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The process of describing real-world problems as mathematical structures and abstract 
objects is often referred to as mathematical modelling. A mathematical model of a 
real-world problem consists of an approximate description in the form of a differential 
equations’ system. Modern scientists and engineers strive to solve these equations to help 
them understand the origin and discover new features concerning a real-world problem. 
Then, once the physical interpretation of the mathematical solution is clearly captured, 
they often attempt to improve or extend these mathematical modelling approximations 
to more general situations by increasing the complexity of mathematical models.  
This book includes several articles devoted to the mathematical modelling of real-world 
problems in physics, mechanical engineering, biology, and biochemistry. It is divided 
into four thematic sections. Each section covers a different topic in mathematical 
modelling for describing and understanding physical phenomena.
The first part of this book (chapters 1 to 3) reflects on mathematical modelling from a 
more philosophical and generic point of view.  Chapter 1 inquiries about the explanatory 
role of mathematics in empirical science. The author attempts to answer the question: 
“Are there genuine mathematical explanations of physical phenomena, and if so, how 
can mathematical theories, which are typically thought to concern abstract mathematical 
objects, explain contingent empirical matters?”. Chapter 2 reflects on the application of 
quantum mathematical modelling in the fields of psychology, economics, and decision 
science. The author discusses whether quantum mathematical models are necessary for 
dealing with specific phenomena in the aforementioned fields, or whether the classical 
(probabilistic or statistical) mathematical models will suffice. Chapter 3 is focused on 
the application of stability theory (a fundamental part of mathematical modelling of 
natural phenomena) in the fields of chemistry and biology. The authors propose that 
both fields can be conceptually connected through the concept of stability.
The second part of this book (chapters 4 to 9) is devoted to the application of mathematical 
modelling to specific real-world problems in fluid dynamics and mechanical 
engineering. It is focused on solving ordinary differential equations (ODEs) used for 
describing a wide variety of phenomena in physics, biology, chemistry, and several 
other fields. Chapter 4 describes the application of the Riccati-Bernoulli sub-ODE 
method for finding exact travelling wave solutions, solitary wave solutions and peaked 
wave solutions of nonlinear partial differential equations, which play an important role 
in the study of nonlinear physical phenomena. Chapter 5 describes the mathematical 
modelling of mantle convection at a high Rayleigh number with variable viscosity 
and viscous dissipation. Mantle convection is responsible for numerous physical and 
chemical phenomena occurring on the surface and in the interior of the Earth. The study 
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xxii

is important for shading light on the mechanism behind this type of convection, which 
remains an unsolved problem since the rheology of mantle rocks. Chapter 6 describes an 
application of a multi-component multiphase reactive transport model for geothermal 
reservoir simulation. Chapter 7 describes the modelling and dynamic characteristics of 
a non-metal pressurized reservoir with variable volume. A closed reservoir may provide 
an advantage of having a smaller volume when compared to open reservoirs which 
are large, heavy, polluted, and threaten the operation of hydraulic systems. Chapter 8 
describes the modelling and natural characteristic analysis of cycloid ball transmission 
using lumped stiffness method. The study is motivated by the possibility of improving 
the dynamic precision of robot systems. Chapter 9 describes the modelling of flowslides 
and debris avalanches in natural and engineered slopes. The study aims to provide a 
better understanding of how slope instability is affected by the rainfall from the ground 
surface and water springs from a bedrock.
The third part of this book (chapters 10 to 13) is devoted to the application of 
mathematical modelling to the fields of biology and biochemistry. Chapter 10 is focused 
on the Lane-Emden boundary value problem, arising in numerous real-life chemical 
and biochemical phenomena. Chapter 11 aims to provide a mathematical analysis and 
modelling of a prey-predator system to describe the effect of predation between prey and 
predator with a nonlinear functional response. Chapter 12 describes the mathematical 
modelling of collective behaviour appearing at several levels of biological complexity, 
from single cells to super-organisms. Chapter 13 describes a fractional mathematical 
model for studying the effects of greenhouse gases and hypoxia on the population of 
aquatic species.
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ROLE OF MATHEMATICS IN 
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ABSTRACT
Are there genuine mathematical explanations of physical phenomena, and if 
so, how can mathematical theories, which are typically thought to concern 
abstract mathematical objects, explain contingent empirical matters? The 
answer, I argue, is in seeing an important range of mathematical explanations 
as structural explanations, where structural explanations explain a 
phenomenon by showing it to have been an inevitable consequence of the 
structural features instantiated in the physical system under consideration. 
Such explanations are best cast as deductive arguments which, by virtue of 
their form, establish that, given the mathematical structure instantiated in the 
physical system under consideration, the explanandum had to occur. Against 
the claims of platonists such as Alan Baker and Mark Colyvan, I argue that 
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The Use of Mathematical Structures: Modelling Real Phenomena2

formulating mathematical explanations as structural explanations in this 
way shows that we can accept that mathematics can play an indispensable 
explanatory role in empirical science without committing to the existence of 
any abstract mathematical objects.

Keywords: Mathematics, Models, Explanation, Structure, Indispensability

INTRODUCTION
Are there genuine mathematical explanations of physical phenomena, 
and if so, how can mathematical theories, which are typically thought 
to concern abstract mathematical objects, explain contingent empirical 
matters? Lange (2016), for example, argues that mathematical explanations 
of physical phenomena are a species of non-causal explanations that he 
calls explanations by constraint. But how can facts about spatiotemporally 
isolated mathematical objects can act as constraints on the physical world? 
The answer, I will argue, is in seeing an important range of mathematical 
explanations as structural explanations, where structural explanations explain 
a phenomenon by showing it to have been an inevitable consequence of the 
structural features instantiated in the physical system under consideration. 
Such explanations are best cast as deductive arguments which, by virtue 
of their form, establish that, given the mathematical structure instantiated 
in the physical system under consideration, the explanandum had to occur. 
The constraints placed on the world by the mathematical premises in these 
explanations are thus logical constraints: such explanations show that, given 
structural features of the physical system, their explananda were inevitable 
as a matter of logic.

Several questions arise out of this picture. First, does couching so-
called mathematical explanations of physical phenomena as structural 
explanations establish that these are genuine explanations? A full answer 
to this question would require a full account of what it is to explain, and 
this is not something that I will pursue here (though I endorse much of what 
Lange (2016) has to say in defence of taking so-called ‘explanations by 
constraint’ as genuinely explanatory). My own view is there are features 
of these so-called ‘explanations’ that suggest that there is at least a case 
for including them as examples of genuine explanations. In particular, they 
supply important modal information about their explananda: they tell us 
why they had to occur given the structural features of the physical situation. 
They also offer opportunities for understanding provided by unification, 
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through showing how apparently disparate phenomena are instances of a 
common structure.

Regardless, though, of whether what I call ‘structural explanations’ are 
genuine explanations or merely explanation-like (e.g. in providing some 
form of illumination/understanding of their target phenomena), what I am 
most keen to explore in this paper is a different question, that of whether the 
(explanatory- or explanation-like) theoretical role played by such structural 
‘explanations’ offers support for mathematical platonism. Perhaps we 
might be moved to accept an account of explanation according to which 
all genuine explanations are causal. Nevertheless, as I will argue in Sect. 1, 
many so-called mathematical explanations of physical phenomena afford 
us at the very least important forms of understanding that are not available 
if focus on nominalistically-stated alternatives. So even if supplying modal 
information about an observed phenomenon, and unifying disparate 
phenomena turn out to be not enough to count as providing an explanation 
in a strict sense, these still remain important theoretical roles played by 
mathematics in science that go beyond what would be available if we 
confined ourselves to purely nominalistically-stated alternatives. And this 
raises the question of whether, if what I am calling structural ‘explanations’ 
succeed where purely non-mathematical descriptions fail in enhancing our 
understanding of the physical world in these kinds of ways, this amounts 
to an indispensable theoretical role that supports platonism. Attending to 
the nature of structural explanations shows that any attempt to argue from 
the indispensable theoretical role of structural explanations to mathematical 
platonism must fail, for structural explanations of physical phenomena do 
not require that our structure-characterising mathematical axioms are true 
of any mathematical objects, but only that they are true—or approximately 
true—when their non-logical terminology is interpreted to apply to systems 
of either actual, or idealized, physical objects. So admitting an indispensable 
theoretical role for mathematical-structural explanations does not support an 
inference to the existence of abstract mathematical objects.

The picture of mathematical explanations as structural explanations 
that I present here is sketched in Leng (2012) and Leng (2021), but it has 
not been developed in full detail in previously published work. This paper 
fills in the details of this sketch. In Sect. 1 I look at some examples of the 
alleged ‘explanatory’ role of mathematics in physical science, and agree 
with platonists such as Baker and Colyvan that there is important theoretical 
work done by mathematics in the examples they present that is not available 
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if we focus solely on non-mathematical alternatives. I side with Baker and 
Colyvan there in saying that the theoretical role played by mathematics in 
these examples should be thought of as an ‘explanatory’ role, but even for 
those not convinced that this is genuine explanation, I argue that Baker 
and Colyvan have at the very least indicated an important theoretical role 
played by mathematics in physical science, and this raises the question 
of how mathematics is able to play this role, and in particular of whether 
the ability of mathematical theories to play this kind of role requires the 
existence of mathematical objects. The remainder of the paper considers 
the question of whether the existence of these kinds of mathematical 
explanations of physical phenomena supports the existence of mathematical 
objects. Section 2 characterises a class of mathematical explanations as 
structural explanations, arguing that they can be presented as deductively 
valid arguments whose premises include a mathematical theorem expressed 
modal structurally, together with empirical claims establishing that the 
conditions for the mathematical theorem are instantiated in the physical 
system under consideration. I suggest that these arguments should be 
thought of as genuinely explanatory by virtue of providing important modal 
information: they show that the phenomenon to be explained had to occur, 
given the structural features that are physically instantiated. Additionally, by 
identifying mathematical-structural features that necessitate the occurrence 
of the phenomenon to be explained, they offer opportunities for explanatory 
unification, showing apparently disparate phenomena to be consequences 
of the very same mathematical-structural features. I also show that these 
explanations, which can be understood in modal structural terms, involve 
no commitment to mathematical objects platonistically construed. In Sect. 3 
I consider the application of this account to real cases where mathematical 
structure is instantiated not directly in physical systems, but only in an 
idealised model of a physical description (in what, following Bokulich, 2008 
I will call ‘structural model explanations’). I argue that the explanatory use 
of mathematics in these idealized model cases offers no further argument for 
realism than is already offered by the use of idealized models to represent 
physical phenomena. I also point to a helpful feature of the structural 
account as compared to mapping account of applications of mathematics: 
while it is true that in many cases the relation of mathematics to reality is of 
a map to a terrain, if the structural account is correct, mathematics does not 
explain simply by providing such a map, but by showing how mathematical-
structural dependencies in mathematical models reflect mathematical-
structural dependences in the physical world. I conclude, then, that 
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viewing mathematical explanations of structural explanations provides an 
understanding of how mathematics can play a significant theoretical role in 
our understanding of physical phenomena that does not require us to adopt 
a platonist account of mathematical objects.

WHY THINK THAT MATHEMATICS DOES GENUINE 
EXPLANATORY WORK?
Since Alan Baker’s (2005) paper introducing the philosophy of mathematics 
world to the curious case of the periodical magicicada cicadas, much has been 
written on the alleged existence of mathematical explanations of physical 
phenomena. Typically, discussion has been divided along platonist/anti-
platonist lines, with most platonists agreeing that there are such explanations, 
and most anti-platonists disagreeing (notable exceptions are Brown (2012) 
on the platonist side, and Leng (2012) on the anti-platonist side). For those 
who reject the claim that mathematics does genuine explanatory work in our 
scientific theories, a standard strategy has been to point to the nominalistic 
content of putative mathematical explanations of physical phenomena, 
holding that while these explanations may be characterised mathematically, 
all the genuine explanatory work in these explanations is carried by their 
nominalistic content, with mathematics being used as a convenient—and 
perhaps indispensable—way of indexing the explanatorily relevant physical 
facts. (Examples of strategies along these lines include Brown, 2012; Daly 
& Langford, 2009; Melia, 2000; Saatsi, 2011) In Leng (2012) I side with 
platonists including Baker and Colyvan (2011) in suggesting that if we 
focus on the nominalistic content of mathematical explanations of physical 
phenomena, we lose explanatory power.

Take for example Brown’s account of the cicada case. Brown (2012, p. 
10) uses the notions of cycle factorizability and non-factorizability to pick 
out nominalistically characterizable features of cicada life-cycles that he 
takes are ultimately responsible for the prime-length period phenomenon. 
Although there is a clear link between these notions and the mathematical 
notions of ‘composite’ and ‘prime’ as applied to numbers, Brown notes that 
nonetheless they are intelligible in non-mathematical terms (a cicada cycle 
is cycle factorizable if and only if it can be broken into repeated shorter 
cycles of equal duration without leaving any years out). A cycle is non-
factorizable if and only if its associated number (of years) is prime, hence 
the relevance of talk of prime numbers in indexing the standard evolutionary 
explanation of cicada period length. But the real explanatory work, Brown 
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contends, is done by the nominalistically kosher feature of cycle lengths that 
is indexed by prime numbers (non-factorizability).

It certainly seems right that it is cycle-non-factorizability (along with 
the relevant evolutionary facts that the explanation presupposes about 
periodic predators) that is responsible for the cicada’s behaviour. In that 
sense, the non-factorizability of the 13 and 17 year cycles does explain 
why those cycles were chosen. But even though an adequate explanation 
can be afforded in terms of the nominalistically acceptable notion of cycle-
factorizability, there is at least a sense in which, by refusing to appeal to 
the more general notion of prime number as it relates to non-factorizable 
cycles, this explanation remains impoverished. By framing the explanation 
in terms of prime numbers (with the non-factorizable cycles being those 
that are indexed by prime numbers) we can make use of our knowledge 
of prime and composite numbers in order to understand more about the 
possibilities for similar periodic behaviour. For example, the fundamental 
theorem of algebra, which tells us that composite numbers have a unique 
prime decomposition, can tell us that, of composite cycles, cycle lengths with 
fewer distinct prime factors would be preferable. So, for example, a 4-cycle 
would be preferable to a 6-cycle since it has only one prime factor (2) rather 
than two (2, 3), so while a 4 cycle would meet 2-cycle predators every time 
it occurred, it would only meet 3-cycle predators every fourth cycle (once 
every 12 years). On the other hand, a 6-cycle creature would meet 2-cycle 
and 3-cycle predators every time it occurred, making that a worse choice of 
cycle length in conditions where 2-cycle and 3-cycle predators occur. Such 
extrapolations concerning potential periodic behaviour come naturally when 
the explanation is framed in term of prime numbers, given our familiarity 
with their patterns, but are lost if we drop that framing and instead focus 
directly on the indexed property of cycle-factorizability. The mathematical 
framing thus offers easy access to a range of modal information concerning 
what would have happened had different cycle lengths been chosen, that is 
not present if we focus solely on cycle-factorizability. Along a similar vein, 
the well known ‘Bridges of Königsberg’ explanation using Euler’s theorem 
not only shows why a certain kind of walk is impossible, but also provides 
information about what kinds of bridge/landmass configurations would be 
required to make possible a Eulerian walk.

Focussing on cycle-factorizability also prevents us from seeing 
connections with other phenomena that are naturally indexed with prime 
numbers, but which have nothing to do with cycle lengths. A teacher may 
come to realise that classes of 30 students are easier to work with than classes 



Models, Structures, and the Explanatory Role of Mathematics in ... 7

of 25, since in splitting into groups the latter can only be split evenly into 5 
groups of 5 pupils, while the former has the option of 15 pairs, 6 groups of 5, 
5 groups of 6, 3 groups of 10, or 2 of 15. Better choices of cycle lengths (for 
the purpose of avoiding predators) turn out to be worse choices of class sizes 
(for the purpose of allowing maximal opportunities for group work). Of 
course we could introduce a separate notion of collection-factorizability to 
apply to collections of discrete individuals, where a collection is factorizable 
if it can be broken up into a number of smaller collections of equal size 
without remainder. But there is obviously a common pattern here, and we 
are surely best placed to appreciate and understand that common pattern 
once we see the natural associations between collections of individuals, 
repeating cycles, and the prime and composite numbers that are used to 
index both. Along similar lines, Baker (2017) points to another example of 
a use of prime vs composite cycles as part of an explanation of a physical 
phenomena: an explanation of why fixed gear bikes where the numbers of 
cogs on front and back wheel are coprime see less wear from braking than 
bikes where the pairs are not coprime. I agree with Baker that couching all 
of these explanations in mathematical terms provides them with a topic-
generality that adds a level of explanatoriness that goes beyond what is 
available if we focus on the nominalistic content of each explanation. While 
nominalistic versions of each explanation are available that succeed in 
showing that the nominalistically characterizable features of the particular 
systems in question sufficed to guarantee that the observed phenomenon 
would occur, the mathematical explanations serve to add another explanatory 
dimension, the ability to unify a range of what at first glance may seem like 
different phenomena. This additional dimension, I would like to suggest, 
is a structural one: the mathematical explanations show in each case that 
the explanandum occurred as a consequence of structural features of the 
physical system that can be characterised mathematically. As the same 
theorem involving the same mathematical structure is involved in each case, 
the topic generality of mathematical explanations allows us to see each of 
these disparate phenomena as a consequence of one and the same structural 
featureFootnote1.

The work done by the mathematical framing in the typical examples 
of candidate mathematical explanations of physical phenomena, both in 
providing modal information about the explanandum and offering possibilities 
of unification of the phenomenon to be explained with apparently disparate 
phenomena supports our understanding of those phenomena in such a way 
that suggests to me at least that it is worthy of being called explanatory. 
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In what follows, I will accept that examples such as the number theoretic 
explanation of cicada behaviour and the graph theoretic explanation of 
the impossibility of completing a Eulerian walk through Königsberg are 
genuine mathematical explanations of physical phenomena. I will offer an 
account of how these explanations work and argue that, if they do work in 
this way, our use of these explanations in empirical science does not commit 
us to mathematical platonism. Some readers may remain unconvinced, 
however, that the virtues I have pointed to of these so-called mathematical 
‘explanations’ (i.e., providing modal information and unifying apparently 
disparate phenomena) suffice to show that these uses of mathematics are 
genuinely explanatory. But even if we agreed not to use the ‘e’ world to 
describe them, to the extent that we think that these theoretical virtues are 
virtues worth having, there remains a question of how mathematics can serve 
these functions (of providing modal information and theoretical unification), 
and whether using mathematics for these purposes presupposes platonism. 
For the reader who is not convinced my use of the ‘e’ word to talk about 
these examples, I hope the structural account I offer of how mathematics 
works to provide modal information and possibilities of unification will still 
be of interest in showing that if we wish to use mathematical theories for 
these purposes, doing so will not commit us to the existence of mathematical 
objects.

MATHEMATICAL EXPLANATIONS AS STRUCTUR-
AL EXPLANATIONS
I propose that the mathematically couched explanations of cicada behaviour 
and of the impossibility of Eulerian walks through Königsberg, along with 
other examples that have been offered in the literature on mathematical 
explanation are examples of what I, following Bolulich (2008) (who 
herself follows Peter Railton (1980) & Hughes (1989)) will call structural 
explanations. Structural explanations explain by showing an empirical 
phenomenon to be a consequence of the mathematical structure of the 
empirical situation. According to Bokulich (2008, p. 149),

• a structural explanation is one in which the explanandum is 
explained by showing how the (typically mathematical) structure 
of the theory itself limits what sorts of objects, properties, states, 
or behaviors are admissible within the framework of that theory, 
and then showing that the explanandum is in fact a consequence 
of that structure.
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But how does one show that an explanandum is a consequence of the 
mathematical structure of a theory? In answering this question, as my own 
interest is specifically in the status of mathematical hypotheses in structural 
explanations, rather than following Bokulich’s discussion of this matter 
directly, I will focus more closely on how mathematical theories characterize 
structures that can be used in structural explanations, rather than discussing 
mathematically-structured empirical theories, which is where Bokulich’s 
own attention lies.

In order to see what could be meant by empirical phenomena being 
consequences of the mathematical structure of an empirical set up, it will 
be helpful to consider an understanding of mathematical theories that is 
common to most forms of structuralism in the philosophy of mathematics. 
Consider a pure mathematical theory, presented axiomatically. These 
axioms will typically include logical terminology and some primitive terms. 
For example, in the (2nd order) Peano axioms for number theory, we have 
primitive terms ‘zero (0)’, ‘number (N)’ and ‘successor (s)’, where ‘0’ is 
a singular term, ‘Nx’ a unary predicate, and ‘s(x)’ a unary function. The 
axioms can be expressed as follows:

• N(0) (‘zero is a number’).
•	 ∀x(Nx ⊃ Ns(x)) (‘The successor of every number is a number’).
• (∀x)(Nx ⊃ s(x) ≠ 0) (‘Zero is not the successor of any number’).
• (∀x)(∀y)((Nx & Ny) ⊃ (x ≠ y ⊃ s(x) ≠ s(y))). (‘distinct numbers 

have distinct successors’).
• (∀F)(∀x)((F0 & (∀x)(Nx ⊃ (Fx ⊃ Fs(x)))) ⊃ (∀x)(Nx ⊃ Fx)) (‘If 

any property is such that it applies to 0 and, if it applies to a 
number it also applies to that number’s successor, than that 
property applies to all numbers.’).

We can abbreviate the conjunction of these axioms as PA〈0, N, s〉 
(indicating the primitive terms).

A question arises of what we should make of the primitive terminology 
in such axiomatizations. There are two basic approaches on the table. An 
‘assertory’ understanding of an axiom system sees its primitive terms as 
independently meaningful, and aiming to pick out some specific objects, 
predicates, and functions. The axioms are then attempts to assert basic truths 
about these independently meaningful primitives. On the other hand, an 
‘algebraic’ understanding sees the primitive terminology as not having a 
meaning independently of the axiom system in which they occur, and (much 
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like the ‘unknowns’ in a system of equations with various unknowns) as 
being given their meaning contextually by the axioms themselvesFootnote2. 
Clearly an algebraic understanding is appropriate for some systems of 
axioms: the axioms for group theory, for example, can be thought of as 
defining what would have to be true of any collection, G, of objects with 
binary operator + and distinguished element 0 in order to count as a group. 
There is no specific intended interpretation of ‘G’, ‘ + ’ and ‘0’ about which 
the axioms aim to assert truths. What the leading versions of mathematical 
structuralism (such as Stewart Shapiro’s ante rem structuralism (Shapiro, 
1997) and Geoffrey Hellman’s modal structuralism (Hellman, 1989)) have 
in common is that they assume an algebraic understanding of all axiomatic 
theoriesFootnote3.

The correctness of mathematical structuralism as a picture of pure 
mathematics is not what is at issue here; my interest is only in the ‘algebraic’ 
approach to axiom systems assumed by structuralists. What is important 
about the algebraic understanding of mathematical theories in this context is 
the sense it allows us to make of the notion of mathematical structure, and in 
particular of the notions of a system of objects instantiating a mathematical 
structure, and of truths that are ‘true in virtue of’ that structure. For a 
particular system to instantiate an axiomatically characterized mathematical 
structure is simply for the axioms characterizing the structure to be true 
when their primitive constants, predicates, and function symbols are given 
an appropriate interpretation in the terms of that system. We can, for 
example, find particular mathematical systems instantiating axiomatically 
characterized mathematical structures: the natural number structure has an 
instantiation in the sets if we interpret 0 as ∅, s(x) as the function that takes a 
set A to its singleton {A}, and the predicate Nx as being true of a set A if and 
only if A is in the intersection of all sets containing ∅ and closed under the 
operation of taking successors (i.e., if and only if A ∈ {∅, {∅}, {{∅}}, …}. 
But we can also find ‘concrete’ systems instantiating some mathematical 
structures: the group axioms, for example, can be interpreted as truths about 
the simple system consisting of symmetric rotations of a square. Here, G is 
the collection of possible rotations: (id = keep as is; r1 = rotate 90° clockwise, 
r2 = rotate 180°, r3 = rotate 270° clockwise). Of these, 0 is interpreted as 
the ‘id’ rotation, and the binary + operation is the result of performing two 
operations consecutively (so that, e.g., r1 + r2 = r3). And, to take us back to 
Baker’s cicada example, if we idealize somewhat to forget about the eventual 
demise of the earth, the series of earth-years starting from a given 0 in which 
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cicadas appear and continuing without end can be viewed as an instantiation 
of the natural number axioms, with the function ‘s(x)’ being interpreted as 
‘the year following year x’.

Consider now a system of objects and relations (mathematical or physical) 
that instantiates an axiomatically characterised structure. There will of course 
be a range of truths about that given system. For example, in our set theoretic 
system instantiating the Peano axioms, when supplemented with definitions 
of the individual numbers and the ‘less-than’ relation ‘<’), it will be true 
that the object it calls ‘2’ (ss0, i.e. in this case, {{∅}} will be a member of 
the object it calls ‘3’ (sss0, i.e., {{{∅}}}), and it will also be true that 2 < 3. 
But only the latter of these is, I claim, true in virtue of the axiomatically 
characterised structure provided by PA〈0, N, s〉. The axiomatic setting 
helps us to understand this difference. When we supplement the axioms with 
the appropriate definitions, ‘2 < 3’ is a logical consequence of PA〈0, N, 
s〉 (and thus true in all interpretations of these axioms), whereas ‘2 ∈ 3’ is 
not a logical consequence of the structure-characterising axioms. In general, 
if structurally characterized axioms are true when interpreted as about a 
particular system, then we can say that a truth about that system is true in 
virtue of the mathematical structure characterized by those axioms when it is 
an interpretation of a claim that follows logically from those axioms.

We can now make sense of the notion of a structural explanation to 
which I wish to draw attention, in cases where the structure in question is 
characterized by mathematical axioms. Such a structural explanation explains 
by showing (a) that the system to be explained can be viewed as an instance 
of a mathematical structure, and (b) showing that the explanandum is true 
in virtue of that structure, i.e., that it is a consequence of the characterizing 
axioms and relevant definitions (when suitably interpreted). As such, we can 
think of the general form of a structural explanation (involving axiomatically 
characterised mathematical structure) as an explanatory argument as follows:
[Mathematical Premise, MP] Mathematical theorem, modal-structurally 
characterised (i.e., of the form, ‘necessarily, in any system satisfying 
<Axioms>, <Theorem>’)Footnote4.
[Empirical Premises, EP] Empirical claims justifying the claim that 
<Axioms> are true when interpreted as about the physical system under 
consideration.

Therefore.
[Explanandum] < Theorem > is true of the system under consideration.
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Of course, when it comes to real-life examples of mathematical 
explanations of physical phenomena, some work may be needed in order 
to discover this general form in the explanations as provided. We will see 
below how it might work in some particular cases.

Before we move to examples, however, it is worth noting up front a 
feature of structural explanations thus characterised, that may ring alarm bells 
given the history of accounts of explanation in the philosophy of science. 
By couching the general form of structural explanations as deductive, 
explanatory arguments that invoke a necessitated conditional (in their 
modal-structurally characterised mathematical premise) this account makes 
structural explanations look suspiciously close to covering law explanations, 
in this case a deductive-nomological explanation where a mathematical 
‘law’ takes the place of an empirical one, providing ‘nomic expectability’ to 
the conclusion of the argument as explanandum. Despite the well-trodden 
concerns about the covering law model as a general account of explanation, 
here I will embrace this similarity. I note some relevant differences: (1) the 
restriction of our ‘law’ to a modal-structurally characterised mathematical 
theorem avoids some difficulties concerning the kinds of generalisations 
that can be cited as ‘laws’ in such explanations; (2) the requirement that 
the empirical premises serve to justify the claim that the axioms applied in 
the mathematical premises apply to the physical system under consideration 
avoids some concerns about permitting arguments with irrelevant premises 
to count as explanations. However, one feature that my account does share 
with the D–N model is its tolerance for explanatory symmetries: given that 
(in the famous ‘flagpole’ case) it is equally a theorem that if the length of the 
shadow is x, the height of the flagpole is y and that, if the height of the flagpole 
is y, the length of the shadow is x, we can just as well use information about 
the length of the shadow along with structurally interpreted mathematical 
results to provide a structural explanation of the height of the flagpole as we 
can use information about the height of the flagpole to explain the length of 
the shadow. I do not have the space for a full discussion of this case here, so 
I will simply note that this is a bullet that I am willing to biteFootnote5.

Examples
A simple example of a structural explanation is provided if one considers 
a rather mundane puzzle about the difference between mattress flipping 
and tyre rotating, discussed by Brian Hayes (2005) in a popular article 
in American Scientist (2005). We are advised to flip/rotate double-sided 
mattresses periodically in order to ensure even wear. There are four possible 
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ways of fitting a mattress into a standard rectangular bed, and by flipping/
rotating mattresses periodically, our aim is to cycle through these four 
configurations so that over its lifetime the mattress gets equal use in each 
position. Similarly, it was once considered good practice to move the tyres 
on a car around, so as to even out wear on the tyres, and it is prudent, if one 
is doing this, to ensure that the tyres are moved around evenly so that no 
one tyre spends too long in the same position. There is (what Hayes calls) 
a simple ‘golden rule’ for moving tyres: a single operation that one can do 
each time one moves the tyres to ensure that, after enough applications, each 
tyre will have occupied each of the four positions it can take exactly once, 
so that wear is even. If one simply rotates the tyres around the car a single 
turn at each change (making an arbitrary choice at the start of whether to 
move clockwise or anticlockwise), one can be confident that, after applying 
this same operation repeatedly all tyres will have occupied all positions. 
This means that we do not need to remember how we positioned the tyres 
on previous occasions. If we simply resolve always to move a single turn 
clockwise (say), we will ensure even wear without having to keep track of 
previous positions.

If we think of the three main symmetric operations one can do to ‘flip’ 
a mattress (i.e., rotate 180° across each of the three orthogonal axes through 
its centre point), clearly no single one of these on its own would provide us 
with a golden rule for mattress turning: if we were always to rotate around 
its short vertical axis, for example, we would find ourselves always sleeping 
on the same side of the mattress, with the head and foot flipping each time. 
Hayes wondered, though, whether there was a single combination of these 
operations which, if one cycled through that combination at each ‘flipping’, 
would ensure that, over a period of time, the mattress would take all possible 
configurations, thus avoiding the problem of remembering how the mattress 
was configured on previous configurations before choosing which operation 
to take next time.

A quick internet search of mattress flipping advice suggests that no such 
solution has been found: the best advice available, Hayes tells us, seems 
to be to practice seasonal flipping, e.g. flipping across the short horizontal 
axis for one season and then across the long horizontal axis the next, to 
cycle through the four possible mattress positions over a year. Why is this? 
Why isn’t there a single combination of moves, which if one repeats that 
same combination at each flipping would ensure that all positions of the 
mattress would be taken? And why does the mattress case differ from the 
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superficially similar problem of tyre rotation? The answers can be seen once 
one realizes that the rotations of mattress form a 4-group. Since groups are 
closed, any combination of any number rotations is equivalent to a single 
rotation. And since (as we have already noted) no single rotation provides 
a golden rule, no combination of these will either. Why are things different 
in the tyre case? Because, though both are 4-groups, the tyre group is (an 
instance of) the cyclic group of order 4 (the group of 2-dimensional rotations 
of the square that we saw earlier), whereas the mattress rotations instantiate 
the Klein 4-group, which contains no operation which, when repeatedly 
applied to itself, cycle through all the four operations in the group.Footnote6 
So the fact that the two rotation sets are instances of two different groups 
explains Hayes’s explanandum: why is there a golden rule for tyres but not 
for mattresses?

Couched in our general terms, we can present this explanation of a 
contrast as involving two separate structural explanatory arguments, one 
showing that there is single move which, repeated, will cycle through all of 
the possible mattress positions, and another showing that there is a single 
move which, repeated, will cycle through all of the possible tyre positions. If 
we bundle the definitions of the Klein 4-group and the cyclic group of order 
4 into our ‘structure characterising’ axioms respectively, one argument will 
take the form:

[MP] Necessarily, if 〈0, a, b, ab〉 is a Klein 4-group, then there is no 
element in 〈0, a, b, ab〉 whose repeated application will cycle through all 
the members of the group.

[EP], when ‘0’ is interpreted as no movement, ‘a’ as flipping across 
the vertical axis, ‘b’ as flipping across the short horizontal axis, and ‘ab’ as 
flipping across the long horizontal axis, these rotations of a mattress form a 
Klein 4-group.

Therefore.
[Explanandum]: there is no mattress rotation whose repeated application 

will cycle through all the possible positions of the mattress.
Similarly, the ‘tyres’ argument will use the empirical premise that, 

when ‘0’ is interpreted as no movement, ‘a’ as moving all tyres one space 
clockwise, a2 as moving all tyres two spaces, and a3 as moving all tyres 3 
spaces clockwise (or one space anti-clockwise), these tyre rotations form 
a cyclic group of order 4, to conclude that there is a golden rule for tyre 
rotation.
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To move from this ‘toy’ example to some of the examples of mathematical 
explanations of physical phenomena mentioned already, the famous bridges 
of Königsberg explanation (as discussed by Pincock, 2007) is relatively 
easily put in this form, as follows:

[MP] Necessarily, if 〈Nodes, Edges〉 is an instance of a connected 
graph, then if 〈Nodes, Edges〉 permits a Eulerian walk it must have either 
zero or two nodes with an odd number of edges.

[EP] When ‘Nodes’ is interpreted as ‘landmasses’ and ‘edges’ is 
interpreted as ‘bridges’, Königsberg in 1735 is an instance of a connected 
graph with four nodes with an odd number of edges.

Therefore.
[Explanandum] Königsberg in 1735 does not permit a Eulerian walk.
Finally, as mentioned before, while Baker’s cicada example requires 

something of an idealization to fit straightforwardly this model (assuming 
that the sequence of years in which cicadas appear has no end)Footnote7, having 
made that idealization we can we can sketch the explanation in rough terms 
as follows (following Baker in adding a biological premise to fill in the 
evolutionary constraints):

[MP] Necessarily, if PA〈0, N, s〉, arithmetic progressions of length n 
and m that have the same first member overlap minimally when n and m are 
coprime, and a number m is coprime with all numbers n <2m iff m is prime.

[EP] When ‘0’ is interpreted as some first year in which two broods 
of periodical magicicada cicadas appear together, ‘N’ as interpreted as 
the collection of years including and following that first year, and ‘s’ is 
interpreted as ‘the year after’, PA〈0, N, s〉 hold, and the sequence of 
years in which a magicicadas with period length m occur form an arithmetic 
progression of length m.

[Biological premise] It is advantageous for cicadas to choose periods 
which minimize overlap with periods of other periodical creatures.

Therefore:
[Explanandum] Prime number periods are advantageous for cicadas.

Three questions arise. First of all, do so-called structural explanations 
deserve to be viewed as genuine explanations? Second, does the use of 
structure-characterizing mathematical axioms in these explanations commit 
us to assigning an explanatory role to abstract mathematical objects (or 
indeed, abstract mathematical structures)? And finally, can all or even most 
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purported examples of mathematical explanations of empirical phenomena 
be accounted for as structural explanations? My answer to these questions, 
in brief, are: yes; no; and not quite. I will consider the first two of these 
questions here, before turning to the third in Sect. 3.

Are Structural ‘Explanations’ Genuine Explanations?
Structural explanations certainly provide answers to the kind of ‘why’ 
questions that we ask in demanding explanations of phenomena. Why do the 
cicadas have the period length they have? Because the sequence of successive 
years is an instance of a natural number structure; the sequence of years in 
which the cicadas appear is an instance of an arithmetic progression within 
that structure; in any natural number structure, arithmetic progressions 
with4 prime differences between terms will overlap minimally with other 
progressions; and non-overlapping periods are advantageous. Why is there 
no golden rule for mattress flipping when there is one for tyre rotation? 
Because the mattress operations are an instance of the Klein 4-group; in 
any Klein 4-group, no one element can be repeatedly applied to itself to 
cycle through all four operations; and a golden rule would require there to 
be such a cycle. Perhaps this in itself is enough to present these purported 
explanations as genuinely explanatory. But for those looking for something 
more, note that as I have presented these explanations, the explanans in 
each case involves appeal to a general (structural) law (whose modal status 
as a logically necessary truth is supported by the fact that the consequent 
is derivable from the antecedent): “necessarily, in any natural number 
structure, arithmetic progressions with prime differences between terms 
will overlap minimally with other progressions”; “necessarily, in any Klein 
4-group, no one element can be repeatedly applied to cycle through all four 
operations”. By deriving observed phenomenon from premises that include 
a modal-structural law (a claim about what must be true in all structures of 
a given sort), I have already noted that these structural explanations share 
important features of DN-explanations—they explain by providing what 
Salmon (1989, p. 57) calls “nomic expectability—the expectability on the 
basis of lawful connections”.

Another reason to think of structural explanations as genuinely 
explanatory is that they meet the criteria required for ‘distinctively 
mathematical explanations’ outlined in Marc Lange’s recent defence of 
non-causal explanations. Lange (2016, pp. 5–6) holds that what he calls 
‘distinctively mathematical explanations’ work.
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by showing how the fact to be explained could not have been other-
wise—indeed, was inevitable to a stronger degree than could result 
from the action of causal powers.

The modal elements of structural explanations as I have characterised 
them help to show how these explanations establish that, given the structural 
features of instantiated in the target system, the explanandum of a structural 
explanation could not have been otherwise. Modality occurs in these 
explanations at two points. First is in the modal-structural mathematical 
premise. Here the necessity at work is logical necessity, and our justification 
for taking the MPs as true is the existence of a derivation of the consequent 
from the antecedent. The second modal element in these explanations is 
the fact that they are deductively valid arguments: the inevitability of the 
explanandum given the premises is established through showing that it is a 
consequence of those premises. While this second modal element justifies the 
claim that these explanations work by showing how the fact to be explained 
could not have been otherwise, it is the first modal element that meets Lange’s 
criterion for these explanations to count as ‘distinctively mathematical’. 
By showing that their explananda follow from logically necessary truths 
about what holds in any structure satisfying certain structure-characterising 
axioms, these explanations display by their form that the inevitability of the 
explanandum is stronger than causal.

Finally, to the extent that unification is a form of explanation, by displaying 
physical phenomena as consequences of the mathematical structure 
instantiated in a physical system, it is easy to see how structural explanations 
can serve to unify. Structural explanations involve a mathematical premise 
which is a modal-structurally characterised mathematical theorem, as well 
as an empirical premise containing information to establish that the physical 
system under consideration is such as to satisfy the antecedent of the modal-
structural theorem in the mathematical premise. Structural explanations of 
this sort can unify apparently disparate phenomena when it can be shown 
that the structural explanations of those phenomena appeal to the very same 
mathematical result.

Ontological Commitments of Structural Explanations
As mentioned above, in the recent debate over platonism and anti-platonism 
in the philosophy of mathematics, the existence of genuine mathematical 
explanations of physical phenomena has been held to support mathematical 
platonism. And my talk above of ‘instantiation of a mathematical structure’ 
in a physical system might suggest that structural explanations as I have 
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characterised them are no less committed to a form of platonism, in the 
form of realism about the mathematical structures instantiated. However, 
the modal-structural characterisation of the mathematical premises of 
structural explanations shows that an inference from the existence of 
mathematical-structural explanations of physical phenomena to platonism 
is not warranted. In fact, structural explanations as I have characterised them 
(where a mathematical structure is shown to be instantiated in an empirical 
system, so that truths about that system can be displayed as holding in virtue 
of that structure) require no specifically mathematical ontology.

Although mathematical theories (such as, in the examples we have 
considered, number theory, group theory, and graph theory) are used in 
structural explanations of physical phenomena, we are not required to assume 
that the axioms of such theories are true of a realm of abstract mathematical 
objects. Rather, as indicated by the modal-structural formulation of the 
MPs in our examples, we may simply view the pure mathematical theory 
that is involved in the explanation as telling us what would have to be true, 
were there a system instantiating the structure characterized by the axioms, 
something that we can discover simply by inquiring into the consequences 
of the axioms of the theory. Having shown mathematically that any system 
exhibiting a given structure has a particular feature (e.g., that in any instance 
of the Klein 4-group, no element can be repeatedly applied to itself to cycle 
through all four elements of the group), we can transfer this information 
to the concrete instantiation we have found. Structural explanations of this 
sort may make essential use of mathematical theories to explain empirical 
phenomena, but such essential use does not require us to posit the existence 
of a special realm of mathematical objects about which these theories assert 
truths, only that such a theory is, when appropriately interpreted, true of the 
concrete system whose behaviour we are trying to explain.

There are, of course, modal commitments incurred in viewing these 
explanations as involving claims about what would have to be true, were any 
system to instantiate the axioms. As I have said, the necessity at hand here 
is logical necessity (where, ‘necessarily, if 〈Axioms〉 then 〈Theorem〉’ 
holds if and only if 〈Theorem〉 is a logical consequence of 〈Axioms〉). 
So the nominalist who wishes to adopt this account of explanation and hold 
that the structural laws involved in these explanations are literally true will 
have to commit to the truth of some logical necessities (or, equivalently, to the 
truth of some claims about what follows from our axioms). But these modal 
commitments are no more than are already incurred in the leading fictionalist 
accounts of mathematics. Hartry Field, for example, is clear in Science 
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without Numbers (1980) and papers following (including Field (1984), Field 
(1989) about the requirement to include primitive modal operators in his 
fictionalist account of mathematics, endorsing the considerations in favour 
of primitive modality outlined by Georg Kreisel (1967). Likewise I defend 
the use of such operators in my own version of ‘easy road’ nominalism in 
Leng (2007) arguing that attempts to reduce modal claims to truths about 
set theoretic models fail since it is modal facts themselves that determine 
whether a set theoretic reduction is adequate. There will of course be those 
who will worry that the nominalist appeal to modality is problematic—
perhaps because we often make use of the mathematical machinery of 
model theory to discover modal truths, or because they think that modal 
truths just are truths about set theoretic models. However, to the extent that 
these worries about the modal commitments of fictionalism arise, they arise 
already independently of the issue of the use of modal truths (about what 
follows from structure-characterizing axioms) in structural explanations. So 
this modal element of the mathematical explanations we have considered 
raises no new problem for mathematical fictionalists.

FROM STRUCTURAL EXPLANATIONS TO  
STRUCTURAL MODEL EXPLANATIONS
Are most, or even many, mathematical explanations of physical phenomena 
best understood as structural explanations, explaining by showing that their 
target system is an instance of a mathematical structure? I have argued that 
the cicada explanation can be understood as a structural explanation, where 
the axioms of number theory are interpreted as truths about the system of 
years consisting of some initial years in which cicadas appear, with the 
‘successor’ relation being the ‘the following year’ relation. And I have 
presented a very simple example of a structural explanation involving group 
theory and a relevant difference between features of the cyclic group of order 
4 and the Klein 4-group. In the first of these examples we had to introduce 
an element of idealization to allow the axioms to be interpreted as truths: 
we had to assume that the sequence of Earth years continued without end. 
(This idealization though false, was innocuous enough given that it was only 
behaviour at a finite initial segment that was needed for the explanation.) The 
second example required no idealization, but was admittedly rather simple, 
as is the explanation in the example given of the Königsberg bridges. It is 
difficult to find many serious examples of genuine structural explanations 
of this sort in empirical science (though group theory is a powerful tool in 
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chemistry when applied to symmetries of molecules). While for some finite 
mathematical structures we can find physical instantiations, these structures 
are often so simple that any empirical phenomena we might try to explain 
with reference to the structure will be independently obvious already (as, 
arguably, is the case with the mattress-flipping explanation). And even for 
finite mathematical structures, these may be more clearly instantiated in 
idealized models of empirical phenomena rather than directly. Furthermore, 
most mathematical structures are not finite, and so may not have a physical 
instantiation (or are at best approximately instantiated as in the case of 
modelling years using the natural numbers or, as, for example, when we 
consider localized physical space to be an instantiation of Euclidean 
geometry). While our scientific theories are mathematical to the core, where 
complex mathematical structures, and sophisticated, genuinely informative 
explanations, are involved in these theories it is generally the case that much 
work needs to be done to fit the mathematics to physical reality. Simple 
instantiation of a structure is rare. More often a process of modelling must 
occur in order to bring the phenomena into contact with mathematical 
theory. Thus, most interesting structural explanations in mathematics will 
take the form of what, again following Bokulich (2008, p. 147), I will call 
structural model explanations, explanations where a mathematical structure 
is instantiated not in a physical system but in an idealized model of that 
system.

Mathematical Explanations as Structural Model Explanations
The most basic form of a structural model explanation explains by 
hypothesizing a model instantiating the structure of a given mathematical 
theory, showing that some facts about that model are true in virtue of that 
structure, and then relating that model to some empirical phenomenon to 
be explained by means of the model. The ‘modelling’ relation is as ever 
a complex one: it may involve resemblance, approximation, or perhaps 
more formal mappings (isomorphisms, homomorphisms), and will very 
often involve viewing the phenomenon modelled as related not to the 
whole structure in the model, but to some smaller substructure embedded 
in that model. The modelling relation may be described formally by means 
of a partial structures approach, as developed, e.g., by Bueno, French and 
Ladyman (see, e.g., French (2000), Bueno et al.(2002)), though we may 
find that the ultimate tie of model to modelled will be looser than can be 
formally characterized by such a theory. Indeed, it is likely that the formal 
framework of partial structures may only apply after a degree of modelling 
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and idealization has already occurred, so as to exhibit relations between 
various models of increasing abstraction, rather than model and reality 
itself, which may be tied by fundamentally informal links (a possibility 
acknowledged by defenders of the partial structures view). Pincock (2012) 
provides a book-length study of the use of mathematical models to represent 
physical phenomena. Rather than attempt a full discussion of this complex 
issue how idealized models represent, though, let us simply assume that 
where models are aptly chosen, we can draw inferences about the real 
systems they represent. In such cases, we may ask, how can we transfer 
explanatory considerations from model to system modelled?

Given an axiomatically characterized mathematical theory, then, we can 
imagine that that theory is instantiated in some model system. Suppose that 
this model system has a subsystem that is held to be ‘apt’—to be appropriately 
related by some informal ‘representation’ relation to an empirical system we 
wish to investigate (often, this subsystem will be the model system itself). 
The relation between the subsystem of our mathematical model and the 
empirical system under investigation may of course be mediated by further 
models—e.g., we may first need to abstract an idealized system from the 
empirical system we wish to consider, and then show that this idealized 
system bears appropriate structural relations to the subsystem of our original 
mathematical theory. But without going into the complexities of how such a 
relation may be established (and therefore of how it is the subsystem in the 
model is held to aptly represent the system modelled), let us simply assume 
for now that the subsystem of our model that instantiates a mathematical 
structure is indeed held to be true (enough) to the empirical system under 
investigation. Suppose now that we show some properties to be true in this 
subsystem of our mathematical model simply in virtue of the structure it 
instantiates. And suppose that these properties of the subsystem are seen 
to correspond (via our loose modelling relation) to empirical properties 
observed in the empirical system under investigation. Then an explanation 
of these empirical properties may be that they hold of the empirical system in 
virtue of its mathematical structure: given that the empirical system is well 
modelled by a subsystem of the larger mathematical structure, the empirical 
phenomena observed were to be expected, as (interpreted) consequences of 
the axioms characterizing that structure.

An example will help us to understand the processes at work in this loose 
sketch. Given that there is wind at all, at any point in time there will be at 
least one point on the earth’s surface with no wind. Why is this? The ‘Hairy 
Ball Theorem’ from topology provides an explanation. In order to give this 
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explanation we must start by preparing the empirical phenomena (wind 
patterns) for mathematical description. This involves some idealization. 
First, we forget the fact that the layer of air in the atmosphere above the 
earth’s surface has depth, and that wind movements are different at different 
depths. Instead we think of a single layer of air on the earth’s surface, with 
no depth. We then need to think about the direction and strength of wind at 
various points on the earth’s surface. Over a large scale, we can measure 
prevailing wind direction at a point by a weather vane centred on that point—
this gives us a horizontal direction of the wind as a 2-dimensional tangent to 
the earth’s surface at that point (e.g., as coming from a North North Easterly 
direction). We can also measure its speed/strength at that point by means 
of a spinning anemometer (measuring the number of rotations of spinning 
cups in a given time period). To each point where measuring instruments 
are located, our measurements therefore allow us to associate a direction 
and a magnitude: or, in mathematical terms, a vector (measured using an 
appropriate measurement scale), where the direction of each vector is always 
at a tangent to the earth’s surface. Extrapolating this to the small scale, we 
can think of wind direction as being defined at each point on the earth’s 
surface by a tangent vector. Furthermore, we can assume that changes to 
the direction and magnitude of these vectors as we move across the earth’s 
surface are continuous. Thus we can think of the essential features of the 
wind as being represented by a continuous function corresponding points on 
the earth’s surface to vectors.

This ‘prepared description’ (to use Nancy Cartwright’s terminology 
(Cartwright, 1983, p. 15)) of wind behaviour, achieved by a number 
of idealizations as well as by applying a mathematical measurement 
scaleFootnote8, enables us to see the phenomenon of wind movement in a 
wider mathematical perspective. In particular, we have described the wind 
as a tangential vector field on the surface of the Earth. If we now take that 
surface to be topologically equivalent to a sphere (ignoring inconvenient 
tunnels) then we can apply a theorem of topology to the wind system we 
have described. According to the ‘Hairy Ball Theorem’ of topology, “there 
does not exist an everywhere nonzero tangent vector field on the 2-sphere 
S2” (Weisstein, web resource). So given that there is any wind at all on 
the earth’s surface (so that the vector field in our model is not everywhere 
zero), there must be some point on the earth’s surface where the value of the 
tangent vector representing the wind speed and direction is zero (i.e., there 
is no wind at that point). What happens in the area around a point with zero 
wind? Well, wind cannot flow in or out of that point as we are hypothesizing 
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that wind speed and direction is zero there, so while there may still be zero 
wind at adjacent points, when the wind in the vicinity of this zero point is 
non-zero once more it must initially spiral around the no-wind area, as in a 
cyclone. To envisage what is going on we may imagine the hairy ball of the 
theorem’s title. What the theorem tells us is that one cannot continuously 
comb a hairy ball flat—the best we can do is to create a cowlick with a hair 
sticking straight up in the middle and adjacent hairs circling around. (The 
flat hairs represent non-zero tangent vectors; the hair that remains sticking 
up would of course no longer be a tangent vector, so in order for the combing 
to remain a continuous tangential vector field it must be zeroed.)

We have, therefore, a mathematical explanation of an empirical 
phenomenon (the inevitable occurrence of certain wind patterns)Footnote9. 
The explanation is a model explanation: we do not apply the mathematics 
directly to the empirical phenomenon, but first prepare the phenomenon for 
mathematical description through a process of idealization and abstraction. 
Our prepared description of wind on the earth’s surface as a tangent vector 
field enables us to apply the resources of topology to this description and 
so to derive a conclusion about the properties of this vector field. And 
returning to the original phenomenon modelled, we are able to give a 
physical interpretation of this conclusion, stating what this should means 
we should expect about actual wind behaviour. This explains actual wind 
behaviour structurally, to the extent that it is shown to be a consequence of 
the mathematical structure of the physical system, so the explanation is a 
structural model explanation.

Must a structural model explanation to be true in order to explain? 
In Bokulich’s discussion of such explanations, she focuses on structural 
explanations where the model is a classical system and the phenomena to 
be explained are quantum phenomena, so that the mathematical structure 
appealed to in the structural explanation, using the mathematical of classical 
mechanics rather than quantum mechanics, is not straightforwardly ‘true 
of’ the system to be modelled. But whether, in these proposed structural 
model explanations, the models are close enough in structural terms to the 
phenomena modelled to be genuinely explanatory is something that need 
not immediately concern us here. In all model explanations, the issue of how 
close a model must relate to the phenomenon modelled (and therefore of 
how ‘true’ the model is to the phenomenon it models—or, we may say, how 
‘apt’ the model is) in order to be explanatory is a complex and contentious 
matter, but this is not the sense of truth that matters for the purposes of the 
metaphysical question of what status should be given to models in model 
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explanations. What we need to ask is, in cases where we do think that the 
model in a structural model explanation is close enough to the system 
modelled in relevant respects to be genuinely explanatory, must we accept 
the existence of the model system itself in order to accept this explanation as 
genuine? What is the metaphysical status of the idealized models appealed 
to in structural model explanations, and in particular, does commitment to 
the existence of mathematical explanations as structural model explanations 
incur an undesirable commitment to abstracta?

There is a strong tradition in discussions of models in the philosophy 
of science of thinking of models as merely imaginary objects. For example, 
Peter Godrey-Smith (2009, p. 102) characterises “model-based” science as.

• a style of theoretical work in which an imaginary system is 
introduced and investigated—an imaginary population, ecology, 
neural network, stock market, or society. The behavior of the 
imaginary system is explored, and this is used as the basis for an 
understanding of more complex real-world systems.

This suggests a picture of model building as analogous with storytelling: 
although we appear to speak as if the objects in our models really exist, we 
are actually just telling a story that fleshes out the supposition that there are 
such things, without commitment to the truth of that supposition. (Similarly, 
with theorizing in the context of a pure mathematical theory, we can view 
theorists as working out the consequences of the supposition that the axioms 
of that theory are true, without any commitment to the actual truth of those 
axioms.) The literal truth of statements uttered in describing the models 
used in model explanations may not be required for those explanations to be 
explanatory if all we are doing by uttering those statements is elaborating on 
what would be the case were there objects of the sort described.

I do not have the space here develop a nominalist understanding of 
ideal models in empirical science. In Leng (2010) I endorse an account of 
models as representations that builds on Kendall Walton’s (1990) account 
of representation as “prop oriented make-believe”, an account that has been 
developed further in the modelling literature in various ways e.g. by Frigg 
(2010), Toon (2010) and Salis (2019). To the extent that a fictionalist account 
of models in science can be defended, the idealised models in ‘structural 
model explanations’ do not need to exist in order to be utilised in explaining 
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physical phenomenon.
What I would like to suggest, then, is that whether we really believe 

that there are abstract systems of ideal objects instantiating an axiomatically 
characterized mathematical structure and appropriately related to a system 
of physical objects, or merely pretend that there are such things, makes 
no difference to our ability to exploit the ‘framing effect’ of a structural 
model explanation in enabling us to see empirical systems as essentially 
mathematically structured. In mathematical theorizing we discover what 
would be true of any system instantiating the axioms (including in any 
subsystem of such a system), and in describing a model (whether real or 
imagined) that allows us to see a physical system as structurally related to 
a (real or imagined) subsystem of a system instantiating a mathematical 
structure, we are able to conclude that certain empirical interpretations of our 
mathematical results ought to be true of the physical system under discussion 
simply by virtue of its mathematical structure. The framing effect of seeing 
wind patterns on the earth’s surface as modelled by a tangent vector field no 
more requires the existence of the mathematical system one imagines than 
does the framing effect of seeing those same wind patterns as modelled by 
a hairy ball that one is trying to comb flat requires the real existence of said 
ball. In either case the appropriateness of the imagined model allows us to 
frame facts about the system modelled as holding in virtue of its sharing the 
structure of the model system. And in either case, the explanatory work done 
by the model is that it shows us that those facts were to be expected given 
the structure of the situation modelled.

Explanatory Models, or Explanatory Structures?
The introduction of idealized models that represent actual physical 
phenomenon into our account of explanation may introduce a new wrinkle, 
however, as it has sometimes been suggested that showing that phenomenon 
to be explained holds in a structurally similar model of a target system cannot 
suffice to explain that phenomenon. For example, James R. Brown argues 
that it is because mathematics generally finds application via enabling us to 
form tractable models of physical phenomena that mathematics cannot play 
a genuine explanatory role:
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• Mathematics hooks on to the world by providing representations 
in the form of structurally similar models. The fact that it works 
this way means that it cannot explain physical facts, except in 
some derivative sense that is far removed from the doctrines of 
explanation employed in indispensability arguments. (Brown, 
2012, p. 8)

In Brown’s view, the role that structural models have in our theories is to 
provide representations of physical systems. These may aid understanding, 
by being easier to work with than the systems themselves (and allowing 
us to use familiar descriptive tools). But providing this kind of aide to 
understanding is a derivative sense of explaining, and does not amount 
to mathematics playing a genuine explanatory role. Despite Brown’s own 
platonism (which he holds on independent grounds), Brown’s view of the 
role of mathematics in explanations is thus in line with those nominalists 
who hold that all the genuine explanatory work in so-called mathematical 
‘explanations’ of empirical phenomena resides in the nominalistic content 
that the mathematics helps us to grasp.

By separating out the structural elements of structural model explanations 
from the model elements, we can see where Brown and others go wrong in 
this regard. Brown is absolutely right that, to the extent that the role played 
by mathematics is to provide tractable models of empirical phenomena, the 
ease of understanding that results from having such tractable models is only 
‘explanatory’ in a derivative sense—the models may make the ultimately 
nominalistic features of the systems easier for us to grasp, but they are not 
playing an explanatory role in showing us why the phenomena we observe 
had to be true. However, focus on mathematics as providing models diverts 
attention from the structural features of these models, which is where their 
explanatory work resides. What makes a structural explanation explanatory 
is not just that it displays some ultimately nonmathematical content to be true, 
but rather that it displays that content to be true in virtue of the mathematical 
structure of the empirical system under investigation: it shows it to be a 
consequence of mathematical axioms that are true under an empirical 
interpretation. And what makes a structural model explanation explanatory 
is again not (just) that it displays some nonmathematical content to be true, 
but that it shows it to be true in virtue of the mathematical structure of the 
situation to be explained, by relating that situation in an appropriate manner 
to a model that instantiates (or is a subsystem of a system that instantiates) 
a given mathematical structure. Structural explanations of either sort 
show why the observed phenomenon had to happen or was to be expected 



Models, Structures, and the Explanatory Role of Mathematics in ... 27

given the mathematical structure of the empirical system under study. The 
nominalistic content of these explanations, on the other hand, do no such 
thing: the insight the mathematical structure provides is lost if we simply 
focus on the content of the true descriptive claim that the empirical situation 
is such as to make the models used in these explanations appropriate.

The added explanatory work done by representing empirical phenomena 
as essentially mathematically structured can make sense of a complaint that 
Otávio Bueno and Mark Colyvan have expressed about the limitations of 
‘mapping accounts’ of the application of mathematics (such as that of Pincock 
(2004) and suggested in Leng (2005)). Mapping accounts try to explain the 
applicability of mathematics by noting that our mathematical theories and 
the physical world to which they apply are related by structural similarity 
relations, much like a map is related to a city. It is not surprising that we 
can learn things about a city from studying its map, given the structural 
similarity relation holding between the map and the city, and it is also not 
surprising that it is helpful for us in discussing the spatial arrangements of 
objects in a city in terms of the map rather than the city itself—it provides a 
useful simplification that can make navigation problems tractable and allow 
us to ignore the mass of irrelevant detail. But, Bueno and Colyvan (2011) 
note, it would be odd to think that the map of the city could by itself explain 
facts about the city (unless, perhaps, we discover that the map was the 
blueprint from which the city was built). More needs to be said in mapping 
accounts of applications to show how the mathematical theories we claim 
to be structurally related to the physical world can explain features of that 
world.

The difference between a mathematical theory and a road map in 
explanatory uses of mathematics is that, while both are models (and hence both 
are structurally similar to the reality they represent), only the mathematical 
theory involves a structural model, in the sense of representing the physical 
world as (approximating) an instantiation of (a substructure of) some wider 
mathematical structure. Rather than simply mirroring the structure of an 
empirical system (as in any model), a structural model represents that system 
as an instance of a mathematical structure. As such, it enables us to explain 
features of that system as holding in virtue of its mathematical structure, 
whenever they can be shown to be empirical interpretations of mathematical 
statements that are derivable from the structure’s characterizing axioms. It is 
not mere similarity that matters in the use of mathematical models to explain, 
but rather, the realization that this similarity means that the inferential 
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structure of our mathematical theories carries over to the empirical situation 
modelled, so that truths about the empirical situation can be seen as holding 
in virtue of its mathematical structure.

CONCLUSION
I have, in this paper, agreed with platonists including Baker and Colyvan 
that mathematics sometimes plays an indispensable explanatory role in 
empirical science, with mathematical hypotheses sometimes doing genuine 
explanatory (or at least, explanation-like) work that is not exhausted 
by the nominalistic content that those hypotheses enable us to represent. 
Nevertheless, I have argued, the involvement of mathematical hypotheses 
in these explanations does not support platonism. Mathematical hypotheses 
can play this kind of explanatory (or explanation-like) role even if there 
are no abstract mathematical objects, since the role mathematics plays in 
such explanations is of showing physical phenomena to be true in virtue 
of the mathematical structure instantiated (or approximately instantiated) 
in the physical system under study, rather than by appealing to abstract 
mathematical objects per se. In structural explanations, we have examples 
of distinctively mathematical explanations which show their explananda 
to hold by virtue of logical necessity given the mathematical structure 
instantiated in the physical system. When structure-characterising axioms are 
interpreted so as to be true of a particular physical system, we can generate 
mathematical explanations of physical phenomena that do not appeal to any 
abstract mathematical objects, but instead only require modal truths about 
what follows logically from our mathematical assumptions, together with 
the recognition that the assumptions of our mathematical theories are true 
when interpreted as about the physical system under examination.

