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Preface

This book is an outcome of lectures delivered by one of the authors to the post-
graduate students at the Department of Pure Mathematics, University of Calcutta,
India, for several years. The need of the students has motivated the authors to write a
textbook. The only prerequisites are good working knowledge of point-set topology
and linear algebra.

It is said that mathematics can be learnt by solving problems, not only by reading
it. To serve this purpose, this book contains a sufficient number of examples and
exercises after each section of every chapter. Some exercises are routine ones for the
general understanding of each section. We have given hints about difficult exercises.
Answers to all exercises are given at the end of each section. We hope that this
approach will help the readers for getting this beautiful subject accessible.

We do not believe that there can be any complete book on the topic of manifold.
We are sure our book is far from completion as such. However, we are equally sure
that our book has some exceptional merits, and students will be benefitted if they go
through the whole book with all exercises.

Chapter 1 is the study of calculus on R
n . We have started the first section on

smooth functions. The concept of the diffeomorphic function is as important as
diffeomorphic manifold. We have given a few exercises on that. Tangent vector is
one of the powerful concepts of studying geometry. It has been defined with respect
to a curve in Rn in the second section.

The germ of a function has been defined in the third section. The last two sections
are on inverse function theorem and implicit function theorem with examples and
exercises.

Chapter 2 is the study of manifold. We have defined topological manifold and
then smooth manifold in Sect. 2.3. Many exercises have been given for a better
understanding of the concept of atlas of smooth manifold. Germs on topological
manifold have been explained in Sect. 2.2. Stereographic projections and orientable
surfaces are two attractive concepts,which have been explained separately inSect. 2.4
and 2.5, respectively. Product manifold has been explained separately in Sect. 2.6.
Smooth functions on smooth manifold have been explained with solved problems in
Sect. 2.7. In this section, we have included diffeomorphic smooth manifold. Tangent
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vector has been introducedwith respect to a differentiable curve in Sect. 2.8. The next
section is the study of inverse function theorem for smooth manifold. Section 2.10
deals with vector field and its geometrical interpretation has been explained in the
next section. Section 2.12 deals with push-forward vector fields which lead to the
concept of submanifold and hence to critical points and regular points of themanifold.
We have discussed Submanifolds separately in the next section. Push-forward vector
fields give rise to another kind of vector field which has been explained with solved
problems in Sect. 2.14. Finally, the last section of this chapter gives the algebraic
interpretation of the vector field. It is also termed as flow while studying dynamical
system which is an interesting topic of mathematics.

Chapter 3 is the study of differential forms. Differential forms have wide appli-
cations in Lie group, differential topology, differentials and their multiple integrals
over a differentiable manifold. However, in this book, we have mainly considered
the first role played by differential forms on manifolds.

Thefirst section of this chapter is on1-form,which is also called cotangent space. It
can be thought of as dual vector space of tangent space of themanifold. Thus, tangent
space and cotangent space can be thought of as “siamese twins” at every point of
the manifold. Members of cotangent space are also called co-vectors. We have given
the formal definition of r-form (r > 1) in the next section. Differential r-forms are
tensor fields of type (0, r) which are skew-symmetric. They have wide applications
in thermodynamics. We have also studied exterior product or wedge product in this
section, which is nothing but the generalization of the concept of cross-product
between two vectors in 3-dimension. This beautiful concept was introduced by R.
G. Grassmann, which nowadays also called “Grassmann algebra” and the reason for
this name “algebra” has been explained in this section for those students who are of
inquisitive nature. Exterior derivative to a manifold is the same as that of “curl” to
R3. All the classical concepts, namely gradient and divergence, can be expressed in
terms of this concept. We have given the proof of existence and uniqueness of such
operations. Finally, pull-back differential form has been studied in the last section.
This pull-back operation and exterior differentiation commute each other which has
been explained by a theorem, followed by many exercises.

The last chapter is on Lie group. The Lie group structure allows us to discuss
continuity and differentiability in a group structure. It was introduced by Norwegian
mathematician S. Lie in the late nineteenth century. Lie groups play an important role
in modern geometry. They are the fundamental building blocks for Gauge theories.

The first section is the study of Lie group and the two C∞ transformations on it.
The behaviour of a Lie group is determined by its behaviour in the neighbourhood
of its identity element, and hence a famous theorem has been studied in the next
section. Due to the two translations, two types of invariant vector fields occur in this
group. Naturally, two types of invariant differential forms are also there. Well-known
theorems and results have been studied in the next two sections.

For the unique structure of aLie group, one should have a natural quest for studying
group homomorphism and algebra homomorphism on it. The unique feature is the
study of one-parameter group of transformations induced by the invariant vector field
of a Lie group. Section 4.6 is the study of the action of a Lie group on a manifold.
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Chapter 1
Calculus on R

n

1.1 Smooth Functions

Let R denote the set of real numbers. For an integer n > 0, let R
n denote the set

of all ordered n-tuples (x1, x2, . . . , xn) of real numbers. Individual n-tuple will be
denoted at times by a single letter, e.g. x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)
and so on.

A real-valued function f : U ⊂ R
n → R, U being an open set, is said to be of

class Ck if the following conditions hold:

(i) all its partial derivatives of the order less than or equal to k exist, and
(ii) are continuous functions on U .

By class C∞, we mean that all orders of partial derivatives of f exist and are contin-
uous at every point of U . A function of class C∞ is also called a smooth function.
Actually, “Smoothness” is a synonym forC∞. By classC0, wemean that f is merely
continuous from U to R. By class Cω on U , we mean that f is real analytic on U .
A Cω function is C∞ function but the converse is not true.

Example 1.1 Let f : R → R be defined by f (x) = x
1
3 . Then

f ′(x) =
{

1
3 x

− 2
3 , x �= 0;

0, x = 0.

Hence, f is C0 but not C1.

Example 1.2 The polynomial, sine, cosine and exponential functions on the real
line are all C∞, which are also analytic, i.e.Cω.
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2 1 Calculus on R
n

Problem 1.1 Let f : R → R be defined by

f (x) =
{
e− 1

x2 , x �= 0;
0, x = 0.

Show that f is a function of class C∞.

Solution: Note that

f
′
(0) = lim

h→0

f (0 + h) − f (0)

h
= lim

h→0

e− 1
h2

h
.

Put h = 1
u , then

f
′
(0) = lim

u→∞ ue−u2
(∞
∞

)
.

Using L’Hospital’s rule, we find

f
′
(0) = lim

u→∞
1

2ueu2
= lim

u→∞
e−u2

2u
= 0.

Again

f
′
(x) = 2

x3
e− 1

x2 .

Therefore

f
′′
(0) = lim

h→0

2
h3 e

− 1
h2

h
= lim

u→∞
2e−u2

1
u4

, taking u = 1

h
.

Using L’Hospital’s Rule successively, we will find

f
′′
(0) = 2 lim

u→∞
24u

4ueu2 + 8ueu2 + 8u3eu2
.

Finally, we will find
f

′′
(0) = 0.

Proceeding in the same manner, we will find

f n(0) = 0, n = 1, 2, 3, . . . . . . .

Hence, we claim that f is a function of class C∞.

Example 1.3 The function defined inExample1.1 above, does not have power series
expansion at x = 0. Hence it is not a Cω function.
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Problem 1.2 Consider the functions

f1(x) =
{
0, x ≤ 1;
e
− 1

(x−1)2 , x > 1.

f2(x) = 0, for − ∞ < x < ∞.

Prove that f1 , f2 are differentiable on R.

Solution: For x ≤ 1, f1(x) = 0, so f ′
1
(1) = 0. For x > 1, f ′

1
(x) = 2(x − 1)e− 1

x2 .
Now

R f ′
1
(1) = lim

h→0

f (1 + h) − f (1)

h
= lim

h→0

e− 1
h2

h

= lim
u→∞

u
1
2

eu
, u = 1

h2

= 0.

L f ′
1
(1) = lim

h→0

f (1 − h) − f (1)

h
= lim

h→0

e− 1
h2

h
= 0.

Thus, f ′
1
(1) exists and continuous. So f1 is differentiable on R.

As f2(x) is a constant function, it has finite derivative everywhere and so f2 is
differentiable on R.

Problem 1.3 Let f : R → R be defined by f (x) = x
4
3 . Show that the function g

defined by

g(x) =
∫ x

0
f (t)dt =

∫ x

0
t
4
3 dt = 3

7
x

7
3 ,

is C2 but not C3.

Solution: Now g′(x) = f (x) = x
4
3 . Thus, g(x) is C1. Again g

′′
(x) = 4

3 x
1
3 , so g(x)

is C2 but not C3 at x = 0.

Exercises

Exercise 1.1 Let f : R → R be defined by

f (x) =
{
e− 1

x , x > 0;
0, x ≤ 0.

Show that f is a function of class C∞.

Exercise 1.2 Define f : R → R by f (x) = x3. Is f −1 of class C∞?



4 1 Calculus on R
n

Exercise 1.3 Let f : R → R be defined by

f (x) =
{
x + x2 cos 1

x , x �= 0;
0, x = 0.

Show that

(i) f is continuous.
(ii) f is differentiable at all points.
(iii) the derivative is discontinuous at x = 0.

Exercise 1.4 Let f : R → R be defined by

f (x) =
{
x2 sin 1

x , x �= 0;
0, x = 0.

Show that f is differentiable at x = 0 but f ′ is not continuous at x = 0.

Answers

1.2 No.

For i = 1, 2, . . . , n, let ui : R
n → R be the natural co-ordinate functions i.e.

ui (p) = pi , where p = (p1, p2, . . . , pn) ∈ R
n. (1.1)

Such ui ’s are continuous functions fromR
n toR and we call this n-tuple of functions

u1, u2, . . . , un; the standard co-ordinate system of R
n . If f : U ⊂ R

n → R
n is a

mapping, then f is determined by its co-ordinate functions f 1, f 2, . . . , f n where

f i = ui ◦ f, i = 1, 2, 3, . . . , n (1.2)

and each f i is a real-valued function. Thus

f (p) = ( f 1(p), f 2(p), . . . , f n(p)) ∀ p ∈ R
n. (1.3)

The map f is of class C∞ if each component function f i , i = 1, 2, 3, . . . , n is also
so.

If f : U ⊂ R
n → R

m is a mapping such that

f (x1, x2, . . . , xn) = (
f 1(x1, x2, . . . , xn), f 2(x1, x2, . . . , xn), . . . , f m(x1, x2, . . . , xn)

)
,

we define the Jacobian matrix of f at (x1, x2, . . . , xn), denoted by J , as
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J =

⎛
⎜⎜⎜⎝

∂ f 1

∂x1
∂ f 1

∂x2 · · · ∂ f 1

∂xn
∂ f 2

∂x1
∂ f 2

∂x2 · · · ∂ f 2

∂xn· · · · · · · · · · · ·
∂ f m

∂x1
∂ f m

∂x2 · · · ∂ f m

∂xn

⎞
⎟⎟⎟⎠ ,

provided each of its first-order partial derivatives exist on U .

If m = 1, the matrix

(
∂ f

∂x1
∂ f

∂x2
· · · ∂ f

∂xn

)
is called the gradient of f , denoted

by ‘grad f ’ or ∇ f .
The function f is said to be continuously differentiable on U , if each f i has

first-order continuous partial derivatives onU . If f is continuously differentiable on
U and the Jacobian is non-null, then f is one-to-one in U .

A mapping f : U ⊂ R
n → V ⊂ R

n, U, V being open sets in R
n , is said to be

homeomorphism if

(i) f is bijective and
(ii) f, f −1 are continuous.

Problem 1.4 Let f : R → R be such that f (x) = 5x + 3. Show that f is a home-
omorphism on R.

Solution: Here

f (x) − f (y) = 5(x − y)

⇒ f (x) = f (y) if and only if x = y.

Thus, f is one-to-one. Further to examine whether f is onto, we are to examine if
there exists a pre-image x of y under f such that f (x) = y holds. So y has a pre-
image y−3

5 in the domain set R. Since y is arbitrary, each element in the domain set
R has a pre-image under f . Thus, f is onto. Hence, f is bijective so f −1 : R → R

exists, which is defined by

f −1(x) = x − 3

5
.

Here f −1 is continuous.Also, f is continuous.Consequently, f is a homeomorphism.

Problem 1.5 Let f : R → R be such that f (x) = x3. Test

(i) whether f is of class C∞ or not.
(ii) whether f is a homeomorphism or not.
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Solution:

(i) Here

f
′
(0) = lim

h→0
h2 = 0

f
′
(x) = 3x2.

Thus f has a finite derivative and f is of class C∞.
(ii) Here

f (x) − f (y) = x3 − y3

⇒ f (x) = f (y) if and only if x = y.

Thus, f is one-to-one. Further to examine whether f is onto, we are to examine
if there exists a pre-image x of y under f such that f (x) = y holds. So y has
a pre-image y

1
3 in the domain set R. Since y is arbitrary, each element in the

domain set R has a pre-image under f . Thus, f is onto. Hence, f is bijective so
f −1 : R → R exists, which is defined by

f −1(x) = x
1
3 .

Here f −1 is continuous. Also, f is continuous. Consequently, f is a homeomor-
phism.

Exercises

Exercise 1.5 Let f : R → R be such that f (x) = x2. Is f a homeomorphism on
R?

Exercise 1.6 The function f : (−1, 1) → R is defined by f (x) = x

1 − x2
. Is f a

homeomorphism on (−1, 1)?

Exercise 1.7 Let f :( − π

2
,
π

2

) → R be such that f (x) = tan x. Show that f is a

homeomorphism.

Exercise 1.8 Let f : R
2 → R

2 be such that φ(u, v) = (veu, u). Is φ a homeomor-
phism on R

2?

Exercise 1.9 Consider the mapping φ : R
3 → R

3 given by

φ(x1, x2, x3) = (x1 + 1, x2 + 2, x3 + 3).

Show that φ is a homeomorphism.
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Answers

1.5 No. 1.6 Yes. 1.8 Yes.

Remark 1.1 A homeomorphism between open subsets ofR
n andR

m, n �= m is not
possible. For details, refer to any book on topology.

A mapping f : U ⊂ R
n → V ⊂ R

n, U, V being open sets in R
n , is said to be dif-

feomorphism if

(i) f is a homeomorphism of U onto V and
(ii) f, f −1 are of class C∞.

Problem 1.6 Let f : R → R be such that f (x) = x3. Test whether f is a diffeo-
morphism or not.

Solution: We have shown in Example1.5 that f is a homeomorphism and f is of
class C∞. Now

f −1(x) = x
1
3 .

Such f −1 is not C1, as ( f −1(x))′ = 1
3 x

− 2
3 , which is not defined at x = 0. Thus f −1

is not of class C∞. Consequently, f is not a diffeomorphism.

Problem 1.7 Let f : R
2 → R

2 be such that f (u, v) = (uev + v, uev − v). Show
that f is a diffeomorphism.

Solution: Note that

|J | =
∣∣∣∣∣

∂ f 1

∂u
∂ f 1

∂v
∂ f 2

∂u
∂ f 2

∂v

∣∣∣∣∣ =
∣∣∣∣ e

v uev + 1
ev uev − 1

∣∣∣∣ = −2ev �= 0, ∀ v.

Hence, f is invertible. If

(ξ, η) = f (x1, x2), then ξ = x1ex
2 + x2, η = x1ex

2 − x2.

Thus ξ + η = 2x1ex
2
and ξ − η = 2x2. Consequently,

x2 = 1

2
(ξ − η) and x1 = 1

2
(ξ + η)e

1
2 (η−ξ).

We now define

f −1(ξ, η) =
(
1

2
(ξ + η)e

η−ξ

2 ,
1

2
(ξ − η)

)
.

Also, f, f −1 is continuous, hence homeomorphism. Also, both f, f −1 are of class
C∞. So f is diffeomorphism.

Problem 1.8 Let f : R
3 → R

3 be such that f (u, v, ω) = (ueω + veω, ueω − veω,

ω). Test whether f is a diffeomorphism or not at (1, 1, 0).
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Solution: Note that

|J | =
∣∣∣∣∣∣
eω eω veω + ueω

eω −eω −veω + ueω

0 0 1

∣∣∣∣∣∣ = −e2ω �= 0 at (1, 1, 0).

Thus, f is invertible at (1, 1, 0). Again, if (ξ, η, θ) = f (u, v, ω), then

ξ + η = 2ueω ⇒ u = 1

2
(ξ + η)e−ω

ξ − η = 2veω ⇒ v = 1

2
(ξ − η)e−ω

θ = ω.

We now define

f −1(ξ, η, θ) =
(

ξ + η

2
e−θ ,

ξ − η

2
e−θ , θ

)
.

Also f, f −1 is continuous, hence homeomorphism at (1, 1, 0). Also, both are of class
C∞. So f is diffeomorphism at (1, 1, 0).

Exercises

Exercise 1.10 Let f : (−π
2 , π

2

) → R be defined by f (x) = tan x. Show that f is a
diffeomorphism.

Exercise 1.11 Let φ : R
2 → R

2 be defined by φ(u, v) = (veu, u). Determine
whether φ is a diffeomorphism or not.

Exercise 1.12 Consider the map f : R
2 → R

2/{0, 0} defined by f (x, y) = (ex

sin y, ex cos y).

(i) Prove that Jacobian determinant of f does not vanish at any point of R
2.

(ii) Is f a diffeomorphism?

Exercise 1.13 Let φ : R
3 → R

3 be the map defined by

x1 = e2x
2 + e2x

3

x2 = e2x
1 − e2x

3

x3 = x1 − x2.

Show that φ is a diffeomorphism.

Exercise 1.14 Consider the C∞ function φ : R
3 → R

3 defined by

φ(x1, x2, x3) = (x1 cos x3 − x2 sin x3, x1 sin x3 + x2 cos x3, x3).

Prove that φ∣∣
S2

is a diffeomorphism from the unit sphere S2 onto itself.
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Exercise 1.15 Prove that the mapping φ : R
3 → R

3 given by f (u, v, w) = (u sinω

+ v cosω, u cosω − v sinω,ω) is a diffeomorphism.

Answers

1.11 diffeomorphism. 1.12 (ii) No, f is not one-to-one.

1.2 Tangent Vector

It is known that in R
3, any line, say any curve γ (t), through a point p ∈ R

3, parallel
to a non-zero vector v has equation of the form

γ (t) = p + tv, t being the parameter.

Thus, we can write

γ (t) = (p1 + tv1, p2 + tv2, p3 + tv3), p = (p1, p2, p3), v = (v1, v2, v3).

Hence, any point, on this curve, has the co-ordinate, say (x1, x2, x3), where

xi ≡ γ i (t) = (pi + tvi ), i = 1, 2, 3.

Thus, in R
n , the curve through p = (p1, p2, . . . , pn), parallel to the direction of the

non-zero vector v = (v1, v2, . . . , vn) is of the form

{
γ (t) = (p1 + tv1, p2 + tv2, . . . , pn + tvn), γ (0) = (p1, p2, . . . , pn) ≡ p ∈ R

n

xi ≡ γ i (t) = (pi + tvi ), i = 1, 2, 3, . . . , n, t being the parameter.
(1.4)

Let f be a C∞ function in a neighbourhood of p of R
n . Then the tangent vector

at p, in the direction of v, is defined to be the directional derivative, denoted by D
v
f ,

as follows:

D
v
f = lim

t→0

f (γ (t)) − f (γ (0))

t
= d

dt
f (γ (t))

∣∣∣
t=0

=
∑ ∂ f (γ (t))

∂γ i

∣∣
t=0

dγ i (t)

dt

∣∣t = 0

=
∑ ∂ f (p)

∂xi
vi , by (1.4).

D
v
f =

∑
vi ∂ f (p)

∂xi
. (1.5)

We also write

D
v
=

∑
vi ∂

∂xi
(p). (1.6)
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Fig. 1.1 Tangent plane

Thus, the directional derivative acts as an operator on functions (Fig. 1.1).

Remark 1.2 Note that in R
3, a vector at p, is a tangent vector, defined by v say, to

a surface S in R
3, if it lies on the tangent plane at p.

Thus, the tangent space at p of R
n , denoted by Tp (R

n), is the collection of all
tangent vectors v at p. Such a space is a vector space and hence from the Fundamen-
tal Theorem of finite-dimensional Vector Space, any v ∈ Tp (R

n) can be expressed

uniquely as v =
n∑

i=1

vi ei , ∀ vi ∈ R, where {e1 , e2 , . . . , en } is a basis of Tp (R
n).

Problem 1.9 Let v = (2, 3, 0) denote a vector in R
3. Find D

v
f , for a fixed point

p = (−2, π, 1) where f : R
3 → R is defined by f = x1x3 cos x2.

Solution: In this case, p + tv = (−2 + 2t, π + 3t, 1). Therefore, f (p + tv) =
2 cos 3t − 2t cos 3t . Hence,

D
v
f = d

dt
f (p + tv)∣∣

t=0

= −2.

Alternative Method

From (1.5), we obtain D
v
f =

∑
i

vi ∂ f

∂xi
(p). In this case

D
v
f = 2(x3 cos x2)(−2, π, 1) + 3(−x1x3 sin x2)(−2, π, 1)

= −2.

Problem 1.10 Let γ (t) =
(
sin 2t cos 2t
cos 2t − sin 2t

) (
x
y

)
be a curve in R

3 with initial

point p ∈ R
3 be such that γ (0) = p. Find the velocity vector γ ′(0) at p. Hence

compute D
v
f , where f : R

2 → R is defined by f = 2x + y3.

Solution: Note that

d

dt
γ (t)∣∣

t=0

= d

dt
(x sin 2t + y cos 2t, x cos 2t − y sin 2t)∣∣

t=0

= (2x,−2y).
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Thus, the velocity vector at p in R
2 is given by

2x
∂

∂x
− 2y

∂

∂y
.

Hence

D
v
f =

∑
i

vi ∂ f

∂xi
(p), where v = (2x,−2y)

is given by
D

v
f = 4x − 6y3.

Alternative Method

In this case

p + tv = (x, y) + t (2x,−2y) =(
(1 + 2t)x, (1 − 2t)y

)
.

Thus
f (p + tv) = 2(1 + 2t)x + (1 − 2t)3y3.

Consequently

D
v
f = d

dt
f (p + tv)|t=0 = 4x − 6y3.

Problem 1.11 Let p = (1, 1, 0) be a point in R
3 and let

γp (t) = (et , cos t, t), t ∈ R

be a curve with initial point p ∈ R
3. Find the velocity vector v in R

3 and hence
compute D

v
f , where f : R

3 → R is defined by f = xz cos y.

Solution: Here

d

dt
γp (t)

∣∣
t=0 = (et ,− sin t, 1)

∣∣
t=0 = (1, 0, 1) = v.

Thus the velocity vector at p in R
3 is given by

∂

∂x
+ ∂

∂z
.

Hence

D
v
f =

n∑
i=1

vi ∂ f

∂xi
(p) = cos 1. (1.7)
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Alternative

Here
p + tv = (1, 1, 0) + t (1, 0, 1) = (1 + t, 1, t).

Therefore,

D
v
f = d

dt
f (p + tv)|t=0 = (cos 1 + 2t cos 1)

∣∣
t=0 = cos 1.

Exercises

Exercise 1.16 Let v = (2,−3, 4) denote a vector in R
3. For a fixed point p =

(2, 5, 7), compute D
v
f where

(i) f : R
3 → R is defined by f = x3y.

(ii) f : R
3 → R is defined by f = z7.

(iii) f : R
3 → R is defined by f = ex cos z.

Exercise 1.17 Let p = (x, y) be a point in R
2 and let

γp (t) =
(
sin t cos t
cos t sin t

)(
x
y

)
, t ∈ R

be a curve with initial point p inR
2. Find the velocity vector v inR

2. Hence compute
D

v
f , where

(i) f : R
2 → R is defined by f = x2y.

(ii) f : R
2 → R is defined by f = ex cos y.

(iii) f : R
2 → R is defined by f = x cos y.

Exercise 1.18 Let p = (1, 0, 0) be a point in R
3 and let

γp (t) = (et , sin 2t, t), t ∈ R

be a curve with initial point p inR
3. Find the velocity vector v inR

2. Hence compute
D

v
f , where

(i) f : R
2 → R is defined by f = x3y.

(ii) f : R
2 → R is defined by f = xez.

(iii) f : R
2 → R is defined by f = yex cos z.

Answers

1.16 (i) 96 (ii) 4 · 77 (iii) 2e2(cos 7 − 2 sin 7)
1.17 (i) x2y (ii) ex (x cos y + y sin y) (iii) x cos y + xy sin y
1.18 (i) 2 (ii) 2 (iii) 2e
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1.3 Germ of a Function

Let us consider the set of all pairs ( f,U ) where f : U ⊂ R
n → R is a C∞ function

and U is the neighbourhood of a point p of R
n . If (g, V ) is another such pair, then

we define an equivalence relation in this way:
( f,U ) is equivalent to (g,U ), symbolically ( f,U ) ∼ (g, V ) if there exists an

open set W such that f = g∣∣
W

, where p ∈ W ⊂ U ∩ V . It can be shown that ‘∼’

is an equivalence relation. The equivalence class ( f,U ) is called the germ of f at
p ∈ U ⊂ R

n . We write it as F(p). It can be shown that such F(p) of R
n is

(i) an algebra over R.
(ii) a module over R,
where the defining relations are

⎧⎨
⎩

( f + g)(p) = f (p) + g(p),
( f g)(p) = f (p)g(p),
(λ f )(p) = λ f (p), ∀ f, g ∈ F(p), λ ∈ R.

(1.8)

The proof, of (i) and (ii) stated above, is beyond the scope of this book and hence it
is left to the reader.

From (1.5), we now observe that

D
v
( f g)(p) = (D

v
f )g(p) + f (p)(D

v
g). (1.9)

Such an equation is also known as Leibnitz Product Rule.

Problem 1.12 Let v = (x3,−yz, 0) denote a vector in R
3. For a fixed point p =

(x, y, z), compute D
v
( f g) where f : R

3 → R and g : R
3 → R are defined respec-

tively by f = xz and g = y2.

Solution: We know from (1.9) that

D
v
( f g)(p) = (D

v
f )g(p) + f (p)D

v
g. (1.10)

Now
p + tv = (x, y, z) + t (x3,−yz, 0) = (x + t x3, y − t yz, z).

Thus
f (p + tv) = (x + t x3)z = xz + t x3z.

Therefore



14 1 Calculus on R
n

D
v
f = d

dt
f (p + tv)

∣∣
t=0 = x3z,

g(p) = y2, f (p) = xz,

g(p + tv) = (y − t yz)2.

Therefore

D
v
g = d

dt
g(p + tv)

∣∣
t=0 = −2y2z.

Thus, from (1.10), we have

D
v
( f g)(p) = x3y2z − 2xy2z2.

Alternative

Here

D
v
f =

∑
vi ∂ f

∂xi
(p) = x3z.

Also

D
v
g =

∑
vi ∂g

∂xi
(p) = −2y2z.

Using (1.10), we get the desired result.

Problem 1.13 Compute D
v
( f g) where f : R

3 → R and g : R
3 → R are defined

respectively as f = xy2 − yz2, g = xey and v = (−1, 2, 1) denotes a vector in R
3,

for a fixed p = (2,−2, 1).

Solution: Here

p + tv = (2 − t,−2 + 2t, 1 + t)

f (p) = 10

f (p + tv) = (2 − t)(2t − 2)2 − 2(t − 1)(t + 1)2.

Now
d

dt
f (p + tv)

∣∣
t=0 = D

v
f = −18.

Again
g(p) = 2e−2, g(p + tv) = (2 − t)e2t−2.

So
d

dt
g(p + tv)

∣∣
t=0 = D

v
g = 3e−2.

Thus
D

v
( f g)(p) = −6e−2.



1.4 Inverse Function Theorem 15

Exercises

Exercise 1.19 For any constant function C, prove that D
v
C = 0.

Exercise 1.20 Let v = (x,−y) denote a vector in R
2. For a fixed point p = (x, y),

compute D
v
( f g) where f : R

2 → R and g : R
2 → R are defined respectively by:

(i) f = x2y and g = ex cos y
(ii) f = ex sin y and g = x cos y
(iii) f = xey and g = yex .

Exercise 1.21 Let v = (1,−2, 1) denote a vector in R
3. For a fixed point p =

(2,−2, 1), compute D
v
( f g), where f : R

3 → Rand g : R
3 → Rare defined respec-

tively by:

(i) f = x2yz and g = ex cos y
(ii) f = ex sin y and g = xz cos y

Answers

(1.19) Use (1.9) and R-linearity property.
(1.20) (i) (x2y cos y + x3y cos y + x2y2 sin y)ex . (ii) ex (x2 + x) sin y cos y −

ex xy cos 2y.
(iii) (x2y − xy2)ex+y .

(1.21) (i) 16e2(sin 2 − 2 cos 2). (ii) −e2(5 cos 2 sin 2 + 4 cos 4).

1.4 Inverse Function Theorem

Suppose U be some open subset of the Euclidean space R
n and the non-linear map-

ping F : U → R
n is continuously differentiable. Let x̃ ∈ U . Suppose that, at the

point the differential F
′
(x̃) : R

n → R
n is one-to-one and onto. This implies that the

non-linear map F inherits local invertibility in the vicinity of the point x̃ . Precisely,
we can say that ∃ an open subset V ofR

n such that x̃ ∈ V and an open subsetW ofR
n

satisfying F : V → W is one-to-one and onto. Also, the inverse F−1 is continuously
differentiable. This originates the notion of Inverse Function theorem.

Theorem 1.1 (Inverse Function Theorem of a single variable) Let U ⊆ R be open
and suppose that the function F : U → R is a continuously differentiable function.
Let a ∈ U such that f ′(a) �= 0. Then there exists an open interval I containing the
point a and an open interval J containing its image f (a) such that the function f :
I → J is one-to-one and onto. Moreover, the inverse function theorem f −1 : J → I
is also continuously differentiable, and for a point y in J , if x is a point in I at which
f (x) = y, then (Fig.1.2) (

f −1
)′
(y) = 1

f ′(x)
.
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Fig. 1.2 The inverse
function theorem of a single
variable

Proof Suppose f ′(a) > 0. Since a is an interior point of U and the function f ′ :
U → R is continuous, therefore ∃ a real quantity s > 0 such that the closed interval
[a − s, a + s] ⊂ U and f ′(x) > 0 for all points x ∈ [a − s, a + s]. By virtue of
the Mean value theorem, we can say that the function f : [a − s, a + s] → R is
strictly increasing. In particular, f : [a − s, a + s] → R is one-to-one. Furthermore,
taking into consideration the Intermediate Value Theorem, if the point y lies between
f (a − s) and f (a) + s, ∃ x ∈ (a − s, a + s)with f (x) = y. Let us define I = (a −
s, a + s) and J = ( f (a) − s, f (a) + s) = (b − s, b + s)where b = f (a). Then the
function f : I → J is one-to-one and onto.

For the concluding part of the theorem, it follows from the Intermediate Value
theorem that J is a neighbourhood of b. For y ∈ J , with y �= b define x ≡ f −1 so
that

f −1(y) − f −1(b)

y − b
= 1

f (x)− f (a)

x−a

.

Since the inverse function f −1 : J → R is continuous, therefore

lim
y→b

x ≡ lim
y→b

f −1(y) = f −1(b) ≡ a.

By the composition property for limits, the quotient property of limits, and the defi-
nition of the differentiability of f : I → J at a, it follows that

lim
y→b

f −1(y) − f −1(b)

y − b
= lim

y→b

1
f (x)− f (a)

x−a

= 1

f ′(a)
.

Thus f −1 is differentiable at b, and its derivative at b is given by
(
f −1

)′
(y) = 1

f ′(x) .

Theorem 1.2 (Inverse Function Theorem in the plane) Let U (⊆ R
2) open and sup-

pose that the mapping F : U → R
2 is continuously differentiable. Let (a, b) ∈ U
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Fig. 1.3 The inverse function theorem of double variables

such that the derivative matrix F
′
(a, b) be invertible. Then ∃ a neighbourhood V of

(a, b) and a neighbourhood W of its image F(a, b) such that F : V → W is one-
to-one and onto. Moreover, the inverse mapping F−1 : W → V is also continuously
differentiable, and for a point (u, v) ∈ W, if (x, y) ∈ V such that F(x, y) = (u, v),
then the derivative matrix of the inverse mapping at the point (u, v) is given by the
formula (Fig.1.3)

(F−1)
′
(u, v) = F

′
(x, y)−1.

Observe that in the proof of the last theorem, we used the Intermediate Value
Theorem, a result that does not easily generalize to mappings whose image lies in
the plane R

2. An n × n matrix is invertible if and only if its determinant is non-zero,
and when the matrix is invertible, there is a formula called Cramer’s Rule for the
inverse matrix. For 2 × 2 matrices, Cramer’s Rule is clear by inspection. Indeed,

for a 2 × 2 matrix A =
(
a11 a12

a21 a22

)
, if det A �= 0 then A−1 = 1

det A

(
a22 −a12

−a21 a11

)
. In

particular, for the mapping F : U → R
2 in the statement of the Inverse Function

Theorem in the Plane F
′
(a, b) holds if and only if det F

′
(a, b) �= 0. If the mapping

F : U → R
2 is represented in terms of component function as

F(x, y) = (F1(x, y), F2(x, y)), (x, y) ∈ U,

then

F
′
(x, y) =

⎛
⎝

∂F1
∂x (x, y)

∂F1
∂y (x, y)

∂F2
∂x (x, y)

∂F2
∂y (x, y)

⎞
⎠ .

So the assumption det F
′
(a, b) �= 0 is equivalent to

∂F1

∂x
(a, b)

∂F2

∂y
(a, b) − ∂F1

∂y
(a, b)

∂F2

∂x
(a, b) �= 0.
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The above explicit formula for the inverse of a 2 × 2 matrix permits us to use for-
mula (F−1)

′
(u, v) = F ′(x, y)−1 to compute the partial derivatives of the component

functions of the inverse mapping F−1 : W → V . Indeed, write the inverse mapping
in component functions as

F−1(u, v) = (g(u, v), h(u, v)), (u, v) ∈ W,

such that

(F−1)
′
(u, v) =

(
∂g
∂u (u, v)

∂g
∂v

(u, v)
∂h
∂u (u, v) ∂h

∂v
(u, v)

)
.

For a point (u, v) ∈ W , let (x, y) ∈ V at which u = F1(x, y), v = F2(x, y). For
notation, set J (x, y) ≡ F

′
(x, y). Then, using the above computation of the inverse

of a 2 × 2 matrix, it follows that formula F−1(u, v) = [F ′
(x, y)]−1 is equivalent to

∂g

∂u
(u, v) = 1

J (x, y)
· ∂F2

∂y
(x, y)

∂g

∂v
(u, v) = − 1

J (x, y)
· ∂F1

∂y
(x, y)

∂h

∂u
(u, v) = − 1

J (x, y)
· ∂F2

∂x
(x, y)

∂h

∂v
(u, v) = 1

J (x, y)
· ∂F1

∂x
(x, y).

Example 1.4 For a point (x, y) ∈ R
2, let us define

F(x, y) = (exp(x − y) + x2y + x(y − 1)5, 1 + x2 + x4 + (xy)5).

Since each of its component functions is continuously differentiable, therefore, the
mapping F : R

2 → R
2 is continuously differentiable. At the point (a, b) = (1, 1),

we have

F
′
(1, 1) =

(
3 0
11 5

)
.

The determinant of F
′
(1, 1) is non-zero. In view of the Inverse Function Theorem, ∃

neighbourhoods V of the (1, 1) and W of its image (2, 4) such that the mapping F :
U → V is one-to-one and onto and that the inverse mapping F−1 : V → U is also
continuously differentiable. Moreover, if the inverse is represented in components
as F−1(u, v) = (g(u, v), h(u, v)), then it follows that

∂g

∂u
(2, 4) = 1

3
,

∂g

∂v
(2, 4) = 0,

∂h

∂u
(2, 4) = −11

15
,

∂h

∂v
(2, 4) = 1

5
.
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Example 1.5 Let us define the function f : R
2 → R

2 by

f (x, y) = (cos(x2 + y), sin(x2 + y)), (x, y) ∈ R
2.

Then f is continuously differentiable as each component function is also so. But �

is any point at which the conclusion of the Inverse Function Theorem holds true. To
see this, observe that if (u, v) ∈ f (R2), then u2 + v2 = 1, a circle of radius 1 with
centre at the origin. The image does not contain an open subset of the plane, so �

any open sets U and V in R
2 such that f : U → V is one-to-one and onto.

Example 1.6 Define the function f : R
2 → R

2 by

f (x, y) = (x2 − y2, 2xy), (x, y) ∈ R
2.

Since each of its component function is obviously continuously differentiable, there-
fore, f is also so. Consider (a, b)( �= (0, 0)) ∈ R

2. We have

f
′
(a, b) =

(
2a −2b
2b 2a

)
,

so | f ′
(a, b)| = 4(a2 + b2) �= (0, 0). Applying Inverse Function Theorem, it follows

that there exist neighbourhoods U of (a, b) and V of f (a, b) such that the mapping
f : U → V is one-to-one and onto and has an inverse f −1 : V → U that also is
continuously differentiable. Suppose f −1(ã, b̃) = (g(ã, b̃), h(ã, b̃)). Then, if we set
(ã◦ , b̃◦) = f (a, b), it follows that

∂g

∂ ã
(ã◦ , b̃◦) = a

2(a2 + b2)
,

∂g

∂ b̃
(ã◦ , b̃◦) = b

2(a2 + b2)
∂h

∂ ã
(ã◦ , b̃◦) = −b

2(a2 + b2)
,

∂h

∂ b̃
(ã◦ , b̃◦) = a

2(a2 + b2)
.

But the assumptions of the Inverse Function Theorem fails to be true at the point
(0, 0), since

f
′
(0, 0) =

(
0 0
0 0

)
.

Moreover, Inverse Function Theorem also fails at this point because if f (x, y) =
f (−x,−y) holds for every (x, y) in the plane, � neighbourhood of (0, 0) on which
the mapping f is one-to-one.

Problem 1.14 The point (1, e) lies on the graph of y = xex . Find an open set con-
taining y = e, such that ∃ is a continuous function x = g(y) defined on it, for which
x = g(y) ⇒ y = xex and g(e) = 1.
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Solution: Since
dy

dx
= (1 + x)ex > 0 on (−1,∞), the given function is injective

when restricted to this interval and has range (−e−1,∞), which is an open subsetU
of R containing e. Therefore, there is a continuous inverse g with domain U .

An Interpretation of the Inverse Function Theorem

Given two functions F1 : R
2 → R and F2 : R

2 → R and two numbers a1 and a2 ,
consider the system of equations

F1(x, y) = a1; F2(x, y) = a2 .

Anatural question arises whether there exist any solutions to this system of equations
and, if there be any, then the solution is unique. Ifwedefine themapping F : R

2 → R
2

by F(x, y) =(
F1(x, y), F2(x, y)

)
for (x, y) ∈ R

2, these two questions about the
existence and uniqueness of the solutions of the system can be rephrased as questions
about the image of the mapping F : R

2 → R
2 and whether it has the property of

being one-to-one. The following example shows how the Inverse Function Theorem
provides information about systems of equations. Consider the system of equations

ex−y + x2y + x(y − 1)5 = 2; 1 + x2 + x4 + (xy)5 = 4.

Observe that the point (x, y) = (1, 1) is a solution of this system. The mapping
F : R

2 → R
2 defined by

F(x, y) =(
ex−y + x2y + x(y − 1)5, 1 + x2 + x4 + (xy)5

)
.

for (x, y) in R
2 is precisely the mapping considered in the Example1.4. Referring

to Example1.4, we can say that ∃ a δ > 0 and a neighbourhoodU of the point (1, 1)
such that for any numbers a1 and a2 with (a1 − 2)2 + (a2 − 4)2 < δ2, the system of
equations

ex−y + x2y + x(y − 1)5 = a1; 1 + x2 + x4 + (xy)5 = a2

has exactly one solution.
Now we are going to state General Inverse Function Theorem.

Theorem 1.3 (Inverse Function Theorem onR
n) LetU (⊆ R

n) be open and suppose
that the mapping F : U → R

n is continuously differentiable. Let x∗ ∈ U at which
the derivative matrix F

′
(x∗) is invertible. Then ∃ an open neighbourhood V of the

point x∗ and an open neighbourhood W of its image F(x∗) such that the mapping
F : V → W is one-to-one and onto. Moreover, the inverse mapping F−1 : W → V
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is also continuously differentiable, and for a point y ∈ W, if x is the point in V such
that F(x) = y, then

(F−1)
′
(y) = F

′
(F−1(y))−1.

Before we proceed with the proof of the Inverse Function Theorem for n-variables,
let us prove the following lemma:

Lemma 1.1 Suppose f : O(⊂ R
n) → R

m is differentiable in a convex open set O
and there exists M ∈ R such that | f ′

(x)| ≤ M, ∀ x ∈ O. Then

|| f (b) − f (a)|| ≤ M ||b − a||, ∀ a, b ∈ O.

Proof Let us fix a, b in O and define γ : R → R
n, ∀ t ∈ R. Since O is convex,

γ (t) ∈ E provided t ∈ [0, 1]. Let us set g(t) = ( f ◦ γ )(t). Then

g
′
(t) = f

′
(γ (t))γ

′
(t) = f

′
(γ (t))(b − a),

which implies

|g′
(t)| ≤ ∣∣ f ′

(γ (t))
∣∣||b − a|| ≤ M ||b − a||, ∀ t ∈ [0, 1].

This completes the proof of the lemma.

Proof of the Main Theorem:
Since F

′
is continuous at x∗ , therefore, for a preassigned ε > 0 there exists an open

neighbourhood V ⊂ U of x∗ such that

x ∈ V ⇒ |F ′
(x) − F

′
(x∗)| < ε. (1.11)

Let us choose ε = 1

2

1

|F ′
(x∗)

−1| . Then the preceding equation becomes

|F ′
(x) − F

′
(x∗)| <

1

|F ′
(x∗)

−1| ⇒ |F ′
(x∗)

−1| · |F ′
(x) − F

′
(x∗)| <

1

2
. (1.12)

Then we see that for x ∈ V , F
′
(x) is invertible. Now, for any y ∈ R

n , let us define a
function ψy : V → R

n by

ψy (x) = x + F
′
(x∗)−1

(
y − F(x)

) = F
′
(x∗)−1

(
F

′
(x∗) + y − F(x)

)
. (1.13)

Then
x is a fixed point of ψy ⇔ y = F(x). (1.14)
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Fig. 1.4 Inverse function theorem on R
n

Now as a consequence of the chain rule the composition function ψy has

ψ
′
y
(x) = F

′
(x∗)−1

(
F

′
(x∗) − F

′
(x)

)
.

Combining (1.12) with the last equation, we obtain

|ψ ′
y
(x)| <

1

2
, x ∈ V . (1.15)

Hence, by virtue of Lemma1.1, it follows that

||ψy (x1) − ψy (x2))|| ≤ ||x1 − x2 ||, ∀ x1 , x2 ∈ V . (1.16)

Thus, ψy has at most one fixed point in V so that by (1.15), F(x) = y holds for at
most one x ∈ V . This proves F is injective on V .

Next, consider F(V ) = W . Then F : V → W is an injective map. Therefore,
there exists an inversemap F−1 : W → V as illustrated in the figure below (Fig. 1.4):

In order to complete the proof of the first part of the theorem, it only remains to
show W is open. Choose w◦ ∈ W be arbitrary. Then for some x◦ ∈ V , F(x◦) = w◦ .
Let ε > 0 be sufficiently small enough such that ||x − x◦ || ≤ ε ⇒ x◦ ∈ V , so that

B
ε
(x◦) = {x ∈ R

n : ||x − x◦ || ≤ ε} ⊂ V .

To show W is open, it suffices to show that

y ∈ R
n, ||y − w◦ || <

ε

2|F ′
(x∗)

−1| ⇒ y ∈ W.

In order to prove this, suppose ||y − w◦ || < ε

2|F ′
(x∗ )−1| . Then for any x ∈ B

ε
(x◦), we

find
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||ψy (x) − x◦ || ≤ ||ψy (x) − ψy (x◦)|| + ||ψy (x◦) − x◦ ||
≤ 1

2
||x − x◦ || + ||F ′

(x∗)
−1(y − F(x◦))||, by (1.13), (1.16)

≤ ε

2
+ |F ′

(x∗)
−1| ||y − w◦ ||

≤ ε

2
+ |F ′

(x∗)
−1| ε

2|F ′
(x∗)

−1|
≤ ε,

which proves ψy (x) ∈ B
ε
(x◦). Consequently, by virtue of (1.16), ψy : B

ε
(x◦) →

B
ε
(x◦) is a contraction map, where B

ε
(x◦) is closed inR

n . We can invoke contraction
principle in R

n , to conclude that ψy has a unique fixed point in B
ε
(x◦) ⊂ V . Thus,

by (1.14), we have y ∈ F(B
ε
(x◦)) ⊂ F(V ) = W . This completes the argument that

W is open.
Furthermore, for any ε > 0

||y − w◦ || <
ε

2|F ′
(x∗)

−1| , y ∈ W ⇒ y ∈ F(B
ε
(x◦))

⇒ y = F(x) for some x ∈ B
ε
(x◦)

⇒ F−1(y) = B
ε
(x◦)

⇒ ||F−1(y) − x◦ || ≤ ε,

which proves the continuity of the inverse map F−1.
To prove the second part of the theorem, let us proceed as follows:
Here for sufficiently small h, we have

F
(
F−1(y) + h

) − F(F−1(y)) = F
′
(F−1(y))(h) + ||h||R(h), (1.17)

where R(h) being the remainder term and R(h) → 0 as ||h|| → 0. Note that,
F−1(y) ∈ V ⇒ F

′
(F−1(y)) is invertible. Since F−1 is continuous, therefore, for

sufficiently small k, suppose h = F−1(y + k) − F−1(y). Then for every such k, we
find

F
(
F−1(y + k)

) − F(F−1(y)) = F
′
(F−1(y))(h) + ||h||R(h).

Applying F
′
(F−1(y))−1 to both sides of the last equality, we get

h = F
′
(F−1(y))−1(k) − ||h||F ′

(F−1(y))−1(R(h)), (1.18)

which is the same as

F−1(y + k) − F−1(y) = F
′
(F−1(y))−1(k) − ||h||F ′

(F−1(y))−1(R(h)).
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We claim the existence of (F−1)
′
(y) and (F−1)

′
(y) = F

′
(F−1(y)). For this, it suf-

fices to show that

||h||
||k|| F

′
(F−1(y))(R(h)) → 0 as ||k|| → 0.

By continuity of F−1, we have ||k|| → 0 ⇒ ||h|| → 0. So it is sufficient to prove
||h||
||k|| remains bounded. Now (1.18) yields

||h|| ≤ |F ′
(F−1(y))| ||k|| + ||h|| |F ′

(F−1(y))| ||R(h)||,

which further implies

||h||
||k||

(
1 − |F ′

(F−1(y))| ||R(h)||) ≤ |F ′
(F−1(y))|.

Since ||h|| → 0 ⇒ R(h) → 0, it follows that
||h||
||k|| remains bounded. Thus, for every

y ∈ W , we prove the existence of (F−1)
′
(y) and (F−1)

′
(y) = F

′
(F−1(y)). Further-

more, the equality shows that (F−1)
′
is the composition of F−1, F

′
and the inversion

maps. All these are continuous, and therefore, (F−1)
′
is continuous. This establishes

the last part of the theorem.

Remark 1.3 1. In summary, F is locally invertible at x∗ with a continuously dif-
ferentiable local inverse or F has a continuously differentiable local inverse
at x∗. The term local inverse here refers to the function F−1.

2. In the proof of the above theorem, we have used the notion norm of a linear
mapping and the Contraction Principle. For details, the reader may refer to
any standard book on Linear Algebra and Multivariable Analysis.

3. Thebenefit behindusing the contractionprinciple in the proof of InverseFunction
Theorem is that, it can be extended to the condition when R

n is replaced by an
infinite-dimensional space. Alternatively, it is possible to prove the theorem
using the compactness of a closed ball in R

n , where the above benefit fails to be
true.

Problem 1.15 Let U and V be open subsets of R
n and let F : U → V be contin-

uously differentiable and bijective, so that the inverse map F−1 : V → U exists.
Suppose F

′
(x) is invertible for every x ∈ U. Show that (F−1)

′
exists on the entire

given set V .

Solution: Let q ∈ V . Then q = F(p) for some p ∈ U . Since F
′
(p) is invertible,

in view of the inverse function theorem ∃ open sets U1 ⊂ U and V1 ⊂ R
n such that

p ∈ U1 and F(U1) = V1 and F has a differentiable local inverse on V1 . But then
q = F(p) ∈ V1 and the local inverse is, therefore, differentiable at q. However, F

−1

has to agree with the local inverse, and therefore, differentiable at q.
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Problem 1.16 If F : E → R
n is a continuously differentiable mapping of an open

set E ⊂ R
n and if f

′
(x) is invertible for every x ∈ E, then prove that f is an open

mapping of E into Rn.

Solution: Let U ⊂ E be open and b ∈ F(U ). Then q = F(p) for some p ∈ U .
Since F

′
(p) is invertible, the inverse function theorem yields open sets U1 ⊂ U

and V ⊂ R
n such that p ∈ U1 and f (U1) = V . But then F(p) ∈ V ⊂ f (U ). Since

q = F(p) and V is open, implies f (U ) is open.

Remark 1.4 Here f : E → R
n is an open mapping means that f maps every open

subset of E into an open subset of Rn .

Problem 1.17 Let U be an open subset ofRn and let f : U → R
n be a continuously

differentiable map such that f
′
(x) is invertible for every x ∈ U. Suppose V is an

open subset of U such that its closure V̄ is bounded and contained in U, and f is
injective on the closure. Show that the image f (V̄ ) is the closure of an open set.

Solution: It is trivial to show that f (V̄ ) ⊂ f (V ). To prove the reverse inclusion,
consider any y ∈ f (V ). Then ∃ a sequence xn in V such that f (xn ) → y. Since
V̄ is bounded (hence compact), xn → x(∈ V̄ ) when xn is replaced by a suitable
subsequence. Since f is continuous, it follows that f (xn ) → f (x), so that y = f (x).
Since x ∈ V̄ , we have y ∈ f (V̄ ). So f (V ) ⊂ f (V̄ ), and hence f (V ) = f (V̄ ). By
virtue of the last problem, note that the set f (V ), of which f (V ) is the closure, is an
open set.

Exercises

Exercise 1.22 Define the function F : P → R
2, where P = {(x1 , x2) ∈ R

2 : x1 �=
0}, by

y1 = F1(x1 , x2) = x1 cos x2 , y2 = F2(x1 , x2) = x1 sin x2 , x1 �= 0.

At what points (x1 , x2) ∈ P does the Inverse Function Theorem apply?

Exercise 1.23 Consider the equation
x2

8
+ y2

8
= 1, (x, y) ∈ R

2.

(i) Explicitly define the function g : I → R that has the property that in the neigh-
bourhood of the solution (2, 3), all the solutions are of the form (x, g(x)) for
x ∈ I and check that

(ii) Explicitly define the function h : J → R that has the property that in a neigh-
bourhood of the solution (2, 3), all the solutions are of the form (h(y), y) for y
in J .

Exercise 1.24 Let f : R → R such that f (x, y) = (x2 + y, 2x + y2). Find f
′
and

determine the values of (x, y) for which f is NOT invertible. Given that f is invertible
at (0, 0), let g be its inverse. Find g

′
(0, 0).
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1.5 Implicit Function Theorem

LetU be an open subset of the planeR
2 and f : U → R is continuously differentiable

function. In general, the solution set of the equation is not the graph of a function
expressing y as a function of x . Hence, the solution set is a very complicated subset of

the plane. However, if the point (a, b) is a solution of this equation and
∂ f

∂y
(a, b) �= 0,

then ∃ a neighbourhood of the point (a, b) with the property that the solutions of the
above equation that are in this neighbourhood make up the graph of a continuously
differentiable function g : I → R, where I is an open interval about a. Moreover,
the derivative of the implicitly defined function g : I → R can be computed in terms
of the partial derivatives of the function f : U → R. This concept is called Dini’s
Theorem. It has an extension, called the General Implicit Function Theorem, that
provides a similar local description of the set of solutions of an equation of the
form F(u) = 0, u ∈ U , whereU is an open subset of Euclidean space R

n+k and the
mapping F : U → R

n+k is continuously differentiable.

