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Matrix Computations research is mainly concerned with developing of fast 
processing and finite precision algorithms that use properties of vectors and 
matrices to automatically solving problems of continuous mathematics.  
Algorithms based on matrix decomposition, for instance, are often used for 
solving linear systems of equations, locating eigenvalues, performing least 
squares optimization, modeling differential equations.  Matrix computations 
metholodies are used to solve a wide range of engineering and computational 
science problems such as signal processing, telecommunication, fluid dynamics, 
materials science simulations, data mining, bioinformatics. 
 
The following specific numerical methods and matrix-based algorithms are 
included in this book:
 • a singular value homogenization method for solving convex optimization 

(Chapter 1) ; 
 • perturbation bounds for eigenvalues of diagonalizable matrices and for 

singular values of square matrices (Chapter 2);  
 • iterative methods for computing generalized singular and corresponding 

vectors of large sparse matrices (Chapter 3 );
 • two algorithms based on singular value decomposition and Cholesky 

factorization for blind signal estimation  (Chapter 4 ).
 • Discrete Fourier Transform methods for singular value and eigenvalue 

decomposition of polynomial matrices  (Chapter 5);   
 • LU and QR matrix factorizations for solving the canonical polyadic 

decomposition problem of semi-nonnegative semi-symmetric matrices 
(Chapter 6); 

 • the sparse signal subspace decomposition (3SD) method that can be used 
for feature extraction, solving inverse problems, or machine learning 
(Chapter 7).  

 • a singular value thresholding algorithm for low-rank matrix approximation 
problem (Chapter 8);   

 • a reduced-rank method that uses the singular value decomposition 
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for obtaining reduced-complexity implementations of Volterra filters 
(Chapter 9).  

 • the semi-smoothing augmented Lagrange multiplier (SSALM) algorithm 
for completing a low-rank Toeplitz matrix (Chapter 10);

 • a singular spectrum matrix completion (SS-MC) algorithm for 
simultaneous the recovery of low-rank matrices from a minimal set of 
measurements and the prediction of future behavior in the absence of 
complete measurement sets (Chapter 11);  

 • an improved differential transform method that can solve singular 
boundary value problems based on the decomposition of Adomian 
polynomial matrices (Chapter 12); 

This edited book is directed towards the numerical linear algebra community, 
including computational scientists, engineers or anyone whose research work 
requires the solution to a matrix problem.



Singular Value Homogenization: a  
Simple Preconditioning Technique for 

Linearly Constrained Optimization and 
its Potential Applications in Medical 
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ABSTRACT
A wealth of problems occurring naturally in the applied sciences can be 
reformulated as optimization tasks whose argument is constrained to 
the solution set of a system of linear equations. Solving these efficiently 
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0017-5
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typically requires computation of feasible descent directions and proper 
step sizes-the quality of which depends largely on conditioning of the linear 
equality constraint. In this paper we present a way of transforming such ill-
conditioned problems into easily solvable, equivalent formulations by means 
of directly changing the singular values of the system’s associated matrix. 
This transformation allows us to solve problems for which corresponding 
routines in the LAPACK library as well as widely used projection methods 
converged either very slowly or not at all.

Keywords: singular value decomposition; ill-conditioned matrix; projec-
tion methods; linear least squares; spectral regularization

INTRODUCTION

In many experimental settings the informationa  to be processed and 
analyzed computationally is obtained through measuring some real world 
data . The action of performing such measurement oftentimes 
introduces distortions or errors in the real data which, given that the distortion 

 is known, may be inverted to recover the original data. A 
particularly common case (e.g. in image processing, dose computationb 
or convolution and deconvolution processes in general [1,2]) occurs when 
this relation A between measurements and data is in fact linear or easily 
linearizable, i.e. if .
It is thus natural to consider the following optimization problem

      (1.1)
where is a continuously differentiable function andAis a realm×n 
matrix. Typical (first order) approaches for solving (1.1) involve estimates 
of the gradient, see for example the classical works of Levitin and Polyak 
[3], Goldstein and Tretyakov [4] and more recent and related results [5,6]. 
Hence there is the need to evaluate the term

    (1.2)
wherez=Ax. In the case of ill-conditionedA, (1.2) gives only little informa-
tion and hence long run-times ensue, see also [7,8].
The purpose of this paper is introduce a new preconditioning process through 
altering the singular value spectrum ofAand then transforming (1.1) into a 
more benign problem. Our proposed algorithmic scheme can be used as a 
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preconditioning process in many optimization procedures; but due to their 
simplicity and nice geometrical interpretation we focus here onProjection 
Methods. For related work using preconditioning in optimization with ap-
plications see [9,10] and the many references therein.
The paper is organized as follows. In Section2we present some preliminaries 
and definitions that will be needed in the sequel. Later, in Section3the 
new Singular Value Homogenization (SVH) transformation is presented 
and analyzed. In Section4we present numerical experiments to linear 
least squares and dose deposition computation in IMRT; these results are 
conducted and compared with LAPACK solvers and projection methods. 
Finally we summarize our findings and put them into larger context in 
Section5.

PRELIMINARIES
In our terminology we shall always adhere to the subsequent definitions. 
We denote by  the set of all continuously differentiable functions 

.

Definition 2.1

Let is called ahalf-space, and it is 
defined as

    (2.1)
When there is equality in (2.1) then it is called ahyper-planeand it is denoted 
byH(α,β).

Definition 2.2
LetCbe non-empty, closed and convex subset of . For any point
, there exists a pointPC(x)inCthat is the unique point inCclosest tox, in the 
sense of the Euclidean norm; that is,

   (2.2)
The mapping is called theorthogonalormetric projectionof

ontoC. The metric projectionPCis characterized [11], Section3, by the 
following two properties:

       (2.3)
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and
   (2.4)

where equality in (2.4) is reached, ifCis a hyper-plane.
A simple example when the projection has a close formula is the following.
Example 2.3
Theorthogonalprojection of a point is defined as

    (2.5)

Projection Methods
Projection methods (see, e.g., [12,13,14]) were first used to solve systems 
of linear equations in Euclidean spaces in the 1930s and were subsequently 
extended to systems of linear inequalities. The basic step in these early 
algorithms consists of a projection onto a hyper-plane or a half-space. 
Modern projection methods are more sophisticated and they can solve the 
general Convex Feasibility Problem (CFP) in a Hilbert space, see, e.g., [15].

In general, projection methods are iterative algorithms that use 
projections onto sets while relying on the general principle that when a 
family of (usually closed and convex) sets is present, then projections onto 
the given individual sets are easier to perform than projections onto other sets 
(intersections, image sets under some transformation, etc.) that are derived 
from the given individual sets. These methods have a nice geometrical 
interpretation, moreover their main advantage is low computational effort 
and stability. This is the major reason they are so successful in real-world 
applications, see [16,17].

As two prominent classical examples of projection methods, we avail 
the Kaczmarz [18] and Cimmino [19] algorithms for solving linear systems 
of the formAx=bas above. Denote byaitheith row ofA. In our presentation 
of these algorithms here, they are restricted to exact projection onto the 
corresponding hyper-plane while in general relaxation is also permitted.
Algorithm 2.4
(Kaczmarz method)
Step 0::

Letx0be arbitrary initial point in ,and setk=0.
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Step 1::

Given the current iteratexk,compute the next iterate by

   (2.6)
wherei=kmodm+1.
Step 2::

Setk←(k+1)and return to Step1.
Algorithm 2.5
(Cimmino method)
Step 0::

Letx0be arbitrary initial point in ,and setk=0.
Step 1::

Given the current iteratexk,compute the next iterate by

    (2.7)
Step 2::
Setk←(k+1)and return to Step1.
Moreover, in order to develop the process by which we improve a matrix’s 
condition, understanding of the following concepts is essential.

Definition 2.6
LetAbe anm×nreal (complex) matrix of rankr. Thesingular value 
decompositionofAis a factorization of the formA=UΣV∗whereUis 
anm×mreal or complex unitary matrix, Σ is anm×nrectangular diagonal 
matrix with non-negative real numbers on the diagonal, andV∗is ann×nreal 
or complex unitary matrix. The diagonal entriesσiof Σ, for which 
holdsσ1≥σ2≥⋯≥σr>0=σr+1=⋯=σn, are known as thesingular values ofA. 
Themcolumns⟨u1,…,um⟩ofUand thencolumns⟨v1,…,vn⟩ofVare called theleft-
singular vectors and right-singular vectorsofA, respectively.

Definition 2.7
Thecondition numberκ(A)of anm×nmatrixAis given by
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   (2.8)
and is a measure of its degeneracy. We speak ofAbeingwell-conditionedifκ 
(A) ≈ 1 and the moreill-conditionedthe farther awayκ(A)is from unity.

SINGULAR VALUE HOMOGENIZATION
The ill-conditioning of a linear inverse problemAx=zis directly seen in 
the singular value decomposition (SVD)A=UΣVTof its associated matrix, 
namely as the ratio ofσmax/σmin. Changes in the data along the associated 
first and last right singular vectors (or more generally along any two right 
singular vectors whose ratio of corresponding singular values is large) are 
only reflected in measurement changes along the major left singular vector-
which poses challenges in achieving sufficient accuracy with respect to the 
minor singular vectors.3

A new geometrical interpretation of the above can be described in the 
language of projection methods. This conflicting behavior along singular 
vectors corresponds to projections onto hyper-planes whose normal vectors 
are to a high degree identically aligned, i.e. for any two such normal vectors

their dot product is close to unity. A toy example for
that will be used for visualization is provided on the left in Figure1.

Figure1: Illustration of ill-conditioning (left) as a challenge to linear comparing 
to the preconditioning step (SVH) described herein (right).

Such high degree of alignment poses challenges to classical projection 
methods since the progress made in each iteration is clearly humble. A much 
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more favorable situation applies when the normal vectors’ directions are 
spread close to evenly over the unit circle so as to lower the conditioning 
of the problem. The system depicted on the right in Figure1is obtained 
from the previous ill-conditioned one through the easily invertible Singular 
Value Homogenization (SVH) transformation (described below) and visibly 
features such better condition. Also plotted is the progress made by the 
classical Kaczmarz projection method which confirms the improved run-
time (left: first 50 iterations without convergence, right: convergence after 
seven steps).

The Transformation
To achieve better condition numberκ(A)ofAwe directly manipulate its SVD 

through introducing the SVH matrix  
to multiply the singular values(σ1,σ2,…,σr), wherer≤min{n,m}is the rank 
ofA:

         (3.1)

By proper choice ofγ1,…,γr, the singular values can be set to 
any arbitrary values. In particular, they may be chosen such . 
Consequently, solving the transformed problem

         (3.2)
iteratively does not pose difficulties to most (projection) solvers. Assume 
(3.2) admits a solution , the question then is whether we can recover 
(easily) a solutionx0satisfying

         (3.3)
that is, the original linear subproblem.

Since Γ leaves the range of , invariant, solutions to (3.2) exist if and 
only if (3.3) admits such. Moreover, setting

        (3.4)
a solution to (3.3) is obtained:

   (3.5)

Thus by a scaling of the components of in the coordinate system ofA’s 
right singular vectors, which computationally does not pose any difficulties, 
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we can solve the original problem (3.3) by working out the solution to the 
simpler formulation (3.2).

Example 3.1
For geometric intuition, the assignment in (3.4) can be rewritten as

    (3.6)

where are theV-coordinates of andvithe right singular vectors.
Equation (3.6) illustrates that the Γ-transformation is in fact a translation 
of the solution set along these right singular vectors, proportional to the 
choice ofγi. The toy example from Figure1is used to demonstrate this effect 
in Figure2.

Figure2: Reconstruction ofx0(=xopt).

Here

    (3.7)
with

   (3.8)
and right-singular vectors visualized in red.
Applying the Γ-transformation withγ1=σ1andγ2=σ1/σ2the transformed 
inverse problem is optimally conditioned with and hence 
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easily solvable with solution

      (3.9)
which is exactly the translation expected from (3.6).

Main Result
The application of this preconditioning process to optimization problems 
with linear subproblems as in (1.1) is the natural next step.
Theorem 3.2
Given a convex function ,then the minimization problem

       (3.10)
has solution

      (3.11)
whereΓis a diagonal matrix with non-zero diagonal elements and solves

       (3.12)
withÃas in(3.1).
Proof
For the minimizerx0we have

    (3.13)
and hence

     (3.14)
The statement of the theorem is thus equivalent to showing

  (3.15)
which follows from our previous observation that Γ-transformations leave 
kernel and range ofAinvariant together with (3.5).

The Algorithmic Scheme
The results of the previous two sections are straightforward to encode into 
a program usable for actual computation. What follows is a pseudo-code of 
the general scheme.

Algorithm 3.3
(Singular Value Homogenization)
Step 0::



Fundamentals of Matrix Computations10

LetfandAbe given as in(1.1).
Step 1::

Compute the SVD ofA=UΣVTand chooseΓ=diag(γ1,…,γm)such that

   (3.16)
Step 2::

Apply any optimization procedure to solve(3.12)and obtain a solutionx~0x~0.
Step 3::

Reconstruct the original solutionx0of(3.10)via

    (3.17)
The optimal choices of Γ in Step 1 and the concrete solver to find in Step 
2 are likely problem specific and are as of now left as user parameters. A 
parameter exploration to find all-purpose configurations is included in the 
next section.
Furthermore, due to the near-optimal conditioning in Step 1 the time 
complexity of Algorithm3.3is since it is dominated by 
the SVD ofA.
This does not necessarily prohibit from solving large linear systems as in 
many cases (e.g. in IMRT [20]) either the spectral gap ofAis big or large 
and small singular values cluster together-which allows for reliable k-SVD 
schemes that can be computed inO(mnlogk)time.

NUMERICAL EXPERIMENTS
All testing was done in bothMatlabandMathematicawith negligible 
performance differences between the two (as both implement the same set 
of standard minimization algorithms).

Linear Feasibility and Linear Least Squares
The first series of experiments concerns the simplest and most often 
encountered formulation of (1.1) with

   (4.1)
which corresponds to solving a linear system of equations exactly if a 
solution exist or in the least squares sense if it has empty intersection (here
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is fixed).
As projection methods in general, and the Kaczmarz and Cimmino 
algorithms in particular, are known to perform well in such settings, we 
chose to compare execution of Algorithm3.3to these two for benchmarking. 
Moreover, to isolate the effects of the Γ-transformation most visibly, these 
two algorithms are used as subroutines in Step 2 as well.

Performance was measured on a set of 3,000 randomly 
generated matrices withκ(Ai)∈[1,105]and datax0=(1,1,1)Tthat the respective 
algorithms were run on. The convergence threshold in all cases was set to 
10−3and Γ chosen4such thatΣΓ=σ2⋅I. The results are depicted in Figure3and 
Figure4(the presence of two graphs for Algorithm3.3indicate whether 
Kaczmarz (green) or Cimmino (red) was used as subroutine).

Figure3: Comparison with respect to number of iterations as a function of con-
dition number between Kaczmarz, Cimmino and SVH with Kaczmarz and SVH 

with Cimmino.Stopping criteria is .
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Figure4: Time needed: Algorithm3.3(red, green) and Kaczmarz (blue) and 
Cimmino (black) methods.

As expected from the results obtained in the preceding sections, both 
projection solvers scale poorly (indeed exponentially) with the condition 
number ofAwhile Algorithm3.3retains constant time (≈0.02s and5≈0.06s 
respectively) and numbers of iteration (≈10) necessary.

In addition, reducing the accuracy threshold (<10−4) or constructing 
matrices of extreme condition (κ(A)≥106 that result in failure to converge 
of Cimmino, Kaczmarz and LAPACK solvers native to Matlab and 
Mathematica does not impair the performance of Algorithm3.3. That 
is, through appropriate Γ-transformation we were able to solve very ill-
conditioned linear problems for the first time to 10−5accuracy within seconds.

LpLpPenalties and One-sidedLpLpPenalties
In the biomedical field of cancer treatment planning problems of the kind 
(1.1) occur often in calculating the optimal dose deposition in patient 
tissue. A typical formulation involves the linearized convolutionAof 
radiationxinto dosedand a reference dose which is to be achieved 
underLppenalties∥Ax−r∥por their one-sided variations∥max{0,Ax−r}∥pand∥
min{0,Ax−r}∥p.
We examined five6cases{Ai,ri}that were collected from patient data under 
the penalties
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       (4.2)

       (4.3)

      (4.4)

      (4.5)
   (4.6)

where is a partition of the unit vector accounting 
for varied sensitivity of distinct body tissue to radiation.

The performance of Algorithm3.3in comparison to native Matlab and 
Mathematica methods is given in Table1. ∙is the time in seconds until 
convergence that Mathematica’s NMinimize and Matlab’s fminunc routines 

require on average whereas seconds are needed for Algorithm3.3to 
converge. In the case of neither Mathematica nor Matlab finding a solution 
(nCfornot converging), the accuracy of Algorithm3.3’s outputx0is tested 
through the parameterμ. This is done by randomly sampling a neighborhood 
ofx0and counting instances that improve the objective. These hits are 
then sampled similarly until no further such points can detected.μis the 
total number of neighborhoods so checked. In all cases, the improvement 
infremained below 10−4.

Table1: Comparison for nonlinear objective function

A1A1 A2A2 A3A3 A4A4 A5A5
dim 504 × 250 336 × 192 408 × 128 457 × 206 500 × 82
κ 6 × 1016 2 × 1016 2 × 1018 6 × 1012 9 × 109

nC nC nC nC 2,381

44 123 82 85 2

nC nC nC nC 2,445

44 117 102 90 3

nC nC nC nC 2,579

48 117 98 92 5
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nC nC nC nC 2,502

40 108 106 79 3

nC nC nC nC 2,524

42 117 105 87 3

μ 2 8 6 3 0

The results are parallel to what could be seen in the linear feasibility 
formulation and encourage further exploration.

CONCLUSION
We were able to reduce the time needed to solve a general convex 
optimization problem with linear subproblem for modestly sized matrices. 
The performance of the proposed algorithm was compared to classical 
LAPACK and projection methods which showed an improvement in 
run-times by a factor of up to 1,190. Additionally, in many cases where 
LAPACK and projection solvers failed to converge, the singular value 
homogenization found 10−4accurate solutions. These results are promising 
and encourage further exploration of SVH. Especially its application to 
structured large matrices and constrained optimization as well as in-depth 
parameter explorations may well turn out to be worthwhile.

Footnotes
1We choseRRonly as it is more pertinent to most practical applications, the 
extension of all results to is straightforward.
2Which is particularly important in intensity modulated radiation therapy 
IMRT from which later numerical experiments will be drawn.
3Majorandminorhere refer to the size of the singular values associated with 
a singular vector.
4Experimental evidence suggests that in this setting of randomized matrices 
such homogenization to one singular value represents the most reasonable 
choice; different Γ display similar behavior with overall longer run-times.
5This time difference is due to the higher overhead required for the block 
projections of the Cimmino algorithm.



Singular Value Homogenization: a Simple Preconditioning Technique.... 15

6The dose calculations are of cancerous tissue in the brain, the neck region 
and the prostate.
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INTRODUCTION
Many problems in science and engineering lead to eigenvalue and singular 
value problems for matrices. Perturbation bounds of eigenvalues and 
singular values play an important role in matrix computations. LetSnbe 
the set of alln! permutations of{1,2,…,n}. Ifx=(x1,x2,…,xn)andπ∈Sn, then 
the vectorxπis defined as(xπ(1),xπ(2),…,xπ(n)). A square matrix is calleddoubly 
stochasticif its elements are real nonnegative numbers and if the sum of the 
elements in each row and in each column is equal to 1. Let be the set 
ofn×ncomplex matrices. LetA=(aij)∈ , we use the notation (see [1,2])

      (1.1)

    (1.2)
LetT∈ and assume that

are diagonal matrices. In [3], the following classical result is given:

   (1.3)
for someπ∈Sn, wheresn(T)is the smallest singular value ofT. The inequality 
has many applications in bounding the (relative) perturbation for eigenvalues 
and singular values, such as [4,5,6] and the references therein. We generalize 
(1.3) in Section2.
Letλ(A)denote the spectrum of matrixA. In 1970, Ikramov [7] defined the 
‘Hölder distancedp(λ(A),λ(B))between the spectra’ of the matricesAandB, 
which have the eigenvaluesλ1,λ2,…,λnandμ1,μ2,…,μn, respectively, by the 
equation:

     (1.4)
IfAandBare Hermitian matrices and1≤p<2, [7] obtained

      (1.5)
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which partially generalizes the Hoffman-Wielandt theorem [8]. However, 
for normal matrices (1.5) can no longer be valid. The purpose of this paper is 
to obtain several inequalities similar to (1.5) for diagonalizable matrices. We 
exhibit some upper bounds and lower bounds fordp(λ(A),λ(B))of diagonaliz-
able matricesAandBin Section2.
Majorization is one of the most powerful techniques for deriving inequalities. 
We use majorization to get some perturbation bounds for singular values. 
For simplicity of the notations, in most cases in this paper the vectors in
are regarded as row vectors, but when they are multiplied by matrices we 
regard them as column vectors. Given a real vectorx=(x1,x2,…,xn)∈ , we 
rearrange its components asx[1]≥x[2]≥⋯≥x[n].
Definition 1.1
([9], p.14)

For , if

then we say thatxis weakly majorized byyand denote
, then we say thatxis majorized byyand 

denotex≺y.
Let be the singular values of the complex 
matrices , respectively. In [10], p.215, and 
[11], p.199, the following classical result is given:

   (1.6)
We generalize the inequality (1.6) in Section3.

PERTURBATION BOUNDS FOR EIGENVALUES OF 
DIAGONALIZABLE MATRICES
LetA∘Bdenote the Hadamard product of matricesAandB.∥A∥denotes the 
spectral norm of matrixA.ATdenotes the transpose of matrixA. For twon-
square real matricesA,B, we writeA≤eBto mean thatB−Ais (entrywise) 
nonnegative. For and a real numbert>0, we denote

. Letsn(A)ands1(A)be the smallest and the largest 
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singular values ofA, respectively. The following entrywise inequalities 
involve the smallest and the largest singular values.
Lemma 2.1
([9], p.52)
Let and letp,qbe real numbers with0<p≤2andq≥2.Then there exist 
two doubly stochastic matricesB,C∈ such that

      (2.1)
and

      (2.2)
Theorem 2.2
LetT∈ and letp,qbe real numbers with0<p≤2andq≥2.Assume that

,are diagonal matrices.Then 
there are permutationsπandνofSnsuch that

  (2.3)
and

  (2.4)
Proof

Set . Then

   (2.5)

where . Applying inequality (2.1), we 
have

whereB=(bij)is a doubly stochastic matrix. Then

SinceBis doubly stochastic, by Birkhoff’s theorem ([12,13], p.527)Bis a 
convex combination of permutation matrices:
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are permutation matrices.

Suppose andPkcorresponds toπ∈Sn. Then

Proving (2.3).
Use (2.2), (2.5), and the Birkhoff theorem, we can deduce the inequality 
(2.4).
Remark 2.3
If we takep=2, we get Theorem3.2 in [3]. So, the bound in inequality (2.3) 
generalizes the bound of Theorem3.2 in [3].
Next, we apply Theorem2.2to get some perturbation 
bounds for the eigenvalues of diagonalizable matrices. Let

, then (see 
[2])

   (2.6)

   (2.7)
IfBis nonsingular, then we have

    (2.8)
IfAis nonsingular, then we have

   (2.9)
For normal matrices the statement of Theorem3 in [7] (inequality (1.5)) can 
no longer be valid. However, we have the following theorem.
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Theorem 2.4
Assume that both are diagonalizable and admit the fol-
lowing decompositions:

    (2.10)
whereD1andD2are nonsingular,andΛ1=diag(λ1,λ2,…,λn)and Λ2=diag(μ1,μ2,…
,μn).Then there are permutationsπandνofSnsuch that

   (2.11)

   (2.12)

where1<p≤2and .
Proof
Using (2.10), we have

    (2.13)
and

    (2.14)
We give a proof of (2.11) with the help of (2.13). Similarly one can prove 
(2.12) using (2.14). Applying (2.8) and (2.9) to (2.13) we obtain

Using inequality (2.3), there is a permutationπofSnsuch that

So we have

We use the relations
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to get the inequality in (2.11).
Theorem 2.5
Under the hypotheses of Theorem2.4,there are permutationsπandνofSnsuch 
that

   (2.15)

   (2.16)

whereq≥2and .
Proof
Using (2.10), we have

    (2.17)
and

    (2.18)
Applying (2.6) and (2.7) to (2.17) we obtain

Using inequality (2.4), there exists a permutationπofSnSnsuch that

so we have

We use the relations

to get the inequality in (2.15).
The proof of inequality (2.16) is similar to the proof of (2.15) and is omitted 
here.
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For1≤p≤2, it is well known [2] that the scalar function (1.1) of a matrixAis 
a submultiplicative matrix norm. However, it is true for0<p≤2. Actually, 
according to the Cauchy-Schwarz inequality, we have

Since for fixed vectorx=(x1,x2,…,xn), the function
is decreasing on(0,∞),

That is,

     (2.19)
IfBis nonsingular, then

So we have

      (2.20)
Similarly, whenAis nonsingular, then

That is,

      (2.21)
Theorem 2.6
Under the assumptions of Theorem2.4,there are permutationsπandνofSnsuch 
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that

  (2.22)

   (2.23)
where0<p≤2.
Proof
The proof is similar to the proof of Theorem2.4and is omitted here.
Remark 2.7
Since

and

for1<p≤2and , the bounds in (2.11) and (2.12) are always sharper 
than those in (2.22) and (2.23), respectively.

When . We obtain

Since

and
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forq≥2and , we have the following corollary.
Corollary 2.8
Under the same conditions as in Theorem2.4,there are permutationsπandνof 
Snsuch that

whereq≥2and .
Remark 2.9
Whenp=q=2, we obtain

PERTURBATION BOUNDS FOR SINGULAR VALUES
For brevity we only consider square matrices. The generalizations from 
square matrices to rectangular matrices are obvious, and usually problems 
on singular values of rectangular matrices can be converted to the case of 
square matrices by adding zero rows or zero columns.
For a Hermitian matrix , we always denote

, where are the 
eigenvalues ofGin decreasing order.
Lemma 3.1
(Lidskii [14], Lemma3.18 [9])
If are Hermitian matrices,then
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Lemma 3.2
([9], p.18)
Letf(t)be a convex function,
.Then

Theorem 3.3
Let and 

be the singular values of the complex 
matricesA=(aij),B=(bij)andA−B,respectively.Then

   (3.1)

   (3.2)
where1≤p≤2,0<q≤1.
Proof

Let . Then

are three Hermitian matrices. Assume that

are singular value 
decompositions with unitary. Then

are unitary matrices and

and
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By Lemma3.1, we have

    (3.3)

First consider the case1≤p≤2. Since the function is convex 
on(−∞,+∞), applying Lemma3.2withf(t)to the majorization (3.3) yields

In particular,

   (3.4)
According to Theorem1 of [15] or Theorem3.32 of [9], we have

      (3.5)
for1≤p≤2. Combining (3.4) and (3.5), we obtain (3.1).

When0<q≤1, by considering the convex function , 
applying Lemma3.2withg(t)g(t)to the majorization (3.3) yields

In particular,

    (3.6)
From (3.6), we get (3.2).
Remark 3.4
From inequality (3.1), ifp=2, we get the inequality (1.6). So the inequality 
(3.1) generalizes the inequality (3.5.33) of [10], p.215, and Theorem3.12 of 
[11], p.199.
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ABSTRACT
This paper presents two new iterative methods to compute generalized 
singular values and vectors of a large sparse matrix. To reach acceleration 
in the convergence process, we have used a different inner product instead 
of the common one, Euclidean one. Furthermore, at each restart, a different 
inner product has been chosen by the researchers. A number of numerical 
experiments illustrate the performance of the above-mentioned methods.
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INTRODUCTION
There are a number of applications for generalized singular-value 
decomposition (GSVD) in the literature including the computation of 
the Kronecker form of the matrix pencilA−λB[5], solving linear matrix 
equations [1], weighted least squares [2], and linear discriminant analysis 
[6] to name but a few. In a number of applications like the generalized total 
least squares problem, the matricesAandBare large and sparse, so in such 
cases, only a few of the generalized singular vectors corresponding to the 
smallest or largest generalized singular values are needed. There is a kind of 
close connection between the GSVD problem and two different generalized 
eigenvalue problems. In fact, there are many efficient numerical methods 
to solve generalized eigenvalue problems [8,9,10,11]. In this paper, we will 
examine the Jacobi–Davidson-type subspace method which is related to the 
Jacobi–Davidson for the SVD [5], which in turn is inspired by the Jacobi–
Davidson method to solve the eigenvalue problem [4]. The main step in 
Jacobi–Davidson-type method for the (GSVD) is solving the correction 
equations in an exact manner requiring the solution of linear systems of 
original size at each iteration. In general, these systems are considered as 
large, sparse, and nonsymmetrical. For this matter, we use the weighted 
Krylov subspace process to solve the correction equations in an exact 
manner, and we show that our proposed method has the feature of asymptotic 
quadratic convergence. The paper is organized as follows. In “Preparations”, 
we will remind the readers of basic definitions of the generalized singular-
value decomposition problems and their elementary properties. “A new 
iterative method for GSVD” introduces our new numerical methods to 
solve generalized eigenvalue problems together with an analysis of the 
convergence of these methods. Several numerical examples are presented 
in “Numerical experiments”. Finally, the conclusions are given in the last 
section.

PREPARATIONS

Definition 2.1

Supposes that . The generalized singular val-
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ues of the pair(A,B)are presented as

.
Definition 2.2
A generalized singular value is called simple ifσi≠σj, for alli≠j.
Theorem 2.3
Suppose , andm≥n. Here, taking the previous theorem into 
consideration, we see that there are orthogonal matricesUm×m,Vp×pand a 
nonsingular matrixXn×n, such that

   (1)
where

, and . Ifαj=0for any

. Otherwise,

.
Proof
Refer to [3].
Theorem 2.4
Let have the GSVD:

furthermore, consider it as nonsingular. Here, then, the matrix pencil

     (2)

has eigenvalues which corresponds to 
the eigenvectors:

     (3)
whereujis the ith column ofUandxjis the ith column ofX.
Proof
Refer to [3].
LetDbe a diagonal matrix, that is,D=diag(d1,d2,…,dn). Ifuandvare two 
vectors ofRn, we define theD-scalar product of(u,v)D=vTDu.which is well 
defined if and only if the matrixDis positively definite or to saydi>0,i=1,…
,n. The norm associated with this inner product is theDD-norm∥⋅∥Dwhich is 
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defined as .

As assumptionBhas full rank,  is an 
inner product, and due to this, the corresponding norm satisfies

. Inspired by the equality for a real 
matrixZ, we define the  -Frobenius norm ofZby

   (4)
A new iterative method for GSVD
We will advance different extraction methods here which are often more 
appropriate for small generalized singular values than the standard one 
from “A new iterative method for GSVD”. Before dealing with these new 
methods, we should refer to our main idea which is developed considering 
Krylov subspace methods.
Theorem 3.1
Assume that(σ,u,v)is a generalized singular triple:
, whereσis a simple nontrivial generalized singular value, and

, and suppose that the correction equations

     (5)

are solved exactly in every step. Provided that the initial vectors

are close enough to(u,w)the sequence of approximations converges 
quadratically to(u,w).
Proof
Refer to [4].
Lemma 3.2
Having in mind the Theorem3.1, now suppose thatmmsteps of the weighted 
Arnoldi process[7]have been performed on the following matrix:

   (6)

Furthermore, consider the matrix as the Hessenberg matrix, whose 

nonzero entries are the scalars , constructed by the Weighted Arnoldi 

process. Here, we notice that the basis constructed by this 
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algorithm isDD-orthonormal and we have

   (7)

   (8)
Proof
See [4].
We know that similar to Krylov methods, themth(m≥1)iterate
of the weighted-FOM and weighted-GMRES methods belong to the affine 
Krylov subspace:

    (9)
Now, it is the time to prove our main theorem.
Theorem 3.3
Considering Theorem3.1,mmsteps of the weighted Arnoldi process have 
been run on(7). Here, the iterate is the exact solution of the 
correction equation:

   (10)
Proof

The iterate of the weighted-FOM method is selected, because its residual 
isD-orthonormal or

   (11)

The iterate of the weighted-GMRES method is selected to lessen the 
residualD-norm in (9). Here, we notice that it is the solution of the least 
squares problem:
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    (12)
In these methods, we use theD-inner product and theD-norm to calculate the 
solution in the affine subspace (9) and we create aD-orthonormal basis of 
the Krylov subspace:

   (13)
by the weighted Arnoldi process. An iteratexmof these two methods can 
be transcribed as

where .

Therefore, the matching residual satisfies

where ,ande1is the first vector of the canonical basis.
At this point, the weighted-FOM method entails finding the vector

solution of the problem:

which is equal to solve

      (14)
To the extent that the weighted-GMRES method is considered, the ma-
trix isD-orthonormal, so we have
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and problem (12) is condensed to find the vector solution of the 
minimization problem:

   (15)
We can reach the solution of (14) and (15) with the use of theQRdecom-
position of the matrix , as for the FOM and GMRES algorithms.
Whenmmis equal to the degree of the minimal polynomial of

for , the Krylov subspace (13) will be invariant. Therefore, 
the iterate gained by both methods is the exact solution of the 
correction Eq.(10).
It is time to write the main algorithm in this paper now. The following al-
gorithm applies FOM, GMRES, weighted-FOM, and weighted-GMRES 
processes to solve the correction Eq.(10) and as a final point to solve the 
generalized singular-value decomposition problem. They are represented 
as F-JDGSVD, G-JDGSVD, WF-JDGSVD, and WG-JDGSVD.
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As Algorithm 3.1 displays, there are two loops in this algorithm. One of them 
computes the largest generalized singular value called the outer iteration, 
and the other called the inner iteration solves the system of linear equation 
at each iteration. Numerical tests indicate that there is a significant relation 
between parametermand the norm of residual vector and the computational 
time.
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Convergence
We will now demonstrate that the method we have proposed has 
asymptotically quadratic convergence to generalized singular values when 
the correction equations are solved in an exact manner and tend toward 
linear convergence when they are solved with a sufficiently small residual 
reduction.
Theorem 3.4
Having in mind Theorem3.3, suppose thatmmsteps of the weighted Ar-

noldi process have been performed on(6)and is the exact 
solution of the correction Eq.(10).Provided that he initial vectors
are close enough to(u,w), the sequence of approximations converges 
quadratically to(u,w).
Proof
Suppose

andPare like what you have seen in (5). Let with be 
the exact solution to the correction equation:

      (16)

Besides, let , for certain 
scalarsαandβ, satisfy (15); note that these decompositions are possible 
meanwhile because of the assumption that the 
vectors are close to(u,w). Projecting (16) yields

   (17)
Subtracting (16) from (17) gives

Thus for close enough to(u,w),P(A−θB)is a bijection from onto 
itself. Together with
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this implies asymptotic quadratic convergence:

NUMERICAL EXPERIMENTS
In this section, we look for the largest generalized singular value, using the 
following default options of the proposed method:

Maximum dimension of search spaces 3030
Maximum iterations to solve correction equation 1010
Fix target until∥r∥≤ε 0.010.01
Initial search spaces Random

Example 4.1
The matrix pair(A,B)(A,B)is constructed, such that that they are simi-
lar to experiments as [7]. We choose two diagonal matrices of dimensi-
onn=1000. Forj=1,2,…,1000

where therjuniformly distributed on the interval(0,1)and⌈⋅⌉denotes the 
ceil function. We take

whereQ1andQ2are two random orthogonal matrices. The estimated con-
dition numbers ofA andBare4.4e2and5.7e0, respectively (Table1).
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We can see that by increasing the value ofm, the number of outer and 
inner iterations decreases. Therefore, the consuming time also decreases. 
But not that ifmis very large, the number of iterations increases because 
of loosing the orthogonality property. This example is given to show 
the improvement brought by the weighted methodsWF-JDGSVDWF-
JDGSVDandWG-JDGSVDWG-JDGSVDis simultaneously on the relative 
error and on the computational time (Fig.1).

Figure1: Errors plotcreated by F-JDGSVD, G-JDGSVD, WF-JDGSVD, and 
WG-GSVD.

From figure one, we can see that the suggested method WG-JDGSVD is 
more accurate form the other methods.

Example 4.2
In this experiment, we takeA=CDandB=SDof various 
dimensionn=400,800,1000,1200.
This example is given to show the performance of two new methods on 
the large sparse problems. In this test, we have difficulties in computing 
the largest singular value for ill-conditioned matricesAandB. We note 
that in this experiments, due to the ill-conditioning ofAandB, it turned 
out to be advantageous to turn of the Krylov option.

Example 4.3
Consider the matrix pair(A,B), whereAis selected from the university of 
Florida sparse matrix collection [8] aslp-ganges. This matrix arises from 
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a linear programming problem. Its size is1309×1706and it has a total 
ofNz=6937nonzero elements. The estimated condition number is2.1332e4, 
andBis the1309×1706identity matrix (Tables2,3).

Table2: Implementation of Algorithm 3.1 for(A,B)with various dimensions 
andm=6

n F-JDGSVD G-JDGSVD WF-JDGSVD WG-GSVD κ(A) κ(B)

∥r∥2 Time ∥r∥2 Time ∥r∥2 Time ∥r∥2 Time

400 8.82e−4 7.03 0.0098 6.08 2.47e−8 11.85 2.14e−9 11.78 3.5e2 3.2e0

800 0.0085 19.59 0.0063 21.89 9.19e−8 26.09 4.44e−8 22.25 3.6e2 5.6e0

1200 0.0034 27.83 0.0073 29.35 6.74e−6 41.18 5.19e−7 42.35 4.8e2 6.6e0

1600 0.0075 38.65 0.0084 35.89 1.19e−5 49.09 4.99e−5 58.17 6.0e2 8.9e0

Table3: Implementation of Algorithm 3.1 for(A,B)with different values ofmm

m F-JDGSVD G-JDGSVD WF-JDGSVD WG-GSVD

σmax ∥r∥2 Time σmax ∥r∥2 Time σmax ∥r∥2 Time σmax ∥r∥2 Time

10 3.9889 0.0075 52.57 3.9865 0.0079 48.86 2.7297 0.00034 63.59 3.9890 0.00015 55.36

20 3.9907 0.0054 46.63 3.9889 0.0035 42.84 2.7298 0.00098 56.99 3.9890 0.00041 47.39

30 2.7298 0.0016 39.78 3.9889 0.0097 36.08 3.9907 0.00043 48.74 3.9888 0.00040 39.65

40 3.9897 0.0091 33.17 3.9888 0.0052 30.89 2.7298 0.00027 38.37 3.9887 0.00014 32.68

We should mention that, for all considered Krylov subspaces sizes, 
each weighted method converges in less iterations and less time than its 
corresponding standard method. The convergence of F-JDGSVD and 
G-JDGSVD is slow, and we have linear asymptotic convergence. However, 
the two WF-JDGSVD and WG-JDGSVD methods have quadratic asymptotic 
convergence, because the correction Eq.(10) is solved exactly.
Remark 4.4
From the above examples and tables, we can see that the two suggested 
methods are more accurate than G-JDGSVD and F-JDGSVD for the same 
valuem, but its computational times are often a little longer than G-JDGSVD 
and F-JDGSVD. Therefore, we can use WF-JDGSVD and WG-GSVD if the 
computational time is less important.
Remark 4.5
The algorithm we have described finds the largest generalized singular triple. 
We can compute multiple generalized singular triples of the pair(A,B)using 
a deflation technique. Suppose thatUf=[u1,…,uf]andWf=[w1,…,wf]contain 
the already found generalized singular vectors, whereBWfhas orthonormal 
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columns. We can check that the pair of deflated matrices

   (18)
has the same generalized singular values and vectors as the pair(A,B)
(see [3]).
Example 4.6
In generalized singular-value decomposition, ifB=In, then×nidentity 
matrix, we get the singular value ofA.SVDhas important applications in 
image and data compression. For example, consider the following image.
This image is represented by a1185×1917matrixA. Which we can 
then decompose via the singular-value decomposition asA=U∑
VTwhereUis1185×1185,∑is1185×1917, andVis1917×1917. The 
matrixA, however, can also be written as a sum of rank 1 matrices

are thernonzero singular 
value ofA. In digital image processing, any matrixAof orderm×n(m≥n)
generally has a large number of small singular values. Suppose there 
are(n−k)small singular values ofAAthat can be neglected (Fig.2).

Figure2: Original image.

Then, the matrix is a very good approxi-
mation ofA, and such an approximation can be adequate. Even whenkis 
chosen much less thenn, the digital image corresponding toAkcan be very 
close to the original image. Below are the subsequent approximations 
using various numbers of singular values.
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The observation on those examples, we found whenk≤20, the images 
are blurry but with the increase of singular values, when their numbers are 
about50, we have a good approach to the original image.

CONCLUSIONS
In this paper, we have suggested two new iterative methods, namely, 
WF-JDGSVD and WG-JDGSVD, for the computation of some of the 
generalized singular values and corresponding vectors. Various examples 
studied illustrate these methods. To accelerate the convergence, we applied 
the Krylov subspace method for solving the correction equations in large 
sparse problems. In our methods, we see the existence of asymptotically 
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quadratic convergence, because the correction equations are solved exactly. 
In the meantime, the correction equations in F-JDGSVD and G-JDGSVD 
methods are solved inexactly for large sparse problems, so we have linear 
convergence.

As the amount of the WF-JDGSVD and WG-JDGSVD methods is not 
much larger than that of the F-JDGSVD and G-JDGSVD methods, and 
as the weighted methods need less iterations to convergence, the parallel 
version of the weighted methods seems very interesting. From the tables 
and the figures, we see that whenmincreases, the suggested methods are 
more accurate than the previous methods; moreover, by increasing the 
dimension of the matrix, two suggested methods are applicable; this results 
are supported by convergence theorem which shows the asymptotically 
quadratic convergence to generalized singular values.
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ABSTRACT
Until recently, a lot of work has been done to develop algorithms that utilize 
the distributed structure of an ad hoc wireless sensor network to estimate a 
certain parameter of interest. However, all these algorithms assume that the 
input regressor data is available to the sensors, but this data is not always 
available to the sensors. In such cases, blind estimation of the required 
parameter is needed. This work formulates two newly developed blind 
block-recursive algorithms based on singular value decomposition (SVD) 
and Cholesky factorization-based techniques. These adaptive algorithms are 
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then used for blind estimation in a wireless sensor network using diffusion 
of data among cooperative sensors. Simulation results show that the 
performance greatly improves over the case where no cooperation among 
sensors is involved.

Keywords: Blind estimation, Diffusion, Adaptive networks

INTRODUCTION
This work studies the problem of blind distributed estimation over an ad-
hoc wireless sensor network (WSN). WSNs have recently generated a great 
deal of renewed interest in distributed computing. New research avenues 
have opened up in the fields of estimation and tracking of parameters of 
interest, in applications requiring a robust, scalable and low-cost solution. 
To appreciate such applications, consider a set ofNsensor nodes spread over 
a geographic area as shown in Figure1. Sensor measurements are taken at 
each node at every time instant. The objective of the sensor is to estimate 
a certain unknown parameter of interest using these sensed measurements.

Figure 1: Adaptive network ofNnodes.

Several algorithms have been devised in the literature for distributed 
estimation [1,2,3,4,5]. The work in [1] introduces a distributed estimation 
approach using the recursive least squares algorithm. Other algorithms 
involving the least-mean-square (LMS) approach have also been suggested 
[2,3,4,5].

However, all these algorithms assume that the input regressor data,uk,i, 
is available at the sensors. If this information is not available, then the said 
problem becomes a blind estimation problem. Blind algorithms have been a 
topic of interest ever since Sato devised a blind algorithm [6] in the context 
of equalization [7]. Since then, several algorithms have been derived for 
blind estimation [8,9,10,11,12,13,14,15]. The work in [8] summarizes the 
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second-order statistics-based approaches for blind identification. These 
include multichannel as well as single-channel blind estimation methods 
such as the works in [9] and [10]. The work in [11] is one of the most cited 
blind estimation techniques for a single-input-single-output (SISO) model. 
However, unlike in [11], it is shown in [12] that the technique of [11] can 
be improved upon using only two blocks of data. A key idea in [12] is 
used in [13] to devise an algorithm that does indeed show improvement 
over the algorithm of [11]. However, the computational complexity of 
this new algorithm (in [13]) is very demanding. A generalized algorithm 
is devised in [14], improving upon both algorithms developed in [12,13]. 
In [15], a Cholesky factorization-based least squares solution is suggested 
that simplifies the work of [11,13,14]. Although the performance of the 
algorithm developed in [15] is not as good as that of the previous algorithms, 
it nevertheless provides an excellent trade-off between performance level 
and computational complexity. However, in systems where less complexity 
is required and performance can be compromised to some extent, this 
algorithm would provide a good substitute to the algorithms developed in 
[12,13].

As mentioned above, for the case where the input regressor data is not 
available to the WSN environment used, then blind estimation techniques 
become mandatory. In this case, since blind estimation techniques have 
not yet been developed for this field, blind block-recursive least squares 
algorithms would have to be devised, inspired from the works in [11] and 
[15], and then implemented in a distributed WSN environment using the 
diffusion approach suggested in [1].