Given, however, the amount of idealization that is generally required 
in order to apply mathematics to physical systems, most mathematical 
explanations of empirical phenomena will involve intermediate idealized 
models, rather than the direct instantiation of mathematical structures 
in physical systems, where what is directly explained by these structural 
explanations is features of an idealized model that instantiates our 
mathematical axioms. The presence of these models as intermediaries may 
raise concerns that such explanations are committed to abstract mathematical 
objects, or at the very least, to abstract idealizations of physical objects 
whose status is arguably as questionable as the abstract mathematical 
objects that mathematical fictionalists try to avoid. I have suggested that 
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when idealized models are introduced into explanations, mathematical 
theories are used to provide structural explanations of the features of these 
models, which can then be used to explain features of the physical systems 
they model to the extent that the models provide apt representations. And I 
have proposed an understanding of idealized models in science that views 
them as a form of ‘make-believe’ or pretense. In such cases, when we speak 
of similarities between the physical system and the model, we are indirectly 
asserting that the physical system is the way it would have to be to make the 
pretense appropriate. So we can speak as if there are objects as imagined in 
our idealized theoretical models in order to represent how things are taken 
to be with the physical systems with which we are ultimately concerned. 
The models in structural model explanations need not, then, present any 
new worry the nominalist who takes it that fictions can be used to represent 
without the objects of fictions existing.

What this paper has not, of course, established is that all explanatory or 
explanation-like uses of mathematical hypotheses occur in the context of 
structural model explanations. I have not argued (and indeed I do not hold) 
that all explanation is structural explanation, and it is at least conceivable that 
examples could be found where mathematics plays a genuine explanatory 
role but where the explanation given is not structural. However, the dual 
role of mathematics identified in this discussion—as providing amenable, 
abstracted models of reality that are easy to work with, and as identifying 
features of those models that hold in virtue of structure-characterizing 
mathematical axioms, seems to me at least to get at some of the key elements 
of what it is so special about mathematics that makes it such a useful tool 
in both describing and explaining empirical phenomena. If there are other 
features of mathematics in application that have been overlooked, and that 
can be exploited to show mathematics to be explanatory in other ways, I 
would certainly be keen to hear of them. But what I hope to have shown in 
this paper is that there is a gap between showing that mathematics can play 
an indispensable explanatory (or explanation-like) role and showing that the 
existence of mathematical objects (or the truth of our mathematical theories) 
is required for mathematics to play such a role. We should not automatically 
infer, of the best explanation we have of a phenomena, that it is true, but 
only that it does indeed explain. The question then needs to be asked, “How 
does it explain?”, and it is in the details of answering this question that 
we may hope to uncover the metaphysical commitments of our taking the 
explanation to be explanatory.
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Notes
1. Talk of shared structural features may suggest to some readers a 

Platonist interpretation in the form of the ante rem structuralism of 
Shapiro (1997). In Sect. 3.3 I show that this Platonist interpretation 
can be avoided by adopting a modal structuralist understanding of 
the notion of mathematical structure (following Hellman, 1989).

2. The labels ‘algebraic’ and ‘assertory’ are due to Geoffrey Hellman 
(2003), but the debate over how to understand axiomatic theories is 
older, going back at least to Frege and Hilbert, who corresponded 
over this matter (with Frege on the assertory and Hilbert on the al-
gebraic side of the debate Frege, 1980).

3. In Leng (2007) I argue that an algebraic approach to mathematical 
theories is also shared by other contemporary philosophical accounts 
of mathematics, including fictionalism and full-blooded platonism.

4. The modal structural characterisation follows Hellman (1989).
5. The issue of explanatory symmetries is also raised as a problem 

for Lange’s ‘explanations by constraint’, which also look like they 
are best cast as explanatory arguments. In Because without Cause, 
Lange tries to avoid symmetries by arguing that ‘reversed’ versions 
of his explanations by constraint are ruled out because they appeal 
to features that are “not understood to be constitutive of the physi-
cal arrangement with which [the explanatory why question] is con-
cerned” (Lange, 2016, p. 43). Craver and Povich (2017) find this 
account wanting (though see Lange, 2018 for a reply). I wish to 
embrace the potential for empirical symmetries in part because I 
think the kinds of features that contextual information might deter-
mine to be constitutive of a physical arrangement when we consider 
a why question might well be such as to allow perfectly acceptable 
reversals. Those who hold that true explanations cannot admit of 
symmetries might wish to resist taking ‘displaying the phenomenon 
to be nomically expectable’ to be a way of explaining things. My 
own view, though, is that ‘showing it to be nomically expectable’ 
should be considered a perfectly good way of explaining a phenom-
enon, and it is only a prejudice in favour of the causal that prevents 
us from accepting that perfectly good explanations may sometimes 
run in more than one direction.

6. The group tables are as follows:
Klein 4-group
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0 a b ab
a 0 ab b
b ab 0 a
ab b a 0

Cyclic group of order 4

0 a a2 a3

a a2 a3 0
a2 a3 0 a
a3 0 a a2

This idealization is inessential. It is made for the convenience of using 
a straightforward instantiation of the Peano axiom structure in the sequence 
of years in our explanatory argument. Since the theorem we are using will 
also apply also to apply to finite initial segments of the natural numbers, 
we could avoid the idealization and talk instead about theorems that hold in 
finite initial segments of n. I prefer to make the idealization for simplicity 
in formulating the explanatory argument, since, as I will argue in the next 
section, introducing idealizations into our mathematical explanations of 
physical phenomena will often be required anyway, and doing so incurs no 
additional platonistic debt.

7. Field (1980) explains how the use of mathematics in such measure-
ments can be dispensed with. Without actually following Field in 
dispensing with this use of mathematics, Field’s machinery should 
convince us that our initial use of real numbers in measurement are 
merely a means of quantitatively representing qualitative differenc-
es between wind strength and direction at various points: there is 
some nominalistic content to these measurements, even though they 
are mathematically indexed. Beyond this measurement step, though, 
I wish to suggest that the subsequent use of a mathematical theory to 
model wind behaviour so-measured is an essential explanatory use 
whose value does not solely reside in its representational content.

8. In fact, as Alan Baker (2005) has pointed out, examples such as 
these are somewhat tenuous, since the phenomenon to be explained 
is not one that has been independently noticed or even verified: it is 
more a prediction of the mathematics than a previously noted puzzle 
crying out for explanation. Nevertheless, since I am presuming for 
the purposes of this paper that there are some genuine mathematical 
explanations of empirical phenomena, rather than trying to establish 
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the existence of genuine examples, I have chosen to stick with this 
example for its relative simplicity. It provides, at least, an explana-
tion in the sense that, had the phenomenon been noted prior to the 
mathematical prediction, it would have explained that phenomenon.
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quantum phenomena in physics. In order to do so, I shall first discuss the key 
reasons for the use of Q-models in physics. In particular, I shall examine the 
fundamental principles that led to the development of quantum mechanics. 
Then I shall consider a possible role of similar principles in using Q-models 
outside physics. Psychology, economics, and decision science borrow 
already available Q-models from quantum theory, rather than derive them 
from their own internal principles, while quantum mechanics was derived 
from such principles, because there was no readily available mathematical 
model to handle quantum phenomena, although the mathematics ultimately 
used in quantum did in fact exist then. I shall argue, however, that the 
principle perspective on mathematical modeling outside physics might help 
us to understand better the role of Q-models in these fields and possibly to 
envision new models, conceptually analogous to but mathematically different 
from those of quantum theory, that may be helpful or even necessary there 
or in physics itself. I shall, in closing, suggest one possible type of such 
models, singularized probabilistic models, SP-models, some of which are 
time-dependent, TDSP-models. The necessity of using such models may 
change the nature of mathematical modeling in science and, thus, the nature 
of science, as it happened in the case of Q-models, which not only led to a 
revolutionary transformation of physics but also opened new possibilities 
for scientific thinking and mathematical modeling beyond physics.

Keywords: principles, models, probability, statistics, reality, realism

INTRODUCTION
The history of mathematical modeling outside physics has been dominated 
by classical mathematical models, C-models, based on mathematical models 
developed in classical physics, especially probabilistic or statistical models, 
borrowed from classical statistical physics or chaos and complexity theories. 
More recently, however, models based in the mathematical formalism of 
quantum theory, Q-models, primarily borrowed from quantum mechanics 
but occasionally also quantum field theory, became more current outside 
physics, specifically in psychology, economics, and decision science, the 
fields (beyond physics) with which I will be primarily concerned here [e.g., 
1, 2]1. My abbreviations follows P. Dirac’s distinction between c-numbers 
(classical numbers) and q-numbers (quantum numbers), because the variables 
used in Q-models are in fact q-numbers. Quantum mechanics and Q-models 
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are based in the mathematics of Hilbert spaces over complex numbers, C, 
with Hilbert-space operators used as physical variables in the equations of 
quantum mechanics, as against functions of real (mathematical) variables, 
c-numbers, that serve as physical variables in classical physics. The use of 
Q-models in these fields remains controversial, because it is not entirely 
clear whether they are necessary for dealing with the phenomena in question 
or whether C-models would suffice. It is true that debates and sometimes 
controversies have also accompanied quantum mechanics since its birth 
in 1925. These debates, initiated by the famous confrontation between N. 
Bohr and A. Einstein on, in Bohr’s phrase, “epistemological problems in 
atomic physics,” used in the title of his account of this confrontation, have 
never lost their intensity and appear to be interminable [3, v. 2, pp. 32–66]. 
However, as Bohr’s phrase indicates, the reasons for these controversies 
have been primarily philosophical. The effectiveness of quantum mechanics 
or higher-level quantum theories, such as quantum field theory, has not 
been in question: they are among the best-confirmed theories in physics. 
The situation is different in psychology, economics, and decision science, 
where it is the scientific effectiveness or at least necessity of Q-models 
that is doubted. My aim here, however, is not to assess this effectiveness 
or necessity, but instead to reflect on what the possible applicability of 
Q-models may tell us about the corresponding phenomena in these fields 
vis-à-vis quantum phenomena in physics. In order to do so, I shall first 
consider the key reasons for the use of Q-models in physics. In particular, 
I shall examine the fundamental principles that grounded and indeed led to 
the development of quantum theory. Then I shall consider a possible role of 
similar principles in using Q-models beyond quantum theory. My emphases 
are due to the fact that psychology, economics, and decision science borrow 
already available Q-models from quantum theory, rather than derive 
them from their own fundamental principles, while quantum mechanics 
and then quantum field theory were derived from such principles. This 
is not surprising because there was at the time no available mathematical 
model or (a more general concept, which includes an interpretation of the 
model used) theory to effectively handle quantum phenomena. The “old 
quantum theory” of M. Planck, A. Einstein, N. Bohr, and A. Sommerfeld, 
which ushered in the quantum revolution, became manifestly inadequate 
by the time W. Heisenberg began his work on quantum mechanics that he 
discovered in 1925 [4]. For the reasons explained below (mostly a search 
for a more rigorous derivation of the formalism), the research in quantum 
foundations is still concerned with deriving quantum theory from such 
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principles, a project in part motivated by the rise of quantum information 
theory. That does not appear to be a significant concern outside physics 
where the use of Q-models is motivated primarily by their predictive 
capacities, which is of course a crucial consideration in physics as well. It 
may, however, be beneficial to consider the deeper reasons for the possible 
use of Q-models in these fields, or, in terms of my title, the real that gives 
rise to the mathematical of Q-models there. The principle perspective on 
mathematical modeling beyond physics might help us to do this and possibly 
to envision new, post-quantum, models there or even in physics. I shall, in 
closing, suggest one possible type of such models, singularized probabilistic 
models, SP-models, some of which are time-dependent, TDSP-models, and 
consider their implications for mathematical modeling in science and for our 
understanding of the nature of science2.

PHYSICAL PRINCIPLES AND MATHEMATICAL 
MODELS IN QUANTUM MECHANICS

Theories, Principles, and Models in Fundamental Physics
I would like to begin by outlining the key features of the standard mathematical 
model of quantum mechanics, more customarily used as a probabilistically 
or statistically predictive model in view of the difficulties of in maintaining 
its representational capacities, which continue to be debated:

• The Hilbert-space formalism over the field of complex numbers, 
C, an abstract vector space of any dimension, finite or infinite (in 
quantum mechanics, either finite or countably infinite), possessing 
the structure of an inner product that allows lengths and angles to 
be measured, analogously to an n-dimensional Euclidean space 
(which is a Hilbert space over real numbers R);

• The noncommutativity of the Hilbert-space operators, also known 
as “observables,” which are mathematical entities associated, in 
terms of probabilistic or statistical predictions, with physically 
observable quantities;

• The nonadditive nature of the probabilities involved: the joint 
probability of two or more mutually exclusive alternatives in 
which an event might occur is, in general, not equal to the sum 
of the probabilities for each alternative, and instead obey the law 
of the addition of the so-called “quantum amplitudes,” associated 
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with complex Hilbert-space vectors, for these alternatives 
(technically, these amplitudes are linked to probability densities);

• Born’s rule or an analogous rule (such as von Neumann’s 
projection postulate or Lüder’s postulate) added to the formalism, 
which establishes the relation between amplitudes as complex 
entities and probabilities as real numbers (by using square moduli 
or, equivalently, the multiplication of these quantities and their 
complex conjugates) and (3) above3.

In the development of quantum mechanics, discovered in 1925, 
these features were not initially assumed, but were derived from certain 
physical features of quantum phenomena and principles arising from these 
features. The formalism was only given a properly Hilbert-space form by 
J. von Neumann, in 1932, in The Mathematical Foundations of Quantum 
Mechanics, a standard text ever since [7]4.

I shall now explain the concepts of theory, principle, and model, as they 
will be understood here. By a theory, I mean an organized assemblage of 
concepts, explanations, principles, and models by means of which one is 
able to relate, in one way or another, to the phenomena or (they are not 
always the same) objects the theory considers. In defining principles, 
I follow Einstein’s distinction between “constructive” and “principle” 
theories, two contrasting, although in practice often intermixed, types of 
theories [8, 9, pp. 35–50]. “Constructive theories” aim “to build up a picture 
of the more complex phenomena out of the materials of a relatively simple 
formal scheme from which they start out” [8, p. 228]. Thus, according to 
Einstein, the kinetic theory of gases, as a constructive theory in classical 
physics, “seeks to reduce mechanical, thermal, and diffusional processes 
to movements of molecules—i.e., to build them up out of the hypothesis of 
molecular motion,” described by the laws of classical mechanics [8, p. 228]. 
By contrast, principle theories “employ the analytic, not the synthetic, method. 
The elements which form their basis and starting point are not hypothetically 
constructed but empirically discovered ones, general characteristics of 
natural processes, principles that give rise to mathematically formulated 
criteria which the separate processes or the theoretical representations 
of them have to satisfy” [8, p. 228]. Thus, thermodynamics, a classical 
principle theory (parallel to the kinetic theory of gases as a constructive 
theory), “seeks by analytical means to deduce necessary conditions, which 
separate events have to satisfy, from the universally experienced fact that 
perpetual motion is impossible” [8, p. 228].



The Use of Mathematical Structures: Modelling Real Phenomena42

Principles, then, are “empirically discovered, general characteristics 
of natural processes, …that give rise to mathematically formulated 
criteria which the separate processes or the theoretical representations of 
them have to satisfy.” I shall adopt this definition, but with the following 
qualification, which is likely to have been accepted by Einstein. Principles 
are not empirically discovered but formulated, constructed, on the basis of 
empirically established evidence. “The impossibility of perpetual motion” is 
hardly empirically given; it is as a principle formulated on the basis of such 
evidence.

Constructive theories are, more or less by definition, realist theories, 
and conversely, many realist theories are constructive. Realist theories 
represent, commonly causally, the phenomena or objects they consider and 
their behavior, in science by mathematical models, assumed to idealize how 
nature or reality works, in the case of constructive theories at the simpler, or 
deeper, level of reality constructed by a theory. In other words, a constructive 
theory offer a representation of the processes underlying and connecting 
the observable phenomena considered, commonly by understanding the 
ultimate character of these processes on the model of classical mechanics 
or classical electrodynamics, as in the kinetic theory of gases, as described 
above or other forms of classical statistical physics. All such theories assume 
that the individual behavior of the ultimate constituents of the systems they 
consider is described by the laws of classical mechanics. A realist theory 
may represent objects or phenomena it considers in a more direct, if still 
idealized, manner, as classical mechanics (which deals with individual or 
sufficiently small systems) or classical electrodynamics do. I shall discuss 
the concepts of reality and realism, which encompasses that of realist theory, 
in more detail below. First, however, I shall define a mathematical model.

By a “mathematical model” I refer to a mathematical structure or set of 
mathematical structures that enables any type of relation to the (observed) 
phenomena or objects considered. (As I shall only deal with mathematical 
models here, the term “model” hereafter refers to mathematical models.) 
All modern, post-Galilean, physical theories are defined by their uses of 
such models. The requirement of using mathematical models may be seen 
as a principle, the mathematization principle, “the M principle,” arguably 
the single defining principle of all modern physics, from Galileo on. Such 
models may be realist, representational, as in classical physics, specifically 
classical mechanics, or predictive, as in classical statistical physics (the 
models of which are, however, underlain by representational models of 
classical mechanics), or in quantum mechanics, without assuming realism 
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and causality even in considering elementary individual quantum processes, 
such as those concerning elementary quantum objects, “elementary 
particles.” This assumption is expressly abandoned or even precluded in 
non-realist interpretations of quantum phenomena and quantum mechanics, 
following Bohr and “the spirit of Copenhagen,” as Heisenberg called it [10, 
p. iv]5. The M principle is upheld in quantum mechanics, but, in non-realist 
interpretations, in a way different from how it is used in realist theories.

The probabilistic or statistical character of quantum predictions must also 
be maintained by realist interpretations of these theories or alternative theories 
(such as Bohmian theories) of quantum phenomena, in conformity with 
quantum experiments, in which only probabilistic or statistical predictions 
are possible. The reasons for this is that the repetition of identically prepared 
quantum experiments in general leads to different outcomes, a difference 
that cannot be improved beyond a certain limit (defined by Planck’s 
constant, h) by improving the conditions of measurement, which is possible 
in classical physics. This fact is also manifested in Heisenberg’s uncertainty 
relations, which are statistical in character as well. This situation leads to 
the quantum probability or (depending on interpretation) quantum statistics 
principle, the QP/QS principle, arguably the single defining principle 
in Q-models in physics and beyond, keeping in mind that in psychology, 
economics, and decision science, we do not have anything corresponding to 
elementary individual physical processes, involving the ultimate elementary 
constituents of nature, “elementary particles.” Nor do we have anything 
analogous to h. The probabilities themselves necessary for making correct 
predictions, in either quantum mechanics or in using Q-models elsewhere, 
are, thus far, calculated by using the Hilbert-space or mathematically 
equivalent formalisms and the (non-additive) procedure described above 
that uses quantum amplitudes and Born’s or a similar rule6.

Realist models are, then, representational models, idealizing the nature 
of objects or phenomena they consider. The term “realism” will be primarily 
understood here as referring to the possibility, at least, again, in principle, 
of such models, and, in the first place, theories allowing for such models. 
One could define another type of realism, which would refer to theories 
that presuppose an independent architecture of reality they consider, while 
allowing that this architecture cannot be represented, either at a given moment 
in history or perhaps ever, but if so, only due to practical human limitations 
[9, pp. 11–23]. In the first case, a theory that is strictly predictive may be 
accepted, but with the hope that a future theory will do better, by being 
a realist theory of the representational type. Einstein adopted this attitude 
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toward quantum mechanics, which he expected to be eventually replaced 
by a (representational) realist theory. Even in the second case, the ultimate 
nature of reality is commonly deemed to be conceivable on realist models of 
classical physics, possibly adjusting them to accommodate new phenomena. 
However, this type of realism implies that there is no representational theory 
or model of the ultimate nature of the phenomena or objects considered. Either 
type of realism is abandoned or even precluded in quantum mechanics, when 
interpreted in the spirit of Copenhagen. However, such interpretations do 
assume the concept of reality, by which I refer to what exists or is assumed to 
exist, without making any claim upon the character of this existence, which 
type of claims defines realist theories. By existence I refer to a capacity 
to have effects on the world, ultimately, which also assume the existence 
of the world by virtue of its capacity to have effects upon itself, effects 
which establish by means of and thus in terms as effects of our interactions 
with the world. In physics, the primary reality considered is that of nature 
or matter. It is generally assumed to exist independently of our interaction 
with it, which also assumes that it has existed when we did not exist and 
will continue to exist when we will no longer exist. This assumption is also 
made in non-realist interpretations of quantum mechanics, in the absence of 
a representation or even (as against the second, non-representational type of 
realism defined above) conception of the character of this existence. Thus, if 
realism presupposes a representation or at least a conception of reality, this 
concept of reality is that of “reality without realism” [9, 11]. The assumption 
of this concept of reality is a principle, the RWR principle. The existence or 
reality of quantum objects, a form of reality beyond representation or even 
conception, is inferred from effects they have on our world, specifically on 
experimental technology. It has not been possible, at least thus far, to observe 
a moving electron or photon, or for that matter even stationary electrons 
(there are no stationary photons, which only exist in motion before they are 
absorbed by other forms of matter, such as electrons). It is only possible to 
observe traces of their interactions with measuring instruments, traces that 
do not allow us to reconstitute the independent behavior of quantum objects 
movement, an impossibility reflected in Heisenberg’s uncertainty relations. 
In non-realist, RWR-principle-based, interpretations, quantum mechanics 
only predicts, in probabilistic or statistical terms (no other predictions are, 
again, possible on experimental grounds), effects manifested in measuring 
instruments impacted by quantum objects.

While a principle theory, which, as I explained, need not be constructive 
in Einstein’s sense, could be either realist or non-realist, a constructive 
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theory is by definition realist. Realist or, it follows, constructive theories do 
involve principles, such as the equivalence principle in general relativity, 
or the principle of causality, which, to adopt Kant’s definition, commonly 
used ever since, states that, if an event takes place, it has a cause of which 
it is an effect [12, p. 305, 308]7. Asymmetrically, however, a principle 
theory need not involve constructive aspects or be realist. In non-realist, 
RWR-principle-based, interpretations, quantum mechanics is a principle 
theory by definition, by virtue of the RWR principle. It is not possible, 
in such interpretations, to have a constructive theorization of the ultimate 
entities, quantum objects, which are responsible for the observable quantum 
phenomena, unless one sees quantum objects as constructed as in principle 
unconstructible. According to Bohr, thus formulating the RWR principle, 
“in quantum mechanics we are not dealing with an arbitrary renunciation 
of a more detailed analysis of atomic phenomena, but with a recognition 
that such an analysis is in principle excluded,” beyond a certain point [3, v. 
2, p. 62]. In this interpretation, quantum mechanics divorces itself from the 
representation of the connections between observed quantum phenomena, 
which it only relates in terms of predictions, in general probabilistic or 
statistical in character, thus fulfilling the M principle under the conditions of 
the RWR principle.

Finally, the present view does not assume a permanent, Platonist, 
essence to any given principle, which can always be abandoned under the 
pressure of new experimental findings or new ways of theorizing previously 
available experimental findings. Indeed, one might argue that the greatest 
form of creative thinking in science or other theoretical fields is that which 
lead to the invention of new principles, which implies the transformation of 
principles, rather than any Platonist permanence to them.

The Physical Principles of the Quantum Theory
The RWR principle and the corresponding interpretation of quantum 
mechanics emerged only in the 1930s. Heisenberg’s discovery of quantum 
mechanics in 1925 and Bohr’s initial interpretation of it, proposed in 1927, 
were based on the following principles, with Bohr’s complementarity 
principle added in 1927:

• the proto-RWR principle, according to which, “quantum 
mechanics does not deal with a space–time description of the 
motion of atomic particles” [3, v. 1, p. 48];
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• the principle of discreteness or the QD principle, according to 
which all observed quantum phenomena are individual and 
discrete in relation to each other, which is fundamentally different 
the atomic discreteness of quantum objects themselves;

• the principle of the probabilistic or statistical nature of quantum 
predictions, the QP/QS principle, even (in contrast to classical 
statistical physics) in the case of primitive or elementary quantum 
processes, in which nature also reflects a special, non-additive, 
nature of quantum probabilities and rules, such as Born’s rule, for 
deriving them, and

• the correspondence principle, which, as initially understood 
by Bohr, required that the predictions of quantum theory must 
coincide with those of classical mechanics in the classical limit, 
but was given by Heisenberg a new and more rigorous form of 
“the mathematical correspondence principle,” which required 
that the equations of quantum mechanics convert into those of 
classical mechanics in the classical limit, thus, in accordance with 
the M principle.

I speak of the proto-RWR principle because Heisenberg saw the project 
of describing the motion of electrons as unachievable at the time, rather than 
“in principle excluded,” as Bohr assumed a decade later [3, v. 2, p. 62]. This 
was, nevertheless, a radical move on Heisenberg’s part, as Bohr was the first 
to realize: “In contrast to ordinary [classical] mechanics, the new quantum 
mechanics does not deal with a space–time description of the motion of 
atomic particles. It operates with manifolds of quantities [matrices] which 
replace the harmonic oscillating components of the motion and symbolize 
the possibilities of transitions between stationary states in conformity with 
the correspondence principle. These quantities satisfy certain relations which 
take the place of the mechanical equations of motion and the quantization 
rules [of the old quantum theory]” [3, v. 1, p. 48].

Quantum discreteness was eventually (as part of Bohr’s ultimate 
interpretation) recast by Bohr in terms of his concept of “phenomenon,” 
defined in terms of what is observed in measuring instruments under 
the impact of quantum objects, in contradistinction to quantum objects 
themselves, which cannot be observed or represented [3, v. 2, p. 64]. 
Quantum phenomena are, in Bohr’s interpretation, irreducibly discrete in 
relation to each other, and there is no continuous or any other conceivable 
process that could be assumed to connect them. Probability has a temporal 
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structure by virtue of its futural and discrete nature: one can only verifiably 
estimate future discrete events. Such events may, however, be continuously 
and causally connected, as they are in classical physics, even though we 
may not be able to track these connections to make exact predictions, as 
happens in classical statistical mechanics or chaos theory. By contrast, in 
non-realist, RWR-principle-based, interpretations, the nature of quantum 
phenomena and events precludes us from causally (or otherwise) connecting 
them. This means that only probabilistic or statistical predictions are 
possible, even ideally and in principle, and even in dealing with elementary 
individual quantum objects, such as those known as “elementary particles,” 
and the processes and events they lead to, objects and processes that cannot 
be decomposed into a smaller objects and processes. This qualification 
distinguishes quantum mechanics from classical probabilistic or statistical 
theories, or of course classical mechanics where such predictions could, 
at least ideally, be exact in dealing with individual classical objects or a 
small number of classical objects. In quantum mechanics, in non-realist 
interpretations, this type of idealization is not possible, a fact reflected in the 
uncertainty relations. The theory only estimates the probabilities or statistics 
of the outcomes of discrete future events, on the basis of previous events, 
and tells us nothing about what happens between events. Nor does it describe 
the data observed in measuring instruments and hence quantum phenomena. 
They are described by classical physics, which, however, cannot predict 
them.

The QP/QS principle was mathematically expressed in Heisenberg’s 
scheme by matrices containing the necessary probability amplitudes cum 
Born’s rule. Heisenberg only formulated this rule in the case of electrons’ 
quantum jumps in the hydrogen atom, rather than as universally applicable 
in quantum mechanics, as Born did. Born’s rule is not inherent in the 
formalism but is added to it—it is postulated.

The correspondence principle was central to Heisenberg’s derivation of 
quantum mechanics. In its mathematical form, introduced by Heisenberg, 
the principle required that both the equations of quantum mechanics, which 
were formally those of classical mechanics, and the variables used, which 
were different, convert into those of classical mechanics in the classical 
limit, a conversion automatic in the case of equations but not variables. (The 
processes themselves, however, are still quantum even in this limit.) Thus, 
the principle gave Heisenberg a half of the mathematical architecture he 
needed.
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An important qualification is in order. Heisenberg’s derivation of 
quantum mechanics from principles cannot be considered a strictly rigorous 
derivation, especially in a mathematical sense. As he noted in The Physical 
Principles of the Quantum Theory (from which title I borrow my title of this 
section): “The deduction of the fundamental equation of quantum mechanics 
is not a deduction in the mathematical sense of the word, since the equations 
to be obtained form themselves the postulates of the theory. Although made 
highly plausible, their ultimate justification lies in the agreement of their 
predictions with the experiment” [10, p. 108]. While Heisenberg, again, 
borrowed the form of equations themselves from classical mechanics by the 
mathematical correspondence principle, he virtually guessed the variables 
he needed—one of the most extraordinary guesses in the history of physics. 
A more rigorous derivation of quantum mechanics from fundamental 
principles may, thus, be pursued. More recent work in this direction has been 
in quantum information theory in the case of discrete quantum variables, 
such as spin, which require finite-dimensional Hilbert spaces, as opposed 
to infinite-dimensional ones for continuous variables, such as position and 
momentum (e.g., 13–15)8. I shall comment on this work below.

Bohr’s interpretation of quantum phenomena and quantum mechanics 
added a new principle, the complementarity principle. It arises from Bohr’s 
concept of complementarity and may be defined as requiring: “(a) a mutual 
exclusivity of certain phenomena, entities, or conceptions; and yet (b) the 
possibility of considering each one of them separately at any given point, 
and (c) the necessity of considering all of them at different moments for a 
comprehensive account of the totality of phenomena that one must consider 
in quantum physics” [9, p. 70].

In Bohr’s ultimate interpretation, this concept applies strictly to what is 
observed in measuring instruments, quantum phenomena, and not to quantum 
objects, placed beyond representation or even conception. Complementarity 
is a reflection of the fact that, in a radical departure from classical physics or 
relativity, the behavior of quantum objects of the same type, say, electrons, is 
not governed by the same physical law, especially a representational physical 
law, in all possible contexts, specifically in complementary contexts. In other 
words, the behavior of quantum objects has mutually incompatible effects in 
complementary set-ups, although this mutual incompatibility is, generally, 
manifested collectively, in multiple identically prepared experiments. On 
the other hand, the mathematical formalism of quantum mechanics offers 
correct probabilistic or statistical predictions of quantum phenomena in all 
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contexts, in non-realist interpretations, under the assumption, that quantum 
objects and processes are beyond representation or even conception, by the 
RWR principle.

In some non-realist interpretations, such as the one the present author 
would favor, following W. Pauli, individual quantum events are not subject 
even to the probabilistic laws of quantum mechanics. This makes these 
laws collective, statistical [9, pp. 173–186; 11]. The QP/QS principle, 
accordingly, becomes strictly the QS principle. According to Pauli:

As this indeterminacy is an unavoidable element of every initial state of 
a system that is at all possible according to the [quantum-mechanical] laws 
of nature, the development of the system can never be determined as was 
the case in classical mechanics. The theory predicts only the statistics of the 
results of an experiment, when it is repeated under a given condition. Like 
the ultimate fact without any cause, the individual outcome of a measurement 
is, however, in general not comprehended by laws. This must necessarily 
be the case, if quantum or wave mechanics is interpreted as a rational 
generalization of classical physics, which take into account the finiteness 
of the quantum of action [h]. The probabilities occurring in the new laws 
have then to be considered to be primary, which means not deducible from 
deterministic laws. [19, p. 32]

Thus, in Pauli or the present view, this “beyond the law” includes the 
probabilistic or, in this view, statistical laws of quantum mechanics, laws 
that, thus, only apply to statistical multiplicities of repeated quantum events. 
Individual quantum events are not subject to laws, even to the probabilistic 
or statistical laws of quantum mechanics. Their outcomes cannot, in general, 
be assigned a probability: they are strictly random9. Only the statistics 
of multiple (identically prepared) experiments could be predicted and 
repeated, which repeatability appears to have been, thus far, necessary for 
scientific practice. Whether, however, one interprets quantum mechanics on 
such statistical lines or on the Bayesian lines, by assigning probability to 
individual events, we are compelled to rethink the concept of physical law 
as unavoidably contextual. This is “an entirely new situation as regards the 
description of physical phenomena that, the notion of complementarity aims 
at characterizing” [20, p. 700].

There are other important features of quantum phenomena, mathematically 
expressed in the quantum-mechanical formalism, in particular, the so-called 
“quantum non-locality,” which refers to the existence of the statistical 
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correlations between spatially separated quantum events, and “quantum 
entanglement,” which reflects these correlations in the formalism. These 
features were discovered later and played no role in the initial derivation 
of quantum mechanics by either Heisenberg or Schrödinger. They do 
figure significantly in quantum information theory and recent attempts, 
mentioned above, to derive quantum mechanics from the principles of 
quantum information. Their analysis would require a treatment beyond my 
scope10. A few key points may, however, be mentioned. First, while quantum 
entanglement is a clearly defined feature of the formalism, the situation is 
different in the case of quantum non-locality. Although originating in the 
experimentally well-confirmed fact that certain spatially separated quantum 
phenomena or events exhibit statistical correlations (not found in classical 
physics), quantum non-locality is a complex and much debated issue. The 
problematic was in effect introduced in 1935 in the famous article by Einstein 
et al. [22]. I qualify because neither EPR’s article nor Bohr’s equally famous 
reply to it [20] used the language of correlations or entanglement. The latter 
term was introduced, in both German [Verschränkung] and English, by 
Schrödinger in his response to EPR’s article, known as “the cat-paradox 
paper,” after the paradox found there [23]. The subject remained dormant 
until the 1960s, when it was rekindled by the Bell and Kochen-Specker 
theorems, even to the point of nearly defining the current debate concerning 
quantum foundations. The theoretical and experimental research on the 
subject during the last decades has been massive and literature concerning 
it is immense. The term “non-locality” is not uniformly used in referring to 
quantum correlations, because it may suggest some sort of instantaneous 
physical connections between distant events, a “spooky action at a distance,” 
as Einstein called it. Such connections are incompatible with relativity, 
although the principle of locality, which prohibits such connections, is 
independent of relativity. This type of physical non-locality, which is found, 
for example, in Bohmian mechanics, is commonly viewed as undesirable. 
The absence of realism allows one to avoid physical non-locality, as 
Bohr argued in his reply to EPR’s article, which contended that quantum 
mechanics is either incomplete or physically nonlocal [20, 22].
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FROM MODELS TO PRINCIPLES IN Q-MODELING 
OUTSIDE PHYSICS

Q-Models, Fundamental Principles, and Reality without  
Realism Outside Physics
In addressing Q-models in physics in preceding discussion, my main 
question, arising from the history of quantum theory, was: Given certain 
fundamental physical principles, established on the basis experimental 
evidence, in particular the QD and QP/QS principles, and perhaps adopting 
additional principles, such as the correspondence principle or the RWR (or 
proto-RWR) principle, what are the mathematical models that would enable 
us to handle this evidence? In turning now to the Q-models beyond physics, 
my main question is reverse: Assuming that mathematical Q-models apply 
in psychology, economics, and decision science, which features and which 
fundamental principles are behind such models, and how they accord with 
the fundamental principles of quantum mechanics? There are two sets of 
principles I have in mind. The first contains the principles that led to the 
emergence of quantum mechanics; and the second the principles of quantum 
information theory, which are, however, in accord with most principles of 
the first set. I shall be primarily concerned with this first set (apart from the 
correspondence principle, unique to quantum theory), but will also comment 
on the second11.

But why is this question important in the first place? As noted from 
the outset, if there are phenomena outside physics that appear to require 
Q-models, one need, unlike at the time of the introduction of quantum 
mechanics, not invent such models at this point. One can borrow them, 
“ready-made,” from quantum theory, which is what happed in the case of 
Q-modeling outside physics. Nevertheless, establishing, now inferentially, 
fundamental principles behind Q-models might allow us to make important 
conclusions about the nature of the phenomena handled by these models. 
To put it in stronger terms, finding the fundamental principles behind a 
given model, even if this model is already available, is important because 
otherwise we don’t have a rigorous theory or a rigorous model, which is 
true even if a constructive theory is available, but is all the more important 
if it is not. Otherwise, we don’t really know what our models are models 
of, especially, again, in the absence of a constructive theory and realism, 
which absence is likely if Q-models apply and is my main interest here. 
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These considerations are also relevant in pursuing projects of more rigorous 
derivation of quantum mechanics from principles in physics, for example on 
lines of quantum information theory, even though the theory itself is already 
established. Part of the reason is, again, that doing so can give us a deeper 
understanding of quantum phenomena and quantum theory. More, however, 
is at stake. The main value of such projects lies in solving outstanding 
problems of fundamental physics, as in quantum field theory (which still 
has unresolved problems, its extraordinary successes notwithstanding) or 
quantum gravity, which has no model as yet [24, 25]. The same argument 
applies to Q-modeling beyond physics. The future of mathematical modeling 
there is at stake as well.

Before addressing the relationships between fundamental principles and 
Q-models in psychology, economics, and decision science, it may be helpful 
to summarize the non-realist, the RWR-principle-based, interpretation of 
quantum phenomena and quantum mechanics outlined in Section Physical 
Principles and Mathematical Models in Quantum Mechanics. While 
quantum objects are assumed to exist, the character of this existence or 
reality is, by the RWR principle, assumed to be beyond representation and 
even conception. As such, this reality is different from the reality of quantum 
phenomena, which are defined by what is observed in measuring instruments 
under the impact of quantum objects and, thus, can be represented. There are 
no mathematically expressed physical laws corresponding to the behavior of 
quantum objects. There are, however, mathematical laws that, expressing the 
QP/QS principle, enable correct probabilistic or statistical predictions of the 
outcomes of quantum experiments, manifested in measuring instruments, in 
all contexts. In addition, there are two interpretations of these mathematical 
laws. The first is probabilistic, along Bayesian lines, in which case these laws 
are seen as allowing one to assign probabilities to the outcomes of individual 
quantum events in accordance with one or the other law of the available 
set of laws, specifically those applicable in complementary situations. The 
second is statistical, when no such probabilities could be assigned because 
the outcomes of individual quantum experiments are not comprehended 
even by these laws and are seen as random, while these laws are assumed 
to predict the statistics of multiple identically prepared experiments in the 
corresponding contexts.

It is clear, however, that this conceptual architecture, in either the 
Bayesian or statistical interpretation, cannot apply unaltered in considering, 
along non-realist lines, human phenomena found in psychology, economics, 
or decision science and the possible Q-models there. This is because, while 
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there are individual objects or, the case may be, (human) subjects and 
processes to consider, there are no elementary objects of the type found in 
quantum physics. There is nothing analogous to elementary particles, such 
as electrons or photons, and there is rarely a completely random individual 
behavior. When one deals in these fields with large multiplicities one 
can, either in using C- or Q-models, average the individual behavior and 
statistically disregard the differences in this behavior, differences defined 
by psychological or other human and social factors, in which case one 
could apply either a Bayesian or statistical interpretation of the Q-model 
used. While, however, this averaging is sometimes possible in psychology, 
economics, and decision science, there are often significant obstacles in using 
it. Each sequence of events considered in such situations is singular, unique. 
Accordingly, if a Q-model applies in a given class of such cases, it would 
have to be interpreted on Bayesian lines, if one can establish such a class. If 
not, then, as discussed below, another type of models may be possible, the 
singularized probabilistic (SP) models, some of which are time-dependent 
(TDSP). Each such model is unique to the individual situation considered, 
rather than applicable to a class of individual situations; and this uniqueness 
may pose difficulties for scientific use of such models.

The QP/QS Principle and the Complementarity Principle
Beginning with Tversky and Kahneman’s work in the 1970–80’s [e.g., 
26], it has been primarily the presence of probabilistic data akin to those 
encountered in quantum physics that suggested using Q-models in cognitive 
psychology, decision science, and economics [e.g., 1, 2]12. Economic 
behavior may also involve psychological factors of the type analyzed by 
Tversky and Kahneman. (Kahneman was eventually awarded a Nobel Prize in 
economics.) The recourse to Q-models is motivated by the fact that one could 
not effectively use the classical (additive) rules but could use the quantum-
mechanical-like (non-additive) rules for predicting the probabilities of the 
outcomes of certain psychological experiments, such as those involving 
responses to certain specific questions, asked sequentially. These responses 
were found to be statistically dependent on the order in which they were 
asked, which, again, in parallel with quantum mechanics, suggested that a 
non-commutative model and, in combination with the non-additive rules for 
calculating the probabilities involved, a Q-model could be more effective13. 
To clarify this parallel, in quantum mechanics, simultaneously measuring, 
or simultaneously asking questions concerning, two or more complementary 
variables, such as the position and the momentum of a given quantum 
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object, are mutually exclusive or incompatible. Correlatively, changing the 
order of measuring (of asking the question concerning) the position and 
then the momentum of a quantum object, in general, changes the outcomes 
and hence our predictions concerning them. This circumstance is reflected, 
experimentally, in the uncertainty relations, and mathematically, in the non-
commutativity of the multiplication of the corresponding Hilbert-space 
operators in the formalism, and epistemologically, in the complementarity 
of these two measurements. One can, analogously, consider psychologically 
incompatible and, thus, complementary questions in psychology and 
attempt to handle the corresponding events statistically by a Q-model [e.g., 
1, pp. 259–260]. The situation involves further complexities in and outside 
quantum physics, which I put aside here. I would like, however, to mention 
R. Spekkens’s article, which introduced “a toy theory,” based on the 
following principle, linked to complementarity: “the number of questions 
about the physical state of a system that are answered must always be equal 
to the number that are unanswered in a state of maximal knowledge. Many 
quantum phenomena are found to have analogs within this toy theory.” 
Many but not all! For the theory expressly fails to reproduce some among 
the crucial features of quantum theory, specifically and intriguingly some 
of those related to correlations and entanglement, such as “violations of 
Bell inequalities and the existence of a Kochen-Specker theorem” [27, p. 
032110]. This failure reminds us that models based on the existence of 
incompatible questions, in and outside physics, may mathematically differ 
from quantum mechanics.

Q-models are, then, used to predict probabilities and correlations found 
in such experiments, without being expressly concerned with the principles 
characterizing the situations considered, but only assuming certain 
mathematical principles inherent in the quantum-mechanical formalism. 
Some among the principles of the first kind are, nevertheless, implicitly at 
work, specifically the QP/QS principle or the principle of incompatibility, in 
effect complementarity14. Whether these Q-models are required or C-models, 
models derived from the mathematics of classical physics, suffice remains, 
again, an open question, although it is difficult to assume that C-models 
could provide the non-additive probabilities necessary in such cases. 
A model alternative to that of quantum mechanics, possibly also free of 
quantum amplitudes and dealing directly with probabilities, is, in principle, 
possible even, as noted earlier, in quantum physics, but such a model is 
unlikely to be akin to those of classical physics. Thus, while they are both 
realist and causal, Bohmian models are mathematically different from those 
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of classical physics. It may also be possible to construct a realist and causal 
mathematical model that would represent a deeper level of reality and that 
would have quantum mechanics as its limit, and then extend this model 
beyond physics [e.g., 30].

In any event, one can see the QP/QS principle, in part in conjunction 
with complementarity, as the main principle behind the use of Q-models 
beyond physics, accompanied, as in quantum mechanics, by the specific 
(non-additive) calculus of probability. Indeed, the QP/QS principle, along 
with the QD principle, was the starting principle for Heisenberg. The role 
of complementarity, only implicit initially by virtue of the non-commutative 
nature of Heisenberg’s scheme, became apparent shortly thereafter, helped 
by Heisenberg’s discovery of the uncertainty relations in 1927. It became 
clear that non-commutativity, the uncertainty relations, and complementarity 
were correlative, representing, respectively, the mathematical, physical, 
and epistemological aspects of the quantum-mechanical situation, defined 
by quantum discreteness (the QD principle). As noted earlier, quantum 
discreteness was eventually rethought by Bohr in terms of quantum 
phenomena, defined by what is observed in measuring instruments impacted 
by quantum objects, as opposed to the nature of quantum objects and 
processes, which are beyond conception and, hence, cannot be thought of as 
either discrete or continuous.

The psychological, economic, and decision-making phenomena treated 
by means of Q-models do not exhibit this type of irreducible discreteness or 
individuality. The processes that connect these phenomena are more akin to 
processes considered in classical physics, especially in chaos or complexity 
theory, again, often providing mathematical models, C-models, used in these 
fields. Now, assuming the defining role of, jointly, the QP/QS principle and 
the complementarity principle in considering these phenomena, could some 
form of the QD principle, correlative to the QP/QS principle in quantum 
mechanics, find its place in considering or even in order to derive Q-models 
in these fields? And if so, or in the first place, would the RWR principle, or 
a proto-RWR principle of the type used by Heisenberg, also be applicable? 
There are reasons to believe that such might be the case.

The RWR and QD Principles
Bohr thought that, along with the complementarity principle, the RWR 
principle might apply in biology and psychology. In considering biology, he 
argued as follows:



The Use of Mathematical Structures: Modelling Real Phenomena56

The existence of life must be considered as an elementary fact that cannot 
be explained, but must be taken as a starting point in biology, in a similar 
way as the quantum of action, which appears as an irrational element from 
the point of view of the classical mechanical physics, taken together with the 
existence of elementary particles, forms the foundation of atomic physics. 
The asserted impossibility of a physical or chemical explanation of the 
function peculiar to life would in this sense be analogous to the insufficiency 
of the mechanical analysis for the understanding of the stability of atoms. 
[31, p. 458; emphasis added]

The ultimate character of biological processes may, thus, be beyond 
representation or even conception, in accord with the RWR principle. Once 
the theory suspends accounting for the connections between the phenomena 
considered, these phenomena are unavoidably discrete, leading to the QD 
principle, and our predictions concerning them are unavoidably probabilistic, 
leading to the QP/QS principle. Our predictions concerning them are likely 
to follow a (non-additive) probability calculus of the type used in quantum 
probability, and thus are likely to require a Q-model. This is because, by 
the RWR or proto-RWR principle, it would be difficult or even impossible 
to treat the processes connecting the phenomena considered as either 
continuous or causal. Bohr’s appeal to “an irrational element” is noteworthy, 
and I shall comment on it below. It is important that, as Bohr clearly implies 
here, this approach is possible even if the nature of biological processes 
is not physically quantum in the sense of being able to have physically 
quantum effects. (The ultimate constitution of all matter is quantum, but this 
constitution does not manifest itself apart from quantum experiments.) If they 
were quantum, such processes would be unrepresentable or inconceivable 
in Bohr’s interpretation. At stake here, however, are parallel, rather than 
physically connected, situations that may require using the same type of 
mathematical models, Q-models, without possible connections between the 
systems defining these situations15.

A recent article by Haven and Khrennikov provides an instructive 
example for possible roles of both the RWR and QD principle in market 
economics in their Q-modeling of market phenomena involving arbitrage as 
analogous to quantum tunneling [33]. The term “quantum tunneling” refers 
to a quantum object’s capacity to “tunnel” through an energy barrier that 
it would not be able to surmount if it behaved classically. It is a quantum 
phenomenon par excellence. The quantum process itself behind any 
given case of quantum tunneling cannot be observed. One only ascertains 
that a particle can be found beyond the barrier, which is to say, that the 
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corresponding measurement will register an impact of this particle on the 
measuring instrument beyond the barrier. Thus, in accord with the general 
situation that obtains in quantum mechanics, one deals with two discrete 
phenomena, connected by probabilistic or (in which case, we need multiple 
trials) statistical predictions concerning the second event on the basis of the 
first. “Arbitrage” is the practice of taking advantage of a price difference 
between two or more markets: striking a combination of matching deals 
that capitalize on the imbalance, the profit being the difference between the 
market prices. An arbitrage is a transaction that involves no negative cash 
flow at any probabilistic or temporal state and a positive cash flow in at least 
one state; in simple terms, it is the possibility, ideally, of a risk-free profit at 
zero cost. In practice, there are always risks in arbitrage, sometimes minor 
(such as fluctuation of prices decreasing profit margins) and sometimes major 
(such as devaluation of a currency or derivative). In most ideal models, an 
arbitrage involves taking advantage of differences in price of a single asset 
or identical cash-flows.

Now, if arbitrage can be modeled analogously to quantum tunneling in 
physics, one might expect features analogous to those found in quantum 
tunneling, which dramatically exhibits the character of quantum phenomena. 
Haven and Khrennikov are primarily concerned with the use of Q-models 
in predicting the probabilities involved, by QP/QS principle (accompanied 
by the non-additive calculus of probabilities), rather than with the QD 
and the RWR, or proto-RWR, principles. They do, however, offer some 
considerations concerning discreteness:

We believe that the equivalent of quantum discreteness in this paper 
corresponds to the idea that each act of arbitrage is a discrete event 
corresponding to the detection of a quantum system after it passed …the 
barrier. In reality arbitrage opportunities do not occur on a continuous time 
scale. They appear at discrete time spots and often experience very short 
lives. We would like to argue that it is the tunneling effect which is closely 
associated to the occurrence of arbitrage. …We also mentioned the wave 
function in the discussion above, and quantum discreteness is narrowly 
linked with quantum probabilities. [33, p. 4095]

This view at least allows for an interpretation of the phenomenon of 
arbitrage in terms of the QD and the RWR principles, even if it does not 
require it. Haven and Khrennikov, while, again, allowing for the applicability 
of the QD principle, do not appear to subscribe to the RWR principle, or 
even to the proto-RWR principle16. In effect, however, they follow the proto-
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RWR principle, insofar as they are not concerned with representing how 
arbitrage actually occurs, any more than Heisenberg was concerned with 
representing the behavior of the electron in the hydrogen atom in deriving 
his formalism. They are only concerned with predicting the probabilities or 
statistics of future events of arbitrage.

Thus, situations governed the QD, QP/QS, and RWR (or proto-RWR) 
principles are possible in economics, psychology, and decision science, 
and just as in quantum mechanics, they may allow for either a statistical 
or Bayesian view of the Q-model used. When finite-dimensional Q-models 
(dealing with discrete variables, such a spin) are used, as they often are 
in these fields, one can also consider the application of the principles of 
quantum information theory. While I cannot address the subject in detail, 
the operational framework, used in this field, merits a brief detour. This 
framework allows one to arrive at Q-models in a more rigorous and first-
principle-like way, by using the rules governing the structure of operational 
devices, “circuits,” via recent work on monoidal categories and linear logic 
[13–15, 34].

According to Chiribella et al.: “The operational-probabilistic framework 
combines the operational language of circuits with the toolbox of probability 
theory: on the one hand experiments are described by circuits resulting from 
the connection of physical devices, on the other hand each device in the 
circuit can have classical outcomes and the theory provides the probability 
distribution of outcomes when the devices are connected to form closed circuits 
(that is, circuits that start with a preparation and end with a measurement)” 
[13, p. 3]. A circuit is an arrangement of measuring instruments capable of 
quantum measurements and predictions, which are, again, probabilistic or 
statistical, and sometimes, as in the EPR type of experiments, are correlated, 
which gives a circuit a very specific architecture, corresponding only to 
quantum but not classical experiments. A realist representation of a circuit 
is possible because a circuit is described by classical physics, even though 
it interacts with quantum objects, and thus has a quantum stratum, enabling 
this interaction. Hence, the information obtained by means of a circuit is 
physically classical, too, but the architecture and mode of transmission of 
this information is quantum: they cannot be generated by a classical process.

As discussed earlier, Heisenberg found the formalism of quantum 
mechanics by adopting, in addition to the QD, QP/QS, and proto-RWR 
principles, the mathematical correspondence principle and, by the latter 
principle, using the equations of classical mechanics, while changing the 
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variables in these equations. This principle was not exactly the first principle. 
In particular, it depended on formally adopting the equations of classical 
mechanics, while one might prefer these equations to be a consequence of 
fundamental quantum principles. Heisenberg’s variables were new, which 
was his great discovery. But they were new more of a guess, a logical 
guess, fitting the probabilities of transitions between the energy levels of the 
electron in the hydrogen atom he worked with. In the operational framework, 
one derives finite-dimensional quantum theory in a more first-principle-like 
way, in particular, independently of classical mechanics (which does not 
exist for discrete variables, such as spin). This derivation is made possible 
by applying the rules that define the operational language of circuits, as 
the language of monoidal categories and linear logic, and thus giving a 
mathematical structure to operational circuits themselves and thus, in effect, 
to measuring instruments [13, p. 4, 33]. These rules are more empirical, but 
they are not completely empirical (which no rules may ever be), because 
circuits are given a mathematical structure, from which the mathematical 
architecture of the theory emerges17. The resulting formalism is equivalent 
to the standard Hilbert-space formalism. As in Heisenberg, one only deals 
with “mathematical representations” providing the probabilities or statistics 
of the outcomes of discrete quantum experiments, in accord with the QD and 
QP/QS principles, without providing a representation of quantum processes 
themselves, in accord with the RWR principle.

In the areas of social science, which concerns human subjects, 
establishing the mathematical architecture for such “circuits” is a formidable 
task. However, given important recent work along the lines of category 
theory beyond physics [e.g., 35], this approach may prove to be viable in 
enabling a principle approach in Q-modeling outside physics18.

Q-Theories as Rational Theories of the Irrational
As indicated earlier, while the main reasons for using Q-models in 
psychology, economics, and decision science are due to the quantum-like 
nature or calculus of the probabilities associated with predicting certain 
phenomena, the underlying dynamics of the cognitive or psychological 
processes leading to each such phenomenon individually might, in principle, 
be causal or partially causal. This dynamics might also not be causal, 
especially given the quantum (non-additive) character of the probabilities 
involved. If it is causal or partially causal, then, unlike quantum processes, 
in non-realist interpretations, an analysis of these psychological processes 
may be possible, rather than “in principle excluded” [3, v. 2, p. 62]. This 
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is because one might expect psychological, social, or economic reasons 
shaping these situations, and one of the tasks of analyzing them to explain 
these reasons, an imperative that is hard to avoid, as is clearly apparent in 
Tversky and Kahneman’s articles [26, 37] or in Pothos and Buseymeyer’s 
survey [1].

Psychological, social, or economic research using Q-models may 
renounce this task, especially in statistical analysis, thus in effect assuming 
a form of proto-RWR principle, akin to that used by Heisenberg. Even in 
this case, however, the question would still arise to what degree the QP/
QS, QD, and (strictly) RWR principles, or the principles of quantum 
information theory, could apply in these fields, in particular in considering 
individual situations. As explained earlier, in quantum mechanics, in non-
realist interpretations, the latter could either be treated on Bayesian lines 
or, in statistical interpretations, assumed to be random, which assumption 
would, again, be difficult in the fields in question at the moment. Some 
considerations of discreteness are unavoidable because, as noted, probability 
has an irreducibly futural and discrete character by dealing with estimates 
concerning discrete future events.

It is a more complex question whether one can renounce, as one does 
in quantum mechanics, in non-realist interpretations, considering or even 
assuming the existence of continuous processes connecting these events. 
I would surmise that such may be the case and that our brains may work, 
at least sometimes, in accordance with the QD, the QP/QS, and the RWR 
principles. This means they would not be relying on and calculating hidden 
causality connecting events but would instead functions by relying on the 
quantum-like workings of probabilities and correlations. This type of brain 
functioning would define what may be called a Bayesian Q-brain, which 
would require the corresponding Bayesian models. Importantly, however, 
this kind of Bayesian brain is fundamentally different from rational Bayesian 
agents, associated with the term Bayesian in cognitive psychology. Indeed, 
Q-models there are in part advanced in these fields against this concept of 
human agency. A Bayesian Q-brain need not always function “rationally,” 
at least, not in accordance with any single concept of rationality. A 
corresponding Bayesian Q-model, if possible, would allow one to predict 
the outcomes of decisions governed by the brain processes of the individual 
subjects involved without having, even conjecturally, a full access to these 
processes, by the RWR principle. Nor do those who make these decisions 
have this access: these processes are unconscious, and, if one assumes the 
RWR principle, this part of the unconscious is not causal or “rational” (in 
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its own way), as S. Freud, for example, saw it [38]. Freud’s thinking on this 
point was, however, ultimately more complex, even if against his own grain.

It is instructive to return, in this context, to Bohr’s invocation of “an 
irrational element,” in the passage cited above and repeated elsewhere in his 
writings. The idea and even the language of irrationality have often been seen 
as problematic by Bohr’s critics and even by some of his advocates. I would 
argue this assessment to be a result of misunderstanding Bohr’s meaning. 
This “irrationality” is not any “irrationality” of quantum mechanics, which 
Bohr saw as a rational theory, a “rational quantum mechanics,” and argued 
for its rational character throughout his writing (e.g., 3, v. 1, p. 48; 3, v. 
2, p. 63). However, he did see it as a rational theory of something—the 
nature of quantum objects and processes—that is inaccessible to rational 
thinking, or at least to a rational representation. If, as he says, “the quantum 
of action [h], which appears as an irrational element from the point of view 
of the classical mechanical physics,” it only means that cannot be rationally 
incorporated into the latter [31, p. 458].

Tversky and Kahneman’s and related arguments are, too, sometimes 
seen as related to “irrational” elements in decision-making. This decision-
making replaces purportedly “rational” Bayesian agents with at least 
partially “irrational” Bayesian agents. The “rational” Bayesian agents, 
as explained above, use probabilistic reasoning subject to updating their 
estimates on the basis of new information (which defines the Bayesian 
approach to probability). The irrationality of “irrational” Bayesian agents 
may be divided into three main, sometimes overlapping, types. The first type 
is in effect a form of rationality. This rationality is, however, different from 
rationality presumed to be dominant in the class of situations considered, 
say, the rationality of maximizing one’s monetary benefits. In addition, this 
alternative rationality may be unconscious. The second type of irrationality 
refers to something that could be explained. However, it defies explaining 
it as anything assumed to be rational, say, as a form of rational behavior, 
beforehand. This irrationality may, upon further analysis, reveal itself to be 
the irrationality of the first type, but it may also be an alternative form of 
rationality19. Finally, the third type of irrationality is that invoked by Bohr: 
a realist theory cannot incorporate it in its handling of the corresponding 
phenomena, while a non-realist Q-model or theory can make it part of its 
probabilistically predictive scheme without explaining it. In this way, QD, 
QP (or, if averaging is possible QS), and RWR principles can be brought 
together in this domain.
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There is yet another possibility, which leads to a different type of models 
or theories, conforming to the QD, QP (but not QS), and RWR principles. I 
shall call such models or theories singularized probabilistic (SP) models or 
theories, keeping in mind their non-realist, RWR-principle-based, character. 
Realist SP models are possible, but I shall not be concerned with them. 
SP-models may also be time-dependent (TDSP). Such models can only be 
briefly sketched here in conceptual and somewhat abstract terms, but their 
possibility is intriguing. SP- or TDSP-models need not be mathematically 
related to Q-models, but they might be, given the shared principles in which 
they are based.

Singularized Probabilistic (SP) Theories and Models
Let us recall that, as reflected in the complementarity principle, in quantum 
mechanics there is no single, uniform physical law applicable to quantum 
behavior in all contexts, while the same mathematical formalism or model 
can be used in all contexts. Depending on whether an interpretation is 
statistical or (Bayesian) probabilistic, the individual quantum behavior is 
either assumed to be random or to be subject to the probabilistic law, the 
application of which is defined by the context. By contrast, in the case an 
SP-model or theory, the following situation obtains. While, as in quantum 
physics, there is no single uniform physics law, realist or not, each individual 
behavior obeys its own singular law, defined by its own mathematical 
model, rather than conforms to one or another contextual probabilistic or 
statistical law, from a (determinable) set of such laws determined by the 
theory, using a single mathematical model. Under the RWR principle, 
assumed here for SP-models, such a model still does not represent the reality 
of the ultimate processes considered, which makes the absence of not only 
determinism but also causality automatic, just as in quantum mechanics 
under the RWR principle. One cannot, however, any longer adopt a statistical 
view, which assumed multiplicities of events that could be averaged (in 
quantum mechanics, contextually). In each case, only a Bayesian view of 
the corresponding (unique) model is possible. Such individual laws and 
accompanying mathematical models may also be changing in time, a change 
observed each time a new observation occurs. If so, the corresponding model 
or theory becomes time dependent, TDSP.

The concept of an SP and especially a TDSP model or theory is a 
radical idea, to my knowledge, rarely, if ever, entertained, at least in 
science20. Indeed, it is not clear whether such theories and, especially, the 
mathematical models defined by them are scientifically viable, particularly 
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if the corresponding mathematical laws are assumed to be changing in time, 
possibly on small scales. For an effective scientific practice to be possible, 
one might need regularities beyond those found in each singular situation, for 
which a mathematical model, unique to it, would be introduced, say, in order 
to predict the outcome of events. Such changes of laws and models could, in 
principle, be governed mathematically, have an overall mathematical model. 
Thus, one could have a set of models mathematically parameterized so as 
to allow one to use them for different individual situations and to adjust 
them to make effective predictions in all of these situations. If not, then 
each case would require its own mathematical model. Would mathematical-
experimental sciences, as they are practiced now, still be possible, then?