Theorem 1.4 (Dini’s Theorem) Let U ⊆ R
2 be open. Suppose that the function

f : U → R is continuously differentiable. Let (a, b) ∈ U such that f (a, b) = 0 and
∂ f

∂y
(a, b) �= 0. Then ∃ a positive real quantity r and a continuously differentiable

function g : I → R, where I ≡ (a − r, a + r) such that

f (x, g(x)) = 0, ∀ x ∈ I (1.19)

and

whenever |x − a| < r, |y − b| < r and f (a, b) = 0, then y = g(x). (1.20)

Moreover,
∂ f

∂x
(x, g(x)) + ∂ f

∂y
(x, g(x))g′(x) = 0, ∀x ∈ I. (1.21)

Proof Suppose
∂ f

∂y
(a, b) > 0. Since U is open and the function

∂ f

∂y
: U → R is

continuous and positive at the point (a, b), ∃ positive numbers m and n such that
the rectangular region R = [a − m, a + m] × [b − m, b + m] ⊂ U and

∂ f

∂y
(x, y) ≥ n ∀ (x, y) ∈ R. (1.22)

With the aid of the Mean Value Theorem for real-valued functions, if |x − a| ≤
m & b − m ≤ y1 < y2 ≤ b + m holds, then

f (x, y1) < f (x, y2). (1.23)
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In particular, f (a, b) = 0 ⇒ f (a, b − m) < 0 < f (a, b + m). Since f : U → R is
continuously differentiable, therefore, f is continuous. Then ∃ a positive real quantity
r(< m) such that

f (x, b − m) < 0 < f (x, b + m), ∀ x ∈ I ≡ (a − r, a + r).

Let x ∈ I . Since f (x, b − m) < 0 and f (x, b + m) > 0, by virtue of the Intermedi-
ate Value Theorem, ∃ y ∈ (b − m, b + m) at which f (x, y) = 0, and (1.23) implies
that ∃ only one such point, say g(x). This defines a function g : I → R having
properties (1.19) and (1.20).

Our claim: g : I → R is continuously differentiable and that the differentiation
formula (1.21) holds at the point a. Indeed, let a + h ∈ I . Then by definition, f (a +
h, g(a + h)) = 0 and f (a, g(a)) = 0. Hence, f (a + h, g(a + h)) − f (a, g(a)) =
0. Considering the Mean Value Theorem for scalar functions of two real variables,
∃ some points on the segment between the points (a, g(a)) and (a + h, g(a + h)),
which we label q(h), at which

f (a + h, g(a + h)) − f (a, g(a)) = ∂ f

∂x
(q(h))h + ∂ f

∂y
(q(h))[g(a + h) − g(a)].

This implies,
∂ f

∂x
(q(h))h + ∂ f

∂y
(q(h))[g(a + h) − g(a)] = 0.

Thus

g(a + h) − g(a) = −
∂ f
∂x (q(h))

∂ f
∂y (q(h))

h. (1.24)

Since the function
∂ f

∂x
: I → R is continuous and the closed square R is a sequentially

compact subset of the planeR
2, the ExtremeValue Theorem guarantees the existence

of a positive number M , such that, for every (x, y) ∈ R

∂ f

∂x
(x, y) ≥ M.

Combining the inequality (1.22) with the foregoing one, it follows from (1.24) that

|g(a + h) − g(a)| ≤ M

n
|h|, a + h ∈ I.

Hence, the function g : I → R is continuous at the point a. Since the point q(h) lies
on the segment between the points (a, g(a)) and (a + h, g(a + h)), we conclude
that

lim
h→0

q(h) = (a, b).
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Fig. 1.5 Implicit Function Theorem

Dividing (1.24) by h and using the continuity of the first-order partial derivatives of
f : U → R at the point (a, b), it follows that

lim
h→0

g(a + h) − g(a)

h
= −

∂ f
∂x (a, b)
∂ f
∂y (a, b)

,

which means that g is differentiable at a and formula (1.21) holds at a. But any other
point x ∈ I satisfies the same assumptions as does the point a, and hence (1.21)
holds at all points in I (Fig. 1.5).

Example 1.7 Let us consider the equation
x2

16
+ y2

25
= 1, (x, y) ∈ R

2. The set of

solutions of the given equation consists of points in R
2 lying on an ellipse with (0, 0)

as its centre. Let us begin with the solution (0, 5). Then for any r lying between 0
and 4, define an interval I = (−r, r) and define the function G : I → R by G(x) =
5

√
1 − x2

42
, x ∈ I . Then there exists a neighbourhood of (0, 5) having the property

that the set of solutions of the given equation in this neighbourhood consists of points
of the form (x,G(x)), ∀ x ∈ I .

Next, let us consider the second component of (0, 5). Here, it is not possible to
find a neighbourhood J of 5, a function H : J → R, and a neighbourhood of (0, 5)
in which the set of solutions of the given equation consists of the points of the form
(H(y), y), ∀ y ∈ J . At every other vertices of the ellipse, it is possible to find a
neighbourhood of the vertex in which the set of solutions of the given equation has
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a similar description. On the other hand, at (a, b) that is not a vertex of the ellipse, is
a neighbourhood of (a, b) the set of solutions of the given equation determines both
x as a function y and vice-versa.

Example 1.8 Consider the equation

cos(x + y) + exp(y + x2) + 3x + (xy)5 − 2 = 0, (x, y) ∈ R
2. (1.25)

Let us define

f (x, y) = cos(x + y) + exp(y + x2) + 3x + (xy)5 − 2.

Then (x, y) is a solution of (1.25) if and only if f (x, y) = 0. Note that (0, 0) is a
solution of (1.25) and that

∂ f

∂x
(0, 0) = 3,

∂ f

∂y
(0, 0) = 1.

Here f is a continuously differentiable function. So taking advantage of Dini’s
Theorem, we find a positive number r and a continuously differentiable function
g : I → R, where I is the open interval (−r, r), such that

cos(x + g(x)) + expg(x)+x2 +3x + x5(g(x))5 − 2 = 0, ∀ x ∈ I.

Moreover, if (x, y) is a solution of (1.25) with |x | < r and |y| < r , then y = g(x).
Finally, g′(0) is determined by the formula

∂ f

∂x
(0, 0) + ∂ f

∂y
(0, 0)g′(0) = 0 ⇒ g′(0) = −3.

Example 1.9 Let us consider the equation x2 − y2 = 0, (x, y) ∈ R
2. The set of

solutions of the given equation consists of points in R
2 lie on the line x = y or

x = −y. At each solution (a, b) �= (0, 0) of the given equation, there exists a neigh-
bourhood of (a, b) in which the set of solutions of the given equation determines
both x as a function of y and vice-versa. The origin (0, 0) is a solution of the given
equation, but � any neighbourhood of the origin in which the set of solutions coin-
cides with the graph of a function expressing one of the components of (x, y) as a
function of the other one.
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Problem 1.18 Show that the system of equations

3x1 + x2 − x3 − u3 = 0

x1 − x2 + 2x3 + u = 0

2x1 + 2x2 − 3x3 + 2u = 0,

cannot be solved for x1 , x2 , x3 in terms of u.

Solution: Let

f (x1 , x2 , x3 , u) = 3x1 + x2 − x3 − u3

g(x1 , x2 , x3 , u) = x1 − x2 + 2x3 + u

h(x1 , x2 , x3 , u) = 2x1 + 2x2 − 3x3 + 2u.

Then,

� =

∣∣∣∣∣∣∣∣∣

∂ f
∂x1

∂ f
∂x2

∂ f
∂u

∂g
∂x1

∂g
∂x2

∂g
∂u

∂h
∂x1

∂h
∂x2

∂h
∂u

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
3 1 −3u2

1 −1 1

2 2 2

∣∣∣∣∣∣∣
= −12 − 12u2,

which can never be 0. If there were to exist a solution for x1 , x2 , x3 valid on some
interval (inwhich u varies), then the fact that (2x1 + 2x2 − 3x3) = (3x1 + x2 − x3) −
(x1 − x2 + 2x3) would imply that −2u = u3 + u on that interval, which is impossi-
ble.

Implicit Function Theorem on R
n

Letm and n be positive integers. SupposeU be an open subset of R
m+n , and and that

the mapping F : U → R
m+n is continuously differentiable. Consider the equation

F(u) = 0, u ∈ U.

In the case where m = 1 and n = 1, we already considered this equation in Dini’s
Theorem. The object of this theorem is to state the General Implicit Function
Theorem, an extension of Dini’s Theorem to more general equations of the form
F(u) = 0, u ∈ U . In order to emphasize the analogy between the general case and
the casewherem = 1 and n = 1, it is useful to introduce the following notation: For a
point u ∈ R

m+n , we separate the firstm components of u from the last n components
and label them as follows:

u = (x, y) = (x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ), (x, y) ∈ U.
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If the mapping F : U → R
n is written in terms of its component functions, F =

(F1 , F2 , . . . , Fn ), this equation, in turn, can be expressed as the following system of
n non-linear scalar equations in m + n scalar unknowns:

F1(x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ) = 0

...

Fi (x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ) = 0

...

Fn (x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ) = 0.

where (x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ), (x, y) ∈ U .
Now we are in a position to state the General Implicit Function Theorem, a direct

generalization of Dini’s Theorem.

Statement 1.1 Implicit Function Theorem on R
n: Let m and n be positive inte-

gers. Suppose U be an open subset of R
n+m(≡ R

n × R
m) and that the mapping

F : U → R
n is continuously differentiable. At the point (x0 , y0) ∈ U, suppose that

F(x0 , y0) = 0. Let T1 : R
n → R

n and T2 : R
m → R

n be two linear maps defined by

T1(h1) = F
′
(x0 , y0)(h1 , 0), T2(h2) = F

′
(x0 , y0)(0, h2);

so that F
′
(x0 , y0)(h1 , h2) = T1(h1) + T2(h2) for all h1 ∈ R

n, h2 ∈ R
m. Suppose T1

is invertible. Then

(a) there exists open sets V1 ⊂ U, V2 ⊂ R
m with (x0 , y0) ∈ V1 , y0 ∈ V2 and a

unique map G : V2 → R
n such that

(G(y), y) ∈ V1 , F(G(y), y) = 0 ∀ y ∈ V2;

(b) for every (x, y) ∈ V1 such that F(x, y) = 0, we have y ∈ V2 and x = G(y);
(c) furthermore, G is continuously differentiable and G(y◦) = x◦ , G

′
(x0 , y0) =

−T−1
1

T2 .

Proof (a) Let us define a map f : U → R
n+m by f (x, y) = (F(x, y), y). Then f

is differentiable on U and

f
′
(x, y)(h1 , h2) = (F

′
(x, y)(h1 , h2), ∀ (h1 , h2) ∈ R

n+m .

This implies f is continuously differentiable and it follows that

f
′
(x0 , y0)(h1 , h2) = (T1(h1) + T2(h2), h2), (h1 , h2) ∈ R

n+m .
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Since T1 is invertible, therefore

f
′
(x0 , y0 )(h1 , h2 ) = 0 ⇒ (T1(h1) + T2 (h2 ), h2 ) = 0 ⇒ T1(h1) + T2 (h2 ) = 0, h2 = 0

⇒ T1(h1) = 0, h2 = 0

⇒ h1 = 0, h2 = 0.

This shows f
′
(x0 , y0) is injective and so is also surjective, hence invertible. So

by the virtue of Inverse Function Theorem, there exists open sets V1 ⊂ U, V3 ⊂
R

n+m such that (x0 , y0) ∈ V1 , f : V1 → V3 is injective and the inversemap f −1 :
V3 → V1 is continuously differentiable. Moreover,

f (x0 , y0) = (F(x0 , y0), y◦) = (0, y◦).

So (0, y◦) ∈ V3 . Suppose V2 = {y ∈ R
m : (0, y) ∈ V3}. Then y◦ ∈ V2 and V2 is

open. For any y ∈ V2 , we have (0, y) ∈ V3 and hence there exists (x, z) ∈ V1 such
that f (x, z) = (0, y). But f (x, z) = (F(x, z), z). Therefore, (F(x, z), z) =
(0, y), so that y = z and F(x, y) = 0. If F(x̃, y) = 0 with (x̃, y) ∈ V1 , then
(F(x̃, y), y) = (0, y), i.e.,

F(x̃, y) = (0, y) = f (x, y).

But f is injective on V1 . So x̃ = x . Hence, there exists a unique x for which
F(x, y) = 0 and (x, y) ∈ V1 . Taking x as G(y), (a) is established.

(b) Let (x, y) ∈ V1 and F(x, y) = 0. Then f (x, y) ∈ V3 . But f (x, y)=(F(x, y), y)
and F(x, y) = 0. This means (0, y) ∈ V3 , so that y ∈ V2 . By definition of G
above, G(y) is the unique η such that F(η, y) = 0 and (η, y) ∈ V1 . This implies
x = η = G(y)

(c) Since F(x0 , y0) = 0, (x0 , y0) ∈ V1 and y◦ ∈ V2 , therefore, G(y0) = x0 . Now, for
any y ∈ V2 , we have F(G(y), y) = 0 by (a), so that f (G(y), y) = (0, y), from
which it follows that (G(y), y) = f −1(0, y). Thus, G is the composition of the
maps

y �→ (0, y), (x, y) �→ f −1(x, y), (x, y) �→ x,

where the first and third are linear maps, while the second is continuously dif-
ferentiable. It follows thatG is continuously differentiable. Since F(G(y), y) =
0 ∀ y ∈ V2 , the mapping y �→ F(G(y), y) must have derivative 0 everywhere.
On the other hand, we find that the derivative of the mapping y �→ F(G(y), y)
at y◦ maps h2 ∈ R

m into

F
′
(G(y◦), y◦)(G

′
(y◦), y◦) = F

′
(x0 , y0)(G

′
(y◦)h2 , h2), because G(y◦ = x◦)

= T1G
′
(y◦)h2 + T2h2 , by hypothesis.

Since F
′
(G(y◦), y◦) = 0, thenG

′
(y◦)h2 = −T−1

1
T2h2 for all h2 ∈ R

m . This com-
pletes the proof of (c).
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Remark 1.5 The implicit function theorem above provides a sufficient condition in
order that a continuous solution G of F(x, y) = 0 for x in terms of y satisfying the
requirement that G(y◦) = x◦ should exist and be unique. However, our theorem does
not explicitly mention the word solution.

Example 1.10 Consider the system of equations

ln(7 + x2
2

+ x2
3
) + x1x3 + ex1+x4 + 7 = 0,

x3
1
exp{cos(x2

2
+ x2

4
)} + x1 + 2x4 + (x2 + x1 + x4)

4 = 0,

where (x1 , x2 , x3 , x4) ∈ R
4. Note that the point (0, 0, 0, 0) is a solution of this system

of equations. For a point (x1 , x2 , x3 , x4) ∈ R
4, let us define

F(x1 , x2 , x3 , x4) = (
ln(7 + x2

2
+ x2

3
) + x1x3 + ex1+x4 + 7, x3

1
exp{cos(x2

2
+ x2

4
)}

+x1 + 2x4 + (x2 + x1 + x4)
4
)
.

Here F(x1 , x2 , x3 , x4) = (F1(x1 , x2 , x3 , x4), F2(x1 , x2 , x3 , x4)), where

F1(x1 , x2 , x3 , x4) ≡ ln(7 + x2
2

+ x2
3
) + x1x3 + ex1+x4 + 7 = 0,

F2(x1 , x2 , x3 , x4) ≡ x3
1
exp{cos(x2

2
+ x2

4
)} + x1 + 2x4 + (x2 + x1 + x4)

4) = 0.

Then the mapping F : R
4 → R

2 is continuously differentiable, as F1 and F2 is also
so, and that its derivative matrix at the point 0 = (0, 0, 0, 0) is

F
′
(0) =

(
1 0 0 1
1 0 0 2

)
.

Thus, the 2 × 2 matrix

( ∂F1
∂x1

(0, 0, 0, 0)
∂F1
∂x4

(0, 0, 0, 0)
∂F2
∂x1

(0, 0, 0, 0)
∂F2
∂x4

(0, 0, 0, 0)

)
=

(
1 1
1 2

)
,

is invertible. We apply the Implicit Function Theorem to choose a positive number
r and continuously differentiable functions g : B → R and h : B → R, where B =
Br (0, 0), such that if x2

2
+ x2

3
< r2, then (g(x2 , x3), x2 , x3 , h(x2 , x3)) is a solution

of the given system of equations. Moreover, if the point (x1 , x2 , x3 , x4) ∈ R
4 is a

solution of the given system of equations and if x2
1

+ x2
4

< r2 and x2
2

+ x2
3

< r2,
then x1 = g(x2 , x3) and x4 = h(x2 , x3).
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Exercises

Exercise 1.25 Consider the equation

exp{x − 2 + (y − 1)2 − 1} = 0.

Show that Dini’s Theorem applies at the solution (2, 1). Explicitly define the function
g : I → R that has the property that in a neighbourhood of the solution (2, 1), all
the solutions are of the form (x, g(x) for x ∈ I and check that formula (1.21) holds
for the derivative g′ : I → R.

Exercise 1.26 Consider the given system of equations:

(x2 + y2 + z2)3 − x + z = 0, cos(x2 + y4) + ez − 2 = 0.

Use the Implicit Function Theorem to analyze the solutions of the given systems of
equations near the solution 0.

Exercise 1.27 For ex
2 + y2 + z − 4xy3 − 1 = 0, use the Implicit Function Theo-

rem to analyze the solutions of the given systems of equations near the solution 0.



Chapter 2
Manifold Theory

2.1 Topological Manifold

Curves and surfaces are the fundamental concepts of studying geometry in a 3-
dimensional space. The quest for studying these two concepts in a space of higher
dimension yields the concept of manifold theory.

A locally Euclidean space of dimension n is a topological space such that every
point of this space has a neighbourhood homeomorphic to an open subset of R

n .
A topological manifold M of dimension n, denoted by Mn , is a Hausdorff, second

countable, locally Euclidean space of dimension n (Fig. 2.1).
Thus, for each p ∈ M , there exists a neighbourhood U of M and a homeomor-

phism φ of U onto an open subset φ(U ) of R
n . The pair (U,φ) is called a chart.

Each such chart (U,φ) on M induces a set of n-real-valued functions on U defined
by

xi = ui ◦ φ, i = 1, 2, 3, . . . , n (2.1)

where ui ’s are defined by (1.1). The functions (x1, x2, . . . , xn) are called the coor-
dinate functions or a coordinate system on U and U is called the domain of the
coordinate system. The chart (U,φ) is sometimes called an n-coordinate chart.
From (2.1), one obtains

xi (p) = φi (p), by (1.1).

Thus one can write
φ(p) = (

x1(p), x2(p), . . . , xn(p)
)
. (2.2)

Let (V,ψ) be another chart of p of M such that p ∈ U ∩ V .
Let (y1, y2, . . . , yn) be a local coordinate system on V such that

yi = ui ◦ ψ, i = 1, 2, 3, . . . , n (2.3)

ψ(p) = (
y1(p), y2(p), . . . , yn(p)

)
. (2.4)
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Fig. 2.1 Locally Euclidean
space of dimension n

Example 2.1 R
n is a topological manifold covered by a single chart (Rn, IRn )where

I is the identity map.

Example 2.2 Every open subset U of R
n is a topological manifold with chart

(U, IU ).

Example 2.3 Every discrete topological space M is a 0-dimensional topological
manifold, the charts being given by the pair ({p},φp ) where p �→ 0, p ∈ M .

Example 2.4 Let f : R
3 → R

3 be defined by f (x, y, z)=(x, x2 + y2 + z2 − 1, z),
|J | = 2y. By virtue of Inverse Function Theorem, f is a local diffeomorphism at
p = (x, y, z) if and only if y �= 0. Thus, the function f can serve as a local coordinate
system at any point p not on the x-axis and z-axis.

Remark 2.1 (i) A 1-dimensional manifold is locally homeomorphic to open inter-
val.

(ii) A 2-dimensional manifold is locally homeomorphic to open disc.

Remark 2.2 A topological manifold is

(i) locally connected
(ii) locally compact
(iii) normal and metrizable.

For proof, refer to any standard textbooks on general topology.

Problem 2.1 Does the map f : R → R defined by f (x) = x2 form a chart?

Solution: 1 Note that f : R → R defined by f (x) = x2 is not a homeomorphism
on R (refer to Exercise 1.5). Thus, the given map does not form a chart.

Problem 2.2 Consider the open subsets U and V of the unit circle S1 of R
2 given

by

U = {(cosα, sinα) : α ∈ (0, 2π)}, V = {(cosα, sinα) : α ∈ (−π,π)}

and themapsφ : U → R defined byφ(cosα, sinα) = α, α ∈ (0, 2π) andψ : V →
R defined by ψ(cosα, sinα) = α, α ∈ (−π,π). Prove that (U,φ) and (V,ψ) are
charts on R

2.
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Fig. 2.2 Overlap region

Solution: 2 Note that the two maps φ and ψ are homeomorphisms onto the open
subsets (0, 2π) and (−π,π) of R, respectively. Consequently, (U,φ) and (V,ψ) are
charts on R

2.

Problem 2.3 Prove that the graph y = x
2
3 in R

2 is a topological manifold.

Solution: 3 The graph is a subspace of R
2 and hence it is Hausdorff and second

countable. Also (x, x
2
3 ) → x , so it is homeomorphic toR. Consequently, it is locally

Euclidean. Hence, the graph y = x
2
3 in R

2 is a topological manifold.

Problem 2.4 Find the functional relation between the two local coordinate systems
defined in the overlap region of a topological manifold.

Solution: 4 Let (U,φ) and (V,ψ) be two charts of a point p ∈ U ∩ V of a topo-
logical manifold M (Fig. 2.2).

Let φ(p) = q ∈ R
n, q ∈ φ(U ∩ V ). Suppose g : φ(U ∩ V ) → ψ(U ∩ V ) is

defined by
g(q) = (ψ ◦ φ−1)(q). (2.5)

Then

g(q) = g(φ(p)) = (ψ ◦ φ−1)(φ(p)), by (2.5)

i.e. g(q) = ψ(p)

or ui
(
g(φ(p))

) = ui (ψ(p))

or gi (φ(p)) = yi (p) by (1.1), (2.3)

or gi (x1(p), x2(p), . . . , xn(p)) = yi (p)

i.e. yi = gi (x1, x2, . . . , xn).

Problem 2.5 Give an example of a non-Hausdorff locally Euclidean space.

Solution: 5 Let A ⊂ R
2 be such that

A = U
⋃

{(0, 1)},
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where U = {(x, 0)|x ∈ R}. Let U1 = U \ {(0, 0)} ∪ {(0, 1)}. We define φ : U → R

by φ(x, 0) = x and ψ : U1 → R by

ψ(x, 1) =
{
0, x = 0
x, x �= 0.

Both φ and ψ are well-defined onU andU1 , respectively. Also φ and ψ are injective
maps in R and U

⋃
U1 = A. So, (U,φ) and (U1 ,ψ) are charts and hence it is a

locally Euclidean space.

Let V1 be an open neighbourhood of (0, 0) and V2 be an open neighbourhood of
(0, 1) in A. Then bothφ(U

⋂
V1) andψ(U1

⋂
V2) are open subsets ofR containing 0.

So ∃ a �= 0 such that a ∈ φ(U
⋂

V1)
⋂

ψ(U1

⋂
V2), which implies (a, 0) ∈ V1

⋂
V2 .

Hence the topology of A is non-Hausdorff. Thus A fails to form a topological man-
ifold.

Problem 2.6 Consider the cone C = {(x, y, z) ∈ R
3 : x2 + y2 = z2} with the sub-

space topology as induced by the usual one of R
3. Prove that C is not a topological

manifold.

Solution: 6 Our claim is that the spaceC is not a locally Euclidean space. It suffices
to show that the point (0, 0, 0) ∈ C does not have a neighbourhood homeomorphic
to an open subset of R

2 (Fig. 2.3).
Let U be an open neighbourhood of (0, 0, 0) in C . Let φ : U → V be a home-

omorphism between U and an open subset V of R
2. Then for some sufficiently

small r > 0, ∃ an open disc Br (φ(0, 0, 0)) with φ(0, 0, 0) as its centre such that
Br (φ(0, 0, 0)) ⊂ V . Now the punctured disc Br (φ(0, 0, 0)) \ {φ(0, 0, 0)} is con-
nected. But U \ {(0, 0, 0)} is not connected. In fact,

U \ {(0, 0, 0)} = U1

⋃
U2 ,

where
U1 = {(x, y, z) ∈ U : z > 0}, U2 = {(x, y, z) ∈ U : z < 0}.

So, U1

⋂
U2 = φ and U1 ,U2 are open in C . Hence, U can be expressed as a disjoint

union of two non-empty open subsets of C . Thus C is not a locally Euclidean space.

Problem 2.7 Show that the cross in R
2 with the subspace topology cannot be a

topological manifold.

Solution: 7 Our claim is to prove that the cross is not locally Euclidean at the
intersection q (Fig. 2.4).

If possible, let us assume that the cross is locally Euclidean of dimension n at
the point q. Then ∃ a homeomorphism φ : V → Br (0, 0, 0, . . . , 0), where V is an
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Fig. 2.3 Double cone

Fig. 2.4 Cross(i)

open neighbourhood of q and Br (0, 0, 0, . . . , 0) ⊂ R
n is an open ball with centre

(0, 0, 0, . . . , 0) and radius r (sufficiently small enough). Here we assume φ(q) =
(0, 0, 0, 0, . . . , 0). The homeomorphism ψ : V \ {q} → Br (0, 0, 0, . . . , 0) \ (0, 0,
0, . . . , 0) acts as a restriction map to a homeomorphism φ. Now, if n ≥ 2 then

Br (0, 0, 0, . . . , 0) \ (0, 0, 0, . . . , 0)

is connected, and if n = 1 then it has two connected components (Fig. 2.5).
Since V \ {q} has four connected components, there � any homeomorphism from

V \ {q} to Br (0, 0, 0, . . . , 0) \ {(0, 0, 0, . . . , 0)}. This contradiction proves that the
cross is not locally Euclidean at q.
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Fig. 2.5 Cross(ii)

Exercises

Exercise 2.1 Does themap f : R → Rdefinedby f (x) = x2k, k ∈ N, forma chart?

Exercise 2.2 Find all points in R
2, in a neighbourhood of which the function f :

R
2 → R

2 defined by f (x1, x2) = (x21 + x22 − 1, x2) can serve as a local coordinate
system.

Exercise 2.3 Consider Exercise 1.12 of Sect. 1.1. Can f be taken as a local coor-
dinate map?

Exercise 2.4 As defined by (2.5), h : ψ(U ∩ V ) → φ(U ∩ V ) is defined by

h(r) = (φ ◦ ψ−1)(r), r ∈ ψ(U ∩ V ). (2.6)

Show that the functional relation between the two local coordinate systems defined
in the overlap region of a topological manifold is given by

xi = hi (y1, y2, . . . , yn).

Exercise 2.5 Let X = S1
⋃

S2 where

S1 = {(x1, x2) ∈ R
2 : (x1 − 1)2 + x22 = 1}, S2 = {(x1, x2) ∈ R

2 : (x1 + 1)2 + x22 = 1}.

Suppose X inherits the topology from R
2. Is X a topological manifold?

Answers
2.1. Yes. 2.2. Not on the y-axis. 2.3. Yes. 2.5. No.

2.2 Smooth Germs on a Topological Manifold

Let us begin with a definition:
Let M be an n-dimensional topological manifold. Let f : M → R be any func-

tion. Let p ∈ M . If, for every admissible coordinate chart (U,φ) of M satisfying
p ∈ U, ( f ◦ φ−1) : φ(U ) → R is C∞ at the point φ(p) ∈ R

n , then we say that f is
C∞ at p in M .



2.2 Smooth Germs on a Topological Manifold 41

Remark 2.3 Note that, if f is C∞ at p in M , then f is continuous at p.

Theorem 2.1 Let M be an n-dimensional topological manifold. Let f : M → R be
any function with p ∈ M. If there exists an admissible coordinate chart (U,φ) of M
at p ∈ U such that ( f ◦ φ−1) : φ(U ) → R is C∞ at φ(p), then f is C∞ at p.

Proof Let (V,ψ) be any admissible coordinate chart of M with p ∈ V . Our claim
is that ( f ◦ ψ−1) : φ(V ) → R is C∞ at ψ(p). Here

f ◦ ψ−1 = f ◦ (φ−1 ◦ φ) ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1)

is C∞ at ψ(p) as ( f ◦ φ−1) and (φ ◦ ψ−1) are C∞ at φ(p) and ψ(p), respectively.
This completes the proof.

LetM be ann-dimensional topologicalmanifold. Let f : M → Rbe any function.
By f is C∞ at p in M (or f is smooth on M), we mean that f is C∞ at every point
p ∈ M . The set of all smooth functions f : M → R on M is denoted by C∞(M).

Remark 2.4 Note that, if f is C∞ at M , then f is continuous.

LetM and N be respectively n- andm-dimensional topological manifolds. Let f :
M → N be any continuous function. Let p ∈ M . If, for every admissible coordinate
chart (U,φ) of M satisfying p ∈ U and (V,ψ) of N with F(p) ∈ V , the mapping

ψ ◦ ( f ◦ φ−1) : φ(U ∩ f −1(V )) → ψ(V )

is C∞ at φ(p), then f is C∞ at p.

Exercise

Exercise 2.6 Let M and N be respectively n- and m-dimensional topological man-
ifolds. Let f : M → N be any continuous function. Let p ∈ M. If there exists an
admissible coordinate chart (U,φ) of M at p ∈ U and (V,ψ) of N with f (p) ∈ V ,
the mapping

ψ ◦ ( f ◦ φ−1) : φ(U ∩ f −1(V )) → ψ(V )

is C∞ at φ(p), then f is C∞ at p.

Let M be an n-dimensional topological manifold, and N be an m-dimensional
topological manifold. If there exists a function f : M → R such that f is a diffeo-
morphism from M onto N , then we say that the manifolds M and N are isomorphic
(or diffeomorphic).
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Let M be an n-dimensional topological manifold. Let p ∈ M . By C∞
p

(M) (or
simply C∞

p
), we mean the collection of all real-valued functions f whose Dom f is

an open neighbourhood of p ∈ M , and for every admissible coordinate chart U,φ
of M satisfying p ∈ U ,

( f ◦ φ−1) : φ(Dom f ∩U ) → R

is C∞ at the point φ(p) ∈ R
n . Observe that if f ∈ C∞

p
(M), then f is continuous on

some open neighbourhood of p.
Let M be an n-dimensional topological manifold. For every f, g ∈ C∞(M), we

define ( f + g) : M → R as follows: for every x ∈ M ,

( f + g)(x) = f (x) + g(x).

For every f ∈ C∞(M), and for every real t , we define t f : M → R as follows: for
every x ∈ M ,

(t f )(x) = t f (x).

Remark 2.5 It is clear that the setC∞(M), together with vector addition, and scalar
multiplication defined as above, constitutes a real linear space.

For every f, g ∈ C∞(M), we define ( f · g) : M → R as follows: for every x ∈
M ,

( f · g)(x) = f (x)g(x).

Remark 2.6 It is easy to see that C∞(M) is an algebra.

Let M be an n-dimensional topological manifold. Let p ∈ M . Let γ1 and γ2 be,
in �p (M), set of all parametrized curves in M through p. Then the relation ‘≺’on
�p (M) is defined as follows: by γ1 ≺ γ2 , we mean that for any admissible coordinate
chart (U,φ) of M at p ∈ U ,

(φ ◦ γ1)
′
(0) = (φ ◦ γ2)

′
(0).

Proposition 2.1 Let M be an n-dimensional topological manifold. Let p ∈ M. Let
γ1 and γ2 be in �p (M). If there exists an admissible coordinate chart (U,φ) of M at
p ∈ U such that (φ ◦ γ1)

′
(0) = (φ ◦ γ2)

′
(0), then γ1 ≺ γ2 .

Proof Let us take any admissible coordinate chart (ψ, V ) of M satisfying p ∈ V .
Our claim is (ψ ◦ γ1)

′
(0) = (ψ ◦ γ2)

′
(0). Now
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(ψ ◦ γ1)
′
(0) = (

(ψ ◦ φ−1) ◦ (φ ◦ γ1)
)′
(0)

= (
(ψ ◦ φ−1)

′
(φ ◦ γ1)(0)

)(
(φ ◦ γ1)

′
(0)

)

= (
(ψ ◦ φ−1)

′
(φ ◦ γ1)(0)

)(
(φ ◦ γ2)

′
(0)

)

= (
(ψ ◦ φ−1)

′
(φ(p)

)(
(φ ◦ γ2)

′
(0)

)
, where γ1(0) = p

= (
(ψ ◦ φ−1)

′
(φ ◦ γ2)(0)

)(
(φ ◦ γ2)

′
(0)

)

= (
(ψ ◦ φ−1◦) ◦ (φ ◦ γ2)

)′

= (
ψ ◦ (φ−1 ◦ φ) ◦ γ2

)′
(0)

= (ψ ◦ γ2)
′
(0).

Problem 2.8 Let M be an n-dimensional topological manifold. Let p ∈ M . Then,
the relation ‘≺’ on �p (M) is an equivalence relation.

Solution: 8 • Reflexive: Since M be an n-dimensional topological manifold and
p ∈ M , there exists an admissible coordinate chart (U,φ) of M such that p ∈ U .
Since (φ ◦ γ)

′
(0) = (φ ◦ γ)

′
(0), then γ ≺ γ.

• Symmetric: Let γ1 ≺ γ2 hold. Let us take an admissible coordinate chart (U,φ)

of M such that p ∈ U . Since γ1 ≺ γ2 , then (φ ◦ γ1)
′
(0) = (φ ◦ γ2)

′
(0) implies

γ2 ≺ γ1 .
• Transitive: Let γ1 ≺ γ2 and γ2 ≺ γ3 holds. We are to prove γ1 ≺ γ3 . Let us take an
admissible coordinate chart (U,φ) of M such that p ∈ U . Since γ1 ≺ γ2 , therefore
(φ ◦ γ1)

′
(0) = (φ ◦ γ2)

′
(0). Also for γ2 ≺ γ3 , we have (φ ◦ γ2)

′
(0) = (φ ◦ γ3)

′
(0).

Combining the last two relations, we obtain (φ ◦ γ1)
′
(0) = (φ ◦ γ3)

′
(0) implies

γ1 ≺ γ3 .

Remark 2.7 Let M be an n-dimensional topological manifold. Let p ∈ M . By the
last proposition, the quotient set�p (M)/ ≺ is the collection of all equivalence classes
[γ], where γ ∈ �p (M). Thus,

�p (M)/ ≺= {[γ] : γ ∈ �p (M)}

where
[γ] = {γi ∈ �p (M) : γ ≺ γi }.

LetM be an n-dimensional topologicalmanifold. Let p ∈ M . Let us define a function
φ∗ : �p (M)/ ≺→ R

n by
φ∗([γ]) = (φ ◦ γ)

′
(0).

Here φ∗ is well-defined.

Problem 2.9 LetM be an n-dimensional topologicalmanifold. Let p ∈ M . Suppose
(U,φ) is any admissible coordinate chart of M such that p ∈ U . Then φ∗ as defined
above is bijective.
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Solution: 9 Injectivity: Let [γ1] ∈ �p (M)/ ≺ and [γ2 ] ∈ �p (M)/ ≺, where γ1 , γ2 ∈
�p (M). Suppose φ∗([γ1]) = φ∗([γ2 ]). We are to prove [γ1] = [γ2 ], i.e. γ1 ≺ γ2 . Now

φ∗([γ1 ]) = φ∗([γ2 ]) ⇒ (φ ◦ γ1)
′
(0) = (φ ◦ γ2)

′
(0) ⇒ γ1 ≺ γ2 , by Proposition 2.1.

Surjectivity: Let q ∈ R
n . We are to find γ ∈ �p (M) such that

φ∗ ([γ]) = (φ ◦ γ)
′
(0) = lim

t→0

(φ ◦ γ)(t) − (φ ◦ γ)(0)

t
= lim

t→0

φ(γ(t)) − φ(γ(0))

t
= lim

t→0

φ(γ(t)) − φ(p)

t
= q.

Let us define a function γ1 : (−1, 1) → R
n by γ1(t) = tq + φ(p). Set

γ = φ−1 ◦ γ1 .

Then γ(0) = p holds. Here γ1 is continuous on (−1, 1). Since (U,φ) is a coordinate
chart of M , φ−1 is 1 − 1, onto and continuous at φ(U ), which is an open subset of
R

n . Since p ∈ U,φ(p) ∈ φ(U ). Also φ−1 is continuous at γ1(0) = φ(p) ∈ φ(U ).
Moreover, φ(U ) forms an open neighbourhood of γ1(0). Since γ1 is continuous,
φ(U ) being an open neighbourhood of γ1(0) ∃ δ > 0 with δ < 1 and for every
t ∈ (−δ, δ), we have γ1(t) ∈ φ(U ). Hence, γ(t) = (φ−1 ◦ γ1)(t) = φ−1(γ1(t)) ∈ U .
Since γ(t) ∈ U for every t ∈ (−δ, δ), it implies that γ is defined on (−δ, δ) for some
δ > 0. Now for every t ∈ (−δ, δ),

γ(t) = (φ−1 ◦ γ1)(t) = φ−1(tq + φ(p)) ∈ U,

this shows that γ maps from (−δ, δ) to U . Furthermore, γ1 is C∞ at every t ∈
(−δ, δ),φ ◦ γ is C∞ at every t and (U,φ) being an admissible coordinate chart of
M such that γ(t) ∈ U , by virtue of Exercise 2.6, γ is C∞ at every t ∈ (−δ, δ). Thus
γ ∈ �p (M).

Finally,

lim
t→0

φ(γ(t)) − φ(p)

t
= lim

t→0

φ(φ−1 ◦ γ1 (t)) − φ(p)

t
= lim

t→0

φ(γ1 (t)) − φ(p)

t
= lim

t→0

φ(tq + φ(p)) − φ(p)

t
= q.

This completes the proof.

Since φ∗ is 1 − 1 and onto, φ−1
∗ exists and is also 1 − 1 and onto. Let us define a

binary composition ⊕ and external composition � on �p (M)/ ≺ as follows.
For every [γ1], [γ2 ] ∈ �p (M)/ ≺, where γ1 , γ2 ∈ �p (M)/ ≺,

[γ1] ⊕ [γ2 ] = φ−1
∗ (φ∗([γ1]) + φ∗([γ2 ])),

and
t � [γ1] = φ−1

∗ (t (φ∗(γ1))), ∀ t ∈ R.
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Fig. 2.6 Germ

Remark 2.8 The quotient set (�p (M)/ ≺,⊕,�) forms a real linear space.

Remark 2.9 Since�p (M)/ ≺ is a real linear space,φ∗ is 1 − 1 and onto,φ∗ is linear,
i.e.

φ∗([γ1 ] ⊕ (t � [γ2 ])) = φ∗([γ1]) + t φ∗([γ2 ]),

φ∗ is an isomorphismbetween�p (M)/ ≺ andR
n .Hence thedimensionof (�p (M)/ ≺

is n. The set �p (M)/ ≺ is denoted by Tp (M) (Fig. 2.6).

Problem 2.10 Let M be an n-dimensional topological manifold and p ∈ M . Let �
be a relation on C∞

p (M) defined as follows: for every f, g ∈ C∞
p (M), by f � g we

mean that there exists an open neighbourhood V of p such that f (x) = g(x) for
every x ∈ V . Then � is an equivalence relation over C∞

p (M).

Solution: 10 Reflexivity: Left to the reader.
Surjectivity: Left to the reader.
Transitivity: Let f � g and g � h hold where f, g, h ∈ C∞

p (M). Since f � g,
from the definition of �, there exists an open neighbourhood V of p such that
f (x) = g(x) for every x ∈ V . By similar reason, for g � h, there exists an open
neighbourhoodW of p such that g(x) = h(x) for every x ∈ W . Since V,W are open
neighbourhoods of p ∈ M , therefore V ∩ W is an open neighbourhood of p ∈ M .
Also f (x) = h(x) for every x ∈ V ∩ W . Hence f � h holds.

Remark 2.10 The quotient set C∞
p (M)/ �, of all equivalence classes, is denoted

by Fp (M). Thus
Fp (M) = {[ f ] : f ∈ C∞

p (M)},

where
[ f ] = {g : g ∈ C∞

p (M), g � f }

is a C∞-germ at p on M . So, the members of Fp (M) are called C∞-germs at p on
M .
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Let M be an n-dimensional topological manifold and p ∈ M . For every f, g ∈
C∞

p (M), we define ( f + g) : Dom f ∩ Dom g → R as follows: for every x ∈
Dom f ∩ Dom g,

( f + g)(x) = f (x) + g(x).

For every f, g ∈ C∞
p (M), we define f · g : Dom f ∩ Dom g → R as follows: for

every x ∈ Dom f ∩ Dom g,

( f · g)(x) = f (x)g(x).

Remark 2.11 Let M be an n-dimensional topological manifold and p ∈ M . Let
f, g ∈ C∞

p (M). Then f + g, f · g : Dom f ∩ Dom g → R, is in C∞
p (M). Also for

any t ∈ R,
t f : Dom f → R is in C∞

p (M).

Let M be an n-dimensional topological manifold and p ∈ M . For every f, g ∈
C∞

p (M) and t ∈ R, we define

[ f ] + [g] = [ f + g], t[ f ] = [t f ], [ f ][g] = [ f · g].

Remark 2.12 Fp (M) forms a real linear space. Also, Fp (M) forms an algebra.

Remark 2.13 LetM be ann-dimensional topologicalmanifold and p ∈ M . If f, g ∈
C∞

p (M), then ( f + g) ∈ C∞
p (M).

Remark 2.14 LetM be ann-dimensional topologicalmanifold and p ∈ M . If f, g ∈
C∞

p (M), then ( f · g) ∈ C∞
p (M).

Remark 2.15 Let M be an n-dimensional topological manifold and p ∈ M . If f ∈
C∞

p (M) and t ∈ R, then t f ∈ C∞
p (M).

Problem 2.11 Let M be an n-dimensional topological manifold and p ∈ M . Let
γ ∈ �p (M). Let [ f ] ∈ Fp (M), where f ∈ C∞

p (M). Then

lim
t→0

( f ◦ γ)(0 + t) − ( f ◦ γ)(0)

t

exists.

Solution: 11 Since γ ∈ �p (M), it follows from the definition of �p (M) that ∃ δ >

0 such that γ : (−δ, δ) → M , γ(0) = p and γ is a smooth map on (−δ, δ), and
so is continuous on (−δ, δ). Here, the function f : Dom f → R is in ∈ C∞

p (M),
where Dom f is an open neighbourhood of p ∈ M , so f is continuous on some
open neighbourhoodU (⊆ Dom f ) of p. Since γ(0) = p and p ∈ Dom f , therefore
0 ∈ Dom ( f ◦ γ). Moreover, as γ is continuous with γ(0) = p andU being an open
neighbourhood of p,∃ ε > 0 such that ε < δ and for every t ∈ (−ε, ε), we haveγ(t) ∈
U (⊆ Dom f ), and hence ( f ◦ γ)(t) = f (γ(t)) ∈ R. This implies that (−ε, ε) ⊆
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Dom ( f ◦ γ). Hence 0 is an interior point of f ◦ γ. Here, φ ◦ γ : (−δ, δ) → R
n is

C∞ at the point 0 in R and ( f ◦ φ−1) : φ(Dom f ∩U ) → R is C∞ at the point
(φ ◦ γ)(0) in R

n . So the composite function f ◦ γ is C∞ at the point 0 in R. Hence,
d( f ◦ γ)(t)

dt

∣∣
t=0
, i.e. lim

t→0

( f ◦ γ)(0 + t) − ( f ◦ γ)(0)

t
exists.

So the following definition is well defined:
Let M be an n-dimensional topological manifold and p ∈ M . Let γ ∈ �p (M).

Let [ f ] ∈ Fp (M), where f ∈ C∞
p (M). Then

lim
t→0

( f ◦ γ)(0 + t) − ( f ◦ γ)(0)

t

exists, and is denoted by < γ, [ f ] >. Thus

< γ, [ f ] >≡ lim
t→0

( f ◦ γ)(0 + t) − ( f ◦ γ)(t)

t
,

i.e.

< γ, [ f ] >≡ d( f ◦ γ)(t)

dt

∣∣
t=0

.

Theorem 2.2 Let M be an n-dimensional topological manifold and p ∈ M. Let
γ ∈ �p (M). Suppose [ f ], [g] ∈ Fp (M), where f, g ∈ C∞

p (M). Then

1. < γ, [ f ] + [g] >=< γ, [ f ] > + < γ, [g] >

2. < γ, c[ f ] >= c < γ, [ f ] >, where c ∈ R.

In other words, <,> is linear in the second variable.

Proof 1. Here,

< γ, [ f ] + [g] > = <γ, [ f + g] >= lim
t→0

(( f + g) ◦ γ)(0 + t) − (( f + g) ◦ γ)(0)

t

= lim
t→0

( f + g)(γ)(t) − ( f + g)(γ)(0)

t

= lim
t→0

{( f (γ)(t)) − ( f (γ)(0))} + {(g(γ)(t)) − (g(γ)(0))}
t

= lim
t→0

{( f (γ)(t)) − ( f (γ)(0))}
t

+ {(g(γ)(t)) − (g(γ)(0))}
t

= lim
t→0

{( f (γ)(0 + t)) − ( f (γ)(0))}
t

+ {(g(γ)(0 + t)) − (g(γ)(0))}
t

= <γ, [ f ] > + < γ, [g] > .

2. Left to the reader.
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Theorem 2.3 Let M be an n-dimensional topological manifold and p ∈ M. Let γ ∈
�p (M). Suppose [ f ], [g] ∈ Fp (M), where f, g ∈ C∞

p (M). Further, suppose [γ] ∈
Tp (M), where γ ∈ �p (M). Then

1. [γ]([ f ] + [g]) = [γ]([ f ]) + [γ]([g]).
2. [γ]([t f ]) = t ([γ]([ f ]), where t ∈ R.
3. [γ]([ f ][g]) = ([γ][ f ])(g(p)) + f (p)([γ][g]).
Proof 1. Left to the reader.
2. Left to the reader.
3. Here

[γ]([ f ][g]) = [γ]([ f · g]) = d(( f · g) ◦ γ)(t)

dt

∣∣
t=0

= d(( f · g)(γ(t)))

dt

∣∣
t=0

= d( f (γ(t)) · g(γ(t)))

dt

∣∣
t=0

= d(( f ◦ γ)(t) · (g ◦ γ)(t))

dt

∣∣
t=0

= d( f ◦ γ)(t)

dt

∣
∣
t=0

(g ◦ γ)(0) + ( f ◦ γ)(0)
d(g ◦ γ)(t)

dt

∣
∣
t=0

= ([γ][ f ])g(γ(0)) + f (γ(0))([γ][g])
= ([γ][ f ])(g(p)) + f (p)([γ][g]).

2.3 Smooth Manifold

We are now going to introduce a differentiable structure on a topological manifold.
For this, let us at first introduce compatible charts or C∞-related charts.

Two charts (U,φ) and (V,ψ) on a topological manifold M are said to be C∞-
compatible or C∞-related if

⎧
⎪⎪⎨

⎪⎪⎩

either U ∩ V = φ, or;
U ∩ V �= φ, and the
transition maps φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ), and
ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) are of class C∞.

(2.7)

In short, we say compatible. These two maps are called the transition functions
between the charts. IfU ∩ V = φ, then the two charts are obviouslyC∞-compatible.

Problem 2.12 Prove that the compatibility of charts is not an equivalence relation.

Solution: 12 Let (U,φ), (V,ψ) and (W,ϕ) be three charts on a topological mani-
fold.
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(i) Here, (U,φ) is C∞-compatible to itself as φ ◦ φ−1 = I is C∞. Hence compat-
ibility of charts is reflexive.

(ii) Let us assume that the chart (U,φ) is C∞-compatible to (V,ψ). Then by (2.7),
we have

(∗)

{
φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) and
ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

are of class C∞, where p ∈ U ∩ V . To prove (V,ψ) is C∞-compatible to
(U,φ), we have to show

{
ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) and
φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V )

are of class C∞, which follows from (∗). Consequently, the compatibility of
charts is symmetric.

(iii) Let us assume that the chart (U,φ) is C∞-compatible to (V,ψ) and that the
chart (V,ψ) is C∞-compatible to (W,ϕ). To prove the compatibility of charts
is transitive, we need to show (U,φ) is C∞-compatible to (W,ϕ).
Since (V,ψ) is C∞-compatible to (W,ϕ), therefore

(∗∗)

{
ψ ◦ ϕ−1 : ϕ(V ∩ W ) → φ(V ∩ W ) and
ϕ ◦ ψ−1 : ψ(V ∩ W ) → ϕ(V ∩ W )

are of class C∞.
Note that

φ ◦ ϕ−1 = (φ ◦ ψ−1) ◦ (ψ ◦ ϕ−1) and ϕ ◦ φ−1 = (ϕ ◦ ψ−1) ◦ (ψ ◦ φ−1).

Now for any p ∈ U ∩ V ∩ W , we have φ ◦ ϕ−1 and ϕ ◦ φ−1 are C∞ on ϕ(U ∩
V ∩ W ) and φ(U ∩ V ∩ W ), respectively. But, in particular, if we consider
any p ∈ (U ∩ W ) \ (U ∩ V ∩ W ) then φ ◦ ϕ−1 and ϕ ◦ φ−1 fails to be C∞ on
ϕ(U ∩ W ) and φ(U ∩ W ), respectively. Hence compatibility of charts is not
transitive.

This proves C∞-compatibility of charts is not an equivalence relation (Fig. 2.7).

An atlas on a topological manifold M is a collection of pairwise C∞-compatible
charts {(Uα,φα) : α ∈ I } such that

⎧
⎨

⎩

(i)
⋃

α∈I
Uα = M

(i i) φα ◦ φ−1
β or φβ ◦ φ−1

α is C∞ on φβ(Uα ∩Uβ) or on φα(Uα ∩Uβ).

(2.8)
A differential structure on M is an atlas A which is maximal, i.e. if (U,φ)

is another chart such that φ ◦ φ−1
α and φα ◦ φ−1 respectively on φα(U ∩Uα) and

φ(U ∩Uα) are of class C∞, then (U,φ) ∈ A.
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Fig. 2.7 ϕ ◦ φ−1 is C∞ on φ(U ∩ V ∩ W )

A smooth manifold or a differentiable manifold of class C∞ of dimension n is
a pair (M, A) where M is a topological manifold of dimension n and A is an atlas.

Proposition 2.2 Let A be an atlas on a smooth manifold M. Then, there is a unique
differential structure � on M such that A ⊂ �.

Proof Let � be the set of all charts on M which are C∞-related to every chart of A.
Then clearly, A ⊂ �.

If � is an atlas, by definition, it is maximal and has a differential structure. We
are now going to prove the uniqueness of such �.

If possible, let�′ be another differential structure on M with the desired property.
Then A ⊂ �′ ⊂ �, by definition of �. But by the maximality of �′,�′ = �.

Now, let (U,φ) and (V,ψ) be any two charts of�.Wewish to show that φ ◦ ψ−1 :
ψ(U ∩ V ) → φ(U ∩ V ) is of classC∞. For this, let x ∈ ψ(U ∩ V ) and (Ui ,φi ) ∈ �

be such that ψ−1(x) ∈ Ui . Now

φ ◦ φ−1
i : φi (U ∩Ui ) → R

n and

φi ◦ ψ−1 : ψ(Ui ∩ V ) → R
n

are of class C∞.
LetW be an open neighbourhood of x such thatW ⊂ φ(U ∩ V ∩Ui ). Now onW ,

φ ◦ ψ−1 = φ ◦ φ−1
i ◦ φi ◦ ψ−1 is of classC∞, as a composition of twoC∞-functions

is also so. This completes the proof.

Remark 2.16 Now, itmust be clear that to introduce differential structure, one needs
to find a chart or a coordinate map. We proceed as follows.

Let f i : i = 1, 2, 3, . . . , n be n-real-valued C∞ functions defined on M . Let the
set { f i } be non-vanishing Jacobian at p ∈ M . Then by Inverse Function Theo-
rem, there exists a neighbourhood V of p and a neighbourhood U of

(
f i (p) : i =



2.3 Smooth Manifold 51

1, 2, 3, . . . , n
)
such that f = ( f 1, f 2, . . . , f n) mapping V into U in 1 − 1 manner

has an C∞-inverse. Let it be denoted by φ−1. Then (V,φ) is the desired chart.
Consider f : R

2 → R
2 defined by f (x, y) = (x2 + 3y2, xy). Thus

f 1(x, y) = x2 + 3y2, f 2(x, y) = xy.

Therefore

|J | =
∣
∣∣∣
2x 6y
y x

∣
∣∣∣ = 2x2 − 6y2 �= 0, if and only if x ± √

3y �= 0.

Consequently, for all other points ofR2, we canfind a neighbourhoodV of p = (x, y)
and the neighbourhood U of ( f 1, f 2) which is mapped by φ−1 to V . Thus (V,φ) is
a chart.

Example 2.5 R
n is a smooth manifold with respect to the atlas {(U,φ)} where

U = R
n and φ is the identity map.

Example 2.6 Any open subset W of a smooth manifold Mn is a smooth manifold
of the same dimension. For, if {(Uα,φα)} is an atlas of M , then

{
Uα ∩ W, φα

∣∣
Uα∩W

}

is an atlas for W where
φα

∣∣
Uα∩W : Uα ∩ W → R

n

is of class C∞.

