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Preface

This book is an outcome of lectures delivered by one of the authors to the post-
graduate students at the Department of Pure Mathematics, University of Calcutta,
India, for several years. The need of the students has motivated the authors to write a
textbook. The only prerequisites are good working knowledge of point-set topology
and linear algebra.

It is said that mathematics can be learnt by solving problems, not only by reading
it. To serve this purpose, this book contains a sufficient number of examples and
exercises after each section of every chapter. Some exercises are routine ones for the
general understanding of each section. We have given hints about difficult exercises.
Answers to all exercises are given at the end of each section. We hope that this
approach will help the readers for getting this beautiful subject accessible.

We do not believe that there can be any complete book on the topic of manifold.
We are sure our book is far from completion as such. However, we are equally sure
that our book has some exceptional merits, and students will be benefitted if they go
through the whole book with all exercises.

Chapter 1 is the study of calculus on R”. We have started the first section on
smooth functions. The concept of the diffeomorphic function is as important as
diffeomorphic manifold. We have given a few exercises on that. Tangent vector is
one of the powerful concepts of studying geometry. It has been defined with respect
to a curve in R” in the second section.

The germ of a function has been defined in the third section. The last two sections
are on inverse function theorem and implicit function theorem with examples and
exercises.

Chapter 2 is the study of manifold. We have defined topological manifold and
then smooth manifold in Sect. 2.3. Many exercises have been given for a better
understanding of the concept of atlas of smooth manifold. Germs on topological
manifold have been explained in Sect. 2.2. Stereographic projections and orientable
surfaces are two attractive concepts, which have been explained separately in Sect. 2.4
and 2.5, respectively. Product manifold has been explained separately in Sect. 2.6.
Smooth functions on smooth manifold have been explained with solved problems in
Sect. 2.7. In this section, we have included diffeomorphic smooth manifold. Tangent
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viii Preface

vector has been introduced with respect to a differentiable curve in Sect. 2.8. The next
section is the study of inverse function theorem for smooth manifold. Section 2.10
deals with vector field and its geometrical interpretation has been explained in the
next section. Section 2.12 deals with push-forward vector fields which lead to the
concept of submanifold and hence to critical points and regular points of the manifold.
We have discussed Submanifolds separately in the next section. Push-forward vector
fields give rise to another kind of vector field which has been explained with solved
problems in Sect. 2.14. Finally, the last section of this chapter gives the algebraic
interpretation of the vector field. It is also termed as flow while studying dynamical
system which is an interesting topic of mathematics.

Chapter 3 is the study of differential forms. Differential forms have wide appli-
cations in Lie group, differential topology, differentials and their multiple integrals
over a differentiable manifold. However, in this book, we have mainly considered
the first role played by differential forms on manifolds.

The first section of this chapter is on 1-form, which is also called cotangent space. It
can be thought of as dual vector space of tangent space of the manifold. Thus, tangent
space and cotangent space can be thought of as “siamese twins” at every point of
the manifold. Members of cotangent space are also called co-vectors. We have given
the formal definition of r-form (r > 1) in the next section. Differential r-forms are
tensor fields of type (0, r) which are skew-symmetric. They have wide applications
in thermodynamics. We have also studied exterior product or wedge product in this
section, which is nothing but the generalization of the concept of cross-product
between two vectors in 3-dimension. This beautiful concept was introduced by R.
G. Grassmann, which nowadays also called “Grassmann algebra” and the reason for
this name ““algebra” has been explained in this section for those students who are of
inquisitive nature. Exterior derivative to a manifold is the same as that of “curl” to
R3. All the classical concepts, namely gradient and divergence, can be expressed in
terms of this concept. We have given the proof of existence and uniqueness of such
operations. Finally, pull-back differential form has been studied in the last section.
This pull-back operation and exterior differentiation commute each other which has
been explained by a theorem, followed by many exercises.

The last chapter is on Lie group. The Lie group structure allows us to discuss
continuity and differentiability in a group structure. It was introduced by Norwegian
mathematician S. Lie in the late nineteenth century. Lie groups play an important role
in modern geometry. They are the fundamental building blocks for Gauge theories.

The first section is the study of Lie group and the two C* transformations on it.
The behaviour of a Lie group is determined by its behaviour in the neighbourhood
of its identity element, and hence a famous theorem has been studied in the next
section. Due to the two translations, two types of invariant vector fields occur in this
group. Naturally, two types of invariant differential forms are also there. Well-known
theorems and results have been studied in the next two sections.

For the unique structure of a Lie group, one should have a natural quest for studying
group homomorphism and algebra homomorphism on it. The unique feature is the
study of one-parameter group of transformations induced by the invariant vector field
of a Lie group. Section 4.6 is the study of the action of a Lie group on a manifold.
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Chapter 1 ®)
Calculus on R” Creck for

1.1 Smooth Functions

Let R denote the set of real numbers. For an integer n > 0, let R” denote the set
of all ordered n-tuples (x', x2, ..., x") of real numbers. Individual n-tuple will be
denoted at times by a single letter, e.g. x = (x', x%, ..., x"), y= (', y*, ..., y")
and so on.

A real-valued function f : U C R" — R, U being an open set, is said to be of
class C* if the following conditions hold:

(i) all its partial derivatives of the order less than or equal to k exist, and
(ii) are continuous functions on U.

By class C*°, we mean that all orders of partial derivatives of f exist and are contin-
uous at every point of U. A function of class C* is also called a smooth function.
Actually, “Smoothness” is a synonym for C*. By class C°, we mean that f is merely
continuous from U to R. By class C“ on U, we mean that f is real analytic on U.
A C? function is C* function but the converse is not true.

Example 1.1 Let f : R — R be defined by f(x) = x7. Then

2
%x‘i, x #0;

f/(x):{o, x=0.

Hence, f is C® but not C'.

Example 1.2 The polynomial, sine, cosine and exponential functions on the real
line are all C*°, which are also analytic, i.e.C®.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 1
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2 1 Calculus on R”

Problem 1.1 Let f : R — R be defined by

1
_Je 2, x#0;
foo = {o, x=0.
Show that f is a function of class C*.
Solution: Note that
1
, 0+h)— f(O i
F0) = lim LOED = SO e ®
h—0 h h—0 h

Puth = i, then
, 00
£(0) = lim ue™ (—)
Uu—>00 o0
Using L’Hospital’s rule, we find

2

, . 1 et
SO = MILIIE}O 2uet’ - uli)nc}o 2u 0.
Again
, 2 _a
fx)= —e 7.
by
Therefore
2 _% —u?
£0) = lim 20 = fim = {aking 1 = .
h—0 h U— 00 1 v h

ut

Using L’Hospital’s Rule successively, we will find

, 24
£(0) =2 lim -

u—co e’ + Sue + Sude”

Finally, we will find
S (0)=0.

Proceeding in the same manner, we will find
ff0)=0, n=1,2,3,.......

Hence, we claim that f is a function of class C*°.

Example 1.3 The function defined in Example 1.1 above, does not have power series
expansion at x = 0. Hence it is not a C* function.



1.1 Smooth Functions 3
Problem 1.2 Consider the functions

x <1;

k]

fix) =

1
e 7 x> 1.
fo(x) =0, for —oo <x < o0.
Prove that f,, f, are differentiable on R.

Solution: For x < 1, f,(x) =0,s0 f/(1) =0.Forx > 1, f/(x) =2(x — 1)e7xi2.
Now

fA+m =) _ . er

REO ==, i
1
.ou:z 1
=lim —, u=—
u—o0 e4 h2

fA=m—fM) _ . e
_ = llIm —
h h—0 h

Lf/(1) = lim =0.

Thus, f, '(1) exists and continuous. So f, is differentiable on R.
As f,(x) is a constant function, it has finite derivative everywhere and so f, is
differentiable on R.

Problem 1.3 Let f : R — R be defined by f(x) = x3. Show that the function g
defined by

g(X)z/xf(t)dt:/xtf%dt:Exg,
0 0 7

is C? but not C3.

Solution: Now g’(x) = f(x) = x3. Thus, g(x) is C'. Again g' (x) = %x%, s0 g(x)
is C? but not C3 at x = 0.

Exercises

Exercise 1.1 Let f : R — R be defined by

e v, x>0;

f(x):{O, x <0.

Show that f is a function of class C*°.

Exercise 1.2 Define f : R — Rby f(x) = x3. Is f~! of class C*?



4 1 Calculus on R"
Exercise 1.3 Let f : R — R be defined by

2 ol .
X+ x Cosx,x;éo,

f(x):{o, x=0.

Show that

(i) f is continuous.
(i) f is differentiable at all points.
(iii) the derivative is discontinuous at x = 0.

Exercise 1.4 Let f : R — R be defined by

2 i 1 .
X 51n;,x7£0,

f(x)z{o, x=0.

Show that f is differentiable at x = 0 but f' is not continuous at x = 0.

Answers
1.2 No.

Fori =1,2,...,n,letu’ : R" — R be the natural co-ordinate functions i.e.
u'(p) = p', where p = (p', p%,..., p") € R (1.1)

Such u'’s are continuous functions from R” to R and we call this n-tuple of functions
ul, u?, ..., u"; the standard co-ordinate system of R". If f: U CR" - R" is a

mapping, then f is determined by its co-ordinate functions f!, f2, ..., f" where
fi=uof i=1,273,....n (1.2)
and each f' is a real-valued function. Thus

() =P, £F2 )y, f"(P)V p eR". (1.3)

The map f is of class C* if each component function fi, i=1,2,3,...,nisalso
SO.
If f:U C R" — R™ is a mapping such that

2

we define the Jacobian matrix of f at (x', x2, ..., x"), denoted by J, as
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ot ot af!
axl ox2 "7 9xn
i A

J = ax! oaxZ 7 Bxn

T TN i

ax! 9x2 9x"

provided each of its first-order partial derivatives exist on U.
If m = 1, the matrix (;’_f i cee of ) is called the gradient of f, denoted

by ‘grad f’ or Vf.

The function f is said to be continuously differentiable on U, if each f' has
first-order continuous partial derivatives on U. If f is continuously differentiable on
U and the Jacobian is non-null, then f is one-to-one in U.

A mapping f : U CR" — V CR", U, V being open sets in R", is said to be
homeomorphism if

(i) f is bijective and
(i) f, f~! are continuous.

Problem 1.4 Let f : R — R be such that f(x) = 5x + 3. Show that f is a home-
omorphism on R.

Solution: Here

J@) = f(y)=5x—-y)
= f(x) = f(y) ifandonly if x = y.

Thus, f is one-to-one. Further to examine whether f is onto, we are to examine if
there exists a pre-image x of y under f such that f(x) = y holds. So y has a pre-
image ysi in the domain set R. Since y is arbitrary, each element in the domain set
R has a pre-image under f. Thus, f is onto. Hence, f is bijectiveso f~! : R — R

exists, which is defined by
x—3

) = -

Here f~!is continuous. Also, f is continuous. Consequently, f isahomeomorphism.

Problem 1.5 Let f : R — R be such that f(x) = x3. Test

(i) whether f is of class C* or not.
(ii) whether f is a homeomorphism or not.
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Solution:

(i) Here
’ _ . 2 _
S = }{;nloh =0
f(x) =3x2.

Thus f has a finite derivative and f is of class C*°.
(ii) Here

f@=fym=x"=y
= f(x) = f(y) ifandonlyif x = y.

Thus, f is one-to-one. Further to examine whether f is onto, we are to examine
if there exists a pre-image x of y under f such that f(x) = y holds. So y has
a pre-image y% in the domain set R. Since y is arbitrary, each element in the
domain set R has a pre-image under f. Thus, f is onto. Hence, f is bijective so
f~!': R — R exists, which is defined by

—1 1
) =xs.
Here f~!is continuous. Also, f is continuous. Consequently, f is a homeomor-

phism.

Exercises

Exercise 1.5 Let f : R — R be such that f(x) = x2. Is f a homeomorphism on
R?

Exercise 1.6 The function f : (—1,1) — R is defined by f(x) = % Is fa
—X
homeomorphism on (—1,1)?

Exercise 1.7 Let f :( — %, %) — R be such that f(x) = tanx. Show that f is a

homeomorphism.

Exercise 1.8 Let f : R? — R? be such that ¢ (u, v) = (ve*, u). Is ¢ a homeomor-
phism on R??

Exercise 1.9 Consider the mapping ¢ : R3 — R3 given by
p(x', x% %) = "+ 1,02 42,57 +3).

Show that ¢ is a homeomorphism.



1.1 Smooth Functions 7

Answers
1.5 No. 1.6 Yes. 1.8 Yes.

Remark 1.1 A homeomorphism between open subsets of R” and R™, n 7 m is not
possible. For details, refer to any book on topology.

A mapping f : U CR" — V CR", U, V being open sets in R”, is said to be dif-
feomorphism if

(i) f is a homeomorphism of U onto V and
(ii) f, f~" are of class C™.

Problem 1.6 Let f : R — R be such that f(x) = x>. Test whether f is a diffeo-
morphism or not.

Solution: We have shown in Example 1.5 that f is a homeomorphism and f is of
class C*°. Now 1

) = xo.
Such f~lisnot C', as (f~'(x)) = %x’%, which is not defined at x = 0. Thus f~!
is not of class C*. Consequently, f is not a diffeomorphism.

Problem 1.7 Let f : R? — R? be such that f(u,v) = (ue® + v, ue® — v). Show
that f is a diffeomorphism.

Solution: Note that

aft of! v, v
S S e’ ue' +1

|J|:‘_§f‘2 ;;gz‘= evuev—l'z_zevﬁ’ v
du v

Hence, f is invertible. If

Em = f(x'x?), then & =x'e” +2%, p=x'e" —x2

Thus &£ + n = 2x'e* and &€ — n = 2x2. Consequently,
21 1 Lo-6)
x =§(§—77) and x =§(§+n)€2" .

We now define
n—§

1 1
EE (5(5 +ne E(E - 77)) :

Also, f, f~!is continuous, hence homeomorphism. Also, both f, f~! are of class
C*. So f is diffeomorphism.

Problem 1.8 Let f : R3 — R3 be such that fu, v, w) = (ue® 4+ ve®, ue® — ve®,
). Test whether f is a diffeomorphism or not at (1, 1, 0).
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Solution: Note that

w

e? e? ve? + ue?
|J| = |e” —e® —ve® +ue® | = —e** #£0 at (1, 1,0).
0 0 1

Thus, f is invertible at (1, 1, 0). Again, if (§, n,0) = f(u, v, ®), then

1
E4n=2ue" = u=E+me”

1
E—n=2e"= v=_@E-—me™

0 =w.

We now define

e, 0) = (%ﬂ, é%e—ﬁ, 9) .

Also f, f —1is continuous, hence homeomorphism at (1, 1, 0). Also, both are of class
C*. So f is diffeomorphism at (1, 1, 0).

Exercises

Exercise 1.10 Let f : (—%, %) — R be defined by f(x) = tanx. Show that f is a
diffeomorphism.

Exercise 1.11 Let ¢ : R> — R? be defined by ¢(u,v) = (ve, u). Determine
whether ¢ is a diffeomorphism or not.

Exercise 1.12 Consider the map f : R* — R?/{0,0} defined by f(x,y) = (e*
siny, e* cos y).

(i) Prove that Jacobian determinant of f does not vanish at any point of R>.
(ii) Is f a diffeomorphism?

Exercise 1.13 Let ¢ : R? — R3 be the map defined by

2 3
xl — er +€2x

1 3
2 2x er

Show that ¢ is a diffeomorphism.
Exercise 1.14 Consider the C*® function ¢ : R?> — R3 defined by

¢(xl,x2, x3) = (x1 cosx> — x? sinx3,xl sinx> + x2 cosx3,x3).

Prove that ¢| is a diffeomorphism from the unit sphere S* onto itself.
52



1.2 Tangent Vector 9

Exercise 1.15 Prove that the mapping ¢ : R> — R3 given by f(u, v, w) = (usinw
+ vcosw, u cosw — vsinw, w) is a diffeomorphism.
Answers

1.11 diffeomorphism. 1.12 (ii) No, f is not one-to-one.

1.2 Tangent Vector

It is known that in R3, any line, say any curve y (), through a point p € R, parallel
to a non-zero vector v has equation of the form

y(t) = p + tv, t being the parameter.
Thus, we can write
y@) ="'+, PP+ 1% pP+1v’), p=(p', pPph), v= (" 0% 0.
Hence, any point, on this curve, has the co-ordinate, say (x!, x2, x?), where
M=yi)= @ +1), i =1,2,3.

Thus, in R”, the curve through p = (p', p?,..., p"), parallel to the direction of the
non-zero vector v = (v, v%, ..., v") is of the form

y'(t) =l(p1 + tv‘l, p? + 2, pt ), y0) = (L pA ... p)=peR
xt=y'(t)=(p'+1tv),i =1,2,3,...,n, t being the parameter.

(1.4)

Let f be a C* function in a neighbourhood of p of R”. Then the tangent vector

at p, in the direction of v, is defined to be the directional derivative, denoted by D, f,

as follows:
fly@) — f(r0)) _ d

D, f = lim —f ()

t—0 t

_Zaf(y(t))’ dy' (1)
- ayt =0 gy

=3 AP iy (1.4
ax!

=0

lt=0

_ ;9f(p)
D,f=) v Tl (1.5)

‘We also write

9
D = Zvlﬁ(p). (1.6)
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Fig. 1.1 Tangent plane

Thus, the directional derivative acts as an operator on functions (Fig. 1.1).

Remark 1.2 Note that in R?, a vector at p, is a tangent vector, defined by v say, to
a surface S in R, if it lies on the tangent plane at p.

Thus, the tangent space at p of R”, denoted by Tp (R™), is the collection of all
tangent vectors v at p. Such a space is a vector space and hence from the Fundamen-
tal Theorem of finite-dimensional Vector Space, any v € T,(R") can be expressed

uniquely as v = Z vie, Vv e€R, where{e,e,,..., e} isabasis of T,(R").

i=1
Problem 1.9 Let v = (2,3, 0) denote a vector in R®. Find D, f, for a fixed point
p = (=2,m, 1) where f : R> — Ris defined by f = x'x Cosx2

Solution: In this case, p +tv = (=2 + 2¢, w + 3¢, 1). Therefore, f(p + tv) =
2 cos 3t — 2t cos 3¢. Hence,

d
D, f= Ef(lﬁl-tv)": =-2.

Alternative Method

From (1.5), we obtain D, f = Z v of (p) In this case

D, f =2(xcosx?) (=2, 7, 1) + 3(—x'x sinx?) (=2, 7, 1)
= -2.

Problem 1.10 Let y(t) = (zgéilt —C(s)isnzét) <§> be a curve in R® with initial

point p € R3 be such that y(0) = p. Find the velocity vector y'(0) at p. Hence
compute D, f, where f : R> — R is defined by f = 2x + y°.

Solution: Note that

d
EYU)| = E(x sin 2f + y cos 2t, x cos 2t — ysin2t)] = (2x, —2y).

=0
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Thus, the velocity vector at p in R? is given by

a d
2x— —2y—.
0x ay
Hence
D, f= Zv —(p) where v = (2x, —2y)
is given by
D, f = 4x — 6y°.
Alternative Method

In this case
p+tv=(x,y) +12x, =2y) =((1 +20x, (1 = 21)y).

Thus
f(p+1tv) =2(1+20)x + (1 —26)%y°

Consequently
d
D,f = f(p+tv)eo=4x - 6y°.

Problem 1.11 Let p = (1, 1, 0) be a point in R* and let
y,(t) = (¢',cost, 1), t € R

be a curve with initial point p € R3. Find the velocity vector v in R® and hence
compute D, f, where f : R* — R is defined by f = xz cos y.

Solution: Here
y t — 37 sint. 1 =(1.0.1 1
dt p( )it_O ( ’ ’ )|t=0 ( > ) .

Thus the velocity vector at p in R? is given by

a a

ax 9z

Hence

D f= Zv —(p) = cos 1. (1.7)
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Alternative

Here
p+tv=(1,1,004+17(1,0,1) =1 +1¢1,1).

Therefore,

d
D, f= Zf(l? + tv)];=0 = (cos 1 + 2t cos 1)|t:0 =cos 1.

Exercises

Exercise 1.16 Let v = (2, —3,4) denote a vector in R3. For a fixed point p =
(2,5,7), compute D, f where

(i) f : R> = Ris defined by f = x3y.
(ii) f : R — Ris defined by f = 7.
(i) f : R — R is defined by f = e* cosz.

Exercise 1.17 Let p = (x, y) be a point in R? and let

sint cost X
y (1) = . , teR
? cost sint y
be a curve with initial point p in R?. Find the velocity vector v in R%. Hence compute

D, f, where

(i) f:R?>— Risdefined by f = x?y.
(i) f:R?>— Risdefined by f = e* cosy.
(ii) f:R?— Risdefined by f = x cos y.

Exercise 1.18 Let p = (1,0, 0) be a point in R3 and let

y,(t) = (¢',sin2z,1), t€R
be a curve with initial point p in R3. Find the velocity vector v in R%. Hence compute
D, f, where

(i) f:R?>— Risdefined by f = x3y.
@) f:R?— Risdefined by f = xe°.
(ii) f :R? — Risdefined by f = ye* cosz.

Answers

1.16 ()96 (i) 4-77  (iii) 2¢*(cos 7 — 2sin7)
1.17 () x%y (i) e“(xcosy + ysiny)  (iii) x cosy + xysiny
1.18 (i)2 ()2  (iii) 2e
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1.3 Germ of a Function

Let us consider the set of all pairs (f, U) where f : U C R" — R isa C* function
and U is the neighbourhood of a point p of R". If (g, V) is another such pair, then
we define an equivalence relation in this way:

(f, U) is equivalent to (g, U), symbolically (f, U) ~ (g, V) if there exists an
open set W such that f = g| , where p € W C U N V. It can be shown that ‘~’

is an equivalence relation. Th‘é equivalence class (f, U) is called the germ of f at

p € U C R". We write it as F(p). It can be shown that such F(p) of R” is

(i) an algebra over R.
(i) a module over R,
where the defining relations are

(f+8 )= f(p)+gp)
(fe)(p) = f(pg(p), (1.8)
A)(p) =Arf(p), VY f,g e F(p),r eR.

The proof, of (i) and (ii) stated above, is beyond the scope of this book and hence it
is left to the reader.
From (1.5), we now observe that

D,(f&)(p) = (D, f)g(p) + f(p)(D,g). (1.9)

Such an equation is also known as Leibnitz Product Rule.

Problem 1.12 Let v = (x3, —yz, 0) denote a vector in R®. For a fixed point p =
(x,y,2), compute D,(fg) where f : R> — R and g : R? — R are defined respec-
tivelyby f = xz and g = y>.

Solution: We know from (1.9) that

D, (fg)(p) = (D, f)g(p)+ f(p)D,g. (1.10)

Now
pHtv=(x,y,2) +1(x* —yz,0) = (x +1x°, y — 1yz, 2).

Thus
f(p+tv)=(x+ tx3)z =xz+tx°z.

Therefore



d
D, f= Ef(P"i‘fU)LZO =x'z,

g =y f(p)=xz,
g(p+1tv) = (y —ty2)*.

Therefore

d
D,g = —g(p+1v)]_,=-2y"z

Thus, from (1.10), we have

D,(fg)(p) = x’y*z — 2xy*7*.

Alternative

Here af
Df=)" v i) = x’z.
Also ag
D g= Z v’ﬁ(p) = —2y%z.

Using (1.10), we get the desired result.

1 Calculus on R”

Problem 1.13 Compute D,(fg) where f :R* — R and g : R* — R are defined
respectively as f = xy*> — yz2, g = xe” and v = (—1, 2, 1) denotes a vector in R3,

fora fixed p = (2, =2, 1).

Solution: Here

p+tv=02—t,-242t,14+1)

f(p)=10
fp+tv)y=2 -0t —2) =20 — Dt + 12
Now J
Al w)|,_,=D,f=-18.
Again
g(p)=2e72,  gp+tv)=Q2—1e* 2
So
d =D, g =3¢’
E§(P+tv)|t:0— g =23e".
Thus

D,(fg)(p) = —6e2.
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Exercises
Exercise 1.19 For any constant function C, prove that D,C = 0.

Exercise 1.20 Let v = (x, —y) denote a vector in R?. For a fixed point p = (x, y),
compute D, (fg) where f : R? — R and g : R*> — R are defined respectively by:

() f=xyandg =e*cosy
(ii) f=e"sinyand g =xcosy
(iii) f =xe’ and g = ye*.

Exercise 1.21 Let v = (1, =2, 1) denote a vector in R3. For a fixed point p =
(2, =2, 1), compute D, (fg), where f : R> — Rand g : R? — Raredefined respec-
tively by:

() f=x%yzand g = e cosy
(ii) f=e"sinyand g = xzcosy

Answers

(1.19) Use (1.9) and R-linearity property.

(1.20) i) (x%’ycosy+x’ycosy + x2y?siny)e*. (i) e* (x> + x)sinycosy —
e*xycos2y.
(iii) (x>y — xy?)e* Y.

1.21) (i) 16€2(sin2 —2cos2). (i) —e*(5cos2sin2 + 4 cos4).

1.4 Inverse Function Theorem

Suppose U be some open subset of the Euclidean space R” and the non-linear map-
ping F : U — R”" is continuously differentiable. Let x € U. Suppose that, at the
point the differential F' (%) : R” — R” is one-to-one and onto. This implies that the
non-linear map F inherits local invertibility in the vicinity of the point x. Precisely,
we can say that 3 an open subset V of R” such thatx € V and an open subset W of R”
satisfying F : V — W is one-to-one and onto. Also, the inverse F ! is continuously
differentiable. This originates the notion of Inverse Function theorem.

Theorem 1.1 (Inverse Function Theorem of a single variable) Let U € R be open
and suppose that the function F : U — R is a continuously differentiable function.
Let a € U such that f'(a) # 0. Then there exists an open interval I containing the
point a and an open interval J containing its image f(a) such that the function f :
I — J is one-to-one and onto. Moreover, the inverse function theorem f~' : J — I
is also continuously differentiable, and for a point y in J, if x is a point in I at which
f(x) =y, then (Fig.1.2)

VR
(f )(y)—f,(x).
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Fig. 1.2 The inverse Y.
function theorem of a single

variable m

f(a)

Proof Suppose f'(a) > 0. Since a is an interior point of U and the function f :
U — Ris continuous, therefore 3 a real quantity s > 0 such that the closed interval
[@a —s,a+s]C U and f'(x) > 0 for all points x € [a — s, a + s]. By virtue of
the Mean value theorem, we can say that the function f : [a —s,a +s] — R is
strictly increasing. In particular, f : [a — s, a 4+ s] — Ris one-to-one. Furthermore,
taking into consideration the Intermediate Value Theorem, if the point y lies between
f(a—s)and f(a)+s,3x € (a—s,a+s)with f(x) = y.Letusdefine I = (a —
s,a+s)andJ = (f(a) —s, f(a) +s) = (b —s,b+ s)whereb = f(a). Then the
function f : I — J is one-to-one and onto.

For the concluding part of the theorem, it follows from the Intermediate Value
theorem that J is a neighbourhood of b. For y € J, with y # b define x = f~! so

that | .
- fe) 1
y—b T f—f@”

X—a

Since the inverse function f —-1'. J — R is continuous, therefore

limx =lim f~'(y) = f~'(b) = a.

y—=b y

By the composition property for limits, the quotient property of limits, and the defi-
nition of the differentiability of f : I — J ata, it follows that

o =o)L 11
lim = lim — — = .
o b v TO-T@ = f(g)

Thus f~' is differentiable at b, and its derivative at b is given by ( f ‘1)/(y) = ﬁ
Theorem 1.2 (Inverse Function Theorem in the plane) Let U (C R?) open and sup-
pose that the mapping F : U — R? is continuously differentiable. Let (a,b) € U
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<
-

] />

F—l

R2 R?

Fig. 1.3 The inverse function theorem of double variables

such that the derivative matrix F'(a, b) be invertible. Then 3 a neighbourhood V of
(a, b) and a neighbourhood W of its image F(a, b) such that F : V. — W is one-
to-one and onto. Moreover, the inverse mapping F~' : W — V is also continuously
differentiable, and for a point (u,v) € W, if (x, y) € V such that F (x, y) = (u, v),
then the derivative matrix of the inverse mapping at the point (u, v) is given by the
formula (Fig. 1.3)

(F™Y (u,v) = F (x,y)™

Observe that in the proof of the last theorem, we used the Intermediate Value
Theorem, a result that does not easily generalize to mappings whose image lies in
the plane R?. An n x n matrix is invertible if and only if its determinant is non-zero,
and when the matrix is invertible, there is a formula called Cramer’s Rule for the
inverse matrix. For 2 x 2 matrices, Cramer’s Rule is clear by inspection. Indeed,

fora2 x 2 matrix A = <a” ‘2> ifdet A # 0 then A~ '—d—< “ _a”>.ln
a et A —a a

21 22 11
particular, for the mapping F : U — R? in the statement of the Inverse Function

Theorem in the Plane F'(a, b) holds if and only if det F'(a, b) # 0. If the mapping
F : U — R? is represented in terms of component function as

F(x,y) = (F (x, ), F,(x,y), (x,y) €U,

then
a F,

, xy) S y)
F(x,y) = o, o

Xy ° o =, y)

So the assumption det F'(a, b) # 0 is equivalent to

oF,
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The above explicit formula for the inverse of a 2 x 2 matrix permits us to use for-
mula (F~") (u, v) = F'(x, y)’1 to compute the partial derivatives of the component
functions of the inverse mapping F~' : W — V. Indeed, write the inverse mapping
in component functions as

F_l(u, v) = (g(u,v), h(u, v)), (u,v) e W,

such that ” ”
(Fil)/(l/l, U) — (g_%(lfh U) %(us U)) )

H(uﬂ U) %(uv U)

For a point (u,v) € W, let (x,y) € V at which u = F,(x,y), v= F,(x, y). For
notation, set J(x,y) = F ' (x, ¥). Then, using the above computation of the inverse
of a2 x 2 matrix, it follows that formula F~'(u, v) = [F'(x, y)]~" is equivalent to

g 1 BF2

E(M, v) = Ty (x,y)
dg 1 9F
—(M,U):— '_(xvy)
ov J(x,y) 9y
LI TN
—(u,v) = — . x
ou Ty ax Y
oL aF
—(u,v) = =L (x, y).
dv J(x,y) 0x Y

Example 1.4 For a point (x, y) € R?, let us define
F(x,y) = (exp(x —y) + X’y +x(y = 1)°, 1+x> +x* + (xy)").

Since each of its component functions is continuously differentiable, therefore, the
mapping F : R? — R? is continuously differentiable. At the point (a, b) = (1, 1),

we have
, 30
F{,1)= <11 5).

The determinant of F’ (1, 1) is non-zero. In view of the Inverse Function Theorem, 3
neighbourhoods V of the (1, 1) and W of its image (2, 4) such that the mapping F :
U — V is one-to-one and onto and that the inverse mapping F~' : V — U is also
continuously differentiable. Moreover, if the inverse is represented in components
as F~'(u, v) = (g(u, v), h(u, v)), then it follows that

11 3h 1
—2.4 =

3
280, 4) = -,
ou 15" ov 5

1 ag dh
S, 22,4 =0, —(2,4) =
3 50 &Y ou &Y
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Example 1.5 Let us define the function f : R> — R? by
f@x,y) = (cos(x® + y), sin(x> + y)), (x,y) € R,

Then f is continuously differentiable as each component function is also so. But
is any point at which the conclusion of the Inverse Function Theorem holds true. To
see this, observe that if (4, v) € f (R?), then u? + v? = 1, a circle of radius 1 with
centre at the origin. The image does not contain an open subset of the plane, so A
any open sets U and V in R? such that f : U — V is one-to-one and onto.

Example 1.6 Define the function f : R> — R? by

f(xv )7) = (-x2 - yzszxy)v ()C, )7) € Rz'

Since each of its component function is obviously continuously differentiable, there-
fore, f is also so. Consider (a, b)(# (0,0)) € R2. We have

/ 2a —2b
fla,b) = <2b 2a )

so | f (a, b)| = 4(a® + b?) # (0, 0). Applying Inverse Function Theorem, it follows
that there exist neighbourhoods U of (a, b) and V of f(a, b) such that the mapping
f :U — V is one-to-one and onto and has an inverse f~':V — U that also is
continuously differentiable. Suppose f~!(a, b) = (g(a, b), h(a, b)). Then, if we set
(@.,b) = f(a,b), it follows that

a 8g(~ 5y b
—, —(a,, =—
2@ +b%" 9p °C 2(a? + b?)
oh - —b a

—(a y b e ) = .
oa G0 = 30 2@ + b2

g . -
S@.b)=
da @.5.)
oh -
—(a,, b))
ab

But the assumptions of the Inverse Function Theorem fails to be true at the point

(0, 0), since
, 00
f0,0)= <00>‘

Moreover, Inverse Function Theorem also fails at this point because if f(x,y) =
f(—x, —) holds for every (x, y) in the plane, # neighbourhood of (0, 0) on which
the mapping f is one-to-one.

Problem 1.14 The point (1, e) lies on the graph of y = xe*. Find an open set con-
taining y = e, such that 3 is a continuous function x = g(y) defined on it, for which
x=g(y)=>y=xe‘and g(e) = 1.
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d
Solution: Since d_y = (1 +x)e” > 0 on (—1, 00), the given function is injective
x

when restricted to this interval and has range (—e™!, 00), which is an open subset U
of R containing e. Therefore, there is a continuous inverse g with domain U.

An Interpretation of the Inverse Function Theorem

Given two functions F, : R — R and F, : R? — R and two numbers a, and a,,
consider the system of equations

F(x,y)=a,; F,(x,y)=a,.

A natural question arises whether there exist any solutions to this system of equations
and, if there be any, then the solution is unique. If we define the mapping F : R? — R?
by F(x,y) =(F,(x,y), F,(x,)) for (x,y) € R?, these two questions about the
existence and uniqueness of the solutions of the system can be rephrased as questions
about the image of the mapping F : R> — R? and whether it has the property of
being one-to-one. The following example shows how the Inverse Function Theorem
provides information about systems of equations. Consider the system of equations

EV Py +x(y =1 =214+ 42t () =4

Observe that the point (x, y) = (1, 1) is a solution of this system. The mapping
F : R?> — R? defined by

Fx,y) =" +x*y+x(y— D’ 1+ x> +x* + (xy)°).

for (x, y) in R? is precisely the mapping considered in the Example 1.4. Referring
to Example 1.4, we can say that 3a § > 0 and a neighbourhood U of the point (1, 1)
such that for any numbers a, and a, with (a, — 2)> + (a, — 4)*> < 82, the system of
equations

TV y+x(y - D =a; 1+ 2N+ () =q,

has exactly one solution.
Now we are going to state General Inverse Function Theorem.

Theorem 1.3 (Inverse Function Theorem on R") Let U (C R™) be open and suppose
that the mapping F : U — R" is continuously differentiable. Let x, € U at which
the derivative matrix F'(x,) is invertible. Then 3 an open neighbourhood V of the
point x, and an open neighbourhood W of its image F(x,) such that the mapping
F : V — W is one-to-one and onto. Moreover, the inverse mapping F~' : W — V
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is also continuously differentiable, and for a point y € W, if x is the point in V such
that F(x) =y, then
FHm=FFE o)™

Before we proceed with the proof of the Inverse Function Theorem for n-variables,
let us prove the following lemma:

Lemma 1.1 Suppose f : O(C R") — R™ is differentiable in a convex open set O
and there exists M € R such that | f (x)| < M, ¥ x € O. Then

I1f () — f@)l < M||b—all, Va,b e O.

Proof Let us fix a, b in O and define y : R — R", V¢ € R. Since O is convex,
y(t) € E provided ¢ € [0, 1]. Let us set g(¢) = (f o y)(¢). Then

g0 =fy®y®=fro)-a,
which implies
lg O] < |f y@)|lIb —all < M|lb—all, Vi €[0,1].
This completes the proof of the lemma.

Proof of the Main Theorem:
Since F' is continuous at x, , therefore, for a preassigned € > 0 there exists an open
neighbourhood V C U of x, such that

xeV = |F(x)—F (x| <e. (1.11)

Let us choose € = . Then the preceding equation becomes

1
2|F (x,)7"]

’ ’ ’ ’ ’ 1
[F (x) = F (x,)| < = |F ()" IF () = F(x)] < 5 (@12

1
|F(x,)~]

Then we see that forx € V, F /(x) is invertible. Now, for any y € R", let us define a
function ¥, : V. — R" by

Y =x+F ) ' (y—F®)=F @) (F&)+y—Fx). (L.13)

Then
x is a fixed pointof ¥ & y = F(x). (1.14)
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mn
Fig. 1.4 Inverse function theorem on R”

Now as a consequence of the chain rule the composition function ¥, has

¥, = F () (F (x) = F ().

Combining (1.12) with the last equation, we obtain
, 1
Y ()] < 5 X € V. (1.15)

Hence, by virtue of Lemma 1.1, it follows that

v, (x) =¥, DI < [lx, = x|l VX, x V. (1.16)

Thus, ¥, has at most one fixed point in V' so that by (1.15), F(x) = y holds for at
most one x € V. This proves F is injective on V.
Next, consider F (V) = W. Then F : V — W is an injective map. Therefore,
there exists an inverse map F~! : W — V asillustrated in the figure below (Fig. 1.4):
In order to complete the proof of the first part of the theorem, it only remains to
show W is open. Choose w, € W be arbitrary. Then for some x, € V, F(x,) = w,.
Let € > 0 be sufficiently small enough such that ||[x — x_|| <€ = x, € V, so that

Bx)={xeR":|x—x]||<e}CV.
To show W is open, it suffices to show that

yeR", |ly—wl|l < =yeW.

€
2|F (x)7 "

In order to prove this, suppose ||y — w,|| <
find

e
AR Then for any x € B (x,), we
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1, () = x (| < 1Y, () = ¥, CO)I + 1Y, (x,) — x.]|

1 , _

< Sl =21+ IF ()™ 6 = FeO)IL by (113), (1.16)
€ '

< SHIF @)y —wl

<SP )™

=2 2 RF GO

567

which proves ¥ (x) € B, (x,). Consequently, by virtue of (1.16), ¥ : B .(x,) —
B_(x,) is a contraction map, where B, (x,) is closed in R". We can invoke contraction
principle in R”, to conclude that i, has a unique fixed point in B, (x,) C V. Thus,
by (1.14), we have y € F(B,(x,)) C F(V) = W. This completes the argument that
W is open.

Furthermore, for any € > 0

lly —w,ll < , yEW=ye F(B.(x))

€

2|F (x)7]
= y = F(x) for some x € B_(x,)
= F~'(y) = B.(x,)
= IF' () —xll <e

which proves the continuity of the inverse map F~'.

To prove the second part of the theorem, let us proceed as follows:
Here for sufficiently small /2, we have

F(F7' () +h) = F(F~'(») = F (F~' (") (h) + ||| R(h), (1.17)
where R(h) being the remainder term and R(h) — 0 as ||| — 0. Note that,
F~'(y) € V.= F'(F~'(y)) is invertible. Since F~! is continuous, therefore, for

sufficiently small k, suppose & = F~'(y + k) — F~'(y). Then for every such k, we
find

F(F'(&y+k) — F(F'(») = F(F'(»)(h) + ||h]|R(h).
Applying F'(F~'(y))~" to both sides of the last equality, we get
h=F F () "k — [1hIF (F ()" (RM)), (1.18)

which is the same as

F'y+k) = F'(3) = F(F o)~ &) = IhI1F (F~' () (R().
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We claim the existence of (F~') (y) and (F~") (y) = F (F~'(y)). For this, it suf-
fices to show that

hll
%F (F~')(R(1) — 0 as ||k]] — 0.

By continuity of F~!, we have ||k|| — 0 = ||k|| — 0. So it is sufficient to prove

Ml remains bounded. Now (1.18) yields

k1l < [F (F~ )KL+ 1R TE (F~ )R,

which further implies

[|Al] T T
W(l — [F (F7 I [IRMWIN) < |F (FH ).
h
Since ||k|| = 0 = R(h) — 0, it follows that % remains bounded. Thus, for every

y € W, we prove the existence of (F~!) (y) and (F~") (y) = F (F~'(y)). Further-
more, the equality shows that (F~")" is the composition of F~!, F" and the inversion
maps. All these are continuous, and therefore, (F ’1)’ is continuous. This establishes
the last part of the theorem.

Remark 1.3 1. Insummary, F is locally invertible at x, with a continuously dif-
ferentiable local inverse or F has a continuously differentiable local inverse
at x,. The term local inverse here refers to the function F~!.

2. In the proof of the above theorem, we have used the notion norm of a linear
mapping and the Contraction Principle. For details, the reader may refer to
any standard book on Linear Algebra and Multivariable Analysis.

3. The benefit behind using the contraction principle in the proof of Inverse Function
Theorem is that, it can be extended to the condition when R" is replaced by an
infinite-dimensional space. Alternatively, it is possible to prove the theorem
using the compactness of a closed ball in R”, where the above benefit fails to be
true.

Problem 1.15 Let U and V be open subsets of R" and let F : U — V be contin-
uously differentiable and bijective, so that the inverse map F~':V — U exists.
Suppose F'(x) is invertible for every x € U. Show that (F~")" exists on the entire
given set V.

Solution: Let ¢ € V. Then g = F(p) for some p € U. Since F "(p) is invertible,
in view of the inverse function theorem 3 open sets U, C U and V, C R" such that
peU, and F(U)) =V, and F has a differentiable local inverse on V,. But then
q = F(p) € V, and the local inverse is, therefore, differentiable at g. However, F -1

has to agree with the local inverse, and therefore, differentiable at g.
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Problem 1.16 If F : E — R" is a continuously differentiable mapping of an open
set E C R" and if f (x) is invertible for every x € E, then prove that f is an open
mapping of E into R".

Solution: Let U C E be open and b € F(U). Then ¢ = F(p) for some p € U.
Since F'(p) is invertible, the inverse function theorem yields open sets U, C U
and V C R" such that p € U, and f(U,) = V. Butthen F(p) € V C f(U). Since
qg = F(p) and V is open, implies f(U) is open.

Remark 1.4 Here f : E — R” is an open mapping means that f maps every open
subset of E into an open subset of R".

Problem 1.17 Let U be an open subset of R" and let f : U — R" be a continuously
differentiable map such that f'(x) is invertible for every x € U. Suppose V is an
open subset of U such that its closure V is bounded and contained in U, and f is
injective on the closure. Show that the image f (V) is the closure of an open set.

Solution: It is trivial to show that f(V) C f(V). To prove the reverse inclusion,
consider any y € f(V). Then 3 a sequence x, in V such that f(x,) — y. Since
V is bounded (hence compact), x, — x(€ V) when x, is replaced by a suitable
subsequence. Since f is continuous, it follows that f(x,) — f(x),sothaty = f(x).
Since x € V, we have y € f(V). So f(V) C f(V), and hence f(V) = f(V). By
virtue of the last problem, note that the set f(V), of which f (V) is the closure, is an
open set.

Exercises

Exercise 1.22 Define the function F : 3 — R?, where B = {(x,,x,) € R? : x, #
0}, by

y, = F,(x,,x,) =x,cosx,, y, = F,(x,,x,) =x,sinx,, x, #0.

At what points (x,, x,) € P does the Inverse Function Theorem apply?

2 2

Exercise 1.23 Consider the equation % + % =1, (x,y) e R2.

(i) Explicitly define the function g : I — R that has the property that in the neigh-
bourhood of the solution (2, 3), all the solutions are of the form (x, g(x)) for
x € I and check that

(i) Explicitly define the function h : J — R that has the property that in a neigh-
bourhood of the solution (2, 3), all the solutions are of the form (h(y), y) for y
inJ.