Furthermore, there might, in a given domain, be individual cases the 
character of which will defeat our attempt to treat them by mathematical 
means. Indeed, this is already so in the case individual quantum processes 
if one adopts a statistical view, according to which each individual 
process is random, beyond the law. Now, however, there would not be 
statistical regularities, of the type found in quantum physics, applicable 
to multiplicities of repeatable cases (handled, moreover, by the same 
model, even if contextually), because there would be no repeatable cases 
in any meaningful sense. There would be neither statistical averaging, nor 
individual mathematical probabilistic treatment. This situation may be more 
familiar in literature, which is concerned with the particular or the singular, 
for example, with a unique life history of a novel’s protagonist. One also 
encounters this singularity or uniqueness in life itself. Such histories resist 
and even preclude statistical averaging, again, allowed by, otherwise equally 
unique, histories (which cannot be thought of as classical trajectories of 
motion) of individual quantum objects, as well as mathematical handling. 
But they may become, at least outside physics, perhaps especially, in 
psychology (which often deals with the same human conditions as 
literature), part of science, a science that will combine science and non-
science, or at least mathematical, both of the more standard or the SP/TDSP 
type, and nonmathematical modeling. Indeed, as just indicated, the SD/
TDSP-modeling already poses complexities for scientific practice. Could 
this situation also emerge in physics, for example, in dealing with quantum 
gravity? This is not inconceivable. If it does, it will not end mathematical 
modeling in physics or, again, beyond, or the mathematical-experimental 
character of modern science, which has defined it beginning with Galileo. 
It might, however, change both, just as it happened in the case of quantum 
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theory, which not only led to a revolutionary transformation—physical, 
mathematical, and philosophical—of physics itself but also opened new 
possibilities for scientific thinking and mathematical modeling beyond 
physics.
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FOOTNOTES
1. ^I shall only discuss the standard quantum mechanics or quantum field 
theory, bypassing alternative theories of quantum phenomena, such as 
Bohmian theories, which are sometimes used in mathematical modeling 
outside physics, but which would require a separate consideration. By 
“quantum phenomena” I refer to those physical phenomena in considering 
which Planck’s constant, h, must be taken into account, and by “quantum 
objects” (thus different from quantum phenomena) to those entities in nature 
that are responsible for the appearance of quantum phenomena, manifested 
in measuring instruments involved in quantum experiments or in certain 
natural phenomena.
2. ^The discussion to follow in part builds on two previous articles [5, 6], 
but only in part: overall the present argument is different, especially (but not 
exclusively) by virtue of considering SP-models.
3. ̂ I bypass more technical definitions, found in standard texts and reference 
sources.
4. ^There are alternative formalisms, such as those in terms of C*-algebras 



The Real and the Mathematical in Quantum Modeling: From Principles ... 65

or more recently category theory, thus far, all mathematically equivalent to 
the Hilbert-space formalism.
5. ^The designation “the spirit of Copenhagen” is preferable to a more 
common “the Copenhagen interpretation,” because there is no single 
Copenhagen interpretation.
6. ^That does not mean that an alternative way of doing so, for example, 
by bypassing amplitudes or by using some an alternative formalism (not 
mathematically equivalent to the standard one) is impossible.
7. ^Causality is, thus, an ontological category, characterizing the nature of 
reality. It proceeds by connecting a cause (an event, phenomenon, a state 
of a system, or force) to an effect, while the principle of causality connects 
an event to a cause. Determinism is assumed here to be an epistemological 
category. It designates our ability to predict the state of a system (ideally) 
exactly at any moment of time once we know its state at a given moment of 
time. In classical mechanics (which deals with a small number of objects), 
causality and determinism coincide. Once a classical system is large, one 
can no longer predict its causal behavior exactly. In other words, a system 
may be causal without our theory of its behavior being deterministic, as 
is the case, for example, in classical statistical physics or chaos theory. 
Causal influences are generally, although not always, assumed to propagate 
from past or present towards future. Relativity theory further precludes the 
propagation of physical influences faster than the speed of light in a vacuum, 
c. Principle theories do not require causality, which is, again, difficult to 
assume in quantum physics without, however, violating relativity or more 
generally the principle of locality, which requires that all physical influences 
are local (still under the assumption that they cannot, locally, propagate 
faster than c).
8. ^Among the key earlier approaches are [16], Fuchs’s work, which 
“mutated” to the program of quantum Bayesianism or QBism [17], and [18].
9. ^Randomness may be defined by this impossibility. This concept of 
randomness is not ontological, because one cannot ascertain the reality of 
this randomness, but epistemological. It is ultimately a matter of assumption 
or belief, practically justified in a given interpretation.
10. ^I have discussed the subject, also in relation to complementarity, in 
Plotnitsky (9, pp. 136–54). These connections also bring in a related (EPR-
correlation) concept, “contextuality.” This concept plays a significant role in 
Q-modeling beyond physics [1, pp. 363–5, 21].
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11. ^I have discussed the role of principles of quantum information theory 
beyond physics in Plotnitsky [6].
12. ^I also refer to these works for more detailed discussions of the ways in 
which Q-models are used in these fields.
13. ^As noted earlier, this does not mean that such probabilities could not be 
predicted by means of alternative models even in quantum physics.
14. ^Complementarity has received some attention outside physics, 
beginning with Bohr’s own (tentative) suggestions. Inspired by Bohr and 
others did propose using the concept in philosophy, biology, and psychology. 
See Plotnitsky [28, pp. 158–66] and [29].
15. ^There are several recent arguments for such connections, most 
prominent of which is arguably that by Penrose [32] and developed in 
several subsequent studies. The model itself that Penrose has in mind is, 
thus far, only mathematically conjectured, following certain approaches to 
quantum gravity.
16. ^As indicated earlier, elsewhere Khrennikov argued for a classical-like 
model at the ultimate level of the constitution of nature in physics [30].
17. ^See also Plotnitsky [9, pp. 248–58] and Hardy [15].
18. ^See also a recent approach to representing sensation-perception 
dynamics in terms of quantum-like mental instruments, which are akin to 
“circuits,” in Khrennikov [36].
19. ^Some might still see, as Freud did, this “irrationality” as a form of 
unconscious “rationality.” Once again, however, Freud, against his own 
grain, could not ultimately avoid giving the unconscious a stratum that is 
beyond representation, if not conception.
20. ^Something akin to this possibility has been suggested in physics in 
Ungar and Smolin [39], but in a different context and based it on a very 
different set of principles than those adopted here, most especially because, 
as against the present argument, they assume realism and causality.
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ABSTRACT
The conceptual divide separating the physical and biological sciences 
continues to challenge modern science. In this perspective it is proposed that 
the two sciences can be directly connected through the fundamental concept 
of stability. Physicochemical stability is shown to have a logical, rather 
than an empirical basis, and able to manifest itself in two distinct and often 
contrary ways, one thermodynamic, reflecting energetic considerations, and 
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the other kinetic, reflecting time/persistence considerations. Each stability 
kind is shown to rest on a particular mathematical truism. Thermodynamic 
stability, the energetic expression, has a probabilistic/statistical basis due 
to Boltzmann, and leads to the Second Law of Thermodynamics. Dynamic 
kinetic stability (DKS), the time/persistence expression, is attributed to the 
stability associated with persistent replicating systems, and derives from the 
mathematics of exponential growth. The existence of two distinct stability 
kinds, each mathematically-based, leads to two distinct organizational 
forms of matter, animate and inanimate. That understanding offers insight 
into the reasons for the observation of just those two organizational forms, 
their different material characteristics, and provides a logical basis for 
understanding the nature of chemical and biological transformations, both 
within, and between, the two forms.

Keywords: Thermodynamic stability, Dynamic kinetic stability, Origin of 
life, Autocatalysis, Abiogenesis

REPORT

Introduction
The question of why matter exists in two starkly distinct material categories 
– living and non-living – has puzzled mankind for millennia. Our 
understanding of the living world was, of course, revolutionized through 
Darwin’s landmark ideas of natural selection and common descent [1], and 
that understanding has been both deepened and extended by the dramatic 
advances in molecular biology over the past 60 years. Yet, despite those 
insights into the workings of life’s molecular machinery, the perennial and 
more general question – how living and non-living relate to one another 
- continues to elude us. Why does matter exist in two distinctly different 
organizational forms? Why not just one (or three)? Is there some basis in 
the laws of nature which would make the existence of two distinct forms 
expected, even inevitable? And with regard to those living forms, what 
would the material prerequisites for a generalized living system be? What 
is it about living systems that makes their properties so different to those 
of non-living ones? And, finally, of the two organizational forms, which 
is naturally preferred, and why? Such questions are not merely theoretical. 
Being able to understand the relationship between those two material forms 
would be a prerequisite for understanding how, at least in principle, one 
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would go about transforming one form to the other. Needless to say, it is 
trivially easy to convert animate to inanimate, yet how tantalizingly difficult 
to proceed in the opposite direction. And the problem does not lie with 
a particular technical difficulty in one particular step along the way. The 
problem is much deeper. Despite those 60 years of mechanistic advances in 
molecular biology, the essence of the living state continues to elude us. As 
Kauffman [2] put it recently: “…we know many of the parts and many of 
the processes. But what makes a cell alive is still not clear to us. The center 
is still mysterious”.

Then there is the perennial origin of life problem, fascinating in its own 
right [3–10]. How and why did this distinct organizational form of matter 
emerge in the first place? There is a broad scientific consensus that life on 
earth emerged from inanimate beginnings, and at first sight the origin of 
life question might appear unrelated to the other life questions, but that 
impression is false. While the historic path linking inanimate to animate 
will likely remain buried in the mists of time [4, 5], the question how life 
could have emerged from inanimate matter is intimately connected to the 
means by which one would go about synthesizing a living system. The two 
questions constitute two sides of the one coin; solve one and you’ve taken 
a major step toward solving the other. By what process and based on what 
physicochemical principles was it possible for matter to be transformed 
from the relatively well-understood inanimate state into that extraordinarily 
complex and thermodynamically unstable animate state. Certainly from 
a purely thermodynamic perspective such a transition would seem to be 
spectacularly improbable [11–13].

But the confusion surrounding the living state goes further. Consider the 
extraordinary characteristics of living systems, which seem to defy simple 
chemical explanation. Whereas chemistry is readily able to explain the 
characteristics of inanimate materials – why ice is hard, why metals conduct 
electricity, why helium is chemically inert and a gas at room temperature, and 
so on, living matter’s strikingly different properties do not lend themselves 
to that kind of chemical approach [5]. Take the concept of function, for 
example, one that permeates all of biology. There is an entire area of 
biology, functional biology, which continually asks ‘what is its function, 
how does it work’ type questions, as the purposeful (teleonomic) character 
of living systems is empirically irrefutable. But how is it at all possible for 
any biological system, ultimately just chemical in its composition, able to 
express the characteristic we denote by the term function, which of necessity 
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also signifies purpose? In the inanimate world, in the world of ‘regular’ 
chemistry there is no function, no purpose. That, after all, was the essence 
of the scientific revolution of the 17th century. Teleology was banished 
from the scientific discourse [14]. How then are biological systems, entirely 
material in nature, able to manifest function? In the context of the origin of 
life question, the issue can be rephrased as: how could biological function 
have emerged from an inanimate world devoid of function? How could 
biological systems have acquired properties seemingly inconsistent with 
nature’s objective character?

And, finally, to the heart of the problem – the nature of biological 
organization, as it is within that special kind of organization that the essence 
of the animate - inanimate distinction presumably needs to be sought. How 
can biological organization as a phenomenon, characterized by inordinate 
dynamic (homeostatic) complexity and quite distinct to the static complexity 
of the inanimate world, be understood, an issue glossed over in the neo-
Darwinian view? In response to these probing questions, directed toward 
clarifying the nature of the chemistry–biology connection, modern biology 
has taken a defensive posture and battened down the hatches. The unstated 
but implicit message in contemporary biology appears to be: yes, there are 
innumerable apparent contradictions when biology is directly confronted 
with physics and chemistry [2, 11–14]. However, since the physical 
sciences have not provided biology with the appropriate conceptual and 
methodological tools for resolving these contradictions, biology can avoid 
these awkward questions by fencing itself off from the physical sciences. 
The result: biology of the 20th century has been overtaken by an ‘autonomy 
of biology’ philosophy, one openly endorsed by Ernst Mayr [15], one of 
the leading evolutionary biologists of the 20th century, whereby biology 
is treated as a disparate science governed by a separate philosophy to the 
one underpinning the physical sciences. There are two kinds of matter, 
inanimate and animate, the physical sciences deal with the former, the 
biological sciences deal with the latter, and that’s that! Thus in the neo-
Darwinian perspective, biology’s essence resides in the genome and the 
information coded therein, and from this vantage point, questions of origins 
– how did genomic information come about, how does information emerge 
from non-information – are conveniently brushed aside. But if, as is now 
widely believed, on planet Earth some 3.5 to 4 billion years ago chemistry 
did become biology [3–10], then the two subjects must in some sense be 
one, making it clear that the historical merging that took place in the distant 
past must be accompanied by a corresponding conceptual merging. The 
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dissonance that continues to radiate from the glaring contradictions inherent 
in the biological and physical world views gives no respite.

In several recent papers the authors, together and separately, have 
attempted to address these questions, to help bridge the chemistry-biology 
gap, through the characterization of a unique stability kind in nature, termed 
dynamic kinetic stability (DKS)[4, 5, 12, 13, 16–19]. This stability kind, 
quite distinct to traditional thermodynamic stability, applies to systems 
able to maintain a presence over time through a process of self-replication. 
Thus replicative stability, whether chemical or biological, is able to lead 
to a distinct and separate organizational state - a kinetic state of matter, 
thereby offering a physicochemical framework for relating biological 
systems to replicative chemical ones. Through that approach several of the 
puzzling issues regarding the relationship of animate to inanimate appear 
resolvable - the continuity and underlying unity of chemical and biological 
evolution [4, 5, 13, 16, 17], its physicochemical characterization [12, 13], 
the source of life’s functional nature [20], its extraordinary and distinct kind 
of complexity [20], its metabolic (energy-consuming) character [12, 13, 21], 
to mention central ones.

In this paper we wish to refine and extend the argument regarding 
the nature of stability in the physicochemical world by pointing out that 
the concept of stability can be logically defined, and that the two stability 
kinds that govern physicochemical processes in the inanimate and animate 
worlds - thermodynamic stability and DKS respectively, are not arbitrary 
and empirically derived, but have a mathematical basis. Through an 
understanding of that basis for the two respective material forms, insight is 
offered into why there are two organizational material forms in nature, why 
the animate state once formed is inherently preferred over the inanimate 
state, and a clearer understanding as to why the origin of life question 
(meaning that initial transformation of inanimate to animate) is continuing 
to prove so intractable.

DISCUSSION

The Nature of Stability
Let us begin by considering what the term ‘stability’ actually means within a 
physicochemical context. Our starting point is the observation that matter is 
not immutable, that the material world is undergoing continual change. That 
statement is, of course, empirically self-evident. Wherever one looks in the 
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world, one can discern change, both physical and chemical. Significantly, 
however the direction of change can be summed up by the qualitative 
statement: all physicochemical systems tend from less stable to more stable 
forms. This general statement, not normally discussed (though alluded to by 
Dawkins [22]) may be thought of as axiomatic. It is inherent in the definition 
of the term ‘stable’ – unchanging, persistent over time. The statement is 
axiomatic in the sense that it is tautological to state that changing systems 
change, whereas unchanging ones do not. But within that tautology lies 
hidden a deeper truth. It is implicit that if matter does tend to undergo change, 
over time that change will necessarily be in the direction from systems more 
susceptible to change (i.e., less stable/persistent forms), toward systems that 
are less susceptible to change (i.e., more stable/persistent forms). Indeed, 
even if at some point the system were to change in the reverse direction, 
namely, from a relatively unstable form to a form that is even less stable, 
then, by definition, that change would be transitory, as the system would 
change yet again (by definition), until reaching a more stable form, one less 
susceptible to change (in the present context change is understood as one 
that is spontaneous, without the work or action of an external agent). Thus 
the direction of change is implicit in the very definition of stability. Stability 
is logically rather than empirically defined.

Note, however, that the above discussion has to an extent switched 
the concept of stability, normally associated with a system’s energy to 
one that focuses on the system’s persistence, i.e., its stability over time. 
The question then arises: is the stability of a system manifest through its 
energetic properties, or by its unchanging character over time, regardless of 
energetic considerations? As we will now discuss, stability in its energetic 
sense necessarily leads to stability in its time (persistence) sense, but not all 
systems that are stable in a time (persistent) sense, are necessarily stable in 
an energetic sense.

Existence of Two Stability Kinds
The concept of stability as part of our consideration of the physicochemical 
world is of course fundamental and well-established, but the focus tends to 
be on just one kind of stability – thermodynamic stability, a stability kind 
associated with a system’s energy Accordingly, the general ‘less stable 
to more stable’ rule described earlier is expressed by the Second Law of 
Thermodynamics, a law which formalizes the stability concept by providing 
a means for its quantification. And being the rule that specifies the direction 
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of all irreversible processes, there is no doubting the Second Law’s status 
as one of the fundamental tenets of physics and chemistry, one that operates 
at both macroscopic and cosmological levels. Of course the Second Law 
is not merely an empirical law, even though it was initially formulated as 
such by Clausius and Kelvin, but, as Boltzmann pointed out over a century 
ago, there is a mathematical logic, a mathematical underpinning to the law 
with the concept of entropy as its centerpiece [23]. Thus the most stable 
macrostate of a system (in energy terms) is the one described by the largest 
number of contributing microstates and the Second Law formulation of ‘less 
stable to more stable’ can be restated more insightfully as ‘less probable to 
more probable’. Indeed, it is that inherent mathematical/statistical logic that 
elevates the broader concept of stability from one that is merely qualitative 
to one that is quantitative, thereby giving the law its almost hallowed status 
as one that is supremely incontestable. Importantly, a system that is stable 
in this energetic sense will also be stable in a time (persistence) sense. A 
system that has reached its lowest energy state, the equilibrium state, 
remains unchanged over time; energetic stability invariably leads to time 
stability (persistence).

Though energetic stability necessarily leads to time stability, the reverse 
does not necessarily apply. A system may well be stable in a time sense 
(persistent) without being stable in an energy sense. The familiar concept 
of kinetic stability characterizes that other stability kind, as exemplified 
by a hydrogen and oxygen gas mixture. Such a mixture is highly unstable 
in an energetic sense (a spark or catalyst will immediately result in water 
formation), but can be highly stable in a time sense – a mixture of the two 
gases may well persist over long periods of time.

But, as noted earlier, within the biological world as well as parts of the 
chemical world, an alternative kinetic stability kind exists and governs the 
nature of transformations within that world - DKS, a stability kind associated 
solely with the replicative world, and distinct to the more familiar static 
kinetic stability mentioned above. Indeed it is that concept of DKS that can 
help explain both replicative chemical, as well as biological, phenomena. 
Accordingly, replicating systems, though unstable in thermodynamic terms, 
are able to persist over time through continuing self-replication, and so are 
stable in kinetic terms. They are stable, not because they do not react, but 
because they do – to make more of themselves – thereby opening a door to a 
distinctly different organizational form of matter [4, 5, 13, 16, 18].
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But what is the basis for this other stability kind? Is it just empirical, 
or is there some underlying imperative that enables it to circumvent the 
probabilistic drive of the Second Law? Does the DKS concept also express 
some underlying, but alternative mathematical logic, to the probabilistic one? 
The answer to this last question appears to be yes, DKS is also governed by 
a mathematically-based directive – the enormous kinetic power associated 
with systems able to undergo exponential growth due to the kinetic character 
of some (though not all) autocatalytic systems [24, 25]. The central role of 
autocatalysis in the emergence of life has long been recognized and has been 
described within different theoretical models [26–28]. And, indeed, it is the 
kinetic power associated with autocatalysis which initiates the beginning of 
divergence from a thermodynamically-directed world by the establishment 
of what is effectively a parallel kinetic world in which systems are found to 
be dynamic, energy consuming, far-from-equilibrium, and necessarily open 
to material and energy resources [12, 13]. Let us describe how this comes 
about.

Once a DKS state does emerge, it turns out that its key reactivity 
characteristic, its potential ability to evolve, is also governed by that same 
mathematical directive. Due to the action of the Second Law, a stable DKS 
system will over time necessarily undergo variation leading to competition 
between the variants for resources. It has been recognized since Lotka 
[29] that autocatalytic systems can exhibit a range of complex kinetic 
behaviors [30–32], but it was Lifson [33] who explicitly pointed out that 
two competing autocatalysts that exhibit exponential growth and feed off 
common resources cannot coexist. Solution of the relevant rate equations 
leads to an unambiguous result – the more stable replicator (in the time/
persistent sense) drives the less stable one into extinction.

Of course, for the above evolutionary mechanism to be operative, the 
DKS system must be inherently evolvable [34, 35]. Thus an autocatalytic 
network of reactions, such as the one involved in the formose reaction [36], 
would not satisfy this condition, as it lacks any possibility of evolving toward 
a state of increased DKS. Similarly, a system involving the autocatalytic 
production of fatty acids leading to vesicle division [37] would also be 
unable to satisfy this condition. But once evolvability is present within the 
system, such as is naturally found in template-based biopolymeric replicating 
systems, the DKS formulation opens up a mechanism for the stabilization 
of inherently less stable replicating entities. In fact the drive toward greater 
DKS can be expected to favor those systems whose evolvability is greater, 
so that initially weak evolvability will itself likely evolve into stronger 
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evolvability, giving rise to an open-ended evolutionary path [38]a. The key 
point is, however, that within the above mentioned constraints, the DKS 
selection rule - from DK less stable to DK more stable – can also be seen 
to rest on a mathematical truism, the mathematics of exponential growth. 
The DKS selection rule thereby becomes an additional sub-set of the global 
selection rule, ‘less stable to more stable’, discussed earlier.

Given the different mathematical foundation for each of the two stability 
kinds, it should come as no surprise that the evolutionary process for each 
of the two material kinds follows different kinetic patterns. For an isolated 
system (exchanging neither matter nor energy with the environment) 
the system is directed toward the lowest energy state – the equilibrium 
state, where entropy is maximal, and the drift toward that state tends to 
be monotonic. For a persistent DK system, however, governed as it is by 
divergent and intrinsically non-linear autocatalytic processes, the drift 
toward its stationary state can result in periodic or even chaotic behavior 
[29, 39–41]. And being divergent, the system is not directed toward one 
specific state, but, rather, any number of feasible evolutionary pathways are 
possible. Moreover, the DKS formulation suggests that, in contrast to an 
isolated thermodynamic system, where the maximal (energetic) stability of 
the equilibrium state is achievable, in biological systems maximal stability 
(in the time/persistent sense) is unachievable. There can be no formal 
stability maximum in DKS systems given the almost infinite possibilities 
of variability that the divergent and open system description offers and the 
nature of stability in its time/persistence facet.

To summarize, whereas thermodynamic stability (for isolated 
systems) involves a probabilistic reordering of the existing, a drive toward 
entropically measured randomness, and is defined in energy terms, DKS is 
governed by the kinetic power of exponential growth acting on particular 
replicative systems and is manifest through its persistence over time. It is 
that kinetic power which both establishes the DK state and then drives it so 
as to channel that kinetic power most effectively, i.e., to exploit energetic 
and material resources most efficiently. Thus the empirical observation of 
an evolutionary process toward enhanced stability within the replicative 
world (whether replicative chemical or biological) also has its roots in a 
mathematical truism. Indeed DKS may be thought of as a Malthusian 
stability, in recognition of the contribution of Malthus to the appreciation 
of the consequences of exponential growth on replicating populations [42], 
and its subsequent influence on Darwin’s formulation of the concept of 
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natural selection. The result – a continually expanding replicative network 
able to penetrate and exploit most any ecological niche, whether deep under 
the sea, high in the earth’s atmosphere, in polar ice-caps or tropical forests, 
above ground or miles below the earth’s surface - two mathematically-based 
stability kinds leading to two distinct material forms.

Relationship between the Two Stability Kinds
We have attempted to explain why there are just two material categories in 
nature, as well as the basis of those two categories, so let us now apply that 
insight to address aspects of the relationship that links those two material 
kinds. The fact that there are two stability kinds, each underpinned by its 
particular mathematical logic, means that the corresponding material forms 
can be expected to exhibit very different characteristics. And indeed they 
do. Whereas the properties of non-living things are largely explicable in 
well-established physical and chemical terms, the world of living things 
has proven resistant to similar characterization. We return to the issue of 
teleonomy, the term popularised by Monod specifically to describe the 
behavior of biological systems [14]. All living systems appear to have an 
agenda, to be goal-directed, as evident in their actions - building a nest, 
raising young, fighting off predators, and so on. But how can living things, 
ultimately nothing more than a form of material organization, act in a goal-
directed fashion? How does life’s unequivocal teleonomic character cohabit 
with the essence of the modern scientific revolution – nature’s objective 
character?

It turns out that cohabitation need not be contradictory, that nature can 
be both objective and goal-directed. Once it is recognized that change is 
written into nature’s laws, and that nature is goal-directed in a way that is 
logically prescribed - toward systems of greater stability, then the existence 
of two worlds, one living, one non-living, becomes explicable. There are two 
distinct kinds of stabilities in nature, so nature’s goal directedness reflects 
that duality - in the non-living world nature follows the thermodynamic 
directive (termed by Mayr teleomatic[15]), the probabilistic drive toward 
uniformity, toward so-called heat death, whereas for persistent replicating 
systems, nature’s drive is toward replicative stability (DKS), with its 
teleological undertones (though consistent with the requirements of the 
Second Law). Thus nature’s goal-directedness with respect to persistent 
replicating systems, though teleologically tinged, can now be understood as 
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manifesting an aspect of its objective character – the fundamental drive of 
all material systems toward ever greater stability.

Once the issue of goal-directedness in the biological world is resolved, 
two of biology’s seemingly incompatible bedfellows – stability and 
complexity – can be harmoniously wedded, and this can be brought about 
through the mediating concept of function. As one of us has recently 
described, in the replicating world stability and function are directly related 
- greater replicative stability is induced through enhanced replicative 
function [20]. But, as is readily verifiable, there is also a logical connection 
between function and complexity. Function, of whatever kind, biological or 
technological, is almost invariably enhanced through complexity. Indeed, 
to paraphrase Carl Sagan’s famous aphorism, one could say: extraordinary 
function requires extraordinary complexity, thereby offering insight into 
the connection between life’s extraordinary functionality and its staggering 
complexity. But from these two relationships it then follows that (replicative) 
stability and complexity are also linked – greater complexity is necessary 
for greater stability. The physical-biological relationality can be summed 
up by the triad: stability – function – complexity, all interconnected and 
interrelating [20].

As a final point, let us now address a purely material aspect, the issue of 
material transfer between the two worlds, as evidenced on this planet. First, 
why was inanimate transformed into animate matter in the first place, i.e., 
why did life emerge. Second, it is obvious that once life was established 
on our planet, there has been a continual transfer of matter between the 
two material forms; living things die and their material form reverts to 
inanimate, while in the reverse direction, inanimate matter is drawn into 
the web of life, and thereby transformed into animate matter. But which 
process is dominant, and why? What can one say about the rates of material 
transformation in the two directions starting from that moment when earliest 
life was able to emerge?

The fact that life presumably started off in some limited physical 
location and expanded rapidly to occupy just about every conceivable 
planetary niche capable of sustaining life states unambiguously that once 
a stable and evolvable DKS system emerged on earth the rate of inanimate 
to animate transformation exceeded the reverse process, i.e., the rate of 
animate degradation. The fact that this difference is fundamental, not merely 
incidental, is confirmed by a recent estimate of the ongoing rate of growth 
of the earth’s biomass, ca. 1017 g C/year [43]. That rate of growth turns 
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out to be a significant percentage of the earth’s total estimated biomass, ca. 
1018 g C [44]. In other words from the moment that life on earth emerged, 
there is every indication that for much of the time animate formation 
exceeded animate degradation. In fact, one might even see in man’s attempt 
to physically explore the universe beyond our planet as an expression of 
animate matter’s tendency to expand into all available niches, to continue 
life’s relentless drive to expand wherever possible.

The reason for the clear imbalance in the rate of animate formation 
compared its decay, can now be pointed out. Based on the stability kinds 
involved, the conversion of animate to inanimate – death – is expected to 
be slower than the process of animate formation leading to life. Animate 
to inanimate is governed by the Second Law, by the more muted directive, 
the one concerned with material reorganization based on probabilistic 
considerations, while inanimate to animate is autocatalytic and driven by 
the kinetic power of exponential growth. Thus once a stable DK system 
emerges, i.e., once a network of far-from-equilibrium metabolic reactions 
that is holistically replicative is firmly established, the on-going drive 
toward greater DKS wins out, and the Second Law directive is circumvented 
and marginalized. In fact an energy-gathering metabolic capability must be 
an intrinsic component of the DKS system [12, 13] for the Second Law 
requirement to be satisfied. Or put another way, once the necessary conditions 
for life’s emergence are met and life is established, the kinetic drive toward 
more life, and more efficient life, overshadows the thermodynamic directive 
toward death, though of course that continuing transformation is conditional 
on a continuing source of energy. And the environmental consequences 
of that kinetic imbalance is dramatic and clear to see – life is (effectively) 
everywhere. The cosmological implications of these simple ideas need 
further consideration, but the preliminary conclusion seems to be that, 
provided a continual source of energy is available (most likely fed by nuclear 
processes in suns), matter will preferentially be driven from inanimate to 
animate, from non-replicative to replicative, that life will invariably prevail 
over non-life.

Notwithstanding the above comments, it should also be made clear that 
the dominance of animate formation over its degradation should not be seen 
as smoothly monotonic, but rather one that can itself be highly contingent, as 
is evident in the evolutionary process itself. It is generally believed that in the 
long evolutionary process toward ever more effective replicating networks 
there may have been periods of regression as a result of drastic ecological 
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and/or climatic changes, such as the emergence of oxygen as a significant 
component of the earth’s atmosphere [45]. Such an event could likely have 
led to the destruction of anaerobic life forms that populated the early planet. 
But the underlying long-term trend is unmistakable – the exponential driving 
force of living processes overwhelms the mathematically weaker Second 
Law directive.

The Question of Life’s Contingency
The above discussion on life’s emergence, and its explosive (and 
continuing) expansion since its emergence, leads us to the problematic issue 
of life’s contingency. In fact it is the issue of contingency which remains 
the central unresolved dilemma in our attempt to place animate systems 
squarely within a comprehensive material framework. In order to connect 
between the inanimate and animate worlds, it is presumed that the life 
process would have begun with the contingent emergence of a persistent 
and evolvable DK system, even though the likelihood of such a system 
emerging spontaneously currently remains unknown. So how contingent is 
life? What materials and reaction conditions would facilitate the emergence 
of a suitable DKS system? We do not know and we are still far from being 
able to answer these questions. That is the prime reason we are unable to 
specify how likely it is for life to exist elsewhere in the universe. But we 
may be at a turning point. Through recent advances in systems chemistry 
[46, 47], the path to enlightenment now seems more clearly marked, with 
preliminary results, both experimental [48] and theoretical [49], suggesting 
that replicative networks are under certain circumstances able to emerge 
spontaneously. Thus the immediate goal: the synthesis of stable DK systems 
so as to enhance our understanding of how DKS systems can be generated, 
and how readily they can be maintained. The DKS state is a chemically 
intricate and dynamic entity so its synthesis cannot be assumed to be a trivial 
one. Theory now needs to give way to experiment, very much in line with 
Richard Feynman’s aphorism: “What I cannot create, I do not understand”. 
And with regard that most intriguing of questions: how likely is it that life 
exists elsewhere in the universe, paradoxically, it could well be that through 
experiments conducted on earth, that we may finally reveal the likelihood of 
life existing elsewhere in the universe. In any case, a prevailing perception 
that protolife might be created through incorporating some replicating 
entity and its building blocks within a vesicle-like structure, seems unlikely 
to be productive, as several of the prerequisites of the DK state would be 
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absent. The evolutionary process by which life was able to undergo such 
extraordinary complexification can only be understood in the context of 
exponential replicating systems.

CONCLUSION
This perspective has attempted to demonstrate that through an appreciation 
of nature’s axiomatic drive toward stable/persistent forms, the underlying 
connection between the two organizational forms of matter – animate and 
inanimate - can be understood. In simplest terms, nature is able to express 
its spontaneous drive toward ever increasing stability, not in one, but in 
two fundamentally different ways, one based on energetic considerations – 
thermodynamic stability; the other based on time/persistence considerations 
– dynamic kinetic stability (DKS), with each leading to a particular 
manifestation of material organization. That basic reality means that 
material organization and reactivity take place in two seemingly parallel, 
yet intersecting, worlds. One hundred years after Ludwig Boltzmann laid 
down the statistical basis for the Second Law, and two hundred years after 
Thomas Malthus pointed out the profound consequences of exponential 
growth on living populations, it is now possible to see that within those two 
fundamental mathematical truths can be found not just the basis for a dual 
material world, but also the basis for change both within, and between, those 
two worlds. Life, in its stupendous diversity and extraordinary complexity, 
is just the inevitable consequence of mathematical law (exponential growth) 
operating on very particular replicating chemical systems. The answer to 
Schrödinger’s ‘what is life’ question may finally be within reach.

ENDNOTES
aThe ways in which DKS behavior and evolvability could emerge in a far-
from-equilibrium system are certainly diverse and the possibility that both 
of them can appear at the same time cannot be excluded. See ref. [50].
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ABSTRACT
The Riccati-Bernoulli sub-ODE method is firstly proposed to construct exact 
traveling wave solutions, solitary wave solutions, and peaked wave solutions 
for nonlinear partial differential equations. A Bäcklund transformation of the 
Riccati-Bernoulli equation is given. By using a traveling wave transformation 
and the Riccati-Bernoulli equation, nonlinear partial differential equations 
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can be converted into a set of algebraic equations. Exact solutions of 
nonlinear partial differential equations can be obtained by solving a set of 
algebraic equations. By applying the Riccati-Bernoulli sub-ODE method to 
the Eckhaus equation, the nonlinear fractional Klein-Gordon equation, the 
generalized Ostrovsky equation, and the generalized Zakharov-Kuznetsov-
Burgers equation, traveling solutions, solitary wave solutions, and peaked 
wave solutions are obtained directly. Applying a Bäcklund transformation 
of the Riccati-Bernoulli equation, an infinite sequence of solutions of the 
above equations is obtained. The proposed method provides a powerful and 
simple mathematical tool for solving some nonlinear partial differential 
equations in mathematical physics.

MSC: 35Q55, 35Q80, 35G25
Keywords: Riccati-Bernoulli sub-ODE method, Bäcklund transformation, 
traveling wave solution, solitary wave solution, peaked wave solution

INTRODUCTION
Nonlinear partial differential equations (NLPDEs) are known to describe 
a wide variety of phenomena not only in physics, but also in biology, 
chemistry, and several other fields. The investigation of traveling wave 
solutions for NLPDEs plays an important role in the study of nonlinear 
physical phenomena. In recent years, many powerful methods were used 
to construct traveling wave solutions of NLPDEs. For example, the inverse 
scattering method [1], the Bäcklund and Darboux transformation method 
[2], the homotopy perturbation method [3], the first integral method [4–6], 

the -expansion method [7–9], the sub-equation method [10, 11], Hirota’s 
method [12], the homogeneous balance method [13–15], the variational 
iteration method [16, 17], the tanh-sech method [18], the Jacobi elliptic 
function method [19], the modified simple equation method [20–23], the 
exp(−Φ(ξ))-expansion method [24], the alternative functional variable 
method [25], and so on.

Many well-known NLPDEs can be handled by those traditional methods. 
However, there is no unified method which can be used to deal with all 
types of NLPDEs. Moreover, we always encounter the fractional NLPDEs, 
the NLPDEs which have nonlinear terms of any order or peaked wave 
solutions. It is significant to construct traveling wave solutions of NLPDEs 
by a uniform method. Based on those problems, the Riccati-Bernoulli sub-
ODE method is firstly presented.
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In this paper, the Riccati-Bernoulli sub-ODE method is proposed to 
construct traveling wave solutions, solitary wave solutions, and peaked 
wave solutions of NLPDEs. By using a traveling wave transformation 
and the Riccati-Bernoulli equation, NLPDEs can be converted into a set 
of algebraic equations. Exact solutions of NLPDEs can be obtained by 
solving the set of algebraic equations. The Eckhaus equation, the nonlinear 
fractional Klein-Gordon equation, the generalized Ostrovsky equation, and 
the generalized Zakharov-Kuznetsov-Burgers (ZK-Burgers) equation are 
chosen to illustrate the validity of the Riccati-Bernoulli sub-ODE method. 
A Bäcklund transformation of the Riccati-Bernoulli equation is given. If 
we get a solution of NLPDEs, we can search for a new infinite sequence of 
solutions of the NLPDEs by using a Bäcklund transformation.

The remainder of this paper is organized as follows: the Riccati-Bernoulli 
sub-ODE method is described in Section 2. In Section 3, a Bäcklund 
transformation of the Riccati-Bernoulli equation is given. In Sections 4-7, 
we apply the Riccati-Bernoulli sub-ODE method to the Eckhaus equation, 
the nonlinear fractional Klein-Gordon equation, the generalized Ostrovsky 
equation, and the generalized ZK-Burgers equation, respectively. In Section 

8, our results are compared with the first integral method, the -expansion 
method, and physical explanations of the obtained solutions are discussed. 
In Section 9, some conclusions and directions for future work are given.

Description of the Riccati-Bernoulli sub-ODE method
Let there be given a NLPDE, say, in two variables,

     (1)
where P is in general a polynomial function of its arguments, the subscripts 
denote the partial derivatives. The Riccati-Bernoulli sub-ODE method 
consists of three steps.

Step 1. Combining the independent variables x and t into one variable

       (2)
with

       (3)
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where the localized wave solution u(ξ) travels with speed V, by using Eqs. 
(2) and (3), one can transform Eq. (1) to an ODE

       (4)

where u′ denotes .
Step 2. Suppose that the solution of Eq. (4) is the solution of the Riccati-

Bernoulli equation

       (5)
where a, b, c, and m are constants to be determined later.

From Eq. (5) and by directly calculating, we get

 (6)

  (7)

Remark
When ac ≠ 0 and m = 0, Eq. (5) is a Riccati equation. When a ≠ 0, c = 0, 
and m ≠ 1, Eq. (5) is a Bernoulli equation. Obviously, the Riccati equation 
and Bernoulli equation are special cases of Eq. (5). Because Eq. (5) is firstly 
proposed, we call Eq. (5) the Riccati-Bernoulli equation in order to avoid 
introducing new terminology.

Equation (5) has solutions as follows:
Case 1. When m = 1, the solution of Eq. (5) is

       (8)
Case 2. When m ≠ 1, b = 0, and c = 0, the solution of Eq. (5) is

       (9)
Case 3. When m ≠ 1, b ≠ 0, and c = 0, the solution of Eq. (5) is

      (10)
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Case 4. When m ≠ 1, a ≠ 0, and b2 − 4ac < 0, the solutions of Eq. (5) are

   (11)
and

   (12)
Case 5. When m ≠ 1, a ≠ 0, and b2 − 4ac > 0, the solutions of Eq. (5) are

  (13)
and

  (14)
Case 6. When m ≠ 1, a ≠ 0, and b2 − 4ac = 0, the solution of Eq. (5) is

      (15)
where C is an arbitrary constant.

Step 3. Substituting the derivatives of u into Eq. (4) yields an algebraic 
equation of u. Noticing the symmetry of the right-hand item of Eq. (5) and 
setting the highest power exponents of u to equivalence in Eq. (4), m can 
be determined. Comparing the coefficients of ui yields a set of algebraic 
equations for a, b, c, and V. Solving the set of algebraic equations and 
substituting m, a, b, c, V, and ξ = k(x + Vt) into Eq. (8)-(15), we can get 
traveling wave solutions of Eq. (1).

In the subsequent section, we will give a Bäcklund transformation of the 
Riccati-Bernoulli equation and some applications to illustrate the validity of 
the Riccati-Bernoulli sub-ODE method.



The Use of Mathematical Structures: Modelling Real Phenomena96

BÄCKLUND TRANSFORMATION OF THE  
RICCATI-BERNOULLI EQUATION
When un−1(ξ) and un(ξ) (un(ξ) = un(un−1(ξ)) are the solutions of Eq. (5), we get

namely

Integrating above equation once with respect to ξ and simplifying it, we 
get

     (16)
where A1 and A2 are arbitrary constants.

Equation (16) is a Bäcklund transformation of Eq. (5). If we get a 
solution of Eq. (5), we can search for new infinite sequence of solutions of 
Eq. (5) by using Eq. (16). Then an infinite sequence of solutions of Eq. (1) 
is obtained.

APPLICATION TO THE ECKHAUS EQUATION
The Eckhaus equation reads

      (17)
where ψ = ψ(x, t) is a complex-valued function of two real variables x, t.

The Eckhaus equation was found [26] as an asymptotic multiscale 
reduction of certain classes of nonlinear Schrödinger type equations. A lot 
of the properties of the Eckhaus equation were obtained [27]. The Eckhaus 
equation can be linearized by making some transformations of dependent 
variables [28]. An exact traveling wave solution of the Eckhaus equation 
was obtained by the -expansion method [8] and the first integral method 
[5].
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In this section, new type of exact traveling wave solutions of the Eckhaus 
equation are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the traveling wave transformation

       (18)
Eq. (17) is reduced to

      (19)
where

        (20)
and k, α, β are real constants to be determined later.

Suppose that the solution of Eq. (19) is the solution of Eq. (5). Substituting 
Eqs. (5) and (6) into Eq. (19), we get

   (21)
Setting m = −1 and c = 0, Eq. (21) becomes

   (22)
Setting each coefficient of uj (j = 1,3,5) to zero, we get

              (23a)

       (23b)

       (23c)
Notice that k ≠ 0, otherwise we can only get trivial solution.
Case A. If b = 0, from Eqs. (23a)-(23c) and (5), we get

      (24a)

        (24b)



The Use of Mathematical Structures: Modelling Real Phenomena98

       (24c)
where C is an arbitrary real constant.

Case A-1. When ka = −1, we get exact traveling wave solutions of Eq. 
(17),

     (25)
where C and α are arbitrary real constants.

Case A-2. When  we get exact traveling wave solutions of Eq. 
(17),

   (26)
where C and α are arbitrary real constants.

Case B. If b ≠ 0, from Eqs. (23a)-(23c), we get

      (27a)

        (27b)

Case B-1. When  and , from Eqs. (10) and (18), 
we get an exact traveling wave solution of Eq. (17),

   (28)
where C, α, and β are arbitrary real constants.

Especially, if we choose  Eq. (28) becomes

   (29)
where α and β are arbitrary real constants.
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If we choose  Eq. (28) becomes

   (30)
where α and β are arbitrary real constants.

Case B-2. When  and  from Eqs. (10) and (18), we get 
an exact traveling wave solution of Eq. (17),

   (31)
where C, α, and β are arbitrary real constants.

Especially, if we choose  Eq. (31) becomes

   (32)
where α and β are arbitrary real constants.

If we choose  Eq. (31) becomes

   (33)
where α and β are arbitrary real constants.

Applying Eq. (16) to ψj(x, t) (j = 1, 2, …, 8), we can get an infinite 
sequence of solutions of Eq. (17). For example, by applying Eq. (16) to Eq. 
(32), we get a new solution of Eq. (17),

  (34)
where A1, A2, α, and β are arbitrary real constants.
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APPLICATION TO THE NONLINEAR FRACTIONAL 
KLEIN-GORDON EQUATION
The nonlinear fractional Klein-Gordon equation [23] reads

  (35)
where β and γ are known constants.

As is well known, linear and nonlinear Klein-Gordon equations model 
many problems in classical and quantum mechanics, solitons and condensed 
matter physics. For example, the nonlinear sine Klein-Gordon equation 
models a Josephson junction, the motion of rigid pendula attached to a 
stretched wire, and dislocations in crystals [17, 29–31]. A non-local version 
of these equations are properly described by the fractional version of them. 
Exact traveling wave solutions of the nonlinear fractional Klein-Gordon 
equation were obtained by the homotopy perturbation method [29] and the 
first integral method [6].

In this section, exact traveling wave solutions of the nonlinear fractional 
Klein-Gordon equation are obtained by using the Riccati-Bernoulli sub-
ODE method.

Using the transformation

       (36)
with

      (37)
where l and λ are constants to be determined later, Eq. (35) becomes

    (38)
Suppose that the solution of Eq. (38) is the solution of Eq. (5). Substituting 

Eq. (6) into Eq. (38), we get
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    (39)
Setting m = 0, Eq. (39) is reduced to

   (40)
Setting each coefficient of ui (i = 0, 1, 2, 3) to zero, we get

         (41a)

       (41b)

        (41c)

       (41d)
Solving Eqs. (41a)-(41d), we get

        (42a)

       (42b)

       (42c)
Case A. When  substituting Eqs. (42a)-(42c) and (37) into Eqs. 

(11) and (12), we get exact traveling wave solutions of Eq. (35),

    (43a)
and

   (43b)
where C, l, and λ are arbitrary constants.

Case B. When , substituting Eqs. (42a)-(42c) and (37) into 
Eqs. (13) and (14), we get exact traveling wave solutions of Eq. (35),
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   (44a)
and

  (44b)
where C, l, and λ are arbitrary constants.

Applying Eq. (16) to uj(x, t) (j = 1, 2, … , 8), we can get an infinite 
sequence of solutions of Eq. (35). For example, by applying Eq. (16) to uj(x, 
t) (j = 1, 2, … , 8) once, we get new solutions of Eq. (35),

where A1, A2, C, l, and λ are arbitrary real constants.

APPLICATION TO THE GENERALIZED  
OSTROVSKY EQUATION
The generalized Ostrovsky equation reads

   (45)
where β, ε, and δ are known constants.

The generalized Ostrovsky equation is a model for the weakly nonlinear 
surface and internal waves in a rotating ocean. Exact peaked wave solutions 
were obtained by the undetermined coefficient method [32].
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In this section, exact peaked wave solutions of the generalized Ostrovsky 
equation are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

       (46)
with

        (47)
where k and V are the wave number and wave speed, respectively, Eq. (45) 
becomes

    (48)
Suppose that the solution of Eq. (48) is the solution of Eq. (5). From 

Eqs. (5) and (6), we get

   (49)
Substituting Eqs. (5), (6), and (49) into Eq. (48), we get

    (50)
where

Setting m = 2 and c = 0, Eq. (50) is reduced to
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   (51)
Setting each coefficient of uj (j = 0, 1, 2) to zero, we get

       (52a)

    (52b)

    (52c)
Solving Eqs. (52a)-(52c), we get

        (53a)

       (53b)

       (53c)
Substituting Eqs. (53a)-(53c) and (47) into Eq. (10), we get exact peaked 

wave solutions of Eq. (45),

   (54)
where C is an arbitrary constant.

Similar to Sections 4 and 5, by using a Bäcklund transformation, we can 
get an infinite sequence of solutions of the generalized Ostrovsky equation. 
It being a similar process, we omit it.
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APPLICATION TO THE GENERALIZED ZK-BURG-
ERS EQUATION
The generalized ZK-Burgers equation [33] reads

   (55)
where α, β, γ, σ, and λ are known constants.

The generalized ZK-Burgers equation retains the strong nonlinear 
aspects of the governing equation in many practical transport problems such 
as nonlinear waves in a medium with low-frequency pumping or absorption, 
transport and dispersion of pollutants in rivers, and sediment transport. Wang 
et al. obtained a solitary wave of the generalized ZK-Burgers equation with 
a positive fractional power term by using the HB method and with the aid 
of sub-ODEs [33].

In this section, exact traveling wave solutions of the generalized ZK-
Burgers equation are obtained by using the Riccati-Bernoulli sub-ODE 
method.

Using the transformation

       (56)
with

       (57)
where k, l, n, and V are constants to be determined later, Eq. (55) becomes

   (58)
Suppose that the solution of Eq. (55) is the solution of Eq. (5). Noticing 

u′ ≠ 0 and k ≠ 0, otherwise we can only get trivial solution. Substituting Eqs. 
(5), (6), and (7) into Eq. (58), we get

   (59)
where
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      (60)

Setting  and c = 0, Eq. (59) is reduced to

  (61)

Setting each coefficient of  to zero, we get

       (62a)

      (62b)

      (62c)
Solving Eqs. (62a)-(62c), we get

        (63a)

      (63b)

       (63c)
Substituting Eqs. (63a)-(63c) and (57) into Eq. (10), we get exact 

traveling wave solutions of Eq. (55),

  (64)
where C, l, and n are arbitrary constants.

Equation (64) is new type of traveling wave solution of the generalized 

ZK-Burgers equation. Especially, if we choose  
we get the solitary wave solutions of Eq. (55),

   (65)
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     (66)
where l, n are arbitrary constants and

    (67)

If we choose  we get the solitary 
wave solutions of Eq. (55),

     (68)

     (69)
where l and n are arbitrary constants.

Similar to Sections 4 and 5, by using a Bäcklund transformation, we 
can get an infinite sequence of solutions of the generalized ZK-Burgers 
equation. It being a similar process, we omit it.

COMPARISONS AND EXPLANATIONS OF THE  
SOLUTIONS
In this section, the physical interpretation of the results of Sections 4-7 
are given, respectively. We will compare the Riccati-Bernoulli sub-ODE 

method with the -expansion method, the first integral method, and so 
on. Some of our obtained exact solutions are in the figures represented with 
the aid of Maple software.

•	 The Eckhaus equation: Applying the Riccati-Bernoulli sub-
ODE method, Eqs. (25), (26), (28), (31), and (34) are new types 
of exact traveling wave solutions of the Eckhaus equation. 
Equations (29), (30), (32), and (33), which are expressed by the 
hyperbolic functions, are a kind of kink-type envelope solitary 
solutions. They could not be obtained by the method presented 
in Ref. [27]. Equation (26), which is expressed by the rational 
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functions, could not be obtained by the -expansion method 
[8] and the first integral method [5].

•	 The nonlinear fractional Klein-Gordon equation: Applying 
the Riccati-Bernoulli sub-ODE method and comparing our 
results with Golmankhaneh’s results [29], it is easy to find that 
uj(x, t) (j = 1, …, 8) are new and identical to results by the first 
integral method [6]. uj(x, t) (j = 1, 2, 3, 4), which are expressed 
by the trigonometric functions, are periodic wave solutions. 
uj(x, t) (j = 5, 6, 7, 8), which are expressed by the hyperbolic 
functions, are a kind of kink-type envelope solitary solutions. 
The shape of u = u1(x, t) is represented in Figure 1 with 

 and  within the 

interval −5 ≤ x ≤ 5 and . The shape of u = u5(x, t) is 

represented in Figure 2 with  
and l = 1 within the interval −6 ≤ x ≤ 6 and 0 ≤ t ≤ 6.

Figure 1. Graph of solution u = u1(x, t) of the nonlinear fractional Klein-Gordon 

equation for  β = 1, γ = 1,  C = 0, and . The left figure 
shows the 3-D plot and the right figure shows the 2-D plot for t = 0.
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Figure 2. Graph of solution u = u5(x, t) of the nonlinear fractional Klein-Gordon 

equation for  β = −1, γ = 1, λ = 2, C = 0, and l = 1. The left figure shows 
the 3-D plot and the right figure shows the 2-D plot for t = 0.

•	 The generalized Ostrovsky equation: Applying the Riccati-
Bernoulli sub-ODE method, it is easy to find that our results are 
identical to results presented in Ref. [32]. u = u1,2(x, t) are peaked 
wave solutions of the generalized Ostrovsky equation. The shape 
of u = u1(x, t) is represented in Figure 3 with δ = 6, β = 6, ε = 1, λ 
= 2, and  within the interval −5 ≤ x, t ≤ 5.

Figure 3. Graph of solution u = u5(x, t) of the generalized Ostrovsky equation 

for δ = 6, β = 6, ε = 1, λ = 2, and . The left figure shows the 3-D plot and 
the right figure shows the 2-D plot for t = 0.
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•	 The generalized ZK-Burgers equation: By applying the 
Riccati-Bernoulli sub-ODE method to the generalized ZK-
Burgers equation, we find that if λ is a positive fraction, our 
results degenerate to the results of Ref. [33]. Moreover, we 
enlarge the value range of parameters λ of the generalized ZK-
Burgers equation so that the parameter λ can be an arbitrary 
constant (λ ≠ −1, −2, −4). uj(x, t) (j = 1, …, 6) are exact traveling 
wave solutions of the generalized ZK-Burgers equation. uj(x, t) (j 
= 3, 4, 5, 6), which are expressed by the hyperbolic functions, are 
a kind of kink-type envelope solitary solutions. The shape of u = 
u1(x, t) is represented in Figure 4 with α = β = γ = l = n = y = z = 
1,  and σ = 2 within the interval −5 ≤ x, t ≤ 5.

Figure 4. Graph of solution u = u5(x, t) of the generalized ZK-Burgers equation 
for α = β = γ = l = n = y = z = 1, , and σ = 2. The left figure shows the 
3-D plot and the right figure shows the 2-D plot for t = 3.

Moreover, by using a Bäcklund transformation, we can get an infinite 
sequence of solutions of these NLPDEs which cannot be obtained by 

the -expansion method and the first integral method. The graphical 
demonstrations of some obtained solutions are shown in Figures 1-4.

CONCLUSIONS
The Riccati-Bernoulli sub-ODE method is successfully used to establish 
exact traveling wave solutions, solitary wave solutions and peaked wave 
solutions of NLPDEs. A Bäcklund transformation of the Riccati-Bernoulli 
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equation is given. By applying a Bäcklund transformation of the Riccati-
Bernoulli equation to the NLPDEs, an infinite sequence of solutions of the 
NLPDEs is obtained. The Eckhaus equation, the nonlinear fractional Klein-
Gordon equation, the generalized Ostrovsky equation, and the generalized 
ZK-Burgers equation are chosen to illustrate the validity of the Riccati-
Bernoulli sub-ODE method. Many well-known NLPDEs can be handled 
by this method. The performance of this method is found to be simple and 
efficient. The availability of computer systems like Maple facilitates the 
tedious algebraic calculations. The Riccati-Bernoulli sub-ODE method 
is also a standard and computable method, which allows us to perform 
complicated and tedious algebraic calculations.

It is well known that it is difficult to propose an uniform analytical method 
for all types of the NLPDEs, and the Riccati-Bernoulli sub-ODE method is 

no exception. Similar to the first integral method, the -expansion method 
and the homogeneous balance method, the Riccati-Bernoulli sub-ODE 
method is used to obtain exact solutions of the form of Eq. (1). Constructing 
more powerful sub-ODE and Bäcklund transformations is future work and 
aims to search for exact solutions of NLPDEs
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ABSTRACT
In this paper, the classical Rayleigh–Bénard convection model is considered 
and solved numerically for extremely large viscosity variations (i.e., up to 
1030) across the mantle at a high Rayleigh number. The Arrhenius form of 
viscosity is defined as a cut-off viscosity function. The effects of viscosity 
variation and viscous dissipation on convection with temperature-dependent 
viscosity and also temperature- and pressure-dependent viscosity are shown 
through the figures of temperature profiles and streamline contours. The 
values of Nusselt number and root mean square velocity indicate that the 
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convection becomes significantly weak as viscosity variation and viscous 
dissipation are increased at a fixed pressure dependence parameter.

Keywords: Mantle convection, Variable viscosity, Viscous dissipation, 
Rayleigh–Bénard convection, Viscosity variation

Mathematics Subject Classifcation: 76D05, 80A19, 8610

INTRODUCTION
Convection in mantle is responsible for most of the physical and chemical 
phenomena happening on the surface and in the interior of the Earth, and it 
is caused by the heat transfer from the interior to the Earth’s surface. Even 
though there are some debates, it is quite well established that convection in 
the mantle is the driving mechanism for plate tectonics, seafloor spreading, 
volcanic eruptions, earthquakes, etc. [1]. However, the mechanism of mantle 
convection is still an unsolved mystery since the rheology of mantle rocks 
is extremely complicated [2,3,4]. Temperature, pressure, stress, radiogenic 
elements, creep, and many other factors influence the mantle’s behavior 
on a large scale. One of its significant but complex characteristics is its 
viscosity, which is dependent mainly on temperature, pressure, and stress 
[5]. In earlier studies of mantle convection, scientists assumed constant 
viscosity (e.g.  [6, 7]) but later, among many others Moresi and Solomatov 
[8, 9], studied the temperature-dependent viscosity case numerically and 
concluded that the formation of an immobile lithosphere on terrestrial 
planets like Mars and Venus seems to be a natural result of temperature-
dependent viscosity. However, studies with purely temperature-dependent 
viscosity cannot portray the true convection pattern of the Earth’s mantle. 
As a result, convection with temperature and pressure-dependent viscosity is 
becoming more important, and some notable works in this area have recently 
been published [10,11,12,13,14]. Christensen [10] showed that additional 
pressure dependence of viscosity strongly influences the flow regimes. In 
a 2D axi-symmetrical model, Shahraki and Schmeling [15] examined the 
simultaneous effect of pressure and temperature-dependent rheology on 
convection and geoid above the plumes, and Fowler et al. [16] studied the 
asymptotic structure of mantle convection at high viscosity contrast.

According to King et al. [17], when pressure increases through the 
mantle, there is a corresponding increase in density due to self-compression. 
In a vigorously convecting mantle, the rate at which viscous dissipation, 
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which is the irreversible process that changes other forces into heat, is non-
negligible and contributes to the heat energy of the fluid, resulting in adiabatic 
temperature and density gradients that reduce the vigour of convection. 
Conrad and Hager [18] proposed that the viscous dissipation and resisting 
force to plate motion may have significant effects on convection and the 
thermal evolution history of the Earth’s mantle. Leng and Zhong [19] 
concluded that the dissipation occurring in a subduction zone is 10–20% 
of the total dissipation for cases with only temperature-dependent viscosity, 
whereas Morgan et al. [20] declared that when slabs subduct, about 86% of 
the gravitational energy for the whole mantle flow is mostly transformed into 
heat by viscous dissipation. According to Balachandar et al. [21], numerical 
simulations of 3D convection with temperature-dependent viscosity and 
viscous heating at realistic Rayleigh numbers for Earth’s mantle reveal 
that, in the strongly time-dependent regime, very intense localized heating 
takes place along the top portion of descending cold sheets and also at 
locations where the ascending plume heads impinge at the surface. They 
also found that the horizontally averaged viscous dissipation is concentrated 
at the top of the convecting layer and has a magnitude comparable to that 
of radioactive heating. King et al. [17] worked on a benchmark for 2-D 
Cartesian compressible convection in the Earth’s mantle where they used 
steady-state constant and temperature-dependent viscosity cases as well 
as time-dependent constant viscosity cases. In their work, the Rayleigh 
numbers are near 106 and dissipation numbers are between 0 and 2, and they 
conclude that the most unstable wavelengths of compressible convection are 
smaller than those of incompressible convection. As the research on mantle 
convection is growing, the importance of studying viscous dissipation is 
also increasing since it was suggested that the bending of long and highly 
viscous plates at subduction zones dissipates most of the energy that drives 
mantle convection [22]. Some notable recent works on numerical studies 
of convection and effects of variable viscosity and viscous dissipation have 
been done by Ushachew et al. [23], Megahed [24], Ferdows et al. [25], 
Ahmed et al. [26], Fetecau et al. [27].

Although mantle convection is a 3D problem, many 2D codes have been 
developed to gain an understanding of the fundamental mechanism and to 
minimize the computational cost and complexity. As the Earth’s mantle 
has been affected by many complexities, its basic understanding has been 
constructed through research on simple Rayleigh–Bénard convection [2]. 
Over the years, the Rayleigh–Bénard convection has become a benchmark 
problem in computational geophysics as a paradigm for convection in 
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the Earth’s mantle. Although Rayleigh–Benard convection with viscosity 
variation is a well-known topic for mantle convection, very high viscosity 
variation (up to 1030) for mantle convection is not widely covered. To the best 
of our knowledge, mantle convection with strongly variable viscosity, which 
is temperature dependent and also both temperature and pressure dependent 
with the inclusion of viscous dissipation, has not been studied so far. The 
governing equation in two-dimensional form ensures the conservation of 
mass, momentum, and energy and the thermodynamic equation of state. In 
this study, incompressible mantle convection will be considered where the 
mantle viscosity depends strongly on both temperature and pressure, and 
viscous dissipation is also considered. The convection will be investigated 
at a high Rayleigh number with high viscosity variations across the mantle.

In “Methods” section the full governing equations for mantle convection 
and the appropriate boundary conditions for classical Rayleigh–Bénard 
convection in a 2D square cell are described. The equations are non-
dimensionalized and the dimensionless parameters are identified. Though 
the variable viscosity is defined in an Arrhenius form, a modified form of 
viscosity is used to improve the efficiency of numerical computation. The 
computational method for simulation is also described, and the code is 
verified using some benchmark values. Then the governing model is solved 
numerically in a unit aspect-ratio cell for extremely large viscosity variations, 
and steady solutions for temperature and streamlines are obtained. The 
numerical and graphical results of the computation are described in “Result 
and discussion” section. Finally, in “Conclusion” section some concluding 
remarks on the results are given.

