 3.02 × 10−11 1.44 × 10−2 7.70 × 10−8 3.34 × 10−11 4.42 × 10−6 3.02 × 10−11 6.12 × 10−10 1.21 × 10−12

C10 2.23 × 10−9 3.02 × 10−11 5.09 × 10−8 2.97 × 10−1 3.02 × 10−11 1.46 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C11 3.50 × 10−9 3.02 × 10−11 1.37 × 10−3 5.01 × 10−1 3.34 × 10−11 2.96 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C12 6.91 × 10−4 2.39 × 10−8 1.76 × 10−2 2.90 × 10−1 1.69 × 10−9 5.27 × 10−5 4.50 × 10−11 3.02 × 10−11 2.80 × 10−11

C13 3.02 × 10−11 3.69 × 10−11 1.38 × 10−2 6.07 × 10−11 1.68 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.88 × 10−12

C14 3.02 × 10−11 3.02 × 10−11 4.22 × 10−4 1.33 × 10−10 1.39 × 10−6 1.09 × 10−10 3.02 × 10−11 3.02 × 10−11 1.72 × 10−12

C15 3.02 × 10−11 3.02 × 10−11 5.49 × 10−1 3.02 × 10−11 1.69 × 10−9 2.37 × 10−10 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12

C16 1.56 × 10−8 4.18 × 10−9 1.64 × 10−5 2.23 × 10−9 4.50 × 10−11 3.20 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C17 3.02 × 10−11 3.02 × 10−11 6.97 × 10−3 3.95 × 10−1 7.22 × 10−6 2.43 × 10−5 3.02 × 10−11 2.32 × 10−2 3.00 × 10−11

C18 3.02 × 10−11 3.02 × 10−11 4.86 × 10−3 1.21 × 10−10 6.70 × 10−11 3.96 × 10−8 3.02 × 10−11 4.08 × 10−11 2.63 × 10−11

C19 3.02 × 10−11 3.34 × 10−11 2.39 × 10−4 4.35 × 10−5 5.61 × 10−5 3.55 × 10−1 3.02 × 10−11 4.57 × 10−9 1.72 × 10−12

C20 3.02 × 10−11 1.41 × 10−9 1.00 × 10−3 9.83 × 10−8 1.91 × 10−2 2.20 × 10−7 3.69 × 10−11 7.96 × 10−3 3.02 × 10−11

C21 3.02 × 10−11 3.02 × 10−11 3.18 × 10−4 4.17 × 10−2 2.28 × 10−5 1.07 × 10−7 3.02 × 10−11 3.38 × 10−2 3.02 × 10−11

C22 5.49 × 10−11 1.46 × 10−10 5.32 × 10−3 3.03 × 10−2 7.70 × 10−8 1.64 × 10−5 3.02 × 10−11 4.06 × 10−2 3.02 × 10−11

C23 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN

C24 1.21 × 10−12 NaN 1.61 × 10−1 6.62 × 10−4 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN

C25 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.93 × 10−9 NaN 1.21 × 10−12 NaN

C26 8.11 × 10−8 3.55 × 10−1 2.86 × 10−4 4.56 × 10−2 3.98 × 10−6 9.59 × 10−9 8.00 × 10−1 7.40 × 10−3 1.89E-02

C27 1.21 × 10−12 NaN NaN 4.19 × 10−2 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN

C28 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN

C29 1.21 × 10−12 NaN 6.61 × 10−5 1.61 × 10−1 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN

C30 1.21 × 10−12 NaN 6.25 × 10−10 1.31 × 10−7 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
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Computational Time Analysis
To show the computational cost of the proposed HAGSA, in this subsection, 
we record the computational time cost obtained by algorithms on the 
CEC 2014 test suite. The statistical results are listed in Table 5; although 
HAGSA has the same computational complexity as AOA and Gold-SA, the 
computational time cost of HAGSA is more than that of AOA and Gold-SA. 
This is because HAGSA uses Brownian mutation to generate two candidates’ 
solutions to enhance the algorithm’s searchability and Levy flight is used 
to improve the exploitation ability of the hybrid algorithm. In addition, 
considering the NFL theorem, it is acceptable to increase computational 
time to obtain reliable solutions.

Table 5: The computational time for HAGSA and its peers

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01 0.5375 0.1722 0.1260 0.3587 0.3303 0.1756 0.1482 0.2102 0.2743 0.1516

C02 0.5998 0.1487 0.0918 0.2918 0.2854 0.1491 0.1332 0.1697 0.2010 0.1048

C03 0.5519 0.1659 0.1094 0.2395 0.2817 0.1588 0.1391 0.1558 0.2050 0.1043

C04 0.5085 0.1585 0.0929 0.2545 0.2499 0.1490 0.1803 0.1472 0.1971 0.1027

C05 0.5959 0.1564 0.1334 0.3615 0.3404 0.1521 0.1794 0.1705 0.2365 0.1136

C06 6.7234 1.1244 1.4928 5.5571 2.3889 1.5203 1.5837 1.5670 3.1240 1.3135

C07 0.6473 0.1605 0.1203 0.2872 0.3283 0.1850 0.1192 0.1661 0.2290 0.1047

C08 0.4786 0.1447 0.1027 0.2972 0.2493 0.1391 0.1212 0.1707 0.1799 0.1051

C09 0.6048 0.1847 0.1061 0.3045 0.2735 0.1681 0.1289 0.1791 0.2101 0.1046

C10 0.8256 0.1980 0.1440 0.4217 0.4360 0.2012 0.1474 0.2088 0.3306 0.1520

C11 0.8986 0.2100 0.1596 0.7439 0.4011 0.2126 0.1802 0.2147 0.3569 0.2055

C12 1.2724 0.3245 0.2602 1.1208 0.6199 0.3206 0.2946 0.3260 0.7370 0.3250

C13 0.5331 0.1451 0.0933 0.2555 0.2930 0.1541 0.1137 0.1541 0.2013 0.0944

C14 0.5130 0.1508 0.1108 0.3054 0.2816 0.1956 0.1180 0.1509 0.1855 0.1184

C15 0.4946 0.1610 0.1320 0.3372 0.3080 0.1914 0.1421 0.1771 0.2245 0.1277

C16 0.5078 0.1538 0.0978 0.3274 0.3163 0.1599 0.1164 0.1952 0.2397 0.1200

C17 0.6081 0.1684 0.1537 0.4210 0.3202 0.1730 0.1852 0.1790 0.2857 0.1479

C18 0.4803 0.1439 0.1028 0.3162 0.3332 0.2505 0.1138 0.2067 0.2115 0.1057

C19 1.6777 0.3450 0.3121 1.2646 0.7030 0.5136 0.3195 0.5490 0.8568 0.2681

C20 0.4975 0.1584 0.0987 0.3122 0.3295 0.1577 0.1371 0.1958 0.2195 0.1226
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C21 0.5846 0.2016 0.1269 0.4338 0.3211 0.1794 0.1587 0.1744 0.2701 0.1310

C22 0.6756 0.1951 0.1308 0.5880 0.3688 0.1932 0.1534 0.2029 0.3152 0.1749

C23 1.8811 0.3695 0.3146 1.3598 0.7576 0.3692 0.4163 0.3930 0.9236 0.3200

C24 1.4512 0.2916 0.2459 1.1242 0.5935 0.4264 0.2725 0.4199 0.9495 0.2777

C25 1.6396 0.3334 0.2878 1.3109 0.7071 0.3465 0.3106 0.4518 1.0307 0.3435

C26 6.4800 1.5258 2.0984 5.0402 3.0212 2.0210 1.7759 1.7384 4.3710 1.6796

C27 6.3308 1.5334 1.2872 4.7350 2.8645 1.8617 1.8453 1.7505 4.3188 1.5384

C28 1.7570 0.4684 0.3955 1.1151 0.8401 0.4585 0.5362 0.6638 1.1272 0.3811

C29 2.0752 0.4942 0.6205 1.5271 0.9543 0.7252 0.6315 0.6343 1.4255 0.6466

C30 1.2367 0.3321 0.2759 0.8986 0.6684 0.3431 0.3148 0.3581 0.7941 0.4417

Industrial Engineering Design Problems
This subsection introduces five real-world industrial engineering design 
problems to evaluate the proposed algorithm’s searchability, including the 
car side crash design problem, pressure vessel design problem, tension 
spring design problem, speed reducer design problem, and cantilever beam 
design problem. Unlike benchmark functions, these industrial engineering 
design problems have many inequality and equality constraints, which is a 
vital challenge to MAs. In addition, using these problems helps evaluate the 
potential of algorithms to solve real-world problems.

Car Side Crash Design Problem
This problem aims to maintain the side impact crash performance and 
minimize the vehicle weight [48]. It has 11 parameters that need to be 
optimized; also, ten constraints were integrated into this problem. The model 
of this problem can be established as follows:

Consider 
Minimize f(x)=Weight,
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Table 6 shows the best results obtained by all algorithms. As shown in 
this table, the results of the proposed HAGSA are superior to those of other 
optimization techniques, and ROA and AO approaches are ranked second 
and third, respectively.

Table 6: Statistical results of car side crash design problem

Algorithm Optimum Variables Optimum 
Costx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

HAGSA 0.5 1.253 0.5 1.109 0.5 0.5 0.501 0.344 0.192 3.904 6.381 22.9765

AOA 0.5 1.262 0.5 1.156 0.5 0.772 0.5 0.310 0.192 0.365 1.162 23.2139

Gold-SA 0.5 1.278 0.612 1.102 0.544 1.323 0.5 0.345 0.345 0.170 0.294 23.9711

ROA 0.5 1.235 0.5 1.166 0.5 1.110 0.5 0.341 0.192 0.275 2.926 23.0801

AO 0.724 1.175 0.502 1.200 0.5 0.792 0.5 0.308 0.192 0.739 2.837 23.1694

SCA 0.567 1.334 0.540 1.167 0.5 1.109 0.5 0.233 0.263 0.301 2.393 24.3513

WOA 0.953 1.106 0.5 1.206 0.524 0.559 0.501 0.282 0.298 0.246 7.326 24.6495

FPA 0.532 1.322 0.515 1.143 0.616 0.516 0.534 0.197 0.197 0.710 1.892 24.1309

DE 0.505 1.446 0.521 1.182 0.5 1.466 0.5 0.312 0.192 1.008 13.266 24.7181

GA 1.073 1.0465 0.595 1.096 0.714 0.502 0.521 0.322 0.264 5.549 8.215 25.4504

Pressure Vessel Design Problem
The pressure vessel design problem is shown in Figure 10. The goal of this 
problem is to minimize the total cost [49]. It has four design parameters: 
shell thickness (Ts), ball thickness (Th), shell radius (R), and shell length (L). 
The constraints and objective function can be expressed as follows:

Consider 
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Figure 10: Pressure vessel design problem.

Table 7 shows the statistical results obtained by HAGSA and other 
comparison algorithms including AOA, Gold-SA, ROA, AO, SCA, WOA, 
FPA, DE, and GA. As can be seen from this table, HAGSA achieves 
competitive results in this design problem, and the results of ROA and AO 
are ranked second and third, respectively.

Table 7: Statistical results of the pressure vessel design problem

Algorithm Optimum Variables Optimum Cost
Ts Th R L

HAGSA 0.8304795 0.3770664 44.00935 154.9557 5982.8355
AOA 0.8395475 0.4113845 44.27936 156.8883 6068.3284
Gold-SA 0.7140179 0.4619435 40.49522 197.7362 6090.4062
ROA 0.8610026 0.3934984 44.96907 144.2921 6023.0145
AO 0.8030047 0.4524486 43.65139 158.3146 6024.2153
SCA 0.963087 0.476939 51.4412 87.3095 6246.7789
WOA 0.937726 0.473373 49.9436 98.8134 6195.7655
FPA 0.971843 0.478402 52.5479 81.3225 6393.2109
DE 1.009677 0.498834 54.0470 69.2270 6398.6641
GA 1.025422 0.484037 54.7458 64.6720 6439.9228
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Tension Spring Design Problem
The main goal of this problem is to find the optimal parameters to minimize 
the production cost [50]. There are three parameters: wire diameter (d), 
mean diameter of the spring (D), and number of active coils (N), as shown 
in Figure 11. The mathematical model is expressed as follows:

Consider 

Figure 11: Tension spring design problem.

The statistical results of the tension spring design problem were obtained 
by HAGSA and other comparison algorithms as listed in Table 8. As can be 
seen from this table, the best cost of this design problem is 0.011196, and the 
three parameters are 0.050411, 0.37384, and 9.7854, respectively.
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Table 8: Statistical results of the tension spring design problem

Algorithm Optimum Variables Optimum Cost
d D N

HAGSA 0.050411 0.37384 9.7854 0.011196
AOA 0.051791 0.388 9.5556 0.012026
Gold-SA 0.060683 0.67982 3.1063 0.012783
ROA 0.059221 0.6308 3.5188 0.012209
AO 0.05 0.337193 13.0905 0.012721
SCA 0.061365 0.70355 2.9232 0.013043
WOA 0.0502069 0.351224 12.336 0.012692
FPA 0.10187 1.093 9.5387 0.130890
DE 0.06766 0.907935 2.0871 0.016985
GA 0.05401 0.465113 9.6797 0.015848

Speed Reducer Design Problem
This problem aims to construct a speed reducer with a minimum weight 
under constraints [51]. There are seven parameters: face width, the module 
of teeth, number of teeth in the pinion, length of the first shaft between 
bearings, length of the second shaft between bearings, the diameter of the 
first shafts, and the diameter of second shafts. Figure 12 shows the design of 
this problem, and its mathematical formula is as follows:

Consider 
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Figure 12: Speed reducer problem.

The proposed HAGSA is compared with AOA, Gold-SA, ROA, AO, 
SCA, WOA, FPA, DE, and GA. The statistical results are shown in Table 
9. As can be seen, HAGSA is excellent for solving speed reducer design 
problems, and the results obtained by HAGSA are ranked first. The results 
of AOA and ROA are ranked second and third, respectively.

Table 9: Statistical results of the speed reducer design problem

Algorithm Optimum Variables Optimum 
Costx1 x2 x3 x4 x5 x6 x7

HAGSA 3.49767 0.7 17 7.3 7.8001 3.34982 5.28559 2995.4897
AOA 3.50776 0.7 17 7.77685 7.96133 3.35075 5.28557 3007.0806
Gold-SA 3.49441 0.7 17 7.3 7.8 3.42383 5.2872 3016.2163
ROA 3.50776 0.7 17 7.77685 7.96133 3.35075 5.28557 3007.0806
AO 3.49748 0.7 17 8.07645 7.8 3.35162 5.28573 3002.8462
SCA 3.6 0.7 17 8.3 8.3 3.43032 5.30013 3085.2732
WOA 3.5247 0.7 17 8.14441 8.05897 3.35091 5.28568 3019.883
FPA 3.6 0.7 17 7.3 7.8 3.41261 5.28143 3056.8032
DE 3.5119 0.7 17 8.3 8.3 3.37356 5.38151 3088.6759
GA 3.4896 0.7 17 7.71388 7.8 3.65614 5.29218 3094.3185

Cantilever Beam Design
The design of the cantilever beam is shown in Figure 13, and the goal of this 
problem is to minimize the total weight [52]. There are five parameters that 
need to be optimized. The objective function and constraints of this problem 
are as follows:
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Figure 13: Cantilever beam structure.

The statistical results obtained by HAGSA, AOA, Gold-SA, ROA, AO, 
SCA, WOA, FPA, DE, and GA are shown in Table 10. From this table, 
HAGSA shows a lower cost than that of other optimization techniques, and 
the results of ROA and AO are ranked second and third, respectively.

Table 10: Statistical results of the cantilever beam design problem

Algorithm Optimum Variables Optimum Cost
x1 x2 x3 x4 x5

HAGSA 5.9271 5.3962 4.5081 3.476 2.1726 1.3404
AOA 6.4746 5.515 4.1138 3.7827 1.8724 1.3577
Gold-SA 5.7908 5.0142 4.9397 3.4175 2.5713 1.3562
ROA 5.8567 5.4316 4.4342 3.6542 2.1263 1.3418
AO 5.8219 5.4572 4.4551 3.5517 2.2198 1.342
SCA 5.781 5.5669 4.9992 3.5049 2.5094 1.3954
WOA 6.6424 5.0184 4.8451 3.0428 2.287 1.3626
FPA 5.7763 6.4239 4.6938 3.6501 1.6685 1.3861
DE 7.1323 4.9612 4.2559 3.3748 2.5797 1.3918
GA 6.5195 4.1943 5.7643 4.1847 2.2862 1.4320
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CONCLUSIONS AND FUTURE WORK
Considering the characteristic of AOA and Gold-SA, this paper proposes a 
hybrid optimization algorithm, namely HAGSA. First, Gold-SA is utilized 
to alleviate the shortcomings of AOA, such as low population diversity, 
premature convergence, and easy stagnation into local optimal solutions. 
Second, Levy flight and a new strategy called Brownian mutation are used 
to enhance the searchability of the hybrid algorithm.

We first used the CEC 2014 competition test suite to validate the 
optimization performance of HAGSA and its peers. The experimental 
results demonstrate that HAGSA outperforms other competitors in terms 
of optimization accuracy, convergence speed, robustness, and statistical 
difference. In addition, five industrial engineering design problems were 
carried out to test the ability of HAGSA to solve real-world problems. The 
experimental results also show that HAGSA is significantly better than its 
peers. Therefore, it is believed that HAGSA is a valuable method and can 
provide high-quality solutions to solve these kinds of problems. Although 
HAGSA has significant improvements over the original AOA and Gold-SA, 
its time consumption is a potential issue. This is because the BM strategy 
produces two candidate solutions and uses fitness evaluation to select the 
best solution. Thus, determining how to reduce the computational time 
under the premise of ensuring performance needs further research. In future 
works, we will: (1) improve the BM strategy to reduce the computational 
time without degrading HAGSA’s performance; (2) seek to hybridize other 
MAs to improve AOA’s optimization performance; and (3) apply HAGSA 
to solve combinatorial optimization problems (e.g., the traveling salesman 
problem, knapsack problem, and graph coloring problem). In addition, 
multilevel thresholding image segmentation would also be an interesting 
and meaningful research area.
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problems in various engineering fields. The structural configuration of the 
GPP is quite dynamic and flexible in modeling and fitting the reliability 
optimization problems efficiently. The work’s motivation is to introduce 
a bounded solution approach for the GPP while considering the variation 
among the right-hand-side parameters. The bounded solution method uses 
the two-level mathematical programming problems and obtains the solution 
of the objective function in a specified interval. The benefit of the bounded 
solution approach can be realized in that there is no need for sensitivity 
analyses of the results output. The demonstration of the proposed approach 
is shown by applying it to the system reliability optimization problem. The 
specific interval is determined for the objective values and found to be lying 
in the optimal range. Based on the findings, the concluding remarks are 
presented.

Keywords:	 interval-based parameters; geometric programming prob-
lems; bounded optimization approach; system reliability

INTRODUCTION
Mathematical programming problems have different forms based on the 
nature of objective functions and constraints. The geometric programming 
problem, a typical form of mathematical optimization characterized by 
objective and constraint functions of a particular form, was introduced by [1]. 
Later, the advanced study in the domain of the GPP was performed by [2,3]. 
Several engineering applications [4] have investigated the effectiveness and 
importance of the GPP. The GP optimization approach inevitably outperforms 
other existing techniques due to the objective function’s relative magnitudes 
instead of the decision variables. Initially, the GP technique’s basic working 
principle is based on finding the optimal solution of the objective function 
and then proceeding further to determine the optimal values of the design 
variables. This characteristic feature of the GPP is essential and fruitful in 
circumstances where the decision-makers are interested in first finding the 
optimal values of the objective function. Thus, the polynomial structure of 
the objectives and constraints leads the GPP towards the simpler convex 
solution space [2,4]. GP optimization techniques can tackle this situation, 
and the computational activities are aborted to obtain the optimum design 
vectors. One of the GP techniques’ most crucial advantages over others 
can be regarded as it mitigates the complex optimization problems into the 
different piecewise linear algebraic equations. On the other hand, the GP 
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approach deals only with the posynomial types of algebraic terms, meaning 
that it solely facilitates the objective function and the constraints with 
posynomial structures, which can be considered significant drawbacks.

Many engineering optimization problems deal with the manufacturing 
and production processes of some products, machinery parts, and the raw 
equipment used in the final usable machines and products. They care about 
the structure, dimensions, quality, and specifications of the raw material 
parts that are very important to be transformed and converted into usable 
products. For example, the cofferdam, shaft, journal bearings, etc., are the 
raw parts that are the building block raw parts of the various products and 
machines. Hence, the mathematical models with the specifications of these 
raw parts are built up and further used in manufacturing and producing the 
final products. Sometimes, the perfect specifications cannot be achieved 
due to some vagueness or technical errors in the functioning machine, 
for which the experts/managers allow some marginal variations among 
the specifications and dimensions of such raw parts. Afterward, it can be 
managed or adjusted to some extent. In system reliability modeling, various 
parameters can be taken as varying between some specified intervals. 
This means that the parameters can be taken as uncertain, and using some 
specified tools, they can be converted into crisp ones. In the literature, the 
concept of fuzzy and random parameters is available, which deals with the 
vagueness and randomness in the parameters. However, we have provided 
an opportunity to define the parameters under the continuous variations 
bounded by upper and lower limits. Instead of taking the vague and random 
parameters, one can assume the continuous variations in the parameters’ 
values can be tackled with the two-level mathematical programming 
techniques discussed in this paper. Additionally, the sensitivity and post-
optimality of the obtained solution results are waived off due to the working 
procedure of the proposed approach. Hence, the proposed bonded approach 
for the GPP can be easily implemented on various non-engineering problems 
while dealing with varying parameters.

The remaining part of the paper is summarized as follows: In Section 
2, some relevant literature is discussed, while Section 3 presents the basic 
concepts and modeling of standard geometric programming problems 
along with the proposed bounded solution methods. The computational 
study is presented with a particular focus on system reliability optimization 
in Section 4. Analyses of the computational complexity are also performed 
with other existing approaches. Finally, conclusions and the future scope are 
discussed based on the present work in Section 5.
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LITERATURE REVIEW
The GPP is a relatively new method of solving nonlinear programming 
problems. It is used to minimize functions in the form of posynomials 
subject to constraints of the same type. Practical algorithms have been 
developed for solving geometric programming problems [1,2,3]. Liu [5] 
proposed the posynomial GPP subject to fuzzy relation inequalities. In 2018, 
Lu and Liu [6] also studied a class of posynomial GPPs that considers the 
evaluation of a posynomial GPP subject to fuzzy relational equations with 
max–min composition. Ahmad and Adhami [7] also addressed the interval-
based solution approach for solving transportation problems under varying 
input parameters. Chakraborty et al. [8] discussed the multiobjective GPP 
with the aid of fuzzy geometry. Garg et al. [9] presented the reliability 
optimization problem under an intuitionistic environment. Islam and Roy 
[10] investigated the modified GPP and applied it to many engineering 
problems. Islam and Roy [11] developed a new multiobjective GP model 
and used it to solve the transportation problem. Recently, a interesting study 
on GPP was presented by [12,13,14,15]. Khorsandi et al. [16] developed a 
new optimization technique for GPP. Mahapatra and Roy [17] also solved 
the reliability of a system using the GPP approach.

However, the geometric programming research approach in the field of 
reliability optimization is being performed in the context of mathematical 
modeling and real-life applications. Some recent work is also available on 
the system reliability, ensuring a significant contribution to the literature. 
Negi et al. [18] presented a hybrid optimizer model for system reliability. 
Roustaee and Kazemi [19] developed a stochastic model for multi-microgrid 
constrained reliability system and applied it to clean energy management. 
Zolfaghari and Mousavi [20] proposed an integrated system reliability 
model for the inbuilt component under uncertainty. Sedaghat and Ardakan 
[21] developed a novel computational strategy for redundant components in 
the system reliability optimization. Meng et al. [22] discussed the interval 
parameters by the sequential moving asymptote method for the system 
reliability based on the integrated co-efficient approach. Kugele et al. [23] 
presented a research work by integrating the second-degree difficulty in 
carbon ejection controlled, reliable, innovative production management and 
implemented it on a computational dataset. Son et al. [24] used the modeling 
texture of the GPP in the levelized cost of energy-oriented modular string 
inverter design and discussed it in the field of PV generation systems. Shen 
et al. [25] also introduced a novel method for energy-efficient ultrareliability 
using the outage probability bound and the GPP technique. Rajamony et 
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al. [26] designed multi-objective single-phase differential buck inverters by 
considering an active power decoupling and applied it to power generation. 
Singh and Singh [27] suggested the geometric programming approach for 
optimizing multi-VM migration by allocating transfer and compression.

All the studies are confined to either fuzzy- or stochastic-based 
approaches, but it may possible that input parameters may vary within some 
specified intervals bounded by upper and lower bounds. In this situation, the 
fuzzy and stochastic approaches may not be applied successfully. Thus, to 
overcome this issue, we developed a bounded solution method comprising 
the two-level GPP, and the values of the objective function are obtained 
directly. Hence, the present study lays down a new direction for obtaining 
the optimal solution under the varying parameters. The proposed method 
is applied to system reliability optimization problems and yields a result 
without affecting the system reliability under variations.

GEOMETRIC PROGRAMMING PROBLEM: BASIC 
CONCEPTS
In this sub-section, we discuss some important basic concepts related to 
geometric programming problems.

Basic Concepts

Definition 1 
(Monomial). The	word	“monomial”	is	derived	from	the	Latin	word	mono,	
meaning	 only	 one,	 and	 mial	 solely	 means	 term.	 Therefore,	 a	 monomial	
literally	means	“an	expression	in	algebra	having	only	one	term”.

Thus,	 if	x1,x2,⋯,xn	 represent	 the	n	non-negative	variable,	 then	a	real-
valued	function	F	of	x,	in	the	following	form

where	c>0	and	ai∈R,	is	known	as	the	monomial	function.
Illustrative	Example	1:	If	a,	b,	and	c	are	non-negative	variables,	then	

	are	monomial,	but	5+a,	6a−8c,	 and	7(a+8a6b−7)	 are	
not	monomials.
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Definition 2 
(Polynomial). The	word	“polynomial”	is	also	derived	from	the	Latin	word	
poly,	meaning	many,	and	mial	solely	means	term.	Therefore,	a	polynomial	
literally	means	“an	expression	in	algebra	having	many	terms”,	i.e.,	many	
monomials.

Suppose	x1,x2,⋯,xn	represent	the	n	non-negative	variable,	then	the	sum	
of	one	or	more	monomials	in	the	following	form	of	a	real-valued	function	F	
of	x:

where	ani∈R	is	known	as	a	polynomial	function	or	simply	a	polynomial.
Illustrative	Example	2:	If	a,	b,	and	c	are	non-negative	variables,	then	6,	

0.84,	9a3b−9,	−5c/a,	6a−8c,	and	7(a+8a6b−7)	are	polynomials.