The following notation has been used here. Boldface letters are used for 
vectors/matrices and normal font for scalar quantities. Matrices are defined 
by capital letters and small letters are used for vectors. The notation (.)
Tstands for transposition for vectors and matrices and expectation operation 
is denoted byE[.]. Any other mathematical operators used in this paper will 
be defined as and when introduced in the paper.

The paper is divided as follows: Section 2 defines the problem statement. 
Section 3 gives a brief overview of the blind estimation algorithms taken 
into consideration in this work. Section 4 proposes the newly developed 
recursive forms of the two algorithms, as well as their diffusion counterparts, 
to be used in wireless sensor networks. Section 5 studies the computational 
complexity of all the algorithms. The simulation results are discussed in 
detail in section 6. Finally, the paper is concluded in section 7.
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PROBLEM STATEMENT
Consider a network ofKsensor nodes deployed over a geographical area, to 
estimate an (M×1) unknown parameter vectorwoas shown in Figure1. Each 
nodekhas access to a time realization of a scalar measurementdk(i) that is 
given by

   (1)
whereuk,iis a (1×M) input regressor vector,vkis a spatially uncorrelated zero-
mean additive white Gaussian noise with variance andidenotes the time 
index. The input data is assumed to be Gaussian. The aim of this work is to 
estimate the unknown vectorwousing the sensed datadk(i) without knowledge 
of the input regressor vector. The estimate of the unknown vector can be 
denoted by an (M×1) vectorwk,i. Assuming that each nodekcooperates only 
with its neighbors andkhas access to updateswl,i, from itsKkneighboring nodes 
at every time instanti, where{l∈Kk,l≠k}, in addition to its own estimate,wk,i. 
The adapt-then-combine (ATC) diffusion scheme [16] first updates the local 
estimate at each node using the adaptive algorithm and then fuses together 
the estimates from theKkneighboring nodes. This scheme will be used in 
this work for the development of our distributed algorithm. Note that, even 
though this work is designed for a fixed topology, it can be extended to a 
dynamic one.

BLIND ESTIMATION ALGORITHM
In this work, the input regressor data,uk(i) is assumed to be not available 
to the sensors and the unknown vectorwois estimated using only the sensed 
values,dk(i). Since the data considered here is Gaussian, a method using 
second-order statistics only is sufficient for such an estimation problem 
as it will capture all the required data statistics. Even for the case of non-
Gaussian data, such an approach would provide a suboptimal yet accurate 
enough estimate. The work in [11] uses the second-order statistics in an 
intelligent manner to create a null space with respect to the unknown 
vectorwo. At the receiver end, this null space is then exploited to estimate 
the unknown vector. The authors in [15] further simplify the algorithm of 
[11] by proposing a new algorithm that reduces complexity but at a cost of 
performance degradation. These two algorithms are taken into consideration 
in this work as one provides excellent results whereas the other provides a 
computationally tractable solution.
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Singular Value Decomposition-based Blind Algorithm
The work in [11] uses redundant filterbank precoding to construct data 
blocks that have trailing zeros. These data blocks are then collected at the 
receiver and used for blind channel identification. In this work, however, 
there is no precoding required. The trailing zeros will still be used though, 
for estimation purposes. Let the unknown parameter vector be of size (M×1). 
Suppose the input vector is a (P×1) vector with (P−M) trailing zeros

   (2)
wherePandMare related throughP= 2M−1. The unknown parameter vector 
can be written in the form of a convolution matrix given by

   (3)
wherewo=[w(0),w(1),…,w(M−1)] is the unknown parameter vector. The 
output data block can now be written as

    (4)
wheredk(i) is the ((2M−1)×1) output data block andvkis the added noise. The 
output blocks {dk(i)} are collected together to form the following matrix

   (5)
whereNis greater than the minimum number of data blocks required for 
the input blocks to have a full rank. The singular value decomposition 
(SVD) of the autocorrelation ofDk,Ngives a set of null eigenvalues. Thus, the 
eigendecomposition

    (6)
whereŪkis the (P×M) matrix of eigenvectors and is a (P× (M−1)) matrix 
whose columns form the null space forDk,N. This implies

       (7)
which can also be written as

       (8)
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wherem= 1,…,M−1 and is simply themthvector of . This equation 
denotes convolution since, as pointed earlier,Wis essentially a convolution 
matrix. Since convolution is a commutative operation, Equation8can also 
be written as

    (9)
wherewis a component vector of the convolution matrixWandUk,mis an 
(M×M) Hankel matrix given by

   (10)
The final parameter estimate is given by the unique solution (up to a con-
stant factor) of Equation9. It is important to note here that due to the pres-
ence of noise, the final estimate is not accurate.

Cholesky Factorization-based Blind Algorithm
The work in [15] describes a method that replaces the SVD operation with the 
Cholesky factorization operation to blindly estimate the channel. Again, the 
received block data matrix can be written as (5). Taking the autocorrelation 
ofDk,Nand assuming the input data regressors to be white Gaussian with 
variance , we get

     (11)
Now if the second-order statistics of both the input regressor data as well as 
the additive noise are known, then the correlation matrix for the unknown 
vector can be written as

    (12)
However, this information, particularly the information about the input re-
gressor data, is not always known and cannot be easily estimated either. 
Therefore, the correlation matrix of the unknown parameter vector has to 
be approximated by the correlation matrix of the received/sensed data. Now 
the algorithm in [15] uses the Cholesky factor of this correlation matrix to 
provide a least squares estimate of the unknown parameter vector.
The method given in [15] is summarized here. Since the correlation matrix 
is not available at the receiver, an approximate matrix is calculated usingK-
blocks of data. So the correlation matrix is given by
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     (13)
As the second-order statistics of the noise are not known, the noise variance 
is estimated and then subtracted from the data correlation matrix. Thus, we 
have

   (14)
Taking the Cholesky factor of this matrix gives us the upper triangular ma-
trix

      (15)
Next, we use thevecoperator to get an (M2× 1) vector

      (16)
It is given in [15] that the vectorsgandwoare related through

       (17)
whereQis an (M2×M) selection matrix given by , and the (M×M) 
matricesJqare defined as

     (18)
where {a,b,c} = 0,…,M−1. So the least squares estimate of the unknown 
parameter vector is given by [15]

     (19)
The work in [15] also gives a method for estimating the noise variance 
that is on the whole adequate except it may not provide correct estimates 
of the noise variance at low SNRs. As a result, subtracting the estimated 
variance from the autocorrelation matrix may not yield a positive-definite 
matrix. In such cases, the use of Cholesky factorization may not be justified. 
However, neglecting the noise variance estimate altogether may lead to a 
poor estimate of the parameter vector. Despite this shortcoming, the main 
advantage of this method remains its very low computational complexity. 
Whereas the method of [11] requires the singular value decomposition of 
the autocorrelation matrix followed by the building of Hankel matrices 
using the null eigenvectors and then finding a unique solution to an over-
determined set of linear equation, this method [15] simply evaluates the 
Cholesky factor (upper triangular matrix) of the autocorrelation matrix and 
then uses it to directly find the required estimate. Computational complexity 
is, thus, greatly reduced but at the cost of a performance degradation.



Fundamentals of Matrix Computations58

Both of the above-mentioned methods require several blocks of data to 
be stored before estimation can be performed. Although the least squares 
approximation gives a good estimate, a sensor network requires an 
algorithm that can be deployed in a distributed manner, which is possible 
only with recursive algorithms. Therefore, the first step would be to make 
both algorithms in [11] and [15] recursive in order to utilize them in a WSN 
setup.

PROPOSED RECURSIVE BLIND ESTIMATION AL-
GORITHMS
In the ensuing, the previously mentioned blind estimation algorithms are 
made recursive and applied over a wireless sensor network.

Blind Block Recursive SVD Algorithm
Here, we show how the algorithm from [11] can be made into a blind block-
recursive algorithm. Since the algorithm requires a complete block of data 
at each processing instant, we therefore base our iterative process on data 
blocks as well. So instead of the matrixDk, we have the block data vectordk. 
The autocorrelation matrix for the first data block is defined in as

     (20)
The matrix is expanded for two blocks in the original algorithm as

   (21)
Thus, a generalization of (21) can be written as

    (22)
The first few iterations may not give a good estimate and the error may even 
seem to be increasing as the matrix will be rank deficient at this early stage. 
However, as more data blocks are processed, the rank becomes gradually 
full and the estimate then begins to gradually improve. The next step is 
to get the eigendecomposition of the autocorrelation matrix. Applying the 
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SVD onRd,kyields the eigenvector matrixUk, from which we get the (M−1 
×M) matrix that forms the null space of the autocorrelation matrix. From

, we then form theMHankel matrices of size (M×M+ 1) each, which are 
then concatenated to give the matrixUk(i)from which the estimate is 
finally derived. This sequential derivation process is depicted below in (23):

   (23)
The update for the estimate of the unknown parameter vector is then given 
by

   (24)
It can be seen from (23) that the recursive algorithm does not become 
computationally less complex. However, it does require lesser memory 
compared to the original algorithm of [11] and the result improves with an 
increase in the number of data blocks processed. The performance almost 
matches that of the algorithm of [11].
Algorithm ?? describes the steps of the blind block recursive SVD (RS) 
algorithm. The forgetting factor is fixed in this case. If the forgetting 
factor value were to be changed to , the algorithm would then 
become the variable forgetting factor RS (VFFRS) algorithm. However, 
simulations show that the VFFRS algorithm converges more slowly than its 
fixed forgetting factor counterpart. The simulation results show that if the 
forgetting factor is small for the fixed forgetting factor case, the algorithm 
converges faster even though it gives a higher error floor at steady-state. 
While for the VFFRS algorithm, the forgetting factor increases with time 
resulting in slow convergence even though the steady-state error is lower 
compared to the fixed forgetting factor case.
Algorithm 1: Summary of blind block recursive SVD algorithm.
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Blind Block Recursive Cholesky Algorithm
In this section, we show how the algorithm of [15] can be converted into a 
blind block recursive solution.
Equation 14 can be rewritten as

    (25)
Similarly, we have

     (26)

     (27)
LettingQA= (QTQ)−1QT, we have

      (28)
We further apply a smoothing step to get the final estimate:

  (29)
where is a variable forgetting factor.
Letting , the blind block recursive Cholesky algorithm is 
summarised in Algorithm ??. This table defines the Blind Block Recursive 
Cholesky algorithm with variable forgetting factor (VFFRC). If the 
forgetting factor is fixed then the algorithm can simply be called Blind 
Block Recursive Cholesky (RC) algorithm. Simulation results show that the 
VFFRC algorithm converges to the least squares solution obtained through 
the algorithm given in [15]. The RC algorithm can also achieve the same 
result if the value of the forgetting factor is extremely close to 1. However, 
the convergence speed of the RC algorithm is slower than that of the 
VFFRC algorithm even though it requires lesser memory and is slightly less 
computationally complex. There are two issues with the recursive algorithm. 
Firstly, the Cholesky factorization cannot be applied until at leastMblocks 
of data have been received as the data correlation matrix needs to be first 
positive definite before the Cholesky method can be correctly applied. The 
second issue involves the variance of the additive noise. In [15], it is shown 
that if the noise variance can be estimated, the estimate of the unknown 
vector will improve. However, using the noise variance in the recursive 



Blind Distributed Estimation Algorithms for Adaptive Networks 61

algorithm can make the resulting matrix have zero or negative eigenvalues 
before a sufficient number of data blocks were processed, thus making the 
use of Cholesky factorization unjustifiable. However, neglecting the noise 
variance altogether will lead to a performance degradation of this algorithm 
even though it will be computationally less complex than the SVD approach. 
One approach is to estimate the noise variance after a certain number of 
blocks have been received and then use that value for the remainder of the 
iterations.

Algorithm 2: Summary of blind block recursive Cholesky (RC) algorithm.

Diffusion Blind Block Recursive Algorithms
In a wireless sensor network, a distributed algorithm is required, through 
which nodes can interact with each other and improve their individual 
estimates as well as the overall performance of the network. In such a 
scenario, a recursive algorithm is required. This is one major reason for 
requiring a recursive blind algorithm. Each node can individually update 
its estimate and then collaborate with the neighboring nodes to improve 
that estimate. A comparison of different distributed schemes has shown 
that theAdapt-Then-Combine(ATC) diffusion strategy provides the best 
performance [16]. Therefore, we also implement our distributed algorithms 
using the ATC scheme.

For the diffusion-based RS algorithm, all nodes evaluate their own 
autocorrelation matrix updates and then perform the SVD operation. This is 
followed by a preliminary estimate of the unknown vector. The preliminary 
results are then combined with those of the neighboring nodes. As a result of 
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this cooperation, the result of the network improves, as will be shown in the 
simulations. Similarly, for the diffusion RC algorithm, each node performs 
the recursion and reaches a preliminary estimate of the unknown vector 
which is then combined with those of the neighboring nodes. These are 
summarized in Algorithms ?? and ??, where the subscriptkdenotes the node 
number,Nkis the set of neighbors of nodek, is the intermediate estimate 
for nodekandclkis the weight connecting nodekto its neighboring nodel∈Nk, 
whereNkincludes nodek, and∑clk=1.

Algorithm 3: Summary of diffusion blind block recursive SVD algorithm.

Algorithm 4: Summary of diffusion blind block recursive Cholesky 
algorithm.
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COMPLEXITY OF THE RECURSIVE ALGORITHMS
In order to fully understand the variation in performance of these two 
algorithms, it is necessary to look at their computational complexity as it 
will allow us to estimate the loss in performance that would result from 
a reduction in computational load. We first analyze the complexity of the 
original algorithms and then deal with that of their recursive versions.

Blind SVD Algorithm
The length of the unknown parameter vector isMand the data block size 
isK. Since a total number ofNdata blocks are required for the estimation 
of the unknown parameter vector, whereN≥K, the resulting data matrix 
will therefore be of sizeK×N. The data correlation matrix will thus be of 
sizeK×Kand this function will requireK2(2N−1) calculations (including both 
multiplications and additions) for its computation. The next step is singular 
value decomposition (SVD), done using the QR decomposition algorithm. 
This algorithm requires a total of calculations. Then the 
null eigenvectors are separated and each eigenvector is used to form a Hankel 
matrix with all the Hankel matrices then stacked together to form a matrix of 
sizeM× (K−M)(M−1). The unique null vector of this new matrix gives the 
estimate of the unknown vector. To find this eigenvector requires another

calculations. So the overall computational 
load required for the algorithm can be given as
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   (30)

Blind Cholesky Algorithm
Like the SVD algorithm, here also the unknown vector length isMand the 
data block size isK. For computational purposes and for the blind SVD 
algorithm, the total number of data blocks is taken asN. The correlation 
process is the same except for the final averaging step which results in an 
extra division so the total number of calculations becomesK2(2N−1) + 1. 
The next step is to estimate the noise variance, which requires an SVD 
decomposition and therefore an extra number of calculations given by

. After the SVD decomposition, only one further 
division is required to estimate the noise variance. The noise variance is then 
subtracted from the diagonal of the correlation matrix, resulting in anotherK 
calculations. After that, the Cholesky factorization is performed, which 
requires calculations. Finally, the last step is to get the 
estimate of the unknown vector through the pseudo-inverse of Cholesky-
factorized data correlation matrix and this step requires further [M(2M2−1)] 
calculations. Thus, the total number of calculations required is given as

   (31)

Blind Block Recursive SVD Algorithm
When the blind SVD algorithm is made recursive, we notice that this will 
involve only a slight change in the overall algorithm but will really halve the 
total computational load. Since the correlation matrix is only being updated 
at each iteration, the number of calculations required for the first step are 
now only 2K2instead ofK2(2N−1). However, an extra (M+ 2) calculations 
are required for the final step. The overall number of calculations is thus 
given as
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    (32)

Blind Block Recursive Cholesky Algorithm
Similarly, the number of calculations for the first step for this algorithm 
is reduced to (2K2+ 2) from the (K2(2N−1) + 1) calculations required by 
its non-recursive counterpart. The final step includes an extra (K2+M+ 2) 
calculations. Thus, the total number of calculations is now given as

   (33)
However, it should be noted here that the estimation of the noise variance 
need not be repeated at each iteration. After a few iterations, the number of 
which can be fixeda priori, the noise variance can be estimated once only 
and then this same estimated value can be used in the remaining iterations. 
The number of calculations, thus, reduces to

   (34)

Comparison of All Algorithms
Here, we compare all of the algorithms discussed in the previous sections, 
using specific scenarios where the value forMis fixed to 4, that ofKis varied 
for all algorithms and the value ofNis varied between 10 and 20 for the 
least squares algorithms. The number of calculations for the two recursive 
algorithms discussed before are shown for one iteration only. Recall that 
in the second algorithm, i.e. the blind block recursive Cholesky algorithm, 
the noise variance is calculated only once, after a pre-selected number of 
iterations have occurred, and then kept constant for the remaining iterations. 
Tables1and2below summarize the results.

Table 1: Computations for original least squares algorithms under different set-
tings

M= 4 N= 10 N= 10 N= 20 N= 20 N= 20
K= 8 K= 10 K= 8 K= 10 K= 20

SVD 2,434 4,021 3,714 6,021 28,496
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Chol 2,180 3,575 3,460 5,575 27,090

Table 2: Computations for recursive algorithms under different settings

M= 4 K= 8 K= 10 K= 20
RS 1,352 2,327 13,702
RC 1,100 1,883 12,298
RCNV 300 372 972

Table1lists the number of computations for the original algorithms, 
showing that the Cholesky-based method requires fewer computations 
than the SVD-based method and so the trade-off between performance and 
complexity is justified. If the number of blocks is small, then the Cholesky-
based method may even perform better than the SVD-based method as 
shown in [15]. Here it is assumed that the exact length of the unknown vector 
is known. Generally, an upper bound of this value is known and that value 
is used instead of the exact value, resulting in an increase in computations. 
This assumption is made for both algorithms here to make their comparative 
study fair.

Table2lists the computations-per-iteration for the recursive versions of 
these two algorithms. RS and RC give the number of computations for the 
recursive SVD algorithm and the recursive Cholesky algorithm respectively. 
RCNV lists the number of computations when the noise variance is 
estimated only once in the recursive Cholesky algorithm. This shows how 
the complexity of the algorithm can be reduced by an order of magnitude by 
adopting an extra implicit assumption regarding the wide-sense stationarity 
of the noise and hence the constancy of its variance from one iteration to the 
next. Although the performance does suffer slightly, the gain in the reduction 
of computational complexity more than compensates for this loss.

It is important to note here that even though the SVD and Cholesky 
factorization operations are being run at every iteration, there is a significant 
gain achieved in the calculation of the autocorrelation function. While each 
batch processing algorithm would require a total ofP2N2multiplications, 
where (P×N) is the size of the data block matrix, the recursive algorithms 
only requireP2Nmultiplications. Thus, there is a reduction in the number of 
multiplications by a factor ofN, which becomes significant when the number 
of blocksNis large.
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SIMULATIONS AND RESULTS
Here we compare results for the newly developed recursive algorithms. 
Results are shown for a network of 20 nodes, shown in Figure2. The forgetting 
factor is both varied as well as kept fixed in order to study its impact on the 
performance of each algorithm. The two algorithms are compared with each 
other and in different scenarios. The forgetting factor, data block size and 
network size are changed one at a time while all other variables are kept 
constant in order to closely monitor the impact of each of these three varying 
parameters on the performance of each algorithm.

Figure 2: Network of 20 nodes.

Performance of the SVD and Cholesky Algorithms
Initially, the two algorithms are used to identify an unknown parameter 
vector of lengthM= 4 in an environment with the two signal-to-noise 
ratios (SNR) of 10 and 20 dB. The two forgetting factors used are fixed 
atλ= {0.9,0.99}. The block size is taken asK= 8. The results for both 
algorithms are shown in Figures3,4,5and6, for both diffusion (DRC, DRS) 
and no cooperation (NRC, NRS) cases. As can be seen from these figures, 
the Cholesky algorithm does not perform well with the smaller forgetting 
factor. However, the performance improves appreciably with an increase in 
the forgetting factor but its speed of convergence decreases significantly as 
well. However, the one main positive attribute of the Cholesky algorithm 
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remains to be its low computational complexity. For the SVD algorithm, 
the performance improves slightly with an increase in forgetting factor but 
at a significant loss of convergence speed. These remarks have prompted us 
to further analyze the impact of the forgetting factor on the performance on 
these two algorithms, as discussed next.

Figure 3: MSD at SNR = 10 dB andλ= 0.9.

Figure 4: MSD at SNR = 20 dB andλ= 0.9.
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Figure 5: MSD at SNR = 10 dB andλ= 0.99.

Figure 6: MSD at SNR = 20 dB andλ= 0.99.

Further Simulation-based Analysis of the Effect of Forgetting 
Factor
Next, the performance of each algorithm is separately studied for different 
values of the forgetting factor. For the fixed forgetting factor case, the values 
taken areλ= {0.9,0.95,0.99} and the results are compared with those of the 
variable forgetting factor case. The SNR is chosen as 20 dB and the network 
size is taken to be 20 nodes. Figure7shows the results for the Cholesky 
factorization-based RC algorithm. It is seen that the performance improves 



Fundamentals of Matrix Computations70

as the forgetting factor is increased but the convergence slows down. The 
algorithm performs best when the forgetting factor is variable. The results for 
the SVD-based RS algorithm are shown in Figures8,9and10. Figure8shows 
the results for all three fixed forgetting factors as well as those for its variable 
one. However, as there is not much difference in performance between the 
four cases, Figure8is then zoomed in to see more clearly the algorithm’s 
transient and near-steady-state behavior. Figure9shows the result of this 
zooming effect. The speed of convergence is fastest forλ= 0.9 and slowest 
forλ= 0.99. For the variable forgetting factor (VFF) case, the speed is fast 
initially but then slows down with time. Figure10shows the behavior of the 
algorithm near steady-state. It is evident that the fixed case ofλ= 0.99 would 
yield the lowest steady-state error whereas the VFF case would take the 
longest to reach the steady-state. Although the steady-state performance of 
the variable forgetting factor may be as good as for the case ofλ=0.99 or 
even better, its speed of convergence is too slow.

Figure 7: MSD at SNR = 20 dB for RC with different forgetting factors.
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Figure 8: MSD at SNR = 20 dB for RS with different forgetting factors.

Figure 9: MSD at SNR = 20 dB for RS with different forgetting factors (Tran-
sient behavior).
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Figure 10: MSD at SNR = 20 dB for RS with different forgetting factors (Near 
steady-state behavior).

Performance of the Two Algorithms using an Optimal Forget-
ting Factor
From the results of Figures7,8,9and10, it can easily be inferred that the 
Cholesky factorization-based approach yields the best results when the 
forgetting factor is varied whereas the SVD-based algorithm performs best if 
the forgetting factor is fixed. In order to have a fair performance comparison, 
the two algorithms need to be compared under conditions in which they both 
perform best. Figures11and12give the best performance results of the two 
algorithms, respectively. As can be seen from these two figures, at an SNR 
of 10 dB, the Cholesky-based DRC algorithm performs slightly better than 
the SVD-based RS algorithm without diffusion, whereas both SVD-based 
algorithms outperform the Cholesky-based algorithms at an SNR of 20 dB. 
However, the RC algorithm remains computationally less complex than the 
RS one. A final choice of either of these two algorithms will have to be 
based on a trade-off between their complexity and performance.
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Figure 11: MSD at SNR = 10 dB under best performance conditions.

Figure 12: MSD at SNR = 20 dB under best performance conditions.

It would be only fair to compare the performance of these algorithms 
with the original batch processing algorithms from [11] and [15]. At an SNR 
of 10 dB, the MSE value for the SVD-based algorithm of [11] is −25.69 
dB while that of the Cholesky-based algorithm from [15] is −17.79 dB. 
The corresponding numbers at an SNR of 20 are −31.38 and −18.36 dB, 
respectively. Comparing these results with the figures, we see that both 
recursive algorithms perform similar to their batch-processing counterparts. 



Fundamentals of Matrix Computations74

Furthermore, the diffusion algorithms perform better than the batch 
processing algorithms. The comparison results are tabulated in Table3.

Table 3: Performance comparison with the batch processing algorithms (all 
results are in dB)

SNR CHOL [[15]] NRC DRC SVD [[11]] NRS DRS
10 dB −17.79 −15.36 −21.34 −25.69 −20.63 −26.23
20 dB −18.36 −16.34 −22.35 −31.38 −26.35 −31.90

Effect of Block Size
Since it has been stated in [11] and [15] that the block size can affect the 
performance of the algorithm, the performance of our algorithms is also tested 
here for various block sizes. The block size is varied asK= {5,8,10,15,20} 
and the SNR is set to 20 dB. These settings are applied to both algorithms 
separately. Here it is important to note that as the size of the data block 
increases, the total amount of data required for the same number of blocks 
also increases. Figures13and14show the results for the RC algorithm and 
clearly demonstrate that the algorithm fails badly forK= 5. However, for 
the remaining block sizes, the algorithm’s performance remains almost 
unaffected by the block size changes. The convergence speeds are nearly the 
same (see Figure13) and the performance at steady-state is similar as well 
for the remaining block sizes, with only a slight difference (see Figure14). 
From Figure14it can be inferred that the best result, in every respect, is 
achieved when the block size is just large enough to achieve a full rank 
input data matrix (K=8 in this case), as expected. Thus, it is essential to 
estimate a tight upper bound for the size of the unknown vector in order 
to achieve good performance. Figures15and16show the results for the RS 
algorithm. Here, the performance improves gradually with an increase in 
block size. However, the speed of convergence is slow for a large block size 
(see Figure15) even though a larger block size gives better performance at 
steady-state (see Figure16). Again it can be inferred that it is best to keep 
the block size reasonably small in order to achieve a good trade off between 
performance and speed of convergence, especially when taking into account 
the fact that a larger block size would mean sensing more data for the same 
number of blocks.
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Figure 13: MSD at SNR = 20 dB for varying K for RC.

Figure 14: MSD at SNR = 20 dB for varying K for RC (last 200 runs).
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Figure 15: MSD at SNR = 20 dB for varying K for RS.

Figure 16: MSD at SNR = 20 dB for varying K for RS (last 200 runs).

Effect of Network Size
Here the effect of the size of the network on the performance of the algorithms 
is discussed. For this purpose, the size of the network is varied over the 
rangeN= {10−50} while the forgetting factor is kept fixed atλ= 0.9 for the RS 
algorithm and made variable for the RC algorithm. The block size is taken 
asK= 8. This performance comparison is also carried out for both algorithms 
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separately. The number of neighbors for each node is increased gradually as 
the size of the network is increased. Figures17and18show results for the RC 
algorithm. The performance is poor forN= 10 but improves asNincreases. 
The initial speed of convergence is similar for various network sizes as 
can be seen in Figure17but, near steady-state, the networks with large 
sizes show a slight improvement in performance, as shown in Figure18. 
Figures19and20show the results for the RS algorithm. Here the trend is 
slightly different. It can be seen that the initial speed of convergence improves 
with an increase inN(see Figure19) but the improvement in performance 
is slightly smaller near steady-state (see Figure20). Also, the difference in 
performance is smaller for larger networks, which is as expected.

Figure 17: MSD at SNR = 20 dB for varying network sizes for RC.
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Figure 18: MSD at SNR = 20 dB for varying network sizes for RC (last 100 
runs).

Figure 19: MSD at SNR = 20 dB for varying network sizes for RS.
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Figure 20: MSD at SNR = 20 dB for varying network sizes for RS (last 100 
runs).

Effect of Node Malfunction
Finally, it is shown how the performance can be affected if one or more nodes 
malfunction. Two different network sizes are chosen in two different SNR 
scenarios to show how performance gets affected by node malfunction or 
failure. First, a network of 20 nodes is used and five nodes are switched off. 
Here, switching off a node means that it stops to participate in any further 
estimation process. The functioning nodes then re-calibrate the weights for 
the remaining neighbors while the weights for the failed nodes are set to 
zero. The nodes with the maximum number of neighbors are switched off to 
see how seriously the network performance might be affected. Results are 
shown for both SNRs, 10 and 20 dB, in Figures21and22respectively. The 
network size is then increased to 50 nodes with about a quarter of the nodes 
(13) switched off. The corresponding results are shown in Figures23and24. 
The RC algorithm’s performance is worst affected at SNR = 10 dB but 
remains almost unaffected at SNR = 20 dB, with the small difference in 
performance getting even smaller when the network size is increased. 
Under similar test conditions as for the RC algorithm, the degradation of the 
SVD-based algorithm’s performance was found to be similar to that of the 
RC’s in all test cases. This clearly shows that the SVD-based algorithm is 
also strongly dependent on the connectivity of the nodes. As expected, the 
overall performance improves with an increase in network size. The effect 
of switched-off nodes on the performance of both algorithms, however, is 
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similar when the ratio of switched-off nodes with maximum numbers of 
neighbor nodes to the total number nodes is the same.

Figure 21: MSD at SNR = 10 dB andN= 20 nodes when five most connected 
nodes are switched off.

Figure 22: MSD at SNR = 20 dB andN= 20 nodes when five most connected 
nodes are switched off.
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Figure 23: MSD at SNR = 10 dB andN= 50 nodes when 13 most connected 
nodes are switched off.

Figure 24: MSD at SNR = 20 dB andN=50 nodes when 13 most connected 
nodes are switched off.
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CONCLUSION
This work develops blind block recursive least squares algorithms based 
on Cholesky factorization and singular value decomposition (SVD). The 
algorithms are then used to estimate an unknown vector of interest in a 
wireless sensor network using cooperation between neighboring sensor 
nodes. Incorporating the algorithms in the sensor networks creates new 
diffusion-based algorithms, which are shown to perform much better than 
their non-diffusion-based counterparts. The new algorithms have been tested 
using both a variable as well as a fixed forgetting factor. The two developed 
algorithms are named diffusion blind block recursive Cholesky (DRC) and 
diffusion blind block recursive SVD (DRS) algorithms. Extensive simulation 
work comparing the two algorithms under different scenarios revealed that 
the DRS algorithm performs much better than the DRC algorithm but at 
the cost of a higher computational complexity. Also, of the two algorithms, 
the DRC algorithm performs better when the forgetting factor is variable 
whereas the DRS algorithm gives better results with a fixed forgetting factor. 
In the case of DRS, the value of the forgetting factor does not effect the 
overall performance a great deal except for a slight variation in convergence 
speed and steady-state performance. It was also seen that the size of the data 
block has an effect on the performance of the two algorithms. The speed 
of convergence slows down with an increasing block size which means an 
increasing amount of data to be processed. A block size increase, however, 
does not necessarily improve performance. It was found that, in general, 
a small block size gives a better performance. Therefore, it is essential to 
estimate a very low upper bound to the size of the unknown vector so that the 
data block size to be used is not unnecessarily large. Next, it was noticed that 
an increase in the network size improves performance but the improvement 
gradually decreases with an increasing network size. Moreover, it was 
shown that switching off some nodes with the largest neighborhoods can 
slightly degrade the performance of the algorithm. Finally at low SNRs, the 
Cholesky-based algorithm suffers from a severe degradation, whereas the 
SVD-based one only experiences a slight degradation.
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ABSTRACT
In this article, we address the problem of singular value decomposition 
of polynomial matrices and eigenvalue decomposition of para-Hermitian 
matrices. Discrete Fourier transform enables us to propose a new algorithm 
based on uniform sampling of polynomial matrices in frequency domain. 
This formulation of polynomial matrix decomposition allows for controlling 
spectral properties of the decomposition. We set up a nonlinear quadratic 
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minimization for phase alignment of decomposition at each frequency 
sample, which leads to a compact order approximation of decomposed 
matrices. Compact order approximation of decomposed matrices makes it 
suitable in filterbank and multiple-input multiple-output (MIMO) precoding 
applications or any application dealing with realization of polynomial 
matrices as transfer function of MIMO systems. Numerical examples 
demonstrate the versatility of the proposed algorithm provided by relaxation 
of paraunitary constraint, and its configurability to select different properties.

Keywords: Singular Value Decomposition, Discrete Fourier Transform, 
Singular Vector, Polynomial Matrix, Polynomial Matrice

INTRODUCTION
Polynomial matrices have been used for a long time for modeling and 
realization of multiple-input multiple-output (MIMO) systems in the context 
of control theory [1]. Nowadays, polynomial matrices have a wide spectrum 
of applications in MIMO communications [2,3,4,5,6], source separation 
[7], and broadband array processing [8]. They also have a dominant role in 
development of multirate filterbanks [9].

More recently, there have been much interest in polynomial matrix 
decomposition such as QR decomposition [10,11,12], eigenvalue 
decomposition (EVD) [13,14], and singular value decomposition (SVD) 
[5,11]. Lambert [15] has utilized Discrete Fourier transform (DFT) domain 
to change the problem of polynomial EVD to pointwise EVD. Since EVD 
is obtained at each frequency separately, eigenvectors are known at each 
frequency up to a scaling factor. Therefore, this method requires many 
frequency samples to avoid abrupt changes in adjacent eigenvectors.

Although, many methods of designing principle component filterbanks 
have been developed that are equivalent to EVD of pseudo circulant 
polynomial matrices [16,17], the next pioneering work on polynomial matrix 
EVD is presented by McWhirter et al. [13]. They use an extension of Jacobi 
algorithm known as SBR2 for EVD of para-Hermitian polynomial matrices 
which guarantees exact paraunitarity of eigenvector matrix. Since final 
goal of SBR2 algorithm is to have strong decorrelation, the decomposition 
does not necessarily satisfy spectral majorization property. SBR2 algorithm 
has also been modified for QR decomposition and SVD [10,11]. Jacobi-
type algorithms are not the only proposed methods for polynomial matrix 



A DFT-based Approximate Eigenvalue and Singular Value .... 87

decomposition. Another iterative method for spectrally majorized EVD 
is presented in [14] which is based on the maximization of zeroth-order 
diagonal energy. Spectral majorization property of this algorithm is verified 
via simulation. Followed by the work of [6], a DFT-based approximation of 
polynomial SVD is also proposed in [18] which uses model order truncation 
by phase optimization.

In this article, we present polynomial EVD and SVD based on DFT 
formulation. It transforms the problem of polynomial matrix decomposition 
to the problem of, pointwise in frequency, constant matrix decomposition. 
At first it seems that applying inverse DFT on the decomposed matrices 
leads to polynomial EVD and SVD of the corresponding polynomial matrix. 
However, we will show later in this article that in order to have compact order 
decomposition, phase alignment of decomposed constant matrices in DFT 
domain results in polynomial matrices with considerably lower order. For 
this reason, a quadratic nonlinear minimization problem is set up to minimize 
the decomposition error for a given finite order constraint. Consequently, 
the required number of frequency samples and computational complexity of 
decomposition reduce dramatically. The algorithm provides compact order 
matrices as an approximation of polynomial matrix decomposition for an 
arbitrary polynomial order. This is suitable in MIMO communications and 
filterbank applications, where we deal with realization of MIMO linear time 
invariant systems. Moreover, formulation of polynomial EVD and SVD in 
DFT domain enables us to select the property of decomposition. We show that 
if eigenvalues (singular values) intersect at some frequencies in frequency 
domain, smooth decomposition, and spectrally majorized decomposition are 
distinct. The proposed algorithm is able to reach to either of these properties.

The remainder of this article is organized as follows. The relation 
between polynomial matrix decomposition and DFT matrix decomposition 
is formulated in Section 2. In Section 3, two important spectral properties 
of decomposition, namely spectral majorization and smooth decomposition, 
are provided using appropriate arrangement of singular values (eigenvalues) 
and corresponding singular vectors (eigenvectors). The equality of 
polynomial matrix and dft matrix decomposed matrices decompositions are 
guaranteed via the finite duration constraint, which is investigated in Section 
4. The finite duration constraint imposes the phase angles of singular vector 
(eigenvector) to minimize a nonlinear quadratic function. A solution for this 
problem is proposed in Section 5. Section 6 presents the results of some 
computer simulations which are considered to demonstrate performance of 
the proposed decomposition algorithm.
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Notation
Some notational conventions are as follows: constant values, vectors, 
and matrices are in regular character lower case, lower case over-arrow, 
and upper case, respectively. Coefficients of polynomial (scalar, vector, 
and matrix) are with indeterminate variablenin the square brackets. Any 
polynomial (scalar, vector, and matrix) is distinguished by bold character 
and indeterminate variablezin the parenthesis and its DFT by bold character 
and indeterminate variablekin the brackets.

PROBLEM FORMULATION
Denote ap × qpolynomial matrixA(z) such that each element ofA(z) is a 
polynomial. Equivalently, we can indicate this type of matrix by coefficient 
matrixA[n],

     (1)
whereA[n] is only non-zero in the interval [Nmin,Nmax]. Define the effective 
degree ofA(z) asNmax − Nmin(or the length ofA[n] asNmax − Nmin + 1).
The polynomial matrix multiplication of ap × qmatrixA(z) and 
aq × tmatrixB(z) is defined as

We can obtain the coefficient matrix of product by matrix convolution 
ofA[n] andB[n], that is defined as

where∗denotes the linear convolution operator.
Denote para-conjugate of a polynomial matrix as

in which,∗as a subscript denotes the complex conjugate of coefficients in the 
polynomial matrixA(z).
A matrix is said to be para-Hermitian if  =A(z)or equivalentlyA[n] = AH[−n]. 
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We call a polynomial matrix paraunitary if , whereIis aq × q 
identity matrix.
Thin EVD of ap × ppara-Hermitian polynomial matrixA(z) is of the form

      (2)
and thin SVD of ap × qarbitrary polynomial matrix is of the form,

     (3)
whereU(z) andV(z) arep × randq × rparaunitary matrices, respectively.Λ(z) 
andΣ(z) representr × rdiagonal matrices whereris the rank ofA(z).
We can equivalently write EVD of a para-Hermitian matrix and SVD of a 
polynomial matrix in coefficient matrix form

     (4)

     (5)
in which,U[n],V[n], Λ[n], and Σ[n] are the coefficient matrices corresponding 
toU(z),V(z),Λ(z), andΣ(z).
In general, EVD and SVD of a finite-order polynomial matrix are not finite 
order. As an example, suppose EVD of para-Hermitian polynomial matrix

      (6)
Eigenvalues and eigenvectors of the polynomial matrix in (6) are neither of 
finite order nor rational

The same results can be found for polynomial QR decomposition in [12].
We mainly explain the proposed algorithm for polynomial SVD, yet 
wherever it seems necessary we explain the result for both decomposition.
The decomposition in (3) can also be approximated by samples of discrete-
time Fourier transform, yields a decomposition off the form

   (7)
Such a decomposition can be obtained by taking theK-point DFT of 
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coefficient matrixA[n],

   (8)
wherew

K
 = exp(−j2 π / K).

DFT formulation plays an important role in decomposition of polynomial 
matrices because it replaces the problem of polynomial SVD that involves 
many protracted steps withKconventional SVD that are pointwise 
in frequency. It also enables us to control spectral properties of the 
decomposition. However, it causes two inherent drawbacks:

• Regardless of what is the trajectory of polynomial singular values 
in frequency domain, conventional SVD order singular values 
irrespectively of the ordering in neighboring frequency samples.

• In frequency domain, samples of polynomial singular vectors are 
known up to a scalar complex exponential by using the SVD at 
each frequency sample, which yields to discontinuous variation 
between neighboring frequency samples.

The first issue is directly dealt with the spectral properties of the 
decomposition. In Section 3, we would explain why arranging singular 
values in decreasing order yields to approximate spectral majorization, 
while smooth decomposition requires rearrangement of singular values and 
their corresponding singular vectors.

For the second issue, suppose conventional SVD of an arbitrary constant 
matrixA. If the pair are the left and right singular vectors corresponding 
to a non-zero singular value, for an arbitrary scalar phase angleθ, the pair

are also left and right singular vectors corresponding to the 
same singular value. Although this non-uniqueness is trivial in conventional 
SVD, it plays a crucial role in polynomial SVD. When we perform SVD at 
each frequency of DFT matrix as in (7), these non-uniquenesses in phase 
exist at each frequency regardless of other frequency samples.

Denote theith column vector of the desired matricesU(z) 
andV(z). Then all the vectors of the form

   (9)
have the chance to appear as theith column ofU′[k] andV′[k], andith diagonal 
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element ofΣ′[k], respectively. Moreover, in many applications, specially 
those which are related to MIMO precoding, we can relax constraints of 
the problem by letting singular values to be complex (see applications of 
polynomial SVD in [4,18])

   (10)
Given this situation, singular values have not all their conventional meaning. 
For instance, the greatest singular value is conventionally 2-norm of the 
corresponding matrix, which is not true for complex singular values. The 
process of compensating singular vectors for these phases is what we 
callphase alignmentand is developed in Section 4.

Based on what was mentioned above, Algorithm 1 gives the descriptive 
pseudo code for DFT-based SVD. Modifications of the algorithm for EVD 
of para-Hermitian matrices are straightforward. If at each frequency sample 
all singular values are in decreasing order, REARRANGE function (which 
is described in Algorithm 2) is only required for smooth decomposition, 
otherwise for spectral majorization, no further arrangement is required. For 
the phase alignment, first we need to compute phase angles which is indicated 
in the algorithm by DOGLEG function and is described in Algorithm 3.

SPECTRAL MAJORIZED DECOMPOSITION VERSUS 
SMOOTH DECOMPOSITION
Two of the most appealing decomposition properties are smooth 
decomposition [19] and spectral majorization [13]. These two objectives do 
not always occur at the same time, hence we should choose which one we 
are willing to use as our main objective.

In many filterbank applications which are dealt with principle components 
filterbank, spectral majorization and strong decorrelation are both required 
[16]. Since smooth decomposition leads to more compact decomposition, 
in cases that the only objective is strong decorrelation, exploiting smooth 
decomposition is reasonable. The DFT-based approach of polynomial 
matrix decomposition is capable of decomposing a matrix with either of 
these properties with small modification.
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Algorithm 1: Approximate SVD

Polynomial EVD of a para-Hermitian matrix is said to have spectral 
majorization property if [13,16]

Note that, eigenvalues corresponding to para-Hermitian matrices are real in 
all frequencies.
We can extend the definition to the polynomial SVD, replacing singular 
values with eigenvalues in the definition, we have

If we let singular values to be complex, we can replace absolute value of 
singular values in the definition.
A polynomial matrix have no discontinuity in frequency domain, hence we 
modify definition of smooth decomposition presented in [19] to fit with our 
problem and avoid unnecessary discussions.
Polynomial EVD (SVD) of a matrix is said to possess smooth decomposition 
if eigenvectors (singular vectors) have no discontinuity in frequency domain, 
that is
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   (11)

whereu
il
is thelth element of .

If eigenvalues (singular values) of a polynomial matrix intersect at some 
frequencies, the spectral majorization and smooth decomposition are not 
simultaneously realizable. As an example, supposeA(z) is a polynomial 
matrix with are eigenvectors corresponding to distinct 
eigenvaluesλ1(z) andλ2(z), respectively. Lets assume have 
no discontinuity in frequency domain, andλ1(e

jω) andλ2(e
jω) intersect at some 

frequencies. Denote

   (12)
Algorithm 2Rearrangement for smooth decomposition

and

   (13)
Obviously, are eigenvectors corresponding to distinct 
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eigenvalues , respectively. Note that, for all 
frequencies, which meansλ1(e

jω) andλ2(e
jω) are spectrally majorized. However,

are discontinuous at intersection frequencies ofλ1(e
jω) 

andλ2(e
jω), which implies that they are not smooth anymore. In this situation, 

although are not even analytic, we 
can approximate them with finite order polynomials.
If a decomposition has spectral majorization, its eigenvalues (singular val-
ues) are of decreasing order in all frequencies. Therefore, they are in de-
creasing order in any arbitrary frequency sample set, including DFT fre-
quencies. Obviously the converse is only approximately true. Hence, for 
polynomial EVD to possess spectral majorization approximately, it suffices 
to arrange sampled eigenvalues (singular values) of (7) in decreasing order. 
Since we only justify spectral majorization at DFT frequency samples, the 
resulting EVD (SVD) may possess the property only approximately. Similar 
results can be seen in [14,20].
To have smooth singular vectors, we propose an algorithm based on inner 
product of consecutive frequency samples of singular vectors. We can ac-
cumulate smoothing requirement in (11) for allrelements as

   (14)
LetBbe the upper bound of norm of derivative andℜ{·} be the real value of 
a complex value.
For an arbitraryΔωwe have

   (15)
that is, for a smooth singular vector  can be made 
to be as close to unity as desired by makingΔωsufficiently small. In our 
problem is sampled uniformly with . Since EVD is per-
formed at each frequency sample independently, and are not 
necessarily two consecutive frequency samples of a smooth eigenvector. 
Therefore, we should rearrange eigenvalues and eigenvectors to yield 
smooth decomposition. This can be done for each sample of eigenvector

by seeking for the eigenvector of successor sample with the 
most value of .
Define inner product as
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Since, is a scalar phase multiplication of , computation of is 
not possible before phase alignment. Due to (15), for sufficiently smallΔω, 
two consecutive samples of a smooth singular vector can be as close as de-
sired and we can approximate

which allows us to use inner product of instead of . From (12) and 
(13), it can be seen that before the intersection of eigenvalues, consecutive 
eigenvectors which are sorted by conventional EVD in decreasing order, 
are from the same smooth eigenvector and so are near 
unity. However, ifk − 1 andkare two frequency sample before and after the 
intersection, respectively, due to decreasing order of eigenvalues, smoothed 
eigenvectors are swapped after intersection. Therefore, are 

some values near zero, instead are near unity.
Algorithm 2 describes a simple rearrangement procedure to track 

eigenvectors (singular vectors) for smooth decomposition.

