

CONTENTS

Introduction
Chapter 1
Chapter 2
Chapter 3
Chapter 4

INTRODUCTION

Quantum computing may seem to most a heavy, tedious, and
infinitely abstract field. However, as daunting as it may be, the field of
quantum computing holds the answers for some of the world’s most
complex problems, problems that choke up even the most powerful
supercomputers. This isn't to say quantum computers are objectively
superior to classical computers, but simply different. If classical
computers were cars, quantum computers would be planes. In some
cases, it makes sense to use the car — it can be impractical to take a
plane for the 3 miles you need to travel. Sometimes, though, it makes
sense to fly for a few hours instead of trying to drive across an entire
continent. Of course, this analogy is a simplification of the differences
between the two, but it still serves as an important boundary
nonetheless.

Although each of the systems have nuanced structures, they are
similar in many ways. You might know of the classical bit, which is
either 0 or 1. 1 is on, 0 is off, it’s true vs false and active vs inactive.
This is because, practically, either an electrical signal is on or off —
there is no in between. Quantum computing fills in the gap where
classical computing ends, and enters into a specialized zone where
reality is suspended, and the future is simply a probability amplitude.
There is no more 0 OR 1, there is both. A unit of data that exhibits
this characteristic, called a qubit, or quantum bit, can simultaneously
be 0 and 1 at the same time. In fact, it can represent even more than
0 or 1. This property of having multiple opposing states is called
superposition, and it is critical to quantum computing.

Schrodinger’s Cat

This phenomenon might seem counterintuitive, so we’'ll start with a
simple example involving a very famous cat first proposed by Erwin

Schrodinger in 1935. Imagine you place a cat in a box with a very
special jar. This jar has a 50% chance of releasing poison that would
certainly kill the cat. You seal the box, leaving the cat and jar inside,
and come back a week later. Obviously, in a classical sense, the cat
is either dead or alive. But when we transcend the classical world of
logic and certainty, we imagine the cat as both dead and alive,
suspended in a state of superposition in the instant before we can be
certain of any conclusion. But this paradoxical feline thought
experiment isn't just a detached idea; it manifests in the form of
quantum computers. These machines harness the power of
superposition to explore multiple avenues of a given problem
simultaneously. Where a classical computer would simply need to
move sequentially and handle each case at a time, step by step,
quantum computers expand their path of computation exponentially,
gracefully solving unimaginably large problems. This fundamental
advantage to quantum computers allows them to speed through
calculations that would take your average computer eons to perform.
In fact, quantum computers can solve in 4 minutes what would take
the world’s top supercomputers over 10,000 years to accomplish. In
a sense, quantum computers work in parallel. Instead of performing
500 million operations individually, quantum computers can perform
them all at once.

What to Expect

In the pages that follow, we will unravel the intricacies of qubits,
explore quantum gates, and peek into the world of quantum
computing. As we delve into quantum computing’s folds, we’ll keep
our focus practical, bridging the gap between the abstract and the
physical. This book isn’t just about theoretical applications or high-
level ideas of quantum computing, it's about practical application and
analogous learning.

By the time you turn the final page, you'll have a firm grasp of the
key principles behind quantum computing and the sophisticated ideas
it holds. Even if you don’'t work in a tech-related field, and all of these
complex ideas and solutions might seem distant and detached, this

kind of technology will only be developed further. Even if all quantum
computers crash and burn tomorrow, the ideas in this book can have
a profound impact on the way you think, the way you see the world
around you. Though whether it be five years or five decades,
quantum computers will eventually intertwine themselves with our
daily lives. With this new adoption will come extended use such as
heightened calculation speeds, improved biological simulations of
organisms, and even more accuracy and speed in artificial intelligence
algorithms. Welcome to a new era of computation, where 1s, Os, and
the uncertain void between them aid us in solving problems of any
magnitude.

CHAPTER 1

The Qubit and Superposition: A High-Level
Overview

As we’ve seen in the introduction, the world of quantum
computing offers a departure from the familiar realm of classical
computing. Just as planes redefine the possibilities of travel, quantum
computers redefine the limits of computation. But how exactly do
these quantum marvels operate? Let’s journey into the heart of
quantum computing fundamentals.

A qubit by its very definition is superpositional, meaning it can have
both states of 0 and 1 at the same time. Just as Schrodinger’s
famous cat was both dead and alive at once, qubits themselves are
both 1 and 0.

The Problem State

Before we dive into the intricacies of the qubit, it is important to
understand in some abstract sense what the quantum computer is
doing, before the math and quantum phenomena become too
overwhelming.

To grasp this, let’s use visual aids.

Imagine you're running a program on a classical computer, say,
searching a database. The computer performs operations like this:

Each dot on the line represents another step of the program, another
piece of data analyzed. The classical computer moves step by step
by step by step, only focusing on one thing at a time.

A quantum computer running the same task would exemplify the
following diagram:

As you can see, the quantum computer exponentially navigates the
solution space by essentially using superposition to cover all the
bases. If the qubit is both 0 and 1, then the computer is able to take
advantage of both states to check multiple scenarios at once, instead
of moving linearly through the problem like classical computers. Liken
this to a tree: the quantum computer branches out, and branches out
from those branches. The classical computer, on the other hand,
simply grows one branch and, in doing so, sacrifices the calculated
efficiency of the quantum system.

A More Advanced Definition

Except how can we define a qubit? Of course, it isn't enough to
simply say, “It is both 0 and 1”7 or “it is superpositional.” As
aforementioned, a qubit is defined as a probability amplitude, with a
certain probability of being 0 and a certain probability of being 1.
Let’s take a look at the mathematical definition below:

W) =al0)+B[1) = qubit state
jof” + |BI° = 1

This might seem like a lot, especially if you aren’t heavily involved
in mathematics. However, it is deceptively simple once you

understand the notation and vocabulary.

|W): This is the ket notation for the quantum state of the qubit.
The |} symbol represents a “ket,” which is used in quantum

mechanics to denote a vector in a quantum state space. ¥, the
variable inside the ket, indicates the state of a given qubit in this
scenario.

@ & B: These are complex coefficients (also known as

amplitudes) associated with the two basis states of the qubit. ¢

& B measure the probability of the qubit being in the states 0 and
1 respectively.

10): This is the ket notation for the “0” state of the qubit. It
represents one of the possible states that the qubit can be in.
This state is often referred to as the “ground state.”

|1): This is the ket notation for the “1” state of the qubit. Like

10), it represents another possible state that the qubit can be in.
This state is often referred to as the “excited state.”

State Vector: Imagine an arrow pointing off into space in a
specific direction with a specific magnitude of 1 (the normalization

of @ and B sum to 1). That’s a vector. A state vector is simply a
vector whose characteristics indicate certain conclusions about a
qubit’s state.

Now that we understand the basic terms and definitions, the

equations take on a much more intuitive approach. ¢ represents the

probability that the qubit is in the state 0 at any given time, while P
represents the probability that the qubit is in the state 1 at any given

time. We can view the exact probabilities (either & or B) of the qubit
having a specific state in familiar terms by simply taking the absolute
value and square of any individual variable:

¥ has a 2 chance of being 0, in other words, a 50% chance of being
1

0. This also means P must be _E as well. This is because the absolute

values of @ and B squared and summed is equal to 1, as shown
above, which is called the normalization condition. All the
normalization condition does is ensure that all possible outcomes of
the qubit state add up to 1, or the percent chances of the qubit having
a state of 0 and 1 add up to 100%.

Quantum Phase

This is the other side of qubits: the phase. While the quantum

state W is relatively easy to define as simple probabilities, quantum
phase can be more nuanced and a bit tricky to understand, so we will
explore the concept with examples.

Imagine you're in a realm where mysterious forces govern the
behavior of objects. In this world, there are two kinds of “quantum
magnets”: one is exceptionally strong, hovering 10 feet above the
ground, and the other is relatively weaker, attached to the floor.
Somewhere between them, suspended in the air, there’s a special
pole. The end of the pole farthest from the magnets is fixed in space.

This pole exists in a unique state, much like a quantum bit, or
qubit. It’s as if the pole can choose between pointing up or down,
representing the 0 or 1 state of a qubit. But here’s where it gets
interesting: the way this pole points is determined not just by the
powerful magnet above or the weaker one below, but by the subtle
interaction of their forces.

The strong magnet on the ceiling certainly has a more significant
influence on the pole’s orientation. However, the weaker magnet on
the floor still manages to exert some pull, tugging the pole in its own
direction. As a result, the pole doesn't point directly up or directly
down, but somewhere in between. The extent to which the pole leans
towards the stronger magnet depends on their relative strengths,
which, in this case, is the stronger magnet above the pole.

Now, let’s translate this into qubits. Imagine that the stronger
magnet corresponds to the probability amplitude & (for the 10) state),

and the weaker magnet corresponds to B (for the |1) state). The
angle at which the pole tilts can be compared to the qubit’s phase
angle. This angle isn't a physical tilt, but instead a mathematical
concept that influences the behavior of quantum states.