Definition 3 
(Posynomial). If	the	coefficients	ci>0	in	the	polynomial,	then	it	is	called	a	
posynomial.	Therefore,	the	sum	of	one	or	more	monomials	in	the	following	
form	of	a	real-valued	function	F	of	x:

where	ci>0	and	ani∈R	is	called	a	posynomial	function	or	simply	posynomial.
Illustrative	 Example	 3:	 If	 a,	 b,	 and	 c	 are	 non-negative	 variables,	 then	

6,	 0.84,	 9a3b−9,	 	 are	 posynomial,	 but	 5−a,	 6a−8c,	
and	7(a+8a6b−7)	are	not	posynomial.

Note	1: The term posynomial is used to suggest a combination of positive 
and polynomial, that is POSITIVE + POLYNOMIAL = POSYNOMIAL.

Definition 4 
(Degree of difficulty). This	 is	 defined	 as	 a	 quantity	 (N−n−1)	 present	 in	
geometric	 programming	 called	 the	 degree	 of	 difficulty.	 In	 the	 case	 of	 a	
constrained	geometric	programming	problem,	N	represents	the	total	number	
of	 terms	 in	 all	 the	 posynomials	 and	 n	 represents	 the	 number	 of	 design	
variables.
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Note	2: The comparison and differences between monomial, polynomial, 
and posynomial are summarized in Table 1.

Table 1: Comparison between monomial, polynomial, and posynomial
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Illustrative Example 2: If a, b, and c are non-negative variables, then 6, 0.84, 9a3b−9, −5c/a,
6a − 8c, and 7(a + 8a6b−7) are polynomials.

Definition 3 (Posynomial). If the coefficients ci > 0 in the polynomial, then it is called a
posynomial. Therefore, the sum of one or more monomials in the following form of a real-valued
function F of x:

F(x) =
m

∑
i=1

cix
a1i
1 xa2i

2 · · · xani
n , ci > 0

where ci > 0 and ani ∈ R is called a posynomial function or simply posynomial.
Illustrative Example 3: If a, b, and c are non-negative variables, then 6, 0.84, 9a3b−9,

17
√

c/a + a7b4 are posynomial, but 5 − a, 6a − 8c, and 7(a + 8a6b−7) are not posynomial.

Note 1: The term posynomial is used to suggest a combination of positive and
polynomial, that is POSITIVE + POLYNOMIAL = POSYNOMIAL .

Definition 4 (Degree of difficulty). This is defined as a quantity (N − n− 1) present in geometric
programming called the degree of difficulty. In the case of a constrained geometric programming
problem, N represents the total number of terms in all the posynomials and n represents the number
of design variables.

Note 2: The comparison and differences between monomial, polynomial, and posyno-
mial are summarized in Table 1.

Table 1. Comparison between monomial, polynomial, and posynomial.

Monomial Polynomial Posynomial

(1) Deals with a single term Having one or more term Having one or more term

(2) Sum of monomials is not a monomial Sum of polynomials is a polynomial Sum of posynomials is a posynomial

(3) Subtraction of monomials is not a
monomial Subtraction of polynomials is a polynomial Subtraction of posynomials is not a

posynomial

(4) Multiplication of monomials is a monomial Multiplication of polynomials is a polynomial Multiplication of posynomials is a posynomial

(5) Division of a monomial by other
monomials is a monomial

Division of a polynomial by other monomials
is a polynomial

Division of a posynomial by other monomials
is a posynomial

(6) The mathematical expression of a
monomial is F(x) = cxa1

1 xa2
2 · · · xan

n , c > 0
The mathematical expression of a polynomial
is F(x) = ∑m

i=1 cix
a1i
1 xa2i

2 · · · xani
n

The mathematical expression of a posynomial
is F(x) = ∑m

i=1 cix
a1i
1 xa2i

2 · · · xani
n , ci > 0

(7) Example: 0.84, 9a3b−9, 17
√

c/a Example: 0.43, 9a3b−9, −5c/a, 6a − 8c Example: 0.59, 9a3b−9, 17
√

c/a + a7b4

3.2. Geometric Programming Problems

Geometric programming problems fall under a class of nonlinear programming prob-
lems characterized by objective and constraint functions in a special form. The texture of
GPP is quite different from other mathematical programming problems and depends on
the characterization of decision variables in its product form. Thus, the modeling structure
of different engineering problems inevitably adheres to the form of the GPP while opti-
mizing the real-life problems. It is introduced for the solution of the algebraic nonlinear
programming problems under the linear or nonlinear constraints, used to solve dynamic
optimization problems. The useful impact in the area can be realized by its enormous appli-
cation in integrated circuit design, manufacturing system design, and project management.
Therefore, the standard form of GPP formulations can be represented as follows (1):

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ 1, i = 1, 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n.

(1)

Geometric Programming Problems
Geometric programming problems fall under a class of nonlinear 
programming problems characterized by objective and constraint functions 
in a special form. The texture of GPP is quite different from other 
mathematical programming problems and depends on the characterization 
of decision variables in its product form. Thus, the modeling structure of 
different engineering problems inevitably adheres to the form of the GPP 
while optimizing the real-life problems. It is introduced for the solution of 
the algebraic nonlinear programming problems under the linear or nonlinear 
constraints, used to solve dynamic optimization problems. The useful impact 
in the area can be realized by its enormous application in integrated circuit 
design, manufacturing system design, and project management. Therefore, 
the standard form of GPP formulations can be represented as follows (1):

   (1)
where l0 is the number of terms present in the objective function, while 
the inequality constraints include li terms for i=1,2,⋯,m. Geometric 
programming problems have a strong duality theorem, and hence, geometric 
programming problems with enormously nonlinear constraints can be 
depicted correspondingly as one with only linear constraints. Moreover, if 
the primal problem is in the form of a posynomial, then a global solution 
of a minimization-type problem can be determined by solving its dual 
maximization-type problem. The dual problem contains the desirable 
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characteristics of being linearly constrained and with an objective function 
having wholesome features. This leads towards the development of the most 
promising solution methods for the geometric programming problems.

Assume that we replace the right-hand-side term (RHS) of the constraints 
in the GPP (1). Then, the modified GPP can be given as follows (2):

   (2)
where Bi,∀i=1,2,⋯,m are non-negative numbers. If Bi=1,∀i, then this 
modified geometric programming problem (2) is the standard geometric 
programming problem (1).

Consider that the geometric programming problem (2) is the primal 
problem, then its dual problem can be presented in the geometric 
programming problem (4). For this purpose, we formulate an auxiliary 
geometric programming problem (3) by dividing the constraint co-efficient 
by its RHS value Bi, which can be depicted as follows:

   (3)
The derivation for the dual formulation of the geometric programming 

problem (2) can be carried out using the concept of [1,2,3]. Furthermore, 
the potential complexity in obtaining and solving the dual geometric 
programming problem (4) can be realized by the research work in [6,16]. 
Thus, the dual formulation of the geometric programming problem (2) is 
presented in the geometric programming problem (4).

   (4)
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Theorem 1. 
If	δ	is	a	feasible	vector	for	the	constraint	posynomial	geometric	programming	
(2),	then	 .

Proof.  
The expression for F0(x) can be written as

      (5)
We can apply the weighted A.M.≥G.M. inequality to this new expression 

for F0(x) and obtain

or

using normality condition

      (6)
Again, Fr(x) can be written as

      (7)
Applying the weighted A.M.≥G.M. inequality in (7), we have

and
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   (8)
Multiplying (6) and (8), we have

  (9)
(r=0,1,2,⋯,l). Using orthogonality conditions, the inequality (9) becomes

i.e., . This completes the proof. 

Theorem 2. 
Suppose	 that	 the	 constraint	 PGP	 (2)	 is	 super-consistent	 and	 that	x∗	 is	 a	
solution	 for	GP.	Then,	 the	 corresponding	DP	 (4)	 is	 consistent	 and	has	 a	
solution	δ∗	that	satisfies

and

Proof.  
Since GP is super-consistent, so is the associated CGP. Furthermore, since 

GP has a solution , the associated GP has a 
solution  given by .

According to the Karush–Kuhn–Tucker (K-K-T) conditions, there is a 
vector λ∗=  such that
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       (10)

     (11)

     (12)

Because  for i=1,2,⋯,n, j=1,2,⋯,m, it follows that r=1,2,⋯,l

Therefore, the condition (12) is equivalent to

    (13)
since epij>0 and xij>0. Hence (13) is equivalent to

   (14)
Now, the terms of Fir(p) are of the form

It is clear that

Therefore, (14) implies

  (15)
If we divide the last equation by

we obtain
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Define the vector  by

Note that >0(i=1,2,⋯,n;k=1,2,⋯,T0) and r≥1, either >0 for 
all k with Tr−1+1≤k≤Tr or =0 for all k with Tr−1+1≤k≤Tr; according to the 
corresponding Karush–Kuhn–Tucker multipliers ,(i=1,2,⋯,n;r=1,2,⋯,l) is 
positive or zero.

Furthermore, observe that vector y∗ satisfies all of the m exponent 
constraint equations in DP, as well as the constraint

Therefore,  is a feasible vector for DP. Hence DP 
is constrained.

The Karush–Kuhn–Tucker multipliers  are related to the 
corresponding λir(y

∗) DP as follows:

The Karush–Kuhn–Tucker condition (11) becomes

     (16)
Therefore, we obtain

Therefore, for r=1,2,⋯,l and k=Tr−1+1,⋯,Tr, we see that

   (17)
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The fact that δ∗ is a feasible for DP and x∗ is a feasible for GP implies 
that

because of the primal-dual inequality.

Moreover, the values of  (i=1.2.⋯,n;r=1,2,⋯,l;k=1,2,⋯,Tr−1+1,⋯,
Tr) are precisely those that force equality in the arithmetic-geometric mean 
inequalities that where used to obtain the duality inequality. Finally, Equation 
(17) shows that either Fir(p

∗)=1 or =0(i=1,2,⋯,n;r=1,2,⋯,l). This means 
that the value of  actually forces equality in the primal-dual inequality. 
This completes the proof. 

Geometric Programming Problem under Varying Parameters
In reality, optimization problems may contain uncertainty among the 
parameters that cannot be ignored. Due to the existence of uncertainty 
among parameters in the real world, many researchers have investigated 
the problem of decision-making in a fuzzy environment and management 
science. Different real-life problems inherently involve uncertainty in the 
parameters’ values. In this case, the decision-makers are not able to provide 
fixed/exact values of the respective parameters. However, depending 
on some previous experience or knowledge, the decision-makers may 
furnish some estimated/most likely values of the parameters that lead to 
vagueness or ambiguousness. The inconsistent, inappropriate, inaccurate, 
indeterminate knowledge and lack of information result in vague and 
ambiguous situations. Thus, the parameters are not precise in such cases. 
Briefly, one can differentiate between stochastic and fuzzy techniques for 
tackling the uncertain parameters. Uncertainty arises due to randomness, 
which can be tackled by using stochastic techniques, whereas the fuzzy 
approaches can be applied when uncertainty arises due to vagueness.

Various interactive and effective algorithms are investigated for solving 
the GPP when the RHS in the constraint is known exactly. However, many 
applications of geometric programming are engineering design problems 
in which some of the deterministic parameters in the RHS are defined in an 
estimated interval of actual values. There are also many cases when the RHS 
may not be depicted in a precise manner. For example, in the machining 
economics model, the tool life may fluctuate due to different machining 
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operations and conditions. In this proposed GPP, uncertainty present in the 
data us varying between some specified intervals that differ from both types 
of the above-discussed uncertainties. The mathematical model of the GPP 
under varying parameters can be represented as follows (18):

   (18)

where . The geometric programming 
problem (18) represents the proposed geometric programming model under 
varying parameters  that are allowed to vary between some specified 

bounded intervals, i.e., lower  and upper  bounds, respectively.

Proposed Bounded Solution Method for Geometric  
Programming Problem
Intuitively, when the input values are varying within some specified 
intervals, then it is obvious to have the varying or fluctuating output as well 
while solving the problems. Hence, the value of the objective function can 
be determined in a specified interval according to the varying parameters. 
In this paper, we developed a bounded solution scheme to obtain the lower 
and upper bound of the geometric programming problems under varying 
parameters. The GPP (18) inherently involves variation among the RHS 
parameters. The following consideration is taken into account while 
proposing the bounded solution method.

Suppose that  is a set 
of varying parameters defined between the fixed intervals. Now, for each 

, we define  as the objective function value of geometric 
programming problem (18) under the set of given constraints. Assume 

that  is the minimum and maximum value of  defined on S, 
respectively. Therefore, mathematically, it can be expressed as follows:

   (19)

   (20)
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With the aid of Equations (19) and (20), we can elicit the corresponding 
pair of two-level mathematical programming problems as follows:

   (21)
and

   (22)
The above problems (21) and (22) represent the two-level geometric 

programming problems under varying parameters. Since Problem (21) reveals 
the minimum of the best possible values on S, it would be justifiable to insert 
the constraints of the outer level into the inner level to simplify the two-level 
mathematical programming problems into the single-level mathematical 
programming problem, which can be presented as follows (23):

  (23)
However, in Problem (23), the value of xj is not known. Thus, it is necessary 
to obtain the dual of Problem (23), which can be stated as follows (24):

   (24)
Finally, Model A is a nonlinear programming problem and can be solved 

by using some optimizing software.
The problem (22) would give the maximum value among the best 

possible objective values over all decision variables. In order to find the 
upper bound of the geometric programming problem, the dual of the inner 
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problem of Problem (22) must be obtained with the fact that in the geometric 
programming problem, the primal problem and the dual problem have the 
same objective value. By using the strong duality theory of the geometric 
programming problem, the dual of inner problem (22) is transformed into a 
maximization-type problem to be similar to the maximization type of outer 
problem (22). Hence, the problem (22) can be re-expressed as follows:

   (25)
Since Problem (25) represents the maximum of the best possible values 

on S, so it would be justifiable to insert the constraints of the outer level 
into the inner level to simplify the two-level mathematical programming 
problems into the single-level mathematical programming problem (26), 
which can be stated as follows:

  (26)
Model B is a nonlinear constrained programming problem and can be 

solved by using several efficient methods. Thus, Model A and Model B 
provide the lower and upper bound to the geometric programming problem 
under varying parameters and calculate the objective value directly without 
violating the optimal range of the objective values where they should lie. A 
comprehensive study about the relationship between the globally optimal 
cost and the optimal dual value can be found in [4].

COMPUTATIONAL STUDY
The proposed bounded solution method for the geometric programming 
problem under varying parameters was implemented in different real-life 
applications. The following two examples were adopted from engineering 
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problems. Furthermore, it was also applied to the system reliability 
optimization problem. All the numerical illustrations were coded in AMPL 
and solved using the optimizing solver CONOPT through the NEOS server 
version 5.0 on-line facility provided by Wisconsin Institutes for Discovery at 
the University of Wisconsin in Madison for solving optimization problems; 
see (Server [28]).

Example 1 
([4]). A	cofferdam	 is	 an	 engineering	design	optimization	problem.	 It	 is	 a	
prominent	structure	to	attach	a	trivial	submerged	area	to	permit	building	a	
permanent	structure	on	an	allocated	site.	The	cofferdam	function	is	elicited	
in	a	 random	environment	by	 transitions	 in	 surrounding	water	 levels.	The	
architecture	 designs	 a	 dam	 of	 height	 x1,	 length	 x2	 breadth	 x3,	 and	 total	
required	perimeter	x4	and	intends	to	estimate	the	most	promising	total	cost	
for	making	decisions.	The	RHS	parameters	can	be	of	any	simplex	dimensions	
such	as	area,	volume,	etc.,	which	is	not	quite	certain.	These	are	no	longer	
crisp	or	deterministic,	but	the	allowable	lower	and	upper	bounds	over	each	
area/volume	are	determined	in	the	closed	interval.	Thus,	the	use	of	varying	
parameters	is	quite	worthwhile	and	the	decision	under	such	variation	will	
be	helpful	in	determining	the	range	of	optimal	outcomes.	Figure	1	depicts	
an	illustrative	example	of	a	cofferdam.

Figure 1. Illustrative figure of a cofferdam.
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Thus, the equivalent mathematical programming problem with varying 
parameters is given as follows (27):

   (27)

where  are the varying parameters. Since all 
the parameters are crisp except the RHS, then Problems (23) and (26) can 
be utilized to obtain the upper and lower bounds of the objective values in 
Problem (27). According to Problems (23) and (26), the formulations of the 
upper and lower bounds for Problem (27) can be presented as follows:

   (28)
and

  (29)
Thus, Problems (28) and (29) are the required upper and lower bounds 

for the geometric programming problem (27). Upon solving the problem 
at zero degree of difficulty, the upper and lower bounds for the objective 

functions are obtained as =8.5429 and =4.9271, respectively. However, 
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the objective values at  are found to be =5.6212. 
Therefore, the obtain objective function lies between the range of the upper 
and lower bounds, which shows that it is justified to reduce the objective 
values at the maximum RHS under variations.

Example 2 
([4]). This	illustration	belongs	to	a	design	problem	of	a	journal	bearing.	The	
texture	of	the	journal	bearing	is	an	inverse	problem,	where	the	eccentricity	
ratio	 and	 attitude	 angle	 are	 obtained	 for	 a	 defined	 load	 and	 speed.	 The	
engineers	may	not	have	experience	in	modeling	the	structure	of	this	new	type	
of	journal	bearing.	The	volume	of	steel,	the	thickness	of	the	intermediate	layer	
and	nickel	barrier,	and	the	dimension	of	the	plated	overlay	of	the	journal	
bearing	are	assumed	to	be	unknown.	Thus,	the	values	of	these	parameters	
have	been	depicted	between	some	specified	closed	intervals	and	taken	in	the	
form	of	lower	and	upper	bounds,	respectively.	Hence,	the	varying	solution	
outcomes	 will	 also	 come	 by	 ensuring	 the	 optimal	 objectives	 between	
corresponding	 intervals.	 Figure	 2	 represents	 the	 structure	 of	 the	 journal	
bearing	 used	 in	 this	 example.	Hence,	 some	 parameters	 of	 the	model	 are	
approximately	known	and	are	estimated	by	the	engineers.	Suppose	that	x1	is	
the	radial	clearance,	x2	the	fluid	force,	x3	the	diameter,	x4	the	rotation	speed,	
and	x5	the	length-to-diameter	ratio.

Figure 2: Illustrative figure of a journal bearing.
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The following mathematical programming formulation can depict the 
design problem as a geometric programming problem (30):

   (30)

where  are the varying parameters. Since 
all the parameters are crisp except the RHS, then Problems (23) and (26) 
can be utilized to obtain the upper and lower bound of the objective values 
in Problem (30). According to the problems (23) and (26), the formulations 
of the upper and lower bounds for Problem (30) can be presented as follows 
(31):

  (31)
where y21+y22+y23=y20 and the upper bound can be stated as follows (32):

  (32)
where y21+y22+y23=y20.

The above Problems (31) and (32) provide the required upper and 
lower bound for the problem (30). Both of these problems are concave 
programming problems with linear constraints. Upon solving the problem 
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at zero degree of difficulty, the upper and lower bounds for the objective 

functions are obtained as =4.314 and =3.045, respectively. However, 
the objective values at  are found to be =3.561. 
Therefore, the obtain objective function lies between the range of the upper 
and lower bounds, which shows that it is justified to reduce the objective 
values at the maximum RHS under variations.

Application to System Reliability Optimization
Assume system reliability having n components connected in series. 
Suppose ri(i=1,2,⋯,n) represents the individual reliability of the i-th 
component of the system. Similarly, Rs(r1,r2,⋯,rn) is the reliability of the 
whole series system. Consequently, Cs(r1,r2,⋯,rn) depicts the total cost 
of n components associated with the system reliability. It seldom happens 
that the system reliability is maximized when the cost of the associated 
system is exactly known; however, some varying cost may make it easier 
to execute the smooth function of the framework. The obtained lower and 
upper bounds on the cost objective function will ensure the variation in 
total cost associated with the system and help with allocating the budget 
for maintenance or renovation, etc. In the same manner, minimizing the 
system cost under the varying reliability of the whole system would be quite 
a worthwhile task. The minimization of the system cost without affecting 
the system reliability is much needed to ensure the longer performance of 
the components. Thus, we considered that the system reliability is varying 
between some specified intervals and bounded by upper and lower bounds. 
This situation is quite common due to uncertainty in the failure of any 
components. In real-life scenarios, the minimization of the total system cost 
by maintaining the system reliability would be a more prominent modeling 
texture of the reliability optimization problems (see [17,29,30]). Therefore, 
the mathematical model for the minimization of system cost under varying 
system reliability takes the form of the geometric programming problem and 
can be represented as follows (33):

   (33)
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where αi is the acceptable tolerance linked with the i-th component. We con-
sidered the three components connected in series, and the relevant data are 
summarized in Table 2.

Table 2: Input data for the system reliability optimization problem

Since all the parameters are crisp except the system reliability, then 
Problems (23) and (26) can be utilized to obtain the upper and lower bounds 
of the objective values in Problem (33). According to the problems (23) and 
(26), the formulations of the upper and lower bounds for Problem (33) can 
be presented as follows (34):

  (34)
whereas the upper bound can be stated as follows (35):

   (35)
The above problems (34) and (35) provide the required upper and lower 

bound for the problem (33). Upon solving the problem at zero degree of 
difficulty, the upper and lower bounds for the system cost are obtained as 

=521.95 and =216.35, respectively. However, the system cost at 
=0.88 is found to be =351.29. Therefore, the obtained system cost lies 
between the range of its upper and lower bounds, which shows that it is 
justified to reduce the system cost at maximum system reliability under 
variations.
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Analyses of Computational Complexity and Discussions
This proposed bounded solution method captures the behavior of varying 
parameters and provides the interval-based solution of the objective function. 
Most often, uncertain parameters exist in any form, such as they may take 
the form of randomness, fuzziness, and any other aspects of uncertainty. The 
uncertainty among parameters arises due to vagueness being able to be dealt 
with by using fuzzy approaches, whereas the stochastic technique is applied 
when the uncertainty involves randomness among the parameters. More 
precisely, contrary to other uncertain optimization approaches, the developed 
approach adheres to comparatively less computational complexity in the 
sense of mathematical computation (e.g., some mathematical calculations 
are used to derive the crisp or deterministic version of fuzzy or random 
parameters), and there is no scope for obtaining the deterministic version 
of the problem for such varying geometric programming problems. The 
beauty of the proposed method can be highlighted by the fact that sensitivity 
analyses (post-optimality analysis) doe not need to be performed because 
the continuous variations among the parametric values directly produce the 
range of optimal objective functions from the interval parameters. Thus, 
the propounded solution approach can be the most prominent and efficient 
decision-maker while dealing with uncertain parameters other than the fuzzy 
or stochastic form.

The generalization of the conventional geometric programming problem 
of constant parameters is highlighted for interval parameters. The most 
prominent and extensive idea is to determine the lower and upper bounds of 
the range by applying the two-level mathematical programming technique 
to geometric programming problems. With the aid of a strong duality 
theorem, the two-level geometric programming problems are converted 
into a pair of one-level geometric programming problems to implement 
the computational study. When all the varying parameters degenerate to 
constant parameters, the two-level geometric programming problem turns 
into the conventional geometric programming problem. In general, in 
interval geometric programming problems, it may probably happen that 
the problem is infeasible for some specified range of varying parameters. 
Thus, our proposed methods are free from infeasibility and ignore those 
complexities due to infeasible values. The proposed method obtains the 
lower and upper bounds of the feasible solutions directly. In addition, the 
suggested method does not examine the range of values that results in 
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infeasibility. Furthermore, developing two-level geometric programming 
problems can determine the lower and upper bounds of the objective values. 
However, mathematical programming is nonlinear in the case of geometric 
programming problems, which may be very typical for solving large-scale 
problems. The comparative study is presented in Table 3.

Table 3: Comparison between the proposed method and traditional methods

The presented work can be described as an empirical case research work 
by filling the various gaps [8,9,17,19,29] such as instant variation among 
parameters, two-level mathematical programming, duality theory in the 
GPP, and the automatic post-optimal analysis metric. In system reliability 
modeling, various parameters can be taken as varying between some 
specified intervals. For example, the cofferdam, shaft, journal bearings, etc., 
are the raw parts that are the building block materials of the various products 
and machines. This means that the parameters can be taken as uncertain, and 
using some specified tools, they can be converted into a crisp one. In the 
literature, the concept of fuzzy and random parameters is available, which 
deals with the vagueness and randomness in the parameters. However, we 
have provided an opportunity to define the parameters under the continuous 
variations bounded by upper and lower limits. Instead of taking the vague 
and random parameters, one can assume the continuous variations in 
the parameters’ values can be tackled with the two-level mathematical 
programming techniques discussed in this paper. Additionally, the sensitivity 
and post-optimality of the obtained solution results are waived off due to the 
working procedure of the proposed approach.

In the future, a solution method that involves all the parameters under 
variation in the geometric programming formulation is much required to 
ensure solvability. The values near the lower and upper bounds have a 
significantly lower probability of occurrence. If the distributions of varying 
data are known in the stochastic environment, then the distribution of the 
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objective function would be obtained, which is more realistic, and the 
scenario is generated for consequent decision-making. Therefore, this lays 
down another direction for future research by deriving the distribution of 
the objective functions based on the distributions of the varying parameters.

CONCLUSIONS
The geometric programming problem is an integrated part of mathematical 
programming and has real-life applications in many engineering problems 
such as gravel-box design, bar–truss region texture, system reliability 
optimization, etc. The concept of varying parameters under the objective 
functions is discussed with the aim that uncertainty is critically involved 
and affects engineering problems’ formulations directly. The propounded 
research work is developed and introduces an interval-based solution 
approach to finding the upper and lower limits on the objective function of 
the varying parameters. The outer- and inner-level geometric programming 
problem is transformed into a single-level mathematical programming 
problem. The outcomes are summarized in the numerical illustrations 
and observed in the precise interval where they should exist. The system 
reliability optimization problem also provides evidence of the discussed 
problem’s successful implementation and dynamic solution results. The 
minimum system cost is obtained at the utmost system reliability, which 
also falls into the lower and upper bounds of the system costs.