METHODS

Governing Equations
A classical Rayleigh–Bénard convection in a two-dimensional unit aspect 
ratio cell with a free slip boundary condition is taken into account. The 
temperature difference is fixed between the horizontal boundaries. The 
convective cell is assumed to be a section of a periodic structure in the 
associated infinite horizontal layer. When adopting Cartesian coordinates (x, 
z) with horizontal x-axis and vertical z-axis, the Boussinesq approximation 
is assumed, which suggests that density variation is barely vital within the 
buoyancy term of the momentum equation, so that mass conservation takes 
the shape of the incompressibility condition [16]. The inertia terms within 
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the Navier–Stokes equations (taking the limit of an infinite Prandtl number) 
are neglected as well. According to Solomatov [28], the integral viscous 
dissipation within the layer is often balanced by the integral mechanical 
work done by thermal convection per unit time, and if the viscosity contrast 
is large, dissipation in the cold boundary layer becomes comparable 
with the dissipation in the internal region. Thus, in order to balance the 
energy equation, the extended Boussinesq approximation is used. Here, 
“extended Boussinesq approximation” means that apart from the driving 
buoyancy forces, the fluid is treated as being incompressible all over. The 
non-Boussinesq effects of the adiabatic gradient and frictional heating are 
introduced into the energy equation [29]. The governing equations ensure 
the conservation of mass, momentum, and energy. This also ensures a 
suitable thermodynamic equation of state. The Navier–Stokes equations, 
which describe the motion in component forms, are [30]

     (1)
The energy equation is

   (2)
Here, P is the pressure, τ is the deviatoric stress tensor, t is time, ρ is 

the density, u = (u, 0, w) is the fluid velocity, where u and w are velocity 
components in the x- and z-directions, g is the assumed constant gravitational 
acceleration acting downwards (the variation of g across the mantle is quite 
small that it is taken as constant), τ1 and τ3τ3 are the longitudinal and shear 
components of the deviatoric stress tensor, respectively, ηη is the viscosity, 
Tb is the basal temperature, ρ0 is the basal density, κ is the thermal diffusivity, 
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T is the absolute temperature, Cp is the specific heat at constant pressure, and 
α is the thermal expansion coefficient.

The deviatoric stress tensor, τ can be expressed as

where τ1 and τ3 are the longitudinal and shear components of the deviatoric 
stress tensor, respectively.

The Arrhenius form of viscosity function is

     (3)
where A is the rate factor, n is the flow index, E is the activation energy, V is 
the activation volume, and R is the universal gas constant [5].

A unit aspect-ratio cell with a free-slip boundary condition is considered. 
The temperatures at the bottom and top boundaries are taken as constant, and 
thermal insulation is assumed on the side walls. The boundary conditions are

     (4)
where d is the depth of the convection cell, Tb and Ts are the basal and top 
temperatures, respectively (Fig. 1).

Figure 1. Schematic diagram of a basally heated non-dimensional unit aspect-
ratio cell in mantle.
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Throughout this work, Newtonian rheology is considered with n = 1 in 
the viscosity relation and internal heating is neglected. To see the effects 
of variable viscosity (both temperature-dependent and temperature-and 
pressure-dependent viscosity) and viscous dissipation on convection, these 
assumptions are made to make the model less complicated.

Non-dimensionalization	and	Simplification
In order to non-dimensionalize the model, the variables are set as [7, 30]

  (5)
Using these in equations from (1) to (3) and dropping the asterisk 

decorations, the dimensionless equations becomes

      (6)

  (7)
while the dimensionless version of constitutive relation (3) reads

     (8)
in which the dimensionless parameters are,
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   (9)
Since this model was developed for the mantle, the typical values of the 

parameters are given in Table 1, and it is found that for  can 
be easily ignored. Therefore, the dimensionless energy equation (7) becomes

   (10)
and viscosity relation (8) becomes

   (11)
This Eq. (11) is known as full form of Arrhenius viscosity function.

Table 1. Typical parameter values for mantle convection with variable viscosity

Parameter Symbol Value
Mantle depth d 3 × 106 m

Thermal expansion coefficient α 2 × 10−5 K−1

Reference density ρ0 4 × 103 kg m−3

Gravitational acceleration g 10 m s−2

Temperature at the top of the mantle Ts 300 K
Temperature at the base of the 
mantle

Tb 3000 K

Temperature difference ΔT 2700 K
Thermal conductivity k 4 W m−1K−1

Specific heat at constant pressure Cp 103 J kg−1 K−1

Activation energy E 300 – 525 kJ mol−1
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Activation volume V 6 × 10−6 m3 mol−1

Gas law constant R 8.31 J mol−1 K−1

Viscous rate constant A 105 MPa−1 s−1

Thermal diffusivity κ 1 × 10−6 m2 s−1

Rayleigh number Ra 107 − 109

Viscous temperature parameter ε 0.042 − 0.083
Viscous pressure number μ 1.2 − 2.4
Boussinesq number 0.06

Dimensionless surface temperature θ0 0.1
Dissipation number D 0.6

The dimensionless boundary conditions (4) become

   (12)
The dimensionless model consists of governing Eqs.  (6), (10), viscosity 

relation (11) and boundary conditions (12).

Low Temperature Cut-Off Viscosity
To investigate the convection with extremely high viscosity contrasts in the 
mantle layer, a low temperature cut-off viscosity function is used. This cut-
off viscosity relation helps reduce the computational stiffness while retaining 
the sensitivity of the viscosity to the changes in temperature and pressure 
across the mantle. It is a well-established fact that in strongly temperature-
dependent viscous convection, most of the viscosity variation occurs in a 
stagnant lid in which the velocity is essentially zero. Based on this fact, the 
sub-lid convection field is calculated accurately (but not the stress field) by 
cutting off the dimensionless viscosity at a sufficiently high value that the 
lid thickness, which essentially only depends on the interaction of the lid 
temperature with the underlying convection flow, is unaffected.

The low temperature cut-off viscosity function has the following form

   (13)
where
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      (14)
and the cut-off viscosity value 10r is to be chosen appropriately; in 
numerical experiments, it is chosen r = 6. Similar type of Arrhenius law 
with an imposed cut-off viscosity was applied by Huang et al. [31], Huang 
and Zhong [32], King [33] and Khaleque et al. [13]. A comparison between 
full-form viscosity function and cut-off viscosity function is shown in 
“Comparison with benchmark values and validation” section.

Three useful diagnostic quantities which will be used to characterize 
are viscosity contrast, Nusselt number and root mean square velocity 
respectively.

The viscosity contrast Δη is the ratio between the surface and basal 
values of the viscosity, defined as

where .
The Nusselt number Nu is the ratio of the average surface heat flow from 

the convective solution to the heat flow due to conduction. It is calculated in 
the present case of a square cell by the dimensionless relation

Nu is equal to unity for conduction and exceeds unity as soon as 
convection starts.

The vigour of the circulating flow is characterised by the non-dimensional 
RMS (root mean square) velocity. Here RMS velocity is defined by

where u is the horizontal component of velocity and w is the vertical com-
ponent of velocity.
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Computational Method
In order to solve the dimensionless governing Eqs. (6), (10), (11) with 
boundary conditions (12) a finite element method based PDE solver 
‘COMSOL Multiphysics 5.3’ is used. The modules for creeping flow, heat 
transfer in fluids, and Poisson’s equation are chosen based on the physics of 
the model. Free triangular meshing with some refinement near the boundaries 
of 200 × 200 and COMSOL’s “extra fine” setting results in a complete mesh 
of a total of 18,000 elements. As the basis functions or shape functions, 
Lagrangian P2–P1 elements for creeping flow are selected, which means the 
shape functions for the velocity field and pressure are Lagrangian quadratic 
polynomials and Lagrangian linear polynomials, respectively. Similarly, 
Lagrangian quadratic elements for both temperature in the heat equation 
and the stream function in Poisson’s equation are chosen. For Lagrange 
elements, the values of all the variables at the nodes are called degrees of 
freedom (dof) and in this case, our specific discretization finally produces 
153,816 degrees of freedom (Ndof). The following convergence criterion is 
applied for all cases:

      (15)
where Ei is the estimated error and ε = 10−6. Further details of the method 
can be found in Zimmerman [34].

Comparison with Benchmark Values and Validation
The values of Nusselt number Nu and root mean square velocity Vrms are 
compared with the benchmark values from Blankenbach et al. [35]a and 
Koglin Jr et al. [36]b in Table 2 for constant viscosity case. Their values were 
computed for Ra up to 106 and 107 respectively. From Table 2, it is evident 
that the agreement is within a very good range.
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Table 2. Comparison of computed Nusselt number Nu and RMS velocity Vrms 
with benchmark values from Blankenbach et al. [35]a and Koglin Jr et al. [36]b

Ra Nu Vrms

This work Benchmark This work Benchmark
104 4.884409 4.884409a 42.864973 42.864947a

105 10.534113 10.534095a 193.215527 193.21454a

106 21.972563 21.972465a 834.004359 833.98977a

107 45.638611 45.62b 3633.932754 –

Table 3. Comparison of Nusselt number, Nu of full-form viscosity function 
(11) and cut-off viscosity function (13) for μ = 0.0 and μ = 0.5 at Ra = 107 and 
θ0 = 0.1

Δη Full form η Cut-off η
μ = 0.0 μ = 0.5 μ = 0.0 μ = 0.5

1010    6.76217 8.06845    6.76800 8.06845
1015    5.35744 6.98327    5.36157 6.98490
1020    4.44652 6.29296    4.45036 6.29310
1025    3.79703 5.79253    3.80090 5.79442
1030   3.25274 5.39134    3.25696 5.39304

Then the computation is done with variable viscosity with a high 
viscosity contrast across the mantle layer. The values of Nusselt number Nu 
that are compared in Table 3 are found using the full form viscosity function 
(11) and the cut-off viscosity function (13) for μ = 0.5 and μ = 0.0. It should 
be noted that μ = 0.0 indicates temperature-dependent viscosity, whereas 
μ ≠ 0 implies that viscosity depends on both temperature and pressure. 
From Table 3 it can be seen that the values of Nusselt number, Nu with 
full form viscosity function and the values of Nusselt number, Nu with cut-
off viscosity function are very close, which validates the use of the cut-off 
viscosity function for numerical computation.

RESULT AND DISCUSSION
After validating the model, the governing Eqs. (6), (10) and (13) with 
boundary conditions (12) are solved. Throughout the computation, the 
constants θ0 = 0.1 and Ra = 107 are used, and the values of the Nusselt 
number, Nu, and root mean square velocity, Vrms for different dissipation 
numbers, D, pressure dependent parameter μ, and temperature dependent 
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parameter ε are calculated. By varying μ and ε, different viscosity contrast 
is obtained across the mantle layer. The numerical computations with D = 
0.3 and D = 0.6 at Ra = 107 when μ = 0.0, μ = 0.5 and μ = 1.0 are performed, 
and the calculated Nusselt number and the RMS velocity values for high 
viscosity contrasts from 1010 to 1030 are shown in Tables 4 and 5.

Table 4. Nusselt number Nu computed for μ = 0.0, μ = 0.5, μ = 1.0 with differ-
ent viscous dissipation number D at Ra = 107 and θ0 = 0.1

Δη Nusselt number Nu

μ = 0.0 μ = 0.5 μ = 1.0

D = 0.0 D = 0.3 D = 0.6 D = 0.0 D = 0.3 D = 0.6 D = 0.0 D = 0.3 D = 0.6

1010 6.76800 3.83912 2.22500 8.06845 4.46772 2.45665 9.35884 5.22977 2.76453

1015 5.36157 2.90745 1.73657 6.98490 3.62823 1.93308 8.20184 4.58926 2.25912

1020 4.45036 2.34275 1.48655 6.29310 3.09495 1.63913 6.85055 4.18656 1.93551

1025 3.80090 2.00320 1.34157 5.79442 2.71655 1.45780 5.43699 3.88971 1.71162

1030 3.25696 1.77292 1.24780 5.39304 2.40512 1.33803 4.79113 3.64133 1.54933

Table 5. RMS velocity Vrms computed for μ = 0.0, μ = 0.5, μ = 1.0 with different 
viscous dissipation number D at Ra=107 and θ0 = 0.1

Δη RMS velocity Vrms

μ = 0.0 μ = 0.5 μ = 1.0

D = 0.0 D = 0.3 D = 0.6 D = 0.0 D = 0.3 D = 0.6 D = 0.0 D = 0.3 D = 0.6

1010 753.149 450.644 244.368 1000.932 580.307 292.445 1189.156 722.471 350.050

1015 594.920 314.292 161.594 894.191 468.522 204.168 949.421 640.405 273.675

1020 483.396 222.950 115.209 806.197 388.104 149.557 585.505 562.901 214.198

1025 398.149 173.658 85.850 721.782 324.978 113.462 307.379 481.827 169.948

1030 308.093 139.281 65.259 634.734 259.877 87.966 273.349 398.414 136.766

Tables 4 and 5 show that for each fixed value of μ and D, Nu and Vrms 
decrease as the viscosity contrast increases (i.e., the temperature dependence 
parameter decreases) across the mantle. It confirms that at the higher viscosity 
variation, convection becomes weaker, which can also be seen clearly in the 
thermal distribution Figs. 2 and 3. Nu and Vrms values also decrease as D 
increases for every particular value of μ.

It is also observed that at a specific viscosity contrast as the pressure 
dependence parameter μ is increased, both Nu and Vrms values increase for 
a fixed dissipation number D = 0.3 and D = 0.6. The reason behind this 
is that even though μ is increased, ε is actually decreased to maintain the 
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fixed viscosity contrast. However, for D = 0.0, the trend is not that smooth 
at higher viscosity variations. Comparing the Vrms values between D = 0.0 
and D = 0.3 at μ = 1.0 it can be seen that at high viscosity contrasts, the Vrms 
values for D = 0.3 are larger than those for D = 0.0 which are unlike the 
other values.

The thermal distribution and stream function contours for μ = 0.0, μ=0.5 
and μ = 1.0 are presented in Figs. 2, 3 and 4.

Figure 2. Thermal distributions of a convection at different viscosity variations 
and at different pressure numbers for a fixed viscous dissipation number D = 0.3 
with θ0 = 0.1 and Ra = 107.
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Figure 3. Thermal distributions of a convection at different viscosity variations 
and at different pressure numbers for a fixed viscous dissipation number D = 0.6 
with θ0 = 0.1 and Ra = 107.

In Figs. 2 and 3 the thermal distribution of the unit aspect ratio convection 
cell for the values of D = 0.3 and D = 0.6 respectively are presented for 
different viscosity contrasts. In panel 2a, b and 3a, b, the viscosity depends 
only on temperature (i.e. μ = 0.0) and in panel 2c, f and 3c, f, the viscosity 
depends on both temperature and pressure (i.e. μ ≠ 0.0). At each plot of the 
temperature profile, the blue region corresponds to the cooler temperature 
whereas the red region corresponds to the high temperature.
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For μ = 0.0, μ = 0.5 and μ = 1.0, from Figs. 2 and 3 we see that as 
viscosity contrast Δη increases the thickness of the cold thermal boundary 
layer at the top of the cell. At the lower mantle, which is near the core 
of the Earth, the boundary is hot as the temperature is very high and this 
temperature continues to increase as the viscosity contrast gets larger. The 
interior temperature decreases significantly as the pressure dependence 
parameter is included. The convection cell is quite different when viscosity 
is both temperature and pressure dependent rather than only temperature 
dependent. Compared to μ = 0.5 the significance of pressure can be seen 
clearly for μ = 1.0 from both Figs. 2 and 3.

The stream function contours where stream function Ψ(x, z) defined as

   (16)
are presented in Fig. 4 for D = 0.3. As the streamlines represent fluid flow, 
the absence of a streamline confirms that fluid in that region is immobile. In 
other words, this immobile region represents the stagnant lid. With increasing 
viscosity contrast and viscous dissipation, the changes in the convection 
pattern are very clear. It is observed that the cold thermal boundary layer 
thickness increases with viscosity contrast. But for a fixed dissipation 
number, the cold thermal boundary thickness is reduced with the inclusion of 
the pressure-dependent parameter μ. Clearly, the lid thickness decreases as 
the pressure dependence parameter is increased at a fixed viscosity variation. 
However, the lid thickness increases when viscosity variation is increased 
at a fixed pressure dependence parameter μ and dissipation number D. The 
Tables 4 and 5 clearly indicate that the heat transfer rate and the root mean 
square velocity decrease, and Figs.  2, 3 and 4 show that the immobile lid 
thickness increases as the viscosity contrast at a fixed pressure dependent 
parameter is increased. The decrease in Nu and Vrms values, as well as the 
increase in the thickness of the cold thermal boundary layer, imply that the 
convection becomes significantly weaker.
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Figure 4. Stream function contours of a convection at different viscosity varia-
tions and at different pressure numbers for a fixed viscous dissipation number 
D = 0.3 with θ0 = 0.1 and Ra=107.
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Figure 5. Isothermal contours of a temperature dependent viscosity convection 
at different viscosity variations and viscous dissipation number with θ0 = 0.1 
and Ra = 107.

Figure 6. a Isothermal contour and b distribution of log10η for μ = 1.0 at Δη=1030 
and viscous dissipation D = 0.3 with θ0 = 0.1 and Ra = 107.
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Figure 7. Horizontally average temperature vs depth profiles at viscosity con-
trasts Δη = 1015 and Δη = 1030 for convection with μ = 0.0, μ = 0.5 and μ = 1.0 at 
θ0 = 0.1 and Ra = 107 with viscous dissipation D = 0.3 and D = 0.6.

A visualization of the isothermal contours in Fig. 5 shows that the hot 
thermal boundary layer is very thin compared to the cold thermal boundary 
layer. This figure represents the isothermal contours of a convection cell 
with temperature dependent viscosity at different viscosity contrast (i.e Δη 
= 1015 and Δη = 1030) when viscous dissipation numbers are D = 0.3 and 
D = 0.5. There might not be any significant difference in the convection 
pattern (i.e., isothermal contours), but the contours are not similar. They 
are clearly affected by different viscous dissipation numbers at different 
viscosity contrasts.

Isothermal contours (Fig. 6a) and viscosity distribution (Fig. 6b) for μ 
= 1.0 at Δη = 1030 and viscous dissipation D = 0.3 are shown in Fig. 6. The 
viscosity variation from top to bottom is shown in Fig. 6b, and the resulting 
color ranges from the lowest value (blue) to 106 (brown). Clearly, the cut-
off viscosity function simply ignores the high value of the lid viscosity and 
considers it as a constant there. Figure 6b shows a low viscosity region in 
the upper mantle and a relatively high viscosity region in the lower mantle 
just above the bottom boundary layer. This implies that the interior is not 
isoviscous.

Horizontally average temperature vs depth profiles for viscous 
dissipation of D = 0.3 and D = 0.6 are presented in Fig. 7. These figures show 
how the horizontally averaged temperature varies with depth at different 
viscous dissipation numbers and at different viscosity variations. It also 
shows how it changes for temperature-dependent viscosity and temperature-
and pressure-dependent viscosity. The rapid change in temperature near 
the cold upper boundary and the hot lower boundary explains the strong 
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temperature gradients in those regions. The plots also indicate that the core 
of the mantle, i.e. the interior, is not isothermal for both the temperature 
dependent viscosity case and the temperature and pressure dependent 
viscosity case. The interior of the convection cell undergoes a larger jump in 
temperature when dissipation effect is stronger (D = 0.6). The figures show 
that the interior temperature increases with the increase of viscosity contrast 
across the mantle layer for μ = 0.0 and μ = 0.5 at D = 0.3 and D = 0.6. 
Similar situation occurs for μ= 1.0 at D = 0.6 but when D = 0.3, temperature 
decreases at high viscosity contrast (i.e. at Δη = 1030).

CONCLUSION
The study of a basally heated convection model with a strongly temperature 
and pressure dependent viscous fluid relative to the Earth’s mantle in the 
presence of viscous dissipation has been the principal aim of this work. 
The classical Rayleigh–Bénard convection model was solved using a low 
temperature cut-off viscosity function to avoid the stiffness of computation. 
It was aimed to pursue viscosity that is dependent only on temperature 
and simultaneously dependent on both temperature and pressure, and a 
comparison is presented through figures and tables.

According to Jarvis and Mckenzie [37], the dissipation number is between 
0.25 and 0.8, whereas Leng and Zhong [19] estimate D to be 0.5 to 0.7. 
Ricard [38] found that its value is about 1.0 near the surface, and decreases 
to about 0.2 near the CMB. From Table 1, D ≈ 0.6 has been found. Thus, 
the effect of various viscous dissipation numbers for mantle like convection 
with Ra=107 is checked. The different values of viscous dissipation number 
show the changes in heat transfer rate Nu and root mean square velocity Vrms. 
It is shown that the fluid is not isothermal and isoviscous in the presence of 
viscous dissipation in both cases when viscosity is temperature-dependent 
and temperature-pressure-dependent. The viscosity distribution at high 
viscosity contrast for μ = 1.0 also showed that the fluid is not isoviscous.

Analysis of the results can predict that if the dissipation number is 
increased, the lid thickness will increase more and the convection rate 
will decrease notably. But it is also clear that the inclusion of viscous 
dissipation does not affect the convection pattern in any drastic way. The 
convection becomes weaker as viscosity contrast becomes larger and the 
viscous dissipation number is increased. However, the variation in Nu, Vrms 
increase as μ goes from 0 to 0.5, but the trend is different when μ goes 
from 0.5 to 1.0. Thus, strong pressure dependence in viscosity affects the 
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convection in a different way. For a temperature-dependent viscosity case 
and a temperature and pressure-dependent viscosity case, the horizontally 
averaged temperature increases with viscosity contrast in the interior, but 
the trend is opposite in the top boundary layer, i.e., the stagnant lid. In this 
study we investigated convection with high viscosity contrast, because for 
the typical parameter values, it is estimated that the viscosity contrast for the 
Earth’s mantle is 1050 or more. Without extreme parameter values, it is quite 
impossible to obtain a proper asymptotic structure of mantle convection for 
the Earth and other planets. Thus, it is believed that this study will have a 
significant impact on the study of thermal convection in the Earth’s mantle 
and other planets where viscosity is strongly variable and the variation of the 
order of magnitude is very large.
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the underlying governing process that controls the system behavior. Under 
the high temperature and high pressure environment, the phase change 
phenomena such as evaporation and condensation have a great impact on the 
heat distribution, as well as the pattern of fluid flow. In this work, we have 
extended the persistent primary variable algorithm proposed by (Marchand 
et al. Comput Geosci 17(2):431–442) to the non-isothermal conditions. The 
extended method has been implemented into the OpenGeoSys code, which 
allows the numerical simulation of multiphase flow processes with phase 
change phenomena. This new feature has been verified by two benchmark 
cases. The first one simulates the isothermal migration of H 2 through the 
bentonite formation in a waste repository. The second one models the 
non-isothermal multiphase flow of heat-pipe problem. The OpenGeoSys 
simulation results have been successfully verified by closely fitting results 
from other codes and also against analytical solution.

Keywords: Non-isothermal multiphase flow, Geothermal reservoir model-
ing, Phase change, OpenGeoSys

BACKGROUND
In deep geothermal reservoirs, surface water seepages through fractures in the 
rock and moves downwards. At a certain depth, under the high temperature 
and pressure condition, water vaporizes from liquid to gas phase. Driven by 
the density difference, the gas steam then migrates upwards. Along with its 
path, it will condensate back into the liquid form and release its energy in the 
form of latent heat. Often, this multiphase flow process with phase transition 
controls the heat convection in deep geothermal reservoirs. Besides, such 
multiphase flow and heat transport are considered to be the underlying 
processes in a wide variety of applications, such as in geological waste 
repositories, soil vapor extraction of Non-Aqueous Phase Liquid (NAPL) 
contaminants (Forsyth and Shao 1991), and C O 2 capture and storage (Park 
et al. 2011; Singh et al. 2012). Throughout the process, different phase zones 
may exist under different temperature and pressure conditions. At lower 
temperatures, water flows in the form of liquid. With the rise of temperature, 
gas and liquid phases may co-exist. At higher temperature, water is then 
mainly transported in the form of gas/vapor. Since the physical behaviors 
of these phase zones are different, they are mathematically described by 
different governing equations. When simulating the geothermal convection 
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with phase change phenomena, this imposes challenges to the numerical 
models. To numerically model the above phase change behavior, there exist 
several different algorithms so far. The most popular one is the so-called 
primary variable switching method proposed by Wu and Forsyth (2001). 
In Wu’s method, the primary variables are switched according to different 
phase states. For instance, in the two phase region, liquid phase pressure 
and saturation are commonly chosen as the primary variables; whereas in 
the single gas or liquid phase region, the saturation of the missing phase will 
be substituted by the concentration or mass fraction of one light component. 
This approach has already been adopted by the multiphase simulation code 
such as TOUGH (Pruess 2008) and MUFTE (Class et al. 2002). Nevertheless, 
the governing equations deduced from the varying primary variables are 
intrinsically non-differentiable and often lead to numerical difficulties. To 
handle this, Abadpour and Panfilov (2009) proposed the negative saturation 
method, in which saturation values less than zero and bigger than one are 
used to store extra information of the phase transition. Salimi et al. (2012) 
later extended this method to the non-isothermal condition, and also taking 
into account the diffusion and capillary forces. By their efforts, the primary 
variable switching has been successfully avoided. Recently, Panfilov and 
Panfilova (2014) has further extended the negative saturation method to 
the three-component three-phase scenario. As the negative saturation value 
does not have a physical meaning, further extension of this approach to 
general multi-phase multi-component system would be difficult. For deep 
geothermal reservoirs, it requires the primary variables of the governing 
equation to be persistent throughout the entire spatial and temporal domain 
of the model. Following this idea, Neumann et al. (2013) chose the pressure 
of non-wetting phase and capillary pressure as primary variables. The 
two variables are continuous over different material layers, which make it 
possible to deal with heterogeneous material properties. The drawback of 
Neumann’s approach is that it can only handle the disappearance of the non-
wetting phase, not its appearance. As a supplement, Marchand et al. (2013) 
suggested to use mean pressure and molar fraction of the light component 
as primary variables. This allows both of the primary variables to be 
constructed independently of the phase status and allows the appearance and 
disappearance of any of the two phases. Furthermore, this algorithm could 
be easy to be extended to multi-phases (≥3) multi-components (≥3) system.

In this work, as the first step of building a multi-component multi-phase 
reactive transport model for geothermal reservoir simulation, we extend 
Marchand’s component-based multi-phase flow approach (Marchand 
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et al. 2013) to the non-isothermal condition. The extended governing 
equations (‘Governing equations’ section), together with the Equation of 
State (EOS) (‘Constitutive laws’ section), were solved by nested Newton 
iterations (‘Numerical solution of the global equation system’ section). This 
extended model has been implemented into the OpenGeoSys software. 
To verify the numerical code, two benchmark cases were presented here. 
The first one simulates the migration of H 2 gas produced in a waste 
repository (‘Benchmark I: isothermal injection of H 2 gas’ section). The 
second benchmark simulates the classical heat-pipe problem, where a 
thermal convection process gradually develops itself and eventually reaches 
equilibrium (‘Benchmark II: heat pipe problem’ section). The numerical 
results produced by OpenGeoSys were verified against analytical solution 
and also against results from other numerical codes (Marchand et al. 2012). 
Furthermore, details of numerical techniques regarding how to solve the non-
linear EOS system were discussed (‘Numerical solution of EOS’ section). In 
the end, general ideas regarding how to include chemical reactions into the 
current form of governing equations are introduced.

METHOD

Governing Equations
Following Hassanizadeh and Gray (1980), we write instead the mass balance 
equations of each chemical component by summing up their quantities over 
every phase. According to Gibbs Phase Rule (Landau and Lifshitz 1980), 
a simplest multiphase system can be established with two phases and two 
components. Considering a system with water and hydrogen as constitutive 
components (with superscript h and w), they distribute in liquid and gas 
phase, with the subscript α∈L,G. The component-based mass balance 
equations can be formulated as

  (1)

  (2)

where S 
L and S 

G indicate the saturation in each phase.  
represents the mass density of i-component in α phase. Φ refers to the 
porosity. F h and F w are the source and sink terms. The Darcy velocity v 

L 
and v 

G for each fluid phase are regulated by the general Darcy Law
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      (3)

      (4)
Here, K is the intrinsic permeability, and g refers to the vector for 

gravitational force. The terms  and  represent the diffusive mass 
fluxes of each component in different phases, which are given by Fick’s Law 
as

      (5)

Here  is the diffusion coefficient, and  the mass fraction. When 
the non-isothermal condition is considered, a heat balance equation is added, 
with the assumption that gas and liquid phases have reached local thermal 
equilibrium and share the same temperature.

    (6)
In the above equation, the phase density ρ 

G , ρ 
L , the specific internal 

energy in different phase u 
L , u 

G and specific enthalpy in different phase h 
L and h 

G are all temperature and pressure dependent. While ρ 
S and c 

S are 
the density and specific heat capacity of the soil grain, λ 

T refers to the heat 

conductivity, and Q 
T is source term,  represents the 

latent heat term according to (Gawin et al. 1995). Generally, the specific 
enthalpy in Eq. 6 can be described as follows

        (7)
Here c 

p α is the specific heat capacity of phase α at given pressure. At 
the same time, relationship between internal energy and enthalpy can be 
described as

       (8)
where P α and V α are the pressures and volumes of phase α. Since we consider 
the liquid phase is incompressible, its volume change can be ignored, i.e. 
h=u.
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Non-isothermal Persistent Primary Variable Approach
Here in this work, we follow the idea of Marchand et al. (2013), where 
the ‘Persistent Primary Variable’ concept were adopted. A new choice of 
primary variables consists of:

•	 P [Pa] is the weighted mean pressure of gas and liquid phase, with 
each phase volume as the weighting factor. It depends mainly on 
the liquid saturation S.

     (9)
 Here γ(S) stands for a monotonic function of saturation S, 

with γ(S)∈[0,1],γ(0)=0,γ(1)=1. In Benchmark I (‘Benchmark I: 
isothermal injection of H 2 gas’ section), we choose

 
 In Benchmark II (‘Benchmark II: heat pipe problem’ section), we 

choose

 
 When one phase disappears, its volume converges to zero, making 

the P value equal to the pressure of the remaining phase. If we 
assume the local capillary equilibrium, the gas and liquid phase 
pressure can both be derived based on the capillary pressure P 

c , 
that is also a function of saturation S.

      (10)

     (11)
•	 X [-] refers to the total molar fraction of the light component 

in both fluid phases. Similar to the mean pressure P, it is also a 
continuous function throughout the phase transition zones. We 
formulate it as

     (12)

 In a hydrogen-water system,  and  refer to the molar 
fraction of the hydrogen in the two phases, and N 

L and N 
G are the 

respective molar densities [mol m −3].
 Based on the choice of new primary variables, the mass 

conservation Eqs. 1 and 2 can be transformed to the molar mass 
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conservation. The governing equations of the two-phase two-
component system are then written as

   (13)
 with i∈(h,w) and the flow velocity v regulated by the generalized 

Darcy’s law, referred to Eqs. 3 and 4.
 The molar diffusive flux can be calculated following Fick’s law

    (14)
•	 T [K] refers to the Temperature. If we consider the temperature 

T as the third primary variable, the energy balance equation can 
then be included.

   (15)
The non-isothermal system can thus be simulated by the solution of 

combined Eqs. 13 and 15, with P, X, and T as primary variables. Once these 
three primary variables are determined, the other physical quantities are then 
constrained by them and can be obtained by the solution of EOS system. 
These secondary variables were listed in Table 1. Compared to the primary 
variable switching (Wu and Forsyth 2001) and the negative saturation 
(Abadpour and Panfilov 2009) approach, the choice of P and X as primary 
variables fully covers all three possible phase states, i.e., the single-phase 
gas, two-phase, and single-phase liquid regions. It also allows the appearance 
or disappearance of any of the two phases. Instead of switching the primary 
variable, the non-linearity of phase change behavior was removed from the 
global partial differential equations and was embedded into the solution of 
EOS.
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Table 1. List of secondary variables and their dependency on the primary vari-
ables

Parameters Symbol Unit
Gas phase saturation S(P,X) [-]

Molar density of phase α N α (P,X,T) [mol m −3]

Molar fraction of component i in 
phase α

( i )X ( P,X ,T )α
[-]

Capillary pressure P 
c (S) [ Pa]

Relative permeability of phase α K 
r α (S) [-]

Specific internal energy of phase α u α (P,X,T) [J mol −1]

Specific enthalpy of phase α H α (P,X,T) [J mol −1]

Heat conduction coefficient λ 
pm (P,X,S,T) [W m −1 K −1]

Closure Relationships
Mathematically, the solution for any linear system of equations is unique if 
and only if the rank of the equation system equals the number of unknowns. 
In this work, the combined mass conservation of Eqs. 1, 2, and the energy 
balance Eq. 6 must be determined by three primary variables. Other variables 
are dependent on them and considered to be secondary. Such nonlinear 
dependencies form the necessary closure relationships.

Constitutive Laws

Dalton’s Law
Dalton’s Law regulates that the total pressure of a gas phase is equal to the 
sum of partial pressures of its constitutive non-reacting chemical component. 
In our case, a gas phase with two components, i.e., water and hydrogen is 
considered. Then the gas phase pressure P 

G writes as

   (16)

Ideal Gas Law
In our model, the ideal gas law is assumed, where the response of gas phase 
pressure and volume to temperature is regulated as
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        (17)
where R is the Universal Gas Constant (8.314 J mol −1 K −1), V is the volume 
of the gas and n stands for the mole number gas. Reorganizing the above 
equation gives the molar density of gas phase N 

G

       (18)
Combining Dalton’s Law of Eq. 16, we have

      (19)
Furthermore, the molar fraction of component i can be obtained by 

normalizing its partial pressure with the total gas phase pressure,

        (20)

Incompressible Fluid
Unlike the gas phase, the liquid phase in our model is considered to be 
incompressible, i.e., the density of the fluid is linearly dependent on the 
molar amount of the constitutive chemical component. By assuming 

standard water molar density  with  refers to the standard 
water mass density (1000 kg m −3 in our model), the in-compressibility of 
the liquid phase writes as

        (21)

Henry’ Law
We assume that the distribution of light component (hydrogen in our case) 
can be regulated by the Henry’s coefficient  which is a temperature-
dependent parameter.

       (22)
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Raoult’s Law
For the heavy component (water), we apply Raoult’s Law that the partial 
pressure of the water component in the gas phase changes linearly with its 
molar fraction in the liquid.

      (23)

Here  is the molar fraction of the water component in the liquid 

phase.  is the vapor pressure of pure water, and it is a temperature-
dependent function in non-isothermal scenarios.

EOS for Isothermal Systems
Based on the constitutive laws discussed in the ‘Constitutive laws’ section, 
we have:

    (24)

      (25)

According to Eqs. 24 and 25,  and  can be calculated explicitly, 
under the condition:

    (26)
which is obviously satisfied in water-air and water-hydrogen system, 
i.e., under the condition that the temperature T is 25 °C, with 

 then we 
could have . Here, if we only consider isothermal 
condition, the temperature is assumed to be fixed with T 0. In summary,  

and  could be expressed as:
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  (27)

     (28)
Where S is the saturation of light component, and P 

c represents 
the capillary pressure. The above equations are the most general way of 
calculating the distribution of molar fraction. In Benchmark I (‘Benchmark 
I: isothermal injection of H 2 gas’ section), we follow Marchand’s idea 
(Marchand and Knabner 2014), by assuming there is no water vaporization 

and the gas phase contains only hydrogen, which indicate  and 
. Therefore Eqs. 27 and 28 could be reformulated as:

     (29)

         (30)
Here, for simplification purpose, if we combined with Eqs. 10 and 11, 

 and  could be expressed as functions of mean pressure P and gas 
phase saturation S, and the above formulation can be transformed to

   (31)

   (32)
Assuming the local thermal equilibrium of the multi-phase system is 

reached, then the Equations of State (EOS) are formulated accordingly 
based on the three different phase states.

•	 In two phase region: Molar fraction of hydrogen (  and 
) and molar density in each phase (N 

G and N 
L ) are all secondary 

variables that are dependent on the change of pressure and 
saturation. They can be determined by solving the following non-
linear system.
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      (33)

      (34)

      (35)

      (36)

   (37)
•	 In the single liquid phase region: In a single liquid phase 

scenario, the gas phase does not exist, i.e., the gas phase saturation 
S always equals to zero. Meanwhile, the molar fraction of light 

component in the gas phase  can be any value, as it will be 
multiplied with the zero saturation (see Eqs. 13 to 14) and vanish 
in the governing equation. This also applies to the gas phase 
molar density N 

G , whereas the two parameters can be arbitrarily 
given, and have no physical impact. So to determine the EOS, we 
only need to solve for the liquid phase molar fraction and density.

        (38)

        (39)
•	 In the single gas phase region: Similarly, in a single gas 

phase scenario, the liquid phase does not exist, i.e., the gas 
phase saturation S always equals to 1, whereas the liquid phase 
saturation remains zero. Meanwhile, the molar fraction of light 
component in the liquid phase  can be any value, as it will 
be multiplied with the zero liquid phase saturation (see Eqs. 13 
to 14) and vanish in the governing equation. This also applies to 
the liquid phase molar density N 

G , whereas the two parameters 
can be arbitrarily given, and have no physical meaning. So to 
determine the EOS, we only need to solve for the gas phase molar 
fraction and density.
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EOS for Non-Isothermal Systems
As the energy balance of Eq. 6 has to be taken into account under the non-
isothermal condition, all the secondary variables not only are dependent on 
the pressure P but also rely on the temperature T. Except for the parameters 
mentioned above, several other physical properties are also regulated by 
the T/P dependency. Furthermore, in a non-isothermal transport, high non-
linearity of the model exists in the complex variational relationships between 
secondary variables and primary variables. Therefore, how to set up an EOS 
system for each fluid is a big challenge for the non-isothermal multi-phase 
modeling. In the literature, (Class et al. 2002; Olivella and Gens 2000; 
Peng and Robinson 1976; Singh et al. 2013a, and Singh et al. 2013b) have 
given detailed procedures of solving EOS to predicting the gas and liquid 
thermodynamic and their transport properties. Here in our model, we follow 
the idea by Kolditz and De Jonge (2004). Detailed procedure regarding how 
to calculate the EOS system is discussed in the following.

Vapor Pressure
As we discussed in the ‘Constitutive laws’ section, vapor pressure is a key 
parameter for determining the molar fractions of different components in 
each phase. The equilibrium restriction on vapor pressure of pure water is 
given by Clausius-Clapeyron equation (Çengel and Boles 1994).

   (40)

where  is enthalpy of vaporization, M w is molar mass of water. P 0 
represents the vapor pressure of pure water at the specific Temperature T 0. 
In our model, we choose T 0=373K,P 0=101,325Pa. An alternative method is 
using the Antoine equation, written as

    (41)
0with A, B, and C as the empirical parameters. Details regarding this formu-
lation can be found in Class et al. (2002).
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Specific Enthalpy
Specific enthalpy h α [ J mol −1] is the enthalpy per unit mass. According to 
Eq. 6, we need to know the specific enthalpy of a certain phase. In particular, 
since component-based mass balance is considered, we calculate the phase 
enthalpy as the sum of mole (mass) specific enthalpy of each component in 
this phase. Here we assume that the energy of mixing is ignored. For instance, 
the water-air system applied in the second benchmark is formulated as

       (42)

       (43)

Here  is the specific enthalpy of air in gas phase,  is specific 
enthalpy of vapor water in gas phase,  represents the specific enthalpy 

of the air dissolved in the liquid phase, while  donates the specific 

enthalpy of the liquid water in liquid phase. While  and 

 represent molar fraction [-] of each component (air and water) in the 
corresponding phase (gas and liquid).

Henry Coefficient
We assume Henry’s Law is valid under the non-isothermal condition. 
Therefore Henry coefficient is a secondary variable. In the water-air system, 
it can be defined as (Kolditz and De Jonge 2004)

    (44)
with T the temperature value in °C.

Heat Conductivity
Since the local thermal equilibrium is assumed, the heat conductivity λ 

pm 
[W m −1 K −1] of the fluid-containing porous media is averaged from the heat 
conductivities of the fluid phases and the solid matrix. Thus, it is a function 
of saturation only.

  (45)
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Fugacity
When the thermal equilibrium is reached, the chemical potentials of 
component i in gas and liquid phase equal with each other. This equilibrium 
relationship can be formulated as the equation of chemical potential ν

In our model, the fugacity was applied instead of chemical potential. 
The above relationship is then transformed to the equivalence of component 
fugacities, where

holds for each component i in each phase. In order to compute the fugacity 
of a component in a particular phase, the following formulation is used

       (46)

where  is the respective fugacity coefficient of component.

NUMERICAL SCHEME

Numerical Solution of EOS

Physical Constraints of EOS
Since the pore space should be fully occupied by either or both the gas and 
liquid phases, the sum of phase saturation should equal to one. By definition, 
the saturation for each phase should be no less than zero and no larger than 
one. This constraint is summarized as

     (47)
Similarly, the sum of the molar fraction for all components in a single 

phase should also be in unity, and this second constraint can be formulated 
as

  (48)
Combining these constraints, we have
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       (49)

   (50)

       (51)
For the Eqs. 49 to 51, they contain both equality and inequality 

relationships, which impose challenges for the numerical solution. In order 
to solve it numerically, we introduce a minimum function (Kanzow 2004; 
Kräutle 2011), to transform the inequalities. It is defined as

        (52)
Combined with Eqs. 49 to 51, they can be transformed to

      (53)

      (54)

     (55)
Then Eqs. 53 to 55 formulates the EOS system, which needs to be solved 

on each mesh node of the model domain.

Numerical Scheme of Solving EOS
For the EOS, the primary variables P and X are input parameters and act 
as the external constraint. The saturation S, gas and liquid phase molar 

fraction of the light component  and  are then the unknowns to be 
solved. Once they have been determined, other secondary variables can 
be derived from them. When saturation is less than zero or bigger than 
one, the second argument of the minimization function in Eq. 53 will be 
chosen. Then it effectively prevents the saturation value from moving into 
unphysical value. This transformation will result in a local Jacobian matrix 
that might be singular. Therefore, a pivoting action has to be performed 
before the Jacobian matrix is decomposed to calculating the Newton step. 
An alternative approach to handle this singularity is to treat the EOS system 
as a nonlinear optimization problem with the inequality constraints. Our 
tests showed that the optimization algorithms such as Trust-Region method 
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are very robust in solving such a local problem, but the calculation time will 
be considerably longer, compared to the Newton-based iteration method.

NUMERICAL SOLUTION OF THE GLOBAL  
EQUATION SYSTEM
In this work, we solve the global governing equation Eqs. 13 to 15 with 
all the closure relationships simultaneously satisfied. To handle the non-
linearities, a nested Newton scheme was implemented (see the flow chart in 
Fig. 1). All the derivatives in the EOS system Eqs. 53 to 55 are computed 
exactly and the local Jacobian matrix is constructed in an analytical way, 
while the global Jacobian matrix is numerically evaluated based on the finite 
difference method. For the global equations, the time was discretized with 
the backward Euler scheme, and the spatial discretization was performed 
with the Galerkin Finite Element method. In each global Newton iteration, 
the updated global variables P, X, and T from the previous iteration were 
passed to the EOS system, and acted as constraints to solve for secondary 
variables. The solution of Eqs. 53 to 55 was performed one after the other 
on each mesh node of the model domain.

Figure 1. Scheme of the algorithm for global equation system.
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For Newton iterations, the following convergence criteria was applied.

       (56)
where ∥∥2 denotes the Euclidean norm. A tolerance value ε=1×10−14 were 
adopted for the EOS and 1×10−9 for the global Newton iterations.

HANDLING UNPHYSICAL VALUES DURING THE 
GLOBAL ITERATION
In the ‘Numerical scheme of solving EOS’ section, we have discussed the 
procedure of handling physical constraint of the EOS system. However, 
during the global iterations, if the initial value of X is small enough, it may 
happen that X≤0 can appear. Since the negative value of X would cause 
failures of further iteration, it is necessary to force the non-negativity 
constraint on X. To achieve this, a widely used method is extending the 
definition of the physical variables such as N 

G , N 
L for X<0, as was done in 

(Marchand et al. 2013), (Marchand and Knabner (2014), and (Abadpour and 
Panfilov 2009). In our implementation, we chose an alternative and more 
straightforward method, which is adding a damping factor in each global 
Newton iteration when updating the unknown vector. The damping factor δ 
are chosen as follows,

   (57)
where P(j), X(j) and T(j) denote pressure/molar fraction/temperature at node 
j.

RESULTS AND DISCUSSIONS
In our work, the model verification was carried out in two separate cases, 
one under isothermal and the other under non-isothermal conditions. In 
the first case, a simple benchmark case was proposed by GNR MoMaS 
(Bourgeat et al. 2009). We simulated the same H 2 injection process with 
the extended OpenGeoSys code (Kolditz et al. 2012), and compared our 
results against those from other code (Marchand and Knabner 2014). For 
the non-isothermal case, there exists no analytical solution, which explicitly 
involves the phase transition phenomenon. Therefore, we compared our 
simulation result of the classical heat pipe problem to the semi-analytical 
solution from Udell and Fitch (1985). This semi-analytical solution was 
developed for the steady state condition without the consideration of phase 
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change phenomena. Despite of this discrepancy, the OpenGeoSys code 
delivered very close profile as by the analytical approach.

Benchmark I: Isothermal Injection of H 2 Gas
The background of this benchmark is the production of hydrogen gas due 
to the corrosion of the metallic container in the nuclear waste repository. 
Numerical model is built to illustrate such gas appearance phenomenon. 
The model domain is a two-dimensional horizontal column representing the 
bentonite backfill in the repository tunnel, with hydrogen gas injected on the 
left boundary. This benchmark was proposed in the GNR MoMaS project by 
French National Radioactive Waste Management Agency. Several research 
groups has made contributions to test the benchmark and provided their 
reference solutions (Ben Gharbia and Jaffré 2014; Bourgeat et al. 2009; 
Marchand and Knabner 2014; Neumann et al. 2013). Here we adopted the 
results proposed in Marchand’s paper Marchand and Knabner 2014 for 
comparison.

Physical Scenario
Here a 2D rectangular domain Ω=[0,200]×[−10,10] m (see Fig. 2) was 
considered with an impervious boundary at Γ 

imp =[0,200]×[−10,10] m, 
an inflow boundary at Γ 

in ={0}×[−10,10] m, and an outflow boundary at 
Γ 

out
={200}×[−10,10] m. The domain was initially saturated with water, 

hydrogen gas was injected on the left-hand-side boundary within a certain 
time span ([0,5×104century]). After that the hydrogen injection stopped and 
no flux came into the system. The right-hand-side boundary is kept open 
throughout the simulation. The initial condition and boundary conditions 
were summarized as

• 

Figure 2. Geometry and boundary condition for the H 2 injection benchmark.
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•	 q w·ν=q h·ν=0 on Γ 
imp .

• 
• .

Model Parameters and Numerical Settings
The capillary pressure P 

c and relative permeability functions are given by 
the van-Genuchten model (Van Genuchten 1980).

where  P
r and n are van-Genuchten model parameters and the 

effective saturation S 
le is given by

       (58)
here S 

lr and S 
gr indicate the residual saturation in liquid and gas phases, 

respectively. Values of parameters applied in this model are summarized in 
Table 2.

Table 2. Fluid and porous medium properties applied in the H2 migration 
benchmark

Parameters Symbol Value Unit
Intrinsic permeability K 5×10−20 [m 2]
Porosity Φ 0.15 [-]

Residual saturation of liquid phase S 
lr

0.4 [-]

Residual saturation of gas phase S 
gr

0 [-]

Viscosity of liquid μ 
l

10−3 [ Pa·s]

Viscosity of gas μ 
g

9×10−6 [ Pa·s]

van Genuchten parameter P 
r

2×106 [ Pa]

van Genuchten parameter n 1.49 [-]

We created a 2D triangular mesh here with 963 nodes and 1758 elements. 
The mesh element size varies between 1m and 5m. A fixed time step size of 
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1 century is applied. The entire simulated time from 0 to 104 centuries were 
simulated. The entire execution time is around 3.241×104s.

Results and Analysis
The results of this benchmark are depicted in Fig. 3. The evolution of gas 
phase saturation and the gas/liquid phase pressure at the inflow boundary Γ 

in 
over the entire time span are shown. In additional, we compare results from 
our model against those given in Marchand’s paper (Marchand and Knabner 
2014). In Fig. 3, solid lines are our simulation results while the symbols are 
the results from Marchand et al. It can be seen that a good agreement has 
been achieved. Furthermore, the evolution profile of the gas phase saturation 
S 

g , the liquid phase pressure P 
L , and the total molar fraction of hydrogen 

X are plotted at different time (t=150,1×103,5×103,6×103 centuries) in Fig. 4 
a −c, respectively.

Figure 3. Evolution of pressure and saturation over time.
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Figure 4. Evolution of (a) gas phase saturation, (b) liquid phase pressure, and 
(c) total hydrogen molar fraction over the whole domain at different time.

By observing the simulated saturation and pressure profile, the complete 
physical process of H 2 injection can be categorized into five subsequent 
stages.
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•	 The dissolution stage: After the injection of hydrogen at the 
inflow boundary, the gas first dissolved in the water. This was 
reflected by the increasing concentration of hydrogen in Fig. 4 c. 
Meanwhile, the phase pressure did not vary much and was kept 
almost constant (see Fig. 4 b).

•	 Capillary stage: Given a constant temperature, the maximal 
soluble amount of H 2 in the water liquid is a function of pressure. 
In this MoMaS benchmark case, our simulation showed that this 
threshold value was about 1×10−3 mol H 2 per mol of water at a 
pressure of 1×106 [Pa]. Once this pressure was reached, the gas 
will emerge and formed a continuous phase. As shown in Fig. 
4 a, at approximately 150 centuries, the first phase transition 
happens. Beyond this point, the gas and liquid phase pressure 
quickly increase, while hydrogen gas is transported towards the 
right boundary driven by the pressure and concentration gradient. 
In the meantime, the location of this phase transition point also 
slowly shifted towards the middle of the domain.

•	 Gas migration stage: The hydrogen injection process continued 
until the 5000th century. Although the gas saturation continues 
to increase, pressures in both phases begin to decline due to the 
existence of the liquid phase gradient. Eventually, the whole 
system will reach steady state with no liquid phase gradient.

•	 Recovery stage: After hydrogen injection was stopped at the 
5000th century, the water came back from the outflow boundary 
towards the left, which was driven by the capillary effect to 
occupy the space left by the disappearing gas phase. During this 
stage, the gas phase saturation begins to decline, and both phase 
pressures drop even below the initial pressure. The whole process 
will not stop until the gas phase completely disappeared.

•	 Equilibrium stage: After the complete disappearance of the gas 
phase, the saturation comes to zero again, and the whole system 
will reach steady state, with pressure and saturation values same 
as the ones given in the initial condition.

Benchmark II: Heat Pipe Problem
To verify our model under the non-isothermal condition, we adopted the 
heat pipe problem proposed by Udell and Fitch (1985). They have provided 
a semi-analytical solution for a non-isothermal water-gas system in porous 



The Use of Mathematical Structures: Modelling Real Phenomena164

media, where heat convection, heat conduction as well as capillary forces 
were considered. A heater installed on the right-hand-side of the domain 
generated constant flux of heat, and it was then transferred through the porous 
media by conduction, as well as the enthalpy transport of the fluids. The 
semi-analytical solution was developed for the steady state condition, and 
the liquid phase flowed in the opposite direction to the gas phase. If gravity 
was neglected, the system can be simplified to a system of six ordinary 
differential equations (ODE), the solution of which was then be obtained 
in the form of semi-analytical solution. Detailed derivation procedure is 
available in (Helmig 1997), and the parameters used in our comparison are 
listed in Table 3. Interested readers may also refer to the supplementary 
material regarding how this solution was deducted.

Table 3. Parameters applied in the heat pipe problem

Parameters name Symbol Value Unit
Permeability K 10−12 [m 2]
Porosity Φ 0.4 [-]

Residual liquid phase saturation S 
lr

0.4 [-]

Heat conductivity of fully saturated 
porous medium

1.13 [W m −1 K −1]

Heat conductivity of dry porous medium 0.582 [W m −1 K −1]

Heat capacity of the soil grains c 
s

700 [ J kg −1 K −1]
Density of the soil grain ρ 

s
2600 [ kg m −3]

Density of the water ρ 
w

1000 [ kg m −3]
Density of the air ρ 0.08 [ kg m −3]
Dynamic viscosity of water μ 

w
2.938×10−4 [ Pa·s]

Dynamic viscosity of air 2.08×10−5 [ Pa·s]

Dynamic viscosity of steam 1.20×10−5 [ Pa·s]

Diffusion coefficient of air 2.6×10−5 [ m 2 s −1]

van Genuchten parameter P 
r

1×104 [ Pa]

van Genuchten parameter n 5 [-]
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Physical Scenario
As shown in Fig. 5, the heat pipe was represented by a 2D horizontal column 
(2.25 m in length and 0.2 m in diameter) of porous media, which was partially 
saturated with a liquid phase saturation value of 0.7 at the beginning. A 
constant heat flux (Q 

T =100 [W m −2]) was imposed on the right-hand-side 
boundary Γ 

in , representing the continuously operating heating element. 
At the left-hand-side boundary Γ 

out , Dirichlet boundary conditions were 
imposed for Temperature T=70 °C, liquid phase pressure P 

G =1×105 [Pa], 
effective liquid phase saturation S 

le =1, and air molar fraction in the gas 
phase . Detailed initial and boundary condition are summarized 
as follows.

•	 P(t=0)=1×105 [Pa], S 
L (t=0)=0.7, T(t=0)=70 [°C] on the entire 

domain.

Figure 5. Geometry of the heat pipe problem.

q w·ν=q h·ν=0 on Γ 
imp .

q w·ν=q h·ν=0, q T·ν=Q 
T on Γ 

in .
P=1×105 [Pa], S 

L =0.7, T=70 [°C] on Γ 
out .

Model Parameters and Numerical Settings
For the capillary pressure −saturation relationship, van Genuchten model 
was applied. The parameters used in the van Genuchten model are listed in 
Table 3. The water −air relative permeability relationships were described 
by the Fatt and Klikoffv formulations (Fatt and Klikoff Jr 1959).

      (59)

       (60)
where S 

le is the effective liquid phase saturation, referred to Eq. 58.
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We created a 2D triangular mesh here with 206 nodes and 326 elements. 
The averaged mesh element size is around 6m. A fixed size time stepping 
scheme has been adopted, with a constant time step size of 0.01 day. The 
entire simulated time from 0 to 104 day were simulated.

Results
The results of our simulation were plotted along the central horizontal profile 
over the model domain at y = 0.1 m, and compared against semi-analytical 
solution. Temperature and saturation profiles at day 1, 10, 100, 1000 are 
depicted in Fig. 6 a, b respectively. As the heat flux was imposed on the 
right-hand-side boundary, the temperature kept rising there. After 1 day, the 
boundary temperature already exceeded 100 °C, and the water in the soil 
started to boil. Together with the appearance of steam, water saturation on 
the right-hand-side began to decrease. After 10 days, the boiling point has 
almost moved to the middle of the column. Meanwhile, the steam front kept 
boiling and shifted to the left-hand-side, whereas liquid water was drawn 
back to the right. After about 1000 days, the system reached a quasi-steady 
state, where the single phase gas, two phase and single phase liquid regions 
co-exist and can be distinguished. A pure gas phase region can be observed 
on the right and liquid phase region dominates the left side.
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Figure 6. Evolution of (a) temperature and (b) liquid phase saturation over the 
whole domain at different time.

Discussion

Analysis of the Differences in Benchmark II
From Fig. 6 a, b, some differences can still be observed in comparison to the 
semi-analytical solution. Our hypothesis is this difference originates from 
the capillary pressure −saturation relationship adopted in our numerical 
implementation. In the original formulation of Udell and Fitch (1985), 
the Leverett model was applied to produce the semi-analytical solution. 
It is assumed that the liquid and gas are immiscible and thus there is no 
gas component dissolved in the liquid phase, and vice versa. In our work, 
we cannot precisely follow the same assumption, since the dissolution of 
chemical component in both phases is a requirement for the calculation of 
phase equilibrium. When considering phase change, we need to allow the 
saturation S to drop below the residual saturation, so that the evaporation as 
well as the condensation process can occur. In the traditional van Genuchten 
model, infinite value of capillary pressure may occur in the lower residual 
saturation region. Therefore we have made regularization that allows water 
saturation to fall below the residual saturation, as demonstrated in Fig. 7. 
Every time the capillary pressure needs to be evaluated, an if-else judgment 
is performed.
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Figure 7. The regularization of the van Genuchten model.

Here  indicates the modified van Genuchtem model, and  
represents the slope of Pc-S curve at the point of residual water phase 
saturation. The above modified van Genuchten model approximates the same 
behavior as the original Leverett one in majority part of the saturation region 
(see Fig. 7), yet still allowing the phase change behavior. However, it is not 
exactly same as the one in the semi-analytical solution. This is considered 
to be the reason why the quasi steady-state profile by our numerical model 
(Fig. 6) deviates from the analytical one.
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Continuity of the Global System and Convergence of the Iteration
In this work, we have only considered the homogeneous medium, where the 
primary variables of P and X are always continuous over the entire domain. 
For some primary variables, their derivatives in the governing Eqs. (13) −
(15) are discontinuous at locations where the phase transition happens, i.e., 

X=X 
m (P,S=0,T) and X=X 

M (P,S=1,T). For instance,  and  might 
produce singularities at S=0 and S=1, and they can cause trouble on the 
conditioning of the global Jacobian matrix. In our simulation, a damped 
Newton iterations with line search has been adopted (see the ‘Handling 
unphysical values during the global iteration’ section). We observed that 
such derivative terms will result in an increased number of global Newton 
iterations, and the linear iteration number to solve the Newton step as well. 
It does not alter the convergence of the Newton scheme, as long as the 
function is Lipschitz continuous.

We are aware of the fact that this issue may be more difficult to handle 
for the heterogeneous media, where the primary variable P and X could 
not be directly applied any more because of the non-continuity over the 
heterogeneous interface (Park et al. 2011). In that case, choosing the primary 
variables which are continuous over any interface of the medium is a better 
option. Based on the analysis by Ern and Mozolevski (2012), if we assume 
Henry’s law is valid, concentration, or in another word, the molar or mass 

fraction of the hydrogen in the liquid phase  gas/liquid phase 
pressure P 

G / P 
L , as well as the capillary pressure are all continuous over 

the interface. Therefore, they are the potential choices of primary variable 
which can be applied in the heterogeneous media (see (Angelini et al. 
2011); (Neumann et al. 2013), and (Bourgeat et al. 2013)). We are currently 
investigating these options and will report on the results in subsequent work.

Conclusions
In this work, based on the persistent primary variable algorithm proposed 
by Marchand et al. (2013), we extended the isothermal multi-phase flow 
formulation to the non-isothermal condition. The extended governing 
equation is based on the mass balance of each chemical component and is 
nonlinearly coupled with the non-isothermal EOS. The numerical scheme has 
been implemented into the open source code OpenGeoSys. The verification 
of our model were carried out in two benchmark cases.
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• For the GNR MoMaS (Bourgeat et al. 2009) benchmark 
(‘Benchmark I: isothermal injection of H 2 gas’ section), the 
extended model is capable of simulating the migration of H 2 gas 
including its dissolution in aqueous phase. The simulated results 
fitted well with those from other codes (Marchand et al. 2013; 
Marchand and Knabner 2014).

• For the non-isothermal benchmark, we simulated the heat pipe 
problem and verified our result against the semi-analytical solution 
(‘Benchmark II: heat pipe problem’ section). Furthermore, our 
numerical model extended the original heat pipe problem to 
include the phase change behavior.

Currently, we are working on the incorporation of equilibrium reactions, 
such as the mineral dissolution and precipitation, into the EOS system. 
As our global mass-balance equations are already component based, one 
governing equation can be written for each basis component. Pressure, 
temperature, and molar fraction of the chemical components can be chosen 
as primary variables. Inside the EOS problem, the amount of secondary 
chemical components can be calculated based on the result of basis, which 
can further lead to the phase properties as density and viscosity. The full 
extension of including temperature-dependent reactive transport system will 
be the topic of a separate work in the near future.

NOMENCLATURE

Greek symbols   

ε Tolerance value for Newton itera-
tion.

[-]

λ
T

Heat Conductivity. [ W m −1 K −1]

μα Viscosity in α phase. [Pa · s]

Chemical potential of i-component 
in α phase.

[Pa]

Φ Porosity. [-]

fugacity coefficient of i-component 
in α phase.

[-]

Mass density of i-component in α 
phase.

[ K g m −3]

Operators   

∧ Logical “ a n d “  
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∥∥2
Euclidean norm  

Ψ(a,b) Minimum function  

Roman symbols   

g Vector for gravitational force. [ m s −2]

c
p α Specific heat capacity in phase α at 

given pressure.
[ J K g −1 K −1]

c
S

Specific heat capacity of soil grain. [ J K g −1 K −1]
Diffusion coefficient of i-compo-
nent in phase α.

[ m 2 s −1]

Fi Mass source/sink term for i-com-
ponent.

[ K g m −3 s −1]

Fugacity of i-component in α phase. [Pa]

Henry coefficient. [ m o l P a −1 m −3]

hα Specific enthalpy. [ J K g −1]
Diffusive mass flux of i-component 
in α phase.

[ m o l m −2 s −1]

K Intrinsic Permeability. [ m 2]

Nα Molar density in α phase. [ m o l m −3]

Pα Pressure in α phase. [Pa]

Vapor pressure of pure water. [Pa]

Pc Capillary pressure. [Pa]

Q
T

Heat source/sink term. [ W s −2]

R Universal Gas Constant. [ J m o l −1 K −1]

Sα r Residual saturation in α phase. [-]

Sα Saturation in α phase. [-]

S
le

Effective saturation. [-]

T Temperature. [K]

uα Specific internal energy. [ J K g −1]

Vα Volume in α phase. [ m 3]

vα Darcy velocity in α phase. [ m s −1]

X Total molar fraction of light compo-
nent in two phases.

[-]

Molar Fraction of i-component in 
α phase.