FINITE DURATION CONSTRAINT
Phase alignment is critical to have compact order decomposition. Another 
aspect of this fact is revealed in the coefficient’s domain perspective of (7). 
In this domain, the multiplication is replaced by circular convolution

   (16)
in which⊛is the circular convolution operator and ((n))

K
denotesnmoduleK.

Polynomial SVD corresponds to linear convolution in the coefficients do-
main, however the decomposition obtained from DFT corresponds to cir-
cular convolution. Recalling from discrete-time signal processing, it is well 
known that we can equivalently utilize circular convolution instead of lin-
ear convolution if convoluted signals are zero-padded adequately. That is, 
forx1[n] andx2[2] are two signals with the length ofN1andN2, respectively, 
apply zero padding such that zero padded signals have the lengthN1 + N2 − 1 
[21]. Hence, if the lastM−1 coefficients ofU[n], Σ[n], andV[n], are zero, the 
following results are hold:
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  (17)
Therefore, the problem is to obtain the phase set and correcting the 
singular vectors using (9). The phase set should be such that the 
resulting coefficients satisfy (17).
Without loss of generality, letU[n] andV[n] be causal, i.e.,U[n] = V[n] = 0 
forn < 0.U[n] andV[n] (which are supposed to be of lengthM) should be 
multi-sequence zero-padded at least with (M − 1) zeros.

       (18)
forn = M,M + 1, …,K − 1, in whichK ≥ 2M − 1. If these conditions are satis-
fied, circular convolution can be used instead of linear convolution.
Since the available matrix of singular vectors at each frequency isU′[k], in-
serting (9) in (18) for each singular vector separately leads to

       (19)
forn = M,M + 1, …,K − 1.
Without loss of generality, letθ

i
[0] = 0. In a more compact form we can ex-

press these (K − M)-folded equations in matrix form

   (20)
in which

 vec-
tor, and

For polynomial EVD, Equation (20) is enough, however, for polynomial 
SVD we have two options. To approximate SVD with approximately posi-
tive singular values, we must augment with similar defined 
matrix and vector for
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then solve

   (21)
An additional degree of freedom is obtained by letting singular values to 
be complex. However, an straightforward solution which yield to singular 
values and singular vectors of orderMis complicated. Instead, we impose the 
finite duration constraint only two singular vectors

   (22)
IfK ≥ 2M − 1, then the lastM − 1 coefficients of resulting polynomial vectors 
are zero. Therefore, according to (17),U(z) andV(z) are paraunitary. On 
the other hand, ifK ≥ 2M + Nmax − Nmin − 1, circular convolution relation of 
coefficient

results in the linear convolution Σ[n] = UH[−n] ∗ A[n]∗V[n]. This guarantee 
thatΣ(z) is a diagonal polynomial matrix of order 2M + Nmax − Nmin − 2. 
Obviously, ifU(z) andV(z) are paraunitary and is a diagonal 
matrix, is the polynomial SVD ofA(z).
Once the set of phase are obtained from (20), (21), or (22), phase 
alignment of can be done using (10) and inverse DFT ofU[k] 
andV[k] yield to coefficient matricesU[n] andV[n]. For obtaining singular 
values, we have two options, we can either setK ≥ 2M − 1 and phase align

 using (10). After inverse DFT ofΣ[k], we should truncate Σ[n] to 
have durationM. Another option which yields to more accurate results is by 
calculating and replacing off-diagonal elements with zero.
Next, we provide a minimization approach to determine the unknown set 
{θ

i
[k]}.

GRADIENT DESCENT SOLUTION

In general, there may exist no phase vector which satisfies (20). Even 
when there exists a phase vector that satisfies the finite duration constraint, 
the solution is not straightforward. For these reasons, we can view (20) as a 
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minimization problem [6]. We use energy of the highest order coefficients 
(the coefficients that we equate to zero in (18)) as the objective to the 
minimization problem

   (23)
An alternative minimization technique as a solution for this phase optimiza-
tion problem is proposed in [6], which we describe it in this section.
Throughout this section, we focus on solving as a least 
square solution for a single singular vector , so we drop the sub-

script “i” from the quantity and useFand , instead of
to simplify the notation. The objective is intentionally presented as 
a function of to emphasize the fact that our problem is classified as an 
unconstrained optimization.
We exploit the trusted region strategy for the problem (23). By utilizing 
the information about the gradient vector and Hessian matrix in each step, 
trusted region strategy constructs a model functionm

k
which have a similar 

behavior close to the current point . The modelm
k
is usually defined as 

the second-order Taylor series expansion (or its approximation) of
around , that is

where are the gradient vector and the Hessian matrix corre-
sponding to , respectively. The modelm

k
is designed to be a good approxi-

mation of near the current point and is not trustworthy on regions far from 
the current point. Consequently, the restriction in minimization ofm

k
on a 

region around is crucial, that is

   (24)
whereRis the trusted region radius.
The decision about shrinking of the trusted region is determined by compar-
ing the actual reduction inobjective function and predicted reduction. Given 
a step , the ratio

     (25)
is used as a criterion to indicate if the trusted region is small enough.
Among methods which approximate the solution of the constrained mini-
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mization (24) dogleg procedure is the only one which leads to analytical 
approximation. It also promises to achieve at least as much reduction inm

k
as 

is possible by Cauchy point (the minimizer ofm
k
along the steepest descent 

direction−∇ , subject to the trusted region) [22]. However, this procedure 
requires Hessian matrix (or an approximation of it) to be positive definite.

Hessian Matrix Modification
The gradient vector and Hessian matrix corresponding to are as follows

   (26)
where is a diagonal matrix with thekth diagonal element exp(−jθ[k]) 
andk = 0, 1, …,K − 1.
In general, Hessian matrix in (26) does not promise to be always positive 
definite. Therefore, we should modify Hessian matrix to yield a positive 
definite approximation.
We provide a simple modification which brings some desirable features by 
omitting the second term from the Hessian matrix and diagonal loading to 
guarantee positive definiteness

   (27)

The term is positive semi-definite and in many 
situations, it is much more significant than the second term of Hessian 
matrix in (26). Hence, with diagonal loadingαI(Iis with conformable size 
andαis very small), the modified Hessian matrix guarantees (27) to be 
positive definite and provides the desired properties in contrast to use the 
exact Hessian matrix.

Dogleg Method
Dogleg method starts with the unconstrained minimization of (24)

   (28)
When the trusted region radius is so large that∥ϕH∥ ≤ R, it is the exact solu-
tion of (24) and we select it as the dogleg method answer. On the other hand, 
for smallRthe solution of (24) is− . For intermediate values ofR, the 
optimal solution lies on a curved trajectory between these two points [22].
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Algorithm 3: Trusted region dogleg algorithm.

The dogleg method approximates this trajectory by a path consisting 
of two line segments. The first line segment starts from the origin to the 
unconstrained minimized point along the steepest descent direction

   (29)
The second line segment starts fromϕgtoϕh. These two line segments form 
an approximate trajectory which its intersection with the sphere∥ϕ∥=Ris the 
approximate solution of (24) when∥ϕh∥ > R.

Alternating Minimization
Another solution of (23) is provided by converting the problem of multivariate 
minimization to a sequence of single-variate minimization problem via 
alternating minimization [6]. In each iteration, a series of single-variate 
minimization is performed, while other parameters are held unchanged. 
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Each Iteration consists ofk − 1 steps, which at each step one parameterθ[k] 
is updated. Suppose we are at stepk ofith iteration. At this stepk − 1 first 
parameters were updated in the current iteration, andK−k − 2 last parameters 
were updated from the previous iteration. These parameters are held fixed, 
whileθ[k] is minimized at the current step,

   (30)
The cost function is guaranteed to be non-incremental at each step; however, 
this method is also converges to a local minima which highly depend on the 
initial guess of the algorithm. For solving (30) it is suffices to make thekth 
element of gradient vector in (26) equal to zero. Suppose the calculation are 
performed for phase alignment of k=0,1,…,K−1,

     (31)

where and

Fortunately, Equation (31) has a closed form solution

       (32)
However, only the second case of (32) has positive second partial deviation. 
Therefore, the global minima of (30) is

Initial Guess
All algorithms of unconstrained minimization require to be supplied by 
a starting point, which we denoted by . To avoid getting stuck in local 
minima, we should select a good initial guess. This can be accomplished by 
minimizing a different but similar cost function denoted by
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in which†represents pseudo inverse.
Solving yields to a simple initial guess

      (33)
Based on what have been mentioned in this section, a pseudo-code 
description of the trusted region dogleg algorithm is given by Algorithm 3. 
In this algorithm, we start with the initial guess of (33) and a trusted region 
radius upper boundR̄. Then we continue the trusted region minimization 
procedure as described in this section.

SIMULATION RESULTS
In this section, we present some examples to demonstrate the performance 
of the proposed algorithm. For the first example, our algorithm is applied to 
a polynomial matrix example from [11]

    (34)
Frequency behavior of singular values can be seen in Figure1. There is no 
intersection of singular values, so the setup of the algorithm either for spectral 
majorization or frequency smoothness leads to identical decomposition.

Figure 1: Singular values versus frequency.
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For having approximately positive singular values, we use (21). Define 
the average energy of highest order coefficients for the pair of polynomial 
singular vectors and (we expect energy of highest 
order coefficients to be zero or at least minimized). A plot ofE

i
versus iteration 

for each pair of singular vectors is depicted in Figure2. The decomposition 
length isM = 9 (order is 8) and we useK = 2M + (Nmax − Nmin) = 20 number of 
DFT points.

Figure 2: Average highest order coefficients energyE
i
versus iteration number 

for a decomposition with approximately positive singular values.Dotted line: 
Cauchy points. Dashed line: Alternative minimization. Solid Line: proposed 
algorithm.

As it is seen, the use of dogleg method with approximate Hessian matrix 
leads to a fast convergence in contrast with using alternative minimization 
and Cauchy-point (which is always selected along the gradient direction). 
Of course we should consider that due to matrix inversion, computational 
complexity of Dogleg method isO(K3) while computational complexity of 
alternative minimization and Cauchy point isO(K2).
The final value of average highest order coefficient for three pair of singular 
vectors are 5.54 × 10−5, 3.5 × 10−3, and 0.43, respectively. The first singular 
vector satisfies finite duration constraint almost exactly. The second singular 
vector fairly satisfies this constraint. However, highest order coefficients of 
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last singular vector, possess considerable amount of energy, that seems to 
cause decomposition error.
Denote the relative error of the decomposition as

in which∥∙∥
F
is the extension of Frobenius norm for polynomial matrices and 

is defined by

Since in our optimization procedure we only seek for finite duration 
approximation,U(z) andV(z) are only approximately paraunitary. Therefore, 
we also define relative error of paraunitarity as

An upper bound forEUcan be obtained as

which means as average energy onK − Mhighest order goes to 
zero,EUdiminishes.
The relative error of this decomposition isEA = 1.18 × 10−2while the error 
ofU(z) andV(z) areEU = 3.3 × 10−2andEV = 3.08 × 10−2, respectively. The 
paraunitarity error is relatively high in contrast with decomposition error. 
This is due to the difference between the first two singular values and the 
last singular value.
A plot of relative errorsEA,EU, andEVfor various amount ofMis shown in 
Figure3. The number of frequency samples is fixed atK = 2M + 2(Nmax − Nmin).
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Figure 3: Relative error versusMfor a decomposition with approximately posi-
tive singular values.K = 2M = 2.

The number of frequency samplesKis an optional choice, however as 
discussed in Section 4, it should satisfyK ≥ 2M + Nmax − Nmin − 1. In order to 
demonstrate the effect of number of frequency samples on the decomposition 
error, a plot of relative error versus different amount ofKis depicted in 
Figure4. Increasing the number of frequency samples does not lead to 
reduction of relative error. Moreover, it increases computational burden. 
Therefore, a value near 2M + (Nmax − Nmin) − 1 is a reasonable choice for the 
number of frequency samples.

Figure 4: Relative error versusKfor a decomposition with approximately posi-
tive singular values.M = 31.
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Now, lets relax the problem by allowing singular values to be complex 
and using (22). A plot of versus iteration for each pair of singular 
vectors is depicted in Figure5. The decomposition length isM = 9 (order is 8) 
and we useK = 2M + (Nmax − Nmin) = 20 number of DFT points.

Figure 5: Average highest order coefficients energyE
i
versus iteration number 

for a decomposition with complex singular values.Dotted line: Cauchy points. 
Dashed line: Alternative minimization. Solid Line: proposed algorithm.

Again Dogleg method converges very rapidly while alternative 
minimization and Cauchy point converge slowly. The final value of average 
energy for three left singular vectors are 1.23 × 10−10, 9.7 × 10−4, and 10−3, 
respectively. This is while these values for right singular vectors are 
1.12 × 10−10, 1.4 × 10−3, and 8.7−4, respectively.

Note that the average energy of highest order coefficients for the third 
pair of singular vectors alleviate meaningfully. Figure1shows that the 
third singular value goes to zero and then returns to positive values. If we 
constrain singular values to be positive, a phase jump ofπradian, is imposed 
to one of third singular vectors near the frequency which singular vector 
goes to zero. However, by letting singular values to be complex, the zero 
crossing occur which requires no discontinuity of singular vectors. The 
relative error of this decomposition isEA = 4.9 × 10−3while the error ofU(z) 
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andV(z) areEU = 2.5 × 10−3andEV = 3.5 × 10−3, respectively. In contrast with 
constraining singular values to be positive, having complex singular values 
decrease decomposition and paraunitarity error significantly.

Plots of relative errorsEA,EU, andEVfor various amount ofMandKare 
shown in Figures6and7, respectively. Letting singular values be complex 
causes significant reduction of all relative errors. As it was mentioned, 
Figure7shows that increasingKfrom 2M + Nmax − Nmin − 1 causes no 
improvement in relative errors while it makes additional computational 
burden.

Figure 6: Relative error versusMfor a decomposition with complex singular 
values.K = 2M + 2.

Figure 7: Relative error versusKfor a decomposition with complex singular 
values.M = 9.
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McWhirter and coauthors [11] have reported the relative error of 
decomposition. Provided that paraunitary matricesU(z) andV(z) are of order 
33, the relative error of their algorithm is 0.0469. This is while our algorithm 
only requires paraunitary matrices of order 3 for relative error of 0.035 
with positive singular values and relative error of 2.45 × 10−6with complex 
singular values. In addition, in the new approach, exploiting paraunitary 
matrices of order 33, the relative error is 0.0032 with positive singular 
values and 4.7 × 10−6with complex singular values.

This large difference is not caused by iteration numbers because 
we compare results while all algorithms relatively converges, and with 
continuation of iterations trivial improvement are obtained. The main reason 
lies on different constraints of the solution presented in [11] in contrast to our 
proposed method. While they impose paraunitary constraint on
to yield a diagonalized Σ(z), we impose the finite duration constraint and 
obtain approximation ofU(z) andV(z) with fair fitting to the decomposed 
matrices at each frequency samples. Therefore, we can consider this method 
as a finite duration polynomial regression of matrices which is obtained by 
uniformly samplingU(z) andV(z) on the unit circle inz-plane.

As a second example, consider EVD of the following para-Hermitian 
matrix

The exact smooth EVD of this matrix is of finite order

   (35)

Frequency behavior of eigenvalues can be seen in Figure8. Since 
eigenvalues intersect at two frequencies, smooth decomposition and 
spectrally majorized decomposition result two distinct solutions.
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Figure 8: Eigenvalues of smooth decomposition versus frequency.

To perform smooth decomposition, we need to track and rearrange 
eigenvectors to avoid any discontinuity using Algorithm 2. The resulting

are shown in Figure9fork = 0, 1, …,K − 1. Using these the 
Algorithm 2 swap first and second eigenvalues and eigenvectors fork = 12:32 
which results in continuity of eigenvalues and eigenvectors.

Figure 9: Rearrangement of eigenvalues and eigenvectors.K = 42. Dashed Line:
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.

Now that all eigenvalues and eigenvectors are rearranged in DFT 
domain, it’s time for phase alignment of eigenvectors. A plot ofE

i
versus 

iteration forM = 3 and smooth decomposition is depicted in Figure10. It is 
predictable that dogleg algorithm converges rapidly while the alternative 
minimization and Cauchy point has a long way to converge.

Figure 10: E
i
versus iteration number corresponding to smooth decomposition. 

Dotted line: Cauchy points. Dashed line: Alternative minimization. Solid Line: 
proposed algorithm.

Since the energy of highest order coefficients of eigenvectors are trifling, 
using the proposed method for smooth decomposition results in very high 
accuracy, as seem in the figures. Relative error of smooth decomposition 
versusMis shown in Figure11.

While using frequency smooth EVD of (35) leads to relative error below 
10−5forM ≥ 3 with a few number of iterations, Spectrally majorized EVD 
requires a lot more polynomial order to reach a reasonable relative error.



A DFT-based Approximate Eigenvalue and Singular Value .... 111

Figure 11: Relative error of smooth decomposition versusM.

Unlike smooth decomposition which requires rearrangement of 
eigenvalues and eigenvectors, spectral majorization requires only to 
sort eigenvalues at each frequency sample in decreasing order. Most of 
conventional EVD algorithm sort eigenvalues in decreasing order, which 
we should only align eigenvector phases using 3. A plot ofE

i
versus iteration 

forM=20 and spectrally majorized decomposition is depicted in Figure12.

Figure 12: E
i
versus iteration number corresponding to spectrally majorized de-



Fundamentals of Matrix Computations112

composition.Dotted line: Cauchy points. Dashed line: Alternative minimization. 
Solid Line: proposed algorithm.

Due to an abrupt change in eigenvectors at the intersection frequency 
of eigenvalues, increasing the decomposition order leads to a slow decay of 
relative error. Figure13shows the relative error as a function ofM.

Figure 13: Relative error of spectrally majorized decomposition versusM.

To see the difference between smooth and spectrally majorized 
decomposition results, eigenvalues of spectrally majorized decomposition 
is shown in Figure14, which is comparable with Figure8which corresponds 
to eigenvalues of smooth decomposition. Therefore, a low order polynomial 
is required using smooth decomposition and much higher polynomial order 
for spectrally majorized decomposition. Even withM = 20 the decomposition 
have relatively high error.
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Figure 14: Eigenvalues of spectrally majorized decomposition versus 
frequency.M = 20.

CONCLUSION
An algorithm for polynomial EVD and SVD based on DFT formulation 
has been presented. One of the advantages of the DFT formulation is that it 
enables us to control properties of decomposition. Among these properties, we 
introduce how to setup the decomposition to achieve spectrally majorization 
and frequency smoothness. We have shown, if singular values (eigenvalues) 
intersect at some frequency, then simultaneous achievement of spectral 
majorization and smooth decomposition is not possible. In this situation, setting 
up the decomposition to possess spectral majorization requires considerably 
higher order polynomial decomposition and more computational complexity. 
Highest order polynomial coefficients of singular vectors (eigenvectors) 
are utilized as square error to obtain a compact decomposition based on 
phase alignment of frequency samples. The algorithm has the flexibility to 
compute a decomposition with approximately positive singular values, and 
a more relaxed decomposition with complex singular values. A solution for 
this nonlinear quadratic problem is proposed via Newton’s method. Since 
we apply an approximate Hessian matrix to assist the Newton optimization, 
a fast convergence is achieved. The algorithm capability to control the order 
of polynomial elements of decomposed matrices and to select properties of 



Fundamentals of Matrix Computations114

decomposition, make the proposed method as a good choice for filterbank 
and MIMO precoding applications. Finally, performance of the proposed 
algorithm under different conditions is demonstrated via simulations. 
Simulation results reveal superior decomposition accuracy in contrast with 
coefficient domain algorithms due to relaxation of paraunitarity.
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These arrays can be built by resorting to higher order statistics of the data. 
The canonical polyadic (CP) decomposition of such semi-symmetric three-
way arrays allows us to identify the so-called mixing matrix, which contains 
the information about the intensities of some latent source signals present 
in the observation channels. In addition, in many applications, such as 
the magnetic resonance spectroscopy (MRS), the columns of the mixing 
matrix are viewed as relative concentrations of the spectra of the chemical 
components. Therefore, the two loading matrices of the three-way array, 
which are equal to the mixing matrix, are nonnegative. Most existing CP 
algorithms handle the symmetry and the nonnegativity separately. Up to 
now, very few of them consider both the semi-nonnegativity and the semi-
symmetry structure of the three-way array. Nevertheless, like all the methods 
based on line search, trust region strategies, and alternating optimization, 
they appear to be dependent on initialization, requiring in practice a multi-
initialization procedure. In order to overcome this drawback, we propose two 
new methods, called , to solve the problem of CP decomposition 
of semi-nonnegative semi-symmetric three-way arrays. Firstly, we rewrite 
the constrained optimization problem as an unconstrained one. In fact, the 
nonnegativity constraint of the two symmetric modes is ensured by means of 
a square change of variable. Secondly, a Jacobi-like optimization procedure 
is adopted because of its good convergence property. More precisely, the 
two new methods use LU and QR matrix factorizations, respectively, 
which consist in formulating high-dimensional optimization problems 
into several sequential polynomial and rational subproblems. By using 
both LU and QR matrix factorizations, we aim at studying the influence of 
the used matrix factorization. Numerical experiments on simulated arrays 
emphasize the advantages of the proposed methods especially the one based 
on LU factorization, in the presence of high-variance model error and of 
degeneracies such as bottlenecks. A BSS application on MRS data confirms 
the validity and improvement of the proposed methods.

Keywords: Canonical polyadic decomposition, Semi-nonnegative semi-
symmetric tensor, Joint diagonalization by congruence, Individual differ-
ences in scaling analysis, Blind source separation, Independent component 
analysis, Magnetic resonance spectroscopy

INTRODUCTION
Higher order (HO) arrays, commonly called tensors, play an important role in 
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numerous applications, such as chemometrics [1], telecommunications [2], 
and biomedical signal processing [3]. They can be seen as HO extensions of 
vectors (one-way arrays) and matrices (two-way arrays). In many practical 
situations, the available data measurements cannot be arranged into a tensor 
form directly, that is to say, the observation diversity is insufficient either 
in time or frequency. However, if the latent data satisfies the statistical 
independence assumption, which is reasonable in many applications, 
meaningful HO arrays can be built by resorting to HO statistics (HOS) of the 
data [4]. In this instance, the HO arrays are partially symmetric or Hermitian 
due to the special algebraic structure of the basic HOS, such as moments and 
cumulants. In independent component analysis (ICA), the latent physical 
phenomena which are assumed to be statistically independent can be 
revealed by decomposing the HO array into factors. There exists several 
ways to decompose a given HO array, such as the Tucker model [5,6]. 
Among the existing reliable HO array decomposition models, the canonical 
polyadic (CP) decomposition model has attracted much attention. Indeed, 
its uniqueness can be ensured under the sufficient conditions established 
by Kruskal [7]. In addition, unlike the HO singular value decomposition 
(HOSVD) [6], the CP model does not impose any orthogonality constraint 
on its factors.

Theoretically, a polyadic decomposition exactly fits an array by a 
sum of rank-one terms [8]. A CP decomposition is defined as a polyadic 
decomposition with a minimal number of rank-one terms which are 
needed to exactly fit a given HO array. Currently, the CP decomposition 
is gaining importance in several applications, for example, in exploratory 
data analysis [9], sensor array processing [10], telecommunications [11,12], 
ICA [13], and in multiple-input multiple-output radar systems [14]. A 
multitude of methods were developed to compute the CP decomposition. 
They include the iterative alternating least squares (ALS) procedure [15], 
which gains popularity due to its simplicity of implementation and low 
numerical complexity. Uschmajew proved the local convergence property 
of ALS under some conditions [16]. However, this convergence can be 
slow. Therefore, an enhanced line search (ELS) procedure was proposed by 
Rajih et al. [17] to cope with the slow convergence problem of ALS. Other 
approaches were also proposed, such as the conjugate gradient algorithm 
[18] and joint eigenvalue decomposition-based algorithms [19,20], to cite 
a few. Some HO arrays enjoy certain properties, such as i)symmetryand 
ii)nonnegativity, which cannot be simply handled by the aforementioned 
general CP decomposition methods. Therefore, special CP models become 
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more and more important. The first special form of the CP model for three-
way arrays that are symmetric in two modes brings the concept of individual 
differences in scaling (INDSCAL) analysis [21]. On one hand, INDSCAL 
analysis has been studied as a way of multiple factor analysis [22] with 
applications to chemometrics, psychology, and marketing research. On the 
other hand, in the domain of signal processing, and more particularly in blind 
source separation (BSS), the INDSCAL analysis is widely known as the 
joint diagonalization of a set of matrices by congruence (JDC). During the 
past two decades, many successful JDC methods have been proposed, such 
as Yeredor’s alternating columns and diagonal center (ACDC) algorithm 
[23], the joint approximate diagonalization (JAD) algorithm proposed by 
Cardoso and Souloumiac [24], the fast Frobenius diagonalization (FFDIAG) 
algorithm proposed by Ziehe et al. [25], Afsari’s LUJ1D algorithm [26], 
and many others [27,28,29,30,31,32,33]. A recent survey of JDC can be 
found in [34]. The second special form of CP model is defined when all 
the factors in the CP decomposition are constrained to be nonnegative, 
commonly known as nonnegative tensor factorization (NTF). NTF can be 
regarded as the extension of nonnegative matrix factorization (NMF) [35] to 
higher orders. In many applications, the physical properties are inherently 
nonnegative, such as chemistry [1] and fluorescence spectroscopy [36,37]. 
In those applications, the results are only meaningful if the nonnegativity 
constraint is satisfied. Various methods for computing NTF and also NMF 
can be found in [38,39].

So far, the CP model with both the symmetry and nonnegativity 
constraints has not received much attention. Coloigner et al. proposed a family 
of algorithms based on line search and trust region strategies [40]. Wang 
et al. developed an alternating minimization scheme [41]. Those methods 
appear to depend on initialization, and therefore in practice require a multi-
initialization procedure, leading to an increase of numerical complexity. In this 
paper, we propose to fit the CP model of a three-way array by imposing both 
the semi-nonnegativity and the semi-symmetry constraints. More precisely, 
we impose a nonnegativity constraint on the two symmetric modes of the 
INDSCAL model, which leads to the semi-nonnegative INDSCAL model 
or equivalently the CP decomposition of semi-nonnegative semi-symmetric 
three-way arrays. Such a model is often encountered in ICA problems where 
a nonnegative mixing matrix is frequently considered. For example, in 
magnetic resonance spectroscopy (MRS), the columns of the mixing matrix 
represent the positive concentrations of the source metabolites. Then, the 
three-way array built by stacking the matrix slices of a cumulant array is 
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both nonnegative and symmetric in two modes. In such a case, the semi-
nonnegative INDSCAL problem is equivalent to the JDC problem subject 
to a nonnegativity constraint on the joint transformation matrix. We propose 
two new algorithms to solve the semi-nonnegative INDSCAL problem, 
called . Firstly, we rewrite the constrained optimization 
problem as an unconstrained one. Actually, the nonnegativity constraint is 
ensured by means of a square change of variable. Secondly, we propose two 
Jacobi-like approaches using LU and QR matrix factorizations, respectively, 
which consist in formulating high-dimensional optimization problems into 
several sequential polynomial and rational subproblems. By using both LU 
and QR matrix factorizations, we aim at studying the influence of the used 
matrix factorization. Numerical experiments highlight the advantages of the 
proposed methods especially , in the case of dealing with high-variance 
model error and with degeneracies such as bottlenecks. A BSS application 
on MRS signals confirms the validity and improvement of the proposed 
methods. A part of this work has been recently presented at the 8th IEEE 
Sensor Array and Multichannel Signal Processing Workshop [42].

The rest of the paper is organized as follows. After the presentation 
of some notations, the ‘Multilinear algebra prerequisites and problem 
statement’ section introduces some basic definitions of the multilinear 
algebra then gives the semi-nonnegative INDSCAL problem formulation. 
In the ‘Methods’ section, we describe the proposed algorithms in detail and 
also provide an analysis of the numerical complexities. The ‘Simulation 
results’ section shows the computer simulation results. Finally, we conclude 
the paper.

MULTILINEAR ALGEBRA PREREQUISITES AND 
PROBLEM STATEMENT
Notations
The following notations are used throughout this paper.

denote the set of real-valued 
(N1×N2×⋯×Ni) arrays and the set of nonnegative real-valued (N1×N2×⋯×Ni) 
arrays, respectively. Vectors, matrices, and HO arrays are denoted by bold 
lowercase letters (a,b,⋯), bold uppercase letters (A,B,⋯) and bold cal-
ligraphic letters ( ,⋯), respectively. The (i,j)-th entry of a matrixAis 
symbolized byAi,j. Sometimes, the MATLAB®; column/row notation is ad-
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opted to indicate submatrices of a given matrix or subarrays of a HO array. 
Also,aidenotes thei-th column vector of matrixA.⊡denotes the Hadamard 
product (element-wise product), andA⊡2=A⊡A.⊙denotes the Khatri-Rao 
product.A♯denotes the pseudo inverse ofA. The superscripts-1,T, and-Tstand 
for the inverse, the transpose, and the inverse after transpose operators, 
respectively. The (N×N) identity matrix is denoted byIN.0Nstands forN-di-
mensional vectors of zeros. |a| denotes the absolute value ofa.∥A∥Fanddet(A)
stand for the Frobenius norm and determinant of matrixA, respectively. 
diag(A) returns a matrix comprising only the diagonal elements ofA. Diag(b) 
is the diagonal matrix whose diagonal elements are given by the vectorb. 
off(A) vanishes the diagonal components of the input matrixA. vec(A) re-
shapes a matrixAinto a column vector by stacking its columns vertically.

Definitions and Problem Formulation
Now we introduce some basic definitions in multilinear algebra which are 
necessary for the problem formulation.
Definition 1
The outer productC=u(1)∘u(2)∘u(3)of three vectors  
is a three-way array of whose elements are defined by

.
Definition 2
Each three-way arrayCexpressed as the outer product of three vectors is a 
rank-1 three-way array.
More generally, the rank of a three-way array is defined as follows:
Definition 3
The rank of an array , denoted byrk(C), is the mini-
mal number of rank-1 arrays belonging to that yield in a linear 
combination.
Despite the similarity between the definition of the tensor rank and its matrix 
counterpart, the rank of a three-way array may exceed its dimensions [4].
Definition 4
A three-way array slice is a two-dimensional section (fragment) of a three-
way array, obtained by fixing one of the three indices [38].
For example, thek-th frontal slice of a three-way array can be denoted 
byC:,:,kusing MATLAB notation, and sometimes it is also denoted byC(k).
The low-rank INDSCAL model of a three-way array is defined as follows:
Definition 5
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For a givenP, corresponding to the number of rank-1 terms, the INDSCAL 
model of a three-way array can be expressed as:

   (1)
where the three-way array represents the model residual.
The notation refers to the INDSCAL decomposition (1) 
of with the associated loading matrices
andD=[d1,⋯,dP]∈ . If and only if the residual is a null tensor, we have 
an exact INDSCAL decomposition.
An exact INDSCAL decomposition is considered to be essentially unique 
when it is only subject to scale and permutation indeterminacies. It means 
that an INDSCAL decomposition is insensitive to a scaling of the three 
vectorsap,ap, anddpprovided that the product of the three scale numbers is 
equal to 1, and an arbitrary permutation of the rank-1 terms. A necessary and 
sufficient uniqueness condition for the INDSCAL model was established by 
Afsari [43].
The INDSCAL model can also be described by using the frontal slices of :

   (2)
whereD(k)is a diagonal matrix whose diagonal contains the elements of thek-
th row ofD, andV(k)=V:,:,k.
In this paper, we propose to fit the INDSCAL model of three-way arrays 
while imposing nonnegativity constraints on both equal loading matricesA. 
It will be referred to as the semi-nonnegative INDSCAL model, as follows:
Problem 1
Given and an integer P, find a semi-nonnegative INDSCAL model 
of , subject to the (N × P) matrixAhaving nonnegative compo-
nents.
The semi-nonnegative INDSCAL problem is equivalent to the JDC problem 
subject to the nonnegativity constraint on the joint transformation matrix. In 
this paper, we mainly focus on the case of square nonnegative joint trans-
formation matrix, for whichN=P. The case ofN>Pwill be discussed briefly 
in the next section. Therefore, the problem that we tackle in this paper is 
defined as follows:
Problem 2
Given a three-way array with K symmetric frontal slices

, find a (N × N) joint transformation matrixAand K diagonal 
matricesD(k)of dimension (N × N) such that:
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   (3)
by minimizing the residual termV(k)in a least-squares sense, subject 
toAhaving nonnegative components.
JDC cost functions
If the residual array is a realization of a Gaussian random array, it is logical 
to fit the INDSCAL model by the following direct least square (DLS) 
criterion [23,44]:

     (4)
and to minimize (4) with respect toAandD. Note that, in the field of ICA, 
only the loading matrixAis of interest since it corresponds to the mixing 
matrix of several latent source signals. The minimization of (4) with respect 
toD, whenAis fixed, was given by Yeredor in [23]:

   (5)
WhenAis orthogonal, we can replaceD(k)byDiag{(A⊙A)Tvec(C(k))}in (4). 
Then, the extra parameterDcan be eliminated and the minimization of (4) is 
equivalent to minimizing the following indirect least square (IDLS) criterion 
[45,46]:

    (6)
In some cases such as in ICA, the orthogonality assumption ofAcan be 
satisfied by using a spatial whitening procedure [47]. However, it is known 
that the whitening procedure may introduce additional errors. Therefore, 
many algorithms propose to relax the orthogonality constraint by introducing 
the following cost function [25,31]:

     (7)
Frequently, the minimization of criterion (7) is performed on a matrix

instead ofAfor simplicity, andZis called the joint diagonalizer. To 
use this criterion, the matrixA(orZ) should be properly constrained in order 
to avoid the trivial zero solution and/or degenerate solutions [34].
Besides the criterions (4) and (7), Afsari [26] presented a new cost function, 
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which is invariant to column scaling ofA. Pham proposed an information 
theoretic criterion [48], which requires each matrixC(k)to be positive definite. 
Tichavský and Yeredor gave a special weighted least square criterion [49].

METHODS

Problem Reformulation
Existing semi-nonnegative INDSCAL algorithms are based on the 
minimization of the cost function (4) [40,41]. They are able to achieve a better 
estimation ofAthan ACDC when the data satisfies the semi-nonnegative 
INDSCAL model at the cost of a higher computational complexity. We 
propose to use criterion (7) based on elementary factorizations ofAdue to 
the fast convergence property of this kind of procedures. Generally, it is 
quite difficult to impose the nonnegativity constraint onAwhile computing 
its inverseA-1by minimizing (7). Let us consider the structure of
with the following assumptions:

• is nonsingular;
• does not contain zero entries.
Then, each frontal slice of is nonsingular and its inverse can be expressed 
as follows:

   (8)
We useC(k,-1)to denote(C(k))−1for simplicity. Eq.8shows thatC(k,-1)also preserves 
the jointly diagonalizable structure. Furthermore, instead ofA-1,Aserves as 
the joint diagonalizer. Then,Acan be estimated by minimizing the following 
modified criterion based on (7):

   (9)
By such a manipulation, most algorithms based on criterion (7) can now 
estimateAdirectly. However, none of them can guarantee the nonnegativity 
ofA. In order to impose the nonnegativity constraint onA, we resort to use a 
square change of variable which was introduced by Chu et al. [50] for NMF, 
next adopted by Royer et al. for NTF [37] and by Coloigner et al. for semi-
nonnegative INDSCAL [40]:

    (10)
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where . Then, problem 2 can be reformulated as follows:
Problem 3
Given , find the square nonnegative loading 
matrixA=B⊡2such thatBminimizes the following cost function:

   (11)
LU and QR parameterizations ofB
In order to minimize (11), one may consider a gradient-like approach. 
However, the performance of this kind of method is sensitive to the initial 
guess and to the search step size. In addition, the calculation of gradient 
of (11) with respect toBis computationally expensive due to the existence 
of the Hadamard product. Other algorithms, using Jacobi-like procedures 
[25,26,31], parameterizeAas a product of several special elementary 
matrices and estimate each elementary matrix successively. We propose to 
follow such a minimization scheme.
Now let us recall the following definitions and lemmas:
Definition 6
A unit upper (or lower) triangular matrix is an upper (or lower, respectively) 
triangular matrix whose main diagonal elements are equal to 1.
Definition 7
An elementary upper (or lower) triangular matrix with parameters {i,j,ui,j} 
andi<jis a unit upper (or lower, respectively) triangular matrix whose non-
diagonal elements are zeros except the (i,j)-th entry, which is equal toui,j.
U(i,j)(ui,j) with 1 ≤i<j≤Ndenotes an elementary upper triangular matrix:

     (12)
Similarly,L(i,j)(ℓi,j) with 1 ≤j<i≤Ncorresponds to an elementary lower 
triangular matrix.
Definition 8
A Givens rotation matrix with parameters {i,j,θi,j} andi<jis equal to an 
identity matrix except for the (i,i)-th, (j,j)-th, (i,j)-th, and (j,i)-th entries, 
which are equal tocos(θi,j),cos(θi,j),−sin(θi,j), andsin(θi,j), respectively.
Q(i,j)(θi,j) with 1 ≤i<j≤Nindicates the corresponding Givens rotation matrix:
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   (13)
Lemma 1
Any (N × N) unit lower triangular matrixLwhose (i,j)-th component is ℓi,j(i > 
j) can be factorized as the following product of N (N-1)/2elementary lower 
triangular matrices [51,Chapter 3]:

    (14)
where the two sets of indices are defined by

for the sake of 
convenience. Similarly, any (N × N) unit upper triangular matrixUwhose 
(i,j)-th component is equal to ui,j(i < j) can be factorized as a product of 
elementary upper triangular matrices as follows:

     (15)

where are two sets of indices, defined by
.

Lemma 2
Any (N × N) orthonormal matrixQcan be factorized as the following product 
of N (N-1)/2Givens rotation matrices [52, Chapter 14]:

     (16)

where are defined in Lemma 1.
For any nonsingular matrix , the LU matrix factorization 
decomposes it asB=LUΛΠ, where is a unit lower triangular 
matrix, is a unit upper triangular matrix, is a 
diagonal matrix, and is a permutation matrix.Balso admits the 
QR matrix factorization asB=QRΛ, where is an orthonormal 
matrix, is a unit upper triangular matrix, and is a 
diagonal matrix. Due to the indeterminacies of the JDC problem, the global 
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minimum of (11), sayB, can be expressed asB=LUandB=QRwithout loss of 
generality. Moreover, by incorporating Lemma 1 and Lemma 2, we obtain 
the two following elementary factorizations ofB:

   (17)

   (18)
As a consequence, the minimization of (11) with respect toBis converted 
to the estimate ofN(N-1) parameters:ℓi,jandui,jfor the LU decomposition 
(17), orθi,jandui,jfor the QR decomposition (18). Instead of simultaneously 
computing theN(N-1) parameters, we propose two Jacobi-like procedures 
which performN(N-1) sequential optimizations. This yields two new 
algorithms: i) the first algorithm based on (17), named , estimates 
eachℓi,jandui,jsuccessively, and ii) the second one based on (18), called , 
estimates eachθi,jandui,jsequentially.
Now, the difficulty is how to estimate four kinds of parameter, namelyL(i,j)

(ℓi,j) andU(i,j)(ui,j) for , andQ(i,j)(θi,j) andU(i,j)(ui,j) for . Two points 
should be noted here: i)L(i,j)(ℓi,j) andU(i,j)(ui,j) belong to the same category of 
matrices; therefore, they can be estimated by the same algorithmic procedure 
just with an emphasis on the relation between theiandjindices (i<jforU(i,j)

(ui,j) andj<iforL(i,j)(ℓi,j)); ii) for both and algorithms, the procedure 
of estimatingU(i,j)(ui,j) is identical. Consequently, the principal problem is 
reduced to estimating two kinds of parameters, namelyU(i,j)(ui,j) andQ(i,j)(θi,j).
Minimization with respect to the elementary upper triangular matrixU(i,j)(ui,j)
In this section, we minimize (11) with respect toU(i,j)(ui,j) with 1 ≤i<j≤N. 
Let denote the current estimate ofAandBbefore estimating the 
parameterui,j, respectively. Let stand for updated 
byU(i,j)(ui,j), respectively. Furthermore, the update of is defined as follows:

    (19)
In order to compute the parameterui,j, a typical way is to minimize the cri-
terion (11) with respect toui,jby replacing matrix by . For the sake 
of convenience, we denoteJ(ui,j) instead ofJ( ). Then,J(ui,j) can be ex-
pressed as follows:
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    (20)
The expression of the Hadamard square of the update is shown in the 
following proposition:
Proposition 1

 can be expressed as a function of ui,jas fol-
lows:

   (21)
where denote thei-th andj-th columns of , respectively, andejis thej-
th column of the identity matrixIN.
Inserting (21) into the cost function (20), we have:

   (22)

w h e r e

are a (N×N) con-
stant matrix, a (N× 1) constant column vector, a (1 ×N) constant row vec-
tor, and a constant scalar, respectively. The term①in (22) transforms thej-th 
column and thej-th row of . The term②in (22) is a zero matrix except 
itsj-th column containing non-zero elements, while the term③contains non-
zero entries only on itsj-th row. The term④is a zero matrix except its (j,j)-
th component being non-zero. In addition, =①+②+③+④is a (N×N) 
symmetric matrix. Hence, (22) shows that only thej-th column andj-th row 
of involve the parameterui,j, while the other elements remain constant. 
Therefore, the minimization of the cost function (20) is equivalent to mini-
mizing the sum of the squares of thej-th columns of except their (j,j)-th 
elements withk∈{1,⋯,K}. The required elements of can be expressed 
by the following proposition.
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Proposition 2
The elements of the j-th column except the (j,j)-th entry of is a second-
degree polynomial function in ui,jas follows, for every value n different of j:

   (23)

where are the (n,i)-th and (n,j)-th components of matrix , re-

spectively, and is the n-th element of vector .
The proof of this proposition is straightforward. Indeed, we can show that 
the elements of thej-th column except the (j,j)-th entry of the term①in (22) 
can be expressed by with 1 ≤n≤Nandn≠j, and those elements 
of the term②in (22) are equal to with 1 ≤n≤Nandn≠j. The sum of 
these elements directly leads to (23). The terms③and④do not need to be 
considered, since they do not affect the off-diagonal elements in thej-th col-
umn. Proposition 2 shows that the minimization of the cost function (20) can 
be expressed in the following compact matrix form:

   (24)
where is a (3 × 3) symmetric coefficient matrix.E(k)is a 
((N- 1) × 3) matrix defined as follows: the first column contains thei-th col-
umn of without thej-th element, the second column contains vector
without thej-th entry, and the third column contains thej-th column of
without thej-th component. is a three-dimensional parameter 
vector.
Equation (24) shows thatJ(ui,j) is a fourth-degree polynomial function. The 
global minimumui,jcan be obtained by computing the roots of its derivative 
and selecting the one yielding the smallest value of (24). Once the optimalui,jis 
computed, is updated by (19) and the joint diagonalizer is updated 
by computing( )⊡2. Then, the same procedure is repeated to compute 
the nextui,jwith another (i,j) index.
The minimization of (11) with respect to the elementary lower triangular 
matrixL(i,j)(ℓi,j) with 1 ≤j<i≤Ncan be computed in the same way. Proposition 
2 is also valid for the parameterℓi,jwhen 1 ≤j<i≤N. The detailed derivation is 
omitted here. The processing of all theN(N- 1) parametersui,jandℓi,jis called 
a LU sweep. In addition, for estimatingL(i,j)(ℓi,j), the (i,j) index obeys the fol-
lowing order:
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    (25)
RegardingU(i,j)(ui,j), the (i,j) index varies according to the following se-
quence:

   (26)
The proposed algorithm is comprised of several LU sweeps.
Minimization with respect to the Givens rotation matrixQ(i,j)(θi,j)
Now we minimize (11) with respect toQ(i,j)(θi,j) with 1 ≤i<j≤N. By abuse of 
notation, in this section, we continue to use to denote the current 
estimate ofAandB, respectively, before estimating the parameterθi,j. Also, 
let stand for updated byQ(i,j)(θi,j), respectively. The 
update of is defined as follows:

        (27)
Similarly, for computing the parameterθi,j, we can minimize the criterion 
(11) with respect toθi,jby replacing matrix by . We denoteJ(θi,j) instead 
ofJ( )for convenience purpose. Then,J(θi,j) can be expressed as follows:

    (28)
The Hadamard square of the update now can be rewritten as shown in 
the following proposition.
Proposition 3

can be written as a function of θi,jas follows:

     (29)
where denote the i-th and j-th columns of , respectively, andeiande-
jare the i-th and j-th columns of the identity matrixIN, respectively.
Inserting (29) into the cost function (28), we obtain:
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   (30)
where

are a (N×N) constant 
matrix, a (N× 1) constant column vector, a (1 ×N) constant row vector, and 
a constant scalar, respectively. The term①in (30) transforms thei-th andj-th 
columns and thei-th andj-th rows of . The term②in (30) is a zero matrix 
except itsi-th andj-th columns containing non-zero elements, while the 
term③contains non-zero entries only on itsi-th andj-th rows. The term④is a 
zero matrix except its (i,i)-th, (j,j)-th, (i,j)-th, and (j,i)-th components being 
non-zero. =①+②+③+④is a (N×N) symmetric matrix. Hence, (30) 
shows that only thei-th andj-th columns and thei-th andj-th rows of
involve the parameterθi,j, while the other components remain constant. It is 
noteworthy that the (i,j)-th and (j,i)-th components are twice affected by the 
transformation. Considering the symmetry of , we propose to mini-
mize the sum of the squares of the (i,j)-th entries of theKmatrices , 
instead of minimizing all the off-diagonal entries. Although minimizing this 
quantity is not equivalent to minimizing the global cost function (28), such a 
simplified minimization scheme is commonly adopted in many algorithms, 
such as [20,31]. We denote this local minimization by . The (i,j)-th com-
ponent of is expressed in the following proposition.
Proposition 4
The (i,j)-th entry of can be expressed as a function of θi,jas follows:
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   (31)

where are the (i,i)-th, (j,j)-th, (i,j)-th, and (j,i)-th 

components of matrix , respectively. are thei-th andj-th el-
ements of vector withq∈{1,2}, respectively.
It is straightforward to show that the (i,j)-th entry of the term①in (30) can 

be expressed by , the (i,j)-th 

element of the term②issin(2θi,j) , the (i,j)-th compo-

nent of the term③is equal to−sin(2θi,j) , and 
that of the term④is−sin2(2θi,j) . Then, Proposition 4 can be proved.
In order to simplify the notation of (31), we resort to the Weierstrass change 
of variable:ti,j=tan(θi,j). Then, we obtain:

   (32)
By substituting (32) into (31), we obtain an alternative expression of the (i,j)-
th entry of which is described in the following proposition. Then, the 
minimization of transforms to .
Proposition 5
The (i,j)-th entry of can be expressed by a rational function of ti,jas 
follows:

   (33)
where

.
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Eq. 33 easily shows that the sum of the squares of the (i,j)-th entries of theK-
matrices , is a rational function inti,j, namely , where the degrees 
of the numerator and the denominator are 8 and 8, respectively. can be 
expressed in the following compact matrix form:

   (34)

where is a (5 × 5) symmetric coefficient matrix,

is a five-dimensional vector, andτi,jis a five-
dimensional parameter vector defined as follows:

   (35)
The global minimumti,jcan be obtained by computing the roots of its 
derivative and selecting the one yielding the smallest value of . Onceti,jis 
obtained,θi,jcan be computed from the inverse tangent functionθi,j=arctan(ti,j). 
It is noteworthy that the foundθi,jcannot guarantee to decrease the actual cost 
function (28). Ifθi,jleads to an increase of (28), we resetθi,j= 0. Otherwise,

is updated as described in (27) and the joint diagonalizer is 
updated by computing( )⊡2. The same procedure will be repeated to 
computeθi,jwith the next (i,j) index. The order of the (i,j) indices is defined 
in Eq.26. The processing of all theN(N- 1)/2 parametersθi,jand also the 
otherN(N- 1)/2 parametersui,jis called a QR sweep. Several QR sweeps yield 
the proposed algorithm.