Exercise 1.24 Let f : R — R such that f(x,y) = (x> 4+ y, 2x + y?). Find f and
determine the values of (x, y) for which f is NOT invertible. Given that f is invertible
at (0, 0), let g be its inverse. Find g (0, 0).
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1.5 Implicit Function Theorem

Let U be an open subset of the plane R? and f : U — Ris continuously differentiable
function. In general, the solution set of the equation is not the graph of a function
expressing y as a function of x. Hence, the solution set is a very complicated subset of
the plane. However, if the point (a, b) is a solution of this equation and z—f (a,b) #0,
then 3 a neighbourhood of the point (a, b) with the property that the soﬁ]ltions of the
above equation that are in this neighbourhood make up the graph of a continuously
differentiable function g : I — R, where [ is an open interval about a. Moreover,
the derivative of the implicitly defined function g : I — R can be computed in terms
of the partial derivatives of the function f : U — R. This concept is called Dini’s
Theorem. It has an extension, called the General Implicit Function Theorem, that
provides a similar local description of the set of solutions of an equation of the
form F(u) =0, u € U, where U is an open subset of Euclidean space R"** and the
mapping F : U — R"** is continuously differentiable.

Theorem 1.4 (Dini’s Theorem) Let U C R? be open. Suppose that the function
f : U — Ris continuously differentiable. Let (a, b) € U such that f(a,b) = 0 and
af

8—(a, b) # 0. Then 3 a positive real quantity r and a continuously differentiable
y

function g : I — R, where I = (a — r,a + r) such that
flx,gx)=0,Vxel (1.19)
and
whenever |x —a| <vr, |y —>b| <rand f(a,b) =0, theny = g(x). (1.20)

Moreover,

of af /
a—(x, g(x) + = (x,8(x))g (x) =0, Vx € I. (1.21)
X ay

a a
Proof Suppose a—f(a, b) > 0. Since U is open and the function a—f :U —>Ris
Yy

continuous and positive at the point (a, b), 3 positive numbers m and n such that
the rectangular region R = [a —m,a +m] x [b —m, b+ m] C U and

of
5(x,y) >nV(x,y) €R. (1.22)

With the aid of the Mean Value Theorem for real-valued functions, if |x —a| <
m&b—m <y <y, <b+ mholds, then

Fx, ) < flx, ). (1.23)
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Inparticular, f(a,b) =0= f(a,b—m) <0 < f(a,b+m).Since f : U — Ris
continuously differentiable, therefore, f is continuous. Then 3 a positive real quantity
r(< m) such that

fx,b—m) <0< f(x,b+m),Vxel=(@—r,a+r).

Letx € I.Since f(x,b —m) < Oand f(x, b+ m) > 0, by virtue of the Intermedi-
ate Value Theorem, 3 y € (b — m, b + m) at which f(x, y) = 0, and (1.23) implies
that 3 only one such point, say g(x). This defines a function g : I — R having
properties (1.19) and (1.20).

Our claim: g : I — R is continuously differentiable and that the differentiation
formula (1.21) holds at the point a. Indeed, leta + k& € I. Then by definition, f(a +
h,g(a+ h)) =0and f(a, g(a)) =0. Hence, f(a + h, g(a+ h)) — f(a, gla)) =
0. Considering the Mean Value Theorem for scalar functions of two real variables,
3 some points on the segment between the points (a, g(a)) and (a + h, g(a + h)),
which we label ¢ (%), at which

a a
fla+h,gla+h) — fla, gla) = %(q(h))h + %(q(h))[g(a +h) —ga)].
This implies,
af of
B—(q(h))h + —=(gq(h))lgla+h) — g(a)] =0.
X dy
Thus of
L(gh
ga+h) - gy = — =2, (1.24)

L)y

0
Since the function a—f : I — Riscontinuous and the closed square R is a sequentially

X
compact subset of the plane R?, the Extreme Value Theorem guarantees the existence
of a positive number M, such that, for every (x, y) € R

%(x,y) > M.
0x

Combining the inequality (1.22) with the foregoing one, it follows from (1.24) that
M
lgla+h) —gla)| < 7|h|, at+hel

Hence, the function g : I — R is continuous at the point a. Since the point g (%) lies
on the segment between the points (a, g(a)) and (a + h, g(a + h)), we conclude
that

limgq(h) = (a, b).

h—0
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Fig. 1.5 Implicit Function Theorem

Dividing (1.24) by h and using the continuity of the first-order partial derivatives of
f : U — Rat the point (a, b), it follows that

_gla+h) —gla) b
lim = — ,
h—0 h %(a b)

ay ~

which means that g is differentiable at ¢ and formula (1.21) holds at a. But any other
point x € I satisfies the same assumptions as does the point a, and hence (1.21)
holds at all points in I (Fig. 1.5).

2 2

Example 1.7 Let us consider the equation % + ;—5 =1, (x,y) € R% The set of

solutions of the given equation consists of points in R? lying on an ellipse with (0, 0)
as its centre. Let us begin with the solution (0, 5). Then for any r lying between 0

and 4, define an interval I = (—r, r) and define the function G : I — Rby G(x) =

2
51— YR x € I. Then there exists a neighbourhood of (0, 5) having the property
that the set of solutions of the given equation in this neighbourhood consists of points
of the form (x, G(x)), Vx € I.

Next, let us consider the second component of (0, 5). Here, it is not possible to
find a neighbourhood J of 5, a function H : / — R, and a neighbourhood of (0, 5)
in which the set of solutions of the given equation consists of the points of the form
(H(y),y), Yy e J. At every other vertices of the ellipse, it is possible to find a
neighbourhood of the vertex in which the set of solutions of the given equation has
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a similar description. On the other hand, at (a, b) that is not a vertex of the ellipse, is
a neighbourhood of (a, b) the set of solutions of the given equation determines both
x as a function y and vice-versa.

Example 1.8 Consider the equation
cos(x +y) +exp(y + x2) +3x + (xy)° =2 =0, (x,y) € R% (1.25)
Let us define
fx,y) = cos(x +y) +exp(y + x°) +3x + (xy)° — 2.

Then (x, y) is a solution of (1.25) if and only if f(x, y) = 0. Note that (0, 0) is a
solution of (1.25) and that

of _3 Y50
5-(0.0)=3, 8y(o,O)_l.

Here f is a continuously differentiable function. So taking advantage of Dini’s
Theorem, we find a positive number r and a continuously differentiable function
g : I — R, where [ is the open interval (—r, r), such that

cos(x + g(x)) + exp* @ 43x + x5 (g(x))’ —2=0, Vx e I.

Moreover, if (x, y) is a solution of (1.25) with |x| < r and |y| < r, then y = g(x).
Finally, g’(0) is determined by the formula

%(O, 0) + i(O, 0)g'(0) =0= g'(0) = -3.
ox ay

Example 1.9 Let us consider the equation x> — y> = 0, (x, y) € R?. The set of
solutions of the given equation consists of points in R? lie on the line x = y or
x = —Yy. Ateach solution (a, b) # (0, 0) of the given equation, there exists a neigh-
bourhood of (a, b) in which the set of solutions of the given equation determines
both x as a function of y and vice-versa. The origin (0, 0) is a solution of the given
equation, but 3 any neighbourhood of the origin in which the set of solutions coin-
cides with the graph of a function expressing one of the components of (x, y) as a
function of the other one.
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Problem 1.18 Show that the system of equations

3x1+x2—x3—u3=0
X —x,+2x,+u=0
2x, +2x, —3x, +2u =0,

cannot be solved for x,, x,, x, in terms of u.

Solution: Let

3
SO, x,,x,u)=3x, +x,—x, —u

g(x,, x,, x,,u) =x, —x, +2x, +u
h('xw-xz’-xg’ I/t) = 2-x1 +2x2 _3x3 +2Li

Then,
af of ¥f
ax, ax, u 31 —3u?
A=l _111 1 |=-12-124°
T | 9x; 9x, Odu | T - ’
oh 0h dh 22 2
dx, dx, du

which can never be 0. If there were to exist a solution for x , x,, x, valid on some
interval (in which u varies), then the fact that (2x, 4+ 2x, — 3x,) = 3x, +x, — x,) —
(x, — x, + 2x,) would imply that —2u = u* + u on that interval, which is impossi-
ble.

Implicit Function Theorem on R"

Let m and n be positive integers. Suppose U be an open subset of R" 1", and and that
the mapping F : U — R™*" is continuously differentiable. Consider the equation

Fu)=0, uel.

In the case where m = 1 and n = 1, we already considered this equation in Dini’s
Theorem. The object of this theorem is to state the General Implicit Function
Theorem, an extension of Dini’s Theorem to more general equations of the form
F(u) =0, u € U. In order to emphasize the analogy between the general case and
the case where m = 1 and n = 1, itis useful to introduce the following notation: For a
pointu € R™*" we separate the first m components of u from the last n components
and label them as follows:

u= (x7y):(‘x17‘x2’""xm’yl’yz""7yn)’ (x,Y) el.
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If the mapping F : U — R” is written in terms of its component functions, F =
(F,, F,,..., F)), this equation, in turn, can be expressed as the following system of
n non-linear scalar equations in m + n scalar unknowns:

Fx,x,. ..., 9, %,...,5)=0
Fx, X, s X, Y, Y- ) =0

Fx,x,....x,,9,Y,...,y,) =0.

where (x,, x,, ..., X, , ¥, Y, ..., ), (x,y) € U.
Now we are in a position to state the General Implicit Function Theorem, a direct
generalization of Dini’s Theorem.

Statement 1.1 Implicit Function Theorem on R": Let m and n be positive inte-
gers. Suppose U be an open subset of R (= R" x R™) and that the mapping
F : U — R" is continuously differentiable. At the point (x,, y,) € U, suppose that
F(x,,5,) =0.LetT, : R* - R" and T, : R" — R" be two linear maps defined by

T,(h,) = F (x,, y,)(h,,0), T,(h,) = F (x,, 5,)(0, h,);

so that F'(x,,v,)(h,, h,) = T (h,) + T,(h,) for all h, € R", h, € R". Suppose T,
is invertible. Then

(a) there exists open sets V, C U, V, CR"™ with (x,,y,) €V, y, €V, and a
unique map G : V, — R" such that

(G, y) eV, F(G(),y) =0VyeV,;
(b) forevery (x,y) € V, such that F(x,y) =0, we have y € V, and x = G(y);
(c) furthermore, G is continuously differentiable and G(y,) = x_, G’(xo, V) =
—-T7'T.
1 2

Proof (a) Letusdefineamap f: U — R"™ by f(x,y) = (F(x,y),y). Then f
is differentiable on U and

f @ ) = (F (e, )y by, Y (b hy) € R
This implies f is continuously differentiable and it follows that

f G y) by = (T, (k) + T,(h,), ), (R, hy) € RY™
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(b)

(c)

1 Calculus on R”
Since 7, is invertible, therefore

f,(x(y y())(huhz) =0= (T] (hl) + Tz(h2)7 hz) =0= T| (h]) + Tz(hz) =0, hz =0
= T,(h)) =0, hy =0
=h, =0, h, =0.

This shows f /(xo, ¥,) is injective and so is also surjective, hence invertible. So
by the virtue of Inverse Function Theorem, there exists open sets V, C U, V, C
R"" such that (x,, y,) € V,, f:V, — V,isinjective and the inverse map f ! :
V, — V, is continuously differentiable. Moreover,

f(xy, y) = (F(x,,5),5) =(0,y).

So (0,y,) € V,. Suppose V, ={y e R" : (0, y) € V,}. Then y, € V, and V, is
open.Forany y € V,, wehave (0, y) € V, and hence there exists (x, z) € V, such
that f(x,z) = (0, y). But f(x,z) = (F(x,2z), z). Therefore, (F(x,z),z) =
0, y), so that y =z and F(x,y) =0.If F(x,y) =0 with (x,y) € V,, then
(F(x,y),y) = (0, y),ie.,

F(x,y)=(0,y) = f(x,y).

But f is injective on V,. So X = x. Hence, there exists a unique x for which
F(x,y) =0and (x, y) € V,. Taking x as G(y), (a) is established.
Let(x,y) € V,and F(x,y) = 0. Then f(x,y) € V,.But f(x, y)=(F(x,y), y)
and F(x,y) = 0. This means (0, y) € V,, so that y € V,. By definition of G
above, G (y) is the unique 7 such that F'(n, y) = 0 and (, y) € V,. This implies
x=n=G(y)
Since F(x,, y,) =0, (x,,y,) € V, and y, € V,, therefore, G(y,) = x,. Now, for
any y € V,, we have F(G(y), y) = 0by (a), so that f(G(y), y) = (0, y), from
which it follows that (G(y), y) = f~'(0, y). Thus, G is the composition of the
maps

Yy 0.y), @) ), () e

where the first and third are linear maps, while the second is continuously dif-
ferentiable. It follows that G is continuously differentiable. Since F(G(y), y) =
0V y e V,, the mapping y — F(G(y), y) must have derivative O everywhere.
On the other hand, we find that the derivative of the mapping y — F(G(y), y)
at y, maps h, € R™ into

F(G(.), y)(G (3,).5.) = F (x,, ¥)(G (y)h,. h,), because G(y, = x,)
=T G (y,)h, + T,h,, by hypothesis.

Since F'(G(y,), y,) = 0,then G (y,)h, = —=T~'T,h, forall h, € R This com-
pletes the proof of (c).
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Remark 1.5 The implicit function theorem above provides a sufficient condition in
order that a continuous solution G of F(x, y) = 0 for x in terms of y satisfying the
requirement that G(y,) = x, should exist and be unique. However, our theorem does
not explicitly mention the word solution.

Example 1.10 Consider the system of equations

In(7 + x22 + x}z) +x,x, +e1™ +7=0,
x13 exp{cos(xz2 + xf)} +x, +2x, + (x, +x, + x4)4 =0,

where (x,, x,, x,, x,) € R*. Note that the point (0, 0, 0, 0) is a solution of this system
of equations. For a point (x,, x,, x,, x,) € R*, let us define

F(x,, x,, %, %) = (In(7 + x> + x2) + x,x, + "% + 7, x” exp{cos(x” + x7)}
+x, +2x, + (x, + x, +x4)4).

Here F(x,, x,, x,, x,) = (F,(x,, x,, x, x,), F,(x,,x,,x,,x,)), where

F (x,,x,,x,,x,) =In(7 +x22 +x32) +x,x, + e 417 =0,
F,(x,x,,x,x,) = x13 exp{cos()c22 +x42)} +x, +2x, +(x, +x, + x4)4) =0.

Then the mapping F : R* — R? is continuously differentiable, as F, and F, is also
so, and that its derivative matrix at the point 0 = (0, 0, 0, 0) is

, 1001
F(0)=<1002>'
Thus, the 2 x 2 matrix

574(0,0,0,0) 54(0,0,0,0\ (1 1)
25.0,0,0,0) 22(0,0,0,0) 12)”
1 4

is invertible. We apply the Implicit Function Theorem to choose a positive number
r and continuously differentiable functions g : B — Rand h : B — R, where B =
B (0, 0), such that if xzz —i—xf < r2, then (g(x,, x,), x,, x,, h(x,, x,)) is a solution
of the given system of equations. Moreover, if the point (x,, x,, x,, x,) € R*is a
solution of the given system of equations and if x> + x> < r? and x> 4+ x> < r?,

then x, = g(x,, x,) and x, = h(x,, x,).
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Exercises

Exercise 1.25 Consider the equation
explx =2+ (y— 1> =1} =0.

Show that Dini’s Theorem applies at the solution (2, 1). Explicitly define the function
g : I — R that has the property that in a neighbourhood of the solution (2, 1), all
the solutions are of the form (x, g(x) for x € I and check that formula (1.21) holds
for the derivative g’ : I — R.

Exercise 1.26 Consider the given system of equations:
(x2+y2+22)3 —x+z=0, cos()c2+y4)+eZ —2=0.

Use the Implicit Function Theorem to analyze the solutions of the given systems of
equations near the solution 0.

Exercise 1.27 For ¢* + y2 4+ 7 —4xy® — 1 =0, use the Implicit Function Theo-
rem to analyze the solutions of the given systems of equations near the solution 0.



Chapter 2 ®)
Manifold Theory e

2.1 Topological Manifold

Curves and surfaces are the fundamental concepts of studying geometry in a 3-
dimensional space. The quest for studying these two concepts in a space of higher
dimension yields the concept of manifold theory.

A locally Euclidean space of dimension 7 is a topological space such that every
point of this space has a neighbourhood homeomorphic to an open subset of R”.

A topological manifold M of dimension n, denoted by M", is a Hausdorff, second
countable, locally Euclidean space of dimension n (Fig.2.1).

Thus, for each p € M, there exists a neighbourhood U of M and a homeomor-
phism ¢ of U onto an open subset ¢(U) of R". The pair (U, ¢) is called a chart.
Each such chart (U, ¢) on M induces a set of n-real-valued functions on U defined
by

x'=uo¢p, i=1,2,3,....n 2.1)

where u'’s are defined by (1.1). The functions (x', x2, ..., x") are called the coor-
dinate functions or a coordinate system on U and U is called the domain of the
coordinate system. The chart (U, ¢) is sometimes called an n-coordinate chart.
From (2.1), one obtains

x'(p) = ¢'(p), by (1.1).

Thus one can write

¢(p) = (x'(p), 2(p), ... X" (p)). 22)
Let (V, 4) be another chart of p of M suchthat p e UN V.
Let (y!, ¥%, ..., y") be a local coordinate system on V such that
y=uot, i=1,2,3,...,n (2.3)
vp) = (' (). Y (), ... Y"(p)). (2.4)
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Fig. 2.1 Locally Euclidean
space of dimension n

Example 2.1 R” is a topological manifold covered by a single chart (R", Ig.) where
I is the identity map.

Example 2.2 Every open subset U of R” is a topological manifold with chart
W, Iy).

Example 2.3 Every discrete topological space M is a 0-dimensional topological
manifold, the charts being given by the pair ({p}, ¢,) where p — 0, p € M.

Example 2.4 Let f : R} — R’ bedefinedby f(x, v, 2)=(x, x> + y> + 722 — 1, 2),
|J| = 2y. By virtue of Inverse Function Theorem, f is a local diffeomorphism at
p = (x,y, z)ifandonlyif y # 0. Thus, the function f can serve as alocal coordinate
system at any point p not on the x-axis and z-axis.

Remark 2.1 (i) A 1-dimensional manifold is locally homeomorphic to open inter-
val.
(i) A 2-dimensional manifold is locally homeomorphic to open disc.

Remark 2.2 A topological manifold is

(i) locally connected
(ii) locally compact
(iii) normal and metrizable.

For proof, refer to any standard textbooks on general topology.
Problem 2.1 Does the map f : R — R defined by f(x) = x? form a chart?

Solution: 1 Note that f : R — R defined by f(x) = x? is not a homeomorphism
on R (refer to Exercise 1.5). Thus, the given map does not form a chart.

Problem 2.2 Consider the open subsets U and V of the unit circle S' of R? given
by

U={(osa,sina): a€(0,2m)}, V ={(cosa,sina): o€ (—m, m)}
and the maps ¢ : U — R defined by ¢(cos o, sina) = o, o € (0,27m)andy : V —

R defined by ¥ (cos o, sina) = «, o € (—m, 7). Prove that (U, ¢) and (V, ¥) are
charts on RZ.
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Fig. 2.2 Overlap region

Solution: 2 Note that the two maps ¢ and v are homeomorphisms onto the open
subsets (0, 27) and (—m, 7) of R, respectively. Consequently, (U, ¢) and (V, 1)) are
charts on R?.

Problem 2.3 Prove that the graph y = x3inR%isa topological manifold.

Solution: 3 The graph is a subspace of R? and hence it is Hausdorff and second

countable. Also (x, x3) — x, soitis homeomorphic to R. Consequently, it is locally
2

Euclidean. Hence, the graph y = x5 in R? is a topological manifold.

Problem 2.4 Find the functional relation between the two local coordinate systems
defined in the overlap region of a topological manifold.

Solution: 4 Let (U, ¢) and (V, 1)) be two charts of a point p € U NV of a topo-
logical manifold M (Fig. 2.2).
Let ¢(p)=qeR", ge p(UNYV). Suppose g: p(UNV) > yYUNYV) is
defined by
9@ = @ oo™ )(@). (2.5)

Then
9@) = 9(@(p)) = (W o ¢~ )((p)). by 2.5)
ie. g(g)=v(p)
or u'(g(¢(p))) = u' (W (p))
or g'(¢(p)) = y'(p) by (1.1), (2.3)
or g'(x'(p). x*(p). ... x"(p) = ¥'(p)
ie. y = gi(x',xz, o xh.
Problem 2.5 Give an example of a non-Hausdorff locally Euclidean space.

Solution: 5 Let A C R? be such that

A=UlJto, ny,
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where U = {(x,0)|x e R}. Let U, = U \ {(0,0)} U{(0, 1)}. We define ¢ : U — R
by ¢(x,0) =x and ¢ : U, — R by

w0 = {3370

Both ¢ and 9 are well-defined on U and U, , respectively. Also ¢ and v are injective
maps in R and U | U, = A. So, (U, ¢) and (U,, ¢) are charts and hence it is a
locally Euclidean space.

Let V, be an open neighbourhood of (0, 0) and V, be an open neighbourhood of
(0, 1)in A. Thenboth ¢(U [ V,) and (U, (] V,) are open subsets of R containing 0.
So3da # Osuchthata € ¢(U (" V,) (¥(U, [ V,), whichimplies (¢, 0) € V, (" V,.
Hence the topology of A is non-Hausdorff. Thus A fails to form a topological man-
ifold.

Problem 2.6 Consider the cone C = {(x, y, z) € R?: x2 4 y? = 72} with the sub-
space topology as induced by the usual one of R?. Prove that C is not a topological
manifold.

Solution: 6 Our claim is that the space C is not a locally Euclidean space. It suffices
to show that the point (0, 0, 0) € C does not have a neighbourhood homeomorphic
to an open subset of R? (Fig. 2.3).

Let U be an open neighbourhood of (0,0,0) in C. Let ¢ : U — V be a home-
omorphism between U and an open subset V of R2. Then for some sufficiently
small » > 0, 3 an open disc B, (¢(0, 0, 0)) with ¢(0, 0,0) as its centre such that
B (¢(0,0,0)) C V. Now the punctured disc B, (¢(0, 0, 0)) \ {¢(0,0,0)} is con-
nected. But U \ {(0, 0, 0)} is not connected. In fact,

U\ {0,0,0}=0, | U,

where
U ={x,y,20eU:2>0}, U,={(x,y,20) e U :z2<0}.

So, U, (U, = ¢ and U,, U, are open in C. Hence, U can be expressed as a disjoint
union of two non-empty open subsets of C. Thus C is not a locally Euclidean space.

Problem 2.7 Show that the cross in R? with the subspace topology cannot be a
topological manifold.

Solution: 7 Our claim is to prove that the cross is not locally Euclidean at the
intersection g (Fig. 2.4).

If possible, let us assume that the cross is locally Euclidean of dimension n at
the point g. Then 3 a homeomorphism ¢ : V — B (0,0,0, ...,0), where V is an
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zZT

Br(#(0.0.0))

#(0,0,0)

Fig. 2.3 Double cone

B (¢(q))

Fig. 2.4 Cross(i)

open neighbourhood of ¢ and B, (0, 0,0, ...,0) C R" is an open ball with centre
(0,0,0,...,0) and radius r (sufficiently small enough). Here we assume ¢(q) =
0,0,0,0,...,0). The homeomorphism % : V \ {g} = B,(0,0,0,...,0)\ (0,0,
0, ...,0) acts as a restriction map to a homeomorphism ¢. Now, if n > 2 then

B (0,0,0,...,0)\(0,0,0,...,0)

is connected, and if n = 1 then it has two connected components (Fig. 2.5).

Since V \ {g} has four connected components, there 7 any homeomorphism from
V\{g}to B (0,0,0,...,0)\{(0,0,0,...,0)}. This contradiction proves that the
cross is not locally Euclidean at g.



40 2 Manifold Theory

Fig. 2.5 Cross(ii)

Exercises

Exercise 2.1 Doesthemap f : R — Rdefinedby f(x) = x*, k € N, forma chart?

Exercise 2.2 Find all points in R?, in a neighbourhood of which the function f :
R? — R? defined by f(x1, x2) = ()cl2 + x% — 1, x») can serve as a local coordinate
system.

Exercise 2.3 Consider Exercise 1.12 of Sect. 1.1. Can f be taken as a local coor-
dinate map?

Exercise 2.4 As defined by (2.5), h : (U N'V) — ¢(U N'V) is defined by
h(r) = (@ oy ™)), rep(UNV). (2.6)

Show that the functional relation between the two local coordinate systems defined
in the overlap region of a topological manifold is given by

X =hGh Y.
Exercise 2.5 Let X = S'|J S? where
St ={(x) eR*: (1 — D> +x3 =1}, ¥ ={(x1,x) e R*: (x; + > +x5 = 1}.
Suppose X inherits the topology from R?. Is X a topological manifold?

Answers
2.1. Yes. 2.2. Not on the y-axis. 2.3. Yes. 2.5.No.

2.2 Smooth Germs on a Topological Manifold

Let us begin with a definition:

Let M be an n-dimensional topological manifold. Let f : M — R be any func-
tion. Let p € M. If, for every admissible coordinate chart (U, ¢) of M satisfying
peU, (fod™):dU)— Ris C® at the point ¢(p) € R”, then we say that f is
C®atpin M.



2.2 Smooth Germs on a Topological Manifold 41

Remark 2.3 Note that, if f is C* at p in M, then f is continuous at p.

Theorem 2.1 Let M be an n-dimensional topological manifold. Let f : M — R be
any function with p € M. If there exists an admissible coordinate chart (U, ¢) of M
at p € U such that (f o ¢~') : p(U) — R is C® at ¢(p), then f is C* at p.

Proof Let (V, 1) be any admissible coordinate chart of M with p € V. Our claim
is that (f o yp™1) : ¢(V) — Ris C* at ¢(p). Here

fo Tl =fo@ ooy =(fos oo™

is C*® at¥(p) as (f o ¢~ 1) and (¢ o 9p~") are C* at ¢(p) and (p), respectively.
This completes the proof.

Let M be an n-dimensional topological manifold. Let f : M — Rbe any function.
By fis C* at pin M (or f is smooth on M), we mean that f is C* at every point
p € M. The set of all smooth functions f : M — R on M is denoted by C*°(M).

Remark 2.4 Note that, if f is C* at M, then f is continuous.

Let M and N be respectively n- and m-dimensional topological manifolds. Let f :
M — N be any continuous function. Let p € M. If, for every admissible coordinate
chart (U, ¢) of M satisfying p € U and (V, ¢) of N with F(p) € V, the mapping

Yo(fod H:ipUnN (V) — (V)

is C* at ¢(p), then f is C* at p.
Exercise

Exercise 2.6 Let M and N be respectively n- and m-dimensional topological man-
ifolds. Let f : M — N be any continuous function. Let p € M. If there exists an
admissible coordinate chart (U, ¢) of M at p € U and (V, ) of N with f(p) € V,
the mapping

do(fod ™) oUN fTHV)) — (V)

is C* at ¢(p), then f is C*™ at p.

Let M be an n-dimensional topological manifold, and N be an m-dimensional
topological manifold. If there exists a function f : M — R such that f is a diffeo-
morphism from M onto N, then we say that the manifolds M and N are isomorphic
(or diffeomorphic).
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Let M be an n-dimensional topological manifold. Let p € M. By C>*(M) (or
simply C fo), we mean the collection of all real-valued functions f whose Dom f1is
an open neighbourhood of p € M, and for every admissible coordinate chart U, ¢
of M satisfying p € U,

(foop™"):p(Dom fNU) - R

is C* at the point ¢(p) € R”. Observe thatif f € CIf’O (M), then f is continuous on
some open neighbourhood of p.

Let M be an n-dimensional topological manifold. For every f, g € C®(M), we
define (f + g) : M — R as follows: for every x € M,

(f +9(x) = fx) + g(x).

For every f € C*°(M), and for every real ¢, we define 7f : M — R as follows: for
everyx € M,

() (x) = 1f (x).

Remark 2.5 Itis clear that the set C*° (M), together with vector addition, and scalar
multiplication defined as above, constitutes a real linear space.

For every f, g € C*°(M), we define (f - g) : M — R as follows: for every x €
M’
(f -9 (x) = fFx)gx).

Remark 2.6 It is easy to see that C*°(M) is an algebra.

Let M be an n-dimensional topological manifold. Let p € M. Let v, and -, be,
in I (M), set of all parametrized curves in M through p. Then the relation ‘<’on
', (M) is defined as follows: by ~, < -,, we mean that for any admissible coordinate
chart (U, ¢)of M atp € U,

(¢ 07,) (0) = (o, (0).

Proposition 2.1 Let M be an n-dimensional topological manifold. Let p € M. Let
v, and v, be in T (M). If there exists an admissible coordinate chart (U, ¢) of M at

p € U such that (¢ 0,) (0) = (¢ 0 7,) (0), then ~y, < ~,.

Proof Let us take any admissible coordinate chart (¢, V) of M satisfying p € V.
Our claim is (1) 0 7,) (0) = (¥ 0,) (0). Now
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Wog o (dom)) (0

@Wo ™) (307)0)((¢07,) (0)

W o¢™) (¢07)(0)((¢0,) (0)

W o™ (#(p) (@07, (0), wherev,(0) = p
Wod™) (307,)0) (o) 0)

(W od'0) o (dom))

— (o @ 0d)or,) (0)

= (1) 07,) (0).

(0, (0) =

A~ N /N /S /S A/~

Problem 2.8 Let M be an n-dimensional topological manifold. Let p € M. Then,
the relation ‘<’ on I", (M) is an equivalence relation.

Solution: 8 e Reflexive: Since M be an n-dimensional topological manifold and
p € M, there exists an admissible coordinate chart (U, ¢) of M such that p € U.
Since (¢ 0 ) (0) = (¢ 07) (0), then < ~.

e Symmetric: Let 7, <y, hold. Let us take an admissible coordinate chart (U, ¢)
of M such that p € U. Since 7, < 7,, then (¢ 07,) (0) = (¢ 0,) (0) implies
Y =<

e Transitive: Lety, < -, and -y, < ~, holds. We are to prove y, < =,. Let us take an
admissible coordinate chart (U, ¢) of M such that p € U. Sincey, < ~,, therefore
(¢07%) (0) = (¢ 07,) (0). Alsofor~y, <7, wehave (¢ 07,) (0) = (6 07,) (0).
Combining the last two relations, we obtain (¢ o 7,) (0) = (¢ o ~y,) (0) implies
N =<V

Remark 2.7 Let M be an n-dimensional topological manifold. Let p € M. By the
last proposition, the quotient set I, (M) / < is the collection of all equivalence classes
[v], where v € T (M). Thus,

I, (M) <={["]:veT, (M)}

where
[(VI={y, e,(M):v =<~}

Let M be an n-dimensional topological manifold. Let p € M. Letus define a function
¢, : T ,(M)/ <— R" by
¢.(7)) = ($27) (0).

Here ¢, is well-defined.

Problem 2.9 Let M be an n-dimensional topological manifold. Let p € M. Suppose
(U, ¢) is any admissible coordinate chart of M such that p € U. Then ¢, as defined
above is bijective.
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Solution: 9 Injectivity: Let[y,] € ', (M)/ <and[v,] € T',(M)/ <, where~,,~, €
[, (M). Suppose ¢, ([7,]) = @, ([,]). We are to prove [v,] = [v,],i.e. v, < ,. Now

6.1 = ¢,([1.) = (907,) () = (h07,) (0) = 7, <7, by Proposition 2.1.
Surjectivity: Let ¢ € R". We are to find y € I' (M) such that

oW = (@O _ i i

t =0 t 10

6. = (o) (0) = }TJ im 20@0) =) _ @W(t)); o) _ .

Let us define a function v, : (—1,1) — R" by v,(t) = tg + ¢(p). Set
T=9¢"on,.

Then v(0) = p holds. Here ~, is continuous on (—1, 1). Since (U, ¢) is a coordinate
chart of M, qﬁ’l is 1 — 1, onto and continuous at ¢(U), which is an open subset of
R". Since p € U, ¢(p) € ¢(U). Also ¢~ is continuous at 7, (0) = ¢(p) € ¢p(U).
Moreover, ¢(U) forms an open neighbourhood of -, (0). Since +, is continuous,
¢(U) being an open neighbourhood of ~,(0) 3 § > 0 with § < 1 and for every
t € (=4, 6), wehave,(t) € (U).Hence, y(t) = (¢~ 0,)(t) = ¢~ (v,(1)) € U.
Since y(t) € U forevery t € (-6, 9), it implies that y is defined on (-9, §) for some
0 > 0. Now for every t € (=4, 9),

(1) = (¢ o)) = ¢~ (tqg + ¢(p)) € U,

this shows that v maps from (-4, §) to U. Furthermore, «, is C*™ at every ¢ €
(=9,0), poyis C* at every t and (U, ¢) being an admissible coordinate chart of
M such that vy(¢) € U, by virtue of Exercise 2.6, v is C* atevery t € (-9, ). Thus
v el (M).

Finally,

i 200 = 6(p) _
m 7 =

1—=0

i @O0 ) = 6(p) _ L 60, 0) = 0(p) _ . Bliq +9(p) = d(p) _
im = lim =lim =q.

1—0 t =0 t -0 t
This completes the proof.

Since ¢, is 1 — 1 and onto, ¢:' exists and is also 1 — 1 and onto. Let us define a
binary composition & and external composition © on I' ) (M)/ < as follows.
For every [v,],[v,] € T',(M)/ <, where v,,v, € ' [ (M)/ <,

eyl =0 ' @D + 6. (D),

and
to[y]=9¢""(t@.(7)), Yt eR.
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Fig. 2.6 Germ
[v1]

2

Remark 2.8 The quotient set (I',(M)/ <, @, ©) forms a real linear space.

Remark 2.9 Since I"I, (M)/ <isareallinear space, ¢, is 1 — 1 and onto, ¢, is linear,
i.e.

o,([v1® ¢t O[rD) =, D +1to,(D,

¢, isanisomorphismbetweenT", (M)/ <and R". Hence the dimension of T, M)/ <
isn. The set " (M)/ < is denoted by T, (M) (Fig. 2.6).

Problem 2.10 Let M be an n-dimensional topological manifold and p € M. Let <
be a relation on C°(M) defined as follows: for every f, g € C;°(M), by f < g we
mean that there exists an open neighbourhood V of p such that f(x) = g(x) for
every x € V. Then < is an equivalence relation over C°(M).

Solution: 10 Reflexivity: Left to the reader.

Surjectivity: Left to the reader.

Transitivity: Let f < g and g < h hold where f, g, h € C*(M). Since f < g,
from the definition of <, there exists an open neighbourhood V of p such that
f(x) = g(x) for every x € V. By similar reason, for g < h, there exists an open
neighbourhood W of p such that g(x) = h(x) forevery x € W. Since V, W are open
neighbourhoods of p € M, therefore V N W is an open neighbourhood of p € M.
Also f(x) = h(x) forevery x € VN W. Hence f < h holds.

Remark 2.10 The quotient set C;c(M )/ =, of all equivalence classes, is denoted
by §,(M). Thus
S,(M) ={[f]: feCr(M)}

where
[f1={9:9€C7(M),g9 =< [}

is a C*-germ at p on M. So, the members of 3§, (M) are called C-germs at p on
M.
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Let M be an n-dimensional topological manifold and p € M. For every f,g €
Cy (M), we define (f +g): Dom f N Domg— R as follows: for every x €
Dom f N Dom g,

(f +9(x) = f(x) +g00).

For every f, g € C;°(M), we define f - g: Dom f N Dom g — R as follows: for
every x € Dom f N Dom g,

(f -9 (x) = f)gx).

Remark 2.11 Let M be an n-dimensional topological manifold and p € M. Let
fig € CX(M).Then f +g, f-g: Dom f N Dom g — R, isin C;°(M). Also for
any t € R,

tf : Dom f — Risin C°(M).

Let M be an n-dimensional topological manifold and p € M. For every f, g €
C;’,"(M) and t € R, we define

LF1+1gl=L1f +gl tlf1=1tf], [fllgl=Lf gl

Remark 2.12 § (M) forms a real linear space. Also, §,(M) forms an algebra.

Remark 2.13 Let M be an n-dimensional topological manifoldand p € M.If f, g €
C’(M), then (f + g) € C¥(M).

Remark 2.14 Let M be ann-dimensional topological manifoldand p € M.If f, g €
CX (M), then (f - g) € C°(M).

Remark 2.15 Let M be an n-dimensional topological manifold and p € M. If f €
C;’,"(M) andt € R, thentf € C;O(M).

Problem 2.11 Let M be an n-dimensional topological manifold and p € M. Let
v €T, (M). Let[f] € §,(M), where f € C;°(M). Then

lim S oNO+1 = (f 09O
1m

10 t

exists.

Solution: 11 Since v € I, (M), it follows from the definition of I', (M) that 3 § >
0 such that v : (=9,) — M, v(0) = p and ~y is a smooth map on (-4, ¢), and
S0 is continuous on (—§, ¢). Here, the function f : Dom f — R is in € CZO(M),
where Dom f is an open neighbourhood of p € M, so f is continuous on some
open neighbourhood U(S Dom f) of p. Since v(0) = p and p € Dom f, therefore
0 € Dom (f o). Moreover, as 7y is continuous with v(0) = p and U being an open
neighbourhood of p,3 ¢ > Osuchthate < § and foreveryr € (—e¢, €), wehavey(t) €
U(C Dom f), and hence (f o~)(t) = f(y(t)) € R. This implies that (—¢, €) C
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Dom (f o). Hence 0 is an interior point of f o~. Here, ¢ o~y : (—9,5) — R" is
C> at the point 0 in R and (f o ¢~ ') : ¢(Dom f NU) — R is C™ at the point
(¢ 0)(0) in R". So the composite function f o~y is C* at the point 0 in R. Hence,
a(f 07)(t)| e lim (feonNO+1 = (fonO®

ie. li

. exists.
dt =0 -0 t

So the following definition is well defined:
Let M be an n-dimensional topological manifold and p € M. Let v € ", (M).
Let[f] € §,(M), where f € C;O(M). Then

lim L2041 = (f 09O
1m

1—0 t

exists, and is denoted by < v, [ f] >. Thus

< [f] = lim LONO+D = (F o ®)

t—0 t

i.e.
<7, [f] >= %‘,zo.

Theorem 2.2 Let M be an n-dimensional topological manifold and p € M. Let
v € I',(M). Suppose [ f], [g] € §,(M), where f, g € CZO(M). Then

L <~ [f1+ gl >=<.[f1>+ <7, l9] >
2. <v,c[f]l >=c<~,[f] >, wherec € R.

In other words, <, > is linear in the second variable.

Proof 1. Here,

(f+@ onO+1)—((f+9) o)
13

<7 f1+1lgl > =<7, [f +9l >= }lrr(l)
1 (f+ 9@ = (f +9)(1)(0)
= lim

t—0 t
— lim {(f(N@) = (fFNON} + {(g(n (@) — (g()(O))}
t—0 t
— {(fN@D) = (fMON} | {(gtN®) — (g(nON}
= t * '
1 {(fNO+1) = (fMO)N} | {(gtNO+1) — (g(n)(ON}
=5 t + '

=<7 f1>+ <7191 >.

2. Left to the reader.
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Theorem 2.3 Let M be an n-dimensional topological manifold and p € M. Lety €
[, (M). Suppose [ ], [g] € §,(M), where f, g € CZO(M). Further, suppose [v] €
T,(M), where v € I' (M). Then

L [IYIAfT+ [gD) = [VIASD + [vIdgD.
2. [vIAzfD =t (VA f D), wheret € R.
3. [VIAS gD = VLD (p) + f(p)UvILgD.

Proof 1. Left to the reader.
2. Left to the reader.
3. Here

d . (e}
Il = (1 f - gl = L9 DD

_ 4960,

dt = dt =
_d(f(y(@®) - g(v(1)))
N dt =0
_d({(f @) - (goN(®) |
dt 1=0
_d(foy(®) d(go 7)(0

- | (goM©) + (f 07)(0)

= ((VILfDg(v(0) + f(v©O)([v]lgD
= ((YILfD@p) + fF(p)UvilgD.

=0

2.3 Smooth Manifold

We are now going to introduce a differentiable structure on a topological manifold.
For this, let us at first introduce compatible charts or C*°-related charts.

Two charts (U, ¢) and (V, 1) on a topological manifold M are said to be C*°-
compatible or C*°-related if

either U NV = ¢, or;
Uunyv # ¢, and the
transition maps ¢ oy~ : (U NV) — ¢(U N'V), and
Yool (U NV)— (UNV) are of class C®.

2.7)

In short, we say compatible. These two maps are called the transition functions
between the charts. If U N 'V = ¢, then the two charts are obviously C*°-compatible.

Problem 2.12 Prove that the compatibility of charts is not an equivalence relation.

Solution: 12 Let (U, ¢), (V, ¢) and (W, ) be three charts on a topological mani-
fold.
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(i) Here, (U, ¢) is C*°-compatible to itself as ¢ o ¢! = I is C*®. Hence compat-
ibility of charts is reflexive.
(ii) Let us assume that the chart (U, ¢) is C*°-compatible to (V, v). Then by (2.7),

we have
pop L p(UNV) = ¢(UNV) and
() Vool i pUNV) = PUNV)

are of class C*°, where p € U N V. To prove (V, ) is C*°-compatible to
(U, ¢), we have to show

Yo~ 1 p(UNV)— p(UNV) and
pop L p(UNV) = HUNV)

are of class C°°, which follows from (x). Consequently, the compatibility of
charts is symmetric.

(iii) Let us assume that the chart (U, ¢) is C*°-compatible to (V, 1) and that the
chart (V, ) is C*°-compatible to (W, ¢). To prove the compatibility of charts
is transitive, we need to show (U, ¢) is C*-compatible to (W, ).

Since (V, 1)) is C*°-compatible to (W, ), therefore

Yo lio(VNW) = ¢(VNW) and
)Y ot (VN W) — o(V N W)

are of class C*°.
Note that

pop = (o No@Wop™) and pog ' =(pot oo ).

Now forany p € UNV N W, wehave ¢ o ¢p~! and ¢ o ¢~! are C*® on o(U N
VN W) and ¢(U NV N W), respectively. But, in particular, if we consider
any pe (UNW)\ (U NV NW)then ¢o ! and ¢ o ¢! fails to be C* on
(U N W) and ¢(U N W), respectively. Hence compatibility of charts is not
transitive.

This proves C*°-compatibility of charts is not an equivalence relation (Fig. 2.7).

An atlas on a topological manifold M is a collection of pairwise C°*°-compatible
charts {(U,, ¢) : « € I} such that

O JUa=M
ael
(ii) g o ¢y or ggogy'is C on ¢3(Usy NUp) oron ¢o(Us N Up).

(2.8)

A differential structure on M is an atlas A which is maximal, i.e. if (U, ¢)

is another chart such that ¢ o ¢! and ¢, o ¢! respectively on ¢, (U N U,) and
o(U NU,) are of class C*, then (U, ¢) € A.
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Fig. 2.7 po¢ lisC®ongp(UNVNW)

A smooth manifold or a differentiable manifold of class C*° of dimension 7 is
a pair (M, A) where M is a topological manifold of dimension n and A is an atlas.

Proposition 2.2 Let A be an atlas on a smooth manifold M. Then, there is a unique
differential structure 2 on M such that A C Q.

Proof Let Q2 be the set of all charts on M which are C*-related to every chart of A.
Then clearly, A C Q.

If © is an atlas, by definition, it is maximal and has a differential structure. We
are now going to prove the uniqueness of such €.

If possible, let ' be another differential structure on M with the desired property.
Then A C Q' C @, by definition of 2. But by the maximality of @', Q' = Q.