The scope of usual sensitivity analysis is not further required due to the 
flexible nature of the proposed solution method. The propounded approach 
allows the abrupt fluctuations among the parameters between given intervals 
for which bounds over the objective functions are directly obtained. It also 
makes the computational algorithm easier than other methods by ignoring 
the uncertain parameters such as fuzzy, stochastic, and other uncertain 
forms that yield a solution procedure that is comparatively more complex. 
The developed approach may be extended for future research to stochastic 
programming, bi-level or multilevel programming, and various engineering 
problems with real-life applications.
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considerable developments in recent years. The classic Finite Element 
Method (FEM) is applied to compute the unknown structural responses in TO. 
However, several numerical deficiencies of the FEM significantly influence 
the effectiveness and efficiency of TO. In order to eliminate the negative 
influence of the FEM on TO, IsoGeometric Analysis (IGA) has become a 
promising alternative due to its unique feature that the Computer-Aided Design 
(CAD) model and Computer-Aided Engineering (CAE) model can be unified 
into a same mathematical model. In the paper, the main intention is to provide 
a comprehensive overview for the developments of Isogeometric Topology 
Optimization (ITO) in methods and applications. Finally, some prospects for 
the developments of ITO in the future are also presented.

INTRODUCTION
Structural optimization [1] has attracted considerable attentions among 
researchers ranging from theoretical research to engineering applications, 
which aims to solve the optimal design of the load-carrying structures with 
the reasonable structural features, like the connectivity of holes, the shapes 
of boundaries. Overall speaking, structural optimization mainly contains 
three components as far as the design stage, presented in Figure 1, namely 
the conceptual design stage of Topology Optimization (TO), the basic design 
stage of shape optimization and the detailed design stage of size optimization. 
One of them, TO, has been identified as an important but with more challenges 
sub-discipline, and the main intention of TO is to seek for the optimal material 
layout with the expected structural performance in a design domain without 
the prior knowledge subject to several pre-defined constraints [2].

Figure 1: Structural optimization.
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As we know, TO originates from a pioneering work [3] that discusses 
the frame-structures under the limits of economy of materials. Cheng and 
Olhoff [4, 5] addressed the optimal design of solid elastic plates, which is 
considered as the seminar work for the structural optimization of continuum 
structures and attracts a wide of discussions in the last three decades. In 1988, 
Bendsøe and Kikuchi [6] used the homogenization approach to optimize the 
structural topology by gradually changing the sizes and orientations of holes 
in a design domain. After that, TO has accepted a myriad of discussions 
ranging from the developments of TO methods to the applications of different 
problems, and the details can refer to some comprehensive reviews of TO 
[7,8,9,10,11]. Up to now, there are several different topology optimization 
methods with the unique positive features which have been proposed in 
recent years.

The developed TO methods can be mainly divided into two branches 
as far as the representation model of the structural topology, including 
Material Description Models (MDMs) and Boundary Description Models 
(BDMs). In the first branch of TO methods, MDMs discrete the design 
domain to be a series of designable points or elements with the densities, 
namely the density-based TO methods. The density in each designable point 
or element determines the non/existence of material at the corresponding 
location in a design domain. This branch mainly contains the Solid Isotropic 
Material with Penalization (SIMP) method [12, 13], and the Evolutionary 
Structural Optimization (ESO) method [14]. However, the second branch 
of TO methods uses the BDMs to display the structural topology, where a 
higher-dimensional function in an implicit or explicit form is constructed 
for the evolvement of topology in the design and structural boundaries 
are defined by the iso-contour/surface of the function. In this branch, the 
Level Set Method (LSM) [15,16,17], the phase field method [18, 19], 
the recently proposed Moving Morphable Components/Voids (MMC/V) 
method [20,21,22,23] and the Bubble method [24, 25] have been obtained 
considerable discussions. These developed TO methods have been also 
applied to address several different numerical problems, like the dynamic 
optimization [26,27,28], compliant mechanisms [29, 30], stress problems 
[31,32,33], robust designs [34,35,36], materials design [37,38,39,40,41], 
concurrent topology optimization [42,43,44,45,46,47,48].

In the previously mentioned TO works, the classic Finite Element 
Method (FEM) [49] is applied to solve the unknown structural responses 
in numerical analysis. However, it is known that the FEM features several 
deficiencies in numerical analysis, like (1) the finite element mesh is just an 
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approximant of the structural geometry, rather than the exact representation; 
(2) The neighboring finite elements have the low-order (C0) continuity of the 
structural responses, and the deficiency also exists in the higher-order finite 
elements; (3) The lower efficiency to gain a high quality of the finite element 
mesh. These drawbacks mainly stem from the use of different mathematical 
languages in geometric model and numerical analysis model: spline 
basis functions are used in the former whereas Lagrangian and Hermitian 
polynomials in the latter. Meanwhile, in TO, the optimized designs generally 
need the additional post-processing to meet the requirements of the practical 
engineering structures, so that the communication with CAD systems is 
compulsory. On the other side, these three deficiencies might cause the 
high possibility of the occurrence of numerical issues in TO. Recently, a 
promising and powerful alternative of the FEM, termed by the IsoGeometric 
Analysis (IGA), is proposed by Hughes and his co -workers [50, 51] to 
perform the numerical analysis, which can completely remove the above 
limitations of FEM. In IGA, the core is that the same spline information 
including control points and spline basis functions is simultaneously applied 
into the representation of the structural geometry and solve the numerical 
analysis. The geometrical model and numerical analysis model are kept 
consistent in IGA. This such unification of the mathematical model in 
structural geometry and numerical analysis can offer benefits for the later 
optimization to resolve the above numerical issues occurred in TO.

Since the developments of IGA to eliminate the defects of the 
conventional FEM, several researchers have devoted to developing new 
TO methods and discussing their applications using IGA, rather the FEM. 
To the best knowledge of the authors, the first work introducing IGA into 
topology optimization might go back to Ref. [52], which discussed the shape 
optimization using IGA and its extension to the topological design. Later, an 
extensive work [53] used the trimmed spline surfaces to present structural 
boundaries and then proposed a novel Isogeometric Topology Optimization 
(ITO) framework based on TO and IGA, which opens up a new window 
for the development of TO in the future. After that, many research works 
have been performed to sufficiently consider the positive features of IGA 
into TO, which can develop more and more efficient and effective ITO 
methods for many numerical problems. Up to now, two publications present 
reviews for the IGA into structural optimization [54, 55]. However, these 
two papers mostly focus on the descriptions about the introducing of IGA 
into shape optimization and its developments, and the discussions about 
the IGA into topology optimization are limited in these papers. Moreover, 
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the considerations of IGA to replace the classic FEM in TO have obtained 
more and more attentions among many researchers in recent years. It is 
compulsory to provide an overview for the developments of ITO methods 
and their applications, which can provide more better research orientations 
and suggestions for the newcomer in the field of TO or ITO, also other 
readers who have interests in this field.

The rest of this paper is organized as follows: a brief description 
about the ITO methods in different types is presented in Section 2, and 
Section 3 provides the discussions about the applications of the ITO methods 
in different numerical problems. In Section 4, some prospects about the ITO 
in methods and applications are also presented. Finally, the paper ends with 
some concluded remarks in Section 5.

ISOGEOMETRIC TOPOLOGY OPTIMIZATION (ITO) 
METHODS
As already discussed in Introduction, Seo et al. [52, 53] firstly implemented 
the ITO using the trimmed spline surfaces and IGA, where the trimmed 
surface analysis treats topologically complex spline surfaces using trimming 
information provided by CAD systems and it is also used for calculating 
structural response analysis and sensitivity calculation in TO. The spline 
surface and trimming curves are applied to represent the outer and inner 
boundaries of geometrical design models, in which the coordinates of control 
points of a spline surface and those of trimming curves work as design 
variables in TO. In the design, this ITO framework deal with the inner front 
creation and inner front merging. When considering the complex structures 
in the optimization, the number of the trimming curves will increase, and a 
highly prohibitive computational cost might be caused.

After that, the development of ITO starts to focus on how to construct a 
more efficient and effective ITO method based on the previous TO methods 
and IGA. Up to now, many different ITO methods have been developed. 
According to the classifications of TO methods already discussed in 
Introduction, we still divide discussions about ITO methods into two 
different branches, namely MDMs-based ITO methods and BDMs-based 
ITO methods. In the first branch using MDMs, the development of ITO 
methods strongly depends on the “density”, namely the density-based ITO 
methods. As far as the second branch using the BDMs, the previous research 
works mostly develop ITO methods using the level set or MMC/V, namely 
the level set-based ITO methods and MMC/V-based ITO methods. Hence, 
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we will provide the detailed discussions about the ITO methods in three 
different types, including the density-based, level set-based and MMC/V-
based, respectively.

Density-Based
As we know, the homogenization approach is earlier used to realize 
the optimization of structural topology, which will introduces several 
numerical difficulties in the design. After that, several improvements are 
also discussed. One of them, the Solid Isotropic Material with Penalization 
(SIMP) method, can be viewed as a powerful alternative, which has accepted 
more and more attentions owing to its conceptual clarity and easy numerical 
implementation [12, 13]. The basic intention of topology optimization to 
search the continuous material distribution is fully converted into seeking 
for the reasonable spatial arrangement of densities of finite elements. It is 
well-known that some numerical artifacts are also occurred in the optimized 
solutions, like the checkerboards, “zig-zag” or wavy structural boundaries 
and mesh-dependency [56,57,58], and several works reveal that these issues 
mainly stem from the strong dependency on finite elements in SIMP method 
[59,60,61]. Hence, some alternative variants of SIMP are also developed 
to eliminate the numerical difficulties and produce the distinct material 
interface, like introducing the densities at elementary nodes [62,63,64]. A 
comprehensive review about the SIMP method can refer to [9, 65]. Here, 
we provide a general mathematical model of the SIMP as far as the classic 
compliance minimization problem, given as:

   (1)
where c is the objective function, defined by the structural compliance, ρ is 
a vector containing a series of design variables, namely the element 
densities. ρe denotes the eth element density, and p is the penalty parameter 
to enforce element densities to be 0 or 1. U is the global displacement 
field and K is the global stiffness matrix. ue is the element displacement, 
and k0 is the element stiffness matrix. υ0 is the elementary volume fraction, 
and V0 is allowable material volume fraction. ρmin is the minimal value of 
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design variables. N is the total number of element densities. Hence, in the 
SIMP method, the design aims to find a reasonable layout of ρ in the design 
domain with the expected structural compliance c, subject to the material 
volume fraction V0.

In 2011, Kumar and Parthasarathy [66] constructed B-spline finite 
elements for the density representation function and the displacement field 
in the design domain to eliminate the numerical artifacts of traditional 
elements, who reveal B-spline basis functions feature a smoothing effect 
to remove the mesh dependency, similarly to the density filtering schemes. 
Later, Hassani et al. [67] firstly developed an ITO method for structural 
compliance problem, where densities are defined at control points and Non-
Uniform Rational B-Spline (NURBS) basis functions are combined with 
the pre-defined densities at control points to develop the density distribution 
function for the representation of structural topology. As shown in Figure 2, 
we provide some numerical results. We can easily find that although several 
numerical artifacts of SIMP can be successfully removed using the current 
ITO method, some new deficiencies are also shown in the optimized designs, 
like the blur and wavy structural boundaries. In the viewpoint of the authors, 
the current work opens up the combination of SIMP and IGA, which verify 
the feasibility of the introducing of IGA into SIMP. However, several new 
numerical artifacts are introduced. Meanwhile, the work directly employs the 
densities at control points to approximately represent the structural topology. 
It is suitable for the rectangular design domain, but it might introduce errors 
in the optimization for the curved structures. The main cause is that some 
parts of the control points are not at the curved design domain.

Figure 2: Some numerical results in Ref. [67].
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After that, Qian [68] developed a B-spline space for the topology 
optimization. In this work, an arbitrarily shaped design domain is embedded 
into a rectangular domain, which can sufficiently employ the tensor-product 
feature of B-splines to develop the density field for the representation of the 
structural topology in the design domain. The author reveals that the B-spline 
representation of the topology can offer an intrinsic filter for the topology 
optimization, which can effectively remove numerical artifacts and control 
minimal feature length in the optimized designs. Moreover, the B-spline 
space can decouple the representation of the density distribution from the 
finite element analysis, which avoids the re-meshing of the design domain 
in the multi-resolution. We also provide some numerical results in Ref. 
[68], as shown in Figure 3. As we can easily see, the structural features are 
similar to numerical results of SIMP, like the “zig-zag” or wavy boundaries. 
The main reason is that the final representation of the structural topology is 
still based on element densities which are defined by the B-spline density 
representation using control densities. The spatial distribution of element 
densities in the design domain has the intrinsic feature, namely “zig-zag”. 
Meanwhile, the mapping from the densities at control points to element 
densities will increase the existence of intermediate densities. Hence, the 
structural boundaries of the optimized topology are still featured with a 
“zig-zag” or wavy shape, which still need the additional post-processing to 
smooth structural boundaries for the latter manufacturing.

Figure 3: Some numerical results in Ref. [68].

Later, Gao et al. [69] constructed an enhanced density distribution 
function to develop a new ITO method. In the construction of the density 
distribution function, two steps are involved: (1) Smoothness: the Shepard 
function is firstly employed to improve the overall smoothness of the densities 
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pre-defined at control points. (2) Continuity: the NURBS basis functions 
are linearly combined with the smoothed control densities to construct the 
density distribution function. In each optimization iteration, the density 
distribution function to represent the structural topology will be advanced. 
As shown in Figure 4, some numerical results are also given. As we can 
see, an enhanced density distribution function can offer more benefits for 
the optimization and the representation of the structural topology. However, 
it should be noted that the structural boundaries are represented by the iso-
contour of the density distribution function with the iso-value (0.5) of the 
density. It originates from the level set method, and the reasonability of 
the definition of the structural boundaries at the iso-contour/surface of the 
density distribution function is also discussed. We can easily find that the 
post-processing scheme is very simple, heuristic but efficient. However, it 
also introduces some errors in the evaluation of structural performance of 
the optimized designs.

Figure 4: Some numerical results in Ref. [69].

Lieu and Lee [70] developed a multiresolution scheme to topology 
optimization using the framework of IGA, where a variable parameter space 
is defined for the implementation of multiresolution TO using SIMP method. 
Then, they inherited the multiresolution ITO framework [70], and applied it 
to discuss the multi-material topology optimization problem [71], in which 
the alternating active-phase algorithm [72] for the multi-material topology 
optimization is directly used in the multiresolution ITO framework. Wang et 
al. [73] discussed the multiscale ITO for periodic lattice materials, in which 
the asymptotic homogenization is applied for the calculation of mechanical 
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properties for lattice materials with uniform and graded relative density 
respectively. Taheri et al. [74] also studied the application of the ITO to the 
multi-material topology optimization problem and the design of functionally 
graded structures, where the multi-material interpolation scheme proposed 
by Stegmann and Lund [75] to realize the discrete material optimization is 
directly used. Liu et al. [76] also addressed the stress-constrained topology 
optimization problem of plane stress and bending of thin plates using the 
ITO framework, where two stability transformation methods are developed 
to stabilize the optimization using the P-norm function for global stress 
constraint. Later, Gao et al. [77] proposed a NURBS-based Multi-Material 
Interpolation (N-MMI) model in the ITO method [69] to develop a Multi-
material ITO (M-ITO) method. Then Gao et al. [78] employed the ITO 
method to study the design of auxetic metamaterials and the M-ITO method 
to discuss the optimization of auxetic composites, where a series of novel 
and interesting material microstructures with the auxetic property can be 
found. Xu et al. [79] also applied the ITO method to study the rational design 
of ultra-lightweight architected materials. The topology optimization of the 
spatially graded hierarchical structures is also discussed in the framework 
of ITO [80]. Xie et al. [81] also proposed a truncated hierarchical B-spline–
based topology optimization to address topology optimization for both 
minimum compliance and compliant mechanism. Wang et al. [82] discussed 
the numerical efficiency of the ITO method and employed the multilevel 
mesh, MGCG and local-update strategy to improve the computational 
efficiency by mesh scale reduction, solving acceleration and design variables 
reduction. Zhao et al. [83] also addressed the T-Splines Based ITO method 
for the design domains with arbitrarily shape, where the arbitrarily shaped 
design domains is directly obtained from CAD and defined by a single 
T-spline surface. The T-spline can overcome the topological limitations of 
NURBS. However, it also introduces an important problem that how many 
control points should be arranged in the local structural features. The basic 
feature of TO is that we do not known the final optimized design without the 
prior knowledge. Hence, a uniform initial design is much better for the latter 
optimization, which can offer the equal opportunity for the advancement 
of each point in the design domain and avoid the occurrence of the local 
optimum design. However, when using T-splines to model the geometry and 
analysis, a non-uniform IGA mesh will occur and also a control lattice with 
nonuniform features will be utilized, which will introduce some numerical 
issues in the latter optimization.
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Level Set-Based
It is known that Level Set Method (LSM) is numerical technique to track the 
interface and shape, which has been extensively used in many disciplines. 
The core of the LSM is to define a level set function with a higher-dimension 
to represent the structure, where the zero-level set is employed to represent 
the structural boundaries. The level set function with the negative values 
are applied to display the voids, and the solids in the design domain are 
represented by the level set function with the positive values, namely the 
implicit boundary representation model. Hence, the evolvement of the level 
set function can describe the advancing of the structural topology in the 
design domain.

As already discussed in Section 1, Sethian and Wiegmann [15] firstly 
employed the level set function to represent the structure topology and used 
structural stress to develop the evolving mechanism. After that, Wang et al. 
[16] innovatively developed the level-set topology optimization framework, 
where the upwind scheme and the finite difference method are utilized to 
solve the H-J PDEs to advance the structural topology. Allaire et al. [17] 
developed a level-set topology optimization method based on the classical 
shape derivatives in the level-set method for front propagation. Compared 
to MDMs, we can easily find that the level-set topology optimization 
is actually a shape optimization method but with a superior capability to 
implement the shape and topology optimization. The optimized topologies 
will have the smooth structural boundaries and distinct interfaces, and the 
LSM will feature several inherent physical merits: (1) a smooth and distinct 
boundary description for the optimized design, (2) the shape fidelity and 
higher topological flexibility during the optimization, (3) the shape and 
topology optimization are performed simultaneously and (4) a physical 
meaning solution of the H-J PDEs. The mathematical model of the level-set 
based TO method for the structural compliance problem can read as:

   (2)
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where J is the objective function, defined by the structural compliance 
problem. u denotes the global displacement field in design domain, 
and Φ is the level set function with a higher dimension to represent the 
structural topology. D is the reference domain, and Ω is the design domain 
containing all admissible shapes. H is the Heaviside function which serves 
as a characteristic function. G is the volume constraint function. V0 is the 
allowable material consumption. The elastic equilibrium equation is stated 
in the weak variational form, in which a is the bilinear energy function 
and l is the linear load function. υ is the virtual displacement field, which 
belongs to the kinematically admissible displacement space U. As shown in 
Figure 5, a 3D level set function with the corresponding 2D structural design 
domain is given.

Figure 5: A 3D level set function and 2D design domain.

In 2012, Shojaee et al. [84] discussed the composition of IGA with 
LSM to develop a level set-based ITO framework for the structural 
topology optimization, where the Radial Basis Function (RBF) is applied to 
parametrize the level set function. The corresponding numerical results are 
shown in Figure 6(a). In Ref. [84], the level set function is constructed by 
the RBF to show the topology, and IGA uses the NURBS basis functions to 
develop the analysis model. In actual, we can easily obtain that the geometric 
model and analysis model are not in an integrated mathematical language. 
Later, Wang et al. [85] also proposed a parametrized level set-based ITO 
method using parametric level set method and IGA, where the same NURBS 
basis functions are used to parameterize the level set function and construct 
the solution space of numerical analysis. The geometric model and the 
analysis model of the structural topology can be unified, which coincides 
with the core of IGA. The numerical results of [85] are also presented in 
Figure 6(b). Then, Wang et al. [86] discussed the topology optimization 
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for geometrically constrained design domains using the proposed level set-
based ITO method, where the fast point-in-polygon algorithm and trimmed 
elements are utilized for ITO with the arbitrary geometric constraints. As 
shown in Figure 6(c), the corresponding numerical results are also given. 
Xia et al. [87] implemented Graphics Processing Units (GPU) parallel 
strategy for the level set-based ITO method to improve numerical efficiency. 
After that, Ghasemi et al. [88] also developed a level set-based ITO method 
but for the optimization of flexoelectric materials, where the NURBS-based 
IGA elements are successfully employed to model the flexoelectric effect in 
dielectrics and the energy conversion efficiency of flexoelectric micro and 
nanostructures is improved. Moreover, the point wise density mapping is 
directly used in the weak form of the governing equations and the adjoint 
sensitivity technique is applied to compute the derivative. Jahangiry et 
al. [89] also discussed the application of IGA in the structural level set 
topology optimization to develop a new level set-based ITO framework, 
where the control mesh is gradually updated in the optimization iterations, 
and then the authors also discussed the application of the new level set-
based ITO framework in the topology optimization of the concentrated heat 
flow and uniformly distributed heat generation systems [90]. Lee et al. [91] 
also implemented the isogeometric topological shape optimization using 
dual evolution with boundary integral equation and level sets, where the 
implicit geometry using the level sets is transformed into the parametric 
NURBS curves by minimizing the difference of velocity fields in both 
representations. Xu et al. [92] employed the level set-based ITO method 
in Ref. [85] to discuss the design of vibrating structures to maximize the 
fundamental eigenfrequency and avoid resonance, and the related numerical 
results are shown in Figure 7(a). Yu et al. [93] also employed the level 
set-based ITO method in Ref. [85] to implement the multiscale topology 
optimization using the unified microstructural skeleton, where a prototype 
microstructure is defined to obtain a series of graded microstructures. 
Figure 7(b) shows the related numerical results. In Ref. [94], a level set-
based ITO method was proposed for topology optimization to control 
the high-frequency electromagnetic wave propagation in a domain with 
periodic microstructures, where the high-frequency homogenization method 
is used to characterize the macroscopic high-frequency waves in periodic 
heterogeneous media. The corresponding numerical results are also given 
in Figure 7(c).
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Figure 6: Some numerical results.

Figure 7: Some numerical results.

MMC/V-Based
Compared to the density-based and level set-based TO methods, MMC/V 
has implemented the topology optimization in an explicit and geometrical 
way. MMC/V can incorporate more geometry and mechanical information 
into topology optimization directly. Since the seminar work of MMC 
proposed by Guo et al. [20], it have been accepted more and more attentions 
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in not only theoretical research but also engineering applications. Zhang et 
al. [95] developed a new MMC-based topology optimization method, where 
the ersatz material model is utilized through projecting the topological 
description functions of the components. Later, Guo et al. [21] studied 
the explicit structural topology optimization based on moving morphable 
components (MMC) with curved skeletons. In Refs. [22, 23], the B-spline 
curves are used to describe the boundaries of moving morphable voids 
(MMVs) to develop the MMV-based topology optimization method.

In 2017, Hou et al. [96] firstly proposed an MMC-based ITO method, 
where NURBS basis functions are applied to construct the NURBS patch 
to represent the geometries of structural components using explicit design 
parameters and the same functions are also applied into the latter IGA. 
As already indicated in Ref. [96], the proposed MMC-based ITO method 
can naturally inherit the explicitness of the MMC-based TO method, and 
also embraces the merits of IGA, such as a tighter link with Computer-
Aided Design (CAD) and higher-order continuity of the basis functions. 
The numerical results are displayed in Figure 8(a). Xie et al. [97] also 
developed a new MMC-based ITO method based on R-functions and 
collocation schemes, in which the R-functions are used to construct the 
topology description functions to overcome the C1 discontinuity problem 
of the overlapping regions of components. As given in Ref. [97] to discuss 
the efficiency of the proposed method, the numerical results show that 
the current method can improve the convergence rate in a range of 17%–
60% for different cases in both FEM and IGA frameworks. This proposed 
MMC-based ITO method was applied to the topology optimization for the 
symmetric structures using energy penalization method [98]. After that, Xie 
et al. [99] proposed a new MMC-based ITO method using a hierarchical 
B-spline which can implement the adaptive IGA to efficiently and accurately 
assess the structural performance. As far as the MMV-based ITO method, 
Zhang et al. [100] proposed a new MMV-based ITO method, in which the 
MMV-based topology optimization framework is seamlessly integrated into 
IGA by using TSA (trimming surface analysis) technique. Comparatively 
speaking, the current MMV-based ITO method can flexibly control the 
structural geometry/topology. Meanwhile, it can also prevent the occurrence 
of self-intersection and jagged boundaries. The related numerical results are 
also shown in Figure 8(c). Later, Gai et al. [101] also studied the development 
of the MMV-based ITO method, where the closed B-spline boundary curves 
are utilized to model the MMVs to represent the structural topology. Du et 
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al. [102] discussed the application of the MMC-based ITO method in the 
multiresolution topology optimization problem.

Figure 8: Some numerical results of the MMC/V-based ITO works.

Other Types
Besides the previously mentioned works, the ITO methods are also 
developed based on other TO methods. Dedè et al. [103] proposed a phase 
field-based ITO method, where the optimal design can be obtained by the 
steady state of the phase transition described by the generalized Cahn–
Hilliard equation. The numerical solutions are presented in Figure 9(a). Yin 
et al. [104] developed an ITO method based on the scheme of Bi-directional 
Evolutionary Structural Optimization (BESO), namely the BESO-based ITO 
method. Sahithi et al. [105] studied the evolutionary algorithms to realize 
the ITO of continuum Structures using the parallel computing, where the 
evolutionary optimization process and metaheuristics are used to optimize 
the layout of material in the design domain, and the related numerical results 
are shown in Figure 9(b).
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Figure 9: some numerical results.

APPLICATIONS OF ITO
In Section 2, we give a comprehensive review about the development of 
the ITO methods considering three components: the density-based ITO, 
level set-based ITO and MMC/V-based ITO. In the development of the ITO 
methods, the applications of the ITO methods are also involved into many 
numerical optimization problems, like the classic structural compliance 
problem with the single-material [67,68,69, 85, 89, 96, 97], the multi-
material topology optimization problem [71, 74, 77, 106], the trimmed 
spline surfaces [53, 86, 107], the functional graded structures [74, 80].

In this section, we review the applications of the ITO in three important 
numerical optimization problems, including mechanical metamaterials, the 
splines used in IGA and the computational efficiency.

Mechanical Metamaterials
Mechanical metamaterials are a kind of artificial materials with 
counterintuitive mechanical properties that are obtained by the topology of 
their unit cell instead of the properties of each component [108]. Generally 
speaking, mechanical metamaterials are always associated with four elastic 
constants: Young’s modulus, shear modulus, bulk modulus and Poisson’s 
ratio. The corresponding subtypes of mechanical metamaterials mainly 
contains acoustic metamaterials, auxetic metamaterials, etc.