Both of the and algorithms can be stopped when the value of cost 
function (11) or its relative change between two successive sweeps fall below 
a fixed small positive threshold. Such a stopping criterion is guaranteed to 
be met since the cost function is non-increasing in each Jacobi-like sweep.

Practical Issues
In practice, we observe that if each frontal slice of the three-way array
is almost exactly jointly diagonalizable due to a high signal-to-noise 
ratio (SNR), the classical non-constrained JDC methods can also give 
a nonnegativeAwith high probability. In this situation, the explicit 
nonnegativity constraint could be unnecessary and could increase the 
computational burden. Therefore, we propose to relax the nonnegativity 
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constraint by directly decomposingAinto elementary LU and QR forms, 
respectively, instead of using the decompositions ofBas follows:

   (36)

   (37)

where the index sets are defined in Lemma 1. By 
inserting (36) and (37) into the cost function (9), the ways of estimating 
the two sets of parameters {ℓi,j,ui,j} and {θi,j,ui,j} are identical to those of 
Afsari’s LUJ1D and QRJ1D methods [26], respectively. Therefore, in 
practice, in order to give an automatically SNR-adaptive method, for , 
in each Jacobi-like iteration, we suggest to computeui,jby LUJ1D first. If all 
the elements in thej-th column of have the same signε, the update

is adopted. Otherwise,ui,jis computed by minimizing (20) 
and  is updated by computing (21). Eachℓi,jis computed similarly. 
Furthermore, the proposed and QRJ1D are combined in the same 
manner.

Afsari reported in [26] that if the rows of matrices (k∈{1,⋯,K}) 
are not balanced in their norms, the computation of the parameter could 
be inaccurate. In order to cope with this effect, we apply Afsari’s row 
balancing scheme every few sweeps. Such a scheme updates each
by using a diagonal matrix

, whose diagonal elements are defined as follows:

   (38)

where denotes then-th row of .

In ICA, when a non-square matrix withN>Pis encountered, the 
invertibility assumption of the frontal slicesC(k)does not hold. In this situation, 
we can compressAby means of a nonnegative matrix such that the 
resulting matrixĀ=W+Ais a nonnegative square matrix. Then, the and

algorithms can be used to compute the compressed loading matrixĀ.
W+can be computed by using the nonnegative compression algorithm (NN-
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COMP) that we proposed in [53]. More precisely, given a realization of 
an observation vector, we obtain the square root of the covariance matrix, 
denoted by . The classical prewhitening matrix is computed by

where♯denotes the pseudo inverse operator [47]. Then, 
the NN-COMP algorithm computes a linear transformation matrix
such thatW+=ΨWhas nonnegative components. OnceĀis estimated, the 
original matrixAis obtained as follows:

   (39)
It should be noted that generallyAdoes not need to be computed in such an 
ICA problem, since the sources can be estimated directly by means ofĀ.

Numerical Complexity

The numerical complexities of and are analyzed in terms of 
the number of floating point operations (flops). A flop is defined as a 
multiplication followed by an addition. In practice, only the number of 
multiplications, required to identify the loading matrix from a 
three-way array , is considered, which does not affect the order 
of magnitude of the numerical complexity.
For both algorithms, the inversesC(k,-1)(k∈{1,⋯,K}) of the frontal slices of-
CcostN3Kflops, the initialization of requires 2N3Kflops, 
and at each sweep, the calculation of parametersui,jneedsN(N-1)(5N2+12N-8)
K/2 flops. In addition, in the case of the algorithm, the calculation cost 
of , withk∈{1,⋯,K}, isN(N-1)(4N+ (4N+ 1)K) 
flops, and the numerical complexity of computing the parametersℓi,jis equal 
to that ofui,j. Regarding the algorithm, for each sweep, the complexity 
of calculating the parametersθi,jis equal toN(N-1)(5N2+ 3N+ 29)K/2 
flops, and the estimation of , withk∈{1,⋯,K}, 
costsN(N- 1)(5N+ (12N+ 20)K/2) flops. In practice, the proposed and

techniques are combined with LUJ1D and QRJ1D [26], respectively, 
leading to the magnitude of global numerical complexities of and
being betweenO(N3K)andO(N4K). A recent nonnegative JDC method called

 [41] is also based on a square change of variable and LU matrix factor-
ization. It minimizes the cost function (4) with respect toAandDalternately, 
leading to a higher numerical complexity. By means of the reformulation of 
the cost function, the proposed methods avoid the estimation ofD, therefore 
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achieving a lower complexity compared to . The explicit expressions 
of the overall complexity of , , and  [41], as well as those of 
four classical JDC algorithms, namely ACDC [23], FFDIAG [25], LUJ1D 
[26], and QRJ1D [26], are listed in Table1. One can notice that numerical 
complexities of the proposed and methods are at most one order of 
magnitude higher than those of the four JDC algorithms and still lower than 
that of . Moreover,  is less computationally expensive than .

Table 1: Numerical complexities of seven JDC algorithms in terms of flops

Numerical complexity
ACDC (13/3N3K+3N4+2N2K+N3+N2)Ns

FFDIAG (2N3K+N3+2N2K+4N(N-1))Ns

LUJ1D (4NK+N-2K)N(N-1)Ns

QRJ1D (6NK+2.5N+1.5K)N(N-1)Ns

((15N2+4N)KN(N−1)+4/3N2K+N3+N2) 
+((33N2+7N)KN(N−1)+4/3N2K+N3+N2) 
3N3K+(4NK+N−2K)N(N−1) 

+((5N2+16N−7)K+4N)N(N−1) 
3N3K+(6NK+2.5N+1.5K)N(N−1) 

+((5N2+15.5N+21)K+7N)N(N−1) 
(N,N,K): the dimensions of the three-way array . For ACDC, FFDIAG, 
LUJ1D, and QRJ1D,Nsis the number of total sweeps. For , , and

, is the number of sweeps without nonnegativity constraint; is the 
number of sweeps with explicit nonnegativity constraint.

SIMULATION RESULTS
This section is twofold. In the first part, the performance of the proposed

and algorithms is evaluated with simulated semi-nonnegative 
semi-symmetric three-way arrays . Several experiments are designed to 
study the convergence property, the influence of SNR, the impact of the 
third dimensionKof , the effect of the coherence of the loading matrixD, 
and the influence of the condition number of the diagonal matricesD(k). We 
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also evaluate the proposed methods for estimating a non-square matrixA. 
The proposed algorithms are compared with four classical nonorthogonal 
JDC methods, namely ACDC [23], FFDIAG [25], LUJ1D [26], QRJ1D 
[26], and the nonnegative JDC method  [41]. In the second part, the 
source separation ability of the proposed algorithms is studied through 
a BSS application. In this context, the and are used to jointly 
diagonalize several matrix slices of the fourth-order cumulant array [40] of 
the observations and compared with several classical ICA [47,54,55] and 
NMF [56] methods.

Simulated Semi-nonnegative INDSCAL Model
The synthetic semi-nonnegative semi-symmetric three-way array

of rankNis generated randomly according 
to the semi-nonnegative INDSCAL model (3). When used without further 
specification, all the algorithms are manipulated under the following 
conditions:

i) Model generation: The loading matrix is randomly drawn from 
a uniform distribution on the interval [ 0,1]. The loading matrix is 
drawn from a Gaussian distribution with a mean of 1 and a deviation of 0.5. 
The pure array is perturbed by a residual INDSCAL noise array . The 
loading matrices of are drawn from a zero-mean unit-variance Gaussian 
distribution. The resulting noisy three-way array can be written as follows:

   (40)
whereσNis a scalar controlling the noise level. Then, the SNR is defined 
bySNR=−20log10(σN).
ii) Initialization: In each Monte Carlo trial, all the algorithms are initialized 
by a same random matrix whose components obey the uniform distribution 
over [ 0,1].
iii) Afsari’s row balancing scheme: The LUJ1D, QRJ1D, , and  al-
gorithms perform the row balancing scheme once per run of five sweeps.
iv) Stopping criterion: All the algorithms stop either when the relative error 
of the corresponding criterion between two successive sweeps is less than 
10-5or when the number of sweeps exceeds 200. A sweep of ACDC includes 
a full AC phase and a DCphase.
v) Performance measurement: The performance is measured by means of 
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the error between the true loading matrixAand the estimate , the numerical 
complexity, and the CPU time. We define the following scale-invariant and 
permutation-invariant distance [40]:

   (41)
whereanand are then-th column ofAand then′-th column of
, respectively. is defined recursively by ={1,⋯,N}×{1,⋯,N}, and

. In addition,
is defined as the pseudo-distance between two vectors [13]:

     (42)
The criterion (41) is an upper bound of the optimal permutation-invariant 
criterion. It avoids the burdensome computation of all the permutations. A 
small value of (41) means a good performance in the sense that is close 
toA.
vi) Test environment: The simulations are carried out in Matlab v7.14 on 
Mac OS X and run on Intel Quad-Core CPU 2.8 GHz with 32 GB memory. 
Moreover, we repeat all the experiments with 500 Monte Carlo trials.

Convergence

In this experiment, the convergences of the and algorithms are 
compared to those of ACDC, FFDIAG, LUJ1D, QRJ1D, and . The 
dimensions of the three-way array are set toN= 5 andK= 
15. The performance is assessed under three SNR conditions: SNR = - 5, 10, 
and 25 dB, respectively. Figure1shows the convergence curves measured in 
terms of the cost function as a function of sweeps. It shows that FFDIAG, 
LUJ1D, and QRJ1D exhibit fast convergence behavior. They converge in 
less than 20 sweeps.  decreases the cost function (4) quasi-linearly. 
ACDC and do not converge in a maximum of 200 sweeps. The 
proposedJD+LUalgorithm converges in about 100 sweeps when SNR =25 
dB and SNR =10 dB, and it converges in about 40 sweeps when SNR =-5 
dB. Regarding , it reduces the cost function (11) to the values relatively 
higher than those achieved by and converges in about 50 sweeps 
whatever the SNR is. It seems that FFDIAG, LUJ1D, and QRJ1D achieve 
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the fastest convergence rate. It should be noted that while an algorithm 
may converge to a point in which the value of the cost function is close to 
zero, such a point could be a local minimum far from the desired matrixAas 
shown in Figure2. The top picture in Figure2shows the convergence curves 
measured in terms of the estimating errorα(A, )as a function of sweeps 
when SNR=25 dB. It shows that the solutions of FFDIAG, LUJ1D, and 
QRJ1D are still far from optimum. 
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Figure 1 JDC performance versus sweeps. The average value of the cost function evolution of all the algorithms as a function of the number of
sweeps with various SNR levels. The dimensions of CN are set to N = 5 and K = 15. The SNR values are set to 25 dB (a), 10 dB (b), and −5 dB (c),
respectively.

than ACDC, but it is still much more efficient. Concern-
ing the JD+

QR algorithm, it is more costly than JD+
LU, with

a comparable performance. We can then conclude that
JD+

LU offers the best performance/complexity compromise
in these experiments.

Effect of SNR
In this section, we study the behaviors of the seven
algorithms as a function of SNR. The dimensions of
the three-way array CN are set to N = 5 and K = 15.
We repeat the experiments with SNR ranging from −30
to 50 dB with a step of 2 dB. The top picture in Figure 3
depicts the average curves of α(A, Ã) of the seven algo-
rithms as a function of SNR. The obtained results show
that the performance of all the methods increases as SNR
grows. For the unconstrained methods, generally, ACDC

performs better than FFDIAG, LUJ1D, and QRJ1D. The
nonnegativity constraint obviously helps ACDC+

LU, JD
+
LU,

and JD+
QR to improve the results for lower SNR values.

The performance of ACDC and ACDC+
LU remains stable

for higher SNR values due to the small number of avail-
able sweeps and the lack of good initializations. Generally,
the proposed JD+

LU and JD+
QR algorithms outperform the

others when SNR is between −20 and 30 dB and per-
form similar to FFDIAG, LUJ1D, and QRJ1D when SNR is
above 45 dB. The average numerical complexity and CPU
time at each SNR level of all the methods in this experi-
ment are shown in the bottom of Figure 3. It shows that
the proposedmethods achieve better estimations ofA and
cost less flops and CPU time than ACDC+

LU. The JD+
LU

gives the best performance/complexity trade-off for all the
considered SNR values.

Figure 1: JDC performance versus sweeps.The average value of the cost 
function evolution of all the algorithms as a function of the number of sweeps 
with various SNR levels. The dimensions ofCNare set toN= 5 andK= 15. 
The SNR values are set to 25 dB(a), 10 dB(b), and -5 dB(c), respectively.

ACDC and give better estimations ofAthan the previous three 
methods. The best results are achieved by the proposed and
methods. The middle picture in Figure2displays the convergence curves 
when SNR=10 dB. It can be observed that ACDC converges to a local 
minimum which is not the global one and that the performance of the 
proposed methods is still better than that of the five other algorithms. For 
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a low SNR =-5 dB, as shown in the bottom picture in Figure2, both the 
methods based on alternating optimization, namely ACDC and , 
converge to local minima which are less desirable. The proposed algorithms 
are always able to converge to better results than the classical methods. The 
average numerical complexities and CPU time of all the algorithms over 
Monte Carlo trials are shown in Table2. It is observed that FFDIAG, LUJ1D, 
and QRJ1D require a small amount of calculations, whereas requires 
a large amount of calculations. The proposed just costs a bit more flops 
and CPU time than ACDC, but it is still much more efficient. Concerning the

algorithm, it is more costly than , with a comparable performance. 
We can then conclude that offers the best performance/complexity 
compromise in these experiments.
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Figure 2 JDC performance versus sweeps. The average error α(A, Ã) evolution of all the algorithms as a function of the number of sweeps with
various SNR levels. The dimensions of CN are set to N = 5 and K = 15. The SNR values are set to 25 dB (top), 10 dB (middle), and −5 dB (bottom),
respectively.

Effect of dimension K
In ICA, the third dimension K of the three-way array
CN ∈ N×N×K corresponds to the number of covariance
matrices at different lags, or the number of matrix slices
derived from a cumulant array. In this section, we study
the influence of K on the performance of the seven algo-
rithms. The first and second dimensions of CN are set to
N = 5. The SNR value is fixed to 10 dB. We repeat the
experiment with K ranging from 3 to 55. The top picture

in Figure 4 shows the average curves of α(A, Ã) of all the
algorithms as a function of K. For the five existing meth-
ods, ACDC, ACDC+

LU, FFDIAG, LUJ1D, and QRJ1D, their
performance is quite stable with respect to K. The perfor-
mance of the proposedmethods progresses as K increases
and then practically stabilizes for high values of K. It indi-
cates that after some point (e.g., K ≥ 20), the additional
information brought by an increase of K does not fur-
ther improve the results. The proposed JD+

LU and JD+
QR

Table 2 Average numerical complexities (in flops) and computation time (in seconds) of the convergence experiment

SNR= 25 dB SNR= 10 dB SNR= −5 dB

Complexity Time Complexity Time Complexity Time

ACDC 2.1708× 106 1.1357 2.0338× 106 1.0535 1.6800× 106 0.8761

FFDIAG 1.1001× 105 0.0331 1.0878× 105 0.0327 9.4380× 104 0.0287

LUJ1D 2.8903× 105 0.0660 2.3126× 105 0.0526 1.4199× 105 0.0325

QRJ1D 2.2158× 105 0.0383 2.4445× 105 0.0421 2.6989× 105 0.0468

ACDC+
LU 2.4462× 107 2.6735 2.7498× 107 2.8034 2.9646× 107 2.9119

JD+
LU 2.8487× 106 0.8107 4.9684× 106 1.1098 7.1434× 106 1.2938

JD+
QR 3.0766× 106 1.0455 5.0554× 106 1.1932 8.2185× 106 1.3026

Figure 2: JDC performance versus sweeps.The average errorα(A, )evolution 
of all the algorithms as a function of the number of sweeps with various SNR 
levels. The dimensions ofCNare set toN= 5 andK= 15. The SNR values are set 
to 25 dB (top), 10 dB (middle), and -5 dB (bottom), respectively.
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Table 2: Average numerical complexities (in flops) and computation time (in 
seconds) of the convergence experiment

SNR = 25 dB SNR = 10 dB SNR =-5 dB

Complexity Time Complexity Time Complexity Time

ACDC 2.1708 × 106 1.1357 2.0338 × 106 1.0535 1.6800 × 106 0.8761

FFDIAG 1.1001 × 105 0.0331 1.0878 × 105 0.0327 9.4380 × 104 0.0287

LUJ1D 2.8903 × 105 0.0660 2.3126 × 105 0.0526 1.4199 × 105 0.0325

QRJ1D 2.2158 × 105 0.0383 2.4445 × 105 0.0421 2.6989 × 105 0.0468

ACDC+LU 2.4462 × 107 2.6735 2.7498 × 107 2.8034 2.9646 × 107 2.9119

JD+LU 2.8487 × 106 0.8107 4.9684 × 106 1.1098 7.1434 × 106 1.2938

JD+QR 3.0766 × 106 1.0455 5.0554 × 106 1.1932 8.2185 × 106 1.3026

Effect of SNR
In this section, we study the behaviors of the seven algorithms as a function 
of SNR. The dimensions of the three-way arrayCNare set toN= 5 andK= 
15. We repeat the experiments with SNR ranging from -30 to 50 dB with a 
step of 2 dB. The top picture in Figure3depicts the average curves ofα(A, 

)of the seven algorithms as a function of SNR. The obtained results show 
that the performance of all the methods increases as SNR grows. For the 
unconstrained methods, generally, ACDC performs better than FFDIAG, 
LUJ1D, and QRJ1D. The nonnegativity constraint obviously helps ,

, and to improve the results for lower SNR values. The performance 
of ACDC and remains stable for higher SNR values due to the small 
number of available sweeps and the lack of good initializations. Generally, 
the proposed and algorithms outperform the others when SNR 
is between -20 and 30 dB and perform similar to FFDIAG, LUJ1D, and 
QRJ1D when SNR is above 45 dB. The average numerical complexity and 
CPU time at each SNR level of all the methods in this experiment are shown 
in the bottom of Figure3. It shows that the proposed methods achieve better 
estimations ofAand cost less flops and CPU time than . The
gives the best performance/complexity trade-off for all the considered SNR 
values.
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Figure 3 JDC performance versus SNR. The dimensions of CN are set to N = 5 and K = 15. Top: the average error α(A, Ã) evolution of all the
algorithms as a function of SNR. Bottom: the average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

algorithms maintain competitive advantages through all
the K values. The two images in the bottom of Figure 4
present the average numerical complexity and CPU time
of all the algorithms in this experiment, respectively. It
shows that the numerical complexity of JD+

LU and JD+
QR

is between that of ACDC and ACDC+
LU. The JD+

LU and
JD+

QR methods seem to be the most effective algorithms
compared to the other methods.

Effect of coherence of D
In this experiment, the effect of the coherence of the third
loading matrix D of the three-way array C =[[A,A,D]]
is evaluated. Let dn and dm denote the n-th and m-th
columns of D, respectively. The angle ψn,m between dn
and dm can be derived by using the following Euclidean
dot product formula dT

n dm = �dn��dm� cos(ψn,m). Then,
the coherence ρ of D is defined as the maximum absolute
cosine of angle ψn,m between the columns of D as follows:

ρ = max
n,m
n �=m

| cos(ψn,m)| with cos(ψn,m) = dT
n dm

�dn��dm�
(43)

The quantity ρ is also known as the modulus of unique-
ness of JDC [43]. By its definition (43), ρ falls in the

range of [0, 1]. The JDC problem is considered to be ill-
conditioned when ρ is close to 1. Such an ill-conditioned
problem can be met in ICA when A has nearly collinear
column vectors. For example, in order to perform ICA,
provided that all the sources are non-Gaussian, which is
often the case in practice, we can build a three-way arrayC
by stacking the matrix slices of the fourth-order cumulant
array of the observation data. Then, the loading matrix D
can be expressed as follows:

D = (A � A)C4,{s} (44)

where C4,{s} = diag
[C1,1,1,1,{s}, · · · , CN ,N ,N ,N ,{s}

]
is a (N ×

N) diagonal matrix with Cn,n,n,n,{s} being the fourth-order
cumulant of the n-th source, n ∈ {1, · · · ,N}, and where
� denotes the Khatri-Rao product. It can be observed
that the coherence of the columns of A will influence
the coherence of the matrix D. In the following test, the
dimensions of the three-way array CN are set to N = 5
and K = 15. The SNR value is fixed to 10 dB. In order
to control ρ, firstly, we randomly generate an orthogo-
nal matrix D ∈ 15×5 so that ρ = 0 by orthogonalizing
a (15 × 5) random matrix. Secondly, we rotate its five
columns such that all the internal angles between any
columns are equal to a predefined value ψ . Therefore, ρ
is only controlled by the angle ψ and equals to | cos(ψ)|.

Figure 3: JDC performance versus SNR.The dimensions ofCNare set toN= 5 
andK= 15. Top: the average errorα(A, )evolution of all the algorithms as a 
function of SNR. Bottom: the average numerical complexities (left) and the 
CPU time (right) of all the algorithms, respectively.

Effect of Dimension K
In ICA, the third dimensionKof the three-way array corresponds 
to the number of covariance matrices at different lags, or the number of 
matrix slices derived from a cumulant array. In this section, we study the 
influence ofKon the performance of the seven algorithms. The first and 
second dimensions ofCNare set toN= 5. The SNR value is fixed to 10 
dB. We repeat the experiment withKranging from 3 to 55. The top picture 
in Figure4shows the average curves ofα(A, )of all the algorithms as a 
function ofK. For the five existing methods, ACDC,ACDC+LU, FFDIAG, 
LUJ1D, and QRJ1D, their performance is quite stable with respect toK. The 
performance of the proposed methods progresses asKincreases and then 
practically stabilizes for high values ofK. It indicates that after some point 
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(e.g.,K≥ 20), the additional information brought by an increase ofKdoes 
not further improve the results. The proposed and algorithms 
maintain competitive advantages through all theKvalues. The two images 
in the bottom of Figure4present the average numerical complexity and 
CPU time of all the algorithms in this experiment, respectively. It shows 
that the numerical complexity of and is between that of ACDC and

. The and methods seem to be the most effective algorithms 
compared to the other methods.
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Figure 4 JDC performance versus dimension K . The first and second dimensions of CN and the SNR value are set to N = 5 and SNR = 10 dB,
respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of dimension K. Bottom: the average numerical complexities
(left) and the CPU time (right) of all the algorithms, respectively.

We repeat the experiment with the angle ψ ranging from
0 to π/2 with a step of π/60. A small ψ value means a
large ρ value. The top picture in Figure 5 displays the aver-
age curves of α(A, Ã) of all the algorithms as a function
of ψ . It shows that the nonnegativity constrained meth-
ods ACDC+

LU, JD
+
LU, and JD+

QR, outperform the uncon-
strained ones ACDC, FFDIAG, LUJ1D, and QRJ1D. The
proposed algorithms are more efficient, particularly when
the coherence level is high. The average numerical com-
plexity and CPU time displayed in the bottom of Figure 5
indicate that the JD+

LU algorithm provides the best perfor-
mance/complexity compromise, while the JD+

QR algorithm
is also competitive with regard to ACDC+

LU.

Effect of condition number of D(k)

When the JDC problem is considered, a diagonal matrix
D(k) could contain some diagonal elements which, despite
being non-zero, are many orders of magnitude lower than
some other elements, leading to an ill-conditioned matrix
C(k). For the proposed methods, the inverse of such a
matrix C(k) would contain numerical errors. In this exper-
iment, we study the performance of the seven algorithms
as a function of the condition number of one of the diago-
nal matrices D(k). The dimensions of the three-way array

CN are set to N = 5 and K = 15. The SNR value is
set to 10 dB. We vary the condition number of the first
diagonal matrix D(1) from 1 to 1,000 by fixing the ratio
of its largest diagonal element to its smallest diagonal ele-
ment. The top picture in Figure 6 displays the average
curves of the estimating error α(A, Ã) of the seven algo-
rithms as a function of the condition number of D(1).
The results reveal that a highly ill-conditioned diagonal
matrix D(1) has a clear negative effect on the estima-
tion accuracy of all the algorithms. The nonnegativity
constrained methods ACDC+

LU, JD
+
LU, and JD+

QR outper-
form the classical algorithms ACDC, FFDIAG, LUJ1D,
and QRJ1D whatever the condition number is. The pro-
posed JD+

LU and JD+
QR algorithms maintain advantages

when the condition number is less than 100. Regarding
the cases of larger condition numbers, ACDC+

LU is more
superior since it does not need to invert the highly ill-
conditioned matrix. It is worthy pointing out that in prac-
tice, we can choose these sufficiently well-conditioned
matrices C(k) for the proposed methods, whose condi-
tion numbers are below a predefined threshold. In addi-
tion, a weighted cost function for which weights would
depend on the condition number of each matrix can be
considered. On the other hand, the performance of the

Figure 4: JDC performance versus dimensionK.The first and second dimensions 
ofCNand the SNR value are set toN=5 and SNR=10 dB, respectively. Top: the 
average errorα(A, )evolution of all the algorithms as a function of dimen-
sionK. Bottom: the average numerical complexities (left) and the CPU time 
(right) of all the algorithms, respectively.

Effect of Coherence of D
In this experiment, the effect of the coherence of the third loading matrixDof 
the three-way array is evaluated. Letdnanddmdenote then-th 
andm-th columns ofD, respectively. The angleψn,mbetweendnanddmcan 
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be derived by using the following Euclidean dot product formula
. Then, the coherenceρofDis defined as the 

maximum absolute cosine of angleψn,mbetween the columns ofDas follows:

   (43)
The quantityρis also known as the modulus of uniqueness of JDC [43]. By its 
definition (43),ρfalls in the range of [ 0,1]. The JDC problem is considered to 
be ill-conditioned whenρis close to 1. Such an ill-conditioned problem can 
be met in ICA whenAhas nearly collinear column vectors. For example, in 
order to perform ICA, provided that all the sources are non-Gaussian, which 
is often the case in practice, we can build a three-way array by stacking 
the matrix slices of the fourth-order cumulant array of the observation data. 
Then, the loading matrixDcan be expressed as follows:

     (44)

where is a (N×N) diagonal matrix 
withCn,n,n,n,{s}being the fourth-order cumulant of then-th source,n∈{1,⋯,N}, 
and where⊙denotes the Khatri-Rao product. It can be observed that the 
coherence of the columns ofAwill influence the coherence of the matrixD. 
In the following test, the dimensions of the three-way arrayCNare set 
toN= 5 andK= 15. The SNR value is fixed to 10 dB. In order to controlρ, 
firstly, we randomly generate an orthogonal matrix so thatρ= 
0 by orthogonalizing a (15×5) random matrix. Secondly, we rotate its five 
columns such that all the internal angles between any columns are equal to 
a predefined valueψ. Therefore,ρis only controlled by the angleψand equals 
to|cos(ψ)|. We repeat the experiment with the angleψranging from 0 toπ/2 
with a step ofπ/60. A smallψvalue means a largeρvalue. The top picture 
in Figure5displays the average curves ofα(A, )of all the algorithms as a 
function ofψ. It shows that the nonnegativity constrained methods ,

, and , outperform the unconstrained ones ACDC, FFDIAG, LUJ1D, 
and QRJ1D. The proposed algorithms are more efficient, particularly when 
the coherence level is high. The average numerical complexity and CPU time 
displayed in the bottom of Figure5indicate that the algorithm provides 
the best performance/complexity compromise, while the algorithm is 
also competitive with regard to .
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Figure 5 JDC performance versus coherence. The dimensions of CN and the SNR value are set to N = 5, K = 15, and SNR = 10 dB, respectively.
Top: the average error α(A, Ã) evolution of all the algorithms as a function of internal angle ψ between any two columns ofD. Bottom: the average
numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

classical methods can also be improved by choosing a
particular subset of available matrices [57] and by properly
weighting the cost functions [49]. In order to give a fair
comparison, all the algorithms operate on the same set of
matrices in all the experiments of this paper. In addition,
the average numerical complexity and CPU time at each
condition number of all the methods in this experiment
are shown in the bottom of Figure 6. It shows that the
proposed methods give the best performance/complexity
trade-off compared to ACDC+

LU whatever the condition
number is.

Test with a non-squarematrix A
As described in the section of practical issues, when a
non-square matrix A ∈ N×P

+ with N > P is met in
ICA, we propose to compress it by a nonnegative com-
pression matrix W+ ∈ P×N

+ [53], such that the resulting
matrix Ā = W+A is a (P × P) nonnegative square matrix.
Then, the proposed methods can be applied to estimate
Ā. Similar to the classical prewhitening, the nonnegative
compression step could introduce numerical errors. In
this experiment, we compare our methods to ACDC and
ACDC+

LU through a simulated ICAmodel. The latter algo-
rithms can directly estimate a non-square matrix A from

the fourth-order cumulant matrix slices. The ICA model
is established as follows:

x[ f ]= As[ f ]+ν[ f ] (45)

where x[ f ]= [
x1[ f ] , · · · , xN [ f ]

]T is the (N × 1) obser-
vation vector, s[ f ]= [

s1[ f ] , s2[ f ] , s3[ f ]
]T is the (3 × 1)

zero-mean unit-variance source vector whose elements
are independently drawn from a uniform distribution over[
−√

3,
√
3
]
, ν = [

ν1[ f ] , · · · , νN [ f ]
]T is the (N × 1) zero-

mean unit-variance Gaussian noise vector, and A is the
(N × 3) nonnegative mixing matrix whose components
are independently drawn from a uniform distribution over
[0, 1]. In this context, the SNR is defined by:

SNR = 20 log10(�{As[ f ]}�F/�{ν[ f ]}�F) (46)

For the proposed JD+
LU and JD+

QR algorithms, the
given realization of {x[ f ]} is compressed by means of
a matrix W+ ∈ 3×N

+ computed using the method
proposed in [53], leading to a three-dimensional vec-
tor {x̄[ f ]}. We compute the fourth-order cumulant array
of {x̄[ f ]} and choose the first three matrix slices in
order to build a three-way array. Hence, JD+

LU and

Figure 5: JDC performance versus coherence.The dimensions ofCNand the 
SNR value are set toN= 5,K= 15, and SNR=10 dB, respectively. Top: the 
average errorα(A, )evolution of all the algorithms as a function of internal 
angleψbetween any two columns ofD. Bottom: the average numerical complex-
ities (left) and the CPU time (right) of all the algorithms, respectively.

Effect of Condition Number of D(k)

When the JDC problem is considered, a diagonal matrixD(k)could contain 
some diagonal elements which, despite being non-zero, are many orders of 
magnitude lower than some other elements, leading to an ill-conditioned 
matrixC(k). For the proposed methods, the inverse of such a matrixC(k)would 
contain numerical errors. In this experiment, we study the performance of 
the seven algorithms as a function of the condition number of one of the 
diagonal matricesD(k). The dimensions of the three-way arrayCNare set 
toN= 5 andK= 15. The SNR value is set to 10 dB. We vary the condition 
number of the first diagonal matrixD(1)from 1 to 1,000 by fixing the ratio of 
its largest diagonal element to its smallest diagonal element. The top picture 
in Figure6displays the average curves of the estimating errorα(A, )of the 
seven algorithms as a function of the condition number ofD(1). The results 
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reveal that a highly ill-conditioned diagonal matrixD(1)has a clear negative 
effect on the estimation accuracy of all the algorithms. The nonnegativity 
constrained methodsACDC+LU, , and outperform the classical 
algorithms ACDC, FFDIAG, LUJ1D, and QRJ1D whatever the condition 
number is. The proposed and algorithms maintain advantages 
when the condition number is less than 100. Regarding the cases of larger 
condition numbers, is more superior since it does not need to invert 
the highly ill-conditioned matrix. 
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Figure 6 JDC performance versus condition number. The dimensions of CN and the SNR value are set to N = 5, K = 15, and SNR = 10 dB,
respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of the condition number of one of the diagonal matrices
D(k) . Bottom: the average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

JD+
QR decompose a (3 × 3 × 3) array. Once the com-

pressed mixing matrix Ā is estimated, the original
mixing matrix is obtained by Eq. 39. Regarding ACDC
and ACDC+

LU, the fourth-order cumulant array of {x[ f ]} is
directly computed without compression.We apply ACDC
and ACDC+

LU on two three-way arrays with different third
dimensions. The first array of dimension (N × N × 3)
is built by choosing the first three matrix slices from the
fourth-order cumulant array, while the second array of
dimension (N × N × N) is built using the first N matrix
slices. We study the impact of the number of observations
N on the performance of the JDC algorithms, by varying
N from 4 to 24. The SNR value is fixed to 5 dB. The num-
ber of samples used to estimate the cumulants is set to
103. Figure 7 shows the average curves of the estimating
error α(A, Ã) of all the algorithms as a function of N. As
it can be seen, when N ≤ 15, the larger the value of N,
the more accurate estimation of A is achieved.WhenN >

15, the further increase of N does not bring significant
improvement in terms of the estimation accuracy. ACDC
and ACDC+

LU give better results when the array with a
larger third dimension is considered. Their results on (N×
N × N) arrays outperform the proposed methods when

N = 4. ACDC+
LU also gives the best estimation on (N ×

N × N) arrays with N = 5. It suggests that the numerical
errors introduced by the compression step limit the per-
formance of the proposed methods when only a small
number of observation is available. Such a negative effect
can be partially compensated by using a large number of
observations, since the proposed JD+

LU and JD+
QR methods

maintain the highest performance in terms of estimation
accuracy when N ≥ 6. The performance ACDC and
ACDC+

LU can be further improved by using a (N×N×N2)
array, which contains all the N2 fourth-order cumulant
matrix slices. However, it leads to a higher numerical com-
plexity especially for a large value of N. Regarding the
proposed JD+

LU and JD+
QR methods, their performance can

also be improved by using all the nine matrix slices of
the fourth-order cumulant array of the compressed obser-
vation vector. Nevertheless, the experimental result has
already shown that by using only a small number of matrix
slices, JD+

LU and JD+
QR can maintain lower numerical com-

plexities than ACDC and ACDC+
LU, while achieving better

estimation results, when a large value of N is considered.
Therefore, despite the negative influence of the nonneg-
ative compression, the proposed methods still offer a

Figure 6: JDC performance versus condition number.The dimensions ofCNand 
the SNR value are set toN= 5,K= 15, and SNR=10 dB, respectively. Top: the 
average errorα(A, )evolution of all the algorithms as a function of the condi-
tion number of one of the diagonal matricesD(k). Bottom: the average numerical 
complexities (left) and the CPU time (right) of all the algorithms, respectively.

It is worthy pointing out that in practice, we can choose these sufficiently 
well-conditioned matricesC(k)for the proposed methods, whose condition 
numbers are below a predefined threshold. In addition, a weighted cost 
function for which weights would depend on the condition number of 
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each matrix can be considered. On the other hand, the performance of the 
classical methods can also be improved by choosing a particular subset of 
available matrices [57] and by properly weighting the cost functions [49]. 
In order to give a fair comparison, all the algorithms operate on the same 
set of matrices in all the experiments of this paper. In addition, the average 
numerical complexity and CPU time at each condition number of all the 
methods in this experiment are shown in the bottom of Figure6. It shows 
that the proposed methods give the best performance/complexity trade-off 
compared to whatever the condition number is.

Test with a Non-square Matrix A
As described in the section of practical issues, when a non-square 
matrix withN>Pis met in ICA, we propose to compress it by a 

nonnegative compression matrix [53], such that the resulting 
matrixĀ=W+Ais a (P×P) nonnegative square matrix. Then, the proposed 
methods can be applied to estimateĀ. Similar to the classical prewhitening, 
the nonnegative compression step could introduce numerical errors. In 
this experiment, we compare our methods to ACDC and through a 
simulated ICA model. The latter algorithms can directly estimate a non-
square matrixAfrom the fourth-order cumulant matrix slices. The ICA model 
is established as follows:

       (45)
where  observation vector,
is the (3 × 1) zero-mean unit-variance source vector whose 
elements are independently drawn from a uniform distribution over

is the (N× 1) zero-mean unit-variance 
Gaussian noise vector, andAis the (N× 3) nonnegative mixing matrix whose 
components are independently drawn from a uniform distribution over [ 
0,1]. In this context, the SNR is defined by:

   (46)
For the proposed and algorithms, the given realization of {x[f] } is 
compressed by means of a matrix computed using the method 
proposed in [53], leading to a three-dimensional vector{x̄[f]}. We compute 
the fourth-order cumulant array of{x̄[f]}and choose the first three matrix 
slices in order to build a three-way array. Hence, and decompose 
a (3×3×3) array. Once the compressed mixing matrixĀis estimated, the 



Canonical Polyadic Decomposition of Third-order Semi-nonnegative..... 149

original mixing matrix is obtained by Eq.39. Regarding ACDC and , 
the fourth-order cumulant array of {x[f] } is directly computed without com-
pression. We apply ACDC and on two three-way arrays with different 
third dimensions. The first array of dimension (N×N× 3) is built by choosing 
the first three matrix slices from the fourth-order cumulant array, while the 
second array of dimension (N×N×N) is built using the firstNmatrix slices. 
We study the impact of the number of observationsNon the performance of 
the JDC algorithms, by varyingNfrom 4 to 24. The SNR value is fixed to 5 
dB. The number of samples used to estimate the cumulants is set to 103. Fig-
ure7shows the average curves of the estimating errorα(A, )of all the algo-
rithms as a function ofN. As it can be seen, whenN≤ 15, the larger the value 
ofN, the more accurate estimation ofAis achieved. WhenN> 15, the further 
increase ofNdoes not bring significant improvement in terms of the estimation 
accuracy. ACDC and give better results when the array with a larger 
third dimension is considered. Their results on (N×N×N) arrays outperform 
the proposed methods whenN= 4. also gives the best estimation on 
(N×N×N) arrays withN= 5. It suggests that the numerical errors introduced 
by the compression step limit the performance of the proposed methods when 
only a small number of observation is available. Such a negative effect can 
be partially compensated by using a large number of observations, since the 
proposed and methods maintain the highest performance in terms 
of estimation accuracy whenN≥6. The performance ACDC and can 
be further improved by using a (N×N×N2) array, which contains all theN-
2fourth-order cumulant matrix slices. However, it leads to a higher numeri-
cal complexity especially for a large value ofN. Regarding the proposed

and methods, their performance can also be improved by using all 
the nine matrix slices of the fourth-order cumulant array of the compressed 
observation vector. Nevertheless, the experimental result has already shown 
that by using only a small number of matrix slices, and  can main-
tain lower numerical complexities than ACDC and , while achieving 
better estimation results, when a large value ofNis considered. Therefore, 
despite the negative influence of the nonnegative compression, the proposed 
methods still offer a good performance/complexity compromise to estimate 
a non-square matrixA.
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Figure 7 JDC performance on an ICAmodel versus number of observations. The number of sources P and the SNR value are set to P = 3 and
SNR = 5 dB, respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of the number of observations N. Bottom: the
average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

good performance/complexity compromise to estimate a
non-square matrix A.

BSS application on MRS data
In this section, we aim to illustrate the potential capability
of the proposed JD+

LU and JD+
QR algorithms for solving a

real-life BSS problem by an application carried on simu-
lated MRS data.
MRS is a powerful non-invasive analytical technique

for analyzing the chemical content of MR-visible nuclei
and therefore enjoys particular advantages for assess-
ing metabolism. The chemical property of each nucleus
determines the frequency at which it appears in the MR
spectrum, giving rise to peaks corresponding to specific
metabolites [58]. Therefore, the MRS observation spectra
can be modeled as the mixture of the spectrum of each
constitutional source metabolite. More specifically, it can
be written as the noisy linear instantaneous mixing model
described in Eq. 45, where x[ f ]∈ N is the MRS observa-
tion vector, s[ f ]∈ P is the source vector representing the
statistically quasi-independent source metabolites, ν ∈

N is the instrumental noise vector, and A ∈ N×P
+ is

the nonnegative mixing matrix containing the positive
concentrations of the source metabolites. SNR is defined
as in Eq. 46. In this experiment, two simulated MRS
sourcemetabolites {s1[ f ]} and {s2[ f ]}, namely the Choline
(Cho) and Myo-inositol (Ins) (see Figure 8b), are gener-
ated by Lorentzian and Gaussian functions [59]. Each of
the sources contains 103 samples. The observation vector
x[ f ] is generated according to (45). The components of
the (N × 2) mixing matrix A are randomly drawn from
a uniform distribution. The additive noise ν[ f ] is mod-
eled as a zero-mean unit-variance Gaussian vector. The
ICAmethods based on the proposed JD+

LU and JD+
QR algo-

rithms, namely JD+
LU-ICA and JD+

QR-ICA, consist of four
steps: i) compressing {x[ f ]} by means of a matrix W+ ∈
2×N
+ [53], ii) estimating the fourth-order cumulant array

of the compressed observations and stacking all the cumu-
lant matrix slices in a three-way array, iii) decomposing
the resulting three-way array by means of JD+

LU and JD+
QR,

respectively, and iv) reconstructing the sources. The JD+
LU-

ICA and JD+
QR-ICA are compared to four state-of-the-art

Figure 7: JDC performance on an ICA model versus number of observations.
The number of sourcesPand the SNR value are set toP= 3 and SNR = 5 dB, 
respectively. Top: the average errorα(A, )evolution of all the algorithms as a 
function of the number of observationsN. Bottom: the average numerical com-
plexities (left) and the CPU time (right) of all the algorithms, respectively.

BSS Application on MRS Data
In this section, we aim to illustrate the potential capability of the proposed

and algorithms for solving a real-life BSS problem by an application 
carried on simulated MRS data.