Now, let (U, ¢) and (V, 2) be any two charts of 2. We wish to show that ¢ o 1)~ :
YU NV)— ¢(U N V)isofclass C*. For this, letx € ¥(U N V) and (U;, ¢;) € 2
be such that 9)~'(x) € U;. Now

pod !¢ (UNU;) — R" and
gio YU, NV) > R"

are of class C*°.

Let W be an open neighbourhood of x suchthat W C ¢(U NV N U;). Nowon W,
pop I =¢go ¢l._1 o ¢; o~ is of class C*, as a composition of two C*-functions
is also so. This completes the proof.

Remark 2.16 Now, it must be clear that to introduce differential structure, one needs
to find a chart or a coordinate map. We proceed as follows.

Let fi:i=1,2,3,...,n ben-real-valued C* functions defined on M. Let the
set {f’} be non-vanishing Jacobian at p € M. Then by Inverse Function Theo-
rem, there exists a neighbourhood V of p and a neighbourhood U of ( filp):i=
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1,2,3,...,n) such that f = (f', f2,..., f") mapping V into U in 1 — 1 manner
has an C*-inverse. Let it be denoted by ¢~!. Then (V, ¢) is the desired chart.
Consider f : R?> — R? defined by f(x, y) = (x> + 3y?, xy). Thus

e, y) =x2+3y% f2(x,y) = xy.

Therefore

2x 6y

=15 ‘=2x2—6y27é0, if and only if x & +/3y # 0.

Consequently, for all other points of R?, we can find a neighbourhood V of p = (x, y)
and the neighbourhood U of (f!, f2) which is mapped by ¢~! to V. Thus (V, ¢) is
a chart.

Example 2.5 R” is a smooth manifold with respect to the atlas {(U, ¢)} where
U = R" and ¢ is the identity map.

Example 2.6 Any open subset W of a smooth manifold M" is a smooth manifold
of the same dimension. For, if {(U,, ¢,)} is an atlas of M, then {Ua NW, ¢q

: |y}
is an atlas for W where

¢(Y’U(mW U, NW — R"

is of class C*°.

Remark 2.17 Any chart is said to be compatible with an atlas A, if it is compatible
with all the charts of A.

Problem 2.13 Let A be an atlas on a topological manifold. If two charts (V, 1) and
(W, 0) are both compatible with A, then they are compatible with each other.

Solution: 13 Let p € VN W. By 2.7), let A={(U,, ¢,) : & € A} be the atlas.
Since (V, v) and (W, 6) are compatible with A, p € U, for some a, i.e. p e V N
WNU,. Now

Gop' =(Oo¢ o, o).

Againg, oy~ p(VNAWNU) — ¢ (VNWNU,)is C®,as (V, 1) is compat-
ible with A. Finally,

¢ ' o(p, 0 H:p(VAWNU) > VNWNU, is C¥ie.
BodNo(p, 0™ :p(VAWNU,) - 0VNWNU,) is C
on (VN W NU,) and hence on v (p). Consequently, o ¢p~! is C*°. Similarly,

it can be shown that ¢ o §~! is C* on §(V N W N U,) and hence on &(p). Thus,
(V, 1) and (W, 0) are both compatible with each other.
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Problem 2.14 Prove that A = {(U, ¢), (V, ¢)}, where U, V, ¢, ¢ are defined in
Problem 2.2 is an atlas on S'.

Solution: 14 In Problem 2.2, it has been proved that (U, ¢) and (V, 1) are charts
on R2, where

(i S'=vuv
(i) Now

o lioUNV)>UNVandod ' :p(UNV) - p(UNV)
such that

«, if o€ (0,7)
o —2m, if a e (m, 2m)

(@) o ¢~ ") (@) =P(cosa, sina) = {
and hence C*. Also
o i pUNV) = HUNV)

is such that ¢(U N V)(a) = ¢p(cos a, sina) = a, a € (0, ), and hence C*°.
Thus A = {(U, ¢), (V, 9)} is an atlas on R

Problem 2.15 Prove that S! is a 1-dimensional manifold.

Solution: 15 Let S' = {(x, y) : (x, y) € R?, /x2 4+ y2 = 1} be a unit circle in R.
We give S', the topology of a subspace of R?. Let

Ur={x, eSS :y>0}, Ur={(x €S :y<0)
Us={(x,y) e S': x>0}, Us={(x,y) e S':x <0}

Then each U, is an open subset of S'and ' = UU i=1,2,3,4. We define

¢, : U, — R besuchthat ¢ (x,y) =x
¢, : U, = R be such that ¢,(x,y) = x
#, : U, — R be such that ¢,(x,y) =y
¢, : U, — R besuch that ¢,(x,y) = y.

Then each ¢, is a homeomorphism on R and hence each (U,, ¢,) is a chart of S*. Now
UNU,=®,s0 U, ¢,), i =1,2are C*®-related. Further, U, N U, # ®.Let p €
U, NU,. Then (¢, o gb;l)(y) =x, (¢, 0 gb]’l)(x) =y are of class C*. Proceeding
in this manner, it can be shown that A = {(U,, ¢,) : i = 1,2, 3,4} is an atlas of St
and hence (S', A) is a 1-dimensional manifold.

Problem 2.16 Prove that the topological space M(m x n, R) of all m x n order
matrices with real entries form a smooth manifold of dimension mn.
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Solution: 16 Let us define the map ¢ : M — R™" by

PA) = (@), @y e @y e 58y s s A,

where A = (a,;), i = 1,2,...,m; j=1,2,...,n. Here ¢ is one-to-one and onto.
Moreover with the topology induced by R™ on M, ¢ is a homeomorphism. So
(M, ¢) forms a chart on M(m x n, R), whose domain is whole of M. Let us denote
A = {(M], ¢)} to be the collection of charts of Ml((m x n, R). It only remains to show
that all pairs of members in A are C*-compatible. For this, let (M, ¢) € A and
(M, 1) € A. The transition functions

oy :R™ > R™and o~ : R™ — R™

are both identity maps and hence C*°-compatible. So A forms a C*°-atlas of Ml(m x
n, R). Thus, Mi(m x n, R) form a smooth manifold of dimension mn.
In particular, if m = n then M (n x n, R) forms a smooth manifold of dimen-

sion n2.

Problem 2.17 Prove that the topological space G L(n, R) forms a smooth manifold

of dimension n2.

Solution: 17 Here GL(n,R) = {A € M(n x n,R) : |A] # 0}. It is clear that the
determinant map

D:M@nxnR) >R, ie. (a,) (@)l

wherei, j = 1,2, 3, ..., niscontinuous (also smooth). Hence, the inverse image of
the open subset R \ {0} of Risopenin M (n x n,R),i.e. D' (R \ {0})(= GL(n, R))
isopenin M(n x n,R). And M(n x n, R) being n?-dimensional smooth manifold
(refer to Problem 2.16), we can say that GL(n, R) is also n>-dimensional smooth
manifold (refer to Example 2.6).

Problem 2.18 Give an example of a non-Hausdorff space having differentiable
structures.

Solution: 18 Let A C R? be such that
A=UlJto, ny,

where U = {(x,0)|x € R}. Let U, = {(x, 1)|x € R}. We define ¢: U — R by
¢(x,0) =xandy : U, — Rby

s 0 ={ 33350
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n
(0.1) (1,1) V= 51U53
» S, =UNv
< k Sl - J rd
|
U
A 4

Fig. 2.8 Not atlas

Both ¢ and 1) are well-defined on U and U/, respectively. Also ¢ and v are home-
omorphisms and U, | JU, = A. The transitions functions ¢ o ¢! and ¢ o ¢~ are
the identity functions on R \ {0}. So {(U, ¢), (U,, )} forms a C* atlas on A.

Let V, be an open neighbourhood of (0, 0) and V, be an open neighbourhood of
(0, 1)in A. Thenboth ¢(U (| V,) and (U, (] V,) are open subsets of R containing 0.
So3a # Osuchthata € (U (N V,) (¥(U, (V,), whichimplies (¢, 0) € V, N V,.
Hence the topology of A is non-Hausdorff.

Problem 2.19 Consider S = {(x,0) e R?:x € (=1, D}U{(x,x) e R? : x € (0, 1)}
where U = {(x,0) : x € (=1, 1)}, ¢ : U — R is such that ¢(x,0) =x and V =
{(x,0):x € (—1,0} U {(x,x): x € (0, 1)}, ¥»:V — R be such that ¢)(x,0) =
x, ¥(x,x) =x.Is A ={(U, ¢), (V,)} an atlas on S?

Solution: 19 Endow S = U U V with the subspace topology inherited from R?. Let
S, ={x,0):x e (=1,0]}and S, = {(x,x) : x € (0, 1)}. Then V = §, U S,. Here
¢ and 1 are both homeomorphisms respectively on U and V. Hence (U, ¢) and
(V, 1) form the charts on S. Now the transition functions ¢ o w‘l pUNV) >
dUNVyandy o ¢~ : ¢(U NV) — (U N V) are the identity map on ¢(U N V)
and Y(U N V) respectively, where (U N V) = (—1, 0] = ¥ (U N V), which are not
open in R. Thus, A does not form an atlas on S (Fig. 2.8).

Problem 2.20 Let U = {(x,0) :x e R} and V = {(x,0) : x <0} U {(x,1) : x >
0}. Suppose the maps ¢ : U — R and ¢ : V — R are defined respectively by
¢(x,0) = xand Y (x,0) = x, ¢¥(x, 1) = x. Prove that A = {(U, ¢), (V, 1)} an atlas
onS=UUV.
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o~
U = x-axis
V= S]_USQ
ong 2
Sy =UNV
Uunv
< e >
S1

Fig. 2.9 Atlas

Solution: 20 Endow S = U U V with the subspace topology inherited from RZ.
Let S, ={(x,0) : x € (—00,0)} and S, = {(x,x) : x € (0,1)}. Then V = §, U §,.
Here ¢ and v are both homeomorphisms respectively on U and V. Hence (U, ¢) and
(V, 1) form the charts on S. Now the transition functions ¢ o p~! : (U N V) —
dUNVyandy o ¢~ : ¢(U NV) — (U N V) are the identity map on ¢(U N V)
and (U N V) respectively, where ¢(U N V) = (—o0, 0) = (U N V), which are
open in R. Also the map ¢ o 9~! and v o ¢! are C*°. Thus, A does form an atlas
on S (Fig. 2.9).

Exercises

Exercise 2.7 Give an example of a topological manifold which does not admit dif-
ferential structure.

Exercise 2.8 Let (M, A) be a smooth manifold. Prove that there exists a chart (U, ¢)
of A such that p(p) =0, p e U.

Remark 2.18 The condition of second countability in the definition of smooth man-
ifold implies paracompactness which further implies metric structure in the manifold.
Since the present book is considering only the different aspects of smooth manifold,
the condition is redundant here.

From now onwards, unless otherwise stated, a manifold will mean a smooth
manifold.
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2.4 Stereographic Projection

The stereographic projection is a particular mapping that projects a sphere onto a
plane. The projection is defined on the entire sphere, except at the projection point.

To begin with, let us consider the sphere S' = {(x, y) : (x,y) € R?, x> + y? =
1}. The stereographic projection, on the sphere S', from the North Pole N =
(O, l)(respectively, South Pole § = (0, —l)) onto the line y = 0 (i.e. x-axis) is the
map which assigns any point p € S' \ {N}(respectively, p € S \ {S}) to the point
where the straight line through p and N (respectively, through S ) intersects the line
y=0.

The inverse of the stereographic projection is the map from the x-axis to S' \ {N}
(respectively, ST\ (S }) assigning the point ¢ in the line y = 0 to the point where the
straight line through N (respectively, through S) and g intersect S'.

Similarly, the stereographic projection, on the sphere S% = {(x, y,z) : (x, y,2) €
R?, x* 4+ y* 4 z2 = 1}, from the North Pole N = (0, 0, 1)(respectively, South Pole
S =1(0,0, —l)) onto the plane z = 0 (i.e. xy-plane) is the map which assigns any
point p € 8%\ {N}(respectively, p € S\ {S}) to the point where the straight line
through p and N (respectively, through ) intersects the plane z = 0.

The inverse of the stereographic projection is the map from the xy-plane to S \
{N}(respectively, S \ {S}) assigning the point g in the plane z = 0 to the point where
the straight line through N (respectively, through S ) and g intersects S2.

On generalization, we can define the stereographic projection and its inverse for the
n+1

n-dimensional sphere S" = {(x,, x,, ..., x,.,) : (x,,%,,...,%,,,) € R*™ Z(x,.)2
= 1} as follows. =

The stereographic projection, on the sphere S”, from the North Pole N =
(0,0,...,0,1) (respectively, South Pole S = (0,0,...,0,—1)) onto the plane
x"*!' =0 is the map which assigns any point p € §" — {N} (respectively, pE
ST —{S }) to the point where the straight line through p and N(respectively, §)
intersects the plane x"*! = 0.

The inverse of the stereographic projection is the map from the plane x"*! = 0 to
S"\ {N} (respectively, S" \ {S}) assigning the point ¢ in the plane x"*! = 0 to the
point where the straight line through N (respectively, through S) and ¢ intersect S”.

Problem 2.21 Using stereographic projection with x-axis as the image line, show
that S' is a smooth manifold (Fig. 2.10).

Solution: 21 Notethat N = (0, 1) and S = (0, —1) are the North and South Poles of
S'.Let p = (x,y) € S' and consider the set U = S' \ {N}and V = S! \ {S}. From
the definition of stereographic projection, ¢ : U — Rand ¢ : V — R are given by

X X
P(x,y) = m P(x,y) = m
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Fig. 2.10 Stereographic ya
projection on S! N(0,1)
p(x,y)
p'(x',0)
x
5(0,—-1)

Our claim is that {(U, ¢), (V, )} forms an atlas of S!. It is obvious that ¢ and 1

are homeomorphisms. Here x2 +y2 =1 = x2 = (1 — y)(1 + y). Letx = IL
-y

Then by virtue of foregoing equation, we have

1 5 2 " x?—1

(A=) =x"=2x)l-=>0+y)=>y=—F73.

14+ x

!/

Similarly, x = Tx/z Hence, the inverse map ¢! : R — U is given by
X

2% x?—1
1+x2 14+x2)°

o7 () = (x,y) = (

Herep(UNV) =R — {0}andyp(U N V) =R — {0}.Now,p o ¢~ : (U NV) —
1

YU NV)isgivenby (¢ o o H) = r is a C* function. Similarly, ¢ o )~ is also

C* function. This proves {(U, ¢), (V, 1)} forms a C* atlas of S!. Hence S' is a

smooth manifold.

Problem 2.22 Using stereographic projection with an equatorial plane as the image
plane, prove that S is a smooth manifold (Fig. 2.11).

Solution: 22 Note that N = (0,0, 1) and S = (0, 0, —1) are the North and South
Poles of S%. Let p = (x, y, z) € S and consider the set U = S> — {N} and V =
S?\ {S}.Here ¢ : U — R? and ) : V — R? are given by

(XY (XY
¢(x,y,z)—<1_zs 1_Z>, w(x,y,z)—(“rz, 1+Z)-

Our claim is that {(U, ¢), (V, 1)} forms an atlas of S.
It is clear that ¢ and 1) are homeomorphisms. Moreover, the inverse map ¢~ :
R? — U is given by
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N(0,0,1)

p'(x",y,0)
VA
X 5(0,0,—1)
Fig. 2.11 Stereographic projection on S2
2%/ 2y’ x'2 + y/2 -1
—1 / /
X, =W, y,3) = ’ ’ N
¢ ( y) ( y ) <1+x/2+y/2 1+x/2+y/2 1+x/2+y/2

Note that p(U N'V) = R?\ {(0, 0)}and (U N V) = R? — {(0, 0)}. Now, ¢ o ¢! :
o(UNV)— U NYV)given by

<wo¢“><x/,y/)=< z Y 2)
x/ +y/ X +y/

is a C™ function. Similarly, ¢ o ¢ ~! is also C*® function. This proves {(U, ¢),
(V, )} forms a C™ atlas of S2. Hence S is a smooth manifold.

Problem 2.23 Show that the n-dimensional sphere S” is a smooth manifold.

Solution: 23 Here N = (0,0,0,...,0,1)and S = (0,0,0, ..., 0, —1) are the North
— —
n—zeroes n—zeroes

and South Poles of S”. Note that

U=25"\{0,0,0,...,0,1)}, V=5 —{0,00,...,0,—1)}
— ——— —————

n—zeroes n—zeroes

and ¢ : U — R"and ¢ : V — R” are given by

X1 X2 Xn
qb(x],xz,...,xw):( .. ),

k b *
1- Xn+1 1- Xn41 1 - Xn+1

X1 X2 Xn
Q/J(x],xz,...,x““):( .. )

L+ X T+ x’ T 14204
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The inverse map ¢! : R" — U is

/ / / 72
2x1 2x5 2x Jxic—1

1~|—le(2’ 1+Zx;2.”’ 1—{—2)@’2’ l—l—in’z

So, oo™l 1 (U NV) = (UNV)is given by

-1
G (X1, Xy LX) =

/ / l
X1 Xy X

Y@t Y > w)?

1 l 1

(o QS’I)(xi, Xy ovny X)) =

whichisC*®ing(UNV)=R"—-{(0,0,0...,0,0)}.Hence {(U, ¢), (V, ¥)} forms
a C™ atlas of §". So §”" is a smooth manifold.

2.5 Orientable Surface

A regular surface S is said to be orientable if there exists a family of surface patches
(coordinate neighbourhoods), which will cover S, in such a way that if a point p of
S belongs to the intersection of two surface patches of the family, then the transition
map between the surface patches of the family has positive Jacobian. The existence
of such a family of surface patches is called an orientation of S and S is called an
orientable surface. If such a family does not exist, the surface is called non-orientable.

S"(n > 1) forms an example of orientable surface. The sphere can be covered by
two coordinate neighbourhoods (using stereographic projection; refer to examples
on stereographic projection). If W is the intersection of these coordinate neighbour-
hoods, W is connected. Let p € W be fixed. Since the Jacobian is positive at p € W,
it follows from the connectedness of W that the Jacobian is everywhere positive.
Hence S§"(n > 1) is orientable.

Now, we are going to focus our attention on an example of a non-orientable
surface, the so-called Mobius Strip. From the geometrical point of view, a Mobius
Band has the property that a figure moving around on the surface can come back to
its starting point and transform into its mirror image, so it is impossible to decide
consistently which of the two possible rotational directions on the surface to call
clockwise and which counterclockwise, or which is the front and which is the back
side. Let us denote the Mobius band by M (Fig. 2.12).
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Fig. 2.12 Mobius band

A B
B A
z.h
A of |
v y
C 1
X'/ v
2
B

The Mobius band is obtained by rotating an open segment AB around its mid-
point C = (1, 0, 0) at the same time as C moves around a circle St=x24+ y2 =1
in such a manner that as C moves once around S!, the segment A B makes a half
turn around C. After C has rotated by an angle v around the z-axis, A B should have
rotated by e around C in the plane containing C and the z-axis. Initially, the point
of the segment AB is at (1, 0, u).

Let U, ={(u,v): (u,v) €eR* = <u<3,0<v<2n} and U, = {(i, ) :
@0 ek -1 << %, —7m < ¥ < 7). Bach of U, and U, are open in R?. We

2
define ¢ : U, - M and ¢ : U, - M by
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o(u, v) = ((1 — u sin B) cos v, (1 — u sin E) sin v, u cos E)
2 2 2

Y, v) = l—ﬂsing cos U, l—ﬂsinE sinf),ﬂcosE .
2 2 2

Here, ¢(U, N U,) is not connected but consists of two connected components given
by

1 1
W]={¢(M,U)I(M,U)GR2,—§<u<5,0<v<7r},

1 1
W2={¢(u,v):(u,v)eR2,—§<u<§,ﬂ<v<27r}_

Hence, p(U, N U,) = W, U W,. Geometrically, (U, N U,) is the union of the rectan-
glesgivenby) < v < mandm < v < 27r,with—% <u< %.IfO < v < m,thenitis
clear that (¢~ o ¥)(u, v) = (4, v).If T < v < 27, we have v — ¥ = 2. Now com-
bining sin% = —sin 3, cos% = —cos 5 and ¢(u, v) = (i, V) implies i = —u.
Hence

(@ o), v) = (u,v), if0<v<mn

= (—u,v—2m), ifr <v < 27.

Hence, ¢! o ¢ forms the transition map between the two surface patches ¢ (u, v)
and 1 (u, v) for M. This proves {(U,, ¢), (U,, v)} forms an C* atlas for M, hence
a smooth manifold of dimension 2. Here

.V v v

®, = (— sin — cos v, — sin — sin v, cos —),

u=0 2 2 2
o, = (—sinv, cos v, 0).
v . v . v .
Therefore, ¢, X o, L= (—coswvcos 7 sin v cos 5 sin E)' Now the unit
: : d)u X (?bv .
normal is given by N, = 6. %ol = ¢, X ¢,. If possible, let us assume M to be
X

orientable. Then 3 a well-defined unit normal vector N : M — R3 at every point of
M, which varies smoothly over M. At ¢(0, v) € S', we have N = 1(v)Ny where
w:(0,2m) — R is smooth. Also, p(v) = 1 V v. It follows that

) =-+1, Yv e (0,27) or u(v) = —1, Vv € (0, 27m).

Depending on the changes u — v, # — v has to be made, suppose 1 = 1. As N is
smooth, at ¢(0, 0) = ¢(0, 27), we have
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N =lmN, = (~1,0,0)
N = lim N, =(1,0,0).

v—>27

This leads to a contradiction, which proves M is non-orientable.

Remark 2.19 The Jacobian(J) of ¢! o4, ie. J(¢ ' o)) = g?ﬁ’ Ij; =1>0in
u,v
Woand J(6 o) = 29 _ i _ginw,
o, v)

2.6 Product Manifold

Let M and M be smooth manifolds, with differentiable structures A, and A,, of
dimensions m and n, respectively. First we prove that M, x M,, with the product
topology, is a (m + n)-dimensional topological manifold.

Since M, and M, is a smooth manifold, the topology of M, and M, is Hausdorff
and second countable. Therefore, the product topology of M, x M, is Hausdorff and
second countable.

Let (x,,x,) € M, x M,. Since x, € M, and M, is a m-dimensional smooth man-
ifold with differentiable structure A, 3 a coordinate chart (U, ¢) € A, such that
x, € U. Similarly, 3 a coordinate chart (V, ) € A, such that x, € V. Hence, ¢ is a
homeomorphism from the open subset U of M, onto the open subset ¢(U) of R™.
Similarly, 1) is a homeomorphism from the open subset V of M, onto the open subset
(V) of R". Since U is an open neighbourhood of x, and V is an open neighbourhood
of x,, the Cartesian product U x V is an open neighbourhood of (x,, x,) € M, x M,.
Furthermore, the Cartesian product ¢(U) x (V) is open in R" x R” = R"™*", Let
us define a function

OxY:UxV = oU) xp(V), (x;,x,) = (d(x)), Y(x,)), ¥V (x;,x,) eU x V.

Then ¢ x 1) is homeomorphic to an open subset ¢(U) x ¥ (V) in R”*", Hence,
M, x M,, with the product topology, is a (m + n)-dimensional topological manifold.
Let us denote the collection of coordinate charts of M, x M, by C. Then

C={UxV.ox9):(U,¢) €A, (V.9) € A}

Here | J{IU x V: (U xV,¢ x 1) €C} =M, x M,. To show that M, x M, is a
(m 4+ n)-dimensional smooth manifold, it only remains to show that all pairs of
members in C are Ck-compatible, foreveryk =1,2,3,...,....

Let (U x V, ¢ x ¢) € Cand (U x V, ¢ x 1) € C. Then the transition function

@Gx)o@x ' =0@od Hx@od ) @x (W x V)NWT x V) = (@ xv)((U x V)N (T x V)
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U xVNU x V)

(@xP)o(@xy)~*

(@xy)e(@xP)™

Fig. 2.13 Product manifold
is C*, as both (¢ o (5’1) and (v o 1/;*1) are C* compatible. By similar reasoning, the
transition function

Wx$)o@xp ™ =wed ™) x(@od™): @ x (W x VINT x V) > (@ x )(WU x V)N (T x V))

is also so. Hence, C forms a C* atlas on M, x M,, so it is a smooth manifold of
dimension (m + n) (Fig. 2.13).

Example 2.7 Since S! is a smooth manifold, the torus S! x S! is a smooth manifold.
Problem 2.24 Prove that the infinite cylinder is a smooth manifold.

Solution: 24 Since the infinite cylinder can be expressed as a product of smooth
manifolds S! and R, it is a smooth manifold.

Exercise

Exercise 2.9 Prove that the n-dimensional torus is a smooth manifold.
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2.7 Smooth Function on Smooth Manifold

Let M be a smooth manifold of dimension n (Fig. 2.14).

Let us recall the definition of a smooth function on a smooth manifold. A function
f M — Ris said to be of class C*° or smooth at a point p € M, if for every chart
(U, ¢) of p in M, the function

fogp 'l ipU) CR" - R

is of class C™ at ¢(p). The function f is said to be C* on M if it is C* at every
point of M.

Proposition 2.3 The notion of smoothness of a map is independent of the choice of
a coordinate chart.

Proof Let M be an n-dimensional smooth manifold and let f : M — R be smooth
at every point of M. Hence, for every chart (U, ¢) of pe M, fo¢™ ! : d(U) C
R" — Ris of class C™ at ¢(p). If (V, ¥) is any other chart of p, where p e UN V.,
then on (U N'V)

fo ' =(fop ooy,

Let A= {(U,, ¢,)} be an atlas of M, where each (U, ¢), (V, ¢) € A. Thus, each

0

¢ o' 1o ¢~ !isof class C* and hence from above, f o 1~ is C® ony(U N V).

Fig. 2.14 Smooth function
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Consequently, the smoothness of f on M is independent of the choice of any
coordinate chart on M. This completes the proof.

Proposition 2.4 Let M be an n-dimensional smooth manifold and f : M — R be
a map. Then the followings are equivalent:

(i) Themap f : M — Ris of class C*°.
() food':p(U) CR" — Risofclass C®, foreverychart (U, $) € A, Abeing
the atlas.
(i) foy': (V) CR" — R is of class C*®, for every chart (V,v9) € A, A
being the atlas.

Proof (ii))=(i): Let (ii) hold. Then f = (fo¢ o ¢ : M — Ris of class C®
at R, as (U, ¢) is given to be a chart. Thus (ii)=(i).

(i)=(ii): Let (i) hold. Then by definition, 3 a chart (U, ¢) at p € M such that
fodl:p(U) CR" = Ris of class C™® at ¢(p).
If (V, %) is any chart at pon M, p € U NV, then

foy ' =(fog Ho(poy™

is of class C* on (V). Thus (i)=(iii).
(iili)=(i): Let (iii) hold. Let A be an atlas on M, where (U, ¢), (V, ) € A. By
definition, ¢ 0 7! and 1) o ¢~ are C®-related. Thus

fod ' =(foy Ho@og™
is of class C* on ¢(U).

We shall often denote by F' (M), the set of all C*°-functions on M and will sometime
denote by F(p), all the C*°-functions at p of M. It is to be noted that such F' (M) is

(i) an algebra over R
(ii) amodule over R,

where the defining relations are

(@) (f +9)(p) = f(p) +g9(p), ;
®) (fop) = f(pg(p), ;
@ XNNHP)=Xf(p), Y fige FIM), \eR.

Now we are going to discuss smooth functions between smooth manifolds.

Let M be an n-dimensional and N be an m-dimensional manifold (Fig. 2.15).

A mapping f : M — N is said to be a differentiable mapping of class C* if for
every chart (U, ¢) of p € M" and every chart (V, ¢) of f(p) € N,

i) Wy v 29
(i)Yo fod l:pU) CR" = (V) C R", isof class C*. ’
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Yofep™

¢(U) BR" Y(U) R™

Fig. 2.15 Differentiable mapping

By differentiable mapping, we shall mean unless otherwise stated, a mapping
of class C*.

Let M and N be two n-dimensional smooth manifolds. A mapping f : M — N
is said to be a diffeomorphism if

(i) f is a differentiable mapping.
(i1) f is a bijection (2.10)
(iii) f~'is of class C*°.

In such cases, M, N are said to be diffeomorphic to each other. A diffeomorphism
f of M onto itself is called a transformation on M.

Proposition 2.5 The notion of smoothness of a map between two smooth manifolds
is independent of the choice of a coordinate chart.

Proof Let M be an n-dimensional and N be an m-dimensional manifold. Let us
consider the map f : M — N to be differentiable of class C*°. Note that (U, ¢) and
(V, 1) are any charts about p € M and f(p) € N respectively with f(U) C V such
that the map v o f o ¢~! being C™. Then for p € M, suppose there exists charts
(U, ¢) of p and (V, ) of f(p) with £(U) C V such that the map

Yo fod ' :d(U)CR" — (V) CR", isof class C* at ¢(p).
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However, (;3 o¢pland o &" are C* on open subset of Euclidean spaces. Hence,
@od oo fodNo(dog ) =1ofog

is C*°. This proves that the C* structure of a map does not depend on any coordinate
chart chosen.

Proposition 2.6 If (U, ¢) is a chart on a manifold M of dimension n, then the map
¢:UCM— ¢p(U) CR"is adiffeomorphism.

Proof Note that (U, ¢) being a chart, ¢ is a homeomorphism.

Further, we use the atlas {(U, ¢)} with a single chart on U and the atlas
{¢(U), Iy} with a single chart on ¢(U). Then Iy o ¢ o ol p(U) CR >
@(U) is the identity map. Thus, I4¢) o ¢ o ¢~ is of class C* and by (2.9), ¢ is a
differentiable mapping. Furthermore, ¢ 0 ¢~! o Iy : ¢(U) — ¢(U) is an identity
map, hence is of class C*. Thus, all the conditions of (2.10) are satisfied by ¢ and
so is diffeomorphism.

Proposition 2.7 Let U C M be an open subset of a manifold M of dimension n.
Ifo: U CM— ¢(U) CR" is a diffeomorphism, onto an open subset of R", then
(U, ¢) is a chart on M.

Proof For any chart (U, ¢,) on M, both ¢, and (b;l are of class C*® (refer to
Proposition 2.6).

Now ¢ being a diffeomorphism, it is C*°. Consequently, the composite mappings
do ¢, and ¢, 0 ¢! are of class C*°. Hence (U, ¢) is compatible with an atlas on
M. Thus (U, ¢) is a chart on M.

Problem 2.25 If (x', x2,...,x") and (yl, y2, ..., y"™) are respectively the local
coordinate systems defined in the neighbourhood U of p € M" and V of f(p) € N™,
then it can be shown that

ylof=g/(x!,x% ..., x"), where (2.11)
9 (@)= @Wo fod )g). q€dU). (2.12)

Solution: 25 Let ¢(p) =¢q, p € U C M". Then

9(@(p)) = (o fod ) d(p) = @o f)p)
or u? (g(¢(p))) = u! (p(f(p))) = W o Y)(f(p))
or g/ (¢(p)) = ¥/ (f(p)) by (2.1), (2.3)
or g/ (x'(p). ... x"(p)) = () o f)(p) by (2.2)

ie.ylof =g/ (x! x% ..., x".
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Fig. 2.16 Differentiable Z
map between punctured
sphere and cylinder

Problem 2.26 Obtain a differentiable map between the punctured sphere at two
points (0, 0, 1), (0, 0, —1) and the cylinder N with infinite ends (Fig. 2.16).

Solution: 26 Let us consider the punctured sphere M = 52 —{(0,0, 1), (0,0, —1)}
where S = {(x,y,2) : (x,y,2) € R} x4+ y> 4+ z> = 1}. Here, the coordinate
neighbourhood (U, ¢) is given by U = $2 —{(0,0, 1), (0,0, —1)}, ¢: U — R?,
where ¢(cosvcosu,cosvsinu, sinv) = (x,y). Therefore, d)’l ‘R > U is
defined by (b‘l(x, y) = (cos v cosu, cos v sin u, sin v).

Let us consider the cylinder N = {(¥,%,2) : (X,7,2) e R}, ¥ +37°=1,0 <
Z < 1}. Here, the coordinate neighbourhood (V, ) is given by V = N and ¢ :
N — R?, where ¥(cos u, sinu, z) = (x, z). Therefore, 1y~ : R — V is defined by
Y (x, z) = (cosu, sinu, 7).

Letusdefineamap f : M — N by (x, y, z) — (X, y, z). In other words, we can
say that the line joining p and f(p) is parallel to the xy-plane and orthogonal to
the z-axis. Since the point (cos v cos u, sin v sin u, sin v) is moving from the sphere
M parallel to the xy-plane and is orthogonal to the z-axis, therefore the x and y
components of (cos v cos u, sin v sin i, sin v) will take the coordinate of the cylinder
N but the z-component, i.e. sin v will remain unchanged. Hence,

f(qb_l(x, y)) = (cosu, sinu, sinv) = w_l(x, sin v)

ie. (Yo fop (x,y) = (x,sinv),

which shows 1) o f o ¢~! is differentiable.

Exercise

Exercise 2.10 Let M and N be two smooth manifolds with M = N = R. Let (U, ¢)
and (V, ) be two charts on M and N respectively, where U =R, ¢ : U — R is
the identity mapping and V.= R, 1) : V — R is the mapping defined by 1 (x) = x°.
Show that the two structures defined on R are not C*-related even though M and
N are diffeomorphic where f : M — N is defined by f(t) = t'/3.



2.8 Differential Curve and Tangent Vector 69

2.8 Differential Curve and Tangent Vector

We are now in a position to introduce one of the important concepts of geometry, i.e.
tangent vector. Geometers prefer to define the tangent vector at a point with respect
to a curve. Hence, at first we shall define a curve on a manifold.

A differentiable curve at p on a manifold M is a differentiable mapping o :
[a,b] CR — M" suchthat o(t)) = p, a <t, < b (Fig. 2.17).

Then by (1.1) and (2.1), we obtain

(x' o 0)(t) = u' (p(a(1))) = u' (' (), a*(1), ..., 0" (1)) = o' (1). (2.13)

Often, we write it as A '
x'(t) =o' (1). (2.14)

The tangent vector to the curve o (¢) at p of M is a function X, : F(p) — R defined
by

h)) — d
X f = |:%1_IR) flo@t+ )2 f(a(t))} — Ef(a(tmt:to’ Y f e F(p)
o(t,) = p. '
(2.15)
Note that

d
Xp(af +bg) = —(af +b9)@@)|,, . V f.g € F(p).a.b € R: by (2.15)

d d
= aEf(U(t))’,ZZU + bag(a(t))‘tzto, by (1.8)
Xplaf +bg) =a(X,f) +b(Xpg), by (2.15). (2.16)

Fig. 2.17 Differential curve
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Again

d
Xp(f9) = (D@, . by 2.15)
d
= S @O)g@®)]_, . by (18)

d d
= - fle®)],_, 9(ot0) + f (@) —-g(@)],_, , by (1.9)
X,(f9) = (X, Ng(p) + f(P)X 9. (2.17)

Equations (2.16) and (2.17) are respectively known as linearity property and Leib-
nitz Product Rule. Thus, the tangent vector at a point on a manifold is a derivation
at that point.

Let T, (M) denote the set of all tangent vectors at p of M. We define

{ Xp+Y)f=X,f+Y,f, VX,,Y,eT,(M) (2.18)

X)) f =AX,f), AeR.

Clearly, T, (M) is a real vector space (refer to any standard textbook of Linear Alge-
bra). Hence, T, (M) must have a basis.

If (x', x2, ..., x") is the local coordinate system in a neighbourhood U of p € M,
0
then foreachi = 1,2, ..., n, we define a mapping I : F(p) > Rby
xl
0 af
— = - , YV feF(p). 2.19
(5250 (s ) ¥ £ € Fip) .19

0
Clearly, each (8_) i =1,2,3,...,nsatisfies (2.16) and (2.17).
xl

Let us define a differentiable curve o : [a, b] C R — M by

{ o' (t) = o' (1,) for fixed i (2.20)

ol t)=0, j=1,2,3,....i—1,i+1,...,n.

Then

d _\9f(e@®) da' () .
Ef(o(t)) =2 “00i)di |,_,,» by chain rule
_ 9f(o(t)) .
= 00 |t=t0’ for fixed i, by (2.20)

_Of(p)

=5 by (2.14)
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B
=<%)pf, by (2.19).

0

Thus, each (8_)P :i=1,2,3,...,nis atangent vector to the curve o defined by
xl

(2.20). Further from (2.15), we have

d
pr = Ef(o—(t))

=1

_ Z df(a(t0)) (dxi(t)>’
_; oxi(t) dt )'t=0
e (dx) 0
‘Z( i >,=to(ﬁ>,,f

= Zg’(m(i) f» say, where
- oxt ),

o (O
fi=(20) =123 o)

£ : M — R, are differentiable functions on M.

Thus we write

; 0
X, = Zﬁ’(p)(@)p, Y f € F(p). (2.22)

. ) . 0
Finally, if that ‘Pz=) =0.th ‘m =) x* =0,
inally, if we assume tha Z§ (p)(ax’>p en Z{ (p)(8x1>px

where x* € F(p). Then £¥(p) = 0, by (2.19). Proceeding in this manner, we can say
that

gp=&p=---=€(p =0
9 . - .
Thus, the set {_, i=1,2,3,..., n} is linearly independent. We can now state
the following.
Theorem 2.4 If (x', x%, ..., x") is a local coordinate system in a neighbourhood U

of a point p in an n-dimensional manifold M, the basis of the tangent space T,(M)

0

is given by {8_ i =1,2,3, ,n} and every X, € T,(M) can be expressed
xl

uniquely by (2.22).
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Problem 2.27 Let X = (2,3,0) € R3. Find X, f for a fixed point p = (=2, 7, 1)

where f = x'x? cos x2.

Solution: 27 Comparing with (2.22), we see that

p)=2, €(p)=3, €(p)=0.

0
( xl) = (x3cosx2)p = —1;
V4

(

Further,

~

Q» Q
\

Q
©

. ) = (—x'x3 sinx3),7 =0;
P

>p=2.

7/
gl
|

Thus X, f = —2.

0 0

Problem 2.28 Let X = 2x8— - Zya— be a vector in R?. Find X, f where f =
X y

2x 4y’ p=(x,y).

Solution: 28 As done in the previous problem,

gp)=2x, E(p)=-2y, —

Thus X, f = 4x — 6y°.

0 0
Problem 2.29 Let X = x + 2 be a vector in R?. Find X ,J for a fixed point
X Z

p = (1,1,0) where f = xzcosy.

Solution: 29 In this case
X, f= 1(zcosy)|p + 0(—xz siny)|p + 1(x cos y)|p =cos 1.

Problem 2.30 If C is a constant function on a manifold M and X is a tangent vector
to some curve o on M, show that X - C = 0.
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Solution: 30 Here by (2.16), we have X(1) =0, i.e. X - 1 = 0. Again by virtue
of linearity, X -C = X(C-1)=C(X -1), as C is a constant function. Hence
X-C=0.

Problem 2.31 Let f = ((x')? — 2)x® + (x%x — 1)x1.FindXﬂf, p=(x!, x2, x%).
Solution: 31 Here

X, = @BeHA? + @2 - D), + €', + Ep{)? -2+ x'x%) ), by 2.2D).

Exercises
Exercise 2.11 Find the tangent vector

(i) to the curve o € R" where o' = a' + b't, a', b’ € R for everyi.
(ii) to the curve o(t) = (t%, %) on R2.

cos2t —sin 2t X
(iii) to the curve o, (t) = (sin 2 cos 2t ) (y) att = 0.

Exercise 2.12 (i) Consider the curve v(t) = (cost, sint) € R?, ¢ € (0, w). Find
the vector X tangent to vy at % Calculate X f where f : R*> — R is defined by
f=2x+y.

(i) Consider the curve 1) in R* defined by x = sint, y = cost, t € (—x, w) and the
map f: R > R defined by f(x,y) = x3y. Find the vector X tangent to 1 at
t= % and compute X f.

Exercise 2.13 Let X = (2, —3,4) € R3. For a fixed point p = (2,5, 7), compute
X, f where

(i) f:R>— Risdefined by f = x3y.
() f:R®— Risdefinedby f =7".
(iii) f:R3 — Risdefined by f = e* cosz.

Answers 5 5 5 5 ) 5 )
2L b g5+ g5 B T () 2+ 305 or 2 30
(i) —2ya% 4 Zx%.

1 1 1
2-12(1)—E%+Ea%; 57 (ii)—a%; 1.

213 ()96 (ii)4-77 (iii) 2¢*(cos 7 — 2 sin 7).
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2.9 Inverse Function Theorem for Smooth Manifold

In continuation with the Inverse Function Theorem for R”, stated and proved in
Chap. 1, the following theorem deals with the study of Inverse Function Theorem
for arbitrary smooth manifolds.

Theorem 2.5 Let M and N be n-dimensional smooth manifolds and F : M — N
be a smoothmap. Let p € M. If F, : T (M) — T, (N) is invertible (i.e. 1 — 1 and
onto) at p, then 3 an open neighbourhood U of p, and an open neighbourhood V of
F(p) such that F : U — V is a diffeomorphism.

Proof Since M is an n-dimensional smooth manifold and p € M, therefore there
exists an admissible coordinate chart (U, ¢) of M such that p € U. For every g €
0 0
U ]et s A Al sy T
<8x Ox? |f/ ox" |4
to (U, ¢). Again, since N is an n-dimensional smooth manifold and F(p) € N,
therefore there exists an admissible coordinate chart (V, 1)) of M suchthat F(p) € V

~ 0
and (¢ o F)(p) = 0. For every r € V, suppose (—
y

be a coordinate basis of T, (M) corresponding

is a

v’ 3),2 r ’ 3)}" ‘,,
coordinate basis of 7. (N) corresponding to (v, 1)). Here, the matrix representation
of the linear map f, at the point p with respect to some basis, denoted by (f.), is
the n x n order matrix. Since the linear map f, is invertible, therefore det(f,) #
0. Furthermore, the map ¢ o F o ¢! : QS(U NFYV)) - 7,/1(\7) is smooth. Also,
(o F o ) (d(p)) = ¥ (F(p)) = 0. Moreover, it is clear that $(U N F~'(V)) is
an open neighbourhood of ¢(p) € R" and (V) is an open neighbourhood of 0 € R”.
Now, by virtue of Inverse Function Theorem for R”, 3 an open neighbourhood U of
¢(p) satisfying

e UCop(UNF'(V));

e (1) o F o ¢~")(U) is an open neighbourhood of 0;

e 1) o F o ¢! has a smooth inverse on (1) o F o ¢~")(U).

Set U =¢ ' (U) and V = (Fo¢~ 1 (U). Our claim is that U is an open neigh-
bourhood of p € M. Since U is open and contained in ¢(U NF~ 1(V))(C ¢(U))
and ¢(U) is open, U is open in ¢(U) hence ¢~ YD) is open in U. Moreover,
¢~ (U) = U(say) is open in M. Since ¢(p) € U, therefore p € U.

Since 1) o F o ¢! has a smooth inverse, therefore 1) o F o ¢~! is continuous.
Also ¢ o F~! is continuous, as 1) is so. Furthermore, (F o ¢‘1)(l_/) =V is open.
Since ¢(p) € U, therefore F(p) € V. This shows V is an open neighbourhood of
F(p).

Since 1 o F o ¢! has an inverse, therefore 1) o F o ¢! is one-to-one and onto.
Thus, the composite map ¢! (1) o F 0 ') 0 ¢ = F is also one-to-one and onto.
Since ¥ o F o ¢! has a smooth inverse, ¢ o F~!' 0 ¢)~! is smooth. This gives F~! :
V — U is smooth. This completes the proof.

Let M and N be n-dimensional smooth manifolds and ¥ : M — N be a smooth
map. Let p € M. If 3 an open neighbourhood U of p, such that the neighbourhood
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FU) of F(p)isopenin N and F : U — F(U) is a diffeomorphism, then we say
that F is a local diffeomorphism.

Problem 2.32 Let M and N be n-dimensional smooth manifolds and F : M — N
be a local diffeomorphism. Prove that F' is an open map.