In this analogy, the phase angle represents the balance between

the influences of ® and B. If the top magnet’s pull dominates, the
phase angle tilts one way; if the bottom magnet’s influence gains the
upper hand, the phase angle tilts the other way. When the pole points

straight ahead, @ and P are equal to one another, balancing each
other out.

Of course, leaving the analogy and returning to the reality of
quantum mechanics, things get messier. The phase itself is actually

associated with complex numbers(i = \E). Another key component
of the phase is called the phase angle, or the angle that the imagined
pole would point. An angle of $45\degree$ for example would indicate
that our analogical pole would be pointing more up towards the top
magnet than down towards the bottom magnet. The phase angle can
be defined in the following way:

0 = argla)-arg(p)
arg(x) represents the angle between the positive real horizontal axis

and the line connecting the complex number to the origin in the
complex plane.

This might seem a bit unclear at first, so let’s take it slow. First, to
understand this example, we need to realize another thing about &

and B. They exist in the complex plane, meaning that they aren'’t
1

always going to be a nice, real number, like 2, Instead, these
amplitudes can take the form @ + bi where 2 is a real number and b is
a coefficient to the complex root 1. This form describes a complex
number, meaning parts of the variables may not exist (i is quite

literally an “imaginary number”). This means that @ and P can look
pretty messy at times, such as:

a=E+J—g
1 i
=5

Note that these values of ® and P are valid because they satisfy the

zat T
normalization condition '@ Bl =1,

Now that we know the probability amplitudes ® and B can consist of
complex and real numbers, we can return to the arg(x) function. Also

known as the arctan2(xy) function calculates the angle between a
probability amplitude and the real x-axis, taking complex factors into
account. For example, if

i -

B= 5

6

3
And we called arCtanZ(B), that would be equivalent to calling
1

arctan2(x,y) where X is equal to the real portion of B, or =~ 3, and ¥
1

is equal to the complex coefficient, or Y= _E(Note that ¥ is the
coefficient and not the complex term, meaning we do not include Lin
our definition of ¥).

So, again returning to the definition of 9, the angle between our
two amplitudes, we can generalize it as the difference between the

angles of ® and P relative to the x-axis. The angle 9, the phase angle,
is crucial to many aspects of quantum computing. In fact, it plays a

role in determining how the probability amplitudes % and B interact, in
an event known as quantum coherence, in which quantum systems
attempt to maintain their superposition over time.

Visualizing the Qubit

Now that we've explored the true meaning of qubit and some key
properties, let’s talk a little bit more about how we can actually
picture a model of it, instead of just imagining the ideas behind the
concept. The most common method of visualizing a qubit is through
what is known at the Bloch sphere, a 3-dimensional spherical canvas

to paint our qubit. Let’s imagine that the state 10) exists at the top of

the sphere, directly north. 11) lives at the bottom, exactly south.
Finally, let’s introduce our state vector, an arrow originating from the
center of our Bloch sphere. The position of the state vector depends
on two conditions: the phase and the state.

For the sake of the example, ® and B will take on the following
values:

L
(XZJE

This is to say there is a 20% chance the qubit will have a state of O
and an 80% chance the qubit will have a state of 1. Already, we can
use this information to imagine an aspect of our state vector.
Imagine that by increasing %, we rotate the state vector up
towards the north pole, or towards 10). In contrast, increasing B, and

thus, decreasing &, we rotate the state vector down towards the

south pole, representing a shift towards the state 11). This concept
should seem familiar from our previous example with the hovering
pole between magnets: phase.

The degree of vertical rotation applied to the state vector is
controlled by the phase angle. However, there are still more
dimensions to consider: what about the left and right rotations?

If the phase angle is positive, the state vector will rotate
counterclockwise around the Bloch sphere. If the phase angle is
negative, the state vector will rotate clockwise around the Bloch
sphere. However, even horizontal rotation affects the probability
amplitudes of the qubit. A counterclockwise rotation (indicating a
positive phase angle) increases the probability that the qubit is
measured in a state of 0. Similarly, a clockwise rotation increases the
probability that the qubit is measured in a state of 1.

It is important to recognize that this model only truly works when
you consider one qubit at a time. If you were to attempt to imagine
multiple qubits in the same system, the Bloch sphere would need to
expand dimensionally, due to phenomena such as entanglement. Said
phenomena will be discussed further along in the rest of the book.

However, as far as the single-qubit representation goes, it is very
intuitive. The Bloch sphere is an great visualization tool for
understanding quantum states because it offers a clear geometric
representation of qubit states. By mapping the complex probability
amplitudes onto a 3D sphere, it provides a tangible way to grasp
concepts like superposition and phase. The sphere’s simplicity
enables us to visualize qubit rotations and transformations, making it
a powerful aid in comprehending the complex behaviors of quantum
systems.

Conclusion

In this opening chapter, we’ve taken our first steps into the
captivating world of quantum computing. We've discovered the
remarkable nature of qubits, with their ability to exist in superposition,
embodying multiple states at once. The enigmatic concept of phase
has come into focus, guiding qubits’ interactions and behaviors. As
we move forward in this journey, we’ll delve deeper, exploring
quantum phenomena, quantum gates, and the elusive quantum
algorithm.

CHAPTER 2

Deeper Quantum Phenomena

In this chapter, we will contemplate the complex and intricate ideas
and theories buried just beneath the surface of quantum computing.

On the surface, these ideas may just be words ~ descriptions and
abstract explanations whose effect may never be realized.
Memorizing these ideas will get you nowhere without seeing them
unfold before your mind’s eye. True learning comes from deep
realization and the communicative nature of ideas. While reading this
chapter, do your best to connect every concept in here to some sort
of hypothetical situation in your life, no matter how abstract or
unfamiliar the idea might be. Even making an attempt to relate this
information to your existence in any way aids growth.

Superposition and the Enigma of the
Wavefunction Collapse

The term superposition has been discussed previously in the chapter,
but let’s dig a bit deeper into it. Right in the instant before we are
certain of a qubit’s state, it is suspended in a state of superposition,
existing as both 0 and 1 until it crystallizes as either option. You might
imagine spinning a picker wheel, like the one pictured below:

When the wheel stops spinning, and chooses a concrete state, it
will remain that way. But right before it stops spinning, it fluctuates
between 0 and 1 based on probability. As the wheel spins and begins
to slow, it is still passing over 0 and 1, fluctuating between them. The
wheel depicted above has an equal chance of landing on 0 and 1
because both 0 and 1 take up equal space in the wheel. This is
superpositional because the qubit’s state is not static up until the point
of certainty, more, it is in flux. However, qubits don't always have to
have a 50/50 chance of being 0 and 1. They can be split 30/70,
60/40, and even 99.999/0.001. However, no qubit can ever exist with
either a probability of O for having the states 0 or 1, because then it
wouldn't be superpositional. For example, if the probability of a qubit
having a state of 1 was 0, then there was no way the qubit would
ever be 0. In this case, said qubit wouldn't be a qubit at all, because
a qubit is defined as superpositional, and a unit of data with only one
attainable value is not superpositional but constant.

The wavefunction collapse is a process that signifies the end of a
qubit’s superpositional state, and symbolizes the start of the qubit’s
entry into the mundane realm of certainty.

Imagine a qubit suspended in a state of superposition, embodying
the probability of both 0 and 1. As long as we don’'t measure its state,
this qubit exists in a state of ambiguity, poised between the two
possibilities. However, the moment we observe or measure the qubit,
a transformation occurs—an event known as wavefunction collapse.
In an instant, the once-fluid probabilities solidify into a singular,
definite outcome. You might imagine this in the context of our wheel-
spinning example. If we apply this phenomenon to that specific
scenario, we might understand the solidification of qubit state, the
collapse of the wavefunction, as the wheel finally landing upon a
specific value.

In a complex sense, a qubit doesn’t really have a value until we try
to determine what that value is. This is because by measuring a qubit
at a certain time, we force a certain outcome to present itself. A qubit
constantly flips between 0 and 1, but measuring a qubit at a given

time will only results in 0 or 1, serving to “collapse the wavefunction,”
effectively demanding that the qubit relinquish its grasp on duality and
accepting a singular value.

If you decide to stop the wheel while it just so happens to be
moving over the sector marked “1”, then the qubit has a state of 1.
Similarly, if you stop the wheel over “0”, and force the wavefunction to
collapse, the qubit will have a state of 0. Of course, in the context of
qubits, you wouldn’t actually see the wheel spinning, only the result. In
this way, we begin to understand how the qubit as a unit can be
superpositional.

Quantum Entanglement

Entanglement is a special, overarching concept that lies deep inside
the heart of quantum computing. It is unique because it doesn't just
describe qubits, but actual particles themselves. Quantum
entanglement is the idea that 2 particles are linked to each other no
matter how far away they are.