As already discussed in the definition of mechanical metamaterials, the 
effective macroscopic properties of materials strongly depend on the micro-
architecture that are homogeneously arranged in the bulk material, rather 
than constituent properties of the base material. This feature of mechanical 
metamaterials can offer the high possibility for the applications of topology 
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optimization to seek for a series of novel metamaterial microstructures with 
the promising macroscopic properties. Since the homogenization theory 
is developed to predict macroscopic effective properties [109], an inverse 
homogenization procedure is proposed for the optimization of a base unit 
cell with the negative Poisson ratio using topology optimization [110]. 
Later, this work is inspired and extended to the topology optimization of 
the rationally artificial materials with the extreme or novel properties [111], 
particularly for auxetic metamaterials with the Negative Possion’s Ratio 
(NPRs) behavior.

The earlier work introducing the IGA into the design of mechanical 
metamaterials can go back to Ref. [112], in which the IGA-based shape 
optimization is developed for the design of smoothed petal auxetic 
structures via computational periodic homogenization. The authors also 
discussed the optimal form and size feature of planar isotropic petal-shaped 
auxetic structures with the tunable effective properties using the IGA-based 
shape optimization [113]. The IGA-based shape optimization for periodic 
material microstructures using the inverse homogenization was also studied 
in Ref. [114]. The introducing of IGA into topology optimization for the 
rational design of auxetic metamaterials can track to Ref. [78], which used 
the SIMP-based ITO method proposed in Ref. [69] and also numerically 
implemented the energy-based homogenization method to evaluate the 
effective macroscopic properties using IGA with the imposing of the 
periodic boundary formulation on the base material unit cell. A reasonable 
ITO formulation for auxetic metamaterials with the re-entrant and chiral 
deformation mechanisms is developed, and several optimized design are 
shown in Figure 10(a). Later, the authors also discussed the computational 
design of auxetic composites via an IGA-based M-ITO method developed 
in Ref. [77], where an appropriate objective function with a weight 
parameter is also defined for the controlling of the generation of different 
deformation mechanisms with the re-entrant and chiral in auxetic composite 
microstructures [115]. The related numerical optimized microstructures 
with the auxetic are also shown in Figure 10(b). Later, Nguyen et al. [116] 
also discussed the design of auxetic metamaterials using the level set-
based ITO method, where the reduced order model is utilized to reduce the 
computational degree of the linearly elastic equilibrium equation to improve 
the computational efficiency. Similarly, a series of novel and interesting 
auxetic microstructures in 2D and 3D, shown in Figure 10(c). Xu et al. [79] 
also utilized the density-based ITO method to discuss the rational design of 
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ultra-lightweight architected materials with the extreme bulk modulus and 
extreme shear modulus, and a series of novel 3D ultra-lightweight architected 
material microstructures can be found. Nishi et al. [94] utilized the LSM-
based ITO method to discuss the design of periodic microstructures in 
anisotropic metamaterials to control high-frequency electromagnetic wave, 
in which anisotropic metamaterials with the hyperbolic and bidirectional 
dispersion properties at the macroscale can be obtained.

Figure 10: Some optimized design of auxetic microstructures.

Splines
In the development of the ITO method, a key in IGA is to the spline. In the 
earlier ITO works, the trimmed spline surfaces are employed to represent 
the structural topology. The outer and inner structural boundaries of the 
geometry are represented by a spline surface and trimming curves, in which 
design variables are the coordinates of control points of a spline surface and 
those of trimming curves [52]. This basic numerical technique is inherited 
in the later work [53, 100, 107], where the trimmed surface analysis is 
employed for the structural response analysis and sensitivity calculation in 
the optimization. A basic numerical scheme for the merging of the inner is 
shown in Figure 11(a).
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Figure 11: Illustrations of different spline schemes.

Later, the B-spline is employed in the construction of the geometrical 
model and B-spline basis functions are applied to develop the solution 
space in the IGA. Meanwhile, the B-spline-based IGA is introduced in 
the topology optimization. Qian [68] constructed a B-spline space for the 
topology optimization, where an arbitrarily shaped domain can be embedded 
into a rectangular domain modelled by the tensor-product B-splines. Some 
researchers studied the role of the B-spline in the topology optimization 
without using the IGA to solve the structural responses [117], where the 
free-form curve of closed B-splines is introduced as basic design primitives 
to realize topology optimization with small number of design variables. 
Then, the B-spline multi-parameterization method is proposed for topology 
optimization of thermoelastic structures [106]. After that, the hierarchical 
spline is applied into the development of the MMC-based ITO method, 
in which the adaptive IGA is implemented by the hierarchical B-spline 
to efficiently and accurately assess the structural performance [99]. Xie 
et al. [81] developed a truncated hierarchical B-spline–based topology 
optimization. It should be indicated that sensitivity and density filters with 
a lower bound can be adaptively consistent with the hierarchical levels 
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of active elements to remove the checkboard pattern and reduce the gray 
transition area. A basic illustration of the hierarchical B-spline is given in 
Figure 11(b).

Comparatively speaking, NURBS, working as a mathematical model 
commonly used in computer graphics for generating and representing curves 
and surfaces, is also mostly employed in the development of the ITO method 
in three types. Wang et al. [85] developed the level set-based ITO method 
using NURBS, in which NURBS is firstly applied to parametrize the level set 
function to represent the structural topology and then construct the solution 
space in IGA to solve the unknown structural responses. Gao et al. [69] also 
employed NURBS to develop an enhanced density distribution function 
with the sufficient smoothness and continuity to represent the structural 
topology, and the same NURBS basis functions are also used in IGA. Hou 
et al. [96] used NURBS to construct the MMCs for the representation of 
the geometries of structural components (a subset of the design domain) 
with use of explicit design parameters, and the NURBS-based IGA is 
also applied to solve the structural responses. A basis description about 
the NURBS for the representation of the structural geometry is shown in 
Figure 11(c). Besides the above discussed splines, the T-spline is also used 
in the ITO method for the topology optimization, and the T-spline-based 
ITO method is developed to realize the optimization of design domain with 
arbitrary shapes [83] to eliminate the complexity of the multi-patch NURBS 
for the structural geometry. In actual, it will introduce an important problem 
that how many control points should be arranged in the representation of 
structural local features, which will have a significant effect on the latter 
topology optimization.

Computational Cost
Although computer has gained a great number of developments in recent 
years, the computational cost of topology optimization is still a prohibitive 
problem, especially for the common laptop. In order to improve the 
computational efficiency of the ITO in numerical implementations, several 
research works have been implemented in recent years. The most method is 
the use of multiresolution scheme in numerical calculation of the topology 
optimization [118]. In the multiresolution topology optimization, three 
distinct meshes are defined for the optimization: (1) a displacement mesh for 
the finite element analysis; (2) a design variable mesh for the optimization; 
and (3) a density or level set mesh to display the material distribution. The 
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basic idea is that topology optimization can achieve the higher-resolution 
designs but with a lower computation cost as well. Lieu et al. [70] developed 
a multiresolution ITO method using SIMP to improve computational 
efficiency, and then applied it to address the multi-material topology 
optimization problem [71]. Du et al. [102] also utilized the multiresolution 
scheme in the MMV-based ITO method to reduce the computational cost. A 
simple illustration of multiresolution scheme is shown in Figure 12. Wang et 
al. [82] also improved the computational efficiency in three aspects: namely 
the mesh scale reduction, solving acceleration and design variables reduction, 
and the ITO method is developed using multilevel mesh, multigrid conjugate 
gradient method and local-update strategy. As already given in numerical 
results, the current proposed method can successfully reduce 37%–93% 
computational time compared to previous works. The GPU parallel strategy 
is also employed in the parameterized LSM-based ITO method to reduce 
the computational cost [87], where the parallel implementations are utilized 
in the initial design domain, IGA, sensitivity analysis and design variable 
update.

Figure 12: A simple illustration of multiresolution scheme in TO [70].

PROSPECTS
In this Section, we will provide three main directions for the development 
of ITO in the future, including the Data-driven ITO, ITO for additive 
manufacturing and ITO considering the advantages of IGA in several 
problems. The details are given as follows.

(1)  Data-driven ITO: It is known that the application of topology 
optimization for the complex engineering materials is very 
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difficult due to the complexity. In recent years, the big data and 
machine learning have been becoming popularly in the field of 
computational mechanics, which can provide new windows for 
the topology optimization for complex problems. For example, 
the deep neural network is employed to approximate the field 
of variables to solve the boundary value equations in strong 
or weak forms [119]. In the work, the developed data-driven 
neural networks can efficiently reduce the computational costs. 
Meanwhile, the data-driven isogeometric shape optimization for 
auxetic microstructures is also studied [120]. Hence, in the future 
work of the ITO, the data-driven ITO method and its applications 
in several numerical problems will be the promising research 
topic.

(2)  ITO for additively manufacturing: In recent years, additive 
manufacturing technique, a layer-by-layer manner to fabricate 
structures, has accepted great attentions and been becoming a 
powerful alternative to the conventional fabrication methods, like 
the machining and casting, due to its merits to manufacture the 
structures with specific features, like the cavity. Hence, additive 
manufacturing can offer the higher flexibility and efficiency for 
the fabrication of structures. The topology optimization design 
for additive manufacturing has proposed in recent years, and the 
comprehensive reviews for this topic can refer to Refs. [121, 122]. 
IGA has the positive feature to unify Computer-Aided Design 
(CAD) model and Computer-Aided Engineering (CAE) into 
a same mathematical language, so that the ITO can offer more 
possibility for engineering structures from the conceptual design 
phase to the last manufacturing into an integrated process, if the 
development of the ITO can consider the additive manufacturing. 
This unification will significantly reduce the financial cost of 
the product design. Hence, in the future, the ITO for additive 
manufacturing will be also a hot research topic.

(3)  The advantages of IGA in several problems: IGA has the 
compelling benefits in the field of shell and plate overall 
conventional approaches [123, 124], because the smoothness 
of NURBS basis functions can offer a straightforward manner 
to construct the plate/shell elements, particularly for the thin 
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shells and rotation-free. Meanwhile, the smoothness of NURBS 
basis functions can also offer more benefits for the analysis of 
fluids [125] and the fluid-structure interaction problems [126]. In 
addition, due to the ease of construction of the higher-order basis 
functions, IGA with more success can be utilized to solve PDEs 
with the forth-order (or higher) derivatives, for example the Hill–
Cahnard equation [127]. Hence, in the future, the considerations 
of the ITO in the mentioned above numerical problems might be 
more meaningful for the development of this field.

CONCLUSIONS
In the current paper, we offer a comprehensive review for the Isogeometric 
Topology Optimization (ITO) in methods and applications. Firstly, we 
mainly divide the descriptions of ITO methods into three aspects, including 
the density-based ITO methods, level set-based ITO methods and MMC/V-
based ITO methods. The corresponding discussion for each classification is 
clearly provided, and the development trajectory in each classification is also 
given. Secondly, the descriptions of the applications of ITO mainly focus 
on three components, namely the ITO for mechanical metamaterials, the 
splines in ITO and the computational cost of ITO. Finally, we also provide 
some prospects for the developments of the ITO methods and applications 
in the future, which contains the data-driven ITO to considerably reduce 
the computation cost, the ITO for additive manufacturing to consider the 
manufacturing problems into the initial conceptual design phase and the 
ITO considering the advantages of IGA in several problems.
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ABSTRACT
The main purpose of engineering applications for fluid with natural and 
mixed convection is to control or enhance the flow motion and the heat 
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as distributed, Dirichlet, and Neumann boundary controls. We introduce 
mathematical tools such as functional spaces and their norms together with 
bilinear and trilinear forms that are used to express the weak formulation 
of the partial differential equations. For each of the three different 
control mechanisms, we aim to study the optimal control problem from a 
mathematical and numerical point of view. To do so, we present the weak 
form of the boundary value problem in order to assure the existence of 
solutions. We state the optimization problem using the method of Lagrange 
multipliers. In this paper, we show and compare the numerical results 
obtained by considering these different control mechanisms with different 
objectives.

Keywords:	 optimal control; natural convection; mixed convection; La-
grange multipliers method; Boussinesq equations

INTRODUCTION
The optimization of complex systems in engineering is a crucial aspect that 
encourages and promotes research in the optimal control field. Optimization 
problems have three main ingredients: objectives, controls, and constraints. 
The first ingredient is the objective of interest in engineering applications, 
namely, flow matching, drag minimization, and enhancing or reducing 
turbulence. A quadratic functional minimization usually defines this 
objective. The controls can be chosen for large classes of design parameters. 
Examples are boundary controls such as injection or suction of fluid [1] and 
heating or cooling temperature controls [2,3,4], distributed controls such as 
heat sources or magnetic fields [5], and shape controls such as geometric 
domains [6]. Finally, a specific set of partial differential equations for the state 
variables defines the constraints. A typical optimization problem consists of 
finding state and control variables that minimize the objective functional 
and satisfy the imposed constraints [7]. In [7], the interested reader can 
find time-dependent and stochastic (input data polluted by random noise) 
analyses of optimal control theory that broaden the perspective of this work, 
here limited to stationary equations. Of course, the stochastic and optimal 
control time-dependent approach requires larger computational resources 
that severely limit real-life applications.

In this paper, we focus on engineering applications where fluid natural 
convection plays a main role. In these cases, buoyancy forces have a strong 
influence on the flow. Applications for natural convection optimal design 
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are crucial in many contexts, ranging from semiconductor production 
processes, where buoyancy forces can control the crystal growth, to thermal 
hydraulics of lead-cooled fast reactors (LFR), where emergency cooling 
is guaranteed by natural convection. In the design of engineering devices 
such as heat exchangers, nuclear cores, and primary or secondary circuit 
pipes, optimization techniques can be used to achieve specified objectives 
such as desired wall temperatures or wall-normal heat fluxes, target mean 
temperatures, velocity profiles, or turbulence enhancements/reductions. The 
thermodynamic properties of lead allow a high level of natural circulation 
cooling in the primary system of an LFR. For core cooling, LFR design 
enhances strong natural circulation during plant operations and shutdown 
conditions [8]. Within this framework, we aim to study optimal control 
problems for mixed and natural convection.

In the past few years, the mathematical analysis of the optimal control of 
Navier–Stokes and energy equations has made considerable progress. The 
optimization of the heat transfer in forced convection flows can be found 
in many studies, mainly where the coupling between the Navier–Stokes 
and energy equations ignores density variations (see for example [2,4] and 
citations therein). In the case of natural or mixed convection flows, several 
authors have studied the mathematical analysis of the optimal control for 
the Oberbeck–Boussinesq system, focusing on stationary distributed and 
boundary thermal controls (see for example [3,5,9,10,11,12]). The solvability 
of the stationary boundary control problem for the Boussinesq equation 
is studied in [13,14], considering as boundary controls the velocity, the 
temperature, and the heat flux. Recently, new approaches to the study of the 
optimal control of Boussinesq equations have been proposed [15,16,17]. In 
[15], the solvability of an optimal control problem for steady non-isothermal 
incompressible creeping flows was proven. The temperature and the pressure 
in a flat portion of the local Lipschitz boundary played the role of controls. 
In [16], the optimal Neumann control problem for non-isothermal steady 
flows in low-concentration aqueous polymer solutions was considered, and 
sufficient conditions for the existence of optimal solutions were established. 
The problem of the optimal start control for unsteady Boussinesq equations 
was investigated in [17] to prove their solvability.

The main aim of this paper is to show the possibility of systematically 
controlling natural and mixed convection flows using mathematical tools 
based on optimal control theory. We consider three different control 
mechanisms: distributed, Dirichlet, and Neumann boundary controls. The 
solvability of the stationary optimal control problem for the Boussinesq 
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equations has already been widely investigated in previous studies, 
considering as controls the forces and heat sources acting on the domain, 
together with the velocity, pressure, heat flux, and temperature on a 
portion of the boundary [3,5,9,10,11,12,13,14,15,16,17]. However, only 
a few studies show the numerical results of the optimal control problem 
for the Boussinesq equation and consider only a single control mechanism 
[2,11,14]. Thus, while the theoretical analysis of these control problems 
has been widely presented in previous studies, the implementation through 
an efficient numerical algorithm in a finite element code of the obtained 
optimality systems represents the novelty of this work. This paper aims to 
review the main thermal control mechanisms, showing and comparing the 
numerical results obtained for the different control mechanisms, objectives, 
and penalization parameters.

In Section 2, we first introduce the required mathematical tools such as 
functional spaces and their norms together with bilinear and trilinear forms 
that are used to express the weak formulation of the partial differential 
equations. In Section 3, the general forms of the optimal control problem 
and of the objective functional are presented. For each of the three different 
control mechanisms, we aim to study the optimal control problem from 
a mathematical point of view. To do so, we present the weak form of the 
boundary value problem, in order to prove the existence of solutions. We 
state the optimization problem and the existence of its solution using the 
method of Lagrange multipliers. Moreover, we present a numerical algorithm 
for each control type, in order to successfully solve the optimization system 
arising from the optimization problem. Numerical results are then presented 
in Section 4, considering the three thermal control mechanisms with different 
objectives for the temperature and velocity fields. The importance of the 
choice of the penalization parameter λ is taken into account, and the results 
are discussed for different values of the penalization parameter.

NOTATION
We use the standard notation Hs(O) for a Sobolev space of order s with 
respect to the set O, which can be the flow domain , with n=2,3, or its 
boundary Γ. We remark that H0(O)=L2(O). Corresponding Sobolev spaces of 
vector-valued functions are denoted by Hs(O). In particular, we denote the 
space H1(Ω) by {vi∈L2(Ω)∣∣∂vi/∂xj∈L2(Ω)for i,j=1,⋯,n} and the subspace 
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, where Γj is a subset of Γ. In addition, we 

write . The dual space of  is denoted by . 
In particular, the dual spaces of  and H−1(Ω), 
respectively. We define the space of square integrable functions having zero 
mean over Ω as

and the solenoidal spaces as

The norms of the functions belonging to Hm(O) are denoted by ∥⋅∥m,O. 
For (fg)∈L1(O) and (u⋅v)∈L1(O), we define the scalar product as

Whenever possible, we will neglect the domain label. Thus, the inner 
product in L2(Ω) and L2(Ω) are both denoted by (⋅,⋅). This notation will also 
be employed to denote pairings between Sobolev spaces and their duals.

For the description of the Boussinesq system, we use the bilinear forms

   (1)

   (2)

   (3)
and the trilinear forms

   (4)

   (5)
These forms are continuous [18]. Note that, for all u∈V, v∈H1(Ω) and 

T∈H1(Ω), we have c(u,v,v)=0 and c(u,T,T)=0.

OPTIMAL CONTROL OF BOUSSINESQ EQUATIONS
In this paper, we study optimal control problems for stationary incompressible 
flows in mixed or natural convection regimes. In these engineering 
applications, the dependence on the temperature field cannot be neglected 
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in the Navier–Stokes equation. Thus, the temperature and velocity fields are 
mutually dependent through buoyancy forces and advection. These flows 
are defined by the following Boussinesq equations:

   (6)

   (7)

  (8)

where Ω is a bounded open set in , d=2 or 3 with smoothing as necessary 
at boundary Γ. The operator Δ defines the Laplace operator ∇⋅∇=∇2=Δ. In (6)–
(8), u, p, and T denote the velocity, pressure, and temperature fields, while f 
is a body force, Q is a heat source, and g is the gravitational acceleration. The 
fluid thermal diffusivity, kinematic viscosity, and coefficient of expansion 
are defined by α, ν, and β, respectively. The system (6)–(8) is closed, with 
appropriate boundary conditions on ∂Ω. For the velocity, we set Dirichlet 
boundary conditions, while for the temperature field we consider a mixed 
boundary condition defined as

      (9)
We denote by Γd and Γn the boundaries where Dirichlet and Neumann 

boundary conditions are applied, with Γd∪Γn=Γ=∂Ω.
We formulate this control problem as a constrained minimization of the 

following objective functional:

   (10)
subject to the Boussinesq Equations (6)–(8) imposed as constraints. In 
(10), the functions ud and Td are the given desired velocity and temperature 
distributions. The terms in the functional (10) measure the L2(Ω) distance 
between the velocity u and the target field ud and/or between the temperature 
T and the target field Td. The non-negative penalty parameters αu and αT 
can be used to change the relative importance of the terms appearing in the 
definition of the functional. If αu=0, we have as the objective a temperature 
matching case; if αT=0, we consider a velocity matching case.
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The control can be a volumetric heat source, a boundary temperature, 
or a heat flux. In all these cases, the control has to be limited to avoid 
unbounded solutions. To do so, we can add a constraint limiting the value 
of the admissible control, or we can penalize the objective functional T by 
adding a regularization term. With this second approach, we do not need to 
impose any a priori constraints on the size of the control. Let c be the control 
belonging to a Hilbert space Hs(O). We can then define a cost functional

  (11)
where the last term contains the Hs(O)-norm of the control c penalized with 
a parameter λ. The value of the parameter λ is used to change the relative 
importance of the objective and cost terms.

Dirichlet Boundary Control
In a Dirichlet boundary control problem, we aim to control the fluid state 
acting on the temperature on a portion of the boundary Γc⊆Γd. The boundary 
condition reported in (9) can be written in this case as

  (12)
where Γi=Γd∖Γc. In (12), gt, gt,n, and w are given functions, while Tc is the 
control. Thus, Γc and Γi denote the portions of Γd where temperature control 
is and is not applied, respectively. By considering Equation (11) with s=1, 
the cost functional is given as follows:

  (13)
where ∇s denotes the surface gradient operator, i.e., ∇sf:=∇f−n(n⋅∇f). The 
cost contribution measures the H1(Γc)-norm of the control Tc.

Weak Formulation and Lagrange Multiplier Approach
The weak form of the boundary value problem (6)–(8) and (12) is given as 

follows: find  such that

   (14)
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The existence of the solution of the system (14) has been proved in [3]. 
Note that the normal heat flux on Γd can be computed from T as

   (15)
Now, we state the optimal control problem. We look for a 

(u,p,T,Tc)∈H1(Ω)×  such that the cost functional 
(13) is minimized subject to the constraints (14). The admissible set of states 
and controls is

   (16)

Then,  is called an optimal solution if there exists ε>0 
such that

   (17)

The existence of at least one optimal solution  was 
proven in [3].

We use the method of Lagrange multipliers to turn the constrained 
optimization problem (16) into an unconstrained one. We first show that 
suitable Lagrange multipliers exist. We summarize all the equations and 
the functional in two mappings and study their differential properties. It is 
convenient to define the following functional spaces:

   (18)

   (19)

   (20)
Let M:B1→B2 denote the generalized constraint equations, namely, M(z) 

= l for z=(u,p,T,Tc,qn)∈B1 and l=(l1,l2,l3,l4)∈B2 if and only if

  (21)
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Thus, the constraint (14) can be expressed as M(z)=0. Let 
  denote an optimal solution 

in the sense of (17). Then, consider the nonlinear operator  
defined by

  (22)
Given , the operator M′(z):B3→B2 may be defined 

as  
if and only if

  (23)

The operator  may be defined as 
 if and only if

The differential operator M′ is characterized by non-coercive elliptic 
equations. The advection terms in these equations are driven by the velocity 
field u∈H1(Ω). Thus, the existence result for this class of equations is not 
trivial and cannot be obtained in the Lax–Milgram setting. However, by 
using a Leray–Schauder topological degree argument, we can introduce the 
following statements.

Let  be a bounded open subset with boundary Γ. Let Γd⊂Γ be a 
set with positive measure and Γn⊆Γ∖Γd. Consider

    (24)
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with , where n∗=n 
when n≥3, n∗∈]2,∞[ when n=2. Based on the Leray–Schauder topologi-
cal degree argument in [19], if A is a function which satisfies these two 
properties and:

• ∃αA>0 such that A(x)ξ⋅ξ≥αA|ξ|2 for a.e. x∈Ω and for all ;
• ∃ΛA>0 such that |A(x)|≤ΛA for a.e. x∈Ω;

then, there exists a unique solution y∈H1(Ω) of (24).
Furthermore, let z0∈B1. Then we have that the operator M′(z0) 

has closed range in B2 and the operator N′(z0) has closed range but 
is not in ×B2. This allows us to find the Lagrange multipliers 

and the final optimality system. Let  
 denote an optimal solution 

in the sense of (17). Then, there exists a nonzero Lagrange multiplier 

 satisfying the Euler equations

  (25)
where ⟨⋅,⋅⟩ denotes the duality pairing between . For details on all the 
theoretical procedure regarding the existence of the Lagrange multipliers, 
the interested reader can consult [20].

The Optimality System
Now, we derive the optimality system using (25), and we drop the (⋅^) 
notation for the optimal solution. The Euler Equation (25) are equivalent to

  (26)
By extracting the terms involved in the same variation and setting Λ=−1, 

we obtain the following equations:
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  (27)
and the control equation

  (28)

with . The necessary conditions for an 
optimum are that Equations (14) and (27) are satisfied. This system of 
equations is called the optimality system. By applying integration by parts, 
it is easy to show that the system constitutes a weak formulation of the 
boundary value problem for the state equations

  (29)
the adjoint equations

   (30)
and the control equation

     (31)
where Δs denotes the surface Laplacian. The optimality system in the strong 
form consists of the Boussinesq system (29), the adjoint of the Boussinesq 
Equation (30), and the control Equation (31).
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Numerical Algorithm
The optimality system consists of three groups of equations: the state 
Equation (14), the adjoint state Equation (27), and the optimality conditions 
for Tc (28). Due to the nonlinearity and large dimension of this system, a one-
shot solver cannot be implemented. We may construct an iterative method 
to iterate among the three groups of equations so that at each iteration we 
are dealing with a smaller-sized system of equations. We consider a gradient 
method for the solution of the optimality problem, and the gradient of the 
functional is determined with the help of the solution of the adjoint system.

Let us consider the gradient method for the following minimization 
problem: find  is minimized. 
Given , we can define the sequence

     (32)

recursively, where ρ(n) is a variable step size. Let  be a solution of the 
minimization problem. Thus, the following necessary condition holds

    (33)

and at the optimum state the equality  holds. For each fixed 
Tc, the Gâteaux derivative  for every direction  
may be computed as

    (34)
or

     (35)
Therefore, by combining (32) and (35), we implemented the following 

optimization algorithm.
(a) Initial step:
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• choose tolerance τ and ; set n=0 and ρ(0)=1;
• solve for (u(0),p(0),T(0)) from (14) with Tc=T(0)c;
• evaluate  using (13).

(b) Main loop:
• set n=n+1;

• solve for  from (27);

• solve for  from

  (36)
or

   (37)

• solve for  from (14) with ;

• evaluate  using (13);

(i)  if  and go to step (b) 3.;

(ii)  if  and go to step (b) 1.;

(iii)  if  stop.
In this algorithm, we propose two different methods, given by (36) and 

(37), for the control update. With the method in (37), we enforce the belonging 
of Tc to  and we give more regularity to the control. The convergence 
of the algorithm was proven in [3]. The finite element discretization of 
the optimality system and an estimation of the approximation error were 
analyzed in [11].