[-]
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ABSTRACT
With the increasing demand to reduce emissions and save energy, hydraulic 
reservoirs require new architecture to optimize their weight, space, and 
volume. Conventional open reservoirs are large, heavy, and easily polluted, 
and threaten the operation of hydraulic systems. A closed reservoir provides 
the advantages of small volume and light weight, compared to open 
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reservoirs. In this study, a non-metallic pressure reservoir with variable 
volume is designed and manufactured for closed-circuit hydraulic systems. 
The reservoir housing is made of rubber, and the Mooney-Rivlin model is 
chosen based on the rubber strain properties. The FEA simulation for the 
reservoir is performed using ANSYS Workbench to obtain the structural 
stiffness. The major contribution is the establishment of mathematical models 
for this reservoir, including the volume equation changing with height, flow 
equation, and force balance equation, to explore the output characteristics 
of this reservoir. Based on these results, simulation models were built to 
analyze the output characteristics of the reservoir. Moreover, the test rig 
of a conventional hydraulic system was transformed into a closed-circuit 
asymmetric hydraulic system for the reservoir, and preliminary verification 
experiments were conducted on it. The results demonstrate that the designed 
reservoir can absorb and discharge oil and supercharge pump inlet to benefit 
system operation. The changes in the volume and pressure with displacements 
under different volume ratios and frequencies were obtained, which verified 
the accuracy of the mathematical models. Owing to its lightweight design 
and small volume, the reservoir can replace conventional open reservoirs, 
and this lays a foundation for future theoretical research on this reservoir.

Keywords: Hydraulic reservoir, Variable volume, Pressure reservoir, Non-
metal, Lightweight

INTRODUCTION
Hydraulic transmission is crucial in aerospace, heavy machinery, engineering 
machinery, and other industries [1,2,3,4,5]. Hydraulic systems often rely on 
large and heavy reservoirs in mobile hydraulic machinery. It is one of the 
components with the highest potential for weight reduction [6]. The lighter 
weight of hydraulic reservoirs can improve the power-to-weight ratio of 
mobile hydraulic machinery and reduce power consumption, achieving 
energy conservation and emission reduction. The purpose of this study is 
to effectively reduce the mass and volume of hydraulic reservoirs while 
meeting the strict requirements of hydraulic systems.

Open and closed reservoirs are utilized in the hydraulic systems. 
Although open reservoirs are widely utilized, they are not applied in high-
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altitude environments and are restricted to mobile hydraulic machinery. 
To address this challenge, closed reservoirs have installed a pressure-
driven device that can relatively stabilize the oil pressure at the pump 
inlet and enable the hydraulic system to work at a high altitude or in harsh 
environment [7,8,9,10]. Compared with open reservoirs, closed reservoirs 
have a smaller volume and mass, and are more widely utilized in mobile 
hydraulic machinery. There is an urgency to design a new type of closed 
reservoir with small volume and light weight, to meet the lightweight and 
pressure requirements of the hydraulic system.

There are several types of closed reservoirs, and the difference between 
them is mainly reflected in pressure-driven methods. The pressure-driven 
devices of a closed reservoir are mainly divided into hydraulic, spring, and 
pneumatic drives. Parker’s closed metal reservoir is designed to connect the 
system pressure to the reservoir drive interface. In addition, system pressure 
can be converted into a stable low-pressure output; however, it occupies a 
large space and has a large mass. Spring-driven [11, 12] closed reservoirs 
rely on a spring force to exert pressure on the oil, but their structure is 
relatively complex and difficult to process and manufacture. Another type 
of closed reservoir utilizing a pneumatic drive [13,14,15,16,17,18,19] is 
protected by a metal housing, but the container inside is coated in rubber 
skin. Gas is filled between the metal housing and rubber skin to establish the 
driving pressure, but it is sensitive to temperature, which affects the normal 
operation of the hydraulic system, such as the contact booster hydraulic 
[20] and airbag isolated booster hydraulic tanks [21]. There are also closed 
reservoirs with special structural forms, such as a vacuum reservoir with 
variable capacity, following the movement of actuators [22]. The corrugated 
elastic lining and housing form a closed capacity cavity, and the bellows 
produce telescopic action in the opposite direction, altering the volume 
[23]. Its disadvantage is that the pressure of the output oil is nonlinear and 
unsuitable for hydraulic systems that require stable pressure. As described 
above, the complex structure, large volume, large mass, and nonlinear output 
pressure of the existing closed reservoir are still not conducive for reducing 
the weight and space of the hydraulic system.

Generally, conventional hydraulic reservoirs are made of metal materials 
with simple structures, but larger volumes and weights. Non-metal reservoirs 
have garnered significant attention owing to their lightweight development. 
A few companies have researched and developed reservoirs using special 
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materials for various functions. ARGO-HYTOS [24] developed an 
injection-plastic reservoir with a filtering function. Fuel Safe [25] developed 
a material for designing a collapsible aerial fuel transport container. It is 
constructed with multiple layers of ballistic nylon cords and a rugged 
rubberized polymer coating, but not suitable for hydraulic systems. Turtle-
Pac [26] manufactured aircraft tanks using unique fabrics and technologies. 
It is lightweight, convenient to fold, compact, and is tested at 5 PSI during 
quality control tests. In addition, Smart Reservoir [27], a company in Canada, 
produced another type of reservoir with the features of lighter mass, smaller 
volume, and linear output. It has already been applied in various fields, but 
the effect of rubber on reservoir performance is unclear. Currently, most of 
the research on lightweight non-metal hydraulic reservoirs are abroad, but 
seldom research has been conducted on its characteristics and material.

Therefore, considering the particularity of rubber material, this research 
takes the variable volume and pressure reservoir (VVPR) as the research 
object, focuses on the establishment of mathematical models for dynamic 
characteristics, and explores the interaction between the system parameter 
and VVPR by simulation and experiments. This paper is divided into four 
parts: ① Composition and principle of the VVPR. ② Strain properties and 
structural stiffness of reservoir rubber. ③ Modeling and simulation of 
the VVPR using AMESIM and MATLAB joint simulation methods. ④ 
Performance analysis of the VVPR in closed-circuit hydraulic system on 
test platform. It is important to investigate this closed reservoir to replace 
open reservoirs in numerous applications, which provides a theoretical basis 
for further research.

RESERVOIR DESCRIPTION

Working Principle
The VVPR is sealed, airless, and slightly pressurized, with small volume, 
light weight, low pollution, and portability. It comprises upper and lower 
covers, rings, connecting rods, rubber housing, springs, pillars, and other 
components, as illustrated in Figure 1.
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Figure 1. Composition of the reservoir (VVPR).

The connecting rod is fixed to the upper cover, and the rod and spring in 
the pillar move with reservoir motion. The spring is always in a compressed 
state with a downward force on the connecting rod. Through the interaction 
of the spring and internal pressure of the oil, the reservoir can achieve the 
functions of absorbing and discharging oil.

The VVPR designed in this study plays the role of differential volume 
compensation in closed-circuit asymmetric hydraulic systems by its 
own variable volume. In the working cycle of the reservoir, expansion 
and contraction occur as actuator movement changes. The process of oil 
absorption and discharge with the expansion and compression of the rubber 
housing can be achieved using the spring force. As illustrated in Figures 2 
and 3, the working principle of the VVPR in a closed-circuit valve-controlled 
asymmetric hydraulic system is described as follows.

Figure 2. The oil absorption condition of the reservoir.
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Figure 3. The oil discharging condition of the reservoir.

A closed-circuit valve-controlled asymmetric hydraulic system 
comprises a hydraulic pump, single-rod cylinder, direction valve, and VVPR. 
The oil absorption conditions of the reservoir are illustrated in Figure 2. In 
the retraction process of the cylinder, the oil from the outlet of the hydraulic 
pump enters the rod chamber of the hydraulic cylinder, and the oil in the 
rodless chamber enters the suction port of the hydraulic pump through the 
directional valve. However, owing to the different volumes of oil in the two 
chambers of the hydraulic cylinder, part of the oil in the rodless chamber 
enters the reservoir.

The oil discharge conditions of the VVPR are illustrated in Figure 3. 
During the extension of the cylinder, the oil from the outlet of the hydraulic 
pump enters the rodless chamber of the hydraulic cylinder, and the oil in 
the rod chamber enters the suction port of the hydraulic pump through the 
directional valve. The oil in the VVPR is replenished into the inlet of the 
pump.

A VVPR was preliminarily designed and manufactured to investigate 
the reservoir characteristics. The main parameters of the VVPR are as 
follows: ① Its working pressure is under 0.06 MPa, working volume is 5 
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L, and structure volume is 9.63 L. ② It is 580 mm in height and 400 mm in 
width. ③ Its mass is only 13.2 kg, owing to the smaller working cavity made 
of rubber material.

Rubber Strain Properties and its Constitutive Equation
The rubber housing material utilized in the VVPR is a hyperplastic material 
that may affect the VVPR dynamic characteristics. Therefore, the physical 
properties of these materials should be described based on their elasticity 
and deformation.

To determine the correct mathematical model (constitutive equation) to 
describe rubber physical properties in the reservoir and define the system 
dynamic properties, uniaxial tension tests with six rubber samples were 
conducted at 20 °C (environment temperature), as illustrated in Figure 4. 
There are several mathematical models to describe the physical properties 
of hyperplastic materials, including the Mooney-Rivlin model, Ogden, 
and Yeoh models, but not all of them are suitable for specific hyperplastic 
materials [28]. The rubber stress and strain data from the uniaxial tension 
test results on the test pieces were utilized for comparison with the FEA 
simulation results from ANSYS Workbench for different rubber models, and 
the results are illustrated in Figure 5.

Figure 4. Uniaxial tension test results at 20 ℃.
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Figure 5. The test pieces displacement curve of FEA simulation results and test 
result.

It can be observed that there are constitutive models that fit the test data 
well, i.e., Mooney-Rivlin, and Poly, which can describe the basic rubber 
hyperplastic properties. In this study, the Mooney-Rivlin model was selected 
for the next simulation step, and its parameters are presented in Table 1.

Table 1. Parameters of rubber Mooney-Rivlin model

Rubber parameter Value(MPa)
Material constant C10 − 2.4201
Material constant C01 4.2156
Material constant C20 − 0.0035296
Material constant C11 0.027367
Material constant C02 0.81943
Incompressibility parameter 0

Rubber Structural Stiffness of VVPR
Since the hyperplastic material is elastic, the stiffness of the structure on 
the upper cover should be provided. Once the constitutive model of rubber 
and the structure of the reservoir are determined, the rubber structural 
stiffness of the VVPR can also be obtained. Therefore, FEA simulation on 
ANSYS Workbench was performed by constantly changing the force F on 
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the connecting rob and simulating the displacement of the upper cover x. 
The rubber structural stiffness K1 of VVPR can be calculated with Eq. (1).

   (1)
The rubber structural stiffness of the VVPR when a force acts on the 

upper cover is illustrated in Figure 6. It can be observed that as the reservoir 
height increases, the stiffness also increases.

Figure 6. Rubber structural stiffness.

According to simulation results, the fitting function of K1 has also been 
obtained using a quartic polynomial curve function with a corresponding 
fitting precision of R-square = 0.982 and RMSE = 0.1389. The stiffness 
fitting functions and parameters are presented in Table 2.

Table 2. The stiffness fitting function and parameters

Parameters Value
K1(N/mm) f(x)=a1x

4+a2x
3+a3x

2+a4x+a5

a1(N/mm5) 2.401×10−7

a2(N/mm4) 4.105×10−5

a3(N/mm3) − 0.006157

a4(N/mm2) 0.2066

a5(N/mm) − 5.315
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MODELLING AND SIMULATION
The VVPR continuously absorbs and discharges oil in its working cycle 
with the movement of the hydraulic cylinder, thereby affecting the changes 
in its volume and pressure. Volume and pressure are important parameters 
in the performance of the VVPR; thus, mathematical models must be built 
for further simulation analysis of the changes in volume and pressure during 
the working cycle.

Force Balance Equation
The VVPR can be equivalently treated as a single-degree-freedom system 
with spring-mass-damping, which can be simplified to the model illustrated 
in Figure 7.

Figure 7. The dynamic model of the VVPR.

In Figure 7, H is the height of the VVPR; K, K1, and K2 are the stiffness 
of the spring, rubber structure, and oil, respectively; m is the mass of the 
moving parts of the VVPR, A is the area of the upper cover, p is the pressure 
inside the VVPR, and B2 is the movement damping of the VVPR.

The oil stillness can be obtained by Eq. (2):

     (2)
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The damping coefficient B2 can be expressed as Eq. (3):

        (3)
where the μ = μ0⋅eα⋅p, μ0 = 0.35 Pa⋅s, and α = (0.015 ∼ 0.35)MPa−1[29, 30].

When the VVPR operates by oil absorption and discharge, the upper 
cover exerts a force on the oil-generating pressure p. According to the 
dynamic model, this study considers the upper cover as the research object, 
and the force balance equation is established by considering the inertial 
force, viscous damping force, spring force, and internal pressure on the 
upper cover. Hence, the force balance equation can be expressed as Eq. (4):

    (4)
The first term on the right side of Eq. (4) is the inertial force, second 

term is the viscous damping force, and final term is the elastic force exerted 
by the spring, rubber, and oil.

Volume Equation
As the VVPR moves, the volume changes with the height. Volume calculation 
is crucial for obtaining the change in height; its dimensions in the vertical 
plane are illustrated in Figure 8.

Figure 8. The dimension diagram of the rubber housing.

In Figure 8, r is the radius, L is the arc length, R is the radius of the 
upper cover, A is the distance from the central axis to the arc center, and B 
is the line segment after arc deformation. The relationships between these 
variables can be expressed as Eq. (5).
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   (5)
Hence, the volume equation can be expressed as Eq. (6).

   (6)
Furthermore, the relationship between the volume V and height H was 

drawn based on the Newton iteration method in MATLAB, as illustrated in 
Figure 9.

Figure 9. The simulation curve of volume change with height.

Flow Continuity Equation
Some assumptions are made to establish the flow continuity equation of the 
VVPR: ① pressure loss and pipeline dynamic characteristics of components 
other than the VVPR are not considered; ② the elastic modulus of oil and 
oil temperature are constant; and ③ the reservoir leakage is a laminar flow. 
Hence, the flow continuity equation is expressed as Eq. (7):



Modelling and Dynamic Characteristics for a Non-metal Pressurized ... 189

   (7)
The first term on the right side of Eq. (7) represents the volume change 

of the VVPR during operation, second term represents the flow rate change 
caused by leakage, and third term represents the flow rate change due to 
compression.

Simulation Analysis
To explore the performance of the VVPR in the system and effect of the 
VVPR on the system, joint models of the VVPR in MATLAB and a closed-
circuit hydraulic system in AMESIM were built for their interaction with 
different working parameters. The main simulation parameters are presented 
in Table 3.

Table 3. Simulation parameters

Name Parameter Value
Cylinder Diameter of rod d(mm) 90

Diameter of piston D(mm) 110

Stroke of cylinder S(mm) 800
Reservoir Stiffness of spring K(N/mm) 13.63

Mass m(kg) 6

Damping B2(N· s/mm) 0.01
Elastic modulus βe(MPa) 700

The initial volume was set as 3.7 L, and the ratio between the actual 
working volume ΔV and maximum working volume V is defined as the 
volume ratio, expressed as Eq. (8):

      (8)
The relationship between the actual working volume ΔV of the VVPR 

and hydraulic cylinder displacement y is expressed as Eq. (9):

      (9)
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In this study, the hydraulic cylinder is given a sine displacement reference 
to form the volume difference between extension and retraction. The cor-
responding values of the volume ratio, stroke, and amplitude are presented 
in Table 4.

Table 4. The relationship among the volume ratio, stroke, and amplitude

Volume ratio Stroke(mm) Amplitude(mm)
0.05 39.30 19.65
0.1 78.60 39.30
0.2 157.20 78.60
0.3 235.80 117.90
0.4 314.40 157.20
0.5 393.00 196.50
0.6 471.60 235.80
0.7 550.20 275.10

The displacement of the hydraulic cylinder was set as a sine curve with 
amplitudes of 117.90 mm at 0.016 Hz, to analyze the output characteristics 
of the VVPR. As can be observed from Figures 10 and 11, the height and 
volume of the VVPR gradually increases when oil is absorbed. At half a 
cycle, the flow rate into the VVPR is 0, and both the volume and height of 
the VVPR reach their maximum values, but the pressure of the VVPR does 
not. During the oil discharge, the volume and height of the VVPR gradually 
decreases, while the pressure of the VVPR increases.

Figure 10. The height changes with displacement.
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Figure 11. The changes in the main parameters of the VVPR.

Through the simulation analysis, it is determined that the volume and 
height of the VVPR change with the flow rate described earlier, but the 
change in the pressure of the VVPR has a certain delay. This may be caused 
by the rubber material characteristics and damping force.

Performance Analysis at Different Volume Ratios
In this section, the VVPR performance with different volume ratios is 
analyzed by altering the amplitudes of the sinusoidal displacements. The 
cylinder displacement is selected as a sine curve at 0.016 Hz, and the volume 
ratios of the reservoir are set as 0.05, 0.1, 0.2, 0.3 0.4, 0.5, 0.6 and 0.7, 
changed by the different strokes.

Figures 12, 13, 14 and 15 illustrate that the frequencies and amplitudes 
of the pressure and volume change with displacement, thereby displaying a 
positive relationship. This illustrates that the reservoir achieved the function 
of flow inlet and outlet with the extension and retraction of the cylinder. 
The cylinder displacement tracked the reference well, proving that the 
introduction of the VVPR had no effect on the output characteristics of the 
system.
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Figure 12. Displacement curve of hydraulic cylinder.

Figure 13. Changes in pressure at different ratios.
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Figure 14. Changes in height at different ratios.

Figure 15. Changes in volume at different ratios.

Performance Analysis at Different Frequencies
In this section, we further explored the effect of frequency on the output 
characteristics of the reservoir. The volume ratio was set to 0.3, and the 
working frequencies were selected as 0.1 Hz, 0.5 Hz, and 1 Hz to simulate 
the closed-circuit hydraulic system.

It can be observed from Figures 16, 17, 18 and 19 that the frequencies 
of the pressure, volume, and height are the same as the displacement. When 
the cylinder was extended, the reservoir provided the system with oil. The 



The Use of Mathematical Structures: Modelling Real Phenomena194

pressure, volume, and height decrease with increasing displacement. In 
contrast, the system provided oil to the reservoir when the cylinder was 
retracted. The pressure, volume, and height increased with decreasing 
displacement. This indicated that the reservoir achieved the function of flow 
inlet and outlet with the extension and retraction of the cylinder. The cylinder 
displacement tracked the reference well, proving that the introduction of the 
VVPR had approximately no effect on the system characteristics.

Figure 16. Displacement curves of hydraulic cylinder.

Figure 17. Changes in height at different frequencies.
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Figure 18. Changes in volume at different frequencies.

Figure 19. Changes in pressure at different frequencies.

EXPERIMENTAL RESULTS AND DISCUSSION
The test rig was transformed based on a conventional open hydraulic system 
to verify the accuracy of the mathematical models and simulation analysis, 
as illustrated in Figure 20. The test platform can achieve an open-or closed-
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circuit hydraulic system by the on/off of the shut-off valve (2.2) and union 
tee (3). Before the VVPR worked normally, it needed to replenish oil by 
opening 2.2 and 2.3 in retraction to discharge the internal air and set an 
initial volume (3.7 L in this study) by the open-circuit hydraulic system. The 
VVPR can then work normally to compensate for the volume difference of 
the cylinder in the closed-circuit hydraulic system.

Figure 20. Principle of VVPR dynamic test. 1. Filter; 2. Shut-off valves; 3. 
Union tee; 4. Direction valve; 5. Unloading relief valve; 6. Hydraulic pump; 7. 
Electrical motor; 8. Pressure sensors; 9. One-way valve; 10. Displacement sen-
sors; 11. Proportional reverse valve; 12. VVPR; 13 Hydraulic cylinder.

The parameters of the test rig and main parameters between the 
conventional open reservoir and designed closed reservoir are presented 
in Table 5. In this study, volume and mass were dramatically reduced by 
approximately 98% and 94%, respectively.
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Table 5. Main parameters of the test platform

Name Parameter Value

System Flow rate(L/min) 20

Cylinder Diameter of rod(mm) 90

Diameter of piston(mm) 110

Stroke of cylinder(mm) 475

Difference in volume(L) 3

Open Reservoir Length(mm) 1100

Width(mm) 700

Height(mm) 760

Volume(L) 590

Mass with oil(kg) 383.6

Closed 
Reservoir

Stiffness of spring(N/mm) 13.63

Total height (mm) 580

Width(mm) 400

Structural volume (L) 9.63

Mass with oil(kg) 21.28

Repeatability Analysis
In this section, static tests are conducted to explore the pressure and volume 
repeatability.

It can be observed from Figures 21 and 22 that the rubber housing 
exhibits a hysteresis phenomenon in the rising and falling processes, and 
the pressure curve is particularly obvious. However, the test volume-height 
curve is basically coincident, and the error of the pressure repeatability is 
within 0.002 MPa. Both the pressure and volume characteristics have high 
coincidence and repeatability in the three tests, which proves the volume 
and pressure performance and stability of the rubber material.
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Figure 21. Volume repeatability.

Figure 22. Pressure repeatability.

Experiment Analysis
To explore the relationship between the changes in pressure, height, and 
volume of the VVPR and the flow rate of the VVPR, the volume ratio was 
set to 0.3 with an initial value of 3.7 L. A sine reference with a 118 mm 
amplitude of 0.016 Hz was selected to test the performance of the VVPR. The 
relationships between the height, pressure, and volume of the VVPR were 
obtained. The key parameter changes in the working cycle are illustrated in 
Figures 22 and 23, respectively.



Modelling and Dynamic Characteristics for a Non-metal Pressurized ... 199

Figure 23. Change in height of the VVPR as displacement of the cylinder.

It can be observed from Figures 23 and 24 that the height of the VVPR 
can follow the displacement of the cylinder. When the cylinder was extended 
and retracted, the height decreased and increased at the same frequency, 
with approximately no hysteresis. Meanwhile, the changes in pressure 
and volume had the same frequency and tendency as the height. The 
experimental results indicated a similar tendency for these parameters as the 
simulation results, and it was demonstrated that the mathematical models 
and simulation results were corrected. Furthermore, the performance was 
analyzed at different working volumes and frequencies.

Figure 24. The changes in the main parameters of the VVPR.
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Performance Analysis at Different Volume Ratios
To verify the processes of parameter changes in the VVPR under different 
working volume ratios, the strokes of the cylinder were set to different 
values in the process of extension and retraction, to achieve different 
working volume ratios (0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) at 0.016 Hz. The 
corresponding strokes were calculated using Eq. (9). The test results are as 
follows.

It can be observed from Figures 25, 26, 27 and 28 that the change 
tendency in pressure, height, and volume of the VVPR under different 
working volume ratios are the same; i.e., the performance of the VVPR under 
different working volume ratios does not change, only the variation range 
of these parameters changes. This is consistent with the earlier simulation 
findings, suggesting that the performance of the VVPR is stable at different 
volume ratios.

Figure 25. Hydraulic cylinder displacement curve.
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Figure 26. Changes in pressure at different volume ratios.

Figure 27. Changes in height at different volume ratios.
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Figure 28. Changes in volume at different volume ratios.

Performance Analysis at Different Volume Ratios
To analyze the performance of the VVPR at different frequencies, sinusoidal 
signals with a working volume ratio of 0.1, and frequencies of 0.05 Hz and 
0.067 Hz were selected for testing. It can be observed from Figures 29, 
30, 31 and 32 that the height, volume, and pressure of the VVPR change 
with the displacement of the hydraulic cylinder. The working frequencies 
of the VVPR also changed with those of the hydraulic cylinder. At different 
working frequencies, the changes in the height, volume, and pressure of the 
VVPR were the same as those in the displacement of the cylinder. This is 
consistent with earlier simulation findings, suggesting that the performance 
of the VVPR is stable at different frequencies.

Figure 29. Displacements of the hydraulic cylinder.
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Figure 30. Changes in pressure at different frequencies.

Figure 31. Changes in height at different frequencies.
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Figure 32. Changes in volume at different frequencies.

CONCLUSIONS
• A new type of non-metallic pressure hydraulic reservoir with 

variable volume was manufactured and analyzed in a closed-
circuit asymmetric hydraulic system, and its main components 
and working principles were introduced.

• The rubber structural stiffness was obtained via FEA simulation, 
based on the Mooney-Rivlin model. Furthermore, mathematical 
models of the reservoir were established, including volume, flow, 
and force balance equations. Besides, MATLAB and AMESIM 
joint simulation models were built for the VVPR.

• Tests were conducted, and the results demonstrated that the 
pressure, height, and volume change with the displacement 
frequencies of the cylinder under different volume ratios and 
frequencies, which verified the accuracy of the mathematical 
models.

• The test volume-height curves were basically coincident, error 
of pressure repeatability was within 0.002 MPa, and its volume 
and pressure performance were stable by repeatability tests. The 
changes in pressure had no effect on the displacement output 
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characteristics and provided pressure for the pump inlet, which 
is beneficial for improving the service life of the pumps and the 
performance of the system.

• The designed VVPR would cut the volume and weight dramatically 
by approximately 98% and 94%, respectively, and could replace 
conventional open reservoirs in numerous applications. However, 
it also faced the challenge of heat generated by the closed 
hydraulic system.

Because this is the beginning of a research project on the VVPR, there 
is naturally much basic work that needs to be done. In addition, there are 
some limitations that need to be addressed to match the parameters of 
hydraulic systems, such as the natural frequency of the reservoir. Therefore, 
the improvement of this reservoir will continue on another matching closed-
circuit hydraulic system to conduct dynamic tests in the time and frequency 
domains for further validation and intensive research.

ACKNOWLEDGEMENTS
The authors sincerely thank Professor Xiangdong Kong of Yanshan 
University for his critical discussions and reading during manuscript 
preparation.

AUTHORS’ INFORMATION
Pei Wang, born in 1991, is currently a Ph.D. candidate at the College of 
Mechanical Engineering, Yanshan University, China. She received her 
M.S. degree in 2018 from Yanshan University, China. Her research interests 
include hydraulic system design, fluid transmission, and fluid control.

Jing Yao, born in 1978, is currently a professor at the College of 
Mechanical Engineering, Yanshan University, China. She received her Ph.D. 
degree in 2009 from Yanshan University, China. Her main research interests 
include hydraulic system control and lightweight hydraulic component 
design.

Baidong Feng, born in 1994, is currently a master degree candidate at 
the College of Mechanical Engineering, Yanshan University, China. He 
received his bachelor’s degree in 2018 from Binzhou University, China. His 
research interests include hydraulic transmission and hydraulic control.



The Use of Mathematical Structures: Modelling Real Phenomena206

Mandi Li, born in 1993, is currently a PhD candidate at the College 
of Mechanical Engineering, Yanshan University, China. She received her 
M.S. degree in 2018 from the Northeastern University, China. Her research 
interests include hydraulic engineering, fluid transmission, fluid simulations, 
and experiments.

Dingyu Wang, born in 1998, is currently a PhD candidate at the College 
of Mechanical Engineering, Yanshan University, China. He received his 
bachelor’s degree in 2020 from Yanshan University, China. His research 
interests include hydraulic system and machine design.

AUTHOR CONTRIBUTIONS
JY and PW were in charge of the whole trial; PW and ML wrote the 
manuscript; and BF and DW assisted with sampling and laboratory analyses. 
All authors have read and approved the fnal manuscript.

FUNDING
Supported by the National Key Research and Development Program of China 
(Grant No. 2018YFB2000700) and National Natural Science Foundation of 
China (Grant No. 51890811).



Modelling and Dynamic Characteristics for a Non-metal Pressurized ... 207

REFERENCES
1. Q J Gao. Adaptive control system of underground hydraulic supports. 

Energy and Energy Conservation, 2020(10): 135-136.
2. Y X Guo, L Zhang. Hybrid power drive system of large die forging 

hydraulic press. Forging & Stamping Technology, 2020, 45(10): 124-
129.

3. Y E Wang, Y Liu, Y Ma, et al. Application of hydraulic steering system 
for heavy-duty mobile robot. Hydraulics Pneumatics & Seals, 2020, 
40(9): 24-25.

4. Q F He, X H Chen, C J Yao, et al. Fault diagnosis expert system of 
construction machinery based on flowchart knowledge representation. 
Machine Tool & Hydraulics, 2019, 47(17): 216-219.

5. D J Yang, X B Jin, Z C Yang, et al. Optimization of sensor layout 
in aero-hydraulic system based on MINIP model. Measurement & 
Control Technology, 2020, 39(5): 49-53.

6. X D Kong, Q X Zhu, J Yao, et al. Reviews of lightweight development 
of hydraulic components and systems for high-level mobile equipment. 
Journal of Yanshan University, 2020, 44(3): 203–217.

7. L F Jiao, X H Lu. Improvement and reliability modeling analysis of 
aviation hydraulic oil tank sealing structure. Lubrication Engineering, 
2015, 40(7): 115-120.

8. L Li, W S Sun, P Gao. Analysis and prevention of common faults about 
aircraft hydraulic oil Tank. New Technology & New Process, 2014(2): 
122-124.

9. R J Liu, F Xu, X Cheng. Test selection and analysis of the hydraulic 
tank sealing ring of a Helicopter. Helicopter Technique, 2019(2): 33-
36.

10. T Li, H L Yang, D B Han. Design and analysis of reservoir for civil 
aircraft hydraulic system. Chinese Hydraulics & Pneumatics, 2017(2): 
101-106.

11. Y Zhang, Y M Wen, S. Wang. Research and experiment of multifunction 
aero hydraulic tank. Chinese Hydraulics & Pneumatics, 2018(11): 
104-107.

12. X P OuYang, B Q Fan, H Y Yang, et al. A novel multi-objective 
optimization method for the pressurized reservoir in hydraulic 



The Use of Mathematical Structures: Modelling Real Phenomena208

robotics. Journal of Zhejiang University-Science A(Applied Physics & 
Engineering), 2016, 17(6): 454-467.

13. D X Zhao, T Jia, Y X Cui. Design and constant pressure characteristics 
of a ship-borne pressure tank. Tsinghua Univ (Sci &. Technol), 2019, 
59(4): 306-313.

14. G F Qi, J J Zhang, J G Sun. Miniaturization trend of the hydraulic fuel 
tank and the new trend of development. Machine Tool & Hydraulics, 
2011, 39(24): 66–68, 104.

15. W J Xiao, H Hu, L J Wei. Hydraulic tank of a fighter: fault analysis and 
improvement. Chinese Hydraulics & Pneumatics, 2013(10): 58-61.(in 
Chinese)

16. T Zhang, X L Xiao. Troubleshooting of pipeline blockage for the 
aircraft tank booster system. Hydraulics Pneumatics & Seals, 2019, 
39(6): 68-70.

17. D W Li, Z Z Zuo, Z Liu. Design improvement for hydraulic reservoir 
pressurization system of a certain type of aircraft. Chinese Hydraulics 
& Pneumatics, 2017(11): 105-108.

18. W B Qu, C W Han, B Z Feng, et al. Design and application of a closed 
tank in a pitch hydraulic system. Chinese Hydraulics & Pneumatics, 
2016, (5): 74-77.

19. B Guo, G L Zhang, J G Zhang. The development of the underground 
scraper closed tank. Chinese Hydraulics & Pneumatics, 2014(1): 83-
84.

20. W Y Kang. A kind of pressure hydraulic tank. CN201320558868.4 [P]. 
2013-09-09.

21. Z J Feng, J Chen, S C Jiang, et al. Bladder hydraulic tank: CN1804408 
[P]. 2006-07-19.

22. Q G Han, Y B Zhang, S Z Yang. Analysis of closed oil tank of 
interlocking control hydraulic system. Metallurgical Equipment, 
2016(4): 78-80.

23. T J Li, L Y He, Z Wang, et al. Flexible variable volume vacuum tank: 
CN207225926U [P]. 2018-04-13.

24. Argo-Hytos. Tank Solutions [EB/OL]. https://www.argo-hytos.com/
cn/products/tank-solutions.html, 2020.

25. Fuel Safe. Auxiliary fuel cell bladder tanks for use in airplanes, UAV, 
Helicopters [EB/OL]. https://fuelsafe.com/aircraft-fuel-bladders, 
2020-10-01.



Modelling and Dynamic Characteristics for a Non-metal Pressurized ... 209

26. Tertle-Pac. Collapsible aircraft ferry tanks [EB/OL] https://www.
turtlepac.com/products/collapsible-aircraft-ferry-tanks, 2020-10-01.

27. C Seguin. Variable volume reservoir: US6981523, 2006.
28. B Kim, S B Lee, J Lee. A comparison among Neo-Hookean model, 

Mooney-Rivlin model, and Ogden model for chloroprene rubber. 
International Journal of Precision Engineering and Manufacturing, 
2012(13): 759-764.

29. C Bi, Z M Chen, L B Zhang, et al. Mathematical Model and Simulation 
Analysis of Hydraulic Bladder Accumulator. Aerospace Manufaturing 
Technology, 2017(2):11-15.

30. M Dong, X T Luan, J L Liang, et al. Dynamis Characteristics Analysis 
of Absorbing Pulsation for Bladder Accumulator. Chinese Hydraulics 
& Pneumatics, 2019(5):109-116.





DYNAMIC MODELLING AND 
NATURAL CHARACTERISTIC 
ANALYSIS OF CYCLOID BALL 
TRANSMISSION USING LUMPED 
STIFFNESS METHOD

Peng Zhang, Bingbing Bao, and Meng Wang

Department of Mechanical Engineering, Anhui University of Technology, Maanshan 
243000, China

ABSTRACT
The vibration of robot joint reducer is the main factor that causes vibration 
or motion error of robot system. To improve the dynamic precision of robot 
system, the cycloid ball transmission used in robot joint is selected as study 
object in this paper. An efficient dynamic modelling method is presented—
lumped stiffness method. Based on lumped stiffness method, a translational–
torsional coupling dynamics model of cycloid ball transmission system 
is established. Mesh stiffness variation excitation, damping of system 
are all intrinsically considered in the model. The dynamic equation of 
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system is derived by means of relative displacement relationship among 
different components. Then, the natural frequencies and vibration modes 
of the derivative system are presented by solving the associated eigenvalue 
problem. Finally, the influence of the main structural parameters on the 
natural frequency of the system is analysed. The present research can provide 
a new idea for dynamic analysis of robot joint reducer and provide a more 
simplify dynamic modelling method for robot system with joint reducer.

Keywords: Lumped stifness method, Robot joint reducer, Natural frequen-
cies, Vibration modes

INTRODUCTION
The main inducement of vibration of high-speed robot is robot joint reducer, 
and therefore, the dynamic research for robot joint reducer is necessary. At 
present, domestic and overseas scholars have made many deeply research 
on cycloid ball planetary transmission, including structure principle [1, 2], 
engagement principle [3], mechanical property [4, 5], and transmission 
accuracy [6, 7]. However, the dynamic analysis of it has rarely been reported. 
This paper effectively establishes a simple dynamic model of cycloid ball 
planetary transmission, which matches with engineering practice. After that, 
the characteristics of cycloid ball planetary transmission are analysed, and 
some improvement measures are presented with the purpose of reducing 
vibration and providing new ideas for robot dynamic analysis.

For the moment, the dynamic models of planetary gear mainly include 
purely rotational model [8, 9] and translational–torsional coupling model 
[10, 11]. In purely rotational model, the component’s torsional degree of 
freedom is only considered. The model is simple because there are few 
factors are considered. Translational–torsional coupling model also includes 
the component’s translational degrees of freedom. Compared with purely 
rotational model, translational–torsional coupling model is more complex, 
and solving is more difficult. Therefore, it is usually used in theoretical 
analysis. The result of Ref. [12] shows that when the ratio of support 
stiffness to mesh stiffness is greater than 10, the simplified purely rotational 
model and translational–torsional coupling model have some equivalence 
in the inherent characteristics. For cycloid ball planetary transmission, 
the translational–torsional coupling model is established, and the inherent 
characteristic is analysed in Refs. [13, 14]. But the modelling methods are 
too complex and difficult, especially for a large degree of freedom dynamic 
system.
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In view of that, this paper uses the effectively and simple modelling 
method—lumped stiffness method to establish the translational–torsional 
coupling model of cycloid ball planetary transmission. Then, the natural 
frequencies and vibration modes are revealed by solving dynamic equations 
of system with the purpose of providing guidance for system design.

LUMPED STIFFNESS MODELLING

Structure
The structure of cycloid ball planetary transmission is shown in Fig. 1. 
Cycloid ball engagement pairs consist of hypocycloid groove in the left end 
face of planetary disc, epicycloid groove in the right end face of centre disc, 
and balls between two discs.

Figure 1. The structure of cycloid ball planetary transmission. 1. Input shaft 2. 
Centre disc 3. Planetary disc 4. Cross-disc 5. End cover disc.
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This paper uses cross-ball equal-speed mechanism as output structure 
for the requirements of robot joint. Cross-ball equal-speed mechanism is 
made up with the horizontal taper grooves in the right end face of planetary 
disc, the horizontal taper grooves in the left end face of cross-disc, the taper 
grooves in the left end face of cross-disc, the taper grooves in the right end 
face of end cover disc, and balls among three discs. In this paper, cross-ball 
equal-speed mechanism is proposed, and centre disc is treated as output 
disc.

Lumped Stiffness Model
To simplify the dynamic model, an efficient dynamic modelling method—
lumped stiffness method is proposed based on the lumped mass method. 
The basic thought of lumped stiffness method is as follows: first, the total 
meshing component force along axis direction will be obtained through 
mechanical analysis; second, the maximum deformation of meshing point is 
considered as global deformation, and the component of global deformation 
along axis direction can be presented; finally, the ratio of total meshing 
component force to global component deformation along axis direction will 
be obtained. Obviously, the ratio is lumped stiffness. Compared with the 
traditional modelling method, the advantages of lumped stiffness method 
are as follows: nonlinear stiffness, time-varying curvature, and time-varying 
load have been integrated into the lumped stiffness model and not directly 
reflected in the dynamic model; the dynamic model will be established 
and solved easily. The lumped stiffness model of cycloid ball meshing pair 
and cross-ball meshing pair is, respectively, solved using lumped stiffness 
method.

The mechanical model of cycloid ball engagement pairs is shown in Fig. 
2. Reference [4] shows that the total meshing force of y axis is zero, but the 
total meshing force of x axis exists. Therefore, only the lumped stiffness 
model of x axis is needed.
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Figure 2. Mechanical model of cycloid ball meshing pairs.

According to the mechanical model, the stiffness model of cycloid 
ball meshing pairs can be established as shown in Fig. 3. Figure 3a shows 
the traditional stiffness model of cycloid ball meshing pairs, (b) shows 
the lumped stiffness model of cycloid ball meshing pairs. Obviously, the 
distribution of meshing force is complex. If the meshing forces are not 
effectively synthesized in modelling, the complexity of modelling will 
increase. Hence, lumped stiffness model is more convenient and simple 
compared to traditional stiffness model.

Figure 3. Stiffness model of cycloid ball meshing pairs. a Traditional stiffness 
model. b Lumped stiffness model.
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According to the thought of lumped stiffness method, the lumped 
stiffness of x axis is

  (1)
where θi represents the angle between the normal line of the i meshing 
point and the y axis. δm is the maximum deformation in theory, which 
corresponding to the special location. δimax is the maximum deformation at 
any time during the operation. km is the meshing stiffness of single cycloid 
ball meshing pair. Zm is the number of ball. β is the half angle of cycloid 
groove. a is deformation coefficient,  where 

 is the average value of the corresponding change interval.
In addition, the torsional angular displacement of discs in cycloid ball 

meshing pair is generated by meshing displacement. More importantly, the 
direction of meshing displacement and meshing force are identical. Hence, 
for the convenience of calculation, the torsional angular displacement is 
substituted by torsional linear displacement along the direction of meshing 
force. The lumped torsional stiffness is substituted by lumped stiffness of x 
axis.

Figure 4 shows the mechanical model of cross-ball meshing pair. The 
mechanical property of cross-ball meshing pair is analysed in Ref. [15], and 
its results proposed that the taper grooves along radial direction undertake 
most of the load, and the taper grooves perpendicular to radial direction 
hardly undertake the load. In this paper, three taper grooves along the 
radial direction are arranged on cross-ball equal-speed mechanism with the 
purpose of improving the bearing capacity. Meanwhile, the taper grooves of 
side-by-side arranged undertake equivalent load that is Q1xy = Q2xy = Q3xy, 
Q5xy = Q6xy = Q7xy
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Figure 4. Mechanical model of cross-ball meshing pair.

The force analysis shows that the total meshing force along x axis 
and y axis of cross-ball meshing pair is zero. Hence, there is no need to 
obtain corresponding lumped stiffness except lumped torsional stiffness. 
The solution thought is shown as follows: the maximum torsional angular 
displacement is divided by resultant moment. The stiffness model of cross-
ball meshing pair is shown in Fig. 5. (a) shows the traditional stiffness 
model, and (b) shows the lumped stiffness model. Similarly, the distribution 
of meshing force is complex. The meshing forces are effectively synthesized 
in the lumped stiffness model, which is beneficial for dynamic modelling.

Figure 5. Stiffness model of cross-ball meshing pair. a Traditional stiffness 
model. b Lumped stiffness model.
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Specifically, the lumped torsional stiffness of cross-ball equal-speed 
mechanism is

   (2)
where R is the distribution circle radius of taper grooves; ϕ is the angle 
between the straight lines formed by the components and the cross guide 
rod in the equivalent mechanism of cross-ball equal-speed mechanism; e is 
eccentric distance of input shaft.

TRANSLATIONAL–TORSIONAL COUPLING MODEL

Dynamic Model
To press close to the physical reality and avoid the complexity of mathematical 
treatment, the following simplifications and assumptions are made in the 
dynamic modelling:

• Balls are regarded as elastic element because of the small quality;
• Balls are pure rolling in the grooves, and the influence of friction 

force is ignored;
• The backlash can be eliminated by clearance screw mechanism, 

and the influence of backlash nonlinearity is ignored;
• The cross-disc is in a floating state, and the effects of cross-disc 

are not counted.
For the convenience of description of the relationship between the 

components of cycloid ball planetary transmission, this paper adopts a 
servo reference system of eccentric shaft (input shaft). Thus, the geometric 
centre of the input shaft is the coordinate origin. The coordinate system 
rotates at the speed of input shaft. According to the force analysis, a planar 
problem is considered where input shaft, centre disc, and planetary disc 
have two degrees of freedom: one translational around its own axis and 
one rotational along the x axis. End cover disc has one translational degree 
of freedom. In total, the model has seven degrees of freedom. Figure 6 
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shows the translational—torsional coupling model of cycloid ball planetary 
transmission. The sequence number of the components in Fig. 6 is consistent 
with the sequence number in Fig. 1.

Figure 6. Translational–torsional coupling model of cycloid ball planetary 
transmission.

Relative Displacement between Components and Dynamic 
Equations
The relative displacement between components is clear because the system 
has fewer components. The specific contents are shown as follows:

• Relative displacement between centre disc and planetary disc

       (3)
• Relative displacement between end cover disc and planetary disc

        (4)
• Relative displacement between planetary disc and input shaft

       (5)
The differential equation of system can be obtained using Newton’s 

second law:
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  (6)
where Ji is the moment of inertia of component i (i = 1, 2, 3, 5); mi is the 
mass of component i (i = 1, 2, 3); ri is the pitch radius of component i (i = 
1, 2, 3), r3 = r5; cix is the lateral brace damping coefficient of component i (i 
= 1, 2, 3); ciu is the torsion brace damping coefficient of component i(i = 1, 
2, 5); Cmx is the meshing damping coefficient of cycloid ball meshing pair; 
Cw is the meshing damping coefficient of cross-ball meshing pair; Ti is the 
input torque of input shaft; To is the input torque of output disc(centre disc).

The formula (6) is arranged in matrix form:

   (7)
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where X is generalized coordinate array; M is generalized mass matrix; F 
is external excitation array; Kb, Km, Kω are support stiffness matrix, mesh 
stiffness matrix, and centripetal stiffness matrix; Cb, Cm are support damping 
matrix and meshing damping matrix. The elements C mx and Cw in the matrix 
Cm have the following form:

      (8)

        (9)
Km is time-varying matrix because the lumped stiffness Kmx is a time-

varying element with the parameter θi. To solve the problem conveniently, 
the θi is converted to input shaft angle and the higher-order term is omitted.

   (10)
where K is short width coefficient of cycloid ball planetary transmission.

The time-varying element of formula (10) is omitted. After the time-
invariant Kmx is substituted into the mesh stiffness matrix, the dynamic 
equation of derivative system can be obtained:

   (11)
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In addition, the mechanical model and stiffness modelling method in this 
paper are different from Refs. [13, 14], but the mathematical model of 
cycloid ball planetary transmission is identical.

NATURAL CHARACTERISTIC ANALYSIS

Natural Frequency and Principal Mode
The natural characteristic of cycloid ball planetary transmission can be 
presented by solving the eigenvalue problem of derivative system. The 
eigenvalue problem of formula (11) is

      (12)
where ωi is the i order natural circular frequency of system; ϕi is the i order 

principal mode of system, 
Without loss of generality, take the cycloid ball planetary transmission 

used in robot joint as an example, the dynamic characteristics are simulated 
and analysed. The cross ball equal-speed mechanism is arranged in front of 
the cycloid ball meshing pair in the prototype. In other words, end the cover 
disc is fixed and the central disc is used as output component. The speed 
of input shaft is 1000 r/min; the meshing stiffness of single cycloid ball 
meshing pair is 2.87 × 107 N/m; the meshing stiffness of single cross-ball 
meshing pair is 4.44 × 107 N/m, and the deformation coefficient a is 0.9978. 
Other basic parameters are shown in Table 1.

Table 1. Essential parameters of cycloid ball planetary transmission

Essential parameter Input 
shaft

Centre 
disc

Planetary 
disc

End 
cover disc

Number of teeth Z  38 40  

Mass/kg 0.854 0.924 2.185 1.447

Moment of inertia J i/(kg m2) 2.69 × 
10−4

6.69 × 
10−3

1.44 × 10−2 1.19 × 
10−2

Pitch radius r i/m 2.5 × 
10−3

4.75 × 
10−2

5 × 10−2 5 × 10−2

Radial stiffness k ix/(N m−1) 5.85 × 
108

5.85 × 
108

5.85 × 108  

Torsional stiffness k iu/(N m−1) 0 0  1 × 109
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By solving the formula (12), the natural frequencies and the principal 
modes of the system are obtained as shown in Table 2. All natural frequencies 
are single. The first-order natural frequency is 0, which represents the rigid 
motion of system. The vibration modes corresponding to the other six-order 
natural frequencies are both translational vibration and torsional vibration. 
Furthermore, the approximate results of natural frequencies and principal 
modes of cycloid ball planetary transmission can be obtained when prototype 
data in this paper are plugged into the dynamic model of literature [13].

Table 2. Natural frequencies and principal modes of cycloid ball planetary 
transmission

Natural 
frequency 
f i /(Hz)

 0 708.6 1309.8 2552.8 2705.3 5927.8 6614.9

Principal 
mode ϕ

i

0 − 0.0479 0.1962 − 0.2455 − 
0.1651

− 0.8094 − 
0.6225

− 
1

− 0.2214 0.2464 − 0.0562 − 
0.0312

0.0562 − 0.052

0 0.0432 − 0.1024 − 0.3741 − 
0.3328

0.6434 0.6365

1 − 2.8938 1.85 1.1826 0.8576 0.7569 0.8729

1 − 0.4340 2.3444 − 2.7125 − 
1.7785

0.0847 − 
2.2035

0 − 0.2674 − 0.2689 − 0.0445 − 
0.1416

− 0.0581 − 
0.0665

0 − 0.0608 − 0.0759 − 0.2846 0.3459 0.0029 0.0025

Parametric	Influence	of	Natural	Frequency
It is necessary to analyse the change regulation of natural frequency relative 
to parameters of system with the purpose of avoiding vibration. In this paper, 
based on translational–torsional coupling model, the natural frequency 
curves of each order are obtained by calculating eigenvalue problem with 
consideration of main parameters, as shown in Fig. 7, 8, 9 and 10.
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Figure 7. The influence of planetary disc mass on the natural frequencies.

Figure 8. The influence of eccentric distance on the natural frequencies.

Figure 9. The influence of meshing stiffness on the natural frequencies.
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Figure 10. The influence of bearing support stiffness on the natural frequencies.

As shown in Fig. 7, when the mass of the planetary disc is less than 2.5 
kg, the fifth- and seventh-order natural frequencies decrease sharply, and 
other orders are weakly affected. When the mass of the planetary disc is 
bigger than 2.5 kg, all the natural frequencies have barely budged.

As shown in Fig. 8, all the natural frequencies increase gradually with the 
increase in the eccentric, except for the first order. When the eccentricity is 
2.5 mm, mode transition appears between the fourth- and fifth-order natural 
frequencies. At the point of mode transition, the subtle change in parameters 
will lead to drastic change in natural frequencies. Hence, the sensitive points 
of parameters should be avoided in the design to avoid drastic change in 
transmission characteristics.

As shown in Fig. 9, the mesh stiffness has little effect on the first 5 
orders natural frequencies of system. The sixth-order and seventh-order 
natural frequencies increase with the increase in meshing stiffness. When 
meshing stiffness increases to 3 × 107 N/m, the sixth order natural frequency 
remains constant, but the seventh order natural frequency rises dramatically.

As shown in Fig. 10, the bearing support stiffness has certain influence on 
the natural frequencies, except for the first order. When the bearing support 
stiffness is less than 1 × 108 N/m, the natural frequencies increase obviously 
with the increase in bearing support stiffness, especially the fifth order; 
when the bearing support stiffness is greater than 1 × 108 N/m, the sixth- and 
seventh-order natural frequencies increase significantly. Modal transition 
phenomenon occurs in the fifth- and sixth-order natural frequencies when 
bearing support stiffness is 1 × 108 N/m, which should be avoided in the 
optimization design of system.
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CONCLUSION
• To improve the motion accuracy of robot system, the cycloid 

steel ball planetary transmission used in robot joint is selected 
as research object. An efficient dynamic modelling method is 
presented—lumped stiffness method. A translational–torsional 
coupling model is modelling, and the natural characteristics of 
system are revealed.

• All natural frequencies of system are single. The first-order 
natural frequency is 0, which represents the rigid motion of 
system. The vibration modes corresponding to the other six-order 
natural frequencies are both translational vibration and torsional 
vibration.

• The number of eccentricity distance and bearing support stiffness 
may lead to the modal transition phenomenon. The sensitive 
points of parameters should be avoided as far as possible in the 
optimization design of system.

AUTHORS’ CONTRIBUTIONS
PZ created lumped stiffness method. BB established the dynamic model, 
made the natural characteristics analysis, and wrote the manuscript. PZ 
supervised the research. Both authors read and approved the final manuscript.

ACKNOWLEDGEMENTS
This research study was supported financially by National Natural Science 
Foundation of China (Grant No. 51405003). We acknowledge and thank 
their support.



Dynamic Modelling and Natural Characteristic Analysis of Cycloid Ball ... 227

REFERENCES
1. Terada H, Makino H, Imase K. Fundamental analysis of cycloid ball 

reducer (3rd report). JSPE. 1995;61(12):1075–9.
2. Terada H, Makino H, Imase K. Fundamental analysis of cycloid ball 

reducer (4th report). JSPE. 1997;63(6):834–8.
3. An ZiJun Q, Zhigang ZR. Research on tooth shape synthesis of cycloid 

ball transmission. J Mech Eng. 1996;32(5):41–6.
4. Peng Z, Zijun A, Zuomei Y. Research on nonlinear mechanical 

properties for engagement pair of cycloid ball planetary transmission. 
Eng Mech. 2010;27(3):186–92.

5. ZiJun A. Force and strength analysis on end face engagement cycloid 
steel ball planetary transmission. J Mech Transm. 2003;27(4):29–31.

6. Zijun A, Ruixue H. Parameter analysis of tooth profile error of cycloid 
steel ball planetary transmission. J Mech Transm. 2007;31(2):63–5.

7. Qingkun X, Junping Z. Error analysis cycloid ball planetary reducer 
based on the Monte Carlo. J Northwest A&F Univ. 2008;36(7):224–8.

8. Guo Y, Parker RG. Purely rotational model and vibration modes of 
compound planetary gears. Mech Mach Theory. 2010;45:365–77.

9. Shiyu W, Ce Z. Natural mode analysis of planetary gear trains. Chin 
Mech Eng. 2005;16(16):1461–5.

10. Yimin S, Jun Z. Inherent characteristics of 3K-II spur planetary gear 
trains. J Mech Eng. 2009;45(7):23–8.

11. Sun T, HaiYan H. Nonlinear dynamics of a planetary gear system with 
multiple clearances. Mech Mach Theory. 2003;38:1371–90.

12. Kahraman A. Free torsional vibration characteristics of compound 
planetary gear sets. Mech Mach Theory. 2001;36:953–71.

13. Peng Z, Zijun A. Dynamics model and natural characteristics of cycloid 
ball planetary transmission. Chin Mech Eng. 2014;25(2):157–62.

14. Ronggang Y, Zijun A. Analysis of free vibration of cycloid ball 
planetary transmission. Chin Mech Eng. 2016;27(14):1883–91.

15. Zhang P, Bao B. Mechanical property analysis and finite element 
simulation of cross steel equal-speed mechanism. Chongqing Proc Int 
Conf Power Transm. 2016;2016:87–92.





MODELLING OF FLOWSLIDES 
AND DEBRIS AVALANCHES IN 
NATURAL AND ENGINEERED 
SLOPES: A REVIEW

Sabatino Cuomo

Geotechnical Engineering Group (GEG), University of Salerno, Via Giovanni Paolo II, 
132 84084 Fisciano, Italy

BACKGROUND
The landslides of the flow-type are dangerous and also challenging to study. 
A wide literature has been investigating the principal mechanisms governing 
each stage in which these phenomena can be ideally subdivided: failure, 
post-failure and propagation. However, holistic contributions and general 
overviews are very rare. In addition, a number of numerical methods have 
been issued and validated so that new chances exist to efficiently model 
those threats. The paper focuses on two classes of rainfall-induced landslides 
of the flow-type, namely debris flows and debris avalanches. The principal 
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numerical methods are reviewed for modelling the landslide initiation and 
propagation and are later used for analyzing a series of benchmark slopes 
and real case histories which are successfully simulated.

Results
The rainfall from ground surface and water spring from the bedrock are key 
factors for slope instability. Pore water pressure plays a relevant role also 
during the propagation stage. The entrainment of further material makes the 
propagation patterns complex due to lateral spreading and slow-down of the 
front of flows. It is shown that the used models are capable to provide useful 
indications even for combined channelized and unchannelized flows.

Conclusions
Notwithstanding the complexity of flow-like landslides and the related 
challenges in modelling, the understanding and forecasting of such natural 
hazards is achievable with a satisfactory confidence. Among the key 
factors, rainfall, pore water pressure and bed entrainment deserves a special 
attention. Further improvements are expectable as the numerical models are 
becoming more efficient. Thus, more accurate descriptions of local effects 
will be possible and also additional mechanisms will be eventually analyzed.

Keywords: Rainfall, Landslide, Flow, Modelling, Countermeasure

INTRODUCTION
The geomechanical modelling of hillslope instability phenomena has been 
posing challenges to scientists for many decades. Indeed, most of the 
difficulties arise from the significant kinematic differences between the 
different stages of a landslide namely failure, post-failure and propagation.

Hillslopes generally undergo small deformations in the so-called pre-
failure stage. The failure stage (Cuomo, 2006), in turn, may consist in 
the formation of a continuous shear surface through the entire soil mass 
(Leroueil, 2001) where large soil deformations mainly concentrate and it 
is usually referred as “localized” failure. In some cases, plastic strains can 
affect large amount of soil originating a so-called “diffuse” failure (Darve 
and Laoufa, 2000; Pastor et al., 2004). In both cases, the failure stage leads 
to large displacements.



Modelling of Flowslides and Debris Avalanches in Natural and ... 231

The post-failure stage is characterized by the rapid generation of large 
plastic strains and the consequent sudden acceleration of the failed soil mass 
(Hungr, 2004) and it discriminates among different types of phenomena 
(Cascini et al., 2010), i.e. slide, slides turning into flows and flowslides. A 
slide occurs when limit equilibrium condition is gradually reached along a 
shear zone so that unbalance between driving and resisting forces is moderate 
and the unstable mass does not accelerate abruptly. The transition from a 
slide to a flow is typically caused by cascading effects of local failure and 
variation in slope geometry. The initial stress state is changed abruptly and 
no chance exists for the slope to be stable anymore. While the previous two 
categories are independent on the soil constitutive behaviour, flowslides are 
related to static liquefaction (Sladen et al., 1985; Chu et al., 2003) or soil 
mechanical instability phenomena (Darve and Laouafa, 2000), which are both 
even challenging to be modelled. It is important noting that large acceleration 
of the failed mass are typical of “flows” and “flowslides”, as labelled later on.

The propagation stage includes the movement of the failed mass from 
the source to the deposition area, where a new equilibrium configuration 
is possible and depends on both the amount of moving material and slope 
geometry. In the case of slides, the failed mass experiences displacements of 
one or two orders of magnitude lower than the landslide source dimensions. 
Conversely, for flows and flowslides the run-out distances are up to two 
orders of magnitude higher than the length of the landslide source (Cascini 
et al., 2011a, 2011b, 2016, 2019).

These mentioned differences are even more exacerbated in the case of 
the so-called flow-like landslides, which in most of the cases originate from 
shallow landslides. Two categories deserve special attention: debris flows 
and debris avalanches. Debris Flows (DF) propagate in V-shaped channels, 
where large amount of water is available during heavy rainstorms so that 
the propagating mass may fluidize before stopping (Cascini et al., 2014). 
Relevant examples of DFs are available from British Columbia (Canada), 
Cina, France, Hong Kong, Japan, Oregon (USA) and Switzerland (Braun 
et al., 2017, 2018;Iverson, 1997; Pastor et al., 2007a, b; Crosta et al., 2009; 
Hungr and McDougall, 2009; Quan Luna et al., 2012). It is worth noting 
that channelised landslides can be classified as ‘flowslides’ (Hungr et al., 
2001) when liquefaction occurs in the source areas; otherwise, they can be 
simply referred to as ‘debris flows’ (Hungr et al., 2001). Debris Avalanche 
(DA) is defined as “very rapid to extremely rapid shallow flow of partially or 
fully saturated debris on a steep slope, without confinement in an established 
channel” (Hungr et al., 2001). Avalanche formation is mostly related to bed 
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entrainment (Cascini et al., 2013a, b; Cuomo et al., 2014). As an example 
of DA, the 1999 Nomash River debris avalanche (Vancouver Island, British 
Columbia, Canada) mobilized a volume of 3 × 105 m3 at the source, whereas 
the erosion processes yielded nearly the same volume, with an average 
erosion depth of 8 m measured along 25° to 35° steep slopes (Hungr and 
Evans, 2004; Hungr et al., 2005).

To overcome the numerical difficulties of modelling the soil 
displacements across different orders of magnitude, the failure analysis of 
hillslope is generally treated separately from the propagation stage with 
different numerical methods. While this twofold approach allows the solution 
of relevant technical problems, it can avoid the full understanding of the 
instability mechanism as a whole and, some time, can produce inaccurate 
results. So, a number of emerging methods have been proposed.

This paper focuses on shallow soil deposits along steep slopes, rainfall-
induced instability and unsaturated coarse-grained soils. In doing that, 
ideal slopes, laboratory experiments (such as centrifuge tests) and real case 
histories will be examined. This is because evidences from laboratory and 
field are both fundamental. Firstly, the mechanisms of triggering, slide -flow 
transition and propagation will be reviewed. Then, the numerical models will 
be discussed. The aim of the paper is to provide a general overview of the 
current potentialities for modelling such challenging phenomena. Related to 
that, it is chosen to subdivide the numerical results in two categories: natural 
and artificial slopes. While such distinction is not relevant from a mechanical 
viewpoint, it makes sense if one thinks that mitigation structures and design 
procedures need often if not always the support of numerical analyses. Most 
of the conceptual concepts of this paper have been previously reviewed. The 
same applies also to the numerical models. What is lacking in the literature 
is an overall discussion of both the issues in a single paper. Of course, only 
some types of landslides have been taken into consideration. Also a limited 
set of models have been used. However, the choice of the challenging 
category of flow-like landslides allows exploring at once the failure, post-
failure and propagation stages. Correspondingly, very different mechanisms 
are analyzed. The novelty of this work is to combine different concepts and 
rielaborate previous numerical results in a more general framework. For the 
sake of generality, both reduced-sclae experimental tests, real case histories 
and idealized slope schemes have been considered in the paper.

The work is organized as follows: a background about the fundamental 
mechanisms is firstly provided; the numerical methods are presented; then, 
applications are presented for both natural slopes and engineered slopes.
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BACKGROUND

Triggering Mechanisms
The failure onset induced by rainfall is strictly related to the increase of pore 
water pressures and the consequent reduction of mean effective stresses 
(Anderson and Sitar, 1995; Alonso et al., 1996; Iverson et al., 1997). Within 
shallow soil deposits (Fig. 1), the increase of pore water pressures can be 
generated by rainfall that directly infiltrates the slope surface (Tsaparas et 
al., 2002; Futai et al., 2004) and propagate in depth through groundwater 
flow patterns related to the stratigraphical setting of the slope (Ng and 
Shi, 1998). Sometimes pore water pressure regime is also affected by the 
hydrogeological features of the underlying bedrock (Johnson and Sitar, 
1990; Montgomery et al., 1997; Matsushi et al., 2006; Cascini et al., 2008) 
which can impose severe hydraulic boundary conditions such as water 
springs at the bottom of the soil deposits.