Remark 2.17 Any chart is said to be compatible with an atlasA, if it is compatible
with all the charts of A.

Problem 2.13 LetA be an atlas on a topological manifold. If two charts (V,ψ) and
(W, θ) are both compatible with A, then they are compatible with each other.

Solution: 13 Let p ∈ V ∩ W . By (2.7), let A = {(U
α
,φ

α
) : α ∈ ∧} be the atlas.

Since (V,ψ) and (W, θ) are compatible with A, p ∈ U
α
for some α, i.e. p ∈ V ∩

W ∩U
α
. Now

θ ◦ ψ−1 = (θ ◦ φ−1
α

) ◦ (φ
α
◦ ψ−1).

Again φ
α
◦ ψ−1 : ψ(V ∩ W ∩U

α
) → φ

α
(V ∩ W ∩U

α
) isC∞, as (V,ψ) is compat-

ible with A. Finally,

φ−1
α

◦ (φ
α
◦ ψ−1) : ψ(V ∩ W ∩U

α
) → V ∩ W ∩U

α
is C∞ i.e.

(θ ◦ φ−1
α

) ◦ (φ
α
◦ ψ−1) : ψ(V ∩ W ∩U

α
) → θ(V ∩ W ∩U

α
) is C∞

on ψ(V ∩ W ∩U
α
) and hence on ψ(p). Consequently, θ ◦ ψ−1 is C∞. Similarly,

it can be shown that ψ ◦ θ−1 is C∞ on θ(V ∩ W ∩U
α
) and hence on θ(p). Thus,

(V,ψ) and (W, θ) are both compatible with each other.
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Problem 2.14 Prove that A = {(U,φ), (V,ψ)}, where U, V,φ,ψ are defined in
Problem 2.2 is an atlas on S1.

Solution: 14 In Problem 2.2, it has been proved that (U,φ) and (V,ψ) are charts
on R

2, where

(i) S1 = U ∪ V
(ii) Now

φ−1 : φ(U ∩ V ) → U ∩ V and ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

such that

(ψ ◦ φ−1)(α) = ψ(cosα, sinα) =
{

α, if α ∈ (0,π)

α − 2π, if α ∈ (π, 2π)

and hence C∞. Also

φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V )

is such that φ(U ∩ V )(α) = φ(cosα, sinα) = α,α ∈ (0,π), and hence C∞.
Thus A = {(U,φ), (V,ψ)} is an atlas on R

2.

Problem 2.15 Prove that S1 is a 1-dimensional manifold.

Solution: 15 Let S1 = {(x, y) : (x, y) ∈ R
2,
√
x2 + y2 = 1} be a unit circle in R

2.
We give S1, the topology of a subspace of R

2. Let

U1 = {(x, y) ∈ S1 : y > 0}, U2 = {(x, y) ∈ S1 : y < 0}
U3 = {(x, y) ∈ S1 : x > 0}, U4 = {(x, y) ∈ S1 : x < 0}.

Then each Ui is an open subset of S1 and S1 = ⋃
Ui i = 1, 2, 3, 4. We define

φ1 : U1 → R be such that φ1(x, y) = x

φ2 : U2 → R be such that φ2(x, y) = x

φ3 : U3 → R be such that φ3(x, y) = y

φ4 : U1 → R be such that φ4(x, y) = y.

Then each φi is a homeomorphism onR and hence each (Ui ,φi ) is a chart of S
1. Now

U1 ∩U2 = �, so (Ui ,φi ), i = 1, 2 are C∞-related. Further, U1 ∩U3 �= �. Let p ∈
U1 ∩U3 . Then (φ1 ◦ φ−1

3
)(y) = x, (φ3 ◦ φ−1

1
)(x) = y are of class C∞. Proceeding

in this manner, it can be shown that A = {(Ui ,φi ) : i = 1, 2, 3, 4} is an atlas of S1

and hence (S1, A) is a 1-dimensional manifold.

Problem 2.16 Prove that the topological space M(m × n, R) of all m × n order
matrices with real entries form a smooth manifold of dimension mn.
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Solution: 16 Let us define the map φ : M → R
mn by

φ(A) = (a11 , a12 , . . . , a1n ; . . . , . . . ; am1 , am2 , . . . , amn ),

where A = (ai j ), i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Here φ is one-to-one and onto.
Moreover with the topology induced by R

mn on M, φ is a homeomorphism. So
(M,φ) forms a chart on M(m × n, R), whose domain is whole of M. Let us denote
A = {(M,φ)} to be the collection of charts of M(m × n, R). It only remains to show
that all pairs of members in A are C∞-compatible. For this, let (M,φ) ∈ A and
(M,ψ) ∈ A. The transition functions

φ ◦ ψ−1 : R
mn → R

mn and ψ ◦ φ−1 : R
mn → R

mn

are both identity maps and hence C∞-compatible. So A forms aC∞-atlas of M(m ×
n, R). Thus, M(m × n, R) form a smooth manifold of dimension mn.

In particular, if m = n then M(n × n, R) forms a smooth manifold of dimen-
sion n2.

Problem 2.17 Prove that the topological space GL(n, R) forms a smooth manifold
of dimension n2.

Solution: 17 Here GL(n, R) = {A ∈ M(n × n, R) : |A| �= 0}. It is clear that the
determinant map

D : M(n × n, R) → R, i.e. (ai j ) �→ |(ai j )|,

where i, j = 1, 2, 3, . . . , n is continuous (also smooth). Hence, the inverse image of
the open subset R \ {0} ofR is open inM(n × n, R), i.e.D−1(R \ {0})(= GL(n, R))

is open in M(n × n, R). And M(n × n, R) being n2-dimensional smooth manifold
(refer to Problem 2.16), we can say that GL(n, R) is also n2-dimensional smooth
manifold (refer to Example 2.6).

Problem 2.18 Give an example of a non-Hausdorff space having differentiable
structures.

Solution: 18 Let A ⊂ R
2 be such that

A = U
⋃

{(0, 1)},

where U = {(x, 0)|x ∈ R}. Let U1 = {(x, 1)|x ∈ R}. We define φ : U → R by
φ(x, 0) = x and ψ : U1 → R by

ψ(x, 1) =
{
0, x = 0
x, x �= 0.
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Fig. 2.8 Not atlas

Both φ and ψ are well-defined on U and U1 , respectively. Also φ and ψ are home-
omorphisms and U1

⋃
U2 = A. The transitions functions φ ◦ ψ−1 and ψ ◦ φ−1 are

the identity functions on R \ {0}. So {(U,φ), (U1 ,ψ)} forms a C∞ atlas on A.
Let V1 be an open neighbourhood of (0, 0) and V2 be an open neighbourhood of

(0, 1) in A. Then bothφ(U
⋂

V1) andψ(U1

⋂
V2) are open subsets ofR containing 0.

So ∃ a �= 0 such that a ∈ φ(U
⋂

V1)
⋂

ψ(U1

⋂
V2), which implies (a, 0) ∈ V1

⋂
V2 .

Hence the topology of A is non-Hausdorff.

Problem 2.19 Consider S = {(x, 0) ∈ R
2 : x ∈ (−1, 1)} ∪ {(x, x) ∈ R

2 : x ∈ (0, 1)}
where U = {(x, 0) : x ∈ (−1, 1)}, φ : U → R is such that φ(x, 0) = x and V =
{(x, 0) : x ∈ (−1, 0]} ∪ {(x, x) : x ∈ (0, 1)}, ψ : V → R be such that ψ(x, 0) =
x, ψ(x, x) = x . Is A = {(U,φ), (V,ψ)} an atlas on S?

Solution: 19 Endow S = U ∪ V with the subspace topology inherited fromR
2. Let

S1 = {(x, 0) : x ∈ (−1, 0]} and S2 = {(x, x) : x ∈ (0, 1)}. Then V = S1 ∪ S2 . Here
φ and ψ are both homeomorphisms respectively on U and V . Hence (U,φ) and
(V,ψ) form the charts on S. Now the transition functions φ ◦ ψ−1 : ψ(U ∩ V ) →
φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) are the identity map on φ(U ∩ V )

andψ(U ∩ V ) respectively, whereφ(U ∩ V ) = (−1, 0] = ψ(U ∩ V ), which are not
open in R. Thus, A does not form an atlas on S (Fig. 2.8).

Problem 2.20 Let U = {(x, 0) : x ∈ R} and V = {(x, 0) : x < 0} ∪ {(x, 1) : x >

0}. Suppose the maps φ : U → R and ψ : V → R are defined respectively by
φ(x, 0) = x and ψ(x, 0) = x,ψ(x, 1) = x . Prove thatA = {(U,φ), (V,ψ)} an atlas
on S = U ∪ V .
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Fig. 2.9 Atlas

Solution: 20 Endow S = U ∪ V with the subspace topology inherited from R
2.

Let S1 = {(x, 0) : x ∈ (−∞, 0)} and S2 = {(x, x) : x ∈ (0, 1)}. Then V = S1 ∪ S2 .
Here φ and ψ are both homeomorphisms respectively onU and V . Hence (U,φ) and
(V,ψ) form the charts on S. Now the transition functions φ ◦ ψ−1 : ψ(U ∩ V ) →
φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) are the identity map on φ(U ∩ V )

and ψ(U ∩ V ) respectively, where φ(U ∩ V ) = (−∞, 0) = ψ(U ∩ V ), which are
open in R. Also the map φ ◦ ψ−1 and ψ ◦ φ−1 are C∞. Thus, A does form an atlas
on S (Fig. 2.9).

Exercises

Exercise 2.7 Give an example of a topological manifold which does not admit dif-
ferential structure.

Exercise 2.8 Let (M, A) be a smoothmanifold. Prove that there exists a chart (U,φ)

of A such that φ(p) = 0, p ∈ U.

Remark 2.18 The condition of second countability in the definition of smoothman-
ifold implies paracompactnesswhich further impliesmetric structure in themanifold.
Since the present book is considering only the different aspects of smooth manifold,
the condition is redundant here.

From now onwards, unless otherwise stated, a manifold will mean a smooth
manifold.
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2.4 Stereographic Projection

The stereographic projection is a particular mapping that projects a sphere onto a
plane. The projection is defined on the entire sphere, except at the projection point.

To begin with, let us consider the sphere S1 = {(x, y) : (x, y) ∈ R
2, x2 + y2 =

1}. The stereographic projection, on the sphere S1, from the North Pole N =
(0, 1)

(
respectively, South Pole S = (0,−1)

)
onto the line y = 0 (i.e. x-axis) is the

map which assigns any point p ∈ S1 \ {N }(respectively, p ∈ S1 \ {S}) to the point
where the straight line through p and N

(
respectively, through S

)
intersects the line

y = 0.
The inverse of the stereographic projection is the map from the x-axis to S1 \ {N }(

respectively, S1 \ {S}) assigning the point q in the line y = 0 to the point where the
straight line through N

(
respectively, through S

)
and q intersect S1.

Similarly, the stereographic projection, on the sphere S2 = {(x, y, z) : (x, y, z) ∈
R

3, x2 + y2 + z2 = 1}, from the North Pole N = (0, 0, 1)
(
respectively, South Pole

S = (0, 0,−1)
)
onto the plane z = 0 (i.e. xy-plane) is the map which assigns any

point p ∈ S2 \ {N }(respectively, p ∈ S2 \ {S}) to the point where the straight line
through p and N

(
respectively, through S

)
intersects the plane z = 0.

The inverse of the stereographic projection is the map from the xy-plane to S2 \
{N }(respectively, S2 \ {S}) assigning the point q in the plane z = 0 to the point where
the straight line through N

(
respectively, through S

)
and q intersects S2.

Ongeneralization,wecandefine the stereographic projection and its inverse for the

n-dimensional sphere Sn = {(x1 , x2 , . . . , xn+1) : (x1 , x2 , . . . , xn+1) ∈ R
n+1,

n+1∑

i=1

(xi )
2

= 1} as follows.
The stereographic projection, on the sphere Sn , from the North Pole N =

(0, 0, . . . , 0, 1)
(
respectively, South Pole S = (0, 0, . . . , 0,−1)

)
onto the plane

xn+1 = 0 is the map which assigns any point p ∈ Sn − {N } (
respectively, p ∈

Sn − {S}) to the point where the straight line through p and N (respectively, S)
intersects the plane xn+1 = 0.

The inverse of the stereographic projection is the map from the plane xn+1 = 0 to
Sn \ {N } (respectively, Sn \ {S}) assigning the point q in the plane xn+1 = 0 to the
point where the straight line through N (respectively, through S) and q intersect Sn .

Problem 2.21 Using stereographic projection with x-axis as the image line, show
that S1 is a smooth manifold (Fig. 2.10).

Solution: 21 Note that N = (0, 1) and S = (0,−1) are theNorth andSouth Poles of
S1. Let p = (x, y) ∈ S1 and consider the setU = S1 \ {N } and V = S1 \ {S}. From
the definition of stereographic projection, φ : U → R and ψ : V → R are given by

φ(x, y) = x

1 − y
, ψ(x, y) = x

1 + y
.
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Fig. 2.10 Stereographic
projection on S1

Our claim is that {(U,φ), (V,ψ)} forms an atlas of S1. It is obvious that φ and ψ

are homeomorphisms. Here x2 + y2 = 1 ⇒ x2 = (1 − y)(1 + y). Let x
′ = x

1 − y
.

Then by virtue of foregoing equation, we have

x
′2(1 − y)2 = x2 ⇒ (x

′
)2(1 − y) = (1 + y) ⇒ y = x ′2 − 1

1 + x ′2 .

Similarly, x = 2x ′

1 + x ′2 . Hence, the inverse map φ−1 : R → U is given by

φ−1(x ′) = (x, y) =
(

2x ′

1 + x ′2 ,
x ′2 − 1

1 + x ′2

)
.

Hereφ(U ∩ V ) = R − {0} andψ(U ∩ V ) = R − {0}. Now,ψ ◦ φ−1 : φ(U ∩ V ) →
ψ(U ∩ V ) is given by (ψ ◦ φ−1)(t) = 1

t
, is aC∞ function. Similarly, φ ◦ ψ−1 is also

C∞ function. This proves {(U,φ), (V,ψ)} forms a C∞ atlas of S1. Hence S1 is a
smooth manifold.

Problem 2.22 Using stereographic projection with an equatorial plane as the image
plane, prove that S2 is a smooth manifold (Fig. 2.11).

Solution: 22 Note that N = (0, 0, 1) and S = (0, 0,−1) are the North and South
Poles of S2. Let p = (x, y, z) ∈ S2 and consider the set U = S2 − {N } and V =
S2 \ {S}. Here φ : U → R

2 and ψ : V → R
2 are given by

φ(x, y, z) =
(

x

1 − z
,

y

1 − z

)
, ψ(x, y, z) =

(
x

1 + z
,

y

1 + z

)
.

Our claim is that {(U,φ), (V,ψ)} forms an atlas of S2.
It is clear that φ and ψ are homeomorphisms. Moreover, the inverse map φ−1 :

R
2 → U is given by
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Fig. 2.11 Stereographic projection on S2

φ−1(x ′, y′) = (x, y, z) =
(

2x ′

1 + x ′2 + y′2 ,
2y′

1 + x ′2 + y′2 ,
x ′2 + y′2 − 1

1 + x ′2 + y′2

)
.

Note thatφ(U ∩ V ) = R
2 \ {(0, 0)} andψ(U ∩ V ) = R

2 − {(0, 0)}. Now,ψ ◦ φ−1 :
φ(U ∩ V ) → ψ(U ∩ V ) given by

(ψ ◦ φ−1)(x ′, y′) =
(

x ′

x ′2 + y′2 ,
y′

x ′2 + y′2

)

is a C∞ function. Similarly, φ ◦ ψ−1 is also C∞ function. This proves {(U,φ),

(V,ψ)} forms a C∞ atlas of S2. Hence S2 is a smooth manifold.

Problem 2.23 Show that the n-dimensional sphere Sn is a smooth manifold.

Solution: 23 Here N = (0, 0, 0, . . . , 0︸ ︷︷ ︸
n−zeroes

, 1) and S = (0, 0, 0, . . . , 0︸ ︷︷ ︸
n−zeroes

,−1) are theNorth

and South Poles of Sn . Note that

U = Sn \ {(0, 0, 0, . . . , 0︸ ︷︷ ︸
n−zeroes

, 1)}, V = Sn − {(0, 0, 0, . . . , 0︸ ︷︷ ︸
n−zeroes

,−1)}

and φ : U → R
n and ψ : V → R

n are given by

φ(x1 , x2 , . . . , xn+1) =
(

x1
1 − xn+1

,
x2

1 − xn+1
, . . . ,

xn
1 − xn+1

)
,

ψ(x1 , x2 , . . . , xn+1) =
(

x1
1 + xn+1

,
x2

1 + xn+1
, . . . ,

xn
1 + xn+1

)
.
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The inverse map φ−1 : R
n → U is

φ−1(x ′
1, x

′
2, . . . , x

′
n) =

⎛

⎜⎜
⎝

2x ′
1

1 +
∑

i

x ′
i
2
,

2x ′
2

1 +
∑

i

x ′
i
2

. . . ,
2x ′

n

1 +
∑

i

x ′
i
2
,

∑
i x

′
i
2 − 1

1 +
∑

i

x ′
i
2

⎞

⎟⎟
⎠ .

So, ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is given by

(ψ ◦ φ−1)(x ′
1, x

′
2, . . . , x

′
n) =

⎛

⎜⎜
⎝

x ′
1∑

i

(xi )
2
,

x ′
2∑

i

(xi )
2
, . . . ,

x ′
n∑

i

(xi )
2

⎞

⎟⎟
⎠ ,

which isC∞ inφ(U ∩ V ) = R
n − {(0, 0, 0 . . . , 0, 0)}.Hence {(U,φ), (V,ψ)} forms

a C∞ atlas of Sn . So Sn is a smooth manifold.

2.5 Orientable Surface

A regular surface S is said to be orientable if there exists a family of surface patches
(coordinate neighbourhoods), which will cover S, in such a way that if a point p of
S belongs to the intersection of two surface patches of the family, then the transition
map between the surface patches of the family has positive Jacobian. The existence
of such a family of surface patches is called an orientation of S and S is called an
orientable surface. If such a family does not exist, the surface is called non-orientable.

Sn(n > 1) forms an example of orientable surface. The sphere can be covered by
two coordinate neighbourhoods (using stereographic projection; refer to examples
on stereographic projection). If W is the intersection of these coordinate neighbour-
hoods,W is connected. Let p ∈ W be fixed. Since the Jacobian is positive at p ∈ W ,
it follows from the connectedness of W that the Jacobian is everywhere positive.
Hence Sn(n > 1) is orientable.

Now, we are going to focus our attention on an example of a non-orientable
surface, the so-called Möbius Strip. From the geometrical point of view, a Möbius
Band has the property that a figure moving around on the surface can come back to
its starting point and transform into its mirror image, so it is impossible to decide
consistently which of the two possible rotational directions on the surface to call
clockwise and which counterclockwise, or which is the front and which is the back
side. Let us denote the Möbius band by M (Fig. 2.12).
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Fig. 2.12 Möbius band

The Möbius band is obtained by rotating an open segment AB around its mid-
point C = (1, 0, 0) at the same time as C moves around a circle S1 ≡ x2 + y2 = 1
in such a manner that as C moves once around S1, the segment AB makes a half
turn around C . After C has rotated by an angle v around the z-axis, AB should have

rotated by
v

2
around C in the plane containing C and the z-axis. Initially, the point

of the segment AB is at (1, 0, u).
Let U1 = {(u, v) : (u, v) ∈ R

2,− 1
2 < u < 1

2 , 0 < v < 2π} and U2 = {(ũ, ṽ) :
(ũ, ṽ) ∈ R

2,− 1
2 < ũ < 1

2 ,−π < ṽ < π}. Each of U1 and U2 are open in R
2. We

define φ : U1 → M and ψ : U2 → M by
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φ(u, v) =
((

1 − u sin
v

2

)
cos v,

(
1 − u sin

v

2

)
sin v, u cos

v

2

)

ψ(ũ, ṽ) =
((

1 − ũ sin
ṽ

2

)
cos ṽ,

(
1 − ũ sin

ṽ

2

)
sin ṽ, ũ cos

ṽ

2

)
.

Here, φ(U1 ∩U2) is not connected but consists of two connected components given
by

W1 = {φ(u, v) : (u, v) ∈ R
2,−1

2
< u <

1

2
, 0 < v < π},

W2 = {φ(u, v) : (u, v) ∈ R
2,−1

2
< u <

1

2
,π < v < 2π}.

Hence,φ(U1 ∩U2) = W1 ∪ W2 .Geometrically,φ(U1 ∩U2) is the unionof the rectan-
gles given by 0 < v < π and π < v < 2π, with− 1

2 < u < 1
2 . If 0 < v < π, then it is

clear that (φ−1 ◦ ψ)(u, v) = (u, v). If π < v < 2π, we have v − ṽ = 2π. Now com-
bining sin ṽ

2 = − sin v
2 , cos ṽ

2 = − cos v
2 and φ(u, v) = ψ(ũ, ṽ) implies ũ = −u.

Hence

(φ−1 ◦ ψ)(u, v) = (u, v), if 0 < v < π

= (−u, v − 2π), if π < v < 2π.

Hence, φ−1 ◦ ψ forms the transition map between the two surface patches φ(u, v)

and ψ(u, v) for M . This proves {(U1 ,φ), (U2 ,ψ)} forms an C∞ atlas for M , hence
a smooth manifold of dimension 2. Here

φu

∣∣
u=0

=
(
− sin

v

2
cos v,− sin

v

2
sin v, cos

v

2

)
,

φ
v

∣
∣
u=0

= (− sin v, cos v, 0).

Therefore, φu

∣∣
u=0

× φ
v

∣∣
u=0

= (− cos v cos
v

2
,− sin v cos

v

2
,− sin

v

2
). Now the unit

normal is given by N
φ

= φu × φ
v

||φu × φ
v
|| = φu × φ

v
. If possible, let us assume M to be

orientable. Then ∃ a well-defined unit normal vector N : M → R
3 at every point of

M , which varies smoothly over M . At φ(0, v) ∈ S1, we have N = μ(v)Nφ where
μ : (0, 2π) → R is smooth. Also, μ(v) = ±1 ∀ v. It follows that

μ(v) = +1, ∀ v ∈ (0, 2π) or μ(v) = −1, ∀ v ∈ (0, 2π).

Depending on the changes u → v, ũ → ṽ has to be made, suppose μ = 1. As N is
smooth, at φ(0, 0) = φ(0, 2π), we have
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N = lim
v→0

N
φ

= (−1, 0, 0)

N = lim
v→2π

N
φ

= (1, 0, 0).

This leads to a contradiction, which proves M is non-orientable.

Remark 2.19 The Jacobian(J) of φ−1 ◦ ψ, i.e. J (φ−1 ◦ ψ) = ∂(u, v)

∂(ũ, ṽ)
= 1 > 0 in

W1 and J (φ−1 ◦ ψ) = ∂(u, v)

∂(ũ, ṽ)
= −1 < 0 in W2 .

2.6 Product Manifold

Let Mm
1
and Mn

2
be smooth manifolds, with differentiable structures A1 and A2 , of

dimensions m and n, respectively. First we prove that M1 × M2 , with the product
topology, is a (m + n)-dimensional topological manifold.

Since M1 and M2 is a smooth manifold, the topology of M1 and M2 is Hausdorff
and second countable. Therefore, the product topology of M1 × M2 is Hausdorff and
second countable.

Let (x1 , x2) ∈ M1 × M2 . Since x1 ∈ M1 and M1 is a m-dimensional smooth man-
ifold with differentiable structure A1 , ∃ a coordinate chart (U,φ) ∈ A1 such that
x1 ∈ U . Similarly, ∃ a coordinate chart (V,ψ) ∈ A2 such that x2 ∈ V . Hence, φ is a
homeomorphism from the open subset U of M1 onto the open subset φ(U ) of Rm .
Similarly,ψ is a homeomorphism from the open subset V of M2 onto the open subset
ψ(V ) of Rn . SinceU is an open neighbourhood of x1 and V is an open neighbourhood
of x2 , the Cartesian productU × V is an open neighbourhood of (x1 , x2) ∈ M1 × M2 .
Furthermore, the Cartesian product φ(U ) × ψ(V ) is open in R

m × R
n ≡ R

m+n . Let
us define a function

φ × ψ : U × V → φ(U ) × ψ(V ), (x1 , x2 ) �→ (φ(x1 ),ψ(x2 )), ∀ (x1 , x2 ) ∈ U × V .

Then φ × ψ is homeomorphic to an open subset φ(U ) × ψ(V ) in R
m+n . Hence,

M1 × M2 , with the product topology, is a (m + n)-dimensional topological manifold.
Let us denote the collection of coordinate charts of M1 × M2 by C. Then

C = {(U × V,φ × ψ) : (U,φ) ∈ A1 , (V,ψ) ∈ A2}.

Here
⋃{U × V : (U × V,φ × ψ) ∈ C} = M1 × M2 . To show that M1 × M2 is a

(m + n)-dimensional smooth manifold, it only remains to show that all pairs of
members in C are Ck-compatible, for every k = 1, 2, 3, . . . , . . ..

Let (U × V,φ × ψ) ∈ C and (Ũ × Ṽ , φ̃ × ψ̃) ∈ C. Then the transition function

(φ × ψ) ◦ (φ̃ × ψ̃)−1 = (φ ◦ φ̃−1) × (ψ ◦ ψ̃−1) : (φ̃ × ψ̃)
(
(U × V ) ∩ (Ũ × Ṽ )

) → (φ × ψ)
(
(U × V ) ∩ (Ũ × Ṽ )

)
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Fig. 2.13 Product manifold

is Ck , as both (φ ◦ φ̃−1) and (ψ ◦ ψ̃−1) are Ck compatible. By similar reasoning, the
transition function

(ψ × φ) ◦ (ψ̃ × φ̃)−1 = (ψ ◦ ψ̃−1) × (φ ◦ φ̃−1) : (ψ̃ × φ̃)
(
(U × V ) ∩ (Ũ × Ṽ )

) → (ψ × φ)
(
(U × V ) ∩ (Ũ × Ṽ )

)

is also so. Hence, C forms a C∞ atlas on M1 × M2 , so it is a smooth manifold of
dimension (m + n) (Fig. 2.13).

Example 2.7 Since S1 is a smoothmanifold, the torus S1 × S1 is a smoothmanifold.

Problem 2.24 Prove that the infinite cylinder is a smooth manifold.

Solution: 24 Since the infinite cylinder can be expressed as a product of smooth
manifolds S1 and R, it is a smooth manifold.

Exercise

Exercise 2.9 Prove that the n-dimensional torus is a smooth manifold.
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2.7 Smooth Function on Smooth Manifold

Let M be a smooth manifold of dimension n (Fig. 2.14).
Let us recall the definition of a smooth function on a smooth manifold. A function

f : M → R is said to be of class C∞ or smooth at a point p ∈ M , if for every chart
(U,φ) of p in M , the function

f ◦ φ−1 : φ(U ) ⊂ R
n → R

is of class C∞ at φ(p). The function f is said to be C∞ on M if it is C∞ at every
point of M .

Proposition 2.3 The notion of smoothness of a map is independent of the choice of
a coordinate chart.

Proof Let M be an n-dimensional smooth manifold and let f : M → R be smooth
at every point of M . Hence, for every chart (U,φ) of p ∈ M , f ◦ φ−1 : φ(U ) ⊂
R

n → R is of class C∞ at φ(p). If (V,ψ) is any other chart of p, where p ∈ U ∩ V ,
then on ψ(U ∩ V )

f ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1).

Let A = {(U
α
,φ

α
)} be an atlas of M , where each (U,φ), (V,ψ) ∈ A. Thus, each

φ ◦ ψ−1,ψ ◦ φ−1 is of classC∞ and hence from above, f ◦ ψ−1 isC∞ onψ(U ∩ V ).

Fig. 2.14 Smooth function
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Consequently, the smoothness of f on M is independent of the choice of any
coordinate chart on M . This completes the proof.

Proposition 2.4 Let M be an n-dimensional smooth manifold and f : M → R be
a map. Then the followings are equivalent:

(i) The map f : M → R is of class C∞.
(ii) f ◦ φ−1 : φ(U ) ⊂ R

n → R is of classC∞, for every chart (U,φ) ∈ A,A being
the atlas.

(iii) f ◦ ψ−1 : ψ(V ) ⊂ R
n → R is of class C∞, for every chart (V,ψ) ∈ A,A

being the atlas.

Proof (ii)⇒(i): Let (ii) hold. Then f = ( f ◦ φ−1) ◦ φ : M → R is of class C∞
at R, as (U,φ) is given to be a chart. Thus (ii)⇒(i).

(i)⇒(iii): Let (i) hold. Then by definition, ∃ a chart (U,φ) at p ∈ M such that
f ◦ φ−1 : φ(U ) ⊂ R

n → R is of class C∞ at φ(p).
If (V,ψ) is any chart at p on M , p ∈ U ∩ V , then

f ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1)

is of class C∞ on ψ(V ). Thus (i)⇒(iii).
(iii)⇒(ii): Let (iii) hold. Let A be an atlas on M , where (U,φ), (V,ψ) ∈ A. By

definition, φ ◦ ψ−1 and ψ ◦ φ−1 are C∞-related. Thus

f ◦ φ−1 = ( f ◦ ψ−1) ◦ (ψ ◦ φ−1)

is of class C∞ on φ(U ).

We shall often denote by F(M), the set of allC∞-functions on M and will sometime
denote by F(p), all the C∞-functions at p of M . It is to be noted that such F(M) is

(i) an algebra over R

(ii) a module over R,

where the defining relations are

⎧
⎨

⎩

(a) ( f + g)(p) = f (p) + g(p), ;
(b) ( f g)(p) = f (p)g(p), ;
(c) (λ f )(p) = λ f (p), ∀ f, g ∈ F(M), λ ∈ R .

Now we are going to discuss smooth functions between smooth manifolds.
Let M be an n-dimensional and N be an m-dimensional manifold (Fig. 2.15).
A mapping f : M → N is said to be a differentiable mapping of class Ck if for

every chart (U,φ) of p ∈ Mn and every chart (V,ψ) of f (p) ∈ Nm ,

{
(i) f (U ) ⊂ V
(i i) ψ ◦ f ◦ φ−1 : φ(U ) ⊂ R

n → ψ(V ) ⊂ R
m, is of class Ck .

(2.9)
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Fig. 2.15 Differentiable mapping

By differentiable mapping, we shall mean unless otherwise stated, a mapping
of class C∞.

Let M and N be two n-dimensional smooth manifolds. A mapping f : M → N
is said to be a diffeomorphism if

⎧
⎨

⎩

(i) f is a differentiable mapping.
(i i) f is a bijection
(i i i) f −1 is of class C∞.

(2.10)

In such cases, M, N are said to be diffeomorphic to each other. A diffeomorphism
f of M onto itself is called a transformation on M .

Proposition 2.5 The notion of smoothness of a map between two smooth manifolds
is independent of the choice of a coordinate chart.

Proof Let M be an n-dimensional and N be an m-dimensional manifold. Let us
consider the map f : M → N to be differentiable of class C∞. Note that (U,φ) and
(V,ψ) are any charts about p ∈ M and f (p) ∈ N respectively with f (U ) ⊂ V such
that the map ψ ◦ f ◦ φ−1 being C∞. Then for p ∈ M , suppose there exists charts
(Ũ , φ̃) of p and (Ṽ , ψ̃) of f (p) with f (Ũ ) ⊂ Ṽ such that the map

ψ̃ ◦ f ◦ φ̃−1 : φ̃(Ũ ) ⊂ R
n → ψ̃(Ṽ ) ⊂ R

m, is of class C∞ at φ̃(p).
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However, φ̃ ◦ φ−1 and ψ ◦ ψ̃−1 are C∞ on open subset of Euclidean spaces. Hence,

(ψ ◦ ψ̃−1) ◦ (ψ̃ ◦ f ◦ φ̃−1) ◦ (φ̃ ◦ φ−1) = ψ ◦ f ◦ φ−1

isC∞. This proves that theC∞ structure of a map does not depend on any coordinate
chart chosen.

Proposition 2.6 If (U,φ) is a chart on a manifold M of dimension n, then the map
φ : U ⊂ M → φ(U ) ⊂ R

n is a diffeomorphism.

Proof Note that (U,φ) being a chart, φ is a homeomorphism.
Further, we use the atlas {(U,φ)} with a single chart on U and the atlas

{φ(U ), Iφ(U )} with a single chart on φ(U ). Then Iφ(U ) ◦ φ ◦ φ−1 : φ(U ) ⊂ R
n →

φ(U ) is the identity map. Thus, Iφ(U ) ◦ φ ◦ φ−1 is of class C∞ and by (2.9), φ is a
differentiable mapping. Furthermore, φ ◦ φ−1 ◦ Iφ(U ) : φ(U ) → φ(U ) is an identity
map, hence is of class C∞. Thus, all the conditions of (2.10) are satisfied by φ and
so is diffeomorphism.

Proposition 2.7 Let U ⊂ M be an open subset of a manifold M of dimension n.
If φ : U ⊂ M → φ(U ) ⊂ R

n is a diffeomorphism, onto an open subset of R
n, then

(U,φ) is a chart on M.

Proof For any chart (U,φα) on M , both φα and φ−1
α are of class C∞ (refer to

Proposition 2.6).
Now φ being a diffeomorphism, it is C∞. Consequently, the composite mappings

φ ◦ φ−1
α and φα ◦ φ−1 are of class C∞. Hence (U,φ) is compatible with an atlas on

M . Thus (U,φ) is a chart on M .

Problem 2.25 If (x1, x2, . . . , xn) and (y1, y2, . . . , ym) are respectively the local
coordinate systems defined in the neighbourhoodU of p ∈ Mn and V of f (p) ∈ Nm ,
then it can be shown that

y j ◦ f = g j (x1, x2, . . . , xn), where (2.11)

g j (q) = (ψ ◦ f ◦ φ−1)(q), q ∈ φ(U ). (2.12)

Solution: 25 Let φ(p) = q, p ∈ U ⊂ Mn . Then

g(φ(p)) = (ψ ◦ f ◦ φ−1)(φ(p)) = (ψ ◦ f )(p)

or u j (g(φ(p))) = u j (ψ( f (p))) = (u j ◦ ψ)( f (p))

or g j (φ(p)) = y j ( f (p)) by (2.1), (2.3)

or g j (x1(p), . . . , xn(p)) = (y j ◦ f )(p) by (2.2)

i.e. y j ◦ f = g j (x1, x2, . . . , xn).
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Fig. 2.16 Differentiable
map between punctured
sphere and cylinder

Problem 2.26 Obtain a differentiable map between the punctured sphere at two
points (0, 0, 1), (0, 0,−1) and the cylinder N with infinite ends (Fig. 2.16).

Solution: 26 Let us consider the punctured sphereM = S2 − {(0, 0, 1), (0, 0,−1)}
where S2 = {(x, y, z) : (x, y, z) ∈ R

3, x2 + y2 + z2 = 1}. Here, the coordinate
neighbourhood (U,φ) is given by U = S2 − {(0, 0, 1), (0, 0,−1)}, φ : U → R

2,
where φ(cos v cos u, cos v sin u, sin v) = (x, y). Therefore, φ−1 : R

2 → U is
defined by φ−1(x, y) = (cos v cos u, cos v sin u, sin v).

Let us consider the cylinder N = {(x̃, ỹ, z̃) : (x̃, ỹ, z̃) ∈ R
3, x̃2 + ỹ2 = 1, 0 <

z̃ < 1}. Here, the coordinate neighbourhood (V,ψ) is given by V = N and ψ :
N → R

2, where ψ(cos u, sin u, z) = (x, z). Therefore, ψ−1 : R
2 → V is defined by

ψ−1(x, z) = (cos u, sin u, z).
Let us define a map f : M → N by (x, y, z) �→ (x̃, ỹ, z). In other words, we can

say that the line joining p and f (p) is parallel to the xy-plane and orthogonal to
the z-axis. Since the point (cos v cos u, sin v sin u, sin v) is moving from the sphere
M parallel to the xy-plane and is orthogonal to the z-axis, therefore the x and y
components of (cos v cos u, sin v sin u, sin v)will take the coordinate of the cylinder
N but the z-component, i.e. sin v will remain unchanged. Hence,

f (φ−1(x, y)) = (cos u, sin u, sin v) = ψ−1(x, sin v)

i.e. (ψ ◦ f ◦ φ−1)(x, y) = (x, sin v),

which shows ψ ◦ f ◦ φ−1 is differentiable.

Exercise

Exercise 2.10 Let M and N be two smooth manifolds with M = N = R. Let (U,φ)

and (V,ψ) be two charts on M and N respectively, where U = R,φ : U → R is
the identity mapping and V = R,ψ : V → R is the mapping defined by ψ(x) = x3.
Show that the two structures defined on R are not C∞-related even though M and
N are diffeomorphic where f : M → N is defined by f (t) = t1/3.
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2.8 Differential Curve and Tangent Vector

We are now in a position to introduce one of the important concepts of geometry, i.e.
tangent vector. Geometers prefer to define the tangent vector at a point with respect
to a curve. Hence, at first we shall define a curve on a manifold.

A differentiable curve at p on a manifold M is a differentiable mapping σ :
[a, b] ⊂ R → Mn such that σ(t0) = p, a ≤ t0 ≤ b (Fig. 2.17).

Then by (1.1) and (2.1), we obtain

(xi ◦ σ)(t) = ui (φ(σ(t))) = ui (σ1(t),σ2(t), . . . ,σn(t)) = σi (t). (2.13)

Often, we write it as
xi (t) = σi (t). (2.14)

The tangent vector to the curve σ(t) at p of M is a function X p : F(p) → R defined
by

⎧
⎨

⎩
X p f =

[
lim
h→0

f (σ(t + h)) − f (σ(t))

h

]

t=t0

= d

dt
f (σ(t))

∣∣
t=t0

, ∀ f ∈ F(p)

σ(t0) = p.
(2.15)

Note that

X p(a f + bg) = d

dt
(a f + bg)(σ(t))

∣∣
t=t0

, ∀ f, g ∈ F(p), a, b ∈ R; by (2.15)

= a
d

dt
f (σ(t))

∣∣
t=t0

+ b
d

dt
g(σ(t))

∣∣
t=t0

, by (1.8)

X p(a f + bg) = a(X p f ) + b(X pg), by (2.15). (2.16)

Fig. 2.17 Differential curve
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Again

X p( f g) = d

dt
( f g)(σ(t))

∣∣
t=t0

, by (2.15)

= d

dt
f (σ(t))g(σ(t))

∣∣
t=t0

, by (1.8)

= d

dt
f (σ(t))

∣∣
t=t0

g(σ(t0)) + f (σ(t0))
d

dt
g(σ(t))

∣∣
t=t0

, by (1.9)

X p( f g) = (X p f )g(p) + f (p)X pg. (2.17)

Equations (2.16) and (2.17) are respectively known as linearity property and Leib-
nitz Product Rule. Thus, the tangent vector at a point on a manifold is a derivation
at that point.

Let Tp (M) denote the set of all tangent vectors at p of M . We define

{
(X p + Yp) f = X p f + Yp f, ∀ X p,Yp ∈ Tp(M)

(λX p) f = λ(X p f ), λ ∈ R.
(2.18)

Clearly, Tp (M) is a real vector space (refer to any standard textbook of Linear Alge-
bra). Hence, Tp (M) must have a basis.

If (x1, x2, . . . , xn) is the local coordinate system in a neighbourhoodU of p ∈ M ,

then for each i = 1, 2, . . . , n, we define a mapping
∂

∂xi
: F(p) → R by

( ∂

∂xi
)
p f =

(
∂ f

∂xi (t)

)
(p), ∀ f ∈ F(p). (2.19)

Clearly, each

(
∂

∂xi

)

p

: i = 1, 2, 3, . . . , n satisfies (2.16) and (2.17).

Let us define a differentiable curve σ : [a, b] ⊂ R → M by

{
σi (t) = σi (t0) for fixed i
σ j (t) = 0, j = 1, 2, 3, . . . , i − 1, i + 1, . . . , n.

(2.20)

Then

d

dt
f (σ(t))

∣∣
t=t0

=
∑

i

∂ f (σ(t))

∂σi (t)

dσi (t)

dt

∣∣
t=t0

, by chain rule

= ∂ f (σ(t0))

∂σi (t)

∣∣
t=t0

, for fixed i , by (2.20)

= ∂ f (p)

∂xi (t)
, by (2.14)
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=
(

∂

∂xi

)

p

f, by (2.19).

Thus, each
( ∂

∂xi
)
p : i = 1, 2, 3, . . . , n is a tangent vector to the curve σ defined by

(2.20). Further from (2.15), we have

X p f = d

dt
f (σ(t))

∣∣
∣∣
t=t0

=
∑

i

∂ f (σ(t0))

∂xi (t)

(
dxi (t)

dt

)∣∣
t=t0

=
∑

i

(
dxi (t)

dt

)∣∣∣∣
t=t0

(
∂

∂xi

)

p

f

=
∑

i

ξi (p)

(
∂

∂xi

)

p

f, say, where

⎧
⎨

⎩
ξi (p) =

(
dxi (t)

dt

)
, i = 1, 2, 3, . . . , n

ξi : M → R, are differentiable functions on M.

(2.21)

Thus we write

X p =
∑

ξi (p)

(
∂

∂xi

)

p

, ∀ f ∈ F(p). (2.22)

Finally, if we assume that
∑

ξi (p)

(
∂

∂xi

)

p

= 0, then
∑

ξi (p)

(
∂

∂xi

)

p

xk = 0,

where xk ∈ F(p). Then ξk(p) = 0, by (2.19). Proceeding in this manner, we can say
that

ξ1(p) = ξ2(p) = · · · = ξn(p) = 0.

Thus, the set
{ ∂

∂xi
: i = 1, 2, 3, . . . , n

}
is linearly independent. We can now state

the following.

Theorem 2.4 If (x1, x2, . . . , xn) is a local coordinate system in a neighbourhoodU
of a point p in an n-dimensional manifold M, the basis of the tangent space Tp(M)

is given by
{ ∂

∂xi
: i = 1, 2, 3, . . . , n

}
and every X p ∈ Tp(M) can be expressed

uniquely by (2.22).
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Problem 2.27 Let X = (2, 3, 0) ∈ R
3. Find X p f for a fixed point p = (−2,π, 1)

where f = x1x3 cos x2.

Solution: 27 Comparing with (2.22), we see that

ξ1(p) = 2, ξ2(p) = 3, ξ3(p) = 0.

Further,

(
∂ f

∂x1

)

p

= (x3 cos x2)p = −1;
(

∂ f

∂x2

)

p

= (−x1x3 sin x3)p = 0;
(

∂ f

∂x3

)

p

= 2.

Thus X p f = −2.

Problem 2.28 Let X = 2x
∂

∂x
− 2y

∂

∂y
be a vector in R

2. Find X p f where f =
2x + y3, p = (x, y).

Solution: 28 As done in the previous problem,

ξ1(p) = 2x, ξ2(p) = −2y,
∂ f

∂x

∣∣
p
= 2,

∂ f

∂y

∣∣
p
= 3y2.

Thus X p f = 4x − 6y3.

Problem 2.29 Let X = ∂

∂x
+ ∂

∂z
be a vector in R

2. Find X p f for a fixed point

p = (1, 1, 0) where f = xz cos y.

Solution: 29 In this case

X p f = 1(z cos y)
∣∣
p + 0(−xz sin y)

∣∣
p + 1(x cos y)

∣∣
p = cos 1.

Problem 2.30 IfC is a constant function on a manifold M and X is a tangent vector
to some curve σ on M , show that X · C = 0.
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Solution: 30 Here by (2.16), we have X (1) = 0, i.e. X · 1 = 0. Again by virtue
of linearity, X · C = X (C · 1) = C(X · 1), as C is a constant function. Hence
X · C = 0.

Problem 2.31 Let f = ((x1)3 − 2)x3 + (x2x3 − 1)x1. Find X p f, p = (x1, x2, x3).

Solution: 31 Here

X p f = ξ1(p){3(x1)2x3 + (x2x3 − 1)}p + ξ2(p)(x1x3)p + ξ3(p){(x1)3 − 2 + x1x2}p , by (2.21).

Exercises

Exercise 2.11 Find the tangent vector

(i) to the curve σ ∈ R
n where σi = ai + bi t, ai , bi ∈ R for every i .

(ii) to the curve σ(t) = (t2, t3) on R
2.

(iii) to the curve σp(t) =
(
cos 2t − sin 2t
sin 2t cos 2t

)(
x
y

)
at t = 0.

Exercise 2.12 (i) Consider the curve γ(t) = (cos t, sin t) ∈ R
2, t ∈ (0,π). Find

the vector X tangent to γ at
π

4
. Calculate X f where f : R

2 → R is defined by

f = 2x + y3.
(ii) Consider the curve ψ in R

2 defined by x = sin t, y = cos t, t ∈ (−π,π) and the
map f : R

2 → R defined by f (x, y) = x3y. Find the vector X tangent to ψ at

t = π

2
and compute X f .

Exercise 2.13 Let X = (2,−3, 4) ∈ R
3. For a fixed point p = (2, 5, 7), compute

X p f where

(i) f : R
3 → R is defined by f = x3y.

(ii) f : R
3 → R is defined by f = z7.

(iii) f : R
3 → R is defined by f = ex cos z.

Answers

2.11 (i) b1
∂

∂x1
+ b2

∂

∂x2
+ · · · + bn

∂

∂xn
(ii) 2t

∂

∂x
+ 3t2

∂

∂y
or 2t

∂

∂x1
+ 3t2

∂

∂x2
.

(iii) −2y
∂

∂x
+ 2x

∂

∂y
.

2.12 (i) − 1√
2

∂

∂x
+ 1√

2

∂

∂x
; − 1

2
√
2

(ii) − ∂

∂y
; −1.

2.13 (i) 96 (ii) 4 · 77 (iii) 2e2(cos 7 − 2 sin 7).
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2.9 Inverse Function Theorem for Smooth Manifold

In continuation with the Inverse Function Theorem for R
n , stated and proved in

Chap. 1, the following theorem deals with the study of Inverse Function Theorem
for arbitrary smooth manifolds.

Theorem 2.5 Let M and N be n-dimensional smooth manifolds and F : M → N
be a smooth map. Let p ∈ M. If F∗ : Tp (M) → TF(p) (N ) is invertible (i.e. 1 − 1 and
onto) at p, then ∃ an open neighbourhood U of p, and an open neighbourhood V of
F(p) such that F : U → V is a diffeomorphism.

Proof Since M is an n-dimensional smooth manifold and p ∈ M , therefore there
exists an admissible coordinate chart (Ũ ,φ) of M such that p ∈ Ũ . For every q ∈
Ũ , let

(
∂

∂x1
∣∣
q
,

∂

∂x2
∣∣
q
, . . . ,

∂

∂xn
∣∣
q

)
be a coordinate basis of Tq (M) corresponding

to (Ũ ,φ). Again, since N is an n-dimensional smooth manifold and F(p) ∈ N ,
therefore there exists an admissible coordinate chart (Ṽ ,ψ) ofM such that F(p) ∈ Ṽ

and (ψ ◦ F)(p) = 0. For every r ∈ Ṽ , suppose

(
∂

∂y1
∣∣
r
,

∂

∂y2
∣∣
r
, . . . ,

∂

∂yn
∣∣
r

)
is a

coordinate basis of Tr (N ) corresponding to (Ṽ ,ψ). Here, the matrix representation
of the linear map f∗ at the point p with respect to some basis, denoted by ( f∗), is
the n × n order matrix. Since the linear map f∗ is invertible, therefore det( f∗) �=
0. Furthermore, the map ψ ◦ F ◦ φ−1 : φ(Ũ ∩ F−1(Ṽ )) → ψ(Ṽ ) is smooth. Also,
(ψ ◦ F ◦ φ−1)(φ(p)) = ψ(F(p)) = 0. Moreover, it is clear that φ(Ũ ∩ F−1(Ṽ )) is
an open neighbourhood ofφ(p) ∈ R

n andψ(Ṽ ) is an open neighbourhood of 0 ∈ R
n .

Now, by virtue of Inverse Function Theorem for R
n , ∃ an open neighbourhood Ū of

φ(p) satisfying

• Ū ⊂ φ(Ũ ∩ F−1(Ṽ ));
• (ψ ◦ F ◦ φ−1)(Ū ) is an open neighbourhood of 0;
• ψ ◦ F ◦ φ−1 has a smooth inverse on (ψ ◦ F ◦ φ−1)(Ū ).

Set U = φ−1(Ū ) and V = (F ◦ φ−1)(Ū ). Our claim is that U is an open neigh-
bourhood of p ∈ M . Since Ū is open and contained in φ(Ũ ∩ F−1(Ṽ ))(⊂ φ(Ũ )),
and φ(Ũ ) is open, Ū is open in φ(Ũ ), hence φ−1(Ū ) is open in Ũ . Moreover,
φ−1(Ū ) = U (say) is open in M . Since φ(p) ∈ Ū , therefore p ∈ U .

Since ψ ◦ F ◦ φ−1 has a smooth inverse, therefore ψ ◦ F ◦ φ−1 is continuous.
Also φ ◦ F−1 is continuous, as ψ is so. Furthermore, (F ◦ φ−1)(Ū ) = V is open.
Since φ(p) ∈ Ū , therefore F(p) ∈ V . This shows V is an open neighbourhood of
F(p).

Since ψ ◦ F ◦ φ−1 has an inverse, therefore ψ ◦ F ◦ φ−1 is one-to-one and onto.
Thus, the composite map ψ−1(ψ ◦ F ◦ φ−1) ◦ φ = F is also one-to-one and onto.
Since ψ ◦ F ◦ φ−1 has a smooth inverse, φ ◦ F−1 ◦ ψ−1 is smooth. This gives F−1 :
V → U is smooth. This completes the proof.

Let M and N be n-dimensional smooth manifolds and F : M → N be a smooth
map. Let p ∈ M . If ∃ an open neighbourhood U of p, such that the neighbourhood
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F(U ) of F(p) is open in N and F : U → F(U ) is a diffeomorphism, then we say
that F is a local diffeomorphism.

Problem 2.32 Let M and N be n-dimensional smooth manifolds and F : M → N
be a local diffeomorphism. Prove that F is an open map.

Solution: 32 Let p ∈ U . Since F is a local diffeomorphism and p ∈ M , ∃ an open
neighbourhood V of p such that F(V ) is open in N , and themap F |V : V → F(V ) is
a diffeomorphism. SinceU, V are open neighbourhoods of p,U ∩ V is also an open
neighbourhood of p, in V . Since F |V : V → F(V ) is a diffeomorphism, therefore
it is a homeomorphism. This implies F |V (U ∩ V ) is open in F(V ), as U ∩ V is
open in V . Moreover, F(V ) being open in N , therefore F |V (U ∩ V ) is open in N .
Since p ∈ U ∩ V , F(p) ∈ F(U ∩ V ). Thus, F(U ∩ V ) ⊂ F(V ) and F(U ∩ V ) is
an open neighbourhood of F(p).

Remark 2.20 LetM, N , P be smoothmanifolds. Let F : M → N andG : N → P
be local diffeomorphisms. The composite mapG ◦ F : M → P is a local diffeomor-
phism.

Let M and N be respectively n- and m-dimensional smooth manifolds. If F :
M → N is continuous, and for every p ∈ M , ∃ an open neighbourhoodU of p such
that F(U ) is an open neighbourhood of F(p) and the map F |U : U → F(U ) is a
homeomorphism, then F : M → N is said to be a local homeomorphism.

Remark 2.21 If F : M → N is a local diffeomorphism, then it is a local homeo-
morphism.

Remark 2.22 Let M, N be smooth manifolds. Let U be a non-empty open subset
of M . Let F : M → N be a local diffeomorphism. Then F |U : U → N is a local
diffeomorphism.

Note that diffeomorphism implies local diffeomorphism, but the converse is not
always true in general.

Example 2.8 Consider the map f : R
2 → R

2 defined by f (x, y) = (ex cos y,

ex sin y). Here f
′
(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
and the Jacobian of the matrix is

non-zero, which shows f
′
(x, y) is invertible. But f is not one-to-one, since it is of

period 2π. So f is a local diffeomorphism but not a diffeomorphism.

Problem 2.33 LetM and N be respectivelyn- andm-dimensional smoothmanifolds
and F : M → N be 1 − 1 andonto. Suppose F is a local diffeomorphism.Thenprove
that F is a diffeomorphism.

Solution: 33 Since F : M → N is a local diffeomorphism, it is a local homeomor-
phism and hence continuous. Also F is an open map. Since F : M → N is 1 − 1
and onto, F is continuous and F is an open map, F : M → N is a homeomorphism.
It remains to show that F : M → N is smooth and its inverse is also so.
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For any p ∈ M , we have to find an admissible coordinate chart (U,φ) of M with
p ∈ U , and an admissible coordinate chart (V,ψ) of N with F(p) ∈ V such that
ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V )) → ψ(V ) is smooth.