Neumann Boundary Control
In a Neumann boundary control problem, we aim to control the state by 
acting on the heat flux on a portion of the boundary Γc⊆Γn. The general 
boundary conditions reported in (9) can be written in this case as

  (38)
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where Γi=Γn∖Γc. In (12), gt, gt,n, and w are given functions, while h is the 
control. Thus, Γi and Γc denote the portions of Γn where the control is applied 
or not, respectively.

The cost functional is given as follows:

   (39)
The cost contribution measures the L2(Γc)-norm of the control h.

Weak Formulation and Lagrange Multiplier Approach
The weak form of the boundary value problem (6)–(8) and (38) is given as 
follows: find  such that

   (40)
The existence of the solution of the system (40) was proved in [9] (see 

Preposition 2.3).
Now, we state the optimal control problem: we look for a (u,p,T,h)∈H1(Ω)× 

 such that the cost functional (39) is minimized subject 
to the constraints (40). The admissible set of states and controls is

    (41)

Then,  is called an optimal solution if there exists ε>0 
such that

   (42)

The existence of at least one optimal solution  was 
proved in [9].

In addition, for the Neumann control, we consider all the constraint 
equations and the functional to study their differential properties. We define 
the following functional spaces:

   (43)
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    (44)

    (45)
Let M:B1→B2 denote the generalized constraint equations, namely, 

M(z)=l for z=(u,p,T,h)∈B1 and l=(l1,l2,l3)∈B2 if and only if

  46)
Thus, the constraints (40) can be expressed as 

  denote an 
optimal solution in the sense of (42). Then, consider the nonlinear operator 

 defined by

     (47)
Given z=(u,p,T,h)∈B1, the operator M′(z):B3→B2 may be defined as 

 if and only if

  (48)

The operator  may be defined as 
 if and only if

  (49)
Let z0∈B1. Then, we have that the operator M′(z0) has closed 

range in B2 and the operator N′(z0) has closed range but is not in 
×B2. This follows standard techniques (see [21]). Therefore, let 

 denote an optimal 
solution satisfying (42). Then, there exists a nonzero Lagrange multiplier 

 satisfying the Euler equations

  (50)

where ⟨⋅,⋅⟩ denotes the duality pairing between B2 and .
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The Optimality System
We drop the  notation for the optimal solution and derive now the 
optimality system using (50). The Euler Equation (50) are equivalent to

  (51)
By extracting the terms involved in the same variation and setting Λ=−1, 

we obtain the following equations:

  (52)
and the control equation

    (53)
The necessary conditions for an optimum are that Equations (40) and 

(52) are satisfied. This system of equations is called the optimality system. 
Integrations by parts may be used to show that the system constitutes a weak 
formulation of the boundary value problem

  (54)
the adjoint equations

  (55)
and the control equation

        (56)



Analysis and Computations of Optimal Control Problems for ... 427

The optimality system in the strong form consists of the Boussinesq 
system (54), the adjoint of Boussinesq Equation (55), and the control 
Equation (56).

Numerical Algorithm
We consider the gradient method for the following minimization problem: 
find h∈L2(Γc) such that  is minimized. Given h(0), 
we can define the sequence

     (57)
recursively, where ρ(n) is a variable step size. For each fixed Tc, the Gâteaux 

derivative  for every direction  may be 
computed as

     (58)
or

       (59)
The optimization algorithm is then given as follows
(a)  Initial step:

1. choose tolerance τ and h(0); set n=0 and ρ(0)=1;
2. solve for (u(0),p(0),T(0)) from (40) with h=h(0);
3. evaluate J(0)=J(u(0),T(0),h(0)) using (39).

(b) Main loop:
4. set n=n+1;

5. solve for  from (52);
6. solve for h(n) from

   (60)
7. solve for (u(n),p(n),T(n)) from (40) with h=h(n);

8. evaluate  using (39);

(i) if  and go to step (b) 3.;
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(ii) if  and go to step (b) 1.;
(iii) if  stop.

Distributed Control
A distributed control problem aims to control the flow state using a heat 
source acting on the domain Ω as a control mechanism. In (8), the heat source 
Q is the control of the optimal control problem. The boundary conditions 
are those reported in (9), where w, gt, and gt,n are given functions. The cost 
functional is formulated as

  (61)
where the cost contribution measures the L2(Ω)-norm of the control Q.

Weak Formulation and Lagrange Multiplier Approach
The weak form of the boundary value problem (6)–(9) is given as follows: 
find  such that

   (62)
The existence of the solution of the system (62) can be proved as in [9].
We now state the optimal control problem. We look for a (u, p, T, 

Q)∈H1(Ω)×L20(Ω)×H1(Ω)×L2(Ω) such that the cost functional (61) is 
minimized subject to the constraints (62). The admissible set of states and 
controls is

   (63)
Then (u^,p^,T^,Q^)∈Uad is called an optimal solution if there exists 

ε>0 such that

   (64)
The existence of at least one optimal solution (u^,p^,T^,Q^)∈Uad can 

be proved as in [9].
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We define the following functional spaces:

   (65)

   (66)

   (67)
Let M:B1→B2 denote the generalized constraint equations, namely, 

M(z)=l for z=(u,p,T,Q)∈B1 and l=(l1,l2,l3)∈B2 if and only if

  (68)
Thus, the constraints (62) can be expressed as M(z)=0. Let 

  denote an optimal solution 
in the sense of (64). Then, consider the nonlinear operator  
defined by

    (69)
Given z=(u,p,T,Q)∈B1, the operator M′(z):B3→B2 may be defined as 

 if and only if

   (70)
The operator  may be defined as 

 if and only if

  (71)
Let z0∈B1. We have that the operator M′(z0) has closed range in B2 and 

the operator N′(z0) has closed range but is not in  [21].
Similarly to the other controls presented in previous sections, let 

  denote an 
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optimal solution in the sense of (64). Then, there exists a nonzero Lagrange 
multiplier  satisfying the Euler equations

  (72)
where ⟨⋅,⋅⟩ denotes the duality pairing between B2 and B∗2. The interested 
reader can consult [21] on the existence of the Lagrange multiplier.

Optimality System
As in the previous case, we drop the (⋅^) notation for the optimal solution 
and derive the optimality system using the Euler Equation (72)

  (73)
We extract the terms involved in the same variation, set Λ=−1, and 

obtain the following equations:

  (74)
and the control equation

     (75)
The necessary conditions for an optimum are defined by Equations (62) 

and (74). This system of equations is the optimality system. We can use 
integrations to show that the system constitutes a weak formulation of the 
boundary value problem for state equations

   (76)
the adjoint equations
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   (77)
and the control equation

        (78)
Therefore, the optimality system in the strong form consists of the 

Boussinesq system (76), the adjoint of Boussinesq Equation (77), and the 
control Equation (78).

Numerical Algorithm
Let us consider the gradient method for the following minimization problem: 
find Q∈L2(Ω) such that  is minimized. Given Q(0), 
we can define the sequence

      (79)

recursively, where ρ(n) is a variable step size. Let  be a 
solution of the minimization problem. Thus, at the optimum 

. The Gâteaux derivative 
 for every direction ∈L2(Ω) may be computed as

     (80)
Thus, the Gâteaux derivative may be computed as

       (81)
The optimization algorithm is then given as follows.

(a) Initial step:
1. choose tolerance τ and Q(0); set n=0 and ρ(0)=1;
2. solve for (u(0),p(0),T(0)) from (62) with Q=Q(0);

3. evaluate  using (61).
(b) Main loop:
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4. set n=n+1;
5. solve for  from (74);
6. solve for Q(n) from

      (82)
7. solve for  from (40) with Q=Q(n);
8. evaluate  using (39);

(i)  if  and go to step (b) 3.;

(ii)  if  and go to step (b) 1.;
(iii)  if  stop.

NUMERICAL RESULTS
In this section, we report some numerical results obtained by using the 
mathematical models shown in the previous sections. The main difference 
between the three control problems is in the nature of the control equations. 
For Neumann and distributed controls, the control equation is an algebraic 
equation that states that the control is proportional to the adjoint temperature 
(see Equations (56) and (78)). In contrast, when we have a Dirichlet 
boundary control, the control equation is a partial differential equation 
with the normal adjoint temperature gradient as source term, as reported in 
(31). Thus, the adjoint temperature Ta plays a key role in all three control 
mechanisms, as does the regularization parameter λ that appears in the 
denominator of the source terms. The adjoint temperature Ta depends on the 
objectives of the velocity and temperature fields. When the objective relates 
to the temperature field, the dependence is direct through the term αT(T−
Td) appearing on the right-hand side of the adjoint temperature Equations 
(27), (52), and (74). If the objective relates to the velocity field, the control 
mechanism is indirect, since the term αu(u−ud) acts as a source in the adjoint 
velocity equation. In turn, the adjoint velocity appears in the source term of 
the adjoint temperature βg⋅ua.

The geometry considered for all the simulations is a square cavity 
with L=0.01m. The domain Ω=[0,L]×[0,L]∈  is shown in Figure 1. We 
consider liquid lead with the properties reported in Table 1. We discretize 
the numerical problem in a finite element framework, and we consider a 
20×20 uniform quadrangular mesh formed by biquadratic elements. The 
simulations were performed using the in-house finite element multigrid code 
FEMuS developed at the University of Bologna [22]. The code is based on a 
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C++ main program that handles several external open-source libraries such 
as the MPI and PETSc libraries.

Figure 1: Computational domain for the optimal control of Boussinesq 
equations, where g is the gravity vector and Γ1, Γ2, Γ3, and Γ4 are the boundaries.

Table 1: Boussinesq control: physical properties employed for the numerical 
simulations

Dirichlet Boundary Control
We now show the numerical results for the Dirichlet boundary control. The 
boundary conditions are reported in (12), where Γd=Γ1∪Γ3, Γi=Γ3, Γc=Γ1 and 
Γn=Γ2∪Γ4. We set f=0 and Q=0 in (14), and gu=0, gt,n=0, gt=493K on Γ3, 
and gt=503K on Γ1 in (12). For the reference case, we set T(0)c=0. Then, on 
Γc=Γ1 we have T(0)=gt. In Figure 2a,b, we show the temperature and velocity 
contours, respectively, of the numerical solution when the control algorithm 
is not applied. Lead flows in the cavity and forms a clockwise vortex due 
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to buoyancy forces caused by the heated cavity wall. The bulk velocity is 
Ub=0.008765m/s. The Richardson number, computed as 
, is equal to 3.28. The Grashof number is Gr=RiRe2=8.2×105. Lastly, the 
Rayleigh number is given by Ra=GrPr=2×104. The results shown in Figure 
2 follow the typical features of temperature and velocity profiles for Ra≈104, 
i.e., isotherms departing from the vertical position with the formation of a 
central elliptic clockwise vortex [23].

Figure 2: Uncontrolled solution: contours of the temperature field T (a); con-
tours and streamlines of the velocity field u (b). The velocity magnitude is in-
dicated by |u|.

Temperature Matching Case
Firstly, we aim to test the optimization algorithm with a temperature 
matching case. Let (13) be the objective functional with αu=0, αT=1, and 
Ωd=[0.45L;0.55L]×[0.75L;0.85L]. The region Ωd is indicated in Figure 3a. 
We set Td=450K. Then, in Ωd we aim at obtaining cooler fluid than in the 
reference case reported in Figure 2a. We consider four different values of the 
regularization parameter λ, namely, 10−5,10−6,10−7, and 10−8. The reference 
objective functional is J(0)=0.001250. For the numerical simulations, we use 
the algorithm for Dirichlet boundary problems presented in the previous 
sections, and we choose (37) for the update algorithm of the control.
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Figure 3: Temperature matching case with Dirichlet boundary control: opti-
mal solution for λ=10−7. Contours of the temperature field T (a); contours and 
streamlines of the velocity field u (b). The velocity magnitude is indicated by 
|u|, and Ωd is the region where the objective is set.

The contours of the optimal solution in terms of temperature and velocity 
fields are shown in Figure 3a,b, respectively, for λ=10−7. The region Ωd, 
where the objective is set, is highlighted with a black square in Figure 3a. 
From the contours, we can see that the optimal temperature field assumes 
values close to the target temperature Td=450K. To achieve the objective, the 
temperature on the left wall decreases with respect to the reference case. For 
this reason, the motion changes, and we obtain a counterclockwise vortex, 
as depicted by the streamlines in Figure 3b.

In Table 2, we report the objective functional values J(n) corresponding to 
its optimal state for each numerical simulation. We also report the value of 
the reference objective functional J(0) and the percentage reduction for each 
case evaluated as (J(0)−J(n))/J(0). In addition, the number of iterations n of the 
optimization algorithm is included in Table 2. The lowest value of λ results 
in the lowest functional value of J(10)=1.979×10−6 and the greatest percentage 
reduction.
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Table 2: Temperature matching case with Dirichlet boundary control: objective 
functional, percentage reduction, and number of iterations of the optimization 
algorithm for different λ values

Temperature profiles along the boundary Γc are reported in Figure 4a for 
the different values of the regularization parameter λ. As λ decreases, the 
minima of the profiles move towards y/L=1. In Figure 4b, the temperature is 
plotted along a line at y/L=0.8 for 0.45<x/L<0.55 in the region Ωd. We can 
see that for the lowest values of λ, the optimal solutions tend to the target 
profile Td. The case λ=10−5 is the farthest from the objective, as we can also 
deduce from the functional values reported in Table 2.

Figure 4: Temperature matching case with Dirichlet boundary control: tem-
perature T profiles plotted against y/L along the controlled boundary Γc (a); 
temperature T profiles plotted against x/L on the region Ωd along the line y/
L=0.8 (b). Numerical results for λ=10−5,10−6,10−7, and 10−8. The target value Td 
is shown as a dotted line.

Velocity Matching Case 1
The second test for the Dirichlet optimal control is a velocity matching case. 
The objective functional is the one reported in Equation (13), setting αu=1, 
αT=0 and Ωd=[0.15L;0.25L]×[0.45L;0.55L]. The region Ωd is represented 
in Figure 5c. We aim to control the y-component of the velocity with 
vd=0.05m/s. In the reference case, the mean value of v over Ωd is 0.0159m/s, 
but we aim to accelerate the fluid near the controlled boundary Γc in order to 
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enhance the velocity on Ωd. We consider different values of the regularization 
parameter λ, i.e., 10−10,10−11,10−12, 10−13, and 10−14. The considered values 
are lower than those used for the temperature matching test. We also tested 
higher values of the regularization parameter, but the control was ineffective 
in those cases. Indeed, it is easier to achieve an objective on the temperature 
field than on the velocity field, since the control parameter Tc (or h or Q) 
depends directly on the adjoint temperature but indirectly on the adjoint 
velocity. The value of the reference objective functional is J(0)=7.011×10−10.

Figure 5: Velocity matching case with Dirichlet boundary control—Case 1: 
optimal solution for λ=10−13. Contours of the temperature field T (a); contours 
and streamlines of the velocity field u (b); contours of the y-component of the 
velocity field v (c). The velocity magnitude is indicated by |u|, and Ωd is the 
region where the objective is set.



Applied Mathematics in Engineering438

In Figure 5, the optimal solution obtained with λ=10−13 is reported. In 
Figure 5a, the contours of the optimal temperature field are shown. Along 
Γc, the temperature shows a sharp variation. At the bottom of Γc, we have a 
maximum for the temperature, while at the top is the minimum temperature 
value. The fluid is heated and is accelerated to the desired velocity in the 
region Ωd. The resulting velocity field is shown in Figure 5b, where contours 
of the velocity magnitude and streamlines are shown. The contours of the 
y-component of the velocity are shown in Figure 5c, where the region Ωd is 
highlighted.

In Table 3, we report the objective functional values J(n), the number of 
iterations n of the optimization algorithm, and the percentage reduction with 
respect to the reference J(0). For the highest values of λ, the control is poor, 
and the functional is quite similar to the reference value. However, we can 
observe a strong functional reduction for the cases with λ≤10−13.

Table 3: Velocity matching case with Dirichlet boundary control. Case 1: 
objective functional, percentage reduction, and number of iterations of the 
optimization algorithm for different λ values

Temperature profiles along the boundary Γc are reported in Figure 6a for 
different values of the regularization parameter λ. For λ=10−10, the profile 
only has a stationary point at y/L≈0.5. For lower values of λ, there is a 
change of concavity in the temperature profiles and an inflection point at 
y/L≈0.5. As λ decreases, the maximum is located at 0.2<y/L<0.4 and its 
value increases, while the minimum is located at 0.6<y/L<0.8 and its value 
decreases. As expected, with low values of the regularization parameter, the 
H−1(Γc)-norm of the control has less weight in the objective functional, and 
more irregular functions are accepted as optimal solutions. In Figure 6b, the 
y-component of the velocity is plotted along a line at x/L=0.2 for 0.45<y/
L<0.55 in the region Ωd. The velocity profile is reported for all values of λ, 
together with the target velocity profile vd. For the lowest values of λ (10−13, 
10−14), the optimal solutions tend to the target profile vd, while the highest 
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values of λ (10−10,10−11, 10−12) lead to the solutions farthest from the objective, 
as can be deduced from the functional values in Table 3. However, when λ is 
small (10−13, 10−14), the maximum temperature value increases (from 503K 
up to 650K) and the minimum value decreases (from 503K down to 400K). 
This large variation is due to the fact that the target vd is quite far from the 
reference case, and the temperature over Γc must change considerably to 
reach the objective.

Figure 6: Velocity matching case with Dirichlet boundary control—Case 1: 
temperature profiles T plotted against y/L on the controlled boundary Γc (a); y-
component of the velocity v profiles plotted against y/L on the region Ωd along 
the line x/L=0.2 (b). Numerical results for λ=10−10,10−11,10−12,10−13, and 10−14. 
The target value vd is shown as a dotted line.

Velocity Matching Case 2
A second case for the velocity matching test is now considered. The objective 
is set on the x-component of the velocity field, where we aim to achieve a 
counterclockwise flow. Let us consider Ωd=[0.45L;0.55L]×[0.75L;0.85L]. 
This region is highlighted in Figure 7c. In the reference case, the mean value 
of u on Ωd is set to 0.0129m/s. Then, we set a uniform value ud=−0.02m/s as 
a target profile. The simulations are performed considering different values 
of λ, namely, 10−10,10−11, and 10−12. The reference objective functional is 
J(0)=5.425×10−10.
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Figure 7: Velocity matching case with Dirichlet boundary control—Case 2: 
optimal solution for λ=10−11. Contours of the temperature field T (a); contours 
and streamlines of the velocity field u (b); contours of the x-component of the 
velocity field u (c). The velocity magnitude is indicated by |u|, and Ωd is the 
region where the objective is set.

The optimal temperature and velocity fields obtained with λ=10−11 are 
reported in Figure 7. In Figure 7a, the contours of the optimal temperature 
field are shown. The resulting velocity field is shown in Figure 7b, where 
contours of the velocity magnitude and streamlines are reported. We can 
observe that a counterclockwise flow is driven by the buoyancy forces. 
The contours of the x-component of the velocity are represented in Figure 
7c, where the region Ωd is highlighted. We also report the optimal solution 
obtained with λ=10−12 in Figure 8. In this case, the solution is quite 
unexpected. Figure 8a shows the contours of the optimal temperature field. 
At the bottom of the left wall (Γc=Γ1), the temperature is higher than the 
temperature on the right wall (Γi=Γ3), while at the top of Γc the temperature 
is lower than the temperature on Γ3.



Analysis and Computations of Optimal Control Problems for ... 441

Figure 8: Velocity matching case with Dirichlet boundary control—Case 2: 
optimal solution for λ=10−12. Contours of the temperature field T (a); contours 
and streamlines of the velocity field u (b); contours of the x-component of the 
velocity field u (c). The velocity magnitude is indicated by |u|, and Ωd is the 
region where the objective is set.

This profile induces buoyancy forces which cause two vortexes; a 
smaller clockwise vortex behind the bottom-left corner and a bigger 
counterclockwise vortex in the center of the cavity, as shown in Figure 8b. 
The contours of the x-component of velocity are shown in Figure 8c, where 
the region Ωd is in evidence. There, the x-component of velocity is quite 
uniform and close to the target value ud.

In Table 4, we report the objective functional values J(n), the percentage 
reduction, and the number of iterations n of the optimization algorithm. For 
the highest value of λ (10−10), the control is poor, and the functional value 
is quite similar to the reference value. For the other values of λ, the control 
is more effective. As observed in the previous test cases, with the lowest 
value of λ, we have the lowest functional value and the greatest percentage 
reduction.
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Table 4: Velocity matching case with Dirichlet boundary control—Case 2: 
objective functional, percentage reduction and number of iterations of the 
optimization algorithm for different λ values

In Figure 9a, the temperature profiles along the boundary Γc are shown 
for different values of the regularization parameter λ (10−10, 10−11, 10−12). For 
λ=10−10 and λ=10−11, the profiles present a minimum point at 0.4<y/L<0.7. 
The temperature on Γc is lower than the temperature on the opposite wall 
Γi, namely, T=493K, to obtain a counterclockwise flow. For λ=10−12, the 
optimal solution is unexpected, as previously noted. There is a variation 
of concavity in the profile and an inflection point at y/L≈0.5. For y/L<0.5, 
the temperature on Γc is higher than the temperature on Γ3, while at the top 
of the controlled wall, for y/L>0.5, the temperature on Γc is lower than the 
temperature on Γ3. In Figure 9b, the x-component of the velocity is plotted 
along a line at y/L=0.8 for 0.45<x/L<0.55 in the region Ωd. The velocity 
profiles are shown for all values of λ, together with the target velocity profile 
ud. We can observe that in all cases, the flow changes from clockwise to 
counterclockwise with a negative x-component of velocity at the top of the 
cavity. We note that in this test, the lower the value of λ, the closer the 
velocity profile is to the target profile.

Figure 9: Velocity matching case with Dirichlet boundary control—Case 2: 
temperature profiles T plotted against y/L on the controlled boundary Γc (a); x-
component of the velocity u profiles plotted against y/L on the region Ωd along 
the line x/L=0.2 (b). Numerical results for λ=10−10,10−11, and 10−12. The target 
value ud is shown as a dotted line.



Analysis and Computations of Optimal Control Problems for ... 443

Neumann Boundary Control
For the Neumann control problem, we consider the geometry shown in Figure 
1. The boundary conditions are reported in (38), where Γd=Γ3, Γn=Γ1∪Γ2∪Γ4, 
Γi=Γ2∪Γ4, Γc=Γ1. We set gt,n=0, gt=493K, and gu=0 in (38) and f=0, Q=0 in 
(40). The wall-normal heat flux h acting on Γc is the control for the problem. 
To compute the reference case, we set h(0)=0. Thus, the uncontrolled problem 
consists of three thermally-insulated walls, i.e., the left (Γ1), bottom (Γ2), 
and top (Γ4) walls, and a wall with a fixed temperature, which is the right 
wall (Γ3). The reference case is a trivial problem, characterized by a uniform 
and constant temperature, no buoyancy forces, and still fluid.

We performed several tests, varying the objective. We report the 
numerical results obtained considering the same objective on the 
x-component of velocity also studied with the Dirichlet control. We recall 
the main simulation parameters. Let Ωd=[0.45L;0.55L]×[0.75L;0.85L] be 
the region where we aim to achieve the objective, and let ud=−0.02m/s 
be the target velocity profile. In the reference case, the fluid is still. Then, 
u=0m/s in Ωd. The simulations were performed considering different values 
of λ, namely, 10−4, 10−5,10−6, and 10−7. The reference objective functional is 
J(0)=2.061×10−10.

In Table 5, the objective functional values J(n) and the number of 
iterations n of the optimization algorithm are reported for all the values of 
λ. The percentage reductions are also reported. In all tests, we observe large 
functional reductions. In particular, for lower values of λ, the control is more 
effective.

Table 5: Velocity matching case with Neumann boundary control: objective 
functional, percentage of reduction, and number of iterations of the optimization 
algorithm for the reference case and different λ values

The optimal solution obtained with λ=10−6 is reported in Figure 10. The 
contours of the temperature field T over the domain can be seen in Figure 
10a. The heat flux imposed on the left wall is outgoing, and the wall is cooler 
than in the reference case, with a minimum value of around 473 K. In Figure 
10b, the velocity streamlines and the contours of the velocity magnitude 
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are shown. The formation of a counterclockwise vortex is shown in this 
figure. The contours of the x-component of the velocity field u are reported 
in Figure 10, and the region Ωd is highlighted.

Figure 10: Velocity matching case with Neumann boundary control: opti-
mal solution for λ=10−6. Contours of the temperature field T (a); contours and 
streamlines of the velocity field u (b); contours of the x-component of the veloc-
ity field u (c). The velocity magnitude is indicated by |u|, and Ωd is the region 
where the objective is set.

In Figure 11a, the temperature profiles along the boundary Γc are shown 
for different values of the regularization parameter λ (10−4, 10−5, 10−6, 10−7). 
Comparing these profiles with the temperature profiles of Figure 9a obtained 
for a Dirichlet control, we observe very different trends. With a Dirichlet 
control, the temperature on Γc belongs to the Hilbert space H1(Γc), and the 
control Tc is nullified at the extremities of the boundary, i.e., Tc=0K on ∂Γc. 
For this reason, with a Dirichlet control, T=gt=503K at y/L=0 and y/L=1. 
With Neumann controls, we do not have constraints on the temperature 
value on ∂Γc, and we obtain different shapes for the profiles. In Figure 11b, 
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the control parameter h expressed in kW/m2 is reported along Γc. With the 
highest values of λ (10−4, 10−5), the control is quite uniform and regular, but 
it is less effective with respect to the functional reduction. With the lowest 
values of λ (10−6, 10−7), the profiles of the control h are sharp and present 
changes of sign.

Figure 11: Velocity matching case with Neumann boundary control: tempera-
ture T (a) and wall-normal heat flux h (b) plotted against y/L on the controlled 
boundary Γc. Numerical results for λ=10−4,10−5,10−6, and 10−7.

Distributed Control
For the distributed control problem, we consider the geometry reported in 
Figure 1. The boundary conditions are reported in (9), where Γd=Γ1∪Γ3, 
Γn=Γ2∪Γ4. We set f=0, gu=0 in (62), while in (9) we have gt,n=0, gt=493K on 
Γ3, and gt=503K on Γ1. The volumetric heat source Q is the control acting 
on the domain Ω. For the reference case, we consider Q(0)=0. Thus, the 
reference case is the one considered for the Dirichlet boundary control. The 
buoyancy forces put the fluid in motion, and a clockwise vortex is formed. 
The contours and streamlines for the temperature and velocity are shown in 
Figure 2.