Solution: 32 Let p € U. Since F is a local diffeomorphism and p € M, 3 an open
neighbourhood V of p suchthat F(V)isopenin N,andthemap F|y : V — F(V)is
a diffeomorphism. Since U, V are open neighbourhoods of p, U N V is also an open
neighbourhood of p, in V. Since F|y : V — F (V) is a diffeomorphism, therefore
it is a homeomorphism. This implies F|y (U NV) is open in F(V), as U NV is
open in V. Moreover, F (V) being open in N, therefore F|y (U N V) is open in N.
SincepeUNV,F(p)e FUNV). Thus, FIUNV)C F(V)and F(UN V) is
an open neighbourhood of F(p).

Remark 2.20 Let M, N, P be smooth manifolds.Let F : M — NandG : N — P
be local diffeomorphisms. The composite map G o F : M — P is alocal diffeomor-
phism.

Let M and N be respectively n- and m-dimensional smooth manifolds. If F :
M — N is continuous, and for every p € M, 3 an open neighbourhood U of p such
that F(U) is an open neighbourhood of F(p) and the map F|y : U — F(U) is a
homeomorphism, then F : M — N is said to be a local homeomorphism.

Remark 2.21 If F : M — N is a local diffeomorphism, then it is a local homeo-
morphism.

Remark 2.22 Let M, N be smooth manifolds. Let U be a non-empty open subset
of M. Let F: M — N be a local diffeomorphism. Then F|y : U — N is a local
diffeomorphism.

Note that diffeomorphism implies local diffeomorphism, but the converse is not
always true in general.

Example 2.8 Consider the map f : R?> — R? defined by f(x,y) = (¢*cosy,

. / e*cosy —e*siny
X J—
e*siny). Here f (x,y) = <e)‘ siny e*cosy
non-zero, which shows f'(x, y) is invertible. But f is not one-to-one, since it is of
period 2. So f is a local diffeomorphism but not a diffeomorphism.

) and the Jacobian of the matrix is

Problem 2.33 Let M and N berespectively n- and m-dimensional smooth manifolds
and F : M — Nbel — 1andonto. Suppose F is alocal diffeomorphism. Then prove
that F is a diffeomorphism.

Solution: 33 Since F : M — N is a local diffeomorphism, it is a local homeomor-
phism and hence continuous. Also F is an open map. Since F : M — N is 1 — 1
and onto, F is continuous and F is an open map, F : M — N is a homeomorphism.
It remains to show that F : M — N is smooth and its inverse is also so.
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For any p € M, we have to find an admissible coordinate chart (U, ¢) of M with
p € U, and an admissible coordinate chart (V, i) of N with F(p) € V such that
YoFog™l:p(UNF (V) = (V) is smooth.

Since p € M,and F : M — N is alocal diffeomorphism, 3 an open neighbour-
hood U of p such that F (U) is an open neighbourhood of F(p) in N, and the
map Fl; : U— FWU)isa diffeomorphism Furthermore, 3 an admissible coor-
dinate chart 0, ¢) of M with p € U. Also, 3 an admissible coordinate chart
(V w) of N with F(p) € V. Moreover, U N U is an open nelghbourhood of p.
So ((U no), ¢|Umu) forms an admissible chart of M satisfying pPE UNU. Since
Flg - U— FW)isa diffeomorphism, the map F|;; : Uno0 — F({UN U) is
a diffeomorphism. Since F' : M — N is a homeomorphism, and UNUisan open
nelghbourhood of p, F 0n U ) is an open neighbourhood of F(p).

Since (V, ¢) is an admissible coordinate chart of N with 1% being an open neigh-
bourhood of F(p), and F(U N U) is an open neighbourhood of F(p), VN F(UN
l}) is an open neighbourhood of F(p). Hence, (‘7 NFUN 0), 1/;|\70F(0m0>) forms

an admissible coordinate ghart of N with F(p) € VNF (U no ). ~
Since the map F|; : U — F(U) is a diffeomorphism, it is smooth. As ((U N
0), ‘£|(/mz}) forms an admissible chart of M satisfying p € U N U and (V N F(U N
0), m%F(Unl})) forms an admissible coordinate chart of N with F(p) € vn
FWUN U ), therefore . )
(w|\7ﬁF((7ﬂ[7)) oFlgo (¢|[/m[/)_l

is smooth. This proves F : M — N is smooth.

Finally, since F : M — N is 1 — 1 and onto, therefore F -1 N — M exists
and is 1 — 1 and onto. Also F~': N = M is a local diffeomorphism, therefore
proceeding as above F~! : N — M is smooth. This completes the solution.

Problem 2.34 Let M and N be respectively n- and m-dimensional smooth manifolds
and F : M — N be a local diffeomorphism. Then F is a smooth immersion and
smooth submersion.

Solution: 34 We wish to show that, for every p € M, rank F = n = m. Since p €
M and F is a local diffeomorphism, 3 an open neighbourhood U of p such that
F(U) is open in N, and the map F|y : U — F(U) is a diffeomorphism. Since
U (# ¢) is an open subset of M, and M is an n-dimensional smooth manifold,
U is an n-dimensional smooth manifold, so dim7,(U) = dim U = n. Similarly,
dim7,,, (F(U)) =dim F(U) = m. Since F|y : U — F(U) is a diffeomorphism,
p € U, the linear map f, : T,(U) — T, (F(U)) at p is an isomorphism (refer
to Exercise 2.55), which impliesrank F = dimT,(U) =n =m = dim T, , (F(U))

at p.

Problem 2.35 Let M and N be respectively n- and m-dimensional smooth manifolds
and F : M — N be a smooth immersion and smooth submersion. Then F is a local
diffeomorphism.
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Solution: 35 Let p € M. Our claim is to find an open neighbourhood U of p € M
such that F(U) is open in N, and the map F|y : U — F(U) is a diffeomorphism.

Since F is a smooth immersion and smooth submersion, the linear map F; :
T,(M) = Tr)(N) is 1 — 1 and onto at p € M, therefore dim7,(M) = dim T,
(M), i.e. n = m. By Inverse Function Theorem for manifolds, 3 an open neigh-
bourhood V of F(p) with F|y : U — V being a diffeomorphism. Hence F(U) =
(Fly)(U) = V. Moreover, F(U) being open, F|y : U — F(U) is a diffeomor-
phism.

Exercises

Exercise 2.14 Let M and N be n-dimensional smooth manifolds and F : M — N
be a smooth immersion. Then F is a local diffeomorphism.

Exercise 2.15 Let M and N be n-dimensional smooth manifolds and F : M — N
be a smooth submersion. Then F is a local diffeomorphism.

2.10 Vector Field

In classical notation, if to each point p of R3 or in a domain U of R3, a vector
a: p — a(p) is specified, then we say that a vector field is given on R? or in a
domain of R?. In the same manner, we will introduce a vector field in a manifold M.

A vector field X on M is a correspondence that associates with each point p of M,
a vector X, € T,(M). In fact, if f € F(M) then Xf is defined to be a real-valued
function on M, as follows:

Xf)(p) =X, f. (2.23)

A vector field X is called differentiable if X f is so forevery f € F(M).From (2.22),
a vector field X can be expressed as

.0
X = f—. 2.24
Zijﬁ o (224)
Let x (M) denote the set of all differentiable vector fields on M. We define

{ X+YVf=Xf+Yf (2.25)

OAX)f = NXF), VX, Y € x(M), A € R.

It can be shown that y (M) is a vector space over R. We also define f X to be a vector
field on M as follows:

(fX)(p) = f(p)Xy, VpeM. (2.26)

Let us define a mapping [, ]: F(M) — F(M) as
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(X, Y]f =X{X[f)—-YX)). (2.27)

Such a bracket is also known as Lie Bracket of X and Y.
Exercises

Exercise 2.16 Show that for every X, Y, Z in x(M) and f, g in F(M)
(a)[X,Y] € x(M)

(b) [bX,Y]=b[X,Y]=[X,bY], VbR

() [X+Y,Z]=1[X, Z] + Y, Z]

(d)[X,Y+Z]=[X,Y]+[X, Z]

(e) [ X, 1Y, Z11 + 1Y, [Z, X11+ | Z, [X, Y]] = 0: Jacobi Identity

X, X]=0
(8)[X, Y] =—[Y, X].

Hints
2.16 (a). Show that [ X, Y] satisfies Linearity and Leibnitz Product rule.
Remark

Remark 2.23 x (M) with the product rule given by (2.27) is an algebra, also called
Lie Algebra.

Problem 2.36 Using [X, X] = 6, show that [X, Y] = —[Y, X].

Solution: 36 For every X,Y € x(M), X +Y € x(M). Using the hypothesis, we
have

X+Y,X+Y]=6
ie. [X,Y]+[Y,X]=06,
X, Y]=—[Y, X].

Problem 2.37 Prove that [X, fY] = f[X, Y]+ (Xf)Y.
Solution: 37 Note that

((fXOh)(p) = (fX)ph, Y h e F(M) by (2.23)
= f(p)X,h, by (2.26).
Also, (f(Xh))(p) = f(p)(Xh)(p), by (1.8)
= f(p)Xph, by (2.23).

Thus
(fX)h = f(Xh), Vpe M. (2.28)

Again (2.27) yields
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[X, fY]=X{(fY)h} — (fY)(Xh)
= X{f(Ym)} — f{Y(Xh)}, by (2.28)
= (XH(Yh)+ fFIXYh)}— f{Y(Xh)}, by 2.17)
= {(X)Y}h + f{[X, Y]h}, by (2.27) and (2.28)
={(XY}th + {f[X, Y]}h, by (2.28)
ie., [X, fY1= fIX, Y]+ (Xf)Y, V h.
B

0 0
Problem 2.38 If X = —,Y = — + ¢"—, compute [X, Y](0,1,0)-
ox dy 0z T

Solution: 38 Note that

0, 0f LOf B 0 L 0.\0f
[X’Y]f_ﬁx{ﬁy—i—e az} (8y+e 8z)8x
Of
I
0
L X, Y]=e"—, V
"1[ b ] e az’ f

0
Hence, [X, Y]q.1.0) = 2z

(0,1,0)

Problem 2.39 Find the general expression for Z € x (R?) where

g Z|=Z7Z and 4 Z|l=Z
ox,” ] ox,” ]

Solution: 39 Let us assume that

) )
Z = Ax,, x,)=— + pu(x,, x,)=—, \, p € F(R?).
ox 0x

1 2

Substituting the expression of Z and using (2.27), one gets after a few steps

0 7 _ OAx,,x,) O +8,u(xl,x2) 0
ox,” "] 0x, O ox,  Ox,

1 2

Similarly,
R I O WO S
ox, Ox,  Ox, Ox,  0Ox,

From the given condition,

i Z| =7 and 0
ox | Ox

,Zi|=Z.

2

79
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Thus on comparing, we have

= Ax, X,); = p(x;, x,); = Ax,, x,);

OA(x,,
(gn *,) = p(x,, x,).

Oplx,, x,)
17)

OA(x,, x,) op(x,, x,)
17) 17)

1 2 2

From the first equation, we see that
Ax,,x,) = Af(x,)e’t, A being constant.

Substituting in the third equation, we get

0
Ox,

{Af(x)e"} = Af(x,)e™

Af'(x)e" = Af(x,)e"
o f(x,) = Ce*, C is constant.
Thus A(x,, x,) = ACe™2e"1 = De" 1™ say D = AC being constant.

By similar computation, from the second and fourth equations, it can be found that
u(x,, x,) = Bg(x,)e™ and after a brief calculation, u(x,, x,) = Ee"1 ™%, E being a
constant. Thus,

7 = Delerxzai + Eef1 ™ i

X Xy

Problem 2.40 Write in cylindrical coordinates, the vector field on R3 defined by

0 o 0

X=—4—+—.
8x+8y+8z

Solution: 40 If (p, 6, z) is the cylindrical coordinate, then the Cartesian coordinate
(x, v, z) is given by
x =pcosb, y=psinf, z = z.

Therefore, |J| = p. Let us write

7] 7] 0
_ ¢l 2 3
X_g(pveaz)ap_'_g(p’ovz)ae +§(pa992)80

¢! 1
Then J| & | =11], ie, &' cosf—&psinh=1; 'sinf + pcosh =
& 1

1; € = 1. After a few steps, one gets from above
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&' =cosf +sinf

1
§2 = —(cosf — sin ).
p

Thus in cylindrical coordinate, we have

1
X = (cosG+sin9)% + ;(cos@—sinG)% + 8%

Problem 241 If X = (x — y)% — % Y = XZ% + y(% are vector fields on R2,
show that X, Y are linearly independent differentiable vector fields on R2, if
x2 —y2 4+ xy # 0. Further, if Z = (x? — y) & + (x> + yz)a% is any vector of R?,
express Z = fX + gY, where f, g € F(R?).

Solution: 41 Clearly, X, Y are differentiable, as x — y, x2, y are also so. If X, Y
are linearly independent, then for AX + puY =0 => A=p =10, V A, u € R. Again
AX 4 pY = 6 gives

0 0
Ax =)+ px?}— + (=X +py)— =0.
Ox dy
o 0. .
As {a, a} is a basis of T(, ) (R?), we must have

AMx—y) +pux?>=0=—X\+puy.

Therefore, A = py and pu(x> — y? 4+ xy) = 0. Thus X, Y are linearly independent if
x2 —y2 4+ xy # 0. Writing Z = fX + gY, we find on comparing

=y =fx—y) +gx and x*+y>=—f+gy.
One gets, after a brief calculation,

f_xzy—y3—x4—x2y2 = E YY)
X2+ xy —y? X2+ xy — y? '

bl

Exercises

Exercise 2.17 Show that

(@) [fX, Y= fIX, Y] - (¥YHX

(b) [fX,gY1= fglX, Y1+ {f (XYY —{9g(Y)}X, where X,Y € x(M) and
f.g € F(M).

Exercise 2.18 In terms of a local coordinate system (x', x>, ..., x") of a pointin a
neighbourhood of a differential manifold M, show that
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o 0 ..
(a)l:%,@}za, i,j=12,3,...,n

_ 1877] _ ag i
(b)[X,Y]= ;(5 e 6x’)8 - where X = Zf Y = Zvy 6x1
each &, 1/ € F(M).

0 o 0
Exercise 2.19 Compute |:ya— - xa—, 3_:|
X y Ox

0 0
Exercise 2.20 Let X = x— + y—. Compute X f where
0x dy

(i) f:R®>— Risdefinedby f(x,y,z) = x> — y* — 7?
(i) f:R?>— Risdefined by f(x,y) = xy’
(ii) f:R> — Risdefined by f(x,y,z) = e cosy.

Exercise 2.21 (A). Compute [X, Y]; (B). Compute [X, Y10y where

i X 0 y—e? + 0
= -, = e — —_—
0x dy  Ox
(ii) X:xza—,Y =x%
(i) X:x28—+y2§,y—(y+1)§x.
Exercise 2.22 (A). Compute [X, Y]; (B). Compute [X, Y] 1,1) where
i X = 2 Y = 24-2
~ox’ dy 0Oz

i x=y2L 4x 2y =y 9
“Vax e T %8y

Exercise 2.23 Compute (A). (fX) 1,1y and (B). (Xf),1,1) where f : R3 —> Ris

defined

by f(x,y,2) =x2y*and (i) X = y3 +x£, (ii) X = e"2 + ﬁ and (iii) X =
ox 0z dy 0z

0 4t 0

— +ef—.

dy 0z

Answers

)
2.19. —.
dy

2.20. (). 2(x* — y?) (ii) 8xy’ (iii) e*(x cos y) — ysin y.

N .. 2 Y 2 Y I
2.21. (A) (1) (i1) x 35 (iii) y o 82x(y +1) P
(B) (1) —|“0) ahm) (i) =2 I Lo
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222 (A) (G 9 i 0 B 0
22 (A) (1) _y (1) — a B)@) _|(1 IR (i) _ahu,n'
0 L0 9
2.23 (A) (l) |(1 iyt Z|(1,1,1) (i) eaiy|(l.l,1) + (’)71|<1.1.1) (i) 5'(1,1,1) +e$|(l“).

B) (1) 2 (i) 2e (iii) 2.

2.11 Integral Curve

We are going to state the geometrical interpretation of the vector field in this section.

In the last section, we have shown that a vector field is a rule that gives a tangent
vector at every point of the manifold M. Each point of M has its own tangent space.
The question now arises—for a given vector field, can we start from one point of
M and choose a curve whose tangent vector is always the given vector field? The
answer has been given in the affirmative sense.

At p e U C M, suppose a vector field Y € x(M) is specified. A curve o is an
integral curve of the vector field Y if the range of o is contained in U and for
every a < t, < b in the domain [a, b] of R of o, the tangent vector to o at o'(¢,) = p
coincides with YP, i.e

YI7 = Yn(fo)
ie.Y,f=Y, f V¥ [feFM).

Using (2.15) and (2.22), we see that

0

1=ty

N dx (1)
_Z dt

1=ty i=l1

S E () f=L(f oo
Oxi’p dt
i=1

0
Since {(ﬁ)p i =1,2,3,...,n}is abasis of T (M), we must have

x
T
(o) = dx;t(”
ie. 8 (), X2(0), .o x (t))‘ _dx t(t) by (2.14).
Hence they are related by
dx'(1) =&, X2 @), ..., x"(0). (2.29)

dt
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A vector field X on M is said to be complete if at every point p of M, the integral
curve of X through p can be defined for all + € R. Otherwise, it is said to be an
incomplete vector field.

An integral curve is said to be maximal if its domain cannot be extended to a
larger interval.

Remark 2.24 Note that the paths of different integral curves can never cross except
possibly at a point where & = 0 for all ¢, because of the uniqueness of the solutions
of (2.29). Since some integral curve passes through each point p (it is found by
solving (2.29) with initial conditions at p), the integral curves “fill” M.

For instance, if M is a 3-dimensional manifold, then there exists a 2-dimensional
family of integral curves for each vector field on M and they cover all of M. Such a
manifold-filling set of integral curves is called congruence.

Remark 2.25 Let o, and o, be integral curves of a vector field X defined on open
intervals /, and I, respectively, containing 0. If o, (0) = 0,(0), then o, = o, ateach
pointof I, N 1,.

Problem 2.42 Find the integral curve of the null vector field.

Solution: 42 For a given null vector field on R”, the required differential equations
are

dx! _ dx? _ _ dx" _0 (2.30)
dt ~— dt — dt '
o0 0 o0
where =0— +0—+---+0 .
Ox! + Ox? T oxn
If for initial condition t = 0, we have x! = p!, x> = p2, ..., x" = p", then we
get from (2.30) after integration
CIZP,CZZPZ, ’anpn’
where ¢!, ¢2, ..., c" are integrating constants.

Thus the integral curve, say o, for the null vector field # on R", is given by

o= (p', p2, ..., p"), i.e. the point itself.

0 0
Problem 2.43 Compute the integral curve of the vector field X = — ya— + xa—
X y

on R?, starting at the point (1, 0) € R2.

Solution: 43 The differential equations are

dx dy

a7V

Thus X = —y gives ¥ = —y = —x from above. Hence x = A cost + B sint, where
A, B are to be determined. Therefore y = —x gives y = Asint — B cost. Itis given
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Fig. 2.18 Integral curves of y 4
the vector field
X=-y % +x %

that, for t = 0, x = 1, y = 0. Hence we get from the above
A=1,B=0 ie. x =cost,y=sint.

Thus the integral curve o for the given vector field, starting at (1,0), is o =
(cost, sint), i.e. the curve is the unit circle.

Remark 2.26 In general, if fort =0, x = p! and y = p?, then
p'=A, p*=B,

iex(t) = p'cost + p*sint, y(t) = p'sint — p*cost. Hence, the integral curve
o for the given vector field, starting from p = (p!, p?), is

o(t) = (p' cost + p*sint, p'sint — p*cost).

It is to be noted that o (¢) is defined for all # € R and hence the given vector field X
is a complete vector field.
In this case,

x3(0) + y2) = (pH)r + (pH

Thus the integral curves are circles with centre at the origin. The figure is given
(Fig. 2.18).

0 29
Problem 2.44 Let X = ya—, Y = %8— be two vector fields on R%. Show that
X y

X, Y are complete but [X, Y] is not.
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0
Solution: 44 For X = ya—, the differential equations are
X

dx dy
_——= y’ _——= 0
dt dt
After integration, x = yt + A, y = B, where A, B are integrating constants. For

t=0,iffx =x,,y =y,, then A = x,, B = y,. Consequently the integral curve, say
o(t) for X, through (x,, y,) is

o(t) = ? + %55 ¥,

which is defined for all # € R. Hence X is complete.
2

0
Similarly, for ¥ = % 3y in x(IR?), the differential equations are
y

b _y b _x

dr — 0 dt 2

Consequently the integral curve, say & (¢) for Y, through (x,, y,), is given by

3 1
a@t) =(x,, Exf + %),

which is defined for all # € R. Hence Y is complete.

Now
a x*0 0 x20f, x>0, x*0f
XY f=[y 2 29y LYy _ XTI XS
[ 1/ [yax 23y]f y@x(Z ay) 28y(y2 8x)
6]‘_i_yx2 f  x20f x*y 0*f
-yt - -
dy 2 0xdy 2 Ox 2 OxQdy
20
X, Y]=——— —_
ie. [X,Y] o T yay

Thus, the differential equations are

dx x2 dy

dx _ _x B~ 231
d 2> ar " 231

Integrating the foregoing equation, one finds

t
— = -+ A, A being constant.
x 2

1 2
Thus, A = — fort =0, x = x, and hence x = o

X, X, +

7 From (2.31), one gets
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dy 2x,

= t
y Xt +2

On integrating,
logy = 2log(x,t +2) + log B,

where log B is the integrating constant. Therefore y = (x,t + 2)*. Hence y, = 4B,
where y = y, for t = 0. Consequently, the integral curve y(¢) for [X, Y] is

2x Y
1) = 0 ,—0 t 22,
(1) <x0t+2 7 (ot + ))

2
which is not defined for t = ——. Thus [X, Y] is not complete.

X

0 0
Problem 2.45 Let X = y6—, Y=x v be two vector fields on RZ. Show that X, Y
X

are complete. Is [ X, Y] a complete vector field?

0
Solution: 45 For X = ya—, the differential equations are
X

dx dy

a0 dr

After integration, x = yt + A, y = B, where A, B are integrating constants. For
t =0,ifx =x,,y =, then A = x,, B = y,. Consequently the integral curve, say
o(t) for X, through (x,, y,) is

o(t) =t + x50 ¥,),

which is defined for all # € R. Hence X is complete.

0
Similarly, for ¥ = %8_ in x(IR?), the differential equations are
Y

dx dy

— =0, —=x
dt dt

In a similar manner, we can show that the integral curve, say o (¢) for Y, through

(x,,y,) is given by

&(t) = (xo’xot + yo)f

which is defined for all # € R. Hence Y is complete.
Again, after a brief calculation we obtain
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Hence, the differential equations are

dx dy

- = X, B
dt dr ~°
which on solving, one gets
x=—x,e, y=y, e, wherex =x,,y =y, fort =0.

Thus, the integral curve () of [X, Y] through (x,, y,) is given by v(¢) = (—x,¢’,
y,€"), which is defined for all t € R. Thus [X, Y] is a complete vector field.

Problem 2.46 Find the integral curve for a given vector field X = xa— + yﬁ— in
X y

R2. Is X complete? Give the geometrical interpretation of such X.

d d
Solution: 46 The differential equations are d—); = x and d—f = y. Integrating one

getslogx =t + A and logy =t + B, A, B being integration constants. With ini-
tial condition, fort = 0, let x = p', y = p?. Then

Hence the integral curve, say o, for X is given by

o= (p'e, p*e"),

1
which is defined for all # € R. Thus X is complete. Also, T ¢, say where ¢ =
y

"Bml"B

Therefore x = cy. This represents straight lines passing through the origin of R?.

0

Problem 2.47 Let X be the vector field xza— on the real line R. Find the integral
X

curve of X at 1. Is X complete?

Solution: 47 The differential equation is

dx 2

— =X
dt

Integrating, one gets

1
—— =1+ A, A being integration constant.
X
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1
Whent = 0,thenx = 1. Thus A = —1. Consequently, x = ﬁ.Hence the integral

1
curve, say o of X, is 0 = 1 which is not defined for # = 1. Thus X is not a

complete vector field.

Exercises

Exercise 2.24 Find the integral curve for the following vector fields. Also check
whether the given vector field is complete or not:

(a) X = eﬂ’% on R.

) , 0
(b) X=_+(X1) @OHRZ.

¥
() X = 2 +ex8_z on R3.
d X= ya% —xé% on R2.
(&) X = x;% — (x2)3% on R%.
® X= x where X € x(R? — {0}).

0] 0
Exercise 2.25 Compute the integral curve of the vector field X = e + Zya— +
X y

0
38_Z on R? passing through (x,, v, z,) att = 0.

0 0

Exercise 2.26 Compute the integral curve of X = x +x v onR? passing through
X y

(a,b)att =0.

0

Exercise 2.27 Let X be the vector field xa— on R. Find the integral curve of X
X

Starting at p.

Exercise 2.28 Find the integral curve of the vector field X =<

y—x\ 0 )
— on R~
( r >8x on
Answers
2.24.(a) log(t +e”);No () (p' +1,t(p' + 1% p?); Yes

©) (p', t+ p> te' + p*»):Yes  (d)(p'cost + p*sint, —p'sint + p*cost);
Yes

x+y>2_
r ady

Ip 1 p )
(e) <—+p ,—>;No ® ¢+ p', p):iNo
1 —2t(p?)? 1 —2t(p?)?
2.25.(t +x,, v,e*,3t + z,) 2.26.(t+a,t(t+a),b) 2.27. pe'
2.28. family of logarithmic spiral, where r = \/x2 + y2.
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2.12 Differential of a Mapping

Let M be an n-dimensional and N be an m-dimensional manifold and f : M — N
be a C* map (Fig. 2.19).
Such f induces a map

T F(f(p) — F(p), by
ff @ =gof YgeF(f(p).peM (2.32)
and is called the pull-back of g by f. It satisfies

{ f*(ag +bh) = a(f*g) + b(f*h) 233)
f*(gh) = (@ f*h), Vhe F(f(p)),a,b eR. ’

The map f also induces a mapping
f.:T,(M) > T, (N), such that
{LX)lg=X,(f"9)=X,(g0f) (2.34)

and is called the push-forward of X by f at p, denoted by f, .. Such f, is also
called the derived linear map or differential map of f on 7, (M). We write

LX) = (L. X)rp)- (2.35)

Fig. 2.19 Push-forward mapping
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Remark 2.27 These notational conventions f,, f* as defined above reflect a similar
situation in linear algebra related to linear mappings of vector spaces and their duals,
respectively.

Problem 2.48 Prove that f, is a linear map.
Solution: 48 Note that, for X, Y, €T, (M)and A € R, we have
{£.OXp, +Y)lg = (AX, +Y)(f"9) = AX, +Y,)(go f), by (2.34)

=)‘Xp(9°f)+Yp(gOf)
=M. Xplg +{f.(Yp)lg, by (2.34).

This proves f, is a linear map.

Problem 2.49 Prove that f, (X)) is the derivation at f(p).

Solution: 49 Note that, for all &, g, h + g € F(f(p)), we obtain
(LX) h+9) =X,(f*(h+9)=X,((h+g)o [)

=Xp(ho f)+Xp(gof)
={f.(Xp)}h) +{f.(Xp)}Hg).

Also
{f.(X))}Ah) = AX,(ho f) = Mf.(Xph}, YeR.

Thus f, (X)) is the derivation at f(p).

Problem 2.50 If / is the identity map in the neighbourhood of a point p in a manifold
M, prove that (1), is the identity map on T, (M).

Solution: 50 Let /,, denote the identity C*° map in the neighbourhood of a point p
of M. By (2.34), we obtain

(), X, }g=X,(gol)=X,g,

(), X,=X,, Vg.

p’

Thus (1,), is the identity differential of 7,(M).

Problem 2.51 If f is a smooth map from a manifold M into another manifold N
and g is a smooth map from N into another manifold L, then

(gof).=g.0o[.

Solution: 51 Notethatgo f : M — L.Now f, g, g o f induce the following linear
map:
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Fo i T, (M) = Ty (N), g, 2 Ty (N) = Ty (L), (g0 f)y 2 T, (M) = Ty (L)

Leth € F(L). Thenh € F((go f)(p)). Now

((go /)X )h =X, (ho(go [))
=X,((hog)o f)
= (f.(X,)(hog)
={g.(f.(X,)}h
So(goe X, =9.(f(X,), Vh
or(go f),=g,0f, VX, €T (M).

Problem 2.52 Let f : M — N be a diffeomorphism between two manifolds M and
N. Prove that

'@X)= (g0 Hf'X, Vge F(N).

Solution: 52 Given that f : M — N is a diffeomorphism and hence by definition,
f~': N — M is C*. Thus we can write

{f:l(Xf(p))}h = Xf(p)(h o fﬁl), by (234), Vhe F(M)
or (f 7' X)ph =Xyp(ho f7), by (2.35).

Now for all X € x(N), gX € x(N), g € F(N) and hence replacing X by gX in the
above equation, we get

TG} h = (X)) ppyho £
=g(f(P)Xsp(ho f7), by (2.26)
= (go f/)(p)(f'X), h, from above

or [T (gX) = (g0 /)f'X, Vh.

Problem 2.53 If f is a transformation of M and g is a differentiable function on
M, show that f (gX) = (go f~)f.X.

Solution: 53 By virtue of (2.34),

{f.(gX)pth = (gX)p(ho f), YheF(M)
or {f,(gX)} ripy h = g(P)Xp(h o f), by (2.26), (2.35)
= g{(f’lf)(p)}X,,(h o f), as f is a transformation on M
={(go [T F(PMHSL.(X,)}h, by (2.34)
= (9o fTOf(DIEX) sk
Thus f (gX)=(go f HfX, Vh.
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Problem 2.54 If f is a transformation of M and g is a differentiable function on
M, prove that f*((f.X)g) = X(f*9g).

Solution: 54 Note that f : M — M is a transformation and hence

f(p=qg=p=[f"4q. Vp.qgeM.

In view of (2.34), one gets

{f.(X)}lg=Xp(go f), YVgeFM)
or {(f,X),,,}9 = {X(go /H}p), by (2.35)
or {(£.X)g}f(p) = {X(g o H}p). by (2.23)
or {(£.X)g}qg ={X(go N}f(q)
or (fX)g={X(go N}f '}, Vg
or {(£.X)g}f =X(go f)
or f*((£.X)g) = X(f*g), by (2.32).

Exercises

Exercise 2.29 If f is a smooth map from a manifold M into another manifold N
and g is a smooth map from N into another manifold L, then prove that (g o f)* =

f* I g*

Exercise 2.30 If f is a transformation of M and g is a differentiable function on
M, then f[X,Y]=[fX, f Y]

Geometrical Interpretation of Differential Map
For X, € T, (M), we choose a curve o(¢) in M such that X, is the tangent vector to
the curve o(¢) at o(t,)) = p, a <t, < b (Fig. 2.20).

A
~

Fig. 2.20 Geometrical interpretation of fi(X,)
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Then f,(X,) is defined to be the tangent vector to the curve f(o(¢)) at f(p) =
f(o(t,))) and from (2.15), we have

d
(L(X))g = Z9(f @) . Yge F(f(p)

= (go N
= X,(go f), by (2.15).

Theorem 2.6 If f is a mapping from an n-dimensional manifold M to an m-
dimensional manifold N where (x', x2, ..., x") is the local coordinate system in
a neighbourhood of a point p of M and (y', y*, ..., y") is the local coordinate

system in a neighbourhood of a point f(p) of N, then

- 8f/ 4 .
J—
8x’ ; 8x’ , Gyl o , where f/ =y’ o f.
i o . . : .
Proof 1t is known that {8_ :i=1,2,3,...,n} is a basis of T,(M) and in the
X! r
0
same manner {6_yf : j=1,2,3,....m}isabasis of T, (N). Thus
0 "9
Yy _ (9N .
£.(52), _]Z:l:a" (ayf)’ i=1,2.3...,n, (2.36)

where aij ’s are to be determined. Therefore,

() I = Yt = a.

J

By virtue of (2.34), we obtain

9 k _ ok
(%) (' of)=a

(8 ) r* —a , by hypothesis
xl
af]‘

or (axl

) =d*.

Using in (2.36), the result follows immediately.

Corollary 2.1 Let (U, ¢) be a chart about a point p in a manifold M. If (u',

u?, ..., u") are the standard coordinates of R", then
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0 0
qb* (%) :(ﬁ)wm ’

P

where x' = u' o ¢, i =1,2,3,..., n are the coordinates of p.
Proof Left to the reader.

Problem 2.55 Let f : M — N be a diffeomorphism between two smooth mani-
folds M and N. Then f, : T (M) — T, (N) is an isomorphism.

f(p)

Solution: 55 Note that for f, : T,(M) — T, (N), both T (M) and T,
vector spaces over R. Hence we have to show

(N) are

(p)
(i) f, is alinear mapping and
(ii) f~" exists.

Now let f : M — N be a diffeomorphism and hence by definition f~! exists and
is of class C*. Now fo f~' =1, and f~' o f = I,. Again, in view of Problem
(2.51), we have

(). =(fof D =fof

where (1), is the identity differential on T, (M). Furthermore,
(). = (o fl.=f"of.

where (1), is the identity differential on 7', , (N). Thus, f’ —1 exists and in addition

to that it is of class C*°. Thus f, is an isomorphism.

Remark 2.28 The matrix representation of f,, denoted by (f,), is given by

art of. ... ofL

ox! ox2 ox"

of o . 9P

1 2 n
o= 2.37)

Ox1 Ox? ox"

Problem 2.56 Find (f.) where f : R? — R?isgivenby f=((x)? + (2x?)2, 3x1x?).

2x! 8x?

Solution: 56 Here(f)) = <3x2 3y

),Where fl=@H2+ 2xH32, 2= Bxx?).

Exercise
Exercise 2.31 Find (f,), where
() f:R?>— R?isdefined by f(x,y) = (xe¥ +y,xe’ — y).
(i) f:R — Risdefined by f(x) = €.
(i) f :R? — R?isdefined by f(x,y) = (x>y + y2, x —2y3, ye*).
(V) f:R®— R%isdefined by f(x,y,z) = (x> 4+ y>+ 7> —1,ax + by + c2).
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(v) f:R* > R%isdefined by f(x,y,2,1) = (x> + >+ 22 +12 =1, x>+ y> +
22412 -2y —2z7+5).
(vi) f:R? - R?isdefined by f(x,y) = (x* + y2, x3y%).

Answers

ny x2+ 2y
(2.31)3) (e xe, f i) (i) (¢¥) (i) ( _6y (iv) (Zx 2y 2z>

a b c
) 2x 2y 2z
Y 2x 2y — 221—22z 3x2y 3x y

Problem 2.57 If f : R? — RZ?isgivenby (y!, y?) = f(x!, x?) = ((x1)? + (2x?)?,

) d
3xte), find £ (55). f.(55)-

Solution: 57 From Theorem 2.6, we see that

2
8f/
ax’ ; Oxi 3y/ ’
.\ of'. o af?. 0
f*(@) = (W)a_yl + (W)a_yz
0 , 0
= 2x! 8_+3 8y and
o af! af2
32 =(Ga )ay (@)a—yz
g L 30 0
oy! 0y?’
Alternative
Here

(i)_ UL OLN (1) _ (2x 4x\ (1) _ (2!
£ ox!/ %fg—fﬁ 0/ \ 3x23x! 0] \3x2)"

0 0
Since the vector f. (ﬁ) is the linear combination of the basis vectors {g 57 1,
x

we write from above

9 9
f*(@)_ 13—+3
2
o 00 G-
2 1_
f(8x2) 4 al” ay2
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Exercises

Exercise 2.32 A. Find (f,) at (0, 0) in Exercise 2.31(i), (ii) and (iii).
B. Find (f.) at (0,0, 0) in Exercise 2.31(iv).
C. Find (f)) at (0,0,0,0) in Exercise 2.31(v).

Exercise 2.33 A. Let f : R? — R? be defined by

(i) f(x,y) = (&2 —2y,4x*y2). Find (f),,,,.

@) f(r,y) = (2 + Y2 x°yY). Find (£),,.

B. Letg: R? — R3 bedefined by g(x, y) = (x>y — y, 2x3 — y, xe*). Find (9.) e

9 9
Exercise 234 A. Find (£)(5-). (f)( ) (5, ) (£)(5,) where

i f:R>— R2 is defined by (u, v) = f(x y) = (xe> + vy, xe? — y).
(i) f:R?— R3isdefined by (u, v, w) = f(x,y) = (x%y + y%, x — 2y3, ye*).
(i) f:R>—>R> is defined by (u,v)= f(x,y,2)=>+y>+22—1,
ax + by + cz).
(iv) f:R* = R? is defined by (u,v) = f(x,v,2,8) = x2+y>+ 22 +12 -1,
X2y 42422y —274+9).

B. Find (ﬁ)(%) where f:R?> = R3 is defined by (u,v,w)= f(x,y)

=(x,y,xy).
Answers
{1 00 000 00 00

232A(1)< 1> (i) (1) (iii) (1)(1) B'(abc) C'(o—2—20>'

4 0
. 2 =2 1

2.33A.(1)<48 16) (1)(1224) B. |24 -1

e 2e

234A.() e’ 2 +e> 2, (xe' + 1)% + e — D2
(i) 2xyau + by 43 g (205 = 65 e
(111)2xau+adv 2y8u+b 2zdu+c§v.
(iv)2x 2 +2xdv, 2y 2 +2(y— DE, 222 42— D, ud 422
8 Jé)
B. +y0w’ 01} +x0w
3 ) 0
Problem 2.58 Let f : R — R be defined by f(x,y,z) =x"y. If X = xya— +
X

0
xza_z; Compute f* (X)(],I,O) OR (f;)(],l,()) (X)(I,LO)'
Solution: 58 Taking into consideration (2.35), we know that

f*(X)(l,l,o) = (f;X)f(l,l,[)) = (f*X)l

Now
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of of of xy
f*(X)(l,I,O) _(8 8)7 az )(]]0) xOZ
(1,1,0)
1
=210{0
1
=2
d . .
Thus, f.(X)., = E .» Where 7 denotes the canonical coordinate of R.
Exercises

(X),, ,, for Exercise 2.31 (i), (iii).

(1,1) (1,1)

0
Exercise 2.35 If X = xzﬁ—, compute (f.)
y

Exercise 2.36 Let f : R> — R? be defined by f(x,y) = (x> +y,x°y*) and g :
R? — R be defined by g(x, y) = (x>y — y, 2x> — v, xe”). Compute the following:

. 0 0 0 0
(i) ﬂ((za + a_y)«),l)) (ii) g, (( 5y)<0 1))
Answers A
235. (@ e+ D] He—DE| ) GE 6% +eam)s .
2.36. () (&) 1.0 (11)( ———+2€d,)( 1.-1,0)-

Problem 2.59 Let f : R? — R? be defined by

B _ (cosf —sinf [ x,
(u,v) = f(x,,x,) = (sin9 cos ) )()@)'

0 0
Let X = Xt 8 be a vector field on R?. If p = (x,, x,) € R? and
xl
0 0
X —+b
f* P (a ou + 8v)f(m
find a, b.

Solution: 59 Here (1, v) = f(x,,x,) = (x, cosf — x, sinf, x, sinf + x, cos #). Now
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0 0
{f.X,}u= {aa— + b%} =a

or, X (uo f)=a

or, (—x )(x cosf — x,sinf) =a

0
Zaxl 3
or, —x,cosf —x, s1n9 =a.

0
Similarly, ( — x X, 6_)(x‘ sinf + x, cosf) = b
'x2

o,
2 0x,

or, —x,sinf +x, cosf = b.

The values of a, b are therefore calculated.

Alternative

Here (f) = (cosﬁ —sinf

_ [ %
sind cos@ ) B and (X), = ( X ) -So
p=(x;.y) b/ (xxy)

cosf —sinf —X
(£)00, = ( : ) ( )
sinf cosf Yo r=f )

_ (—xz cosf — x, sinG)
—X, SIn 0 + cos 0 (x, cos f—x, sinf,x, sin f+x, cos 6)
. 0 : 13
=1(—x,cosf — x, sin 9)8_ + (—x,sinf + cos ) —
u

fp)

Note that, for the linear map f, : T,(M) — (N) at the point p € M, the Kernel

of f at pis given by

f(p)

ker f, =

o (N}

Here ker f, is a subspace of T,(M). Also, the image of f, at p is

Image f { f f(p) f(m }

which is a subspace of T, (N).

f(/r)
Problem 2.60 Let f : R* — R? be defined by f(x,,x,,x,,x,) = (u,v) = (x> +
xf—i—xf—l—xf - l,xlz—I—)czz—}—)c32—i—)c42 —2x, —2x, +9).

(i) Find a basis of ker f, at (0, 1, 2, 0).

(i) Find the image by (f,) of (1,0,2,1) € T,,,, R*.

Solution: 60 (i) As f:R*— R? is defined by f(x,,x,, x,,x,)=(x>+x>+

x +x lx +x +x +x —2x, —2x, + 5),thenforp = (0, 1,2,0), f, :

Ty1s0 (R“) —T,, (Rz) is a differential map such that ker £ at (0, 1,2,0) is a
vector subspace of T, , ®RY).
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0 0 0
Now any X € x(R*) can be expressed as X =a—— + b +c +d—o1,
Ox, Ox, Ox, Ox,

X
where a, b, ¢, d € R. Here

2x, 2x,  2x,
(f)_<2x 2(x, — 1) 2(x, —1)2x)

0240 . .
Therefore (f.),, ., = <0 02 O)‘ Thus, (f,)4,.0X € T, (R?) is a linear

combination of {8 8—}, where p = (0,1,2,0), ie. (f)g..0X, = 2b+
0
4c )8_ + 26’6— But ker f, is such that (f,),,,,X, =0,0 € T(M(IRz), where
p = (0, 1, 2,0). Consequently, we must have b = 0 = ¢. Thus
0 0
X =a—+d—, p=1(0,1,2,0).
a@x + 0x p= )

2

Consequently,

ker(f*)(().]l,()) = {X(O,I,Z.O) € 7-‘(0‘],2,0) (R4)|(f*)(0,l,2A0)X(0A],2,0) = 9}’

0

— — is a subspace
ox, )(0A1,2,0> ’ (ax? )(OA1,2,0) P

and the basis is {( } such that ker(f))

(0,1,2,0)

of T(0120)(R4)'
. 240 2
(i) Al (f)z0n = (55 55 )and f(1,2,0,1) = (5,7). Thus, (f.),,.,, X, €

T, (R?) can be expressed as

0
(fasonX, =Qa+4b+2d)—

o
Bl HQa T2 =24 2d) ] L p= (12,0, 1) and X = (1,0,2.1).

Therefore (f,)

(IZOI) 8“ i(5,7).

Problem 2.61 Let f : R? — R?bedefined by f(x,y) = (x*y — y,2x3 — y, xe”).
Calculate the conditions that the constants A, B, C must satisfy for the vector

0 0 0
A—+B—+C
< Ox dy 8z>ﬂom

to be the image of some vector by f,.
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0-1
0 0
Solution: 61 Note that (f,),, = 0 —1 ]. Let us choose X = A—+pu— €
‘ 10 0x dy
x(R?) such that
0-1 —
A 0 0 0
(FonXon = (1) _01 (u) =1 4 :(Aa + Ba_y + Ca_z)fm,m'

£(0,0)

Compare A = —p, B=—p,C = . Note that (f.),, : T, R?) = T, (R?).
Here Image f, is a subspace of T, (R3) by definition. Thus, the image of f. of
T,, (R?) is a vector subspace of T, (R?) of vectors of type (—A, —A, C).