Imagine two particles, let’s call them Particle A and Particle B, that
have interacted and become entangled. The remarkable property of
entanglement is that the quantum state of the combined system
cannot be described independently for each particle; instead, the
state of one particle is inherently tied to the state of the other, no
matter how far apart they are. This connection persists even when
the particles are separated by vast distances, defying the constraints
of classical physics.

The entangled state of Particle A and Particle B can be described as
a superposition of possible states, where the outcomes of
measurements on one particle are intrinsically linked to the outcomes
on the other. This means that if a measurement is performed on
Particle A and it collapses into a specific state, the state of Particle B
instantly becomes correlated, even though it might be light-years
away. This instantaneous connection, termed “spooky action at a

distance” by Einstein, Podolsky, and Rosen in their famous EPR
paper, is a key trait of entanglement.

A classic example of entanglement involves particles with spin, an
form of angular momentum. When two particles become entangled,
their spins become correlated, regardless of the distance between
them. If we measure the spin of Particle A along a certain axis and
find it to be “up,” the spin of Particle B, when measured along the
same axis, will instantaneously be found to be “down.” This
correlation holds true even if the measurements are taken in different
directions.

One classic example of quantum superposition is the jinx. Remember
back in 8th grade, talking about how well your math test went was
considered a “jinx,” meaning simply talking about it might bring bad
luck upon you? The jinx isn't real, of course, but the underlying idea is
very intuitive and indeed replicated on a large scale throughout the
quantum realm. Making one action seems to lead to a different
outcome in a different situation. An important distinction to make here
is that Particle A has no physical contact, direct or otherwise, with
Particle B.

Since a hallmark trait of qubits is that they are entangled can hold and
process information in ways that classical bits cannot, the
entanglement of qubits enables quantum computers to perform
complex calculations with a potential for exponential speedup. This
opens doors to solving problems that were previously intractable for
classical computers.

But beyond that, quantum entanglement has a philosophical value
associated with it as well. If everything in the universe is somehow
connected, no matter the distance, no matter the infinite logical laws
against it, is anything truly random? Can the universe be described by
an equation, a sequence of electrons influencing electrons influencing
everything? If so, is the idea of an unchanging future, or fate, real?
The lines get blurrier and blurrier the more we consider the concept
of entanglement, which is why it is interesting food for thought.

Quantum Coherence

Quantum coherence is a principle strongly attached to the raw

definition of the qubit: the probability amplitudes @ and B and their
relation to the state of a qubit. Coherent states have phases that are
well-defined and synchronized. Incoherent states, on the other hand,
have uncontrollable phases and tend to lose their quantum properties,
becoming ordinary bits instead of remaining superpositional qubits.

Picture two dancers moving to the rhythm of a musical
composition. The dancers represent qubits, and their synchronized
steps embody quantum coherence. Quantum phase guides the
dancers’ movements, ensuring that they remain in harmony and
perform a coherent, synchronized routine. The longer the dancers
stay in sync, the longer the show can go on. If the dancers lose
harmony, the magic is ruined, and the act essentially falls apart.
Quantum phase is a vital dimension to qubits because it allows them
to work together; if the phase is an incoherent or generally
undesirable state then the qubit loses its special properties and the
quantum computer depending on it may experience interference,
leading to errors in quantum computations and can affect the
reliability of quantum systems. Quantum coherence is delicate, easily
disrupted by the outside world. It’s as if our quantum dancer is
performing on a stage is constantly brushed by invisible gusts of
wind. The environment, with its vibrations, interactions, and
fluctuations, can disturb the coherence, causing our qubits to lose
their synchronized elegance. This phenomenon is known as
decoherence. Simply put, without a special and fragile harmony,
everything falls apart.

Therefore, a desirable phase is required for qubits to function and

remain superpositional. In the case of this broken harmony, the &

and P amplitudes may even cancel each other out, resulting in what is
known as quantum interference.

Quantum Interference

Imagine a symphony hall where musicians play a multitude of
instruments, each producing its distinct sound waves. As these waves
converge, they can reinforce one another to create a harmonious
crescendo or cancel out to bring about a moment of silence. This
interplay of waveforms is a classical illustration of interference, a
phenomenon that’s equally captivating in the realm of quantum
mechanics.

In the world of quantum physics, interference transcends the familiar
world of sound waves and instead represents state probability
amplitudes, which can either work together or work against one
another.

At its core, quantum interference is the phenomenon in which the
probabilities of different quantum pathways combine, leading to
enhanced or diminished outcomes upon measurement. This concept
arises due to the wave-like nature of quantum particles, encapsulated
in the wavefunction that describes a particle’s possible states and
their associated probabilities.

Consider a quantum particle, such as an electron, in a superposition
of states. This superposition is akin to our symphony hall, with
multiple instruments producing distinct waveforms. When these
waveforms overlap, they can either reinforce each other, leading to
constructive interference and higher probabilities of certain outcomes,
or cancel each other out, resulting in destructive interference and
reduced probabilities. Teamwork makes the dreamwork, literally.

One of the most iconic experiments illustrating quantum interference
is the double-slit experiment. In this setup, particles are fired at a
barrier with two slits. As particles pass through the slits, their
wavefunctions create an interference pattern on the screen behind
the barrier. This pattern arises from the constructive and destructive
interference of the wavefunctions emerging from the two slits. Even
when particles are sent through one at a time, the interference
pattern gradually emerges as each particle contributes to the overall
probability distribution.

Quantum interference plays a pivotal role in quantum algorithms and
computations. Quantum computers leverage interference to enhance
desirable outcomes and suppress undesirable ones. Algorithms are
able to exploit interference to amplify the probability of correct
solutions while damping incorrect ones. This harnessing of
interference allows quantum computers to search through vast
solution spaces more efficiently than classical counterparts.

The beauty of quantum interference lies in its duality—simultaneously
perplexing and awe-inspiring. It highlights the probabilistic nature of
quantum particles, where different possibilities coexist until the
moment of measurement, when interference either accentuates their
probabilities or leads to their vanishing.

Quantum Tunneling

In the realm of classical physics, a ball rolling down a hill eventually
reaches the lowest point of the slope due to the influence of gravity.
This behavior adheres to the principles of classical mechanics, where
particles obey well-defined trajectories determined by their energy
and the forces acting upon them. However, when we venture into the
world of quantum mechanics, this intuitive understanding begins to
unravel, giving rise to a phenomenon known as quantum tunneling.

Quantum tunneling is a fascinating process in which particles appear
to “tunnel” through energy barriers that, according to classical
physics, they should not be able to overcome. It sounds to be straight
out of a sci-fi movie. It challenges our classical intuitions by
demonstrating that particles can traverse barriers that should be
insurmountable based on their energy levels.

This phenomenon emerges due to the wave-like nature of quantum
particles. Such particles, like electrons, are dictated by
wavefunctions, which contains a number of possible positions and
energy levels. However, as these particles approach what should be
an unwavering barrier, their wavefunctions are able to extend past the
classical realm into a sort of forbidden space. This means that there

is some possibility, however small it may be, that particles are able to
exist on the other side of such barriers.

These particles exist in a state of probability, simultaneously
inhabiting various positions and energies. This probabilistic nature
gives rise to quantum tunneling, as particles can almost “borrow”
energy from their surroundings for the briefest of moments, allowing
them to essentially tunnel through obstacles they wouldn’'t normally be
able to.

A classic analogy for quantum tunneling involves a particle
approaching a barrier, much like a person trying to walk through a
solid wall. In the quantum realm, however, there’s a finite probability
that the particle will materialize on the other side of the barrier without
having passed over it or broken it. It simply tunnels through it, as if
passing through a multidimensional passage to simply exist on the
other side.

Despite its seeming paradoxical nature, quantum tunneling has been
extensively verified through experiments. While it might challenge our
everyday understanding, quantum tunneling opens doors to further

technological advancements, and serves as a reminder of the depth
of the universe’s quantum fabric: the boundaries of possibility are far
more nuanced and multidimensional than they appear on the surface.

Quantum Error Correction

Quantum computing is a delicate dance: qubits must not be caught off
balance in their superpositional balancing acts. Quantum error
correction (QEC) is the critical foundation upon which the reliability of
quantum computers is built. It's akin to the error-correction codes
used in classical computing but adapted to the considerably more
delicate world of quantum mechanics.

Quantum computers operate in a realm where information is stored
and processed in quantum states, which are highly susceptible to
disturbances from their surroundings. This sensitivity to environmental
factors, known as quantum decoherence, can cause qubits to flip
from their intended state, creating errors that cascade through

quantum algorithms, rendering their results unreliable. This
phenomenon poses a major obstacle to the development of practical
quantum computers.

Quantum error correction is a groundbreaking concept that enables
quantum computers to mitigate errors and maintain the integrity of
their calculations. The core idea of QEC is to use specially designed
quantum codes to encode and protect quantum information in a way
that allows errors to be detected and corrected without directly
measuring the qubits. This is crucial, because measuring qubits will
shatter their superposition.