We performed several tests, varying the objectives and the values of 
the regularization parameter λ. We show the results for a velocity matching 
case. Let us consider Ωd=[0.15L;0.25L]×[0.45L;0.55L]. We aim to control 
the y-component of the velocity, and therefore we set vd=0.05m/s, as in the 
first velocity matching case presented for the Dirichlet boundary control. 
In the reference case, the mean value of v on Ωd is equal to 0.0159m/s, as 
we aim to accelerate the fluid near the controlled boundary Γc. We consider 
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several values of the regularization coefficient, namely, 10−10, 10−11, and 
10−12.

In Table 6, the objective functional values J(n), the percentage reductions, 
and the number of iterations n of the optimization algorithm are reported for 
all values of λ. Thus, in all the tests, the functional is strongly reduced by 
a factor of 103. This is an expected result since the optimal control Q can 
act on the whole domain, and its influence is strong on the distribution of 
the temperature field and buoyancy forces. We remark that with boundary 
control problems, the control can act only on a portion of the boundary, and 
its impact is less effective on the solution.

Table 6: Velocity matching case with distributed control: objective functional 
, percentage reduction, and number of iterations n of the optimization 

algorithm for different values of λ.

In Figure 12, the contours of the optimal solution for λ=10−11 are shown. 
The optimal control Q expressed in MW/m3 is reported in Figure 12a. The 
heat source is not uniform over the domain, being positive in the proximity 
of the hottest wall (T=503K on Γ1) and negative near the coolest wall 
(T=493K on Γ3). This heat source distribution influences the temperature 
solution reported in Figure 12b. The isotherms are more stretched than in 
the reference case, and the fluid is locally hotter than 503K and cooler than 
493K, due to the volumetric heat source. The streamlines and contours of 
the velocity field are reported in Figure 12c. Figure 12d shows the region 
Ωd and the contours of the y-component of velocity. The solution is almost 
uniform in Ωd and is close to the target value of vd=0.02m/s. Comparing 
Figure 5c and Figure 12d, we can observe that the distributed control is 
the most effective in achieving the objective. The great effectiveness of the 
distributed control can be also seen by comparing Table 6 and the first three 
columns of Table 3. With the same λ coefficients (10−10, 10−11, and 10−12), the 
distributed control leads to much greater reductions in the functional J(n) than 
the Dirichlet control. Moreover, by observing Figure 5a and Figure 12b, we 
see that with a distributed control, the optimal temperature solution is more 
uniform and regular than with a Dirichlet optimal control, which can lead 
to temperature variations that may not be acceptable in a practical context.
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Figure 12: Velocity matching case with distributed control: optimal solution for 
λ=10−11. Contours of the control Q (a); contours of the temperature field T (b); 
contours and streamlines of the velocity field u (c); contours of the y-component 
of velocity v (d). The velocity magnitude is indicated by |u|, and Ωd is the region 
where the objective is set.

CONCLUSIONS
In this work, optimal control problems for incompressible Newtonian 
buoyant flows were presented and discussed. Starting from some important 
results already presented in previous studies on the existence of an optimal 
solution and the existence of the Lagrange multipliers, we analyzed Dirichlet, 
Neumann, and distributed optimal control problems. For each case, we 
obtained the optimality system, which consists of state, adjoint, and control 
equations. To solve this numerically, a gradient method was introduced, and 
an efficient numerical algorithm was proposed for each case. We observed 
that the three control mechanisms differed only in the control equation, 
which is an algebraic equation in the case of distributed and Neumann 
control and a differential equation in the case of Dirichlet control. In all the 
mechanisms, the controls depended on the adjoint temperature field Ta and 
on the regularization parameter λ. Numerical simulations were performed 
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to test the robustness of the algorithm and the feasibility of the method. 
The developed numerical simulations included velocity matching cases 
and temperature matching cases, both evaluated with various values of the 
regularization parameter λ. We observed that the temperature matching case 
is easier to achieve, since in this case the distance from the target temperature 
appears directly as source term in the adjoint temperature equation. The 
choice of the value of the regularization parameters proved to be a key issue: 
too much regularization leads to smoother but less effective controls, while 
a lack of regularization causes numerical issues and singular solutions. 
We observed that the appropriate choice of λ should be made on a case-
by-case basis. A comparison among the three thermal control mechanisms 
allowed us to draw some conclusions as follows. The strongest control is 
the distributed control, followed by the Neumann and Dirichlet boundary 
controls. Of course, all these three different controls can be feasible at 
different costs, depending on the engineering applications. In general, the 
developed numerical algorithm showed good convergence properties and 
thus can be considered a useful tool for the numerical resolution of optimal 
control problems for Boussinesq equations.
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from historical, theoretical, mathematical, aesthetical and technological 
aspects, including their diverse applications in various fields. In this article, 
our focus is on engineering, industrial, commercial and futuristic applications 
of fractals, whereas in the first part, we discussed the basics of fractals, 
mathematical description, fractal dimension and artistic applications. 
Among many different applications of fractals, fractal landscape generation 
(fractal landscapes that can simulate and describe natural terrains and 
landscapes more precisely by mathematical models of fractal geometry), 
fractal antennas (fractal-shaped antennas that are designed and used in 
devices which operate on multiple and wider frequency bands) and fractal 
image compression (a fractal-based lossy compression method for digital 
and natural images which uses inherent self-similarity present in an image) 
are the most creative, engineering-driven, industry-oriented, commercial 
and emerging applications. We consider each of these applications in detail 
along with some innovative and future ready applications.

Keywords: fractals; iterated function system; fractal landscapes; fractal an-
tenna; fractal image compression; fractal batteries; fractal capacitors; fractal 
solar panels

INTRODUCTION
Mandelbrot conceived the term ‘Fractal’ (in 1975) from the Latin word 
fractus, which means “broken” or “fractured” to describe irregular 
geometries in mathematics and in nature. Fractals are geometric objets that 
may repeat their geometry at smaller (or larger) scales due to the inherent 
self-similarity present in the object. Among several examples of well-known 
fractals, some classical examples are the Cantor set, the Sierpinski triangle, 
the Koch curve, the Mandelbrot set and Julia sets.

Many natural and man-made objects can be characterized using the 
classical Euclidean geometry and have integer dimension. However, the 
random geometry of natural objects such as a fern leaf, branching in human 
lungs, flowering head of broccoli, lightening during a storm, turbulence in a 
terrestrial body, coastlines, etc. can only be described more precisely using 
fractal geometry, and they have a non-integer fractal dimension.

Several hundred research articles are available in the literature covering 
various aspects of fractals including their mathematical development, 
scientific importance, engineering and industry applications. However, only 
a few references exists that cover a broader spectrum of fractals in one place, 
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and most of these are in the form of monographs. Our prime objective of this 
survey is to provide a unified review of the work completed (over the past 5 
decades) in the ever-growing field of fractal geometry covering length and 
breadth at once that will assist readers from various fields of academic and 
industry.

This comprehensive survey is written with the intent of providing a 
collative review of recent research, developments, and applications of fractals 
in a series of two papers. In Part-I [1], we covered a brief mathematical 
description of fractals, fractal dimension (which is usually a non-integer 
characteristic number attached to every fractal in contrast with Euclidean 
dimension) and applications of fractals in arts, tessellations, fashion 
designing, and other emerging fields such as econophysics, etc. This article is 
the second and last part of this survey with the aim of exploring engineering, 
industrial and commercial applications (including recent developments) of 
fractals in fractal landscapes, fractal antennas, fractal image compression, 
fracture mechanics and other evolving future applications of scientific and 
engineering research. We will see several fractal innovations which are 
making a great impact in modern technologies and will remain open for 
explorations in the future as well.

The article starts with an introduction to one of the most amazing 
discoveries in mathematics, namely the Mandelbrot set in Section 2. The space 
of fractals (the mathematical set where fractals live) and other elementary 
concepts are introduced in brief to give a flavor of the mathematics behind 
fractals to the reader, although the article is easy to follow by the majority 
of the scientific community without deeper understanding of mathematics.

Fractals are widely used for rendering landscapes in the computer 
graphics industry. The advent of fractal landscapes in computer graphics 
goes to Mandelbrot, who was the first to identify the similarity between 
the trace of fractional Brownian motion over time and the skyline of 
jagged mountain peaks [2] and explained the connection between visual 
approximation of natural mountains with the two-dimensional Brownian 
surfaces. This approach was implemented by Mandelbrot in [3] with the 
earliest computer graphics images of such surfaces and for the creation of 
fractal coastlines. Natural landscapes contain fractal characteristics and 
statistically self-similarity or self-affinity. In Section 3, we consider fractal 
landscapes, and standard algorithms for generating fractal landscapes are 
discussed.
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In today’s technology-driven world, antennas form an indispensable 
part of our life. They are used in cell phones, TV, radio, radars, WI-FI, IOT, 
bluetooth devices, and so on. There has been an incredible demand for the 
design of antennas that are compact and multiband or broadband. Properties 
of fractals can be exploited to achieve these multiple characteristics in a single 
antenna. Traditional antenna designs are based on Euclidean geometries; 
however, innovative antenna designs have emerged by exploiting the 
inherent self-similarity and space-filling properties of fractals. A fractal 
antenna is a revolutionary innovation in telecommunications. Fractal-
shaped antennas have a large effective length, small size, and reduced 
weight with performance parameters, owing to the special geometry and 
compact structure of fractal shapes. Section 4 gives a detailed survey of 
different types of existing fractal antenna introduced over the last 2–3 
decades along with historical developments and their applications in various 
communication systems.

Another important application of fractals is found in compressing 
data (e.g., images, music, and videos). Images are stored as a collection of 
bits representing pixels on a computer, and storing a collection of images 
requires large memory. This problem can be addressed using various 
image compression techniques that exist. Fractal Image Compression 
(FIC) is a powerful and evolving image compression technique, which 
is based on fractal coding that exploits the self-similarity property of an 
image. FIC is simple to implement, provides high compression ratios and 
fast decompression with the only drawback of slow compression. Barnsley 
introduced the fractal image compression in 1987, who founded Iterated 
Systems Inc. (a pioneer company in fractal image compression technology). 
In Section 5, we discuss various aspects, algorithms and applications of 
fractal compression.

Fracture mechanics is the study of propagation of cracks or failures 
of the structures in materials, and it is an important tool to improve the 
performance and quality of mechanical components. Mandelbrot was the 
first to interrelate the crack propagation and other fracture properties with 
the fractal geometry. He introduced the method of slit island analysis on the 
fracture surface to find fracture dimensions. Characteristics of the fractal 
geometry such as self-similarity (or self-affinity), scale invariance and fractal 
dimension have offered great help to analyze irregular or fractional shapes 
of fracture mechanics. Section 6 discusses these aspects in more details.
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Finally, in Section 7, biological applications of fractals are discussed 
with particular emphasis on ophthalmology. Other emerging applications 
of fractals such as fractal batteries, fractal electromagnets, fractal cooling 
chips, fractal PCBs, fractal solar panels, fractal capacitors, and fractals in 
biometric applications are also given here.

The two-part survey is organized is such a way that a reader will enjoy 
reading both parts independently without losing continuity and it will delight 
the readers with the applications of fractals in emerging and innovative fields 
of current and future technologies.

MATHEMATICS OF FRACTALS
Figure 1 shows Benoît Mandelbrot’s eponymous set, which is popularly 
known as the Mandelbrot set, which is a mathematical fractal. The 
Mandelbrot set is among the most complex sets in mathematics and the 
best-known examples of mathematical visualization, self-similarities, and 
delightful patterns that are visible when we zoom on the set.

Figure 1: The Mandelbrot set: (a) first image (1978) and (b) image generated 
by Mandelbrot (1980).

R. Brooks and P. Matelski published the first image (Figure 1a) of the 
Mandelbrot set in the year 1978. Later, Mandelbrot plotted the true image 
of the Mandelbrot set on 1 March 1980 (Figure 1b). This set is obtained by 
plotting the complex numbers c in the simple (quadratic) polynomial

whose orbits remain bounded. Generalized Mandelbrot sets can also be 
plotted by considering the higher degree polynomials
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In Figure 2a–d, generalized Mandelbrot sets are displayed for n=3,4,5 
and 10. We refer to [4] for an interesting work on generalized Mandelbrot sets 
with chaotic features obtained by replacing z2 with Möbius transformations, 
transcendental functions, etc. Some properties of these generalized sets are 
also discussed in contrast with the original Mandelbrot set [4].

Figure 2: Generalized Mandelbrot Sets for (a) n=3 (b) n=4, (c) n=5 and (d) 
n=10.

The Mandelbrot set has become so popular that this set and its details 
(the Julia sets which live on the boundary of the Mandelbrot set) can be 
seen on cloths, ceramic products, tiles, hot air balloons, calenders, art prints, 
postcards, posters, commercials and so on. For an incredible zoom on the 
Mandelbrot set, we refer to [5].

Space of Fractals
Let X be a non-empty set, a function d  is called a metric or 
a distance function on X if it satisfies

(i)  

(ii) 

(iii)  
The set X together with the function d is called a metric space, and it is 

denoted by (X,d).
A metric space X is said to be complete if every Cauchy sequence is 

convergent in X and a subset S⊆X is said to be compact if every infinite 
sequence of points in S has a convergence subsequence. A complete 
metric space and its compact subsets are fundamental tools to describe 
and understand fractal geometry, which is essentially the classification, 
description, analysis and observations of subsets of metric spaces.
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Definition 1. 
Let (X,d) be a complete metric space and H(X) be the set of non-empty 
compact subsets of X. For any A,B∈H(X), define the distance between A 
and B by
h(A,B)=max{d(A,B),d(B,A)},
where d(A,B)=supx∈Ainfy∈B{d(x,y)}.

Then, it is easy to verify that h is a metric on H(X). This metric h is 
called the Hausdorff metric on H(X), and the set H(X) is called the space of 
fractals equipped with the Hausdorff metric h.

Theorem 1. 
The space (H(X),h) is a complete metric space.

Proof.  
See Barnsley [6] (Chapter 2). 

Any subset of (H(X),h) is a mathematical fractal, although the Euclidean 
objects such as rectangles, parallelograms, spheres and cylinders are not 
considered as fractals, since they do not possesses self-similarity, but they 
are elements of (H(X),h) and can be considered as (mathematical) fractals if 
there no confusion is likely to occur.

Iterated Function Systems and Attractors

Definition 2. 
A mapping or a transformation w:X→X on a metric space (X,d) is called a 
contraction mapping if

   (1)
for some constant 0≤α<1. The constant α is called contractivity factor of w.

Definition 3. 
A finite set of contraction mappings wi:X→X, where X is a metric space 
equipped with the metric d having contractivity factors αi, for i=1,2,…,m is 
called an iterated function system (IFS). The number
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is called a contractivity factor of the IFS.

Theorem 2 
(Hutchinson [7]). Let {X,wi:i=1,2,…,m} be an IFS with contractivity factor 
α. Then, the transformation W:H(X)→H(X) defined by

      (2)
for all B∈H(X) is a contraction mapping on H(X,h(d)) with contractivity 
factor α.

Therefore, by the contraction mapping theorem, the mapping W has a 
unique fixed point A∈H(X) given by

Here, W∘m(B) denotes the m-fold forward iterate of W.

Definition 4. 
The unique fixed point A described in Theorem 2 is called the attractor of 
the IFS. Moreover, since A∈H(X), therefore, it is a (mathematical) fractal.

The examples of mathematical and natural fractals to be presented in 
the ensuing sections of this article are geometrically intricate subsets of 
Euclidean spaces , which are elements of H(X) with ,d=2,3.

FRACTALS IN NATURAL AND ARTIFICIAL  
LANDSCAPES
A fractal landscape is typically a surface that displays fractal behavior ob-
tained by an algorithm and mimics the appearance of a natural terrain. Mid-
point displacement methods by Fournier et al. [8], Miller [9], Musgrave 
[10] and others were introduced as fast landscape and terrain generation 
techniques and are standard in fractal geometry. Ken Musgrave (a student 
of Mandelbrot) discovered new processes of fractal landscape generation 
[10]. He worked on Bryce landscape software, which made use of many al-
gorithms (midpoint displacement algorithm was one of those). The midpoint 
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displacement methods were modified and improved in [11,12] for natural 
terrain simulations and to construct self-affine geometrical objects which 
are similar to rock fractures.

Examples of natural fractal landscapes are found in geography, 
mountains, rivers, and terrains. A natural fractal mountain is shown in Figure 
3, and a natural delta formed by a flowing river and a fractal shape profile of 
clouds is displayed in Figure 4.

Figure 3: A fractal mountain.

Figure 4: (a) A fractal river detla, (b) a fractal sky cloud.

F. Kenton Musgrave was the first to generate computer-based realistic 
landscapes. He was referred to as “the first true fractal-based artist” by 
Mandelbrot for his Ph.D. thesis work on Methods for Realistic Landscape 
Imaging [10]. Musgrave’s thesis work turned out to be a comprehensive 
road map for rendering modern fractal landscapes using computer programs 
even today. Musgrave founded the Pandromeda, Inc. and developed the 
innovative MojoWorld software (obsolete now), a commercial and fractal-
based modeling program for the creating digital landscapes, space art and 
science fiction scenes. The MojoWorld was applied in creating background 
mattes and terrains on big-budget movies such as Titanic, The Day After 
Tomorrow, etc. Figure 5 shows realistic examples of computer-generated 
fractal landscapes. Notice the true similarities between Figure 3 and Figure 
5.
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Figure 5: Computer-generated examples of (a) a fractal terrain, (b) a fractal 
woodhill, and (c) a fractal landscape. (Image source: https://en.wikipedia.org/
wiki/Fractal_landscape, accessed on 22 June 2022).

Generation of Fractal Landscapes
There is a large variety of commercial and academic purpose software that 
can generate and allow for editing of fractal landscapes. The list includes 
Bryce (a feature-packed 3D modeling and animation package specializing in 
fractal landscapes), midpoint displacement algorithm (landscapes generation 
in many dimensions), diamond-square algorithm [8] (slightly better 
algorithm than midpoint displacement algorithm), Terragen (designed and 
developed by the Planetside Software for Microsoft Windows and Mac OS 
X and capable of generating captivating sceneries and animations of fractal 
landscapes), L3DT (similar as the Terragen program with a 2048×2048 limit) 
and World Creator (can create terrain, fully GPU powered), etc. Figure 6a 
displays a Julia island, and an example of a Mandel River generated by the 
software Terragen is shown in Figure 6b, which depicts the details of the 
Mandelbrot set.

Figure 6: (a) Julia island (Image source: https://en.wikipedia.org/wiki/Terra-
gen, accessed on 22 June 2022) and (b) Mandel river (details of the Mandelbrot 
set) rendered by Terragen Classic. (Image source: https://en.wikipedia.org/wiki/
Fractal-generating_software, accessed on 22 June 2022).
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We now describe some of the above-mentioned fractal rendering 
algorithms to allow the reader deeper insight and better understanding on 
how the fractal landscape generation algorithms work.

Midpoint Displacement Algorithm in 1d (1DMD)
The midpoint displacement algorithm is based on the von Koch curve 
construction. The credit for its applicability and popularity in computer 
graphics goes to Fournier, Fussell, and Carpenter for rendering fractal 
landscapes and clouds. The algorithm is very simple and proceeds as follows:

Start with a straight line segment and mark its midpoint. Now, select 
a random (bounded) value and displace the midpoint of the line segment 
by this random value in the direction perpendicular to the line segment or 
displace only the y coordinate of the midpoint (see Figure 7a).

Figure 7: (a) Strategies to displace the midpoint and (b) Successive iterations 
of the algorithm (from left to right). (Image source: https://bitesofcode.word-
press.com/2016/12/23/landscape-generation-using-midpoint-displacement/, 
accessed on 22 June 2022).

This will result in two smaller line segments. In the second iteration, 
repeat this process to mark and displace the midpoints of each line segment 
obtained in the first iteration by a random amount, and this will result in four 
straight line segments. The process is continued until the desired level of 
detail is achieved by reducing the random displacement in every iteration. 
For example, if the displacement was reduced by half in the first iteration 
and the random displacement value is chosen from the interval [−1,1], then 
the range for the second iteration with two midpoints would be in the interval 
[−0.5,0.5], in [−0.25,0.25] for the third iteration, and so on. The equation for 
the midpoint value is given by
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     (3)
where r∈[−1,1] is a random number and K is a constant which controls the 
amplitude of the variation. H is the roughness parameter (the factor by which 
the perturbations are reduced on each iteration), and n denotes the iteration 
number. Increasing the value of H will produce smoother landscapes. Figure 
7b displays successive iterations of the algorithm. The pseudocode for the 
algorithm is given in Algorithm 1.

Algorithm 1: Pseudocode for midpoint displacement algorithm.
Pseudocode:
initialize line	segment
initialize max_iter, min_len
while iteration <max_iter and segment_length> min_len:
      for each segment:
          choose	random	displacement
          compute	midpoint
          displace	midpoint
          update	segments
      reduce	displacement
      iteration+1

By suitably choosing the displacement bounds and the reduction factor 
H, one can control the geometry and the roughness of the landscape. Higher 
values of H result in smoother landscapes, and lower values result in spiky 
(sharp) landscapes. Figure 8 depicts several landscapes with varying H 
values. Observe the change in the smoothness of the landscape with the 
change in H values.
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Figure 8. One-dimensional (1D) landscapes for (a) H=0.0, (b) H=0.25, (c) 
H=0.50, and (d) H=0.75.

In each iteration, the displacement bounds can be reduced by different 
approaches (e.g., linear, exponential, logarithmic, etc.) depending upon the 
choice of landscape being generated. The two extremes possibilities are no 
displacement reduction and exponential displacement reduction (in each 
iteration) shown in Figure 9 below.

Figure 9: No displacement reduction (left image), Exponential displacement 
reduction in one iteration (right image). (Image source: https://bitesofcode.
wordpress.com/2016/12/23/landscape-generation-using-midpoint-displace-
ment/, accessed on 22 June 202).

Some colored pictures of landscapes generated from the 1D midpoint 
displacement algorithm are presented in Figure 10.
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Figure 10: Colored landscapes generated from 1DMD.

Midpoint Displacement Algorithm in 2D (2DMD)
The 2D midpoint displacement algorithm is similar to the 1D algorithm 
described above, with the only difference that now, the displacement 
(height) in the z-direction is determined over the xy-plane. In most cases, a 
positive displacement results in the formation of a mountain, and a negative 
displacement results in the formation of a valley. The advantage of using 
this algorithm is that the landscapes are dynamically generated, and they 
will never be the same, as the elevations chosen are random every time.

The roughness of the landscape is controlled in the same way as in a 
one-dimensional landscape. Changes in H values show drastic changes 
in the landscape generated: for instance, if the value of H is 0, then the 
landscape is more spiky, and when it is 1, we obtain smooth landscapes, as 
seen in surface landscapes generated using 2DMD in Figure 11.

Figure 11: Surface landscapes generated by 2DMD for (a) H=0.0, (b) H=0.25, 
(c) H=0.50, and (d) H=1.0.
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An extension of the 2D midpoint displacement algorithm to three-
dimensions was presented in [13] for generating three-dimensional fractal 
porous media geometries whose surface area can also be controlled by 
adjusting the random component of the midpoint displacement. They also 
considered statistical properties for the geometries obtained using 3DMD 
and showed that the structures generated by 3DMD are more realistic.

The grids used with the midpoint displacement algorithm are uniform 
in all directions, and typically, they have a size of 2n on all sides, where 
n is an integer. The variable n (number of iterations) which is given as an 
input (by the user) has its own significance. Increasing the value of n leads 
to an increase in the resolution of the landscape, as minute details of fractals 
will be captured. However, generating fractals with high values of n is a 
time-consuming process and requires high computational powers, so it is 
important to select an optimal value of n by taking into consideration the 
time, computational power and required resolution.

Diamond Square Algorithm
The diamond square algorithm is a modification of the midpoint displacement 
method proposed by Fournier et al. [8] (1982), and its name is borrowed 
from the 2D midpoint displacement algorithm. The midpoint displacement 
method sometimes leaves square-shaped artifacts in generated terrains. The 
diamond square algorithm attempts to alleviate this by alternating calculated 
values to square and diamond patterned midpoints. The algorithm starts with 
a 2D square grid of boxes having 2n squares containing 2n+1 grid points. The 
four corner points of the grid are first set to initial values. The diamond and 
square steps are then executed one after the other until all grid points have 
been assigned as follows:

• The diamond step: For each square in the array, set the midpoint 
of that square to be the average of the four corner points plus a 
random value.

• The square step: For each diamond in the array, set the midpoint 
of that diamond to be the average of the four corner points plus a 
random value.

Figure 12 shows the algorithmic steps of the algorithm. The magnitude 
of the random value should be reduced in each iteration.
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Figure 12: Diamond square algorithm on a 5×5 array: (a) Initialize corner grid 
values, (b) execute diamond step, (c) execute square step, (d) execute diamond 
step, (e) execute square step. (Image source: https://en.wikipedia.org/wiki/Dia-
mond-square_algorithm, accessed on 22 June 2022).

Miller [9] analyzed the diamond square algorithm in 1986 and described 
it as flawed due to possible perturbations in the rectangular grid. The grid 
artifacts were resolved by J.P. Lewis in a generalized algorithm [14]. Some 
landscapes images generated by the diamond square algorithm at different 
H-values are shown in Figure 13.

Figure 13. Surface landscapes from diamond square algorithm at different 
values of H: (a) H=1.0, (b) H=0.70, (c) H=0.64, and (d) H=0.53.
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SUMMARY
According to Musgrave [10], the generation of realistic fractal landscapes or 
creating fractal forgeries of nature consists of geometric models, designing 
efficient algorithms, atmospheric effects (for sense of scale), surface textures, 
and a global context for embedding the scenes. In this brief essay on fractal 
landscapes, we briefed the pioneering work by several authors including the 
work of Musgrave on analysis and algorithms that are available for creating 
fractal landscapes. The review highlights the potential of fractal geometry 
to understand and design fractal landscapes. Fractal landscape generation 
is evolving rapidly, and the design of new and fast algorithms is still under 
development.

FRACTAL ANTENNAS
Antennas are an integral part of any communication system, and they are 
widely used in electromagentic devices such as cell phones, TV, radio, 
radars, electronic devices, and so on. With the advancement of technology, 
the world is becoming more dependent on compact, bluetooth, WI-FI and 
IOT smart devices. Therefore, the need is to design antennas for commercial 
and defence sectors that are compact, light weight, and multiband or 
broadband. A natural choice to obtain these antenna characteristics is to 
exploit the properties of fractals. Today, many novel and powerful antenna 
designs have emerged from modern (fractal) geometry, which are replacing 
the traditional antenna designs based on Euclidean geometries.