Since p ∈ M , and F : M → N is a local diffeomorphism, ∃ an open neighbour-
hood Ũ of p such that F(Ũ ) is an open neighbourhood of F(p) in N , and the
map F |Ũ : Ũ → F(Ũ ) is a diffeomorphism. Furthermore, ∃ an admissible coor-
dinate chart (Û , φ̂) of M with p ∈ Û . Also, ∃ an admissible coordinate chart
(V̂ , ψ̂) of N with F(p) ∈ V̂ . Moreover, Ũ ∩ Û is an open neighbourhood of p.
So

(
(Ũ ∩ Û ), φ̂|Ũ∩Û

)
forms an admissible chart of M satisfying p ∈ Ũ ∩ Û . Since

F |Ũ : Ũ → F(Ũ ) is a diffeomorphism, the map F |Ũ∩Û : Ũ ∩ Û → F(Ũ ∩ Û ) is
a diffeomorphism. Since F : M → N is a homeomorphism, and Ũ ∩ Û is an open
neighbourhood of p, F(Ũ ∩ Û ) is an open neighbourhood of F(p).

Since (V̂ , ψ̂) is an admissible coordinate chart of N with V̂ being an open neigh-
bourhood of F(p), and F(Ũ ∩ Û ) is an open neighbourhood of F(p), V̂ ∩ F(Ũ ∩
Û ) is an open neighbourhood of F(p). Hence, (V̂ ∩ F(Ũ ∩ Û ), ψ̂|V̂∩F(Ũ∩Û )) forms

an admissible coordinate chart of N with F(p) ∈ V̂ ∩ F(Ũ ∩ Û ).
Since the map F |Ũ : Ũ → F(Ũ ) is a diffeomorphism, it is smooth. As

(
(Ũ ∩

Û ), φ̂|Ũ∩Û
)
forms an admissible chart of M satisfying p ∈ Ũ ∩ Û and (V̂ ∩ F(Ũ ∩

Û ), ψ̂|V̂∩F(Ũ∩Û )) forms an admissible coordinate chart of N with F(p) ∈ V̂ ∩
F(Ũ ∩ Û ), therefore

(ψ̂|V̂∩F(Ũ∩Û )) ◦ F |Ũ ◦ (φ̂|Ũ∩Û )−1

is smooth. This proves F : M → N is smooth.
Finally, since F : M → N is 1 − 1 and onto, therefore F−1 : N → M exists

and is 1 − 1 and onto. Also F−1 : N → M is a local diffeomorphism, therefore
proceeding as above F−1 : N → M is smooth. This completes the solution.

Problem 2.34 LetM and N be respectivelyn- andm-dimensional smoothmanifolds
and F : M → N be a local diffeomorphism. Then F is a smooth immersion and
smooth submersion.

Solution: 34 We wish to show that, for every p ∈ M , rank F = n = m. Since p ∈
M and F is a local diffeomorphism, ∃ an open neighbourhood U of p such that
F(U ) is open in N , and the map F |U : U → F(U ) is a diffeomorphism. Since
U ( �= φ) is an open subset of M , and M is an n-dimensional smooth manifold,
U is an n-dimensional smooth manifold, so dim Tp (U ) = dimU = n. Similarly,
dim TF(p) (F(U )) = dim F(U ) = m. Since F |U : U → F(U ) is a diffeomorphism,
p ∈ U , the linear map f∗ : Tp (U ) → TF(p) (F(U )) at p is an isomorphism (refer
to Exercise 2.55), which implies rank F = dim Tp (U ) = n = m = dim TF(p) (F(U ))

at p.

Problem 2.35 LetM and N be respectivelyn- andm-dimensional smoothmanifolds
and F : M → N be a smooth immersion and smooth submersion. Then F is a local
diffeomorphism.
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Solution: 35 Let p ∈ M . Our claim is to find an open neighbourhood U of p ∈ M
such that F(U ) is open in N , and the map F |U : U → F(U ) is a diffeomorphism.

Since F is a smooth immersion and smooth submersion, the linear map F∗ :
Tp (M) → TF(p)(N ) is 1 − 1 and onto at p ∈ M , therefore dim Tp (M) = dim TF(p)

(M), i.e. n = m. By Inverse Function Theorem for manifolds, ∃ an open neigh-
bourhood V of F(p) with F |U : U → V being a diffeomorphism. Hence F(U ) =
(F |U )(U ) = V . Moreover, F(U ) being open, F |U : U → F(U ) is a diffeomor-
phism.

Exercises

Exercise 2.14 Let M and N be n-dimensional smooth manifolds and F : M → N
be a smooth immersion. Then F is a local diffeomorphism.

Exercise 2.15 Let M and N be n-dimensional smooth manifolds and F : M → N
be a smooth submersion. Then F is a local diffeomorphism.

2.10 Vector Field

In classical notation, if to each point p of R
3 or in a domain U of R

3, a vector
α : p → α(p) is specified, then we say that a vector field is given on R

3 or in a
domain of R

3. In the same manner, we will introduce a vector field in a manifold M .
A vector field X on M is a correspondence that associates with each point p of M ,

a vector X p ∈ Tp(M). In fact, if f ∈ F(M) then X f is defined to be a real-valued
function on M , as follows:

(X f )(p) = X p f. (2.23)

A vector field X is called differentiable if X f is so for every f ∈ F(M). From (2.22),
a vector field X can be expressed as

X =
∑

i

ξi
∂

∂xi
. (2.24)

Let χ(M) denote the set of all differentiable vector fields on M . We define

{
(X + Y ) f = X f + Y f
(λX) f = λ(X f ), ∀ X,Y ∈ χ(M),λ ∈ R.

(2.25)

It can be shown that χ(M) is a vector space over R. We also define f X to be a vector
field on M as follows:

( f X)(p) = f (p)X p, ∀ p ∈ M. (2.26)

Let us define a mapping [ , ] : F(M) → F(M) as
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[X,Y ] f = X (Y f ) − Y (X f ). (2.27)

Such a bracket is also known as Lie Bracket of X and Y .

Exercises

Exercise 2.16 Show that for every X,Y, Z in χ(M) and f, g in F(M)

(a) [X,Y ] ∈ χ(M)

(b) [bX,Y ] = b[X,Y ] = [X, bY ], ∀ b ∈ R

(c) [X + Y, Z ] = [X, Z ] + [Y, Z ]
(d) [X,Y + Z ] = [X,Y ] + [X, Z ]
(e) [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = θ: Jacobi Identity
(f) [X, X ] = θ
(g) [X,Y ] = −[Y, X ].

Hints
2.16 (a). Show that [X,Y ] satisfies Linearity and Leibnitz Product rule.

Remark

Remark 2.23 χ(M) with the product rule given by (2.27) is an algebra, also called
Lie Algebra.

Problem 2.36 Using [X, X ] = θ, show that [X,Y ] = −[Y, X ].
Solution: 36 For every X,Y ∈ χ(M), X + Y ∈ χ(M). Using the hypothesis, we
have

[X + Y, X + Y ] = θ

i.e. [X,Y ] + [Y, X ] = θ,

∴ [X,Y ] = −[Y, X ].

Problem 2.37 Prove that [X, f Y ] = f [X,Y ] + (X f )Y .

Solution: 37 Note that

(( f X)h)(p) = ( f X)ph, ∀ h ∈ F(M) by (2.23)

= f (p)X ph, by (2.26).

Also, ( f (Xh))(p) = f (p)(Xh)(p), by (1.8)

= f (p)X ph, by (2.23).

Thus
( f X)h = f (Xh), ∀ p ∈ M. (2.28)

Again (2.27) yields
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[X, f Y ] = X{( f Y )h} − ( f Y )(Xh)

= X{ f (Yh)} − f {Y (Xh)}, by (2.28)

= (X f )(Yh) + f {X (Yh)} − f {Y (Xh)}, by (2.17)

= {(X f )Y }h + f {[X,Y ]h}, by (2.27) and (2.28)

= {(X f )Y }h + { f [X,Y ]}h, by (2.28)

i.e., [X, f Y ] = f [X,Y ] + (X f )Y, ∀ h.

Problem 2.38 If X = ∂

∂x
,Y = ∂

∂y
+ ex

∂

∂z
, compute [X,Y ](0,1,0).

Solution: 38 Note that

[X,Y ] f = ∂

∂x

{∂ f

∂y
+ ex

∂ f

∂z

}−( ∂

∂y
+ ex

∂

∂z

)∂ f

∂x

= ex
∂ f

∂z

∴, [X,Y ] = ex
∂

∂z
, ∀ f

Hence, [X,Y ](0,1,0) = ∂

∂z

∣∣∣∣
(0,1,0)

.

Problem 2.39 Find the general expression for Z ∈ χ(R2) where

[
∂

∂x1

, Z

]
= Z and

[
∂

∂x2

, Z

]
= Z .

Solution: 39 Let us assume that

Z = λ(x1 , x2)
∂

∂x1

+ μ(x1 , x2)
∂

∂x2

, λ,μ ∈ F(R2).

Substituting the expression of Z and using (2.27), one gets after a few steps

[
∂

∂x1

, Z

]
= ∂λ(x1 , x2)

∂x1

∂

∂x1

+ ∂μ(x1 , x2)

∂x1

∂

∂x2

.

Similarly, [
∂

∂x2

, Z

]
= ∂λ(x1 , x2)

∂x2

∂

∂x1

+ ∂μ(x1 , x2)

∂x2

∂

∂x2

.

From the given condition,

[
∂

∂x1

, Z

]
= Z and

[
∂

∂x2

, Z

]
= Z .
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Thus on comparing, we have

∂λ(x1 , x2 )

∂x1
= λ(x1 , x2 );

∂μ(x1 , x2 )

∂x1
= μ(x1 , x2 );

∂λ(x1 , x2 )

∂x2
= λ(x1 , x2 );

∂μ(x1 , x2 )

∂x2
= μ(x1 , x2 ).

From the first equation, we see that

λ(x1 , x2) = A f (x2)e
x1 , A being constant.

Substituting in the third equation, we get

∂

∂x2

{A f (x2)e
x1 } = A f (x2)e

x1

A f ′(x2)e
x1 = A f (x2)e

x1

∴, f (x2) = Cex2 , C is constant.

Thus λ(x1 , x2) = ACex2 ex1 = Dex1+x2 , say D = AC being constant.

By similar computation, from the second and fourth equations, it can be found that
μ(x1 , x2) = Bg(x2)e

x1 and after a brief calculation, μ(x1 , x2) = Eex1+x2 , E being a
constant. Thus,

Z = Dex1+x2
∂

∂x1

+ Eex1+x2
∂

∂x2

.

Problem 2.40 Write in cylindrical coordinates, the vector field on R
3 defined by

X = ∂

∂x
+ ∂

∂y
+ ∂

∂z
.

Solution: 40 If (ρ, θ, z) is the cylindrical coordinate, then the Cartesian coordinate
(x, y, z) is given by

x = ρ cos θ, y = ρ sin θ, z = z.

Therefore, |J | = ρ. Let us write

X = ξ1(ρ, θ, z)
∂

∂ρ
+ ξ2(ρ, θ, z)

∂

∂θ
+ ξ3(ρ, θ, z)

∂

∂θ
.

Then J

⎛

⎝
ξ1

ξ2

ξ3

⎞

⎠ =
⎛

⎝
1
1
1

⎞

⎠ , i.e., ξ1 cos θ − ξ2ρ sin θ = 1; ξ1 sin θ + ξ2ρ cos θ =

1; ξ3 = 1. After a few steps, one gets from above
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ξ1 = cos θ + sin θ

ξ2 = 1

ρ
(cos θ − sin θ).

Thus in cylindrical coordinate, we have

X = (cos θ + sin θ)
∂

∂ρ
+ 1

ρ
(cos θ − sin θ)

∂

∂θ
+ ∂

∂z
.

Problem 2.41 If X = (x − y) ∂
∂x − ∂

∂y , Y = x2 ∂
∂x + y ∂

∂y are vector fields on R
2,

show that X,Y are linearly independent differentiable vector fields on R
2, if

x2 − y2 + xy �= 0. Further, if Z = (x2 − y2) ∂
∂x + (x2 + y2) ∂

∂y is any vector of R
2,

express Z = f X + gY , where f, g ∈ F(R2).

Solution: 41 Clearly, X,Y are differentiable, as x − y, x2, y are also so. If X,Y
are linearly independent, then for λX + μY = θ ⇒ λ = μ = θ, ∀ λ,μ ∈ R. Again
λX + μY = θ gives

{λ(x − y) + μx2} ∂

∂x
+ (−λ + μy)

∂

∂y
= θ.

As
{ ∂

∂x
,

∂

∂y

}
is a basis of T(x,y)(R

2), we must have

λ(x − y) + μx2 = 0 = −λ + μy.

Therefore, λ = μy and μ(x2 − y2 + xy) = 0. Thus X,Y are linearly independent if
x2 − y2 + xy �= 0. Writing Z = f X + gY , we find on comparing

x2 − y2 = f (x − y) + gx2 and x2 + y2 = − f + gy.

One gets, after a brief calculation,

f = x2y − y3 − x4 − x2y2

x2 + xy − y2
, g = (x − y)(x + y + x2 + y2)

x2 + xy − y2
.

Exercises

Exercise 2.17 Show that
(a) [ f X,Y ] = f [X,Y ] − (Y f )X
(b) [ f X, gY ] = f g[X,Y ] + { f (Xg)}Y − {g(Y f )}X, where X,Y ∈ χ(M) and
f, g ∈ F(M).

Exercise 2.18 In terms of a local coordinate system (x1, x2, . . . , xn) of a point in a
neighbourhood of a differential manifold M, show that
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(a)

[
∂

∂xi
,

∂

∂x j

]
= θ, i, j = 1, 2, 3, . . . , n.

(b) [X,Y ] =
∑

i, j

(
ξi

∂η j

∂xi
− ηi ∂ξ j

∂xi

)
∂

∂x j
where X =

n∑

i=1

ξi
∂

∂xi
,Y =

n∑

j=1

η j ∂

∂x j
,

each ξi , η j ∈ F(M).

Exercise 2.19 Compute

[
y

∂

∂x
− x

∂

∂y
,

∂

∂x

]
.

Exercise 2.20 Let X = x
∂

∂x
+ y

∂

∂y
. Compute X f where

(i) f : R
3 → R is defined by f (x, y, z) = x2 − y2 − z2

(ii) f : R
2 → R is defined by f (x, y) = xy7

(iii) f : R
3 → R is defined by f (x, y, z) = ex cos y.

Exercise 2.21 (A). Compute [X,Y ]; (B). Compute [X,Y ](1,0) where

(i) X = ∂

∂x
,Y = ex

∂

∂y
+ ∂

∂x

(ii) X = x2
∂

∂x
,Y = x

∂

∂y

(iii) X = x2
∂

∂x
+ y2

∂

∂y
,Y = (y + 1)

∂

∂x
.

Exercise 2.22 (A). Compute [X,Y ]; (B). Compute [X,Y ](1,1,1) where

(i) X = ∂

∂x
,Y = ex

∂

∂y
+ ∂

∂z

(ii) X = y
∂

∂x
+ x

∂

∂z
,Y = y

∂

∂y
.

Exercise 2.23 Compute (A). ( f X)(1,1,1) and (B). (X f )(1,1,1) where f : R
3 → R is

defined

by f (x, y, z) = x2y2 and (i) X = y
∂

∂x
+ x

∂

∂z
, (ii) X = ex

∂

∂y
+ ∂

∂z
and (iii) X =

∂

∂y
+ ez

∂

∂z
.

Answers

2.19.
∂

∂y
.

2.20. (i). 2(x2 − y2) (ii) 8xy7 (iii) ex (x cos y) − y sin y.

2.21. (A) (i)
∂

∂y
(ii) x2

∂

∂y
(iii) y2

∂

∂x
− 2x(y + 1)

∂

∂x
.

(B) (i)
∂

∂y

∣∣
(1,0)

(ii)
∂

∂y

∣∣
(1,0)

(iii) −2
∂

∂x

∣∣
(1,0)

.
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2.22 (A) (i)
∂

∂y
(ii) −y

∂

∂x
(B)(i)

∂

∂y

∣∣
(1,1,1)

(ii) − ∂

∂x

∣∣
(1,1,1)

.

2.23 (A) (i)
∂

∂x

∣
∣
(1,1,1) + ∂

∂z

∣
∣
(1,1,1) (ii) e

∂

∂y

∣
∣
(1,1,1) + ∂

∂z

∣
∣
(1,1,1)

(iii)
∂

∂y

∣
∣
(1,1,1) + e

∂

∂z

∣
∣
(1,1,1)

.

(B) (i) 2 (ii) 2e (iii) 2.

2.11 Integral Curve

We are going to state the geometrical interpretation of the vector field in this section.
In the last section, we have shown that a vector field is a rule that gives a tangent

vector at every point of the manifold M . Each point of M has its own tangent space.
The question now arises—for a given vector field, can we start from one point of
M and choose a curve whose tangent vector is always the given vector field? The
answer has been given in the affirmative sense.

At p ∈ U ⊂ M , suppose a vector field Y ∈ χ(M) is specified. A curve σ is an
integral curve of the vector field Y if the range of σ is contained in U and for
every a ≤ t0 ≤ b in the domain [a, b] of R of σ, the tangent vector to σ at σ(t0) = p
coincides with Yp , i.e.

Yp = Y
σ(t0 )

i.e. Yp f = Y
σ(t0 )

f, ∀ f ∈ F(M).

Using (2.15) and (2.22), we see that

n∑

i=1

ξi (p)
( ∂

∂xi
)
p f = d

dt
( f ◦ σ)(t)

∣∣∣∣
t=t0

=
n∑

i=1

dxi (t)

dt

∣∣∣∣
t=t0

( ∂

∂xi
)
p f.

Since {( ∂

∂xi
)
p : i = 1, 2, 3, . . . , n} is a basis of Tp (M), we must have

ξi (p) = dxi (t)

dt

∣
∣∣∣
t=t0

or ξi (σ(t))

∣∣∣∣
t=t0

= dxi (t)

dt

∣∣∣∣
t=t0

i.e. ξi (x1(t), x2(t), . . . , xn(t))

∣∣∣∣
t=t0

= dxi (t)

dt

∣∣∣∣
t=t0

, by (2.14).

Hence they are related by

dxi (t)

dt
= ξi (x1(t), x2(t), . . . , xn(t)). (2.29)
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A vector field X on M is said to be complete if at every point p of M , the integral
curve of X through p can be defined for all t ∈ R. Otherwise, it is said to be an
incomplete vector field.

An integral curve is said to be maximal if its domain cannot be extended to a
larger interval.

Remark 2.24 Note that the paths of different integral curves can never cross except
possibly at a point where ξi = 0 for all t , because of the uniqueness of the solutions
of (2.29). Since some integral curve passes through each point p (it is found by
solving (2.29) with initial conditions at p), the integral curves “fill”M .

For instance, if M is a 3-dimensional manifold, then there exists a 2-dimensional
family of integral curves for each vector field on M and they cover all of M . Such a
manifold-filling set of integral curves is called congruence.

Remark 2.25 Let σ1 and σ2 be integral curves of a vector field X defined on open
intervals I1 and I2 respectively, containing 0. If σ1(0) = σ2(0), then σ1 = σ2 at each
point of I1 ∩ I2 .

Problem 2.42 Find the integral curve of the null vector field.

Solution: 42 For a given null vector field on R
n , the required differential equations

are
dx1

dt
= dx2

dt
= · · · = dxn

dt
= 0, (2.30)

where θ = 0
∂

∂x1
+ 0

∂

∂x2
+ · · · + 0

∂

∂xn
.

If for initial condition t = 0, we have x1 = p1, x2 = p2, . . . , xn = pn , then we
get from (2.30) after integration

c1 = p1, c2 = p2, . . . , cn = pn,

where c1, c2, . . . , cn are integrating constants.
Thus the integral curve, say σ, for the null vector field θ on R

n , is given by

σ = (p1, p2, . . . , pn), i.e. the point itself.

Problem 2.43 Compute the integral curve of the vector field X = −y
∂

∂x
+ x

∂

∂y
on R

2, starting at the point (1, 0) ∈ R
2.

Solution: 43 The differential equations are

dx

dt
= −y,

dy

dt
= x .

Thus ẋ = −y gives ẍ = −ẏ = −x from above. Hence x = A cos t + B sin t , where
A, B are to be determined. Therefore y = −ẋ gives y = A sin t − B cos t . It is given
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Fig. 2.18 Integral curves of
the vector field
X = −y ∂

∂x + x ∂
∂y

that, for t = 0, x = 1, y = 0. Hence we get from the above

A = 1, B = 0 i.e. x = cos t, y = sin t.

Thus the integral curve σ for the given vector field, starting at (1, 0), is σ =
(cos t, sin t), i.e. the curve is the unit circle.

Remark 2.26 In general, if for t = 0, x = p1 and y = p2, then

p1 = A, p2 = B,

i.e.x(t) = p1 cos t + p2 sin t, y(t) = p1 sin t − p2 cos t . Hence, the integral curve
σ for the given vector field, starting from p = (p1, p2), is

σ(t) = (p1 cos t + p2 sin t, p1 sin t − p2 cos t).

It is to be noted that σ(t) is defined for all t ∈ R and hence the given vector field X
is a complete vector field.

In this case,
x2(t) + y2(t) = (p1)2 + (p2)2.

Thus the integral curves are circles with centre at the origin. The figure is given
(Fig. 2.18).

Problem 2.44 Let X = y
∂

∂x
,Y = x2

2

∂

∂y
be two vector fields on R

2. Show that

X,Y are complete but [X,Y ] is not.
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Solution: 44 For X = y
∂

∂x
, the differential equations are

dx

dt
= y,

dy

dt
= 0.

After integration, x = yt + A, y = B, where A, B are integrating constants. For
t = 0, if x = x0 , y = y0 , then A = x0 , B = y0 . Consequently the integral curve, say
σ(t) for X , through (x0 , y0) is

σ(t) = (y0 t + x0 , y0),

which is defined for all t ∈ R. Hence X is complete.

Similarly, for Y = x2

2

∂

∂y
in χ(R2), the differential equations are

dx

dt
= 0,

dy

dt
= x2

2
.

Consequently the integral curve, say σ̃(t) for Y , through (x0 , y0), is given by

σ̃(t) =(
x0 ,

1

2
x2
0

+ y0
)
,

which is defined for all t ∈ R. Hence Y is complete.
Now

[X,Y ] f = [
y

∂

∂x
,
x2

2

∂

∂y

]
f = y

∂

∂x

( x2

2

∂ f

∂y

) − x2

2

∂

∂y

(
y
x2

2

∂ f

∂x

)

= yx
∂ f

∂y
+ yx2

2

∂2 f

∂x∂y
− x2

2

∂ f

∂x
− x2y

2

∂2 f

∂x∂y

i.e. [X,Y ] = − x2

2

∂

∂x
+ xy

∂

∂y
.

Thus, the differential equations are

dx

dt
= − x2

2
,

dy

dt
= xy. (2.31)

Integrating the foregoing equation, one finds

1

x
= t

2
+ A, A being constant.

Thus, A = 1

x0

for t = 0, x = x0 and hence x = 2x0

x0 t + 2
. From (2.31), one gets
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dy

y
= 2x0

x0 t + 2
dt.

On integrating,
log y = 2 log(x0 t + 2) + log B,

where log B is the integrating constant. Therefore y = (x0 t + 2)2. Hence y0 = 4B,
where y = y0 for t = 0. Consequently, the integral curve γ(t) for [X,Y ] is

γ(t) =
(

2x0

x0 t + 2
,
y0
4

(x0 t + 2)2
)

,

which is not defined for t = − 2

x0

. Thus [X,Y ] is not complete.

Problem 2.45 Let X = y
∂

∂x
,Y = x

∂

∂y
be two vector fields on R

2. Show that X,Y

are complete. Is [X,Y ] a complete vector field?

Solution: 45 For X = y
∂

∂x
, the differential equations are

dx

dt
= y,

dy

dt
= 0.

After integration, x = yt + A, y = B, where A, B are integrating constants. For
t = 0, if x = x0 , y = y0 , then A = x0 , B = y0 . Consequently the integral curve, say
σ(t) for X , through (x0 , y0) is

σ(t) = (y0 t + x0 , y0),

which is defined for all t ∈ R. Hence X is complete.

Similarly, for Y = x

2

∂

∂y
in χ(R2), the differential equations are

dx

dt
= 0,

dy

dt
= x .

In a similar manner, we can show that the integral curve, say σ̂(t) for Y , through
(x0 , y0) is given by

σ̂(t) = (
x0 , x0 t + y0

)
,

which is defined for all t ∈ R. Hence Y is complete.
Again, after a brief calculation we obtain

[X,Y ] = −x
∂

∂x
+ y

∂

∂y
.
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Hence, the differential equations are

dx

dt
= −x,

dy

dt
= y,

which on solving, one gets

x = −x0e
t , y = y0e

t , where x = x0 , y = y0 for t = 0.

Thus, the integral curve γ(t) of [X,Y ] through (x0 , y0) is given by γ(t) = (−x0e
t ,

y0e
t ), which is defined for all t ∈ R. Thus [X,Y ] is a complete vector field.

Problem 2.46 Find the integral curve for a given vector field X = x
∂

∂x
+ y

∂

∂y
in

R
2. Is X complete? Give the geometrical interpretation of such X .

Solution: 46 The differential equations are
dx

dt
= x and

dy

dt
= y. Integrating one

gets log x = t + A and log y = t + B, A, B being integration constants. With ini-
tial condition, for t = 0, let x = p1, y = p2. Then

x = p1et , y = p2et .

Hence the integral curve, say σ, for X is given by

σ = (p1et , p2et ),

which is defined for all t ∈ R. Thus X is complete. Also,
x

y
= c, say where c = p1

p2
.

Therefore x = cy. This represents straight lines passing through the origin of R
2.

Problem 2.47 Let X be the vector field x2
∂

∂x
on the real line R. Find the integral

curve of X at 1. Is X complete?

Solution: 47 The differential equation is

dx

dt
= x2.

Integrating, one gets

−1

x
= t + A, A being integration constant.



2.11 Integral Curve 89

When t = 0, then x = 1. Thus A = −1.Consequently, x = 1

1 − t
. Hence the integral

curve, say σ of X , is σ = 1

1 − t
which is not defined for t = 1. Thus X is not a

complete vector field.

Exercises

Exercise 2.24 Find the integral curve for the following vector fields. Also check
whether the given vector field is complete or not:

(a) X = e−x ∂

∂x
on R.

(b) X = ∂

∂x1
+ (x1)2

∂

∂x2
on R

2.

(c) X = ∂

∂y
+ ex

∂

∂z
on R

3.

(d) X = y
∂

∂x
− x

∂

∂y
on R

2.

(e) X = x2
∂

∂x1
− (x2)3

∂

∂x2
on R

2.

(f) X = ∂

∂x
where X ∈ χ(R2 − {0}).

Exercise 2.25 Compute the integral curve of the vector field X = ∂

∂x
+ 2y

∂

∂y
+

3
∂

∂z
on R

3 passing through (x0 , y0 , z0) at t = 0.

Exercise 2.26 Compute the integral curveof X = ∂

∂x
+ x

∂

∂y
onR

2 passing through

(a, b) at t = 0.

Exercise 2.27 Let X be the vector field x
∂

∂x
on R. Find the integral curve of X

starting at p.

Exercise 2.28 Find the integral curve of the vector field X =
(
x + y

r

)
∂

∂y
−

(
y − x

r

)
∂

∂x
on R

2.

Answers
2.24. (a) log(t + ep); No (b) (p1 + t, t (p1 + t)2, p2); Yes

(c) (p1, t + p2, te1 + p2);Yes (d) (p1 cos t + p2 sin t,−p1 sin t + p2 cos t);
Yes

(e)

(
tp2

√
1 − 2t (p2)2

+ p1,
p2

√
1 − 2t (p2)2

)
; No (f) (t + p1, p2); No

2.25. (t + x0 , y0e
2t , 3t + z0) 2.26. (t + a, t (t + a), b) 2.27. pet

2.28. family of logarithmic spiral, where r = √
x2 + y2.
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2.12 Differential of a Mapping

Let M be an n-dimensional and N be an m-dimensional manifold and f : M → N
be a C∞ map (Fig. 2.19).

Such f induces a map

f ∗ : F( f (p)) → F(p), by

f ∗(g) = g ◦ f, ∀ g ∈ F( f (p)), p ∈ M (2.32)

and is called the pull-back of g by f . It satisfies

{
f ∗(ag + bh) = a( f ∗g) + b( f ∗h)

f ∗(gh) = f ∗(g) f ∗(h), ∀ h ∈ F( f (p)), a, b ∈ R.
(2.33)

The map f also induces a mapping

f∗ : Tp (M) → Tf (p) (N ), such that

{ f∗(X p )}g = X p ( f
∗g) = X p (g ◦ f ) (2.34)

and is called the push-forward of X by f at p, denoted by f∗,p . Such f∗ is also
called the derived linear map or differential map of f on Tp (M). We write

f∗(X p ) = ( f∗ X) f (p). (2.35)

Fig. 2.19 Push-forward mapping
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Remark 2.27 These notational conventions f∗ , f ∗ as defined above reflect a similar
situation in linear algebra related to linear mappings of vector spaces and their duals,
respectively.

Problem 2.48 Prove that f∗ is a linear map.

Solution: 48 Note that, for X p ,Yp ∈ Tp (M) and λ ∈ R, we have

{ f∗(λX p + Yp)}g = (λX p + Yp)( f
∗g) = (λX p + Yp)(g ◦ f ), by (2.34)

= λX p(g ◦ f ) + Yp(g ◦ f )

= λ{ f∗(X p)}g + { f∗(Yp)}g, by (2.34).

This proves f∗ is a linear map.

Problem 2.49 Prove that f∗(X p ) is the derivation at f (p).

Solution: 49 Note that, for all h, g, h + g ∈ F( f (p)), we obtain

{ f∗(X p)}(h + g) = X p( f
∗(h + g)) = X p((h + g) ◦ f )

= X p(h ◦ f ) + X p(g ◦ f )

= { f∗(X p)}(h) + { f∗(X p)}(g).

Also
{ f∗(X p)}(λh) = λX p(h ◦ f ) = λ{ f∗(X p)h}, λ ∈ R.

Thus f∗(X p ) is the derivation at f (p).

Problem 2.50 If I is the identitymap in the neighbourhood of a point p in amanifold
M , prove that (I∗)p is the identity map on Tp (M).

Solution: 50 Let IM denote the identity C∞ map in the neighbourhood of a point p
of M . By (2.34), we obtain

{(I∗)p X p }g = X p (g ◦ I ) = X pg,

∴ (I∗)p X p = X p , ∀ g.

Thus (I∗)p is the identity differential of Tp (M).

Problem 2.51 If f is a smooth map from a manifold M into another manifold N
and g is a smooth map from N into another manifold L , then

(g ◦ f )∗ = g∗ ◦ f∗ .

Solution: 51 Note that g ◦ f : M → L . Now f, g, g ◦ f induce the following linear
map:
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f∗ : Tp (M) → Tf (p) (N ), g∗ : Tf (p) (N ) → Tg( f (p)) (L), (g ◦ f )∗ : Tp (M) → T(g◦ f )(p) (L).

Let h ∈ F(L). Then h ∈ F((g ◦ f )(p)). Now

((g ◦ f )∗ X p )h = X p (h ◦ (g ◦ f ))

= X p ((h ◦ g) ◦ f )

= ( f∗(X p ))(h ◦ g)

= {g∗( f∗(X p ))}h
∴ (g ◦ f )∗ X p = g∗( f∗(X p )), ∀ h

or (g ◦ f )∗ = g∗ ◦ f∗ , ∀ X p ∈ Tp (M).

Problem 2.52 Let f : M → N be a diffeomorphism between twomanifoldsM and
N . Prove that

f −1
∗ (gX) = (g ◦ f ) f −1

∗ X, ∀ g ∈ F(N ).

Solution: 52 Given that f : M → N is a diffeomorphism and hence by definition,
f −1 : N → M is C∞. Thus we can write

{ f −1
∗ (X f (p))}h = X f (p)(h ◦ f −1), by (2.34), ∀ h ∈ F(M)

or ( f −1
∗ X)p h = X f (p)(h ◦ f −1), by (2.35).

Now for all X ∈ χ(N ), gX ∈ χ(N ), g ∈ F(N ) and hence replacing X by gX in the
above equation, we get

{ f −1
∗ (gX)}p h = (gX) f (p)(h ◦ f −1)

= g( f (p))X f (p)(h ◦ f −1), by (2.26)

= (g ◦ f )(p)( f −1
∗ X)p h, from above

or f −1
∗ (gX) = (g ◦ f ) f −1

∗ X, ∀ h.

Problem 2.53 If f is a transformation of M and g is a differentiable function on
M , show that f∗(gX) = (g ◦ f −1) f∗ X .

Solution: 53 By virtue of (2.34),

{ f∗(gX)p}h = (gX)p(h ◦ f ), ∀ h ∈ F(M)

or { f∗(gX)} f (p) h = g(p)X p(h ◦ f ), by (2.26), (2.35)

= g{( f −1 f )(p)}X p(h ◦ f ), as f is a transformation on M

= {(g ◦ f −1) f (p)}{ f∗(X p)}h, by (2.34)

= (g ◦ f −1) f (p)( f∗ X) f (p)h

Thus f∗(gX) = (g ◦ f −1) f X, ∀ h.
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Problem 2.54 If f is a transformation of M and g is a differentiable function on
M , prove that f ∗(( f∗ X)g) = X ( f ∗g).

Solution: 54 Note that f : M → M is a transformation and hence

f (p) = q ⇒ p = f −1(q), ∀ p, q ∈ M.

In view of (2.34), one gets

{ f∗(X p)}g = X p(g ◦ f ), ∀ g ∈ F(M)

or {( f∗ X) f (p)}g = {X (g ◦ f )}(p), by (2.35)

or {( f∗ X)g} f (p) = {X (g ◦ f )}(p), by (2.23)

or {( f∗ X)g}q = {X (g ◦ f )} f −1(q)

or ( f∗ X)g = {X (g ◦ f )} f −1}, ∀ q

or {( f∗ X)g} f = X (g ◦ f )

or f ∗(( f∗ X)g) = X ( f ∗g), by (2.32).

Exercises

Exercise 2.29 If f is a smooth map from a manifold M into another manifold N
and g is a smooth map from N into another manifold L, then prove that (g ◦ f )∗ =
f ∗ ◦ g∗.

Exercise 2.30 If f is a transformation of M and g is a differentiable function on
M, then f∗ [X,Y ] = [ f∗ X, f∗Y ].

Geometrical Interpretation of Differential Map
For X p ∈ Tp (M), we choose a curve σ(t) in M such that X p is the tangent vector to
the curve σ(t) at σ(t0) = p, a ≤ t0 ≤ b (Fig. 2.20).

Fig. 2.20 Geometrical interpretation of f∗(X p )
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Then f∗(X p ) is defined to be the tangent vector to the curve f (σ(t)) at f (p) =
f (σ(t0)) and from (2.15), we have

{ f∗(X p )}g = d

dt
g( f (σ(t)))

∣∣
t=t0

, ∀ g ∈ F( f (p))

= d

dt
(g ◦ f )(σ(t))

∣∣
t=t0

= X p (g ◦ f ), by (2.15).

Theorem 2.6 If f is a mapping from an n-dimensional manifold M to an m-
dimensional manifold N where (x1, x2, . . . , xn) is the local coordinate system in
a neighbourhood of a point p of M and (y1, y2, . . . , yn) is the local coordinate
system in a neighbourhood of a point f (p) of N, then

f∗
( ∂

∂xi
)
p
=

m∑

j=1

(∂ f j

∂xi
)
p

( ∂

∂y j

)
f (p)

, where f j = y j ◦ f.

Proof It is known that
{ ∂

∂xi
: i = 1, 2, 3, . . . , n

}
is a basis of Tp (M) and in the

same manner
{ ∂

∂y j
: j = 1, 2, 3, . . . ,m

}
is a basis of Tf (p) (N ). Thus

f∗
( ∂

∂xi
)
p
=

m∑

j=1

a j
i

( ∂

∂y j

)
, i = 1, 2, 3, . . . , n, (2.36)

where a j
i
’s are to be determined. Therefore,

{
f∗
( ∂

∂xi
)
p

}
yk =

∑

j

a j
i
δk

j
= ak

i
.

By virtue of (2.34), we obtain

( ∂

∂xi
)
p
(yk ◦ f ) = ak

i

or
( ∂

∂xi
)
p
f k = ak

i
, by hypothesis

or
(∂ f k

∂xi
)
p
= ak

i
.

Using in (2.36), the result follows immediately.

Corollary 2.1 Let (U,φ) be a chart about a point p in a manifold M. If (u1,
u2, . . . , un) are the standard coordinates of R

n, then
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φ∗
( ∂

∂xi
)
p
=( ∂

∂ui
)

φ(p)
,

where xi = ui ◦ φ, i = 1, 2, 3, . . . , n are the coordinates of p.

Proof Left to the reader.

Problem 2.55 Let f : M → N be a diffeomorphism between two smooth mani-
folds M and N . Then f∗ : Tp (M) → Tf (p) (N ) is an isomorphism.

Solution: 55 Note that for f∗ : Tp (M) → Tf (p) (N ), both Tp (M) and Tf (p) (N ) are
vector spaces over R. Hence we have to show

(i) f∗ is a linear mapping and
(ii) f −1

∗ exists.

Now let f : M → N be a diffeomorphism and hence by definition f −1 exists and
is of class C∞. Now f ◦ f −1 = IM and f −1 ◦ f = IN . Again, in view of Problem
(2.51), we have

(IM )∗ = ( f ◦ f −1)∗ = f∗ ◦ f −1
∗ ,

where (IM )∗ is the identity differential on Tp (M). Furthermore,

(IN )∗ = ( f −1 ◦ f )∗ = f −1
∗ ◦ f∗ ,

where (IN )∗ is the identity differential on Tf (p) (N ). Thus, f −1
∗ exists and in addition

to that it is of class C∞. Thus f∗ is an isomorphism.

Remark 2.28 The matrix representation of f∗ , denoted by ( f∗), is given by

( f∗) =

⎛

⎜⎜⎜⎜
⎝

∂ f 1

∂x1
∂ f 1

∂x2 · · · ∂ f 1

∂xn
∂ f 2

∂x1
∂ f 2

∂x2 · · · ∂ f 2

∂xn
...

...
...

...
∂ f m

∂x1
∂ f m

∂x2 · · · ∂ f m

∂xn

⎞

⎟⎟⎟⎟
⎠

. (2.37)

Problem 2.56 Find ( f∗)where f : R
2 → R

2 is given by f =((x1)2 + (2x2)2, 3x1x2).

Solution: 56 Here ( f∗) =
(
2x1 8x2

3x2 3x1

)
,where f 1 = (x1)2 + (2x2)2, f 2 = (3x1x2).

Exercise

Exercise 2.31 Find ( f∗), where

(i) f : R
2 → R

2 is defined by f (x, y) = (xey + y, xey − y).
(ii) f : R → R is defined by f (x) = ex .
(iii) f : R

2 → R
3 is defined by f (x, y) = (x2y + y2, x − 2y3, yex ).

(iv) f : R
3 → R

2 is defined by f (x, y, z) = (x2 + y2 + z2 − 1, ax + by + cz).



96 2 Manifold Theory

(v) f : R
4 → R

2 is defined by f (x, y, z, t) = (x2 + y2 + z2 + t2 − 1, x2 + y2 +
z2 + t2 − 2y − 2z + 5).

(vi) f : R
2 → R

2 is defined by f (x, y) = (x2 + y2, x3y3).

Answers

(2.31)(i)

(
ey xey + 1
ey xey − 1

)
(ii) (ex ) (iii)

⎛

⎝
2xy x2 + 2y
1 −6y2

yex ex

⎞

⎠ (iv)

(
2x 2y 2z
a b c

)

(v)

(
2x 2y 2z 2t
2x 2y − 2 2z − 2 2t

)
(vi)

(
2x 2y

3x2y3 3x3y2

)
.

Problem 2.57 If f : R
2 → R

2 is givenby (y1, y2) = f (x1, x2) = ((x1)2 + (2x2)2,

3x1x2), find f∗
( ∂

∂x1
)
, f∗

( ∂

∂x2
)
.

Solution: 57 From Theorem 2.6, we see that

f∗
( ∂

∂xi
) =

2∑

j=1

(∂ f j

∂xi
) ∂

∂y j
, i = 1, 2.

∴ f∗
( ∂

∂x1
) = (∂ f 1

∂x1
) ∂

∂y1
+ (∂ f 2

∂x1
) ∂

∂y2

= 2x1
∂

∂y1
+ 3x2

∂

∂y2
and

f∗
( ∂

∂x2
) = (∂ f 1

∂x2
) ∂

∂y1
+ (∂ f 2

∂x2
) ∂

∂y2

= 4x2
∂

∂y1
+ 3x1

∂

∂y2
.

Alternative
Here

f∗
( ∂

∂x1
) =

(
∂ f 1

∂x1
∂ f 1

∂x2
∂ f 2

∂x1
∂ f 2

∂x2

)(
1
0

)
=
(
2x1 4x2

3x2 3x1

)(
1
0

)
=
(
2x1

3x2

)
.

Since the vector f∗
( ∂

∂x1
)
is the linear combination of the basis vectors

{ ∂

∂y1
,

∂

∂y2
}
,

we write from above

f∗
( ∂

∂x1
) = 2x1

∂

∂y1
+ 3x2

∂

∂y2

Similarly, f∗
( ∂

∂x2
) =

(
1
0

)
=
(
2x1 4x2

3x2 3x1

)(
0
1

)
=
(
4x2

3x1

)

∴ f∗
( ∂

∂x2
) = 4x2

∂

∂y1
+ 3x1

∂

∂y2
.
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Exercises

Exercise 2.32 A. Find ( f∗) at (0, 0) in Exercise 2.31(i), (ii) and (iii).
B. Find ( f∗) at (0, 0, 0) in Exercise 2.31(iv).
C. Find ( f∗) at (0, 0, 0, 0) in Exercise 2.31(v).

Exercise 2.33 A. Let f : R
2 → R

2 be defined by
(i) f (x, y) = (x2 − 2y, 4x3y2). Find ( f∗)(1,2) .
(ii) f (x, y) = (x2 + y2, x3y3). Find ( f∗)(2,1) .
B. Let g : R

2 → R
3 be defined by g(x, y) = (x2y − y, 2x3 − y, xey). Find (g∗)(2,1) .

Exercise 2.34 A. Find ( f∗)
( ∂

∂x

)
, ( f∗)

( ∂

∂y

)
, ( f∗)

( ∂

∂z

)
, ( f∗)

( ∂

∂t

)
where

(i) f : R
2 → R

2 is defined by (u, v) = f (x, y) = (xey + y, xey − y).
(ii) f : R

2 → R
3 is defined by (u, v, w) = f (x, y) = (x2y + y2, x − 2y3, yex ).

(iii) f : R
3 → R

2 is defined by (u, v) = f (x, y, z) = (x2 + y2 + z2 − 1,
ax + by + cz).

(iv) f : R
4 → R

2 is defined by (u, v) = f (x, y, z, t) = (x2 + y2 + z2 + t2 − 1,
x2 + y2 + z2 + t2 − 2y − 2z + 5).

B. Find ( f∗)
( ∂

∂x

)
where f : R

2 → R
3 is defined by (u, v, w) = f (x, y)

= (x, y, xy).

Answers

2.32 A. (i)

(
1 1
1 −1

)
(ii) (1) (iii)

⎛

⎝
0 0
1 0
0 1

⎞

⎠ B.

(
0 0 0
a b c

)
C.

(
0 0 0 0
0 −2 −2 0

)
.

2.33 A. (i)

(
2 −2
48 16

)
(ii)

(
4 1
12 24

)
B.

⎛

⎝
4 0
24 −1
e 2e

⎞

⎠.

2.34 A. (i) ey ∂
∂u + ey ∂

∂v
, (xey + 1) ∂

∂u + (xey − 1) ∂
∂v
.

(ii) 2xy ∂
∂u + ∂

∂v
+ yex ∂

∂w
, (x2 + 2y) ∂

∂u − 6y2 ∂
∂v

+ ex ∂
∂w

.
(iii) 2x ∂

∂u + a ∂
∂v

, 2y ∂
∂u + b ∂

∂v
, 2z ∂

∂u + c ∂
∂v
.

(iv) 2x ∂
∂u + 2x ∂

∂v
, 2y ∂

∂u + 2(y − 1) ∂
∂v

, 2z ∂
∂u + 2(z − 1) ∂

∂v
, 2t ∂

∂u + 2t ∂
∂v
.

B. ∂
∂u + y ∂

∂w
, ∂

∂v
+ x ∂

∂w
.

Problem 2.58 Let f : R
3 → R be defined by f (x, y, z) = x2y. If X = xy

∂

∂x
+

x2
∂

∂z
; compute f∗(X)

(1,1,0) OR ( f∗)(1,1,0) (X)
(1,1,0) .

Solution: 58 Taking into consideration (2.35), we know that

f∗(X)
(1,1,0) = ( f∗ X) f (1,1,0) = ( f∗ X)1 .

Now
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f∗(X)
(1,1,0) =(∂ f

∂x

∂ f

∂y

∂ f

∂z

)
(1,1,0)

⎛

⎝
xy
0
x2

⎞

⎠

(1,1,0)

= (2 1 0)

⎛

⎝
1
0
1

⎞

⎠

= 2.

Thus, f∗(X)
(1,1,0) = 2

d

dt

∣∣
1
, where t denotes the canonical coordinate of R.

Exercises

Exercise 2.35 If X = x2
∂

∂y
, compute ( f∗)(1,1) (X)

(1,1) for Exercise 2.31 (i), (iii).

Exercise 2.36 Let f : R
2 → R

2 be defined by f (x, y) = (x2 + y, x3y3) and g :
R

2 → R
3 be defined by g(x, y) = (x2y − y, 2x3 − y, xey). Compute the following:

(i) f∗

((
2

∂

∂x
+ ∂

∂y

)
(0,1)

)
(ii) g∗

((
2

∂

∂x
+ ∂

∂y

)
(0,1)

)
.

Answers
2.35. (i) (e + 1) ∂

∂u

∣∣
(e+1,e−1)

+ (e − 1) ∂
∂v

∣∣
(e+1,e−1)

(ii) (3 ∂
∂u − 6 ∂

∂v
+ e ∂

∂w
)

(2,−1,e) .

2.36. (i) ( ∂
∂x )(1,0) (ii) (− ∂

∂x − ∂
∂y + 2e ∂

∂z )(−1.−1,0).

Problem 2.59 Let f : R
2 → R

2 be defined by

(u, v) = f (x1 , x2) =
(
cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
.

Let X = −x2

∂

∂x1

+ x1

∂

∂x2

be a vector field on R
2. If p = (x1 , x2) ∈ R

2 and

f∗ X p =(
a

∂

∂u
+ b

∂

∂v

)
f (p)

,

find a, b.

Solution: 59 Here (u, v) = f (x1 , x2) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).Now
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{ f∗ X p }u ={
a

∂

∂u
+ b

∂

∂v

} = a

or, X p (u ◦ f ) = a

or,
( − x2

∂

∂x1

+ x1

∂

∂x2

)
(x1 cos θ − x2 sin θ) = a

or, − x2 cos θ − x1 sin θ = a.

Similarly,
( − x2

∂

∂x1

+ x1

∂

∂x2

)
(x1 sin θ + x2 cos θ) = b

or, − x2 sin θ + x1 cos θ = b.

The values of a, b are therefore calculated.

Alternative

Here ( f∗) =
(
cos θ − sin θ
sin θ cos θ

)

p=(x1 ,y)

and (X)p =
(−x2

x1

)

(x1 ,x2 )

. So

( f∗)(X)p =
(
cos θ − sin θ
sin θ cos θ

)(−x2

x1

)

f (p)= f (x1 ,x2 )

=
(−x2 cos θ − x1 sin θ

−x2 sin θ + cos θ

)

(x1 cos θ−x2 sin θ,x1 sin θ+x2 cos θ)

=
{
(−x2 cos θ − x1 sin θ)

∂

∂u
+ (−x2 sin θ + cos θ)

∂

∂u

}

f (p)

.

Note that, for the linear map f∗ : Tp (M) → Tf (p) (N ) at the point p ∈ M , the Kernel
of f∗ at p is given by

ker f∗ = {X p ∈ Tp (M)
∣∣ f∗(X p ) = θ, θ ∈ Tf (p) (N )}.

Here ker f∗ is a subspace of Tp (M). Also, the image of f∗ at p is

Image f∗ = {Y f (p) ∈ Tf (p) (N )
∣∣ f∗(X p ) = Y f (p)},

which is a subspace of Tf (p) (N ).

Problem 2.60 Let f : R
4 → R

2 be defined by f (x1 , x2 , x3 , x4) = (u, v) = (x2
1

+
x2
2

+ x2
3

+ x2
4

− 1, x2
1

+ x2
2

+ x2
3

+ x2
4

− 2x2 − 2x3 + 5).

(i) Find a basis of ker f∗ at (0, 1, 2, 0).
(ii) Find the image by ( f∗) of (1, 0, 2, 1) ∈ T

(1,2,0,1)R
4.

Solution: 60 (i) As f : R
4 → R

2 is defined by f (x1 , x2 , x3 , x4) = (x2
1

+ x2
2

+
x2
3

+ x2
4

− 1, x2
1

+ x2
2

+ x2
3

+ x2
4

− 2x2 − 2x3 + 5), then for p = (0, 1, 2, 0), f∗ :
T

(0,1,2,0) (R
4) → T

(4,4) (R
2) is a differential map such that ker f∗ at (0, 1, 2, 0) is a

vector subspace of T
(0,1,2,0) (R

4).
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Now any X ∈ χ(R4) can be expressed as X = a
∂

∂x1

+ b
∂

∂x2

+ c
∂

∂x3

+ d
∂

∂x4

,

where a, b, c, d ∈ R. Here

( f∗) =
(
2x1 2x2 2x3 2x4

2x1 2(x2 − 1) 2(x3 − 1) 2x4

)
.

Therefore ( f∗)(0,1,2,0) =
(
0 2 4 0
0 0 2 0

)
. Thus, ( f∗)(0,1,2,0) X ∈ Tf (p) (R

2) is a linear

combination of
{ ∂

∂u
,

∂

∂v

}
, where p = (0, 1, 2, 0), i.e. ( f∗)(0,1,2,0) X p = (2b +

4c)
∂

∂u
+ 2c

∂

∂v
. But ker f∗ is such that ( f∗)(0,1,2,0) X p = θ, θ ∈ T

(4,4) (R
2), where

p = (0, 1, 2, 0). Consequently, we must have b = 0 = c. Thus

X p = a
∂

∂x1

+ d
∂

∂x2

, p = (0, 1, 2, 0).

Consequently,

ker( f∗)(0,1,2,0) = {X
(0,1,2,0) ∈ T

(0,1,2,0) (R
4)
∣∣( f∗)(0,1,2,0) X (0,1,2,0) = θ},

and the basis is
{( ∂

∂x1

)
(0,1,2,0)

,
( ∂

∂x2

)
(0,1,2,0)

}
such that ker( f∗)(0,1,2,0) is a subspace

of T
(0,1,2,0) (R

4).

(ii) Also ( f∗)(1,2,0,1) =
(
2 4 0 2
2 2 −2 2

)
and f (1, 2, 0, 1) = (5, 7). Thus, ( f∗)(1,2,0,1) X p ∈

T
(5,7) (R

2) can be expressed as

( f∗ )(1,2,0,1) X p = (2a + 4b + 2d)
∂

∂u

∣
∣
f (p)

+ (2a + 2b − 2c + 2d)
∂

∂v

∣
∣
f (p)

, p = (1, 2, 0, 1) and X = (1, 0, 2, 1).

Therefore ( f∗)(1,2,0,1) X p = 4
∂

∂u

∣∣
(5,7)

.

Problem 2.61 Let f : R
2 → R

3 be defined by f (x, y) = (x2y − y, 2x3 − y, xey).
Calculate the conditions that the constants A, B,C must satisfy for the vector

(
A

∂

∂x
+ B

∂

∂y
+ C

∂

∂z

)

f (0,0)

to be the image of some vector by f∗ .
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Solution: 61 Note that ( f∗)(0,0) =
⎛

⎝
0 −1
0 −1
1 0

⎞

⎠. Let us choose X = λ
∂

∂x
+ μ

∂

∂y
∈

χ(R2) such that

( f∗)(0,0) X (0,0) =
⎛

⎝
0 −1
0 −1
1 0

⎞

⎠
(

λ
μ

)
=
⎛

⎝
−μ
−μ
λ

⎞

⎠

f (0,0)

=(
A

∂

∂x
+ B

∂

∂y
+ C

∂

∂z

)
f (0,0)

.