Figure 1. Slope scheme (a) and stress paths, displacements and F (Forces as Fr: 
resisting forces, and Fd: driving forces) typical of rainfall-induced (b) slide, (c) 
slide to flow, and (d) flowslide triggered in shallow landslides inside colluvial 
hollows (Cascini et al., 2010).
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For the so-called “slides”, the soil mechanical behaviour is controlled, 
in drained conditions, by the hydrologic response up to the failure onset. 
Resisting force (Fr) gradually decreases down to the value of the driving 
force (Fd) along a slip surface where the spring from the bedrock is located 
(later named spring zone, point A in Fig. 1a) (Fig. 1b, t = t1). At this time 
lapse, the soil strength is fully mobilized. This means that the p’-q point 
reaches the failure line. Drained conditions are kept, both for loose and 
dense soils, during the post-failure stage and both displacement (δ) and 
acceleration (a) are low (Fig. 1b, t > t1). In loose saturated soils, the above 
process is associated with a volume reduction. A so-called “flowslide” 
occurs (Fig. 1d, t > t1), if the pore-water pressure cannot freely dissipate, 
so that partially or totally undrained conditions develop during the post-
failure stage. Particularly, in the spring zone (point A in Fig. 1), pore water 
pressures build up and the soil cannot sustain the imposed deviatoric stress 
q and failed soil mass accelerates (Fig. 1d, t > t1), leading to a catastrophic 
failure. Slides can turn into “flows” (Fig. 1c) as a consequence of complex 
mechanisms. First, a decrease in shear strength can occur due to local 
hydraulic boundary conditions such as in the spring zone (t = t1). Upslope 
(point B), the mobilised shear stresses increases, both in loose and dense 
soils (t > t1) and a further slide can occur (t = t2), which is characterised by a 
high initial acceleration. Consequently a flow is generated (t > t2).

Major differences between a flowslide (Fig. 1d) and a slide turning 
into flow (Fig. 1c) can be also outlined focusing on pore water pressures at 
failure. For the analysed schemes, pore water pressures reach the highest 
values in the spring zone (point A) due to both rainfall and local hydraulic 
boundary conditions (i.e. spring from bedrock) and the lowest values upslope 
the spring zone (point B), where can be still negative at failure (Fig. 1c) and 
slides turning into flow can also occur in portions of the slope characterised 
by unsaturated conditions.

Another important aspect to be taken into account is the type of failure. 
In the cases sketched in Figs. 1b-c, drained failure takes place at the critical 
state line, and failure can be “localized” (Pastor et al., 2002, 2004). It means 
that soil deviatoric strains mostly concentrate in a thin shear zone. On 
the contrary, fully or partially undrained post-failure stage of very loose 
materials (Fig. 2d) is diffuse (Darve and Lauoafa, 2000; Merodo et al., 
2004). It entails that a soil volume is yielded. The difference relates mostly 
to pore water pressure generation, which has to be carefully considered by 
using suitable constitutive and mathematical models. Notwithstanding the 
previous differences, it can be stated that for all the landslide typologies 
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of Fig. 1, the eventual sudden acceleration of the failed mass (post-failures 
stage) is a consequence rather than a cause of the slope instability process, 
as experimentally demonstrated by Eckersley (1990) and Chu et al. (2003). 
This means that the failure and post-failure stages can be separately analysed.

Figure 2. Schematic of an open slope prone to debris avalanche and stress paths 
relative to the triggering stage. General features: a) bedrock, b) stable soil de-
posit, c) failed soil, d) propagating failed mass, e) entrained material, f) bound-
ary of debris avalanche, g) propagation pattern. Triggering factors: I) spring 
from bedrock, II) impact loading. Zone 1–2: triggering. Zone 3: thrust of failed 
material and/or soil entrainment. Zone 4: soil entrainment. Zone 5: propagation. 
Stress paths for: drained impact (zone A), undrained impact (zone B), spring 
from bedrock (zone C), liquefaction (zone B and/or C), and thrust of failed mass 
on stable soils (zone B or to be determined). (Cascini et al., 2013a).

In the scientific literature, distinct triggering mechanisms are indicated 
for the inception of debris avalanches: i) the impact of failed soil masses on 
stable deposits, ii) direct rainfall infiltration from the ground surface, locally 
facilitated by anthropogenic factors such as mountain roads and tracks, 
iii) karst spring from bedrock as observed for pyroclastic soils in southern 
Italy, iv) runoff from bedrock outcrops as evidenced for shallow landslides 
in cohesionless soils of the Eastern Italian Alps and v) multiple failures in 
the landslides source areas. The scientific literature also indicate that: i) 
all these triggering mechanisms originate small translational slides; ii) the 
failed mass increases its volume inside triangular-shaped areas during the 
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so-called “avalanche formation” which is mostly explained referring to soil 
liquefaction induced by impact loading; iii) soil erosion along the landslide 
propagation path may also play a paramount role.

Two different stages can be individuated for debris avalanches, i.e. the 
failure stage and the avalanche formation stage: the former includes all the 
triggering mechanisms which cause the soil to fail; the latter is associated to 
the increase of the unstable volume. Referring to these stages, four different 
zones can be distinguished (Fig. 2). Zone 1 corresponds to small failures 
which occur at natural or anthropogenic discontinuities of soil deposits, 
bedrock outcrops and cut slopes, respectively. Zone 2 is the impact zone 
of the previously mentioned failed masses that usually corresponds to 
water supplies from bedrock (either karst spring or water runoff at bedrock 
outcrops); if the Zone 1 is absent, Zone 2 is the source area of small landslides 
triggered by water supplies from bedrock. Zone 3 corresponds to distinct 
mechanisms: thrust of the failed mass upon the downslope stable material 
and/or soil entrainment due to the propagating mass. Zone 4 exclusively 
corresponds to soil entrainment. It is worth noting that while zone 1 and 2 
are few tens of metres large, the width of zone 3 and 4 is not known a priori 
and its forecasting is a challenging task.

With reference to the stages and zones in Fig. 1, the mechanics of debris 
avalanches can be well analysed referring to the scheme of infinite slope 
(Fig. 2) and to the stress invariants q and p’. Particularly, in-situ initial 
conditions (before the debris avalanche has been triggered) at the zones 2 
and 3 of Fig. 1 depend on soil saturation degree (Sr) and are represented 
by the stress point 0 of Fig. 2. In dry condition (Sr = 0) the principal stress 
directions (σ’i = 1,2,3) are known (Lambe and Whitman, 1979; Iverson et al., 
1997) and the normal stress values σ’z, σ’y and σ’s can be easily obtained 
if the lateral earth pressure coefficient k0 refers to stress conditions at rest 
(Jaky, 1944). Particularly, σ’z increases with soil depth while both σ’y and σ’s 
increase with slope angle. In the case of steep slopes, equilibrium conditions 
require high soil friction angles which correspond to low values of k0 and 
σ’y; consequently, the associated (p’, q) points have a high stress ratio η = q/p’ 
and they lie very close to the failure criterion. For saturated soil condition 
(Sr = 1), the soil unit weight (γsat) and the deviatoric stress (q) are higher than 
in the previous case while the mean effective stress (p’) can be either higher 
or lower, depending on soil unit weight (γsat) and pore water pressure (pw). 
Therefore, for saturated soil condition (Sr = 1), the (p’, q) stress points can be 
even closer to the failure line than for dry condition (Sr = 0). For unsaturated 
soil condition (Sr < 1), the suction (s) determines higher mean effective 
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stresses (p’) than in saturated condition and a shear strength envelope with a 
positive apparent cohesion intercept (Fredlund et al., 1978); thus, the stress 
points (p’, q) are more distant from the failure criterion than in saturated soil 
conditions.

When an impact loading occurs (see zone 2 of Fig. 2), it mainly 
corresponds to an increase of deviatoric stresses; the stress paths are inside 
the zone A of Fig. 2 (for drained conditions) or in the zone B of Fig. 2 
(for undrained conditions). In the latter case, the stress path may rapidly 
approach the failure criterion. However, the assumption of drained or 
undrained conditions can be more or less acceptable depending on loading 
velocity and soil conductivity and the hydro-mechanical coupling between 
the solid skeleton and pore fluid may play a crucial role, as discussed later. 
Other triggering factors such as direct rainfall infiltrating the slope ground 
surface, karst springs from bedrock or runoff from upslope bedrock outcrops 
induce stress paths in the zone C of the q-p’ plot of Fig. 2; in these cases, 
fully drained conditions can be reasonably assumed (Cascini et al., 2010).

For the avalanche formation, remarks can be also outlined referring 
to the zone 3 of Fig. 1. Particularly, the occurrence of soil liquefaction 
is strongly related to the initial stress state in the q-p’ plane (Fig. 2) and 
mechanical features of soils, thus corresponding to stress paths moving in 
the zone B and/or C of the q-p’ plot of Fig. 2. Analogously, the thrust of an 
unstable mass upon downslope stable soils cause an increase of deviatoric 
stresses and a stress path moving in the zone B of q-p’ plot of Fig. 2. On the 
other hand, soil entrainment phenomena depends on the kinematic features 
of the propagating mass which are, in turn, related to: i) initial volume, ii) 
rheological behaviour and iii) hillslope topography.

Mechanisms for the Transformation of a Slide into a Flow
Post-failure stage is a fundamental topic since it discriminates different 
types of phenomena. In fact, it is quite evident that the chance for a landslide 
to achieve high velocities depends on: i) the initial acceleration of the failed 
mass and ii) subsequent transformation in to a landslide of the flow type.

Anyway, the acceleration of the failed mass during the post-failure 
stage is associated to different mechanisms. Many Authors outline that the 
development of total or partial undrained conditions as the main cause of 
high pore-water pressures upon shearing. In particular, for loose unsaturated 
soils, volumetric collapse is discussed by Olivares & Damiano (2007), 
Yasufuku et al. (2005), Bilotta et al. (2006) and it is observed in constant-
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shear-drained triaxial tests upon wetting (Anderson and Riemer, 1995; Dai 
et al. 1999; Chu et al. 2003; Olivares & Damiano, 2007). For loose saturated 
soils, static liquefaction is introduced by Wang et al. (2002), Olivares & 
Damiano (2007), Van Asch et al. (2006) and observed in undrained triaxial 
tests (Lade 1992; Yamamuro and Lade 1998; Chu et al. 2003) as well as 
in undrained ring shear tests under controlled strain rates (Wang et al. 
2002). Particularly, the build-up of pore pressures is shown to be relevant 
for soils having low relative density index (Eckersley 1990; Iverson 2000; 
Wang and Sassa 2001), fine content (Wang and Sassa 2003), low hydraulic 
conductivity (Iverson et al. 1997; Lourenco et al. 2006) and subjected to 
high deformation rate (Iverson et al. 1997).

The most of the above findings are obtained through laboratory tests 
such as isotropically consolidated undrained triaxial tests (ICU) (Chu et 
al., 2003), anisotropically consolidated undrained triaxial tests (ACU) 
(Eckersley, 1990), constant shear-drained triaxial tests (CSD) (Chu et al., 
2003) even though strain localisation is more important under plane-strain 
or the 3D conditions compared to triaxial conditions, as recently discussed 
by Wanatowski and Chu (2007, 2012). It is worth noting that all laboratory 
tests refer to idealized drainage conditions.

On the other hand, a direct measurement of pressures and displacements 
in real slopes is easy only for: i) sites monitored during the occurrence of 
landslides, ii) artificially induced failure in real slopes. In both cases, once 
the failure has occurred, the measurements cannot be repeated anymore at 
the same conditions.

Further insights derive from direct observation of pore water pressures 
and stresses in landslides artificially induced in slope models at a reduced 
scale (also called flume tests). Through this approach, information can 
be obtained on failure and post-failure (Eckersley, 1990); however, these 
experiments are expensive and since they reproduce the real processes 
at a greatly reduced scale they may be irrespective of the full-scale slope 
behaviour. For instance, a large difference in stress levels may exist 
between model and prototype; in particular, the eventual capillary suction 
is out of proportion with its self-weight stress, allowing the model slope 
to remain steeper than would be possible at higher effective stress levels. 
Nevertheless, complex groundwater conditions, such as downward rainfall 
infiltration from ground surface and/or a downwards/upwards water spring 
from the bedrock to the tested soil layer, can be analysed through these tests 
(Lourenco et al., 2006).
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A more recent approach is based on centrifuge tests which reproduce 
stress levels similar to those experienced by a real slope. Centrifuge tests 
- except for some drawbacks such as the high costs and the availability of 
sophisticated equipments - combine the advantages of highly instrumented 
slopes (such as full/reduced scale models) with the potential of geometrical 
configurations realistically reproducing the in-situ conditions. Particularly, 
Take et al. (2004) point out that the transition from slide to flow is caused by 
local failures producing a variation in the slope geometry. This mechanism is 
related to transient localized pore-water pressures that are not associated to 
the development of undrained conditions, but originated by the combination 
of particular hydraulic boundary conditions and stratigraphical settings. 
Experimental evidences show that the transition from slide to flow can occur 
both in loose and dense soils and that it can also correspond to decreasing 
pore-water pressures during the post-failure stage. These results have been 
later confirmed also by other researchers through small-scale flume tests 
(Lourenco et al. 2006) or centrifuge tests (Lee et al., 2008, Ng, 2009; among 
others).

Based on previous considerations, mathematical modelling may be 
outlined as a powerful tool because, in principle, it can be used to investigate 
a wide variety of different scenarios even though the modelling of the post-
failure stage is still poorly addressed in the literature such as in the case of 
earthquake (Pastor et al. 2004) or static perturbations (Laouafa and Darve 
2002).

Mechanisms of the Propagation Stage
Velocities, heights and percentages of water and debris are 3D spatially 
distributed quantities in a landslide of the flow type (Hungr et al., 2001); 
they may be distributed either along the path or in a vertical direction. 
The propagation stage is difficult to analyse as relevant parameters such 
as viscosity, soil friction angle or other rheological parameters and pore 
water pressures cannot be easily measured in full-scale examples and direct 
measurements are rarely available for real cases.

These analytical difficulties exist even for channelised landslides (Hungr 
et al., 2001) that, independent of the triggering mechanisms occurring in the 
source areas (Fig. 3), propagate in ‘V’ shaped channels with steep flanks. 
For instance, Fig. 3a shows a landslide source area located at the upper 
limit of the channel, as in the case of zero order basins (Cascini et al., 
2008); alternatively, the landslide source area may be lateral to the upper 
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limit of the channel (Fig. 3b). In either case, the propagation stage can be 
schematised as follows: i) at the entry of the channel, the height and velocity 
of the propagating mass increase and this effect is worse if two or more 
propagating masses join together; ii) along the channel, a great amount of 
material is available for bed entrainment during heavy rainstorms, and the 
channel may also provide water to the propagating masses, which will then 
fluidise, even without static liquefaction in the landslide source areas; iii) at 
the exit of the channel, the mass may stop or propagate further; in the latter 
case, the propagation direction is not known a priori and mass bifurcation 
may occur along secondary branches with different run-out distances 
travelled along each path; and iv) at the piedmont, deposition takes place 
where the channel terminates, i.e. where the longitudinal slope angle sharply 
decreases and cross sections are progressively wider and less deep (Fig. 3).

Figure 3. Schemes of propagation patterns for channelised flows, with the 
source area (a) along the channel or (b) located aside.

The prediction of propagation pattern(s), run-out distances, velocities 
and heights of propagating mass can reduce losses as it provides a means 
for i) defining the hazardous areas and estimating the intensity of the hazard 
and ii) working out the information for the identification and design of 
appropriate mitigation strategies (Fell et al., 2008).

Bed entrainment - also called erosion or basal erosion - is the process 
that causes an increase in the volume of flow-like landslides (Savage and 
Hutter, 1991; Pastor et al., 2009) owing to the inclusion of soil, debris and 
trees uprooted from the ground surface. In principle, the entrainment process 
can be simply analysed by referring to the entrainment rate (er), defined 
as the time derivative of the ground surface elevation (z), over which the 
landslide propagates. It is generally agreed that the entrainment is positive 
if z diminishes, i.e. er = −δz/δt. However, the entrainment rate (er) depends 
on several variables: the flow structure (i.e., percentage of solid and fluid 
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in the mixture), the density and size of the solid particles, the saturation 
degree of the base soil along the landslide path, the slope angle, and how 
close to failure the effective stresses are at the bed of the propagating mass. 
Bed entrainment is a crucial process increasing the landslide volume and 
modifying the mass velocities along the whole landslide path(s), as shown in 
Fig. 4. It is worth noting that landslide volume promotes the travel distance 
(Rickenmann, 2009), whereas bed entrainment absorbs momentum from the 
sliding/propagating mass and should reduce the run-out distance. However, 
this interplay also depends on other factors. In fact, mass velocities (and 
heights) determine the capability of a landslide to entrain further material 
and, in turn, the total entrained volume. Consequently, the percentages of 
water and debris change over time and so the mass rheology does. Bed 
entrainment also affects pore water pressures in different ways depending 
on slope morphology, e.g. confined/not confined flow. Therefore, bed 
entrainment and propagation are coupled processes that should be analysed 
within a unified mathematical framework. However, this interplay is not 
clearly addressed and modelled in the current literature.

Figure 4. Scheme for a Debris Avalanche (DA) developing as an unchannelised 
flow along an open slope.

Based on these key factors, many formulations for the entrainment rate 
have been proposed in the literature, and a comprehensive review of the 
entrainment models has been provided by Pirulli and Pastor (2012) and 
Cascini et al. (2014). Here, it is worth noting that most of the formulations 
indicate a direct proportionality between the entrainment rate (er) and the 
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flow velocity (v) and/or the flow depth (h). Moreover, it is recognised that 
the occurrence of bed entrainment implies that: i) velocity and height of 
the flowing mass are modified, ii) pore water pressure at the base of the 
flow is altered, and iii) the rheology (i.e., the features and mechanical 
behaviour) of the flow could be modified as well if the flowing mass and 
the entrained materials are very different. Indeed, the entrainment process is 
very complex, and former contributions have been proposed based on tests 
(flume, centrifuge, or full scale) of differently sized, generally smaller than 
10 m3, propagating volumes (Iverson et al., 2011) or numerical modelling 
of real debris flows (Cascini et al., 2014) or historical debris avalanches 
(Cuomo et al., 2014).

To provide further insight on the topic, this paper will focus also on 
real-scale landslides, particularly on debris avalanches and debris flows, and 
related cascading effects (Chen et al., 2006; Crosta et al., 2009; Pirulli and 
Pastor, 2012). Figure 5 provides a sketch for a DA evolving into a single DF 
(Fig. 5a); a single DA generating multiple DFs (Fig. 5b); and several DAs 
and DFs evolving in a single huge DF or in multiple surges delayed in time 
(Fig. 5c). An example of scenario “a)”, the 1995 Izoard pass debris flow 
(southern French Alps) is characterized by an erosion thickness up to 5 m at 
the top of a 25° to 30° steep channel (Lake et al., 1998). An interesting debris 
avalanche, which bifurcated into two debris flows (scenario “b)”), occurred 
in Tsing Shan (Hong Kong) in 1990. Bed entrainment greatly increased 
the landslide volume, from 150 to 1600 m3, because of the very steep slope 
(approximately 40°) and the abundance of colluvial material along the slope 
(King 2001a, b). The scenario “c)” is typical of high mountain ridges of 
China and Canada (Hungr and Evans, 2004).

Figure 5. Schemes of combined flows in different slope configurations: a) DA 
turning into a DF, b) DA turning into two DFs, c) multiple DAs and DFs joining 
into a big DF.
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METHODS

Alternatives for Landslide Modelling
Generally speaking, two main different approaches can be referred: the 
Lagrangian description and the Eulerian one. In the Lagrangian description, 
the computation points are linked to the material which is deforming and 
this category includes the well-known Finite Element Method (FEM) in the 
small displacement Lagrangian description, the Discrete Element Method 
(DEM) and Smoothed Particles Hydrodynamics (SPH). Among these 
methods, Lagrangian FEM analyses have been extensively used in solid 
mechanics to simulate small strains accumulated prior of failure (pre-failure 
stage) and at failure onset (during the failure stage) based on solid-like 
constitutive laws, as reviewed by Duncan (1996). Nevertheless, the FEM 
with Lagrangian description does not allow the description of the flow of the 
soil until deposition because of the tendency of the mesh to become more and 
more distorted. Concerning the DEM, this method is proper for modelling 
the behaviour of granular materials in small and large deformations: for 
example it is successfully applied to model granular flows with comparison 
against experimental laboratory evidences (Favier et al., 2009, Faug et al., 
2011). However, with this method it is hard to handle large domains of space 
or time because of the high numerical cost necessary to compute the particle 
connectivity. In particular, in the field of landslides the continuity of media 
and kinematic fields can be often assumed and thus the benefit of DEM 
method is drastically reduced. Lastly, the SPH is developed in a continuum 
mechanics framework and it does not show important limitations apart from 
some drawbacks with boundary conditions. Up to now, this method has been 
mostly applied to landslide propagation problems (Pastor et al., 2009) and 
only recently for analyzing static equilibrium problems (Fukagawa et al., 
2011).

In the Eulerian description that is common in fluid mechanics, the nodes 
are fixed and that is why this solution is usually the best one to model a 
fluid-like material with large deformations in the propagation stage: there 
exists, for instance, the FEM with an Eulerian formulation. However, the 
material properties are advected across the fixed computational grid. Such 
a procedure causes a spurious (numerical) diffusion of history variables 
(e.g. plastic strains) and interfaces of heterogeneous material setting are 
smoothed in space through time.
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Finally, some mixed methods are available which try to combine 
the advantages of the two main descriptions. For example, the Arbitrary 
Lagrangian Eulerian method (ALE) avoids the mesh tangling by allowing 
computation points to move but additional advection terms are required to 
handle transport of quantities related to the mesh and thus drawbacks of the 
pure Eulerian approach appear again. Still for large and complex deformation 
processes, such as those involved in slope stability problems, ALE cannot 
avoid mesh distortion and hence computation is stopped.

In fully Lagrangian FEM, SPH and DEM all the computational points 
coincide with material points (Fig. 6); the latter ones are not tracked in ALE 
and in Eulerian FEM. In order to get over the difficulties of the classical 
numerical methods in this framework, as an alternative the Finite Element 
Method with Lagrangian Integration Point (FEMLIP) (Moresi et al., 2002, 
2003), is proposed as derived from the Particle In Cell method (Sulsky et 
al., 1995). Similar concept is that behind the Material Point Method (MPM), 
which has been recently applied to a number of different slope stability 
and landslide cases (Wang et al., 2016, 2018; Ghasemi et al., 2018, 2019; 
Cuomo et al., 2019a, b). Both methods and others similar available in the 
literature are based on a kinematic dissociation between the material points 
and the computational nodes of the finite element Eulerian mesh. For a given 
material configuration, the material points are used as integration points on 
one element. The resolution of the equilibrium equation at the nodes gives 
a velocity field. At the end of each step, the velocity is interpolated from the 
nodes to the material points which are moved accordingly throughout the 
fixed mesh up to a new configuration. Since all material properties including 
internal variables are stored at material points, they are accurately tracked 
during the advection process. Actually, thanks to this dissociation between 
mesh nodes and material points, such approach benefits both from the ability 
of an Eulerian FEM (the mesh is kept fixed) to support large transformations, 
and from the possibility of a Lagrangian FEM to track internal variables 
during the material movement. This method is – in principle – suitable to 
deal with: i) static equilibrium of elasto-plastic materials in the pre-failure 
stage, ii) large deformations upon failure, iii) large displacements during the 
propagation stage while still tracking the history of material properties.
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Figure 6. Scheme of different methods for the analysis of soil deformation and 
slope failure.

Models for Landslide Triggering Simulation
Several approaches are currently available for the slope analysis and they 
allow separately modelling the failure, post-failure and propagation stages 
of hillslope instability phenomena. They are divided in three broad classes 
depending on the amount of deformation taken into account.

Particularly, the failure stage can be analysed using many standard 
engineering methods that, anyway, disregard the deformations prior to 
failure and during the failure stage; these methods are usually called Limit 
Equilibrium Methods (LEM, later on) which include the Infinite Slope 
Method (ISM, hereafter) and the so-called slice methods proposed under 
distinct hypotheses by many Authors (Morgenstern & Price, 1965; Janbu, 
1954; among others). In these methods the constitutive law of the material 
is rigid-perfectly plastic and thus the displacements along the slip surface 
cannot be assessed.

The result of LEM analysis is the so-called factors of safety (FS), which 
has been extensively used to satisfactorily tackle a number or real cases in 
the last decades. Particularly, both failures and stable conditions computed 
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via LEM have been fully confirmed by in-situ evidences of natural or man-
made slopes (Leroueil, 2004, among others).

More sophisticated approaches are available which allow computing soil 
deformations and displacements in boundary value problems. In order to 
properly reproduce the previously described typologies of shallow landslides, 
it is necessary to use a (i) mathematical model describing the coupling 
between pore fluids and soil skeleton, (ii) a suitable constitutive relationship 
able to describe the unsaturated soil behaviour, and (iii) a numerical model 
where (i) and (ii) are implemented. To the authors’ knowledge, these have 
not been done yet in a full satisfactory manner, and until such tools are 
available, simplified models have to be carefully used.

This paper uses the mathematical framework derived from the 
fundamental contributions of Zienkiewicz et al. (1980, 1999). This 
framework can be profitably used to simulate the landslide failure and post-
failure stages. It is assumed that the soil consists of a solid skeleton and two 
fluid phases, water and air, which fills the voids. The movement of the fluid 
is considered as composed of two parts, the movement of soil skeleton and 
motion of the pore water relative to it. The total stress tensor acting on the 
mixture is decomposed into a hydrostatic pore pressure term and an effective 
stress tensor acting on soil skeleton, which can be also extended to the case 
of unsaturated soils. In the balance of momentum equation for the mixture 
the acceleration of water relative to soil grains is neglected. Whereas, the 
deformation of soil skeleton, the deformation of soil grains caused by pore 
pressure, the deformation of pore water caused by pore pressure, and the 
increase of water storage are considered. The Darcy law is used to describe 
water flow through the soil skeleton, although other alternatives can be 
chosen. In above, the acceleration terms of the pore water relative to soil 
skeleton are neglected, and the space derivatives of accelerations are assumed 
to be small. Finally, the model is completed with kinematic relations linking 
velocities to rate of deformation tensor and a suitable constitutive equation. 
More details are provided by Pastor et al. (2004). In the next sections the 
“GeHoMadrid” code will be used combined to either standard constitutive 
models like Drucker Prager (DP) or advanced constitutive models like that 
proposed by Pastor and Zienkiewicz (1990), (PZ).

Models for the Simulation of Landslide Propagation
Several methods have been developed to analyse the landslide propagation.
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Empirical methods are based on field observations and identify 
relationships between landslide volume, local morphology, presence of 
obstructions and landslide run-out distance. The availability of landslide 
datasets has encouraged statistical (bivariate and multivariate) analyses that 
point out indexes directly (or indirectly) related to landslide mobility. To 
date, these empirical models have provided an estimation of run-out distance 
that can be correlated to i) the amount of the unstable volume (Corominas, 
1996) and ii) the features of landslide source areas (e.g. width/length ratio, 
depth of slip surface) or slope morphology (Cascini et al., 2011b). These 
approaches are commonly used for the back-analysis of case histories; they 
capture the global observed behaviour (high mobility) of these landslides, 
but disregard crucial local effects (e.g. diversions and/or bifurcations).

Analytical methods simulate the landslide propagation using physical-
based equations derived from solid and fluid dynamics (Pastor et al., 2009; 
Pirulli and Sorbino, 2008; Hungr and Mc Dougall, 2009). Thus, velocity 
and height are provided alternatively at (i) each point of a given domain in 
Eulerian-formulated models or (ii) at each point of the propagating mass 
for Lagrangian approaches. The three main categories of the Lagrangian 
approaches are i) block (‘lumped mass’) models, ii) two-dimensional 
models that look at a typical section profile of the slope, neglecting the 
width dimension, and iii) three-dimensional models treating the flow of a 
landslide over an irregular 3D terrain. Most of the models belonging to the 
latter two categories are simplified by integrating the internal stresses in 
either the vertical or bed-normal direction to obtain a form of St. Venant 
equation. Then, the governing equations are solved using numerical methods 
such as finite difference (O’Brien et al., 1993), finite element (Pastor et al., 
2002), finite volume (Pirulli and Sorbino, 2009; Pirulli and Pastor, 2012) 
or smooth particle hydrodynamic (SPH) (Pastor et al., 2009). Among the 
governing equations, the rheological model poses important scientific and 
practical difficulties; rheological parameters can often only be obtained from 
the back-analysis of case histories, and thus simple models are preferred 
because a limited number of parameters can be constrained more easily. It is 
worth noting that only a few models schematise the propagating mass as a 
mixture of solid grains and pores, thus providing information on pore water 
pressures in space and time (Pastor et al., 2011).

Different hypotheses have been formulated for the entrainment onset: 
i) velocity threshold, ii) dependency on slope angle (Brufau et al., 2000, 
Egashira et al., 2000, 2001; Papa et al., 2004); and iii) correlation with 
landslide volume (Chen et al., 2006). Alternatively, the so-called ‘erosion 
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rate’ (er) may be invoked, which is defined as the time derivative of the 
ground surface elevation and is equal to the time derivative of the soil depth 
of the propagating mass when other causes are not in play. The erosion 
rate can be modelled as proportional to the product of velocity (v) and 
propagation height (h). In this case, it is convenient to refer to the ‘landslide 
grow rate’ (Er), which is independent of the flow velocity. Once assigned an 
Er, the amount of bed entrainment depends on both the height and velocity 
of the propagating mass at each point of the landslide path. The terms er 
and Er are related by the equation er = Er·h·v. Takahashi et al. (1991) relate 
Er to two factors: the solid concentration of the propagating mass and the 
availability of solid particles along the landslide path. However, Hungr 
(1995) relates Er to the initial and final landslide volume and to the travelled 
distance (L) in the following way: Er· = ln(Vfinal/Vinitial)/L, where Vinitial is the 
volume entering an erodible zone of the slope, and Vfinal is the sum of the 
initial volume and the entrained material. In more complex formulations 
the growth rate depends on the solid concentration, slope angle and shear 
strength of the eroded material (Ghilardi et al., 2001).

Analytical approaches to bed entrainment analysis require a proper 
rheological (or constitutive) model for the behaviour of the interface 
between the propagating landslide and the ground surface. Bed entrainment 
is also related to flow structure, density, size of particles and how close 
to failure the effective stresses at the ground surface are. To the authors’ 
knowledge, there are very few analytical models for bed entrainment in the 
current literature. Medina et al. (2008) relate er to factors such as i) landslide 
velocity, ii) shear stress mobilised at the base of the propagating mass, iii) 
slope angle, and iv) unit weight of the propagating material. Quan Luna et 
al. (2012) proposed a 1D analytical model for erosion assessment based on 
limit equilibrium considerations and the generation of excess pore water 
pressure through undrained loading of the in-situ bed material; similar 
approaches could provide fully realistic results if extended to 3D conditions. 
Analytical approaches have rarely been implemented in numerical codes 
and thus their application to real case histories is still limited.

Finally, mixed methods combine analytical methods for propagation and 
empirical methods for bed entrainment. Mixed methods have been recently 
applied by Hungr and McDougall (2009) and Pastor et al. (2009) to landslides 
of the flow type. All of these contributions refer to the empirical erosion law 
of Hungr (1995) and it is worth comparing their back-analysed values of 
Er, which span a wide range of values due to differences in site conditions 
and soil properties. However, the estimated entrainment coefficients in 



Modelling of Flowslides and Debris Avalanches in Natural and ... 249

these analyses also depend on both the chosen rheological model and the 
calibration procedure for the rheological parameters. Therefore, further 
applications of numerical approaches to real case histories are necessary to 
better assess the potential bed entrainment during the landslide propagation 
stage. Therefore, in this study a relevant case history from Southern Italy is 
analysed.

The ‘GeoFlow_SPH’ model proposed by Pastor et al. (2009) is applied 
here below. The model is based on the theoretical framework of Hutchinson 
(1986) and Pastor et al. (2002) and schematises the propagating mass as a 
mixture of a solid skeleton saturated by water; the unknowns are the velocity 
of the solid skeleton (v) and the pore water pressure (pw).

The governing equations are i) the balance of the mass of the mixture 
combined with the balance of the linear momentum of the pore fluid, ii) the 
balance of the linear momentum of the mixture, iii) the rheological equation 
relating the soil stress tensor to the deformation rate tensor, and iv) the 
kinematical relations between the deformation rate tensor and the velocity 
field. From this, we derive a propagation–consolidation model by assuming 
that pore water pressure dissipation takes place along the normal to ground 
surface, and the velocity of the solid skeleton and pressure fields can be split 
into the sum of two components related to two processes: propagation and 
consolidation (for further details see Pastor et al., 2009). The initial pore 
water pressure is taken into account through the relative height of the water, 
hw

rel, which is the ratio of the height of the water table to the soil thickness, 
and the relative pressure of the water pw

rel, that is to say the ratio of pore-
water pressure to liquefaction pressure. Estimates of both parameters can 
be obtained from the analysis of the triggering stage, and they play an 
important role in the propagation stage of a flow-like landslide (Cuomo et 
al., 2014b). In the model here used, the vertical distribution of pore water 
pressure is approximated using a quarter cosinus shape function, with a zero 
value at the surface and zero gradient at the basal surface (Pastor et al., 
2009), and the time-evolution of the basal pore water pressure (pb

w) relates 
to the consolidation factor (cv).

As many flow-like landslides have small average depths in comparison 
to their lengths or widths, the above equations can be integrated along 
the vertical axis and the resulting 2D depth-integrated model presents an 
excellent balance of accuracy and simplicity. The GeoFlow_SPH model 
also accounts for bed entrainment along the landslide path, and the elevation 
of the ground surface consistently decreases over time. In addition, different 
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empirical erosion laws can be implemented in the GeoFlow_SPH model 
(e.g. Hungr, 1995; Blanc, 2011; Egashira et al. 2000, 2001; Blanc et al., 
2011; Blanc and Pastor, 2011, 2012a and 2012b). The simple yet effective 
law proposed by Hungr (1995) is used mainly to achieve results comparable 
to those available in the literature. Hungr (1995) relates Er to the initial and 
final landslide volume and to L; the entrained material is assumed to have 
nil velocity and nil pore water pressure when entrained by the propagating 
mass.

In the GeoFlow_SPH model, the Smoothed Particle Hydrodynamics 
(SPH) method is used; this method discretises the propagating mass through 
a set of moving ‘particles’ or ‘nodes’. Information, i.e. unknowns and their 
derivatives, is linked to the particles, and the SPH discretisation consists 
of a set of ordinary differential equations whose details are provided by 
Pastor et al. (2009). The accuracy of the numerical solution and the level 
of approximation for engineering purposes depend on how the nodes are 
spaced and how the digital terrain model (DTM) is detailed, as recently 
reviewed by Pastor and Crosta (2012) and Cuomo et al. (2013).

RESULTS AND DISCUSSION FOR NATURAL SLOPES

Failure of Shallow Soil Covers

A first example of landslide triggering simulation is provided for three 
different combinations of shallow covers potentially unstable due to rainfall 
from ground surface combined to water spring from the bedrock. This is a 
recurrent site condition in several geoenvironmental contexts.

Three infinite slope schemes are referred and parametric analyses 
are performed with typical slope angles (35 degrees), depths (4.5 m) and 
stratigraphical settings (Fig. 7) provided by the in-situ evidences (Cascini, 
2004). Particularly, the three schemes well averages the stratigraphy of 
pyroclastic covers located around the Vesuvius volcano (Naples, Italy), 
like the Pizzo d’Alvano massif, where impressive flow-like landslides 
occurred in 1998. The geomechanical modelling of the pore water pressure 
is performed for the time period from January 1, 1998 to May 5, 1998, by 
using the commercial finite element code SEEP/W (Geoslope, 2005). The 
main soil parameters are here summarised: i) Ashy soil A (porosity, n: 0.66; 
saturated unit weight, γsat: 15.7 kN/m3; saturated conductivity, ksat: 10− 6 m/s; 
friction angle, φ’: 35°; effective cohesion, c’: 10 kPa); ii) Ashy soil B (n: 
0.58; γsat: 13.1 kN/m3; ksat: 10− 5 m/s; φ’: 37°; c’: 0 kPa); iii) Pumice soils (n: 
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0.69; γsat: 13.1 kN/m3; ksat: 10− 4 m/s; φ’: 37°; c’: 0 kPa). More details on the 
characterization of pyroclastic soils can be found in Cascini et al. (2010).

Figure 7. Results of numerical modelling for seepage and slope stability analy-
sis. a) Pore water pressure computed at failure (FS: Factor of Safety equal to 
1) for different slope schemes (1–3), b) pore water pressure versus time at a 
representative point along the slip surface for each slope, c) Factor of Safety 
versus time for the slip surfaces (S1-S3) (Cascini et al., 2010).

The adopted FEM mesh consists in 3755 quadrilateral elements with 
lengths and heights respectively smaller than 1.0 m and 0.5 m. As initial 
conditions, suction values are assumed respectively equal to 5 kPa, all 
over the slope section. Daily rainfall intensity is applied as flux boundary 
condition at the ground surface for the period January 1, 1998 - May 3, 
1998; hourly rainfall intensities are assigned for the last 2 days (May 4–5). 
At the contact between the pyroclastic deposit and the limestone bedrock, 
an impervious condition is assumed except for the zone where the spring 
from the bedrock is located (Fig. 7). Here, a flux condition is considered 
with a flux value of 1.67 × 10− 5 m3/s, starting from 2nd or 3th May 1998. 
Using the computed pore pressures values, slope stability conditions are 
evaluated. To this aim, the limit equilibrium methods proposed by Janbu 
(1954) and Morgenstern and Price (1965) are adopted and the corresponding 
factor of safety values are computed by using the commercial SLOPE/W 
code (Geoslope, 2005). For all the involved soils, a rigid-perfectly plastic 
constitutive model is referred considering, in both saturated and unsaturated 
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conditions, the extended Mohr-Coulomb failure criterion proposed by 
Fredlund et al. (1978) with geotechnical properties listed in Table 1. The 
numerical results of the parametric analysis (Fig. 7) indicate that rainfall 
infiltration from ground surface and spring from the bedrock increase the 
pore water pressures up to the slide occurrence (Fig. 2b), independently from 
the assumed stratigraphical setting and for any shear strength value listed 
in Tab. 1. Different stratigraphical settings and mechanical properties of 
pyroclastic deposits anyhow determine different depths of the slip surfaces 
from the ground surface (Cascini et al., 2005).

The successful application of the uncoupled approach based on the 
use of unsaturated transient seepage analysis and limit equilibrium slope 
stability analysis is worth of twofold comments. On one hand, this approach 
is relative simple to apply and based on the use of codes easily available for 
researchers and practitioners. On the other hand, the main physical processes 
and the key factors are properly taken into account so that a satisfactory 
interpretation of complex slope stability problems is obtained.

The main limitation of such type of application is that no information 
can be derived about the post-failure events. Will the soil liquefy or not? 
There will be any transformation into a flow? No answer will be obtained to 
these relevant questions, unless other approaches are used.

Transformation of a Slide into a Flow
The observation of soil liquefaction, slope fluidization, and similar 
phenomena is seldom observed or quantitatively measured in the field. 
For this reason, it is very useful to refer to laboratory slope experiments. 
Until few years ago, the option of small-scaled slopes is the only chance 
to consider. More recently, centrifuge tests allowed having almost a 1:1 
correspondence between the prototype and real boundary value problems. 
The centrifuge tests of Take et al. (2004) are here analysed using the 
GeHoMadrid code. In the numerical analyses an unstructured mesh is used 
with triangular elements on average not larger than 0.4 m. A null pore water 
pressure values is assumed at point E - corresponding to the water table level 
observed at failure during the tests - to reproduce the raising of the water 
table in the upper soil layer. In the FEM analysis, pore water pressure is 
allowed to change in space and time, starting from an initial value of -5 kPa 
throughout the slope model. This is adequately taken into account referring 
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to Bishop’s stresses (for details see Pastor et al., 2002). However, for sake 
of simplicity, numerical analyses are performed in the hypothesis of fully 
saturated conditions and the used version of the PZ constitutive model fits 
this hypothesis (Pastor et al., 1990; Merodo et al., 2004). Of course, the 
analyses could be extended to the case of unsaturated conditions but this 
is beyond the scope of the present paper. The soil mechanical properties 
are either taken from GEO (1999), Ng et al. (2004) and Take et al. (2004), 
e.g. γsat = 14 kN/m3, e = 0.32 (Dense soil) or 0.62 (Loose soil), Mg and Mf, or 
indirectly estimated/calibrated, e.g. ksat = 10− 4 m/s, E, η, H0, comparing the 
experimental evidences and the numerical results. It is worth noting that 
two different values of Mf = 0.825 (Dense soil) or 0.550 (Loose soil) are 
assumed which derive from different values of relative soil density while 
the same critical friction angle (Mg = 1.375) and bulk modulus (Kev0 = 11.5 e3 
kPa) are considered for both loose and dense soils. This strong assumption 
is aimed at emphasizing in a limit case the role played by soil porosity as a 
fundamental factor for slope behaviour upon failure and beyond. The details 
of such soil characterization are given in Cascini et al. (2013b), and also 
more insights about the calibration of the constitutive model parameters are 
given in Cuomo et al. (2018).

Hydro-mechanical coupled quasi-static analyses are performed to take 
into account the coupling between the solid skeleton and pore fluid. The 
simulated plastic strains significantly differ in the case of loose and dense 
soil (Fig. 8) for both the value (larger for loose soil) and extent of the affected 
zone. In the case of loose soil, “diffuse” plastic strains are simulated, firstly 
at the toe of the slope, and then they involve a larger amount of the slope 
as time elapses. For dense soil, plastic strains appear firstly at the toe of 
the slope and then they are “localized” along a slip surface where plastic 
strains accumulate as the process evolves. The above mentioned differences 
depend only on relative density being the other mechanical properties equal 
in the two cases. However, apart from the different type of failure, i.e. diffuse 
or localized, a different time evolution is also outlined. For loose soil, the 
failure stage is shorter because higher excess pore water pressures rapidly 
accumulate in the slope until it fails. Conversely, in the case of dense soil, 
both the pre-failure stage (mainly corresponding to elastic strains) and the 
failure stage are longer in time.
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Figure 8. Modelling of centrifuge tests. FEM mesh used for computation (a), 
equivalent plastic strains computed at different time lapses for loose (b) and 
dense (c) soil (Cascini et al., 2013b).

In this case, the use of a sophisticated hydro-mechanical approach 
combined to an advanced constitutive model is mandatory to reproduce the 
transformation of a slide into a flow. The use of such approach can highlight 
how a contractive loose soil slope undergoes a significant build up of pore 
water pressure due to a rainfall-induced soil volume change (Cascini et al., 
2013b). Based on limit equilibrium analysis, the slope would be stable while 
using a more adequate approach, such that used here, the slope will fail. 
More details on such scenarios are given in Cascini et al. (2013b).

The main limitation of the approach showed here is that the equations 
are all written in the framework of “small deformations”, which means 
that once the deformed slope configuration becomes too much distorted 
compared to the original slope, the simulation stops or the numerical results 
are unreliable.

Modelling the Propagation Stage of Debris Flows (DFs)
The SPH model is here applied to a real case of two debris flows converging 
inside the same valley channel. A 3 × 3 m DTM is used as input for the 
GeoFlow_SPH model, as it accurately reproduces the topographical/
morphological conditions of the sites before the event and the anthropogenic 
streets/channels (5–10 m large). The extent of the landslide source areas 
and the initial depths of the propagating masses are obtained from detailed 
landslide inventory maps and soil thickness maps at the 1:5000 scale (Cascini 
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et al., 2005; Cuomo, 2006). Specifically, the landslide source areas have 
lengths of 250–400 m and widths of 50–200 m, and initial soil thicknesses 
in the range of 3–4.5 m. At point ‘1’ of Fig. 10, the eroded depths are 1–2 m 
and the piedmont areas, shown in red, indicate the piedmont areas hit by the 
flowslides. To set up the numerical simulations, 2936 and 4598 points are 
considered within the two landslide source areas of Sarno. In each zone, the 
points are spaced at 3 m at the beginning of the computation. Furthermore, 
the two propagating masses are released at once from the source areas, 
thus disregarding the possibility of multiple/delayed failures. The frictional 
rheological law is used, with the rheological properties (tanϕb = 0.4) selected 
first by referring to Pastor et al. (2009) and then with different hypotheses 
considered for the erodible areas (Aer), and Er. In particular, the propagation 
path is divided into three zones: hillslope, channel and piedmont. The 
numerical simulations consider erosion in channel and piedmont zones, 
or only in the channel zone. Moreover, different Er values, ranging from 
9 × 10− 4 to 1.3 × 10− 3 m− 1, are used to back-analyse the case studies. The 
initial pore water pressure normalised to soil liquefaction pressure (pw

rel = pw/
γsat·h), where pw

rel is the so-called ‘normalised pore water pressure’ and γsat is 
the soil unit weight) is assumed equal to 1.0 inside the landslide source area. 
An automatic adaptive time stepping is used for time discretisation (Pastor 
et al., 2002) with time steps shorter than 0.8 s. The Runge-Kutta algorithm 
is used for numerical time integration, as suggested by Pastor et al. (2009).

The results show that the bed entrainment greatly modifies the landslide 
propagation pattern (Fig. 9). In case 1, only the channel is erodible and 
the simulated landslide travels mainly at the right-hand side. In case 2, the 
propagating mass entrains material along the whole propagation path and the 
simulated bed entrainment causes the material deposition and reduces the 
landslide run-out distance. In both cases, SPH modelling provides distinct 
propagation areas, similar run-out distances and run-outs shorter than the 
observed one of about 400 m. Assuming the highest Er value (case 3), the 
field evidence is poorly reproduced, as in the model the landslide stops at the 
exit of the channel where a thick deposit is simulated and the propagation 
path observed at the piedmont in the case study is not captured. However, 
the results show that bed entrainment slightly modifies the duration of the 
whole propagation/deposition stage (45 to 50 s for cases 1–3). Moreover, 
the comparison with the case 4 highlights the important role played by the 
initial height of the water table (hw

rel = 0.4 instead of 0.25).
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Figure 9. The case of two debris flows converging in the same valley (Cas-
cini et al., 2014).

The numerical results satisfactorily reproduce the in-situ evidence 
for both the run-out distance and the extent of the propagation-deposition 
zones. The simulated phenomenon lasted about 60 s, which is in agreement 
with Pastor et al. (2009) and eyewitness accounts of inhabitants (Cascini et 
al., 2005).

Modelling the Propagation Stage of Debris Avalanches (DAs)
Lateral spreading combined to the bed entrainment is another fundamental 
mechanism governing the propagation stage. To assess the roles of 
entrainment, frictional basal resistance and pore water pressure in the lateral 
spreading of the propagating mass, an ideal slope is parametrically analysed. 
The slope consists of two planes dipping at i1 and i2 (Fig. 10). The failed 
volume is located at the uppermost edge of the upper slope, inside the source 
area. The propagation area of a debris avalanche is analysed with reference 
to the semi-apical angle (β) computed from the lateral boundary of the debris 
avalanche to its axis at the source area. Other important features, such as the 
angle of reach (α) formed by the line connecting the uppermost point of the 
landslide crown scarp to the tip of the mass deposit in a longitudinal section, 
are not investigated here, as they also depend on piedmont characteristics 
(Cascini et al., 2011b).
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Figure 10. Schematic (a) of an open slope affected by a debris avalanche: mod-
eled eroded thickness (b), and lateral spreading (c) (Cuomo et al., 2014).

Several analyses of frictional-like materials are performed by varying 
the morphometric features of the hillslope (i1, i2, Hslope), the geometrical 
aspect ratio of the source area (Btrig, Ltrig, htrig) and the main rheological 
parameter (the friction angle of the propagating mass,ϕb). A fixed value for 
landslide growth rate (Er) is used to account for the entrainment phenomena. 
The results indicate that the greater the ratio of the triggering soil height to 
the length of the source area (htrig / Ltrig), the greater the lateral spreading (β), 
with a maximum of 8.3°. The 8.3° maximum corresponds to a triggering soil 
height of 5 m. Such a high htrig value is likely to occur in Zone 2 of the slope 

shown in Fig. 2 due to the impact of material falling from a bedrock scarp.

Figure 10 provides an example of these results with Ltrig, Btrig, ϕb, cv 
and Er fixed at 50 m, 40 m, 10.2°, 0.01 m2/s and 8.2 × 10− 3 m− 1, respectively. 
The semi-apical angle (β) increases from 1.3 to 5.2° until the ratio Btrig/Ltrig 
reaches 0.5, and then β reduces to a minimum value of 3.2°, independent of 
relative pore water pressure (pw

rel).
It is also worth showing the time trend in simulated eroded depths at 

point ‘P’, at the boundary between slope and piedmont. The final eroded 
depths (her) range from 1 m to 10 m, with an erosion rate (er) ranging from 
0.08 to 1.29 m/s, and an erosion time (ter, defined as the time in which bed 
entrainment occurs at a given point of the slope) ranging from 3.4 to 22.7 s. 
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The eroded depths simulated at the boundary between slope and piedmont 
show two key characteristics: (i) they are the product of a combination 
of slope morphology, features of the triggering area, rheology and bed 
entrainment; and (ii) they range between 0.03 and 10.07 m for a wide array 
of debris avalanches in coarse-grained soils. Therefore, the results of the 
benchmark cases facilitate assessing the roles and interplay of entrainment, 
rheology and pore water pressure, and provide theoretical values for apical 
angle (β), erosion rate (er), eroded depth (her) and erosion time (ter) in highly 
idealised cases. Using these results, the analysis of relevant case histories in 
the following sections can be approached with confidence.

A debris avalanche triggered at the uppermost part of a hillslope may 
propagate into a well established channel or even spread into two or more 
valleys. The latter case is recorded on 5 May 1998 at the Pizzo d’Alvano 
massif (about 1000 m high), in the Cortadonica basin. A debris avalanche 
is triggered at 745 m a.s.l., enlarged along the hillslope at a semi-apical 
angle (β) of about 7°, travelled for 510 m, then divided in two wide valleys. 
It propagated over a total run-out distance of 1.95 km up to the piedmont 
area at 65 m a.s.l.. The numerical analysis of this case is performed using a 
3 × 3 m Digital Elevation Model. The topography is reproduced by means 
of a mesh of 35,520 squares. The initial mass is schematised into a set of 
639 SPH points, 1 m spaced, with a uniform soil height of 1–2 m over the 

impact zone (data from Cascini et al., 2008). A frictional model is used 
to analyse the rheological behaviour of the unstable mass, based on the 

rheological parameters used by Pastor et al. (2009) to back-analyse an 
important channelised landslide that occurred during the May 1998 event 
in a neighbouring mountain basin. The landslide growth rate is assumed 
to be in the range 1.3 × 10− 4 ÷ 8.2 × 10− 2, which is similar to the rate of the 
Nocera Inferiore landslide, due to important similarities between either 
morphometric hillslope features or soil mechanical parameters in the two 

areas under study (Cascini et al., 2013a).

The results shown in Fig. 11 provide a satisfactory simulation of the ob-
served behaviour of the landslide, especially in terms of the lateral bound-

ary of the debris avalanche and the splitting of its initial mass into two 
channels. The estimated landslide growth rate is 4.0 × 10− 3.. The simulated 
erosion rate (er) is 0.57 m/s and the simulated erosion time (ter) is 2.5 s. All 
of the results achieved for the Cortadonica debris avalanche show that the 

greater the friction angle or erosion growth rate, the higher the simulated 
eroded heights (her); similarly, if the consolidation coefficient (cv) increas-
es, the depth of erosion increases. Moreover, it is shown that bed entrain-
ment decreases if the water-table height increases (hw

rel). These results are 
consistent with those obtained for the previous benchmark cases and other 

case histories.

Figure 11. Modelling of the propagation height of a debris avalanche at differ-
ent time lapses for the case history of Cortadonica catchment (Italy) (Cascini et 

al., 2013a).

Modelling the Propagation Stage of Combined Flows
Different types of flows can occur in nearby locations and nearly at the same 
time, so that multiple soil volumes can join and propagate together. The 
numerical modelling is here conducted for a series of very small (1088 m3) 
to medium-sized (11,630 m3) landslides. They were recorded at Bracigliano 
site, approximately at 2 p.m. on May 5, 1998, along the hills to the northwest 
of town (Monte Faitaldo and Monte Foresta), where the largest landslide 
occurred (950 m a.s.l.). Different triggering mechanisms and types of source 

areas are identified by Cascini et al. (2008), including the following: M1, 
colluvial hollows with convergent sub-superficial groundwater circulation 
and temporary springs from bedrock; M2, triangular areas at open slopes 
associated with outcropping or buried bedrock scarps; M6, areas shaped like 
short and thick spoons situated at either the base of the convex–concave 
hillslopes or along the flanks of the inner gorges. Among these different 

source areas, Cascini et al. (2013a) identified two debris avalanches. The 
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time, so that multiple soil volumes can join and propagate together. The 
numerical modelling is here conducted for a series of very small (1088 m3) 
to medium-sized (11,630 m3) landslides. They were recorded at Bracigliano 
site, approximately at 2 p.m. on May 5, 1998, along the hills to the northwest 
of town (Monte Faitaldo and Monte Foresta), where the largest landslide 
occurred (950 m a.s.l.). Different triggering mechanisms and types of source 

areas are identified by Cascini et al. (2008), including the following: M1, 
colluvial hollows with convergent sub-superficial groundwater circulation 
and temporary springs from bedrock; M2, triangular areas at open slopes 
associated with outcropping or buried bedrock scarps; M6, areas shaped like 
short and thick spoons situated at either the base of the convex–concave 
hillslopes or along the flanks of the inner gorges. Among these different 

source areas, Cascini et al. (2013a) identified two debris avalanches. The 
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source areas are generally at elevations between 800 and 900 m, and slope 
failures involved, in some cases, the entire thickness of the pyroclastic cover. 
The numerous detachments induced debris flows that converged in one main 
gully, exiting in urban roads and causing loss of life and widespread damage 
to buildings. The flows reached high water content owing to the runoff along 
the channels and urban roads: this explains the unusually large shape of the 
deposition zone and the long run-out distance of the flow, which reached 
the near city of Siano. The rheological properties and bed entrainment rate 
(K) are calibrated to best fit the extent of the propagation area, from the 
uppermost slopes to the urbanized area located at the piedmont. Here, a 
dense network of paved roads and narrow streets is present, and an adequate 
modelling of landslide propagation would require a finer DTM and, for 
instance, very accurate specific information about the hydraulic works; 
this is certainly beyond the scope of this paper. Particularly, the attention is 
focused on the upper part of the right-hand side of Monte Foresta, where 2 
debris avalanches (M2) and 9 debris flows (M1) were triggered between 800 
and 900 m a.s.l.. In fact, the eyewitnesses and in situ evidence shows that 
from the left-hand side of the catchment, a flood arrived, which caused the 
enlargement of the landslide body within the urban zone.

The numerical analyses are based on a DTM of 939,330 squares, each 
3 × 3 m in size. The 11 unstable masses are schematized into 11 sets of SPH 
computational points for a total of 2905 points. The initial soil height in 
source areas is 2.5 m or 1.5 m, depending on the triggering mechanisms 
M1 and M2, respectively. The rheological parameters are the same as those 
chosen for the numerical simulations of the Cortadonica catchment, owing 
to the proximity of the two sites and to compare the results. Two opposite 
results are simulated (Fig. 12): a) the landslides do not reach the piedmont, if 
the water table height in the source areas (hw

rel) is assumed to be lower than 
0.4 or if the bed entrainment rate (K) is higher than 0.007; b) the landslide 
overcomes the left-hand side boundary of the propagation path if hw

rel is 
higher than 0.4 or K is lower than 0.007. This entails that hw

rel = 0.4 and 
K = 0.007 are found to be the best-fitting values for the propagation back-
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analysis of the event. In addition, tan(ϕb), pw
rel and cv are the same as the 

nearby Cortadonica catchment. This is also a consistency check of the 
parameters used for rheology and bed entrainment at the three sites.

Figure 12. a Case history of combined flows at Bracigliano site, (b) deposition 
depths and (c) eroded depths (Cuomo et al., 2016).

Particularly, the simulated propagation heights shown in Fig. 13 
reproduce quite well the landslide lateral boundaries and the path observed 
in the field, with all masses propagating in distinct channels and stopping 
at the uppermost boundary of the urban area. It is also important to note 
that the eroded thicknesses have high spatial variation (Fig. 12), with the 
maximum erosion depth simulated at the right-hand side of the boundary of 
the catchment, as observed in situ. As in the previous cases, the simulated 
entrainment increases when moving from the top to the toe of the massif, 
but then entrainment drastically decreases where steepness diminishes. In 
fact, a lower slope angle has a direct effect on reducing the bed entrainment 
and also an indirect effect because a lower slope angle favours the lateral 
spreading of flow - as shown in Cuomo et al., 2014) - and causes a general 
reduction in the propagation heights, which once again diminishes the bed 
entrainment. Finally, it is worth noting that the plots of her versus t–tflow (Fig. 
12) are inconsistent with the values (0.08 m/s < er < 1.29 m/s) indicated by 
Cuomo et al. (2014) for DAs; this is clearly because the simulated events are 
a combination of several DFs and two DAs.



The Use of Mathematical Structures: Modelling Real Phenomena262

Figure 13. Schemes of installation of erosion control zones (a-c) and respective 
results (d-f) in terms of elevation change (d-f) along the slope.

RESULTS AND DISCUSSION FOR ENGINEERED 
SLOPES

Analysis of the Effect of Erosion Control
One potential solution to reduce the volume of debris avalanches is represented 
by the construction of erosion control installation. The desired effect is to 
eliminate the bed entrainment at designed locations. Several analyses are 
carried on a schematic open slope, consisting of two planes with inclines to 
the horizon i1 and i2, respectively (Fig. 13). Different arrangements of non-
erodible zone are considered. Three relevant combinations are proposed for 
the numerical simulations, as those depicted in Fig. 13. In all the cases, inside 
a non-erodible zone, large as the distance from the uppermost baffle to the 
lowermost one, the prevention of entrainment is guaranteed. On the other 
hand, the overall benefit and the eventual side effects are here evaluated 
through the numerical modeling.

The source area is located at the uppermost edge of the upper slope. 
The numerical analysis are performed using a 1 m × 1 m Digital Terrain 
Model (DTM). The initial mass is schematized into a set of 544 SPH points, 
1 m spaced, with a uniform soil thickness of 1 m over the failure zone. A 
frictional rheological model is used with parameters taken from literature 
(tanϕb = 0.5, hw

rel = 0.4, pw
rel = 0.5, cv = 10− 2 m2 s− 1, K = 0.03). A sensitivity 

analysis is also conducted changing both the slope inclination (30–40°) and 
the initial volume (500, 5000, 10,000 or 15,000 m3).
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In order to quantify the reduction in the eroded soil thickness, a 

longitudinal section is represented (Fig. 13), where we can see the 
longitudinal profile of the slope before and after the flow propagated, 
with also the erosion heights represented. The entrainment rate (Δz/x) is 
almost the same upslope and downslope the erosion control areas. It means 
that the landslide dynamic is poorly modified. This is observed in all the 
combinations. The erosion control has major local effect while smaller 
general consequence on the landslide.

Based on that, one can say that the higher the extent of the non-erodible 
areas, the higher the benefit of this countermeasure, as the volume reduction 
relates exclusively to the extent of the treated area. Of course, the closer the 
intervention is to the toe of the slope, the less is the erosion, as the faster is 
the landslide when it reaches the control work. This last observation is valid 
for the examined cases of relatively “short” slopes, some 300–400 m long. 
The benefit in terms of volume reduction is negligible for small-medium 
sized landslides, and does not exceed the 18% for the biggest ones here 
considered.

Modelling	the	Benefits	of	Artificial	Baffles
Other types of control works are more focused to change the dynamics 
of flow propagation. The destructiveness of a debris avalanche can be 
mitigated, for instance, by obstacles along the flow path as they can slow or 
even stop the flow. This kind of obstacles can be natural, for example big 
trees or boulders, or artificial such as rigid or flexible barriers, or concrete 
columns known as baffles. Along the flow path two rows of rectangular 
obstacles have been positioned. Different combinations of these obstacles 
changing both disposition and position are considered. The presence of the 
obstacles is taken into account in the simulation by considering nil normal 
velocity along the obstacle boundaries. The same rheological properties of 
the previous section are here considered.

The first analysis is carried out to understand how these obstacles and 
their position can change the dynamics of the debris avalanche. Referring to 
the schematic slopes of Fig. 14, three different cases are analysed different 
for the distance of the obstacles from the source area (L). We will have, 
therefore, the first case with the obstacles in the upper zone of the slope 
(Fig. 14a), the second one with the obstacles in the middle of the slope (Fig. 
14c) and in the final case they are positioned near the break of the slope 
(Fig. 14d). Moreover for the first case, a reverse position of the obstacles is 
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also analysed, with two obstacles in the first row impacted and three in the 
second one (Fig. 14b).