A fractal antenna is a revolutionary invention in the field of 
telecommunication. Using a fractal-shaped antenna as a replacement of 
a circuit with discrete components has helped in increasing the effective 
length and reducing the size and weight of the antenna. At the same time, the 
performance parameters have improved, owing to the self-similar geometry 
(which maximizes the effective length of an antenna for a given surface 
area) and compact structure of fractal shapes. A large number of fractal 
antenna designs have been proposed combining fractal geometry with 
electromagnetic theory, and this has led to an area called fractal antenna 
engineering [15].

In this section, we review standard fractal-shaped antennas proposed and 
simulated by many researchers in the past two decades, since the pioneering 
works of Cohen and Puente [16,17,18,19]. The work by Werner et al. [15] 
summarizes various techniques for compact (i.e., miniature) fractal antennas 
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designs. We also refer to the recent survey papers [20,21] for an extensive 
study of the literature and state of the art summary of fractal antenna 
research. The reader may also consider exploring the articles [19,20,22,23] 
for more detailed analysis, various types and applications of fractal antennas 
available in the literature.

Brief History
Nathan Cohen was the first to built a wire fractal antenna using von Koch 
curves in 1988 (at Boston University) by setting up a ‘ham’ radio station, and 
he also designed the planar fractal arrays using Sierpinski triangles. Cohen 
co-founded Fractal Antenna Systems Inc. in 1995 as the first fractal-based 
commercial antenna solutions, and he also designed fractal cellular antennas 
for Motorola phones, which were proven to be 25% more efficient than the 
conventional helical antenna. Another company founded by C. Puente and 
R. Bonet, namely Fractus S.A. in Barcelona (Spain), is involved in fractal 
antenna research, patents and commercialization.

In August 1995, Cohen published the first article on fractal antenna [16], 
and Puente carried out early work on fractals as multiband antennas [24]. 
Therefore, the credit for demonstrating the potential of fractal antennas as a 
replacement for traditional antennas is jointly shared by Cohen and Puente.

Because of their special geometry, fractal antennas are self-loading 
and often do not need matching circuitry for multiband or broadband 
characteristics. This lowers the fabrication cost and increases the reliability. 
Exploiting the self-similar fractal designs, one can fabricate fractal antennas 
that are compact and wideband. The fractal-shaped antennas can have multiple 
resonances (self-similar design works as a virtual network of capacitors and 
inductors), making a single antenna operate on multiple electromagnetic 
frequencies. Due to space-filling properties, fractal antennas make better 
use of the available volume inside the radian sphere. Therefore, they may 
radiate more effectively than the one-dimensional straight wire [18].

Antenna Parameters
While designing an antenna, one must consider different combinations of 
antenna parameters based on the type of application for which the antenna 
is being fabricated. For instance, antennas used for television must have 
higher bandwidths to support higher data transmission rates. For radio, 
the antennas’ range and capability to work at multiple bands is considered 
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more important, and for modern antennas, the size of the antenna matters 
a lot, since nanotechnology is the direction in which the world is moving. 
Thus, antenna parameters play a vital role in the design, fabrications and 
applications. Before we look at some examples of fractal antennas, let us 
briefly describe some of the key antenna parameters.

Impedance
Transmission lines are used to feed antennas, and to transmit the maximum 
available power or to receive the transmitted power, it is necessary to know 
the impedance at the input where the transmission line is to be connected. 
For optimal power transfer from the antenna to the receiver or from the 
transmitter to the antenna, the input impedance of the transmission line 
must be same as the input impedance of the antenna. In case of impedance 
mismatch, an impedance matching circuit is required.

Return Loss
The return loss compares the power reflected by the antenna to the power 
that is fed into the antenna from the transmission line. It is measured in 
dB, and the relationship between SWR (Standing Wave Ratio, a measure of 
impedance matching) and return loss is given by

Bandwidth
Bandwidth refers to the range of frequencies over which the antenna can 
properly radiate or receive energy. The desired bandwidth is one of the key 
parameters for an antenna design. The antenna’s bandwidth is the number of 
Hz for which the antenna will exhibit an SWR less than 2:1. The bandwitdh 
of an antenna is defined by

where B= Bandwidth, fh= Higher cut-off frequency, fl= Lower cut-off 
frequency.

The bandwidth can also be described in terms of percentage of the center 
frequency of the band
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where fc is the center frequency in the band. Bandwidth is typically quoted 
in terms of VSWR. The bandwidth of an antenna varies according to its type 
and application.

Directivity
Directivity is the ability to focus the concentration of an antenna’s radiation 
pattern in a particular direction when transmitting or to receive energy from 
a particular direction. Directivity is denoted by D (expressed in dB) and 
defined by

where Fmax= maximum signal strength radiated by the antenna, Fiso= 
maximum signal strength radiated by the isotropic antenna (an antenna that 
radiates power equally in all directions).

Antenna Efficiency
The efficiency of an antenna is the ratio of the power radiated by the antenna 
to the power radiated from the antenna.

where η= antenna efficiency, Pradiated= power radiated, and Pinput= input power 
to the antenna.

Antenna Gain
The term antenna gain describes how much power is transmitted in the 
direction of peak radiation to that of an isotropic source. An antenna’s gain 
(G) is a key parameter that combines an antenna’s radiation efficiency (η) 
and directivity (D) by the relation:
G=η×D.

The antenna gain is expressed in decibels (dB) by:
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In principle, a high-gain antenna will radiate most of its power in 
one direction, and a low-gain antenna will radiate its power equally in all 
directions.

Radiation Pattern
The radiation pattern displays the variation of the power radiated by an 
antenna as a function of the direction away from the antenna. That is, the 
antenna’s pattern describes how the antenna radiates energy out into space 
(or how it receives energy). A radiation pattern is “isotropic” if the radiation 
pattern is the same in all directions. Antennas with isotropic radiation 
patterns do not exist in practice, but they are used for benchmarking with 
real antennas.

Polarization
The polarization of an antenna is defined as the direction of the electromagnetic 
fields produced by the antenna as energy radiates away from it, with respect 
to the surface of the earth, and it is determined by the structure of the antenna 
and its orientation. These directional fields determine the direction in which 
the energy moves away from or is received by an antenna.

There are several categories of polarization, and within each type, there 
are several sub categories such as linear polarization (horizontal, vertical 
and slant), circular polarization (right-hand circular and left-hand circular), 
elliptical polarization, omnidirectional polarization, etc.

Types of Antennas
Antennas are classified in many categories based on their physical structure, 
functionality and types of applications. Well-known examples of antennas 
including their types and application areas are

• Wire antennas (e.g., dipole antenna, monopole antenna, helix 
antenna, loop antenna), used in personal applications, buildings, 
ships, automobiles, space crafts, etc.

• Aperture antennas (e.g., waveguide (opening), Horn antenna), 
used in flush-mounted applications, aircrafts, spacecrafts, etc.

• Reflector antennas (e.g., parabolic reflectors, corner reflectors) 
used in microwave communication, satellite tracking, radio 
astronomy.
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• Lens antennas (e.g., convex–plane, concave–plane, convex–
convex, concave–concave lenses), used for very high-frequency 
applications.

• Microstrip antennas (e.g., circular-shaped, rectangular-shaped 
metallic patch above the ground plane), used in aircrafts, 
spacecrafts, satellites, missiles, cars, mobile phones, etc.

• Array antennas (e.g., Yagi-Uda antenna, microstrip patch array, 
aperture array, slotted wave guide array), used for very high-gain 
applications.

Substrate
Low-profile antennas are needed for high-performance aircrafts, spacecrafts, 
satellites, missile applications, GSM, GPS and remote sensing applications 
where size, performance, weight, cost, ease of installation, and aerodynamic 
profile are constraints. All these requirements may be met using a microstrip 
antenna (MSA). An MSA (also called patch antenna) is a two-dimensional 
flat structure consisting of a very thin metallic strip placed on a ground plane 
with a dielectric material in between; this dielectric material is called the 
substrate.

The performance and radiation properties of an antenna can be 
improved by properly selecting the thickness (h) and permittivity (ϵr) of the 
substrate. In patch antennas, the smaller permittivity of the substrate yields 
better radiation. Several dielectric substrates are proposed in the literature 
for fabricating microstrip patch antennas. Table 1 lists some commonly 
used substrate materials in the design of fractal antennas along with their 
dielectric constants.

Table 1: Commonly used substrate materials in fractal antennas
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Standard Fractal Antennas
The first application of fractal antennas was in the form of wire antennas 
proposed by Cohen in a series of papers [16,17] based on fractalization of 
the geometry of a standard dipole or loop antenna. Almost at the same time, 
Puente and his collaborators [18,19,24] proposed Koch fractal monopole 
antennas with improved electrical performance over conventional linear 
monopole antennas.

Cohen observed that fractal Minkowski loops exhibit low resonant 
frequency relative to their electric size. Puente found that in Koch fractal 
antennas, the resonant frequency goes low or toward larger wavelengths 
with increase in iteration number. Thus, fractal-shaped antennas at higher 
iterations resonate at low frequencies due to increased length as compared 
to the antennas of the lower iterations (having smaller length).

Today, most of the wireless devices operate in multiple bands of 
frequencies. Thus, the design of a multiband antenna is a natural choice 
for present and future devices. We now provide a brief overview of some 
popular fractal-shaped antennas, which are proven to be very useful in 
developing novel, innovative designs for multiband fractal antennas. To 
keep the presentation shorter, we provide plots for multiband behavior only 
for the Sierpinski gasket antenna, and we encourage the reader to consider 
references mentioned here for details on the design, performance and 
applications of fractal antennas.

Sierpinski Gasket
Figure 14 shows the first five stages in the construction of the Sierpinski 
gasket antenna (named after the Polish mathematician Sierpinski.

Figure 14: Sierpinski gasket antenna through five stages of growth.

The Sierpinski gasket is obtained by continuing the iterations to infinity. 
From an antenna engineering perspective, the colored (filled) triangular 
regions represent a metallic conductor, whereas the white (hollow) triangular 
regions represent areas where the metal has been removed. The self-similar 
geometry of Sierpinski gaskets allows for fabricating multiband fractal 
antenna elements.
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The Sierpinski gasket antennas resemble a bow-tie antenna, and one 
antenna can perform similar to multiple bow-tie antennas, since the iterated 
Sierpinski gasket consists of many Sierpinski gaskets at different scales, 
which can be seen by looking at Figure 15a. A fabricated Sierpinski gasket 
antenna is shown in Figure 15b, and the lengths of the largest side of the 
antenna are shown in Figure 15c at various scales.

Figure 15: Resemblance of Sierpinski gasket antenna to bow-tie antenna. 
(a) Three stages of Sierpinski antenna, (b) Fabricated Sierpinski antenna, (c) 
Length scales of Sierpinski antenna. (Image source: https://www.emcos.com/
wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simula-
tion_Sierpinski_Gasket.pdf, accessed on 22 June 2022).

The multiband performance of this Sierpinski antenna is visible in 
Figure 16, where some plots are given between the S11 parameter (which 
gives the amount of power reflected from the antenna) and the frequency. 
S11=0 signifies that all the power is reflected, so the negative sharp down 
peaks are considered as the resonating frequencies.

Figure 16: S11 plots for Sierpinski gasket antenna (a) all iterations (b) 4th it-
eration. (Image source: https://www.emcos.com/wp-content/uploads/2014/01/
Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf, ac-
cessed on 22 June 2022).
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The simulated characteristics of the Sierpinski gasket monopole antenna 
were shown to be matching with the analytical results in [25]. Moreover, 
the antenna resonates at multiple frequencies, making the Sierpinski gasket 
antenna a multiband antenna. Vertical and horizontal polarization plots for 
the 4th frequency band are shown in Figure 17.

Figure 17: Fourth frequency band: (a) Vertical polarization and (b) Hori-
zontal polarization. (Image source: https://www.emcos.com/wp-content/up-
loads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_
Gasket.pdf, accessed on 22 June 2022).

The simulations and plots in Figure 16 and Figure 17 are drawn 
using the EMCoS Antenna VLab environment, which is a software for 
electromagnetics, data visualization and simulation.

Simulations for other type of fractal antennas can be completed in a 
similar way using any EM simulation software (e.g., HFSS, CST Studio, 
EMCoS, COMSOL, etc.), and the details are available in many references 
cited throughout this section; therefore, we shall omit simulation details for 
other antennas to keep the presentation short.

Koch Curve
Figure 18 shows the first four iterations in the construction of the Koch 
curve monopole antenna, which became the first small size fractal antenna 
that improved bandwidth, resonance frequency, and radiation patterns of 
classical antennas in 1998. The von Koch curve is obtained by subdividing 
a line segment into three parts.
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Figure 18: Four stages of Koch fractal.

The middle part is then replaced by adding two sides of an equilateral 
triangle having the length equal to the length of the segment being removed. 
This results in four line segments. Repeating this process for each of the four 
segments and taking the limit constitutes the Koch curve.

Puente et al. [19] studied the von Koch fractal as a monopole wire antenna. 
They considered five different iterations of the von Koch antenna, having an 

overall height h=6 cm, and a total length of  (see 
[19] for complete analysis and simulation reults). In general, the length of 

the Koch curve can be determined by formula  (Ln is the length 

of the Koch curve at the nth iteration). Since , therefore, as n→∞, 
the length of the Koch curve will tend to infinity. So, theoretically, we can 
design an antenna of desired length in a given area using the Koch curve.

Koch Snowflake
Another popular fractal-shaped antenna is the Koch snowflake. To construct 
a Koch snowflake, start with a filled equilateral triangle and construct a von 
Koch curve on each side of the triangle to obtain the geometry (iteratively), 
as shown in Figure 19, where the first three stages in the construction of a 
Koch snowflake are shown.

Figure 19: Four stages of the Snowflake fractal.
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Minkowski Island Fractal Antenna
The construction of a Minkowski island fractal antenna is shown in Figure 
20. Start with a filled square (called initiator). Then, replace each of the 
four sides of the initiator with the generator (shown at the bottom of Figure 
20) and replace the four sides of the square with the generator and keep 
iterating. The result of this process is the Minkowski island fractal with 
intricate fundamental structure, which is nowhere differentiable.

Figure 20: Four stages of the Minkowski fractal.

The Koch snowflake and Minkowski island fractal antennas have been 
extensively used to create new designs for miniaturized loops as well as 
microstrip patch antennas.

Hilbert Curve Antenna
The Hilbert fractal antenna is another type of wire antenna made from a 
space-filling curve and falls into the broad category of space-filling fractal 
antennas. The first four iterations in the construction of the Hilbert curve are 
shown in Figure 21. The Hilbert curve has properties such as self-avoidance 
(no intersection points), self-similarity, space filling and simplicity.

Figure 21: Four stages of the Hilbert fractal.

The space-filling properties of the Hilbert curve and related curves 
(e.g., Peano curves) make them suitable candidates for the design of fractal 
antennas.
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Sierpinski Carpet or Fractal Pifa
An inverted-F antenna is another type of antenna first proposed by Ronold 
King at Harvard in 1958 for use in wireless communications. King’s antenna 
was also a wire antenna and was designed for military use. It consists of a 
monopole antenna running parallel to a ground plane and grounded at one 
end.

Today, many cell phones comes with a Planar Inverted-F Antenna (in 
short PIFA), which are small, low profile, and sensitive to both horizontal 
and vertical polarized radio waves (see Baliarda et al. [19]), but the drawback 
is that PIFA are narrowband.

To overcome this difficulty, the fractal-shaped PIFA shown in Figure 
22a has been designed, and the results are promising. A Fractal PIFA works 
similar to a traditional PIFA except that its design is a fractal based on a 
2D Cantor array. A perfect fractal PIFA would be obtained by iterating the 
Cantor array an infinite number of times, but for practical design, two to 
three iterations are enough. A fractal PIFA mounted on a candy bar phone 
is also shown in Figure 22b, and a double PIFA is presented in Figure 22c.

Figure 22: PIFA Antennas, (a) Three stages of Cantor fractal PIFA, (b) F-
PIFA mounted on the candy bar phone, (c) Double-PIFA antenna.
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Fractal Tree Antenna
Fractal trees antenna are used to fabricate miniaturized dipole antennas, and 
a number of new design of fractal tree antennas have evolved. An example 
of a ternary (three-branch) fractal tree is shown in Figure 23b, which looks 
like an analogue of the Sierpinski gasket of Figure 14. In fact, the ternary 
fractal tree shown in Figure 23a can be interpreted as a wire equivalent 
model of the Stage 4 Sierpinski gasket of Figure 14.

Figure 23: Fractal Tree Antennas: (a) Fractal tree, (b) A Stage 4 ternary fractal 
tree (Image source: Werner and Ganguly [15]), and (c) A prototype Tri-band 
fractal ternary tree monopole antenna used in miniaturized dipole antennas (Im-
age source: http://cearl.ee.psu.edu/projects/project2-1-1.html, accessed on 22 
June 2022).

We refer to the early papers by Werner [26] and Petko and Werner [27] 
for new designs and a variety of 2D and 3D multiband fractal tree antennas 
based on Koch curve and fractal trees, which are also reconfigurable (i.e., 
tunable) and exploit the self-similar branching structure of 3D fractal trees.

Other Innovative Fractal Antenna Designs
A multiband Cantor fractal monopole antenna covering GSM, DCS, PCS, 
UMTS, and WLAN applications was presented in [28].

A complementary stacked patch antenna based on Sierpinski fractal 
was introduced in [29], which enhanced antenna performances, retaining 
the basic characteristics of the Sierpinski antenna. A design procedure 
for custom made fractal antennas using artificial neural networks and 
the particle swarm optimization (PSO) was presented in [30]. A compact 
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multiband E-shape fractal patch antenna was proposed in [31] multiband 
applications to achieve size reduction and increase the operating bands. 
This antenna operates on LTE/WWAN (GSM850/900/1800/1900/UMTS/
LTE2300/2500) bands.

At present, many fractals are being used as antennas, and several patents 
are also registered on new discoveries. Some of the fractal antennas used in 
mobile phones are shown below in Figure 24. A microstrip patch antenna 
with edges in the shape of a Minkowski island fractal is shown in Figure 
24a, which is used in iphones. The Sierpinski fractal carpet shown in Figure 
24b was designed by the Spanish company FRACTUS as a built-in antenna 
for a GSM 900/1800 mobile handset.

Figure 24: Some commercial antennas used in mobile phones and other appli-
cations, (a) Microstrip patch antenna, (b) Sierpinski triangle antenna.

Table 2 gives a summary of the literature for some standard fractal 
antennas and their modifications where antenna size(s), band utility, 
gain and applications are shown. It is clear from the table that the focus 
of designs is on multibandness with higher gain and effective bandwidth 
utility. Notice that reducing the dimensions of the designed antenna helps in 
miniaturization.
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Table 2: Summary of the performance of some fractal antennas
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Table 2 gives a summary of the literature for some standard fractal antennas and their
modifications where antenna size(s), band utility, gain and applications are shown. It is
clear from the table that the focus of designs is on multibandness with higher gain and
effective bandwidth utility. Notice that reducing the dimensions of the designed antenna
helps in miniaturization.

Table 2. Summary of the performance of some fractal antennas.

Antenna Type
(Ref. No.)

Dimension
(mm2)

No. of
Bands Bands (GHz) Gain (dB) Applications

Modified Sierpinski
Gasket [32] 27 × 29 1 3.16–9 9.00

WLAN, WiMAX, public safety
band, point to point high-speed
applications for high data rates

Modified Sierpinski
Gasket [33] 30 × 34.64 2 12.2–13.4

21–30
21.20
8.00

Broadband satellite receivers,
mobile space research activities,
active sensors, passive sensors

Modified Sierpinski
Carpet [34] 29.44 × 38.04 6

4.285
5.455
6.265
6.805
8.02
9.145

−

Radio telecommunication in
C-band, space communications in
X-band and satellite
communication

Modified Sierpinski
Carpet [35] 30 × 30 6

2.23
4.75
5.23
6.61
6.79
9.58

15.27 (max)
S (2–4 GHz) band, C (4–8 GHz)
band Weather radar and satellite
applications, etc.

Koch Snowflake [36] 28.8 mm
(diameter) 1

3.34–4.52
2.2–3.4
1.45–4.1

3.30 (max) Wideband applications

Koch Snowflake [37]
60 mm (length of
equal sides)
70 mm (base)

5

11.44
13.178
15.482
19.902
23.529

− X-band, Ku-band and K-band

Minkowski Fractal [38] 27.5 × 25 1 1.575 0.369 Satellite Receiver

Hilbert Curve [39] 49 × 52 4

0.876
1.225
1.850
2.400

−

WSN Europe
GPS-L1
GSM1800
Wi-Fi

Hilbert Curve [40] 56 × 39.4 2 12.5–37.5
0.4–1.4 3.35 HF/UHF dual band operation

Koch Curve Fractal
Defected Ground
Structure [41]

1994.02 1 1.492–1.518 5.41 L-band

Dual-Reverse-Arrow
Fractal [42]

46.4 mm (side
length of
triangle)

1 2.4 2.5 ISM Applications

Sierpinski Carpet and
Minkowski Hybrid [43] 40 × 40 2 3.5

5.8 4.50 WiMAX
LTE

Hetero Triangle Linked
Hybrid Web Fractal [44]

12 mm
(diameter) 1 1.945–20 7.17 (max)

3G, LTE, ISM, Bluetooth, Wi-Fi,
WLAN, WiMAX, Satellites
(Ku-Band), etc.

Fractal Metamaterials
Metamaterials are synthetic electromagentic materials having properties not 
found in standard conducting materials. These artificial composites inherit 
their properties from internal micro and nanostructures rather than the 
chemical composition as compared with natural materials.

Figure 25 shows the first manufactured fractal metamaterial invented 
by fractenna.com (which also holds a patent on this discovery). Fractal 
metamaterials can achieve wideband and multiband performance in the fields 
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of cloaking, shielding, absorption and conveyance, whereas conventional 
metamaterial technology is limited to narrow passbands. This wideband/
multiband performance is the key to employ fractal metamaterials in 
commercial and government applications. The field of fractal metamaterials 
is in the developmental stages, and their applications are still emerging.

Figure 25: The first manufactured fractal metamaterial. (Image source: https://
www.fractenna.com/, accessed on 22 June 2022).

Commercialization of Fractal Antennas

(1) www.fractenna.com, accessed on 22 June 2022
Dr. Cohen co-founded Fractal Antenna Systems, Inc. in the year 1995 
to deliver the world’s first fractal-based commercial antenna solutions 
(see Figure 26). Over the last 25 years, the company has deepened the 
theory of fractal antennas and deployed fractal antennas in a vast range of 
commercial and government applications. The company is also working on 
the capabilities and benefits of fractal metamaterials.

Figure 26. The first manufactured fractal antenna sheets (1995). Image source: 
https://www.fractenna.com/, accessed on 22 June 2022.
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(2) www.fractus.com, accessed on 22 June 2022
Fractus is an early pioneer in the design and development of fractal antennas 
for smartphones, tablets, wireless and IOT devices. It was founded by fractal 
antenna pioneers Dr. Carles Puente and Ruben Bonet in 1999 and is leading 
the world market for its research, innovations and commercialization of 
multiband and miniature fractal antennas. The company holds the recognition 
of the world’s first application for a patent on fractal and MultiFractal 
antennas.

(3) Fractus Antennas S.L. (www.fractusantennas.com), accessed 
on 22 June 2022
Founded in 2015, Fractus Antennas SL is actively involved in designing, 
manufacturing and commercializing miniature chip antennas for 
smartphones, short-range wireless and connected IoT devices. The company 
has received many patents for novel antenna designs. The recently developed 
Virtual Antenna™ Technology (2019) by Fractus SL is so unique that each 
antenna can be used for any application such as GSM (2G, 3G, 4G, 5G), 
GPRS, GPS, Bluetooth, WI-FI, RFID, NB-IOT, NBLTE and many more.

SUMMARY
Fractal antennas are a replacement for traditional wideband/multiband 
antennas that are smaller and lighter, require less circuitry, have fewer 
radiative elements to resonate at multiple frequencies and provide higher 
gains. Antennas with fractal shapes have many possible applications ranging 
from dual-mode phones to location services such as GPS, satellites, etc. 
Fractal-shaped antennas can lower the radar cross-section (RCS), which 
can be exploited in military applications where the RCS is an extremely 
important design parameter.

In the future, fractal antennas will play a much bigger role in the 
developing technologies for wireless communications which require 
compact, wideband and multiband antennas. Examples include wireless 
devices such as cell phones, tablets, wearable devices, smart homes, 
smart cities, airplanes, and IoT devices. The design of a high-performance 
wideband antenna is critical to IoT and wireless connectivity, and the fractal 
antenna engineering is enabling the changes that are required.



Applied Mathematics in Engineering484

FRACTALS IN IMAGE COMPRESSION
The need for mass information storage and retrieval is growing rapidly with 
the advancement of the data and information age. On a computer, images 
are stored as a collection of bits representing pixels. Storing a single image 
or a collection of images on a computer may require large memory. This 
problem can be addressed using various image compression techniques. 
Storing images in less memory leads to a direct reduction in cost. This is 
where image compression plays an important role. Another useful feature 
of image compression is rapid data transfer, since less data need less time 
to transfer.

The Discrete Cosine Transform Algorithm is one of the most popular 
image compression methods, which is used in JPEG (still images), MPEG 
(motion video images), H.26x digital audio (such as Dolby Digital, MP3, 
AAC), and television (SDTV, HDTV) compression algorithms.

Fractal image compression is a fractal-based compression technique that 
makes use of the self-similarity present in an image for fractal coding. It is 
simple to implement, easy to execute and yields high compression ratios and 
quick decompression. Fractal image compression (FIC) was introduced by 
M. Barnsley, who started a company based on FIC technology. However, it 
was Arnaud Jacquin (a doctoral student of Barnsley) who published a fractal 
image compression algorithm for the first time.

History of Fractal Image Compression
After Mandelbrot’s pioneering work [2], John Hutchinson introduced the 
iterated function theory in 1981 as an answer to the search of an underlying 
mathematical framework for fractal geometry. Later, M. Barnsley, another 
leading researcher in developing a mathematical framework for fractal 
geometry, wrote the famous book Fractals Everywhere. In this book, 
Barnsley described Iterated Functions Systems (IFS) and a very useful result 
known as the Collage Theorem, which became a fundamental result for 
fractal image compression. For example, the Pythagorean tree in the Figure 
27 can be generated using the two-dimensional IFS

   (4)

   (5)
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   (6)
Iterated function systems produce attractors (fractals), which are fixed 

points of a contraction mapping defined using the IFS, and the collage 
theorem does the reverse; i.e., for a given initial image, find an IFS whose 
attractor is as close as possible to the given image.

Figure 27: Pythagorean tree constructed using IFS in Equations (4)–(6).