Compare A = −μ, B= − μ,C = λ. Note that ( f∗)(0,0) : T
(0,0) (R

2) → T
(0,0,0) (R

3).
Here Image f∗ is a subspace of T

(0,0,0) (R
3) by definition. Thus, the image of f∗ of

T
(0,0) (R

2) is a vector subspace of T
(0,0,0) (R

3) of vectors of type (−A,−A,C).

Exercises

Exercise 2.37 A. Let f : R
4 → R

2 be defined by

f (x1 , x2 , x3 , x4 ) = (u, v) = (x2
1

+ x2
2

+ x2
3

+ x2
4

+ 1, x2
1

+ x2
2

+ x2
3

+ x24 − 2x1 − 2x4 + 6).

(i) Find the basis of ker f∗ at (1, 0, 1, 0).
(ii) Find the image by ( f∗) of (1, 0, 1, 1) ∈ T

(1,1,0,1)R
2.

B. Let g : R
2 → R

2 be defined by g(x1 , x2) = (x2
1

+ x2 , x
3
1
x3
2
). Calculate the con-

ditions that the constants A, B must satisfy for the vector

(
A

∂

∂x1

+ B
∂

∂x2

)
g(0,0)

to be the image of some vector by g∗ .

Exercise 2.38 Let us fix θ and define f : R
4 → R

4 by f
θ
(x, y, z, t) =(

cos θ − sin θ
sin θ cos θ

)(
x z
y t

)
.

(i) Compute ( f
θ
)∗ .

(ii) Compute ( f
θ
)∗ X, where X = cos θ

∂

∂x
− sin θ

∂

∂y
+ cos θ

∂

∂z
− sin θ

∂

∂t
.

Answers
2.37 A. (i) {( ∂

∂y )(1,0,1,0) , (
∂

∂w
)

(1,0,1,0)} (ii) 4 ∂
∂u

∣∣
(4,7)

B. (A, 0).

2.38 (i)

⎛

⎜⎜
⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cos θ sin θ
0 0 sin θ cos θ

⎞

⎟⎟
⎠ (ii) ∂

∂x + ∂
∂z .

A smooth map f : M → N is said to be a smooth submersion (or simply sub-
mersion) at p ∈ M , if f∗ at p, i.e. f∗,p is surjective. Equivalently, we can say that

dim Image f∗,p = dim Tf (p) (N ) = m.
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Moreover, f is called a smooth immersion (or simply immersion) at p ∈ M , if its
differential f∗,p is injective. In other words, we have

ker f∗,p = {θ} =⇒ dim ker f∗,p = 0.

Hence, using the well-known theorem in linear algebra, viz.

dim ker f∗,p + dim Image f∗,p = dim M = n,

we find dim Image f∗,p = n. Thus, if a smooth map f : Mn → Nm is a submersion
at a point p in M , then n ≥ m and if immersion at a point p in M then n ≤ m. A
simple question arises: Is an injective or surjectivemap f , respectively, an immersion
or submersion? For this, we need to explain immersion and submersion using the
rank of the differential map f∗ at the point p in M .

We know that the dimension of Image f∗,p is said to be the rank of f∗ at p,
denoted by rank f∗,p. We define the rank of f at p, denoted by rank f|p, to be of r
if rank f∗ at p = r . In other words, we can also say that the rank f∗ is the rank of
the Jacobian matrix of f with respect to any smooth chart. If f has the same rank r
at every point of M , we say that it has constant rank r , and write rank f = r .

Since rank f∗,p ≤ min{dim Tp (M), dim Tf (p) (N )} = min{n,m}, therefore

rank f|p ≤ min{n,m}.

A smooth map f : M → N is said to be a submersion at p ∈ M , if

rank f∗,p = dim Image f∗,p = dim Tf (p) (N ) = m i.e. rank f|p = m.

Moreover, f is called an immersion at p ∈ M , if

rank f|p = dim M = n.

If we consider a smooth map f : R
2 → R

3, then its differential at p ∈ R
2 is given

by
f∗,p : Tp (R

2) → Tf (p) (R
3).

Here
rank f∗,p ≤ min{2, 3} = 2 ⇒ rank f∗,p = 1 or 2.

Here, f fails to be submersion at p, for if f is submersion at p then rank f∗ = 3
which is not possible. Thus we can say that if

dim M = n < dim N = m,

then f fails to be a submersion at any point p in M . However, if rank f∗ = 2, then
rank f|p = 2 implies f is immersion at p inR

2. In a similarmanner for a smoothmap
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f : R
3 → R

2, to be immersion at p ∈ R
3, we have rank f∗ = 3, i.e. rank f|p = 3

which is not possible. Thus if

dim M = n > dim N = m,

then f fails to be an immersion at any point p in M .
A smooth map f : M → N is said to be a submersion and immersion if its dif-

ferential is respectively surjective and injective at every point of M .

Remark 2.29 Let f : M → N be a smooth map of constant rank. Then
(i) if f is surjective, it is a submersion.
(ii) if f is injective, it is an immersion.
(iii) if f is bijective, it is a diffeomorphism.

Examples

Example 2.9 Let us consider the curve γ : (−π,π) → R
2 defined by γ(t) =

(sin 2t, sin t). Here, γ is injective but γ
′
(t) does not vanish for any t . Hence γ is

an injective immersion.

Example 2.10 Let us consider the function f : R → R
2 by t �→ (t2 − 1, t (t2 − 1)).

Here f is not injective as f (1) = f (−1) = (0, 0). But f
′
does not vanish for any t ,

so f is an immersion but not injective.

Example 2.11 Suppose M1 , M2 , . . . , Ms are the smooth manifolds. Then each of
the projection maps

πi : M1 × M2 × · · · × Ms → Mi

is a submersion. In particular, if π is a projection map from R
n+k to R

n by

(x1, x2, . . . , xm, xm+1, . . . , xn) �→ (x1, x2, . . . , xm),

then π is a submersion.

Example 2.12 If U is an open subset of a manifold M , then the inclusion map
i : U ↪→ M is both an immersion and submersion. Moreover, here the map is not
surjective. So this example shows that a submersion need not be surjective.

Example 2.13 Let us consider themap f : R → R, f (x) = x3. Here f is surjective
but at x = 0, d f = f

′
(x) = 3x2 is not surjective. Hence f fails to be a submersion.

So this example shows that a surjective map need not be a submersion.

Let f : M → N be a smooth map. A point p ∈ M is said to be a critical point
of f if f∗,p is not surjective. A point q ∈ N is said to be a critical value of f if the
set f −1(q) contains a critical point of f . In other words, a point in N is a critical
value if it is the image of some critical point in M .

In particular, let f : M → R be a smooth map on M . A point p ∈ M is said to
be a critical point of f if f∗,p = 0.
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Proposition 2.8 Let f : Nn → R be a C∞ map. A point p ∈ N is a critical point
if and only if it is relative to a coordinate system (U, x1, x2, x3, . . . , xn) at p ∈ N,
∂ f

∂xi
∣∣
p
= 0.

Proof For f : Nn → R, the map f∗ : Tp (N ) → T
f (p)

(R) is such that

( f∗)p =
(

∂ f

∂x1
∂ f

∂x2
. . .

∂ f

∂xn

)

p

.

It is known from the previous discussion that Image f∗ is a subspace of Tf (p) (R).
Thus it is either 0-dimensional or 1-dimensional. Hence either f∗ is a zero-map

or a surjective map.

Thus, f∗ will not be surjective if and only if
∂ f

∂xi
∣∣
p
= 0.

It means that the real number f (p) is called a critical value of f . A critical point
is called non-degenerate if

det
( ∂2 f

∂xi∂x j
(p)

) �= 0.

Remark 2.30 Non-degeneracy is independent of the choice of coordinate system.

A point p ∈ M is a regular point of f : M → N if f∗, p is surjective. In other
words, we can say that p ∈ M is a regular point of f if and only if f is a submersion
at p, i.e. rank f∗ = dim M .

Example 2.14 The function f (x) = x + e−x has a critical point at c = 0. The
derivative is zero at this point. So

f
′
(x) = (x + e−x )

′ = 1 − e−x .

Now f
′
(c) = 1 − e−c = 0 ⇒ c = 0.

Example 2.15 The function f (x) = 2x − x2 has a critical point at c = 1. The
derivative is zero at this point. Here f

′
(x) = 2 − 2x . So, f

′
(c) = 0 ⇒ c = 1.

Problem 2.62 Find the critical points of the map f : R
3 → R

2 given by

(x, y, z) �→ (xz, y).

Solution: 62 Let p ∈ R
3. The Jacobian matrix f∗,p is given by

f∗,p =
( ∂

∂x (xz)
∂
∂y (xz)

∂
∂z (xz)

∂
∂x (y)

∂
∂x (y)

∂
∂x (y)

)
=
(
z 0 x
0 1 0

)
.
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Here f∗,p fails to be surjective if rank f∗ < 2 if and only if x = z = 0. Hence the set
of critical points of f is the y-axis.

f : M → N

Injective
Not Surjective

f∗
Injective

Immersion

f∗
Surjective

Submersion

Surjective
Not Injective

f∗
Injective

Immersion

f∗
Surjective

Submersion

Injective
And Surjective

f∗
Injective

Immersion

f∗
Surjective

Submersion

Neither Injective
Nor Surjective

f∗
Injective

Immersion

f∗
Surjective

Submersion

2.13 Submanifolds

Let us consider a map f : M → N , where M and N are topological manifolds. f
is said to be a topological embedding (topological imbedding) if f is a homeo-
morphism onto its image f (M)(⊂ N ), where f (M) is endowed with the subspace
topology inherited from N .

The smoothmap f : M → N , whereM and N are smoothmanifolds, is a smooth
embedding (or smooth imbedding) if f is an immersion together with topological
embedding.

Let N be a smooth manifold and M ⊆ N . Let M be a manifold endowed with the
subspace topology inherited from N . ThenM is said to be an embedded submanifold
(or regular submanifold) of N ifM is endowedwith a smooth structure with respect
to which the inclusion map of M in N is a smooth embedding.

Let N be an m-dimensional smooth manifold and M ⊂ N . Let M be a manifold
equipped with a topology, not necessarily the subspace topology inherited from N ,
with respect to which it is a topological manifold of dimension n. Then M is said to
be an immersed submanifold of N if M is endowed with a smooth structure with
respect to which the topological manifold M becomes an n-dimensional smooth
manifold such that the inclusion map i : M ↪→ N is a smooth immersion. Also, the
immersed submanifold M has co-dimension m − n.

It is evident that every embedded submanifold is an immersed submanifold (refer
to Problem 2.63). For the sake of simplicity, embedded submanifold and immersed
submanifold are always of the smooth kind.

Example 2.16 If M1 , M2 , . . . , Ms are the smooth manifolds and qi ∈ Mi are arbi-
trary points, each of the maps

ζi : Mi → M1 × M2 × · · · × Ms ,

given by ζi (p) = (q1 , q2 , . . . , qj−1 , p, qj+1 , . . . , qs ), is a smooth embedding.
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Example 2.17 The map γ : R → R
2 given by γ(t) = (t5, 0) is a smooth map but

is not a topological embedding because γ
′
(0) = 0.

Example 2.18 Let f : R → R
2 be defined by f (t) = (cosπt, sin πt), ∀ t ∈ R.

Here f is an immersion but not an injective map. So it fails to be a topological
embedding.

Example 2.19 The circle S1 is a 1-dimensional embedded submanifold of R
2.

Example 2.20 The graph y = (x)
1
3 is an embedded submanifold of R

2.

Example 2.21 The sphere Sn is an embedded submanifold of R
n with dimension

n − 1.

Example 2.22 Let f : R
m → R

n be a smooth map. Then its graph

γ = {(x1 , x2 , . . . , xm , y1 , y2 , . . . , yn ) ∈ R
m+n

∣
∣ f (x1 , x2 , . . . , xm ) = (y1 , y2 , . . . , yn )}

is a smooth m-dimensional embedded submanifold of R
m+n .

Lemma 2.1 Let X,Y be topological spaces. Let F : X → Y be 1 − 1, continuous
and open map. Then F is a topological embedding.

Proof Let U be an open subset of X . Since F is open, F(U ) is open in Y . Hence
F(U ) ∩ F(X) is open in F(X). Since F(U ) ⊂ F(X), therefore F(U ) is open in
F(X). This proves F is a topological embedding.

Lemma 2.2 Let X,Y be topological spaces. Let F : X → Y be 1 − 1, continuous
and closed map. Then F is a topological embedding.

Proof Left to the reader.

Lemma 2.3 Closed map lemma: Let X be a compact space and Y be a Haus-
dorff space. Let F : X → Y be a 1 − 1, continuous map. Then F is a topological
embedding.

Proof Let A be any closed subset of X . Since A is closed in the compact space X ,
A is compact in X . Since F is continuous, therefore F(A) is compact in Y , and Y
being Hausdorff, therefore F(A) is closed in Y . This shows F is a closed map. Since
F : X → Y is a 1 − 1, continuousmap, therefore F is a topological embedding (refer
to Lemma 2.2).

Now we are going to define a proper map between two topological spaces as
follows.

Let X,Y be topological spaces. Let F : X → Y be amapping. If for every compact
subset W of Y , the inverse image F−1(W ) is compact in X , then we say that F :
X → Y is a proper map.
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Lemma 2.4 Let X be a Hausdorff topological space and Y be a Hausdorff locally
compact space. Let F : X → Y be a continuous map. Let F be a proper mapping.
Then F is a closed mapping.

Proof Left to the reader.

Lemma 2.5 Let M be an n-dimensional smooth manifold and N be an
m-dimensional smooth manifold. Let F : M → N be a 1 − 1 smooth immersion.
If F is a proper mapping, then F : M → N is a smooth embedding.

Proof Since M is an n-dimensional smooth manifold, M is a Hausdorff locally
compact space. Similarly, N is a Hausdorff locally compact space. Since F is a
smooth map, it is continuous. Further, since F is a proper map, F is a closed map
(refer toLemma2.4). Since F is a 1 − 1 smooth immersion, and F is closed, therefore
F is a smooth embedding.

Lemma 2.6 Let M be an n-dimensional compact smooth manifold and N be an
m-dimensional smooth manifold. If F : M → N is a 1 − 1 smooth immersion, then
F : M → N is proper mapping.

Proof Let W be any compact subset of N . Our claim is to show that the inverse
image F−1(W ) is compact in M . Since W is compact in N and N is Hausdorff,
therefore W is closed in N . Since F is smooth, it is continuous. Hence F−1(W ) is
closed in M . As M is compact, F−1(W ) is compact in M . This proves F is proper,
hence a smooth embedding (refer to Lemma 2.5).

Problem 2.63 Let M be an n-dimensional smooth manifold and S( �= φ) ⊂ M . Let
S be an embedded submanifold of M with co-dimension k, k = 1, 2, 3, …, n − 1.
Prove that S is an immersed submanifold of M with co-dimension k.

Solution: 63 Let us set τS = {G ∩ S : G is open in M}. Since S is an embedded
submanifold of M with co-dimension k, τS is a topology over S (called the subspace
topology of S) with respect to which S becomes a (n − k)-dimensional topological
manifold. Moreover, ∃ an C∞-atlas A on S, with respect to which the topological
manifold S becomes an (n − k)-dimensional smooth manifold such that the map
i : S ↪→ M is a smooth embedding, and hence i is a smooth immersion. Thus, S is
an immersed submanifold ofM with co-dimension n − (n − k) = k. This completes
the solution.

Problem 2.64 Let M be an n-dimensional smooth manifold with C∞-atlas A and
N be an m-dimensional smooth manifold with C∞-atlas B. The map F : M → N
is a 1 − 1 smooth immersion. Then F(M) is a smooth submanifold of N with co-
dimension m − n.

Solution: 64 Let us set τ = {F(U ) : U is open in M}. It is obvious that τ is a
topology over F(M), and F is a homeomorphism from M onto F(M). Since M
is an n-dimensional topological manifold and M is homeomorphic onto F(M),
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therefore F(M) is an n-dimensional topological manifold. Moreover, {(F(U ),φ ◦
(F−1

∣∣
F(U )

)) : (U,φ) ∈ A} forms an C∞-atlas on F(M). Hence, F(M) forms a
smooth manifold, and F forms a diffeomorphism from M onto F(M).

Now we want to prove that the map i : F(M) ↪→ N is a smooth map. Here i =
F ◦ F−1. Since F : M → F(M) is a diffeomorphism, F−1 : F(M) → M is also so.
Furthermore, as F is a 1 − 1 smooth immersion, the composition map i = F ◦ F−1

is a smooth immersion. It follows that F(M) is a smooth submanifold of N with
co-dimension m − n.

Problem 2.65 Let M be an n-dimensional smooth manifold and S( �= φ) ⊂ M . Let
S be a smooth submanifold of M with co-dimension 0. Prove that S is an embedded
submanifold of M with co-dimension 0.

Solution: 65 Since S is a smooth submanifold of M with co-dimension 0, by its
definition, there exists a topology τ over S with respect to which S becomes an n-
dimensional topological manifold, and there exists a C∞ structure on S with respect
to which the topological manifold S becomes an n-dimensional smooth manifold
such that the map i : S ↪→ M is a 1 − 1 smooth immersion. Thus i is a smooth
embedding, hence a topological embedding. Thus i is a homeomorphism from S
onto i(S)(= S), where i(S) has the subspace topology inherited from M . It follows
that τ is the subspace topology of S inherited from M . Thus combining all the facts,
we conclude that S is an embedded submanifold of M with co-dimension 0.

Problem 2.66 Let M be an n-dimensional smooth manifold and S( �= φ) ⊂ M . Let
S be a smooth submanifold of M with co-dimension k. If the map i : S ↪→ M is
proper, then prove that S is an embedded submanifold of M with co-dimension k.

Solution: 66 Since S is a smooth submanifold of M with co-dimension k, by virtue
of its definition, ∃ a topology τ over S with respect to which S becomes an (n − k)-
dimensional topological manifold, and ∃ a smooth structure on S with respect to
which the topological manifold S becomes an (n − k)-dimensional smooth manifold
with the inclusion map i : S ↪→ M which is a 1 − 1 smooth immersion. Since the
map i is proper, it follows that i is a smooth embedding (refer to Lemma 2.5), and
hence a topological embedding. So i is a homeomorphism from S onto i(S)(= S),
where i(S) has the subspace topology inherited from M . It follows that τ is the
subspace topology of S inherited from M . Thus combining all the facts, we conclude
that S is an embedded submanifold of M with co-dimension k.

Problem 2.67 Let M be an n-dimensional smooth manifold and S( �= φ) ⊂ M . Let
S be a compact smooth submanifold of M with co-dimension k. Prove that S is an
embedded submanifold of M with co-dimension k.

Solution: 67 Since S is a smooth submanifold of M with co-dimension k, by virtue
of its definition, ∃ a topology τ over S with respect to which S becomes an (n − k)-
dimensional topological manifold, and ∃ a smooth structure on S with respect to
which the topological manifold S becomes an (n − k)-dimensional smooth manifold
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with the map i : S ↪→ M which is a 1 − 1 smooth immersion. Further, since S is
compact, it follows that i is a smooth embedding (refer to Lemma 2.5), and hence
a topological embedding. So i is a homeomorphism from S onto i(S)(= S), where
i(S) has the subspace topology inherited from M . It follows that τ is the subspace
topology of S inherited from M . Thus combining all the facts, we conclude that S is
an embedded submanifold of M with co-dimension k.

Remark 2.31 Let M be an n-dimensional smooth manifold and N be an m-
dimensional smooth manifold. The map F : M → N is a smooth map. Let S( �=
φ) ⊂ M be a smooth submanifold of M . Then the restricted map F |S : S → M is
also smooth.

Problem 2.68 Let M be an n-dimensional smooth manifold and N be an m-
dimensional smooth manifold with S( �= φ) ⊂ N . Let S be a smooth submanifold
of N with co-dimension k. Let F : M → N be a smooth map, and F(M) ⊂ S. Let
F : M → S be continuous. Then prove that F : M → S is a smooth map.

Solution: 68 Let us fix any p ∈ M . Then F(p) ∈ F(M) ⊂ S ⇒ F(p) ∈ S. Since
S is a smooth submanifold of N with co-dimension k, by virtue of its definition,
∃ a topology τ over S with respect to which S becomes an (n − k)-dimensional
topological manifold, and ∃ aC∞ structure on Swith respect towhich the topological
manifold S becomes an (n − k)-dimensional smoothmanifold with themap i : S ↪→
N which is a 1 − 1 smooth immersion. Taking advantage of Exercise 2.14, we can
say that i is a local diffeomorphism. Hence, ∃ an open neighbourhood V of F(p) ∈ S
such that i(V ) is open in N , and the map i |V : V → i(V ) is a diffeomorphism, and
hence the map (i |V )−1 : i(V ) → V is smooth. Since V is an open neighbourhood
of F(p) ∈ S, and F is continuous, ∃ an open neighbourhood U of p ∈ M such that
F(U ) ⊂ V . Since U is open in M , U is an open submanifold of M , hence U is
an embedded submanifold of M . Thus U is a smooth submanifold of M . Further,
since F is a smooth map, by Remark 2.31, F |U : U → N is a smooth map. Thus,
the composite map (i |V )−1 ◦ F |U = F |U : U → V is smooth. Consequently, as U
is an open neighbourhood of p ∈ M , F : M → S is smooth at p, it follows that
F : M → S is a smooth map.

i : M(⊆ N ) ↪→ N
(Inclusion Map)

i∗ Injective
+

M endowed with subspace topology inherited from N

Embedded Submanifold

i∗ Injective
+

M endowed with any topology other than subspace topology

Immersed Submanifold
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Exercise

Exercise 2.39 Let M be an n-dimensional smoothmanifold, N be anm-dimensional
smooth manifold and S( �= φ) ⊂ N. Let S be an embedded submanifold of N with
co-dimension k. Let F : M → N be a smooth map, and F(M) ⊂ S. Let F : M → S
be continuous. Then prove that F : M → S is smooth.

2.14 f -Related Vector Fields

Let f : M → N be a smooth map. For each p ∈ M , let X p ∈ Tp (M) and X f (p) ∈
Tf (p) (N ) be such that

f∗(X p ) = Y f (p) . (2.38)

In such a case, we say that X,Y are f -related vector fields. Now

{ f∗(X p )}g = Y f (p)g, ∀ g ∈ F( f (p)).

Using (2.23) and (2.34), we find

X p (g ◦ f ) =(Yg)( f (p))

or {X (g ◦ f )}(p) =(Yg) f (p) by (2.23)

X (g ◦ f ) =(Yg) f. (2.39)

If f is a transformation on M and

f∗(X p ) = X f (p)

i.e. ( f∗ X) f (p) = X f (p) ,

we say that X is f -related to itself or X is invariant under f . Thus

f∗ X = X. (2.40)

Proposition 2.9 Let f : M → N be a smooth map. If the vector fields X1 , X2 on
M are f -related to the vector fields Y1 ,Y2 respectively on N, then the Lie bracket
[X1 , X2 ] is f -related to the Lie bracket [Y1 ,Y2 ].
Proof Given that X1(g ◦ f ) = (Y1g) f and X2(g ◦ f ) = (Y2g) f . Now
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[X1 , X2 ](g ◦ f ) = X1{X2(g ◦ f )} − X2{X1(g ◦ f )}, f ∈ F(M), g ∈ F(N )

= X1{(Y2g) f } − X2{(Y1g) f }, from above

= {Y1(Y2g)} f − {Y2(Y1g)} f, Y2g ∈ F(N ), Y1g ∈ F(N )

= {Y1(Y2g) − Y2(Y1g)} f = {[Y1 ,Y2 ]g} f.

Thus by (2.39), we can claim that [X1 , X2 ] is f -related to [Y1 ,Y2 ].
Problem 2.69 Let f : R

2 → R
4 be a differential map, and f (x1 , x2) = (u, v,ω, t)

be such thatu = x2
1

− x2
2
, v = x2

1
+ x2

2
,ω = x1 + x2 , t = x1 − x2 . Let X = x1

∂

∂x1

+

x2

∂

∂x2

and Y = −x2

∂

∂x1

+ x1

∂

∂x2

be two vector fields on R
2. Find vector fields on

R
4, f -related to X,Y respectively.

Solution: 69 By definition f∗ : Tp (R
2) → Tf (p) (R

4) and if f∗ X = X̄ and f∗Y = Ȳ ,
then X̄ and Ȳ are respectively the f -related vector fields of X,Y . Let

X̄ = a
∂

∂u
+ b

∂

∂v
+ c

∂

∂ω
+ t

∂

∂t
, (2.41)

where a, b, c, d are from F(R4), to be determined. Now

{ f∗ X}u = X̄u = a.

Again by (2.34), the left-hand side of the foregoing equation reduces to

X (u ◦ f ) = a.

Applying the hypothesis,

a = (x1
∂

∂x1
+ x2

∂

∂x2
)(x2

1
− x2

2
) = u(2x1 ) − x2 (2x2 ) = 2(x2

1
− x2

2
).

Similarly, b = (x1
∂

∂x1
+ x2

∂

∂x2
)(x2

1
+ x2

2
) = x1 (2x1 ) + x2 (2x2 ) = 2(x2

1
+ x2

2
).

c = (x1
∂

∂x1
+ x2

∂

∂x2
)(ω ◦ f ) = (x1

∂

∂x1
+ x2

∂

∂x2
)(x1 + x2 ) = x1 · 1 + x2 · 1 = x1 + x2 .

d = (x1
∂

∂x1
+ x2

∂

∂x2
)(t ◦ f ) = (x1

∂

∂x1
+ x2

∂

∂x2
)(x1 − x2 ) = x1 − x2 .

Consequently, from (2.41) we write

X̄ = 2(x2
1

− x2
2
)

∂

∂u
+ 2(x2

1
+ x2

2
)

∂

∂v
+ (x1 + x2)

∂

∂u
+ (x1 − x2)

∂

∂t

i.e. X̄ = 2u
∂

∂u
+ 2v

∂

∂v
+ ω

∂

∂ω
+ t

∂

∂t

is f -related vector field of X , in R
4. Again, we write
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Ȳ = a′ ∂

∂u
+ b′ ∂

∂v
+ c′ ∂

∂ω
+ d ′ ∂

∂t
, (2.42)

where a′, b′, c′, d ′ are from F(R4), to be determined. In a similar manner, it can be
shown that

Ȳ = (t2 − ω2)
∂

∂u
+ t

∂

∂ω
− ω

∂

∂t

is f -related vector field of Y , in R
4.

Problem 2.70 Let f : M → N be a C∞ map. Prove that two vector fields X,Y
respectively on M, N are f -related if and only if

f ∗(( f∗ X)g) = X ( f ∗g), g ∈ F(N ).

Solution: 70 Given that X,Y are f -related, hence by (2.38) we obtain

f∗(X p ) = Y f (p)

or ( f∗ X) f (p) = Y f (p) , by (2.35)

or ( f∗ X) f (p)g = Y f (p)g, g ∈ F(N )

i.e. {( f∗ X)g} f (p) = (Yg) f (p), by (2.23)

i.e. ( f∗ X)g = Yg. (2.43)

In view of (2.39), we have

X (g ◦ f ) = (Yg) ◦ f

or X ( f ∗g) = f ∗(Yg). by (2.32)

Using (2.43) above, on the right-hand side, we get

X ( f ∗g) = f ∗(( f∗ X)g).

The converse follows immediately.

Problem 2.71 Let f : M → N be a C∞ map. Let X,Y be two f -related vector
fields. If σ is the integral curve of X , prove that f ◦ σ is the integral curve of Y .

Solution: 71 If σ is the integral curve of X , then by definition, we have

X p = X
σ(t0 )

,

where σ : [a, b] ⊂ R → M is such that σ(t0) = p, p ∈ M, t ∈ [a, b] and X p is
tangent vector to the curve σ at p, i.e.

X p f = d

dt
f (σ(t))

∣∣
t=t0

.
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Again by virtue of (2.34), one gets

{ f∗(X p )}g = X p (g ◦ f ) = d

dt
(g ◦ f )(σ(t)), g ∈ F(N ).

Using (2.38) on the left-hand side of the last equation, we get

{Y f (p)}g = d

dt
g(( f ◦ σ)(t))

∣
∣
t=t0

.

Thus, we can say that Y f (p) is tangent vector to the curve f ◦ σ at f (p) = ( f ◦ σ)(t0).
Thus, f ◦ σ is the integral curve of the vector field Y at f (p), i.e.

Y f (p) = Y f (σ(t0 ))
,

where X,Y are f -related vector fields satisfying (2.38).

Problem 2.72 Let the projection map π : R
2 → R be defined by π(x, y) = x . Find

the condition that a vector field of R
2 is π-related to some vector field of R.

Solution: 72 Let X ∈ χ(R2) be such that X = ξ
∂

∂x
+ η

∂

∂y
where ξ : R

2 → R, η :
R

2 → R are c∞ functions.
Let X be π-related to vector field Y ∈ χ(R) and hence by (2.38), we can write

π∗ X = Y. (2.44)

Let us write Y = θ
d

dt
, where t denotes the canonical coordinates on R. Again

π(x, y) = x , so we have

(π∗) =(∂π1

∂x

∂π1

∂y

) = (1 0) and

(π∗)(X) = (1 0)

(
ξ
η

)
= ξ.

If (2.44) holds, then we must have ξ = θ and this is the required condition.

Exercises

Exercise 2.40 If f is a transformation on M, prove that for every X ∈ χ(M), there
exists a unique f -related vector field of X.

Exercise 2.41 Let f : R
2 → R

3 be a differential map f (x1 , x2) = (u, v,ω) be

such that u = x1x2 , v = x2 + 1,ω = x1 + 1. Let X = x2
1

∂

∂x1

+ x2

∂

∂x2

,Y = x1

∂

∂x1

be two vector fields on R
2. Find vector fields on R

3, f -related to X,Y respectively.
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Answer

2.41. uw
∂

∂u
+ (v − 1)

∂

∂v
+ (ω − 1)2

∂

∂ω
; u

∂

∂u
+ (ω − 1)

∂

∂ω
.

2.15 One Parameter Group of Transformations on a
Manifold

In this section, we wish to interpret the algebraic interpretation of the vector field.
Let a mapping φ : R × M → M be such that

⎧
⎨

⎩

(i) for each t ∈ R,φ(t, p) → φt (p) is a transformation on M;
(i i) for all t, s, t + s in R,

φt (φs (p)) = φt+s (p).
(2.45)

Then the family {φt |t ∈ R} of mappings is called a one-parameter group of transfor-
mations on M .

Problem 2.73 Let {φt |t ∈ R} be one-parameter group of mappings of M . Show that

(i) φ0 is the identity mapping.
(ii) φ−t = (φt )

−1.

Solution: 73 (i) Taking t = 0 ∈ R in (2.45) (ii), one getsφ0(φs (p)) = φs (p). Thus
φ0 is the identity mapping.

(ii) For every t,−t ∈ R

φt (φ−t (p)) = φ0(p), by (2.45)(i i)

= p, by (2.45)(i)

or φ−t (p) = (φt )
−1(p).

∴ φ−t = (φt )
−1, ∀ p ∈ M.

Exercise

Exercise 2.42 Prove that {φt |t ∈ R} forms an Abelian group.

Remark 2.32 Exercise 2.42 gives the algebraic interpretation of the vector field X
on a manifold.

Let us set
ψ(t) = φt (p). (2.46)

Then ψ : R → M is a differentiable curve on M such that ψ(0) = φ0(p) = p (refer
to Problem 2.73). Such a curve is called the orbit through p of M . The tangent
vector, say X p , to the curve ψ(t) at p is therefore
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X p f = d

dt
f (ψ(t))|t=0 = lim

t→0

f (φt (p)) − f (φ0(p)))

t
, ∀ f ∈ F(M). (2.47)

In this case, we say that {φt |t ∈ R} induces the vector field X and X is called the
generator of φt . The curve ψ(t) defined by (2.46) is called the integral curve of X .

Problem 2.74 Show that the mapping φ : R × R
3 → R

3 defined by

φ(t, p) = (p1 + t, p2 + t, p3 + t)

is a one-parameter group of transformations on R
3 and the generator is given by

∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
where p = (x1, x2, x3) ∈ R

3.

Solution: 74 Clearly, φ is a transformation on R
3 and

φt (φs (p)) = φt (p
1 + s, p2 + s, p3 + s); as defined

= φt+s (p).

Thus, {φt |t ∈ R} is a one-parameter group of transformations on R
3. Again,

X p = lim
t→0

φt (p) − φ0(p)

t
= (1, 1, 1).

Now
{ ∂

∂x1
,

∂

∂x2
,

∂

∂x3
}
is a basis of Tp (R

3) and hence X p ∈ Tp (R
3) is given by

∂

∂x1
+ ∂

∂x2
+ ∂

∂x3

which is the generator of {φt }.
Problem 2.75 Let φ : R × R

2 → R
2 be defined by φt (p) = (x cos t − y sin t,

x sin t + y cos t).

(i) Show that {φt |t ∈ R} defines a one-parameter group of transformations on R
2.

(ii) Find its generator.
(iii) Describe the orbit.
(iv) Prove that X is invariant under φt , i.e. (φt )∗ X p = Xφt (p)

.

Solution: 75 (i) Note that |J | =
∣∣∣
∣
cos t − sin t
sin t cos t

∣∣∣
∣ = 1 �= 0. Hence, φ−1 exists and

using Problem 2.73 (ii), we have

φ−1
t

(x
′
, y

′
) = φ−t (x

′
, y

′
) = (x

′
cos t + y

′
sin t,−x

′
sin t + y

′
cos t).

It can be shown that
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φt (φ−t (x
′
, y

′
)) = (x

′
, y

′
) and φ−t (φt (x, y)) = (x, y),

and hence we claim that {φt } is a transformation of R
2. Finally

φt (φs (x, y)) = (x cos(t + s) − y sin(t + s), x sin(t + s) + y cos(t + s))

= φt+s (x, y).

Thus, {φt |t ∈ R} is a one-parameter group of transformations on R
2.

(ii) From the definition,

X p = d

dt
φt (p)

∣∣
t=0

= (−x sin t − y cos t, x cos t − y sin t)
∣∣
t=0

= (−y, x).

Thus, the generator is given by −y
∂

∂x
+ x

∂

∂y
.

(iii) The orbit through p = (x0 , y0) while t = 0 is the image of the map R → R
2

given by
t �→ (x0 cos t − y0 sin t, x0 sin t + y0 cos t).

(iv) Again, X = −y
∂

∂x
+ x

∂

∂y
(refer to (ii) above). Now

φt (p) = φt (x0 , y0) = (x0 cos t − y0 sin t, x0 sin t + y0 cos t).

Thus

X
φt (p) =

(
− y

∂

∂x
+ x

∂

∂y

)

(x0 cos t−y0 sin t,x0 sin t+y0 cos t)

= (−x0 sin t − y0 cos t)
∂

∂x
+ (x0 cos t − y0 sin t)

∂

∂y
.

Again

(φt )∗ X p =
(
cos t − sin t
sin t cos t

)(−y
x

)∣∣∣∣
p

= (−y cos t − x sin t,−y sin t + x cos t)
(x0 ,y0 )

= (−y0 cos t − x0 sin t,−y0 sin t + x0 cos t).

Thus

(φt )∗ X p = (−x0 sin t − y0 cos t)
∂

∂x
+ (x0 cos t − y0 sin t)

∂

∂y
= Xφt (p)

.

Thus X is invariant under φt .
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Problem 2.76 Let φ : R × R
2 → R

2 be defined by φt (x, y) = (x, yet ).

(i) Show that {φt |t ∈ R} defines a one-parameter group of transformations on R
2.

(ii) Find its generator.
(iii) Describe the orbit.
(iv) Prove that X is invariant under φt .

Solution: (i) Note that |J | =
∣∣
∣∣
1 0
0 et

∣∣
∣∣ = et �= 0,∀ t . Hence φ−1 exists and

φ−1
t

(x
′
, y

′
) = φ−t (x

′
, y

′
) = (x

′
, y

′
/et ).

It can be shown that

φt (φ−t (x
′
, y

′
)) = (x

′
, y

′
) and φ−t (φt (x, y)) = (x, y),

and hence we claim that {φt } is a transformation of R
2. Finally

φt (φs (x, y)) = (x, yet+s)

= φt+s (x, y).

Thus, {φt |t ∈ R} is a one-parameter group of transformations on R
2.

(ii) From the definition,

X p = d

dt
φt (p)

∣∣
t=0

= (0, yet )
∣∣
t=0

= (0, y).

Thus the generator is given by y
∂

∂y
.

(iii) The orbit through p = (x0 , y0) while t = 0 is the image of the map R → R
2

given by
t �→ (x0 , y0e

t ).

(iv) Now φt (p)=φt (x0 , y0)=(x0 , y0e
t ). Hence Xφ(t)(p)=

(
y

∂

∂y

)
(x0 ,y0 e

t )
=(

y0e
t
) ∂

∂y
.

Again

(φt )∗ X p =
(
1 0
0 et

)(
0
y

)∣∣∣∣
(x0 ,y0 )

= (0, yet )
(x0 ,y0 )

=(
y0e

t
) ∂

∂y
= X(φt )(p).

Thus X is invariant under φt .
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Exercises

Exercise 2.43 Show that the following families of maps φ : R × R
2 → R

2 form a
one-parameter group of transformations and find their generators.

(i) φt (p) = (x + at, y + bt), a, b ∈ R

(ii) φt (p) = (xe2t , ye−2t )

where p = (x, y).

Exercise 2.44 Let φ : R × R
2 → R

2 be defined by

φt (p) = (x cos t + y sin t,−x sin t + y cos t), p = (x, y).

Show that {φt |t ∈ R} defines a one-parameter group of transformations on R
2.

(i) Find its generator X.
(ii) Describe the orbit.
(iii) Prove that X is invariant under φt , i.e. (φt )∗ X p = Xφt (p).

Exercise 2.45 Let M = GL(2, R) and a mapping φt (A) =
(
1 t
0 1

)
· A,

A ∈ GL(2, R) with the dot denoting matrix multiplication. Find the generator.

Answers

2.43 (i) a
∂

∂x
+ b

∂

∂y
(ii) 2x

∂

∂x
− 2y

∂

∂y
.

2.44 (i) y
∂

∂x
− x

∂

∂y
(ii) circle centred at the origin.

2.45 a21

∂

∂x
+ a22

∂

∂y
.

Problem 2.77 Let M = R
3 and a mapping φ : R × M → M be such that X = ∂

∂x
is its generator. Find φ.

Solution: 76 For X , the differential equations are

dx

dt
= 1

dy

dt
= 0 = dz

dt
, where (x, y, z) ∈ R

3.

On solving, we get
x = t + A, y = B, z = C

where A, B,C are integrating constants. If for t = 0, x = x0 , y = y0 , z = z0 , then
A = x0 , B = y0 ,C = z0 . Consequently, the integral curve is given by ψ(t) = (x0 +
t, y0 , z0) and φt : R × R

3 → R
3 is defined by φt (x, y, z) = (x + t, y, z) where

φ0(x, y, z) = ψ(0) = p = (x0 , y0 , z0).
In this case
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φt (p) = φt (x0 , y0 , z0) = (x0 + t, y0 , z0),

and hence

Xφt (p) =( ∂

∂x

)
(x0+t,y0 ,z0 )

= (x0 + t)
∂

∂x

and

(φt )∗ X p =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠
∣∣∣∣
p

= (1, 0, 0)(x0+t,y0 ,z0 ) = (x0 + t, 0, 0)

= (x0 + t, 0, 0)
∂

∂x
= X(φt )(p).

Exercise 2.46 Let M = R
2, the xy-plane and X = y

∂

∂x
− x

∂

∂y
. Find the domain

W and the one-parameter group φ : W → M.

Exercise 2.47 Let M = R
2 and a mapping φ : R × M → M be such that

(i) X = x
∂

∂x
+ y

∂

∂y
is its generator;

(ii) X = −y
∂

∂x
+ x

∂

∂y
is its generator;

(iii) X = ∂

∂x
+ y

∂

∂y
is its generator;

Find φ in each case.

Answers
2.46 (yt + a,−xt + b).
(2.47)(i) φt (x, y) = (xet , yet ) (ii) φt (x, y) = (x cos t − y sin t, x sin t + y cos t).

(iii) φt (x, y) = (t + x, yet ).
Since every one-parameter group of transformations generates a vector field, the

question now arises whether every vector field induces a one-parameter group of
transformations or not. The question has been answered in negative.

Example 2.23 Let X = −ex
∂

∂x
+ ∂

∂y
be defined on R

2. As done earlier, it can be

shown that the integral curve ψ(t) of X is ψ(t) =
(
log

1

(t + e−p1)
, t + p2

)
, not

defined ∀t ∈ R, where x(0) = p1, y(0) = p2.
Consequently, by (2.46), if we define ψ(t) = φt (p) then, X does not induce one-

parameter group of transformations on R
2.

The above observation leads to the following definition:
Local one-parameter group of transformations: Let I

ε
be an open interval (−ε, ε)

on R and U be a neighbourhood of a point p of M (Fig. 2.21).
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Fig. 2.21 Local
one-parameter group of
transformations

Let us define a mapping φ : I
ε
×U → φt (U ) ⊂ M by φ(t, p) �→ φt (p) be such

that

(i) U is an open cover of M .
(ii) for each t ∈ I

ε
,φt (p) is a transformation of U onto an open subset φt (U ) of

M .
(iii) if t, s, t + s are in I

ε
and if φs (p) ∈ U then

φt (φs (p)) = φt+s (p).

Such a family {φt |t ∈ I } of mappings is called a local one-parameter group of
transformations defined on I

ε
×U .

Now, we are going to prove the following theorem.

Theorem 2.7 Let X be a vector field on a manifold M. Then X generates local
one-parameter group of transformations in a neighbourhood of a point in M.

Proof Let (U,φ) be a chart of p of M . By Exercise 2.8 we can write

φ(p) = (0, 0, 0, . . . , 0) ∈ R
n .

If (x1, x2, . . . , xn) is the local coordinate system of p, then xi (p) = 0, i = 1, 2,
3, . . . , n (Fig. 2.22).

Fig. 2.22 Existence theorem of local one-parameter group of transformations
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Let X = ξi
∂

∂xi
be a givenvector field onU of pwith each ξi : U ⊂ R

n → R, i =
1, 2, 3, . . . , n being differentiable. Then φX , the φ-related vector field on R

n , is
defined in a neighbourhoodU1 = φ(U ) at φ(p) = (0, 0, 0, 0 . . . , 0) ∈ R

n . We write

φX = ηi ∂

∂xi
where each ηi : φ(U ) ⊂ R

n → R is differentiable. Then by virtue of

the existence theoremof the ordinary differential equation, for eachφ(p) ∈ U1 ⊂ R
n ,

there exists δ1 > 0 and a neighbourhood V1 of φ(p), V1 ⊂ U1 such that, for each
q = (q1, q2, . . . , qn) ∈ V1 ,φ(r) = q, say, r ∈ U ⊂ M , there exists n-tuple of C∞
functions f 1(t, q), f 2(t, q), . . . , f n(t, q) defined on Iδ1 ⊂ Iε1 ,

f i : Iδ1 → V1 ⊂ U1 ⊂ R
n, i = 1, 2, 3, . . . , n

which satisfies the system of first-order differential equations

d

dt
f i (t) = ηi (t,φ(p)), i = 1, 2, 3, . . . , n (2.48)

with the initial condition
f i (0, q) = f i (0) = qi . (2.49)

Let us write
θt (q) = ( f 1(t, q), f 2(t, q), . . . , f n(t, q)). (2.50)

Then θ : Iδ1 × V1 → θt (q) ∈ V1 is a transformation of V1 onto an open set θt (V1) of
R

n .
Let us set

(g1(t), g2(t), . . . , gn(t)) = ( f 1(t + s, q), f 2(t + s, q), . . . , f n(t + s, q)),

where each f i (t + s, q), f i (t, s(q)) are defined on Iδ1 × V1 if θs (q) ∈ V1 ⊂ U1 and
t, s, t + s are in Iδ1 . Componentwise, we write

(gi (t)) = ( f i (t + s, q)),

where each gi (t) is defined on Iδ1 × V1 , V1 ⊂ U1 with initial condition

(gi (0)) = ( f i (s, q)). (2.51)

Similarly, if we write
(hi (t)) = ( f i (t, θs (q))),

then each hi (t) is defined on Iδ1 × V1 , V1 ⊂ U1 and hence satisfies (2.48) with initial
condition
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(hi (0)) = ( f i (0, θs (q))) = ( f i (0)) = (θs (q))i = ( f i (s, q)), by (2.49), (2.50)

as constructed. Thus (hi (0)) = (gi (0)) (by (2.51)). Hence, from uniqueness we have

(hi (t)) = (gi (t)) i.e. ( f i (t, θs (q))) = ( f i (t + s, q)),

which can be written as θt (θs (q)) = θt+s (q) (refer to (2.50)). We can also write it
as θ(t, θ(s, q)) = θ(t + s, q). Thus, {θt |t ∈ Iδ1 } is the local one-parameter group of
transformations induced by the vector field φX at U1 of φ(p) of R

n .
Let us now set φ−1(V1) = V ⊂ U of p of M and define

ψ : Iε × V → ψt (V ) ⊂ M,

as ψt (r) = φ−1(θt (q)) with q = φ(r), i.e.

ψt (r) = φ−1(θ(t,φ(r)). (2.52)

Then

(i) V is an open cover of M
(ii) for each t ∈ I

ε
,ψ(t, p) �→ ψt (p) is a transformation of V onto an open set

ψt (V ) of M and
(iii) if t, s, t + s are in I

ε
and if ψt (r) ⊂ ψt (V ), then

ψt (ψs (r)) = φ−1(θ(t,φ(ψs (r)))), by (2.52)

= φ−1(θ(t,φφ−1(θ(s,φ(r))), by (2.52)

= φ−1(θ(t, θ(s, q)))

= φ−1(θ(t + s, q)), as {θt } is the local 1-parameter group of transformations

= ψt+s (r), by (2.52),

i.e. {ψt |t ∈ I
ε
} is the local one-parameter group of transformations defined on I

ε
×

V, V ⊂ U ⊂ M for the vector field X defined in the neighbourhood U of a point of
M .

Finally, if we write

γ(t) = ψt (r) = φ−1(θt (q)), q = φ(r)

= φ−1(σ(t)), say

then φ−1(σ(t)) is the integral curve of X , where σ(t) is the integral curve of the
vector field φX of R

n . This completes the proof.

Problem 2.78 Prove that the integral curve always gives rise to a vector field, but
the converse is not true.
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Solution: 77 Let {φt |t ∈ R} be one-parameter group of transformations on a mani-
fold M . From (2.46), we see that if ψ : R → M is a differentiable curve on M such
that

ψ(t) = φt (p), ψ(o) = φ0(p) = p,

then X p = d

dt
(ψ(t))

∣∣
t=0 = d

dt
(φt (p))

∣∣
t=0 is called the generator of {φt |t ∈ R} and

the curve ψ(t) is the integral curve of X .
Thus, every one-parameter group of transformations or the integral curve on a

manifold induces a vector field on a manifold.
Conversely, by Example 2.23, the vector field on a manifold does not in general

induce an integral curve on a manifold.

Problem 2.79 Let φ be a transformation on M . If a vector field X generates {φt |t ∈
I

ε
} as its local one-parameter group of transformations, prove that the vector fieldφ∗ X

will generate {φφtφ
−1|t ∈ I

ε
} as its local one-parameter group of transformations on

M .

Solution: 78 Let X be given vector field on a manifold M . Then by Theorem 2.7,
X generates {φt |t ∈ I

ε
} as its local one-parameter group of transformations on M .

Let ψ(t) = φt (p), then X p is the tangent vector to the curve ψ(t) at ψ(0) =
φ0(p) = p (refer to Problem (2.73)(i)). Thus

X p = d

dt
ψ(t)

∣∣
t=0 = d

dt
(φt (p))

∣∣
t=0.

Now by definition, φ∗ : Tp (M) → T
φ(p) (M) and φ∗(X p ) is defined to be the tangent

vector to the curve φ(ψ(t)) at φ(ψ(0)) = φ(p), i.e.

φ(ψ(t)) = φ(φt (p))

= φ(φt (φ
−1(q))), say where φ(p) = q, φ being a transformation on M

= (φφt φ
−1)(φ(p)), and

φ∗(X p ) = d

dt
φ(ψ(t))

∣
∣
t=0

or (φ∗ X)φ(p) = d

dt
(φφt φ

−1)(φ(p))
∣
∣
t=0, from above and by (2.35).

Comparing with (2.47), we can now say that the vector field φ∗ X generates
{φφtφ

−1|t ∈ I
ε
} as its local one-parameter group of transformations on M .

Exercise

Exercise 2.48 Show that a vector field X on a manifold M is invariant under a
transformation φ on M if and only if φ ◦ φt = φt ◦ φ where {φt |t ∈ I } is the local
one-parameter group of transformations on M, generated by X.
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Now, we are going to give the geometrical interpretation of the Lie Bracket [X,Y ]
for every vector field X,Y on M .

Theorem 2.8 If X generates {φt |t ∈ I } as its local one-parameter group of trans-
formations, then for every vector field Y on M

[X,Y ] = lim
t→0

1

t
{Y − (φt )∗Y }.

We also write

[X,Y ]q = lim
t→0

1

t
{Yq − ((φt )∗Y )q}, ∀ q ∈ M, q = φt (p), p ∈ M.

To prove the theorem, we require a few lemmas.

Lemma 2.7 If ψ(t, p) is a function on Iε × M, Iε = (−ε, ε) on R such that ψ(0, p)
= 0, ∀ p ∈ M, then there exists a function h(t, p) on Iε × M such that th(t, p) =
ψ(t, p). Moreover

h(0, p) = ψ
′
(0, p), ψ

′ = dψ

dt
.

Proof Let us define h(t, p) =
∫ 1

0
ψ

′
(ts, p)

d(ts)

t
. In view of the fundamental the-

orem of calculus, we have

h(t, p) = 1

t

[
ψ(ts, p)

]1
0 =⇒ t h(t, p) = ψ(t, p).

Also, h(0, p) =
∫ 1

0
ψ

′
(0, p)ds = ψ

′
(0, p).

Lemma 2.8 If f is a function on M and X is a vector field on M which induces a
local one-parameter group of transformations {φt |t ∈ I }, then there exists a function
gt defined on Iε × V, V being the neighbourhood of a point p of M where gt (p) =
g(t, p) such that f (φt (p)) = f (p) + t gt (p). Moreover, X p f = g(0, p) = g◦(p).
Symbolically, X f = g◦ .

Proof Let us set

f̃ (t, p) = f (φt (p)) − f (φ◦(p)), ∀ p ∈ M.

Then f̃ (t, p) is a function on Iε × M such that f̃ (0, p) = 0, ∀ p ∈ M . Hence by
Lemma 2.7, there exists a function, say, g(t, p) on I

ε
× V, V ⊂ M such that

t g(t, p) = f̃ (t, p)

or t gt (p) = f (φt (p)) − f (p).
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Hence, the result follows. Also from above

g(0, p) = lim
t→0

1

t
{ f (φt (p)) − f (φ◦(p))} = X p f.

Proof of the Main theorem:
Let us write φt (p) = q. Therefore, p = φ−t (q). Then by (2.34), we get

{((φt)∗Y ) f }(q) = {Y ( f ◦ φt )}(p) = (Y f + t Ygt )(p), by Lemma 2.8.

Therefore,

(Y f )(q) − {((φt )∗Y ) f }(q) = (Y f )(q) − (Y f )(p) − t (Ygt )φ−t (q)

or, lim
t→0

1

t
{Yq − ((φt )∗Y )q } f = lim

t→0

(Y f )(q) − (Y f )(p)

t
− lim

t→0
(Ygt )φ−t (q)

= lim
t→0

(Y f )(q) − (Y f )(p)

t
− Yq (X f ), by Lemma 2.8.

Now from (2.47),

Xq f = lim
t→0

1

t
{ f (φt (q)) − f (q)}

∴ −Xq f = lim
t→0

1

t
{ f (p) − f (q)}, as p = φ−t (q).

Replacing f by Y f , one obtains

Xq (Y f ) = lim
t→0

1

t
{(Y f )(q) − (Y f )(p)}.

Thus, we write

lim
t→0

1

t
{Yq − ((φt )∗Y )q } f = Xq (Y f ) − Yq (X f )

= {X (Y f ) − Y (X f )}(q)

= {[X,Y ] f }(q)

= [X,Y ]q f.

Therefore, [X,Y ]q = lim
t→0

1

t
{Yq − ((φt )∗Y )q }, ∀ f . The result follows immediately.

Corollary 2.2 Show that (φs)∗[X,Y ] = lim
t→0

1

t
{(φs )∗Y − (φs+t )∗Y }.