Figure 14. Different configurations (a-d) of multiple artificial baffles along an 
open slope.

The installation of the baffles highly changes i) the eroded depths along 
the slope, ii) the runout and, iii) the final deposition thicknesses. Regarding 
the former issue, it is worth noting that the debris avalanche entrains material 
at a nearly constant rate (Δz/x) in the upper part of the slope. Then, a drastic 
reduction of entrainment occurs at the baffle location, as expected. More 
interestingly, the debris avalanche starts to entrain material again downslope 
the baffles. The material is entrained at a lower rate downslope (i.e. after the 
interaction with) the baffles. It means that the baffles completely modify 
the dynamics of landslide as desired. Of course, this drastic change would 
be positive in case the runout and deposition at the toe of the slope are 
both reduced. Such expectations are confirmed in Fig. 15. The runout is 
decreased and some of the soil volume is trapped behind the barrier for any 
baffle combination.
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Figure 15. Effects (a-d) of the artificial baffles on the eroded and deposition 
depths along an open slope.

The decrease of velocity due to the impact of the flow on the obstacles, 
the anti-erosion effect and the capacity of the obstacles to contain part of the 
flow, permit a reduction in the final mobilised volume. To evaluate this issue, 
the amplification factor Af is introduced as the rate of the final mobilised 
volume (Vf) to the initial volume (Vi).

The landslide cumulated volume is plotted versus and also the final 
amplification factor is reported (Fig. 16), so that it is possible evaluating 
how much the landslide increases in different cases, and compared with 
natural slope (without obstacles).

Figure 16. Landslide volume amplification for a natural slope and another 
equipped with baffles.
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Analysis	of	Artificial	Barriers	Installed	at	the	Piedmont	Areas
In combination or as an alternative to the previous mitigation works, a barrier 
installed at the toe of the slope can be considered. A schematic open slope 
is firstly analysed, which is composed of two differently inclined planes 
and a debris avalanche triggered at the uppermost portion of the slope. The 
computational scheme and the soil properties are taken from Cuomo et al. 
(2014), who extensively investigated the role of the several factors involved 
in the propagation stage of a debris avalanche.

The slopes are inclined at 30° or 40° with different lengths (horizontal 
projection) L1 (Fig. 17). The piedmont zone is flat or gently inclined (10° 
steep) with length L2. The length and the width of the source area are Ltrig 
and Btrig, respectively, and Htrig is the initial height of soil inside the source 
area. A selection of the several numerical simulations are with L1 = 230 m, 
L2 = 500 m, the width of the slope (B) equal to 800 m, and the slope height 
(Hslope) equal to 222 m or 130 m for αP = 10° or αP = 0°, respectively. The DTM 
cell size is equal to 1.1 m for both slopes, inclined with 40° and 30°. One or 
more barriers are added in the piedmont zone. Each barrier is 5 m high (H), 
with top width (b) equal to 3 m, the upslope raceway (a) 3 m wide, and both 
lateral scarps inclined at 60°. The Type I barrier has a trapezoidal shape; the 
Type II barrier is similar but with an additional step (H/2 high, and large as 
b) located upslope. In the simulations, the first barrier is in the piedmont 
zone, specifically 10 m (x = 240 m) or 25 m (x = 255 m) or 50 m (x = 280 m) 
downslope the divide between the slope and the piedmont.

Figure 17. Scheme of the artificial barriers considered at the toe of the slope: a) 
overview, b) cross sections (Cuomo et al., 2019c).
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Different sets of soil properties, such as the soil unit weight (γ), the 
friction angle (tanϕb = 0.30 or 0.52), the initial height of water table divided 
by the soil thickness (hw

rel = 0.40 or 0.75), the initial value of relative 
pore water pressure (pw

rel = 0.5 or 1.0), the dimensions of the source area 
(Ltrig = 25 m or 100 m; Btrig = 10 m or 50 m), and the initial height of the flow 
(htrig = 1.0 or 4.0 m) are taken from Cuomo et al. (2014), resembling the 
features of catastrophic events that occurred in Southern Italy, such as those 
of Cervinara in 1999 (Cascini et al., 2011a), and Nocera Inferiore in 2005 
(Cuomo et al., 2014).

The computational points are initially spaced 1.1 m and the time step is 
0.5 s. Two parameters are referred for the flow propagation analysis, namely 
the Index of Piedmont Runout Reduction (IPRR) and the Index of Lateral 
Spreading (ILS), which read as: IPRR = PReng/PRnat,ILS=Weng/Wnat, where PReng 
is the Piedmont Runout distance travelled by the flow inside the piedmont 
zone engineered with barriers, PRnat is the runout inside the piedmont zone 
for the natural slope, Weng is the maximum lateral width of the flow behind 
the barrier for the engineered slope, and Wnat is the analogous feature of the 
flow computed at the same point for the natural slope.

A value of IPRR < 1.0 is desirable, and the lower IPRR, the better the 
efficiency of the barrier. IPRR also depends on where the barriers are located. 
A barrier favours the flow material to spread laterally and it is expected 
that ILS > 1.0. For multiple barriers, ILS is computed with the highest Weng 
obtained for each barrier. The computed values of IPRR and ILS are reported in 
Fig. 18 for all cases. Four zones can be individuated in the plots: 1) IPRR < 1.0 
and ILS < 1.0, i.e. both the runout and the width decrease, meaning that the 
barrier is effective. This is an unlikely condition; 2) IPRR < 1.0 and ILS > 1.0, 
i.e. the runout diminishes while the width increases, meaning the barrier is 
still effective. This is a very likely condition; 3) IPRR > 1.0 and ILS > 1.0, i.e. 
both runout and the width increase and thus the barrier is ineffective in terms 
of reduction of runout; 4) IPRR > 1.0 and ILS < 1.0, i.e. there is a reduction of 
width and an increase of runout, so that the barrier is ineffective. However, 
this condition is unrealistic. For two barriers, we considered the maximum 
width of flow in the plane-view. The computed runout is always reduced with 
one or two barriers, irrespective of overtopping. In general, runout can be 
reduced to 70% (Case S3) with a maximum increase of lateral spreading of 
5% compared to the natural slope. Furthermore, the barrier type differently 
influences the area affected by the flow. In particular, IPRR decreases, passing 
from Type I to Type II for the same position of the barriers (Case S4 and 
Case S5, or Case R17 and Case R18). The barrier type does not influence 
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IPRR for barriers located very far from the landslide source area (Cases S6 
and S7, R24 and R25).

Figure 18. Effects of artificial barriers on Piedmont Runout Reduction (IPRR) 
and Lateral Spreading (ILS) (Cuomo et al., 2019c).

CONCLUSIONS
Numerical modelling is a powerful tool to understand and forecast heights 
and velocities, given that all these variables change very rapidly and 
are spatially distributed. This is even truer considering that unrevealed 
propagation patterns have been observed in real case histories and small-
scaled laboratory experiments. Notwithstanding the complexity of flow-
like landslides and the related challenges for modelling, the understanding 
and forecasting of such natural hazards is achievable with a satisfactory 
confidence. Among the key factors, rainfall, pore water pressure and 
bed entrainment deserves a special attention. Thus, the paper provided a 
number of examples regarding that. Further improvements are expectable 
as the numerical models are becoming more efficient. Thus, more accurate 
descriptions of local effects will be possible and also additional mechanisms 
will be possibly analysed.

On the other hand, control works and engineering countermeasures 
represent one option for risk mitigation and disasters reduction. In this sense, 
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intervention along the slopes or at the piedmont areas may be conceived 
depending on many other aspects such as, for instance, the feasibility of 
concrete structures, the costs, and the acceptance of resident populations. 
The paper compares three mitigation options in a relatively small set of 
simplified cases. More investigation could be useful to generalize the range 
of mitigation opportunities also for real case histories.

More in general, the recent increased understanding of those tremendous 
hazards, and the availability of accurate simulation instruments should also 
increase the awareness of specialists and populations about the fact that 
the mitigation of geoenvironmental disasters is not an optional topic to be 
considered, but a fundamental issue to be mandatorily tacked by the new 
generations.

Abbreviations
ALE:  Arbitrary Lagrangian Eulerian method
c’:  effective cohesion
c v :  consolidation coefficient
DA :  Debris Avalanche
DEM:  Discrete Element Method
DF :  Debris Flow
E r :  erosion coefficient
e r :  entrainment rate
FEM:  Finite Element Method
FEMLIP: Finite Element Method with Lagrangian Integration Point
h :  flow depth
h w rel :  height of water table normalized to soil thicknees
K :  bed entrainment parameter
k sat :  saturated conductivity
LEM:  Limit Equilibrium Methods
MPM:  Material Point Method
n :  porosity
p’:  effective isotropic stress
p b w :  basal pore water pressure
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p w rel :  ratio of pore water pressure to liquefaction pressure
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SPH:  Smoothed Particles Hydrodynamics
S r :  saturation degree
v :  flow velocity
γsat :  saturated unit weight
φ’:  friction angle
ϕb :  basal friction angle
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reaction–diffusion model equations in a spherical catalyst and a spherical 
biocatalyst. These methods convert each problem into a system of nonlinear 
algebraic equations, and on solving them by Newton’s method, we get the 
approximate analytical solution. We also provide the error bounds of our 
schemes. Furthermore, we also compare our results with the results in the 
literature. Numerical experiments show the accuracy and reliability of the 
proposed methods.

MSC: 65L05; 65T60
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INTRODUCTION
The solution of Emden–Fowler type equation is vital because of its numerous 
applications in engineering and technical problems. There are several 
phenomena like astrophysics, aerodynamics, stellar structure, chemistry, 
biochemistry, and many others (see [19, 38, 40, 41]) which can be modeled 
by the Lane–Emden equation of shape operator w given by [18]

  (1.1)
A number of research papers are inclined toward the numerical solution 

of such type of differential equations. The numerical methods for the 
solution of Lane–Emden equation based on B-spline have been studied in 
[24, 30–32]. Homotopy analysis methods and iterative schemes for fast 
convergence and accuracy of solutions of singular and doubly singular 
BVPs have been developed in [21, 22, 26, 33]. Roul et al. have dealt with the 
solution of a class of two-point nonlinear singular boundary value problems 
with Neumann and Robin boundary conditions by deploying a high order 
compact finite difference method [25]. A least square recursive approach 
together with convergence analysis for solving Lane–Emden type initial 
value problems has been developed in [27], in which they simply reduce the 
solution of the original initial value problem to the solution of an integral 
equation. The B-spline method fails to provide a satisfactory approximation 
in the presence of singularity; on the other hand, the Adomian decomposition 
methods (ADM) fail to establish a convergent series solution to strongly 
nonlinear BVPs. To overcome these shortcomings, Roul came up with 
the combination of ADM and B-spline collocation methods for accurate 
solution, see [23]. Madduri and Roul developed a fast converging iterative 
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scheme for the solution of a system of Lane–Emden equations converting 
them into equivalent Fredholm integral equations and treating them with 
homotopy analysis method [14]. In this paper, we discuss and solve some 
mathematical models of the chemical and biochemical phenomena using 
wavelet methods.

Model of Electrohydrodynamic (EHD) Flow in a Circular  
Cylindrical Conduit
The effect of the electric and magnetic field on fluid has been studied by many 
researchers. Phenomena involving the conversion of electrical and magnetic 
energy into kinetic energy are known as electrohydrodynamics (EHD) and 
magnetohydrodynamics (MHD). The effect of the electric field on fluids 
gives extra means of controlling flow conditions and has various technical 
applications such as EHD thruster, EHD flow, heat transfer enhancement, 
EHD drying and evaporation, and functional electrostatic bowler (EHD 
pump). EHD pump has been designed for semiconductor cooling [5], 
electrospray mass spectrometry, and electrospray nanotechnology [45]. 
The MHD flow has a wide range of applications in the fields of chemistry 
and biology, for instance, the fabrication in cancer tumor therapy resulting 
hypothermia, decreasing bleeding in the state of acute injuries, magnetic 
resonance visualizing, and various other diagnostic experiments [3]. 
Magneto-hybrid nanofluids flow via mixed convection past a radiative 
circular cylinder was studied in [4]. The EHD flow of a fluid is modeled by 
a set of partial differential equations, which can be reduced to an ordinary 
differential equation as in [16], and results in the following Emden–Fowler 
type of equation:

     (1.2)
subject to the boundary conditions

      (1.3)

where .

Here, the pressure gradient  is a constant that measures the nonlinearity 

and  is the Hartmann number [16]. A schematic diagram of 
EHD flow is given in Fig. 1.
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Figure 1. Schematic diagram of EHD flow in a circular cylindrical conduit.

Equation (1.2) is a strong nonlinear differential equation having 
a singularity at z = 0. Finding the exact solution to this problem is quite 
complicated, and therefore the development and use of numerical techniques 
for the solution of this problem play an important role. Only few numerical 
methods are available for the solution of (1.2). For instance, Mastroberardino 
developed homotopy analysis method [15], Ghasemi et al. used least square 
method [6], Mosayebidorcheh applied Taylor series [17], and Roul et al. 
gave a new iterative algorithm [28] for the solution of strongly nonlinear 
singular boundary value problems.

Nonlinear Heat Conduction Model in Human Head
Biomechanics is the area of science in which mechanics laws and formulae 
are used to study the behavior of the human body. The heat flow in the human 
body is quivering and vital field that helps to analyze the human heat stress at 
various temperatures. The human head is the only organ in the human body 
that controls different parts and functions in the body. The authors in [37] 
and [13] studied the effect of digital mobile phone emission on the human 
brain and concluded that the cellular phone waves can cause several brain 
problems, like exciting the brain cell, weakening the neural behavior, and 
possible disruption in the functionality of the nervous system. Ketley [11] 
points out the neuropsychological squeal of digital mobile phone exposure 
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in humans. Similarly, the thermal effect of wave and radiation from digital 
phones on the human nervous system and brain is studied in [7, 12, 39, 44].

The following Emden-type equation is used to model the distribution of 
heat source in the human head [2]:

   (1.4)
subject to the boundary conditions

    (1.5)
where p(u) is the heat production rate per unit volume, u is the absolute 
temperature, z is the radial distance from the center. Figure 2 shows the 
schematic diagram of human heat conduction model.

Figure 2. Schematic diagram of human heat conduction model.

Many researchers have shown their interest in solving this model 
numerically. For example, Wessapan et al. [43] derived a numerical algorithm 
of specific absorption rate and heat transfer in the human body to leakage 
electromagnetic field. Keangin et al. [9] gave an analysis of heat transfer 
in liver tissue during microwave ablation using single and two double slot 
antennae. Wessapan and Rattanadecho [42] used a three-dimensional human 
head model for simulating the heat distribution by applying 3-D finite 
element mesh (see Fig. 3).
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Figure 3. Human head exposed to mobile phone radiation [42].

Mathematical Model of Spherical Catalyst Equation
The following Lane–Emden equation is used to model the dimensionless 
concentration of chemical species which occur in a spherical catalyst [19]:

     (1.6)
subject to the boundary conditions

      (1.7)
where ρ2, σ, and β denote the Thiele modulus, dimensionless activation 
energy, and dimensionless heat of reaction, respectively, and are given by

The effectiveness factor of spherical pellet is defined as [34]
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Mathematical Model of Spherical Biocatalyst Equation
The following Lane–Emden equation is used for modeling the spherical 
biocatalyst equation [34]:

     (1.8)
subject to the boundary conditions

       (1.9)
where ρ2, σ, and β denote the Thiele modulus, dimensionless activation 
energy, and dimensionless heat of reaction, respectively, and are given by

The effectiveness factor of spherical pellet is defined as [34]

The schematic diagram of spherical biocatalyst is shown in Fig. 4.

Figure 4. Schematic diagram of spherical biocatalyst.
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Several numerical techniques have been adopted for solving non-
isothermal reaction–diffusion model equations. For instance, Singh [34] 
applied optimal homotopy analysis method, and Jamal and Khuri [8] used 
Green’s function and fixed point iteration approach for solving such type of 
equations. Rach et al. [19] reduced this model equation into an equivalent 
Volterra integral equation and then solved it by coupling the modified 
Adomian decomposition method and the Volterra integral technique.

Jacobi wavelet is the family of wavelets reduced into Legendre wavelet, 
Chebyshev wavelet, and Gegenbauer wavelet for the specific value of κ and 
ω. There are a lot of research papers available for the solution of ordinary 
and partial differential equations using Jacobi and Bernoulli wavelets, for 
instance, see [1, 10, 20, 46]. In this study, we introduce two methods based 
on Jacobi and Bernoulli wavelets for solving models of electrohydrodynamic 
flow in a circular cylindrical conduit, nonlinear heat conduction model in the 
human head, spherical catalyst equation, and spherical biocatalyst equation. 
These wavelets transform these model equations into a system of nonlinear 
algebraic equations, and on solving them, we get the unknown wavelet 
coefficients. With the help of these coefficients, we get the approximate 
analytical solution that is valid over all the problem domain, not only at grid 
points. The outline of this paper is as follows: The second section describes the 
Jacobi wavelet, function approximation by Jacobi wavelet, and integration of 
Jacobi wavelet. Similarly, the third section describes the Bernoulli wavelet, 
function approximation by Bernoulli wavelet, and integration of Bernoulli 
wavelet. In the fourth section, the wavelet approximation method for all 
the above models is given. In the fifth section, we state some theoretical 
proof for error bounds of our methods. In the sixth section, the numerical 
experiments confirm that our methods converge fast.

JACOBI WAVELET

Jacobi Polynomials
Jacobi polynomials, which are often called hypergeometric polynomials, are 
denoted by  and can be defined by the following explicit formula:
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Some first few Jacobi polynomials are given by

These polynomials are orthogonal on [−1, 1] with respect to the weight 
(1 − z)κ(1 − z)ω and satisfy the following properties:

where δnm is Kronecker delta.

Jacobi Wavelet of Shifted Jacobi Polynomial
Jacobi wavelet of the shifted Jacobi polynomial defined on six arguments k, 
n, κ, ω, m, z is denoted by  and can be defined 
on [0, 1) as follows [1]:
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  (2.1)

where  and 
Equivalently, for any positive integer k, Jacobi wavelet can also be 

defined as follows:

  (2.2)
where i is wavelet number determined by i = n + 2k−1m, where n = 0, 1, 2, 
… and m = 0, 1, 2, …, M − 1, where m is degree of polynomial. M can be 

determined by  where k = 1, 2, ….

Function Approximation by Jacobi Wavelet

Let  be a set of 
Jacobi wavelets.

Any function f(z) ∈	L2 [0, 1) can be expressed in terms of Jacobi wavelet 
as follows [1]:

For approximation, we truncate this series for a natural number N, and 
we get

   (2.3)

   (2.4)
where a and  are matrices of order N × 1 given by
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  (2.5)

  (2.6)
where the coefficient a

i
 can be determined by 

Integration of Jacobi Wavelet

Let  and  be the first, second, and third integration of 
Jacobi wavelet from 0 to z respectively. These integrations can be determined 
as follows:

 (2.7)

 (2.8)

where .

BERNOULLI WAVELET

Bernoulli Polynomials
Bernoulli polynomials are denoted by , where m is the degree of 
polynomials and can be defined by the following explicit formula:
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where  are the Bernoulli numbers. Another explicit 
formula for these polynomials is given by

The first few Bernoulli polynomials are given by

Bernoulli polynomial satisfies the following properties:

Bernoulli polynomials can be calculated by the following recursive 
formula: .

Bernoulli Wavelet
Bernoulli wavelet defined on four arguments k, n, m, z is denoted by 

 and can be defined on [0,1) as follows [10]:

   (3.1)

where  and  and
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     (3.2)

where  is the Bernoulli number.
On the interval [0,1), for any positive integer k, Bernoulli wavelet can 

also be defined as follows:

   (3.3)
Here, i is wavelet number and can calculated by the relation i = n + 2k−1m, 

where n = 0, 1, 2, … and m = 0, 1, 2, …, M − 1, m is degree of polynomials. 
For k = 1, 2, … , M can be found by N = 2k−1M.

Function Approximation by Bernoulli Wavelet

Let  be a set 
of Bernoulli wavelets.

Any function f(z) ∈	L2 [0,1) can be expressed in terms of Bernoulli 
wavelet as follows [46]:

For approximation, we truncate this series for a natural number N, and 
we get

    (3.4)

       (3.5)
where b and  are matrices of order N × 1 given by

 (3.6)
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  (3.7)

The coefficient b
i
 is calculated by 

Integration of Bernoulli Wavelet
Let  and  be the first and second integration of Bernoulli 
wavelet from 0 to z, respectively. These integration can be determined as 
follows:

  (3.8)

 (3.9)

where  and .

METHODS FOR SOLUTION
In this section, we discuss the methods for the solution of the models 
described above. The following notations have been introduced:

    (4.1)

   (4.2)

   (4.3)

   (4.4)
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Method for Solution of Model of Electrohydrodynamic Flow in 
a Circular Cylindrical Conduit
We can express the second derivative of (1.2) in terms of wavelet series as 
follows:

      (4.5)
Integrating (4.5) twice from 0 to z, we get

     (4.6)

   (4.7)
Using boundary conditions (1.3) in (4.6)–(4.7), we get

      (4.8)

     (4.9)
Putting z = 1 in (4.9) and after simplifying, we get

      (4.10)
Therefore equation (4.9) becomes

     (4.11)
Putting the values of u(z), u′(z), and u′′(z) from equations (4.5), (4.8), 

(4.11) in equation (1.2) and collocating at , where l = 1, 2, 
…, N, yields the following system of nonlinear equations:
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  (4.12)
On solving this system of nonlinear equations by Newton’s method, we 

get the unknown wavelet coefficients c
i
’s. After putting these c

i
’s in equation 

(4.11), we get the approximate solution.

Method for Solution of Nonlinear Heat Conduction Model in 
the Human Head
We can approximate the second derivative of equation (1.4) in terms of 
wavelet series as follows:

      (4.13)
Integrating (4.13) twice from 0 to z, we get

     (4.14)

    (4.15)
Using boundary conditions (1.5) in (4.14)–(4.15), we get

      (4.16)

     (4.17)
Putting z = 1 in (4.16)–(4.17) and multiplying (4.16) by ν and (4.17) by 

μ and after solving these equations for u(0), we get

   (4.18)
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Therefore equation (4.17) becomes

    (4.19)
Putting the values of u′′(z), u′(z), and u(z) from equations (4.13), (4.16), 

(4.19) in equation (1.4) and collocating at , where l = 1, 2, …, 
N, yields the following system of nonlinear equations:

  (4.20)
After solving this system of nonlinear equations by Newton’s method, 

we get the unknown wavelet coefficients. On putting these coefficients in 
equation (4.19), we get the approximate wavelet solutions of nonlinear heat 
conduction model in the human head.

Method for Solution of Spherical Catalyst Equation
We can approximate the second derivative of equation (1.6) in terms of 
wavelet series as follows:

       (4.21)
Integrating (4.21) twice from 0 to z, we get

     (4.22)

    (4.23)
Using boundary conditions (1.7) in (4.22)–(4.23), we get

      (4.24)



The Use of Mathematical Structures: Modelling Real Phenomena300

      (4.25)
Putting z = 1 in (4.25) and after simplification, we get

      (4.26)
Therefore equation (4.25) becomes

     (4.27)
Putting the values of u′′(z), u′(z), and u(z) from equations (4.21,4.24,4.27) 

in equation (1.6) and collocating at , where l = 1, 2, …, N, 
yields the following system of nonlinear equations:

 (4.28)
After solving this system of nonlinear equations by Newton’s method, 

we get the unknown wavelet coefficients c
i
’s. On putting these c

i
’s in 

equation (4.27), we get the approximate wavelet solutions of spherical 
catalyst equation.

Method for Solution of Spherical Biocatalyst Equation
The same procedure has been implemented as in case of spherical catalyst 
equation. Substituting the values of u′′(z), u′(z), and u(z) from equations 

(4.21), (4.24), (4.27) in equation (1.8) and collocating at , 
where l = 1, 2, …, N, yields the following system of nonlinear equations:
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  (4.29)
Solving this system of nonlinear equations, we get the unknown wavelet 

coefficients c
i
’s. After putting the values of c

i
’s in equation (4.27), we get the 

approximate wavelet solutions of spherical biocatalyst equation.

ERROR BOUNDS

Lemma 5.1
Let u(z) ∈	 CM [0, 1] with |uM(z)| ≤ λ, ∀

z
 ∈	 (0, 1); α > 0 and u(z) ≃ 

 where ϕ
n,m

(z) is Jacobi or Bernoulli 

wavelet. Then 

Lemma 5.2

Let u(z) ∈	CM[0, 1] and . Let 

ε
m
(z) be the error of approximation. Then 

Proof

 and 

Using Lemma 5.1, we get

where .
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For very large  where 
.

Theorem 5.3
Let u(z)u(z)be the exact solution of (1.2), (1.4), (1.6), and (1.8) and u

N
(z) be 

the approximate solution, and let ε
m
(z) be the error of approximation. Then 

|ε
m
(z)| = O(2−mM)|.

Proof
Here, we calculate the error bounds for solution of (1.2). The same procedure 
can be applied for equations (1.4), (1.6), and (1.8).

The error is given by

  (5.1)

where  is the second integration of ϕ
n,m

(z) from 0 to z and  
denotes the second integration of ϕ

n,m
(z) from 0 to 1. Therefore,

   (5.2)
Using Lemma 5.1, we get

  (5.3)

  (5.4)

  (5.5)
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where . Hence 
.

It is clear that each of the Jacobi and Bernoulli wavelet methods has an 
exponential rate of convergence/spectral accuracy.

NUMERICAL SIMULATION
In this section, we solve the examples of electrohydrodynamic model flow 
in a circular cylindrical conduit, nonlinear heat conduction model in the 
human head, spherical catalyst equation, and spherical biocatalyst equation. 
For the sake of comparison, the resultant approximate analytical solution 
has been used to find the solution at any point in the interval [0, 1]. We 
have chosen the initial guess as a zero vector of length N. We have used 
optimality tolerance =10−06 and function tolerance =10−03 in stopping criteria 
for Newton’s method.

Numerical Treatment of EHM Equation
We applied Bernoulli wavelet series method (BWSM) and Jacobi wavelet 

series method (JWSM)  for the solution of (1.2). First 
we study the effect of nonlinearity (α) on the velocity profile at small value 
of the Hartmann number (H) and observe that as we increase H, the velocity 
profile becomes flatter near to the center, see Fig. 5. For small value of H, 
the velocity profile almost remains parabolic with change in α, see Fig. 6. 
We also study the influence of different H with fixed α and see that a strong 
boundary layer is build up in velocity for a large value of H, see Figs. 7 and 
8. We see that BWSM result for fixed values H2 = 2, 100 with different value 
of α = 0.1, 0.5, 1 and for fixed values of α = 0.1, 1 with different value of H2 
= 0.5, 2, 16, 36, 49, 64 agrees with the result of SSNM (sixth-order spline 
numerical method), see Figs. 10, 12, 3, and 4 of [29]. The numerical solution 
by BWSM and JWSM for different values of H2 is given in Tables 1 and 2, 
respectively. The absolute residual errors and CPU time for different values 
of J are shown in Table 3.
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Figure 5. Graph of BWSM solution of EHD equation for J = 3, M = 8 and k = 
1, H2 =100.

Figure 6. Graph of JWSM solution of EHD equation for J = 3, M = 8 and k = 
1, H2 = 2.

Figure 7. Graph of BWSM solution of EHD equation for J = 3, M = 8 and k = 
1, α = 0.1.
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Figure 8. Graph of JWSM solution of EHD equation for J = 3, M = 8 and k = 
1, α = 1.

Table 1. BWSM solution of EHM equation for α = 0.1 with J = 3, M = 8, k = 1

z H2 = 0.5 H2 = 2 H2 = 16 H2 = 36 H2 = 49
0 0.1141 0.3583 0.8498 0.9010 0.9062
0.0625 0.1137 0.3571 0.8487 0.9006 0.9060
0.1875 0.1102 0.3472 0.8394 0.8976 0.9044
0.3125 0.1033 0.3272 0.8186 0.8898 0.9001
0.4375 0.0928 0.2966 0.7816 0.8730 0.8898
0.5625 0.0788 0.2546 0.7196 0.8377 0.8652
0.6875 0.0611 0.2002 0.6182 0.7636 0.8060
0.8125 0.0396 0.1320 0.4537 0.6075 0.6635
0.9375 0.0142 0.0483 0.1881 0.2795 0.3207
1 0 0 0 0 0

Table 2. JWSM solution of EHD equation for α = 1 with J = 3, M = 8, k = 1

z H2 = 0.5 H2 = 2 H2 = 16 H2 = 36 H2 = 49
0 0.1132 0.3255 0.4984 0.5003 0.5004
0.0625 0.1128 0.3244 0.4982 0.5000 0.5000
0.1875 0.1094 0.3163 0.4973 0.4999 0.4999
0.3125 0.1025 0.2995 0.4946 0.4997 0.4999
0.4375 0.0922 0.2733 0.4879 0.4988 0.4996
0.5625 0.0783 0.2366 0.4718 0.4951 0.4980
0.6875 0.0607 0.1877 0.4331 0.4805 0.4896
0.8125 0.0394 0.1248 0.3440 0.4230 0.4463
0.9375 0.0141 0.0460 0.1540 0.2204 0.2495
1 0 0 0 0 0
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Table 3. Maximum absolute residual errors of EHD equation for α = 1 and H2 
= 0.5

J JWSM CPU time BWSM CPU time
3 5.5511e − 15 0.38 seconds 4.2466e − 14 0.9 seconds
4 5.1070e − 15 0.49 seconds 9.9920e − 16 2 seconds

Numerical Treatment of Nonlinear Heat Conduction Model in 
the Human Head
Consider equation (1.4) along with boundary conditions (1.5) and p(u) = 
e−u, γ = 1, ν = 1, μ = 2, and u

k
 = 0 and get the following Emden–Fowler type 

equation:

     (6.1)
and the boundary conditions become

    (6.2)
We used Bernoulli and Jacobi wavelets for solving this problem. The 

calculation has been done by taking  and  in Jacobi 
wavelet. A comparison of our results with the results of Haar solution [35] 
and ADM [36] is given in Table 4. We show the absolute residual errors and 
CPU time for different J in Table 5. Figures 9 and 10 show the BWSM and 
JWSM solution at J = 3 for different values of γ, respectively.

Figure 9. Graph of BWSM solution of nonlinear heat conduction model in hu-
man head equation for different γ with J = 3, M = 8, and k = 1.
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Figure 10. Graph of JWSM solution of nonlinear heat conduction model in hu-
man head equation for different γ with J = 3, M = 8, and k = 1.

Table 4. Numerical solution of nonlinear heat conduction model in the human 
head for γ = 1 with J = 3, M = 8, k = 1

z BWSM JWSM Haar [35] ADM [36]
0 0.2700 0.2700 – –

0.1 0.2688 0.2688 0.26866 0.26862
0.2 0.2649 0.2649 0.26484 0.26480
0.3 0.2585 0.2585 0.25845 0.25841
0.4 0.2495 0.2495 0.24945 0.24943
0.5 0.2379 0.2379 0.23782 0.23781
0.6 0.2236 0.2236 0.22349 0.22349
0.7 0.2065 0.2065 0.20640 0.20641
0.8 0.1866 0.1866 0.18646 0.18648
0.9 0.1637 0.1637 0.16356 0.16359

Table 5. Maximum absolute residual errors of nonlinear heat conduction model 
for γ = 1

J JWSM CPU time BWSM CPU time
3 1.6263e − 12 0.4 seconds 2.1283e − 13 1.4 seconds
4 8.7896e − 13 0.5 seconds 8.6597e − 15 2 seconds
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Numerical Treatment of Spherical Catalyst Equation
Consider equation (1.6) with (1.7) by taking β = 1, ρ = 1. We have performed 

BWSM and JWSM  for the solution of (1.6). The influence 
of different values of activation energy is shown in Figs. 11 and 12. The 
numerical solution of (1.6) for σ = 0.5, 1, 1.5 is given in Table 6. We compare 
our results with the results of OHAM [29] in Table 7.

Figure 11. Graph of BWSM solution of spherical catalyst equation for J = 3, M 
= 8 and k = 1, σ = 0.5, 1, 1.5.

Figure 12. Graph of JWSM solution of spherical catalyst equation for J = 3, M 
= 8 and k = 1, σ = 0.5, 1, 1.5.
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Table 6. Numerical solution of spherical catalyst equation for β = 1, ρ = 1 with 
J = 3, M = 8, k = 1

z BWSM 
(σ = 0.5)

BWSM 
(σ = 1)

JWSM 
(σ = 1.5)

OHAM [34] 
(σ = 0.5)

OHAM [34] 
(σ = 1.5)

0 0.8443 0.8368 0.8282 − −
0.1 0.8458 0.8384 0.8299 0.8457 0.8299
0.2 0.8503 0.8432 0.8351 0.8502 0.8351
0.3 0.8579 0.8512 0.8437 0.8578 0.8437
0.4 0.8685 0.8625 0.8558 0.8684 0.8557
0.5 0.8822 0.8771 0.8713 0.8822 0.8712
0.6 0.8991 0.8950 0.8902 0.8991 0.8902
0.7 0.9193 0.9162 0.9126 0.9193 0.9126
0.8 0.9428 0.9407 0.9384 0.9427 0.9383
0.9 0.9696 0.9687 0.9675 0.9696 0.9675

Table 7. Maximum absolute residual errors of spherical catalyst equation for β 
= ρ = 1 with J = 2

σ OHAM [34] JWSM CPU 
time BWSM CPU 

time

0.5 5.66e − 05 1.1768e − 14 0.4 sec-
onds 2.5158e − 13 0.5 sec-

onds

1 4.75e − 05 1.0628e − 12 0.5 sec-
onds 2.9277e − 12 0.5 sec-

onds

1.5 4.28e − 04 1.6083e − 11 0.4 sec-
onds 7.4860e − 12 0.5 sec-

onds

Numerical Treatment of Spherical Biocatalyst Equation
Consider equation (1.8) with (1.9) by fixing β = 2. We have performed 

BWSM and JWSM  for the solution of (1.8). The 
influence of different values of Thiele modulus is shown in Figs. 13 and 
14. The numerical solution of (1.6) for ρ = 1, 1.5, 2 is given in Table 8. We 
compare our results with the results of OHAM [34] in Table 9.
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Figure 13. Graph of BWSM solution of spherical biocatalyst equation for J = 3, 
M = 8 and k = 1, β = 2.

Figure 14. Graph of JWSM solution of spherical biocatalyst equation for J = 3, 
M = 8 and k = 1, β = 2.

Table 8. Numerical solution of spherical biocatalyst equation for β = 2 with J 
= 3, M = 8, k = 1

z BWSM 
(ρ = 1)

BWSM 
(ρ = 1.5)

JWSM 
(ρ = 2)

OHAM 
[34] (ρ = 1)

OHAM [34] 
(ρ = 1.5)

0 0.8401 0.6615 0.4559 − −
0.1 0.8417 0.6647 0.4607 0.8417 0.6646
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0.2 0.8464 0.6743 0.4751 0.8464 0.6743
0.3 0.8543 0.6905 0.4994 0.8542 0.6904
0.4 0.8653 0.7132 0.5342 0.8653 0.7132
0.5 0.8795 0.7428 0.5798 0.8795 0.7427
0.6 0.8970 0.7793 0.6372 0.8969 0.7793
0.7 0.9177 0.8230 0.7070 0.9177 0.8230
0.8 0.9418 0.8742 0.7902 0.9417 0.8741
0.9 0.9692 0.9331 0.8875 0.9691 0.9330

Table 9. Maximum absolute residual errors of spherical biocatalyst equation for 
β = 2 with J = 2.

ρ OHAM 
[34] JWSM CPU 

time BWSM CPU time

1 1.21e − 06 8.8425e − 08 0.4 sec-
onds 5.6621e − 15 0.5 seconds

2 1.98e − 06 7.8504e − 08 0.6 sec-
onds 6.2004e − 10 0.6 seconds

3 6.02e − 04 2.2560e − 13 0.5 sec-
onds 1.9376e − 12 0.5 seconds

CONCLUSION
In this paper, we have studied EHD flow in a charged circular cylinder 
conduit, nonlinear heat conduction model in the human head, non-isothermal 
reaction–diffusion model equations in a spherical catalyst, and non-isothermal 
reaction–diffusion model equations in a spherical biocatalyst which are 
modeled by Lane–Emden type equations having strong nonlinearity. We 
have solved these models by two numerical methods based on Jacobi and 
Bernoulli wavelets. These wavelet methods solved Lane–Emden type 
equations by converting them into a system of nonlinear equations. In the 
study of EHD flow, we observed that the effects of Hartmann number and 
nonlinearity have an important impact. Further we also compare our results 
with the results of SSNM [29], Haar [35], ADM [36], and OHAM [34]. The 
graphs show the efficiency of our methods. Moreover, the present semi-
analytical numerical methods have lower computational cost than ADM, 
Haar, and OHAM, since in our methods there is no need for symbolic 
successive integration which is computationally higher than numerical 
methods.
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ABSTRACT
In this paper, our aim is mathematical analysis and numerical simulation 
of a prey-predator model to describe the effect of predation between prey 
and predator with nonlinear functional response. First, we develop results 
concerning the boundedness, the existence and uniqueness of the solution. 
Furthermore, the Lyapunov principle and the Routh–Hurwitz criterion are 
applied to study respectively the local and global stability results. We also 
establish the Hopf-bifurcation to show the existence of a branch of nontrivial 
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periodic solutions. Finally, numerical simulations have been accomplished 
to validate our analytical findings.
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INTRODUCTION
The study of the dynamics relationship of the prey-predator system has long 
been and will continue to be one of the dominant subjects in both ecology 
and mathematical ecology due to its universal existence and importance. In 
recent decades, mathematics has had a huge impact as a tool for modeling 
and understanding biological phenomena. Mathematical modeling of the 
population dynamics of a prey-predator system is an important objective of 
mathematical models in biology, which has attracted the attention of many 
researchers [1–4]. Many authors, such as Holling 1959 [5], Getz 1984, and 
Arditi and Ginzburg 1989 [6, 7], studied the prey-predator system with 
various functional responses. These different types of functional responses 
present a key element for understanding the dynamics of these populations. 
The main questions concerning population dynamics concern the effects of 
interaction in the regulation of natural populations, the reduction of their 
size, the reduction of their natural fluctuations, or the destabilization of the 
equilibria in oscillations of the states of the population [8–13]. The predator-
prey relationship is important to maintain the balance between different 
animal species. Without predators, some prey species would force other 
species to disappear due to competition. Without prey, there would be no 
predators. The main feature of predation is therefore a direct impact of the 
predator on the prey population.

It is in this line of thought that we are interested here in the study of the 
dynamics of prey-predator populations with an alternative food resource for 
predators, meaning that the predator population can survive if there is no 
prey. Our objective is to understand what is the impact of predation on the 
dynamics of prey and predator species, in order to avoid any extinction of 
the two species.

Several authors have studied the prey-predator model with logistics 
growth in both species. Haque in [14] proposed a prey-predator model with 
logistic growth in both species and a linear functional response. The author 
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assumed that the predator has logistic growth rate since it has sufficient 
resources for alternative foods; and it is argued that alternative food sources 
may have an important role in promoting the persistence of predator-prey 
systems. Guin in [15] studied a prey-predator model with logistic growth in 
both species and using ratio-dependent functional for predators.

Motivated by the above works, we consider the following predator-prey 
model [14]:

  (1.1)
where

• N(t) and P(t) stand for the prey and predator density, respectively, 
at time t.

• r1, K1, b, e are positive constants that stand for prey intrinsic 
growth rate, the prey carrying capacity of the environment, 
predation rate per unit of time, and conversion rate, respectively.

• The term bNP models prey consumption due to predation.
• r2, K2 represent respectively the predator intrinsic growth rate and 

the predator carrying capacity of the environment.
Some similar models have appeared in the recent literature [14, 15]. 

We remark that the main new distinctive feature is the inclusion of Holling 
function response of type II. Thus, by incorporating Holling function 
response of type II, we describe the predation strategy. Indeed, many 
researchers suggested that Holling type II response is the characteristic of 
predators. It determines the stability and bifurcation dynamics of the model. 
Usually, the feeding rate of predator is saturated, so it is more realistic to 
consider prey dependence functional response. Our model differs from the 
one of [14], since in the latter the term of predation is linear. In fact, we 
consider Holling function response of type II defined by

where
• α0 and α1 represent respectively the search and capture time of 

the prey,
• B is the predation rate per unit of time.
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Indeed, physiological absorption capabilities of prey are limited, and 
even if a large number of prey is available, a predator will not be able 
to absorb prey numbers beyond this limit, it is more realistic to design a 
response function with a saturation effect with the density of prey. Thus, 
Holling function response of type II is more appropriate. In order to sustain 
the coexistence of ecosystem species, it is very important to control some 
key demographic parameters.

The paper is organized as follows. In Sect. 2, we present the general 
mathematical model of the prey-predator system. Section 3 provides the 
mathematical analysis of the model established in Section 2. We perform 
some numerical simulations to support our main results in Section 4. A final 
discussion concludes the paper.

MATHEMATICAL MODEL FORMULATION
In this section, we proceed to the construction of the prey-predator model 
by taking into account the fact that the predator has an alternative source of 
food. Our main goal is to modify system (1.1) in order to describe the effect 
of predation on the prey. Our task here is to analyze the impact of predation 
on a predator-prey community [16–19].

The following hypotheses hold for our models:
H1H1:: prey populations follow a logistic growth in the absence of 

the predator;
H2H2:: functional response of the predator is Holling type II;
H3H3:: the predator has an alternative source of food.
The system modeling the evolution over time of prey and predators is 

given by

     (2.1)
where

• ψ, ϕ, g0, and g1 are positive functions and ;
• ψ(N), g0(P) is a growth function of prey and predator population, 

respectively;
•	 ϕ(N) is the amount of prey consumed by a predator per time unit;
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• g1(N, P) represents the rate of conversion of the prey into the 
predator.

The model presented here is general, and it is necessary to make choices, 
particularly for the functions g0(P), g1(N, P), ϕ(N), and ψ(N). Then we make 
the following choices:

•  represents the dynamics of the prey 
population governed by the logistic equation when there is no 
predator;

•  represents the logistic growth of the predator 
population when there is no prey;

•  represents the functional response of the predator 
which is Holling type II;

•  represents the quantity of prey consumed by 
predators.

Consequently, we obtain the following nonlinear differential system 
defined by

   (2.2)
where

• r1, r2 > 0 are respectively the prey and predator growth rates;
• K1, K2 > 0 represent respectively the carrying capacity of the prey 

and the predator;
• δ1 and δ2 represent respectively predator search and satiety rates;

•  represents the conversion rate of prey biomass into 
predatory biomass, with 0 < e < 1;

•  represents the quantity of prey taken by predators per unit 
of time;

•  represents the amount of prey consumed by predators 
per unit of time;
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•  is a residual term and represents the quantity of prey 
taken by predators and which did not contribute to the growth of 
predators.

Thus, we obtain the following interaction diagram: Fig. 1.

Figure 1. Interaction diagram for the prey-predator model.

Using the above assumptions and according to Figure 1, at any time t 
> 0, the dynamics of the system can be represented by the following set of 
differential equations:

  (2.3)

MATHEMATICAL ANALYSIS
This section deals with mathematical analysis including the stability and the 
bifurcation analysis of system (2.3) [2, 8, 15, 20–22].

Then we rewrite model (2.3) in the following form:

where X(t) = (N(t), P(t))T and G is defined on R2 by

The preliminary results concern the existence, positiveness, and 
boundedness of solutions of system (2.3).
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Existence, Positiveness, and Boundedness of Solutions
From the biological point of view, it is important to show the existence, 
positivity, and boundedness of the solution of system (2.3) [9, 19, 23, 24].

Proposition 1
System (2.3) admits a unique global solution (N(t), P(t)) defined on the 
interval [0, Tmax[. Moreover, the set

is positively invariant and absorbing for system (2.3).

Proof
Indeed,

• the theorem of Cauchy–Lipschitz [11] assures the existence and 
uniqueness of local solution of system (2.3) on [0, Tmax[ given the 
regularity of the functions involved in the model.

• Now, let us show that the set 
 is positively invariant 

and absorbing for system (2.3).
Let us show that

are positively invariant and absorbing for system (2.3).
Let us prove that

      (3.1)
is positively invariant. Indeed, let f1 be the function defined on R2 by f1(N, 
P) = −N. We have

Thus, ⟨∇f1|G⟩ ≤ 0 on {(N, P) ∈ R2/N = 0}, where ⟨|⟩ is the usual scalar 
product.

Therefore, A1 is positively invariant.
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Proceeding in the same way, with f2(N, P) = −N, we show that

     (3.2)
is positively invariant.

Let us show that

     (3.3)
Indeed, let f3 be defined on R2 by f3(N, P) = N − K1. We have

Thus, ⟨∇f1|G⟩ ≤ 0 on {(N, P) ∈ R2/N = K1}. Therefore, A3 is positively 
invariant.

According to (3.1) and (3.3), A0 is positively invariant.
Now, we aim to show that the set A0 is absorbing. The variable N satisfies 

the inequality

and by the principle of comparison, we deduce that limt→+∞supN(t) ≤ K1. 
Hence, for ϵ > 0, there exists T > 0 such that N(t) ≤ supt≥TN(t) ≤ K1 + ϵ; as ϵ 
is arbitrary, we deduce that A0 is absorbing.

Now, we aim to show that P ≤ Kp. Indeed,

thus we have the following differential inequality:

    (3.4)
According to the comparison principle, we deduce that

    (3.5)
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According to (3.2) and (3.5), B is positively invariant and absorbing.
From the above result, the set defined by 

 is positively invariant and 
absorbing.

To show the global existence of solutions, we must show that the 
solutions of the system are bounded. In the previous demonstration we 
have established that N and P are bounded. Thus, we can conclude that the 
solutions of system (2.3) exist globally.

For the study of system (2.3), we restrain a set defined by

Stability Analysis of the Equilibria
In this section, we analyze the local and global stability of different 
equilibrium.

Trivial Equilibrium Points of the Model
The trivial stationary states of system (2.3) are given in the following 
proposition [8, 11–13].

Proposition 2
The equilibrium states are as follows:

• E0 = (0, 0), the predators and prey are extinct. This equilibrium is 
always admissible.

• E1 = (0, K2), the prey is extinct. This equilibrium is always 
admissible.

• E2 = (K1, 0), the predator is extinct. This equilibrium is always 
admissible.

Proof
Indeed, to get the equilibrium points, we solve the following system:

   (3.6)
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• We have G1(0, 0) = G2(0, 0) = 0. Thus, E0 = (0, 0) is the trivial 
equilibrium point.

• In the same way, G1(0, K2) = G2(0, K2) = 0. Then E1 = (0, K2) is an 
equilibrium point of system (2.3).

• We also have G1(K1, 0) = G2(K1, 0) = 0. Then E2 = (K1, 0) is an 
equilibrium point of system (2.3).

The local stability analysis of a trivial equilibrium point is given by the 
following proposition.

Proposition 3
• E0 and E2 are always unstable.

• E1 is locally asymptotically stable if , with extinction for 
the prey population and stability for the predator population. If 

 is unstable with stability for the predator. In addition, 

if  is a stable non-hyperbolic point.

Proof
Indeed, let us determine the eigenvalues of the Jacobian matrix associated 
with each equilibrium point Ei = 0, 1, 2. The Jacobian matrix of system (2.3) 
is

where X(t) = (N(t), P(t))T.

• For E0 = (0, 0), the associated Jacobian matrix is . 
The eigenvalues are r1 > 0 and r2 > 0. Then E0 is always unstable. 
In this case, we have instability of the prey and the predator.

• For E2 = (K1, 0), the Jacobian matrix of system (2.3) evaluated at 
E2 is
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The eigenvalues are λ1 = −r1 < 0 and . Then E2 is 
unstable with stability for the prey population and instability for the predator 
population.

• For E1 = (0, K2), the associated Jacobian matrix is

The associated characteristic polynomial is given by

Then the eigenvalues of DG(E1) are  and λ2 = −r2 < 

0. If  then λ1 < 0, therefore the system is locally asymptotically 
stable with extinction for the prey population and stability for the predator 

population. If  then λ1 > 0, therefore E1 is unstable, so we have 
stability for the predator population.

If  then the equilibrium E1 is a stable non-hyperbolic point. 
Indeed, to study the stability of E1, we will use the center manifold theorem 
[25].

The eigenvalues of DG(E1) are λ1 = 0 and λ2 = −r2, and the eigenspace 
associated with those eigenvalues is

According to the center manifold theorem [25], there exists a center 
manifold which is tangent to W0 at the point E1.

Denote x = N and y = P. The center manifold in this case is given by
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where  is analytical at the neighborhood 

of the origin. Denoting  and , we have

By plugging the function h by its expression in the previous equation 
and by grouping, we get:

 (∗)
Since r1 = δ1K2, then r1 − δ1K2 = 0, by using (∗), we deduce that

The equation reduced to the center manifold is

A study of the sign of f in the neighborhood of 0 gives the following 
result:

• If x < 0, then f(x) < 0;
• If x > 0, then f(x) < 0. So the equilibrium point E1 = (K, 0) is stable 

in A.

Coexistence Equilibria Point of the Model
To determine the coexistence equilibrium E3 = (N∗, P∗) of system (2.3), we 
solve the following system:
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   (3.7)
Assume that N∗, P∗ > 0. Dividing G1(N

∗, P∗) by N∗, we obtain

By plugging P∗ in G1(N
∗, P∗), we get the cubic equation in N∗ as follows:

   (3.8)
where

The following result gives the existence of a coexistence equilibrium 
point [8, 19, 22, 26, 27].

Theorem 1

Set  and .
1. System (2.3) has no feasible coexistence equilibria if either

(i) r1 < δ1K2 and Δ′ ≤ 0;

(ii)  and κ1 > 1;

(iii)  and κ0 > 1.
2. System (2.3) has a unique feasible coexistence equilibrium E3E3 if 

either
(i) r1 > δ1K2 and Δ′ ≤ 0;

(ii)  and κ1 < 1;

(iii)  and κ1 < 
1;



The Use of Mathematical Structures: Modelling Real Phenomena330

(iv)  and κ1 
> 1.

3. System (2.3) has two distinct feasible coexistence equilibria if either

(i)  and κ1 < 1, 
with ;

(ii)  and κ1 < 
1, with .

4. System (2.3) has three distinct feasible coexistence equilibria if

Proof
Indeed, consider the following cubic equation:

   (3.9)
We have

and

and

where
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with Δ′ defined from

     (3.10)
as

There are two cases:

• If  then Δ′ ≤ 0. Thus, L is increasing on 
]0, K1[.
– According to r1 < δ1K2, we have θ0 > 0 with L(0) × L(K1) > 

0. Hence, L(X) > 0 ∀N ∈ ]0, K1[. Thus, equation (3.9) has no 
real roots on ]0, K1 [ and there are no feasible coexistence 
equilibria for system (2.3).

– If r1 > δ1K2, we have θ0 < 0 with L(0) × L(K1) < 0. Thus, 
equation (3.9) has a unique positive root. Then system (2.3) 
has a unique feasible coexistence equilibrium.

• If  then Δ′ > 0. Therefore, equation (3.10) 
has two roots

where
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• If δ2K1 < 2 and  then we have respectively 
θ2 > 0 and θ1 < 0. Thus, we obtain also X1 < 0 < X2.

Using the fact that  we have

   (3.11)
So X2 < K1. Hence L is decreasing on ]0, X2 [ and increasing on [X2, K1 [.

– If r1 < δ1K2 and κ1 > 1, then we have respectively θ0 > 0 and 
L(X2) > 0, then L(X) = 0 has no root. Therefore, system (2.3) 
has no coexistence equilibria.

– If r1 > δ1K2 and κ1 < 1, then we get respectively θ0 < 0 and 
L(X2) ≤< 0. Thus, equation (3.9) has one positive root with 
β2 = L(X2) is a minimum. Therefore, system (2.3) has a 
unique coexistence equilibrium.

– If r1 < δ1K2 and κ1 < 1, then we have respectively θ0 > 0 
and L(X2) < 0 with L(K1) > 0 > L(X2). Thus, equation L(X) 
= 0 has two distinct real positive roots, one is  in ]0, 
X2 [, and the other  in ]X2, K1[. Each root corresponds 
to a distinct feasible coexistence equilibrium. Therefore, 
system (2.3) has two coexistence equilibria  and 

 with .

(a) If δ2K1 > 2 and  then we have respectively 
θ2 < 0 and θ1 < 0. Thus, we obtain X1 < 0 < X2 with X2 < K1. By a 
similar argument as previously, we obtain the same result.

(b) If δ2K1 > 2 and  then we get respectively 
θ2 < 0 and θ1 > 0. Thus, we obtain 0 < X1 < X2 < K1. Consequently, 
L is increasing on ]0, X1] and [X2, K1[ and decreasing on ]X1, X2[.
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– According to r1 < δ1K2, we have θ0 > 0. If κ0 > 1 and κ1 > 
1, then we have respectively L(X1) > 0 and L(X2) > 0. So 
equation (3.9) has no real positive roots, and there are no 
feasible coexistence equilibria.

– According to r1 < δ1K2, and if κ0 > 1 and κ1 < 1, then we 
have respectively L(X1) > 0 and L(X2) < 0. Thus, L(X) = 0 
has two distinct real positive roots, one is  in ]X1, X2[, 
and the other  in ]X2, K1[. Therefore, system (2.3) has 
two coexistence equilibria  and  with 

.
– According to r1 > δ1K2, and if κ0 < 1 and κ1 < 1, we have 

respectively L(X1) < 0 and L(X2) < 0. Consequently, L(X) = 
0 has one root.

– According to r1 > δ1K2, and if κ0 > 1 and κ1 < 1, we have 
respectively L(X1) > 0 and L(X2) < 0. Thus, L(X) = 0 has 
three roots. Therefore, system (2.3) has three coexistence 
equilibria.

– According to r1 > δ1K2, and if κ0 < 1 and κ1 > 1, we have 
respectively L(X1) < 0 and L(X2) > 0. Thus, L(X) = 0 has one 
root.

The local stability analysis of coexistence equilibrium is given by the 
following theorem [8, 11, 12].

Theorem 2
If condition (2) of Theorem 1is satisfied, and moreover the following 
condition holds:

      (3.12)
then the coexistence equilibrium E3 = (N∗, P∗) is locally asymptotically 
stable.

Proof
Indeed, the Jacobian matrix of system (2.3) evaluated at the point E3 is given 
by
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where

The characteristic polynomial is therefore  
with

where

and .
By a simple calculation, we get B1 = A11 + A22 and B2 = A11A22 − A12A21. 

According to (3.12), we get B1 < 0 and B2 > 0. By applying the Routh–
Hurwitz criterion, E3 is locally asymptotically stable.

The following theorem gives the global stability [8, 9, 13, 19, 22, 28, 
29].

Theorem 3
If condition (2) of Theorem 1is satisfied, then the coexistence equilibrium 
E3 = (N∗, P∗) is globally asymptotically stable in the following subset of :
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Proof
Indeed, we construct a Lyapunov candidate function defined by

with  and  
to be determined. It is easy to see that  and for all 

. So V is well defined.
The time derivative of V(N, P) along the solutions of system (2.3) is

After simplification, we can write

   (3.13)

Taking a1 = 1 and  finally we obtain

for all . The coefficients (N − N∗)2 and (P − P∗)2 are positive. 

By using the fact that  we have .
In addition  if and only if (N, P) = (N∗, P∗). By using LaSalle’s 

invariance principle, E3 = (N∗, P∗) is globally asymptotically stable on B.
The following proposition gives the necessary and sufficient conditions of 
stability in case there is more than one equilibrium point [13, 19, 22, 27, 30].
Let us define the quadratic function



The Use of Mathematical Structures: Modelling Real Phenomena336

  (3.14)
For 

   (3.15)

Theorem 4
• According to condition 3, (i) of Theorem 1, and if δ2K1 < 1 and 

 then the coexistence equilibrium  is locally 
asymptotically stable and  is unstable.

• According to condition 3, (ii) of Theorem 1, if  

and  then the coexistence equilibrium  is 
locally asymptotically stable and  is unstable.

Proof
Indeed,

(i) Consider the function π(N) defined by (3.14), we have

  (3.16)
Also, we have  if 

. According to δ2K1 < 1, we obtain 
. Consequently, there exists δ such that 

π(δ) = 0 with . Thus,  and 
.

By using  we obtain

     (3.17)
Thus, inequality (3.17) verifies the condition of stability given 
by (3.15). As result,  and . Consequently, 

 is locally asymptotically stable.
By using  we obtain
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   (3.18)
Thus, inequality (3.18) does not check the condition of stability giv-
en by (3.15). Consequently,  is unstable.

(ii) By using equation (3.16), there exists N0 ∈ ]0, K1[ such 

that π′( N0) = 0 with . Thus, π is increas-
ing on ]0, N0[ and decreasing on ]N0, K1[. By simple com-

putation, we get 

. By using δ2K1 > 2, we get . According to 

 we get respectively π(0) > 
0 and π(N0) > 0. Consequently, there exists δ0 such that π(δ0) = 0 
with . Thus,  and 
. Consequently,  is locally asymptotically stable and 

 is unstable.

Bifurcation analysis
In this subsection, we define the conditions of Hopf-bifurcations and 
the critical values of Hopf bifurcations. Here, δ1 is taken as a bifurcation 
parameter [10, 15, 31].

Theorem 5
If condition (2), (ii) of Theorem 1is satisfied and if the following conditions 
are satisfied:

   (3.19)

       (3.20)
then a Hopf-bifurcation occurs at the value δ1 = δ1c, where

   (3.21)
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Proof
Indeed, assuming that  we get the following 
characteristic equation corresponding to the Jacobian matrix DG(E3) 
evaluated at :

      (3.22)
where

If conditions (3.20) and (3.21) are respectively satisfied, we have 
respectively B1(δ1) = 0 and B2(δ1) > 0, then the eigenvalues will be purely 
complex at δ1 = δ1c with

Replacing x = x1 + ix2 into (3.22), we have 
2 2
1 2 1 1 1 2 1 1 2 1 1 2( ) ( ) ( ) (2 ( ) ) 0x x B x B i x x B xδ δ δ− − + + − = , and separating real 

and complex parts, we obtain

Now, we verify the transversality condition.
Considering Re(x) = 0 and differentiating (4.b) with respect δ1, we get

As result, system (2.3) admits a Hopf-bifurcation at δ1 = δ1c corresponding 
to E3.
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Remark 1

Since 1 1( ) 0cB δ =  and 
1 1 1 1

1 1
1 1

1 1

( ) 2( ) 0, ( ) 0,
c c

dB dx
B

d dδ δ δ δ δ
δ δ= == ≠ >

 if 
condition (3.12) is satisfied and according to the Routh–Hurwitz criterion, E3 
is locally asymptotically stable. In addition, for δ1 = δ1c, a Hopf-bifurcation 
occurs. For δ1 > δ1c, E3 approaches a periodic solution.

NUMERICAL EXPERIMENTS AND BIOLOGICAL  
EXPLANATIONS
In this section, we present a sequence of numerical simulations in order 
to support our mathematical results and to analyze the effect of predation 
on the dynamics of the two species. We use MATLAB technical computer 
software [8, 12, 32]. The values of the parameters are given in Tables 1 and 
2.

Table 1. Parameter values used for the numerical simulation

Parameters Values References

r1 0.1 estimated

r2 1.8 estimated

K1 10 estimated

K2 1800 estimated
δ1 0.01 estimated
δ2 0.01 [33]
ω 0.015 [33]

Table 2. Parameter values used for the numerical simulation

Parameters Values References

r1 1.8 estimated

r2 0.01 estimated

K1 200 estimated
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K2 30 estimated

δ1 0.01 [33]

δ2 0.029 estimated

α 0.0015 estimated

Global Behavior of System (2.3)
Here, we are interested in the predation effect on the dynamics of the two 
species in order to follow its impact over time. Figure 2 shows the behavior 
of system (2.3) around E1 and the parameter values used are given in Table 
1. We observe the stability of the predator population and the extinction of 
the prey population for the predation parameter δ1 = 0.01 > 5.510−5. This 
result supports (ii) of Proposition 3. This result confirms that the predator 
population can survive even if the prey dies out.

Figure 2. Evolution of system (2.3) around E1 = (0, 1800).

Now, we examine the behavior of system (2.3) around the coexistence 
equilibrium. We take N > 96, and the parameter values used are given 
in Table 2. We observe that system (2.3) converges globally towards the 
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coexisting equilibrium E3 = (70, 354.1) (see Figure 3(a)–(b)–(c)). The 
existence of center (Figure 3(d)) confirms the existence and the global 
asymptotic stability of the coexisting equilibrium. It means that the prey 
population exists despite the predation. Thus, we talk about the phenomenon 
of subsistence. That illustrates the result of our Theorem 3.

Figure 3. Global asymptotic stability of the coexisting equilibrium of system 
(2.3) around E3 = (70, 354.51).

If we increase the value of δ1 = 0.033 and keep the other parameters 
fixed in Table 2, from Figure 4, we observe that the equilibrium E3 loses its 
stability. This result confirms Theorem 2. In next subsection Figure 5 shows 
the Hopf-bifurcation of system (2.3) around E3 at δ1 = δ1c.
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Figure 4. Local asymptotic stability of the coexisting equilibrium of system 
(2.3) corresponding to δ1 = 0.033.