To start, QEC encodes logical qubits into larger groups of physical
qubits. These groups, known as code words, provide redundancy.
Errors in the physical qubits can be identified and rectified by
comparing the state of the physical qubits to the expected state of
the logical qubit. Think of this like checking your work; you compare
your answer on the practice sheet to the answer key your teacher or
professor provides you with.

Then, quantum error correction employs specialized quantum gates
that are fault-tolerant, meaning they can operate correctly even when
some of the physical qubits are in error. To detect errors, QEC
involves taking measurements known as syndromes, which provide
information about the presence and location of errors in the code
words. These syndromes are calculated using ancillary qubits that
interact with the code words.

Finally, once errors are detected through syndrome measurements,
QEC algorithms determine how to correct the errors without directly
measuring the logical qubits, which would risk collapsing their delicate
quantum states. Correcting errors may involve applying controlled
gates and other operations in order to shift the rogue qubits back into
the realm we want them to be in.

Essentially, by grouping large numbers of qubits together QEC can
handle rogues by comparing them to the larger population of qubits: if
1 or 2 qubits out of 30 are showing incorrect values, chances are that
the 1 or 2 qubits are incorrect instead of the the 30 (unless your

quantum computer is really bad). When these few rogue qubits are
identified, they can more easily be shifted back into their rightful
states in order to maximize the effectiveness of the quantum system.

Quantum No-Cloning

In the realm of classical computing, one of its fundamental
characteristics is the ability to copy information effortlessly. Given a
string of bits representing data, you can create a perfect duplicate
with precise accuracy. This property is deeply ingrained in how
classical computers function and serves as a cornerstone of digital
data storage, transmission, and processing. If | type my name twice
into my computer, it will be stored twice.

However, when you enter the enigmatic world of quantum computing,
you encounter a fundamental restriction known as the no-cloning
theorem. This theorem lays down a firm boundary, asserting that it’s
impossible to create an exact copy of an arbitrary, unknown quantum
state.

In classical computing, copying data is a straightforward operation. If
you have a string of bits, you can simply replicate it, creating a
precise duplicate. In quantum computing, things are drastically
different. Quantum states, represented by qubits, can exist in a
superposition of states, and their precise state cannot be measured
without altering it. Attempting to copy a quantum state without
disturbing it is where the challenge arises.

At the heart of the no-cloning theorem lies Heisenberg’s Uncertainty
Principle, a fundamental concept in quantum mechanics. This principle
tells us that we cannot simultaneously know both the position and
speed of a particle with precision, because knowing one changes the
other. In the context of quantum computing, it means that if we try to
measure a qubit to obtain information about its state, say, the
velocity, we actually modify that state.

This is powerful for many reasons, especially in the context of
quantum-enhanced cryptography. For example, if a sender and
receiver utilize quantum encryption in securing their data, there is no

possible way for their communication to be breached; their quantum
keys cannot be cloned.

Quantum Bell Measurements

Bell measurements are fascinating because they allow us to look at
hidden relationships behind the scenes of quantum trickery. When you
have two entangled qubits (whose states we don’'t know because
they are superpositional by definition), they are directly related in
some way. This is where the Bell measurements come in.

Even though we might not know the exact state each qubit exists in,
we can still determine how they are related. Bell measurements are
obtained by recording specific measurements of each individual
particle and using probability and statistical analysis in order to
determine their correlation. This correlation will tell us exactly how
one qubit relates to another; their differences, similarities, and unique

properties ~ at least, in relation to each other.

Even though these measurements may not be superpositional, they
don’t necessarily have to be. So long as the wavefunction on the
actual particles themselves is allowed to continue after the Bell
measurement tests have been performed, then all is well.

Bell measurements might feel abstract right now, but they are a
surprisingly useful tool in processes like quantum teleportation.

Quantum Teleportation

This is a spooky one. Quantum teleportation isn’'t exactly the
teleportation of physical objects like in the movies. Instead it
facilitates the transfer of quantum information from one location to
another, instantly, without any physical transmission medium.

In classical communication, sending information from one location to
another is straightforward. We can encode data in bits (Os and 1s),
transmit it as electrical signals, light pulses, or radio waves, and
decode it at the receiving end.

As we know, qubits can be in a state of 0, 1, or both 0 and 1
simultaneously. This presents a challenge: How can we transmit this
superposition of information without destroying it?

The no-cloning theorem complicates matters further. It states that we
cannot make an exact copy of an arbitrary unknown quantum state.
So, we can't simply measure the state of a qubit and send that
information to recreate it elsewhere because measurement collapses
the superposition, effectively destroying our qubit.

Here’s where quantum teleportation comes into play. It allows us to
transmit the complete quantum state of one qubit to another qubit in a
distant location, using two entangled qubits and classical
communication. The steps are intricate but fascinating.

Firstly, the sender and receiver both share an entangled pair of
qubits. Essentially, when one qubit is measured, the other will have a
correlated state.

The sender will then perform Bell measurement to determine the
correlation between each of the qubits in relation to each other.

The sender must then classically communicate the results of the Bell
measurement to the receiver (no quantum methods are being used to
transmit the message).

Given this Bell measurement data, the receiver can apply specific
quantum gates to shift their qubit into the state of the sender
regardless of whatever state each is in.

Since the Bell measurement provides data about how the pair is
correlated, the receiver can essentially transform their qubit using that
specialized data.

This might seem backhanded and not as exciting as the term
“teleportation” alludes to, but it is teleportation: the receiver’s qubit is
able to immediately take on the state of the sender’s qubit. This is,
after all, instant transportation or teleportation of data.

Of course, the receiver and sender still need classical methods to
communicate the Bell measurements, but the final transfer of data is

different.

Keep in mind that this doesn'’t violate quantum no-cloning because
only the state is transferred.

Quantum Annealing

In the field of metallurgy, annealing refers to the cooling of a material
in order to remove defects and help guide said material to a more
stable state. In the quantum mechanical realm, annealing is similar:
we can use it to gradually guide qubits away from errors and
incorrect transformations while increasing their likelihood of taking on
beneficial states and undergoing correct transformations. Essentially,
it takes us from the beginning of a problem to the end, primarily in
optimization-based problems. You might imagine optimization
problems as finding two numbers whose sum is 26 and whose
product is as small as possible. In this example, we optimize the
product.

Over the course of quantum annealing, quantum gates will shift qubit
states and favor low energy states, which is where we will usually
mark our solution or objective. For example, if the problem is
searching a database, we can flag our specific database item for
search in a low energy state, so that it will be favored during
annealing.

A key part of the annealing process is quantum tunneling. During
annealing, the quantum system has the remarkable ability to “tunnel”
through energy barriers, allowing it to escape local minima in the
energy landscape and explore a broader solution space. This
quantum tunneling effect enables quantum annealers to overcome
challenges that often trap classical optimization algorithms, by quite
literally passing through obstacles and barriers.

Annealing has the unique ability to dimensionally walk through
incredibly complex problem spaces, making it an incredibly useful
tactic for countless problems. We will look at some annealing gates
later on.

Conclusion

Now that we have explored some critical phenomena, take a step
back and reevaluate your mental quantum model. Remember that
certainty is boring, and essentially worthless in the quantum realm.
Nothing is for certain, and that opens up technically infinite
possibilities in the field of quantum computing. Keep these concepts in
mind for the next chapter, where we bring a more technical lense to
the table.

CHAPTER 3

Quantum Gates

In classical computing, logic gates are the basic units responsible
for actually processing and operating on binary data. Quantum gates
are similar, but again are different in many ways. In order to better
understand quantum gates, we will dissect the idea in a theoretical
sense before looking at actual examples.

Imagine you're hosting a big party at your house. You want to make
sure that only invited guests get in, while keeping out anyone who
wasn't invited. To manage this, you hire a security guard who stands
at the entrance.

Now, this security guard has a set of rules based on the invitations.
Let’s say you've invited your close friends and family, and you've also
provided them with special passes. The security guard has two
inputs: one for checking if the person has an invitation and another for
whether they have the special pass.

Here’s how the security guard’s logic works:
1. Invitation Check: If a person shows up with an invitation, the

guard’s invitation check input is set to “1.” If the person
doesn’t have an invitation, the input is set to “0.”

2. Pass Check: If the person has the special pass, the guard’s
pass check input is set to “1.” If the person doesn’t have the
pass, the input is set to “0.”

Now, based on these inputs, the security guard follows a simple rule:

If the person has both an invitation and the special pass (inputs
are “1” for both), the guard lets them in (output is “1”). If any of the
inputs are “0” (no invitation or no pass), the guard denies entry
(output is “07).

This security guard is like a logic gate. It takes inputs (invitation and
pass checks) and processes them based on a rule to produce an
output, such as allowing or denying entry: 1 or 0. In the same way,
logic gates in electronics take input signals and use predefined rules
to produce an output signal. Just as the security guard’s decision
determines whether someone can enter the party, logic gates’
decisions determine the behavior of digital circuits in computers and
other electronic devices.