Proof In view of Theorem 2.8, one gets
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(φs )∗ [X,Y ] = lim
t→0

1

t
(φs )∗ {Y − (φt )∗Y }

= lim
t→0

1

t
{(φs )∗Y − (φs )∗(φt )∗Y )}, as (φs )∗ is linear

= lim
t→0

1

t
{(φs )∗Y − (φs ◦ φt )∗Y }, by Problem 2.51

= lim
t→0

1

t
{(φs )∗Y − (φs+t )∗Y }, by (2.45)(ii).

Corollary 2.3 Show that (φs )∗ [X,Y ] = −d(φt )∗Y

dt

∣∣
∣∣
t=s

.

Proof Note that

d

dt
((φt )∗Y )

∣∣∣∣
t=s

= lim
h→0

(φt+h)∗Y − (φt )∗Y
h

∣∣∣∣
t=s

= lim
h→0

(φs+h)∗Y − (φs)∗Y
h

= −(φs )∗ [X,Y ], using Corollary 2.2.

Corollary 2.4 Let X,Y generate {φt } and {ψs } respectively as its local one-
parameter groupof transformations. Thenφt ◦ ψs = ψs ◦ φt if andonly if [X,Y ] = 0.

Proof Let φt ◦ ψs = ψs ◦ φt . Then from Exercise 2.48, we can say that the vector
field Y is invariant under φt . Consequently, by (2.40), we find (φt )∗Y = Y . Hence,
taking advantage of Theorem 2.8, we find [X,Y ] = 0.

Conversely, let [X,Y ] = 0. Then in view of the foregoing corollary, we have

d

dt
((φt )∗Y ) = 0

i.e. (φt )∗Y = Constant, ∀ t

i.e. (φt )∗Y = (φ0)∗Y = Y.

Finally, taking into consideration Exercise 2.48, we must have the desired result.

Avectorfield X onamanifold is said to be complete if it generates a one-parameter
group of transformations on M .

Theorem 2.9 Every vector field on a compact manifold is complete.

Proof Left to the reader.
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Hint
Theorem 2.9: Use Theorem 2.7 and then use the compactness property.

Remark 2.33 If φ is a transformation on a compact manifold and the vector field
X is complete, then φ∗ X is also so.



Chapter 3
Differential Forms

3.1 Cotangent Space

A mapping ω : χ(M) → F(M) that satisfies

{
ω(X + Y ) = ω(X) + ω(Y )

ω(bX) = bω(X), ∀ X,Y ∈ χ(M), b ∈ F(M)
(3.1)

is called a linear mapping over R, where χ(M), F(M) are vector spaces over R.
A linear mapping ω : χ(M) → F(M) denoted by X �→ ω(X) is also called a

1-form on M .
Let D1(M) = {ω,μ, . . . , . . .

∣∣ ω : χ(M) → F(M)} be the set of all 1-forms on
M . Let us define {

(ω + μ)(X) = ω(X) + μ(X)

ω(bX) = bω(X)
(3.2)

It can be shown that D
1
(M) is a vector space over R, called the dual of χ(M). We

write
{ω(X)}(p) = ωp (X p ), where ω(X) ∈ F(M). (3.3)

Thus ωp : Tp (M) → R and hence ωp ∈ dual of Tp (M).

We denote the dual of Tp (M) by T ∗
p
(M) and is called the cotangent space of M

at p ∈ M . Elements of T ∗
p
(M) are also called the co-vectors at p ∈ M .

For every f ∈ F(M), we denote the total differential of f by d f and is defined
as

(d f )p (X p ) = (X f )(p) = X p f, ∀ p ∈ M. (3.4)

We also write it as
(d f )(X) = X f. (3.5)
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Problem 3.1 Show that for every f ∈ F(M), d f is a 1-form on M.

Solution: For every X,Y ∈ χ(M), X + Y ∈ χ(M) and

d f (X + Y ) = (X + Y ) f, by (3.5)

= d f (X) + d f (Y ), by (3.5).

Also d f (bX) = (bX) f, by (3.5)

= b(X f )

= bd f (X), by (3.5)

Thus d f is a 1-form.

Exercise

Exercise 3.1 If (x1, x2, . . . , xn) are co-ordinate functions defined in a neighbour-
hood of p of M, show that each dxi , i = 1, 2, 3, 4, . . . , n is a 1-form on M.

From Exercise3.1, we claim that each dxi ∈ T ∗
p
(M), i = 1, 2, 3, . . . , n. We

define

(dxi )p

(
∂

∂x j

)
p

= δi
j
=

{
1, i = j
0, i �= j

(3.6)

Let ωp ∈ T ∗
p
(M) be such that

ωp

(
∂

∂x j

)
p

= ( f j )p , where each ( f j )p ∈ R. (3.7)

If possible, let μp ∈ T ∗
p
(M) be such that

μp = ( f1)p (dx
1)p + ( f2)p (dx

2)p + · · · + ( fn )p (dx
n)p .

Then, μp

(
∂

∂xi

)
p

= ( fi )p , i = 1, 2, . . . , n by (3.6)

= ωp

(
∂

∂xi

)
p

, , i = 1, 2, . . . , n see (3.7).

and hence μp = ωp as

{
∂

∂xi
: i = 1, 2, 3, 4, . . . , n

}
is a basis of Tp (M). Thus any

ωp ∈ T ∗
p
(M) can be expressed uniquely as
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ωp =
n∑

i=1

( fi )p (dx
i )p i.e. ω =

∑
fi dx

i (3.8)

and hence T ∗
p
(M) = span{(dx1)p , (dx

2)p , . . . , (dx
n)p }. Finally, if ( fi )p (dx

i )p = 0

then ( fi )p (dx
i )p

(
∂

∂xk

)
p

= 0 yields ( fk )p = 0 [refer to (3.6)].

Similarly, it can be shown that ( f1)p = ( f2)p = ( f3)p = · · · = ( fn )p = 0 and the
set {(dx1)p , (dx

2)p , . . . , (dx
n)p } is linearly independent. We state

Theorem 3.1 If (x1, x2, . . . , xn) are local co-ordinate system in a neighbourhood
U of p of M, then the set {(dx1)p , (dx

2)p , . . . , (dx
n)p } is a basis of T ∗

p
(M) or

D1(M
n).

Remark 3.1 A zero-form is nothing but a function, by convention.

Remark 3.2 We say that the form ω in (3.8) is differentiable if each fi is of
class C∞.

Remark 3.3 From ω =
∑

fi dx
i , X =

∑
ξ i ∂

∂x j
, we see that ω(X) =

∑
fi ξ

i

[refer to (3.6)].

Remark 3.4 D1(M) is a F(M)-module.

Unless Otherwise Stated, by a form, we will mean Differential form. From
(3.5), we see that

dxi (X) = Xxi =
∑

ξ j ∂

∂x j
xi , say

Thus
dxi (X) = ξ i . (3.9)

Consequently, from (3.5), we have

d f (X) = X f =
∑

ξ j ∂

∂x j
f

=
∑ ∂ f

∂xi
dxi (X), by (3.9)

d f =
∑ ∂ f

∂xi
dxi . (3.10)

The transition formula for a 1-form: Let (U, x1, x2, . . . , xn) and (V, y1, y2, . . . ,
yn) be two charts on M where U ∩ V �= φ. Now from (3.8), we have
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ω =
∑
i

fi dx
i =

∑
j

g j dy
j , say, where each fi , gi ∈ F(M)

=
∑
i

∑
j

g j

∂y j

∂xi
dxi [refer to (3.10)]

fi =
∑

g j

∂y j

∂xi
, i = 1, 2, 3, 4, . . . , n (3.11)

as {dxi : i = 1, 2, 3, 4, . . . , n} is a basis.
For every f ∈ F(M), ω ∈ D1(M), we define f ω ∈ D1(M) as follows:

{
( f ω)(X) = f ω(X)

{( f ω)(X)}(p) = f (p)ωp (X p ) [refer to (3.3)].
(3.12)

Problem 3.2 Show that ω( f X) = f ω(X), where ω is a 1-form on M, f ∈ F(M)

and X ∈ χ(M).

Solution: Here

{ω( f X)}(p) = ωp ( f X)(p), by (3.3)

= ωp f (p)X p , by (2.26)

= f (p){ω(X)}(p), by (3.3)

= { f ω(X)}(p), by (2.26)

Thus ω( f X) = f ω(X),∀ p ∈ M .

Problem 3.3 Let X = y
∂

∂x
− x

∂

∂y
+ ∂

∂z
be the vector field and ω = zdx + xdz

be the 1-form on R
3. Compute ω(X).

Solution: Taking into consideration Remark3.3 and also (3.6), we obtain

ω(X) = (zdx + xdz)

(
y

∂

∂x
− x

∂

∂y
+ ∂

∂z

)

= zy + x .

Problem 3.4 Let X = (x2 + 1)
∂

∂x
+ (y − 1)

∂

∂y
be the vector field and

ω = (2xy + y2 + 1)dx + (x2 − 1)dy be the 1-form onR
2. Computeω(X) at (0, 0).

Solution: Note that
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ω(X) = {(2xy + y2 + 1)dx + (x2 − 1)dy}
{
(x2 + 1)

∂

∂x
+ (y − 1)

∂

∂y

}

= (2xy + y2 + 1)(x2 + 1) + (x2 − 1)(y − 1).

Thus, ω(X)∣∣
(0,0)

= 2.

Problem 3.5 Let X = x
∂

∂x
+ 2y

∂

∂y
,Y = xy

∂

∂y
be the vector field and ω = (x +

y2)dx + (x2 + y)dy be the 1-form on R
2. Compute ω([X,Y ]).

Solution: Here

[X,Y ] =
(
x

∂

∂x
+ 2y

∂

∂y

)(
xy

∂

∂y

)
− xy

∂

∂y

(
x

∂

∂x
+ 2y

∂

∂y

)

= xy
∂

∂y
.

Thus

ω([X,Y ]) = {(x + y2)dx + (x2 + y)dy}xy ∂

∂y

= xy(x2 + y), by (3.6).

Problem 3.6 In Problem3.5, compute ω([X,Y ]) at (1, 1).
Solution: Here ω([X,Y ])∣∣

(1,1)
= 2.

Problem 3.7 Let X = −y
∂

∂x
− x

∂

∂y
and Y = ex

∂

∂x
− y

∂

∂y
be the two vector fields

on R
2. Find a 1-form ω on R

2
� {(0, 0)} such that ω(X) = 1 and ω(Y ) = 0.

Solution: Here

det

(−y −x
ex −y

)
= y2 + xex �= 0 on R

2
� {(0, 0)}.

Let ω = A(x, y)dx + B(x, y)dy, where A, B ∈ F(R2) are functions to be deter-
mined.

Given that

1 = ω(X) = {A(x, y)dx + B(x, y)dy}
{

− y
∂

∂x
− x

∂

∂y

}

∴ 1 = ω(X) = −Ay − Bx and

0 = ω(Y ) = Aex − By.
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After a brief calculation, one gets from the last two equations

A = − y

xex + y2
, B = − ex

xex + y2
.

Consequently

ω = − y

xex + y2
dx − ex

xex + y2
dy.

NOTE: The 1-form ω is on subsetU and it is not a 1-form on R
2, as it is not defined

at the origin.

Problem 3.8 Let X = 2
∂

∂x
− ∂

∂y
,Y = ex

∂

∂y
be two vector fields on R

2. Find a

1-form ω on R
2 such that ω(X) = 1, ω(Y ) = 0.

Solution: Note that

(
2 −1
0 ex

)
= 2ex �= 0, ∀ (x, y) ∈ R

2. Let ω = A(x, y)dx +
B(x, y)dy, where A, B ∈ F(R2). Now

1 = ω(X) = {A(x, y)dx + B(x, y)dy}(2 ∂

∂x
− ∂

∂y

) = 2A − B and

0 = ω(Y ) = −Bex .

Thus B = 0, A = 1

2
. Therefore, ω = 1

2
dx .

Problem 3.9 Find a 1-form ω on R
3 such that ω(X) = 1, ω(Y ) = 0, ω(Z) = 0

where X = xy
∂

∂x
+ ∂

∂z
,Y = e−x ∂

∂x
+ ∂

∂y
, Z = 2

∂

∂y
+ ∂

∂z
are vector fields onR

3.

Solution: Note that

⎛
⎝ xy 0 1
e−x 1 0
0 2 1

⎞
⎠ = xy + 2e−x �= 0, ∀ (x, y, z) ∈ R

3. Let

ω = A(x, y, z)dX + B(x, y, z)dy + C(x, y, z)dz, where A, B,C ∈ F(R3).

Now

1 = ω(X) ⇒ Axy + C = 1

0 = ω(Y ) ⇒ Ae−x + B = 0

0 = ω(Z) ⇒ 2B + C = 0
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Solving, we find A = 1

xy + 2e−x
, B = − e−x

xy + 2e−x
,C = 2e−x

xy + 2e−x
. Thus

ω = dx

xy + 2e−x
− e−xdy

xy + 2e−x
+ 2e−xdy

xy + 2e−x
.

Problem 3.10 Find the subset of R
3 where the vector fields

X = ∂

∂x
, Y = ∂

∂x
− ∂

∂y
, Z = ∂

∂x
− ∂

∂y
− (1 − x2)

∂

∂z

are linearly independent. Write the basis {α, β, γ } dual to {X,Y, Z} in terms of the
basis {dx, dy, dz}.
Solution: Here

det

⎛
⎝ 1 0 0
1 −1 0
1 −1 −(1 − x2)

⎞
⎠ = (1 − x2) �= 0 on R

3
� {(x, y, z)|x �= ±1}.

Let us write α = Adx + Bdy + Cdz, where A, B,C are functions to be determined.
Now from (3.6)

1 = α(X) = A ⇒ A = 1

0 = α(Y ) = A − B ⇒ B = A = 1

0 = α(Z) = A − B − C(1 − x2) ⇒ A − B = C(1 − x2) ⇒ C = 0 as x �= ±1.

Thus α = dx + dy.
Let uswriteβ = A′dx + B ′dy + C ′dz, where A′, B ′,C ′ are functions to be deter-

mined. Now

0 = β(X) = A′ ⇒ A′ = 0

1 = β(Y ) = A′ − B ′ ⇒ B ′ = A′ − 1 = −1

0 = β(Z) = A′ − B ′ − C ′(1 − x2) ⇒ C ′ = 1

1 − x2
.

Thus, β = −dy + 1

1 − x2
dz.

Proceeding as above we get, γ = dz

x2 − 1
.

Problem 3.11 Find the subset ofR2 where the differential forms α = dx + dy, β =
−dx + (x2 − 1)dy are linearly independent and determine the dual frame {X,Y }
on it.
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Solution: Here

det

(
1 1

−1 x2 − 1

)
= x2 �= 0 on R

2/{(x, y)|x �= 0}.

Let us write

X = a
∂

∂x
+ b

∂

∂y
, Y = a′ ∂

∂x
+ b′ ∂

∂y

where a, b, a′, b′ are all functions to be determined. Now

1 = X (α) = a + b, a + b = 1

0 = X (β) = −a + b(x2 − 1), −a + b(x2 − 1) = 0.

From the last two equations, one gets a = x2 − 1

x2
. Thus

X = x2 − 1

x2
∂

∂x
+ 1

x2
∂

∂y
.

Similarly, one gets a′ = − 1

x2
, b′ = 1

x2
. Thus

Y = − 1

x2
∂

∂x
+ 1

x2
∂

∂y
.

Problem 3.12 Let f be given in spherical co-ordinate system by f (r, θ, φ) =
r tan θ . Consider the point (r, θ, φ) =(

1,
π

4
, 0

)
. Find the constants A, B,C such

that d f
(
1,

π

4
, 0

) = Adr + Bdθ + Cdφ.

Solution: Now

∂ f

∂r
= tan θ,

∂ f

∂r
∣∣
(1, π

4 ,0)

= 1

∂ f

∂θ
= r sec2 θ,

∂ f

∂θ
∣∣
(1, π

4 ,0)

= 2

∂ f

∂φ
= 0.

Thus, d f
(
1, π

4 , 0
) = dr + 2dθ .
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Problem 3.13 Let us write

e1 = (1 + y2)ez
∂

∂x
, e2 = (2xy)

∂

∂x
+ (1 + y2)

∂

∂y
, and

e3 = −(xy2)
∂

∂x
− y(1 + y2)

∂

∂y
− (1 + y2)

∂

∂z
.

(i) Prove that {e1 , e2 , e3} forms a basis of χ(R3).
(ii) Find the dual basis {e1, e2, e3} in terms of dx, dy, dz.
(iii) Find [e1 , e2 ], [e1 , e3 ].
Solution:

(i) Note that

∣∣∣∣∣∣
(1 + y2)ez 0 0

2xy (1 + y2) 0
−xy2 −y(1 + y2) −(1 + y2)

∣∣∣∣∣∣= − (1 + y2)3ez �= 0. Thus

{e1 , e2 , e3} forms a basis of χ(R3).
(ii) Let uswrite e1 = Adx + Bdy + Cdz, where A, B,C are functions to be deter-

mined. Now from (3.6), we have

1 = e1(e1) = A(1 + y2)ez

0 = e1(e2) = 2xyA + B(1 + y2)

0 = e1(e3) = −A(xy2) − By(1 + y2) − C(1 + y2).

On solving, one gets

A = 1

(1 + y2)ez
, B = − 2xy

(1 + y2)ez
, C = xy2

(1 + y2)2ez
.

Thus

e1 = 1

(1 + y2)ez
dx − 2xy

(1 + y2)2ez
dy + xy2

(1 + y2)2ez
dz.

Proceeding as above, we get

e2 = 1

(1 + y2)
dy − y

(1 + y2)
dz

e3 = − 1

(1 + y2)
dz.

(iii) It is to be noted that

[e1 , e2 ] =
[
(1 + y2)ez

∂

∂x
, 2xy

∂

∂x
+ (1 + y2)

∂

∂y

]

=
[
(1 + y2)ez

∂

∂x
, 2xy

∂

∂x
] + [(1 + y2)ez

∂

∂x
, (1 + y2)

∂

∂y

]
, by linearity
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Takinghelpof the relation [ f X, gY ] = ( f g)[X,Y ] + { f (Xg)}Y − {g(Y f )}X ,
it can be shown that [e1 , e2 ] = 0. Similarly, [e1 , e3 ] = (1 + y2)2ez

∂

∂x
=

(1 + y2)e1 .

Exercises

Exercise 3.2 If ω = zdx + ydz, compute ω(X) on R
3 where

(i) X = xy
∂

∂x
+ x2

∂

∂z

(ii) X = y
∂

∂y

(iii) X = 2
∂

∂x
− ∂

∂x
+ 3

∂

∂x

(iv) X = e−x ∂

∂x

(v) X = ∂

∂y
+ ex

∂

∂z

(vi) X = xy
∂

∂y
− x2

2

∂

∂x
.

Exercise 3.3 Compute ω(X) at (1, 0, 1) in each cases of Exercise3.2.

Exercise 3.4 Find a 1-form ω on R
2 \ {(0, 0)}, such that ω(X) = 1 and ω(Y ) = 0

where

(i) X = xy
∂

∂x
+ x2

∂

∂y
, Y = y

∂

∂y

(ii) X = 2
∂

∂x
− ∂

∂y
, Y = e−x ∂

∂x

(iii) X = ∂

∂y
+ ex

∂

∂x
, Y = − x2

2

∂

∂x
+ xy

∂

∂y
.

Exercise 3.5 Letω = (2xy + y2 + 1)dx + (x2 − 1)dy + xdz be the 1-form onR
3.

Compute ω(X) and hence ω(X) at (1, 0, 0) where

(i) X = 2xy2
∂

∂x
+ (2 + y2)

∂

∂y
+ (2 − z)

∂

∂z
.

(ii) X = 2y2
∂

∂x
+ ez

∂

∂y
+ (2 − y2)

∂

∂z
.

(iii) X = −y(2 + y2)
∂

∂x
− 2z

∂

∂y
+ (2 + x2)

∂

∂z
.

Exercise 3.6 Let X = x
∂

∂x
+ 2y

∂

∂y
and Y = xy

∂

∂x
+ y

∂

∂y
be two vector fields on

R
2. Find a 1-form ω on R

2 \ {(0, 0)} such that ω(X) = 1 and ω(Y ) = 0.
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Exercise 3.7 Find the basis {α, β} dual to {X,Y } where
(i) X = −y

∂

∂x
− x

∂

∂y
, Y = ex

∂

∂x
− y

∂

∂y
.

(ii) X = ∂

∂x
, Y = ∂

∂x
− ∂

∂y
.

(iii) X = 2y2
∂

∂x
+ ex

∂

∂y
, Y = ∂

∂y
.

(iv) X = ex
∂

∂x
+ ∂

∂y
, Y = −1

2

∂

∂x
+ y

∂

∂y
.

Exercise 3.8 Show that the given differential forms

α = dx

(2 + y2)ez
− 2xy

(2 + y2)2ez
dy,

β = dy

(2 + y2)
+ y

(2 + y2)
dz,

γ = dz

(2 + y2)
,

are linearly independent. Hence find the dual basis {X,Y, Z} dual to {α, β, γ } in
terms of

{
∂

∂x
,

∂

∂y
,

∂

∂z

}
.

Exercise 3.9 Find the subset of R
2 where the differential forms

α = x dx

x2 + y2
+ y dy

x2 + y2
, and β = − y dx

x2 + y2
+ x dy

x2 + y2

are linearly independent. Hence find the dual basis {X,Y } dual to {α, β} in terms of{
∂

∂x
,

∂

∂y

}
.

Exercise 3.10 Find the subset of R
3 where the differential forms

α = dx + dy, β = −dy + dz

1 − x2
, γ = dz

x2 − 1

are linearly independent. Hence find the dual basis {X,Y, Z} dual to {α, β, γ } in
terms of

{
∂

∂x
,

∂

∂y
,

∂

∂z

}
.

Exercise 3.11 Let f : R
3 → R be given by

f (x, y, z) = (x2 + y2 + z2)
3
2 + x + 3y.

(i) Write down d f (1, 0, 0) in terms of {dx, dy, dz}.
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(ii) Express f in spherical co-ordinate (r, θ, φ), where

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ.

(iii) Find constants A, B,C such that d f
(
1, π

2 , 0
) = Adr + Bdθ + Cdφ.

Exercise 3.12 A. Ifω = ex cos ydx + ex sin ydy, computeω([X,Y ]) onR
2 where

(i) X = x
∂

∂x
+ y2

∂

∂y
,Y = y

∂

∂y

(ii) X = xy
∂

∂x
+ y2

2

∂

∂y
,Y = 2

∂

∂x
− ∂

∂y

(iii) X = y
∂

∂y
,Y = ex

∂

∂x
+ ∂

∂y
.

B. Compute ω([X,Y ]) at (1, 2) ∈ R
2.

Exercise 3.13 Find a 1-form ω on R
3 such that ω(X) = 1, ω(Y ) = 0, ω(Z) = 0

where

(i) X = ∂

∂x
,Y = ∂

∂x
− ∂

∂y
, Z = ∂

∂x
− ∂

∂y
− ∂

∂z

(ii) X = (2 + y2)
∂

∂x
+ ∂

∂y
,Y = ∂

∂y
+ ∂

∂z
, Z = ∂

∂x
+ ∂

∂z
.

Answers

3.2. (i) xyz + x2y (ii) θ (iii) 2z + 3y (iv) ze−x (v) yex (vi) − x2z

2
.

3.3. (i) 0 (ii) 0 (iii) 2 (iv)
1

e
(v) − 1

2 .

3.4. (i) ω = 1

xy

∂

∂x
(ii) ω = − ∂

∂y
(iii) ω = 2y

(x + 2yex )

∂

∂x
+ x

(x + 2yex )

∂

∂y
.

3.5. (i) 2 (ii) 2 (iii) 3. 3.6. ω = − dx

x(2y − 1)
+ dy

2y − 1

3.7. (i) α = − y

xex + y2
dx − ex

xex + y2
dy, β = x

xex + y2
dx − y

xex + y2
dy.

(ii) α = dx + dy, β = −dy (iii) α = 1

2y2
dx, β = dy.

(iv) α = 2y

1 + 2yex
dx + 1

1 + 2yex
dy, β = − 2

1 + 2yex
dx + 2ex

1 + 2yex
dy.

3.8. X = (2 + y2)ez
∂

∂x
, Y = 2xy

∂

∂x
+ (2 + y2)

∂

∂y
, Z = −2xy2

∂

∂x
− y(2 + y2)

∂

∂y
+

(2 + y2)
∂

∂z

3.9. X = x
∂

∂x
+ y

∂

∂y
, Y = −y

∂

∂x
+ x

∂

∂y
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3.10. X = ∂

∂x
, Y = ∂

∂x
− ∂

∂y
, Z = ∂

∂x
− ∂

∂y
+ (x2 − 1)

∂

∂z
3.11. (i) 4dx + 3dy (ii) r3 + r sin θ cosφ + 3r sin θ sin φ (iii) 4dr + 3dφ.
3.12. A. (i) −y2ex sin y (ii) (x − 2y)ex cos y (iii) −ex sin y

B. (i) −4e sin 2 (ii) −3e cos 2 (iii) −e sin 2.

3.13. (i) dx + dy (ii)
dx

3 + y2
+ dy

3 + y2
− dz

3 + y2
.

3.2 r-form, Exterior Product

An r -form ω is a skew-symmetric mapping

ω : χ(M) × · · ·χ(M)︸ ︷︷ ︸
r−times

→ F(M)

such that

(i) ω is R-linear
(ii) if σ is a permutation of 1, 2, 3, . . . , r with (1, 2, 3, . . . , r) → (σ (1), σ (2),

. . . , σ (r)), then

ω(X1 , X2 , . . . , Xr ) = 1

r !
∑

σ

(sgn σ) ω(X
σ(1) , Xσ(2) , . . . , Xσ(r) ) (3.13)

where sgn σ (pronounced as signum σ ) is +1 or −1 according as σ is even or
odd permutation.

The product of two skew-symmetric form is called the exterior product orGrass-
mann product, as introduced by H.G Grassmann or Wedge Product, as a wedge
‘∧’ is used to denote this product. We are going to give the formal definition.

Remark 3.5 By convention, a zero-form is a function.

If ω is a r -form and μ is a s-form, then the exterior product or wedge product of ω

and μ, denoted by ω ∧ μ is a (r + s)-form defined as

(ω ∧ μ)(X1 , X2 , . . . , Xr , Xr+1 , . . . , Xr+s ) (3.14)

= 1

(r + s)!
∑

σ

(sgn σ) ω(X
σ(1) , Xσ(2) , . . . , Xσ(r) )μ(X

σ(r+1) , Xσ(r+2) , . . . , Xσ(r+s) )

where σ ranges over the permutation (1, 2, 3, . . . , r + s), Xi ∈ χ(M), i = 1, 2,
3, . . . , r + s.

For convenience, we write

f ∧ g = f g; ∀ f, g ∈ F(M). (3.15)
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It can be shown that, for a r -form ω

{
( f ∧ ω)(X1 , X2 , . . . , Xr ) = f ω(X1 , X2 , . . . , Xr )

(ω ∧ f )(X1 , X2 , . . . , Xr ) = f ω(X1 , X2 , . . . , Xr )
(3.16)

Again, if ω and μ are 1-forms, then

(ω ∧ μ)(X1 , X2) = 1

2
{ω(X1)μ(X2) − ω(X2)μ(X1)}. (3.17)

The exterior product obeys the following properties:

⎧⎪⎪⎨
⎪⎪⎩

ω ∧ ω = 0, ω ∧ μ = (−1)rsμ ∧ ω, μ being s-form
f ω ∧ μ = f (ω ∧ μ) = ω ∧ f μ
f ω ∧ gμ = f g ω ∧ μ

(ω + μ) ∧ γ = ω ∧ γ + μ ∧ γ, ω ∧ (μ + γ ) = ω ∧ μ + ω ∧ γ.

(3.18)

Problem 3.14 Given 1-form ω = f dx − gdy + hdz and μ = f ′dx + g′dy in R
3.

Compute ω ∧ ω and show that ω ∧ μ = −μ ∧ ω. Prove that each ω ∧ μ, μ ∧ ω is
a 2-form.

Solution: Taking help of (3.18), the result follows immediately.

Problem 3.15 Let V be a vector space of dimension 3 over R. Let {e1 , e2 , e3} be
a basis of V and {e1, e2, e3} be its dual basis. Let α, β be co-vectors, so that α =
a1e

1 + a2e
2 + a3e

3, β = b1e
1 + b2e

2 + b3e
3 where each ai , bi ∈ F(V ). Show that

the components of α ∧ β = α × β.

Solution: Here

α ∧ β = (a1e
1 + a2e

2 + a3e
3) ∧ (b1e

1 + b2e
2 + b3e

3)

= (a1b2 − a2b1)e
1 ∧ e2 + (a2b3 − a3b2)e

2 ∧ e3 + (a3b1 − a1b3)e
3 ∧ e1.

Thus the components of α ∧ β = (a1b2 − a2b1 , a2b3 − a3b2 , a3b1 − a1b3). Again

α × β = (a1b2 − a2b1 , a2b3 − a3b2 , a3b1 − a1b3).

Hence the proof.

Problem 3.16 Let a 1-form α and 2-form β be given on R
3 as α = adx + bdy +

cdz,
β = a′ dx ∧ dy + b′ dy ∧ dz + c′ dz ∧ dx. Compute α ∧ β.
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Solution: Note that

α ∧ β = (adx + bdy + cdz) ∧ (a′ dx ∧ dy + b′ dy ∧ dz + c′ dz ∧ dx)

= ab′ dx ∧ dy ∧ dz + bc′ dy ∧ dz ∧ dx + ca′ dz ∧ dx ∧ dy.

As dx ∧ dz ∧ dx = −dx ∧ dx ∧ dz = 0 and so on, we have

α ∧ β = (ab′ + bc′ + ca′)dx ∧ dy ∧ dz,

which is a 3-form.

Theorem 3.2 In terms of a local co-ordinate system (x1, x2, . . . , xn) in a neigh-
bourhood U of p of M, an r-form can be expressed uniquely as

ω =
∑

i1,i2,...,ir

fi1i2···ir dx
i1 ∧ dxi2 ∧ · · · ∧ dxir , i1 < i2 < . . . < ir (3.19)

where fi1i2···ir are differentiable functions.

Proof As the set {dxi1 ∧ dxi2 ∧ · · · ∧ dxir } is a basis of Dr (M
n), from (3.14) we

find

(dxi1 ∧ dxi2 ∧ · · · ∧ dxir )(X1 , X2 , . . . , Xr ) = 1

r !
∑
σ

(sgn σ)dxi1 (X
σ(1) ) . . . dxir (X

σ(r) ),

where i1 < i2 < . . . < ir .

Let us write,

Xi =
∑
im

ξ
jm
i

∂

∂x jm
, i = 1, 2, 3, 4, . . . , r,

where each ξ
im
i is C∞ function. Using this in the foregoing equation, we obtain

(dxi1 ∧ dxi2 ∧ · · · ∧ dxir )(X1 , X2 , . . . , Xr )

= 1

r !
∑
(σ )

(sgn σ)dxi1
(∑

ξ
jm
σ(1)

∂

∂x jm

)
· · · dxir

(∑
ξ
jm
σ(r)

∂

∂x jm

)

= 1

r !
∑
(σ )

(sgn σ)ξ
i1
σ(1) · · · ξ irσ(r), i1 < i2 < . . . < ir (by (3.6)).

From (3.13), we see that
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ω(X1 , X2 , . . . , Xr ) = 1

r !
∑
(σ )

(sgn σ) ω

(∑
ξ
jm
σ(1)

∂

∂x jm
, . . . ,

∑
ξ
jm
σ(r)

∂

∂x jm

)

= 1

r !
∑
(σ )

(sgn σ)
∑

i1 ,i2 ,...,ir

ξ
i1
σ(1) · · · ξ irσ(r)ω

(
∂

∂xi1
, . . . ,

∂

∂xir

)

= 1

r !
∑
(σ )

(sgn σ)
∑

i1 ,i2 ,...,ir

ξ
i1
σ(1) · · · ξ irσ(r) fi1i2 ···ir , say, as defined in (3.7)

=
∑

i1 ,i2 ,...,ir
i1<i2<...<ir

(dxi1 ∧ dxi2 ∧ · · · ∧ dxir )(X1 , X2 , . . . , Xr ) fi1 i2 ···ir , from above.

Thus ω =
∑

i1 ,i2 ,...,ir
i1<i2<...<ir

fi1i2···ir dx
i1 ∧ dxi2 ∧ · · · ∧ dxir , for each Xi , i = 1, 2,

3, . . . , r .

Theorem 3.3 In terms of a local co-ordinate system (x1, x2, . . . , xn) in a neigh-
bourhood U of p of a manifold, let f i , i = 1, 2, 3, . . . , r , be smooth functions on U.
Then

d f 1 ∧ d f 2 ∧ · · · ∧ d f r =
∑

i1 ,i2 ,...,ir
i1<i2<...<ir

∂( f 1, f 2, . . . , f r )

∂(xi1 , xi2 , . . . , xir )
dxi1 ∧ dxi2 ∧ · · · ∧ dxir .

Proof Each d f i , i = 1, 2, 3, . . . , r , is a 1-form and d f 1 ∧ d f 2 ∧ · · · ∧ d f r is a r -
form and in view of Theorem3.2, we write

d f 1 ∧ d f 2 ∧ · · · ∧ d f r =
∑

j1, j2,..., jr

Fj1 j2 ··· jr dx j1 ∧ dx j2 ∧ · · · ∧ dx jr , j1 < j2 < . . . < jr ,

where Fj1 j2··· jr are differentiable functions to be determined. In view of (3.10), we
find

d f =
∑
j

∂ f

∂x j
dx j ⇒ d f i =

∑
k

∂ f i

∂xk
dxk .

Now

d f i
(

∂

∂x j

)
=

∑
k

∂ f i

∂xk
dxk

(
∂

∂x j

)
=

∑
k

∂ f i

∂xk
δkj = ∂ f i

∂x j
.

Hence from the left hand side of the above expression, we have

(d f 1 ∧ d f 2 ∧ · · · ∧ d f r )

(
∂

∂xi1
,

∂

∂xi2
, . . . ,

∂

∂xir

)
= ∂( f 1, f 2, . . . , f r )

∂(xi1 , xi2 , . . . , xir )
.

Furthermore, from the right hand side, we get
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∑
j1, j2,..., jr

Fj1 j2 ··· jr dx j1 ∧ dx j2 ∧ · · · ∧ dx jr

(
∂

∂xi1
,

∂

∂xi2
, . . . ,

∂

∂xir

)
=

∑
j1 , j2 ,..., jr

Fj1 j2 ··· jr δ
i1 ...ir
j1 ... jr

= Fi1 i2 ···ir .

Thus
∂( f 1, f 2, . . . , f r )

∂(xi1 , xi2 , . . . , xir )
= Fi1 i2 ···ir .

Consequently,

d f 1 ∧ d f 2 ∧ · · · ∧ d f r =
∑

j1 , j2 ,..., jr
j1< j2<...< jr

∂( f 1, f 2, . . . , f r )

∂(x j1 , x j2 , . . . , x jr )
dx j1 ∧ dx j2 ∧ · · · ∧ dx jr

i.e. d f 1 ∧ d f 2 ∧ · · · ∧ d f r =
∑

i1 ,i2 ,...,ir
i1<i2<...<ir

∂( f 1, f 2, . . . , f r )

∂(xi1 , xi2 , . . . , xir )
dxi1 ∧ dxi2 ∧ · · · ∧ dxir .

This completes the proof.

Proposition 3.1 If ω and μ are C∞-forms on M, then ω ∧ μ is also C∞.

Proof From (3.8) and Theorem3.1, we know that

ω =
∑
i

fi dx
i , μ =

∑
j

g j dx
j ,

where fi , g j ∈ F(M) for each i, j . By Remark3.2, we say that ω,μ are C∞-forms
on M , if each fi , g j are C

∞-functions on M . Now

ω ∧ μ =
∑
i, j

fi g j dx
i ∧ dx j , Theorem 3.3.

Since
∑

i, j fi g j are C∞-functions on M , by Remark3.2, we can claim that
ω ∧ μ is also C∞-forms on M .

Exercises

Exercise 3.14 If ω is a 1-form and μ is a 2 form, show that

(ω ∧ μ)(X1 , X2 , X3) = 1

3
{ω(X1)μ(X2 , X3) + ω(X2 )μ(X3 , X1) + ω(X3)μ(X1 , X2 )}.

Exercise 3.15 Compute ω ∧ μ where

(i) ω = xdx − ydy, μ = ydx + hdy
(ii) ω = xdx + ydy, μ = gdx
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(iii) ω = zdx + xdz, μ = xdx + ydy + zdz
(iv) ω = x dy ∧ dz, μ = gdx + hdz.

Exercise 3.16 Compute

(i) (2du1 + du2) ∧ (du1 − du2).
(ii) (6du1 ∧ du2 + 27du1 ∧ du3) ∧ (du1 + du2 + du3).
(iii) θ ∧ φ ∧ ψ where θ = zdy, φ = xdx + ydy, ψ = zdx − ydz.

Exercise 3.17 If α = −du1 + du2 − 2du3 is a 1-form and β is a 2-form given by
β = 2 du1 ∧ du3 − du2 ∧ du3, compute α ∧ β ∧ α.

Answers

3.14. Use (3.14).
3.15. (i) (xh + y2) dx ∧ dy. (ii) −yg dx ∧ dy

(iii) (z2 − x2) dx ∧ dz + zy dx ∧ dy − xy dx ∧ dy (iv) xg dx ∧ dy ∧ dz.
3.16. (i) −3 du1 ∧ du2. (ii) −21 du1 ∧ du2 ∧ du3. (iii) xyz dx ∧ dy ∧ dz.
3.17. 0 (Zero).

Remark 3.6 Let Dr (M
n) denote the collection of all r -forms in Mn . By virtue of

Theorem3.1, the set {dxi1 ∧ dxi2 ∧ · · · ∧ dxir : 1 ≤ i1 < i2 < · · · < ir ≤ n} forms
a basis ofDr (M

n).

Remark 3.7 The collection of all differential forms with respect to wedge product,
forms an algebra, called the EXTERIORALGEBRA. Now a days it is also termed as
GRASSMANN ALGEBRA, as R.G. Grassmann developed this powerful concept.

Remark 3.8 For a manifold M4, every point p ∈ M , has coordinates of the form
p = (x1, x2, x3, x4). Thus the basis set of D1(M

4) contains 4C1 elements viz
{dx1, dx2, dx3, dx4};
that ofD2(M

4) is 4C2 i.e. {dx1 ∧ dx2, dx1 ∧ dx3, dx1 ∧ dx4, dx2 ∧ dx3, dx2 ∧
dx4, dx3 ∧ dx4};
that ofD3(M

4) is 4C3 i.e. {dx1 ∧ dx2 ∧ dx3, dx1 ∧ dx2 ∧ dx4, dx1 ∧ dx3 ∧ dx4,
dx2 ∧ dx3 ∧ dx4};
and that of D4(M

4) is 4C4 given by {dx1 ∧ dx2 ∧ dx3 ∧ dx4}. However, D5(M
4)

does not exist. Hence any,

ω ∈ D1(M
4) is of the form ω =

4∑
i=1

fi dx
i ;

ω ∈ D2(M
4) is of the form ω =

∑
i j

fi j dx
i ∧ dx j , 1 ≤ i < j ≤ 4;

ω ∈ D3(M
4) is of the form ω =

∑
i, j,k

fi jk dx
i ∧ dx j ∧ dxk, 1 ≤ i < j < k ≤ 4;

ω ∈ D4(M
4) is of the form ω = f1234dx

1 ∧ dx2 ∧ dx3 ∧ dx4.
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In Sect. 3.1, the transition formula for a 1-form has been given by the (3.11). Now
we will focus to find the Transition Formula for a 2-We write it asform.

Let (U ; x1, x2, . . . , xn) and (V ; y1, y2, . . . , yn) be two charts on a manifold M
such that U ∩ V �= φ. If ω is a 2-form, then by (3.19), we have

ω =
∑
i, j
i< j

fi j dx
i ∧ dx j =

∑
m,n
m<n

gmn dy
m ∧ dyn, where each fi j , gmn ∈ F(M)

=
∑
i, j
i< j

∑
m,n
m<n

gmn

∂(ym, yn)

∂(xi , x j )
dxi ∧ dx j , by Theorem 3.3

fi j =
∑
m,n
m<n

∂(ym, yn)

∂(xi , x j )
gmn , i, j = 1, 2, 3, . . . , n, (3.20)

as {dxi ∧ dx j : i, j = 1, 2, 3, . . . , n; 1 ≤ i < j ≤ n} is a basis of 2-form.

Problem 3.17 Let {ω1 , ω2 , ω3} be a set of linearly independent 1-form on a smooth

manifold M. Define 1-form μi , i = 1, 2, 3 as μi =
3∑
j=1

ai j ω j , i = 1, 2, 3. Show that

μ1 ∧ μ2 ∧ μ3 = det(ai j )ω1 ∧ ω2 ∧ ω3 .

Solution: We write

μ1 =
∑

a1 j ω j , μ2 =
∑

a2 j ω j μ3 =
∑

a3 j ω j .

Thus

μ1 = a11ω1 + a12ω2 + a13ω3

μ2 = a21ω1 + a22ω2 + a23ω3

μ3 = a31ω1 + a32ω2 + a33ω3 .

Now

μ1 ∧ μ2 = (a11a22 − a12a21)ω1 ∧ ω2 + (a11a23 − a13a21)ω1 ∧ ω3

+ (a12a23 − a13a22)ω2 ∧ ω3 ,

as ω1 ∧ ω1 = 0, ωi ∧ ω j = −ω j ∧ ωi . Again Now

μ1 ∧ μ2 ∧ μ3 = a33(a11a22 − a12a21)ω1 ∧ ω2 ∧ ω3

+ a32(a11a23 − a13a21)ω1 ∧ ω2 ∧ ω3

+ a31(a12a23 − a13a22)ω1 ∧ ω2 ∧ ω3

= det(ai j )ω1 ∧ ω2 ∧ ω3 , as ωi ∧ ω j = −ω j ∧ ωi , i, j = 1, 2, 3.
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Problem 3.18 (Cartan Lemma) Let k < n and {ω1 , ω2 , . . . , ωk } be 1-forms on Mn

which are linearly independent pointwise. Let μi be k number of 1-forms on M
satisfying

k∑
i=1

μi ∧ ωi = 0.

Prove that there exists C∞ functions Ai j on Mn such that

μi =
k∑
j=1

Ai j ω j with Ai j = Aji , i = 1, 2, 3, 4, . . . , k.

Solution: As {ω1 , ω2 , . . . , ωk } is k-independent 1-forms on M , we complete the
basis of D1(M) by taking 1-forms ωk+1 , . . . , ωn . Consequently, any 1-form μi , i =
1, 2, . . . , k can be expressed as

μi =
k∑

m=1

Aimωm +
n∑

p=k+1

Bipωp , i = 1, 2, 3, . . . , k,

where each Aim , Bip is C
∞-function. Given that

k∑
i=1

μi ∧ μi = 0 i.e.

(∑
m

A1mωm +
∑
p

B1pωp

)
∧ ω1 + · · · +

(∑
m

Akmωm +
∑
p

Bkpωp

)
∧ ωk = 0.

Using the properties

ωi ∧ ωi = 0 and ωi ∧ ω j = −ω j ∧ ωi ,

one gets ∑
i, j

i< j≤k

(Ai j − Aji )ωi ∧ ω j +
∑
i≤k
j>k

Bi j ωi ∧ ω j = 0.

As {ω1, ω2 , . . . , ωn } is a basis ofD1(M), wemust have Ai j − Aji = 0 and Bi j = 0.
Consequently, μi , i = 1, 2, . . . , k can be expressed as

μi =
k∑
j=1

Aimω j , with Ai j = Aji .
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Exercise

Exercise 3.18 Show that a set of 1-forms {ω1 , ω2 , . . . , ωk } is linearly dependent if
and only if ω1 ∧ ω2 ∧ · · · ∧ ωk = 0.

Exercise 3.19 Let {ω1 , . . . , ωn } be a set of linearly independent 1-forms on a smooth
manifold. Let μi , i = 1, 2, 3, . . . , n be 1-forms on M satisfying

μi =
n∑
j=1

ai j ω j .

Show that μ1 ∧ μ2 ∧ μ3 ∧ . . . ∧ μn = det(ai j ) ω1 ∧ ω2 ∧ ω3 ∧ . . . ∧ ωn .

3.3 Exterior Differentiation

As discussed in Remark3.7 of the last section, we writeD = ⊕n
r=0 Dr (M

n), as the
Exterior Algebra, with respect to the wedge product in Mn . It is interesting to note
that

dimD =n C0 +n C1 +n C2 + . . . +n Cn

= (1 + 1)n, by Binomial Theorem

= 2n.

We are now going to define the exterior derivative which is a linear mapping, denoted
by d, on D as follows:

⎧⎪⎪⎨
⎪⎪⎩

(i) d(Dr ) ⊂ Dr+1;
(i i) for f ∈ D0 , d f is the total differential;
(i i i) if ω ∈ Dr , μ ∈ Ds , then d(ω ∧ μ) = dω ∧ μ + (−1)rω ∧ dμ;
(iv) d2 = 0.

(3.21)

Hence from (3.19), we see that

dω =
∑

i1 ,i2 ,...,ir

d fi1 i2 ...ir
∧ dxi1 ∧ · · · ∧ dxir , i1 < i2 < . . . < ir . (3.22)

Problem 3.19 Find the exterior derivative of the following:

(i) f = x2y3z (ii) f g.
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Solution:

(i) Here d f = 2xy3z dx + 6x2y2z dy + x2y3 dz. Thus d f is a 1-form, verifying
(3.21)(ii)

(ii) We know d f (X) = X f . Thus

d( f g)(X) = X ( f g)

= g(X f ) + f (Xg)

= g d f (X) + f dg(X),

i.e. d( f g) = g d f + f dg.

Problem 3.20 Verify (3.21)(iv) for ω = x2y dx.

Solution: Note that

dω = d(x2y dx)

= d(x2y) ∧ dx, see (3.22)

= (2xy dx + x2 dy) ∧ dx

= x2 dy ∧ dx, as dx ∧ dx = 0.

Again

d(dω) = d(x2 dy ∧ dx)

= d(x2) ∧ dy ∧ dx, see (3.22)

= 2x dx ∧ dy ∧ dx

= −2x dx ∧ dx ∧ dy

= 0.

Problem 3.21 Find the exterior derivative of:

(i) ω1 = 2xdx + (x + y)dy
(ii) ω2 = x2ydx − xz3dy + 3xydz
(iii) ω3 = (x2 − y2)dx ∧ dy
(iv) ω4 = x2yz dy ∧ dz − 2xyz dz ∧ dx + xyz3 dx ∧ dy.

Solution:

(i) Here ω1 = 2xdx + (x + y)dy. Therefore

dω1 = d(2xdx) + d{(x + y)dy}, by linearity

= d(2x) ∧ dx + (−1)02xd(dx) + d(x + y) ∧ dy + (−1)0(x + y)d(dy), by (iii) of (3.21),

as the function is assumed to be a 0 − form.

= (2dx) ∧ dx + (dx + dy) ∧ dy, by (iv) of (3.21)

= 0 + dx ∧ dy + 0

= dx ∧ dy.
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(ii) Note that ω2 = x2ydx − xz3dy + 3xydz. Hence

dω2 = d(x2y) ∧ dx − d(xz3) ∧ dy + d(3xy) ∧ dz, by (3.21)

= (2xydx + x2dy) ∧ dx − (z3dx + 3xz2dz) ∧ dy + (3ydx + 3xdy) ∧ dz

= x2dy ∧ dx − z3dx ∧ dy − 3xz2dz ∧ dz + 3ydx ∧ dz + 3xdy ∧ dz

= (−x2 − z3)dx ∧ dy + (3xz2 + 3x)dy ∧ dz − 3ydz ∧ dx .

(iii) Here ω3 = (x2 − y2)dx ∧ dy. Therefore

dω3 = d(x2 − y2) ∧ dx ∧ dy, by (3.21)

= (2xdx − 2ydy) ∧ dx ∧ dy

= 2xdx ∧ dx ∧ dy − 2ydy ∧ dx ∧ dy

= 0 + 2ydy ∧ dy ∧ dx

= 0.

(iv) Similarly
dω4 = (2xyz − 2xz + 3xyz2) dx ∧ dy ∧ dz.

Problem 3.22 Let ω be a 1-form on a manifold M. Consider a nowhere vanishing
function f : M → R such that d( f ω) = 0. Prove that ω ∧ dω = 0.

Solution: From the definition,

d( f ω) = d f ∧ ω + f ∧ dω, by (3.21)

∴ 0 = d f ∧ ω + + f dω, by (3.16)

or dω = − 1

f
(d f ∧ ω).

Now ω ∧ dω = ω ∧ − 1

f
(d f ∧ ω)

= 1

f
ω ∧ (ω ∧ d f ), by (3.18)

= 0, by (3.18).

Problem 3.23 For any 1-formω, isω ∧ dω = 0? Justify your answer with an exam-
ple.

Solution: Let ω ∈ D1(R
3) be such that

ω = f dx1 + gdx2 + hdx3, where f, g, h ∈ F(R3).
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Then
dω = d f ∧ dx1 + dg ∧ dx2 + dh ∧ dx3, by (3.21).

Thus

ω ∧ dω = f dx1 ∧ dg ∧ dx2 + f dx1 ∧ dh ∧ dx3 + gdx2 ∧ d f ∧ dx1

+ gdx2 ∧ dh ∧ dx3 + hdx3 ∧ d f ∧ dx1 + hdx3 ∧ dg ∧ dx2

�= 0, always.

Problem 3.24 Consider the 1-forms ω1 , ω2 , ω3 defined by

ω1 = hdx1 − x1dh − x2dx3 + x3dx2

ω2 = hdx2 − x2dh − x3dx1 + x1dx3

ω3 = hdx3 − x3dh − x1dx2 + x2dx1

in terms of a local co-ordinate system (x1, x2, x3) where h =√
1 − (x1)2 − (x2)2 − (x3)2. Show that dω1 = −2ω2 ∧ ω3 .

Solution: Note that

dω1 = −2dx1 ∧ dh − 2dx2 ∧ dx3,

dh = − x1dx1 + x2dx2 + x3dx3√
1 − (x1)2 − (x2)2 − (x3)2

.

Thus

dx1 ∧ dh = − x2dx1 ∧ dx2 + x3dx1 ∧ dx3√
1 − (x1)2 − (x2)2 − (x3)2

.

Again

ω2 ∧ ω3 = h2 dx2 ∧ dx3 − x3h dx2 ∧ dh + x2h dx2 ∧ dx1 − x2hdh ∧ dx3

+ x1x2dh ∧ dx2 − (x2)2dh ∧ dx1 − x3h dx1 ∧ dx3

+ (x3)2 dx1 ∧ dh + x1x3 dx1 ∧ dx2 − x1x3 dx3 ∧ dh

− (x1)2 dx3 ∧ dx2 + x1x2 dx3 ∧ dx1.

It is to be noted that
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h2 dx2 ∧ dx3 = {1 −
∑
i

(xi )2}dx2 ∧ dx3

−x3h dx2 ∧ dh = −x1x3 dx1 ∧ dx2 + (x3)2 dx2 ∧ dx3

x2h dx2 ∧ dx1 = −x2
√
1 −

∑
i

(xi )2 dx1 ∧ dx2

−x2h dh ∧ dx3 = −x1x2 dx3 ∧ dx1 + (x2)2 dx2 ∧ dx3

x1x2 dh ∧ dx2 = − (x1)2x2√
1 −

∑
i

(xi )2
dx1 ∧ dx2 + x1x2x3√

1 −
∑
i

(xi )2
dx2 ∧ dx3

−(x2)2 dh ∧ dx1 = − (x2)3√
1 −

∑
i

(xi )2
dx1 ∧ dx2 + (x2)2x3√

1 −
∑
i

(xi )2
dx3 ∧ dx1

−x3h dx1 ∧ dx3 = x3
√
1 −

∑
i

(xi )2 dx3 ∧ dx1

(x3)2 dx1 ∧ dh = − x2(x3)2√
1 −

∑
i

(xi )2
dx1 ∧ dx2 + (x3)3√

1 −
∑
i

(xi )2
dx3 ∧ dx1

−x1x3 dx3 ∧ dh = (x1)2x3√
1 −

∑
i

(xi )2
dx3 ∧ dx1 − x1x2x3√

1 −
∑
i

(xi )2
dx2 ∧ dx3

−(x1)2 dx3 ∧ dx2 = (x1)2 dx2 ∧ dx3

Thus dω1 = 2x2√
1 −

∑
i

(xi )2
dx1 ∧ dx2 − 2x3√

1 −
∑
i

(xi )2
dx3 ∧ dx2 − 2 dx2 ∧ dx3.