Figure 5. Dynamics of the trajectories showing the existence of limit cycle 
arising from the Hopf-bifurcation of system (2.3) around E3 = (N∗, P∗) with δ1 
= δ1c = 0.0636.
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We continue our numerical simulations when the system admits two 
coexistence equilibria in order to look the behavior of the system around 

 and . By increasing the value δ1 to δ1 = 0.023, we observe that system 
(2.3) converges globally towards the coexisting equilibrium  
(see Figure 6(a)–(b)–(c)). By increasing the parameter of predation δ1 to δ1 = 
0.044, we observe the loss of stability of the coexistence equilibrium  (see 
Figure 7). This is in accordance with the mathematical results established in 
Theorem 4.

Figure 6. Global asymptotic stability of the coexisting equilibrium of system 
(2.3) around .
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Figure 7. Local asymptotic stability of the coexisting equilibrium  of system 
(2.3) corresponding to δ1 = 0.044.

At the same time, we observe the instability of the coexistence 
equilibrium  showing the existence of a limit cycle illustrated by Figures 
8 and 9.

Figure 8. Limit cycle behavior of the solution of system ( 2.3) at the coexisting 
equilibrium  corresponding to δ1 = 0.065.
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Figure 9. Limit cycle behavior of the solution of system ( 2.3) at the coexisting 
equilibrium  corresponding to δ1 = 0.067.

Analysis of Hopf-Bifurcation Diagram
We continue our numerical analysis in this subsection to observe the 
dynamics behavior of the system by considering the predation parameter. 
Now, if we consider the critical value δ1c = 0.0636, Figure 5((c)–(d)) shows 
that the coexisting equilibrium E3 = (N∗, P∗) is unstable, and we have a limit 
cycle arising from the Hopf-bifurcation. Theorem 5 then holds.

Remark 2
The biological interpretation of the Hopf-bifurcation is that the prey coexists 
with the predator, exhibiting oscillatory equilibrium behavior [10, 11]. 
Indeed, we observe that if the predation threshold δ1 > δ1c, we have periodic 
fluctuation of the prey and predator species: Figures 5(c) and 5(d) show the 
existence of a limit cycle resulting from the Hopf-bifurcation. This highlights 
an extinction of the population of prey (at risk) if predation exceeds a certain 
threshold.

CONCLUSION
The effect of predation in the dynamics of the prey-predator model plays an 
essential role in the equilibrium of the ecosystem, because it allows natural 
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mechanisms of regulation of species. It is for this reason that in this paper 
we proposed and analyzed a nonlinear mathematical model to describe the 
dynamics of the populations of prey and predators, taking into account the 
effect of predation. The formulation of the model derived from an ODE 
system by considering Holling function response of type II to represent the 
interaction between the prey and the predator. The mathematical results 
allowed us first to establish the positivity of the solutions indicating the 
existence of the population, as well as the bornitude to explain the natural 
control of the growth due to the restriction of the resources. In addition, we 
established the conditions of existence of the coexistence equilibria. Under 
certain conditions of the predation rate, we were able to establish the local 
stability of the coexistence equilibrium. In order to show the long-term 
coexistence of prey and predator species, we established the global stability 
of the coexistence equilibrium via an appropriate Lyapunov function under 
certain conditions of the model parameters. Moreover, we have described 
the conditions of existence of the Hopf-bifurcation in order to analyze to 
what extent the trajectories will be influenced by changes in the predation 
rate.

Our numerical results gave interesting findings on the effect of predation 
on the dynamics of the prey-predator model and also allowed to validate our 
results established in the mathematical study. We have shown the dynamic 
behavior of our model under different values of the predation rate. Indeed, 
considering Fig. 2, under certain values of the predation rate, we note an 
extinction of the prey species and persistence of predators towards the 
carrying capacity. Staying in this same logic of variation of the predation 
rate and by considering the parameters fixed in Table 2, we obtain the global 
stability of coexistence equilibrium indicated by Figure 2(d); this also attests 
the results of Theorem 3. By increasing the value of δ1, we lost the stability 
indicated in Figure 4(d); this phenomenon confirms our mathematical 
results established in Theorem 2. If we exceed the critical threshold of 
predation δ1c found in Theorem 5, then we observe a periodic variation in 
the numbers of prey and predators indicated by Figures 5(a), (b), (c) and 
the existence of a limit cycle arising from the Hopf-bifurcation. In the light 
of these observations, we are led to conclude that the predation rate is a 
key parameter which governs our model and is useful for understanding the 
dynamics of species of prey and predators in the natural environment, and 
plays a regulator role of species.

Despite the important findings on this dynamic, in order to deepen 
our study, we plan to extend this work, taking into account the presence 
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of infectious diseases in both species in order to look at the impact of this 
disease on the dynamics of the two species.
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ABSTRACT
Collective behaviour is of fundamental importance in the life sciences, 
where it appears at levels of biological complexity from single cells to 
superorganisms, in demography and the social sciences, where it describes 
the behaviour of populations, and in the physical and engineering sciences, 
where it describes physical phenomena and can be used to design distributed 
systems. Reasoning about collective behaviour is inherently difficult, 
as the non-linear interactions between individuals give rise to complex 
emergent dynamics. Mathematical techniques have been developed to 
analyse systematically collective behaviour in such systems, yet these 
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frequently require extensive formal training and technical ability to apply. 
Even for those with the requisite training and ability, analysis using these 
techniques can be laborious, time-consuming and error-prone. Together 
these difficulties raise a barrier-to-entry for practitioners wishing to analyse 
models of collective behaviour. However, rigorous modelling of collective 
behaviour is required to make progress in understanding and applying it. 
Here we present an accessible tool which aims to automate the process of 
modelling and analysing collective behaviour, as far as possible. We focus 
our attention on the general class of systems described by reaction kinetics, 
involving interactions between components that change state as a result, 
as these are easily understood and extracted from data by natural, physical 
and social scientists, and correspond to algorithms for component-level 
controllers in engineering applications. By providing simple automated 
access to advanced mathematical techniques from statistical physics, 
nonlinear dynamical systems analysis, and computational simulation, we 
hope to advance standards in modelling collective behaviour. At the same 
time, by providing expert users with access to the results of automated 
analyses, sophisticated investigations that could take significant effort are 
substantially facilitated. Our tool can be accessed online without installing 
software, uses a simple programmatic interface, and provides interactive 
graphical plots for users to develop understanding of their models.

INTRODUCTION
Collective behaviour models, in which individuals interact and in doing 
so change state, describe a large variety of physical, biological, and social 
phenomena. One particularly general formulation is that of reaction 
kinetics, developed to describe the time evolution of chemical reactions, 
but also able to describe networks in molecular biology (e.g. [1]), collective 
behavioural phenomena such as decision-making in animal groups (e.g. 
[2]), demographic and ecological models such as predator-prey dynamics 
(e.g. [3]), epidemiological models (e.g. [3]), and social behaviour in human 
groups, such as opinion dynamics and economics (e.g. [4]). The generality 
of the reaction kinetics formalism is demonstrated by the fact that many of 
the aforementioned processes, although apparently quite different, are in 
fact described by the same dynamical equations; for example, the famous 
Lotka-Volterra equations were simultaneously developed in the description 
of a chemical reaction, and predator-prey dynamics [5, 6].
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Modelling collective behaviour is essential to develop understanding, 
yet mathematical and computational modelling are skills than can be found 
in some disciplines much more than others. To understand commonalities 
and analogies across disciplines it would be beneficial to ensure a consistent 
standard of modelling is reached across all. However, it is unreasonable to 
expect all disciplines to ensure the same standard of mathematical training 
in their practitioners. Reaction kinetics have the advantage that they describe 
observations of a system in a very natural way, indeed the very way that 
experimental scientists tend to record those interactions. Reaction kinetics 
can also be transformed into mathematical equations according to a variety 
of procedures. The level of description attainable may vary, however. In their 
simplest form, mathematical models as Ordinary Differential Equations will 
assume infinitely large, well-mixed populations; this mean-field approach 
ignores fluctuations in subpopulation sizes due to the stochastic effects 
that small populations entail, and also ignores spatial heterogeneity and 
attendant sources of noise. Yet ODEs are analytically most tractable, and so 
enable general insights to be developed into the behaviour of an idealised 
version of the system of interest. By introducing finite population effects, 
noisy fluctuations around the mean-field solution can be studied; these can 
be approximated analytically, through the application of techniques from 
statistical mechanics, or numerically through efficient and probabilistically 
correct simulation of the Master Equation, which gives the continuous-time 
change in the probability density over the possible states of the system. These 
approaches are still idealisations, in that they ignore noise due to spatial 
effects, but they retain some tractability. Finally, one may analyse spatial 
sources of noise, by embedding a finite population in a spatial environment, 
such as a network, or a 2-dimensional plane or 3-dimensional volume. While 
in some cases analytic results may be possible, particularly in the case of 
networks, in general numerical simulation is required, sometimes referred to 
as Individual-Based Simulation or Agent-Based Simulation. This approach 
is therefore the most realistic, while also the least analytically tractable. In 
understanding the collective behaviour of some real-world system, therefore, 
the approach is generally to understand the simplest model of the system, 
then progressively introduce more realistic sources of noise in order to see 
if that behaviour is changed in important ways.

Taking all of the above points into consideration, we here present a 
Multiscale Modelling Tool, intended to simplify as much as possible the 
application of analytic and numerical techniques to descriptions of simple 
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collective behaviour systems. The tool has the following objectives, and in 
the remainder of the paper we describe how these are achieved:

1. enable non-modellers to describe collective behaviour systems 
intuitively

2. enable a variety of analyses to be applied easily to such systems, 
accounting for increasingly realistic sources of noise
a. infinite-population non-spatial noise-free dynamics
b. non-spatial finite-population noisy dynamics
c. spatial finite-population noisy dynamics

3. enable interactive exploration of analysis results
4. enable expert-level access to analysis results
5. minimise overheads for installation and use of the software

DESIGN AND IMPLEMENTATION
MuMoT (Multiscale Modelling Tool) is written in Python 3 [7] and designed 
to be run within Jupyter notebooks [8]. This enables MuMoT to be used 
in interactive notebook sessions using widgets, with explanations written 
in Markdown and LATEX to develop interactive computational documents, 
particularly suited to communication of results and concepts in research or 
teaching environments. A Jupyter notebook server can be deployed with a 
MuMoT installation to allow users to work through a standard web browser, 
without the need to install client-side software, facilitating access and uptake; 
at the time of writing, the interactive MuMoT user manual can be executed 
in this mode via Binder [9] (see [10]). Despite being primarily designed 
for interactive use, MuMoT uses a variant of the Model, View, Controller 
design pattern [11] enabling a separation between model descriptions, 
analytic tools applied to models, and interactive widgets for manipulation 
of analyses; this enables MuMoT to be used non-interactively, for example 
with routines called directly from user code.

As MuMoT runs in Jupyter notebooks the user enters simple commands 
in notebook cells. Models are generated from intuitive textual descriptions, 
or from mathematical manipulation of previously-defined models, and most 
commands applicable to models result in interactive graphical output. To 
enable users to concentrate on presenting the key relevant concepts, users 
can partially or totally fix parameters in the resulting controllers, and have 
single controllers connected to multiple model views, with nesting of views 
if desired [10].
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MuMoT’s implementation, testing, and documentation seeks to adhere 
to the best standards for scientific software deployment [12, 13].

Specifying Collective Behaviour Models
Users describe models as simple textual rules, standard in the description 
of reaction kinetics. We refer to individuals as reactants which can be, for 
example, different classes of individuals as in the case of chemical molecules 
or members of different biological species, or individuals having different 
changeable states as in the case of voter models, or robot swarms. Rules 
describe which reactants interact with each other, the resulting reactants, 
and the rate at which such reactions occur. For example, Fig 1 shows the 
description of a model of collective decision-making in honeybee swarms 
[2, 14] within MuMoT, and how this is parsed into a mathematical object.

Figure 1. Specification of a collective behaviour model. A model is described 
using simple textual rules denoting interactions between reactants in the sys-
tem, and rates and which they are transformed into new combinations. Parsing 
this model description automatically results in a mathematical model object 
ready for analysis.

Models can also be created from the mathematical manipulation of other 
models; for example, it can be convenient to note that the frequency of one 
of the reactants can be determined from the frequencies of the remaining 
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reactants, and the total system size, in any closed system where no reactant 
can be created or destroyed:
model2 = model1.substitute(’U = N - A - B’)
and to redefine rates in terms of other quantities, such as the qualities of 
potential nest sites in this example:
model3 = model2.substitute(’a_A = 1/v_A, a_B = 1/v_B, g_A = v_A, g_B = 
v_B, r_A = v_A, r_B = v_B’)
or even in terms of the mean and difference between those qualities [2, 14]:
model4 = model3.substitute(’v_A = \mu + \Delta/2, v_B = \mu - \Delta/2’)
Once parsed, a model exists as a mathematical object ready for analysis, as 
can be seen by asking to see the Ordinary Differential Equations (ODEs) 
that describe its time evolution:
model4.showODEs()
which results in the following system of equations:

 (1)
Eq 1 have been automatically derived from the rule-based description of 

the model we provided. Two techniques can be used to derive these ODEs, 
either a mass action heuristic similar to the one a mathematician would 
use to derive the ODEs, or a more involved statistical physics approach 
described in section ‘Analysing noisy behaviour’ (e.g. [15]). Both, however, 
have the same result.

Once a model has been parsed, a variety of analytic and numerical 
techniques can be applied to it. Many of these result in interactive graphical 
displays of the analysis, which users can manipulate to explore their model. 
For example, Fig 2 shows the result of performing a numerical integration 
on the model of Eq 1 within the notebook environment, using the integrate() 
command. Although not described in this paper, parameters can be fixed as 
desired to focus on a particular set of free parameters (partial controllers), 
and multiple views on the same model can be manipulated via a single 
controller (multicontroller). Users can also bookmark interesting parameter 
combinations to reproduce subsequently, and save the results from some 
views for analysis in external software packages. Such devices allow 
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researchers and teachers to focus exploration and exposition of important 
concepts. Full details are given in the online user manual [10].

Figure 2. Interactive manipulation of a model view via a controller. Most model 
analysis commands result in an interactive graphical display of that analysis on 
the model. Users can explore and visualise the effects of changing free model 
parameters, and other analysis-specific parameters, through manipulating inter-
active controls.

Analysing	Noise-Free	Infinite	Population	Behaviour
The most analytically tractable means of analysing collective behaviour are 
typically those that assume infinite populations; in this mean-field approach 
sources of intrinsic noise due to finite population effects are neglected, and 
space is also ignored. Thus understanding the noise-free dynamics of a 
collective behaviour system is normally the most fruitful starting point in 
dealing with any new system.
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Numerical Integration of ODEs and Phase Portraits 
The simplest way to approach the noise-free dynamics of a system is often 
to integrate the ODEs that describe it. To achieve this MuMoT provides the 
integrate() method, which makes use of the odeint interface to numerical 
integrators implemented in Python’s SciPy package scipy.integrate [16]. 
Solutions are displayed as interactive graphical output (see for example 
Fig 2). Plots can be presented either in terms of absolute numbers, or of 
population proportions (i.e. the number of ‘particles’ for each reactant 
divided by the system size at t = 0).

The dynamics of a MuMoT model can also be studied by means of a 
phase plane analysis. To visualise the model’s trajectories in a phase portrait 
the methods stream() and vector() can be applied. Both methods depict 
phase planes representing the time evolution of the system as a function of 
its state; in a vector plot arrows give the direction in which the system will 
move, and their lengths show how fast, whereas in a stream plot lines show 
the average change of the system over time in finer resolution, and their 
shading represents the speed of change. It is also possible to calculate and 
display fixed points and noise around these; the corresponding theory and 
computations are introduced below. Stream plot examples are shown in Fig 
4. More detailed explanations can be found in the online user manual [10].

Bifurcations
Nonlinear dynamical systems may change behaviour qualitatively if model 
parameters are varied. To detect such transitions between different dynamic 
regimes MuMoT implements basic bifurcation analysis functionality by 
integrating with PyDSTool [17]. MuMoT’s method enabling bifurcation 
analysis is called bifurcation(). Currently available is the detection of branch 
points (BPs) and limit points (LPs) of one-dimensional and two-dimensional 
systems; remember that a three-dimensional system may be reduced to a 
two-dimensional one using MuMoT’s substitute() method. Detectable 
bifurcation points in MuMoT belong to the class of local codimension-one 
bifurcations. For example, BPs are observed for pitchfork bifurcations such 
as the one shown in Fig 5 (left panel). Saddle-node bifurcations are typical 
LPs (Fig 5 (middle and right panels)). For two-dimensional systems it may 
be desirable to directly compare the behaviour of both dynamical variables 
(or state variables as we call them within MuMoT) depending on a critical 
parameter in the same two-dimensional plot, where the bifurcation parameter 
is plotted on the horizontal axis. MuMoT allows users to plot single reactants 
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as response variables, but also sums or differences of reactants, as illustrated 
in Fig 5 (left panel). For more information on the usage of bifurcation() we 
refer the reader to the online user manual [10].

When executing the bifurcation() method the following computations 
run behind the scenes. For a given parameter configuration, which includes 
the choice of the initial value of the bifurcation parameter, MuMoT attempts 
to determine all stationary states. If this is successful, MuMoT then starts 
the numerical continuation of each branch on which it found a stable fixed 
point. In case no stable fixed point could be detected, MuMoT numerically 
integrates the system using the initial conditions, and uses the final state at 
the end of the numerical integration as the starting point for the bifurcation 
analysis. If LPs or BPs were found those will be displayed and labelled in the 
bifurcation diagram. When MuMoT finds a BP it then tries to automatically 
start another continuation calculation along the other branch that meets the 
current branch at the BP. All curves that could be detected are displayed 
together at the end of the automated bifurcation analysis, colour-coded and 
shown with different line-styles to reflect the underlying stability properties 
of the corresponding stationary states. Fig 5 shows examples of different 
types of bifurcations that can be studied with MuMoT’s bifurcation() method.

Analysing Noisy Behaviour
Any real-world system is subject to noise, hence the next step in analysing 
a collective behaviour system is to examine deviations from the mean-field 
solutions of the model under such noise. There are two primary sources of 
noise, that due to finite population size, and that due to spatial distribution 
of the population; MuMoT enables analysis of both.

Finite-Population Noise
We start with intrinsic noise, due to finite population size. In any finite system 
the number of interactions fluctuates around an average value and hence so 
do the numbers of agents in the states available. The following derivation is 
based on the classical textbook by van Kampen [18]. In analogy to a typical 
chemical reaction let us consider a system of interacting agents Xk with k = 
1, 2…, K being the different states agents might be in. Here X denotes the 
type of agent and the state represented by index k may be the commitment 
state. For example this could be a honeybee advertising a potential new nest 
site. The number of agents in state k is denoted nk; when agents interact the 
numbers in any state k may change. Using integer stoichiometric coefficients 
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denoted αk and βk the change of the system’s state following interactions 
may be described by

    (2)
where the left-hand side characterises the state before the interaction 
(reaction) and the right-hand side the state after the interaction (reaction). All 
interaction processes are affected by the total number of agents. To account 
for this, we introduce the system size  as a formal (auxiliary) parameter 
that is necessary for the following derivation.

The Master Equation
In order to sufficiently describe our system of interest, we need to compute 
the averaged macroscopic numbers and we also need to quantify the 
fluctuations around these averaged quantities. This may be achieved by 
means of the chemical Master equation, which can be written as follows 
[18]:

  (3)
where  is the step operator ([18], chapter VI, Eq 3.1), ∑i represents the 
sum over all reactions i, and rate superscripts (i) denote the rates for reac-
tion i. The first term in the sum on the right-hand side represents reactions 
as in Eq (2) (proportional to a constant interaction rate ) and the second 
term their inverse reactions (proportional to constant interaction rate 
). Note that the inverse reaction does not always exist. If it exists, in a Mu-
MoT model definition this would simply be written as an expression like 
the one in Eq (2), i.e. the convention used in MuMoT strictly follows Eq 
(2). For example, see input cell In[2] in Fig 1; there are also several exam-
ples in the online user manual to show how this works [10]. The expression 

 is introduced as an abbreviation. Eq (3) describes 
the temporal evolution of the joint probability distribution that the system 
under study is in state {nk} at time t. Here, {nk} summarises all agents’ in-
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dividual states as a set. To express changes following interactions we make 
use of step operators  which increase or decrease the number of agents 
in state k [18]. MuMoT automates the derivation of Eq (3) using the initial 
model definition according to Eq (2). The Master equation can be accessed 
as a symbolic equation object for further analysis by expert users, if so de-
sired.

van Kampen Expansion of the Master Equation
In general, there are only very few examples for which Eq (3) can be solved 
exactly. In what follows we describe an approximation method known 
as system size expansion or van Kampen expansion that yields analytical 
expressions to approximate the solution of a Master equation. However, 
here we only introduce the main idea of the expansion method and refer 
to van Kampen’s textbook [18] for further details. Let  denote 
the proportion of the population Xk given the system size . Note that Φ 
is a reserved symbol in MuMoT used to express population proportions—
the analogue to concentrations of reactants in a chemical reaction. The 
probability to observe the system in state nk has a maximum around the 

macroscopic variable  with a deviation around that maximum of order 

 [18]. We may now replace the number nk by a new random 
variable, say , according to [18]

      (4)
This also means that the probability distribution P needs to be rewritten 

in the new variables, i.e. . Accordingly, the step 
operators  in Eq (3) are expanded to yield [18]

    (5)

Calculating the time derivative of  by applying Eqs (4) and 

(5) to Eq (3) it is possible to get the equation for  expressed in 
terms of different orders of the systems size  (note that the  are time-

dependent via  in Eq(4)). As a result, there are large terms  which 
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should cancel, yielding the macroscopic equation of motion for . This 

corresponds to directly deriving the macroscopic ODE for  from the 
underlying reaction by applying the law of mass action. The next highest 
order in this expansion is . Collecting all terms  and neglecting 
all other terms  yields a Fokker-Planck equation with terms 
linear in  (linear noise approximation). Although we do not attempt to 
solve Master equations or their approximations in the form of linear Fokker-
Planck equations in MuMoT, we utilise the linear Fokker-Planck equation 
to compute analytical expressions that represent fluctuations and noise 
correlations, by deriving equations of motion for first and second order 

moments of  according to

 (6)

where  and ∂P/∂t represents the linear Fokker-Planck 
equation. Both van Kampen expansion and derivation of the linear Fokker-
Planck equation can be readily performed in MuMoT. In addition, in MuMoT 
explicit expressions for first and second order moments following from Eq 
(6) may be derived. Furthermore, MuMoT can attempt to obtain analytical 
solutions for these equations in the stationary state.

All mathematical procedures concerning the Master equation and 
Fokker-Planck equation make extensive use of Python’s SymPy package 
[19].

Other Methods to Study Noise in MuMoT
Making use of MuMoT’s functionality described in the previous paragraph, 
it is possible to compute and display the temporal evolution of correlation 

functions ; examples of how to do this are given in the 
online user manual [10]. Noise can also be displayed in stream and vector 
plots; if requested then MuMoT tries to obtain the stationary solutions of 
the diagonal elements of the second order moments and then project these 
onto the direction of the eigenvectors of available stable fixed points of the 
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macroscopic ODEs. If the system is too complicated and MuMoT cannot 
find an analytical solution, noise may be calculated by principled numerical 
simulation, as described below.

Stochastic Simulation
The Master equation of Eq (3) can be very difficult to solve for even very 
simple systems, therefore most studies resort to the complementary approach 
of numerical simulations [20]. Gillespie proposed a probabilistically exact 
algorithm for simulating chemical reactions called the stochastic simulation 
algorithm (SSA) [21]. Each simulation computes a stochastic temporal 
trajectory of the state variables from a given user-defined initial condition 
∂P({nk}; 0) for a user-defined maximum time T. Averaging various 
trajectories gives an approximation of the solution of Eq (3) (for a given 
∂P({nk}; 0)) that increases in accuracy with the number of simulations. 
MuMoT implements the SSA via the command SSA(). The user can run a 
single simulation to generate a single temporal trajectory, or otherwise run 
several simulations and aggregate the data in a single plot. The user can 
visualise the entire temporal trajectory (in a plot similar to Fig 3), or the final 
population distribution ∂P({nk}; T) in the form of either a barplot or as points 
in a 2-dimensional space plane (in which the two axes are state variables). 
Multiple trajectories can be aggregated in standardised ways of displaying 
probability distributions, e.g., in the 2-dimensional space plane, simulation 
aggregates are visualised as ellipses centred on the distribution mean and 
with 1-σ covariance sizes (e.g. see the green ellipse in Fig 4(bottom panels)). 
This aggregate visualisation can be superimposed on to stream and vector 
field plots when requested, and if Eq (3) cannot be analytically solved by 
MuMoT, as discussed above.

Figure 3. Numerical integration of the Brusselator equations. The Brusselator 
equations ([3], p.253) exhibit either stable (left) or oscillatory (right) dynamics 
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according to the parameter values selected. Parameter sets: Φα = Φβ = χ = δ = γ 
= ξ = 2.0, ΦXt(0) = 1.0, system size = 10 (left), Φα = χ = δ = γ = ξ = 2.0, Φβ = 5.5, 
ΦXt(0) = 1.0, system size = 10 (right).

Figure 4. Phase portraits with computed fixed points and noise. Upper-left: 
oscillatory dynamics in the Lotka-Volterra equations ([3], p.79) (parameters ΦA 
= α = β = γ = 2.0). Upper-right: limit cycle in the Brusellator ([3], p.253) (pa-
rameters Φα = χ = δ = γ = ξ = 2.0, Φβ = 5.5). Lower-left: global attractor with 
isotropic noise in the Brusellator ([3], p.253) (parameters Φα = Φβ = χ = δ = γ 
= ξ = 2.0, system size = 10). Lower-right: co-existence of two stable attractors 
in the honeybee swarming model [2], with anisotropic non-axis-parallel noise 
(parameters Δ = 0.0, μ = 3.0, s = 10.0, system size = 20, runs = 100). Line 
shading indicates speed of flow, with darker representing faster. Fixed points 
are denoted as stable (dark solid green circle), saddle (hollow blue circle), or 
unstable (hollow red circle). Light green ellipses represent 1-σ noise around 
stable fixed points.
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Spatial Noise
MuMoT also enables the study of the effects of spatial noise on a model. 
Including spatial noise relaxes the sometimes simplistic assumption of a 
well-mixed system in which interactions between any group of reactants 
can always happen, at rates proportional to the product of their relative 
frequencies in the population. Instead, each reactant has a set of available 
reactants with which it can interact at each timestep. The set of possible 
interactions corresponds to the system’s interaction topology, which the user 
can select among a set of standard graph structures. Graphs are handled 
by MuMoT through the functionalities offered by the NetworkX library 
[22] which allows advanced users to easily add new topologies. In the 
first MuMoT release, the available topologies are the complete graph, the 
Erdös–Rényi random graph [23], the Barabási–Albert scale-free network 
[24], and the random geometric graph [25]. The latter is constructed by 
locating at random uniform locations the reactants in a square environment 
with edge length 1, and allowing interaction between two reactants when 
their Euclidean distance is less than or equal to a user-defined distance. The 
topology of the random geometric graphs can be static or time-varying. The 
latter is implemented by letting each reactant perform a correlated random 
walk in the 2-dimensional environment and recomputing the topology each 
time based on the new distances between reactants.

Spatial noise is difficult to compute analytically in an automatised way, 
therefore MuMoT computes it numerically via individual-based simulations. 
Each reactant is simulated as an agent which probabilistically interacts at 
synchronous discrete timesteps with the available reactants. The agent’s 
behaviour is automatically implemented from the model’s reaction kinetics as 
a probabilistic finite state machine following the technique proposed in [26]. 
Along with the agents’ behaviour, MuMoT automatically sizes the timestep 
length to match the time-scale with the population-level descriptions (e.g. 
ODEs and Master equation). This feature can be particularly convenient 
if the user aims at a quantitative comparison between model description 
levels. Similarly to SSA simulations, the user can select to run individual 
simulations or to aggregate results from multiple independent simulations 
to compute statistical distributions.
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RESULTS
All results can be reproduced using the MuMoTpaperResults.ipynb Jupyter 
notebook [10].

Numerical Integration
To illustrate the numerical integration functionality of MuMoT we repeat 
analyses of the Brusselator equations ([3], p.253) in Fig 3. The equations 
have two dynamical regimes, one with a single globally stable attractor 

when  (Fig 3 (left)), and one in which a stable limit cycle exists 

when  (Fig 3 (right)).

Phase Portraits with Fixed Point and Noise Calculations
We illustrate the phase portrait functionality of MuMoT in Fig 4 by repeating 
analyses of a variety of equation systems: the classical Lotka-Volterra 
equations ([3], p.79), the Brusellator equations ([3], p.253), and a model of 
collective decision-making by swarming honeybees [2, 14]. These systems 
can exhibit a variety of dynamics including: oscillations (Fig 4 (upper-left)), 
unstable fixed points with limit cycles (Fig 4 (upper-right)), globally stable 
attractors (Fig 4 (bottom-left)), and stable attractors co-existing with saddle 
points (Fig 4 (bottom-right)). When stable fixed points are present MuMoT 
can calculate or compute the equilibrium noise around them, dependent on 
system size (Fig 4 (bottom)); this can be either isotropic (Fig 4 (bottom-
left)), or anisoptropic and/or non-axis-parallel (Fig 4 (bottom-right)). This 
latter case is particularly interesting because the correct noise around the 
fixed point may differ substantially from simply adding Gaussian noise to 
the dynamical equations.

Bifurcation Analysis
MuMoT’s bifurcation analysis functionality is illustrated through reproducing 
a number of bifurcation analyses [14] of the honeybee model presented above 
[2] (Fig 5). These reveal conditions under which the dynamics exhibit: (i) a 
pitchfork bifurcation (Fig 5 (left)), a sample post-bifurcation phase portrait 
for which is presented in Fig 4, (ii) an unfolding of the pitchfork bifurcation 
(i.e. saddle-node bifurcation) (Fig 5 (centre)), and (iii) a hysteresis loop (Fig 
5 (right)). These can be compared to figures 5(i)-(iii) of [14].
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Figure 5. Bifurcation analysis of a nonlinear decision-making model. Bifurca-
tions of the honeybee swarming model [2, 14]. Left: symmetry breaking in 
the two decision populations through a pitchfork bifurcation, with strength of 
cross-inhibitory stop-signalling s as the bifurcation parameter (cf. [14] Fig 5i) 
(parameters Δ = 0.0, μ = 4.0). Centre: unfolding of the pitchfork bifurcation into 
a saddle-node bifurcation (cf. [14] Fig 5ii) (parameters Δ = 0.1, μ = 4.0). Right: 
hysteresis loop with option quality difference Δ as the bifurcation parameter (cf. 
[14] Fig 5iii) (parameters μ = s = 4.0). Solid black lines denote stable branches, 
dashed blue lines denote unstable branches.

Finite Population and Spatial Numerical Simulation
MuMoT can be used to perform a variety of spatial numerical simulations, 
illustrated in Fig 6 for the honeybee swarming model introduced above [2, 
14]. Non-spatial finite-population simulation reproduces the statistics of 
deadlock breaking observed in [14] (Fig 6 (left)). Spatial noise can also be 
incorporated either by embedding the model in a network (Fig 6 (centre)) or 
2d-plane (Fig 6 (right)).

Figure 6. Numerical simulations of a nonlinear decision-making model. Nu-
merical simulations of the honeybee swarming model [2, 14] given various 
sources of noise. Left: finite-population noise effects during symmetry-break-
ing in a well-mixed model (parameters Δ = 0, μ = 3.0, s = 3.0, ΦUt(0) = 1.0, sys-
tem size = 50, time = 10, runs = 10). Centre: finite-population and spatial noise 
effects due to embedding the model in a random graph. Right: finite-population 
and spatial noise effects due to embedding the model in a plane, with agents 
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performing correlated random walks; traces indicate recent agent paths, links 
indicate current interaction events.

Derivation of the Master Equation and Expansion to Derive the 
Fokker-Planck Equation
Here we reproduce the analysis presented in [18] (pp. 244-246) to derive the 
Master Equation and Fokker-Planck equation for the following toy model:

       (7)
The automated analysis results in

 (8)
And

 (9)
as expected.

A substantially more complicated example derivation, for the honeybee 
swarming model of Eq 1 [2, 14]. This derivation is equivalent to that 
performed in [2] and results in the same dynamical equations.

AVAILABILITY AND FUTURE DIRECTIONS
MuMoT is available as source code, as a package for Python 3 [27] via PyPI 
(pypi.python.org), and as a server-based installation currently exemplified 
by free-to-use access to the interactive user manual and other notebooks 
using the Binder service [9], which requires only a web browser to use. 
MuMoT is written in Python 3 and integrates with Jupyter Notebooks [8] 
and as such is platform-independent. Non-interactive aspects of MuMoT’s 
functionality can also be accessed through using it as a standalone Python 
package, enabling its modelling and analysis functionality to be used from 
within third-party code projects. MuMoT is available under the GPL licence 
version 3.0, and makes use of other software available under the MIT 
licence. For further details including links to usage information are available 
at github.com/DiODeProject/MuMoT/.
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Numerous software products have been proposed to perform subsets 
of the analyses offered by MuMoT. For instance, several tools offer the 
possibility to run the SSA and efficiently analyse reaction kinetics models 
[28–36]. Similarly, software to analyse mean-field dynamical systems and 
perform bifurcation analysis is widely available, e.g. MATCONT for Matlab 
[37], or the Dynamica package for Wolfram Mathematica [38]. Linear noise 
approximations have previously been implemented as well [32]. Several 
tools offers software to simulate complex systems, dynamical networks, and 
agent-based models [39–41], some of which run as Jupyter notebooks as 
MuMoT does [42, 43].

In contrast to the previous solutions, MuMoT combines ease-of-use with 
a multi-level analysis that spans from ODEs analysis, to statistical physics 
approximations, bifurcation analysis, and SSA and multiagent simulations, 
integrated within a simple interactive notebook document interface. This 
makes MuMoT particularly appropriate for non-experts to learn to build 
models and apply complex mathematical and computational techniques to 
them, to communicate research results, and to enable students to interactively 
explore models, and modelling and analysis techniques.

Future work should focus on integrating MuMoT with other software and 
standard. For example, the simple textual input method for MuMoT models 
is very accessible to non-experts, but precludes more sophisticated use cases. 
Import and export via interchange formats such as Systems Biology Markup 
Language (SBML) [44] would enable users to connect between MuMoT for 
general analysis, and external specialist software packages for more detailed 
analyses; for example StochSS [36] can run the SSA algorithm on cloud 
infrastructure for larger-scale computations, and perform parameter sweeps 
and estimation. Embracing data interchange formats will allow MuMoT to 
take its place as an integral part of the growing ecosystem of open-source 
modelling software.
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ABSTRACT
Study of ecosystems has always been an interesting topic in the view of 
real-world dynamics. In this paper, we propose a fractional-order nonlinear 
mathematical model to describe the prelude of deteriorating quality of water 
cause of greenhouse gases on the population of aquatic animals. In the 
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proposed system, we recall that greenhouse gases raise the temperature of 
water, and because of this reason, the dissolved oxygen level goes down, 
and also the rate of circulation of disintegrated oxygen by the aquatic 
animals rises, which causes a decrement in the density of aquatic species. 
We use a generalized form of the Caputo fractional derivative to describe the 
dynamics of the proposed problem. We also investigate equilibrium points 
of the given fractional-order model and discuss the asymptotic stability of 
the equilibria of the proposed autonomous model. We recall some important 
results to prove the existence of a unique solution of the model. For finding 
the numerical solution of the established fractional-order system, we apply a 
generalized predictor–corrector technique in the sense of proposed derivative 
and also justify the stability of the method. To express the novelty of the 
simulated results, we perform a number of graphs at various fractional-
order cases. The given study is fully novel and useful for understanding the 
proposed real-world phenomena.

MSC: 26A33; 65D05; 65D30; 65L07; 92B05

Keywords: Dissolved oxygen, Temperature, Aquatic species, Greenhouse 
gases, Fractional mathematical model, Numerical method, Modified Caputo 
fractional Derivative

INTRODUCTION
In the study of greenhouse effects, we know that in the day the sun warms up 
the atmosphere of earth. But when the Earth supercools at the night, then the 
presented heat is radiated again into the environment. In the duration of this 
process, the heat is exploited by the greenhouse gases in the environment 
of earth. This process makes the layer of the earth thermal, which causes 
the possibility of living being’s survival on earth. However, because of 
the increment in the level of greenhouse gases, the earth’s temperature 
has raised simultaneously. This has caused a number of drastic impacts. 
In the list of reasons of greenhouse effect, deforestation, burning of fossil 
fuels, farming, industrial waste, and landfills play a major role. The major 
effects of increased greenhouse gases are depletion of ozone layer, global 
warming, air and smog pollution, water bodies acidification, etc. Since the 
starting of the industrial revolution, the concentration of carbon dioxide, 
chlorofluorocarbon (CFC), nitrous oxide, and methane have enhanced in 
the environment, and there is firm witness that the venomous impacts of 
greenhouse gases on our ecological systems have been taken account as a 
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outcome of human bustles.
Aquatic life simply means to stay in surface water, and water in this 

paragon is specified as a marine habitat. Living beings that live in the 
water either permanently or momentarily are called aquatic animals and 
plants, and these compose the beings in water aquatic life. It is well known 
that the increment in the temperature of water causes the reduction in the 
concentration of mixed oxygen of the aquatic environment and also rises 
the requirement of mixed oxygen for the aquatic animals. Invertebrates, 
fish, and other aquatic species rely upon the amount of oxygen decomposed 
in the water, and in the absence of it, they may not live. A small changes 
in concentration of mixed oxygen can effect the conformation of aquatic 
society [1]. So the rate of survival of the aquatic density (Fig. 1) goes 
down under hypoxia, and the oxygen necessary for their living raises with 
growth in temperature [2, 3]. Hence, because of the combined influences of 
reduced concentration of mixed oxygen and enhanced demand of oxygen 
by the animals, the warming of species bodies rises the death rate of species 
population [3, 4]. To define these dynamics, a number of models have been 
proposed, but only few models [5, 6] have been given to simulate the effects 
of dissolved oxygen and temperature on the population of aquatic species.

Figure 1. Some aquatic animals.
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In the matter of the above discussion, in this study, we prepare a fractional-
order mathematical system to simulate the joint influences of low mixed 
oxygen density, exalted water temperature, and raised oxygen demand on 
the extinction or survival of aquatic population. Fractional derivatives are 
one of the most effective tools for simulations and have been proposed in 
many different ways (for instance, see [7–9]). Fractional-order models have 
been widely used to define a number of real-world problems because their 
memory effects make these models more visible in the literature. Recently, 
a number of fractional-order models have been prepared by researchers. In 
this regard, in [10–18] the authors have proposed a number of fractional-
order mathematical models to describe the dynamics of Covid-19 epidemic. 
In [19, 20] the authors have simulated the fractional-order dynamics of well-
known lassa hemorrhagic fever. The applications of fractional derivatives 
in ecology can be seen in [21]. Regarding some more specific areas, 
nonclassical derivatives have been successfully used to derive the structure 
of tuberculosis [22], malaria [23], mosaic disease [24], Nipah epidemic [25], 
canine distemper virus [26], and huanglongbing transmission [27]. In [28] the 
authors used a fractional-order time-delay mathematical model to describe 
the process of oncolytic virotherapy. A study on analytic solution for oxygen 
diffusion from capillary to tissues via fractional derivatives is proposed in 
[29]. Also, an application of a new generalized Caputo derivative to define 
the famous love story of Layla and Majnun is given in [30]. So the literature 
of fractional-order calculus is increasing exponentially day by day. Also, a 
number of true and false results come on the various fractional derivatives. 
Recently, in [31] the authors have proved that in the case of evolution 
equations in terms of the Caputo–Fabrizio and Atangana–Baleanu fractional 
derivatives, intrinsic discontinuities occur. The geometry of fractional-
order derivatives is still not well-defined, but their applications in different 
scientific fields make them more visible to the literature. Some important 
studies related to the properties of fractional derivatives, special functions, 
and different types of inequalities can be learned from [32–35]. Nonstandard 
Chebyshev collocation and finite difference schemes for solving fractional 
diffusion equations are proposed in [36]. Some novel analysis on the 
fractional differential equations for the generalized Mittag-Leffler function 
are discussed in [37]. A study on the analytical solutions of the fractional-
order equations with uncertainty is proposed in [38]. Alderremy et al. [39] 
have discussed some novel models of the multispace-fractional Gardner 
equation. A study on spectral collocation method for solving smoking model 
is proposed in [25]. In [40] the authors have proposed a study on Darcy–
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Brinkman–Forchheimer model for nanobioconvection stratified MHD flow 
through an elastic surface. In [41] a reduced differential transform scheme 
for simulating nonlinear biomathematics models is given. In [42] a study 
on dynamical features and signal flow graph of nonlinear noninteger order 
smoking mathematical model is explored. In [43], some numerical methods 
for a model of relativistic electrons arising in the laser thermonuclear fusion 
are investigated. The manuscript is designed as follows: In Sect. 2, firstly, 
we remind some important definitions and results. In Sect. 3, we give a 
complete description of the proposed fractional-order nonlinear model, 
where we define the significance and importance of every small part of the 
model. Then in Sect. 4, we give a complete mathematical analysis related to 
the solution existence, derivation, and stability. To show the correctness of 
our results, in Sect. 5, we present the necessary graphs at various fractional-
order values and parameter weights. At the end, a conclusion gives a 
comfortable end to the paper.

PRELIMINARIES
Firstly, we remind some important definitions and results.

Definition	1	([44])

The new definition of the Caputo-type fractional derivative  of order 
σ > 0 (called a new generalized Caputo) for the function Ψ ∈ C1([d, T])) is 
given by

 (1)
where  and .

Lemma 1 ([45])
For 0 < b < 1 and a nonnegative integer ϱ, there exist positive constants 

 and , dependent only on b, such that

and
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Lemma 2 ([45])
Let dq,s = (s − q)b − 1 for q = 1, 2, …, s−1 and dq,s = 0 for q ≥ s, let M, b, h, T > 

0, and rh ≤ T, where r is a positive integer. Let  for r>s≥1. If

then

where  is a positive constant not dependent on r and h.

MODEL DYNAMICS
Now we propose a fractional-order mathematical model to study the 
proposed dynamics. In [1] the authors have already given an idea on the 
proposed topic by using an integer-order model. We propose a fractional-
order model because it is well known that the memory effects, which cannot 
be studied in the classical case, can be easily observed by fractional-order 
derivatives. It is very important that when we propose a fractional-order 
model, it should have the same time dimension on both sides of the system. 
Taking care of all these aspects, we define the novel fractional-order model 
as follows:

   (2)

where  is the new generalized Caputo-type fractional-order operator 
of order σ. In this model,

and
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In this model, we have five different classes, in which class N shows the 
logistically crescent aquatic species density whose rate of growth is taken as 
a function of temperature and mixed oxygen, U justifies the dissolved oxygen 
concentrations, T defines the water temperature average of the species, C 
expresses the greenhouse gases accumulative concentrations, and Z justifies 
the concentration of ozone. Also, the term G(U, T) expresses the specific 
rate of growth of the species, which is in fact an exponentially decreasing 
function of T for T > Topt and increasing function of U. The function U0(T) 
denotes the quantity of dissolved oxygen demanded by species population, 
which rises with temperature increase.

The term Ds(T) is defined for the consideration that if the water 
temperature level is high, close to the optimum temperature, then the natural 
loaded dissolved oxygen concentration reduces. The significance of all other 
parameters is completely given in Table 1. The more deep texture of the 
given model in classical sense can be learned from [1].

Table 1. Description of model parameters

g0 Intrinsic growth rate

β10
Dissolved oxygen’s minimum natural concentration 
needed by the aquatic species

β11
Increment rate in the mass of mixed oxygen demanded 
for the species per unit rise in the level of temperature 
above the suitable temperature

Topt Optimal water temperature for the aquatic species max-
imum rate of growth

γ0
Carrying capacity of the environment

Ds0 Dissolved oxygen’s natural saturated concentration at 
T = Topt

A0 Ejection rate of greenhouse gases cause of anthropo-
genic bustles

w Increment rate in the temperature of water cause of 
greenhouse gases

ζ1
Coefficient of heat transfer of surface
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Oc Physic manufacture of concentration of ozone per unit 
time in the environment

Λ1 Natural deterioration rate of concentration of ozone

Λ Deterioration rate of concentration of ozone cause of 
greenhouse gases

γ1
Coefficient of reaeration at the reference temperature

δ2 Deterioration rate of mixed oxygen because of breath-
ing by the species

ζ Deterioration rate of mixed oxygen because of a rise in 
the temperature above the suitable temperature

β A constant that succumbs upon the tincture state of the 
water body

γ Variations rate in the water temperature because of 
changes in the ozone concentration level associated 
with its threshold value

Z0 Threshold of concentration of ozone below which tem-
perature will rise

T10 Temperature of the environment

δ1 Depletion rate of greenhouse gases
T0 Context temperature (associated with the turbulence 

degree in the water, in which turn succumbs on the 
depth and speed of the river)

b Constant that incarnates the toxic influence of diver-
gence of T from Topt and divergence of T from Tmax

Tmax Maximum temperature of water at which growth can 
occur

N(0) Initial population of N
T(0) Initial population of T
C(0) Initial population of C
Z(0) Initial population of Z
U(0) Initial population of U

The equilibria of the given fractional-order mathematical model can be 
obtained by solving the following system:

      (3)

     (4)
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        (5)

       (6)

    (7)
Equation (5) gives

        (8)
Equation (6) gives

        (9)
Equation (4) gives

      (10)
Here we have two different types of equilibrium points.
1.  Boundary equilibrium point :

 (no species population), . Here  are given by 
(8), (9), (10), respectively.

A boundary equilibrium point Ē exists if 

 and .
2.  Interior equilibrium point E∗(U∗, Z∗, C∗, T∗, N∗), where 

 (species 
population exists) and N∗ > 0, provided that 

. Here C∗, Z∗, T∗ are given by Equations (8), 
(9), (10), respectively, and U∗ is the positive root of the quadratic 
equation

   (11)

where 
0 optó ( ) ó ó

1 1 opt 2 0 opt 2 0 opt
max opt

(1 ) exp( ( ))(1 ) (1 )T T T T
a T T b T T T T

T T
γ β δ γ δ γ

∗
∗

− ∗ ∗ ∗−
= + − + − + − + + −

−

, 
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. When the 
given conditions are taken account, the quadratic equation (11) has at least 
one positive root if a1 > 0, b1 > 0, and c1 < 0. Now we derive the following 
nonautonomous system after solving the given model (2) for C:

      (12)

   (13)

since limsup ( ), limsup ( ), limsup ( )
t t t

Z Z t C C t T T t
∞ ∞ ∞

∗ ∗ ∗

→ → →
≤ ≤ ≤ .

Hence the fractional-order nonautonomous model (12)–(13) can be 
specified in the following equivalent fractional-order autonomous model:

   (14)

   (15)
The equilibrium points of the dynamic system (14)–(15) are calculated 

by the following group of equations:

 (16)

    (17)

1.  Boundary equilibrium point :

The existence of boundary equilibrium point  provides

2.  Interior equilibrium point E∗∗(U∗∗, N∗∗):

 (aquatic population 
exists) and N∗∗ > 0, provided that
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where U∗∗ is a positive root of the quadratic equation

   (18)

where 
0 opt( ) ó ó

1 1 opt 2 0 opt 2 0 opt
max opt

(1 ) exp( ( ))(1 ) (1 ),T T T T
A T T b T T T T

T T
γ β δ γ δ γ

∗
∗

− ∗ ∗ ∗−
= + − + − + − + + −

−

.
If the given constraints are satisfied, then the quadratic equation specified 

by (18) has at least one positive root if

Lemma 3

For the fractional-order mathematical system (14)–(15),  is locally 

asymptotically stable if ó ó
opt 10 11 optó

0
max opt

( ( ))
(exp( ( )) ) 0

1

T T U T T
g b

T T U

β β∗ ∗− − + −
− + <

− +

 and is an 

unstable saddle point if ó ó
opt 10 11 optó

0
max opt

( ( ))
(exp( ( )) ) 0

1

T T U T T
g b

T T U

β β∗ ∗− − + −
− + >

− +
.

Proof
After the linearization, taking the Laplace transform of both sides of system 
(14)–(15), the Jacobian matrix for system (14)–(15) simulated at  is given 
by

where

0( )
21 2 22 1, T Ta U aδ γ β

∗−= − = − . The eigenvalues associated with the matrix M11 

are 
0

ó ó
opt 10 11 opt ( )ó

1 0 2 1
max opt

( ( ))
(exp( ( )) ),

1
T TT T U T T

g b
T T U

β β
λ λ γ β

∗
∗ ∗

−− − + −
= − + = −

− + .
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The eigenvalue λ1 is negative if 
ó ó

opt 10 11 optó
0

max opt

( ( ))
(exp( ( )) ) 0

1

T T U T T
g b

T T U

β β∗ ∗− − + −
− + <

− +
 

and positive if 

ó ó
opt 10 11 optó

0
max opt

( ( ))
(exp( ( )) ) 0

1

T T U T T
g b

T T U

β β∗ ∗− − + −
− + >

− + .
The other eigenvalue λ2 is negative. Hence the required results are 

obtained.

Lemma 4
The given equilibrium point E∗∗ of the fractional-order system (14)–(15) is 
always locally asymptotically stable.

Proof
The Jacobian matrix of system (14)–(15) with respect to E∗∗ is

where 
ó
0

11
0

,g N
b

γ

∗∗−
=  

0

ó ó
10 11 opt ( )ó ó ó

12 0 21 2 22 1 22

1 ( )
( ), ,

(1 )
T TT T

b g N b U b N
U

β β
δ γ β δ

∗
∗

−∗∗ ∗∗ ∗∗
∗∗

+ + −
= = − = − −

+ .
The behavior of the eigenvalues is estimated by using Hurwitz’s criteria 

in the quadratic equation

Using Hurwitz’s criteria, we observe that the eigenvalues λ1, λ2 of 
the matrix M22 are negative if T∗ > Topt. Thus we get that E∗∗ is locally 
asymptotically stable under the restriction T∗ > Topt.

Now for the deformation of fractional-order system (2), we convert it to 
an equivalent compact form in the case of singular kernels as follows:
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   (20)
Here  are the proposed kernels with respect to the 

given classes N, T, C, Z, U, respectively.

FRACTIONAL-ORDER ANALYSIS ON THE  
PROPOSED MODEL

Analysis of the Existence and Uniqueness of the Solution
Proving the existence of the solution for fractional-order systems is always 
a sensitive part because not all fractional differential equations have their 
proof of the existence of a solution. In this area a number of works have 
been done, and lots of researchers work. Here, before deriving the solution 
of the proposed model, we first prove that the given fractional-order model 
has a unique solution. We give the results only for the class N(ζ), and the 
results are as for the other model classes. So we recall the model equation 
for N,

       (21a)

        (21b)
and the relative Volterra integral equation

   (22)
Theorem 1 ([46] (Existence))

Let  and . Define 
 and let the mapping  be con-

tinuous. Further, define  and

     (23)
Then the IVP (21a)–(21b) has a solution N ∈ C[0, T]].
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Lemma 5 ([46])
By considering the result of Theorem 1a function N ∈ C[0, T] solves the IVP 
(21a)–(21b) if and only if it solves the Volterra integral equation (22).

Theorem 2 ([46] (Uniqueness))
Let  and T∗ > 0. Further, let 0 < σ ≤ 1 and m = ⌈σ⌉. For the 
set  given in Theorem 1, let  be a continuous function that 
satisfies the Lipschitz condition with respect to the second variable, that is,

with a constant V > 0 independent of ζ,N1, and N2. Then the IVP (21a)–(21b) 
has a unique solution N ∈ C[0, T].

Numerical Solution of the Proposed Model with Application of 
the Generalized Predictor–Corrector Technique
In the last few years, a number of fractional-order numerical schemes have 
been proposed by the scientists to solve various types of dynamical models. 
Very recently, the authors of [47] have proposed a new numerical method in 
the generalized Caputo derivative sense. Here we solve the proposed model 
with the help of generalized P-C scheme for the solution of the IVP (21a)–
(21b) by following the methodology proposed in [44]. Also, we will analyze 
the stability of the given scheme. In that way, we first recall the above given 
Volterra integral equation (22), which gives

   (24)

Now with supposing that a unique solution exists for the function  
on the interval [0, T], we divide the adopted interval [0, T] into N unequal 
subparts {[ζk, ζk+1], k = 0, 1, …, N − 1} using the mesh points

      (25)

where . Now let us try to analyze the approximations  
to get a numerical solution of the given IVP. Suppose that we have already 
derived the approximations  and want to derive 
approximations  by means of the integral equation
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   (26)
By substitution z = ξϰ we get

   (27)
that is,

  (28)
Now, to simulate the right-side of Eq. (28), applying the trapezoidal 

quadrature rule with respect to the weight function  and 
shifting the function  by its piecewise linear interpolant 
with nodes  we get

   (29)
So, fitting the above-proposed approximations in Eq. (28), we establish 

the corrector term for :

  (30)
where

  (31)

The final task for our solution is changing the quantity  on the 
right-hand side of formula (30) with the predictor value  which 
can be calculated by applying the one-step Adams–Bashforth technique 
to the integral equation (27). In this case, by changing the mapping 

 by the quantity  at each integral in Eq. 
(28) we get



The Use of Mathematical Structures: Modelling Real Phenomena390

   (32)
So our P-C method for deriving the approximations  is 

totally evaluated by the formula

  (33)

where  and the predicted value  
can be simulated as mentioned in Eq. (32) with the terms  estimated 
according to (31).

Therefore the derivation for the approximate solution of the proposed 
system (2) is derived successfully and defined by the following equations:

   (34)
where

   (35)
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Method Stability

Theorem 3

Let  satisfy the Lipschitz 
condition, and let  be approximate 
solutions of the derived P-C method (34) and (35), respectively. Then the 
proposed numerical algorithm (34)–(35) is conditionally stable.

Proof

Let  and  be perturbations of N0, 

Nj, and , respectively. Then the given below perturbation equations are 
estimated with the help of Eqs. (34) and (35).

    (36)

where 

   (37)
Using the Lipschitz condition, we obtain

     (38)

where . Also, from Eq. (3.18) in [45] 
we derive

      (39)

where . Substituting  from 
Eq. (39) into Eq. (38) results in
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    (40)

    (41)

   (42)

where  is a positive constant 
depending on σ (by Lemma 1), and h is assumed to be small enough. Using 

Lemma 2, we have . which concludes the proof.

EXPERIMENTAL SIMULATIONS
After finishing all necessary theoretical analysis, we start to perform some 
experimental calculations to show the correctness of our results. We use 
Mathematica software for performing the number of graphs. For the case of 
interior equilibrium point  we use the following set 
of parameter values: 
g0 = 0.9, β10 = 0.03, β11 = 0.001, Topt = 24, γ0 = 150, Ds0 = 4, A0 = 0.2, w = 2.10, 
ζ1 = 3.5, Oc = 1.10, Λ1 = 0.66, Λ = 0.4, γ1 = 2, δ2 = 0.2, ζ = 0.0019, β = 1.024, 
γ = 4, z0 = 10.10, T10 = 14.50, δ1 = 0.1, T0 = 20, b = 1.30, Tmax = 35, N(0) = 
10, T(0) = 28, C(0) = 1, Z(0) = 1.2, U(0) = 0.25. Here we observe that for 
the case of fractional order σ = 1 (when the model behaves like an integer-
order system), the authors of [1] have calculated the value of the interior 
equilibrium point E∗(0.1023, 0.7534, 2.0000, 26.3818, 122.7088) and then, 
in this case, have specified the constraints for the solution boundedness, 
equilibrium point E∗ stability, and positivity of the solution. Our target is 
to explore the dynamics of all model classes with respect to the interior 
equilibrium points at different fractional-order values σ.

4In the set of Fig. 2, we observed the nature of all model classes separately 
at different fractional-order values σ. In subfigure 2(a) the dynamics of 
density of aquatic population N is plotted at σ = 1, 0.95, 0.85, 0.75. Here we 
observed that at σ = 1 the numerically calculated equilibrium point is satisfied 
for class N and also at other values of order σ, it changed simultaneously. 
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Similarly, subfigure 2(b) shows the average water temperature of the species 
(class T), subfigure 2(c) shows the concentration of greenhouse gases (class 
C), subfigure 2(d) shows the ozone concentration (class Z), and subfigure 
2(e) shows the dynamics of dissolved oxygen concentration (class U). The 
simultaneous changes in the given model classes at particular values of σ can 
be seen from the set of Fig. 3. Overall, we observed that when the fractional-
order σ changes, the dynamics of the model, along with interior equilibrium 
point changes, justifies the importance of the fractional-order model.

Figure 2. Separate plots of all model classes at various fractional-order values 
σ for the case of interior equilibrium point E∗(U∗, Z∗, C∗, T∗, N∗).
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Figure 3. Mixed plots of all model classes at fractional-order values σ = 1, 0.95, 
0.85 for the case of interior equilibrium point E∗(U∗, Z∗, C∗, T∗, N∗).

As investigated above, now we consider the case of boundary equilibrium 

point ( , , , , )E U Z C T N= . In this case, we consider the following parameter 
values: 
g0 = 0.9, β10 = 0.03, β11 = 0.50, Topt = 24, γ0 = 150, Ds0 = 4, A0 = 0.7, w = 
2.1710, ζ1 = 3.5, Oc = 1.10, Λ1 = 0.66, Λ = 0.4, γ1 = 1, δ2 = 0.6, ζ = 0.11, β 
= 1.024, γ = 4, z0 = 10.10, T10 = 14.50, δ1 = 0.1, T0 = 20, b = 1.30, Tmax = 
35, N(0) = 10, T(0) = 28, C(0) = 1, Z(0) = 1.2, U(0) = 0.25. For the given 
parameter weights, the value of boundary equilibrium point ( , , , , )E U Z C T N=  
at fractional-order σ = 1 (when the model behaves like an integer-order 
system given in [1]) is (0.0474,0.3179,7.0,30.0216,0)E . In that integer-order 
case, the boundary equilibrium point is linearly asymptotically stable.

For the noninteger-order observations, in the set of Fig. 4, we analyzed 
the nature of proposed model classes separately at various fractional-order 
values σ. In subfigure 4(a), the dynamics of density of aquatic population 
N is plotted at σ = 1, 0.95, 0.85, 0.75. Here we can see that for σ = 1, the 
numerically calculated equilibrium point is satisfied for population N and 
that at other values of order σ, it changes simultaneously. Following the same 
way, subfigure 4(b) specifies the average water temperature of the species 
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(class T), subfigure 4(c) demonstrates the concentration of greenhouse 
gases (class C), subfigure 4(d) shows the ozone concentration (class Z), and 
subfigure 4(e) shows the dynamics of dissolved oxygen concentration (class 
U).

Figure 4. Separate plots of all model classes at various fractional-order values σ for the 
case of boundary equilibrium point ( , , , , )E U Z C T N= .

The simultaneous changes in the given model classes at particular value 
of σ can be analyzed from the set of Fig. 5. Overall, we can see that when 
the fractional-order σ changes, the dynamics of the model changes along 
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with boundary equilibrium point, which satisfies the role of fractional-order 
operator.

Figure 5. Mixed plots of all model classes at fractional-order values σ = 1, 0.95, 

0.85 for the case of boundary equilibrium point ( , , , , )E U Z C T N= .

From the above given experimental analysis we see that the fractional-
order dynamics with memory effects is much stronger than the integer-
order dynamics. Here we have more varieties to understand the structure of 
the proposed ecosystem dynamics at various fractional-order values along 
with different values of equilibrium points. The modified Caputo fractional 
derivative is fully suitable to simulate the novel results with the help of 
given fractional-order model.

CONCLUSION
In our study, we have simulated a novel fractional-order mathematical system 
to study the prelude of deteriorating quality of water because of greenhouse 
gases on the population of aquatic animals. It has been shown in the given 
system that greenhouse gases raise the temperature of water, and because 
of this reason, the dissolved oxygen level goes down, and also the rate of 
circulation of disintegrated oxygen by the species rises, which causes a 
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decrement in the density of aquatic species. We have used a new generalized 
Caputo-type fractional-order derivative to simulate the given dynamics. 
Equilibrium points for the given fractional model have been calculated, and 
important discussion on the asymptotic stability of the equilibria of a new 
autonomous system has been evaluated. We have reminded some important 
results to prove the existence of unique solution for the fractional-order 
cases. For finding the numerical solution of the given system, we used a 
generalized predictor–corrector algorithm in the sense of the new generalized 
Caputo derivative and also justified the stability of the technique. To prove 
the importance and correctness of the numerically simulated results, we have 
performed a number of graphs at different fractional-order values. The given 
derivative and algorithm work very well to understand the dynamics of the 
given model. From this study the effects of greenhouse gases and hypoxia 
on the population of aquatic species can be clearly understood with memory 
effects. For the future scope, the given ecosystem can be further solved by 
any other fractional-order derivatives. Also, some new mathematical models 
can be proposed to simulate the structure of given real-world problems.
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