Dissociating from the analogy, applying logical gates takes some
getting used to. We will start off with a few basic examples from
classical computing, before delving into the complex realm of
uncertain data.

OR Gate

Return 1 if either input is 1, else O.
10R1 =1

0OR1 =1

0OOR0O =0

This gate is pretty self-explanatory: if either input is 1, the result is 1.
Otherwise, the result is 0. But what if our input isn't just 2 bits?

Larger Numbers

Classical gates applied to binary numbers with multiple bits follow
this process:

x=101
y =110

X ANDy = (1 AND 1)+ (0 AND 1) + (1 AND 0)

= 100

In other words, the gate is applied to each positional pair of bits
inside of larger binary numbers.

Quantum Gates

Now that we understand a rudimentary classical gate, we can
examine some quantum ones. Similar to how classical gates were
invented to simply modify the state of simple bits in varying ways,
quantum gates were developed to modify the state and phase of
qubits in order to prepare them for practical use. However, quantum
gates can be multifaceted, addressing only certain aspects of the
complex and multidimensional qubit. The quantum gates explained
here may be abstract for the time being, but their importance and
applications will become apparent as the book progresses.
Remember that whenever you focus on an abstract and specific
topic, it can’t truly be understood without a view of the larger forces
at play in the environment. Quantum computing is no different. As the
book wraps up in the later chapters, this wider scope will be available
to you. With that in mind, let’s take a look at some quantum gates.

A Note About Gate Operations

Remember while reading this section that qubits don’'t have
concrete values until we measure them. So even if a qubit happens to

be 0 at a given time, and a quantum gate shifts that value to be 1, the

qubit is still able to change back to being 0, so long as it does so
before being measured. Quantum gates mostly operate on unknown
data (since we can't tell the value of the qubit as it passes through
the gate), so remember that the examples you will read are all just

theoretical possibilities as to what would occur if a qubit with state X
passes through a gate.

Pauli-X Gate

The Pauli-X gate takes an input of only 1 qubit and flips the
quantum state around the x-axis. In other words, it swaps the values

of @ and P.
For example:
Py = ol0) + Bl1)

X|y)=p|0) + af1)

In the Bloch sphere, you might visualize this gate by picturing the
state vector of a subject qubit to rotate 180\degree around a
vertical axis. If the state vector was pointing directly north, it would
face directly south after the Pauli-X gate is applied.

Pauli-Y Gate

The Pauli-Y gate is effectively a phase shift. /0) becomes 1%|0)
and BI1) becomes ~1BI1), effectively flipping the sign of B and making
both @ and B complex.

Py = a0} + Bl1)

Y[)—ia]0)-iB|1)

In the context of the Bloch sphere visualization, the Pauli-Y gate
corresponds to a rotation of the qubit’s state vector either clockwise
or counterclockwise. Additionally, this gate has the effect of altering

the phase between & and B. As we know, both horizontal rotation and
phase changes are critical factors in determining the qubit’s final
state.

The Role of Qubit Value

In the gates to follow, you may wonder at some point “Why is P

always singled out? Why never 4?” In order to address this head-on,
it is important to recognize what is known as a “controlled gate.” That

is to say, a gate that will only operate on states of |1). Usually
representing the probability amplitude of the 11) state, B will be

operated on and essentially singled out. B, or the symbol representing
any states of |1), will hereby be referred to as “active coefficients.”

Pauli-Z Gate

This controlled gate performs a phase flip operation, negating the
value of B. For example:

)W) = o) + Bl1)
Z|y)>«|0)-p|1)

This gate will cause the state vector to rotate about the z-axis (as the
name suggests) in the Bloch sphere. If the vector was pointing
straight ahead initially, it will point the straight backwards after the
Pauli-Z gate is applied.

Hadamard Gate

The Hadamard gate was developed to initiate a superpositional
state inside of a qubit. That is to say, it rotates the state vector to be
in between 0) and 1) in the Bloch sphere (it is a controlled gate,
which again means it will only apply to B in this situation).

The Hadamard gate accomplishes this task by first multiplying the

a

value of 2 against 10} and 11), and then adding the resuitant to the
p

value of v2 multiplied by 10) and ~I1). Let's walk through the process:
Given the definition of [W):
|) = a]0) + B[1)

The Hadamard gate will act as follows:

a0y +11)) B(10}-1))
Hiyy="5""+ 3

This gate might seem a bit strange, but it does indeed work every
time, no matter the number. We can test this using concrete values

for @ and B:
a=0.6
B=08

1. Act on the |0) state:

0.6(]0y+]1)) 0.6

H(al0)) = & —(|0)+(|1)

2. Act on the |1) state:

0.8(|0)-1)) 0.8

KB = & = BlO-E

3. Combine the calculated states:

0.6 0.6
H(a|0)) + H(B[1)) = £+ ZI1) +(|0) f|1>

1.4 0.2
=071
1.4 0.2

Finally, & (the new definition of @) becomes 2 and P’ becomes ~ 2.

We can also ensure the validity of these new variables using the
familiar normalization condition.

1.4 7 -0.2 2

|\f| +|(| =1
196 004 2
, vy =1

Thus, we can prove the function of the Hadamard gate.
CNOT Gate

This gate is pretty simple, although it extends the field of effect to
2 qubits. One qubit (usually the first one) is classified as a control

qubit, and one is classified as the target qubit (usually the second
one).

For example, say we have the following qubits (note that these are
still qubits, because we haven’'t measured them yet. We simply
flipped whatever unknown state they were in):

A=0

B=1

Now, we run the gate.
CNOT|AB) — 01

This gate returns 01, the same as the input, because the control qubit
was set to 0. If control qubit is 1 however, the result changes.
CNOT|B,A)->11

In this new case, B is in the control slot. Since the B qubit was
measured as 1, the target qubit, 0, flips to also be 1.

Toffoli Gate

The toffoli gate, or the CCNOT gate, is the 3-qubit version of the
CNOT gate. It works exactly the same as the CNOT gate, except
there are 2 control qubits. For example

A=1

B=1

c=1

CCNOT|A,B,C) — 110

Of course, if either A or B was 0 instead of 1 at the time of gate

execution, then the qubit ¢ would not flip but remain 1, if still in a state
of 0.

Phase Gate(S Gate)

The phase gate has one purpose: shift the phase of the 11)

probability by 2 counterclockwise (a quarter turn). The phase gate, or

S gate, does so by introducing the imaginary number I to the active
coefficient.

[Jr) = a|0) + B[1)
S|y) =«|0) +if|1)
T Gate

T

Similar to the S gate, the T gate also shifts the |1) phase by +
counterclockwise and again leaving the 10) probability untouched.
Instead of introducing a simple constant like I the T gate multiplies

i%
the active coefficient by € .
[W) = al0) + B[1)
T|y) =al0) +e’B|1)
In terms of the visual representation of this gate in the Bloch sphere,
1
the state vector will simply rotate counterclockwise 8 of the full circle.

Controlled Phase Gate(Rk)

The Controlled Phase gate, or the Rk gate, is very similar to the
phase and T gates in the sense that all of them shift the phase of the
qubit passed through them. It is indeed a controlled gate, however,
the “Controlled” term in the title of the gate means something else. It
is unique from the gates we've examined because it takes in an input

of more than just qubits. Instead, this gate also accepts a variable k
which is used to determine the phase shift applied to the target qubit.

This parameter kis powerful because it lets us decide how exactly to

modify the phase of our given qubit. The format these changes takes
is as follows:

) = al0) + pl1)
k=1
0=

]

You can think of K as controlling how many times T is cut in half. For

T

example, cut it in half only 1 time and the gate will rotate 2
radians(90%\degree$) counterclockwise. To apply our variables inside

of the gate, all we need to do is call it and include 9 in the same way

T

we included 4 in the T gate.
RK(, k) = a/0) + e"B|1)

Even though we can't see 9 being explicitly calculated in the calling of
the gate, just remember how it is defined by our chosen value of k.

Multiple Qubits

Many of the gates we are looking at only have practical value when
applied to more than 1 qubit, meaning that we need to learn how to
expand our methods beyond the realm of a single qubit. With our

entry in the multi-qubit realm comes a new notation. For every qubit

n
represented in a given state |¥), we will need 2 probability
amplitudes to represent every possible value of the state, where 1 is
the number of qubits. For our example, we only want to look at 2

2
qubits, so we need 2 = 4 probability amplitudes. Our 2 qubit state
would look like this:

|Y) =al00) + B|01) + y|10) + §|11)

Notice how @ and B represent the specific values [00) ang 101)

instead of o) and \1)_ We also introduce Y and Sto represent the
remaining 2 states.

With this new notation comes a new normalization condition.

2 2 2 2
lal” + Bl + y[" + 18] =1

Again, since the quantum state needs to have a 100% chance of
existing, the sum of all of the normalized probabilities needs to be
equal to 100% or 1.