Substituting the above results, one gets

ω2 ∧ ω3 = dx2 ∧ dx3 − x2√
1 −

∑
i

(xi )2
dx1 ∧ dx2 + x3√

1 −
∑
i

(xi )2
dx3 ∧ dx1

∴ −2ω2 ∧ ω3 = 2x2√
1 −

∑
i

(xi )2
dx1 ∧ dx2 − 2x3√

1 −
∑
i

(xi )2
dx3 ∧ dx1 − 2 dx2 ∧ dx3

= dω1 .

Thus dω1 = −2ω2 ∧ ω3 .
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Exercises

Exercise 3.20 Find the exterior derivative of the following:

(i) f = 2xyz2 (ii) f = x2 + y2 − 3z4 (iii) f = x2y + y2z − z2x.

Exercise 3.21 Find the exterior derivative of:

(i) ω1 = x2ydy − xy2dx.
(ii) ω2 = x3dx + yzdy − (x2 + y2 + z2)dz.
(iii) ω3 = cos(xy2)dx ∧ dz.
(iv) ω4 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy.
(v) ω1 ∧ ω2 .
(vi) ω1 ∧ ω3 .

Exercise 3.22 Verify (iv) of (3.21) for Exercise3.21.

Exercise 3.23 If x = r cos θ, y = r sin θ , then compute dx ∧ dy, dr, dθ .

Exercise 3.24 From Exercise3.11(ii), compute dx ∧ dy ∧ dz.

Exercise 3.25 Consider the following forms in R
3 and verify the property (iii), (iv)

of (3.21) where

(i) ω = x2dx − z2dy and μ = ydx − xdz.
(ii) ω = xydx + 3dy − yzdz and μ = xdx − yz2dy + 2xdz.

Answers

3.20. (i) 2yz2 dx + 2xz2 dy + 4xyz dz.
(ii) 2x dx + 2y dy − 12z3 dz.
(iii) (2xy − z2)dx + (x2 + 2yz)dy + (y2 − 2zx)dx .

3.21. (i)4xydx ∧ dy (ii)−3ydy ∧ dz + 2xdz ∧ dx (iii)2xy sin(xy2)dx ∧ dy ∧
dz.
(iv)3dx ∧ dy ∧ dz (v) {−4xy(x2 + y2 + z2) − 2x3y + 3xy3}dx ∧ dy ∧ dz
(vi) 0.

3.23. rdr ∧ dθ, dr = xdx + ydy√
x2 + y2

, dθ = xdy − ydx√
x2 + y2

, r =
√
x2 + y2, θ = tan

y

x
.

3.24. r2 sin θ dr ∧ dθ ∧ dφ.

Remark 3.9 It is to be noted that if φ is a 0-form, then the 1-form dφ corresponds
to grad φ. The exterior derivative of a function f corresponds to the gradient vector
field.

Verification: In 3-dimension, for a function f ,

d f = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz ↔ ∇ f =

(
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
.
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Example: Let φ = x2 + y3

z
, then

dφ = 2x

z
dx + 3y2

z
dy − x2 + y3

z2
dz

grad φ = 2x

z
�i + 3y2

z
�j − x2 + y3

z2
�k.

Remark 3.10 If the 1-form ω corresponds to the vector field V , then the 2-form
dω corresponds to curl V .

Verification: In 3-dimension, let ω = f1dx
1 + f2dx

2 + f3dx
3 where fi , i =

1, 2, 3 are functions. Then

dω = d f1 ∧ dx1 + d f2 ∧ dx2 + d f3 ∧ dx3

=
3∑

i=1

∂ f1
∂xi

dxi ∧ dx1 +
3∑

i=1

∂ f2
∂xi

dxi ∧ dx2 +
3∑

i=1

∂ f3
∂xi

dxi ∧ dx3

=
(

∂ f2
∂x1

− ∂ f1
∂x2

)
dx1 ∧ dx2 +

(
∂ f3
∂x2

− ∂ f2
∂x3

)
dx2 ∧ dx3 +

(
∂ f3
∂x1

− ∂ f1
∂x3

)
dx1 ∧ dx3

≡ ∇X f (Vector Product)

which is basically the curl(area).

EXAMPLE:

Let ω = (x2 + y3z)dx + (y2 − 2xz)dy + (x4 + y3 − z2)dz in R
3. Then

dω = (−2z − 3y2z) dx ∧ dy + (3y2 + 2x) dy ∧ dz + (y3 − 4x3) dz ∧ dx .

Again if V = (x2 + y3z)�i + (y2 − 2xz) �j + (x4 + y3 − z2)�k is a vector field, then

curl V = (3y2 + 2x)�i + (y3 − 4x3) �j + (−2z − 3y2z)�k.

Remark 3.11 If the 2-form ω corresponds to the vector field V , then the 3–form
dω corresponds to the div V .

Verification: In 3-dimension, let ω be a 2-form, where

ω = f12 dx1 ∧ dx2 + f13 dx1 ∧ dx3 + f23 dx2 ∧ dx3, f12 , f13 , f23 being smooth functions. Then

dω =
3∑

i=1

∂ f12
∂xi

dxi ∧ dx1 ∧ dx2 +
3∑

i=1

∂ f13
∂xi

dxi ∧ dx1 ∧ dx3 +
3∑

i=1

∂ f23
∂xi

dxi ∧ dx1 ∧ dx3

= ∂ f12
∂x3

dx3 ∧ dx1 ∧ dx2 + ∂ f13
∂x2

dx2 ∧ dx1 ∧ dx3 + ∂ f23
∂x1

dx1 ∧ dx2 ∧ dx3

=
(

∂ f12
∂x3

− ∂ f13
∂x2

+ ∂ f23
∂x1

)
dx1 ∧ dx2 ∧ dx3

which is the divergence operator.
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EXAMPLE:

Let ω = (x2 + y3 + z4) dy ∧ dz + x2y3z4 dz ∧ dx + (x + 2y + 3z + 1) dx ∧ dy.

Therefore

dw = 2xdx ∧ dy ∧ dz + 3x2y2z4 dy ∧ dz ∧ dx + 3dz ∧ dx ∧ dy

= (2x + 3x2y2z4 + 3) dx ∧ dy ∧ dz.

If V = (x2 + y3 + z4)�i + (x2y3z4) �j + (x + 2y + 3z + 1)�k, then

div V = 2x + 3x2y2z4 + 3.

A form ω is closed if
dω = 0. (3.23)

However, if ω is a r -form and
dμ = ω (3.24)

for some (r − 1)-form μ, then ω is said to be an exact form.

Problem 3.25 Test whether ω is closed or not, where

(i) ω = xydx +
(
1

2
x2 − y

)
dy.

(ii) ω = ex cos ydx + ex sin ydy.

Solution:

(i) Here dω = xdy ∧ dx + 1

2
2xdx ∧ dy = −xdx ∧ dy + xdx ∧ dy = 0.

Thus ω is closed.
(ii) Note that dω = −ex sin y dy ∧ dx + ex sin y dx ∧ dy = 2ex sin y dx ∧ dy.

Thus ω is not closed.

Problem 3.26 The necessary and sufficient condition that a 1-form ω is a gradient
of a function f is that its curl vanishes.

Solution: If f is a function, then grad f = d f [refer to Remark3.9]. Let us assume
that 1-form ω be grad f i.e. ω = grad f = d f . By virtue of Remark3.10, we find

curl V = dω = d(d f ) = 0 [refer to (3.21)],

where the 1-form ω corresponds to the vector field V .
For the converse part, suppose for a 1-form ω, curl V = 0. Taking help of

Remark3.10, we obtain dω = 0. Then d2 f = 0 holds, for some function f . Thus
ω = grad f . This completes the proof.

Note that all exact forms are closed but the converse is not always true. The
following lemma ensures the converse.
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Lemma 3.1 (Poincaré Lemma) Let ω be a k-form defined on a set

Bn
r = {(x1, . . . , xn) ∈ R

n|(x1)2 + (x2)2 + . . . + (xn)2 ≤ r},

such that dω = 0. Thus ∃ a (k − 1)-form μ defined on Bn
r such that ω = dμ.

Problem 3.27 Let ω = yz dx + xz dy + xy dz. Find μ such that dμ = ω.

Solution: Set ω = dμ = μx dx + μy dy + μz dz, then

∫
μx dx =

∫
yzdx = yzx + C1(y, z), whereC1 is a function of y, z.

Then

xz = μy = ∂

∂y
(yzx + C1(y, z)) = zx + C

′
1
(y, z)

⇒ C
′
1
(y, z) = 0

⇒ C1(y, z) = constant = C2(z)say.

Then μ = yzx + C2(z). Now

xy = μz = ∂

∂z
(yzx + C2(z)) = yx + C

′
2
(z)

⇒ C
′
2
(z) = 0

⇒ C2(z) = constant = Csay.

Finally, μ = yzx + C .

Alternative

Set f (x) = ∫
yz dx = yzx + C = μ(say), where C being integration constant, so

that dμ = d(yzx + C) = zx dy + yx dz + yz dx = ω.

Alternative

Set g(y) = ∫
xz dy = xzy + C = θ (say), where C being integration constant, so

that dθ = ω.

Alternative

Set h(z) = ∫
xy dz = xyz + C = φ(say), where C being integration constant, so

that dφ = ω.

Problem 3.28 Let ω = (12x2y3 + 2y)dx ∧ dy. Find μ such that dμ = ω.
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Solution: Set f (x, y) = ∫
(12x2y3 + 2y)dx = 4x3y3 + 2yx + C = μ(say),where

C being integration constant, so that

dμ = d(4x3y3 + 2yx + C) ∧ dy, by (3.22)

= (12x2y3dx + 12x3y2dy + 2xdy + 2ydx) ∧ dy

= (12x2y3 + 2y)dx ∧ dy, as dy ∧ dy = 0

= ω(say).

Problem 3.29 Compute the exterior derivative of the 2-form

ω = 1

(x2 + y2 + z2)3/2
(x dy ∧ dz + y dz ∧ dx + z dx ∧ dy),

defined on R
3 \ {(0, 0, 0)}, where (x, y, z) ∈ R

3.
Find the local expression of this form in terms of the spherical coordinates

(r, θ, φ), where x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ .

Solution: Note that

dω = d

{
1

(x2 + y2 + z2)3/2
(x dy ∧ dz + y dz ∧ dx + z dx ∧ dy)

}

= d

(
x

(x2 + y2 + z2)3/2

)
∧ dy ∧ dz + d

(
y

(x2 + y2 + z2)3/2

)
∧ dz ∧ dx

+ d

(
z

(x2 + y2 + z2)3/2

)
∧ dx ∧ dy, by (3.22).

Now

d

(
x

(x2 + y2 + z2)3/2

)
= d(x(x2 + y2 + z2)−3/2)

= dx(x2 + y2 + z2)−3/2 − 3

2
x(x2 + y2 + z2)−5/2(2x dx + 2y dy + 2z dz)

= dx

(x2 + y2 + z2)3/2
− 3x

(x2 + y2 + z2)5/2
.

So, the first term is:

dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2
− 3x2 dx ∧ dy ∧ dz

(x2 + y2 + z2)5/2
= y2 + z2 − 2x2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz.
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Similarly, the second term is
z2 + x2 − 2y2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz and finally, the third

term is given by
x2 + y2 − 2z2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz. Hence dω = 0. Thus ω is closed.

Again
x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ.

Therefore

dx = sin θ cosφ dr + r cosφ cos θ dθ − r sin θ sin φ dφ,

dy = sin θ sin φ dr + r sin φ cos θ dθ + r sin θ cosφ dφ,

dz = cos θ dr − r sin θ dθ.

After a few steps, one gets

xdy ∧ dz = −r2 sin θ sin φ cosφ dr ∧ dθ + r2 sin2 θ cos θ cos2 φ dφ ∧ dr

− r2 sin3 θ cos2 φ dφ ∧ dθ

ydz ∧ dx = r2 sin θ sin φ cosφ dr ∧ dθ − r2 sin2 θ sin2 φ cos θ dr ∧ dφ

+ r2 sin3 θ sin2 φ dθ ∧ dφ

zdx ∧ dy = r2 sin2 θ cos θ dr ∧ dφ + r3 sin θ cos2 θ dθ ∧ dφ,

where r3 = (x2 + y2 + z2)3/2. Thus the local expression of the given form is ω =
sin θ

r
dθ ∧ dφ.

Problem 3.30 Consider the vector fields on R
2

X = x1

∂

∂x1

+ 2x2

∂

∂x2

, Y = x1x2

∂

∂x2

,

and let ω be a 1-form on R
2 defined by

ω = (x1 + x2
2
) dx1 + (x2

1
+ x2) dx2 .

Show that ω satisfies the relation

dω(X,Y ) = X (ω(Y )) − Y (ω(X)) − ω([X,Y ]).
Solution: Here
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ω(X) = x1 (x1 + x2
2
) + 2x2 (x

2
1

+ x2 ) = x2
1

+ x1 x
2
2

+ 2x2
1
x2 + 2x2

2
.

ω(Y ) = x1 x2 (x
2
1

+ x2 ) = x3
1
x2 + x1 x

2
2
.

X (ω(Y )) = 5x3
1
x2 + 5x1 x

2
2
.

Y (ω(X)) = 2x2
1
x2
2

+ 2x3
1
x2 + 4x1 x

2
2
.

[X, Y ] =
[
x1

∂

∂x1
+ 2x2

∂

∂x2
, x1 x2

∂

∂x2

]
,

= x1 x2
∂

∂x2
, after few steps.

Again ω([X, Y ]) = x3
1
x2 + x1 x

2
2
.

∴ X (ω(Y )) − Y (ω(X)) − ω([X, Y ]) = 2x3
1
x2 − 2x2

1
x2
2
.

Now dω = 2x2 dx2 ∧ dx1 + 2x1 dx1 ∧ dx2 ,

= (2x1 − 2x2 ) dx1 ∧ dx2 .

∴ dω(X, Y ) = (2x1 − 2x2 ) dx1 ∧ dx2

(
x1

∂

∂x1
+ 2x2

∂

∂x2
, x1 x2

∂

∂x2

)

= (2x1 − 2x2 )

{
dx1

(
x1

∂

∂x1
+ 2x2

∂

∂x2

)
dx2

(
x1 x2

∂

∂x2

)

− dx1
(
x1 x2

∂

∂x2

)
dx2

(
x1

∂

∂x1
+ 2x2

∂

∂x2

)}

= 2x3
1
x2 − 2x2

1
x2
2
.

Thus
dω(X,Y ) = X (ω(Y )) − Y (ω(X)) − ω([X,Y ]).

Exercises

Exercise 3.26 Test which of the following differential forms are closed and which
are exact:

(i) ω1 = x2x3dx1 + x1x3dy + x1x2dx3

(ii) ω2 = x2dx2 + x2
1
x2
2
dy + x2x3dx3

(iii) ω3 = 2xy2 dx ∧ dy + z dy ∧ dz

(iv) ω4 = 1

x2 + y2
(−ydx + xdy) on R

2 \ {(0, 0)}.

Exercise 3.27 Show that the following forms are exact:

(i) ω = y2dx + 2xydy
(ii) ω = (3y2 − 4z4)dx + 6xydy − 16xz3dz

In each case, find a function f such that d f = ω.

Exercise 3.28 Show that the following 2-forms are exact:

(i) ω = 24x3y2 dx ∧ dy
(ii) ω = (6x2y − 3xy2) dx ∧ dy.

In each case find a 1-form μ such that dμ = ω.
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Exercise 3.29 Let ω = zdx ∧ dy − 2x f (x)dy ∧ dz + y f (x)dz ∧ dx. Find f
where

(i) dω = dx ∧ dy ∧ dz and
(ii) d(dω) = 0.

Answers

3.26. (i) closed and exact. (ii) not closed, not exact (iii) closed and exact (iv)
closed.

3.27. (i) xy2 (ii) 3y2x − 4z4x
3.28. (i) 6x4y2 dy (ii) xy3dx + 2x3y dy.

3.29. f (x) = constant√
x

.

Remark 3.12 Given a closed k-form ω, � a (k − 1)-form μ such that ω = dμ i.e.
not every closed form is exact. However such an μ always exist locally and this
result is known as the Poincaré Lemma.

A well known example is given by the 1-form ω = xdy − ydx

x2 + y2
on M = R

2 \
{(0, 0)}, where dω = 0. If γ : [0, 2π ] → M is defined by γ (t) = (cos t, sin t), then

∫
γ

ω = 2π,

which is different from zero and thus � a function defined on all of M whose differ-
ential coincides with ω.

Remark 3.13 The difference between closed and exact form is measured by de
Rham Cohomology. The precise definition or computation, of this, is far beyond
the scope of this book.

Theorem 3.4 If ω is a 1-form, then

dω(X,Y ) = 1

2
{X (ω(Y )) − Y (ω(X)) − ω([X,Y ])}, ∀ X,Y ∈ χ(M).

Proof Without any loss of generality, onemay take an 1-formasω = f dg, ∀ f, g ∈
F(M). Therefore by virtue of (3.22), we obtain dω = d f ∧ dg. Hence

dω(X,Y ) = (d f ∧ dg)(X,Y )

= 1

2
{d f (X)dg(Y ) − (d f )(Y )dg(X)} by (3.17)

= 1

2
{(X f )(Yg) − (Y f )(Xg)} by (3.5).

Using Leibnitz Product Rule, we see that X ( f (Yg)) = (X f )(Yg) + f (X (Yg)).
Thus
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dω(X,Y ) = 1

2
{X ( f (Yg)) − f (X (Yg)) − Y ( f (Xg)) + f (Y (Xg))}.

Furthermore,

ω(X) = ( f dg)(X) = f dg(X) = f (Xg), by (3.5).

Thus the above expression reduces to,

dω(X,Y ) = 1

2
{X (ω(Y )) − f (X (Yg) − Y (Xg)) − Y (ω(X))}

= 1

2
{X (ω(Y )) − Y (ω(X)) − f ([X,Y ]g)}, by (2.27)

= 1

2
{X (ω(Y )) − Y (ω(X)) − ω([X,Y ])}, from above.

This completes the proof.

Exercise

Exercise 3.30 Consider the vector fields X,Y and 1-form ω on R
2 as follows:

(i) X = x
∂

∂x
+ y2

∂

∂y
, Y = y

∂

∂y
, ω = (x + y2)dx + (y + x2)dy;

(ii) X = 2
∂

∂x
− ∂

∂y
, Y = ex

∂

∂y
ω = ex cos ydx + ex sin ydy;

Show that the 1-form ω satisfies Theorem3.4 in each case.

Theorem 3.5 If ω is a 1-form, then

dω( f X,Y ) = f dω(X,Y ), f ∈ F(M), ∀ X,Y ∈ χ(M).

Proof Using Theorem3.4, we write

dω( f X,Y ) = 1

2
{( f X)ω(Y ) − Y (ω( f X)) − ω([ f X,Y ])}.

By (2.28), we know that ( f X)ω(Y ) = f (X (ω(Y ))).

Y (ω( f X)) = Y ( f ω(X))

= (Y f )ω(X) + f (Y (ω(X))), by Leibnitz Product rule

[ f X,Y ] = f [X,Y ] − (Y f )X.

Thus taking into consideration (3.1), we have
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ω([ f X,Y ]) = ω( f [X,Y ]) − ω((Y f )X)

= f ω([X,Y ]) − (Y f )ω(X), Y f ∈ F(M).

Consequently

dω( f X, Y ) = 1

2
{ f (X (ω(Y ))) − (Y f )ω(X) − f (Y (ω(X))) − f (ω([X, Y ])) + (Y f )ω(X)}

= 1

2
f {2dω(X, Y )}, refer to Theorem 3.4.

∴ dω( f X, Y ) = f dω(X, Y ).

This completes the proof.

EXISTENCE AND UNIQUENESS of Exterior Differentiation:

Without any loss of generality, we may take an r -form as

ω = fi1 i2 ···ir dxi1 ∧ dxi2 ∧ · · · ∧ dxir , where fi1 i2 ···ir ∈ F(M).

Let us define an R-linear map d : D → D as

dω = d fi1 i2 ···ir ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir .

Then

(i) d(Dr ) ⊂ Dr+1

(ii) if ω is a 0-form, then dω is the total differential of ω

(iii) let μ ∈ Ds . We consider μ = g j1 j2 ··· js dx j1 ∧ dx j2 ∧ · · · ∧ dx js , where
g j1 j2 ··· js ∈ F(M). Then we get

ω ∧ μ = fi1 i2 ···ir g j1 j2 ··· js dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ dx j1 ∧ dx j2 ∧ · · · ∧ dx js .

Using (3.22), we find

d(ω ∧ μ) = d( fi1 i2 ···ir g j1 j2 ··· js ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ dx j1 ∧ dx j2 ∧ · · · ∧ dx js

= g j1 j2 ··· js d fi1 i2 ···ir ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ dx j1 ∧ dx j2 ∧ · · · ∧ dx js

+ fi1 i2 ···ir dg j1 j2 ··· js ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ dx j1 ∧ dx j2 ∧ · · · ∧ dx js

= d fi1 i2 ···ir ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ g j1 j2 ··· js dx
j1 ∧ dx j2 ∧ · · · ∧ dx js +

+ (−1)r fi1 i2 ···ir dx
i1 ∧ dxi2 ∧ · · · ∧ dxir ∧ dg j1 j2 ··· js ∧ dx j1 ∧ dx j2 ∧ · · · ∧ dx js

= dω ∧ μ + (−1)rω ∧ dμ.

(iv) Finally, from (3.22) we obtain
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dω =
∑
is

∂ f

∂xis
dxis ∧ dxi1 ∧ · · · ∧ dxir

or, d(dω) =
∑
ik ,is

∂2 f

∂xik ∂xis
dxik ∧ dxis ∧ dxi1 ∧ · · · ∧ dxir

= 0.

Thus d satisfies (3.21) and hence the existence is established. It is easy to
establish the uniqueness of d. Consequently, there exists a unique exterior dif-
ferentiation on D.

Exercise 3.31 If ω is a 1-form on M, prove that

dω(X, f Y ) = f dω(X,Y ), f ∈ F(M), ∀ X,Y ∈ χ(M).

3.4 Pull-Back Differential Form

Let M be an n-dimensional and N be an m-dimensional manifold and f : M → N
be a differentiable mapping (Fig. 3.1).

Let Tp (M) be the tangent space at p ∈ M and T ∗
p
(M) be its dual. Let Tf (p) (N )

and T ∗
f (p)

(N ) be respectively the tangent space and dual space at f (p) ∈ N .
Let ω be an 1-form on D1(N ) ≡ T ∗

f (p)
(N ). We define an 1-form on D1(M) ≡

T ∗
p
(M) called the pull-back 1-form at p ∈ M , denoted by f ∗ω as follows:

{ f ∗(ω f (p) )}(X p ) = ω f (p){ f∗(X p )}, ∀ p ∈ M (3.25)

Fig. 3.1 Pull-Back Differential Form
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where f ∗, f∗ are already defined in §2.12.
Let us write

f ∗(ω f (p) ) = ( f ∗ω)p . (3.26)

Then (3.25) reduces to

( f ∗ω)p X p = ω f (p) ( f∗ X) f (p) by (2.35). (3.27)

We write it as
( f ∗ω)(X) = ω( f∗ X). (3.28)

Problem 3.31 Let f : Mn → Nm be a C∞ map between two manifolds. Let ω be a
C∞ r-form on N. Show that f ∗ω is also a C∞ r-form on M.

Solution: Let (U, x1, . . . , xn) and (V, y1, . . . , ym) be two charts on M and N
respectively, where p ∈ U ⊂ M and f (p) ∈ V ⊂ N . As ω is a C∞ r -form on N ,
by Theorem3.2

ω =
∑

j1 , j2 ,..., jr
j1< j2<...< jr

g j1 j2 ... jm
dy j1 ∧ dy j2 ∧ . . . ∧ dy jr ,

where g j1 j2 ... jm
are C∞ functions on N such that g j1 j2 ... jm

∈ F(N ). Then from (3.33),
we have

f ∗ω =
∑

j1 , j2 ,..., jr
j1< j2<...< jr

(g j1 j2 ... jr
◦ f ) d f j1 ∧ d f j2 ∧ . . . ∧ d f jr .

By virtue of Theorem3.3, one gets

f ∗ω =
∑

i1 ,i2 ,...,ir
i1<i2<...<ir

(g j1 j2 ... jr
◦ f )

∂( f j1 , f j2 , . . . , f jr )

∂(xi1 , xi2 , . . . , xir )
dxi1 ∧ dxi2 ∧ . . . ∧ dxir .

Now (g j1 j2 ... jr
◦ f ) and

∂( f j1 , f j2 , . . . , f jr )

∂(xi1 , xi2 , . . . , xir )
are all C∞ functions. Thus, f ∗ω is also

a C∞ r -form on M .

Theorem 3.6 If f is a differentiable mapping from an n-dimensional manifold M
to an m-dimensional manifold N where (x1, x2, . . . , xn) and (y1, y2, . . . , ym) are
respectively the coordinates at p ∈ M and f (p) ∈ N, then

f ∗(dy j ) f (p) =
n∑

i=1

(
∂ f j

∂xi

)
p

(dxi )p , f j = y j ◦ f, j = 1, 2, 3, . . . ,m.
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Proof We write

f ∗(dy j ) f (p) =
n∑

i=1

a j
i
(dxi )p ,

where a j
i
’s are to be determined. Therefore

f ∗(dy j ) f (p)

(
∂

∂xk

)
p

= a j
k
, by (3.6)

or (dy j ) f (p)

{
f∗

(
∂

∂xk

)
p

}
= a j

k
, by (3.25)

or (dy j ) f (p)

m∑
s=1

(
∂ f s

∂xk

)
p

(
∂

∂ys

)
= a j

k
, by Theorem 2.6 of Sect. 2.12 and f s = ys ◦ f.

∴ ∂ f j

∂xk
= a j

k
, by (3.6).

Consequently, we have

f ∗(dy j ) f (p) =
n∑

i=1

∂ f j

∂xi
(dxi )p , j = 1, 2, 3, . . . ,m.

Remark 3.14 From Theorem3.6, we observe

f ∗(dy j ) f (p) = (d f j )p , j = 1, 2, 3, . . . ,m. (3.29)

Remark 3.15 We can write

f ∗(dy j ) f (p) = d(y j ◦ f )p , j = 1, 2, 3, . . . ,m. (3.30)

Theorem 3.7 Let f : Mn → Nm be a C∞ map. If ω,μ are 1-forms on N, then

(i) f ∗(ω + μ) = f ∗ω + f ∗μ
(ii) f ∗(gω) = f ∗(g) f ∗(ω)

(iii) f ∗(λω) = λ f ∗ω, ∀ g ∈ F(N ), λ ∈ R.

Proof (i) Since ω + μ is also a 1-form, in view of (3.25), one gets

{ f ∗(ω + μ) f (p)}(X p ) = (ω + μ) f (p){ f∗(X p )}
= ω f (p){ f∗(X p ) + μ f (p){ f∗(X p )}.

Furthermore, applying (3.25) on the right hand side of the foregoing equation,
the result follows immediately.

(ii) Again for g ∈ F(N ), ω ∈ D1(N ), gω ∈ D1(N ) and hence from (3.25), we
have



3.4 Pull-Back Differential Form 167

{ f ∗(gω) f (p)}(X p ) = (gω) f (p){ f∗(X p )}
= (g ◦ f )(p)ω f (p){ f∗(X p )}, by (3.12)

or { f ∗(gω)}p (X p ) = (g ◦ f )(p)( f ∗ω)p (X p ), by (3.26), (3.27)

= ( f ∗g)(p)( f ∗ω)p (X p ), by (2.32)

f ∗(gω) = f ∗(g) f ∗(ω), ∀ p ∈ M.

(iii) Left to the reader.

Let ω ∈ Dr (N ). Then a pull-back r -form on M , denoted by f ∗ω, is defined as
follows:

{ f ∗(ω) f (p)}{(X1)p , (X2)p , . . . , (Xr )p } = ω f (p){ f∗(X1)p ), f∗(X2)p ), . . . , f∗(Xr )p )}.
(3.31)

We also write it as

( f ∗ω)(X1 , X2 , . . . , Xr ) = ω( f∗ X1 , f∗ X2 , . . . , f∗ Xr ). (3.32)

For any ω ∈ Dr (N ), by (3.19) we can write

ω =
∑

i1 ,i2 ,...,ir

gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir , i1 < i2 < · · · < ir .

Taking into consideration Theorem3.7(ii), we have

f ∗ω =
∑

f ∗(gi1 ,i2 ,...,ir
) f ∗(dxi1 ) ∧ f ∗(dxi2 ) ∧ · · · ∧ f ∗(dxir ). (3.33)

Combining (3.29) and (2.32), we find

f ∗ω =
∑

i1 ,i2 ,...,ir

(gi1 ,i2 ,...,ir
◦ f ) d f i1 ∧ d f i2 ∧ d f i3 ∧ · · · ∧ d f ir , i1 < i2 < · · · < ir .

(3.34)

Theorem 3.8 If f : Mn → Nm is a C∞ map and ω,μ are any forms, then

(i) f ∗(ω ∧ μ) = f ∗ω ∧ f ∗μ.
(ii) ( f ◦ h)∗ω = h∗( f ∗ω), h being a C∞ function.

Proof

(i) Let ω ∈ Dr (N ) and μ ∈ Dr (N ). Then ω ∧ μ ∈ Dr+s (N ) and hence by (3.32),
we get

{ f ∗(ω ∧ μ)(X1 , X2 , . . . , Xr , Y1 , Y2 , . . . , Ys )}
= (ω ∧ μ)( f∗ X1 , . . . , f∗ Xr ; f∗Y1 , . . . , f∗Ys )

= 1

(r + s)!
∑
σ

(sgn σ)ω( f∗ Xσ(1) , . . . , f∗ Xσ(r) )μ( f∗Yσ(1) , . . . , f∗Yσ(s) ), by (3.14).
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The result follows immediately.

(ii) Using (3.30) and (2.32), we can write (3.33) as

f ∗ω =
∑
i

(gi1 ,i2 ,...,ir
◦ f )d(xi1 ◦ f ) ∧ d(xi2 ◦ f ) ∧ · · · ∧ d(xir ◦ f ).

or h∗( f ∗ω) =
∑
i

{(gi1 ,i2 ,...,ir
◦ f ) ◦ h}d((xi1 ◦ f ) ◦ h) ∧ · · · · · · ∧ d((xir ◦ f ) ◦ h).

Using Theorem3.7(ii) and (3.19), we obtain

( f ◦ h)∗
(∑

gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ · · · ∧ dxir

)

=
∑
i

(
( f ◦ h)∗gi1 ,i2 ,...,ir

)
( f ◦ h)∗dxi1 ∧ ( f ◦ h)∗dxi2 ∧ · · · ∧ ( f ◦ h)∗dxir

=
∑
i

(gi1 ,i2 ,...,ir
◦ ( f ◦ h))d(xi1 ◦ ( f ◦ h)) ∧ d(xi2 ◦ ( f ◦ h)) ∧ · · · ∧ d(xir ◦ ( f ◦ h)), by (3.30).

Using the associativity of C∞ functions, the result follows.

Theorem 3.9 For any form ω, d( f ∗ω) = f ∗(dω).

Proof The following cases will arise:

Case (I) ω is a 0-form:
Let ω = h, h being a C∞ function.

{ f ∗(dh)}(X) = dh( f∗ X), by (3.25)

= ( f∗ X)h, by (3.5)

= X (h ◦ f ), by (2.34)

= (d(h ◦ f ))X, by (3.5)

= d( f ∗h)X, by (2.32).

Thus d( f ∗ω) = f ∗(dω) holds for every X .

Case (II) ω is a r -form:
Taking aid of Principle of Mathematical Induction, we assume that the result is true
for (r − 1)-form. Without any loss of generality, any r -form can be expressed as

ω = gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir .

Using Theorem3.8(i), we have

f ∗ω = f ∗(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 ) ∧ f ∗(dxir )

or d( f ∗ω) = d{ f ∗(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 ) ∧ f ∗(dxir )}.

In view of (3.21)(iii), we get
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d( f ∗ω) = d{ f ∗(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 )} ∧ f ∗(dxir )+

+ (−1)r−1 f ∗(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 )d( f ∗(dxir )).

Note that dxir is a 1-form and as the result is true for (r − 1) form,

d( f ∗(dxir )) = f ∗(d(dxir )) = 0, by (3.21)(iv).

Thus

d( f ∗ω) = d{ f ∗(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 )} ∧ f ∗(dxir )}

= f ∗{d(gi1 ,i2 ,...,ir
dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 )} ∧ f ∗(dxir ),

as it is true for (r − 1) − form

= f ∗{dgi1 ,i2 ,...,ir
∧ dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 } ∧ f ∗(dxir ), by (3.22)

= f ∗{dgi1 ,i2 ,...,ir
∧ dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxir−1 ∧ dxir , refer to Theorem 3.8(i)

= f ∗(dω), by (3.22).

Thus the result is true for r -form. Hence, we can claim that for any form ω

d( f ∗ω) = f ∗(dω).

Problem 3.32 Let g = x2 − y2, ω = xydx + xdy. Let f : R → R
2 be given by

f (t) = (t, t2) = (x, y). Find A. (i) f ∗g (ii) f ∗ω. B. Show that f ∗(dg) = d( f ∗g).

Solution:

A. (i) f ∗g = g ◦ f = t2 − t4.
(ii) Here

f ∗ω = f ∗(xydx + xdy)

= f ∗(xydx) + f ∗(xdy), by linearity

= f ∗(xy) f ∗(dx) + f ∗(x) f ∗(dy), by Theorem 3.7(ii)

= (xy ◦ f )d( f ∗x) + (x ◦ f )d( f ∗y), by (2.32)

= (t ◦ t2)d(x ◦ f ) + td(y ◦ f ), by (3.30)

= t3d(t) + td(t2)

= t3dt + t (2tdt)

= (t3 + 2t2)dt.

ALTERNATIVE METHOD: f ∗ω = f ∗(xydx + xdy)=(t ◦ t2)dt + td(t2)=
(t3 + 2t2)dt .
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B. Note that

d( f ∗g) = d(t2 − t4) = (2t − 4t3)dt,

dg = d(x2 − y2) = 2xdx − 2ydy

f ∗(dg) = f ∗(2xdx − 2ydy) = 2tdt − 2t2(2tdt) = (2t − 4t3)dt.

Thus f ∗(dg) = d( f ∗g).

Problem 3.33 LetU be the open set (0,∞) × (0, 2π) in the (ρ, θ)-plane R2. Define
f : U ⊂ R

2 → R
2 by f (ρ, θ) = (ρ cos θ, ρ sin θ). If x, y are the standard coordi-

nates on R
2, compute the pull-back f ∗(dx ∧ dy).

Solution: We know that

f ∗(dx ∧ dy) = f ∗dx ∧ f ∗dy, where

f ∗dx = d(ρ cos θ) = cos θdρ − ρ sin θdθ, and

f ∗dy = d(ρ sin θ) = sin θdρ + ρ cos θdθ.

∴ f ∗(dx ∧ dy) = (cos θdρ − ρ sin θdθ) ∧ (sin θdρ + ρ cos θdθ)

= ρ cos2 θdρ ∧ dθ + ρ sin2 θdρ ∧ dθ

= ρdρ ∧ dθ.

Problem 3.34 Consider a map f : U ⊂ R
4 → R

2 given by f (x1 , x2 , x3 , x4) =
(u, v) where

u = x2
1

+ x2
2

+ x2
3

+ x2
4

− 1, v = x2
1

+ x2
2

+ x2
3

+ x2
4

− 2x2 − 2x3 + 5.

Calculate f ∗
(−1,5)

(du + 2dv) ∈ T ∗
(−1,5)

(R2), taking (0, 0, 0, 0) at f −1(−1, 5).

Solution: Consider x1 = x2 = x3 = x4 = 0, u = −1, v = 5. Now

f ∗(du + 2dv) = d(x2
1

+ x2
2

+ x2
3

+ x2
4

− 1) + 2d(x2
1

+ x2
2

+ x2
3

+ x2
4

− 2x2 − 2x3 + 5)

= 6x1dx1 + 6x2dx2 + 6x3dx3 + 6x4dx4 − 4dx2 − 4dx3 .

∴ f ∗
(−1,5)

(du + 2dv) = (−4dx2 − 4dx3 )(0,0,0,0)

= −4(dx2 + dx3 )(0,0,0,0) .

Problem 3.35 Let M be a circle and N be R
2 so that the map f : M → N be

defined by x1 = r cos θ, x2 = r sin θ . If ω = adx1 + bdx2 and μ = 1

a
dx1 + 1

b
dx2,

compute f ∗(ω ∧ μ), where a, b are constants.
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Solution: From Theorem3.8(i), we have

f ∗(ω ∧ μ) = f ∗ω ∧ f ∗μ.

Now

f ∗ω = f ∗(adx1 + bdx2) = a f ∗(dx1) + b f ∗(dx2)

= ad( f ∗x1) + bd( f ∗x2), by Theorem 3.8

= ad(x1 ◦ f ) + bd(x2 ◦ f )

= ad(r cos θ) + b(r sin θ)

= a(cos θ dr − r sin θ dθ) + b(sin θ dr + r cos θ dθ)

= (a cos θ + b sin θ) dr + (br cos θ − ar sin θ) dθ

Similarly

f ∗μ =
(
1

a
cos θ + 1

b
sin θ

)
dr +

(
r

b
cos θ − r

a
sin θ

)
dθ.

∴ f ∗(ω ∧ μ) = {(a cos θ + b sin θ)

(
r

b
cos θ − r

a
sin θ

)
dr ∧ dθ}

+ {(br cos θ − ar sin θ)

(
1

a
cos θ + 1

b
sin θ

)
} dθ ∧ dr

= r
(a
b

− b

a

)
dr ∧ dθ, after a few steps.

Problem 3.36 Let U be the open set (0,∞) × (0, π) × (0, 2π) in the (r, φ, θ)-
space R

3. Let f : U → R
3 be defined by

f (r, φ, θ) = (r sin φ cos θ, r sin φ sin θ, r cosφ).

If (x, y, z) are the standard coordinates of R
3, show that

f ∗(dx ∧ dy ∧ dz) = r2 sin φ dr ∧ dφ ∧ dθ.

Solution: It is known that

f ∗(dx ∧ dy ∧ dz) = f ∗dx ∧ f ∗dy ∧ f ∗dz.

Now
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f ∗dx = d( f ∗x) = d(x ◦ f ) = d f 1 = d(r sin φ cos θ)

= dr sin φ cos θ + r cosφ cos θ dφ − r sin φ sin θ dθ.

Similarly

f ∗dy = sin φ sin θ dr + r cosφ sin θ dφ + r sin φ cos θ dθ,

f ∗dz = cosφ dr − r sin φ dφ.

Therefore

f ∗(dx ∧ dy ∧ dz) = {(sin φ cosφ sin θ cos θ) dr ∧ dφ + (r sin2 φ cos2 θ) dr ∧ dθ

+ (r sin φ cosφ sin θ cos θ) dφ ∧ dr + (r2 sin φ cosφ cos2 θ) dφ ∧ dθ

− (r sin2 φ sin2 θ) dθ ∧ dr − (r2 sin φ cosφ sin2 θ) dθ ∧ dφ}
∧ (cosφ dr − r sin φ dφ)

= (−r2 sin3 φ cos2 θ) dr ∧ dθ ∧ dφ + (r2 sin φ cos2 φ cos2 θ) dφ ∧ dθ ∧ dr

+ (r2 sin3 φ sin2 θ) dθ ∧ dr ∧ dφ − (r2 sin φ cos2 φ sin2 θ) dθ ∧ dφ ∧ dr

= r2 sin φdr ∧ dφ ∧ dθ.

Exercises

Exercise 3.32 Let h = 2xy, μ = −2ydx + xdy, θ = (x2 + y2)dy. Let f : R →
R

2 be given by f (t) = (t, t2) = (x, y).

A. Find (i) f ∗h (ii) f ∗μ (iii) f ∗θ .
B. Show that f ∗(dh) = d( f ∗h).

Exercise 3.33 Let f : R
2 → R

2 be given by

f (u, v) = (u2 + 1, uv) = (x, y), ω1 = (xy − y)dx ∧ dy, μ1 = (x + y2)dx ∧ dy.

Find (i) f ∗h (ii) f ∗μ (iii) f ∗θ (iv) f ∗ω1 (v) f ∗μ1 , where h, μ, θ are defined in
Exercise3.32.

Exercise 3.34 Let μ = −2ydx + xdy, θ = (x2 + y2)dy. Let f : R
2 → R

2 be
given by f (u, v) = (u2 + 1, uv) = (x, y). Show that

(i) f ∗(μ ∧ θ) = f ∗μ ∧ f ∗θ .
(ii) f ∗(ω ∧ θ) = f ∗ω ∧ f ∗θ , where ω = xydx + xdy.

Exercise 3.35 If f : M → R
3 be such that f (u, v) = (u cos v, u sin v, av), then

for a given 1-form ω = x1dx1 − dx2 + x2dx3 on R
3, where x1 = u cos v, x2 =

u sin v, x3 = av, compute f ∗ω.
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Exercise 3.36 If f : M → R
3 be such that f (u, v) = (a cos u sin v, a sin u sin v,

a cos v), then for a given 1-form ω = dx1 + adx2 + adx3 on R
3, determine f ∗ω.

Exercise 3.37 Let ω = − y

x2 + y2
dx + x

x2 + y2
be the 1-form in R

2 \ {(0, 0)}. Let
U = {r > 0 : 0 < θ < 2π} be the set in the plane (r, θ) and f : U → R

2 be the map

f (r, θ) =
{
x = r cos θ

y = r sin θ
. Compute f ∗ω.

Exercise 3.38 Let S1 be a unit circle and f : R → S1 ⊂ R
2 be given by f (θ) =

(x1, x2) = (cos θ, sin θ). If ω is the 1-form −x2dx1 + x1dx2 on S1, compute f ∗ω.

Exercise 3.39 Consider onR
2, θ = (2xy + x2 + 1)dx + (x2 − y)dy and f be the

map f : R
3 → R

2 given by (u, v, w) �→ (x, y) = (u − v, v2 + w). Compute f ∗θ .

Exercise 3.40 Let f : R
2 → R

2 be given by f (x1 , x2) = (u, v), where u = x2
1

+
x2
2
, v = x1x2 . Calculate

(i) f ∗(udu + vdv) and
(ii) f ∗

(2,1)(udu + vdv) ∈ T ∗
(2,1)(R

2), taking (1, 1) to f −1(2, 1).

Answers

3.32. (i) 2t3 (ii) 0 (iii) (2t3 + 2t5)dt
3.33. (i) 2u3v + 2uv (ii) (−3u2v + v)du + (u3 + u)dv

(iii) (u4v + 2u2v + v + u2v3)du + (u5 + 2u3 + u + u3v2)dv

(iv) 2u5v du ∧ dv (v) (2u4 + 2u2 + 2u4v2)du ∧ dv

3.35. (u cos2 v − sin v)du + (au sin v − u cos v − u2 sin v cos v)dv

3.36. (−a sin u sin v + a2 sin v cos u)du + (a cos u cos v + a2 sin u cos v −
a sin v)dv

3.37. dθ 3.38. dθ

3.39. {2(u − v)(v2 + ω) + (u − v)2 + 1}du + (u2 − 2uv − ω)dω

+(−4uv − 2uω + 2v3 − u2 + 2uv − v2 − 1 + 2u2v)dv.
3.40. (i) (2x3

1
+ 3x1x

2
2
)dx + (2x3

2
+ 3x2

1
x2)dx2 . (ii) 5(dx1 + dx2)

∣∣
(1,1).



Chapter 4
Lie Group

4.1 Lie Group, Left and Right Translation

A Lie group is a group (in algebraic sense), which is also a differentiable manifold,
with the property that the group operations are compatible with the smooth structure.
Thus, a Lie group G consists of two structures on the same set G, namely, it is a
differentiable manifold and has also a group structure. We now state the formal
definition as follows:

Let G be a non-empty set. If

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) G is a group (whose operation is denoted by multiplication),
(i i) G is an n − dimensional smooth manifold and
(i i i) the inverse map τ : G → G such that τ(x) = x−1 and

the multiplication map φ : G × G → G such that φ(x, y) = xy, ∀ x, y
are smooth maps, thenG is called an n-dimensional Lie Group.

(4.1)

Remark 4.1 The group is called “Lie Group”, after the Norwegian mathematician
Sophus Lie (1842–1899).

Remark 4.2 (a) The product of two second countable and Hausdorff spaces is
respectively the second countable and Hausdorff space. [for details refer to any
standard textbook of topology]

(b) If M and N are C∞ manifolds, then M × N with its product topology is Haus-
dorff and second countable. To show thatM × N is a smoothmanifold, it remains
to find a C∞ atlas. If we have a chart (U, φU ) and (V, φV ) respectively on M and
N , then U × V ⊆ M × N an open subset of the product space. Let us define

φU×V = φU × φV : U × V → R
m × R

n = R
m+n .
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If (Ũ , φ
Ũ
) and (Ṽ , φ

Ṽ
) are another pair of charts for M and N , respectively, then

we can set the transition function

φ
Ũ×Ṽ

◦ φ−1
U×V

= (φ
Ũ

× φ
Ṽ
) ◦ (φU × φV )−1 = (φ

Ũ
◦ φ−1

U
) × (φ

Ṽ
◦ φ−1

V
).

Since each is a transition function from one of the two smooth atlases as already
known onM and N , therefore, each of these factors is smooth. Since smoothness
is determined componentwise, it follows that the product mapping is smooth as
well. So we have an atlas making M × N a smooth manifold. It should also be
clear that its dimension is m + n, as asserted.

Remark 4.3 Let G be a group, which is also a differentiable manifold of dimension
n. It is easy to check that themap (xy) �→ xy−1 is a smoothmap from2n-dimensional
manifold G × G to n-dimensional smooth manifold G. Thus, G is a Lie group.

Remark 4.4 Note that τ 2(x) = τ(τ (x)) = τ(x−1) = x . Therefore, τ 2 = I is
differentiable. Thus, G possesses τ 2 = I as diffeomorphism. Moreover, it possesses
two other diffeomorphisms, viz. “Left Translation”and “Right Translation”.

Example 4.1 Note that the n-dimensional space R
n is a differentiable manifold of

n-dimension and is a group with respect to addition, defined as

x + y = (x1 + y1, . . . , xn + yn)

−x = (−x1,−x2, . . . ,−xn)

where, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Furthermore, the operations φ(x + y) = x + y, τ (x) = −x are C∞-functions.
Hence, R

n is a Lie group of dimension n.

Problem 4.1 GL(n, R) is a Lie group.

Solution : In reference to Problem2.17, we have already proved that GL(n, R)(⊂
M(n, R)

)
forms a smooth manifold of dimension n2. Note that GL(n, R) forms a

group under usual matrix multiplication. It only remains to prove that GL(n, R) is
a Lie group.

For that, we define φ : GL(n, R) × GL(n, R) → GL(n, R) by φ(A, B) = AB,
so that

φ(A, B) = AB = [φi
j
(AB)]i, j=1,2,...,n,

where φi
j
(AB) is the i j -th element of the matrix AB. Then, φi

j
(AB) =

∑n
k=1 x

i
k
(A)xk

j
(B), where xi

j
(A) denotes the i j -th coordinate function on GL(n, R).

Thus, for all i, j; φi
j
is a smooth function.Moreover, the inversemap τ : GL(n, R) →

GL(n, R) defined by τ(A) = A−1 is also smooth. Hence GL(n, R) is a Lie Group
of dimension n2.
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For every a ∈ G, a mapping La : G → G defined by

La(x) = ax, ∀ x ∈ G (4.2)

is called a left translation on G. Similarly, a mapping Ra : G → G defined by

Ra (x) = xa, ∀ x ∈ G (4.3)

is called a right translation on G.

Exercises

Exercise 4.1 Show that

LaLb = Lab, Ra Rb = Rba, La Rb = RbLa . (4.4)

LaLb 
= Lb La, unless G is commutative. (4.5)

La−1 = (La)
−1, Ra−1 = (Ra)

−1. (4.6)

It is to be noted that each La, Ra are C∞ maps, as each La, La−1 , Ra, Ra−1 is
homeomorphism and differentiable from G onto G.

Examples

Example 4.2 The left translation La : GL(n, R) → GL(n, R) is

x = (xi
j
) → ax = (ai

k
xk

j
)

and the right translation Ra : GL(n, R) → GL(n, R) is

x = (xi
j
) → xa = (xi

k
ak

j
).

Example 4.3 The Lie group Rn is a commutative group. Hence, for every a ∈ R
n ,

La = Ra . Also, the group operation is addition and the identity element is 0. So left
translation is actually the parallel translation x �→ x + a i.e.L

a
x = x + a = a + x .

Problem 4.2 Let H =
⎧
⎨

⎩

⎛

⎝
1 x y
0 1 z
0 0 1

⎞

⎠ : x, y, z ∈ R

⎫
⎬

⎭
. Show that H admits a Lie group

structure with usual matrix multiplication. Such H is called Heisenberg Group.

Solution : Let us define the map φ : H → R
3 as

⎛

⎝
1 x y
0 1 z
0 0 1

⎞

⎠ �→ (x, y, z). Note that

the map φ is homeomorphic. Thus, {(H, φ)} forms an C∞-atlas for H. If
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A =
⎛

⎝
1 x y
0 1 z
0 0 1

⎞

⎠ , B =
⎛

⎝
1 x

′
y

′

0 1 z
′

0 0 1

⎞

⎠ , then AB ∈ H.

Now A−1 =
⎛

⎝
1 −x −y
0 1 −z
0 0 1

⎞

⎠ ∈ H, ∀ A ∈ H. Again H is a group with respect to

matrix multiplication. Moreover, let us define the maps

� : H × H → H by (A, B) �→ AB,

and the map
ψ : H → H by A �→ A−1.

Then the map φ ◦ � ◦ (φ−1 × φ−1) : R
3 × R

3 → R
3 defined by

(φ ◦ � ◦ (φ−1 × φ−1))((x, y, z), (a, b, c)) = (a + x, b + y, c + z)

and the map φ ◦ ψ ◦ φ−1 : R
3 → R

3 given by

(φ ◦ ψ ◦ φ−1)(x, y, z) = (−x,−y,−z)

are C∞. Thus H is a Lie group.

Problem 4.3 Letφ : G1 → G2 be a homomorphism of a Lie groupG1 to another Lie
group G2 . Show that (i) φ ◦ La = L

φ(a)
◦ φ (ii) φ ◦ Rb = R

φ(b) ◦ φ for all a, b ∈ G1 .

Solution : (i) From the definition of group homomorphism φ : G1 → G2 given by

φ(ab) = φ(a)φ(b), ∀ a, b ∈ G1 .

Now

(φ ◦ La )(x) = φ(La (x)) = φ(ax)

= φ(a)φ(x)

= (L
φ(a)

◦ φ)(x).

∴ φ ◦ La = L
φ(a)

◦ φ, ∀ x ∈ G1 .

(ii) Note that
(φ ◦ Rb)(x) = φ(xb) = φ(x)φ(b) = (R

φ(b) ◦ φ)(x).

Therefore, φ ◦ Rb = R
φ(b) ◦ φ, ∀ x ∈ G1 .

Problem 4.4 Let φ be a non-identity 1 − 1 map from G onto G. If φ ◦ L
g

= L
g
◦ φ

holds for all g ∈ G, then there exists h ∈ G such that φ = Rh .
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Solution : As φ is a 1 − 1 map, for every a ∈ G, there exists an unique element
b ∈ G such that φ(a) = b. Again e ∈ G, φ is a 1 − 1 map, there exists an unique
element, say h ∈ G, such that φ(e) = h, where φ(e) 
= e, as φ is not an identity
mapping. Now

g = ge, ∀ g ∈ G

∴ φ(g) = φ(ge) = φ(L
g
(e)) = (φ ◦ L

g
)(e) = (L

g
◦ φ)(e), as given

= L
g
(φ(e))

= L
g
(h) = gh = Rhg

⇒ φ = Rh .

Exercises

Exercise 4.2 Show that the set of all left(right) translations on a Lie group form a
group.

Exercise 4.3 Let G =
{(

α 0
β 1

)

: α > 0, β ∈ R

}

. Prove that G admits a Lie group

structure with matrix multiplication.

Exercise 4.4 Let G =
{(

x y
0 1

)

: x, y ∈ R, x 
= 0

}

. Prove that G admits a Lie

group structure, with matrix multiplication.

Exercise 4.5 Let G =
⎧
⎨

⎩

⎛

⎝
x1 0 x2

0 x1 x3

0 0 1

⎞

⎠ : x1 , x2 , x3 ∈ R, x1 > 0

⎫
⎬

⎭
. Prove that

G admits a Lie group structure with respect to usual matrix multiplication.

Exercise 4.6 Let ψ be the diffeomorphism of G defined by ψ(x) = x−1. Show that
ψ ◦ L

g
= R

g−1 ◦ ψ, ψ ◦ R
g

= L
g−1 ◦ ψ .