MRS is a powerful non-invasive analytical technique for analyzing 
the chemical content of MR-visible nuclei and therefore enjoys particular 
advantages for assessing metabolism. The chemical property of each 
nucleus determines the frequency at which it appears in the MR spectrum, 
giving rise to peaks corresponding to specific metabolites [58]. Therefore, 
the MRS observation spectra can be modeled as the mixture of the spectrum 
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of each constitutional source metabolite. More specifically, it can be written 
as the noisy linear instantaneous mixing model described in Eq.45, where

is the MRS observation vector, is the source vector 
representing the statistically quasi-independent source metabolites,

is the instrumental noise vector, and is the nonnegative mixing 
matrix containing the positive concentrations of the source metabolites. 
SNR is defined as in Eq.46. In this experiment, two simulated MRS source 
metabolites {s1[f] } and {s2[f] }, namely the Choline (Cho) and Myo-
inositol (Ins) (see Figure8b), are generated by Lorentzian and Gaussian 
functions [59]. Each of the sources contains 103samples. The observation 
vectorx[f] is generated according to (45). The components of the (N×2) 
mixing matrixAare randomly drawn from a uniform distribution. The 
additive noiseν[f] is modeled as a zero-mean unit-variance Gaussian vector. 
The ICA methods based on the proposed and algorithms, namely

, consist of four steps: i) compressing {x[f] } by 
means of a matrix [53], ii) estimating the fourth-order cumulant 
array of the compressed observations and stacking all the cumulant matrix 
slices in a three-way array, iii) decomposing the resulting three-way array 
by means of and , respectively, and iv) reconstructing the sources. 
The  are compared to four state-of-the-art BSS 
algorithms, namely two efficient ICA methods CoM2[54] and SOBI [47], 
the nonnegative ICA (NNICA) method with a line search along the geodesic 
[55], and the NMF method [56] based on alternating nonnegativity least 
squares. The performance is assessed by means of the error
between the true sources[f] and its estimate , the numerical complexity, 
and the CPU time. To find out the detailed analysis of the numerical 
complexity of the classical ICA algorithms, the reader can refer to the 
book chapter [60]. Figure8shows an example of the separation results of 
all the methods withN= 32 observations and a SNR of 10 dB. Regarding 
CoM2, SOBI, NNICA, and NMF, there are some obvious disturbances 
presented in the estimated metabolites. As far as  are 
concerned, the estimated source metabolites are quasi-perfect. Furthermore, 
the comprehensive performance of all the methods will be studied by the 
following experiments with 200 independent Monte Carlo trials.
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Figure 8 BSS results on MRS data. An example of the results of blind separation of two simulated MRSmetabolites. The number of observations N
is set to 32, and the SNR value is 10 dB. (a) Cho and Ins source metabolites. (b) Two of the observations. (c-h) Separated metabolites by JD+

LU-ICA,
JD+

QR-ICA, CoM2, SOBI, NNICA, and NMF, respectively.Figure 8: BSS results on MRS data.An example of the results of blind separation 
of two simulated MRS metabolites. The number of observationsNis set to 32, 
and the SNR value is 10 dB.(a)Cho and Ins source metabolites.(b)Two of the 
observations.(c-h)Separated metabolites by , CoM2, SOBI, 
NNICA, and NMF, respectively.
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In the first experiment, the effect of the number of observationsNis 
evaluated. The SNR is fixed to 10 dB. The six methods are compared 
withNranging from 4 to 116 with a step of 4. The average curves of error

as a function ofNare shown in the left image of Figure9. It can 
be seen that the estimating errors of all the methods improve asNincreases. 
It suggests that in noisy BSS contexts, using more sensors often yields 
better results. The proposed  methods maintain the 
competitive advantages. The average curves of the numerical complexities 
of this experiment are shown in the bottom left picture of Figure9. We 
can notice that the numerical complexities of all the methods increase 
withN. The complexities of  seem identical in the 
logarithmic scaled plot, which is because theoretically their complexities are 
mainly dominated by the computation of the nonnegative compression step 
and of the cumulants. Indeed,  is more computationally efficient 
than  in the step of CP decomposition of the cumulant array. This can 
be verified by the average CPU time of those methods, shown in the bottom 
right image of Figure9. We can observe that  is slower than CoM2, 
but it is faster than NNICA, SOBI, and NMF.
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BSS algorithms, namely two efficient ICA methods CoM2
[54] and SOBI [47], the nonnegative ICA (NNICA)
method with a line search along the geodesic [55], and
the NMF method [56] based on alternating nonnegativity
least squares. The performance is assessed bymeans of the
error α

({s[ f ]}T, {s̃[ f ]}T) between the true source s[ f ] and
its estimate s̃[ f ], the numerical complexity, and the CPU
time. To find out the detailed analysis of the numerical
complexity of the classical ICA algorithms, the reader can
refer to the book chapter [60]. Figure 8 shows an example
of the separation results of all the methods with N = 32
observations and a SNR of 10 dB. Regarding CoM2, SOBI,
NNICA, and NMF, there are some obvious disturbances
presented in the estimated metabolites. As far as JD+

LU-
ICA and JD+

QR-ICA are concerned, the estimated source
metabolites are quasi-perfect. Furthermore, the compre-
hensive performance of all the methods will be studied by
the following experiments with 200 independent Monte
Carlo trials.
In the first experiment, the effect of the number of

observations N is evaluated. The SNR is fixed to 10 dB.
The six methods are compared with N ranging from 4
to 116 with a step of 4. The average curves of error

α
({s[ f ]}T, {s̃[ f ]}T) as a function of N are shown in the

left image of Figure 9. It can be seen that the estimating
errors of all the methods improve as N increases. It sug-
gests that in noisy BSS contexts, using more sensors often
yields better results. The proposed JD+

LU-ICA and JD+
QR-

ICA methods maintain the competitive advantages. The
average curves of the numerical complexities of this exper-
iment are shown in the bottom left picture of Figure 9.
We can notice that the numerical complexities of all the
methods increase with N. The complexities of JD+

LU-ICA
and JD+

QR-ICA seem identical in the logarithmic scaled
plot, which is because theoretically their complexities are
mainly dominated by the computation of the nonnegative
compression step and of the cumulants. Indeed, JD+

LU-
ICA is more computationally efficient than JD+

QR-ICA in
the step of CP decomposition of the cumulant array. This
can be verified by the average CPU time of those meth-
ods, shown in the bottom right image of Figure 9. We can
observe that JD+

LU-ICA is slower thanCoM2, but it is faster
than NNICA, SOBI, and NMF.
In the second experiment, we study the influence of SNR

on the performance of the six methods. The number of
observations N is set to 32. SNR is varied from 0 to 50 dB

Figure 9 BSS performance on MRS data versus the number of observations. Average results of blind separation of two simulated MRS
metabolites. The SNR value is set to 10 dB. Left: the average error α

({s[ f ]}T, {s̃[ f ]}T) evolution of all the algorithms as a function of the number of
observations. Right: the average numerical complexities (top) and the CPU time (bottom) of all the algorithms, respectively.Figure 9: BSS performance on MRS data versus the number of observations. 
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Average results of blind separation of two simulated MRS metabolites. The 
SNR value is set to 10 dB. Left: the average error evolution of all 
the algorithms as a function of the number of observations. Right: the average 
numerical complexities (top) and the CPU time (bottom) of all the algorithms, 
respectively.

In the second experiment, we study the influence of SNR on the 
performance of the six methods. The number of observationsNis set to 32. 
SNR is varied from 0 to 50 dB with a step of 2 dB. The average curves of the 
estimating error as well as those of the numerical complexities 
and CPU time as a function of SNR of all the six methods are shown in 
Figure10. The proposed  and  methods provide the best 
estimation results with moderate computational complexities and CPU time. 
Generally speaking, the  algorithm offers the best performance/
complexity trade-off in this BSS experimental context.
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with a step of 2 dB. The average curves of the estimating
error α

({s[ f ]}T, {s̃[ f ]}T) as well as those of the numeri-
cal complexities and CPU time as a function of SNR of
all the six methods are shown in Figure 10. The proposed
JD+

LU-ICA and JD+
QR-ICA methods provide the best esti-

mation results with moderate computational complexities
and CPU time. Generally speaking, the JD+

LU-ICA algo-
rithm offers the best performance/complexity trade-off in
this BSS experimental context.

Conclusions
We have proposed two methods, called JD+

LU and JD+
QR,

in order to achieve the CP decomposition of semi-
nonnegative semi-symmetric three-way arrays. The non-
negativity constraint is imposed on the two symmetric
modes of three-way arrays by means of a square change
of variable, giving rise to an unconstrained joint diagonal-
ization by congruence problem. Therefore, the nonneg-
ative loading matrix can be estimated by computing the
joint diagonalizer. We consider the elementary LU and
QR parameterizations of the Hadamard square root of
the nonnegative joint diagonalizer, leading to two Jacobi-

like optimization procedures. In each Jacobi-like iteration,
the optimization is formulated into a minimization of a
polynomial or rational function with respect to only one
parameter. In addition, the numerical complexity for each
algorithm has been analyzed.
The performance of the proposed JD+

LU and JD+
QR algo-

rithms is evaluated with simulated semi-nonnegative
semi-symmetric three-way arrays. Four classical
nonorthogonal JDC methods without nonnegativity
constraints including ACDC [23], FFDIAG [25], LUJ1D
[26], and QRJ1D [26] and one nonnegative JDC method
ACDC+

LU [41] are tested as reference methods. The
performance is assessed in terms of the matrix esti-
mation accuracy, the numerical complexity, and the
CPU time. The convergence property, the influence of
SNR, the impact of dimension, the effect of coherence,
and the influence of condition number are extensively
studied by Monte Carlo experiments. The obtained
results show that the proposed algorithms offer better
estimation accuracy by means of exploiting the nonneg-
ativity a priori. The JD+

LU algorithm provides the best
performance/complexity compromise.

Figure 10 BSS performance onMRS data versus SNR. Average results of blind separation of two simulated MRS metabolites. The number of
observations is set to N = 32. Left: the average error α

({s[ f ]}T, {s̃[ f ]}T) evolution of all the algorithms as a function of SNR. Right: the average
numerical complexities (top) and the CPU time (bottom) of all the algorithms, respectively.Figure 10: BSS performance on MRS data versus SNR.Average results of blind 

separation of two simulated MRS metabolites. The number of observations is 
set toN=32. Left: the average error evolution of all the algorithms 
as a function of SNR. Right: the average numerical complexities (top) and the 
CPU time (bottom) of all the algorithms, respectively.
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CONCLUSIONS

We have proposed two methods, called , in order to achieve the 
CP decomposition of semi-nonnegative semi-symmetric three-way arrays. 
The nonnegativity constraint is imposed on the two symmetric modes of 
three-way arrays by means of a square change of variable, giving rise to 
an unconstrained joint diagonalization by congruence problem. Therefore, 
the nonnegative loading matrix can be estimated by computing the joint 
diagonalizer. We consider the elementary LU and QR parameterizations of 
the Hadamard square root of the nonnegative joint diagonalizer, leading to 
two Jacobilike optimization procedures. In each Jacobi-like iteration, the 
optimization is formulated into a minimization of a polynomial or rational 
function with respect to only one parameter. In addition, the numerical 
complexity for each algorithm has been analyzed.

The performance of the proposed algorithms is evaluated 
with simulated semi-nonnegative semi-symmetric three-way arrays. Four 
classical nonorthogonal JDC methods without nonnegativity constraints 
including ACDC [23], FFDIAG [25], LUJ1D [26], and QRJ1D [26] and 
one nonnegative JDC method  [41] are tested as reference methods. 
The performance is assessed in terms of the matrix estimation accuracy, the 
numerical complexity, and the CPU time. The convergence property, the 
influence of SNR, the impact of dimension, the effect of coherence, and 
the influence of condition number are extensively studied by Monte Carlo 
experiments. The obtained results show that the proposed algorithms offer 
better estimation accuracy by means of exploiting the nonnegativitya priori. 
The algorithm provides the best performance/complexity compromise.
The proposed algorithms are suitable tools for solving the ICA problems 
where a nonnegative mixing matrix is considered, such as in MRS. In this 
case, the three-way array built by stacking the matrix slices of a HO cu-
mulant array fulfills the semi-nonnegative semi-symmetric structure. We 
proposed two ICA methods, namely , based on 
CP decomposition of the fourth-order cumulant array using
, respectively. The source separation ability of the proposed algorithms 
is verified through a BSS application carried out on simulated MRS data. 
The  are compared to one NMF method [56], one 
nonnegative ICA method [55], and two classical ICA methods, namely 
CoM2[54] and SOBI [47]. The performance is comprehensively studied as 
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a function of the number of observations and of SNR. The experimental re-
sults demonstrate the improvement of the proposed methods in terms of the 
source estimation accuracy and also show that exploiting the twoa prioriof 
the data, namely the nonnegativity of the mixing matrix and the statistical 
independence of the sources, allows us to achieve better estimation results. 
The  algorithm provides the best performance/complexity trade-
off.



Canonical Polyadic Decomposition of Third-order Semi-nonnegative..... 157

REFERENCES
1. Smilde A, Bro R, Geladi P:Multi-way Analysis: Applications in the 

Chemical Sciences. Wiley, West Sussex; 2004.
2. de Almeida ALF, Favier G, Ximenes LR: Space-time-frequency 

(STF) MIMO communication systems with blind receiver based on 
a generalized PARATUCK2 model.IEEE Trans. Signal Process2013, 
61(8):1895-1909.

3. De Vos M, Vergult A, De Lathauwer L, De Clercq W, Van Huffel S, 
Dupont P, Palmini A, Van Paesschen W: Canonical decomposition of 
ictal scalp EEG reliably detects the seizure onset zone.Neuroimage2007, 
37(3):844-854. 10.1016/j.neuroimage.2007.04.041

4. Comon P, Luciani X, de Almeida ALF: Tensor decompositions, 
alternating least squares and other tales.J. Chemometr2009, 23: 393-
405. 10.1002/cem.1236

5. Tucker LR: Some mathematical notes on three-mode factor analysis.
Psychometrika1966, 31(3):279-311. 10.1007/BF02289464

6. De Lathauwer L, De Moor B, Vandewalle J: A multilinear singular 
value decomposition.SIAM J. Matrix Anal. Appl2000, 21(4):1253-
1278. 10.1137/S0895479896305696

7. Kruskal JB: Three-way arrays: rank and uniqueness of trilinear 
decompositions, with application to arithmetic complexity and 
statistics.Lin. Algebra Appl1977, 18(2):98-138.

8. Hitchcock FL: The expression of a tensor or a polyadic as a sum of 
products.J. Math. Phys1927, 6(1):164-189.

9. Kroonenberg PM:Applied Multiway Data Analysis. Wiley, Hoboken; 
2008.

10. Sidiropoulos ND, Bro R, Giannakis GB: Parallel factor analysis in 
sensor array processing.IEEE Trans. Signal Process2000, 48(8):2377-
2388. 10.1109/78.852018

11. de Almeida ALF, Favier G, Motab JCM: PARAFAC-based unified 
tensor modeling for wireless communication systems with application 
to blind multiuser equalization.Signal Process2007, 87(2):337-351. 
10.1016/j.sigpro.2005.12.014

12. de Almeida ALF, Favier G: Double Khatri-Rao space-time-frequency 
coding using semi-blind PARAFAC based receiver.IEEE Signal 
Process. Lett2013, 20(5):471-474.



Fundamentals of Matrix Computations158

13. Albera L, Ferréol A, Comon P, Chevalier P: Blind identification of 
overcomplete mixtures of sources (BIOME).Lin. Algebra Appl2004, 
391: 3-30.

14. Röemer F, Haardt M: Tensor-based channel estimation and iterative 
refinements for two-way relaying with multiple antennas and spatial 
reuse.IEEE Trans. Signal Process2010, 58(11):5720-5735.

15. Harshman RA, Lundy ME: PARAFAC: parallel factor analysis.Comput. 
Stat. Data Anal1994, 18(1):39-72. 10.1016/0167-9473(94)90132-5

16. Uschmajew A: Local convergence of the alternating least squares 
algorithm for canonical tensor approximation.SIAM. J. Matrix Anal. 
Appl2012, 33(2):639-652. 10.1137/110843587

17. Rajih M, Comon P, Harshman RA: Enhanced line search: a novel 
method to accelerate PARAFAC.SIAM J. Matrix Anal. Appl2008, 
30(3):1128-1147. 10.1137/06065577

18. Acar E, Dunlavy DM, Kolda TG: A scalable optimization approach for 
fitting canonical tensor decompositions.J. Chemometr2011, 25(2):67-
86. 10.1002/cem.1335

19. Röemer F, Haardt M: A semi-algebraic framework for approximate CP 
decompositions via simultaneous matrix diagonalizations (SECSI).
Signal Process2013, 93(9):2722-2738. 10.1016/j.sigpro.2013.02.016

20. Luciani X, Albera L: Canonical polyadic decomposition based on joint 
eigenvalue decomposition.Chemometr. Intell. Lab2014, 132: 152-167.

21. Carroll JD, Chang J-J: Analysis of individual differences in 
multidimensional scaling via an n-way generalization of Eckart-
Young decomposition.Psychometrika1970, 35(3):283-319. 10.1007/
BF02310791

22. Husson F, Pagés J: INDSCAL model: geometrical interpretation and 
methodology.Comput. Stat. Data Anal2006, 50(2):358-378. 10.1016/j.
csda.2004.08.005

23. Yeredor A: Non-orthogonal joint diagonalization in the least-squares 
sense with application in blind source separation.IEEE Trans. Signal 
Process2002, 50(7):1545-1553. 10.1109/TSP.2002.1011195

24. Cardoso JF, Souloumiac A: Jacobi angles for simultaneous 
diagonalization.SIAM J. Matrix Anal. Appl1996, 17: 161-164. 
10.1137/S0895479893259546

25. Ziehe A, Laskov P, Nolte G, Muller K-R: A fast algorithm for joint 
diagonalization with non-orthogonal transformations and its application 



Canonical Polyadic Decomposition of Third-order Semi-nonnegative..... 159

to blind source separation.J. Mach. Learn. Res2004, 5: 777-800.
26. Afsari B: Simple LU and QR based non-orthogonal matrix joint 

diagonalization. InICA 2006, Springer LNCS 3889. Charleston, SC, 
USA; 5–8 March 2006.

27. Van der Veen AJ: Joint diagonalization via subspace fitting techniques. 
InProc. ICASSP ‘01. Salt Lake, City, UT; 7–11 May 2001:2773-2776.

28. Yeredor A: On using exact joint diagonalization for noniterative 
approximate joint diagonalization.IEEE Signal Process. Lett2005, 
12(9):645-648.

29. Vollgraf R, Obermayer K: Quadratic optimization for simultaneous 
matrix diagonalization.IEEE Trans. Signal Process2006, 54(9):3270-
3278.

30. Li XL, Zhang XD: Nonorthogonal joint diagonalization free of 
degenerate solution.IEEE Trans. Signal Process2007, 55(5):1803-
1814.

31. Souloumiac A: Nonorthogonal joint diagonalization by combining 
Givens and hyperbolic rotations.IEEE Trans. Signal Process2009, 
57(6):2222-2231.

32. Xu XF, Feng DZ, Zheng WX: A fast algorithm for nonunitary joint 
diagonalization and its application to blind source separation.IEEE 
Trans. Signal Process2011, 59(7):3457-3463.

33. Chabriel G, Barrère J: A direct algorithm for nonorthogonal approximate 
joint diagonalization.IEEE Trans. Signal Process2012, 60(1):39-47.

34. Chabriel G, Kleinsteuber M, Moreau E, Shen H, Tichavský P, Yeredor 
A: Joint matrices decompositions and blind source separation: A survey 
of methods, identification, and applications.IEEE Signal Process. 
Mag2014, 31(3):34-43.

35. Lee DD, Seung HS: Learning the parts of objects by non-negative 
matrix factorization.Nature1999, 401(6755):788-791. 10.1038/44565

36. Zhang Q, Wang H, Plemmons RJ, Pauca VP: Tensor methods for 
hyperspectral data analysis: a space object material identification 
study.J. Opt. Soc. Am. A. Opt. Image Sci. Vis2008, 25(12):3001-3012. 
10.1364/JOSAA.25.003001

37. Royer J-P, Thirion-Moreau N, Comon P: Computing the polyadic 
decomposition of nonnegative third order tensors.Signal Process2011, 
91(9):2159-2171. 10.1016/j.sigpro.2011.03.006

38. Cichocki A, Zdunek R, Phan AH, Amari S:Nonnegative Matrix and 



Fundamentals of Matrix Computations160

Tensor Factorizations: Applications to Exploratory Multi-way Data 
Analysis and Blind Source Separation. Wiley, West Sussex; 2009.

39. Zhou GX, Cichocki A, Zhao Q, Xie SL: Nonnegative matrix and 
tensor factorizations : an algorithmic perspective.IEEE Signal Process. 
Mag2014, 31(3):54-65.

40. Coloigner J, Karfoul A, Albera L, Comon P: Line search and trust 
region strategies for canonical decomposition of semi-nonnegative 
semi-symmetric 3rd order tensors.Lin. Algebra Appl2014, 450(1):334-
374.

41. Wang L, Albera L, Kachenoura A, Shu HZ, Senhadji L: Nonnegative 
joint diagonalization by congruence based on LU matrix factorization.
IEEE Signal Process. Lett2013, 20(8):807-810.

42. Wang L, Albera L, Kachenoura A, Shu HZ, Senhadji L: CP 
decomposition of semi-nonnegative semi-symmetric tensors based 
on QR matrix factorization. InSAM’14, Proceedings of the Eighth 
IEEE Sensor Array and Multichannel Signal Processing Workshop. A 
Coruna, Spain; 22–25 June 2014:449-452.

43. Afsari B: Sensitivity analysis for the problem of matrix joint 
diagonalization.SIAM J. Matrix Anal. Appl2008, 30(3):1148-1171. 
10.1137/060655997

44. Wax M, Sheinvald J: A least-squares approach to joint diagonalization.
IEEE Signal Process. Lett1997, 4(2):52-53.

45. Dégerine S, Kane E: A comparative study of approximate joint 
diagonalization algorithms for blind source separation in presence of 
additive noise.IEEE Trans. Signal Process2007, 55(6):3022-3031.

46. Fadaili EM, Thirion-Moreau N, Moreau E: Nonorthogonal joint 
diagonalization/zero diagonalization for source separation based 
on time-frequency distributions.IEEE Trans. Signal Process2007, 
55(5):1673-1687.

47. Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E: A blind 
source separation technique using second-order statistics.IEEE Trans. 
Signal Process1997, 45(2):434-444. 10.1109/78.554307

48. Pham DT: Joint approximate diagonalization of positive definite 
Hermitian matrices.SIAM J. Matrix Anal. Appl2001, 22: 1837-1848.

49. Tichavský P, Yeredor A: Fast approximate joint diagonalization 
incorporating weight matrices.IEEE Trans. Signal Process2009, 
57(3):878-891.



Canonical Polyadic Decomposition of Third-order Semi-nonnegative..... 161

50. Chu M, Diele F, Plemmons R, Ragni S: Optimality computation and 
interpretation of nonnegative matrix factorizations. Technical report, 
Wake Forest University 2004

51. Meyer CD:Matrix Analysis and Applied Linear Algebra. SIAM, 
Philadelphia; 2000.

52. Vaidyanathan PP:Multirate Systems and Filter Banks. PTR Prentice 
Hall, United States; 1993.

53. Wang L, Kachenoura A, Albera L, Karfoul A, Shu HZ, Senhadji 
L: Nonnegative compression for semi-nonnegative independent 
component analysis. InSAM’14, Proceedings of the Eighth IEEE 
Sensor Array and Multichannel Signal Processing Workshop. A 
Coruna, Spain; 22–25 June 2014:81-84.

54. Comon P: Independent component analysis, a new concept?Signal 
Process1994, 36(3):287-314. 10.1016/0165-1684(94)90029-9

55. Plumbley MD: Algorithms for nonnegative independent component 
analysis.IEEE Trans. Neural Netw2003, 14(3):534-543. 10.1109/
TNN.2003.810616

56. Kim H, Park H: Nonnegative matrix factorization based on alternating 
nonnegativity constrained least squares and active set method.SIAM J. 
Matrix Anal. Appl2008, 30(2):713-730. 10.1137/07069239X

57. De Lathauwer: Algebraic methods after prewhitening. InHandbook of 
Blind Source Separation, ed. by P Comon, C Jutten,. Elsevier, Oxford; 
2010:155-177. Chap. 5

58. Befroy DE, Shulman GI: Magnetic resonance spectroscopy studies of 
human metabolism.Diabetes2011, 60(5):1361-1369. 10.2337/db09-
0916

59. Moussaoui S: Séparation de sources non-négatives: application au 
traitement des signaux de spectroscopie. PhD thesis, Université Henri 
Poincaré, (2005)

60. Albera L, Comon P, Parra LC, Karfoul A, Kachenoura A, Senhadji L: 
Biomedical applications. InHandbook of Blind Source Separation ed. 
by P Comon, C Jutten,. Elsevier, Oxford; 2010:737-777. Chap. 18





Sparse Signal Subspace Decomposition 
based on Adaptive Over-complete  

Dictionary

Chapter 7

Hong Sun1,2 , Cheng-wei Sang1 and Didier Le Ruyet3

1School of Electronic Information, Wuhan University, Luojia Hill, Wuhan 430072, China
2Signal and Image Processing Department, Telecom ParisTech, 46 rue Barrault, 75013 Paris, 
France
3CEDRIC Laboratory, CNAM, 292 rue Saint Martin, 75003 Paris, France

ABSTRACT
This paper proposes a subspace decomposition method based on an over-
complete dictionary in sparse representation, called “sparse signal subspace 
decomposition” (or 3SD) method. This method makes use of a novel 
criterion based on the occurrence frequency of atoms of the dictionary 
over the data set. This criterion, well adapted to subspace decomposition 
over a dependent basis set, adequately reflects the intrinsic characteristic of 
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regularity of the signal. The 3SD method combines variance, sparsity, and 
component frequency criteria into a unified framework. It takes benefits 
from using an over-complete dictionary which preserves details and from 
subspace decomposition which rejects strong noise. The 3SD method 
is very simple with a linear retrieval operation. It does not require any 
prior knowledge on distributions or parameters. When applied to image 
denoising, it demonstrates high performances both at preserving fine details 
and suppressing strong noise.

Keywords: Subspace decomposition, Sparse representation, Frequency of 
components, PCA, K-SVD, Image denoising

INTRODUCTION
Signal subspace methods (SSMs) are efficient techniques to reduce the 
dimensionality of data and to filter out noise [1]. The fundamental idea 
under SSM is to project the data on a basis made of two subspaces, one 
mostly containing the signal and the other the noise. The two subspaces 
are separated by a thresholding criterion associated with some measures of 
information.

The two most popular methods of signal subspace decomposition are 
wavelet shrinkage [2] and principal component analysis (PCA) [3]. Both 
techniques have proved to be quite efficient. However, wavelet decomposition 
depending on signal statistics is not equally adapted to different data and 
requires some knowledge on prior distributions or parameters of signals 
to efficiently choose the thresholds for shrinkage. A significant advantage 
of the PCA is its adaptability to data. The separation criterion is based on 
energy which may be seen as a limitation in some cases as illustrated in the 
next section.

In recent years, sparse coding has attracted significant interest in the 
field of signal denoising [4]. A sparse representation is a decomposition of a 
signal on a very small set of components of an over-complete basis (called 
dictionary) which is adapted to the processed data. A difficult aspect for 
signal subspace decomposition based on such a sparse representation is to 
define the most appropriate criterion to identify the principal components 
(called atoms) from the learned dictionary to build the principal subspace. 
The non-orthogonal property of the dictionary does not allow to use the 
energy criterion for this purpose, as done with PCA.
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To solve this problem, we introduce a new criterion to measure the 
importance of atoms and propose a SSM under the criterion of the occurrence 
frequency of atoms. We thus make benefit both from the richness of over-
complete dictionaries which preserves details of information and from signal 
subspace decomposition which rejects strong noise.

The remainder of this paper is organized as follows: Section 2 presents 
two related works to signal decomposition. Section 3 introduces the 
proposed sparse signal subspace decomposition based on the adaptive over-
complete dictionary. Some experimental results and analysis are presented 
in Section 4. Finally, we draw the conclusion in Section 5.

REVIEW OF PCA AND SPARSE CODING METHODS
We start with a brief description of two well-established approaches to 
signal decomposition that are relevant and related to the approach proposed 
in the next section.

PCA-based Subspace Decomposition
The basic tool of SSM is principal component analysis (PCA). PCA makes 
use of an orthonormal basis to capture on a small set of vectors (the signal 
subspace) as much energy as possible from the observed data. The other 
basis vectors are expected to contain noise only, and the signal projection on 
these vectors is rejected.

Consider a data set  grouped in a matrix form X of size 
N×M: . The PCA is based on singular value decomposition 
(SVD) with singular values σ i in descending order obtained from:

       (1)
where U and V are unitary matrices of sizes N×N and M×M, respec-

tively (U T U=I N,V T V=I M 
), and Σ=  of size N×M 

with σ 1≥σ 2≥⋯≥σ r >0,  are positive real known as the 
singular values of X with rank r (r≤N).
Equation (1) can be rewritten in a vector form as:

   (2)
where . Equation (2) means that the 
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data set  is expressed on the orthonormal basis 
.
In the SVD decomposition given in Eq. (1), the standard deviation σ i is used 
as the measurement for identifying the meaningful basis vector u i . PCA 
takes the first P(P<r) components  to span the signal subspace, and 
the remainders  are considered in a noise subspace orthogonal 
to the signal subspace. Therefore, projection on the signal subspace will 
hopefully filter out noise and reveal hidden structures. The reconstructed 
signal  of size N×M is obtained by projecting in the signal subspace 
as:

  (3)
The underlying assumption is that information in the data set is almost 
completely contained in a small linear subspace of the overall space of 
possible data vectors, whereas additive noise is typically distributed through 
the larger space isotropically. PCA, using the standard deviation as a criterion, 
implies that the components of the signal of interest in the data set have a 
maximum variance and the other components are mainly due to the noise. 
However, in many practical cases, some components with low variances 
might actually be important because they carry information relative to the 
signal details. On the contrary, when dealing with noise with non-Gaussian 
statistics, it may happen that some noise components may actually have 
higher variances. At last, note that it is often difficult to provide a physical 
meaning to the orthonormal basis  of the SVD decomposition (Eq. 
(2)) although they have a very clear definition in the mathematical sense 
as orthogonal, independent, and normal. It is therefore difficult to impose 
known constraints on the signal features when they exist after the principal 
component decomposition.

Sparse Decomposition
Recent years have shown a growing interest in research on the sparse 
decomposition of M observations  based on a dictionary 

. When K>N, the dictionary is said to be over-complete. 
 is a basis vector, also called an atom since it is not necessarily 

independent. By learning from data set , the sparse decomposition 
is the solution of Eq. (4) [4]:
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   (4)
where  is the sparse code of 
the observation x m 

. The allowed error tolerance ε can be chosen according 
to the standard deviation of the noise. An estimate of the underlying signal 

 embedded in the observed data set  would be:

   (5)
where the matrix A of size K×M is composed of M sparse column 
vectors α m 

.
The first term on the right side of Eq. (4) is a sparsity-inducing regularization 
that constrains the solution with the fewest number of nonzero coefficients in 
each of the sparse code vectors α m 

(1≤m≤M). The underlying assumption 
is that a meaningful signal could be represented by combining few atoms. 
This learned dictionary adapted to sparse signal descriptions has proved to 
be more effective in signal reconstruction and classification tasks than the 
PCA method, which is demonstrated in the next section. The second term 
in Eq. (4) is the residual of the reconstruction, based on the mean-square 
reconstruction error estimate in the same way as in the PCA method.

On the other hand, we note that the dictionary D, a basis in sparse 
decomposition, is produced by learning noisy data set , so the basis 
vectors  should be decomposed into a principal subspace and a 
residual subspace. However, it is impossible to exploit an energy-constrained 
subspace since  are not necessarily orthogonal or independent.

THE PROPOSED SPARSE SUBSPACE DECOMPOSI-
TION
In this section, we introduce a novel criterion to the subspace decomposition 
over a learned dictionary and a corresponding index of significance of the 
atoms. Then we propose a signal sparse subspace decomposition (3SD) 
method under this new criterion.
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Weight Vectors of Learned Atoms
At first, we intend to find out the weight of the atoms. In the sparse 
representation given in (5), coefficient matrix A is composed by M sparse 
column vectors α m 

, each α m 
representing the weight of the observation 

x m 
, a local parameter for the m-th observation. Let us consider the row 

vectors  of coefficient matrix A :

    (6)
Note that the row vector β k is not necessarily sparse. Then Eq. (5) can be 
rewritten as:

    (7)
Equation (7) means that the row vector β k is the weight of the atom d k 
, which is a global parameter over the data set X. Denoting ∥β k ∥0 the ℓ 
0 zero pseudo-norm of βk . ∥β k ∥0 is the number of occurrences of atom 

d k over the data set . We call it the frequency of the atom d k 
denoted by f k :

   (8)

In the sparse decomposition, basis vectors  are prototypes of signal 
segments. That allows us to take them as a signal patterns. Thereupon, some 
important features of this signal pattern could be considered as a criterion 
to identify significant atoms. It is demonstrated [5] that f k is a good 
description of the signal texture. Intuitively, a signal pattern must occur in 
meaningful signals with higher frequency even with a lower energy. On the 
contrary, a noise pattern would hardly be reproduced in observed data even 
with a higher energy.
It is reasonable to take this frequency f k as a relevance criterion to de-
compose the over-complete dictionary into a principal signal subspace and 
a remained noise subspace. Here, we use the word “subspace,” but in fact, 
these two subspaces are not necessarily independent.
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Subspace Decomposition based on Over-complete Dictionary

Taking vectors , we calculate their ℓ 0-norms  and rank 
them in descending order as follows. The index k of vectors  are 
belonging to the set C={1,2,⋯,k,⋯,K}. A one-to-one index mapping 
function π is defined as:

   (9)

By the permutation π of the row index k of matrix A= , the 
reordered coefficient matrix  becomes

    (10)
With corresponding reordered dictionary , Eq. (7) can be written 
as:

   (11)
Then, the span of the first P atoms can be taken as a principal subspace 

, and the remaining atoms span a noise subspace  as:

     (12)
An estimate  of the underlying signal S embedded in the observed data 
set X can be obtained on the principal subspace  simply by linear 
combination:

   (13)

Threshold of Atom’s Frequency

Determining the number P of atoms spanning the signal subspace  
is always a hard topic especially for wide-band signals. Here, P is the 
threshold of atom’s frequency f k to distinguish a signal subspace and a 
noise subspace. One of the advantages of 3SD is that this threshold P can 
be easily chosen without any prior parameter.
For a noiseless signal even with some weak details, such as the image ex-
ample in Fig. 1a, the atoms’ frequencies  shown in Fig. 1d (in black 
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line) are almost always high except the zero value. For a signal with strong 

noise, such as the example in Fig. 1b, the atoms’ frequencies  shown 
in Fig. 1d (in red line) are almost always equal to 1 without zero and very 
few with a value 2 or 3. It is easy to set a threshold Pof f k (dotted line in the 
Fig. 1d) to separate the signal’s atoms from the noise’s atoms. By contrast, 
using the values of atom’s energies ∥β k ∥2s for the two images shown in 
Fig. 1c, it is rather a puzzle to identify principal bases.

Figure 1: Sparse signal subspaces with criterion of atom’s frequency. a Image 
with details. bWhite noise. c ℓ 2-norm of β k . d ℓ 0-norm of β k.

For a noisy signal, such as an image example in Fig. 2a, its adaptive 
over-complete dictionary (Fig. 2b) consists of atoms of principal signal 
patterns, strong noise patterns, and noisy signal patterns. Principal signal 
atoms should have higher frequencies, strong noise atoms lower frequencies 
and noisy signal atoms moderate frequencies. Intuitively, the red line (Fig. 
2c) should be a suitable threshold P of the frequencies f k s. In practical 
implementation, the value of P could be simply decided relying on the 
histogram of f k . As shown in Fig. 2d, one can set the value of f kassociated 
with the maximum point of its histogram to P as follows:

   (14)
In fact, the performances in signal analyses by 3SD method are not 

sensitive to the threshold P, owed to the dependence of the atoms. To illustrate 
this point, we take three images, Barbara, Lena, and Boat. Their histograms 
of f k are shown in Fig. 3a with the maximum points in dotted lines, 121, 
97, and 92, respectively. Figure 3b reports the peak signal-to-noise ratio 
(PSNR) of the retrieved images  on the signal principal subspace  
with respect to P. We can see that the PSNRs of the results remain the same 
in a large range around the maximum points (in dotted lines). Consequently, 
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taking the value of f k associated to the maximum point of its histogram as 
the threshold P is a reasonable solution.

Figure 2: The threshold P of the frequencies f k s. a Noisy image. b Over-
complete dictionary D. c Frequency of d k . d Histogram of d k ’s frequency.

Figure 3: The insensitivity of the threshold P. a Histograms of f k . b PSNR 
of  with respect to P.



Fundamentals of Matrix Computations172

RESULTS AND DISCUSSION

Signal Decomposition Methods
Taking a part of the noisy Barbara image (Fig. 4a), we show an example of the 
sparse signal subspace decomposition (3SD) and the corresponding retrieved 
image (Fig. 4b). For comparison, the traditional sparse decomposition and 
the PCA-based subspace decomposition are shown in Fig. 4c, d.

Figure 4: Signal decompositions. a Image sample. b Sparse Subspace 
decomposition. c Sparse decomposition. d Subspace decomposition.
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We use the PSNR to assess the noise removal performance:

    (15)
and the structural similarity index metric (SSIM) between the denoised 
image and the pure one to evaluate the preserving detail performance:

   (16)

where u x is the average of x,  is the variance of x, σ xy is the 
covariance of x and y, and c 1 and c 2 are small variables to stabilize the 
division with a weak denominator.
Let us look at the proposed sparse signal subspace decomposition on the top 
of Fig. 4b. The 128 atoms d k s of the learned over-complete dictionary 
D are shown in descending order of their energies measured by ∥β k ∥2. 
The 32 principal signal atoms are chosen from the dictionary D under the 
frequency criterion. They are shown in descending order of their frequencies 
measured by ∥β k ∥0 composing a signal subspace . We can see that 
some of the principal atoms are not among the first 32 atoms with the largest 
energy in the over-complete dictionary D. The retrieved images are shown 
at the bottom of Fig. 4b. The image S on D is apparently denoised. The 
image  on the signal subspace  improves obviously by preserving 
fine details with a high SSIM=0.86 and at suppressing strong noise with a 
high PSNR=36.41. On the other hand, the residual image on noise subspace 

contains some very noisy information. This is because the atoms of the 
over-complete dictionary are not independent.
For the same example, the classical sparse decomposition is shown in Fig. 
4c, using the K-SVD algorithm [6] in which the allowed error tolerance ε 
(in Eq. (4)) is set to a larger value to filter out noise. The retrieved image S 
has a high PSNR=29.62, but it has obviously lost the weak information with 
SSIM=0.82. This is because signal distortion and residual noise cannot be 
minimized simultaneously at dictionary learning by Eq. (4).
In another comparison, the PCA-based subspace decomposition is shown 
in Fig. 4d. The 64 components are orthonormal and the 32 principal 
components are of the largest variance. The retrieved image by projecting 
on the signal subspace is rather noisy with PSNR=29.62. This is because it 
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cannot suppress strong noise and preserve weak details of information only 
using the variance criterion.

Application to Image Denoising
The application of 3SD to image denoising is presented here. A major 
difficulty of denoising is to separate the underlying signal from the noise. 
The proposed 3SD method could win this challenge. In the 3SD method, 
the important components are selected from the over-complete dictionary 
relying on their occurrence number over the noisy image set. Evidently, the 
occurrence numbers would be large for the signal, even for weak details, 
such as edges or textures. On the other hand, the occurrence numbers would 
be low for different kinds of white Gaussian or non-Gaussian noises, even 
strong at intensity.
The 3SD algorithm for image denoising is presented as follows:

Input: Noisy image X
Output: Denoised image 
- Sparse representation {D,A}: using K-SVD algorithm [6] by (4)
- Identify principal atoms from D based on A :
 

■ Compute the frequencies of atoms  according to 
(6) and (8)

 ■ Get the permutation π sorting the index k of  by 
(9)

 ■ Compute the threshold P by (14)
- Obtain the signal principal atoms  by (12)
- Reconstruct image SP^SP^ by (13)

In this application, we intend to preserve faint signal details under a situation 
of strong noise.
In the experiments, dictionaries used Ds of size 64×256 (K=256 atoms), 
designed to handle image patches x m 

of size N=64=8×8 pixels.

Image Denoising
A noisy Lena image X=S+V with an additive zero-mean white Gaussian 
noise V is used. The standard deviation of noise is σ=35. A comparison 
is made between the 3SD method and the K-SVD method [6] which is one 
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of the best denoising methods reported in the recent literatures. From the 
results shown in Fig. 5, the 3SD method outperforms the K-SVD method 
by about 1 dB in PSNR and by about 1% in SSIM (depending on how much 
details in the images and how faint the details). In terms of subjective visual 
quality, we can see that the corner of the mouth and the nasolabial fold with 
weak intensities are much better recovered by the 3SD method.

Figure 5: Image denoising comparing the proposed 3SD method with the K-
SVD method.

SAR Image Despeckling
In the second experiment, a simulated SAR image with speckle noise is 
used. Speckle is often modeled as multiplicative noise as x(i,j)=s(i,j)v(i,j) 
where x, s, and vcorrespond to the contaminated intensity, the original 
intensity, and the noise level, respectively.

Figure 6 shows the despeckling results of a simulated one-look SAR 
scenario with a fragment of the Barbara image. A comparison is made with 
3SD method and a probabilistic patch-based (PPB) filter based on nonlocal 
means approach [7] which can cope with non-Gaussian noise. We can see 
that PPB can well remove speckle noise. However, it also removes the low-
intensity details. The 3SD method shows advantages at preserving fine 
details and at suppressing strong noise.
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Figure 6: SAR image despeckling comparing the proposed 3SD method with 
the PPB method.

Comparison with BM3D Method
With a spatial complicated image scene, we make a comparison of the 
3SD-based denoising method with the BM3D algorithm [8], one of the best 
methods especially for image denoising reported in many recent literatures.

The effectiveness of any signal analysis method depends on the different 
conditions in different applications. For the image denoising application, 
the signals involved should be homogeneous. Therefore, a procedure of 
grouping is generally adopted to select homogeneous pixels. In the BM3D 
method, a block-matching grouping is taken before filtering. We adopt the 
same grouping technique and then filter each homogeneous group by the 
proposed 3SD method.

Firstly, we take a 256×256 Barbara image (Fig. 7a) with a strong 
additive zero-mean white Gaussian noise where σ=70 (Fig. 7b). The 
denoising result by the BM3D algorithm is shown in Fig. 7c. It displays a 
quite high performance. The denoising result by the 3SD-based method is 
shown in Fig. 7d. It demonstrates a higher PSNR and a higher SSIM and a 
better subjective visual quality over the BM3D algorithm.
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Figure 7: Denoising for spatial complicated image scene comparing BM3D 
method with 3SD-based method. a Original: Barbara (a fragment) 256∗256. b 
Noisy: σ=70; PSNR=11.22; SSIM=0.142. c BM3D denoising: PSNR=24.08; 
SSIM=0.7026. d3SD denoising: PSNR=24.21; SSIM=0.765.

Secondly, we take a simulated one-look SAR image with this 256×256 
Barbara image (Fig. 8a) where PSNR=−0.1042. Figure 8b shows the 
despeckling result by the PPB method [7], in which grouping is realized 
based on nonlocal similarity and filtering is implemented by averaging each 
homogeneous group. The despeckled image is too smooth due to average 
filtering. Figure 8c shows the despeckling result by the BM3D-based 
method [9], in which grouping is realized based on similar 2-D fragments 
and filtering is implemented by Wiener shrinkage coefficients from the 
energy of the 3-D transform coefficients. The despeckled image is much 
better in PSNR and in SSIM, but it seems a little noisy still due to the used 
energy criterion which is not effective enough to separate noise elements 
from the principal elements. Figure 8d shows the despeckling result by 
the proposed 3SD-based method, in which grouping is realized based 
on nonlocal similarity [7] and filtering is implemented by the proposed 
sparse subspace decomposition. The despeckled image demonstrates some 
advantages of the 3SD method at preserving fine details and at suppressing 
speckle noise, attributed to the principal subspace decomposition.
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Figure 8: Despeckling for spatial complicated SAR image scene. a Noisy: 
1-look; PSNR=−0.1042; SSIM=0.21. b PPB despeckling: PSNR=7.8943; 
SSIM=0.63. cSAR-BM3D despeckling: PSNR=9.9312; SSIM=0.73. d 3SD-
based despeckling: PSNR=10.3316; SSIM=0.74.

CONCLUSIONS
We proposed a method of sparse signal subspace decomposition (3SD). 
The central idea of the proposed 3SD is to identify principal atoms from an 
adaptive over-complete dictionary relying on the occurrence frequency of 
atoms over the data set (Eq. (8)). The atom frequency is measured by zero 
pseudo-norms of weight vectors of atoms (Eqs. (6) and (8)). The principal 
subspace is spanned by the maximum frequency atoms (Eq. (12)).

The 3SD method combines the variance criterion, the sparsity criterion, 
and the component’s frequency criterion into a uniform framework. As a 
result, it can identify more effectively the principal atoms with the three 
important signal features. On the contrary, PCA uses only variance criterion 
and sparse coding method uses the variance and the sparsity criterions. In 
those ways, it is more difficult to distinguish weak information from strong 
noise.

Another interesting asset of the 3SD method is that it takes benefits from 
using an over-complete dictionary which reserves details of information and 
from subspace decomposition which rejects strong noise. On the contrary, 
some undercomplete dictionary methods [10] and some sparse shrinkage 
methods [11, 12] might lose weak information when suppressing noise.

Moreover, the 3SD method is very simple with a linear retrieval 
operation (Eq. (13)). It does not require any prior knowledge on distribution 
or parameter to determine a threshold (Eq. (14)). On the contrary, some 
sparse shrinkage methods, such as [11], necessitate non-linear processing 
with some prior distributions of signals.
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The proposed 3SD could be interpreted as a PCA in sparse decomposition, 
so it admits straightforward extension to applications of feature extraction, 
inverse problems, or machine learning.
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ABSTRACT
Low-rank matrix recovery is an active topic drawing the attention of many 
researchers. It addresses the problem of approximating the observed data 
matrix by an unknown low-rank matrix. Suppose that A is a low-rank 
matrix approximation of D, where D and A are m×n matrices. Based on 
a useful decomposition of D†−A†, for the unitarily invariant norm ∥⋅∥, when 
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, two sharp lower bounds of D−A are derived 
respectively. The presented simulations and applications demonstrate our 
results when the approximation matrix A is low-rank and the perturbation 
matrix is sparse.