However, there is another viable option for representing qubit states.
Instead, we could keep individual qubits separate from each other
until the end of the operation/gate we are performing and combine
them. For example,

W) = «|0) + f]1)
¢)=v[0) + 8]1)

As mentioned, we can actually combine these qubit states using an
interesting operator known as the tensor product.

Multiple Qubits and Active Coefficients

When more than 1 qubit is introduced, and states can become very

complicated (having terms such as 191)), the method of applying
controlled gates becomes a bit different. If any of the values inside of
the state ket are equal to 1, the control gate is activated. This means:

Rk(«|01),0) = " at|01)
and
Rk(|00),0) = «|00)

It is essentially the same idea as your normal 1 qubit controlled
gates, except it is activated if any value of 1 is represented.

The Tensor Product

The tensor product is crucial to performing gates and other
operations on multiple qubits, because it allows you to combine
quantum states of multiple qubits to create a joint state that spans the
entire composite system.

Let’s look back on the qubits from the section above, V) and |9).

Both qubits can exist in a superposition of states 0) and ‘1). In order
to describe a composite system of both qubits, we can employ the
tensor product. It essentially combines the possibilities of each qubit’s
states. Mathematically, the tensor product of the qubits’ states would
be represented as:

) ® |dp)

Here’s how you calculate it:

If qubit U is in state [0} (@0} + BI1)y and qubit P is in state 11} (

ylo) + 5‘1)), their combined state using the tensor product would be:
W) @ [$) = («|0) + B|1)) @ (v|0) + 8]1)) = ay|00) + a5|01) + By|10) + B5[11)
If you remember the notation section well, this general format should
be familiar to you. What is extremely important to remember about
terms such as @Y and P9 is that they are still simple probability

amplitudes. You can choose to represent them as ad or ¢ or even T
if you like, it truly doesn’t matter.

If you remember the FOIL method from algebra, the tensor product
becomes a lot simpler. If not, just remember:

F - First

O - Outside
| - Inside

L - Last

You simply need these laws of multiplication to merge qubit states.
You just need to push the states together in a way, so

«l0) - 811) = a8l01) |n the example above, we muiltiplied the first

term in each factor (€0) and Y10)) to get @¥100) Then, we moved on
to multiply the outside portions of each factor, then the inside, and so
on.

This process can be extended to any number of qubits. For instance,
with three qubits A, B, and C, the combined state |A) @ [B) ® |C)
would result in eight possible states: [000) [001) [010) [011) [100)

. 1101) [110) gnd [111) The FOIL method becomes a bit more
complicated, but it is doable.

In quantum computing, when applying gates to multiple qubits, the
tensor product becomes essential. For example, if you want to apply

a Hadamard gate to qubit ¥ and an X gate to qubit ¢, you would
represent it as (H ® X) and apply it as follows:

(H® X)([\) @ [$)) = (H[Y)) @ X|P))

Similarly, if we have a 4-qubit state and want to apply, say, a
Hadamard gate to it, we can do the following:

[P) = «|00) + B]01) +y|10) + 6|11)

H(|y))
(10) +11)) (10y+11)) (10y +11)) (10)-11)) (10}-11)) 10y +11)) (10)-11))
=alp ® 5)+B(C g ®ﬁ)+v(ﬁ® ﬁ)’f‘s[ﬁ@
(10)-11))
(o

Thus, you can see the power of the tensor product. Of course, the

tensor product can be expanded even to states like 10101110101)
and so on.

The Identity Gate

The identity gate is the simplest gate in existence. It literally means
just “ignore” the qubit.

1) =)

This may seem incredibly useless right now, but it can be helpful by
allowing us to ignore certain aspects of the qubit state we don’t want
to mess with.

Quantum Fourier Transform(QFT) Gate

The Quantum Fourier Transform gate is not really so much a gate
itself, but a unique combination of other gates in order to highlight the
frequency components of qubit states. To put it another way, the QFT
gate converts information about the positions of the qubits into

information about the frequencies(the phase angle 9 and probability
amplitudes @ and P).
Imagine a group of people clapping their hands at different

rhythms. Each person represents a different basis state(|0) or |1)) of
a quantum system. The timing of each clap corresponds to the phase
angle, where the strength of the clap represents the probability

amplitudes % and B. The @ clap is loud and clear, while the B clap is
softer. The QFT is like analyzing the collective sound of all the claps,
considering both the timing (phase angle) and the strength (probability
amplitude) of each clap.

While the QFT doesn’t directly separate the claps, it helps identify the
underlying rhythmic patterns and relationships between the claps,
taking into account their timing and loudness. QFT orchestrates the
claps in a way that highlights their harmonies and interactions,
revealing the unique composition of the system’s performance. In
qubit terms, its like dragging the chains that bond the probability
amplitudes and the phase angle all the way to the surface; it reveals
patterns rooted in the qubit states.

In essence, the QFT helps extract the phase information that
describes how different basis states (claps) are “aligned” in terms of
phase angles, while also considering their individual strengths (alpha
and beta). This can be incredibly powerful for certain quantum
algorithms that leverage both phase relationships and probability
amplitudes to solve problems more efficiently.

This transformation is vital in order to solve problems that involve
analyzing extracted phase information, such as factoring large
numbers or solving certain mathematical equations.

QFT takes in I qubits, and unlike most other gates, won’t have an
influence on the Bloch sphere, at least not one we can discuss. Since
it operates on multiple qubits, we wouldn’t be able to accurately
picture it in our 3-dimensional Bloch sphere due to the entangled
states of the different qubits; the Bloch sphere is only designed for 1
qubit at a time.

With that being said, let’s explore the inner workings of the QFT gate.

1.

The Hadamard gate. The Hadamard gate is applied to each

individual qubit, so ! times to I qubits. To clarify, each qubit
will only pass through the gate once. Remember, the

Hadamard gate will put all I qubits in a state of
superposition.

The phase gate. Each qubit will be applied a different
variation of the phase gate; K will change based on the

position of each individual qubit in the system of all I qubits.
Essentially, the rightmost qubit will start with no controlled
phase gates at all. The rightmost qubit will perform a

controlled phase gate with a K of 0, which would be a

m

rotationz radians counterclockwise if it was alone in the Bloch
sphere. The qubit to the immediate left of it would have a k

T

of 1, and a © of . This pattern continues until the leftmost
qubit has a K value of n-1.

Now, to begin the QFT process. First, we will define our qubit states,

W) and [P). we will keep them separate for now in order to ensure
maximum simplicity:

[W) =al0) +BI1)

|b) =v[0) + &]1)

To take it slow, we will only apply the Hadamard gate to the each
qubit individually.

H) = |0 >J_|1> BW)J_ID

H|(|)):1(| J_Il) 6|)J_Il)

Now, we can take a moment to combine them with the following
tensor product operation:

1T} = [V) @ |$)

t)
(19 + [1)(10) +11)) (10) + [1))(10)-11)) (10)-11)(10) + 1)) (19)-11))(10)-11))

=(ey)—p g t@d g g BV g B8 g
Phew! That is a lot of math. Let’s simplify, and our answer should
look much nicer.

|T)
= 2(100) + [01) + [10) + |11)) + 5(|00)-[01) + [10)-[11)) + (]00) + [01)-[10)| 11

)+ =(100)-101)-|10) + |11))

Ok, still looks scary. How about this:
ay +ab + By + B8 + By-Bs as-By—f3 ay-as—By + B8
Ty =—"—"% 100)+ 7l01) 7I10) 5 111)

It might not be any less scary, but at least it fits into one line! Let’s
break down what just happened.

First, we performed the standard Hadamard gate on |¥) and).

Next, we used the tensor product operator & with 2 qubit states(lV)

and |(|))), essentially FOILing them out and pushing the factors
together; that’'s what 2. was: the raw product of the FOILing. In 3.,
we just simplified our answer down to something easier to write. We
also put our answer in the 2-qubit composite state format we
discussed earlier, of

|x) = A|00) + B|01) + C|10) + D|11)

A ay +ad+ By + BS
In this format, * 2

100)

Now, let’s use our composite state T to complete the rest of the QFT
gate. Hang in there!

If you're confused thus far, don't worry. Just go back and flip through
the fuzzy concepts.

Time for the phase gates.

So, we will apply the phase gates starting with the rightmost qubit. K
will begin at 0 and progress as we move left. Remember, since it is

controlled, 100) will not be affected. Our final answer is:
(Rk(3) ® Rk(2) ® Rk(1) ® D)

ay + ad + By + B8 e’ (ay-as + By-B6) e*(ay + aS-By-B5)
== 5 |00) + 5 |01) + . |10)

e (oty-as-By + B5)

+ 3 |11)

Feel free to try this example out with any placeholder numbers for &,

B, Y, and 8 in the original 2 qubits, but make sure they satisfy the
respective qubit normalization conditions.