0,0,0)

Exercises

Exercise 2.37 A. Let f : R* — R? be defined by
f(xl,xz,x3,x4) = (u,v) = (x12+x22+x32+xf+ 1,x12+x22+x32+xi—2x] —2x, +6).

(i) Find the basis of ker f, at (1,0, 1,0).
(ii) Find the image by (f,) of (1,0,1,1) € T(L],QUR?

B. Let g : R? — R? be defined by g(x,, x,) = ()cl2 + x,, x13x23). Calculate the con-
ditions that the constants A, B must satisfy for the vector

0 0
Ao T 8o o

to be the image of some vector by g, .
Exercise 2.38 Let us fix 0 and define f:R*—R* by f(x,y,2,t) =
cosf —sinf Xz
sinf cos@ yt)
() Compute (f,)..

0 0 0 0
(ii) Compute (f,), X, where X = cos Oa—x — sin 95 + cos 93_1 — sin 95.

Answers ‘ ‘ ‘
2.37 A. (i) {(%)“_0‘1_0), () 000} ()42 W, B-(40).
cosf —sinf 0O 0
sinf cosf O 0
0 0 cosf sind
0 0 sinf cosf
A smooth map f : M — N is said to be a smooth submersion (or simply sub-
mersion) at p € M, if f, at p,i.e. f, is surjective. Equivalently, we can say that

P

2.38 (i) (i) 2 + £

dimImage f; , =dim7T, (N)=m.

f(p)
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Moreover, f is called a smooth immersion (or simply immersion) at p € M, if its
differential f,  is injective. In other words, we have

ker f,, = {0} = dimker f, , =0.
Hence, using the well-known theorem in linear algebra, viz.
dimker f, , + dimImage f, , = dim M = n,

we find dim Image f. , = n. Thus, if a smooth map f : M" — N™ is a submersion
at a point p in M, then n > m and if immersion at a point p in M then n < m. A
simple question arises: Is an injective or surjective map f, respectively, an immersion
or submersion? For this, we need to explain immersion and submersion using the
rank of the differential map f, at the point p in M.

We know that the dimension of Image f,  is said to be the rank of f, at p,
denoted by rank f; ,. We define the rank of f at p, denoted by rank f|,, to be of r
if rank f, at p = r. In other words, we can also say that the rank f, is the rank of
the Jacobian matrix of f with respect to any smooth chart. If f has the same rank r
at every point of M, we say that it has constant rank r, and write rank f = r.

Since rank f, , < min{dim 7, (M), dim 7, , (N)} = min{n, m}, therefore

rank fj, < min{n, m}.
A smooth map f : M — N is said to be a submersion at p € M, if
rank f, , = dimImage f, , =dimT, (N)=mi.e.rank fj, = m.
Moreover, f is called an immersion at p € M, if
rank fj, =dimM = n.
If we consider a smooth map f : R> — R3, then its differential at p € R? is given
by

. 2 3
fo, ' T,(R) =T, (R”).

Here
rank f, , <min{2,3} =2 = rank f, , =1 or2.

Here, f fails to be submersion at p, for if f is submersion at p then rank f, =3
which is not possible. Thus we can say that if

dmM =n <dimN =m,

then f fails to be a submersion at any point p in M. However, if rank f, = 2, then
rank f|, = 2implies f isimmersionat p in R?. In a similar manner for a smooth map
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f:R* — R2 to be immersion at p € R?, we have rank f, = 3, i.e. rank f, =3
which is not possible. Thus if

dmM =n>dimN =m,

then f fails to be an immersion at any point p in M.
A smooth map f : M — N is said to be a submersion and immersion if its dif-
ferential is respectively surjective and injective at every point of M.

Remark 2.29 Let f : M — N be a smooth map of constant rank. Then
(1) if f is surjective, it is a submersion.

(i) if f is injective, it is an immersion.

(iii) if f is bijective, it is a diffeomorphism.

Examples

Example 2.9 Let us consider the curve v : (—m, 7) — R? defined by (1) =
(sin 2t, sint). Here,  is injective but ' (¢) does not vanish for any ¢. Hence 7 is
an injective immersion.

Example 2.10 Letus consider the function f : R — R%byt — (t> — 1,12 — 1)).
Here f is not injective as f(1) = f(—1) = (0, 0). But f" does not vanish for any r,
so f is an immersion but not injective.

Example 2.11 Suppose M, M,, ..., M, are the smooth manifolds. Then each of
the projection maps
oM XM, X XM — M,

is a submersion. In particular, if 7 is a projection map from R"** to R” by

Gl X M) e (e x2 x™),

then 7 is a submersion.

Example 2.12 If U is an open subset of a manifold M, then the inclusion map
i : U < M is both an immersion and submersion. Moreover, here the map is not
surjective. So this example shows that a submersion need not be surjective.

Example 2.13 Letus considerthemap f : R — R, f(x) = x>. Here f is surjective
butatx = 0,df = f (x) = 3x? is not surjective. Hence f fails to be a submersion.
So this example shows that a surjective map need not be a submersion.

Let f : M — N be a smooth map. A point p € M is said to be a critical point
of fif f. , is not surjective. A point g € N is said to be a critical value of f if the
set f~'(g) contains a critical point of f. In other words, a point in N is a critical
value if it is the image of some critical point in M.

In particular, let f : M — R be a smooth map on M. A point p € M is said to
be a critical point of f if f, , = 0.
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Proposition 2.8 Let f : N" — R be a C*™ map. A point p € N is a critical point

if and only if it is relative to a coordinate system (U, a2 3 ) at p €N,

P

ox'
Proof For f : N" — R, themap f, : T,(N) — TW) (R) is such that

_(of of  of
), ‘(%@"'@) .

P

It is known from the previous discussion that Image f, is a subspace of T, , (R).

Thus it is either O-dimensional or 1-dimensional. Hence either f, is a zero-map
or a surjective map.

0
Thus, f, will not be surjective if and only if a—f] =0.
Xt e

It means that the real number f(p) is called a critical value of f. A critical point
is called non-degenerate if

Pf
OxiOxJ

det( (p)) # 0.

Remark 2.30 Non-degeneracy is independent of the choice of coordinate system.

A point p € M is a regular point of f : M — N if f,, p is surjective. In other
words, we can say that p € M is aregular point of f if and only if f is a submersion
at p,i.e. rank f, = dim M.

Example 2.14 The function f(x) = x + e¢~* has a critical point at ¢ = 0. The
derivative is zero at this point. So

F)=@4e™ =1—e>.

Now f(c)=1—-e“=0=c=0.

Example 2.15 The function f(x) =2x — x? has a critical point at ¢ = 1. The
derivative is zero at this point. Here f (x) =2 —2x.So, f (¢) =0 = ¢ = 1.

Problem 2.62 Find the critical points of the map f : R® — R? given by
(x,y,2) = (xz,y).

Solution: 62 Let p € R*. The Jacobian matrix f; , is given by

£ = (%(xz) %(xz) (%(xz)) _ (z 0x>
TNEO) 200 20 010/
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Here f, , fails to be surjective if rank f, < 2if and only if x = z = 0. Hence the set
of critical points of f is the y-axis.

f:M—>N
\ \ \ \
Injective Surjective Injective Neither Injective
Not Surjective Not Injective And Surjective Nor Surjective
S S fx fx fx S S S
Injective Surjective Injective Surjective Injective Surjective Injective Surjective

I A A L .

Immersion Submersion Immersion Submersion Immersion Submersion Immersion Submersion

2.13 Submanifolds

Let us consider a map f : M — N, where M and N are topological manifolds. f
is said to be a topological embedding (topological imbedding) if f is a homeo-
morphism onto its image f(M)(C N), where f(M) is endowed with the subspace
topology inherited from N.

The smoothmap f : M — N, where M and N are smooth manifolds, is a smooth
embedding (or smooth imbedding) if f is an immersion together with topological
embedding.

Let N be a smooth manifold and M € N.Let M be a manifold endowed with the
subspace topology inherited from N. Then M is said to be an embedded submanifold
(or regular submanifold) of N if M is endowed with a smooth structure with respect
to which the inclusion map of M in N is a smooth embedding.

Let N be an m-dimensional smooth manifold and M C N. Let M be a manifold
equipped with a topology, not necessarily the subspace topology inherited from N,
with respect to which it is a topological manifold of dimension n. Then M is said to
be an immersed submanifold of N if M is endowed with a smooth structure with
respect to which the topological manifold M becomes an n-dimensional smooth
manifold such that the inclusion map i : M < N is a smooth immersion. Also, the
immersed submanifold M has co-dimension m — n.

It is evident that every embedded submanifold is an immersed submanifold (refer
to Problem 2.63). For the sake of simplicity, embedded submanifold and immersed
submanifold are always of the smooth kind.

Example 2.16 If M,, M,, ..., M, are the smooth manifolds and g, € M, are arbi-
trary points, each of the maps
G M — M xM,x---xM,

s

givenby (. (p) = (q,, 4> -+ 4,1 P+ 4,515 - - - » 4,)s 1S @ smooth embedding.
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Example 2.17 The map v : R — R? given by ~(¢) = (¢°, 0) is a smooth map but
is not a topological embedding because v (0) = 0.

Example 2.18 Let f : R — R? be defined by f(¢) = (cost,sin7t), V¢t e R.
Here f is an immersion but not an injective map. So it fails to be a topological
embedding.

Example 2.19 The circle S' is a 1-dimensional embedded submanifold of R>.

Example 2.20 The graph y = (x)% is an embedded submanifold of R2.

Example 2.21 The sphere S” is an embedded submanifold of R” with dimension
n—1.

Example 2.22 Let f : R” — R” be a smooth map. Then its graph

V= {(x]’xZ’ e X Y Yoo ""yn) € Rm+l1|f('x17x27 ""xm) = (ywyz? "'9yn)}
is a smooth m-dimensional embedded submanifold of R”+".

Lemma 2.1 Let X, Y be topological spaces. Let F : X — Y be 1 — 1, continuous
and open map. Then F is a topological embedding.

Proof Let U be an open subset of X. Since F is open, F(U) is open in Y. Hence
FU)N F(X) is open in F(X). Since F(U) C F(X), therefore F(U) is open in
F(X). This proves F is a topological embedding.

Lemma 2.2 Let X, Y be topological spaces. Let F : X — Y be 1 — 1, continuous
and closed map. Then F is a topological embedding.

Proof Left to the reader.

Lemma 2.3 Closed map lemma: Let X be a compact space and Y be a Haus-
dorff space. Let F : X — Y be a 1 — 1, continuous map. Then F is a topological
embedding.

Proof Let A be any closed subset of X. Since A is closed in the compact space X,
A is compact in X. Since F is continuous, therefore F'(A) is compact in Y, and ¥
being Hausdorff, therefore F (A) is closed in Y. This shows F is a closed map. Since
F : X — Yisal — 1, continuous map, therefore F is a topological embedding (refer
to Lemma 2.2).

Now we are going to define a proper map between two topological spaces as
follows.

Let X, Y be topological spaces.Let F : X — Y be amapping. If for every compact
subset W of Y, the inverse image F~!(W) is compact in X, then we say that F :
X — Y is a proper map.
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Lemma 2.4 Let X be a Hausdorff topological space and Y be a Hausdorff locally
compact space. Let F : X — Y be a continuous map. Let F be a proper mapping.
Then F is a closed mapping.

Proof Left to the reader.

Lemma 2.5 Let M be an n-dimensional smooth manifold and N be an
m-dimensional smooth manifold. Let F : M — N be a 1 — 1 smooth immersion.
If F is a proper mapping, then F : M — N is a smooth embedding.

Proof Since M is an n-dimensional smooth manifold, M is a Hausdorff locally
compact space. Similarly, N is a Hausdorff locally compact space. Since F is a
smooth map, it is continuous. Further, since F is a proper map, F is a closed map
(referto Lemma 2.4). Since F isa 1 — 1 smooth immersion, and F is closed, therefore
F is a smooth embedding.

Lemma 2.6 Let M be an n-dimensional compact smooth manifold and N be an
m-dimensional smooth manifold. If F : M — N is a 1| — 1 smooth immersion, then
F : M — N is proper mapping.

Proof Let W be any compact subset of N. Our claim is to show that the inverse
image F~!(W) is compact in M. Since W is compact in N and N is Hausdorff,
therefore W is closed in N. Since F is smooth, it is continuous. Hence F~' (W) is
closed in M. As M is compact, F~'(W) is compact in M. This proves F is proper,
hence a smooth embedding (refer to Lemma 2.5).

Problem 2.63 Let M be an n-dimensional smooth manifold and S(# ¢) C M. Let
S be an embedded submanifold of M with co-dimension k, k=1,2,3,...,n — 1.
Prove that S is an immersed submanifold of M with co-dimension k.

Solution: 63 Let us set 7, = {GN S : G is open in M}. Since S is an embedded
submanifold of M with co-dimension k, 7 is a topology over S (called the subspace
topology of S) with respect to which S becomes a (n — k)-dimensional topological
manifold. Moreover, 3 an C*-atlas .4 on S, with respect to which the topological
manifold S becomes an (n — k)-dimensional smooth manifold such that the map
i 1§ < M is a smooth embedding, and hence i is a smooth immersion. Thus, S is
an immersed submanifold of M with co-dimensionn — (n — k) = k. This completes
the solution.

Problem 2.64 Let M be an n-dimensional smooth manifold with C*-atlas A and
N be an m-dimensional smooth manifold with C*°-atlas B. The map F : M — N
is a 1 — 1 smooth immersion. Then F (M) is a smooth submanifold of N with co-
dimension m — n.

Solution: 64 Let us set 7 = {F(U) : U isopen in M}. It is obvious that 7 is a
topology over F (M), and F is a homeomorphism from M onto F(M). Since M
is an n-dimensional topological manifold and M is homeomorphic onto F (M),
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therefore F'(M) is an n-dimensional topological manifold. Moreover, {(F(U), ¢ o
(F’1| ) : (U, ¢) € A} forms an C*-atlas on F(M). Hence, F(M) forms a

smootﬁul)nanifold, and F forms a diffeomorphism from M onto F(M).

Now we want to prove that the map i : F(M) — N is a smooth map. Here i =
F o F~'.Since F : M — F(M) is adiffeomorphism, F~' : F(M) — M is also so.
Furthermore, as F is a 1 — 1 smooth immersion, the composition map i = F o F~!
is a smooth immersion. It follows that F (M) is a smooth submanifold of N with

co-dimension m — n.

Problem 2.65 Let M be an n-dimensional smooth manifold and S(# ¢) C M. Let
S be a smooth submanifold of M with co-dimension 0. Prove that S is an embedded
submanifold of M with co-dimension O.

Solution: 65 Since S is a smooth submanifold of M with co-dimension 0, by its
definition, there exists a topology 7 over S with respect to which § becomes an n-
dimensional topological manifold, and there exists a C* structure on S with respect
to which the topological manifold S becomes an n-dimensional smooth manifold
such that the map i : § <— M is a 1 — 1 smooth immersion. Thus i is a smooth
embedding, hence a topological embedding. Thus i is a homeomorphism from S
onto i (S)(= §), where i (S) has the subspace topology inherited from M. It follows
that 7 is the subspace topology of S inherited from M. Thus combining all the facts,
we conclude that S is an embedded submanifold of M with co-dimension 0.

Problem 2.66 Let M be an n-dimensional smooth manifold and S(# ¢) C M. Let
S be a smooth submanifold of M with co-dimension k. If the map i : S — M is
proper, then prove that S is an embedded submanifold of M with co-dimension k.

Solution: 66 Since S is a smooth submanifold of M with co-dimension k, by virtue
of its definition, 3 a topology T over S with respect to which S becomes an (n — k)-
dimensional topological manifold, and 3 a smooth structure on S with respect to
which the topological manifold S becomes an (n — k)-dimensional smooth manifold
with the inclusion map i : § < M which is a 1 — 1 smooth immersion. Since the
map i is proper, it follows that i is a smooth embedding (refer to Lemma 2.5), and
hence a topological embedding. So i is a homeomorphism from S onto i (S)(= S),
where i(S) has the subspace topology inherited from M. It follows that 7 is the
subspace topology of S inherited from M. Thus combining all the facts, we conclude
that S is an embedded submanifold of M with co-dimension k.

Problem 2.67 Let M be an n-dimensional smooth manifold and S(# ¢) C M. Let
S be a compact smooth submanifold of M with co-dimension k. Prove that S is an
embedded submanifold of M with co-dimension k.

Solution: 67 Since S is a smooth submanifold of M with co-dimension k, by virtue
of its definition, 3 a topology 7 over S with respect to which S becomes an (n — k)-
dimensional topological manifold, and 3 a smooth structure on S with respect to
which the topological manifold S becomes an (n — k)-dimensional smooth manifold
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with the map i : S < M which is a 1 — 1 smooth immersion. Further, since S is
compact, it follows that i is a smooth embedding (refer to Lemma 2.5), and hence
a topological embedding. So i is a homeomorphism from § onto i (S)(= §), where
i(S) has the subspace topology inherited from M. It follows that 7 is the subspace
topology of S inherited from M. Thus combining all the facts, we conclude that S is
an embedded submanifold of M with co-dimension k.

Remark 2.31 Let M be an n-dimensional smooth manifold and N be an m-
dimensional smooth manifold. The map F : M — N is a smooth map. Let S(#
¢) C M be a smooth submanifold of M. Then the restricted map F|; : § — M is
also smooth.

Problem 2.68 Let M be an n-dimensional smooth manifold and N be an m-
dimensional smooth manifold with S(# ¢) C N. Let S be a smooth submanifold
of N with co-dimension k. Let F : M — N be a smooth map, and F (M) C S. Let
F : M — S be continuous. Then prove that F : M — § is a smooth map.

Solution: 68 Let us fix any p € M. Then F(p) € F(M) C S = F(p) € S. Since
S is a smooth submanifold of N with co-dimension k, by virtue of its definition,
3 a topology 7 over S with respect to which S becomes an (n — k)-dimensional
topological manifold, and 3 a C* structure on S with respect to which the topological
manifold S becomes an (n — k)-dimensional smooth manifold with the mapi : § «—
N which is a 1 — 1 smooth immersion. Taking advantage of Exercise 2.14, we can
say that i is a local diffeomorphism. Hence, 3 an open neighbourhood V of F(p) € S
such that i (V) is open in N, and the map i|y : V — i(V) is a diffeomorphism, and
hence the map (i|,)~! : i(V) — V is smooth. Since V is an open neighbourhood
of F(p) € S, and F is continuous, 3 an open neighbourhood U of p € M such that
F(U) C V. Since U is open in M, U is an open submanifold of M, hence U is
an embedded submanifold of M. Thus U is a smooth submanifold of M. Further,
since F is a smooth map, by Remark 2.31, F|, : U — N is a smooth map. Thus,
the composite map (i|,)~! o F|, = F|, : U — V is smooth. Consequently, as U
is an open neighbourhood of p € M, F : M — § is smooth at p, it follows that
F : M — S is a smooth map.

i:M(C N)— N
(Inclusion Map)

e

\ Y
ix Injective ix Injective
+ +

M endowed with subspace topology inherited from N M endowed with any topology other than subspace topology

| !

Embedded Submanifold Immersed Submanifold
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Exercise

Exercise 2.39 Let M be an n-dimensional smooth manifold, N be an m-dimensional
smooth manifold and S(# ¢) C N. Let S be an embedded submanifold of N with
co-dimension k. Let F : M — N be a smooth map, and F(M) C S.Let F : M — S
be continuous. Then prove that F : M — S is smooth.

2.14 f-Related Vector Fields

Let f: M — N be a smooth map. For each p € M, let X, e T (M) and X, , €
T, (N) be such that
LX)=Y,,. (2.38)

In such a case, we say that X, Y are f-related vector fields. Now

fLX)g=7Y,,9.VgeF(f(p).

Using (2.23) and (2.34), we find

X, (go )= (f(p)
or {X(go fHi(p) =Yg) f(p) by (2.23)
X(go f)=(Yg)f. (2.39)

If f is a transformation on M and

f*(X,,) = X/(ﬁ)
i.e. (f*X)f(,;) = Xf(l’)’

we say that X is f-related to itself or X is invariant under f. Thus

fX=X. (2.40)

Proposition 2.9 Let f : M — N be a smooth map. If the vector fields X, X, on
M are f-related to the vector fields Y,, Y, respectively on N, then the Lie bracket

2

[X,, X,]is f-related to the Lie bracket [Y,, Y,].

Proof Giventhat X (go f) = (Y,9)f and X,(go f) = (Y,g9) f. Now
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[X,, X,1(go f) =X {X,(go )} = X, {X,(go )}, f€F(M),ge F(N)
= Xl{(ng)f} - Xz{(Y,g)f}, from above
=Y, (Y,9}f =Y, (Y,9)}f, Y,g € F(N), Y,g € F(N)
={Y,(Y,9) = Y, (Y, 9} f ={lY,, V,]g} f-

Thus by (2.39), we can claim that [X,, X,]is f-related to [Y,, Y, ].
Problem 2.69 Let f : R? — R* be a differential map, and f(x,,x,) = (u, v, w,t)

besuchthatu = x> —x?, v =x> + x>, w=x +x,, =x, —x,.LetX = X o=+
2 X,
0 0 2
x,— and ¥ = —x, — + x, — be two vector fields on R”. Find vector fields on
* Ox, Ox, Ox,

R?, f-related to X, Y respectively.
Solution: 69 By definition £, : 7,(R?) — 7, (R*)andif £ X = Xand Y =Y,

_ _ fp)
then X and Y are respectively the f-related vector fields of X, Y. Let

- 0 0 0 0

where a, b, ¢, d are from F(R*), to be determined. Now
{f.X}u= Xu =a.
Again by (2.34), the left-hand side of the foregoing equation reduces to
Xuof)=a.
Applying the hypothesis,
a=(x, d—il +x, %)(xf —xD) = u@x)) — x,(2x,) = 2(x — x).
Similarly, b = (x, a% +x, %)(x? +a2) = x,2x) +x,(2x,) = 2(x% + x2).
c=(x, d%, +x2%)(wof) = (x, d%, +x20%2)(x, +x)=x14x-1=x +x,.

d=( 0 + 0 )(tof)=( 0 + 0 )( )
= — P o = —_— —_— - = —X,.
i ox, %2 Ox, % ox, %2 Ox, FTRISHTH

Consequently, from (2.41) we write

- 0 0 0 0
_ 2 2 Y 2 N v _\9Y
X _2()c1 xz)au +2(xl +x2)8v + (x, +x2)6u + (x, — x,)

ot
e X=2u v 1l g0
L T Ty T e T

is f-related vector field of X, in R*. Again, we write
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_ 0 0 0 0
Y=d—+b—+—+d

ou ov ' ow o’ (2:42)

where a’, b', ¢/, d’ are from F(R*), to be determined. In a similar manner, it can be
shown that

is f-related vector field of Y, in R*.

Problem 2.70 Let f: M — N be a C* map. Prove that two vector fields X, Y
respectively on M, N are f-related if and only if

(£, X)9) = X(f*g), ge F(N).
Solution: 70 Given that X, Y are f-related, hence by (2.38) we obtain

LX) =7,
or (£.X),, =Y, by (2.35)
or (f,.X),,9=Y,,9. g€ F(N)
ie {(f,.X)g f(p) =Yg f(p), by (2.23)
ie. (fX)g=7Yg. (2.43)

In view of (2.39), we have

X(go f)=Fg) o f
or X(f*g) = f*(Yg). by (2.32)

Using (2.43) above, on the right-hand side, we get
X(f*9) = fA(£.X)9).

The converse follows immediately.

Problem 2.71 Let f : M — N be a C*™ map. Let X, Y be two f-related vector
fields. If o is the integral curve of X, prove that f o o is the integral curve of Y.

Solution: 71 If o is the integral curve of X, then by definition, we have

X =X

r alty)?

where o : [a,b] CR — M is such that o(t,) = p, pe M, t € [a, b] and X, is
tangent vector to the curve o at p, i.e.

d
X, f=2fE) .
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Again by virtue of (2.34), one gets

d
.X)lg=X,(go f) = (9o f)). ge&FN).

Using (2.38) on the left-hand side of the last equation, we get

d
(V)9 = 29((f o)D) _ .

Thus, we can say that Y,  is tangent vector to the curve f o o at f(p) = (f o 0)(f,).
Thus, f o o is the integral curve of the vector field Y at f(p), i.e.

Y

= Yf((f(to))’
where X, Y are f-related vector fields satisfying (2.38).

Problem 2.72 Let the projection map 7 : R> — R be defined by 7(x, y) = x. Find
the condition that a vector field of R? is 7-related to some vector field of R.

0 0
Solution: 72 Let X € y(R?) be such that X = 58— +n5- where £ : R? - R, 7 :
X y

R? — R are ¢ functions.
Let X be w-related to vector field Y € x(R) and hence by (2.38), we can write

X =Y. (2.44)

*

. d . . .
Let us write Y = QE’ where ¢ denotes the canonical coordinates on R. Again

m(x,y) = x, so we have

om, Om,

(m) =(31 a—y)=(1 0) and
(m)(X) = (1 0) (f]) —¢.

If (2.44) holds, then we must have £ = 6 and this is the required condition.

Exercises

Exercise 2.40 If f is a transformation on M, prove that for every X € x(M), there
exists a unique f-related vector field of X.
Exercise 2.41 Let f :R> — R? be a differential map f(x,,x,) = (u, v,w) be
0
such thatu = x x,,v=x, + l,w=x, + 1. Let X =x*— +x,—,Y =x, —
' Ox, *Ox, Ox,
be two vector fields on R?. Find vector fields on R3, f-related to X, Y respectively.
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Answer

0 0
2.41. uwa—u + (v — 1)% + (w

J— 2_' JE— J— —
1) o uau—i—(w 1)(%1'

2.15 One Parameter Group of Transformations on a
Manifold

In this section, we wish to interpret the algebraic interpretation of the vector field.
Let a mapping ¢ : R x M — M be such that

(i) foreach t € R, ¢(t, p) — ¢,(p) is a transformation on M;
(ii) forall ¢, s,t + s in R, (2.45)
¢,(¢,(p) = ¢,.,(p).

Then the family {¢, |t € R} of mappings is called a one-parameter group of transfor-
mations on M.

Problem 2.73 Let{¢,|t € R} be one-parameter group of mappings of M. Show that
(i) ¢, is the identity mapping.
(i) ¢, = (¢)7".

Solution: 73 (i) Takingt = 0 € Rin(2.45) (ii), one gets ¢, (¢, (p)) = ¢, (p). Thus
@, is the identity mapping.
(ii) Foreveryt, —t e R

6,0, (p)) = ¢, (p). by (2.45)(ii)
=p, by (2.45)@)
or ¢_(p)= ()" (p).
¢, =)', ¥VpeM.

Exercise

Exercise 2.42 Prove that {¢,|t € R} forms an Abelian group.

Remark 2.32 Exercise 2.42 gives the algebraic interpretation of the vector field X
on a manifold.

Let us set

P() = o,(p). (2.46)

Then ¢ : R — M is a differentiable curve on M such that 1(0) = ¢,(p) = p (refer
to Problem 2.73). Such a curve is called the orbit through p of M. The tangent
vector, say X , to the curve ¥ (¢) at p is therefore
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d _
X,f = f@O),, =lim ACAY2) tfw“(p))), Vie F(M). (247

In this case, we say that {¢, |t € R} induces the vector field X and X is called the
generator of ¢,. The curve 1 (¢) defined by (2.46) is called the integral curve of X.

Problem 2.74 Show that the mapping ¢ : R x R* — R? defined by

o, p) = (p' +1,p>+1,p° +1)
is a one-parameter group of transformations on R* and the generator is given by

0 0 0
ﬁ_’_ax +3 where p = (x!, x?, x%) e R3.

Solution: 74 Clearly, ¢ is a transformation on R? and

b.(¢.(p)) = ¢,(p' + 5, p* + 5, p° +5); as defined
=¢,.(p).

Thus, {¢, |t € R} is a one-parameter group of transformations on R3. Again,

X —lim ¢.(P) = ¢ (p) _ (11,
t—0 t
Now {8 T (922 863 } is a basis of T, (R?) and hence X, eT (IR?) is given by

0 0 0

Ox! + oxr  0Ox3
which is the generator of {¢,}.

Problem 2.75 Let ¢: R x R? — R? be defined by ¢, (p) = (xcost — ysint,
xsint + ycost).

(i) Show that {¢, |t € R} defines a one-parameter group of transformations on R
(i) Find its generator.
(iii) Describe the orbit.
(iv) Prove that X is invariant under ¢,, i.e. (¢,), X, = Xy, -

cost —sint
sint cost
using Problem 2.73 (ii), we have

Solution: 75 (i) Note that |J| = =1 # 0. Hence, ¢! exists and

(br_l(x’, y/) = (bf,(x/, y/) = (x cost + y’ sinf, —x sint + y’ cost).

It can be shown that
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(ii)

(i)

(iv)

2 Manifold Theory

6,(d,(x,y)=,y) and ¢ (¢,(x,y) = (x,y),

and hence we claim that {¢,} is a transformation of R?. Finally

@, (p,(x,y)) = (xcos(t +5) — ysin(t 4+ ), x sin(t 4+ 5) + y cos(t + s))
=o,,(x,y).

Thus, {¢, |t € R} is a one-parameter group of transformations on R
From the definition,

d . .
X, = E(b,(p)L:O = (—xsint — ycost,xcost — ys1nt)|’:0 = (—y, x).

Thus, the generator is given by —y — + x —.
X

0 ady
The orbit through p = (x,, y,) while # = 0 is the image of the map R — R?
given by
t = (x,cost —y,sint, x,sint + y, cost).

0 0
Again, X = —ya—x + x&'_y (refer to (ii) above). Now

@, (p) = ¢,(x,,,) = (x,cost — y,sint, x, sint 4+ y, cost).

Thus
Yo =5 55)
& (p. = - y_ X5
v Ox ay (x, cost—y, sint,x, sint+y, cost)
. 0 .0
= (—x,sint —y, cost)a + (x, cost —y, smt)a—y.
Again
_ [ cost —sint -y
(@).X, = (sint cost ) ( x )
»
= (—ycost —xsinz, —ysins +xcost),
= (—y,cost —x,sint, —y, sint + x, cost).
Thus

(TN

. 0 .0
(@), X, = (—x,sint — y, cost)a + (x,cost — y, smt)a =X

Thus X is invariant under ¢,.
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Problem 2.76 Let ¢ : R x R? — R? be defined by ¢, (x, y) = (x, ye').

(i) Show that {¢,|t € R} defines a one-parameter group of transformations on R2.
(ii) Find its generator.
(iiif) Describe the orbit.
(iv) Prove that X is invariant under ¢,.

10

0e|= e' #0,V t. Hence ¢~ exists and

Solution: (i) Note that |J| = ‘

¢ y) =0, y) =,y /e
It can be shown that
6, (6, yN=@(y) and 6, (¢ (x,) = (x,y),

and hence we claim that {¢, } is a transformation of R?. Finally

é.(¢,(x,¥) = (x, ye'™)
=9, (x, ).

Thus, {¢, |t € R} is a one-parameter group of transformations on R?.
(ii) From the definition,

d . ~
X, = Eﬁ(P)LO = (0,yeH| , =0,y

0
Thus the generator is given by ya—.

(iii) The orbit through p = (x,, y,) while ¢ = 0 is the image of the map R — R?

given by
t = (x,, y,€).
(iv) Now ¢ (p)=o, (x,, y,)=(x,, y,e'). Hence X =( 2) =( e’)2
A\D)=P, Xy, Yo)=(Xy, Y€ ). d0(p)— y@y (X9 ¥p€) Yo 8y'
Again
10 0
wx=(30) ()
(xg-¥p)
= (0, ye') )

0
=(yo€’)8—y = X))

Thus X is invariant under ¢,.
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Exercises

Exercise 2.43 Show that the following families of maps ¢ : R x R* — R? form a
one-parameter group of transformations and find their generators.

() ¢,(p) = (x+at,y+bt), a,beR
(i) ¢,(p) = (xe*, ye™)

where p = (x, y).

Exercise 2.44 Let ¢ : R x R?> — R? be defined by
¢,(p) = (xcost + ysint, —xsint + ycost), p = (x,y).

Show that {¢,|t € R} defines a one-parameter group of transformations on R>.
(i) Find its generator X.

(ii) Describe the orbit.

(iii) Prove that X is invariant under ¢, i.e. (9).X, = X¢ (p)-

Exercise 245 Let M =GLQ2,R) and a mapping ¢,(A)= ((1) i) A

A € GL(2,R) with the dot denoting matrix multiplication. Find the generator.

Answers 9 9 9
243 (1)a— +b— i) 2x — — 2y—.
@a 0x + ady (i) 2x Ox Y ady
0 0
244 (1) y— —x—  (ii) circle centred at the origin.
Ox dy

0

0
245 Clz] a + a22 a_y

0
Problem 2.77 Let M = R? and a mapping ¢ : R x M — M be such that X = I
X

is its generator. Find ¢.
Solution: 76 For X, the differential equations are

d d d
d_);_l d_);zozd—j, where (x,y,z) € R?.

On solving, we get
x=t+A, y=B, z=C

where A, B, C are integrating constants. If for r =0, x = x,,y = y,, 2 = z,, then
A =1x,, B=y,, C =z, Consequently, the integral curve is given by ¥ (¢) = (x, +
t,¥,,2,) and ¢, : R x R — R3 is defined by ¢,(x,y,z) = (x +1,y,2) where
Gy(x, ¥, 2) =P(0) = p = (X, ¥y, Zy)-

In this case
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6, (p) = &,(xy, Y55 20) = (X, + 1, Y5, 2)s

and hence 9 9
X4, (p) Z(a)%w@,w = (x, + t)a
and
100 1
((ZS;)*XP = O 1 0 0 = (1» 01 O)(x0+t,y0,z0) = (-xo + l9 0, O)
001 0/'r

0
= ()CO +1,0, O)a—x = X(@r)(p).

0 0
Exercise 2.46 Let M = R?, the xy-plane and X = ya— — xa—. Find the domain
X y

W and the one-parameter group ¢ : W — M.

Exercise 2.47 Let M = R? and a mapping ¢ : R x M — M be such that

0
(i) X =x— + y— is its generator;
0x ady
il) X = —y— + x— is its generator;
(i) Y or By 8
iii) X = — 4+ y— is its generator;
(iii) o T 3y g

Find ¢ in each case.

Answers
246 (yt + a, —xt + b).
2.47)() ¢, (x, y) = (xe', ye') (i) ¢,(x,y) = (xcost — ysint, xsint + y cos?t).
(iii) &, (x. y) = (1 + x, ye").
Since every one-parameter group of transformations generates a vector field, the
question now arises whether every vector field induces a one-parameter group of
transformations or not. The question has been answered in negative.

0 0
Example 2.23 Let X = —¢* I + v be defined on R2. As done earlier, it can be
X y

shown that the integral curve ¥ (¢) of X is 9 (¢) :<log )’ t+ p2>, not

1
t + e P
defined vVt € R, where x(0) = p', y(0) = p°.
Consequently, by (2.46), if we define ¢ (¢) = ¢, (p) then, X does not induce one-
parameter group of transformations on R?.

The above observation leads to the following definition:
Local one-parameter group of transformations: Let /_ be an open interval (—e, €)
on R and U be a neighbourhood of a point p of M (Fig. 2.21).
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Fig. 2.21 Local
one-parameter group of ¢t
transformations

Let us define a mapping ¢ : I. x U — ¢,(U) C M by ¢(t, p) — ¢,(p) be such
that

(i) U is an open cover of M.
(ii) for eacht € I, ¢,(p) is a transformation of U onto an open subset ¢, (U) of
M.
(iii) ifz,s,t +sarein / andif ¢ (p) € U then

¢,(¢,(p)) = ¢,,,(p).

Such a family {¢, |t € I} of mappings is called a local one-parameter group of
transformations defined on /. x U.
Now, we are going to prove the following theorem.

Theorem 2.7 Let X be a vector field on a manifold M. Then X generates local
one-parameter group of transformations in a neighbourhood of a point in M.

Proof Let (U, ¢) be a chart of p of M. By Exercise 2.8 we can write
¢(p) =(0,0,0,...,0) € R".

If (x!,x2,...,x") is the local coordinate system of p, then x'(p) =0, i = 1,2,
3,...,n (Fig. 2.22).

Fig. 2.22 Existence theorem of local one-parameter group of transformations
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.0 .
LetX = §’TbeagivenvectorﬁeldonUofpwitheachf’ UCR'—> R, i=
xl

1,2,3, ..., n being differentiable. Then ¢X, the ¢-related vector field on R”, is
defined in a neighbourhood U; = ¢(U) at ¢(p) = (0,0,0,0...,0) € R". We write

.0 .
X =7 e where each ' : ¢(U) C R" — R is differentiable. Then by virtue of
xl

the existence theorem of the ordinary differential equation, foreach ¢(p) € U, C R”,
there exists J, > 0 and a neighbourhood V, of ¢(p), V, C U, such that, for each
g=10("q*....q") €V, ¢(r) = q, say, r € U C M, there exists n-tuple of C*
functions f'(z,¢), f*(t.q). ..., f"(t,q) defined on I5 C I,

flily, > V,CUCR",i=123,....n

which satisfies the system of first-order differential equations

d . . )
Ef’(t)=77’(t,¢(p)), i=1,23,...,n (2.48)
with the initial condition . ‘ .
f10,9)=f'0)=q". (2.49)
Let us write
0.(9) = (', @), . q),.... [, ). (2.50)
Then 6 : Is x V, — 0,(q) € V, is a transformation of V, onto an open set 6,(V,) of
R",
Let us set

@', ... ") = ('t +s.9), fPt+s.q),.... 't +5.9),

where each f'(t 45, q), f'(t, s(q)) are defined on I x V, if6,(¢) € V, C U, and
t,s,t+ s are in 151 . Componentwise, we write

g (®) = (f't+s,9),

where each ¢’ (¢) is defined on I5, x V,, V, C U, with initial condition

(g'(0) = (f'(5,9))- (2.51)

Similarly, if we write

(h' (1) = (f'(t,0,(9))),

then each h'(¢) is defined on I, x V,, V, C U, and hence satisfies (2.48) with initial
condition
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(R (0)) = (f1(0,6,(9) = (f1(0)) = (0,(@)) = (f'(5,9)), by (2.49), (2.50)

as constructed. Thus (47 (0)) = (¢°(0)) (by (2.51)). Hence, from uniqueness we have

(' (1) = (g'(®) ie. (f'(t,0.()) = (f+s.9),

which can be written as 6,(0,(g)) = 0,,,(q) (refer to (2.50)). We can also write it
as 0(t,0(s,q)) = 0(t + s, q). Thus, {6, |t € I; } is the local one-parameter group of
transformations induced by the vector field ¢ X at U, of ¢(p) of R".

Let us now set ' (V,) = V C U of p of M and define

Y. xV -1y (V)CM,
as 1, (r) = ¢7'(0,(q)) with g = ¢(r), i.e.
¥, (r) = ¢~ (O, B(r)). (2.52)

Then

(i) V is an open cover of M
(ii) for each r € I, ¢(¢, p) = ®,(p) is a transformation of V onto an open set
¥, (V) of M and
(iii) ifz, s,¢t + s arein / andif ¢ (r) C ¢, (V), then

b, (4,(r) = 710, ¢, (1)), by (2.52)
= ¢~ (0, o~ (06, 6(r)). by (2.52)
=70, 665, 9)))
= </)_1 (0(t + s, q)), as {6, } is the local 1-parameter group of transformations
=1, (r), by (2.52),

i.e. {4, ]t € I} is the local one-parameter group of transformations defined on I, x
V,V C U C M for the vector field X defined in the neighbourhood U of a point of
M.

Finally, if we write

(1) =1,(r) = 7' (0,(9). g = ()
= ¢ (0(1)), say

then ¢~!(o(2)) is the integral curve of X, where o(¢) is the integral curve of the
vector field ¢ X of R". This completes the proof.

Problem 2.78 Prove that the integral curve always gives rise to a vector field, but
the converse is not true.
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Solution: 77 Let {¢,|t € R} be one-parameter group of transformations on a mani-
fold M. From (2.46), we see that if ¢/ : R — M is a differentiable curve on M such
that

»() = ¢,(p), ¥(o) = ¢,(p)=p,

d d
then X = E(w(t))}tzo = E((b' (p))|l:O is called the generator of {¢, |t € R} and

the curve ¥ (t) is the integral curve of X.

Thus, every one-parameter group of transformations or the integral curve on a
manifold induces a vector field on a manifold.

Conversely, by Example 2.23, the vector field on a manifold does not in general
induce an integral curve on a manifold.

Problem 2.79 Let ¢ be a transformation on M. If a vector field X generates {¢, |t €
1 } as its local one-parameter group of transformations, prove that the vector field ¢, X
will generate {¢¢, ¢~ |¢ € I } as its local one-parameter group of transformations on
M.

Solution: 78 Let X be given vector field on a manifold M. Then by Theorem 2.7,
X generates {¢,|t € I } as its local one-parameter group of transformations on M.

Let (1) = ¢,(p), then X, is the tangent vector to the curve ¥(t) at ¥(0) =
@,(p) = p (refer to Problem (2.73)(1)). Thus

d d
X, = 200, = @00,

Now by definition, ¢, : T, (M) — T, (M) and ¢, (X ) is defined to be the tangent
vector to the curve ¢((¢)) at p(10(0)) = d(p), i.e.

oW () = ¢(¢,(p)
= ¢(¢, ((b_1 ())), say where ¢(p) = ¢, ¢ being a transformation on M

= (¢¢,¢ ) (d(p)), and
d
6.(X,) = oM,

d
or (6, X)g(p) = E(@, ¢*1)(¢(p))\t=0, from above and by (2.35).

Comparing with (2.47), we can now say that the vector field ¢, X generates
{¢p,¢~"|t € I} as its local one-parameter group of transformations on M.

Exercise

Exercise 2.48 Show that a vector field X on a manifold M is invariant under a
transformation ¢ on M if and only if ¢ o ¢, = @, o ¢ where {¢p,|t € 1} is the local
one-parameter group of transformations on M, generated by X.
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Now, we are going to give the geometrical interpretation of the Lie Bracket [X, Y]
for every vector field X, Y on M.

Theorem 2.8 If X generates {¢p,|t € I} as its local one-parameter group of trans-
formations, then for every vector field Y on M
o1
[X,Y]=1lim —{Y — (¢,),Y}.
t—0t
We also write

1
[X. Y], = lim —(¥, = ((6).Y),). Y q € M.q = &,(p). p € M.

To prove the theorem, we require a few lemmas.

Lemma 2.7 Ify(t, p) is a functionon I, x M, I. = (—¢, €) on R such that 1 (0, p)
=0, VY p € M, then there exists a function h(t, p) on I. x M such that th(t, p) =
Y(t, p). Moreover

dy

h(0, p) = (0, p), ¥ = —.
(0. p) =/ (0. p). ' = =
L d(ts)

Proof Let us define h(t, p) = / P (ts, p)T. In view of the fundamental the-

0

orem of calculus, we have

1
Wt p) = —[0(s. )], = 1h(t. p) = (. p).

1
Also, h(0, p) = /0 ¥ (0, p)ds = ¥/ (0, p).

Lemma 2.8 If f is a function on M and X is a vector field on M which induces a
local one-parameter group of transformations {¢, |t € I}, then there exists a function
g, defined on 1. x V, V being the neighbourhood of a point p of M where g,(p) =

g(t, p) such that f(¢.(p)) = f(p) + 1 g:(p). Moreover, X, = g(0, p) = go(p).
Symbolically, Xf = g..

Proof Let us set

. p)=f(@(p) = f(de(p)). VP € M.

Then f(z, p) is a function on I, x M such that f(O, p) =0, Vp e M. Hence by
Lemma 2.7, there exists a function, say, g(¢t, p) on I, x V, V C M such that

tgt, p) = f(t, p)
ort g, (p) = f(o:(p) — f(p).
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Hence, the result follows. Also from above
o1
90, p) = llg)l(l) ?{f(¢z(P)) = [(@o(P)} = X, f.