Keywords: low-rank matrix, approximation, error estimation, pseudo-in-
verse, matrix norms

INTRODUCTION
In mathematics, low-rank approximation is a minimization problem, 
in which the cost function measures the fit between a given matrix (the 
data) and an approximating matrix (the optimization variable), subject to a 
constraint that the approximating matrix has reduced rank. The problem is 
used for mathematical modeling and data compression. The rank constraint 
is related to a constraint on the complexity of a model that fits the data.
Low-rank approximation of a linear operator is ubiquitous in applied 
mathematics, scientific computing, numerical analysis, and a number of 
other areas. For example, a low-rank matrix could correspond to a low-
degree statistical model for a random process (e.g., factor analysis), a low-
order realization of a linear system [1], or a low-dimensional embedding 
of data in the Euclidean space [2], the image and computer vision [3, 4, 
5], bioinformatics, background modeling and face recognition [6], latent 
semantic indexing [7, 8], machine learning [9, 10, 11, 12] and control [13] 
etc. These data may have thousands or even billions of dimensions, and a 
large number of samples may have the same or similar structure. As we know, 
the important information lies in some low-dimensional subspace or low-
dimensional manifold, but interfered with some perturbative components 
(sometimes interfered by the sparse component).
Let  be an observed data matrix which is combined as

   (1)
where  is the low-rank component and  is the 
perturbation component of D. The singular value decomposition (SVD [14]) 
is a method for dealing with such high-dimensional data. If the matrix E is 
small, the classical principal components analysis (PCA [15, 16, 17]) can 
seek the best rank-r estimation of A by solving the following constrained 
optimization via SVD of D and then projecting the columns of D onto the 
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subspace spanned by the r principal left singular vectors of D:

   (2)
where r≪min(m,n) is the target dimension of the subspace, ϵ is an upper 
bound on the perturbative component ∥E∥F and ∥⋅∥F is the Frobenius norm.
Despite its many advantages, the traditional PCA suffers from the fact that 
the estimation Â obtained by classical PCA can be arbitrarily far from the 
true A, when E is sufficiently sparse (relative to the rank of A). The reason 
for this poor performance is precisely that the traditional PCA makes sense 
for Gaussian noise and not for sparse noise. Recently, robust PCA (RPCA 
[6]) is a family of methods that aims to make PCA robust to large errors and 
outliers. That is, RPCA is an upgrade of PCA.
There are some reasons for the study of lower bound of a low-rank matrix 
approximation problem. Firstly, as far as we know, there is no literature to 
consider the lower bound of the low-rank matrix approximation problem. In 
our paper, we first put forward the lower bound. Secondly, for the low-rank 
approximation, when a perturbation E exists, there is an approximation 
error which cannot be avoided, that is, the approximation error cannot equal 
0, but tends to 0. Thirdly, from our main results, we can clearly find the 
influence of the spectral norm (∥⋅∥2) on the low-rank matrix approximation. 
For example, for our main result of Case II, when the maximum eigenvalue 
of the matrix D is larger, the approximation error of (D−A)is smaller. 
In addition, the lower bound can verify whether the solution obtained by 
algorithms is optimal. For details, please refer to the experiments Section 
4 of our paper. Therefore, it is necessary and significant to study the lower 
bound of the low-rank matrix approximation problem.

Remark 1.1
PCA and RPCA are methods for the low-rank approximation problem when 
perturbation item exists. Our aim is to prove that no matter what method 
is used, the lower bound of error always exists and it cannot be avoided 
with the perturbation item E. Considering the existence of error, this paper 
focuses on the specific situation of this lower bound.
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Notations
For a matrix , let ∥A∥2 and ∥A∥∗ denote the spectral norm 
and the nuclear norm (i.e., the sum of its singular values), respectively. Let 
∥⋅∥ be a unitarily invariant norm. The pseudo-inverse and the conjugate 
transpose of A are denoted by A† and AH, respectively. We consider the 
singular value decomposition (SVD) of a matrix A of rank r

where U and V are m×r and n×r matrices with orthonormal columns, 
respectively, and σi is the positive singular values. We always assume 
that the SVD of a matrix is given in the reduced form above. Furthermore, 
⟨A,B⟩=trace(AHB)denotes the standard inner product, then the Frobenius 
norm is

Organization
In this paper, we study a perturbation theory for low-rank matrix 
approximation. When , two sharp lower 
bounds of D−A are derived for a unitarily invariant norm respectively. 
This work is organized as follows. In Section 2, we provide a review of 
relevant linear algebra and some preliminary results. In Section 3, under 
different norms, two sharp lower bounds of D−A are given for the low-rank 
approximation problem and some proofs of Theorem 3.5 are presented. In 
Section 4, example and applications are given to verify the provided lower 
bounds. Finally, we conclude the paper with a short discussion.

PRELIMINARIES
In order to prove our main results, we mention the following results for our 
further discussions.

Unitarily Invariant Norm
An important property of a Euclidean space is that shapes and distance do 
not change under rotation. In particular, for any vector x and for any unitary 
matrices U, we have
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An analogous property is shared by the spectral and Frobenius norms: 
namely, for any unitary matrices U and V, the product UAVHUAVH is 
defined by

These examples suggest the following definition.
Definition 2.1
([18])
A norm  is unitarily invariant if it satisfies

for any unitary matrices U and V. It is normalized if

whenever A is of rank one.
Remark 2.2

Let  be the singular value decomposition of the matrix A 
with order n. Let ∥⋅∥ be a unitarily invariant norm. Since U and V are 
unitary,

Thus ∥A∥ is a function of the singular values of A.
The 2-norm plays a special role in the theory of unitarily invariant norms as 
the following theorem shows.
Theorem 2.3
([18])
Let ∥⋅∥ be a family of unitarily invariant norm. Then

   (3)
and

   (4)
Moreover, if Rank(A)=1, then
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We have observed that the spectral and Frobenius norms are unitarily 
invariant. However, not all norms are unitarily invariant as the following 
example shows.
Example 2.4
Let

obviously, ∥A∥∞=2, but for a unitary matrix

we have

Remark 2.5
It is easy to verify that the nuclear norm ∥⋅∥∗ is a unitarily invariant norm.

Projection
Let  be m and n-dimensional inner product spaces over the 
complex field, respectively, and  be a linear transformation from 

.
Definition 2.6
([18])
The column space (range) of A is denoted by

   (5)
and the null space of A by

    (6)
Further, we let ⊥ denote the orthogonal complement and get 

 .
The following properties [18] of the pseudo-inverse are easily established.
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Theorem 2.7
([18])
For any matrix A, the following hold.

1. If  has rank n, then .
2. If  has rank m, then .

 
Here  is the identity matrix.
Theorem 2.8
([18])
For any matrix  is the orthogonal projector onto 

is the orthogonal projector onto  is the orthogo-
nal projector onto .

The Decomposition of D†−A†

In this section, we focus on the decomposition of D†−A† and a general 
bound of the perturbation theory for pseudo-inverses. Firstly, according to 
the orthogonal projection, we can deduce the following lemma.
Lemma 2.9
For any matrix , then we have

   (7)
Proof
Since , then we have that

The proof is completed.
Using Lemma 2.9, the decompositions of D†−A† are developed by Wedin 
[19].
Theorem 2.10
([19])
Let D=A+E, then the difference D†−A† is given by the expressions

     (8)

   (9)
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   (10)
By Lemma 2.9, using , these expres-
sions can be verified.
In previous work [19], Wedin developed a general bound of the perturbation 
theory for pseudo-inverses. Theorem 2.11 is based on a useful decomposition 
of D†−A†, where D and A are m×n matrices. Sharp estimates of ∥D†−A†∥ 
are derived for a unitarily invariant norm. In [20], Chen et al. presented 
some new perturbation bounds for the orthogonal projections ∥PD−PA∥.
Theorem 2.11
([19])
Suppose D=A+E, then the error of D†−A† has the following bound:

   (11)
where γ is given in Table 1.

Table 1: Value options for γ
∥⋅∥ Arbitrary Spectral Frobenius

γ 3 1+5√21+52 2–√2
Remark 2.12

For the spectral norm, by formula (11) we can achieve . When ∥⋅∥ 
is the Frobenius norm, by formula (12), we have . Similarly, for an 
arbitrary unitarily invariant norm, according to formula (13), we can deduce 
γ=3.
Remark 2.13
From Theorem 2.11, since E=D−A, in fact, if Rank(A)≤Rank(D), then (11) 
gives the lower bound of the low-rank matrix approximation:

   (12)
In the following section, based on Theorem 2.11, we provide two lower er-
ror bounds of D−A for a unitarily invariant norm.

OUR MAIN RESULTS
In this section, we consider the lower bound theory for the low-rank ma-
trix approximation based on a useful decomposition of D†−A†. When 
Rank(A)≤Rank(D), some sharp lower bounds of D−A are derived in terms 
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of a unitarily invariant norm. In order to prove our result, some lemmas are 
listed below.
Lemma 3.1
([18])
Let D=A+E, the projections PD and PA satisfy

     (13)
therefore

      (14)
If Rank(A)≤Rank(D), then

      (15)
Lemma 3.2
([21])

Let , then there exists a unitary 
matrix  such that

   (16)
where

. More

According to Lemma 3.2, we can easily get the following result.
Lemma 3.3

Let , then we have

      (17)
Proof
Since
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     (18)
and

     (19)
then

     (20)
and

    (21)
Therefore, they have the same singular values which yield that 

.
This is a useful lemma that we will use in the proof of the main result. In 
order to prove our main theorem, two lower bounds of D−A are required 
by the following lemma.
Lemma 3.4
For the unitarily invariant norm, if Rank(A)≤Rank(D), then the lower 
bound of D−A satisfies:
Case I: For ∥D∥≥∥A∥, we have

 (22)
Case II: For ∥D∥≤∥A∥, we have

   (23)
Proof
Case I: Since ∥D∥≥∥A∥, we have ∥D−A∥≥∥D∥−∥A∥. Using Theorem 

2.3and Lemma 3.1, we have ∥AB∥≤∥A∥2∥B∥ and , 
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respectively. By Lemma 2.9, we have 
, this also yields

Case II: Since . Similarly, by 
Lemma 3.3, using , we have

We complete the proof of Lemma 3.4.
Our main results can be described as the following theorem.
Theorem 3.5

Suppose that , for the unitarily invariant 
norm∥⋅∥, the error of D−A has the following bounds.
Case I: For ∥D∥≥∥A∥, we have

   (24)
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Case II: For ∥D∥≤∥A∥, we have

   (25)
where the value options for γ are the same as in Table 1.
Proof
Case I: For ∥D∥≥∥A∥, by Theorem 2.11 and Lemma 3.4 (22), we can 
deduce

this yields

   (26)
Case II: Similarly, for ∥D∥≤∥A∥‖D‖≤‖A‖, by Theorem 2.11 and Lemma 
3.4 (23), we can deduce

this yields

   (27)
where the value options for γ are the same as in Table 1. In summary, we 
prove the lower bounds of Theorem 3.5.
Remark 3.6
From the main theorem, we can see that if ∥D∥=∥A∥, then ∥D−A∥=0. 
However, in the problem of low-rank matrix approximation, ∥D∥ is not 
necessarily equal to ∥A∥, so the approximation error is present. Furthermore, 
when ∥D∥ is close to ∥A∥, simulations demonstrate that the error has a very 
small magnitude (see Section 4).
In this section, we discuss the error bounds under different conditions for 
the unitarily invariant norm. Based on a useful decomposition of D†−A†, 
for ∥D∥≥∥A∥ and ∥D∥≤∥A∥, we have bounds (26) and (27), respectively. 
The two error bounds are useful in low-rank matrix approximation. The 
following experiments illustrate our results when the approximation matrix 
A is low-rank and the perturbation matrix E is sparse.
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EXPERIMENTS

The Singular Value Thresholding Algorithm
Our results are obtained by a singular value thresholding (SVT [22]) 
algorithm. This algorithm is easy to implement and surprisingly effective 
both in terms of computational cost and storage requirement when the 
minimum nuclear norm solution is also the lowest-rank solution. The 
specific algorithm is described as follows.
For the low-rank matrix approximation problem which is contaminated 
with perturbation item E, we observe that the data matrix D=A+E. To 
approximate D, we can solve the convex optimization problem

   (28)
where ∥⋅∥∗ denotes the nuclear norm of a matrix (i.e., the sum of its singular 
values).
For solving (28), we introduce the soft-thresholding operator Dτ [22] which 
is defined as

where . In general, this operator can effectively 
shrink some singular values toward zero. The following theorem is with 
respect to the shrinkage operators [22, 23, 24], which will be used at each 
iteration of the proposed algorithms.
Theorem 4.1
([22])
For each , the singular value shrinkage operator Dτ(⋅) 
obeys

where .
By introducing a Lagrange multiplier Y to remove the inequality constraint, 
one has the augmented Lagrangian function of (28)



Fundamentals of Matrix Computations196

The iterative scheme of the classical augmented Lagrangian multipliers 
method is

    (29)
Based on the optimality conditions, (29) is equivalent to

   (30)
where ∂(⋅) denotes the subgradient operator of a convex function. Then, by 
Theorem 4.1 above, we have the iterative solution

    (31)
The SVT approach works as described in Algorithm 1.

Algorithm 1

Simulations
In this section, we use the SVT algorithm for the low-rank matrix 
approximation problem. Let  be the available data. 
Simply, we restrict our examples to square matrices (m=n). We draw A 
according to the independent random matrices and generate the perturbation 
matrix E to be sparse, which satisfies the i.i.d. Gaussian distribution. 
Specially, the rank of the matrix A and the sparse entries of the perturbation 
matrix E are selected to be 5%m and 5%m2, respectively.
Table 2 reports the results obtained by lower bounds (24), (25) and (12), 
respectively. Bounds (24) and (25) are our new result, bound (12) is the 
previous result. Then, comparing the bounds with each other by numerical 
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experiments, we find that lower bounds (24), (25) are smaller than lower 
bound (12).

Table 2: Lower bound comparison results

 Bound ( 24 ) Bound ( 25 ) Bound ( 
12 )

 

m  =  n ∥⋅∥2 ∥⋅∥F ∥⋅∥2 ∥⋅∥F ∥⋅∥2 ∥⋅∥F

100 8.13e-7 1.89e-7 1.54e-7 3.31e-7 1.01e-4 1.27e-4
500 5.11e-8 3.71e-8 4.22e-8 4.62e-8 4.23e-4 5.22e-4
1,000 3.76e-8 2.14e-8 1.01e-8 1.19e-8 5.57e-4 7.48e-4

Applications
In this section, we use the SVT algorithm for the low-rank image 
approximation. From Figures 1 and 2, comparing with the original image 
(a), the low-rank image (b) loses some details. We can hardly get any 
detailed information from incomplete image (c). However, the output image 
(d) =Ak, which is obtained by the SVT algorithm, can recover the details of 
the low-rank image (b). If we denote image (b) to be a low-rank matrix A, 
then image (c) is the observed data matrix D which is perturbed by a sparse 
matrix E, that is,
image (c) = image (b)+E..
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Figure 1: Cameraman. (a) Original 256×256 image with full rank. (b) 
Original image truncated to be rank 50. (c) 50% randomly masked of (b). (d) 
Recovered image from (c).

Figure 2: Barbara. (a) Original 512×512 image with full rank. (b) Original 
image truncated to be rank 100. (c) 50% randomly masked of (b). (d) 
Recovered image from (c).
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Using the SVT algorithm for the low-rank image approximation 
problem, the lower bound comparison results are shown in Table 3. 
We calculate Fare 8.71e-2 and 7.23e-2 for images 
Cameraman and Barbara, respectively. But for F-norm of our lower bound 
(25), we can see that they are 2.59e-5 and 1.09e-5 for images Cameraman 
and Barbara, respectively. That is to say, our error bounds can verify that the 
SVT algorithm still can be improved.

Table 3: Lower bound comparison results of low-rank image approximation

 Cameraman Barbara

∥E∥F
8.71e-2 7.23e-2

Bound (25) 2.59e-5 1.09e-5
Iters 200 200

CONCLUSION
Low-rank matrix approximation problem is a field which arises in a number 
of applications in model selection, system identification, complexity theory, 
and optics. Based on a useful decomposition of D†−A†, this paper reviewed 
the previous work and provided two sharp lower bounds for the low-rank 
matrices recovery problem with a unitarily invariant norm.

From our main Theorem 3.5, we can see that if ∥D∥=∥A∥, then ∥D−
A∥=0. However, in the problem of low-rank matrix approximation, ∥D∥ 
is not necessarily equal to ∥A∥, so the approximation error is present. 
Furthermore, from the main results, we can clearly find the influence of the 
spectral norm (∥⋅∥2) on the low-rank matrix approximation. For example, in 
Case II, when the maximum eigenvalue of the matrix D is larger, the error 
of D−A is smaller.

Finally, we use the SVT algorithm for the low-rank matrix approximation 
problem. Table 2 shows that our lower bounds (24), (25) are smaller than 
lower bound (12). Simulation results demonstrate that the lower bounds 
have a very small magnitude. In applications section, we use the SVT 
algorithm for the low-rank image approximation problem, the lower bounds 
comparison results are shown in Table 3. From the comparison results, we 
find that our lower bounds can verify whether the SVT algorithm can be 
improved.
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ABSTRACT
The use of Volterra filters in practical applications is often limited by their 
high computational burden. To cope with this problem, many strategies for 
implementing Volterra filters with reduced complexity have been proposed 
in the open literature. Some of these strategies are based on reduced-rank 
approaches obtained by defining a matrix of filter coefficients and applying 
the singular value decomposition to such a matrix. Then, discarding 
the smaller singular values, effective reduced-complexity Volterra 
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higher-order Volterra filters (considering orders greater than 2) is however 
not straightforward, which is especially due to some difficulties encountered 
in the definition of higher-order coefficient matrices. In this context, the 
present paper is devoted to the development of a novel reduced-rank approach 
for implementing higher-order Volterra filters. Such an approach is based 
on a new form of Volterra kernel implementation that allows decomposing 
higher-order kernels into structures composed only of second-order kernels. 
Then, applying the singular value decomposition to the coefficient matrices 
of these second-order kernels, effective implementations for higher-order 
Volterra filters can be obtained. Simulation results are presented aiming to 
assess the effectiveness of the proposed approach.

Keywords: Nonlinear filtering, Reduced-rank implementation, Volterra fil-
ter

INTRODUCTION
The first challenge in filtering applications involving nonlinear systems is to 
choose an adequate model of the nonlinear filter [1]. To meet this challenge, 
one important filter characteristic that needs to be considered is the trade-
off between implementation complexity and approximation capability. The 
well-known Volterra filter [1] represents one extreme of this trade-off, since 
its universal approximation capability [2, 3, 4] comes at the cost of a high 
computational complexity (which is due to the large number of coefficients 
required for the implementation) [1, 5, 6, 7, 8, 9]. In this context, one 
topic that has drawn attention from researchers in the last decades is the 
development of Volterra implementations having an enhanced trade-off 
between computational complexity and approximation capability.

Several different approaches have been proposed in the open literature 
aiming to obtain reduced-complexity implementations of Volterra filters. 
Some of these approaches are based on sparse Volterra implementations that 
are obtained by zeroing the less significant filter coefficients [9]. Examples 
of these implementations are the Volterra delay filter [10], the power filter 
[11], and general diagonally-pruned implementations [12, 13, 14]. Other 
approaches combine interpolation and sparse implementations for the sake 
of performance [15, 16, 17]. Frequency-domain approaches also have been 
used for obtaining effective reduced-complexity Volterra implementations 
[18, 19]. All aforementioned approaches are, in some sense, based on the use 
of predefined forms of basis vectors for identifying and discarding the less 
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significant coefficients of a Volterra filter. In contrast, the approaches from 
[20, 21, 22, 23, 24, 25] involve the identification of particular basis vectors 
that can then be exploited aiming to reduce the complexity of a Volterra 
filter. These approaches are typically based on the definition of coefficient 
matrices, which are decomposed aiming to obtain the basis vectors. The 
singular value decomposition is often used for carrying out such a matrix 
decomposition and, as a result, the obtained basis vectors are singular 
vectors of the coefficient matrix considered. Thus, discarding the singular 
vectors related to the smaller singular values, effective reduced-complexity 
reduced-rank Volterra implementations are obtained.

The first reduced-rank approaches used for implementing Volterra filters 
are focused on second-order Volterra kernels [20, 21, 22]. This is due to 
the fact that the second-order Volterra coefficients have two indices, which 
makes the definition of a second-order coefficient matrix a straightforward 
task. For higher-order filters, matrix-based reduced-rank approaches are 
usually obtained by considering non-trivial definitions of (often rectangular) 
coefficient matrices [24], which occasionally lead to ineffective reduced-
rank implementations. In this context, the present paper is focused on the 
development of a novel reduced-rank approach for implementing higher-
order Volterra filters. This approach is based on a new form of Volterra 
kernel implementation that allows converting a higher-order Volterra kernel 
into a structure composed of second-order kernels. Then, applying second-
order reduced-rank implementation strategies to such a structure, effective 
reduced-rank implementations for higher-order Volterra filters can be 
achieved.

The remainder of this paper is organized as described in the following. 
Section 2revisits the Volterra filters, discussing the redundancy-removed 
and matrix-form representations of kernel input-output relationships. 
Also, in Section 2, the reduced-rank implementations of Volterra filters are 
briefly described. Section 3 is dedicated to the contributions of this paper, 
comprising a new form of kernel implementation and the description of the 
proposed approach for implementing reduced-rank Volterra filters. Finally, 
Sections 4 and 5 are dedicated to present the experimental results and the 
concluding remarks, respectively.

The mathematical notation considered in this paper is based on the 
standard practice of using lowercase boldface letters for vectors, uppercase 
boldface letters for matrices, and both italic Roman and Greek letters for 
scalar quantities. Moreover, superscript T stands for transpose, ⊗ represents 



Fundamentals of Matrix Computations206

the Kronecker product, and ||∙||2denotes a quadratic norm. Additionally, 
underbars specify variables related to the redundancy-removed Volterra 
representation and overbars indicate variables related to the proposed 
approach.

VOLTERRA FILTERS AND REDUCED-RANK IMPLE-
MENTATIONS
A truncated Pth-order Volterra filter is composed of P kernels, each 
corresponding to a certain order of polynomial nonlinearity [1]. The 
output y(n) of such a filter is obtained from

       (1)
with y p (n) representing the output of the pth-order kernel. In its standard 
form, the input-output relationship of the pth-order kernel is given by

   (2)
with x(n) denoting the input signal and hp(m1,m2,…,mp), the pth-order coefficients. In 
this work, the standard kernels are assumed to be symmetric, which means that 

 (i.e., 
all pth-order coefficients with permutated indices have identical values). 
This assumption is used without loss of generality, since any standard Volt-
erra kernel can be represented in symmetric form [1, 25].
The first-order kernel of the Volterra filter is a linear kernel whose input-
output relationship

     (3)
is that of a standard finite impulse response (FIR) filter with N coefficients. 
Thus, (3) can be rewritten in a vector form as

       (4)
with

    (5)
and
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   (6)
The other kernels (with p≥2) are nonlinear kernels whose outputs depend on 
cross products of samples of the input signal. As described in [1], the input-
output relationships of the nonlinear kernels can also be expressed in vector 
form. Thus, for the pth-order kernel, one has

      (7)
where h p is the pth-order coefficient vector (composed of coefficients hp(m1,m2,…

,mp)with m 1,…,m p ranging from 0 to N−1) and x p (n)=x 1(n)⊗x p−1(n) is 
the pth-order input vector.
Note, from (2) and (7), that the standard pth-order Volterra kernel has one 
coefficient for each pth-order cross product of input samples, resulting in a 
number of coefficients given by

        (8)
This number increases exponentially with both the memory size and the order 
of the kernel. As a consequence, the computational cost for implementing 
a Volterra filter may become prohibitive even in applications involving 
kernels with relatively small memory size.

Redundancy-removed Implementation
The large number of coefficients required to implement Volterra filters can 
be reduced by exploiting the redundancy of part of the coefficients of the 
standard nonlinear kernels [1, 15]. Such redundancy arises from the fact that 
coefficients with permutated indices (e.g., h 2(0,1) and h 2(1,0)) are multiplied 
by the same cross product of the input signal (e.g., x(n)x(n−1) in the case 
of h 2(0,1) and h 2(1,0)) when the kernel output is evaluated. Thus, merging 
redundant coefficients into a single coefficient, the input-output relationship 
of the pth-order kernel, given by (2), can be rewritten as

   (9)

with  denoting the pth-order coefficients of the redundancy-
removed kernel. Such representation of the kernel input-output relationship, 
known as triangular [1] or even redundancy-removed [15] representation, 
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results in a number of coefficients given by

      (10)
Moreover, it is important to highlight that the reduction in the number of 
coefficients from (8) to (10) obtained by using the redundancy-removed 
implementation comes without loss of generality (i.e., a given kernel can be 
equivalently implemented by using either the standard or the redundancy-
removed implementation).
As in the case of the standard Volterra kernels, the input-output relationship 
of the redundancy-removed ones can also be represented in vector form. 
Thereby, we have [9]

   (11)

where  is the pth-order redundancy-removed 
coefficient vector, which is composed of coefficients 

 is the pth-
order redundancy-removed input vector with L p denoting the pth-order 
elimination matrix [9]. For instance, considering the second-order kernel, 
(9) results in

   (12)
whereas (11) results in

       (13)
with

    (14)
and

   (15)
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Matrix-form Kernel Representation
The input-output relationship of nonlinear Volterra kernels can also be 
formulated as a function of coefficient matrices instead of coefficient 
vectors. This type of representation is especially suited for the development 
of reduced-rank implementations, as will be shown in the next section. 
For the standard second-order kernel, a matrix-form representation can be 
obtained by considering m 1 and m 2 as coordinates of a Cartesian space to 
define the following second-order coefficient matrix:

   (16)
Then, from (16), the input-output relationship of the second-order kernel 
can be written as

     (17)
In the case of the redundancy-removed second-order kernel, the following 
coefficient matrix can be defined:

    (18)
Now, considering (18), (13) can be rewritten as

    (19)
The approach presented in [24] generalizes the matrix-form representations 
from (16) to (19) for higher-order kernels. Such an approach is based on de-

fining an  pth-order coefficient matrix  with p=p 1+p 2. 
This matrix contains the  coefficients of the pth-order redundancy-re-
moved kernel arranged in such a way that the kernel output can be written as

    (20)

where  are the redundancy-removed input vectors 
with orders p 1and p 2, respectively. It is important to mention that the num-
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ber of coefficients  of the pth-order kernel is smaller than the number of 
entries . As a result, several elements of  are in 
fact equal to zero [24].

Reduced-rank Implementations
As described in [20, 21, 22, 24], approaches based on low-rank 
approximations can be used for obtaining effective reduced-complexity 
Volterra implementations. Most of these approaches are based on using the 
singular value decomposition along with matrix-form representations of 
Volterra kernels. For instance, the approach used for implementing second-
order kernels described in [22] is based on the application of the singular value 
decomposition to the standard second-order coefficient matrix H2 given by 
(16). Since this matrix is symmetric, its left singular vectors are equal to its 
right singular vectors and, as a result, one obtains

    (21)

where λ k and  are, respectively, the kth singular value and the kth singular 
vector of H 2. Now, substituting (21) into (17), one gets

   (22)
Note that  corresponds to the input-output relationship of an FIR filter 
with coefficient vector given by . Thus, (22) is in fact the input-output 
relationship of the structure shown in Fig. 1, which is a parallel structure 
of N FIR filters with their squared outputs multiplied by the singular 
values of H 2. Moreover, since the singular vectors  (with k=0,…,N−1) 
are unit vectors, the branches of the structure from Fig. 1 involving small 
values of λ k can be disregarded, resulting in a reduction of computational 
complexity with low impact on the implementation precision.
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Figure 1: Block diagram of the implementation of a second-order kernel based 
on the singular value decomposition.

The implementation depicted in Fig. 1 is based on the standard matrix-
form representation of the input-output relationship of the second-order 
kernel. The redundancy-removed matrix-form representation given by (19) 
can also be used for obtaining a reduced-rank implementation. In this case, 
since the left and right singular vectors are not the same (due to the fact that 

 is not symmetric), the resulting input-output relationship is

   (23)
with  representing the kth left singular vector of H 2 and  denoting 
the kth right singular vector. By comparing (22) and (23), one can notice 
that the latter (which is based on the redundancy-removed implementation) 
results in a structure with higher computational cost than the structure 
resulting from the former (based on the standard representation). Thus, one 
verifies that the standard representation is in fact more advantageous than 
the less costly redundancy-removed one for obtaining this type of reduced-
rank implementations of second-order kernels.
In the case of higher-order kernels (with p≥3), one appealing approach for 
obtaining reduced-rank implementations is the one used in [24] to obtain the 
so-called parallel-cascade Volterra structures. Such an approach is based on 
the application of the singular value decomposition to the coefficient matrix 
of the general matrix-form kernel representation given by (20). For instance, 
considering the case of a third-order kernel, (20) becomes

   (24)
with . By applying the singular value decomposition to 
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, one obtains

    (25)
where σ k is the kth singular value of  is the kth left singular vector, 
and  is the kth right singular vector. Then, substituting (25) into (24) and 
manipulating the resulting expression, one gets

   (26)

From (4), one can notice that  corresponds to the filtering of 
the input signal by a first-order kernel (FIR filter) with coefficient vector 

. Similarly, considering (13), one notices that  corresponds 
to the filtering of the input signal by a second-order kernel with coefficient 
vector . Thus, (26) in fact corresponds to the structure depicted in 
Fig. 2, which is composed of a set of N branches, with the output of the kth 
branch given by the product of the outputs of two kernels (a first-order 
kernel and a second-order one), weighted by the kth singular value σ k of 

. As in the case of the structure of Fig. 1, reduced-complexity reduced-
rank Volterra implementations can be obtained from the parallel-cascade 
structure of Fig. 2, removing the branches related to the smallest singular 
values of . In addition, as mentioned in [24], the second-order blocks 
of the structure of Fig. 2 can be further decomposed by using reduced-rank 
approaches, which allows a more detailed singular-value-dependent kernel 
pruning. However, this pruning is not a straightforward task due to the 
hierarchical nature of the resulting structure (i.e., it involves reduced-rank 
decompositions with different levels of importance).
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Figure 2: Block diagram of the parallel-cascade implementation of a third-
order kernel.

NOVEL REDUCED-RANK APPROACH FOR IMPLE-
MENTING VOLTERRA FILTERS
This section is devoted to the development of a novel reduced-rank 
approach for implementing Volterra filters. To this end, a new strategy for 
implementing higher-order kernels using a parallel structure composed of 
lower-order kernels is first discussed. Then, such a strategy is exploited 
along with the singular value decomposition to obtain the proposed reduced-
rank implementation approach.

Kernel Implementation Redesigned
In this section, the aim is to develop a new form of Volterra kernel 
implementation that allows factorizing higher-order kernels in terms of 
lower-order ones. For the second-order kernel, such a type of implementation 
is obtained by rewriting the second-order redundancy-removed input-output 
relationship as

   (27)
The rightmost summation term in (27) corresponds to the input-output 
relationship of a first-order kernel (an FIR filter) with memory size N−m 1, 
coefficient vector
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   (28)
and input vector

   (29)
Thus, (27) can be rewritten as

    (30)
Note that, in (30), the output of the second-order kernel is evaluated by 
summing the outputs of N first-order kernels multiplied by delayed samples 
of the input signal. Therefore, (30) can be seen as a decomposition of the 
second-order kernel into a parallel structure composed of first-order kernels.
In the case of the third-order kernel, the redundancy-removed input-output 
relationship can be written as

   (31)
Now, considering (12), one can notice that the double summation in (31) 
corresponds to the output of a second-order kernel with coefficient vector

   (32)
and input vector

   (33)
Consequently, from (13), (31) can be rewritten as

    (34)
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which corresponds to the decomposition of the third-order kernel into a 
structure composed of second-order kernels.
Similarly to (30) and (34), for the pth-order kernel, the following input-
output relationship can be obtained:

   (35)

where the product  corresponds to the input-output relationship 
of a (p−1)th-order kernel with memory size N−m 1. Thus, from (35), we 
can infer that any pth-order kernel can be decomposed into N kernels with 
order p−1, as illustrated in Fig. 3.

Figure 3: Block diagram of a pth-order kernel implementation using a parallel 
structure composed of (p−1)th-order kernels.

Proposed Approach
Aiming to develop the proposed reduced-rank approach for implementing 
Volterra filters, we first consider that the kernel implementation strategy 
introduced in Section 3.1 can be used to decompose any higher-order kernel 
(with p≥3) into a parallel structure composed exclusively of second-order 
kernels. This decomposition is straightforward for the third-order kernel, 
since, by using p=3 in (35), one obtains a structure composed of N second-
order kernels, as described by (31)–(34). In the case of the fourth-order 
kernel, (35) can be used first for obtaining a structure composed of N third-
order kernels and then for decomposing each of these third-order kernels 
into second-order kernels. As a result, a structure composed of N 2second-
order kernels is obtained for the implementation of the fourth-order 
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kernel. Following this rationale, one can notice that, by using (35) to 
carry out successive kernel decompositions, an implementation composed 
of N (p−2) second-order kernels can always be obtained for a pth-order kernel.

Now, the idea behind the proposed reduced-rank approach for 
implementing Volterra filters is to exploit the fact that any pth-order kernel can 
be decomposed into a parallel structure of second-order kernels as previously 
described. Taking into account this fact, a reduced-rank implementation for 
the pth-order kernel can be obtained by applying, to each second-order kernel 
resulting from the kernel decomposition, the strategy used for obtaining the 
reduced-rank implementation of Fig. 1 (see Section 2.3). Thus, one obtains a 
structure composed of N (p−2) blocks, each having the form of the structure of 
Fig. 1. Then, disregarding the branches of these blocks related to the smaller 
singular values, a reduced-complexity reduced-rank kernel implementation 
is obtained. In this context, the proposed approach can be summarized as 
follows:

i) Exploit the strategy described in Section 3.1 (see Fig. 3) to obtain 
an implementation of the pth-order kernel of interest in the form 
of a parallel structure composed of second-order kernels.

ii) Use the standard matrix-form representation (see Section 2.2) 
to represent all second-order kernels that compose the kernel of 
interest.

iii) Obtain reduced-rank implementations of such second-order 
kernels by using the singular value decomposition as described in 
Section 2.3.

iv) Remove (prune) the branches of the resulting structure related 
to the smaller singular values of the involved second-order 
coefficient matrices.

The proposed reduced-rank approach for implementing Volterra filters 
consists of the application of these four steps to all kernels, which allows 
obtaining effective reduced-complexity Volterra filter implementations.

SIMULATION RESULTS
This section aims to assess the effectiveness of the proposed reduced-rank 
approach for obtaining reduced-complexity implementations of Volterra 
filters. To this end, the proposed approach is compared with the parallel-
cascade (PC) one from [24] in the context of the implementation of third-
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order and forth-order kernels whose coefficients are known in advance. 
The effectiveness of these approaches is assessed in terms of normalized 
misalignment [26], which is defined as

   (36)
with  denoting the coefficient vector of the kernel to be implemented, and 

, the coefficient vector obtained by using the reduced-rank approach. A 
hierarchical branch-level pruning is applied to the parallel structures obtained 
by using the approaches considered, which means that one branch is removed 
at a time, with the branches related to the smallest singular values removed 
first. After the removal of each branch, both the normalized misalignment 
and the number of required arithmetic operations are evaluated, resulting in 
the curves used here for comparing the different approaches. Markers are 
presented along these curves, indicating each evaluated pair of normalized 
misalignment and number of operations per sample.

Example 1: Modeling of a Third-order Kernel
The third-order kernel considered in this example is obtained from a system 
modeling experiment in which a diode limiter circuit used in guitar distortion 
pedals [27, 28] is modeled using an LMS-adapted Volterra filter (with memory 
size N a=10, sampling rate of f s=44.1 kHz, and white input signal). The PC 
and the proposed reduced-rank approaches are used here for implementing 
the third-order kernel of the Volterra model obtained in such an experiment. 
As a result, the curves of normalized misalignment as a function of the 
number of operations per sample shown in Fig. 4 are obtained. A vertical 
dotted line pointing out the number of operations per sample required by the 
corresponding redundancy-removed Volterra implementation (around 495 
operations) is also included in this figure aiming to establish a limit after 
which it is no longer interesting to use reduced-rank implementations. One 
can notice from Fig. 4 that the proposed approach outperforms the PC one 
for the case considered here; since, a smaller normalized misalignment is 
obtained for any given number of operations per sample. For instance, if a 
misalignment below −15 dB is desired, a PC-based implementation would 
require at least 280 operations per sample (i.e., a reduction of about 43% with 
respect to the number of coefficients of the redundancy-removed Volterra 
kernel), whereas an implementation based on the proposed approach would 
require only 139 operations per sample (a reduction of almost 72%).
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Figure 4: Number of coefficients required by different reduced-rank implemen-
tations of a third-order kernel.

Example 2: Modeling of a Fourth-order Kernel
The kernel considered in this example is similar to the fourth-order satellite-
system model used in [24]. Such a model is obtained by using a cascade of 
a Butterworth low-pass filter with a memoryless fourth-power nonlinearity 
and a Chebyshev low-pass filter. For the sake of simplicity, we consider a 
version of this model in which the Butterworth and Chebyshev IIR filters 
are replaced by FIR versions obtained by truncating their impulse responses 
to 30 samples. Then, a fourth-order kernel with memory size 59 is obtained, 
which is again truncated to memory size 30. As a result, this kernel has a 
total of  coefficients in its redundancy-removed representation, 
requiring around 86,800 operations per sample for its implementation. It is 
important to mention that this kernel admits a symmetric representation for its 
coefficient matrix . Consequently, the branches of PC-based structures 
will be composed of a single second-order kernel with its squared output 
multiplied by one of the singular values of . The results obtained for 
this example are shown in Fig. 5. For a better visualization (due to the high 
density of the obtained points), we have used one marker for each 30 points 
in the curve of the proposed approach. From such results, one notices that 
the reduced-rank approaches are capable of modeling the considered fourth-
order kernel with very good accuracy. For instance, −60 dB of misalignment 
is obtained through the proposed approach with around 12,520 operations 
per sample, which corresponds to almost 86% of complexity reduction. 
Moreover, Fig. 5 also shows that the proposed approach outperforms the PC 
approach in terms of trade-off between performance and complexity either 
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for the range of computational cost from 0 to almost 27,000 operations per 
sample or for the range of misalignment from 0 to about −120 dB.

Figure 5: Number of coefficients required by different reduced-rank implemen-
tations of a fourth-order kernel.

CONCLUSIONS
In this paper, a novel reduced-rank approach for implementing higher-order 
Volterra filters was introduced. Such an approach is based on a new form of 
kernel implementation that allows converting any higher-order kernel into 
a structure composed exclusively of second-order kernels. Then, exploiting 
the singular value decomposition along with the coefficient matrices of these 
second-order kernels, a reduced-rank implementation for the higher-order 
Volterra filter can be achieved. Numerical simulation results were shown, 
confirming the effectiveness of the proposed approach in obtaining reduced-
complexity implementations of Volterra filters.
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algorithm for the Toeplitz matrix completion (TMC), which will reduce the 
extra load coming from data communication under reasonable smoothing. It 
has resulted in a semi-smoothing augmented Lagrange multiplier (SSALM) 
algorithm. Meanwhile, we demonstrate the convergence theory of the new 
algorithm. Finally, numerical experiments show that the new algorithm is 
more effective/economic than the original algorithm.

Keywords: Toeplitz matrix, Completion, Augmented Lagrange multiplier, 
Data communication

INTRODUCTION
Completing a low-rank matrix from a subset of its entries has been a hot 
problem recently, first introduced by [8], that has arisen in a wide variety of 
practical contexts across all disciplines of engineering and computational 
science such as model reduction [19], machine learning [1, 2], control [22], 
pattern recognition [12], imaging inpainting [3], video denoising [16], com-
puter vision [28], and so on. Despite matrix completion (MC) requiring the 
global solution of a non-convex objective, there are many computational 
efficient algorithms which are effective for a broad class of matrices. The 
problem has received intensive research from both theoretical and algorith-
mic aspects, see, e.g., [4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 23, 
26, 27, 29, 30, 31, 32, 34, 35], and the references therein for partial review. 
It is well known that the mathematical model of the MC problem is of the 
following form:

   (1.1)
where the matrix  is an underlying matrix to be completed, Ω is 
a random subset of indices for the available entries, and PΩ is the associated 
sampling orthogonal projection operator which acquires only the entries 
indexed by Ω⊂{1,2,…,m}×{1,2,…,n}.
In the current MC problems, the matrix M is of special structure in general. 
Therefore, much attention has been paid to the completion of Toeplitz and 
Hankel matrices in recent years [20, 24, 25, 30, 32]. Many scholars have 
conducted in-depth research on the special structure, property, and applica-
tion of the Toeplitz and Hankel matrices; for example, nuclear norm mini-
mization for the low-rank Hankel matrix reconstruction problem under the 
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random Gaussian sampling model is investigated in [7]. In addition, Hankel 
matrix reconstitution in the sense of minimizing the nuclear norm with non-
uniform sampling of entries is researched in [11]. To make full use of the 
special structure of a Toeplitz matrix, a mean value algorithm is presented 
in [30]; the modified Lagrange multiplier (MALM) algorithm [31] and the 
smoothing augmented Lagrange multiplier (SALM) algorithm [34] are also 
proposed. Therefore, the Toeplitz matrix completion (TMC) is one of the 
most important MC problems and has attracted a large amount of attention 
recently. As is well known, an n×n Toeplitz matrix is of the following form:

   (1.2)
which is determined by 2n−1 entries, say, the first row and the first column. 
Explicitly seeking the lowest rank Toeplitz matrix consistent with the known 
entries is mathematically considered as

       (1.3)
where “∘” is the Hadamard product,  is the weighted matrix 
with entries  for any other 

 is the underlying Toeplitz matrix to be completed, namely 
.

The SALM algorithm switches the iteration matrix into the Toeplitz structure 
at each iteration step by the smoothing operator, which saves computational 
cost of the singular value decomposition and approximates well the solution. 
Unfortunately, numerous data have to be shifted at each iteration step in the 
process of implementing this algorithm. However, there is a cost, sometimes 
relatively great, associated with the moving of data. The control of memory 
traffic is crucial to performance in many computers.
These factors motivated us to reduce the traffic jam of data, resulting in 
a semi-smoothing augmented Lagrange multiplier (SSALM) algorithm 
based on the selecting technique of the optimal parameter ω(k) at each of the 
five iteration steps in [33]. Compared with the SALM algorithm, the new 
algorithm either saves computation cost or reduces data communication. Two 
aspects are taken into account, which results in more practical or economic 
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implementation. The new algorithm not only overcomes the slowness of the 
SVD for the original ALM algorithm, but also reduces the greatness of the 
data communication for the ALM algorithm. We can see that the CPU of 
SSALM algorithm is reduced to 30.44% from the numerical experiments.
The rest of this paper is organized as follows. Some preliminaries are pro-
vided in Sect. 2. Section 3 presents the semi-smoothing augmented La-
grange multiplier (SSALM) algorithm after giving an outline of the ALM 
algorithm, the dual approach, and the SALM algorithm. The convergence 
property of the SSALM algorithm is constructed in Sect. 4. We report the 
numerical results to indicate the effectiveness of the SSALM algorithm in 
Sect. 5. Finally, we end the paper with the concluding remarks in Sect. 6.

PRELIMINARIES
This section is devoted to some of the necessary notations and preliminaries. 

 denotes the set of m×n real matrices,  is the set of n×n real 
Toeplitz matrices. The nuclear norm of a matrix A is denoted by ∥A∥∗, and 
the Frobenius norm ∥A∥F is the maximum absolute value of the matrix 
entries of a matrix A. AT is used to express the transpose of a matrix 
, rank(A) is equal to the rank of a matrix A, and tr(A)tr(A) represents the 
trace of A. The standard inner product between two matrices is denoted by 

, their Hadamard product A∘B is 
an m×n matrix whose (i,j) entry is the .
The singular value decomposition (SVD) of a matrix  of r-rank is 
defined by

where  are column orthonormal matrices, and 
σ1≥σ2≥⋯≥σr>0.
Definition 2.1
(Singular value thresholding operator [6])
For each τ≥0, the singular value thresholding operator Dτ is defined as 
follows:

where
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 denotes the n×n identity matrix and  
 is called the shift matrix. It is clear that

where “O” stands for a zero-matrix. Thus, a Toeplitz matrix , 
shown in (1.2), can be written as a linear combination of these shift matrices, 
that is,

 is an indices set of observed diagonals of a Toeplitz 
matrix M∈  is the complementary set of Ω. For any Toeplitz matrix 

, the vector vec(A,α) denotes the ωth diagonal of A, α=−n+1,−n+2,…
,n−1, that is to say,

Definition 2.2
(Toeplitz structure smoothing operator [34])

For any matrix  , the Toeplitz structure smoothing operator 
T is defined as follows:

   (2.1)

where  with

It is clear that T(A) is a Toeplitz matrix derived from the matrix A. Namely, 
any  can be changed into a Toeplitz structure via the smoothing 
operator T(⋅).