Custom Oracle Gate(Uf)

The oracle gate is essentially a marking tool; you might think of it as
having the ability to flag specific states and encode classical
information into quantum data. For example, in Grover’s algorithm (a
special search algorithm we look at later on), the state being
searched for needs to be flagged by the oracle gate. This is so the
computer is able to distinguish it from other states, rendering it useful
to the algorithm. This process of “flagging” might seem intimidating,
but it simply means to flip the sign of the selected state coefficient.
This gate is not controlled, but does operate off of user-based input
to determine which state to flag.

) = of0) + pl1)

Ut(JW),[0)) = ~a|0) + B[1)

As you can see, this gate is relatively straightforward and doesn't
contain a large amount of theoretical knowledge. A quantum state
goes in, parts of it are flipped to distinguish it from other values, all is
good in the world.

Grover Diffusion Operator Gate(Uw)

The Grover diffusion operator gate, denoted by Uw, essentially raises
the probability of the computer selecting the correct answer and
lowers the probability of the computer selecting the wrong answer.

Pretend you're taking a multiple-choice quiz. It is very difficult, almost
impossible. You don’t know what any of the terms mean, and each of
the answers look equally correct. Now, imagine you can request a
hint. This hint will help you narrow down the choices; it will help you
become more and more certain of the correctness of a certain
answer while simultaneously becoming more certain of the
incorrectness of other answers. Finally, after receiving enough hints,
you're able to correctly select the right answer.

This hint mechanism is symbolic of the Grover diffusion operator
gate. The gate is composed of 3 layers: an initial Hadamard gate, a
custom oracle gate, and another Hadamard gate. This gate is
particularly important in algorithms like Grover’s(which is the gate’s
namesake), where narrowing the field of search is incredibly valuable.

Let’s walk through an example.
) = f00) + plO1) +y/[10) + 8/11)

We begin with the first Hadamard gate. If any of the following
confuses you, flip back to refer to the section on Hadamard gates
and tensor products.

ay + ad-By-Bd ay-ad—By + 6

ay +ad + By + Bo ay-ad + By-pd
) = 5 00} +————[01)+ ——[10)+ —, [11)

Then comes the custom oracle gate. We will flag the [01) state.

ay +ad + By + BSI ay-ad + By-BS ay + ad—-Py-B8 ay-as-By + B8
|l-|J>: 2 |00)_ 2 |01)+ 2 |10)+ 2 |11)

Finally, the second Hadamard gate.

ay + ad-By + B8 ay + ad + By-B6 —ay +ad+ By + P8 ay-ad + By + BS
W) =—""—F——"100) + ———{10) +) |10) + 5 |11)

Now, this doesn’t look like it really accomplished much, and to be
honest, it didn’t. The diffusion operator by itself only performed once
will not have a very noticeable effect, especially if we don’t use values
for each of the probability amplitude coefficients. Not to mention, it
was designed to work in collaboration with other gates. In the chapter
about algorithms, however, we will be able to see the full force of the
Grover diffusion operator in action.

Conclusion

Throughout the chapter, we have focused on some critical quantum
logic gates and how they take effect. In the next chapter, we will
explore the real-world applications of these abstract gates via
specialized algorithms, which are similar to gates in the way that they
follow a procedure to perform a task, but will likely be much more
familiar as they aim to solve problems like factoring numbers and
searching databases.

CHAPTER 4

The Quantum Algorithm

Thus far, we have covered a lot of ground in terms of how quantum
computers function and the base of logic they stand on. But how can
they be practically applied? What is their true purpose as of now,
what problems are they truly spectacular at solving?

That is what this chapter aims to tackle: arguably the most important

concept to emerge from quantum computers ~ the quantum
algorithm. Quantum algorithms, conceptually similar to classical
algorithms, are a list of steps implemented to solve a problem. The
quantum algorithms leverage, of course, quantum gates, which is why
they are quantum in the first place. As we know, phase is a critical
part of quantum mechanics. We also know we can't really represent
phase very easily in the same way we can represent state. For these
reasons, we aren't able to walk through an implementation of every
single algorithm with real examples of qubits as we did with gates,
but we will still be able to gain a deep understanding of them in other
ways. When possible, real qubit examples will be provided.

With the goal of understanding in mind, there is another classical
computing concept that is worth understanding before we dive into
the shifting realm of quantum algorithms.

Runtime Complexity

Runtime complexity is best understood in big-picture terms. To
demonstrate this, we will start off with an example.

Let's say we have a list of items, and we are searching for a specific
one. Since we are talking about the capabilities of classical

computers(for now) we will need to scan each item one-by-one in
order to determine whether it is the item we are searching for. Our

list has a total of N elements, meaning we need a worst-case runtime

of M'in order to find our target item. This is worst-case because the
item might be the first one we look it, but instead we assume it is the

last one we look at, meaning we have to check all I elements to find
it. The worst-case scenario is represented by the syntax O(n), where
''is the number of operations performed. Again, since we are
searching a list of I! values, we perform I! operations.

Now, imagine we have two different lists. We need to search each of
them in order to find matching items. For each item on the first list,
we need to scan the entire second list in order to find if it has any

2
matches. In this case, our runtime is O(n)
in 1 we perform another ! operations.

, because for every value

Finally, imagine we have the same two lists, but we are only looking
for a value on each list. We will again assume that the value we are
looking for is the very last one on the list, meaning we have to run

through all ! values in order to complete our goal. Since we are
running the search operation 2 separate times, once on each list, our

runtime is O(21) Here is where our focus on the bigger picture comes
into play.

2
Essentially, as 1%, I s going to be a lot greater than 21, |n fact,
as values get larger and larger, M and 21 are going to look the same

2
in comparison to ' . For this reason, we disregard constant factors,
meaning 0(2n) = O(n)

Also, if the runtime looks like O + 1), the same big-picture mindset
applies. As ! grows larger and larger, the constant is dwarfed,

meaning it is essentially equivalent to not existing at all. It also allows
things to simplify much easier.

We will apply similar concepts to analyzing the runtime of some
quantum algorithms to follow.

Deutsch’s Algorithm

This algorithm is intuitive because it allows us to explore both possible
outputs with only a single query, and even provides a conclusive
response. It is also a very good introduction to the concept of
quantum algorithms, because it demonstrates how abstract quantum
gates can be used to accomplish a task.

Let’'s examine the problem.

We want to figure out whether an unknown function, also called a
black box function, is constant or balanced.

A constant function is one in which all the outputs are the same,
regardless of input. They are constant.

g(0) = g(1)
A balanced function is one where differing inputs equate to differing
outputs.
g(1) 2 g(0)

g is our black box function. We will assume that the input (and output)
domain is (0,1},
Typically, classical computers can solve this problem by just checking

if g(0)=g(1) |f true, then it’s constant. Otherwise, it’s balanced.
Generally, this is a very reasonable and completely acceptable way
to solve the problem. The quantum solution can actually speed this up
further, although again, this really has no practical application.

The problem has an input of either 0 or 1, which can be represented
by a single qubit. The output is also a binary classification; we only

need one more qubit to represent the output. Both qubits will start out
at |0 for the sake of simplicity.

p) = |0)
l€) = |0)

As with most quantum algorithms, we need superposition. Why?
Since we are trying to perform parallel operations
simultaneously(check two conditions with a single function call), we
need to create a superpositional state. To achieve superposition, we’'ll
use the Hadamard gate, because we know it is designed to shift
qubits into superposition.

|0)+1)

Hlp)=""p7"

[0) +11)

H|€)= \E

This state should be pretty familiar, but it doesn’'t appear to do much
for our problem.

We have a superpositional state, and now we need some way to call
the function 8 and measure our results. To do this, we can utilize the
idea of a black box oracle.

The black box oracle will flip the state of the second qubit, our output
qubit, if and only if 8P) = 1. Our state might look like this:

o)+ 1)

|p) = \E

|€):— \E

That is, if 8%) =1,

Then, we apply another Hadamard gate and measure our result of
our first qubit. If you measure ‘0>, the function is constant. If you
measure ‘1}, the function is balanced.

But something’s missing. Just because glp) = 1, the function doesn'’t
necessarily have to be constant or balanced, right? This is where the
quantum phenomena kick in. Quantum interference solves the
problem for us. Again, since our qubits are superpositional, both

values are called when the function & is run. If g(0) = 8(1), the
probability amplitudes will cancel eachother out and leave a state of

o) behind. Otherwise, if the qubits aren't on the same wavelength, so
to speak, they won't cancel out and we will get an existing state of 1)

In this way, we can effectively describe a function as balanced or
constant using only 1 function call, in a swirling symphony of
superposition.

Quantum Error Correction: The 3-Qubit Flip
Code

To understand this algorithm, a few definitions first need clarification.

Physical qubit - a “real” qubit, susceptible to error, noise and
decoherence

Logical qubit - a higher level abstraction of the qubit that is resistant
to error by utilizing 3 qubits in order to mimic the behavior of a single
qubit

Essentially, the logical qubit reduces error from noise or
environmental factors by relying on 3 physical qubits and representing
its state via the majority; If 2/3 of the qubits agree, then the shared
state of those 2 qubits is most likely correct, thereby mimicking a
“real” single qubit, free of error.