Proof of the Main theorem:
Let us write ¢,(p) = q. Therefore, p = ¢_,(q). Then by (2.34), we get

{((@):Y) fYg) =Y (f o)} (p) = (Y[ +1Yg,)(p), by Lemma 2.8.

Therefore,

Y Ha) —{(9)«Y) fHq) = Y )g) — X)) p) —t(Yg,)p—1(q)

.1 . Y —X)p)
or, lim —{¥, — ()Y )g) f = lim == 2
— Y 1)q) — X [f)(p)
=lm --——- - - -
t—0 t

lim (Yg,)9—+(q)
t—0

— Y, (Xf), by Lemma 2.8.
Now from (2.47),
X,/ =lim (76,0 ~ f@)
L=Xf=lm ()~ f@), a5 p=6,@).
Replacing f by Y f, one obtains
X,(0f) = lim 2 (V) (g) ~ VAP,

Thus, we write

1
lim (¥, — (@).Y),}f = X,(Y) = ¥,(X])
={XXf) - Y(X}q)
={[X, Y1/} (q)
=X, Y], /.
Therefore, [X, Y], = }in(l) ;{Yq — ((#)+Y),}, V f. The result follows immediately.

1
Corollary 2.2 Show that (¢,).[X, Y] = lim —{($),Y = (6,,,).Y}.
t—

Proof In view of Theorem 2.8, one gets
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1
(P).[X,Y]= }gr(l) ;(qu)*{Y —(¢).Y}
= }ig(l)%{(ﬁ)*Y —(9,),(9,):Y)}, as (¢,)4 is linear
= }in(l) %{(gbj)*Y — (¢, 0 ¢,),Y}, by Problem 2.51

1
= lim ;{(¢S)*Y —(,,)+Y}, by (2.45)(ii).
Corollary 2.3 Show that (3,).[X, Y] = __d((izt)*y ' ,

=5

Proof Note that

d @)Y = (@)Y
g (@] = fim -

= 1=s

li (¢s+h)*Y - ((bs)*Y
= 1um
h—0 h

= —(¢,),[X, Y], using Corollary 2.2.

Corollary 2.4 Let X,Y generate {¢,} and {1,} respectively as its local one-
parameter group of transformations. Then ¢, oy, = 1), o ¢, ifandonly if[X, Y] = 0.

Proof Let ¢, o), =1, o ¢,. Then from Exercise 2.48, we can say that the vector
field Y is invariant under ¢,. Consequently, by (2.40), we find (¢,),Y = Y. Hence,
taking advantage of Theorem 2.8, we find [X, Y] = 0.

Conversely, let [X, Y] = 0. Then in view of the foregoing corollary, we have

d
— Y)=0
7 ((¢,).Y)
i.e. (¢,),Y =Constant, V't
ie. ()Y =1(p)Y =Y.
Finally, taking into consideration Exercise 2.48, we must have the desired result.

A vector field X on amanifoldis said to be complete if it generates a one-parameter
group of transformations on M.

Theorem 2.9 Every vector field on a compact manifold is complete.

Proof Left to the reader.
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Hint
Theorem 2.9: Use Theorem 2.7 and then use the compactness property.

Remark 2.33 If ¢ is a transformation on a compact manifold and the vector field
X is complete, then ¢, X is also so.



Chapter 3 ®)
Differential Forms G

3.1 Cotangent Space
A mapping o : x (M) — F(M) that satisfies
(3.1

wX+Y)=wX)+ o)
wbX) =bw(X),VX,Y e x(M), be F(M)

is called a linear mapping over R, where yx (M), F (M) are vector spaces over R.
A linear mapping w : x (M) — F(M) denoted by X — w(X) is also called a
1-form on M.
Let® (M) ={ow,pty...,... | w: x(M) — F(M)} be the set of all 1-forms on
M. Let us define
{(w+u)(X) = o(X) + n(X) 32)
w(bX) = bw(X) '

It can be shown that ®, (M) is a vector space over R, called the dual of x(M). We
write
{w(X)}p) = w,(X,), where o(X) € F(M). (3.3)

Thus , : T,(M) — R and hence w, € dual of T, (M).

We denote the dual of 7, (M) by T*(M ) and is called the cotangent space of M
at p € M. Elements of T (M ) are also called the co-vectors at peEM.

For every f € F(M ) we denote the total differential of f by df and is defined
as

dn,X,)=Xf)p)=X,f.VpeM. (34

We also write it as
dNX) = Xf. (3.5
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 129
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Problem 3.1 Show that for every f € F(M), df is a 1-formon M.

Solution: Forevery X,Y € x(M), X +Y € x(M) and

df(X+Y)=(X+Y)f by (3.5)
=df(X) +df(Y),by (3.5).
Alsodf(bX) = (bX) f, by (3.5)
= b(Xf)
= bdf(X),by (3.5)
Thus df is a 1-form.

Exercise

Exercise 3.1 If (x', x%, ..., x") are co-ordinate functions defined in a neighbour-
hood of p of M, show that each dx', i=1,2,3,4,....,nisa 1-form on M.

From Exercise3.1, we claim that each dx’ € T (M), i =1,2,3,...,n. We
define

i 0 Qi 19 i = .]
(dx"), <@) = 8/_ = {07 i (3.6)
P
Letw, € T:‘(M ) be such that
d
o, (—) = (f.),, whereeach (f.) €R. (3.7
p ax] J7p 17pr
»
If possible, let 4, € TP* (M) be such that

= (f,),dx"), + (£),dx?), + -+ (f,),dx"),.

K,
9
Then, u<$> = (f),,i=1,2,...,n by (3.6)
P

a
pr<—»> ,,i=1,2,...,n see (3.7).

0
and hence M, =w, as {8_ = 1,2,3,4,...,11} is a basis of T (M). Thus any
x! ’

w, € Tp*(M ) can be expressed uniquely as
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w, = Z(f,)p dx), i.e.w= Z fdx' (3.8)
i=1
and hence T*(M) = span{(dx') , (dx?),, ..., (dx"),}. Finally, if (f) (dx'), =0
. d
then (f),(dx"), (ﬁ) = 0 yields (f,), = O [refer to (3.6)].
X
Similarly, it can be shown that ), =, =), =--=(f,), =0and the
set {(dx") , (dx?),, ..., (dx"),} is linearly independent. We state
Theorem 3.1 If (x', x2, ..., x") are local co-ordinate system in a neighbourhood

U of p of M, then the set {(dxl)p, (dxz)p, ..., (dx"),} is a basis of Tp*(M) or
D (M").

Remark 3.1 A zero-form is nothing but a function, by convention.

Remark 3.2 We say that the form w in (3.8) is differentiable if each f, is of
class C*°.

i ; 0 i
Remark 3.3 From w = Z fidx', X = ZS FyvE we see that w(X) = Zf,,é
[refer to (3.6)].
Remark 3.4 ©, (M) is a F(M)-module.

Unless Otherwise Stated, by a form, we will mean Differential form. From
(3.5), we see that

) ) .0 .
dx'(X) = Xx' = J—x',
x'(X) X Zé 8x!x say

Thus
dx'(X) = &', (3.9)

Consequently, from (3.5), we have

a0 =xr=Y¢e-y

ox/

af . .
ax!

af .
df = E —dx'. 3.10
f 8X' X ( )
The transition formula for a 1-form: Let (U, x', x%, ..., x") and (V, y', y2, ...,

y") be two charts on M where U NV # ¢. Now from (3.8), we have
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w= Zﬁdxi = Zgl.dyj, say, where each f, g € F(M)

1

J
oyl
= Z Zg, Oy [refer to (3.10)]
il ax!

oy’
L= ——,i=1,2,3,4,..., 3.11
f=2 9501 n G.11)

as{dx' :i=1,2,3,4,...,n}is abasis.
Forevery f € F(M), w € ©,(M), we define fow € ©,(M) as follows:

{(fw)(X) = foX) 512
(@) OMP) = f(P)o,(X,) [refer to (33)]. ‘

Problem 3.2 Show that w(fX) = fw(X), where w is a 1-formon M, f € F(M)
and X € x(M).

Solution: Here
{o(fX)}(p) =, (fX)(p), by (3.3)
=ow, f(p)X,, by (2.26)

= f(po(X)}(p), by (3.3)
= {fo(X)}(p), by (2.26)

Thus w(fX) = fo(X),Y p € M.

d d d
Problem 3.3 Let X = y— — x— + — be the vector field and w = zdx + xdz
ox ay 0z

be the 1-form on R®. Compute w(X).

Solution: Taking into consideration Remark 3.3 and also (3.6), we obtain

d 0 d
o(X)=@dx+xd)|y——x—+ —
ax ay 0z

=zy+x.
d 0
Problem 3.4 Let X = (x2 + 1)8_ + (- 1)8_ be the vector field and
X y

o = 2xy + y> + Ddx + (x* — 1)dy be the 1-form on R%. Compute (X) at (0, 0).

Solution: Note that
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2 2 2 0 0
w(X) ={Qxy+y-+ Ddx + (x —1)dy}{(x +l)—+(y—1)—}
ax ay
=y + Y+ DA+ D+ 6= Dy —1).

Thus, w(X) | =2.

0,0)

a a d

Problem 3.5 Let X = x— +2y—,Y = xy— be the vector field and v = (x +
dax ay ay

y2)dx + (x% + y)dy be the 1-form on R>. Compute ([ X, Y]).

Solution: Here

Thus

]
o([X, YD) = {(x + y)dx + (&* + ydyey g
= xy(x* +y), by (3.6).
Problem 3.6 In Problem 3.5, compute w([X, Y]) at (1, 1).

Solution: Here o([X,Y])| =2.

a0

a a a a
Problem 3.7 LetX = —y— — x—andY = ¢* — — y— be the two vector fields
ax dy ox dy

on R?. Find a 1-form w on R? <. {(0, 0)} such that w(X) = 1 and w(Y) = 0.

Solution: Here

det<;fy :;> = y2 4+ xe* #0onR>~ {(0,0)}.

Let w = A(x, y)dx + B(x, y)dy, where A, B € F(R?) are functions to be deter-
mined.
Given that

b ad
1 =w(X)={A(, y)dx + B(x, y)dy}{ - yﬁ —xa}

. l=wX)=—-Ay —Bx and
0=w() = Ae* — By.
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After a brief calculation, one gets from the last two equations

y e’
T et 4 2] Bz_—z'
xe* +y xeX +y

Consequently
X

Y d €

w=— x —
xeX + y? xeX +y

>dy.

NOTE: The 1-form w is on subset U and it is not a 1-form on R2, as it is not defined
at the origin.

0 0 0
Problem 3.8 Ler X =2— — —, Y = e*— be two vector fields on R2. Find a
dx  Jy ay

1-form w on R? such that w(X) = 1, w(Y) = 0.

Solution: Note that (g ;Xl) =2¢"#£0, V(x,y) € R% Let w = A(x, y)dx +

B(x, y)dy, where A, B € F(R?). Now

1l =w(X)={A(, y)dx + B(x, y)dy}(2i — i) =2A — B and
dx  dy

0=w()=—Be".

1 1
Thus B=0,A = 5 Therefore, w = de.

Problem 3.9 Find a 1-form @ on R3 such that o(X) =1,0(Y) =0,w(Z) =0

d d ad d d
where X = xy— + —,Y = e — + —, Z = 2— + — arevector fields on R>.
Jdx 0z dx  dy dy 0z
xy 01
Solution: Notethat [ e 10 | =xy+2e* #£0, V(x,y,2) € R} Let
021

w=Ax,y,2)dX + B(x,y,z)dy + C(x,y,2)dz, where A,B,C € F(R3).
Now

l=0w(X)=> Axy+C=1
O=wl)=> Ae*+B=0
O=w(Z)=2B+C=0
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1 - 2¢
Solving, we find A = ——, B = —e—, C = e—' Thus
Xy 4 2e™* Xy 4+ 2e™* Xy +2e™*
dx e “dy 2¢ *dy

©= xy+2e  xy+2e*  xy+2e
Problem 3.10 Find the subset of R® where the vector fields

d d d 9 d
X=— Y¥V=——-—Z=————(1-x)—
ox  dy 0z

are linearly independent. Write the basis {«, B, y} dual to {X, Y, Z} in terms of the
basis {dx, dy, dz}.

Solution: Here

10 0
det| 1 -1 0 =1 —x*#00nR>~ {(x,y,2)|x # *1}.
1-1-(1-x%

Letus write« = Adx + Bdy + Cdz, where A, B, C are functions to be determined.
Now from (3.6)

l=a(X)=A=>A=1
0O=a(Y)=A—-B=B=A=1
0=a(Z)=A—B—-C(l—x)= A—-B=C(l—x)= C=0asx # +l.

Thus o = dx + dy.
Letuswrite 8 = A'dx + B'dy + C’dz, where A’, B’, C’ are functions to be deter-
mined. Now

0=BX)=A'= A" =0
| =BY)=A' —B =B =A' —1=—1
1
1 —x2%

0=8Z)=A-B -C'(1-x*)= (C' =

Thus, 8 = —dy + dz.

1 —x2

d
Proceeding as above we get, y = <

x2-1

Problem 3.11 Find the subset of R* where the differential forms o = dx + dy, =
—dx 4+ (x2 = 1)dy are linearly independent and determine the dual frame {X, Y}
on it.
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Solution: Here

det( ol >=x2 # 0 on R?/{(x, y)|x # 0}.

—1x2-1

Let us write 4 3 4 4
X=a—+b—,Y=ad—+b—
ax dy ax dy

where a, b, a’, b’ are all functions to be determined. Now

l=X@)=a+b, a+b=1
0=XB)=—-a+bx*—1), —a+bx>—=1)=0.

2

. X
From the last two equations, one gets a = Thus

x2

x—19 19
x2 3x  x2ay’

1
Similarly, one gets a’ = -, b = —- Thus
X X

1 9 1 0
x29x  x29y’

Problem 3.12 Let f be given in spherical co-ordinate system by f(r,0,¢) =
rtan 0. Consider the point (r, 0, @) :(1, % 0). Find the constants A, B, C such

that df (1. 7, 0) = Adr + Bd6 + Cdg.

Solution: Now

a a

—f =tan@, —f =1
dr |(1.%.0>

a a

o = rsec’6, o =
a6 a6 |u.%m

a

A

d¢

Thus, df (1, %, 0) = dr + 2d6.



3.1 Cotangent Space 137

Problem 3.13 Let us write

0 9 3
e, =(1+ y%a, e, =Qxy) -+ (1+ yz)g, and

e, = —(0D) o — y(+ D) — (13D
s ==y =y g
(i) Prove that {e,, e,, e,} forms a basis of x (R?).
(i) Find the dual basis {e', €2, €3} in terms of dx, dy, dz.
(ili) Find[e,, e,], [e,, €,].

Solution:
(14 y?)e? 0 0
(i) Note that 2xy (1+y% 0 =— (1 + y?3e* #0. Thus
—xy* =y +yH) -1+ y?)
{e,, e,, e,} forms a basis of x (R?).
(ii) Letuswritee' = Adx 4+ Bdy + Cdz, where A, B, C are functions to be deter-
mined. Now from (3.6), we have

1=el(e,) = A(l + )&
0=c¢'(e,) =2xyA+ B(1 +y%
0=c'(e,) = —A(xy?) — By(1 + y») — C(1 + y*).

On solving, one gets

1 2xy xy?

A=—— B=-—"2 Cc=_"7
(I + yHes (1 +yHes (1 + y?)2es

Thus )
1 1 2xy Xy

= — d d
T Ui T U T ar et

Proceeding as above, we get

et = ! dy — J dz
(I+y?) (I+y»)

63

——dz.
I+

(iii) It is to be noted that

e ey] = [ (14265 = 20y L 4 (14D 2
DR Y ax’ yax y ay

a a a
2xy—1+ [(1 4 y%)e* —, (1 + y*)— |, by linearity
dax dx ox ay

B [(1 T+ e
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Takinghelpoftherelation[ f X, gY] = (fg)[X, Y]+ {f(Xg)}Y — {g(Y)}X,
0
it can be shown that [e,,e,] = 0. Similarly, [e,,e,] = (1 +y?)?e*— =

(14 y7e,.
Exercises

Exercise 3.2 If o = zdx + ydz, compute »(X) on R* where

0 0
i X = 9 2 9
@ xyaax T 0z
) X=y—
dy
d B d
iii) X=2—— — +3—
(i) 8x8 0x + 0x
i) X — e
(iv) e8 P )
X=— r—
\ ay te 0z
(vi) X d x2 9
vi =Xxy— — ——.
Y dy 2 0x

Exercise 3.3 Compute w(X) at (1,0, 1) in each cases of Exercise 3.2.

Exercise 3.4 Find a 1-form  on R? \ {(0, 0)}, such that (X) = 1 and w(Y) =0
where

W X a N a y a
1 = Xy— X"—, = y—
yax ay y&y
0] d _. 0
G X=2———, Y=e"—
dx  dy ax
i) X= > 4o L
111 = — e —, = ——— xXy—.
ox 20x %y

Exercise 3.5 Letw = (2xy + y? + D)dx + (x> — 1)dy + xdz be the 1-form on R>.
Compute w(X) and hence w(X) at (1,0, 0) where

3 B B]
D X=2xy"—4+Q2+y)H—+Q2—-2)—.
ox ay 9z
] 9 9
i) X =272 — +ef— + (2 —y2)—.
(i) y8x+eay+( y)8Z
5 0 i) ,. 9
(i) X =-yQ2+y)— -2z —-+2+x7)—.
0x ay 0z

a a d a
Exercise 3.6 Let X = x— 4+ 2y—andY = xy— + y— be two vector fields on
ox dy ax dy

R2. Find a 1-form w on R* \ {(0, 0)} such that (X) = 1 and w(Y) = 0.
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Exercise 3.7 Find the basis {«, B} dual to {X, Y} where

] a ad a d
i X=—y——x—, Y=€"——y—.
ax ay ax ay
s Rl d ]
Ggi) X=—, ¥Y=———.
dax dx  dy
a a a
(i) X =2y>—+¢"—, Y =—.
ax dy dy
iv) X « 0 + 0 Y Lo + 0
= e — _—, = - —_
ax |y 20x Yy

Exercise 3.8 Show that the given differential forms

dx 2xy
o = — dy,
Q+y)er 2+ y?)%ef
dy y
= + dz,
d Q+y) 2+
dz
Y

T e+
are linearly independent. Hence find the dual basis {X, Y, Z} dual to {a, B, y} in

o 9 0
terms of 5’5’3_1 .

Exercise 3.9 Find the subset of R? where the differential forms

xdx ydy ydx xdy
o= , and B = —
x2+y2 x2+y2 x2+y2 x2+y2

are linearly independent. Hence find the dual basis {X, Y} dual to {«, B} in terms of
a 0

ol

Exercise 3.10 Find the subset of R? where the differential forms

dz dz
:d d’ :—d —_—, = —
* xtdy, b y+1—x2 ¥ x2—1

are linearly independent. Hence find the dual basis {X, Y, Z} dual to {a, B, y} in

o 0 0
terms of 5,55 .

Exercise 3.11 Let f : R? — R be given by
f 3,0 =02+ +20)7 +x+3y.

(i) Write down df (1,0, 0) in terms of {dx, dy, dz}.
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(ii) Express f in spherical co-ordinate (r, 9, ¢), where
x =rsinfcos¢, y =rsinfsing, z =rcosb.

(iii) Find constants A, B, C such that df(l, %, ) = Adr + BdO + Cd¢.

Exercise 3.12 A. Ifw = e* cos ydx + e* sin ydy, compute w([X, Y1) on R? where

0 X a 42 a ¥ a
= X— -, = _—
ax Y dy yay
29 a d
(i) X:xy——}—y——, =2 — —
a 2 dy dx  Jy
a a
i) X =y L.y x9 0
(iii) yay ox + 3y

B. Compute w([X, Y]) at (1,2) € R2.

Exercise 3.13 Find a 1-form w on R? such that o(X) =1,0(Y) =0, w(Z) =0
where

. ad 0 d 0 ad 0
i X=—YV=—-—7Z=——-———
ax dx  dy ax dy 0z
W x=Qryorly=2y P20
N Y ax 3y’ 3y 9z ax 9z
Answers
. s o . Xz
32. () xyz+x7y ()0 (i) 2z 4+ 3y (iv) ze ™ (v) ye* (vi) -
1
33. M0 )0 @i)2 @Gv) — (v) —%.
e
1 9 2 0 0
34 Vo= —— (Ho=-—— Gi)os——m L+ 9
Xy 0x dy (x +2ye*) dx  (x +2ye¥) oy
. .. dx dy
35. )2 (G2 (i) 3. 3.6.0=-— +
xQ2y—-1) 2y—-1
. y e’ by y
3.7. =— dx — dy, = dx — dy.
(1)0[ xex+y2 X xex _|_y2 y X€X+y2 X xex+y2 y

1
(i)a=dx+dy, B=-dy (i)a= ﬁdx, B =dy.
y
2y 1 2 2e
dx + dyv /3 = - dx +
1+ 2ye* 1+ 2ye* 1+ 2ye* 1+ 2ye*

3 3 3 3 3
38. X=Q+y)ef—, Y=2xy— + QR+ y)—, Z=—-2xy>— —y2+y)— +
dx dx dy ay

X

dy.

(iv)a =
0x
d
Q+yH—
0z

d
3.9.X=x——|—y—, Y = X
ox ay ax ay
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a a d a d
30 X = —, Y= — — —, Z=___+(2_1)_
ax ax  Jy dx  Jy

3.11. (i) 4dx +3dy (i) 7> + rsin@ cos ¢ + 3rsin @ sin ¢ (111) 4dr + 3d¢.
3.12. A. (i) —y%e*siny (i) (x —2y)e*cosy (iii) —e*siny
B. (i) —4esin2 (ii) 3e cos2 (iii) —esin 2.

d d
33, () dx+dy (i) 57— + 5 +yy 5 +Zy2.

3.2 r-form, Exterior Product

An r-form w is a skew-symmetric mapping

w: x(M)x - x(M) - F(M)
~——
r—times
such that

(i) w is R-linear
(ii) if o is a permutation of 1,2,3,...,r with (1,2,3,...,r) = (¢(1),0(2),
.,0(r)), then

1
OX, X, X)) = Y gno)oX,,. X,,.....X,,))  (313)

where sgn o (pronounced as signum o) is +1 or —1 according as o is even or
odd permutation.

The product of two skew-symmetric form is called the exterior product or Grass-
mann product, as introduced by H.G Grassmann or Wedge Product, as a wedge
‘A’ is used to denote this product. We are going to give the formal definition.

Remark 3.5 By convention, a zero-form is a function.
If w is a r-form and u is a s-form, then the exterior product or wedge product of w

and u, denoted by w A w is a (r 4 s)-form defined as

(a)/\,u)(XI,X,,.. X.X X ) (3.14)

r1 c r+s

Z(Sgn o) a)(er(l)’ er(Z)’ T an)ru(Xa(rw’ Xr/(r+2)’ A Xn(r+s))

(r+s)'
where o ranges over the permutation (1,2,3,...,r +s), X, € x(M), i =1,2,
3,...,r+s.

For convenience, we write

frng=Ffg VY f.geF(M). (3.13)
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It can be shown that, for a r-form w

(fAro)X,.X,,....X)=foX,.X,,....X) (3.16)
WA XX, ....X) = foX,.X,,.... X)) :

Again, if w and u are 1-forms, then

1
The exterior product obeys the following properties:

o ANow=0, oApu=(=1)*uAw, ubeings-form

fo A p=flornpn)=oAnfur

fo Ngu=fgonn

(+p) ANy=ony+puAy, oAN(pt+y)=oApt+tony.

(3.18)

Problem 3.14 Given 1-form w = fdx — gdy + hdz and u = f'dx + ¢'dy in R>.
Compute w N w and show that o A @ = —u A w. Prove that each w A [, (L A @ is
a 2-form.

Solution: Taking help of (3.18), the result follows immediately.

Problem 3.15 Let V be a vector space of dimension 3 over R. Let {e,, e,, e,} be
a basis of V and {e!, €2, €3} be its dual basis. Let «, B be co-vectors, so that o =
ae' +ae®+ae’, p=be' +b,e*+b,e* where each a,, b, € F(V). Show that
the components of o A B =« X B.

Solution: Here
aAB=(ae +ae®+ae’)A(be +be* +bed)
= (a,b, — a,b))e' A e* + (a,b, — a,b,)e* A e + (a,b, —a,by)e’ Ae'.
Thus the components of @ A 8 = (a,b, — a,b,, a,b, — a,b,,a,b, — a,b,). Again
axpf=I(b,—ab, ab, —ab, ab —ab,).
Hence the proof.

Problem 3.16 Let a 1-form a and 2-form B be given on R? as « = adx + bdy +
cdz,
B=a dx ndy+ Db dy ANdz+ ¢’ dz A dx. Compute a A B.
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Solution: Note that

a A B = (adx +bdy +cdz) A (@ dx ANdy + b dy Adz+ ¢’ dz A dx)
=ab dx Ady Adz +bc’ dy Adz Adx +ca’ dz Adx Ady.
Asdx Ndz ANdx = —dx ANdx A dz =0 and so on, we have
a A B =(ab +bc’ +ca')dx Ady Adz,

which is a 3-form.

Theorem 3.2 In terms of a local co-ordinate system ' x% ..., xY ina neigh-
bourhood U of p of M, an r-form can be expressed uniquely as

w = Z Firigi dX' AdX Ao NdXT, 0 <0, << (3.19)

i1,02,.00r
where fi;,.... are differentiable functions.

Proof As the set {dx't Adx™ A--- Adx"} is a basis of D (M"), from (3.14) we
find

. . . 1 . )
(@x't Adx's A AKX X)) = D (sgn o)dx'1 (X)) ... dx"T (X)),
e
where i| <ip < ... <.

Let us write,
i=1,2,3,4,...,r,

D
X =) g" T

inm
where each Sf " is C* function. Using this in the foregoing equation, we obtain

(dxh Adx Ao ndXTY(X,L Xy, X))
1 4 D 4 9
—_ Jm ... r Jm
= LS ot (S5 ) v (St )
(o)

1 ' i . .
=3 Z(sgn G)Eél(l) . ..g;’(r), i, <i, <...<i (by(3.6)).
" (o)

From (3.13), we see that
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X, Xy, oo 2(59" o) <Z 51’{'1) T 2 G >

" (o)
P a
i lr
7Z(sgn<7) Z Sy 0@ <371 """ E)xir>
(o) 1] 12 ..... 1

— Z(sgn o) Z Sa(l) . éi’(r)ﬁl,-zmi,_, say, as defined in (3.7)
" (o) i) sy ey
= Y @x" Adx A AdxT)(X,L X, .. X,) fii, i, from above.

sy
i) <iy<..<i,

Thus w = Z Sivin- ,,dx'/\de/\ Adx', for each X, i=1,2,

[P A

l]<l <. <l

3,...,r.

Theorem 3.3 In terms of a local co-ordinate system L x2, .., x ina neigh-
bourhood U of p of a manifold, let fi, i=1,2,3,...,r, be smooth functions on U.
Then

A S )
>

PTR l)dxl Adx2 Ao Adxr.
X', x, L., X

df' NdfP A AdfT =
iy sy,

ll <12<"'<lr

Proof Eachdf',i =1,2,3,...,r,is a 1-form and df1 /\df2 A---Adfrisar-
form and in view of Theorem 3.2, we write

ro

df' ndfP A AdfT =Y Fjpjdxl Adxh Ao ndxd i< gy <<

J1sj2seees Jr
where Fj j,..; are differentiable functions to be determined. In view of (3.10), we
find
i i Nk
df_;mdx = df _;Wd
Now

ar oft (9 o' _ of'
df'| — | =) ——dx"| — | = =55
f <8x1> ; axk " <8x1> Zk: dxk j dxJ

Hence from the left hand side of the above expression, we have

9 : )_a(fl,fz,...,m

e, —— | = — — .
8x 2 ox'r a(xtr, x2, ..., x4)

AdfY ANdfPA - AdfT )<

Furthermore, from the right hand side, we get



3.2 r-form, Exterior Product 145

i i (0 0 il iy
Z Fjyjpojpdxt AdxI2 Ao A dx? <8x7’1’ PRI 3x7’1> = Z Ej iy, 5_/, ey

Jid2eeesr Jyody ey
= Filiz“'ir'
Thus -
0L S D
A(xi, xl2, ... xiy R
Consequently,

dxh AdxB2 Ao Adxdr

) .
df' AdfP A AdfT = Z KUY RISTY b

.4 ) Bx-il,xj2 X
Jyodasesdi ( ’ ")
Jy <Jp <e<ly
- AL 2 i i
ie. df' ndfPA-ndfT= ) Lf,dx’mdxlm--wdxlr.
= a(xh,x, . xlr)
i)y ey
iy <iy<..<i,

This completes the proof.
Proposition 3.1 If w and p are C*-forms on M, then w A pu is also C*.

Proof From (3.8) and Theorem 3.1, we know that
w:Zﬁdxi, ;L:Zgjdxj,
i J

where f,, g, € F (M) for each i, j. By Remark 3.2, we say that w, u are C*°-forms
on M, if each f, g, are C*°-functions on M. Now

WA= Z f[gjdx[ Adx’, Theorem 3.3.

ij

Since Zi’ j f g, are C°-functions on M, by Remark3.2, we can claim that
w A uis also C*°-forms on M.

Exercises
Exercise 3.14 If w is a 1-form and w is a 2 form, show that
1
(@A LL)(XI , X5, X3) = g{w(Xl)M(Xz, X;) + w(Xz)l*‘-(Xy X))+ w(X3)U«(X17 Xz)}-

Exercise 3.15 Compute w A u where

(i) o =xdx — ydy, u = ydx + hdy
(i) w = xdx + ydy, u = gdx
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(iii) o = zdx + xdz, u = xdx + ydy + zdz
(iv) w =xdy Andz, n = gdx + hdz.

Exercise 3.16 Compute

() Qdu' + du®) A (du' — du?).
() (6du' Adu®+27du' A du®) A (du' + du® + du?).
(iii) 0 A @ A Y where 0 = zdy, ¢ = xdx + ydy, ¥ = zdx — ydz.

Exercise 3.17 If o« = —du' + du® — 2du?® is a 1-form and B is a 2-form given by
B =2du' Adu® — du* A du?, compute o A B A a.

Answers

3.14. Use (3.14).
3.15. (i) (xh + y2) dx ANdy. (i) —ygdx ndy
(iii) (22 — x?) dx Adz 4+ zy dx Ady —xy dx Ady (iv)xgdx Ady Adz.
3.16. (i) =3 du' Adu?. (ii) =21 du' A du? A du?. (iii) xyz dx A dy A dz.
3.17. 0 (Zero).

Remark 3.6 Let ©, (M") denote the collection of all r-forms in M". By virtue of
Theorem 3.1, the set {dx’t Adx> A---Adx" :1<i <i, <---<i <n}forms
a basis of ®, (M").

Remark 3.7 The collection of all differential forms with respect to wedge product,
forms an algebra, called the EXTERIOR ALGEBRA. Now a days it is also termed as
GRASSMANN ALGEBRA, as R.G. Grassmann developed this powerful concept.

Remark 3.8 For a manifold M*, every point p € M, has coordinates of the form
p = (x',x%, x3, x*. Thus the basis set of D, (M*) contains *C, elements viz
{dx", dx?, dx3, dx*};

that ofCDz(M“) is 4C2 ie. {dx' Adx?, dx' Adx3, dx' Adx*, dx® Adx3, dx* A
dx*, dx3 A dx4};

that Of©3(M4) is 4C3 i.e. {dx1 Adx? Adx3, dx' Adx? Adx®, dx' Adx3 A dx?,
dx?® Adx3 A dx*);

and that of D, (M*) is *C, given by {dx' A dx* A dx3 A dx*}. However, D, (M*)
does not exist. Hence any,

4
® €D, (M) is of the form & = Y _ f,dx";
i=I
® €D, (M*)isof the formw = Y f,dx' Adx!, 1 <i < j <4
ij
» €D, (M) isof the form w = f dx' Adx/ Adx*, 1 <i<j<k<4
i,j.k
w € D,(M*) is of the form @ = f,,,,dx" A dx* Adx® Adx*.
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In Sect.3.1, the transition formula for a 1-form has been given by the (3.11). Now
we will focus to find the Transition Formula for a 2-We write it asform.

Let (U;x', x2,...,x") and (V: y', y2, ..., y") be two charts on a manifold M
such that U NV # ¢. If w is a 2-form, then by (3.19), we have

mn

W= Zf,.],dxi Adx! = Zg dy™ Ady", where each f,, gun € F(M)

g
m<n

i<j
0 ) .
= ZZ Goun O™y )dx’ Adx’, by Theorem 3.3
7 a(xi, x7)
f<j m<n
oy, y") .
ﬁf—;mgmm iL,j=123,....n, (3.20)
as{dx' Adx’ :i,j=1,2,3,...,n;1 <i < j <n}is abasis of 2-form.

Problem 3.17 Let {w,, w,, w,} be a set of linearly independent 1-form on a smooth
3

manifold M. Define 1-form ., i =1,2,3 as u, = Zau.a)j, i =1, 2,3. Show that
j=1

My Ay Ay = det(a)o, Ao, A o,.

Solution: We write

= E a,w,, W[, = E a, o, [, = E a,o,.

Thus
M, = a0, +a,0, +a,0;
My =y o) + a0, + Ay 0;
My = ay 0, + a0, + a,o;.

Now

By Ay = (a0, — a,a,)o, Ao, +(a,a,, — a,a,)o, Ao,
+ (a12a23 —dag; 22)w2 A Wy,
aso Ao, =0,0, Ao, = -, A o,. Again Now

My Ay Ny = asz(anazz - alzaZI)w] A w, N
+ a;, (a||a23 - a|3a2|)w| N W, N\ W,
+ay, (a12a23 - a13a22)w1 A W, N\

=det(a,)o, ANw, ANw,, as o, Ao, =—w, N, i,j=1,2,3.
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Problem 3.18 (Cartan Lemma) Let k < n and {w,, w,, ..., 0} be 1-forms on M"
which are linearly independent pointwise. Let , be k number of 1-forms on M

satisfying
k
Z w, Ao, =0.
i=1
Prove that there exists C™ functions A,; on M" such that

k
=Y Ao, with A=A, i=1234.__k

ji?
j=l1

Solution: As {w,,w,,...,,} is k-independent 1-forms on M, we complete the
basis of ©, (M) by taking 1-forms o .., o,. Consequently, any 1-form u,,i =
1,2,..., k can be expressed as

k+12 °

k n
w=y Ao + Y Bo, i=123 .k
m=1 p=k+1

k
where each A, , B, is C*-function. Given that Z u, A, =0ie.

i=1
(Z Ao, +> B]pa)p) Ao, 4+ (Z Ano, + > kaa)p> Aw, =0.
m p m P
Using the properties
o, Ao, =0 and o, No, = -0, N,

one gets
YA, —A)o Ao+ Y Bo Ao =0.
ij i<k
i<j<k j>k
As{w,,w,,...,»,}isabasisof D, (M), we musthave A, — A, =0 and B, =0.
Consequently, u,,i = 1,2, ...,k can be expressed as

ji*

k
M = ZAimwf’ with A, = A
j=1
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Exercise

Exercise 3.18 Show that a set of 1-forms {w,, w,, ..., w,} is linearly dependent if
and only if o, ANw, A -+ ANw, =0.

Exercise 3.19 Let{w,, ..., w,} beasetoflinearly independent 1-forms on a smooth
manifold. Let p,,i =1,2,3,...,n be 1-forms on M satisfying

n
W, = E a,w,.
Jj=1

Show that 1, A by Ay A oo A, =det(a,) o, Ao, Noy AL A,

n

3.3 Exterior Differentiation

As discussed in Remark 3.7 of the last section, we write ® = @;’:0 D, (M), as the
Exterior Algebra, with respect to the wedge product in M". It is interesting to note
that

dm® ="C,+"C,+"C,+...+"C,
= (1 + 1)", by Binomial Theorem
=2".

We are now going to define the exterior derivative which is a linear mapping, denoted
by d, on ® as follows:

(Hd®,)CD,,;
(ii) for f € ®,, df is the total differential; (3.21)
(inifwoe®D,,nue®,, thendlwAp) =doAp+ (=1)'wAdu; ’
(iv) d*> =0.
Hence from (3.19), we see that
do= Y df, . Adx" Acondxt i <i << (3.22)

i)y,

Problem 3.19 Find the exterior derivative of the following:

i) f=x*yz @) fg.
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Solution:

(i) Here df =2xy’zdx + 6x2y*zdy + x*y*dz. Thus df is a 1-form, verifying
(3.21)(1i)
(il) We know df (X) = Xf. Thus

d(f9)(X) =X(fg)
=g(Xf) + f(Xg)
=gdf(X)+ fdg(X),

ie. d(fg) =gdf + fdg.
Problem 3.20 Verify (3.21)(iv) for w = x*y dx.
Solution: Note that

dw = d(x*y dx)
=d(x%y) Adx, see (3.22)
= 2xydx 4+ x*>dy) Adx
=x2dy/\dx, asdx ANdx = 0.

Again

d(dw) = d(x*dy A dx)
=d(x*) Ady Adx, see (3.22)
=2xdx ANdy ANdx
= —2xdx Nndx ANdy
=0.

Problem 3.21 Find the exterior derivative of:
(i) o, =2xdx + (x + y)dy
(i) w, = x2ydx —xz3dy + 3xydz
(iii)) w, = x% — yDdx Ady
(iv) o, =x%*yzdy ndz —2xyz dz Adx + xyz® dx A dy.
Solution:
(i) Here w, = 2xdx + (x + y)dy. Therefore

dw; = d(2xdx) + d{(x + y)dy}, by linearity
=d@2x) Adx + (=1)02xd(dx) + d(x + y) Ady + D% + y)d(dy), by (iii) of (3.21),
as the function is assumed to be a0 — form.
= (2dx) Adx + (dx + dy) Ady, by (iv) of (3.21)
=04+dxAdy+0
=dx Ndy.
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(ii) Note that w, = x?ydx — xz°dy + 3xydz. Hence

dw, = d(xzy) ANdx — d(xz3) Ady+d(3xy) ANdz, by (3.21)
= 2xydx + xzdy) Adx — (z3dx + 3x22dz) Ady + Bydx + 3xdy) ANdz
= x2dy Adx — Z3dx A dy — 3xz2dz Adz + 3ydx ANdz +3xdy ANdz
= (—x% — 2)dx Ady + (3xz% + 3x)dy Adz — 3ydz A dx.

(iii) Here , = (x> — y*)dx A dy. Therefore

do, = d(x* — y*) Adx Ady, by (3.21)
= 2xdx —2ydy) ANdx ANdy
=2xdx ANdx Ndy —2ydy ANdx Ndy
=04 2ydy Ady ndx
=0.

(iv) Similarly
do, = 2xyz — 2xz + 3xyz®)dx Ady A dz.

Problem 3.22 Let w be a 1-form on a manifold M. Consider a nowhere vanishing
function f : M — R such that d(fw) = 0. Prove that o A dw = 0.

Solution: From the definition,

d(fw)=df no+ f Adw, by (3.21)
0=df o+ +fdw, by (3.16)

or dw = —%(df Aw).
Now a)/\da):w/\—%(df/\a))

= % o A (wAdf), by (3.18)

=0, by (3.18).

Problem 3.23 Forany 1-form w, is w A dw = 0?2 Justify your answer with an exam-
ple.

Solution: Let w € D, (R?) be such that

w = fdx' + gdx* + hdx®, where f, g, h € F(R?).
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Then
do =df ndx'+dg Andx*>+dh Adx?, by (3.21).

Thus

o ANdo = fdx' Adg Adx*+ fdx' Adh AdxP + gdx® Adf A dx!
+ gdx* ANdh Adx® 4+ hdx® Adf Adx' + hdx® Adg A dx?
# 0, always.

Problem 3.24 Consider the 1-forms w,, o,, w, defined by

o, = hdx' — x'dh — x*dx* + x*dx*
w, = hdx?* — x*dh — x*dx" + x'dx?
w, = hdx® — x3dh — x'dx* + x*dx'

in terms of a local co-ordinate system (x', x%,x3)  where h=
V1= (xhH2 = (x2)?2 — (x3)2 Show that dw, = —2w, A o,.

Solution: Note that

dw, = =2dx" Adh —2dx* A dx?,

xldx! 4+ x%2dx? + x3dx3

dh = — .
VI=GDT = (622 = ()2
Thus
dx A dh x2dxt Adx? + x3dxt A dx?
x =— .
VI= D2 = ()2 = ()2
Again

w, Aw, = h*dx* Adx® — x*hdx® Adh + x*hdx* A dx" — x*hdh A dx®
+x'x2dh Adx* — (x»)?dh Adx' — xXPhdx' Adx?
+ H2dx" Adh + x'x3dx' Adx? = x'x3dxP Adh

—(H2dx® Adx® + x'x2dx3 Adx!.

It is to be noted that
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h?dx® Adx® = {1 =) (x')*}dx* A dx’

—x*h dx* Adh = —x"x¥dx" Adx? + ()2 dx® A dxP

x2hdx* Adx' = — Z(x) dx' A dx?

T

—x’hdh Adx® = =x"x2dx® Adx' + ()2 dx® A dx3

(xl)Z 2
X2dh Adx? = ———————dx' ANdx? + ———dx* A dx®
/1 Z<x )? 1 Dx ?
233 2723
N TN S N 0 S N DA A S 20 S E A
1= (') 1 Z(x )?
—xhdx' AdxP =X |1 - Z(x Y2 dx® Adx!
2 3\2 353
G2t Adh = —— O g gy O g gy
1= 6’ [1- (x )
2.3
W adh= ST g g T o g
=Y a@h? [1- Z(x )?
—(xH2dx® Adx? = (xH?dx? A dx?
2
Thus do' = i ad - —— 40 adx? —2dx? A d
=Y @h? /1 - Z(x )?
Substituting the above results, one gets
X2 x3
0y Awy =dxE Adx® — —————— dx' Adx® + ————— dx® Adx!
1= ()2 1= )?
2 3
2w, Aw, = del ndx?— — 2 43 ndx - 2dx? Ad®

:

Z(x )2 1= "@)?

Thus do, = 2w, A w,.

=dow,.
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Exercises

Exercise 3.20 Find the exterior derivative of the following:
() f=2xyz? (i) f=x2+y>—=3z* (i) f = x%y + y>z — 2%x.
Exercise 3.21 Find the exterior derivative of:

= x2ydy — xy%dx.

Q) o
(i) o, = x%dx + yzdy — (x* + y*> + *)dz.
(iii) , = cos(xy?)dx Adz.
(iv) o, =xdy Ndz+ ydz Adx + zdx A dy.
V) o, Nw,.
i) o, Ao,

Exercise 3.22 Verify (iv) of (3.21) for Exercise 3.21.
Exercise 3.23 [fx =rcosf, y = rsin6, then compute dx N dy, dr, do.
Exercise 3.24 From Exercise 3.11(ii), compute dx N dy A dz.

Exercise 3.25 Consider the following forms in R? and verify the property (iii), (iv)
of (3.21) where

() o = x%dx —7*dy and n = ydx — xdz.
(i) o =xydx +3dy — yzdz and n = xdx — yz>dy + 2xdz.

Answers

3.20. (i) 2yz%dx + 2xz%dy + 4xyz dz.
(i) 2x dx + 2y dy — 1223 dz.
(iii) 2xy — z22)dx + (x® + 2y2)dy + (y* — 2zx)dx.
3.21. ()4xydx Ady (i) =3ydy Adz+2xdz Adx  (iii) 2xy sin(xy?)dx A dy A
dz.
(iv)3dx Ady Adz (V) {=dxy(x? + y* + 7)) — 2x3y + 3xy3ldx Ady A dz
(vi) 0.
xdx + ydy xdy — ydx y
323. rdr AdO, dr = —F———, d0=———, r=/x24+y2, O=tan-.
/x2 + y2 /x2 + y2 y X

3.24. r*sinfdr AdO Adée.