Michael Barnsley suggested that storing images (for instance, the fractal 
tree shown in Figure 27) as a set of transformations given in Equations (4)–
(6) may lead to image compression. IFS is a set of transformations from 
which the image of an attractor can be obtained. Barnsley did it in reverse 
by generating an IFS of the image which maps onto itself by making use of 
the collage theorem [6]. This leads to the compression of images. Barnsley 
observed many affine redundancies in real-life images and noticed that 
memory can be saved if we store suitable IFS. He was granted a patent and 
co-founded Iterated Systems Incorporation along with Alan Sloan. Barnsley 
published his results in the January 1988 issue of the BYTE magazine. This 
article exhibit several images compressed in excess of 10,000:1. The images 
were named as “Black Forest”, “Monterey Coast” and “Bolivian Girl”, but 
they were all manually constructed. Barnsley’s patent is referred to as the 
“graduate student algorithm.”

In March 1988, Arnaud Jacquin found a modified scheme for 
representing images called Partitioned Iterated Function Systems (PIFS) 
that made the graduate student algorithm obsolete. In 1991, Barnsley gave 
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another algorithm that can automatically convert an image into a PIFS, 
compressing the image in the process, and he received another patent for 
this. All contemporary fractal image compression algorithms are based on 
Jacquin’s algorithm, and attempts to improve it have continued to date.

Mathematics of Images
Mathematically, an image is expressed as a function z=f(x,y), where z is the 
grayscale. We define the distance between two images f(x,y) and g(x,y) by 
the metric

     (7)
where f and g are values of the level of gray pixel (for grayscale image), P 
is the space of images, and x, y are the coordinates of any pixel. It is clear 
from (7) that the dmax metric searches for the point (x,y) at which the two 
images f and g differ the most and assigns this as the distance between f and 
g. Another useful metric used in image compression is the root mean square 
(rms) metric (more useful for practical calculations) defined by

    (8)
Grayscale images are representations of subsets of the plane. An image 

is represented as a collection of pixels, and an image containing m⋅n pixels 
can be regarded as a vector in r=m×n dimensional space. Typically, the space 
is , and the usual norm on  is the 2-norm (also called the Euclidean 
norm or the L2 norm), which is defined by

      (9)
which induces the rms metric,

Thus, if x=(x1,…,xr) and y=(y1,⋯,yr) are images, then the L2 norm or rms 
distance (gap) between them is given by

   (10)
Fidelity (a measure of the correctness of the reconstructed image) of an 

image is computed using the root mean square error (erms), the signal to 
noise ratio (SNR) and the peak signal to noise ratio (PSNR) of the image. 
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Let I(x,y) and A(x,y), respectively, denote the gray levels on the original and 
the reconstructed image (attractor), respectively; then,

   (11)

   (12)
where p is the number of bits per pixel used for definition of the gray level.

Self-Similarity in Target Images
In general, a typical image does not show exact self-similarity, which is 
seen in mathematical fractals. However, it still contains a type of self-
similarity in the sense that the entire image may not be self-similar, but parts 
of the image are self-similar with properly transformed parts of itself. For 
example, Figure 28 shows some parts of the Lena image that are self-similar 
at different scales.

Figure 28: Self-similarity in the Lena image.
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A portion of the reflection of the hat in the mirror is similar to a smaller 
part of her hat, and a part of her shoulder overlaps a smaller region that is 
almost identical. Studies [2,45,46] suggest that most of the natural images 
contain this kind of self-similarity. The search for the resemblance (self-
similarity) is the base of fractal compression algorithms.

Classical Approach
Imagine a Multiple Reduction Copying Machine (MRCM) shown in Figure 
29. A MRCM (with multiple lens arrangements) is just like a regular copying 
machine except that it will scale the original image (to be copied) by half 
and print it three times on the copy.

Figure 29: A Multiple Reduction Copying Machine (MRCM) with sample 
outputs. Reprinted with permission from [47]. Copyright 1997 Springer.

Figure 30 shows a few iterations of feeding an input (a Mandelbrot 
image) to the machine, and on repeated back feeding the output as input, the 
final image (attractor) is the Sierpinksi triangle.

Figure 30: The first 4 copies of an input image generated by the MRCM of 
Figure 29.
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Clearly, any initial image will shrink to a point on repeated iterations due 
to size reduction in every iteration on the photocopying machine. Therefore, 
the shape of the final image (attractor) is determined by the position and the 
orientation of the image and not by its initial size.

In fractal image compression, to encode an image f, we need to 
find the transformations w1,w2,…,wn such that f is the attractor of the 
map . Thus, we partition the image into pieces, find the 
transformations wi, and acquire the original image f again by applying the 
transformations wi.

The final output from the photocopying machine is determined by the 
way in which an input image is transformed by the transformations wi when 
running the machine in a feedback loop. Theretofore, the transformations 
must be contractive; that is, each of these transformations must bring any 
two points of the input image closer in the output. In practice, it is sufficient 
to choose affine transformations of the form

   (13)
Each transformation can rotate, scale (shrink) and translate an input 

image. Each wi is a contraction mapping as long as the determinant of the 
transformation is strictly less than one, and the IFS will converge to the 
attractor A starting with any image A0. Indeed, we have

   (14)
In Figure 30, the final image obtained on repeated application of the 

transformation W possesses geometric self-similarity, and that is why IFSs 
are always expected to generate fractal images.

Contemporary Approach
The basic idea of partitioned iterated function system (PIFS) is as follows: 
if finding self-similarity between an image as a whole and its parts is 
impractical, then finding self-similarity between larger and smaller parts of 
the image is more reasonable. Using Jacquin’s approach, this can be done 
by partitioning the original image at different scales into larger parts called 
domain blocks and small parts called range blocks. The idea of the PIFS 
is illustrated in Figure 31, where some mappings from domain blocks to 
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range blocks are shown. The range blocks are disjoint and partition the 
image uniformly. The domain blocks may overlap and need not contain 
every pixel of the original image. The goal of the compression process is 
to find a closely matching pre-image (i.e., a domain block for every range 
block). The size of the domain pool (determined by the number of domain 
blocks) is important for the encoding purpose. In general, a larger domain 
pool implies better fidelity of the mappings between the domain blocks and 
the range blocks. However, this also leads to more comparisons, which slow 
down the encoding. A scheme for classifying the domain and range blocks 
can be found in [46,48].

Figure 31: Self-similarity in Partitioned Iterated Function System, (a) Domain 
(left) and Range (right) blocks, (b) Domain–range pair self-similarity at three 
scales. Reprinted with permission from [47]. Copyright 1997 Springer.

Partitioned Iterated Function System
Jacquin extended the definition of an IFS to Partitioned Iterated Function 
Systems (PIFS) [48] in an attempt to ease the IFS computations. Theoretically, 
each image has a unique fixed point, but it is not feasible to find a unique 
fixed point for a whole image in practice. Thus, as an alternative, the image 
should be partitioned into several parts, and the fixed points for each part 
should be obtained through different transformations. We will use only 
affine transformations to illustrate a PIFS for simplicity, although the PIFS 
is independent of the type of transformations used. There are two spatial 
dimensions x and y, and the gray level adds a third dimension to the IFS so 
that the modified affine transformation wi for PIFS becomes

    (15)
To achieve convergence, the intensity value of a pixel must be scaled 

and offset, i.e.,
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   (16)
Here, x and y are the spatial locations of a pixel, while z is the gray-level 

intensity of the pixel at location (x,y). Coefficients ai,bi,ci,di,ei and fi control 
skewing, stretching, rotation, scaling, and translation, while the coefficients 
si and oi determine the contrast and brightness of the transformation, 
respectively, which allow the affine transformation to map grayscale domain 
blocks to grayscale range blocks accurately (see Figure 31b for three 
examples). To speed up the compression and bring it under control, Jacquin 
constrained Equation (15) so that the domain blocks are always squares and 
equal to two times the size of range blocks. For instance, if the range blocks 
are (say) 8×8 pixels in size, then the domain blocks are chosen to be of the 
size of 16×16 pixels, which reduces the number of domain blocks to a large 
extent, and the search time is reduced during compression.

Thus, the image can be represented as a union of maps w1,w2,…,wN, 
such that wi:Di→ . That is, the application of wi to a region of the image 
Di produces , which is a result that approximates another region of the 
image, Ri. Minimizing the error between R^i and Ri will minimize the error 
between the original image and the approximation. In practice, the RMS 
metric is used to find the “best” transform to map Di to Ri.

The Encoding
To encode a given image f, our aim is to find transformations w1,w2,…,wn 
such that f is the fixed point of the map W. In other words, we decompose 
f into parts, apply the transformations wi, and recover the original image f.

Fractal coding can produce a high compression ratio, which makes it 
one of the main advantages in compressing images. In Jacquin’s algorithm, 
the aim is to minimize the Hausdorff distance (i.e., greatest pixel-to-pixel 
difference) between a candidate domain block and a specific range block.

The optimal scaling parameters can be computed algebraically if the 
root mean square error measure is used. To see this, assume that the domain 
block Dxy has been reduced to the size of the range block Rxy. Then, the mean 
square error between the blocks is

   (17)



Applied Mathematics in Engineering492

setting the derivative equal to zero

   (18)
we obtain

     (19)
Figure 32 displays the flowchart of the encoding process.

Figure 32: Encoding process.

Consider, for example, an image of size 128×128 pixels such that each 
pixel is of 256 gray levels. The image is partitioned into 8×8 blocks of non-
overlapping range blocks and 16×16 overlapping domains blocks. For each 
range block Ri, a search is done through the entire set of domain blocks D to 
find the domain block which matches best with Ri. The position of the range, 
the best matching domain block, and transformation wi, which minimizes 
the distance between domain and range blocks, are stored. This process is 
repeated until we have found the best matching block for the domain–range 
pair. This method of partition is a fixed range size partition method.
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Table 3 shows the results of this process on the compression and 
reconstruction of 13 images using the classical approach [45,49].

Table 3: Performance of the Barnsley’s algorithm [45] on various images
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Table 3. Performance of the Barnsley’s algorithm [45] on various images.

Image Name Time
Time Average

erms SNRrms PSNR (dB)

Lena 1.000200294 7.61672 13.3478 30.4954
Peppers 1.000266348 7.5512 11.9571 30.5705
Mandril 1.000238648 13.168 1 8.919 25.7403

LAX 1.00021521 17.4734 4.9517 23.2832
Cameraman 1.000095885 14.0104 8.1885 25.2018

Columbia 1.000159809 16.3936 5.3475 23.8373
Goldhill 1.000138501 6.79771 13.4355 31.4836
Couple 1.000006392 13.6817 8.3402 25.408
Plane 0.999230786 13.2835 7.5457 25.6646

Women 1.000091624 11.0847 10.2303 27.2363
Milk 1.000093755 9.6735 8.4824 28.4191
Man 1.000025569 11.7124 9.3384 26.7579
Lake 0.999232916 15.8357 2.9538 24.138

Average 1.000000 12.1756 8.69527 26.7874

All images are of size 128 × 128 pixels (=16384 pixels) and 256 gray level. The range
blocks are 4 × 4 pixels, and the domain blocks are 8 × 8 pixels. Therefore, the number of

blocks to be encoded is
(

128
4

)2
= 1024. For the purpose of comparing image quality on the

reconstruction of these 13 pictures, we refer to [49].

5.8. Decompression Process

The decoding process involves repeatedly applying the transform until it converges
to an image, which closely approximates the original image. The decompression starts by
setting the image buffer to a uniform mid-gray value, which is used as the seed image,
and the pixels of each range block in the transform list are evaluated during the iteration.
The result of the first iteration is used as input for the second stage of iteration. Usually,
the original image is recognizable in just two iterations, and typically, the decompression
process will converge in four or five iterations (when 8-bit precision is used per pixel). The
decompression process for two encoded grayscale images of a ‘Bird’ and a ‘Cameraman’ is
shown in Figure 33.

(a) (b)

(c) (d)

Figure 33. Decompression process for Bird and Cameraman (Reprinted with permission from [47].
Copyright 1997 Springer), (a) Seed for Bird (left) and seed for Cameraman (right), (b) 2 iterations of
Bird IFS (left), 2 iterations of Cameraman IFS (right), (c) 4 iterations of Bird IFS (left), 4 iterations of
Cameraman IFS (right), (d) 6 iterations of Bird IFS (left), 6 iterations of Cameraman IFS (right).

All images are of size 128×128 pixels (=16384 pixels) and 256 gray 
level. The range blocks are 4×4 pixels, and the domain blocks are 8×8 

pixels. Therefore, the number of blocks to be encoded is . 
For the purpose of comparing image quality on the reconstruction of these 
13 pictures, we refer to [49].

Decompression Process
The decoding process involves repeatedly applying the transform until it 
converges to an image, which closely approximates the original image. 
The decompression starts by setting the image buffer to a uniform mid-
gray value, which is used as the seed image, and the pixels of each range 
block in the transform list are evaluated during the iteration. The result of 
the first iteration is used as input for the second stage of iteration. Usually, 
the original image is recognizable in just two iterations, and typically, the 
decompression process will converge in four or five iterations (when 8-bit 
precision is used per pixel). The decompression process for two encoded 
grayscale images of a ‘Bird’ and a ‘Cameraman’ is shown in Figure 33.
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Figure 33: Decompression process for Bird and Cameraman (Reprinted with 
permission from [47]. Copyright 1997 Springer), (a) Seed for Bird (left) and 
seed for Cameraman (right), (b) 2 iterations of Bird IFS (left), 2 iterations of 
Cameraman IFS (right), (c) 4 iterations of Bird IFS (left), 4 iterations of Cam-
eraman IFS (right), (d) 6 iterations of Bird IFS (left), 6 iterations of Cameraman 
IFS (right).

The choice of seed image has no impact on the outcome, since the IFS in 
Equation (14) describes the same attractor regardless of the starting image. 
This fact is well observed in Figure 33, where the Cameraman image is used 
as the seed image for Bird, and the Bird image is used as the seed image 
for Cameraman (see Figure 33a). One can notice the defects in Figure 33b 
which result from choosing a ‘wrong’ initial image that ultimately disappear 
with increasing iterations. The choice of seed can affect the decompression 
time, though, and it can be verified by starting with an all-black seed or an 
all-white seed image. However, for practical purposes, a mid-gray or a low-
resolution version of the original image is preferred as the seed. See Figure 
34 for a comparison of convergence using various seed images.
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Figure 34: Convergence speed for various seed images. Reprinted with permis-
sion from [47]. Copyright 1997 Springer.

Partitioning Schemes
Partitioning of an input image is an important aspect of fractal image 
compression. Image partitioning refers to dividing the image into sections 
that are more appropriate for the application to work on.

In the classical approach of Jacquin [48], the image is partitioned into 
a fixed size square range blocks and domain blocks in which the size of 
domain blocks is twice the size of the range blocks. Several other flexible 
partitioning methods have evolved over the years, which allow for a higher 
compression ratio and shorter encoding times. Fisher [46] introduced the 
quadtree, HV Partitioning and Triangular partitioning schemes shown in 
Figure 35. We also refer to the review paper by Wohlberg and Jager [50] for 
the details on various partitioning schemes studied in the literature. Among 
all partitioning schemes, the quadtree partitioning is the most widely used 
technique.
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Figure 35: Some popular partitioning schemes, (a) Quadtree partitioning, (b) 
HV partitioning, (c) Triangular partitioning.

Summary of Fractal Image Compression
Fractal image compression is a promising, block-based, lossy and 
asymmetrical compression method. The images generated by fractal coding 
are resolution/scale independent, i.e., the image can be decoded at any 
resolution. Magnifying an image reveals additional detail, and after every 
iteration, details on the decoded image are sharper than before. This feature 
of fractal image compression is unique. Figure 36 shows magnification of 
the original image of Lena’s eye (on the left). On the right is the same part of 
the fractal image rendered at the same scale. Sometimes, magnified fractal 
encoded images often look better than magnified original images due to 
reasonable interpolation.

Figure 36: Resolution independence: (a) Original image enlarged 4 times, (b) 
Decoded image enlarged 4 times.

Another main advantage of FIC is that it is easy to automate. 
Decompression is quick, and fractal compression can achieve high 
compression ratios while maintaining image quality, and at higher 
compression, it is relatively superior to JPEG and wavelet compressions. 
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Fractal compression is also useful in multimedia applications. Fractal 
compression methods are probably best suitable for archival applications, 
such as digital encyclopedias, where encoding is done only once. The 
greatest challenge for the coding community is how to precisely measure 
and quantify signal-to-noise ratio, root mean square error, etc.

Fractal image compression is still under development. Many research 
groups worldwide are developing new algorithms to shorten the encoding 
time. We refer the reader to [45,46,48,49,51] for more detailed literature 
on the theoretical concepts, existing methods, algorithms and experimental 
results on fractal image compression.

FRACTALS IN FRACTURE MECHANICS
Fracture mechanics is the study of the propagation of cracks in materials, and 
it is an important tool to improve the performance of mechanical components. 
The phenomenon of fracture is to divide an object or material into two or 
different pieces on applying physical stress (see Figure 37 for different types 
of fracture modes). Thus, there exists a crack on the surface irregularly 
which penetrates into the body, too. All these physical appearances such as 
crack length, area, etc. cannot be described easily using Euclidean geometry. 
The fractal geometry equipped with self-similarity (or self-affinity), scale 
invariance and fractal dimension offers great help to analyze irregular or 
fractional shapes of fracture mechanics.

Figure 37: The three fracture modes. (Image source: https://en.wikipedia.org/
wiki/Fracture_mechanics, accessed on 22 June 2022).

Mandelbrot was the first to interrelate the crack propagation and 
other fracture properties of materials with the fractal geometry [52]. He 
introduced a method called slit island analysis on the fracture surface to find 
fracture dimensions, which is shown to be a measure of toughness in metals. 
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Mandelbrot characterized the structure of a surface by the fractal dimension, 
D, as a scaling factor. As D increases from 0 to 1, the irregularities of the 
surface become more significant, and shape becomes predominantly less 
meaningful. He experimented through fractured steel specimen plated with 
electroless nickel and proposed the “slit island analysis” method to calculate 
the fractal dimension.

The quantitative analysis of fracture surfaces in brittle alumina and glass 
ceramic materials using fractal geometry was considered by Mecholsky et al. 
[53] by calculating the fractal dimension of crack surfaces using slit island 
analysis (SIA) and fracture profile analysis (FPA) methods. They proved 
that the fractal dimension increases with increase in fracture toughness, in 
general.

Fractal geometries are often characterized by a scaling (power) law:

      (20)
where N is the number of segments, r is the similarity ratio (or reduction 
factor), and D is the fractal dimension.

Equation (20) describes how many new features will appear by a 
magnification factor r for a given fractal dimnesion. For example, if  
and D=1.5, then the number of features will be N=8. The number of features 
would increase to N≈11 at the same scale with D=1.75. Thus, the higher 
fractal dimension leads to more features or structures.

The toughness of a fracture surface is measured in terms of difficulty 
in the crack growth, and researchers have attempted to relate the fracture 
toughness and surface energy with the fractal dimension. In this connection, 
Mecholsky et al. [54] discovered the following formula relating fractal 
dimension with the fracture toughness

     (21)
Here, E is the modulus of elasticity of the material, a0 is the lattice parameter, 
D∗=D−d with d as the Euclidean dimension in the projection of fracture. Mu 
and Lung [55] proposed an alternate equation which is a power law relation 
connecting the fractal dimension with surface energy.
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Zhang [56] studied the fracture of rocks under the effect of high 
temperature considering the fractal dimension as a crucial factor. Fractal 
dimension and the rockburst tendency index can predict the failure of the 
rocks, and variations in rockburst tendency laws were been obtained. The 
relation between fractal dimension and rockburst tendency can be explained 
by a quadratic expression

Here, Keff is the effective burst energy index, A and B are rock material 

constants, df is the fractal dimension of the fracture surface and  is the 
fractal dimension threshold, and there is a directly proportional correlativity 
between rockburst index and the fractal dimension when  and inverse 
proportionality correlation when . This is how mechanical properties 
such as energy dissipation energy release rates related with the fractal 
dimension of the fractured surface during the rock failure mechanism, and 
that will reflect in the degree of rockburst tendency.

After the pioneering work of Mandelbrot et al. [52], fractal geometry 
has been applied to the fractality of cracked surfaces, fracture mechanics 
and material science problems by several authors, and we refer to the papers 
[54,56,57,58] for further details, analysis and determination of the fractal 
dimension of microcrack structures and fracture surfaces.

OTHER FRACTAL APPLICATIONS AND  
INNOVATIONS
Fractals in ophthalmology: The human retina shown in Figure 38 exhibits 
fractal structure properties in its vascular network, so fractal geometry is 
the right tool for modeling such a complex structure [59]. The damage 
of the blood vessels of the retina in diabetic people is known as diabetic 
retinopathy.
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Figure 38: Human retina. Image by: Paul van der Meer. (Image source: https://
fractalfoundation.org/OFC/OFC-1-3.html, accessed on 22 June 2022).

The examination of fundus of the eye is a classical old technique for 
screening diabetic retinopathy and takes more time. In recent times, the 
technique of taking digital photographs of the fundus is used, which are 
transmitted to a central database for testing. Fractal analysis is the best 
method in processing this data with more accurate results as compared to 
other methods where the fractal dimension is the prominent tool for analysis.

Fractals are also important in other life science studies and biological 
fields. They are now used to predict or analyze the growth patterns of 
bacteria, the pattern of nerve dendrites, pathology, study of cancer, wildlife 
and landscape ecology, etc. The expository article by G.A. Losa [60] is a 
rich source of information on the extension of fractal geometry for the life 
sciences to understand complex functional properties, morphological, and 
structural features characterizing cells and tissues. The reader may also refer 
to [61] and references therein for further study. In most of these studies, 
fractal dimension is a key tool for analysis.

Fractal Capacitors: Wearable and implantable electronic devices are 
common nowadays and are expected to dominate the future soon. However, 
these devices suffer the problem of inadequate power supply limited by 
the size of these gadgets. Microsupercapacitors (MSCs) are emerging 
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miniaturized high-power microelectrochemical energy-storage devices 
that can circumvent this difficulty, as they are capable of delivering high 
power density, fast charge and discharge, and a superior lifetime (millions of 
cycles). In a recent study, Hota et al. [62] fabricated integrated MSCs using 
three different fractal designs—namely, Hilbert, Peano, and Moore (they 
used anhydrous RuO2 thin-film electrodes as prototypes)—and proved 
that fractal-shaped electrode designs is a viable solution to improve the 
performance of MSCs. It is shown that among the three proposed designs, 
the Moore design shows the best performance. Many more MSCs may be 
fabricated by exploiting the self-similarity and scale invariance of fractals.

Fractal Batteries: Fractal structures have proven to be advantageous 
in electrochemical energy conversion systems, since fractals maximize the 
electrochemically active surface area while minimizing the energy loss in 
the network. Fractals can be used in the “fractalization” of battery electrodes 
to increase power density and reduce dendrite formation. The fractalization 
technique can be applied to any electrode material (e.g., C, Si, MgX, etc.). In 
this connection, we refer to [63], wherein the theoretical analysis of fractal 
type electrodes for lithium-ion batteries is presented along with simulation 
results. More recently, Thekkekara and Gu [64] proposed bio-inspired fractal 
electrode designs for solar energy storage using space-filling properties of 
fractal curves from the Peano family.

Fractal Electromagnets: The techniques of fractal geometries can be 
used to fabricate fractal electromagnets to increase the magnetic flux for 
a given size, or, alternatively, shrink the size for a given flux. This size 
reduction permits embedding electromagnets and solenoids in places where 
it was almost impossible until now.

Fractal PCBs: Fractals are being applied on printed circuit boards 
(PCBs) to reduce corrosion possibilities by fabricating fractal-shaped PCBs. 
Fractal PCBs can be applied to any trace or joints of contact with a high-
voltage differential to reduce the risk of corrosion. Less corrosion delivers 
high reliability in electrical components, resulting in reduced overall cost.

Fractal in Cooling Devices: Fractal-shaped smart cooling devices such 
as cooling chips, PC coolers, fractal microchannel heat sink, etc. are now 
becoming popular, which are based on fractal geometry. A cooling circuit 
for a computer chip printed in the form of a fractal branching pattern is 
shown in Figure 39a. The liquid nitrogen passes across the surface through 
this device to keep the chip cool.
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Figure 39: (a) Computer chip cooling circuit, (b) A fractal solar panel [65].

Fractal Solar Panels: A group of researchers from the University of 
Oregon [65] have recently proposed a new electrode design based on the 
H-tree fractal tree structure (see Figure 39b) for fractal-patterned rooftop 
solar panels that combines the aesthetic advantages of the technology 
with the efficiency of busbar design. These modern electrode patterns are 
expected to emerge into the mainstream electrodes that would be adopted 
for a wider range of applications, especially engineering and design.

Fractals in Biometric Applications: Fingerprints are the simplest and 
most reliable biometric features that are widely used for identification 
purposes. Fingerprints exhibit self-similarity at multiple scales, and 
a fingerprint database can be classified using fractal dimension, but a 
fingerprint cannot be identified with fractal dimension uniquely. In [66], a 
novel Fingerprint Fractal Identification System (FFIS) was presented for 
identifying a fingerprint uniquely using fractal geometry and game theoretic 
techniques.

CONCLUSIONS
This article presents a comprehensive survey of fractals with focus on their 
applications in innovative and emerging research fields. With this extensive 
survey, we have tried to demonstrate the importance of fractals in engineering, 
industry and commercial applications by considering fractals in the design 
of fractal antennas, image processing, landscape generation, and fracture 
mechanics. Some future-ready applications of fractals are also discussed 
toward the end. In Part I of this survey of fractals [1], we considered the 
mathematics of fractals using iterated function systems, attractors, fractal 
dimensions, etc. and their appearance in fractal arts, ceramic products, 
fractal clothing and in fractal tilings.
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Fractals have been studied in mathematics, computer science, engineering, 
physics, chemistry, biology, geology, social science, economics, technology, 
art, architecture and many other areas. Fractals have deep relevance in chaos 
theory because the graphs of most chaotic processes are fractals. The field of 
fractals has enormous potential to expand and take hold into many evolving 
areas of research, and even a voluminous book would be inadequate to 
discuss all of these in one place.

In summary, fractal geometry is the language of nature, and Benoît 
Mandelbrot has given us a new science which is applicable almost everywhere 
with an mind-opening effect on everyone who has come across it. This new 
language is changing our scientific world rapidly with sustainable solutions.

We close with a remark by Mandelbrot from the book The Fractalist. 
Memoirs of a Scientific Maverick, which is an inspirational collection of his 
own reflections and thoughts.

“Within the sciences of nature, I was a pioneer in the study of familiar 
shapes, like mountains, coastlines, clouds, turbulent eddies, galaxy clusters, 
trees, the weather, and others beyond counting”.

Benoît B. Mandelbrot, (2010)
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