ALGORITHMS
First of all in this section, for completeness as well as for the purpose of 
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comparison, we briefly review and summarize some relative algorithms 
for approximately minimizing the nuclear norm of a matrix under convex 
constraints.
Since the matrix completion problem is closely connected to the robust 
principal component analysis (RPCA) problem, then it can be formulated in 
the same way as RPCA, an equivalent problem of (1.1) can be considered 
as follows.
As E will compensate for the unknown entries of M, the unknown entries of 
M are simply set as zeros. Suppose that the given data are arranged as the 
columns of a large matrix . The mathematical model for estimating 
the low-dimensional subspace is to find a low-rank matrix  such 
that the discrepancy between A and M is minimized, leading to the following 
constrained optimization:

   (3.1)
where E will compensate for the unknown entries of M, the unknown entries 
of  are simply set as zeros. And PΩ:  is a linear 
operator that keeps the entries in Ω unchanged and sets those outside Ω (say, 
in ) zeros.

The Dual Algorithm
The dual algorithm proposed in [10] tackles problem (3.1) via its dual. That 
is, one first solves the dual problem

     (3.2)
for the optimal Lagrange multiplier Y, where

   (3.3)
A steepest ascend algorithm constrained on the surface {Y|J(Y)=1} can 
be adopted to solve (3.2), where the constrained steepest ascend direction 
is obtained by projecting M onto the tangent cone of the convex body 
{Y|J(Y)≤1}. It turns out that the optimal solution to the primal problem 
(3.1) can be obtained during the process of finding the constrained steepest 
ascend direction.



A Semi-smoothing Augmented Lagrange Multiplier Algorithm for.... 229

The Augmented Lagrange Multiplier Algorithm
The augmented Lagrange multiplier (ALM) algorithm was proposed in [18] 
for solving a convex optimization (1.1). It should be described subsequently.
It is famous that the partial augmented Lagrangian function of problem (3.1) 
is

   (3.4)
Hence, the augmented Lagrange multiplier algorithm is designed as follows.
Algorithm 3.1
([18])
Given a sampled set Ω, a sampled matrix . Given 
also two initial matrices .

1. Compute the SVD of the matrix :

2. Set

solve ,

3. If , 
stop; otherwise, go to the next step;

4. Set .
If ; otherwise, go to Step 1.
Note that the ALM algorithm performs better both in theory and practice 
than other algorithms with a Q-linear convergence speed globally. It is of 
much better numerical behavior or higher accuracy. It is reported that the 
ALM algorithm has been applied to MC problem (1.1). The algorithm, 
however, has the disadvantage of the penalty function, namely the matrix 
sequences {Ak} generated by the ALM algorithm are the accepted solutions 
but feasible ones.
The Smoothing Augmented Lagrange Multiplier Algorithm
In this subsection, we make mention of a stepped-up scheme for the TMC 
problem. The smoothing augmented Lagrange multiplier (SALM) approach 
employs the smoothing operator T (see (2.1)) to approximate a matrix gen-
erated in the kth iteration so that the current approximation is of a Toeplitz 
structure.
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Then our problem can be expressed as the following convex programming:

     (3.5)
where  is a real Toeplitz matrix, and .
Let . Then the partial augmented Lagrangian function is

   (3.6)
where .

Algorithm 3.2
([34])
Given a sampled set Ω, a sampled matrix . Given also two 
initial matrices .

1. Compute the SVD of the matrix  using the Lanczos 
method

 
2. Set

compute for smoothing , and

3. If , 
stop; otherwise, go to the next step;

4. Set .
If ; otherwise, go to Step 1.
It is reported that the convergence speed of the SALM algorithm is greater 
than that of the ALM and APG algorithms. A merit of smoothing is that the 
fast SVD procedure can be utilized to reduce the computation.
As we know, the SVD time is saved at the expense of data communication. 
Sometimes, this is not worth the candle. This motivated us to come up with 
the following algorithm.
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The Semi-smoothing Augmented Lagrange Multiplier Algo-
rithm
In this subsection, we propose a semi-smoothing augmented Lagrange 
multiplier algorithm based on the ALM and SALM algorithms for the TMC 
problem. The new algorithm consists of two stages: one is ℓ−1 iterations by 
the ALM scheme, which is free moving of data; another is the lth smoothing 
by the SALM procedure, which is keeping the iteration matrix as a Toeplitz 
structure.

Now, the semi-smoothing augmented Lagrange multiplier (SSALM) 
algorithm will be presented in the following.
Algorithm 3.3
(SSALM algorithm)
Input: A sampled set Ω, a sampled matrix 

.
Let .
Repeat:

1. ℓ−1 iterations.
(1) : Compute the SVD of the matrix :

(2) : Set

(3) : If 
, 

stop; otherwise, go to the next step;

(4) : Set ; oth-
erwise, go to step (1);
 

2. lth smoothing.

(1) : Compute the SVD of the matrix :

(2) : Set
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compute the factors of smoothing 
…,n−1,
and set

.
Update

 
3. If , 

stop; otherwise, go to the next step;
 

4. Set .
 
If ; otherwise, go to Step 
1.
In fact, Algorithm 3.3 includes the above Algorithm 3.2 as a special case if 
ℓ=1. Obviously, the algorithm is an acceleration of the SALM algorithm in 
[34].

CONVERGENCE ANALYSIS
This section will analyze the convergence of Algorithm 3.3.

Let  be the solution of model (3.5) and Ÿ be that of the optimal problem 
(3.2). We provide some lemmas in the following firstly.
Lemma 4.1
([8])
Let  be an arbitrary matrix and UΣVT be its SVD. Then the set of 
subgradients of the nuclear norm of A is given by

Lemma 4.2
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([18])
If μk is nondecreasing, then each entry of the following series is nonnegative 
and their sum is finite, i.e.,

   (4.1)
Lemma 4.3
([18])

The sequences  are all bounded, where

.
Lemma 4.4
The sequence {Yk,q} generated by Algorithm 3.3 is bounded.
Proof

Let , defined 
as (2.1).

First of all, we indicate that , are all 
the Toeplitz matrices. Clearly,  are both smoothed into a 
Toeplitz structure. Suppose that  are both the Toeplitz matrices, so 

is . Thus,  is a Toeplitz matrix 
also because of Step 4 in Algorithm 3.3.

Moreover,

It is clear that by Steps 1–2 in Algorithm 3.3 we have



Fundamentals of Matrix Computations234

where  are the singular vectors associated with singular values that 
are more than  and  are those associated with singular values that 
are less than or equal to , the elements of the diagonal matrix  are 
more than , and those of the diagonal matrix  are less than or equal to 

. Hence, it is drawn that , and

We can obtain hence that  from 
Lemmas 4.2 and 4.3.

It is known that, for , by Lemma 4.1,

We also have

Therefore, the following inequalities can be obtained:

and

It is evident that the sequence {Yk,q} is bounded. □
Theorem 4.1
Suppose that , then the sequence{Ak,q} 
converges to the solution of (3.5) when .
Proof
It is true that

since  and Lemma 4.4.
Let  be the solution of (3.5). Then  
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are all Toeplitz matrices since . We prove first that

   (4.2)

where  is the optimal solution to 
the dual problem (3.2).

We obtain the following result with the same analysis:

Then

   (4.3)
holds true.
The sum  
is nonincreasing since ∥A∥∗ is a convex function and 

. On the other 
hand, the following are true by Algorithm 3.3:

Therefore, by the same idea of Theorem 2 in [18], it is obtained that Ä is the 
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solution of (3.5). □
Theorem 4.2
Let  be the Toeplitz matrix de-
rived fromX, introduced in (2.1). Then, for any Toeplitz matrix 

.
Proof
By the definition of . Since Y is a Toeplitz 
matrix and , then

Theorem 4.3
In Algorithm 3.3, Ak,q is a Toeplitz matrix generated by Xk,q, then

is true with Ä being the solution of (3.5).
Proof

Thus,  holds true.

NUMERICAL EXPERIMENTS
In this section we report some original numerical results of two algorithms 
(SALM, SSALM) for some n×n matrices with different ranks. All the 
experiments are conducted on the same workstation with an Intel(R) 
Core(TM) i7-6700 CPU @ 3.40 GHz that has 16 GB memory and 16-
bit operating system, running Windows 7 and Matlab (vision 2016a). We 
analyze and compare iteration numbers (IT), computing time in seconds 
(time(s)), deviation (error 1, error 2), and ratio which are defined in the 
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following. It can be seen that the SSALM algorithm proposed in this study 
is highly effective compared with the SALM algorithm.

In the experiments,  represents an uncompleted Toeplitz matrix, 
the sampling density p=m/(2n−1), where m is the number of the known 
diagonal entries. By the way, p∈{0.3,0.4,0.5,0.6} here. Due to the 
special structure of a Toeplitz matrix, we have 0≤m≤2n−1. The SALM 
and SSALM algorithms share the same values of all parameters, say, 

. In the test of the 
SSALM algorithm, ℓ=2 or ℓ=3 as a rule of semi-smoothing.

The experimental results of two algorithms are presented in Tables 1–6. 
From the tables, two algorithms can successfully compute an approximate 
solution of the prescriptive stop condition for all the test matrix M. And 
computing time of our SSALM algorithm in far less than that of the SALM 
algorithm. In particular, compared with the cost of the SALM algorithm, we 
can find that the cost of the SSALM algorithm is decreased up to 30.44%. 
The “ratio” in Tables 5–6 can show this effectiveness.

Table 1: Comparison between SALM and SSALM for p=0.6

n rank(M) Algorithm IT time (s) error 1 error 2
500 10 SALM 44 2.6563 8.2372e−10 1.0363e−07

SSALM 42 1.8853 9.2608e−10 1.9658e−09
800 10 SALM 54 5.9456 8.1138e−10 8.2779e−09

SSALM 52 5.0976 5.6384e−10 7.6367e−09
1000 10 SALM 57 8.2474 8.9636e−10 4.1947e−09

SSALM 58 6.3207 7.9333e−10 1.9217e−09
1500 10 SALM 64 16.7198 9.5636e−10 2.1154e−09

SSALM 64 15.0399 9.1550e−10 1.0551e−09
2000 10 SALM 71 31.7924 9.4056e−10 7.5879e−08

SSALM 68 26.8256 8.1847e−10 2.3201e−08
2500 10 SALM 71 47.3399 7.0194e−10 1.5048e−08

SSALM 72 42.5214 9.8809e−10 2.6892e−09
3000 10 SALM 77 70.2107 6.7658e−10 2.4626e−09

SSALM 76 60.6145 6.9232e−10 1.1348e−09
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4000 20 SALM 74 146.3660 6.5154e−10 5.1684e−05
SSALM 72 129.2216 5.3346e−10 1.4304e−09

5000 20 SALM 74 220.6386 9.9475e−10 2.1943e−08
SSALM 74 198.3210 5.5006e−10 1.8351e−09

8000 25 SALM 78 550.5427 9.2197e−10 3.6735e−09
SSALM 80 471.4695 5.5647e−10 1.5932e−09

Table 2: Comparison between SALM and SSALM for p=0.5

n rank(M) Algorithm IT time (s) error 1 error 2
500 10 SALM 44 2.8955 9.5801e−10 2.2756e−08

SSALM 44 2.1933 4.4278e−10 2.3334e−09
800 10 SALM 56 8.6741 7.0000e−10 2.6659e−06

SSALM 52 5.4772 9.2740e−10 3.3480e−09
1000 10 SALM 60 11.0450 8.2993e−10 6.6858e−08

SSALM 56 6.7779 8.6651e−10 1.8478e−09
1500 10 SALM 68 20.6328 8.45398e−10 9.6939e−07

SSALM 64 15.6997 9.3584e−10 1.5261e−09
2000 10 SALM 71 44.8591 9.9033e−10 7.2479e−08

SSALM 68 27.9845 9.6632e−10 2.8679e−09
2500 10 SALM 78 67.4042 7.3828e−10 1.2312e−07

SSALM 74 45.3268 7.1109e−10 2.5905e−09
3000 10 SALM 77 74.2323 7.2763e−10 9.9884e−09

SSALM 76 64.4300 8.2104e−10 1.2376e−08
4000 20 SALM 73 155.9955 9.4452e−10 1.8879e−06

SSALM 72 128.0443 7.1470e−10 1.8278e−09
5000 20 SALM 74 235.1514 9.1421e−10 7.9369e−06

SSALM 76 200.7122 6.2859e−10 3.5799e−09
8000 25 SALM 80 622.5518 9.5065e−10 5.5408e−06

SSALM 80 498.8602 5.1021e−10 3.0270e−08

Table 3: Comparison between SALM and SSALM for p=0.4

n rank(M) Algorithm IT time (s) error 1 error 2

500 10 SALM 45 7.8497 6.8884e−10 5.3595e−06

SSALM 44 2.3892 5.3103e−10 2.3267e−09
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800 10 SALM 54 7.4948 9.3427e−10 2.1464e−06

SSALM 54 5.9618 8.9128e−10 1.5780e−08

1000 10 SALM 58 9.9528 9.7372e−10 3.2663e−05

SSALM 56 7.2641 9.7968e−10 2.4662e−09

1500 10 SALM 67 25.3226 9.8741e−10 2.7106e−06

SSALM 64 16.1484 9.0982e−10 1.5210e−09

2000 10 SALM 70 34.6083 8.4557e−10 1.8757e−07

SSALM 70 29.7298 6.4346e−10 1.7874e−09

2500 10 SALM 76 54.5748 7.1288e−10 8.4514e−08

SSALM 74 46.5716 4.9981e−10 1.6792e−09

3000 10 SALM 78 84.9121 5.3019e−10 2.2285e−06

SSALM 76 66.0761 9.2876e−10 1.1697e−09

4000 20 SALM 73 164.7655 8.6946e−10 7.3598e−06

SSALM 72 144.5329 5.1358e−10 1.4439e−09

5000 20 SALM 75 251.7641 8.9821e−10 7.9543e−08

SSALM 76 203.3167 8.3168e−10 3.4049e−08

8000 25 SALM 79 598.8095 9.5617e−10 3.7230e−08

SSALM 80 530.8533 4.9436e−10 1.2710e−09

Table 4: Comparison between SALM and SSALM for p=0.3

n rank(M) Algorithm IT time (s) error 1 error 2

500 10 SALM 46 11.3753 9.3029e−10 3.2509e−06

SSALM 46 5.1926 6.5512e−10 1.8892e−08

800 10 SALM 57 17.3212 9.0562e−10 1.0264e−04

SSALM 58 13.5300 5.7672e−10 1.9937e−05

1000 10 SALM 59 12.2900 9.8849e−10 2.9149e−07

SSALM 58 7.9075 8.0278e−10 6.0819e−09

1500 10 SALM 69 38.0422 8.9932e−10 6.4286e−05

SSALM 66 17.6928 5.5536e−10 4.7554e−08

2000 10 SALM 72 39.9752 9.1752e−10 3.8681e−07

SSALM 70 30.0543 8.0322e−10 2.2090e−09

2500 10 SALM 78 92.3154 9.8020e−10 6.9561e−06

SSALM 74 47.8242 9.2726e−10 6.3568e−09

3000 10 SALM 80 119.9347 8.6992e−10 6.7548e−06

SSALM 80 84.1827 7.6381e−10 1.6034e−07

4000 20 SALM 74 187.0096 7.3863e−10 2.0127e−06

SSALM 72 142.3911 8.5136e−10 3.0778e−08

5000 20 SALM 74 246.3862 9.4517e−10 4.4710e−07

SSALM 78 219.6853 6.8201e−10 2.8025e−06

8000 25 SALM 83 1.4409e+03 9.9003e−10 2.7735e−04

SSALM 84 1.1312e+03 8.0522e−10 3.7995e−04
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Table 5: The values of ratio for ℓ=2

p = 0.6 n 500 800 1000 1500 2000 2500 3000 4000 5000 8000

rank(M) 10 10 10 10 10 10 10 20 20 25

ratio(%) 70.97 85.74 76.64 89.95 84.38 89.82 86.33 88.29 89.88 85.64

p = 0.5 n 500 800 1000 1500 2000 2500 3000 4000 5000 8000

rank(M) 10 10 10 10 10 10 10 20 20 25

ratio(%) 75.75 63.41 61.37 76.09 62.38 67.25 86.80 82.08 85.35 80.13

p = 0.4 n 500 800 1000 1500 2000 2500 3000 4000 5000 8000

rank(M) 10 10 10 10 10 10 10 20 20 25

ratio(%) 30.44 79.55 72.99 63.77 85.90 85.34 77.82 87.72 80.76 88.65

p = 0.3 n 500 800 1000 1500 2000 2500 3000 4000 5000 8000

rank(M) 10 10 10 10 10 10 10 20 20 25

ratio(%) 45.65 78.11 64.34 46.51 75.18 51.81 70.19 76.14 89.16 78.51

Table 6: Comparison between SALM and SSALM for ℓ=3

n rank(M) p Algorithm IT time (s) error 1 error 2 RATIO (%)

500 10 0.4 SALM 47 7.5689 5.2053e−10 3.9970e−06 71.71

SSALM 47 5.4276 3.8663e−10 3.2564e−06

1000 10 0.4 SALM 60 13.9741 8.8726e−10 2.6235e−07 61.58

SSALM 59 8.6048 9.8580e−10 9.1642e−09

1500 10 0.5 SALM 68 29.6545 9.1634e−10 4.5666e−05 63.99

SSALM 68 18.9748 8.6885e−10 4.3619e−09

1500 10 0.3 SALM 69 47.1327 9.3547e−10 6.8306e−06 65.78

SSALM 68 31.0025 9.0834e−10 2.2110e−06

2000 10 0.5 SALM 73 50.5371 8.4794e−10 3.1914e−05 59.00

SSALM 71 29.8151 9.8594e−10 8.2954e−09

2000 10 0.4 SALM 72 38.5308 6.6310e−10 9.5342e−07 75.51

SSALM 69 29.0941 9.3350e−10 3.5384e−09

3000 10 0.5 SALM 79 83.3712 9.9293e−10 1.2756e−05 76.68

SSALM 78 63.9294 6.5972e−10 2.8985e−09

3000 10 0.4 SALM 77 80.7144 8.9678e−10 2.0862e−07 83.38

SSALM 78 67.2993 9.9493e−10 7.3612e−09

3000 10 0.3 SALM 79 118.3675 9.8435e−10 9.6348e−05 81.24

SSALM 80 96.1642 7.0585e−10 1.4254e−06

4000 20 0.6 SALM 73 152.4618 8.2869e−10 1.7109e−06 75.89

SSALM 72 115.7083 8.2721e−10 2.4255e−09

4000 20 0.5 SALM 72 166.5827 9.3233e−10 1.0321e−07 74.92

SSALM 72 124.8054 7.5040e−10 2.4066e−09

4000 20 0.4 SALM 75 186.7383 9.0624e−10 7.5345e−07 73.03

SSALM 74 136.3765 8.7658e−10 1.0216e−07
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5000 20 0.5 SALM 75 232.0879 9.8661e−10 5.7423e−08 80.86

SSALM 75 187.6559 9.6715e−10 2.2527e−08

5000 20 0.4 SALM 76 250.9495 8.5572e−10 1.1830e−06 83.20

SSALM 77 208.7798 9.7333e−10 7.8349e−07

5000 20 0.3 SALM 76 273.7735 9.4519e−10 6.4327e−06 86.76

SSALM 80 237.5358 5.0062e−10 8.2082e−06

8000 25 0.5 SALM 80 575.2382 9.1308e−10 5.0447e−05 82.81

SSALM 81 476.3530 7.4764e−10 4.6774e−08

8000 25 0.4 SALM 80 512.3396 9.7395e−10 6.3150e−06 97.00

SSALM 81 496.9932 7.2501e−10 9.3571e−09

8000 25 0.3 SALM 83 579.2973 7.1372e−10 1.3349e−06 90.08

SSALM 80 521.8350 9.4433e−10 6.5484e−09

CONCLUDING REMARKS
As is known to all, matrix completion usually means to reconstruct a matrix 
from a subset of the items of a matrix by taking advantage of low-rank 
structure matrix interdependencies between the entries. It is well known 
but NP-hard in general. In recent years, the Toeplitz matrix completion has 
attracted widespread attention and has become one of the most important 
completion problems. In order to solve such problems, we proposed an 
accelerated technique of the SALM algorithm in this study, namely the 
SSALM algorithm, and the theory of the SSALM algorithm convergence 
is established. Theoretical analysis and numerical results have shown that 
the SSALM scheme is an effective algorithm for solving the TMC problem. 
In particular, the CPU of the SSALM algorithm is consistently reduced 
up to 30.44% in all cases. The SSALM algorithm overcomes the original 
ALM algorithm both complexity of the singular value decomposition and 
surmounts the property of the extra load of the SALM algorithm. The reason 
is that data communication congestion is far more expensive than computing 
in many computers. Therefore, the SSALM algorithm has better numerical 
behavior for solving the TMC problem than the SALM algorithm (Tables 
1–6).
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Networks. Either by design or by physical limitations, a large number of 
measurements never reach the central processing stations, making the 
task of data analytics even more problematic. In this work, we propose 
Singular Spectrum Matrix Completion (SS-MC), a novel approach for the 
simultaneous recovery of missing data and the prediction of future behavior 
in the absence of complete measurement sets. The goal is achieved via 
the solution of an efficient minimization problem which exploits the low 
rank representation of the associated trajectory matrices when expressed 
in terms of appropriately designed dictionaries obtained by leveraging the 
theory of Singular Spectrum Analysis. Experimental results in real datasets 
demonstrate that the proposed scheme is well suited for the recovery and 
prediction of multiple time series, achieving lower estimation error compared 
to state-of-the-art schemes.

Keywords: Compressed Sensing, Reconstruction Error, Singular Spectrum 
Analysis, Matrix Completion, Nuclear Norm

INTRODUCTION
The dynamic nature of Big Data, a feature termed velocity, is a critical aspect 
of massive data streams from a signal processing viewpoint [1]. Due to the 
high velocity of the input streams, measurements may be missing with a high 
probability. This phenomenon can be attributed to three factors, namely: 
(a) intentionally collecting a subset of the measurements for efficiency 
purposes; (b) unintentional subsampling due to desynchronization; and 
(c) missing measurements due to communications errors including packet 
drops, outages, and congestion. To elaborate on these factors, we consider 
data streams associated with the Internet-of-Things (IoT) paradigm and we 
focus on Wireless Sensor Networks (WSNs) since WSNs can serve as an 
enabling platform for IoT applications [2, 3]. In the context of IoT/WSNs, 
one source of missing measurements is attributed to intentional subsampling, 
a scenario where the designer/operator reduces the sampling rate of the 
sensing infrastructure in order to increase the lifetime of the network. The 
relationship between sampling rate and lifetime is governed by the limited 
energy availability that typically characterizes WSNs. While efficient 
compression and aggregation schemes can be employed to reduce power 
consumption, reducing the number of measurements is the most efficient 
approach to achieve this goal [4]. Even when a specific sampling rate is 
selected, desynchronization between nodes inevitably leads to a reduction of 
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the network-wide sampling rate, since nodes that were supposed to sample at 
the same time instance end up acquiring measurements at different instances 
[5]. This issue is also closely related to the quantization of the sampling time, 
as measurements that were collected in succession can be mapped to different 
sampling instances, introducing missing measurements for particular time 
slots. In addition to energy consumption and desynchronization, missing 
measurements can also be attributed to network outages and packet losses, 
which are frequent in WSNs deployed in harsh and cluttered environments, 
causing a large number of packets to fail in reaching their destination.

In this work, we investigate a novel paradigm in distributed data 
acquisition and centralized reconstruction and forecasting. The proposed 
sampling, reconstruction, and prediction scheme assumes that only a small 
number of randomly selected nodes acquire measurements during each 
sampling instance, while nodes that are not in the sampling group enter a 
low-power state. Because of the sampling scheme, in addition to missing 
data due to packet losses, the base station only observes a subset of the entire 
collection of measurements. To address this issue, we propose the so-called 
Singular Spectrum Matrix Completion (SS-MC) scheme, a formal approach 
for the recovery of missing values and the forecasting of future ones from 
a single or multiple time series measurements. The proposed SS-MC 
scheme builds upon the recently proposed framework of Matrix Completion 
(MC) [6, 7] for the recovery of low-rank matrices from a minimal set of 
measurements by extending the low-rank matrix recovery framework to the 
estimation of missing measurements from appropriately generated trajectory 
matrices and combines it with the Singular Spectrum Analysis framework 
for exploiting the information encoded in training data. Figure 1 presents a 
visual overview of the proposed reconstruction scheme, where incomplete 
trajectory matrices are recovered, providing accurate estimations of past and 
future measurements. In short, the key novelties of this work include the 
following:

• A novel efficient paradigm for estimating missing measurements 
which extents the recently developed framework of low-rank 
matrix recovery by exploiting inherent correlations without the 
need for explicit models.
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Figure 1: Overview of the proposed sampling, recovery, and prediction 
scheme. On the left, the three images correspond to the spatial field at three dif-
ferent time instances, where the star symbols indicate the sensing nodes. During 
each sampling instance, red stars indicate sampling sensors while black stars 
indicate non-sampling sensors. The figure in the center depicts the incomplete 
measurement matrix where rows correspond to measurements from a specific 
sensor and columns to different sampling instances. The red square over the 
right part of the matrix highlights that in addition to missing value estimation, 
our system can generate a number of instances (columns) corresponding to 
future predictions. Individual sensor measurements are transformed to trajectory 
matrices that are introduced to the proposed SS-MC framework. The SS-MC 
algorithm produces completed trajectory matrices that can be joined to generate 
a fully completed (past and future) measurement matrix.

• The proposed SS-MC scheme is an integrated approach for 
accurately predicting future values even when only a limited 
number of past measurements is available. This is radical 
departure from traditional time series forecasting schemes which 
assume the full availability of historical data.

• The proposed scheme can naturally handle a single or multiple 
time series sources extending traditional estimation approaches 
that operate strictly on either single or multi-source data.

• The performance of the proposed method against state-of-the-
art techniques is evaluated on real data acquired by a distributed 
sensor network, which serves as an illustrative example of a Big 
Data application.

The rest of the paper is organized as follows: Section 2 presents an 
overview of state-of-the-art methods for energy-efficient data collection. 
Sections 3 and 4 provide the description of the two theoretical models we 
consider in this work, namely time series modeling via Singular Spectrum 
Analysis and missing measurement estimation via the Matrix Completion 
framework. Section 5 introduces SS-MC, our proposed recovery and 
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prediction method, including the mathematical formulation as well as an 
efficient optimization approach based on Augmented Lagrange Multipliers. 
The performance of the proposed scheme is experimentally validated against 
state-of-the-art methods in Section 6 and the paper concludes in Section 7.

RELATED WORK
Designing efficient techniques for minimizing the cost of continuous data 
collection by exploiting data correlations has been extensively studied 
from multiple aspects and different perspectives in the context of WSNs 
[8]. Jindal and Psounis [8] presented a method for inferring the spatial 
correlation of WSN data and for generating synthetic data using a statistical 
tool called variagriam. Estimating the sampling field at a given location, 
based on the available sensor data at other additional locations is a common 
approach for energy efficient sampling. Data imputation and interpolation 
techniques, such as Nearest Neighbors Imputationand Kriging, are two very 
efficient schemes for estimating unavailable data [9]. While in interpolation, 
one seeks the value of the field in a location where no sensors are present, 
imputation approaches try to estimate the value at the sensor location at a 
time instance where sampling did not take place. Kriging relies on the semi-
variogram, a statistical tool developed by geo-statisticians [10] in order to 
estimate the value of a field at a specific location, given prior knowledge 
about the inherent correlations of data from neighboring nodes. In k-Nearest 
Neighbors, this objective is reached by using a weighted nearest neighbor 
interpolation, where the weight corresponding to each sample is based on 
statistical information indicating the degree of spatial dependence in the 
field [11].

Another line of work for data imputation exploits probabilistic models 
for estimating the missing entries. In [12], an Expectation Maximization 
(EM) algorithm is presented which estimates the parameters of the 
probability distribution of the data by iteratively maximizing the likelihood 
of the available data as a function of these parameters. In order to increase 
the robustness of the process, the authors proposed the regularized EM 
(RegEM) where a regularization term is added during the inversion of the 
correlation matrix in order to increase the robustness of the algorithm when 
more variables are present than data records. RegEM is currently one of the 
state-of-the-art data imputation techniques, and its performance is compared 
against the proposed and other schemes in the experimental section.
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Data compression has also been extensively explored in the context of 
energy-efficient data collection in WSNs, based on the premise that data 
processing is less demanding in terms of energy consumption compared to 
transmission; hence, energy reduction can be achieved. For example, the 
recently proposed framework of Compressed Sensing (CS), a state-of-the-
art signal sampling and compression scheme, was investigated for WSN data 
acquisition and aggregation [13, 14] exploiting the sparsity of the sampled 
data when expressed in an appropriate basis [15]. Distributed compression 
schemes such as Distributed Source Coding [16] have also been proposed 
for compressing WSN measurements in densely deployed networks, since 
utilizing side information from neighboring nodes can dramatically reduce 
communication cost. The sparse characteristics of correlated datasets have 
also been recently considered for transmission of EEG signals [17, 18]. 
Although sparsity and CS-based methods can have a dramatic reduction in 
transmission power, typically in these scenarios, the signals are first fully 
sampled and then compressed.

While the CS framework requires a particular form of sampling 
(incoherent sampling), the related paradigm of low-rank matrix recovery 
(MC) assumes a random sampling of the matrix entries. Due to the intuitive 
sampling, the MC framework has been considered for a variety of signal 
recovery problems including collaborative spectrum sensing [19], sensor 
localization [20, 21], and image reconstruction problems [22, 23] among 
others. MC has been recently explored as a sampling scheme for WSNs 
[24, 25, 26, 27]. In [24], the authors investigated the scenario where sensors 
lie on a uniform rectangular grid and random sub-sampling is taking place 
by each sensor. Our work bares some similarities with this line of work; 
however, we do not pose specific deployment constraints and we allow the 
sensors to occupy any location in the sensed region. Furthermore, our work 
differs significantly in the exploitation of prior knowledge in the form of a 
dictionary, which is utilized during the reconstruction stage. The utilization 
of the singular spectrum dictionary allows for the incorporation of prior 
knowledge regarding the data generation process which can significantly 
improve the reconstruction performance [25]. Furthermore, the proposed 
scheme is able to predict future measurements in addition to estimating 
missing past ones.

Low-rank recovery was also recently considered in [28] where the 
authors employ MC for the recovery of undersampled correlated EEG 
signals. Our work in this paper investigates different extensions of MC-
based recovery by considering trajectory matrices and singular spectrum 
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dictionaries. We develop a generative model where the sampled data can be 
jointly represented as a low-rank linear combination of dictionary elements, 
spanning the subspace where data is lying. A similar situation was recently 
explored, leading to the low rank representations (LRR) framework [29] 
where the objective is to identify a low rank matrix which can accurately 
represent the source data. LRR has been considered for subspace clustering 
problems [30]; however, only fully populated matrices were considered.

In the context of Big Data, matrix and tensor data recovery via an online 
rank minimization process [31] was recently proposed for scalable imputation 
of missing data. This was achieved by low-dimensional subspace tracking 
through the minimization of a weighted least squares regression, regularized 
with a nuclear norm. While this work bares resemblance to our work, our 
generative model does not require a fixed bilinear factorization due to a 
pre-specified rank, while it exploits the subspace identified by the SSA for 
simultaneous missing past measurement imputation and future predictions.

ANALYSIS OF TIME SERIES DATA
Singular Spectrum Analysis (SSA) is a model-free method for time series 
analysis and forecasting which has been widely exploited in the analysis of 
environmental, economical, and computer network data [32, 33]. The basic 
assumption underlying SSA is that one can approximate a time series  
of length K from L lagged samples, by considering the spectral analysis 
of specialized matrices, called trajectory matrices. Embedding at sampling 
instance T, the first step of SSA, involves the process of generating a trajectory 
matrix   of lag L measurement vectors, 
where each vector encodes the measurements 
corresponding to a sampling window of length K for sensor i. The length 
K of the time window and the lag L are two critical parameters encoding 
important aspects of the underlying data.

In SSA, once the trajectory matrix of the time series has been generated, 
the subsequent step involves the spectral analysis of the lag-covariance 
matrix. Formally, given the matrix M i , the lag-covariance matrix defined 
as can be used for extracting the eigenvectors of C which 
define an L-dimensional subspace where the time series  resides, while 
the associated eigenvalues encode the variance along the direction of the 
associated eigenvector. Alternatively, one can apply the SVD decomposition 
to the original trajectory matrix M i in which case the outputs are two 
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matrices containing the right and left singular vectors U and V and a diagonal 
matrix Σ containing the singular values. Given the SVD decomposition, the 
trajectory matrix M i can be expressed as the sum of rank-1 matrices given 
by , where each collection (λ j ,u j ,v j ) is called eigentriple.
Given the eigenvectors extracted via the SSA, one can project and recon-
struct the time series or perform prediction by employing two steps, eigen-
triple grouping and diagonal averaging. Eigentriple grouping aims at arrang-
ing the eigentripes in sets in order to separate additive components that are 
exactly or approximate separable, facilitating the analysis of the eigenvec-
tors. Diagonal averaging aims at translating the recovered trajectory matrix 
into a time series according to

   (1)
where m ∗[i,j]=m[i,j] for L<K and m ∗[i,j]=m[j,i] otherwise.

It is worth noting that SSA has also been considered in situations when 
a number of measurements are missing. A straightforward approach, also 
employed here, is to estimate the eigenvectors and eigenvalues using only 
the available measurements during the lag-covariance matrix generation 
[34]. SSA has also been considered when missing measurements are present 
[35, 36]; however, the proposed methods differ from our work in that 
we exploit prior knowledge in the form of a dictionary. Furthermore, the 
proposed scheme is able to perform missing value estimation, either past 
or future, while there is no constraint associated with the structure of the 
missing measurements.

In addition to the analysis of time series, SSA can also be used as a 
forecasting mechanism. In recurrent forecasting SSA, the time series of 
known measurements and unknown components is transformed to its 
Hankel form and the linear recurrent relation coefficients are utilized for 
forecasting the future values. While typical SSA considers the trajectory 
matrices associated with a single time series, the Multivariate Singular 
Spectrum Analysis (MSSA) method has been proposed for handling multiple 
time series [37, 38, 39]. In this work, we consider a simple extension of 
SSA where instead of analyzing a single trajectory matrix, we consider a 
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compound trajectory matrix generated by the concatenation of S individual 
matrices, i.e., . Introducing multiple sources 
of data can have a dramatic impact in performance as will be shown in 
the experimental results, with at most linear increase in computational 
complexity.

LOW-RANK MATRIX COMPLETION
The low-rank approximation of a given matrix is a frequent problem in 
data analysis [40]. The rank of the matrix indicates the number of linearly 
independent columns (or rows), and thus it is a indicator of the degree of 
linear correlation that exists within the data. There are multiple reasons that 
justify the need for such an analysis. For example, prior knowledge regarding 
the linear correlation of the data may suggest that the requested matrix is low 
rank. In other situations, noise in the data artificially increases the rank of 
the matrix, so reducing the rank effectively amounts to a denoising process. 
Assuming without loss of generality that S=1, given a noisy (K×L) matrix 
M, the objective of low-rank approximation is to identify a matrix X such 
that:

   (2)
where ε is the approximation error, related to the noise power. By utilizing 
the SVD decomposition M=U S V T , a low-rank approximation matrix 
X can be found by X=  is a 
thresholding operator that selects only the elements with values greater than 
τ from the diagonal matrix Sand sets the rest to zero. The effect of this 
process is that only a small number of singular values are kept for the low-
rank approximation X of M.
The rank of the matrix is a key property in the recently proposed framework 
of Matrix Completion (MC) where one tries to estimate the (K×L) entries of 
the matrix M from a smaller number of q entries, where q≪(K×L). According 
to MC, such a recovery is possible provided the matrix is characterized by 
a small rank (compared to its dimensions) and enough randomly selected 
entries of the matrix are acquired [6, 41]. More specifically, one can recover 
an accurate approximation X of the matrix M from a small number of entries 
by solving the minimization problem:
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     (3)
where PΩ is a random sampling operator which records only a small number 
of entries from the matrix M, i.e.,

     (4)
where Ω is the sampling set. In the context of WSN for example, the set Ω 
specifies the collection of sensors that are active at each specific sampling 
instance. In general, to solve the MC problem, the sampling operator P 
must satisfy the modified restricted isometry property, which is the case 
when uniform random sparse sampling is employed in both rows and col-
umns of matrix M [42]. The incoherence of sampling introduced by P with 
respect to M guarantees that recovery is possible from a limited number of 
measurements.
Although solving the above problem will generate a low-rank matrix con-
sistent with the observations, rank minimization is an NP-hard problem. 
Fortunately, a relaxation of the above problem was shown to produce very 
accurate approximations, by replacing the rank constraint by the tractable 
nuclear norm, which represents the convex envelope of the rank [6]. The 
minimization in Eq. (4) can then be reformulated as:

    (5)
where the nuclear norm is defined as , i.e., the sum of 
absolute values of the singular values. Candès and Tao showed that under 
certain conditions the nuclear norm minimization in Eq. (5) can estimate 
the same matrix as the rank minimization in Eq. (3) with high probability 
provided q≥C K 6/5 r l o g(K) randomly selected entries of the rank r matrix 
are acquired [7] (assuming K≥L).

To solve the nuclear norm minimization problem, various approaches 
have been proposed including Singular Value Thresholding [43] and 
the Augmented Lagrange Multipliers [44], among others. We review the 
technique based on the ALM due to its exceptional performance in terms of 
both processing complexity and reconstruction accuracy and since it is used 
as a basis for the extended scheme we discuss next.

To express the MC problem in Eq. (5) in the ALM form, we reformulate 
it as:
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     (6)
The additional variable E is introduced in order to encode the unknown 
values in the trajectory matrix M, by restricting the estimation error on the 
recorded values only. The optimization encoded in Eq. (6) can be expressed 
in an augmented Lagrangian form by defining the Lagrangian function:

   (7)
where Y is the Lagrange multiplier matrix associated to the first equality 
constraint and μ is the penalty parameter. Minimization of the problem in 
Eq. (7) involves an iterative process, where a sequential minimization over 
all variables, i.e., X,E, and Y, takes place at each iteration. This method of 
iteratively minimizing over each variable is refereed to as the Alternating 
Directions Method of Multipliers (ADMM) [45, 46].
One of the key characteristics of MC is the minimal conditions that are 
imposed for successful recovery, namely the incoherence of sampling and 
the low rank of the recovered matrix. While a minimal set of requirements 
is beneficial in situations where limited prior information is available, 
when such information exists introducing additional constraints can lead 
to a significantly better recovery. In this section, we exploit the temporal 
dynamic that time series exhibit in order to enhance typical MC with an 
additional dictionary which encodes past behavior in a proposed SS-MC 
framework.

THE SS-MC ALGORITHM
We consider the truncated trajectory matrices M formed by concatenating 
the individual trajectory matrices according to the MSSA approach. The 
objective of this work is to consider a generative model that produces the 
time series Hankel matrices M according to the factorization M = D L where 
M may correspond to a single or multiple sources. In both cases, our key 
assumption is that given a full rank dictionary matrix D obtained through 
training data, the coefficient matrix L is approximately low rank, i.e., the 
number of significant singular vectors is much smaller than the ambient 
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dimensions of the matrix. To apply the low-rank representation scheme on 
matrices with missing data, the introduction of the random sub-sampling 
operator is necessary. Our proposed sampling scheme is a combination of 
MC and reduced rank multivariate linear regression and it seeks a low-rank 
presentation coefficient matrix L from a small number of measurements 
PΩ(M). Based on this generative model, our proposed Singular Spectrum 
Matrix Completion (SS-MC) formulation is given by:

   (8)
where D is a dictionary of elementary atoms that span a low-rank data-
induced subspace. Figure 2 presents an example of a real trajectory matrix 
(left), the representations coefficients L (center), and the singular value 
distribution of the coefficients (right).

Figure 2: Example of the generative process of a real trajectory matrix from the 
Intel-Berkeley dataset. The matrix on the left is the Hankel matrix generated by 
a sensor for a given set of window and lag values. By utilizing the SSA-based 
dictionary, the mapping of the Hankel matrix results in an extremely low rank 
representation matrix shown in the middle, where a small number of singular 
values capture most of the signal energy, as shown in the right figure.

Efficient Optimization
Similarly to MC optimization, the problem in Eq. (8) is NP-hard due to 
the rank in the objective function and thus it cannot be solved efficiently 
for reasonably sized data. A remedy to this problem is to replace the rank 
constraint with the nuclear norm constraint, thus solving:

   (9)
A key novelty of our work is that in addition to the low rank of the matrix, 
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during the recovery, we employ a dictionary for modeling the generative 
process that produces the sensed data, as it can be seen in Eq. (9).
The problem in Eq. (9) can be transformed to a semidefinite programming 
problem and solved using interior point methods [47, 48]. However, utilizing 
such off-the-shelf solvers introduces a very high algorithmic complexity 
which renders them impractical, even for moderately sized scenarios. 
Motivated by the requirements for a data collection mechanism that is both 
accurate and efficient, we reformulate the SS-MC problem in an Augmented 
Lagrangian form. By utilizing the ALM formulation for SS-MC, we can 
achieve efficient recovery, tailored to the specific properties of the problem. 
Introducing the intermediate dummy variables Z and E, Eq. (9) can be 
written as:

      (10)
where L , Z, and E are the minimization variables. The extra variable Z is 
introduced in order to decouple the minimization variables by separating the 
L variable in the objective function with the Z variable in the first constraint. 
Similar to the ALM formulation for MC in Eq. (7), E is introduced in order 
to account for the missing entries in M. More specifically, the constraint 
on the error matrix E is applied only on the available data via the sampling 
operator PP. The ALM form of Eq. (10) is an unconstrained minimization 
given by:

   (11)
where Y 1 and Y 2 are Lagrange multiplier matrices. The solution can be 
found by iteratively minimizing Eq. (11) with respect to each of the vari-
ables via an ADMM approach. Formally, the minimization problem with 
respect to L is given by:
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    (12)
The sub-problem in Eq. (12) is a nuclear norm minimization problem and 
can be solved very efficiently by the Singular Value Thresholding operator 
[43]. The minimization with respect to Z is given by:

    (13)
Calculating the gradient of the expression in Eq. (13), we obtain:

   (14)
which after setting it equal to zero provides the update equation for Eq. (14) 
given by:

    (15)
Furthermore, the augmented Lagrangian in Eq. (11) has to be minimized 
with respect to E, i.e.,

    (16)
which provides the update equation for Eq. (16) that is given by:

     (17)
where the notation  is used to restrict the error estimation only on the 
measurements that do not belong to the sampling set. Last, we perform 
updates on the two Lagrange multipliers Y 1 and Y 2. The steps at each itera-
tion of the optimization are shown in Algorithm 1.

Algorithm 1: Singular Spectrum Matrix Completion (SS-MC).
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Due to its numerous applications, the ADMM method has been 
extensively studied in the literature for the case of two variables [45, 46] 
where it has been shown that under mild conditions regarding the convexity 
of the cost functions, the two-variables ADMM converges at a rate O(1/r) 
[49]. Although extending the convergence properties to a larger number of 
variables has not been shown in general, recently the convergence properties 
of ADMM for a sum of two or more non-smooth convex separable functions 
subject to linear constraints were examined [50].

The proposed minimization scheme in Eq. (11) satisfies a large number 
of the constraints suggested in [50] such as the convexity of each sub-
problem, the strict convexity and continuous differentiability of the nuclear 
norm, the full rank of the dictionary, and the size of the step for the dual 
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update α, while empirical evidence suggests that the closed form solution of 
each sub-problem allows the SS-MC algorithm to converge to an accurate 
solution in a small number of iterations.

Singular Spectrum Dictionary
In this work, we investigate the utilization of prior knowledge for the 
efficient reconstruction of severely under-sampled time series data. To 
model the data, we follow a generative scheme where the full collection of 
acquired measurements is encoded in the trajectory matrix M∈ . M is 
assumed to be generated from a combination of a dictionary D∈  and 
a coefficient matrix L∈ according to M = D L, where we assume that 
K≤L. This particular factorization is related to SVD by M = D L = U ( S V T 

) where the orthonormal matrix D = U is a basis for the subspace associated 
with the column space of M, while L = S V T is a low-rank representation 
matrix encoding the projection of the trajectory matrix onto this subspace.

This particular choice of dictionary D implies a specific relationship 
between the spectral characteristics of the trajectory matrix M and the low-
rank representation matrix L. To understand this relationship, we consider 
the spectral decomposition of each individual matrix in the form D=U G 1 
R −1 and L=R G 2 V ∗ The matrices U ,R and V are unitary while G 1 and 
G 2 are diagonal matrices containing the singular values of the D and L, 
respectively. The particular factorization permits us to utilize the product 
SVD [51, 52] and expresses the singular value decomposition of the product 
according to the expression D L=U(G 1 G 2)V ∗, where the singular values 
of the matrix product are given by the product of the singular values of the 
corresponding matrices.