Remark 3.9 It is to be noted that if ¢ is a O-form, then the 1-form d¢ corresponds
to grad ¢. The exterior derivative of a function f corresponds to the gradient vector
field.

Verification: In 3-dimension, for a function f,

df:ﬁdx+%dy+%

_(93f of of
o 3y azdzer_( )

8x’ 8y’ oz
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2
+
Example: Let ¢ = u,
Z

dp = “dx + 24 .
Z Z
2% - 32_} 2 3_’
grad ¢ = =i 4 27T E
Z Z Z

Remark 3.10 If the 1-form w corresponds to the vector field V, then the 2-form

dw corresponds to curl V.
Verification: In 3-dimension, let w = f.dx! + f,dx* + f,dx*> where f, i =

1, 2, 3 are functions. Then
do = df, Adx' +df, A dx* +df, Adx®
3 3 3
afl i 1 afz [ 2 3f3 i 3
:212 dx' Adx +2§dx’Adx +l21:ﬁdx’/\dx
1= = 1=

dxi
a a 0 a a 0
< /2 fl)dxlAdxz—l—(i—aié)dxz/\dx3+(ai3l—ail3>dxl/\dx3
X X X

axl  ax? dx2

= V, f (Vector Product)

which is basically the curl(area).

EXAMPLE:
Let w = (x2 + y3z)dx + (y2 —2xz)dy + (x4 + y3 - zz)dz in R3. Then
dw = (=27 — 3y%2) dx Ady + 3y +2x) dy Adz + (v° — 4x3) dz A dx.
Againif V = %+ y3z)? + (y2 - ZXZ)j +(x* + y3 — 2%)k is a vector field, then
curl V.= 3y? 4+ 2x)i + (v — 4x3)j + (=22 — 3y?2)k.

Remark 3.11 If the 2-form w corresponds to the vector field V, then the 3—form

dw corresponds to the div V.
Verification: In 3-dimension, let w be a 2-form, where

= f, dx' Adx* + fi, dx! Adx® + f,, dx® Adx3, £y, fis, fu being smooth functions. Then

Soof, Sof. S ofs
: '? dx’ Adx! A dx? +Z a’—';dx’ Adx' Adx? +Z a’—zfdx’ Adx' Adx?
X X X
i=1 i=1

dwzza—

i=1

a a a

@df Adx' Adx? + Ad)c2 Adx' Adx® + ﬁdxl Adx? Adx?
ax3 x2 Ax!

= o _ O\ On dx' Adx? Adx®
0x3  9x%  ox!

which is the divergence operator.
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EXAMPLE:

Letw = ()cz—i—y3 +z4) dy ndz +x2y3z4 dzAndx + (x +2y+3z+1) dx Ady.
Therefore
dw =2xdx Ndy /\dz+3x2y2z4 dy ANdz ANdx +3dz Adx ANdy
= (2x 4+ 3x%2y%z* +3) dx Ady A dz.
3,4

If V=024 +25 + 023 + 0+ 2y + 32+ Dk, then

divV = 2x + 3x2y%z* + 3.

A form w is closed if
do =0. (3.23)

However, if w is a r-form and
dp=w (3.24)

for some (r — 1)-form u, then w is said to be an exact form.

Problem 3.25 Test whether w is closed or not, where
1

(i) w=xydx + (zxz — y)dy.

(i) ® = e* cosydx + e* sin ydy.

Solution:

1
(i) Here dw = xdy ANdx + §2xdx ANdy = —xdx Ndy +xdx ndy = 0.
Thus w is closed.
(ii) Note that dw = —e*siny dy Adx +e*siny dx Ady =2e*siny dx A dy.
Thus w is not closed.

Problem 3.26 The necessary and sufficient condition that a 1-form w is a gradient
of a function f is that its curl vanishes.

Solution: If f is a function, then grad f = df [refer to Remark 3.9]. Let us assume
that 1-form w be grad f i.e. w = grad f = df. By virtue of Remark 3.10, we find

curl V. =dw = d(df) = 0 [refer to (3.21)],

where the 1-form w corresponds to the vector field V.

For the converse part, suppose for a 1-form w, curl V = 0. Taking help of
Remark 3.10, we obtain dw = 0. Then d? f = 0 holds, for some function f. Thus
o = grad f.This completes the proof.

Note that all exact forms are closed but the converse is not always true. The
following lemma ensures the converse.
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Lemma 3.1 (Poincaré Lemma) Let w be a k-form defined on a set

B ={(x',....x") e R"(x") + D>+ ...+ (" <1},
such that dw = 0. Thus 3 a (k — 1)-form w defined on B} such that @ = d .

Problem 3.27 Let w = yzdx + xzdy + xy dz. Find p such that dyu = w.

Solution: Setw =du = p dx + p,dy + p.dz, then

/,uxdx = fyzdx = yzx + C,(y, z), where C, is a function of y, z.
Then

0 ,
Xz =W, = a(yzx +C(,2)=2=x+C (y,2)

= C (y,2) =0
= C,(y, 2) = constant = C, (z)say.

Then u = yzx + C,(z). Now

ad ,
Xy =p, = a—z(yzx +C, (@) =yx+C,(2)
=C.(x)=0
= C,(z) = constant = Csay.
Finally, u = yzx + C.
Alternative

Set f(x) = f yzdx = yzx + C = u(say), where C being integration constant, so
thatdpu =d(yzx + C) = zxdy + yxdz + yzdx = w.

Alternative

Set g(y) = fxz dy = xzy 4+ C = O(say), where C being integration constant, so
that d6 = w.

Alternative

Set h(z) = [xydz = xyz + C = ¢(say), where C being integration constant, so
that d¢ = w.

Problem 3.28 Let w = (12x2y3 4+ 2y)dx A dy. Find u such that dp. = .
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Solution: Set f(x,y) = [(12x%y* + 2y)dx = 4x3y> + 2yx + C = u(say), where
C being integration constant, so that
dp = d@x>y’ +2yx + C) Ady, by (3.22)
= (12x%y3dx + 12x3y*dy + 2xdy + 2ydx) A dy
= (12x%y* + 2y)dx Ady, asdy Ady =0

= w(say).

Problem 3.29 Compute the exterior derivative of the 2-form

1

(,():m(xdy/\dZ'i‘de/\dX"‘ZdX/\dy),

defined on R3 \ {(0, 0, 0)}, where (x,y,2) € R3.
Find the local expression of this form in terms of the spherical coordinates
(r,0, @), where x =rsinf cos¢, y =rsinfsing, z =rcosé.

Solution: Note that

dw:d{ (xdy/\dz+ydzAdx+zdx/\dy)}

(X2 + y2 4 72)3/2

X y
g CEer IO G IO

Z
" d(m) Adx Ady, by (3.22).
Now
d(m) 2 4y 4 )

3
= d)c()c2 + y2 + z2)73/2 — Ex()c2 + y2 + z2)75/2(2x dx +2ydy+2zdz)

_ dx 3x
- (XZ +y2+22)3/2 (x2+y2 +Z2)5/2.

So, the first term is:

dx Ndy Ndz 3x2dx/\dy/\dz_ y2 4+ 72 —2x? dx Adv Ad
(CH 24P (R r D (R
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. . Hxt=2y? .
Similarly, the second term is wdx Ady A dz and finally, the third
x“+y +z
x2 4y =272

term is given by dx Ndy A dz. Hence dw = 0. Thus o is closed.

(x2 + y2 + Z2)5/2
Again
x =rsinfcos¢, y =rsinfsing, z =rcosb.

Therefore

dx =sinfcos¢pdr +rcos¢pcosddd —rsinfsingde,
dy =sinf@sin¢ dr 4+ rsin¢ cos0 db + r sinf cos p do,
dz =cosOdr —rsinf db.

After a few steps, one gets
xdy Adz = —r?sin@sin¢ cos ¢ dr A d6 + rsin’ 6 cos 0 cos” p dp A dr
—r?sin’ O cos’ pdo A do
ydz Adx = r*sinfsin¢ cos ¢ dr A dO — r? sin® 6 sin® ¢ cos 0 dr A d¢
+r2sin® @ sin®> ¢ dO A d
zdx Ady =r*sin*0 cosOdr Adp + r’sinfcos’0do Adg,

where r* = (x? 4+ y? 4 z2)*2. Thus the local expression of the given form is w =
in 6

MY 46 A do.
p

Problem 3.30 Consider the vector fields on R?

a ) a Y d
=x,— +2x,—, ¥ =xx,—,
'ox, *ox,

X lZax

2

and let w be a 1-form on R? defined by
w=(x + xf) dx, + (xl2 + x,) dx,.
Show that w satisfies the relation
do(X,Y) = X(o(Y)) - Y(o(X)) — (X, Y]).

Solution: Here
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o(X) = x,(x, +x22) -‘,—2x2(x12 +x,) :xlz +x,x22 +2)512)c2 +2x22.

oY) = x,)cz()cl2 +x,) = xfxz +x1x22.
X(@(Y)) = 5x7x, + 5x,x2.

Y(w(X)) = 2)c]2x22 + 2x]3x2 + 4x]x22.

[X,Y]= —a +2 —a —8
Y= |x X, , XX s
! ax, “dx, 12 0x,

d
= x,x, —, after few steps.
T ox,

Again (X, Y]) = x7x, +x,x2,
X(@(Y)) = Y (@(X)) — (X, Y]) = 2x)x, — 2x2x2.
Now dw =2x,dx, Adx, +2x, dx, Ndx,,
= (2x, — 2x,)dx, Adx,.
) ) )
do(X,Y) = 2x, —2x,)dx, Adx,| x;, — +2x, —, x,x, —
dx X,

9 9 il
= (2x, — 2x2){dx, (xl a + 2x, E) dx, (xlng)

_ 9,3
=2x;x, — 2x

Thus
do(X,Y) = X(@(Y)) - Y(oX)) —o(X, Y].

Exercises

Exercise 3.26 Test which of the following differential forms are closed and which
are exact:

(i) o, =x,x,dx, +x x,dy + x,x,dx,
(ii) =x,dx, + xlzxzdy + x,x,dx,

2

wZ
(iii) w, =2xy?dx Ady+zdyAdz
a)4

; L 2
(iv) o, = o y2( ydx + xdy) on R? \ {(0, 0)}.

Exercise 3.27 Show that the following forms are exact:

() o= y*dx +2xydy
(i) o= (3y? —4zdx + 6xydy — 16x7°dz

In each case, find a function f such that df = w.

Exercise 3.28 Show that the following 2-forms are exact:

() o =24x3y?dx Ady
() o = (6x%y —3xy?) dx A dy.

In each case find a 1-form  such that du = w.
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Exercise 3.29 Let w =zdx ANdy —2xf(x)dy ANdz+ yf(x)dz ANdx. Find f
where

(i) do =dx Ndy Ndz and
(i) d(dw) =0.

Answers

3.26. (i) closed and exact. (ii) not closed, not exact (iii) closed and exact (iv)
closed.
3.27. () xy? (i) 3y%x —4z%x
3.28. (i) 6x*y* dy (ii) xy3dx + 2x3y dy.
constant
3.29. f(x) =
Fx) NG
Remark 3.12 Given a closed k-form w, # a (k — 1)-form p such that w = du i.e.
not every closed form is exact. However such an p always exist locally and this
result is known as the Poincaré Lemma.

dy — yd
wonM:RZ\
x2+y?

{(0,0)}, where dw = 0.If y : [0, 2] — M is defined by y () = (cost, sint), then

/w=2n,
¥

which is different from zero and thus 3 a function defined on all of M whose differ-
ential coincides with w.

A well known example is given by the 1-form v =

Remark 3.13 The difference between closed and exact form is measured by de
Rham Cohomology. The precise definition or computation, of this, is far beyond
the scope of this book.

Theorem 3.4 If w is a 1-form, then
1
do(X,Y) = E{X(a)(Y)) —YwX)) — (X, YD}, VX,Y € x(M).

Proof Without any loss of generality, one may take an 1-formasw = f dg, V f, g €
F(M). Therefore by virtue of (3.22), we obtain dw = df A dg. Hence

do(X,Y)=({f ndg)(X,Y)
1
= 5 1df (X)dg(Y) = (df)(¥)dg(X)} by (3.17)
1
= 51X ¥g) = X )(Xg)} by 3.5).

Using Leibnitz Product Rule, we see that X (f(Yg)) = (Xf)(Yg) + f(X(Yg)).
Thus
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do(X,Y) = %{X(f(Yg)) - f(X(Y9) -Y(f(Xg)+ f(¥Y(Xg)}
Furthermore,
o(X) = (fdg)(X) = f dg(X) = f(Xg), by (3.5).
Thus the above expression reduces to,
do(X,Y) = %{X(w(Y)) - f(X(Yg) —Y(Xg9) — Y(o(X))}

= %{X(w(Y)) —Y((X)) — f(X, Y19}, by (2.27)

- %{X(a)(Y)) — Y(@(X)) — o([X, Y])}, from above.
This completes the proof.
Exercise

Exercise 3.30 Consider the vector fields X, Y and 1-form w on R? as follows:

a d d
M X=x—+y——, V=y—, o=@+y)de+y+x)dy;
ax dy ay
d ad d
(i) X=2———, Y=¢"— w=—¢"cosydx + e*sinydy;
dx  Jy ay

Show that the 1-form o satisfies Theorem 3.4 in each case.

Theorem 3.5 If w is a 1-form, then
do(fX,Y)=fdow(X,Y), feFM), VX,Y e x(M).

Proof Using Theorem 3.4, we write

1
do(fX,Y) = 5{(fX)w(Y) —Y(o(fX) —o(fX, YD}
By (2.28), we know that (f X)w(Y) = f(X(w(Y))).

Y(o(fX)) =Y(fo(X))
=Y HoX)+ f(Y(w(X))), by Leibnitz Product rule
[fX.Y]=fIX, Y] - (Y)X.

Thus taking into consideration (3.1), we have
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o([fX.Y]) =o(fIX,Y]) — oY )X)
= fo(X.Y]) - Y NHoX), Yf e F(M).

Consequently

do(fX,Y) = %{f(X(w(Y))) — Y NHoX) - fX (X)) - f(o(X,Y]) + (Y o(X)}

1
= Ef{Zdw(X, Y)}, refer to Theorem 3.4.

c o do(fX,Y) = f do(X, Y).

This completes the proof.

EXISTENCE AND UNIQUENESS of Exterior Differentiation:
Without any loss of generality, we may take an r-form as

e F(M).

iy
r

w=f__ dx" Adx> A---Adx", where f
iy 12

172 ir

Let us define an R-linear map d : ® — D as

do=df,, , ANdx' Adx2 A Adx

Then

Hd®) D,
(ii) if w is a O-form, then dw is the total differential of w
(iii) let pe®D,. We consider pu=g, , dx/v Adx?2 A --- Adx)s, where
9i,iyeis € F(M). Then we get

WAU= f"l"z---i 91y dx' Adx> Ao Adxt Adxh AdxP Ao Adxs
Using (3.22), we find
d@AW =d(f, .0, 95 5,) ANAXT AdX2 A A dxlt Adat AdxR A A do
=95,y Afi i, A dx't Adx2 Ao Adx' Adx)t Adxr Ao Adxs
F fiii, 4950, Adxht Adx2 Ao Adxt AdxTt AdxB A A dxTs
=df,, ., Adx't Adxa A Adx NGy dxlt Adxh A A dids +

F (=D S dx Adx A adx Ndgy AT A A A dos

=doArp+ (D) wAdu.

(iv) Finally, from (3.22) we obtain
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a . . )
dw = Z W{vdx’& Adx'' Ao Adx

lA

92 . . : :
or, d(dw) = Z Py foi dx' Ndx's Adx't Ao Adxt

[P

=0.

Thus d satisfies (3.21) and hence the existence is established. It is easy to
establish the uniqueness of d. Consequently, there exists a unique exterior dif-
ferentiation on ©.

Exercise 3.31 If w is a 1-form on M, prove that

do(X, fY) = fdo(X,Y), feF(M), ¥X,Y € x(M).

3.4 Pull-Back Differential Form

Let M be an n-dimensional and N be an m-dimensional manifold and f : M — N
be a differentiable mapping (Fig.3.1).
Let T,(M) be the tangent space at p € M and T*(M) be its dual. Let T
and T* (N ) be respectively the tangent space and dual space at f(p) € N.
Let a) be an 1-form on ®,(N) = T*p (N). We define an 1-form on ®,(M) =
Tp*(M ) called the pull-back 1 -form at p € M, denoted by f*w as follows:

(N)

/()

("0, NX,) =0, (X))}, VpeM (3.25)

Fig. 3.1 Pull-Back Differential Form
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where f*, f, are already defined in §2.12.
Let us write

ffw,,) =), (3.26)
Then (3.25) reduces to
(frw),X, = o, (f.X),, by(2.35). (3.27)
We write it as
(ffo)(X) = o(f,X). (3.28)

Problem 3.31 Let f : M" — N™ be a C*™ map between two manifolds. Let @ be a
C* r-form on N. Show that f*w is also a C* r-form on M.

Solution: Let (U, x',...,x") and (V,y',...,y") be two charts on M and N
respectively, where p e U C M and f(p) € V C N. As wis a C*® r-form on N,
by Theorem 3.2

o= Z 9\ iy dyh Ady” AL AdyT,

redyeds
Ji <Jy <<y

where gjl Ja im
we have . ‘ '
fro= Z (9, o Pdf ndfi n...ndf.

yedyrends
Iy <Jp <<y

are C* functions on N such thatg, ,

€ F(N). Then from (3.33),

By virtue of Theorem 3.3, one gets

a(f.h,sz’.'.’fjr)

— —~dx Adx AL AdXY
a(xh, x'2, ..., xt)

fro= Y (g,,.,°f

iy sly ey
i) <iy<..<i,

(I, fr 1)

a(x'r, xl2, ..., xtr

Now (g o f)and are all C* functions. Thus, f*w is also

Iy e
aC™ r-formon M.
Theorem 3.6 If f is a differentiable mapping from an n-dimensional manifold M

to an m-dimensional manifold N where (x', x2, ..., x") and (yl, yz, oY) are
respectively the coordinates at p € M and f(p) € N, then

. " Of) ‘ A .
@y, =Z<i> @x",, fl=yof, j=123,...,m

oxt
i=1
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Proof We write

fr@y’,, =Y adx),

i=1

where aij ’s are to be determined. Therefore
*(dyl 9 ) —ai by (6
@y ) 371( _“w y 3.:6)
or (dy’ )f(l’){ ( ) _a] by (3.25)

fS d ; ) '
or (dy’ )f(,,) Z ( ) (a—) , by Theorem 2.6 of Sect.2.12and f* = y* o f.

31
Yo
P =aj , by (3.6).

Consequently, we have

j — of .
f*(dyj)fw = ZF(dx )p, j=123,....m

Remark 3.14 From Theorem 3.6, we observe

fr@dy’y,,, =a@rH,, j=12.3,....m. (3.29)

Remark 3.15 We can write

fr@dyh,, =do’ o f),, j=123,....m (3.30)

Theorem 3.7 Let f : M" — N be a C*™ map. If w, u are 1-forms on N, then

i) fflo+wn = ffot+ f*u
(i) f*(gw) = f*(9)f* (@)
(iii) f*(\w) =Af*w, Yge F(N), »eR.

Proof (i) Since w + w is also a 1-form, in view of (3.25), one gets

{0+ w),,)(X,) =@+, {f.(X))
wf(p){f*(Xn) + Mf(p){f*(Xp)}'

Furthermore, applying (3.25) on the right hand side of the foregoing equation,
the result follows immediately.

(ii) Again for g € F(N), w € ®,(N), gw € ®,(N) and hence from (3.25), we
have
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{f*(gw),, }(X,) = (go),, {f.(X )}
= (go fH(pw,,{f.(X,)}, by (3.12)
or {f*(gw)},(X,) = (g0 /)(p)(ffw),(X,), by (3.26), (3.27)
= ("9 (p)(ffw),(X,), by (2.32)
[ gw) = f*(9) f*(w), YV peM.

(iii) Left to the reader.

Let w € ®,(N). Then a pull-back r-form on M, denoted by f*w, is defined as
follows:

(" (@), HX),, (X)), ... (X),} =0, {f.(X),), [,(X),),.... (X))}

(3.31)
We also write it as
(ffo)X,, X,,.... X)) =w(fX,, f.X,,..., .X). (3.32)
For any w € ®, (N), by (3.19) we can write
o= Z G iy dx'v Adx NdxB Ao NdxTL 0 <0, <o <L

il,iz,...,t,

Taking into consideration Theorem 3.7(ii), we have

fro=3"f"g,, OFAx) A FHx) A A fR A (3.33)

Combining (3.29) and (2.32), we find

o= (g, o Ddft Adfs Adfs Ao ndf', i <iy <o <.

l

[ 2 ,

(3.34)
Theorem 3.8 If f : M" — N™ is a C* map and w, | are any forms, then
@) ffoArw=frfon ffu
(i) (foh)*w=h*"(f*w), h being a C*™ function.
Proof
() Letw € ®,(N) and p € © (N). Then w A p € ®,, (N) and hence by (3.32),
we get

U @AWXL Xy X, Y YY)

> s

=(Q)/\/L)(f*X1 sssss f*X,;f*Yl ’’’’’ f*Y.‘)

1
- mZ(sgn VO Xy ys s Xy DY, ooy .Y, ), by (3.14).
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The result follows immediately.
(i) Using (3.30) and (2.32), we can write (3.33) as

[ro= Z(g,‘l,iz,,“,,‘, o A o fYAd(x"2 0 fY A~ Ad&T o f).

or h*(f*w) = Z{(gil,iz,w o f)ohld((x't o fyoh) A------ Ad((x'r o ) oh).

Using Theorem 3.7(ii) and (3.19), we obtain

(f oh)* (Z Gy 1y dxit Adx A A dxi')

=D ((Fom*g 0 )f oW dxt A(foh)ydx A+ A(f o h)*dx'r

ir

= Z(gi”z_w,r o (foh)dx't o (foh) Ad(x2 o (foh)A---Ad(x'r o(f oh)), by (3.30).

Using the associativity of C* functions, the result follows.
Theorem 3.9 For any form o, d(f*w) = f*(dw).

Proof The following cases will arise:

Case (I) w is a 0-form:
Let w = h, h being a C* function.

{f*(dm)}(X) =dh(f.X), by (3.25)
= (£.X)h, by (3.5)
= X(ho f), by (2.34)
= (d(ho f))X, by (3.5
= d(f*h)X, by (2.32).

Thus d( f*w) = f*(dw) holds for every X.

Case (Il) w is a r-form:
Taking aid of Principle of Mathematical Induction, we assume that the result is true
for (r — 1)-form. Without any loss of generality, any r-form can be expressed as

w=g ,.I_dx"' Adx> AdxBs A AdxT

PRy

Using Theorem 3.8(i), we have

[ro=fg,, ,dx" Andx> Adxs A Adxn) A fHdxY)
or d(f*w) =d{f*(g, ., dx' Adx> Adxs Ao Adxi) A fR(dxi)).

..... i

In view of (3.21)(iii), we get
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d(f*w) =d{f*(g,, ., dx" Adx> Ndxs A--- AdxD)YA fHdx)+
+ (DTG, dX AdX AdxS A A da)d ().

Note that dx’r is a 1-form and as the result is true for ( — 1) form,
d(f*(dx")) = f*(d(dx")) = 0, by 3.21)(iv).
Thus

d(f*) = d{f* (g, ..., dx't Adx2 Adx's Ao Adxir1)) A FF(dX))
= fHd(g, ;... dx't Adx> Adxy A Adx' 1)} A fH(dxT),
as it is true for (r — 1) — form
= f{dg, ..., Adx't Adx2 Adxs A Adx1Y A FR(dxT), by (3.22)
= f*{dg[] iy dx't Adx™> Adx's A Adx'e=1 Adx'r, refer to Theorem 3.8(i)

= f*(dw), by (3.22).
Thus the result is true for r-form. Hence, we can claim that for any form o
d(f*w) = f*(dw).

Problem 3.32 Let g = x> — y2, w = xydx + xdy. Let f : R — R? be given by
f@®) =, %) = (x,y). Find A.() f*g (ii) f*o. B.Showthat f*(dg) =d(f*g).

Solution:
A.() ffg=gof=1—1"
(ii) Here
ffo = f*(xydx + xdy)

= f*(xydx) + f*(xdy), by linearity
= f*(xy)f*(dx) + f*(x) f*(dy), by Theorem 3.7(ii)
= (xy o f)d(f*x) + (x o f)d(f*y), by (2.32)
=(tot)d(xo f)+td(yo f), by(3.30)
=12d(t) +td(t?)
= 13dt + 1 (2tdr)
=’ + 2:%)ds.

ALTERNATIVE METHOD: f*w = f*(xydx + xdy)=(t o t*)dt + td(t*) =
@ +2tH)dt.
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B. Note that

d(f*g) =d(t* —t*) = 2t — 4)dt,
dg = d(x* — y*) = 2xdx — 2ydy
f*dg) = f*xdx — 2ydy) = 2tdt — 2> (2tdt) = (2t — 41)dt.
Thus f*(dg) = d(f*g).
Problem 3.33 Let U be the open set (0, 00) x (0, 21) in the (p, 0)-plane R*. Define

f:UCR?> = R2by f(p,0) = (pcosb, psinb). If x, y are the standard coordi-
nates on R?, compute the pull-back f*(dx A dy).

Solution: We know that

f*(dx Andy) = f*dx A f*dy, where
f*dx = d(pcosf) = cosOdp — psinfdh, and
f*dy = d(psin0) = sinfdp + p cos Od6.
s f¥(dx Ady) = (cosOdp — psin0dB) A (sinBdp + p cosHdH)
= pcos’Odp A db + psin®Odp A db
= pdp Nd6.

Problem 3.34 Consider a map f:U CR* — R? given by f(x,,x,,x,,x,) =
(u, v) where

u:x12+x22+x32+xf—1, v=x12+x22—|—x32+x42—2x2—2x3+5.

Calculate f("j (du +2dv) e T*

1.5) (=15)

(R?), taking (0,0,0,0) at f~1(—1,5).
Solution: Consider x, =x, =x, =x, =0, u = —1,v = 5. Now

fHdu+2dv) =d(x? +x7+x2+x7 — 1) +2d(xF + 32 +x7 +x) — 2x, — 2x;, +5)
= 6x,dx, + 6x,dx, + 6x,dx, + 6x,dx, —4dx, — 4dx,.
3 f(’il_s) (du 4 2dv) = (—4dx, — 4dx;) g4,0,
= —4(dx, +dx3) 000

Problem 3.35 Let M be a circle and N be R? so that the map f : M — N be
1 1

defined by x' = rcos0, x*> = rsin6. If o = adx' + bdx* and p = —dx' + dez,
a

compute f*(w N 1), where a, b are constants.
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Solution: From Theorem 3.8(i), we have

frlorw = ffon ffu.
Now

ffw = f*(adx' + bdx*) = af*(dx") + bf*(dx?)
=ad(f*x") +bd(f*x?), by Theorem 3.8
=ad(x' o ) +bd(x*o f)
= ad(r cos9) + b(r sin )
=a(cosO@dr —rsinf db) + b(sin6 dr 4+ r cos6 db)
= (acos® + bsinB)dr + (br cos6 — ar sinf) dO

Similarly

a a

1 1
ffu= (—cos@ + Zsin@) dr + (%cos@ — zsin@) déb.

@A R = ((acosd + bsin@)(% cosf — 2 sine) dr A d6}

1 1
+ {(br cos 6 —arsin9)<—cos@ + Esin@)}d@ Adr
a
a b

=r(5

— — —)dr Andf, after afew steps.
a

Problem 3.36 Let U be the open set (0, 00) x (0, ) x (0,27) in the (r, ¢, 0)-
space R3. Let f : U — R? be defined by

f@r,¢,0) = (rsingcosh, rsingsinb, r cos).
If (x, v, z) are the standard coordinates of R3, show that
f*dx Ady Adz) =r*singdr Adp A de.
Solution: It is known that
[ dx Andy ndz) = f*dx A frdy A frdz.

Now
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frdx =d(f*x) =d(xo f) =df' =d(rsin¢cosh)
=drsin¢gcosf 4+ rcos¢cosddp —rsingsinb db.

Similarly

f*dy =sin¢ sin@ dr + r cos ¢ sinf d¢ + r sin ¢ cos 6 d6,
ffdz =cos¢pdr —rsingde.

Therefore

f*(dx Ady Adz) = {(sing cos ¢ sin@ cos0) dr Ade + (r sin? qbcoszG) dr Adf
+ (rsing cos ¢ sin6 cos0) d A dr + (> sin ¢ cos ¢ cos> 0) dp A d
— (rsin® ¢sin®6) d6 A dr — (r* sin¢g cos ¢ sin” 0) d6 A dg}
A (cos¢pdr —rsing de)
= (—r2 sin® ) cos? 0)dr ANdO Ndp + (r2 sin ¢ cos? ) cos? 0)do ANdo Adr
+ (r2sin’ ¢ sin®0)dO Adr Adp — (r* sin g cos® ¢ sin® 0) dO A do A dr
=r2singdr A d¢ A do.

Exercises

Exercise 3.32 Let h = 2xy, u = —2ydx + xdy, 0 = (x> + y»dy. Let f : R —
R? be given by f(t) = (t, ) = (x, y).

A. Find (i) f*h (i) f*u (iii) f*0.

B. Show that f*(dh) = d(f*h).

Exercise 3.33 Let f : R? — R? be given by
fv) =@+ 1Luv) = (x,y), o =@«y—ydxAdy, p, =@ +y*)dx Ady.

Find (i) f*h (ii) f*u (iii) f*0 (iv) f*o, (v) f*u,, where h, u, 0 are defined in
Exercise3.32.

Exercise 3.34 Let = —2ydx 4+ xdy, 0 = (x> + y*)dy. Let f:R?> — R? be
given by f(u,v) = @W?+ 1, uv) = (x, y). Show that

@ fr(uAnd)=f"unfro.
(i) ff(wAOB) = ffo A f*0, where w = xydx + xdy.

Exercise 3.35 If f : M — R3 be such that f(u,v) = (ucosv, usinv, av), then

for a given 1-form o = x'dx' — dx? + x*dx® on R3, where x' = ucosv, x> =

usinv, x> = av, compute f*w.
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Exercise 3.36 If f : M — R3 be such that f(u,v) = (acosusinv,asinusinv,
acosv), then for a given 1-form w = dx' + adx* + adx® on R?, determine f*w.

y x oy
mdx + m be the 1-form in R* \ {(0, 0)}. Let
U={r>0:0<6 < 2m} bethesetinthe plane (r,0) and f : U — R? be the map

X =rcos6
f0r,0) = {y:rsin@

Exercise 3.37 Letw = —

. Compute f*w.

Exercise 3.38 Let S' be a unit circle and f : R — S' C R? be given by f(0) =
(x1, x2) = (cos 8, sin ). If w is the 1-form —x,dx, + x,dx, on S, compute f*w.

Exercise 3.39 ConsideronR?, 0 = 2xy + x>+ 1)dx + (x*> — y)dy and f be the
map [ : R — R? given by (u, v, w) — (x,y) = (u — v, v> + w). Compute f*6.

Exercise 3.40 Let f : R? — R? be given by f(x,,x,) = (u, v), where u = x]2 +
2, v = x,x,. Calculate

P

i) f*(udu + vdv) and
(i) [, ) (udu + vdv) € Té’l)(Rz), taking (1, 1) to f~1(2, 1).

X

Answers

3.32. ()23 ()0 (i) 2 +2¢°)dt
3.33. () 2uPv+2uv (i) (—3u?v + v)du + 1 + w)dv
(i) @*v + 2u?v + v + u?v)du + @ + 213 + u + udvH)dv
(iv) 2uvdu Adv (V) Qu* + 2u® + 2u*v®)du A dv
3.35. (ucos®v — sinv)du + (au sin v — u cos v — u? sin v cos v)dv
3.36. (—asinusinv + a?sin v cosu)du + (a cosu cos v + a® sin u cos v —
asinv)dv
3.37. d6  3.38.d6
3.39. 2 —v)(V2 + ) + (u —v)? + 1}du + W? — 2uv — w)dw
+(—4uv — 2uw + 203 — u® 4+ 2uv — v® — 1 4+ 2u®v)dv.
3.40. (i) (2x13 + 3x1x22)dx + (2)(23 + 3x]2x2)dx2. (ii) S(dx, + d'xl)‘(l,l)'



Chapter 4 ®
Lie Group e

4.1 Lie Group, Left and Right Translation

A Lie group is a group (in algebraic sense), which is also a differentiable manifold,
with the property that the group operations are compatible with the smooth structure.
Thus, a Lie group G consists of two structures on the same set G, namely, it is a
differentiable manifold and has also a group structure. We now state the formal
definition as follows:

Let G be a non-empty set. If

(i) G is agroup (whose operation is denoted by multiplication),

(ii) Gis ann — dimensional smooth manifold and

(iii) the inverse mapt : G — G such that 7(x) = x~ and
the multiplication map ¢ : G x G — G such that ¢(x, y) = xy, Vx,y
are smooth maps, then G is called an n-dimensional Lie Group.

1

4.1)

Remark 4.1 The group is called “Lie Group”, after the Norwegian mathematician
Sophus Lie (1842-1899).

Remark 4.2 (a) The product of two second countable and Hausdorff spaces is
respectively the second countable and Hausdorff space. [for details refer to any
standard textbook of topology]

(b) If M and N are C* manifolds, then M x N with its product topology is Haus-
dorff and second countable. To show that M x N is a smooth manifold, it remains
to find a C* atlas. If we have a chart (U, ¢,) and (V, ¢, ) respectively on M and
N,then U x V € M x N an open subset of the product space. Let us define

¢va:¢u X(f)v U xV > R" x R* = R"t7,
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If (f] ;) and (\7, ¢‘7) are another pair of charts for M and N, respectively, then
we can set the transition function

b, 00 =@, xp)o(d, xd) ' =(d, 00 ") x (¢, 00 ").

Since each is a transition function from one of the two smooth atlases as already
known on M and N, therefore, each of these factors is smooth. Since smoothness
is determined componentwise, it follows that the product mapping is smooth as
well. So we have an atlas making M x N a smooth manifold. It should also be
clear that its dimension is m + n, as asserted.

Remark 4.3 Let G be a group, which is also a differentiable manifold of dimension
n.Itis easy to check that the map (xy) — xy~! is a smooth map from 2n-dimensional
manifold G x G to n-dimensional smooth manifold G. Thus, G is a Lie group.

Remark 4.4 Note that 2(x) = 7(r(x)) = t(x ") = x. Therefore, 7> = [ is
differentiable. Thus, G possesses > = I as diffeomorphism. Moreover, it possesses
two other diffeomorphisms, viz. “Left Translation”and “Right Translation”.

Example 4.1 Note that the n-dimensional space R” is a differentiable manifold of
n-dimension and is a group with respect to addition, defined as

x—}—y:(xl—i—yl,...,x"—}—y")

2

1
—x=(—x,—x",...,—x")

where, x = (xl,xz,...,x”), y = (yl,yz,...,y”).

Furthermore, the operations ¢(x +y) =x +y, t(x) = —x are C*-functions.
Hence, R” is a Lie group of dimension 7.

Problem 4.1 GL(n,R) is a Lie group.

Solution : In reference to Problem2.17, we have already proved that GL(n, R)(C
M(n, R)) forms a smooth manifold of dimension n*. Note that GL(n, R) forms a
group under usual matrix multiplication. It only remains to prove that GL(n, R) is
a Lie group.
For that, we define ¢ : GL(n,R) x GL(n,R) - GL(n,R) by ¢ (A, B) = AB,
so that
¢(A, B) = AB = [¢/(AB)]; j=12...n;

where ¢j (AB) is the ij-th element of the matrix AB. Then, ¢f (AB) =
ZZ:] xz (A)xf,‘(B), where xf (A) denotes the ij-th coordinate function on GL(n, R).
Thus, foralli, j; q)j is a smooth function. Moreover, the inversemapt : GL(n, R) —
GL(n,R) defined by 1(A) = A~ is also smooth. Hence GL(n, R) is a Lie Group
of dimension n.
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For every a € G, amapping L, : G — G defined by
L,x)=ax,VxeG “4.2)
is called a left translation on G. Similarly, a mapping R, : G — G defined by
R (x)=xa, VxeG 4.3)
is called a right translation on G.

Exercises

Exercise 4.1 Show that

LaLb = Laba RaRb = Rba’ LaRb = RbLu- (44)
L,Ly, # L,L,, unlessG is commutative. 4.5)
Lot =(La)™", Rt =(R)™" (4.6)

It is to be noted that each L,, R, are C* maps, as each L,, L,-1, R, R,-1 is
homeomorphism and differentiable from G onto G.

Examples
Example 4.2 The left translation L, : GL(n, R) — GL(n, R) is
x = (xj) — ax = (aixj,‘)
and the right translation R, : GL(n,R) - GL(n,R) is
X = (x;) — xa = (xiaf).
Example 4.3 The Lie group R” is a commutative group. Hence, for every a € R",

L, = R,. Also, the group operation is addition and the identity element is 0. So left
translation is actually the parallel translation x — x +aiel x =x +a=a+x.

Ixy
Problem 4.2 Let H = 01z ) :x,y,ze€Ry.Showthat H admits a Lie group
001
structure with usual matrix multiplication. Such H is called Heisenberg Group.
1xy
Solution : Let us define themap ¢ : H — R3as | 01 z | = (x, y, 2). Note that
001

the map ¢ is homeomorphic. Thus, {(H, ¢)} forms an C*-atlas for H. If
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’

y lLxy
A= z|, B=|01z |, then AB € H.
001
1 —x —y
Now A" =0 1 —z | e H,L YA € H. Again H is a group with respect to
00 1

matrix multiplication. Moreover, let us define the maps
®:HxH—>H by (A,B)— AB,

and the map
V:H—>H by A AL

Then the map ¢ o ® o (¢~! x ¢~1) : R? x R? — R? defined by
(podo(p' x ¢ N((x,y,2),(a,b,c) =(@+x,b+y,c+2)
and the map ¢ o Y o ' : R3 — R3 given by
(oY o Nx,y,2) = (—x,—y, —2)

are C*®. Thus H is a Lie group.

Problem 4.3 Let¢ : G, — G, be a homomorphism of a Lie group G, to another Lie
group G,. Show that (i)¢p o L, = L,, o¢ (ii)¢poR, =R,, odforalla,b e G,.

Solution : (i) From the definition of group homomorphism ¢ : G, — G, given by
¢(ab) = ¢p(a)p(), Ya,beG,.
Now

(@poL,)(x)=0¢(L,(x)) =¢(ax)
=¢(a)p(x)
= (L, o P)(x).
poL, =L, 00, YxeG,.
(ii) Note that
(@oR,)(x)=¢(xb) =¢p(x)p(b) = (R, o P)(x).

Therefore, po R, = R,, op, VxeG,.

¢(b)

Problem 4.4 Let ¢ be a non-identity 1 — 1 map from G onto G. If o L, = L, o ¢
holds for all g € G, then there exists h € G such that ¢ = R,.
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Solution : As ¢ is a 1 — 1 map, for every a € G, there exists an unique element
b € G such that ¢(a) = b. Again e € G, ¢ is a 1 — 1 map, there exists an unique
element, say h € G, such that ¢ (e) = h, where ¢(e) # e, as ¢ is not an identity
mapping. Now

g=ge, Y geG
¢(g) = p(ge) =p(L,(e)) =(poL)(e) = (L, op)(e), asgiven
=L, (¢(e)
=L, (h)=gh=Rg
= ¢=R,.

Exercises
Exercise 4.2 Show that the set of all left(right) translations on a Lie group form a
group.

a0
B1

structure with matrix multiplication.

Exercise 4.3 Let G = { ( ) a>0,8¢ R}. Prove that G admits a Lie group

Exercise 4.4 Let G = {(8 )1}> x,yeER, x # O}. Prove that G admits a Lie

group structure, with matrix multiplication.

x, 0 x,
Exercise 4.5 Let G = 0x x| :x,x,,x, e R,x, >0¢. Prove that
001

G admits a Lie group structure with respect to usual matrix multiplication.

Exercise 4.6 Let r be the diffeomorphism of G defined by v (x) = x~. Show that
Yol, =R_, oy, yoR, =L, o
Exercise 4.7 Prove that R is an abelian Lie group where the smooth maps ¢ :

R x R — R is defined by
¢(a,b)y=a+b

and t : R — R is defined by
T(a) = —a.

4.2 Invariant Vector Field

We have already defined an invariant vector field under a transformation in §2.14.
As each left translation and right translation on a Lie group G are transformations,
we can similarly define the invariant vector fields on G.
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A vector field X on a Lie group G is called a left invariant vector field on G if

(Lo)Xp =X, =Xu ¥VpeG, (4.7)

a(p)

where (L,), is the differential of the left translation L,, for some fixed a in G.
Using (2.35), we write

((La). X p) = X1, L€
(L), X = X. (4.8)

Similarly, for a right invariant vector field
(R).X =X. (4.9)
Again, for every f € F(G), by virtue of (2.34), we have

{(La), Xp}f = X,(f oLa)
ie. {(La).X}, ,,f =X,(f oLy by (235).

If L,(p) = g, then p = a~'q (refer to (4.6)). Thus

{(Lu)*X}qf = Xa*‘q(f oLy,). (4.10)

Theorem 4.1 A vector field X on a Lie group is left invariant if and only if
(Xf)oLy=X(foLy), VY fe€F(G) (4.11)

where for some fixed a € G, L, is the left translation of G.

Proof Let X be a left invariant vector field of a Lie group G. Then from (4.7), we
find

(L), Xp}f = X1, /s Y f € F(G)
= (Xf)La(p), by (2.23)
or X,(f oLa) = (Xf)La(p), by (2.24)

or, {X(f o Ly)}(p) = ((Xf) o La)(p), by (2.23).
X(fOLa) = (Xf)OLa’ Vp €aG.

The converse follows immediately.

Problem 4.5 Find the left invariant vector fields on R".
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Solution : Letp € R"and p = (x', x%, ..., x"). Anyvector field X on the manifold
R" can be expressed uniquely as

X = Zsi%, where £ € F(R"), i =1,2,3,....n
Furthermore
.0
(Xf)oLy= (Zs'a—j;) oLs, a€R"
i of
{(Xf) o La}(p) = {(Ze W) o La}(p)
ZS a7 La(p)
(2650
& Py (a + p), see Example 4.3
or {(Xf) o La}(p) = Zs (a+p)—(a+p)
Also
{X(foLa}(p) = Zs'—q L)} (p)
= Zéi(p)ﬁ(foLa)(p)
X
= Zs (p)—(L (P))
or {X(f o La)}(p) = Zé (p)—(a+p)
In view of (4.11), we find

> & +p>—<a +p) = Zs (p)—(a +p)

or §(a+p)=$(p), i=1,2,3,...,n

Thus, the functions £'’s are constants and hence all the left invariant vector fields on
R" are of the form

.0 ,
&§—, 8 eR, i=1,2,3,...,n
dx!
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. : 0 I
i.e.constant multiple of — or the left invariant vector fields on R" are constant
X

vector fields.
Problem 4.6 If X, Y are left invariant vector fields on a Lie group G, so is [X, Y].

Solution : From (4.8), we have (L,).X = X and (L,)+Y =Y. Now

(L)X, Y] =1[(Ly)sX, (Ly)+Y] (see Exercise 2.30)
= [X, Y], from above.

Thus, [X, Y] is also left invariant vector field on G.