Exercise 4.7 Prove that R is an abelian Lie group where the smooth maps φ :
R × R → R is defined by

φ(a, b) = a + b

and τ : R → R is defined by
τ(a) = −a.

4.2 Invariant Vector Field

We have already defined an invariant vector field under a transformation in §2.14.
As each left translation and right translation on a Lie group G are transformations,
we can similarly define the invariant vector fields on G.
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A vector field X on a Lie group G is called a left invariant vector field on G if

(La)∗ X p = XLa (p) = Xap, ∀ p ∈ G, (4.7)

where (La)∗ is the differential of the left translation La , for some fixed a in G.
Using (2.35), we write

((La)∗ X)La(p) = XLa(p) i.e.

(La)∗ X = X. (4.8)

Similarly, for a right invariant vector field

(Ra )∗ X = X. (4.9)

Again, for every f ∈ F(G), by virtue of (2.34), we have

{(La)∗ X p} f = X p ( f ◦ La)

i.e.
{
(La)∗ X

}

La(p)
f = X p ( f ◦ La) by (2.35).

If La(p) = q, then p = a−1q (refer to (4.6)). Thus

{(La)∗ X}q f = Xa−1q( f ◦ La). (4.10)

Theorem 4.1 A vector field X on a Lie group is left invariant if and only if

(X f ) ◦ La = X ( f ◦ La), ∀ f ∈ F(G) (4.11)

where for some fixed a ∈ G, La is the left translation of G.

Proof Let X be a left invariant vector field of a Lie group G. Then from (4.7), we
find

{(La)∗ X p} f = XLa(p) f, ∀ f ∈ F(G)

= (X f )La(p), by (2.23)

or X p( f ◦ La) = (X f )La(p), by (2.24)

or, {X ( f ◦ La)}(p) = (
(X f ) ◦ La

)
(p), by (2.23).

∴ X ( f ◦ La) = (X f ) ◦ La, ∀ p ∈ G.

The converse follows immediately.

Problem 4.5 Find the left invariant vector fields on R
n.
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Solution : Let p ∈ R
n and p = (x1, x2, . . . , xn). Any vector field X on themanifold

R
n can be expressed uniquely as

X =
∑

ξ i ∂

∂xi
, where ξ i ∈ F(Rn), i = 1, 2, 3, . . . , n.

Furthermore

(X f ) ◦ La = ( ∑

i

ξ i ∂ f

∂xi
) ◦ La, a ∈ R

n

∴ {(X f ) ◦ La}(p) = {(∑

i

ξ i ∂ f

∂xi
) ◦ La

}
(p)

= ( ∑

i

ξ i ∂ f

∂xi
)
La(p)

= ( ∑

i

ξ i ∂ f

∂xi
)
(a + p), see Example 4.3

or {(X f ) ◦ La}(p) =
∑

i

ξ i (a + p)
∂ f

∂xi
(a + p).

Also

{
X ( f ◦ La)

}
(p) = {∑

i

ξ i ∂

∂xi
( f ◦ La)

}
(p)

=
∑

i

ξ i (p)
∂

∂xi
( f ◦ La)(p)

=
∑

i

ξ i (p)
∂ f

∂xi
(La(p))

or
{
X ( f ◦ La)

}
(p) =

∑

i

ξ i (p)
∂ f

∂xi
(a + p).

In view of (4.11), we find

∑

i

ξ i (a + p)
∂ f

∂xi
(a + p) =

∑

i

ξ i (p)
∂ f

∂xi
(a + p)

or ξ i (a + p) = ξ i (p), i = 1, 2, 3, . . . , n.

Thus, the functions ξ i ’s are constants and hence all the left invariant vector fields on
R

n are of the form

ξ i ∂

∂xi
, ξ i ∈ R, i = 1, 2, 3, . . . , n,
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i.e.constant multiple of
∂

∂xi
or the left invariant vector fields on R

n are constant

vector fields.

Problem 4.6 If X,Y are left invariant vector fields on a Lie group G, so is [X,Y ].
Solution : From (4.8), we have (La)∗X = X and (La)∗Y = Y . Now

(La)∗[X,Y ] = [(La)∗X, (La)∗Y ] (see Exercise 2.30)

= [X,Y ], from above.

Thus, [X,Y ] is also left invariant vector field on G.

ALTERNATIVEMETHOD: Taking into consideration (2.34), for every vector field
[X,Y ] in χ(G), we have

{
(La)∗[X,Y ]} f = [X,Y ]( f ◦ La)

= X (Y ( f ◦ La)) − Y (X ( f ◦ La)), by (2.27)

= X
{(

(La)∗Y
)
f
} − Y

{(
(La)∗X

)
f
}

= X{Y f } − Y {X f }, use (2.34)

= [X,Y ] f
∴ (La)∗[X,Y ] = [X,Y ], ∀ f ∈ F(G).

We say (G, [ , ]) is a Lie algebra over R if

⎧
⎪⎪⎨

⎪⎪⎩

(i) G is a vector space overR

(ii) [, ] : G × G → G is a bilinear map
(iii) [X,Y ] = −[Y, X ] : anti-commutative
(iv) [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = θ : Jacobi Identity.

(4.12)

Problem 4.7 Show that the vector space R
3 with the operation cross product of

vectors is a Lie algebra.

Solution : Let �x = (x1, x2, x3) and �y = (y1, y2, y3) be any two vectors of R
3. We

define the cross product of �x and �y as follows:

�x × �y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Then, for all λ, μ ∈ R, it can be shown that

(i) (λ�x + μ�y) × �z = λ�x × �z + μ�y × �z
(i i) �z × (λ�x + μ�y) = λ�z × �x + μ�z × �y

}

: Bilineari t y

(i i i) �x × �y = −�y × �x
(iv) (�x × �y) × �z + (�y × �z) × �x + (�z × �x) × �y = 0.
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Thus, the real vector space R
3 with the operation:Bilinearity of the cross product of

vectors is a Lie algebra.

Remark 4.5 Note that the set of all C∞-vector fields, denoted by χ(M), of the
manifold M , forms a Lie algebra under the Lie bracket operation on vector fields.

Let g be the set of all left invariant vector fields on G. Then for every X,Y in g,

(La)∗(cX + dY ) = c(La)∗X + d(La)∗Y = cX + dY, ∀ c, d ∈ R.

Therefore, cX + dY ∈ g. Hence, g is a linear space.
Again, (La)∗[X,Y ] = [(La)∗X, (La)∗Y ] = [X,Y ] (refer to Exercise2.30). Thus,

[X,Y ] ∈ g where [X,Y ] = −[Y, X ]. Further, it can be shown that

[X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = θ.

Thus, the set of all left invariant vector fields, denoted by g, on a Lie group G, is
a Lie algebra.

Now a Lie subalgebra h1 of a Lie algebra h2 is a vector subspace h1 ⊂ h2 , that is
closed under the bracket [, ].

Obviously, g is a Lie subalgebra of the Lie algebra χ(G) of all C∞ vector
fields of the Lie group G i.e.g ⊂ χ(G)

Remark 4.6 If g∗ denotes the set of all right invariant vector fields on a Lie group
G, it can be shown that g∗ is also a Lie algebra.

The behaviour of a Lie group is determined largely by its behaviour in the
neighbourhood of the identity element e. The behaviour can be represented by an
algebraic structure on the tangent space at e.

Theorem 4.2 As a vector space, the Lie subalgebra g of the Lie group G is iso-
morphic to the tangent space Te(G) at the identity element e of G i.e.g ∼= Te(G)

(Fig.4.1).

Fig. 4.1 g ∼= Te(G)
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Proof Note that two vector spaces U and V are said to be isomorphic if a mapping
f : U → V is linear and has an inverse f −1. So, let us define a mapping φ : g →
Te(G) by

φ(X) = Xe. (4.13)

Clearly, φ is linear. Let us define φ−1 : Te(G) → g by

φ−1(Ye) = X. (4.14)

Now for every a ∈ G, La : G → G is left translation and

(La)∗ : Te(G) → TL(a)(e)=a (G)

is a differential mapping such that

(La)∗Ye = Xa . (4.15)

Now for any s ∈ G, we have

(Ls)∗Xs−1a = (Ls)∗(Ls−1a)∗Ye, by (4.15)

= (Ls ◦ Ls−1a)∗Ye, by Problem 2.51

= (La)∗Ye, by (4.4)

or,
(
(Ls)∗X

)

a = Xa, by (2.35), (4.15)

or (Ls)∗X = X, ∀ a ∈ G.

Therefore, X ∈ g. Hence the mapping φ−1 is well-defined. Finally

(φφ−1)Ye = Xe, by (4.13)& (4.14)

= (Le)∗Ye, by (4.15)

= Ye, where (Le)∗ is the identity differential.

(φ−1φ)(X) = φ−1
(
(Le)∗Ye

) = X, by (4.13), (4.14)& (4.15).

Thus, an inverse mapping φ−1 exists. Consequently,

g ∼= Te(G).

Corollary 4.1 If a Lie group G is of dimension n, then the dimension of Lie subal-
gebra g of the Lie group G is also n.

Proof Left to the reader.

Problem 4.8 Ifφ : g → Te(G) is an isomorphism, g being the set of all left invariant
vector fields of a Lie group G, then for X̃ = φ(X) = Xe, X ∈ g, show that [X̃ , Ỹ ] =
[̃X,Y ], ∀Y ∈ g.
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Solution : From the definition

[X̃ , Ỹ ] = X̃(Ỹ ) − Ỹ (X̃)

= Xe(Ye) − Ye(Xe), as defined

= [Xe ,Ye ].

Further

[̃X,Y ] = ˜{X (Y ) − Y (X)}
= X̃ (Y ) − Ỹ (X)

= Xe(Ye) − Ye(Xe)

= [Xe ,Ye ].

Thus, [X̃ , Ỹ ] = [̃X,Y ].
Problem 4.9 If Ck

i j (i, j, k = 1, 2, 3, . . . , n) are structure constants of a Lie group
G with respect to the basis {X1, X2, . . . , Xn} of g, show that

(i) Ck
i j = −Ck

ji , where [Xi , X j ] = ∑
Ck
i j Xk , each C

k
i j ∈ R.

(ii) Ck
i jC

t
ks + Ck

jsC
t
ki + Ck

siC
t
k j = 0.

Solution : It is given that Ck
i j (i, j, k = 1, 2, 3, . . . , n) are structure constants of a

Lie group G with respect to the basis {X1, X2, . . . , Xn} of g, where g is the set of all
left invariant vector fields on G, such that

[Xi , X j ] =
n∑

k=1

Ck
i j Xk , Ck

i j ∈ R. (4.16)

Note that [Xi , X j ] = θ , when i = j . So let i 
= j . As [Xi , X j ] = −[X j , Xi ], by virtue
of (4.16), we get

n∑

k=1

Ck
i j Xk = −

n∑

k=1

Ck
ji Xk

or (Ck
i j + Ck

ji ) = 0,

as {X1, X2, . . . , Xn} is a basis and hence linearly independent. Thus, Ck
i j = −Ck

ji .
Also, from the Jacobi identity, we have

[[Xi , X j ], Xs ] + [[X j , Xs ], Xi ] + [[Xs , Xi ], X j ] = θ.

Using (4.16), we get
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[
n∑

k=1

Ck
i j Xk , Xs ] + [

n∑

k=1

Ck
js Xk , Xi ] + [

n∑

k=1

Ck
si Xk , X j ] = θ

or
n∑

k=1

Ck
i j [Xk , Xs ] +

n∑

k=1

Ck
js[Xk , Xi ] +

n∑

k=1

Ck
si [Xk , X j ] = θ

∑

t

∑

k

Ck
i jC

t
ks Xt +

∑

t

∑

k

Ck
jsC

t
ki Xt + or

∑

t

∑

k

Ck
siC

t
k j Xt = θ, by (4.16).

As {Xt : t = 1, 2, 3, . . . , n} is a basis of g and hence linearly independent and thus

Ck
i jC

t
ks + Ck

jsC
t
ki + Ck

siC
t
k j = 0.

Problem 4.10 Consider the product T 1 × R
+ of the one-dimensional torus by the

multiplicative group of positive numbers. Let (α̃, x1) denote the local coordinates.

Prove that the vector field X = ∂

∂α̃
+ x1

∂

∂x1

is left invariant.

Solution : For a fixed (θ̃ , p) ∈ T 1 × R
+, the left translation of the product mani-

fold, denoted by L
(θ̃ ,p)

, is by definition

L
(θ̃ ,p)

(α̃, x1) = (θ̃ + α̃, px1)

∴ (L
(θ̃ ,p)

)∗ =
⎛

⎝
∂(θ̃+α̃)

∂α̃

∂(θ̃+α̃)

∂x1
∂(px1 )

∂α̃

∂(px1 )
∂x1

⎞

⎠ =
(
1 0
0 p

)

Given vector field X ∈ T 1 × R
+ is left invariant if

(L
(θ̃ ,p)

)∗ X (0,1) = XL
(θ̃ ,p)

(0,1) = X
(θ̃ ,p)

.

Now X = ∂

∂α̃
+ x1

∂

∂x1

, so X
(0,1) = ∂

∂α̃
+ ∂

∂x1

∣
∣
∣
∣
(0,1)

and X
(θ̃ ,p)

= ∂

∂α̃
+ p

∂

∂x1

∣
∣
∣
∣
(θ̃ ,p)

.

Again

(L
(θ̃ ,p)

)∗ X (0,1) =
(
1 0
0 p

)(
1
1

)

=
(
1
p

)

= ∂

∂α̃
+ p

∂

∂x1

∣
∣
∣
∣
(θ̃ ,p)

= X
(θ̃ ,p)

.

Thus, X is a left invariant vector field.

Problem 4.11 Consider the Lie group G defined in Exercise 4.5. Show that

(i)
{
X = x1

∂

∂x1

,Y = x1

∂

∂x2

, Z = x1

∂

∂x3

}
is a basis of left invariant vector fields

of G.
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(ii) Find the structure constants, as defined by (4.16), of G with respect to the basis
{X,Y, Z} defined in (i) above.

Solution : (i) For a fixed (a1 , a2 , a3) ∈ G. the left translation denoted by L
(a1 ,a2 ,a3 )

is given by

L
(a1 ,a2 ,a3 )

(x1 , x2 , x3) =
⎛

⎝
a1 0 a2

0 a1 a3

0 0 1

⎞

⎠

⎛

⎝
x1 0 x2

0 x1 x3

0 0 1

⎞

⎠ =
⎛

⎝
a1x1 0 a1x2 + a2

0 a1x1 a1x3 + a3

0 0 1

⎞

⎠

= (a1x1 , a1x2 + a2 , a1x3 + a3)

∴ (L
(a1 ,a2 ,a3 )

)∗ =
⎛

⎝
a1 0 0
0 a1 0
0 0 a1

⎞

⎠ .

Let e = (1, 0, 0) denote the identity element of G. Then X = x1

∂

∂x1

is given by

Xe = X
(1,0,0) = ∂

∂x1

.

Similarly, Ye =(
x1

∂

∂x2

)

e
=( ∂

∂x2

)

e
and Ze =(

x1

∂

∂x3

)

e
=( ∂

∂x3

)

e
. Now

XL
(a1 ,a2 ,a3 )

(1,0,0) = X
(a1 ,a2 ,a3 )

= x1

∂

∂x1

∣
∣
∣
∣
(a1 ,a2 ,a3 )

.

Similarly

YL
(a1 ,a2 ,a3 )

(1,0,0) = Y
(a1 ,a2 ,a3 )

= x1

∂

∂x2

∣
∣
∣
∣
(a1 ,b,a3 )

= a1

∂

∂x2

, and

ZL
(a1 ,a2 ,a3 )

(1,0,0) = Y
(a1 ,a2 ,a3 )

= x1

∂

∂x3

∣
∣
∣
∣
(a1 ,b,a3 )

= a1

∂

∂x3

.

To show X,Y, Z are left invariant vector fields, we have to show

(L
(a1 ,a2 ,a3 )

)∗ Xe = XL
(a1 ,a2 ,a3 )

(1,0,0) = X
(a1 ·1,a1 ·0+a2 ,a1 ·0+a3 )

= X
(a1 ,a2 ,a3 )

.

Similarly

(L
(a1 ,a2 ,a3 )

)∗Ye = Y
(a1 ,a2 ,a3 )

and (L
(a1 ,a2 ,a3 )

)∗ Ze = Z
(a1 ,a2 ,a3 )

.
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Now

(L
(a1 ,a2 ,a3 )

)∗ Xe =
⎛

⎝
a1 0 0
0 a1 0
0 0 a1

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ =
⎛

⎝
a1

0
0

⎞

⎠ = a1

∂

∂x1

= X
(a1 ,a2 ,a3 )

.

Thus, X is a left invariant vector field. Again

(L
(a1 ,a2 ,a3 )

)∗Ye =
⎛

⎝
a1 0 0
0 a1 0
0 0 a1

⎞

⎠

⎛

⎝
0
1
0

⎞

⎠ =
⎛

⎝
0
a1

0

⎞

⎠ = a1

∂

∂x2

= Y
(a1 ,a2 ,a3 )

,

(L
(a1 ,a2 ,a3 )

)∗ Ze =
⎛

⎝
a1 0 0
0 a1 0
0 0 a1

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠ =
⎛

⎝
0
0
a1

⎞

⎠ = a1

∂

∂x3

= Z
(a1 ,a2 ,a3 )

.

Thus, YandZ are left invariant vector fields and {X,Y, Z} are linearly indepen-
dent at e. Thus, {X,Y, Z} is a basis of g, where g is a left invariant vector fields
of G.

(ii) If we denote X = x1

∂

∂x1

by X1 , Y = x1

∂

∂x2

by X2 and Z = x1

∂

∂x3

by X3 , then

by (4.13), we see that

[Xi , X j ] =
3∑

k=1

Ck
i j Xk , i 
= j.

Now

[X1 , X2 ] = [x1

∂

∂x1

, x1

∂

∂x2

] = x1

∂

∂x1

(

x1

∂

∂x2

)

− x1

∂

∂x2

(

x1

∂

∂x1

)

= x1

∂

∂x2

+ x2
1

∂2

∂x1∂x2

− x2
1

∂2

∂x1∂x2

= x1

∂

∂x2

.

∴ C2
12X2 = X2 , by above

i.e. C2
12 = 1, as X2 ≡ Y is linearly independent. By Problem4.9(i), C2

21 =
−C2

12 = −1. Similarly, it can be shown that [X1 , X3 ] = X3 , i.e.C
3
13 = 1 and

C3
31 = −1 and [X2 , X3 ] = 0. Thus, with respect to the basis {X,Y, Z}, the struc-

ture given by
C2
12 = −C2

21 = C3
13 = −C3

31 = 1.
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Exercises

Exercise 4.8 Prove the converse of Theorem 4.1.

Exercise 4.9 Find the left invariant vector fields on R.

Exercise 4.10 If e is the identity element of a Lie group G and Te(G) is the tangent
space to G at e, show that

(La)∗Xe = Xa,

where X is a left invariant vector field.

Exercise 4.11 Consider the Problem4.2. Show that

(i) {X = ∂

∂x
,Y = ∂

∂y
, Z = x

∂

∂y
+ ∂

∂z
} is a basis of left invariant fields of H.

(ii) Find the structure constants of H with respect to the basis {X,Y, Z}.
Answer

4.11. C2
13

= −C2
31

= 1.

4.3 Invariant Differential Form

A differential form ω on a Lie group G is said to be left invariant if

(
L∗
aωLa (p)

) = ωp, ∀ p ∈ G (4.17)

where L∗
a is the pull-back of La defined in §3.4.

We write it as
L∗
aω = ω. (4.18)

Similarly, a differential form ω on a Lie group G is said to be right invariant if

R∗
aω = ω. (4.19)

A differential form, which is both left and right invariant is said to be bi-invariant
differential form.

Problem 4.12 Show that if ω is a left invariant form, then dω is also so.

Solution : From Theorem3.9, we see that

d(L∗
aω) = L∗

a(dω), ∀ω

or, dω = L∗
a(dω), by (4.18).

Hence, dω is also left invariant by (4.18).
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Problem 4.13 Prove that a 1-form ω on a Lie group G is left invariant if and only
if for every left invariant vector field X on G, ω(X) is a constant function on G.

Solution : For every given 1-form ω on G, L∗
aω will be pull-back 1-form. Hence,

by (3.27), we find

{
L∗
a(ωLa (p) )

}
(X p) = ωLa (p)

(
(La)∗X p

)
, ∀ p ∈ G, ∀ X ∈ g,

g being the set of all invariant vector fields, (La)∗X p being the differential of X.
Consequently, by (4.7), we write

{
L∗
a(ωLa (p) )

}
(X p) = ωLa (p) (XLa(p)). (4.20)

Let us now considerω to be left invariant. Then in view of (4.17), one gets from above

ωp(X p) = ωap(Xap).

Taking p = e ∈ G, one gets the desired result, i.e.ω(X) is a constant function.
For the converse part, let ω(X) be a constant function on G. Then for fixed a ∈ G

and arbitrary p ∈ G, one must have

ωp(X p) = ωap(Xap)

= ωLa (p) (XLa(p))

= {
L∗
a

(
ωLa(p)

)}
(X p), see (4.20)

∴ L∗
a(ωLa (p) ) = ωp, ∀ X p ∈ g.

Thus, by (4.17), the 1-form ω is left invariant.

Problem 4.14 Prove that the set of all left invariant forms on a Lie group G forms
an algebra over R.

Solution : Let A be the set of all left invariant forms on a Lie group G. We wish to
show that:

(i) A is a linear space over R.
(ii) the mapping A × A → A, defined as (ω,μ) �→ ω ∧ μ is bilinear.
(iii) the operation ‘∧’ is skew-symmetric.
(iv)

{
ω ∧ (μ + γ ) = ω ∧ μ + ω ∧ γ

(ω + μ) ∧ γ = ω ∧ γ + μ ∧ γ.

Note that

L∗
a(cω + dμ) = c L∗

aω + d L∗
aμ, as L∗

a is linear, c, d ∈ R

= cω + dμ, whereω,μ are left invariant.

Thus, A is a linear space over R.
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Further, it can be shown that

bω ∧ μ = b(ω ∧ μ) = ω ∧ bμ, ∀ b ∈ R.

Thus, the mapping is bilinear. Also, ω ∧ μ = −μ ∧ ω. Moreover, the set A satisfies
(iv). Thus, A is an algebra over R.

Problem 4.15 Let La : S1 → S1 be given by

La(x, y) = {(cos t)x − (sin t)y, (sin t)x + (cos t)y}

where a = (cos t, sin t) ∈ S1 ⊂ R
2. Ifω = −ydx + xdy on S1, show that (La)

∗ω =
ω,

S1 being the unit circle.

Solution : Here

L∗
aω = L∗

a(−ydx + xdy)

= L∗
a(−ydx) + L∗

a(xdy)

= −{(sin t)x + (cos t)y}d{(cos t)x − (sin t)y}
+ {(cos t)x − (sin t)y}d{(sin t)x + (cos t)y}

= −{(sin t)x + (cos t)y}{(cos t)dx − (sin t)dy}
+ {(cos t)x − (sin t)y}{(sin t)dx + (cos t)dy}

= xdy − ydx

= ω.

Thus, ω is left invariant 1-form on S1.

Theorem 4.3 If g is Lie subalgebra of a Lie group G and g∗ denotes the set of all
left invariant forms on G, then

dω(X,Y ) = −1

2
ω([X,Y ]), ∀ X,Y ∈ g, ω ∈ g∗.

Proof From Theorem3.4, we see that if ω is a 1-form, then

dω(X,Y ) = 1

2
{X (ω(Y )) − Y (ω(X)) − ω([X,Y ])}, ∀ X,Y ∈ χ(G).

Now if X,Y ∈ g, ω ∈ g∗, then by Problem4.13, ω(X), ω(Y ) are constant functions
on G. Taking help of Exercise2.30, we see that

X (ω(Y )) = 0 = Y (ω(X)).

Thus dω(X,Y ) = −1

2
ω([X,Y ]).
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Remark 4.7 Such an equation is called Maurer–Cartan Equation.

Problem 4.16 Show that dωi = −1

2

∑

j,k

Ci
jk ω j ∧ ωk , where Ci

jk’s are defined in

Exercise4.9(i).

Solution : If {X1 , X2 , . . . , Xn } is a basis of g and {ω1, ω2, . . . , ωn} is the dual basis
of g∗, then

ωi (X j ) = δij . (4.21)

Hence, by virtue of the last theorem, we obtain

dωi (X j , Xk ) = −1

2
ωi ([X j , Xk ])

= −1

2
ωi {

∑
Cm

jk Xm }, see (4.16)

= −1

2

∑

m

Cm
jkω

i (Xm), as Cm
jk ∈ R

dωi (X j , Xk ) = −1

2
Ci

jk . (4.22)

Now

∑

m,n

Ci
mn(ω

m ∧ ωn)(X j , Xk ) = 1

2

∑

m,n

Ci
mn{ωm(X j )ω

n(Xk ) − ωm(Xk)ω
n(X j )}, by (3.17)

= 1

2

∑

m,n

Ci
mn(δ

m
j δnk − δmk δnj ), by (4.21)

= 1

2
(Ci

jk − Ci
k j )

= Ci
jk , see Problem 4.9(i)

Thus, (4.22) reduces to

dωi (X j , Xk ) = −1

2

∑

m,n

Ci
mn(ω

m ∧ ωn)(X j , Xk )

or dωi = −1

2

∑

m,n

Ci
mn(ω

m ∧ ωn), ∀ X j , Xk

i.e. dωi = −1

2

∑

j,k

Ci
jk(ω

j ∧ ωk).
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Problem 4.17 Prove that dωi =
i∑

j,k
j<k

Ci
jkω

k ∧ ω j .

Solution : Let us consider j, k = 1, 2, 3. Then

∑

j,k=1,2,3

Ci
jk ω j ∧ ωk = Ci

12ω
1 ∧ ω2 + Ci

13ω
1 ∧ ω3 + Ci

21ω
2 ∧ ω1

+ Ci
23ω

2 ∧ ω3 + Ci
31ω

3 ∧ ω1 + Ci
32ω

3 ∧ ω2

= 2Ci
12ω

1 ∧ ω2 + 2Ci
13ω

1 ∧ ω3 + 2Ci
23ω

2 ∧ ω3,

as ωi ∧ ωi = 0, ωi ∧ ω j = −ω j ∧ ωi ,Ci
jk = −Ci

k j . Thus

∑

j,k=1,2,3

Ci
jkω

j ∧ ωk = 2
i∑

j,k
j<k

Ci
jk ω j ∧ ωk .

Hence, from Problem4.16, we have

dωi = −1

2
× 2

i∑

j,k
j<k

Ci
jk ω j ∧ ωk

or dωi =
i∑

j,k
j<k

Ci
jk ωk ∧ ω j .

Problem 4.18 Consider G =
{ (

x1 x2

0 1

)
∣
∣x1 , x2 ∈ R, x1 
= 0

}

which is a Lie sub-

group of GL(2, R).

(i) Show that ω = a−1da is a left invariant 1-form, where a =
(
x1 x2

0 1

)

.

(ii) Show that {ω1 = dx1

x1

, ω2 = dx2

x1

} is a basis of left invariant 1-form g∗ and find

the structure constants of G with respect to {ω1, ω2}.
(iii) Show that dω + ω ∧ ω = 0.

Solution : (i) Herea =
(
x1 x2

0 1

)

, |a|=x1 , adj a =
(
1 −x2

0 x1

)

, a−1= 1

x1

(
1 −x2

0 x1

)

.
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Also, da =
(
dx1 dx2

0 0

)

. Thus, ω = a−1da = 1

x1

(
1 −x2

0 x1

)(
dx1 dx2

0 0

)

= 1

x1

(
dx1 dx2

0 0

)

.

Let us choose e =
(
1 0
0 1

)

and arbitrary q =
(
r s
0 1

)

. Thus,

Lq a =
(
r s
0 1

)(
x1 x2

0 1

)

=
(
r x1 r x2 + s
0 1

)

, (Lq )∗ =
(
r 0
0 r

)

.

Now,ωp = 1

p

(
dx1 dx2

0 0

)

, ωe =
(
dx1 dx2

0 0

)

. We are to show (L p )
∗ωL pe

= ωe ,

i.e. (L p )
∗ωp = ωe . Now

(L p )
∗ωp =

{ (
p 0
0 p

)( 1
p
0

)

,

(
p 0
0 p

) (
0
1
p

)}

=
{(

1
0

)

,

(
0
1

)}

≡
(
dx1 dx2
0 0

)

= ωe .

Thus, ω = a−1da is a left invariant 1-form.
(ii) Note that

dω1 = d(
dx1

x1

) = d
( 1

x1

) ∧ dx1 = 0

dω2 = d(
dx2

x1

) = d
( 1

x1

) ∧ dx2 − − 1

x2
1

dx1 ∧ dx2

= −ω1 ∧ ω2.

Taking advantage of Maurer–Cartan Equation, we obtain

dωi = −
∑

j,k

Ci
jkω

j ∧ ωk,

for i = 2, dω2 = −C2
12ω

1 ∧ ω2. Comparing, we find that C2
12 = 1 = −C2

21.

(iii) Here ω = 1

x1

(
dx1 dx2

0 0

)

. Therefore

ω ∧ ω = 1

x1

(
dx1 dx2

0 0

)

∧ 1

x1

(
dx1 dx2

0 0

)

= 1

x2
1

(
0 dx1 ∧ dx2

0 0

)

.
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Further

dω = d
( 1

x1

) ∧
(
dx1 dx2

0 0

)

= − 1

x2
1

dx1 ∧
(
dx1 dx2

0 0

)

= − 1

x2
1

(
0 dx1 ∧ dx2

0 0

)

= −ω ∧ ω, from above.

Thus, dω + ω ∧ ω = 0.

Exercises

Exercise 4.12 If ω1 , ω2 are left invariant differential forms, prove that ω1 ∧ ω2 is
also so.

Exercise 4.13 Prove that a r-form ω on a Lie group G is left invariant if and only
if for every left invariant vector fields Xi ’s(1 ≤ i ≤ r) on G, ω(X1 , X2 , . . . , Xr ) is
a constant function on G.

Exercise 4.14 Letφ : G → G be such thatφ(a) = a−1, ∀ a ∈ G. Show that a form
ω is left invariant if and only if φ∗ω is right invariant.

Exercise 4.15 If g∗ denotes the dual space of g, prove that A ∼= g∗, where the set A
is defined in the solution of Problem4.14.

4.4 Automorphism

Let G1 and G2 be Lie group. A map f : G1 → G2 is said to be a Lie group homo-
morphism if f is a C∞ map and for all h, x in G1 ,

f (hx) = f (h) f (x). (4.23)

We can also write it as
f ◦ Lh = L f (h)

◦ f, ∀ x ∈ G1 . (4.24)

Let eG1
and eG2

be the identity elements of G1 and G2 , respectively. Taking h, x in
(4.23) to be the identity eG1

, it follows that

f (eG1
) = eG2

. (4.25)

So a group homomorphism always maps the identity to identity.
If moreover, f is bijective, then f is said to be a Lie group isomorphism.
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For every a ∈ G, a mapping σa : G → G, defined by

σa(x) = axa−1 (4.26)

is said to be an inner automorphism if

{
(i) σa is bijective
(i i) σa(xy) = σa(x)σa(y)

(4.27)

Such σa is written as ada.
An inner automorphism of a Lie group G is defined by

(ada)(x) = axa−1, ∀ x ∈ G. (4.28)

Problem 4.19 If the Lie group G is defined by G =
{ (

x y
0 x

)

: x, y ∈ R, x > 0

}

,

verify whether the map f : G → R
3 defined by f

(
x y
0 x

)

= (x, y, x − y) is a Lie

group homomorphism or not.

Solution : For

(
x

′
y

′

0 x
′

)

∈ G,wehave

(
x y
0 x

)(
x

′
y

′

0 x
′

)

=
(
xx

′
xy

′ + yx
′

0 xx
′

)

. From

the hypothesis,

f

(
x y
0 x

)(
x

′
y

′

0 x
′

)

= (xx
′
, xy

′ + yx
′
, xx

′ − xy
′ − yx

′
).

To show that f is a Lie group homomorphism, our claim is

f (AB) = f (A) + f (B), A, B ∈ G, where G is a lie group.

Now

f

(
x y
0 x

)

+ f

(
x

′
y

′

0 x
′

)


= f

(
x y
0 x

) (
x

′
y

′

0 x
′

)

.

Thus, f is not a Lie group homomorphism.

Exercises

Exercise 4.16 Show that if G is a Lie group, then the map Ih : G → G for every
h ∈ G defined by Ih (x) = hxh−1, x ∈ G is an automorphism.

Exercise 4.17 Show that

ada = La Ra−1 = Ra−1La . (4.29)
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Exercise 4.18 Let H =
⎧
⎨

⎩

⎛

⎝
1 x y
0 1 z
0 0 1

⎞

⎠ : x, y, z ∈ R

⎫
⎬

⎭
be the Lie group and the map

f : H → R defined by A �→ f (A) = x + y + z. Is it a Lie group homomorphism?

Answer

4.18. No.

Let g
1
and g

2
be Lie subalgebra of the Lie group G. A mapping f : g

1
→ g

2
is said

to be a Lie algebra homomorphism if f is a linear mapping and

f [X,Y ] = [ f X, f Y ]. (4.30)

Moreover, if f is bijective then f is said to be Lie algebra isomorphism.

Problem 4.20 Let G1 = GL(n, R) and G2 = GL(1, R). Then the map f given by
f (A) = det A, A ∈ G1 is a homomorphism.

Solution : Clearly

f (cA + B) = c f (A) + f (B), ∀ c ∈ R, A, B ∈ G1 ,

which implies f is linear. Furthermore, f (AB) = det(AB) = det A det B =
f (A) f (B) implies f is a homomorphism.

Problem 4.21 If f : G1 → G2 is a Lie group homomorphism and X is a left invari-
ant vector field on G1 , prove that the left invariant vector field f∗ X on G2 is f -related
to the left invariant vector field X.

Solution : For h ∈ G1 , f (h) ∈ G2 . For every Xh ∈ g1 , f∗(Xh ) ∈ g2 . To show that
f∗ X is f -related to X, we need to show f∗(Xh ) = ( f∗ X) f (h)

, by (2.38). Note that

(Lh )∗ Xe = XLh
(e) = Xh , X ∈ g1 , g1

∼= Te1
(G1 )

.

Thus

f∗(Xh ) = f∗((Lh )∗ Xe) = ( f ◦ Lh )∗ Xe ,

= (L f (h)
◦ f )∗(Xe), by (4.24)

= (L f (h)
)∗ { f∗(Xe)}

= { f∗(X)}L f (h)
(e), by (4.7).

∴ f∗(Xh ) = { f∗(X)} f (h)
.

Hence, the left invariant vector field f∗ X on G2 is f -related to the left invariant
vector field X on G1 .
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Theorem 4.4 Let f : G1 → G2 be a Lie group homomorphism. Then the induced
map f∗ : Te(G1) → Te′(G2) is a homomorphism between the Lie algebras of the Lie
group, where e, e′ are respectively the identity elements of G1 and G2 .

Proof For the identity element e ∈ G1 ,

f (e) = e′,

e′ being the identity element of G2 . In view of Theorem4.2, we can write

g
1
∼= Te(G1), and g

2
∼= Te′(G2),

where g1, g2 are respectively the Lie algebras of G1 and G2 .
Now, let Xe ∈ Te(G1) be such that

f∗(Xe) = Ye′ ∈ Te′(G2).

Then for any a ∈ G1 , (La )∗ Xe = XLa (e) = Xa . Therefore

f∗(Xa) = f∗{(La)∗Xe}
= ( f ◦ La)∗Xe, as ( f g)∗ = f∗ ◦ g∗
= (L f (a) ◦ f )∗Xe, by (4.24)

= (L f (a))∗Ye′

= Y f (a), refer to the definition of left invariant vector field

Thus, the image of a left invariant vector field onG1 under f∗ is a left invariant vector
field on G2 .

Again, we know that

f∗[X1 , X2 ] = [ f∗X1 , f∗X2 ]
= [Y1 ,Y2 ],

where f∗Xi = Yi , i = 1, 2. Thus, f∗ is a homomorphism between the Lie algebras
of two spaces and this completes the proof.

Theorem 4.5 Every inner automorphismof a Lie groupG induces an automorphism
of the Lie algebra g of G.

Proof For every a ∈ G, let us denote the inner automorphism on G by

(ada)(x) = axa−1, ∀ x ∈ G.

Now every ada : G → G induces a differential mapping

(ada)∗ : Te(G) → Tada(e)(G) ≡ Te(G), see (4.28).
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Such a mapping is a linear mapping, and from Theorem4.2, we have g ∼= Te(G).
Thus, to prove the theorem, we need to prove the following:

(i) (ada)∗ : g → g is a well-defined mapping.
(ii) (ada)∗ is bijective.
(iii) (ada)∗ is homomorphism.

By (4.29), we get
(ada)∗ = (Ra−1)∗, ∀Y ∈ g. (4.31)

Now

(L p)∗{(Ra−1)∗Y } = (L p ◦ Ra−1)∗Y, p ∈ G

= (Ra−1)∗Y, see (4.29).

Thus, (Ra−1)∗Y ∈ g. Consequently, (ada)∗ is a well-defined mapping that proves (i).
Also, (ada)∗ is a linear mapping and by Exercise2.30, the (iii) follows immediately.

Finally, let (ada)∗X = (ada)∗Y . Then from (4.31), it follows that X = Y and
hence (ada)∗ is injective. For surjectivity, let us set (ada−1)∗X = Y , as for every
a, a−1 ∈ G. Now

(Ls)∗Y = (Ls)∗((ada−1)∗X)

= (Ls)∗ ◦ (
(La−1 ◦ Ra)∗X

)
, by (4.29)

= (Ls)∗ ◦ ((Ra)∗X), by (4.4)

= (Ra)∗X, by (4.4) and Problem 2.51

= Y, by (4.31) and as assumed.

Thus, Y ∈ g. Also

(ada)∗Y = (La ◦ Ra−1)∗Y, by (4.29)

= (La ◦ Ra−1)∗(ada−1)∗X, as set

= (La ◦ Ra−1)∗(Ra ◦ L−1
a

)∗X, by (4.29)

= X, by Problem 2.51

which proves (ada)∗ is surjective and consequently, (ada)∗ is a bijective mapping.
Thus, the induced map (ada)∗ : g → g is a Lie algebra automorphism.

Remark 4.8 For every a ∈ G, we write

(ada)∗ ≡ Ada, i.e. a �→ Ada (4.32)

and is called the Adjoint Representation of G.



200 4 Lie Group

Problem 4.22 Is Ada invertible?

Solution : By virtue of the last theorem, we find

Ada ≡ (ada)∗ : g → g

is a Lie algebra homomorphism. Further g ∼= Te(G), where Te(G) is a finite-
dimensional vector space. Thus, Ada is a linear transformation from Te(G) →
Te(G). Again, for every a ∈ G, we obtain

(Ada) ◦ (Ada−1) = (ada)∗ ◦ (ada−1)∗
= (La ◦ Ra−1) ◦ (Ra ◦ La−1)∗, by (4.29)

= Ade

Similarly, it can be shown that (Ada−1) ◦ (Ada) = Ade. Hence,Ada−1 = (Ada)−1.
This completes the proof.

4.5 One-Parameter Subgroup of a Lie Group

Let G be a Lie group and a mapping a : R → G denoted by a : t �→ a(t) be a
differentiable curve on G. If for all t, s in R

a(t + s) = a(t)a(s), (4.33)

then the family {a(t)| t ∈ R} is called a one-parameter subgroup of G.
Exercises

Exercise 4.19 Let H = {a(t)|t ∈ R} be a one-parameter subgroup of a Lie group
G. Show that H is a commutative subgroup of G.

Exercise 4.20 If X is a left invariant vector field on a Lie Group G, prove that X is
complete.

Theorem 4.6 Let X be the generator generated by one-parameter group of transfor-
mations Rat

and let Y be that of Lat
. Then X is left invariant and Y is right invariant

and Xe = Ye = a
′
(0) hold, where a

′
(t) denotes the tangent vector to the curve a at

a(t).

Proof For h ∈ G, let Lh (p) = q. Therefore, p = h−1q. Now from (2.34)
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{(Lh )∗ X p } f = X p ( f ◦ Lh ), ∀ f ∈ F(G)

= X
h−1q

( f ◦ Lh )

= lim
t→0

1

t
[( f ◦ Lh ){Rat

(h−1q)} − ( f ◦ Lh )(h
−1q)], by (2.47)

= lim
t→0

1

t
{( f ◦ Rat

)(q) − f (q)}, by (4.2), (4.4)

= Xq f, by (2.47)

∴ (Lh )∗ X p = Xq , ∀ f

or (Lh )∗ X p = XLh
(p),

which shows that X is a left invariant vector field on Lie group G (refer to (4.8)).
Similarly, for h ∈ G, let Rh (p) = q, therefore, p = h−1q. In view of (2.34), we have

{(Rh )∗Yp } f = Yp ( f ◦ Rh )∀ f ∈ F(G)

= Y
h−1q

( f ◦ Rh )

= lim
t→0

1

t
[( f ◦ Rh ){Lat

(qh−1)} − ( f ◦ Rh )(qh
−1)]

= lim
t→0

1

t
{( f ◦ Lat

)(q) − f (q)}, by (4.3), (4.4)

= Yq f

∴ (Rh )∗Yp = Yq , ∀ f

= YRh
(p).

Thus, by (4.9), we can say that Y is right invariant. Since Rat
(e) = at = a(t), a(t)

is an integral curve of X and hence Xa(t) = a
′
(t) holds. In particular, Xe = a

′
(0). By

similar manner, Ye = a
′
(0).

Theorem 4.7 Let {φt |t ∈ R} be a one-parameter group of transformations on a Lie
group G generated by a left invariant vector field and

φt (e) = a(t) = at .

If for every s ∈ G, φt ◦ Ls = Ls ◦ φt , for all s ∈ G, then the set {a(t)| t ∈ R} is a
one-parameter subgroup of G and φt = Rat holds for all t ∈ R. If φt ◦ Rs = Rs ◦ φt

holds for all s ∈ G, then the set {a(t)| t ∈ R} is a one-parameter subgroup of G and
φt = Lat

holds for all t ∈ R

Proof As defined
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a(s + t) = φs+t (e) = φt+s (e), ∀ s, t ∈ R

= φt (φs (e)), as {φt |t ∈ R} is one-parameter group of transformations

= φt a(s)

= φt (La(s)e)

= (La(s) ◦ φt )(e), from the hypothesis, as a(s) ∈ G

= La(s) (a(t))

= a(s)a(t).

So from (4.33), {a(t)| t ∈ R} is a one-parameter subgroup of G. Also

φt (s) = φt (se) = (φt ◦ Ls )(e) = (Ls ◦ φt )(e) = Ls (at ) = sat = Rat (s).

Therefore,φt = Rat . Similarly, it can be shown thatφt = Lat
whenφt ◦ Rs = Rs ◦ φt

holds. This completes the proof.

For each X ∈ g, we set

φt (e) = Rat
(e) = at = a(t) = exp(t X), (4.34)

where {φt |t ∈ R} is the one-parameter group of transformations on G generated by
X . We call {at = a(t) = φt (e)} the one-parameter subgroup of G, generated by
X .

The map X → exp X , is a map from g to G and is said to be the exponential
map.

Problem 4.23 Let G be a Lie group. For every X ∈ g, let Y be the generator induced
by the one-parameter group of transformations {φt |t ∈ R} defined by

φ : G → G, φ(t, x) ≡ φt (x) = exp(t X)x, ∀ x ∈ G.

Prove that Y is right invariant.

Solution : We have to prove that, for every a ∈ G, (Ra )∗Y = Y . In view of Exer-
cise2.48, we are to prove that (Ra ◦ φt ) = (φt ◦ Ra ). Now

(Ra ◦ φt )(x) = Ra (exp(t X)x), by hypothesis

= exp(t X)Ra x

= exp(t X)xa, by (4.3).

Also, (φt ◦ Ra )(x) = φt (xa) = exp(t X)xa. Thus, (Ra ◦ φt ) = (φt ◦ Ra ) i.e.(Ra )∗Y =
Y . Hence, the vector field Y is right invariant.

Problem 4.24 Let G be an Abelian Lie group. Prove that [X,Y ] = 0, where X,Y
are left invariant vector fields on G.
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Solution : From Problem4.23, for X,Y ∈ g, let

φt (x) = exp(t X)x,

ψs (x) = exp(sY )x, t, s ∈ R.

By virtue of Theorem2.8, we know that if {φt |t ∈ R} is the one-parameter group of
transformations generated by X, then for every vector field Y ,

[X,Y ] = lim
t→0

1

t
{Y − (φt )∗Y }

or [X,Y ]q = lim
t→0

1

t
{Yq − ((φt )∗Y )q }, q ∈ G.

Let us write φt (p) = q, p ∈ G, then p = φ−t (q) and hence

((φt )∗Y )q = ((φt )∗Y )
φt (p) = (φt )∗Yp [re f er to(2.35)] = (φt )∗Yφ−t (q)

.

Thus, [X,Y ] = 0 if ((φt )∗Y )q = Yq i.e.(φt )∗Yφ−t (q)
= Yq , i.e.we have to show that Y

is invariant under φt . Hence, from Exercise2.48, we wish to prove φt ◦ ψs = ψs ◦ φt .
Now

(φt ◦ ψs )(x) = φt (exp(sY )x)

= exp(sY ) exp(t X)x

= exp(t X) exp(sY )x, as G is abelian

= ψs (exp(t X)x)

= (ψs ◦ φt )(x).

Therefore, φt ◦ ψs = ψs ◦ φt , for all x ∈ G. This completes the proof.

Theorem 4.8 If X,Y ∈ g, then [Y, X ] = lim
t→0

1

t
{(Ada−1

t )Y − Y }.

Proof If {φt |t ∈ R} is the one-parameter group of transformations on a Lie group
generated by the left invariant vector field X , then

[Y, X ] = lim
t→0

1

t
{(φt )∗Y − Y }, for every vector field Y ∈ χ(G).

Now Ada−1
t = (ada−1

t )∗ = (Rat ◦ La−1
t

)∗, see (4.29).
If Y ∈ g, then from above after a few steps,

(Ada−1
t )Y = (Rat )∗Y = (φt )∗Y, from Theorem 4.7.
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Thus

[Y, X ] = lim
t→0

1

t
{(Ada−1

t )Y − Y }.

This completes the proof.

4.6 Lie Transformation Group (Action of a Lie Group
on a Manifold)

A Lie Group G is a Lie Transformation Group on a manifold M or G is said to act
differentiably on M if the following conditions hold:

⎧
⎨

⎩

(i) (a, p) : G × M → pa(∈ M) is a differentiable map;
(i i) Each a ∈ G induces a transformation onM, denoted by p �→ pa
(i i i) p(ab) = (pa)b, ∀ a, b ∈ G.

(4.35)

We say that G acts on M on the right as (i) and (iii) can be written as

(i) Ra p = pa.
(ii) Rab p = p(ab) = (pa)b.

Similarly, the action of G on M on the left can be defined.
Exercises

Exercise 4.21 Let G = GL2(R), M = R and θ : G × M → M be a differentiable
mapping defined by

θ

((
a b
0 1

)

, p

)

= ap + b, a > 0, a, b ∈ R.

Show that θ is an action on M.

If G acts on M on the right such that pa = p, ∀ p ∈ M implies that a = e, then
G is said to act effectively on M .

However, if G acts on M on the right such that pa = p, ∀ p ∈ M implies that
a = e, for some p ∈ M , then G is said to act freely on M .

Theorem 4.9 If G acts on M, then the mapping σ : g → χ(M) denoted by
σ : A → σ(A) = A∗ is a Lie algebra homomorphism. It is to be noted that σ(A) =
A∗ is called the fundamental vector field on M, corresponding to A ∈ g (Fig.4.2).

Proof For every p ∈ M , let σp : G → M be a mapping such that

σp (a) = pa, ∀ a ∈ G. (4.36)
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Fig. 4.2 Lie Algebra Homomorphism

Note that both g, χ(M) are algebra, hence we have to show

(i) σ is linear.
(ii) σ([A, B]) = [σ(A), σ (B)].
Note that every A ∈ g induces {φt (e)| t ∈ R} as its one-parameter group of
transformations on G such that

a(t) = at = φt (e).

The map (σp )∗ : Te(G) → Tσp (e)(M) = Tp(M) is a linear map.
Now by hypothesis, we have

(σp )∗Ae = {σ(A)}σp (e) = {σ(A)}p = A∗
p. (4.37)

For every A, B ∈ g, we have A + B ∈ g and

{σ(A + B)}p = (σp )∗(A + B)e = (σp )∗(Ae + Be) = {σ(A)}p + {σ(B)}p
{σ(bA)}p = (σp )∗Ae = b{σ(A)}p, ∀ b ∈ R.

This proves that σ is linear.
Again, Ae is the tangent vector to the curve a(t) ≡ at at a(0) = e. Then (σp )∗Ae

is the tangent vector to the curve

σp (at ) = pat , by (4.36)

= Rat (p), by (4.3)

at σp(a0) = σp(e) = p. Thus, A∗
p induces {Rat (p)} as its one-parameter group of

transformations on M . Now
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[σ(A), σ (B)]p = [A∗, B∗]p
= lim

t→0

1

t

{
B∗
p − (

(Rat )∗B
∗)

p

}
, by Theorem 2.8

= lim
t→0

1

t
{(σp )∗Be − (Rat )∗B

∗
q }, say, where Rat (q) = p,

i.e. q = pa−1
t .

∴ (Rat )∗B
∗
q = (Rat )∗B

∗
pa−1

t
= (Rat ◦ σpa−1

t
)∗Be, by (4.37).

Now, Rat ◦ σpa−1
t

: G → M and hence for b ∈ G, we have

(Rat ◦ σpa−1
t

)(b) = pa−1
t bat = σp((ada

−1
t )(b)) = (σp ◦ ada−1

t )(b).

∴ Rat ◦ σpa−1
t

= σp ◦ ada−1
t .

Hence

(Rat )∗B
∗
q = (σp)∗

(
(ada−1

t )∗Be
) = (σp)∗

(
(Ada−1

t )Be
)
, by (4.32).

Thus

[σ(A), σ (B)]p = lim
t→0

1

t

{
(σp)∗Be − (σp)∗

(
(Ada−1

t )Be
)}

= (σp)∗[A, B]e, as (σp)∗ is linear and by Theorem 4.8

= (
σ([A, B]))p, by (4.37)

i.e. σ ([A, B]) = [σ(A), σ (B)].

Hence, the mapping σ : g → χ(M) is a linear algebra homomorphism. This com-
pletes the proof.

Theorem 4.10 If G acts effectively on M, then the map σ : g → χ(M) defined by
A �→ σ(A) = A∗ is an isomorphism.

Proof In view of Theorem4.9, we can say that σ is a Lie algebra homomorphism.
We are left to prove that σ is bijective. Let σ(A) = σ(B) hold for every A, B ∈ g.
Then,

σ(A − B) = θ ⇒ (A − B)∗ = θ.

Now for every A, B in g, A − B(∈ g) will generate {ψt (e)| t ∈ R}(say) as its one-
parameter group of transformations on G such that (A − B)e is the tangent vector to
the curve, given by

bt = ψt (e) at ψ0(e) = b0 = e. (4.38)

Consequently, (σp)∗(A − B)e is the tangent vector to the curve

σp(bt ) = pbt = Rbt (p), at p b0 = p.
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Thus, (A − B)∗ ≡ (σp)∗(A − B)e will generate {Rbt (p)| t ∈ R} as its one-parameter
group of transformations on M . But the integral curve of the null-vector (A − B)∗
will reduce to the initial point itself, refer to Problem2.42. Hence,

σp(bt ) = p i.e. Rbt (p) = p i.e. p bt = p.

AsG acts effectively onM , from the foregoing equation,we obtainbt = e, ∀ p ∈ M .
Again, (L p)∗(A − B) = A − B. Thus, using Exercise2.48, we have L p ◦ ψt = ψt ◦
L p. Hence

ψt (q) = ψt (qe) = (ψt ◦ Lq)(e) = Lq(ψt (e))

= Lq(bt ), refer to (4.38)

= q, from above.

From the definition, we have

(A − B)q f = lim
t→0

1

t
{ f (ψt (q)) − f (q)} = 0.

Therefore, A − B is a null vector. So from σ(A) = σ(B), we must have A = B.
Clearly, σ is surjective. Hence, σ is injective. Thus, σ is bijective and consequently,
σ is an isomorphism.

Exercises

Exercise 4.22 If G acts freely on M, the proof that for every non-null left invariant
vector field A, the fundamental vector field A∗ can never vanish.

Exercise 4.23 Prove that the map θ : R
+ × R → R defined by (a, p) �→ ax is an

action of R
+ on R. Is it free?

Answer/Hint

4.22. Use Theorems4.9 and 4.10.
4.23. No
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