In this work, we consider orthogonal dictionaries, as opposed to 
overcomplete ones. Orthogonality of the dictionary guarantees that the 
vectors encoded in the dictionary span the low-dimensional subspace and 
therefore the representation of the measurements is possible. Furthermore, 
an orthonormal dictionary, such as the one considered in this work, is 
characterized by G 1=I, leaving G 2 responsible for the representation. 
We target exactly G 2 in our problem formulation by seeking a low-rank 
representation matrix L.

In our experimental results, we consider sets of training data associated 
with fully sampled time series from the first days of each experiment for 
generating the dictionaries. The subspace identified by the fully sampled data 
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is used for the subsequent recovery of past measurements and prediction of 
future ones. Alternatively, the dictionary could be updated during the course 
of the SS-MC application via an incremental subspace learning method [53, 
54]. We opted out from an incremental subspace learning since although it 
can potentially lead to better estimation, it is also associated with increased 
computational load and the higher probability of estimation drift and lower 
performance.

Networking aspects of SS-MC
In the context of IoT applications utilizing WSN infrastructures, 
communication can take place among nodes, but most typically between 
the nodes and the base station where data analytics are extracted. This 
communication can be supported (a) by a direct wireless link between the 
nodes and the sink/base station; (b) via appropriate paths that allow multi-
hop communications; or (c) via more powerful cluster heads what forward 
the measurements to the base station.

For the multi-hop scheme, equal weight of each sample (democratic 
sampling) implies that no complicated processing needs to take place by 
the resource limited forwarding nodes. Furthermore, for high-performance 
WSNs, where point-to-point communication between nodes is available and 
processing capabilities are sufficient, nodes could perform reconstruction of 
a local neighborhood thus offering advantages similar to other distributed 
estimation schemes [55].

From a practical point-of-view, we argue that recovery and prediction of 
measurements from low sampling rates offer numerous advantages. First, it 
saves energy by reducing the number of samples that have to be acquired, 
processed, and communicated thus increasing the lifetime of the network. 
The proposed sampling scheme also reduces the frequency of sensor re-
calibrations for sensors that perform complex signal acquisition, including 
chemical and biological sampling. As a result, higher quality measurements 
and therefore more reliable estimation of the field samples can be achieved. 
Furthermore, the method increases robustness to communication errors 
by estimating measurements included in lost or dropped packets, without 
the need for retransmission. Last, our scheme does not require explicit 
knowledge of node locations for the estimation of the missing measurements, 
since the incomplete measurement matrices and the corresponding trajectory 
matrices are indexed by the sensor id, thus allowing greater flexibility during 
deployment.
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EXPERIMENTAL RESULTS
To evaluate the performance of the proposed low-rank reconstruction and 
prediction scheme, we consider real data from the Intel Berkeley Research 
Lab dataset1 [56] and the SensorScope Grand St-Bernard dataset2 [57]. The 
former dataset contains the recordings of 54 multimodal sensors located 
in an indoor environment over a 1-month period, while the latter contains 
multimodal measurements from 23 stations deployed at the Grand-St-
Bernard pass between Switzerland and Italy.

In both cases, we analyze temperature measurements as an exemplary 
modality, while we exclude failed sensors from the recovery process. 
Unless stated otherwise, in all cases, we fix the SSA parameters, K=50 and 
L=100, and we train using a single day’s worth of data while testing on the 
five consecutive ones. The threshold τ for the singular value thresholding 
operator is set to preserve 90 % of the signals’ energy, while the parameter μ 
was set to 0.01 through a validation process, although the specific value had 
a minimal impact in performance.

To evaluate the performance, we consider three state-of-the-art methods 
and we compare them to the proposed SS-MC. More specifically, we 
evaluate the performance of the ADMM version of MC [44], the Knn-
imputation [58], and the RegEM [12]. The reconstruction error is measured 
by the normalized mean squared error between the true M and the estimated 

X trajectory matrices given by .

Recovery with Respect to Measurement Availability
The objective of this subsection is to present the recovery capabilities of the 
proposed SS-MC and state-of-the-art methods with respect to the availability 
of measurements, i.e., the sampling rate.
The two plots shown in Fig. 3 present the reconstruction error for the Intel-
Berkeley data at 20 % (top) and 50 % (bottom) sampling rates, averaged 
over all sensing nodes. Naturally, one can see that increasing the sampling 
rate has a positive effect on all methods. Nevertheless, we also observe 
that not all sampling instances are equally difficult to estimate and that the 
reconstruction error exhibits a periodic trend across sampling instances. 
These variations are attributed to the significant changes in the environmental 
conditions due to the transition from nighttime to daytime.
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Figure 3: Reconstruction error at 20 % (top) and 50 % (bottom) sampling rates 
for the Intel-Berkeley dataset.

Comparing the four methods, we observe that under all measurement 
availability scenarios, the proposed SS-MC scheme typically achieves the 
lowest reconstruction error and exhibits the most stable performance. The 
performance of SS-MC is closely followed, especially in low sampling 
rates, by RegEM which also exhibits a very stable performance, while on 
the other hand, MC and Knn-impute are more sensitive to the sampling 
instance, exhibiting a more erratic behavior.

To further illuminate the behavior of each method, we consider a large 
set of sampling instances and present the averaged recovery performance 
as a function of the sampling rate in Fig. 4 for Intel-Berkeley (top) and 
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SensorScope (bottom) data. Regarding the performance on the Intel-
Berkeley dataset, we observe that the proposed SS-MC and RegEM achieve 
comparable performance, much better than typical MC and Knn-impute. 
An interesting observation is that while SS-MC, RegEM, and Knn-impute 
all exhibit a monotonic reduction in reconstruction error at higher sampling 
rates, MC reaches a performance plateau around a 25 % sampling rate. This 
phenomenon is attributed to the rank constrains of MC leading to a low rank 
estimation which causes an incorrect estimation of missing measurements.

Figure 4: Average reconstruction error for the Intel-Berkeley (top) and the Sen-
sorScope (bottom) platforms.

Regarding the performance on the SensorScope data, one can observe 
that in this case RegEM achieves a significantly better performance compared 
to the other methods, followed by MC at low sampling rates and SS-MC at 
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large ones. Similar to the behavior observed for the Intel-Berkeley data, 
MC again reaches a performance plateau while the other methods achieve 
a monotonically reducing reconstruction error. Note that although RegEM 
achieves the lowest reconstruction error, it is also the most computationally 
demanding of the four methods.

Recovery from Multiple Sources
In this subsection, we investigate the recovery capabilities of the SS-MC and 
state-of-the-art method as a function of the number of sensors/sources that 
are simultaneously considered. Figure 5 presents the reconstruction error for 
the multiple source/sensor cases, where 2 (top), and 5 (bottom) sources from 
the Intel-Berkeley dataset are simultaneously considered. Comparing these 
results with the results shown Fig. 4 (top), one can observe that increasing 
the number of sources that a method considers simultaneously can have a 
different effect for each method, although no method appears to be able to 
exploit the additional sources of data.

Figure 5: Reconstruction error using 2 (top), and 5 (bottom) sources of the 
Intel-Berkeley dataset.
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State-of-the-art methods, like Knn-impute and RegEM, not only appear 
to be unable to exploit the additional sources of data, but introducing the 
additional sources leads to an increase in reconstruction error for a given 
sampling rate. On the other hand, typical MC is unaffected by the different 
scenarios, exhibiting the same plateau in behavior regardless of the number 
of sources under consideration. Unlike the other methods, the proposed 
SS-MC is able to better handle the additional data. Although applying SS-
MC with multiple sources of data does not lead to better performance, the 
proposed method is better in handling such complex data streams, offering 
the lowest reconstruction error among all methods considered.

Figure 6: Reconstruction error using 2 (top) and 5 (bottom) sources of the Sen-
sorScope dataset.
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The situation differs however for the SensorScope data shown in Fig. 
6 for 2 (top) and 5 (bottom) sources, respectively. In this case, Knn-input 
appears to suffer a significant reduction in reconstruction quality due to 
the additional data sources, leading to a notable increase in reconstruction 
error compared to the single stream case. RegEM and typical MC also 
do not appear to benefit from the additional sources. In contrast to these 
methods, the proposed SS-MC achieves a more robust behavior leading 
to a significantly better behavior compared to the single source case. The 
improvement is more dramatic when moving from the single to two sources; 
however, introducing additional sources has a positive effect on recovery 
performance.

In general, for the state-of-the-art methods we consider, experimental 
results suggest that introducing multiple correlated sources does not 
necessarily aid in the recovery performance, while under different scenarios, 
the aggregation of multiple sources may also introduce prohibitively large 
communication overheads. On the other hand, the proposed SS-MC can 
smoothly transition from the single sensor/source case to multiple sensors/
sources achieving compelling gains in certain scenarios.

Joint Recovery and Prediction
In this set of results, we consider the more challenging scenario where the 
method must simultaneously recover and predict future measurements. The 
results for the SensorScope data shown in Fig. 7 demonstrate the competitive 
performance of the proposed SS-MC method compared to state-of-the-art 
methods for both 10 (top) and 20 (bottom) look-ahead steps. The benefits of 
our method are more clearly shown for the short-term prediction (top) while 
for the long term, we observe a similar behavior for all methods. Naturally, 
the performance is significantly better for the short term compared to the 
long term; however, we observe that both the MC and the SS-MC approaches 
achieve a very stable performance in both cases, suggesting that the low-
rank regularization can provide strong benefits in this challenging scenario.
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Figure 7: Joint recovery and prediction for 10 (top) and 20 (bottom) look-ahead 
steps on SensorScope data.

Figure 8 illustrates the recovery/estimation performance on the Intel-
Berkeley data where we observe that the proposed SS-MC method achieves 
a dramatic reduction in reconstruction error, clearly surpassing the other 
methods in both short-term and long-term predictions. Similar to the 
SensorScope data, both MC and SS-MC achieve a very stable performance 
while SS-MC is much less affected by the increase in prediction horizon. 
Considering the results for both cases, we can conclude that SS-MC is an 
excellent choice for the challenging problem, achieving a very low prediction 
error even when only a small subset of measurements is available.
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Figure 8: Joint recovery and prediction for 10 (top) and 20 (bottom) look-ahead 
steps on Intel-Berkeley data.

Performance with Respect to Computational Resources
The results reported in the previous subsections assume that a single day’s 
worth of data is utilized during the training phase where the dictionary D is 
obtained. Here, we investigate the recovery capability of the proposed SS-
MC method as a function of the amount of training data, i.e., the number of 
days used for training.

Figure 9 presents the reconstruction error for the Intel-Berkeley data 
using 1, 2, and 3 days of training data. The results clearly indicate that 
introducing more data from training has limited impact on the reconstruction 
performance. When one considers that the process of collecting fully 
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sampled data can have a dramatic impact on the lifetime of the network, 
we can conclude that given a limited set of representative data suffices for 
SS-MC.

Figure 9: Reconstruction error for different training set sizes on the Intel-
Berkeley dataset.

This aspect is critical since we assume that the training data is fully 
populated without any missing measurements. To achieve the acquisition of 
such training data requires extra care in terms of communication robustness 
as well as a larger energy consumption due to full sampling.

In addition to the amount of the training data that is required for a given 
performance, we also investigated the SS-MC recovery as a function of the 
number of iterations and the sampling rate. The results shown in Fig. 10 
demonstrate that the quality of the recovery is affected by the availability 
of the measurements where for larger sampling rates, a smaller number of 
iterations is required. Despite this relationship, however, we also observe 
that there is a clear limit on the performance gain above 50 iterations. This 
is the number of iterations we have assumed in our experiments unless the 
approximation error drops below 10−4.
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Figure 10: Reconstruction error as a function of sampling rate and iteration 
number.

The requirements of Big Data processing mandate algorithm that can 
achieve high quality performance with minimal processing requirements. 
To better illustrate the computational requirements for each method, Table 
1 presents the processing time (in seconds) for the proposed (SS-MC) and 
the three state-of-the-art methods under different sampling rates when 
considering a single (1) or multiple (5) sources.

Table 1: Computational time for different number of sensors and measurement 
availability

 25 % 50 % 75 %
 1 5 1 5 1 5
SS-MC 0.188 0.950 0.137 0.719 0.087 0.358
MC 0.101 0.140 0.101 0.146 0.103 0.152
RegEM 0.092 0.137 0.098 0.407 0.154 1.194
Knn 0.153 0.866 0.102 0.632 0.051 0.275

Table 1 clearly demonstrates the relationships of each method with respect 
to the sampling rate where we observe that for the proposed SS-MC method, 
increasing the sampling rate leads to lower processing time for both the 
single and the multiple source cases. On the other hand, MC requires a fixed 
processing time independently of the number of available measurements, 
while the effect of the number of sources is minimal. RegEM’s processing 
time is increasing as the number of available measurements increase due to 
the inner mechanics of the algorithm which require multiple regression to 
take place. Last, the Knn-impute method exhibits a decrease in processing 



Fundamentals of Matrix Computations274

time with respect to the measurement availability and an increase associated 
with multiple sources. Overall, the proposed SS-MC exhibits a stable and 
predicable performance, achieving a very good trade-off between processing 
requirements and reconstruction quality.

CONCLUSIONS
Acquiring, transmitting, and processing Big Data presents numerous 
challenges due to the complexity and volume issues among others. The 
situation becomes even more complicated when one considers data sources 
associated with the Internet-of-Things paradigm, where component and 
architecture limitations, including processing capabilities, energy availability, 
and communication failures, must also be considered. In this work, we 
proposed a distributed sampling-centralized recovery scheme where due 
to various design choices and physical constraints, only a small subset of 
the entire set of measurements is collected during each sampling instance. 
The proposed SS-MC approach exploits the low-rank representation of 
appropriately generated trajectory matrices, when expressed in the subspace 
associated with dictionaries learned using training data, in order to recover 
missing measurements as well as predict future values. The recovery and 
prediction procedures are implemented via an efficient optimization based 
on the augmented Lagrange multipliers method. Experimental results on 
real data from the Intel-Berkeley and the SensorScope datasets validate the 
merits of the proposed scheme compared to state-of-the-art methods like 
typical matrix completion, RegEM, and Knn-imputation, both in terms 
of pure reconstruction as well as in the demanding case of simultaneous 
recovery and prediction.

Endnotes
1 http://db.csail.mit.edu/labdata/labdata.html.
2 http://lcav.epfl.ch/page-86035-en.html.
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ABSTRACT
In this work, an effective numerical method is developed to solve a class 
of singular boundary value problems arising in various physical models 
by using the improved differential transform method (IDTM). The IDTM 
applies the Adomian polynomials to handle the differential transforms of the 
nonlinearities arising in the given differential equation. The relation between 
the Adomian polynomials of those nonlinear functions and the coefficients 
of unknown truncated series solution is given by a simple formula, through 
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which one can easily deduce the approximate solution which takes the form 
of a convergent series. An upper bound for the estimation of approximate 
error is presented. Several physical problems are discussed as illustrative 
examples to testify the validity and applicability of the proposed method. 
Comparisons are made between the present method and the other existing 
methods.

Keywords: Singular boundary value problem, Differential transform meth-
od, Adomian polynomials, Improved differential transform method, Ap-
proximate series solutions

BACKGROUND
Singular boundary value problems (SBVPs) is an important class of 
boundary value problems, and arises frequently in the modeling of many 
actual problems related to physics and engineering areas such as in the study 
of electro hydrodynamics, theory of thermal explosions, boundary layer 
theory, the study of astrophysics, three layer beam, electromagnetic waves 
or gravity driven flows, inelastic flows, the theory of elastic stability and so 
on. In general, SBVPs is difficult to solve analytically. Therefore, various 
numerical techniques have been proposed to treat it by many researchers. 
However, the solution of SBVPs is numerically challenging due to the 
singularity behavior at the origin.
In this work, we are interested again in the following SBVPs arising fre-
quently in applied science and engineering:

   (1)
subject to the boundary value conditions

        (2)
and

      (3)
where a, b and c are any finite real constants. If α=1, (1) becomes a cylindri-
cal problem, and it becomes a spherical problem when α=2. It is assumed 

that f(x, u) is continuous,  exists and is continuous and  for any 
0<x≤1 such that Eq. (1) has a unique solution (Russell and Shampine 1975).
The SBVPs (1–3) with different αα arise in the study of various scientific 
problems for certain linear or nonlinear functions f(x, u). The common cases 
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related to the actual problems are summarized as follows. The first case for 
α=2 and

      (4)
emerges from the modeling of steady state oxygen diffusion in a spherical 
cell with Michaelis–Menten uptake kinetics (Lin 1976; McElwain 1978). In 
this case, u(x) represents the oxygen tension; δ and μ are positive constants 
involving the reaction rate and the Michaelis constant. Hiltmann and Lory 
(1983) proposed the existence and uniqueness of the solution for b=1 and 
a=c. Analytical bounding functions were given in Anderson and Arthurs 
(1985). The numerical methods to solve the SBVPs for this case have at-
tracted a reasonable amount of research works, such as the finite difference 
method (FDM) (Pandey 1997), the cubic spline method (CSM) (Rashidinia 
et al. 2007; Ravi and Bhattacharya 2006), the Sinc-Galerkin method (SGM) 
(Babolian et al. 2015), the Adomian decomposition method (ADM) and 
its modified methods (Khuri and Sayfy 2010; Wazwaz et al. 2013; Singh 
and Kumar 2014), the variational iteration method (VIM) (Ravi and Aruna 
2010; Wazwaz 2011), the series expansion technique (SEM) (Turkyilmazo-
glu 2013) and the B-spline method (BSM) (Çağlar et al. 2009).
The second case arises in the study of the distribution of heat sources in 
the human head (Flesch 1975; Gray 1980; Duggan and Goodman 1986), in 
which α=2 and

   (5)
In Duggan and Goodman (1986), point-wise bounds and uniqueness results 
were presented for the SBVPs with the nonlinear function f(x, u) of the 
forms given by (4) and (5). Quite a little amount of works by using different 
approaches, including the FDM (Pandey 1997), the CSM (Rashidinia et al. 
2007; Ravi and Bhattacharya 2006) and the SGM (Babolian et al. 2015), 
have been proposed to obtain the approximate solutions of this case.
The third important case of physical significance is when α=1,2 and

     (6)
which arises in studying the theory of thermal explosions (Khuri and Sayfy 
2010; Kumar and Singh 2010; Chang 2014) and the electric double layer in 
a salt-free solution (Chang 2012). A variety of numerical methods have been 
applied to handle such SBVPs, for example, the fourth order finite difference 
method (FFDM) (Chawla et al. 1988), the modified Adomian decomposi-
tion method (Khuri and Sayfy 2010; Singh and Kumar 2014; Kumar and 
Singh 2010), the Taylor series method (TSM) (Chang 2014) and the BSM 
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(Çağlar et al. 2009).
Besides, Chandrasekhar (1939) derived another case for α=2,b=0 and

   (7)
which γ is a physical constant. This case is in connection with the equilibrium 
of thermal gas thermal (Ames 1968). The numerical solution of this kind 
of equation for γ=5 was considered by using various methods, such as the 
FFDM (Chawla et al. 1988), the VIM (Ravi and Aruna 2010), the SEM 
(Turkyilmazoglu 2013) and the modified Adomian decomposition method 
(Singh and Kumar 2014).
All the aforementioned methods can yield a satisfied result. However, each 
of these methods has its own weaknesses. For example, the VIM (Ravi and 
Aruna 2010; Wazwaz 2011) has an inherent inaccuracy in identifying the 
Lagrange multiplier, and fails to solve the equation when the nonlinear 
function f(x, u) is of the forms (5) and (6). Those methods such as the FDM 
(Pandey 1997; Chawla et al. 1988), the SEM (Turkyilmazoglu 2013), the 
SGM (Babolian et al. 2015) and the spline method (Rashidinia et al. 2007; 
Ravi and Bhattacharya 2006; Çağlar et al. 2009) require a tedious process 
and huge volume of computations in dealing with the linearization or 
discretization of variables. The ADM (Wazwaz et al. 2013) needs to obtain 
the corresponding Volterra integral form of the given equation, via which 
one can overcome the difficulty of singular behavior at x=0. The modified 
ADM (Khuri and Sayfy 2010; Kumar and Singh 2010) needs to introduce 
a twofold indefinite integral operator to give better and accurate results; 
moreover, the success of method in (Singh and Kumar 2014) relies on 
constructing Green’s function before establishing the recursive relation for 
applying the ADM to derive the solution components. All those manners are 
at the expense of computation budgets. Besides, none of above methods is 
applied to handle the equations with all forms of nonlinearities (4–7).

In recent years, a lot of attentions have been devoted to the applications 
of differential transform method (DTM) and its modifications. The DTM 
proposed by Pukhov (1980, 1982, 1986) at the beginning of 1980s. However, 
his work passed unnoticed. In 1986, Zhou (1986) reintroduced the DTM to 
solve the linear and nonlinear equations in electrical circuit problems. The 
DTM is a semi-numerical-analytic method that generates a Taylor series 
solution in the different manner. In the past forty years, the DTM has been 
successfully applied to solve a wide variety of functional equations; see 
Xie et al. (2016) and the references therein. Although being powerful, there 
still exist some difficulties in solving various of equations by the classical 
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DTM. Some researchers have devoted to deal with these obstacles so as 
to extend the applications of the DTM. For example, in view of the DTM 
numerical solution cannot exhibit the real behaviors of the problem, Odibat 
et al. (2010) proposed a multi-step DTM to accelerate the convergence of 
the series solution over a large region and applied successfully to handle 
the Lotka-Volterra, Chen and Lorenz systems. In Gökdoğan et al. (2012), 
Momani and Ertürk (2008) suggested an alternative scheme to overcome the 
difficulty of capturing the periodic behavior of the solution by combining 
the DTM, Laplace transform and Padé approximants. Another difficulty 
is to compute the differential transforms of the nonlinear components 
in a simple and effective way. By using the traditional approach of the 
DTM, the computational difficulties will inevitably arise in determining 
the transformed function of an infinity series. Compared to the traditional 
method, Chang and Chang (2008) proposed a relatively effective algorithm 
for calculating the differential transform through a derived recursive relation. 
Yet, by using their method, it is inevitable to increase the computational 
budget, especially in dealing with those differential equations which have 
two or more nonlinear terms being investigated. Recently, the authors Elsaid 
(2012), Fatoorehchi and Abolghasemi (2013) disclosed the relation between 
the Adomian polynomials and the differential transform of nonlinearities, 
and developed an inspiring approach to handle the nonlinear functions in the 
given functional equation. Meanwhile, the problem of tedious calculations 
in dealing with nonlinear problems by using the ADM has also been 
improved considerably by Duan (2010a, b, 2011). All of these effective 
works make it possible to broaden the applicability and popularity of the 
DTM considerably.

The aim of this work is to develop an efficient approach to solve the 
SBVPs (1–3) with those nonlinear terms (4–7). This scheme is mainly 
based on the improved differential transform method (IDTM), which is the 
improved version of the classical DTM by using the Adomian polynomials 
to handle the differential transforms of those nonlinear functions (4–7). No 
specific technique is required in dealing with the singular behavior at the 
origin. Meanwhile, unlike some existing approaches, the proposed method 
tackles the problem in a straightforward manner without any discretization, 
linearization or perturbation. The numerical solution obtained by the 
proposed method takes the form of a convergent series with those easily 
computable coefficients through the Adomian polynomials of those nonlinear 
functions as the forms of (4–7). The rest of the paper is organized as follows. 
In the next section, the concepts of DTM and Adomian polynomials are 
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introduced. Algorithm for solving the problem (1–3) and an upper bound for 
the estimation of approximate error are presented in Sect. 3. Sect.4 shows 
some numerical examples to testify the validity and applicability of the 
proposed method. In Sect. 5, we end this paper with a brief conclusion.

ADOMIAN POLYNOMIAL AND DIFFERENTIAL 
TRANSFORM

Adomian Polynomial
In the Adomian decomposition method (ADM), a key notion is the Adomian 
polynomials, which are tailored to the particular nonlinearity to easily and 
systematically solve nonlinear differential equations. The interested readers 
are referred to Adomian (1990, 1994) for the details of the ADM.
For the applications of decomposition method, the solution of the given 
equation in a series form is usually expressed by

       (8)
and the infinite series of polynomials

    (9)
for the nonlinear term f(u), where Am is called the Adomian polynomials, and 
depends on the solution components u0,u1,…,um. The traditional algorithm 
for evaluating the Adomoan polynomials An was first provided in Adomian 
and Rach (1983) by the formula

     (10)
A large amount of works (Duan 2010b, b, 2011; Adomian and Rach 
1983; Rach 2008, 1984; Wazwaz 2000; Abbaoui et al. 1995; Abdelwahid 
2003; Azreg-AÏnou 2009) have been applied to give the more effective 
computational method for the Adomian polynomials. For fast computer 
generation, we favor Duan’s Corollary 3 algorithm (Duan 2011) among all 
of these methods, as it merely involves the analytic operations of addition 
and multiplication without the differentiation operator, which is eminently 
convenient for symbolic implementation by computer algebraic systems 
such as Maple and Mathematics. The method to generate the Adomian 
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polynomials in Duan (2011) is described as follows:

   (11)
such that

    (12)
It is worth mentioning that Duan’s algorithm involving (11) and (12) has 
been testified to be one of the fastest subroutines on record (Duan 2011), 
including the fast generation method given by Adomian and Rach (1983).
Differential transform
The differential transform of the kthkth differentiable function u(x) at x=0 
is defined by

     (13)
and the differential inverse transform of U(k) is described as

     (14)
where u(x) is the original function and U(k) is the transformed function.
For the practical applications, the function u(x) is expressed by a truncated 
series and Eq. (14) can be written as

    (15)
It is not difficult to deduce the transformed functions of the fundamental 
operations listed in Table 1.

Table 1: The fundamental operations of the DTM
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Note that α,β are constants and m is a nonnegative integer

METHOD OF SOLUTION OF SBVPS (1–3)
We want to find the approximate solution of the problem (1–3) with the 
type:

     (16)
where the coefficients U(0),U(1),…,U(N) are determined using the follow-
ing steps:

•	 According to the definition (13) of the differential transform and the 
boundary value condition (2), we have

      (17)
Suppose that

      (18)
where β is a real parameter to be determined.

•	 Multiplying both sides of Eq. (1) by variable x, we have

   (19)
Applying the differential transform (13) to Eq. (19), we get the following 
recurrence relation:

 (20)
where F(k) is the differential transform of the nonlinear function f(x,u)=f(u).

•	 Using Lemma 3.1 in Fatoorehchi and Abolghasemi (2013), we com-
pute F(k) through the Adomian polynomials Ak:

   (21)
Remark 1
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Lemma 3.1 in Fatoorehchi and Abolghasemi (2013) indicates that the dif-
ferential transforms and the Adomian polynomials of nonlinear functions 
have the same mathematical structure such that we can derive the differen-
tial transforms of any nonlinear functions by merely calculating the relevant 
Adomian polynomials but with constants instead of variable components.
Remark 2
As mentioned before, we use Duan’s Corollary 3 algorithm (Duan 2011) 
(11–12) to generate the Adomian polynomials.

•	 Substituting (21) into (20), and then combining the relations (16–
18), we obtain the truncated series solution of the problem (1–3) as 
follows:

    (22)
•	 Imposing the truncated series solution (22) on the boundary condi-

tion (3), we obtain a nonlinear algebraic equation with unknown 
parameter β:

       (23)
Solving Eq. (23), and substituting the value of β into (22), we obtain the 
final result.
An upper bound for the estimation of approximate error is presented in the 
following lemma.
Lemma 1
Suppose that  [0,1] is the exact solution of the problem (1–3), 

 is the truncated series solution with degree N, 
it holds that

   (24)

where .
Proof
Obviously, we have

   (25)

where  is the Taylor polynomial of the unknown 
function u(x) at x=0.
Since  [0,1], it follows that
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where RN(x) is the remainder of Taylor polynomial . Therefore

   (26)
Let

where

We then have

   (27)
Combining the relations (25–27), it follows that

    (28)
Thus, the proof is completed. 

NUMERICAL EXAMPLES
In this section, based on the discussion in Sect. 3, we report numerical tests 
of five classical examples discussed frequently to testify the validity and 
applicability of the proposed method. All the numerical computations were 
performed using Maple and Matlab on personal computer. For comparison, 
we computed the absolute error defined by

       (29)
and the maximal absolute error by

     (30)
where u(x) is the exact solution and uN(x) is the truncated series solution 
with degree N.
Example 1
Consider the following nonlinear SBVP in the study of isothermal gas sphere 
(Singh and Kumar 2014; Ravi and Aruna 2010; Chawla et al. 1988):

       (31)
subject to the boundary conditions
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      (32)

The exact solution of this problem is given by . It is also known 
as the Emden-Fowler equation of the first kind. In what follows, we shall 
solve it with the proposed algorithm.
Firstly, we set

The Adomian polynomials of nonlinear term  in this problem 
are computed as

Furthermore, according to the relations (20) and (21), we obtain the 
differential transforms U(k) of the unknown function u(x)

By using Eq. (22), we obtain the truncated series solution for N=10 as 
follows:

   (33)
Secondly, imposing the truncated series solution (33) on the boundary 
conditions , we get a nonlinear algebraic equation. By solving it, 
the unknown parameter β is computed as

       (34)
Finally, substituting (34) into (33), we get the approximate solution with 
degree 10
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In Table 2, we compare the absolute errors (29) of numerical results obtained 
by the present method, the VIM (Ravi and Aruna 2010) and the modified 
ADM using Green functions (GIDM) (Singh and Kumar 2014) for N=12. 
Table 3 lists the theoretical estimate errors (24) and the maximal absolute 
errors (30) of the approximate solutions for changing approximation levels, 
and shows a comparison of the maximal absolute errors with the GIDM 
(Singh and Kumar 2014) and the FFDM (Chawla et al. 1988). We can see 
from Table 3 that the accuracy of our computational results is getting better 
as the approximation level is increasing. Moreover, our numerical solution 
u10(x) has an accuracy of O(10−4), whereas the GIDM (Singh and Kumar 
2014) needs to employ 14 terms to archive this goal as shown in Table 1of 
Singh and Kumar (2014); numerical solution with even 64 terms obtained 
by the FFDM (Chawla et al. 1988) still hovers at this level. In summary, 
Tables 2 and 3indicate that the results of our proposed method have higher 
accuracy than of the GIDM (Singh and Kumar 2014), the FFDM (Chawla et 
al. 1988) and the VIM (Ravi and Aruna 2010).

Table 2: Comparison of the absolute error E12(x) for Example 1

x GIDM (Singh and Kumar 
2014)

VIM (Ravi and Aruna 
2010)

Present method

0.0 3.1880e−03 6.3220e−03 1.6776e−04
0.1 3.1209e−03 6.2702e−03 1.6637e−04
0.2 2.9269e−03 6.1173e−03 1.6227e−04
0.3 2.6263e−03 5.8687e−03 1.5568e−04
0.4 2.2489e−03 5.5281e−03 1.4691e−04
0.5 1.8284e−03 5.0903e−03 1.3639e−04
0.6 1.3978e−03 4.5347e−03 1.2450e−04
0.7 9.8413e−04 3.8201e−03 1.1132e−04
0.8 6.0707e−04 2.8837e−03 9.5269e−05
0.9 2.7774e−04 1.6426e−03 6.8180e−05
1.0 3.52e−08 1.00e−10 0
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Table 3: The theoretical estimate errors TEN and comparison of the maximal 
absolute errors MEN of present method and of other methods for Example 1

N TEN MEN N TEN MEN N in Singh and 
Kumar (2014)

N in Chawla et 
al. (1988)

6 1.83e−02 6.80e−03 12 4.7721e−04 1.6776e-04 12 1.3978e−03 16 3.64e−04

8 5.10e−03 1.70e−03 16 4.6453e−05 1.6521e-05 16 2.4654e−04 32 2.49e−04

10 1.5666e−03 5.5389e−04 20 4.6453e−06 1.6614e-06 20 4.8643e−05 64 1.60e−04

Example 2
Consider the following nonlinear SBVP (Khuri and Sayfy 2010; Singh and 
Kumar 2014; Çağlar et al. 2009; Chawla et al. 1988):

   (35)
subject to the boundary conditions

   (36)

The exact solution is given by .
The Adomian polynomials of nonlinear term  in this problem 
are computed as

A comparison of the absolute errors (29) of the numerical solutions for 
N=10,20,40 obtained by the present method and the modified decomposition 
method (BSDM) (Khuri and Sayfy 2010) is described in Table 4. Table 5 lists 
the maximal absolute errors (30) of those numerical results derived from the 
proposed method, the BSM (Çağlar et al. 2009) and the FFDM (Chawla et 
al. 1988). And also, we list the theoretical estimate errors (24) in Table 5 
for comparison. It can be seen from Tables 4 and 5 that one can obtain the 
better approximate solution by using the present method compared to the 
other mentioned methods, even if we take the relative smaller N. Moreover, 
the theoretical estimate errors, the absolute errors and the maximal absolute 
errors all decrease as the increase of N. Therefore, evaluation of more 
components of the numerical solution will reasonably improve the accuracy.
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Table 4: Comparison of the absolute errors EN(x) for Example 2

x BSDM Khuri and Sayfy (2010) Present method

E10(x) E20(x) E40(x)E40(x) E10(x) E20(x) E40(x)

0.0 1.05e−05 1.05e−05 1.05e−05 1.05e−05 2.2e−09 1.4e−09

0.1 1.05e−05 1.05e−05 1.05e−05 1.05e−05 1.2e−09 4.0e−10

0.2 1.03e−05 1.03e−05 1.03e−05 1.03e−05 1.4e−09 6.0e−10

0.3 1.02e−05 1.02e−05 1.02e−05 1.02e−05 1.4e−09 6.0e−10

0.4 9.93e−06 9.93e−06 9.93e−06 9.93e−06 1.5e−09 8.0e−10

0.5 9.62e−06 9.62e−06 9.62e−06 9.62e−06 2.6e−09 1.8e−09

0.6 2.73e−06 6.07e−06 6.93e−06 9.25e−06 1.9e−09 1.2e−09

0.7 6.67e−07 3.65e−06 4.75e−06 8.75e−06 1.4e−09 7.0e−10

0.8 1.58e−06 2.02e−06 2.93e−06 7.88e−06 9.0e−10 3.0e−10

0.9 1.08e−06 8.76e−07 1.37e−06 5.78e−06 5.5e−10 1.1e−09

1.0 0 0 0 1.10e−10 2.74e−11 3.6e−11

Table 5: The theoretical estimate errors TEN and comparison of the maximal 
absolute errors MEN of present method and of other methods for Example 2

N TEN MEN N TEN MEN N in Çağlar et 
al. (2009)

N in Chawla 
et al. 
(1988)

10 6.9957e−05 1.0488e−05 16 2.2413e−07 3.5041e−08 20 3.1607e−05 16 2.52e−03

12 1.0042e−05 1.5380e−06 18 3.2730e−08 5.4593e−09 40 7.8742e−06 32 1.83e−04

14 1.4795e−06 2.3036e−07 20 6.6210e−09 8.4075e−10 60 3.5011e−06 64 1.28e−05

Example 3
Consider the following nonlinear SBVP in the study of steady-state oxygen 
diffusion in a spherical cell (Babolian et al. 2015; Khuri and Sayfy 2010; 
Wazwaz 2011; Çağlar et al. 2009):

   (37)
subject to the boundary conditions

    (38)
where δ and μ are often taken as 0.76129 and 0.03119, respectively. We take 
the value of α as 1, 2 and 3.
The Adomian polynomials of nonlinear term  in this problem 
are computes as
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Proceeding as before, we compute the approximate solution u12,2(x) for 
N=12 and α=2, and show a comparison of the numerical results compared 
to the other existing methods in Table 6, from which one can see that the 
results of our computations are in good agreement with those ones obtained 
by the SGM (Babolian et al. 2015), the BSDM (Khuri and Sayfy 2010), the 
VIM (Wazwaz 2011) and the BSM (Çağlar et al. 2009).
Moreover, since there is no exact solution of this problem, we instead 
investigate the absolute residual error functions and the maximal error 
remainder parameters, which are the measures of how well the numerical 
solution satisfies the original problem (37–38). The absolute residual error 
functions are

and the maximal error remainder parameters are

In Fig. 1, we plot the absolute residual error functions |ERN,2(x)| for N=2 
through 12 by step 2. Besides, the maximal error remainder parameters 
MERN,α for the same N and α=1,2,3 are listed in Table 7, from which it is 
interesting to point out that for a given N the accuracy of our approximate 
solutions increases with the increase of α. Moreover, Fig. 1 and Table 7 show 
clearly that the accuracy of our method is getting better as the approximation 
level is increasing for a fixed α. The logarithm plots of the value of MER2,α 
through MER12,α for α=1,2,3 are displayed in Fig. 2, which demonstrates an 
approximately exponential rate of convergence for the obtained truncated 
series solutions and thus the presented method converges rapidly to the 
exact solution.
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Figure 1: The absolute residual error functions |ERN,2(x)|for N=2,4,6 (left) and 
8, 10, 12 (right) of Example 3.

Table 6: Comparison of the approximate solutions for Example 3

x BSDM (Khuri 
and Sayfy 
2010)

BSM (Çağlar et 
al. 2009)

VIM (Wazwaz 
2011)

SGM (Babolian 
et al. 2015)

Present method

0.0 0.8284832948 0.8284832729 0.8284832761 0.8284832912 0.8284832870

0.1 0.8297060968 0.8297060752 0.8297060781 0.8297060933 0.8297060890

0.2 0.8333747380 0.8333747169 0.8333747193 0.8333747345 0.8333747303

0.3 0.8394899183 0.8394898981 0.8394898996 0.8394899148 0.8394899106

0.4 0.8480527887 0.8480527703 0.8480527701 0.8480527859 0.8480527816

0.5 0.8590649275 0.8590649139 0.8590649108 0.8590649281 0.8590649239

0.6 0.8725283156 0.8725283084 0.8725282997 0.8725283208 0.8725283166

0.7 0.8884452994 0.8884452958 0.8884452781 0.8884453065 0.8884453023

0.8 0.9068185417 0.9068185402 0.9068185095 0.9068185490 0.9068185448

0.9 0.9276509830 0.9276509825 0.9276509392 0.9276509893 0.9276509853

1.0 0.9509457948 0.9509457946 0.9509457539 0.9509457994 0.9509457960

Table 7: The maximal error remainder parameters MERN,α for Example 3

α MER2,α MER4,α MER6,α MER8,α MER10,α MER12,α

1 5.8000e−03 1.4000e−03 3.1751e−04 7.3547e−05 1.7000e−05 3.9243e−06

2 3.4000e−03 4.8431e−04 6.7761e−05 9.4474e−06 1.3142e−06 1.8267e−07

3 2.4000e−03 2.4481e−04 2.4485e−05 2.4388e−06 2.4240e−07 2.4065e−08
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Example 4
Consider the following nonlinear SBVP which arises in the study of the dis-
tribution of heat sources in the human head (Pandey 1997; Rashidinia et al. 
2007; Ravi and Bhattacharya 2006; Babolian et al. 2015; Khuri and Sayfy 
2010; Singh and Kumar 2014; Çağlar et al. 2009; Duggan and Goodman 
1986):

   (39)
subject to the boundary conditions

   (40)
We consider the following two cases:
Case one: a=b=1.
Case two: a=0.1,b=1.
The Adomian polynomials of nonlinear term  in this problem 
are computed as

Again no exact solution exists for this equation, hence it was handled 
numerically. Table 8 describes the numerical results of the first case obtained 
by the proposed method at the order of approximation N=12 and the other 
existing methods, including the FDM (Pandey 1997), the non-polynomial 
cubic spline method (NPCSM) (Rashidinia et al. 2007), the CSM (Ravi 
and Bhattacharya 2006) and the SGM (Babolian et al. 2015). Meanwhile, a 
comparison for the approximate solutions of the second case obtained by the 
present method with the same approximation level as the first case and the 
previous existing methods which include the CSM (Ravi and Bhattacharya 
2006), the SGM (Babolian et al. 2015), the BSDM (Khuri and Sayfy 2010) 
and the BSM (Çağlar et al. 2009) is presented in Table 9. One can seen from 
two Tables that our computations are in good line with the results obtained 
by the other approaches compared. In fact, at the approximation level for 
N=12, the maximal absolute error is found to be order of magnitude O(10−7) 
for the first case, and O(10−9) for the second case.
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Table 8: Comparison of the numerical results for the first case of Example 4

x FDM (Pandey 
1997)

NPCSM 
(Rashidinia et 
al. 2007)

CSM (Ravi 
and Bhat-
tacharya 
2006)

SGM (Babolian 
et al. 2015)

Present 
method

0.0 0.3675169710 0.3675181074 0.3675179806 0.3675168124 0.3675167997
0.1 0.3663623697 0.3663637561 0.3663634922 0.3663623265 0.3663623137
0.2 0.3628941066 0.3628959378 0.3628952219 0.3628940634 0.3628940507
0.3 0.3570975862 0.3570991429 0.3570986892 0.3570975430 0.3570975301
0.4 0.3489484612 0.3489499903 0.3489495462 0.3489484178 0.3489484049
0.5 0.3384121893 0.3384136581 0.3384132502 0.3384121459 0.3384121330
0.6 0.3254435631 0.3254450019 0.3254445925 0.3254435196 0.3254435063
0.7 0.3099860810 0.3099878567 0.3099870705 0.3099860373 0.3099860240
0.8 0.2919711440 0.2919789654 0.2919720836 0.2919711001 0.2919710864
0.9 0.2713170512 0.2713185637 0.2713179289 0.2713170072 0.2713169936
1.0 0.2479277646 0.2479292837 0.2479285659 0.2479277203 0.2479277073

Table 9: Comparison of the numerical results for the second case of Example 4

x CSM (Ravi 
and Bhat-
tacharya 
2006)

BSM (Çağlar 
et al. 2009)

BIDM (Khuri 
and Sayfy 
2010)

SGM (Babo-
lian et al. 
2015)

Present 
method

0.0 1.147041084 1.147039937 1.147040795 1.147039016 1.147039019

0.1 1.146511706 1.146510559 1.146511419 1.146509639 1.146509642

0.2 1.144922563 1.144921418 1.144922282 1.144920499 1.144920502

0.3 1.142270622 1.142269478 1.142270348 1.142268560 1.142268563

0.4 1.138550801 1.138549661 1.138550539 1.138548745 1.138548748

0.5 1.133755950 1.133754813 1.133755703 1.133753900 1.133753904

0.6 1.127876795 1.127875663 1.127876562 1.127874754 1.127874756

0.7 1.120901889 1.120900762 1.120901665 1.120899858 1.120899860

0.8 1.112817535 1.112816416 1.112817317 1.112815517 1.112815520

0.9 1.103607704 1.103606593 1.103607490 1.103605701 1.103605704

1.0 1.093253927 1.093252826 1.093253716 1.093251942 1.093251944

Example 5
Consider the following SBVP with nonlinear term different from the forms 
(4–7) which arises in the radial stress on a rotationally symmetric shallow 
membrane cap (Singh and Kumar 2014; Ravi and Aruna 2010):
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   (41)
subject to the boundary conditions

    (42)
The Adomian polynomials of nonlinear term  in this problem 
are computed as

Like the previous problems 3 and 4, a closed-form solution to this equation 
can not be written down. So we instead investigate the absolute residual er-
ror functions and the maximal error remainder parameters to examine the 
accuracy and the reliability of our numerical results. Here, the absolute re-
sidual error functions are

and the maximal error remainder parameters are

In Fig. 3, we plot the absolute residual error functions |ERN(x)| for N=4 
through 14 by step 2. The logarithm plot for the maximal error remainder 
parameters MERN for the same N is shown in Fig. 4, which demonstrates 
an approximately exponential rate of convergence of the obtained truncated 
series solutions and thus the presented method converges rapidly to the 
exact solution. Even though there is no exact solution for this problem, the 
following 10th order approximation has an accuracy of O(10−8) and can be 
used for practical applications
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Figure 2: The logarithmic plots for the maximal error remainder parameters 
MERN,α for N=2 through 12 by step 2 and α=1 (up, left), α=2 (up, right), α=3 
(down) of Example 3.

Figure 3: The absolute residual error functions |ERN(x)| for N=4,6,8 (left) and 
10, 12, 14 (right) of Example 5.
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Figure 4: The logarithmic plot for the maximal error remainder parameters 
MERN for N=2 through 14 by step 2 of Example 5.

CONCLUSION
In this work, a reliable approach based on the IDTM is presented to handle 
the numerical solutions of a class of nonlinear SBVPs arising in various 
physical models. This scheme takes the form of a truncated series with 
easily computable coefficients via the Adomian polynomials of those 
nonlinearities in the given problem. With the proposed algorithm, there is 
no need of discretization of the variables, linearization or small perturbation. 
Numerical results show that the proposed method works well for the SBVPs 
(1–3) with a satisfying low error. Besides, it is obvious that evaluation of 
more components of the approximate solution will reasonably improve 
the accuracy of truncated series solution by using the proposed method. 
Comparisons of the results reveal that the present method is very effective 
and accurate. Moreover, we are convinced that the IDTM can be extended 
to solve the other type of functional equations involving nonlinear terms 
more easily as the Adomian polynomials are applicable for any analytic 
nonlinearity and can be generated quickly with the aid of the algorithm 
proposed by Duan.
It is necessary to point out that algebraic Eq. (23) is a nonlinear one, and 
we shall inevitably encounter the bad roots while solving it. The criterion to 
separate the good root from a swarm of bad ones is convergence because it 
represents the value of unknown function at the origin and will not change 
for the different N.
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