ALTERNATIVE METHOD: Taking into consideration (2.34), for every vector field
[X, Y]in x(G), we have

{(L)[X, Y1} f =[X.YI(f o La)
=X(Y(foLdy)—Y(X(foLy), by(2.27)
= X{(L)Y) [} = Y{((La):X) [}
= X{Yf}—Y{X[f}, use(2.34)
=[X,Y]f

S (L)X Y] =[X,Y), Y f € F(G).

We say (G, [, 1) is a Lie algebra over R if

(i) G is a vector space over R

(ii) [,]1: G x G — G is a bilinear map 4.12)
(iii) [X, Y] = —[Y, X] : anti-commutative ’
(iv) [ X, 1Y, Z11+[Y,[Z, X]]+[Z,[X, Y]] = 0 : Jacobi Identity.

Problem 4.7 Show that the vector space R with the operation cross product of
vectors is a Lie algebra.

Solution : Let ¥ = (x', x%, x3) and y = (y', y%, y®) be any two vectors of R3. We
define the cross product of X and y as follows:

x5 = (2 — 22 B3yl —xlyd a2 - x2yh.

=1

Then, for all ., u € R, it can be shown that

(i) QX +uy) xZ =AXXZ+uyxz| . ... :
() Zx OF+ud) = AExi+uEixy|’ Bilinearity

(ii) ¥xy=—-yxX
(v) AxPxZ2+FxDxX+EZxX)xy=0.
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Thus, the real vector space R3 with the operation:Bilinearity of the cross product of
vectors is a Lie algebra.

Remark 4.5 Note that the set of all C*-vector fields, denoted by x (M), of the
manifold M, forms a Lie algebra under the Lie bracket operation on vector fields.

Let g be the set of all left invariant vector fields on G. Then for every X, Y in g,
(L)«(cX +dY) =c(Ly)«X +d(Ly)Y =cX+dY, Ve,d e R.

Therefore, cX + dY € g. Hence, g is a linear space.
Again, (Ly)«[X, Y] = [(Ly)«X, (La)«Y] = [X, Y] (refer to Exercise 2.30). Thus,
[X, Y] € g where [X, Y] = —[Y, X]. Further, it can be shown that

(X, Y, ZI1 + [V, [Z, X]] + [Z, [X, Y]] = 0.

Thus, the set of all left invariant vector fields, denoted by g, on a Lie group G, is
a Lie algebra.

Now a Lie subalgebra &, of a Lie algebra £, is a vector subspace h, C h,, that is
closed under the bracket [, ].

Obviously, g is a Lie subalgebra of the Lie algebra x (G) of all C* vector
fields of the Lie group G i.e.g C x(G)

Remark 4.6 If g* denotes the set of all right invariant vector fields on a Lie group
G, it can be shown that g* is also a Lie algebra.

The behaviour of a Lie group is determined largely by its behaviour in the
neighbourhood of the identity element e. The behaviour can be represented by an
algebraic structure on the tangent space at e.

Theorem 4.2 As a vector space, the Lie subalgebra g of the Lie group G is iso-
morphic to the tangent space T,(G) at the identity element e of G i.e.g = T,(G)
(Fig.4.1).

Fig. 4.1 g=T.(G)
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Proof Note that two vector spaces U and V are said to be isomorphic if a mapping
f : U — V is linear and has an inverse f~'. So, let us define a mapping ¢ : g —
T.(G) by

d(X) = X.. (4.13)

Clearly, ¢ is linear. Let us define ¢! : T,(G) — g by
oMY, = X. (4.14)
Now foreverya € G, L, : G — G is left translation and

(L) : T.(G) = T, . (G)

(a)(©)=a

is a differential mapping such that
(La)«Ye = X,. (4.15)
Now for any s € G, we have

(L)xXs-1a = (Ly)x(Ls-14)1Ye, by (4.15)
= (Ly o Lg-1,)4+Y., by Problem 2.51
= (La)+Y., by (4.4)
or, ((LS)*X)G = X,, by (2.35), (4.15)
or (Ly):X =X, YaeG.

Therefore, X € g. Hence the mapping ¢! is well-defined. Finally

(pp~ 1Y, = X,, by (4.13) & (4.14)
= (Le)*Yes by (415)
=Y,, where (L,), is the identity differential.
@ 'P)(X) = ¢~ ((Lo):Y.) = X, by (4.13), (4.14) & (4.15).

Thus, an inverse mapping ¢~ exists. Consequently,

g =T.(G).
Corollary 4.1 Ifa Lie group G is of dimension n, then the dimension of Lie subal-
gebra g of the Lie group G is also n.

Proof Left to the reader.

Problem 4.8 If¢ : g — T.(G) is anisomorphism, g being the set of all left invariant
vector fields of a Lie group G, thenfor X = ¢(X) = X,, X € g, showthat [X,Y] =
[X,Y],VY eg
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Solution : From the definition
[(X,¥]=X{T) - ¥V X)
=X, (Y,) - Y,(X,), asdefined
=[X,, Y]

Further

[X.Y] = {X(¥) — Y(X)}
= X(¥) - ¥Y(X)
= X(,(Y() - Ye(Xp)

=[X,Y]
Thus, [X, Y] = ﬁ
Problem 4.9 IfC{‘j (i, j,k=1,2,3,...,n) are structure constants of a Lie group

G with respect to the basis { X, X», ..., X,} of g, show that

(i) Cf; =—C%, where [X,, X 1= CLX,, each C}; € R.
(i) CLCl, +ChCl+Chcy =0.

Solution : It is given that Cg‘j (i, j,k=1,2,3,...,n) are structure constants of a
Lie group G with respect to the basis { X, X», ..., X} of g, where g is the set of all

left invariant vector fields on G, such that
[X,.,Xj]=ZCi’f].Xk, Cl eR. (4.16)
k=1

Notethat[X,, X;] = 0, wheni = j.Soleti # j.As[X,, X,] = —[X,, X,], by virtue
of (4.16), we get

Yochx ==Y,
k=1 k=1
or (Cf;+Cl) =0,

k — _ck

as {X1, Xs, ..., Xy} is a basis and hence linearly independent. Thus, Clj jie

Also, from the Jacobi identity, we have

(X, X, I, X 1+ 1X,, X1, X,]+[[X,, X,], X,]=06.

()

Using (4.16), we get
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[chx X ] [ch; k,X]+[ZC"X X,
or ch[xk,X]JrZC"[Xk,X]+ZC’<,[X X1=6

ZZC CLX, +ZZC CLX, +or ZZC CLX, =0, by(4.16).

As{X, :t=1,2,3,...,n}is abasis of g and hence linearly independent and thus
cl.ci, + Ct cr + chcl =0.

Problem 4.10 Consider the product T' x RT of the one-dimensional torus by the
multiplicative group of positive numbers. Let (&, x,) denote the local coordinates.
]
Prove that the vector field X = 3% + x, 8 is left invariant.
o

Solution : For a fixed (9, p) € T' x R, the left translation of the product mani-
fold, denoted by L, s by definition

@ x)=(+a,px,)

(9 p)

30+a) 3(0+a)
(L ) = & ox, (10
@p’x — | 9(px) 9(px)) —\op
da ax,

Given vector field X € T' x R* is left invariant if
(L(g'l,))*X(O,I) = XL(.‘]J on=2X_

Now X 0 + 9 X 0 + 0
ow X =—+x,—, 50 =—+—
da " 'ax, ©vd9a - ax

o "

10 1 1 Pl 9
o)) ()- erd

Thus, X is a left invariant vector field.

Again

(l;,p) :
@.p)

Problem 4.11 Consider the Lie group G defined in Exercise 4.5. Show that

. 0 9
O {X=x,—Y=x—.,Z=

. is a basis of left invariant vector fields
ax, ox
of G.

a
5 7o)

2
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(ii) Find the structure constants, as defined by (4.16), of G with respect to the basis
{X, Y, Z} defined in (i) above.

Solution : (i) Forafixed (a,,a,, a,) € G. the left translation denoted by Ly
is given by

a, 0 a, x, 0 x, ax, 0 ax, +a,
o ayag K10 X0, X,) = | 0 4, ay O0x,x,|= 0 ax ax +a,
‘ 001)\001 o ol
= (a]xl, a1x2 +az,a1x3 +a3)
a 00
( ((41,(12,113))* = 0 Cll 0
0 0a

1

e T 0.0
ox,
0 0 9 9
Simitarly, ¥, =(517-) =(5-), and 2, =(5,5-) =(5-) . Now
ax,’e ox,’e dx,’c  “dx,’e
x ol
= frd x —_—
L(¢11,a2.a3)(1’0’0) (“1"'2-"3) 1 x
1 (ay ,ay,a3)
Similarly
Y 0 9
= =X =a an
1‘(‘11_‘12.%)(1.0,0) (ay.ay.a3) P Yox.
‘ 2 Yay b.az) 2
9 9
L(alAazAag) (1,0,0) = Y<”l"’2-”3) = xl = al _ax .
) 3 Yay b.az) 3
To show X, Y, Z are left invariant vector fields, we have to show
(L(ul.az.a3))*Xg = XL(”]-“Z‘“S) (1,0,00 = X(a]-l,a] ey ay Otay) = X(a] )
Similarly
(Lml.az,a}))*yp - Y<"1‘a2'a3) and (L(“1~“2~"3>)*Zf = Lajayay”
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Now
a 00 1 a, 3
(L, )X, =1 0a 0 01=10]|=a—=X -
(I] ,112,113 * e ax (ll .QZ,IIS
0 0 q, 0 0 !
Thus, X is a left invariant vector field. Again
a 00 0 0 3
(L(al.uz.ag))*Ye = 0 a, 0 L= a, =a, 57— = Y(a \ay.a3)?
3 ox 1-92-43
0 0 aq 0 0 2
a 00 0 0 3
(L, )Z, =] 0a O 0]l=10]=aq =Z .
ay.ay.azy * e ax (a],az,a3)
00a 1 a 3

1 1

Thus, Yand Z are left invariant vector fields and {X, Y, Z} are linearly indepen-
dent at e. Thus, {X, Y, Z} is a basis of g, where g is a left invariant vector fields
of G.

el el el
(ii) If we denote X = x,— by X,, Y = x,— by X, and Z = x, — by X,, then
ax, ax, ax,
by (4.13), we see that

3
[X.X1=) ChkX,. i#]j.
k=1
Now

X .X]=1 a 3] ad a a a
X =[x, —,x,—]=x,—x,— | —x,—(x,—
v "ox, ' dx, "ox, ' dx, "ox, ' dx,

+x? i — x? o
' 0x,0x, ' 0x,0x,

Fox,
2
el
=x—.
ax,
CLX, =X,, byabove

ie. C122 =1, as X, =Y is linearly independent. By Problem4.9(i), C%l =
—C}, = —1. Similarly, it can be shown that [X,, X,] = X,, i.e.C}; =1 and
C3, = —land[X,, X,] = 0. Thus, with respect to the basis {X, Y, Z}, the struc-

ture given by
2 2 3 3
Ch=-C=C=-C5 =1
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Exercises
Exercise 4.8 Prove the converse of Theorem 4.1.
Exercise 4.9 Find the left invariant vector fields on R.

Exercise 4.10 If e is the identity element of a Lie group G and T,(G) is the tangent
space to G at e, show that
(La)*Xe = X,

where X is a left invariant vector field.

Exercise 4.11 Consider the Problem4.2. Show that
] d ad ad

(i) { X =—,Y = —,Z =x— + —}isa basis of left invariant fields of H.
ax ay dy 0z

(ii) Find the structure constants of H with respect to the basis {X, Y, Z}.

Answer

4.11. C2 =-C?> =1.
13 31

4.3 Invariant Differential Form

A differential form @ on a Lie group G is said to be left invariant if

(Lio,,,) =0, YpeG (4.17)

a~"La(p)

where L is the pull-back of L, defined in §3.4.
We write it as
Liow=w. (4.18)

Similarly, a differential form w on a Lie group G is said to be right invariant if
Riw=o. (4.19)

A differential form, which is both left and right invariant is said to be bi-invariant
differential form.

Problem 4.12 Show that if w is a left invariant form, then dw is also so.

Solution : From Theorem 3.9, we see that

d(Liw) =L} (dw), Yo
or, dw = L} (dw), by (4.18).

Hence, dw is also left invariant by (4.18).
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Problem 4.13 Prove that a 1-form w on a Lie group G is left invariant if and only
if for every left invariant vector field X on G, w(X) is a constant function on G.

Solution : For every given 1-form w on G, L%w will be pull-back 1-form. Hence,
by (3.27), we find

(L@} (Xp) = 0, (La).X,), VP G, VX e,

g being the set of all invariant vector fields, (Ly)«X, being the differential of X.
Consequently, by (4.7), we write

{LZ (wLa(P))}(Xp) = @, (X1u(p)- (4.20)
Let us now consider w to be left invariant. Then in view of (4.17), one gets from above
wp (Xp) = Wqp (Xap)~

Taking p = e € G, one gets the desired result, i.e.w(X) is a constant function.
For the converse part, let w(X) be a constant function on G. Then for fixeda € G
and arbitrary p € G, one must have

0p(Xp) = @ap(Xap)
= O Xr,p)
= {Li(wr,») }(Xp), see(4.20)
Li(w =w, VX, eg.

Lutp))
Thus, by (4.17), the 1-form w is left invariant.

Problem 4.14 Prove that the set of all left invariant forms on a Lie group G forms
an algebra over R.

Solution : Let A be the set of all left invariant forms on a Lie group G. We wish to
show that:

(i) A is a linear space over R.
(ii) the mapping A x A — A, defined as (w, 1) — o A w is bilinear.
(iii) the operation ‘N’ is skew-symmetric.
(iv) {a)/\(u—f-y) =wAU+OAY
(W+mW Ay =woAy+uny.

Note that

Li(co+du)=cLlwo+dL}u, asL) is linear, c,d € R

= cw +du, wherew, |1 are left invariant.

Thus, A is a linear space over R.
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Further, it can be shown that
boApu=bwApn)=wAbu, VbeR.
Thus, the mapping is bilinear. Also, w A u = — A w. Moreover, the set A satisfies

(iv). Thus, A is an algebra over R.

Problem 4.15 Let L, : S' — S! be given by
Ly(x,y) ={(cost)x — (sint)y, (sint)x + (cost)y}

wherea = (cost, sint) € S' C R%. Ifw = —ydx + xdy on S', show that (L,)*® =
,
S! being the unit circle.

Solution : Here

Liw = L (—ydx + xdy)
= L} (—ydx) + L}(xdy)
= —{(sint)x + (cost)y}d{(cost)x — (sint)y}
+ {(cost)x — (sint)y}d{(sint)x + (cost)y}
= —{(sint)x + (cost)y}{(cost)dx — (sint)dy}
+ {(cost)x — (sint)y}H{(sint)dx + (cost)dy}
=xdy — ydx

=w.

Thus, w is left invariant 1-form on S'.

Theorem 4.3 If g is Lie subalgebra of a Lie group G and g* denotes the set of all
left invariant forms on G, then

1
do(X,Y) = —za)([X, YD, VX, Yeg weg
Proof From Theorem 3.4, we see that if w is a 1-form, then
1
do(X,Y) = E{X(w(Y)) —Y((X)) —o(X, Y]}, VX,Y € x(G).

Nowif X, Y € g, w € g*, then by Problem4.13, w(X), w(Y) are constant functions
on G. Taking help of Exercise 2.30, we see that

X(@(Y)) =0 = Y((X)).

Thus dw(X,Y) = —%a)([X, Y).
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Remark 4.7 Such an equation is called Maurer—Cartan Equation.

. 1 . . .
Problem 4.16 Show that do' = —3 Z Cly o’ A o*, where C'y’s are defined in
Jk
Exercise4.9(i).

Solution : If{X,, X,,..., X, }isabasis ofg and (o', @2, ..., "} is the dual basis
of g*, then A A
o' (X)) = 5;., “4.21)
Hence, by virtue of the last theorem, we obtain
i [
do' (X, X,) = =50/ (X, X,)
1 .
- —Ea)’{z C"X,}. see(4.16)

1 A
-3 > Cho'(Xn). asCli eR
i 1 i
dof (X, X,) = =5 Cly. (4.22)
Now
> Cha@" A0")(X; X,) = Zcfm,{w'”(xj)w"(xk) — " (X" (X))}, by (3.17)

1 .
=5 > " Chn (8787 — 6787, by (4.21)
m,n

1 i i
= E(Cjk - ij)

= C;k, see Problem 4.9(i)

Thus, (4.22) reduces to
do'(X,, X,) = ——Zc’ @" A "X,

i 1 i m n
ordw Z_EZC'""(CU nNo'), VX, X,

ie. do = ——ZC (@) A )
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Problem 4.17 Prove that do' = E Ckw Aol
J.k
j<k

Solution : Let us consider j,k = 1,2, 3. Then

Z Cka)’/\a) = Cho' Ao + Clo' A’ + CLo* A o'

J.k=1,2,3
+ Cho® Ao + Cho® A o' + Chho® A o?
= 2Ci2a)1 Aw®+ 2C§'3a)1 A + 2C£3a)2 A,
asw' Ao =0,0' Al = —wf Ao, C;k = —C,’;j. Thus

C’a)f/\a) =2 C ol Aok,
2 Z

Jj.k=1,2,3
]<k

Hence, from Problem4.16, we have

. 1 o
do' = —3 X ZZC}kaﬂ Ao
J.k
Jj<k

or do' —ZCkw N

/<k

Problem 4.18 Consider G ={ < 01 )’x,,x eR, x, # 0} which is a Lie sub-
group of GL(2, R).
X

(i) Show that w = a~'da is a left invariant 1-form, where a = <)8 12 )

. dx dx, . . o
(i) Show that {' = —, w* = —2} is a basis of left invariant 1-form g* and find
'xl 'xl
the structure constants of G with respect to (o', ®*}.

(iii) Show thatdw + o A w = 0.

. . . _ (%X — la = 1 —h 71_1 ! —
Solution : (i) Herea = <O ) >,|a|—x1,adja— <0 %, >,a X (O x )
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_(dx, dx, o, V(1 —x,\ (dx, dx,
Also,da_<0 O).Thus,a)_a da_x1 0 x, 0 0
_l dx, dx,

_x] 0o o0 /)

Let us choose e = <(1) ?) and arbitrary g = (6 i ) Thus,

(s X, X%\ _ [rx rx,+s _(r0
L"a_<01><01)_(0 1 ) (L")*_<0r)'

1 (dx, dx, [ dx, dx, .
Now,a)p_;( 0 0 ), a)p_< 0 0 .Wearetoshow(Lp)w
ie. (L))o, =, Now

e = () (5)-(65) (D1 G)- ()

Thus, o = a~'da is a left invariant 1-form.
(ii) Note that

=,

Lpe e

dx, dx, —w
0o 0 ) ¢

d 1
do' =d(“2) =d(=) Adx, =0
'xl 'xl
) dx, _ 1 1
do® =d( | )—d(x—])/\dx2 ——)C—]2dxl Adx,
= —a)l /\a)z.

Taking advantage of Maurer—Cartan Equation, we obtain
. o '
do' = —ZC}ka)J NOAR
Jok

fori =2, do* = —C%o' A @?. Comparing, we find that C3, = 1 = —C3,.
1
(iii) Here v = — (d())c] d())fz ) Therefore
x

a)/\a)—l dx, dx, /\l dx, dx,\ _ 1 (0dx, ndx,
“x\00)7x Lo o)7x\o o )
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Further

do=a( L) n (%)

X

1 dx, dx,
= —x—lzdxl A\ ( 0 0 )

_ 1 (0dx, ndx,
a x2 0 0

= —w A w, from above.

Thus, dw + o AN w = 0.
Exercises

Exercise 4.12 If w,, w, are left invariant differential forms, prove that o, A w, is
also so.

Exercise 4.13 Prove that a r-form w on a Lie group G is left invariant if and only
if for every left invariant vector fields X,’s(1 <i <r)yon G, o(X,, X,,..., X,) is
a constant function on G.

Exercise 4.14 Let¢ : G — G besuchthatp(a) = a~", Y a € G. Show that a form
w is left invariant if and only if ¢*w is right invariant.

Exercise 4.15 [f g* denotes the dual space of g, prove that A = g*, where the set A
is defined in the solution of Problem4.14.

4.4 Automorphism

Let G, and G, be Lie group. Amap f : G, — G, is said to be a Lie group homo-
morphism if f is a C*° map and for all 4, x in G,,

J(hx) = f(h) f(x). (4.23)

‘We can also write it as

foL =L, of VxeG,. (4.24)

f(h)

Let €G, and €G, be the identity elements of G, and G,, respectively. Taking 4, x in
(4.23) to be the identity G, , it follows that

fleg)) =eq,. (4.25)

So a group homomorphism always maps the identity to identity.
If moreover, f is bijective, then f is said to be a Lie group isomorphism.
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For every a € G, a mapping o, : G — G, defined by
0.(x) = axa™! (4.26)

is said to be an inner automorphism if

(i) o, is bijective
.\ 4.27
{ (i1) 4 (xy) = 04(1)0u(») 27
Such o, is written as ada.
An inner automorphism of a Lie group G is defined by
(ada)(x) = axa™"', Vx € G. (4.28)

Problem 4.19 If the Lie group G is defined by G ={ <)(; i}) x,yeR, x > O},

verify whether the map f : G — R3 defined by f <)(; ))c)) = (x,y,x —y)isa Lie

group homomorphism or not.

’

Solution : For ;i y’ € G, wehave *y * y, (Y —|—,yx . From
0x 0x 0x 0 XX

the hypothesis,

X )C, ' ’ ’ ’ ’ / ,
f(o));)(oz,):(xx,xy 4+ yx,xx —xy —yx).

To show that f is a Lie group homomorphism, our claim is

f(AB) = f(A)+ f(B), A, B € G, where G is a lie group.

Xy Xy xy\[(xy
f(Ox)+'f<O x’)#f<0x)<0 x’)'

Thus, f is not a Lie group homomorphism.

Now

Exercises

Exercise 4.16 Show that if G is a Lie group, then the map I, : G — G for every
h € G defined by I,(x) = hxh™', x € G is an automorphism.

Exercise 4.17 Show that

ada = L,R,- = R, L,. (4.29)
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Exercise 4.18 Let H = (1) )lc z :x,y,z € R} be the Lie group and the map
f : H— Rdefined by A — (}?Al) =X+ y + z. Is it a Lie group homomorphism?
Answer

4.18. No.

Let g and g, be Lie subalgebra of the Lie group G. A mapping f : g — g, is said
to be a Lie algebra homomorphism if f is a linear mapping and

fIX.YI=[fX, fY]. (4.30)

Moreover, if f is bijective then f is said to be Lie algebra isomorphism.

Problem 4.20 Let G, = GL(n,R) and G, = GL(1, R). Then the map f given by
f(A) =detA, A € G, is a homomorphism.

Solution : Clearly

f(cA+B)=cf(A)+ f(B), VceR, A,BeG,,
which implies f is linear. Furthermore, f(AB) = det(AB) =detAdetB =
f(A) f(B) implies f is a homomorphism.

Problem 4.21 If f : G, — G, is a Lie group homomorphism and X is a left invari-
antvector field on G, prove that the left invariant vector field f, X on G, is f-related
to the left invariant vector field X.

Solution : For h € G,, f(h) € G,. For every X, € g,, f.(X,) € g,. To show that
f.X is f-related to X, we need to show f.(X,) = (f.X) by (2.38). Note that

fh)?
L)X =X, =X, Xeg, & =T @)

Thus

fX)=f(L)X)=(foL,).X,,
= (L, 0 ), (X,), by(4.24)
= (L) Af.(X))
={f*(X)},_M(€), by (4.7).

f*(X;,) = {f*(X)}f(h)'

Hence, the left invariant vector field f, X on G, is f-related to the left invariant
vector field X on G .
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Theorem 4.4 Let f : G, — G, be a Lie group homomorphism. Then the induced
map fi : T,(G1) = T,(G») is a homomorphism between the Lie algebras of the Lie
group, where e, e’ are respectively the identity elements of G, and G,.

Proof For the identity elemente € G,,
fle)=¢,
¢’ being the identity element of G,. In view of Theorem4.2, we can write
g, =T.,(G,), and g, =T.(G,),

where g,, g, are respectively the Lie algebras of G, and G,.
Now, let X, € T,(G,) be such that

fi(Xe) =Yo € To(G)).

Then foranya € G, (L), X, = X, , = X,. Therefore

Jo(Xa) = fel(La)«Xe)
= (foLa)sXe, a3 (f@) = fi0gs
= (Lfw@ © f)+Xe, by (4.24)
= (Ly@)«Ye
= Y4, refer to the definition of left invariant vector field

Thus, the image of a left invariant vector field on G, under f; is a left invariant vector
field on G,.
Again, we know that

f*[Xl’XZ] = [f*Xw f*Xz]
=[Y, Y],

where f. X, =Y,,i =1, 2. Thus, f. is a homomorphism between the Lie algebras
of two spaces and this completes the proof.

Theorem 4.5 Every inner automorphism of a Lie group G induces an automorphism
of the Lie algebra g of G.

Proof For every a € G, let us denote the inner automorphism on G by
(ada)(x) = axa™ ', Vx € G.
Now every ada : G — G induces a differential mapping

(ada)y : T.(G) = Th4a(e)(G) = T,(G), see (4.28).
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Such a mapping is a linear mapping, and from Theorem4.2, we have g = T,(G).
Thus, to prove the theorem, we need to prove the following:

(1) (ada), : g — gis a well-defined mapping.
(ii) (ada), is bijective.
(iii) (ada), is homomorphism.

By (4.29), we get
(ada)y = (R;-1)4, VY € g. (4.31)

Now

(Lp)s{(Re-1):Y} = (LyoRe1),Y, p€G
= (R,-1).Y, see (4.29).

Thus, (R,-1).Y € g. Consequently, (ada), is a well-defined mapping that proves (i).
Also, (ada), is a linear mapping and by Exercise 2.30, the (iii) follows immediately.

Finally, let (ada).X = (ada),Y. Then from (4.31), it follows that X = Y and
hence (ada), is injective. For surjectivity, let us set (ada="),X =Y, as for every
a,a”! € G. Now

(L).Y = (Lo« ((ada™").X)
= (Ly)s o ((Lg-1 0 Ry)+X), by (4.29)
= (Ls)x o ((Ry)+X), by (4.4)
= (R,)+«X, by (4.4) and Problem 2.51
=Y, by (4.31) and as assumed.

Thus, Y € g. Also

(ada)Y = (Lq o Ry-1).Y, by (4.29)
= (Ly o Ry1).(ada™"), X, asset
= (Lg o R;-1)«(R, o L7, X, by (4.29)
= X, by Problem 2.51

which proves (ada), is surjective and consequently, (ada), is a bijective mapping.
Thus, the induced map (ada), : g — g is a Lie algebra automorphism.

Remark 4.8 For every a € G, we write
(ada)y = Ada, i.e.a— Ada 4.32)

and is called the Adjoint Representation of G.
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Problem 4.22 Is Ada invertible?

Solution : By virtue of the last theorem, we find
Ada = (ada), : g —> g

is a Lie algebra homomorphism. Further g = T,(G), where T,(G) is a finite-
dimensional vector space. Thus, Ada is a linear transformation from T,(G) —
T.(G). Again, for every a € G, we obtain

(Ada) o (Ada™") = (ada), o (ada™").
= (L,0 Ry1) 0 (Ry0 La1)s, by (4.29)
= Ade

Similarly, it can be shown that (Ada™") o (Ada) = Ade. Hence, Ada—! = (Ada)~..
This completes the proof.

4.5 One-Parameter Subgroup of a Lie Group

Let G be a Lie group and a mapping a : R — G denoted by a : t — a(t) be a
differentiable curve on G. If for all ¢, s in R

a(t+s) =a(t)a(s), (4.33)

then the family {a(¢)| ¢ € R} is called a one-parameter subgroup of G.
Exercises

Exercise 4.19 Let H = {a(t)|t € R} be a one-parameter subgroup of a Lie group
G. Show that H is a commutative subgroup of G.

Exercise 4.20 If X is a left invariant vector field on a Lie Group G, prove that X is
complete.

Theorem 4.6 Let X be the generator generated by one-parameter group of transfor-
mations R, and letY be that of L, . Then X is left invariant and Y is right invariant

and X, =Y, = a'(0) hold, where d'(t) denotes the tangent vector to the curve a at

a(t).
Proof For h € G, let L,(p) = q. Therefore, p = h~'q. Now from (2.34)
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{(L).X)f=X,(foL,). Y feF(@G)
=X, (folL,)
1
=1im =[(f o L){R, (h"'q)} — (f o L,)(h"'g)], by (2.47)

-0 1
1
= 1igl ;{(f oR, )(q) — f(@)}, by (4.2),(4.4)

= X, f, by (2.47)
(L)X, =X,, Vf
or (L).X, =X, (.

which shows that X is a left invariant vector field on Lie group G (refer to (4.8)).
Similarly, for h € G, let R, (p) = g, therefore, p = h‘lq. In view of (2.34), we have

{(R)Y,}f =Y, (foR)V [ €F(G)
=Y (foR,)
1
= lim ;[(f o R)L, (qh™")} — (f o R)(gh™ )]

t—0

1
=lim ={(f o L, )(q) = f(g)}. by (4.3), (4.4)

=Y, f
(R).Y, =Y, Vf

*Tp q’

= YR,‘ (p)-

Thus, by (4.9), we can say that Y is right invariant. Since R, (e) =a, =a(t),a(t)
is an integral curve of X and hence X, = a (¢) holds. In particular, X, = a (0). By
similar manner, Y, = a (0).

Theorem 4.7 Let {¢,|t € R} be a one-parameter group of transformations on a Lie
group G generated by a left invariant vector field and

¢, (e) =a(t) =a,.

If for everys € G, ¢, oL, =L o ¢, forall s € G, then the set {a(t)|t € R} is a
one-parameter subgroup of G and ¢, = R, holds forallt € R. If ¢, o R, = R o &,
holds for all s € G, then the set {a(t)|t € R} is a one-parameter subgroup of G and
¢, =L, holds forallt € R

Proof As defined
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1+s

ais+1)=¢,( =¢,()), Vs,t R
= ¢,(¢,(e)), as {¢,|t € R} is one-parameter group of transformations
= ¢,a(s)
=¢,(L,,e)
= (L, o ¢,)(e), from the hypothesis, as a(s) € G
=L,,(a(®))
=a(s)a(t).

So from (4.33), {a(t)| t € R} is a one-parameter subgroup of G. Also
¢,(s) = ¢,(se) = (¢, 0o L)(e) = (L, o¢p,)(e) =L, (a) =sa, = R, (5).

Therefore, ¢, = R, . Similarly, itcanbe shownthat$, = L, when¢, o R, = R o ¢,
holds. This completes the proof.

For each X € g, we set
¢.(e) = R, (e) =a, = a(t) = exp(tX), (4.34)

where {¢, |t € R} is the one-parameter group of transformations on G generated by
X. We call {a, = a(t) = ¢,(e)} the one-parameter subgroup of G, generated by
X.

The map X — exp X, is a map from g to G and is said to be the exponential
map.

Problem 4.23 Let G be a Lie group. Forevery X € g, let Y be the generator induced
by the one-parameter group of transformations {¢, |t € R} defined by

¢:G— G, o, x)=¢,(x)=exp(tX)x, Vx € G.

Prove that Y is right invariant.

Solution : We have to prove that, for every a € G, (R,),Y =Y. In view of Exer-
cise2.48, we are to prove that (R, o ¢,) = (¢, o R,). Now

(R, 0¢,)(x) = R, (exp(tX)x), by hypothesis
=exp(tX)R x
=exp(tX)xa, by (4.3).

Also, (¢, o R))(x) = ¢,(xa) = exp(tX)xa. Thus, (R, o ¢,) = (¢, o R,))i.e.(R).Y =
Y. Hence, the vector field Y is right invariant.

Problem 4.24 Let G be an Abelian Lie group. Prove that [X, Y] = 0, where X,Y
are left invariant vector fields on G.
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Solution : From Problem4.23, for X, Y € g, let

¢, (x) = exp(r X)x,
V. (x) = exp(sY)x, t,5s € R.

By virtue of Theorem 2.8, we know that if {¢,|t € R} is the one-parameter group of
transformations generated by X, then for every vector field Y,

X, Y] =1im}{Y— 6).7)
or [X, Y]q = lim;{Yq — (((ﬁ,)*Y)q}, qeG.

Let us write ¢,(p) = q, p € G, then p = ¢_,(q) and hence

(#).7), = ((9).Y),, = (®).Y, [referto2.35] = ($).Y, -

Thus, [X, Y] =01if ((¢).Y), =Y, i.e.(¢1)*Y¢7r(q) =Y, i.e.we have to show that Y

q

is invariant under ¢,. Hence, from Exercise 2.48, we wish to prove ¢, o . = ¥, 0 ¢,.
Now

(¢, 0 ¥,)(x) = &, (exp(sY)x)
=exp(sY)exp(tX)x
=exp(tX)exp(sY)x, as G is abelian
= ¥, (exp(1X)x)
= (Y, o p,)(x).

Therefore, ¢, o Y, =, o @, for all x € G. This completes the proof.
1
Theorem 4.8 If X, Y € g, then [Y, X] = 111% ;{(Ada,’l)Y - Y}
t—

Proof If {¢,|t € R} is the one-parameter group of transformations on a Lie group
generated by the left invariant vector field X, then

1
Y, X] = lirré ;{(qbr)*Y — Y}, forevery vector field Y € x(G).
t—

Now Ada; ! = (ada; "), = (R4 o L), see (4.29).
If Y e g, then from above after a few steps,

(Ada; " Y = (R,).Y = (¢)+Y, from Theorem4.7.
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Thus ]
LY. X] = lim 7{(Ada;l)y —Y).
—

This completes the proof.

4.6 Lie Transformation Group (Action of a Lie Group
on a Manifold)

A Lie Group G is a Lie Transformation Group on a manifold M or G is said to act
differentiably on M if the following conditions hold:

(@) (a, p) : G x M — pa(e M) is a differentiable map;
(i7) Eacha € G induces a transformation on M, denoted by p — pa (4.35)
(iii) p(ab) = (pa)b, Ya,b € G.

We say that G acts on M on the right as (i) and (iii) can be written as

(i) R,p = pa.
(i) R, p = p(ab) = (pa)b.

Similarly, the action of G on M on the left can be defined.
Exercises

Exercise 421 LetG = GL,(R), M =Rand@ : G x M — M be a differentiable
mapping defined by

9<<311?),p)=ap+b, a>0,a,belR.

Show that 6 is an action on M.

If G acts on M on the right such that pa = p, V p € M implies that a = e, then
G is said to act effectively on M.

However, if G acts on M on the right such that pa = p, V¥ p € M implies that
a = e, for some p € M, then G is said to act freely on M.

Theorem 4.9 If G acts on M, then the mapping o : g — x (M) denoted by
o : A — o(A) = A* is a Lie algebra homomorphism. It is to be noted that o (A) =
A* is called the fundamental vector field on M, corresponding to A € g (Fig.4.2).

Proof Forevery p € M,leto, : G — M be a mapping such that

o,(a)=pa, VaeG. (4.36)
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Fig. 4.2 Lie Algebra Homomorphism

Note that both g, x (M) are algebra, hence we have to show

(i) o is linear.
(ii) o([A, B]) =[0(A),o(B)].

Note that every A € g induces {¢,(e)|t € R} as its one-parameter group of
transformations on G such that

a(t) =a, = ¢,(e).

The map (0,), : T,(G) — T(,p (M) = T,(M) is a linear map.
Now by hypothesis, we have

(0,):A, = {0(A)}s ) = {0 (A)}, = A, (4.37)
For every A, B € g, we have A + B € g and

{O(A + B)}p = (U,,)*(A + B), = (0,,)*(Ae +B,) = {U(A)}p + {U(B)}p
{o(bA)}, = (0,).A, = b{o(A)},, Vb €R.

This proves that o is linear.
Again, A, is the tangent vector to the curve a(f) = a, ata(0) = e. Then (0,). A,
is the tangent vector to the curve

o,(a;) = pay, by (4.36)
= R, (p), by (4.3)

atop,(a,) = o,(e) = p. Thus, A; induces {R,, (p)} as its one-parameter group of
transformations on M. Now
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[0(A), 0 (B)], =[A", B"],

= }gr(l) ;{Bp — ((Rq)+B )p}, by Theorem 2.8
1
= IIH(l) ;{(op)*Be - (Ra,)*B;}’ say, where Ra, (@) =p,
-

ie.q= pafl.
o (Ra)«By = (Rq))«B,, (Ry, ©0,,1)«Be, by (4.37).

=
pa,

Now, R, o Opgt G — M and hence for b € G, we have

(Ry, 00,,1)(b) = pa; 'ba; = o,((ada; ") (b)) = (5, 0 ada; ") (b).

. _ -1
. Ry 00,1 =0,0ada, .

Hence
(Ry))«B; = (0,)«((ada; "), B,) = (0,,)+((Ada; ") B,), by (4.32).

Thus

[0 (4), 0B, = lim ~{(0,). B, — (o). ((Ada; ) 5,))
= (0,)«[A, Bl., as (o)), is linear and by Theorem 4.8
= (o ([A, B]))p, by (4.37)

ie.o([A, B]) =[0(A),o(B)].

Hence, the mapping o : g — x (M) is a linear algebra homomorphism. This com-
pletes the proof.

Theorem 4.10 If G acts effectively on M, then the map o : g — x (M) defined by
A+ o(A) = A* is an isomorphism.

Proof In view of Theorem4.9, we can say that o is a Lie algebra homomorphism.
We are left to prove that o is bijective. Let 0 (A) = o (B) hold for every A, B € g.

Then,
c(A—B)=0=(A—-B)"=0.

Now for every A, B in g, A — B(e g) will generate {y;(e)| t € R}(say) as its one-

parameter group of transformations on G such that (A — B), is the tangent vector to
the curve, given by

by = Yi(e) at Yole) =by =e. (4.38)
Consequently, (0,)+(A — B), is the tangent vector to the curve

o,(b;) = pb; = Rh, (p), at pby=p.
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Thus, (A — B)* = (0,)«(A — B). will generate {R, (p)| ¢ € R} asits one-parameter
group of transformations on M. But the integral curve of the null-vector (A — B)*
will reduce to the initial point itself, refer to Problem 2.42. Hence,

op(b) =p ie. Ry (p)=p ie. pb,=p

As G acts effectively on M, from the foregoing equation, we obtainb, = e, Vp € M.
Again, (L ,).(A — B) = A — B.Thus, using Exercise 2.48, wehave L, o ¥, = ¥, o
L,. Hence

Yi(q) = Yi(ge) = (Y 0 Ly)(e) = Ly(Yi(e))
= L4 (b;), referto (4.38)

= g, from above.

From the definition, we have

1
(A= B)gf =lim={f(¥:(q) = f(q)} =0.

Therefore, A — B is a null vector. So from ¢ (A) = o (B), we must have A = B.
Clearly, o is surjective. Hence, o is injective. Thus, o is bijective and consequently,
o is an isomorphism.

Exercises

Exercise 4.22 If G acts freely on M, the proof that for every non-null left invariant
vector field A, the fundamental vector field A* can never vanish.

Exercise 4.23 Prove that the map 0 : R x R — R defined by (a, p) — ax is an
action of R* on R. Is it free?

Answer/Hint

4.22. Use Theorems4.9 and 4.10.
4.23. No



References

11.
12.
13.

15.
16.
17.
18.
19.
20.
21.

. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications, 2nd edn.

Springer (1983)

Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. AMS Chelsea Publishing, Providence
(2001)

Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd
edn. Academic Press, New York (2002)

Castillo, G.F.: Differentiable Manifolds. Birkhduser (2012)

Curtis, W.D., Miller, ER.: Differential Manifolds and Theoretical Physics. Academic Press
(1985)

Fitzpatrick, P.M.: Advanced Calculus. Pure and Applied, Undergraduate Texts, 2nd edn. Amer-
ican Mathematical Society, Providence, Rhode Island

Gadea, PM., Masqué, J.M., Mykytyuk, L.V.: Analysis and Algebra on Differentiable Manifolds,
2nd edn. Springer (2013)

Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer, Berlin (2004)
Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, New Jersey (1974)
Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in
Mathematics, vol. 34. Amc. Math. Soc, Providence (2012)

Hicks, N.J.: Notes on Differential Geometry. Von Nostrand Reinhold, London (1965)
Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Pearson (2015)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I, II. Wiley, New York
(1996)

Kumaresan, S.: A Course in Differential Geometry and Lie Groups. Hindustan Book Agency
(2002)

Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2012)
Matsushima, Y.: Differentiable Manifold. Mercel Dekker INC, New York (1972)

Millman, R.S., Parker, G.D.: Elements of Differential Geometry. Pearson (1977)

Morita, S.: Geometry of Differential Forms. A.M.S. (2001)

Mukherjee, A.: Differential Topology. Hindustan Book Agency (2015)

Munkres, J.: Analysis on Manifolds. Addison-Wesley, CA (1991)

Munkres, J.: Topology, 2nd edn. Pearson (2000)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 209
Nature Singapore Pte Ltd. 2023

M. Majumdar and A. Bhattacharyya, An Introduction to Smooth Manifolds,
https://doi.org/10.1007/978-981-99-0565-2


https://doi.org/10.1007/978-981-99-0565-2

210 References

22. Prakash, N.: Differential Geometry, An Integrated Approach. Tata-McGraw-Hill Pub. Com
Ltd, New-Delhi (1981)

23. Pressley, A.: Elementary Differential Geometry, 2nd edn. Springer (2010)

24. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. Mc.Graw-Hill, Inc

25. Schutz, B.: Geometrical Methods of Mathematical Physics. Cambridge Univ. Press (1980)

26. Sen, S.: A Short Course on Differentiable Manifolds. University of Calcutta (2011)

27. Shirali, S., Vasudeva, H.L.: Multivariable Analysis. Springer (2011)

28. Sinha, B.B.: An Introduction to Modern Differential Geometry. Kalyani Publisher, New-Delhi
(1982)

29. Spivak, M.: Calculus on Manifolds. Benjamin, New York (1965)

30. Spivak, M.: Differential Geometry, vol. 1-5, 3rd edn. Publish or Perish Wilmington (1999)

31. Sinha, R.: Smooth Manifolds. Springer (2014)

32. Tu, L.W.: An Introduction to Smooth Manifolds, 2nd edn. Springer, Berlin (2008)

33. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, Berlin (2010)

34. Weintraub, S.: Differential Forms, Theory and Practice, 2nd edn. Academic Press (2014)

35. Yano, K., Kon, M.: Structures on Manifolds. Worlds Scientific (1984)



	Preface
	Contents
	About the Authors
	List of Figures
	1 Calculus on mathbbRn 
	1.1 Smooth Functions
	1.2 Tangent Vector
	1.3 Germ of a Function
	1.4 Inverse Function Theorem
	1.5 Implicit Function Theorem

	2 Manifold Theory
	2.1 Topological Manifold
	2.2 Smooth Germs on a Topological Manifold
	2.3 Smooth Manifold
	2.4 Stereographic Projection
	2.5 Orientable Surface
	2.6 Product Manifold
	2.7 Smooth Function on Smooth Manifold
	2.8 Differential Curve and Tangent Vector
	2.9 Inverse Function Theorem for Smooth Manifold
	2.10 Vector Field
	2.11 Integral Curve
	2.12 Differential of a Mapping
	2.13 Submanifolds
	2.14 f-Related Vector Fields
	2.15 One Parameter Group of Transformations on a Manifold

	3 Differential Forms
	3.1 Cotangent Space
	3.2 r-form, Exterior Product
	3.3 Exterior Differentiation
	3.4 Pull-Back Differential Form

	4 Lie Group
	4.1 Lie Group, Left and Right Translation
	4.2 Invariant Vector Field
	4.3 Invariant Differential Form
	4.4 Automorphism
	4.5 One-Parameter Subgroup of a Lie Group
	4.6 Lie Transformation Group (Action of a Lie Group on a Manifold)

	Appendix  References
	