The three-qubit bit flip code itself is a simple quantum error correction
code that can detect and correct errors caused by bit flips (flipping
from 0 to 1 or vice versa) in a quantum system. It involves encoding a
single logical qubit into three physical qubits using specific quantum
gates. This encoding process introduces redundancy and allows for
error detection and correction, enabling quantum computers to be

more accurate and avoid falling victim to random noise or unexpected
difficulties.

The algorithm begins with a single physical qubit that we want to
protect from errors. For the sake of the example, we will imagine the
qubit in a single state for now.

(W) = [8)

3 represents either 0 or 1. The state is then transformed as follows.
|0)—|000)
|1)—|111)

Now, imagine we have a bit flip error. This may be due to quantum
incoherence, random noise, or simply environmental factors.

[p) =1010)

The algorithm will measure the parity of the three qubits. In this
case, the second qubit is observed to have an error, since it is the
outlier from the other two.

To fix the error, all it takes is a simple CNOT gate using either of the
other two qubits.

CNOT(|y))—|000)

Thus, the error is corrected and the crisis averted.

Even though this example is simple, error correction using methods
like this is critical to quantum computing. Error will always be an
issue, but specialized algorithms like the 3-qubit flip code help to
reduce this error to a manageable level.

Grover’s Algorithm

Invented in 1996 by Lov Grover, Grover’s algorithm is a quantum
search algorithm, meaning it has the ability to search, say, a
database, and find the correct item with incredible efficiency.

For the sake of the problem, we assume that the list is in no
particular order. Typically, the fastest runtime achievable for classical

computers given this problem is O(n), ince the list is unsorted, we
can't take advantage of any patterns to find our target item.

However, using quantum techniques, we can actually locate our

targeted list item in only 0(\5). If you think about the implications of
that, it means we don't even need the time to look at every item in the
list.

How can that be possible? We have truly no idea what else is in the
list, only that we don’t need to. This again reflects how quantum
technology can move exponentially throughout the solution space,
simply demolishing irrelevant items.

Let’s take a look at the process of Grover’s algorithm.

Firstly, the algorithm applies a Hadamard gate, creating an equal
superposition of all states.

Then begins Grover’s Iterations.

Grover’s algorithm isn’t just a mundane, fixed set of steps, but
instead changes based on the list. Grover’s iterations are as follows.

1. The oracle(Uf) gate. This gate “marks” the correct item by
negating the probability amplitude coefficient in front of the
correct state. The incorrect states are left untouched.

2. The Grover diffusion operator gate. This gate, designed to
work in tandem with the oracle gate, decreases the
probability of selecting the wrong answer and increases the
probability of selecting the right answer by applying a
Hadamard gate, a custom oracle gate to the correct item,
and another Hadamard gate.

The above Grover lteration is applied to the list approximately \E
times. After said iterations, measuring the qubit will most likely result
in the correct state being selected.

You might imagine the process of Grover’s algorithm in the context of
a piece of paper.

Imagine you have a piece of paper covered in small dots. There are
dozens of them, covering both sides of the paper. The dot you are
searching for is written in pen, while the other dots are written in
pencil. Of course, you could find the dot by simply erasing each dot,
one by one, until you find the dot you can't erase.

But what if you had a special kind of quantum eraser, that could
erase all the dots at once?

Shifting back to the field of quantum computing, and our “magic
eraser” is Grover’s algorithm. By manipulating virtually the entire
solution space at once, Grover’s algorithm is capable of searching for
an item in an unsorted list faster than any other method known to
man.

Although quantum computers are still in their primitive stages,
Grover’s algorithm is proven to be extremely effective and will have
broad-reaching effects as technology develops.

Shor’s Algorithm

A somewhat controversial algorithm(as will be addressed later),
Shor’s can exponentially reduce the time needed to factor large
numbers into their prime components.

Factoring large numbers is generally considered a very hefty task, at
least to classical computers. The difficulty lies in the exponential time
increase needed as the number to factor grows larger.

However, as we know, quantum computers tend to be able to run

exponentially expanding tasks with no problem, and this sentiment
holds true with Shor’s algorithm. The algorithm breaks down into 3
steps.

Let’'s assume N is the digit we are going to factor, and @ is an integer
randomly chosen between 1 and N-1,

Firstly, we apply a Hadamard gate in order to create a superposition
of all possible states. Then, the problem of factoring large numbers is
mapped to the problem of finding the period of a modular

X
exponentiation function. The function @ Mod N js performed for
varying values of X. The goal is to find the smallest value of X so that

a modN =1

is true. This equation is the period we are looking for. Classically, this
is the time-consuming part. We can avoid this barrier by leveraging

quantum interference to test multiple values of X in parallel to solve
the equation, with the QFT gate.

This gate reveals the periodicity hidden beneath the surface of the
quantum state, essentially exposing the underlying patterns of the
qubit. It transforms the state into a superposition of all possible
periods of the modular exponentiation function.

All there is left to do is measure the state and process the result, so
long as the measured state is even. If it's odd, then the process may
need to be repeated.

Again, the trick to this algorithm is that it allows us to leverage

multiple values of X in parallel, solving an otherwise arduous task with
effortless grace.

Quantum Phase Estimation(QPE)

We need to define some terms in order to understand how the QPE
transformation.

Unitary operators are mathematical transformations that play a
crucial role in quantum mechanics and quantum computing. All of the
gates we have looked at so far are unitary. Unitary operators are
characterized by several essential properties:

1. Preservation of Quantum State: Unitary operators do not
fundamentally alter the quantum state they operate on. This
means that key quantum properties such as superposition

and entanglement must be preserved after applying a unitary
operator. In simpler terms, the resulting state should still
exhibit the fundamental characteristics of quantum
mechanics.

2. Conservation of Probability: One of the most fundamental
principles in quantum mechanics is that probabilities must add
up to 100%. Unitary operators adhere to this principle by
ensuring that the normalization condition is maintained. In
other words, the sum of the probabilities of all possible
outcomes remains equal to 1.

3. Preservation of Probability Amplitudes: Unitary operators do
not modify the probability amplitude coefficients of quantum
states. For instance, if a quantum state is represented as a

linear combination of basis states with coefficients ® and P, a
unitary operator will not change their values. These
coefficients continue to describe the probability amplitudes of
the quantum state.

4. Orthogonality Preservation: Unitary operators also maintain
the orthogonality of quantum states. Orthogonality is a
mathematical property where different quantum states are
perpendicular or orthogonal to each other in a complex vector
space. Applying a unitary operator does not change the
relative angles between quantum states.

The quantum phase estimation algorithm can estimate the phase of a
unitary operator such as a gate; in doing so it provides a clear
example of how quantum computers outperform classical ones.

The algorithm first initializes two quantum registers(working and
ancillary). The working register is where the phase information is
encoded, and the ancillary register is used to perform quantum
operations. A Hadamard gate is subsequently applied to the working
register, followed by a controlled-U operation.

A controlled-U operation is essentially a CNOT gate, but if the the

control qubit is measured as ‘1), it performs a given unitary operation
instead of simply flipping the sign. For example, you could apply an

oracle to the target qubit if the control qubit is ‘1).

In this case the ancillary register is used as input for the controlled-U
operation, each state in the register determining whether those in the
working register are applied the specified unitary operator.

Finally, the inverse QFT gate(QFT-1) is applied. The inverse QFT

1
gate undoes the QFT gate. For example, if f0)=1 thenf (1)=0,
ang fif (E0)=fl0)=1

Let’s break down what just happened.

By applying a controlled-U operation, the QPE algorithm entangles
the working register with the phase information encoded in the unitary
operator. This entanglement is a key quantum phenomenon that
allows for exponentially more efficient phase estimation compared to
classical methods. The inverse QFT then is responsible for extracting
the phase information from the amplitudes of the working register. It's
works in such a way that the probability of measuring a particular
state is proportional to the corresponding phase. WWhen we measure
the working register after the inverse QFT operation, we obtain an
estimate of the phase of the unitary operator. The precision of the
estimate depends on the number of qubits used in the working
register. More qubits lead to a more precise estimate.

The output may appear to be simply a sequence of bits, but will
reveal specific quantum phase when decoded. Being able to obtain
the phase is critical in many contexts as we will soon observe.

Quantum Amplitude Estimation(QAE)

The QAE algorithm is designed to estimate the numerical values for
probability amplitude coefficients. Given the state below, the

algorithm would attempt to find reasonable estimates of ® and B.
) = al0) + Bl1)

This is accomplished through a series of amplitude amplification
gates. It is a similar process as in Grover’s algorithm but with a twist.

Assume we want to estimate B. A typical Hadamard gate is applied
to the state in order to create equal superposition.

Two iterations of the QPE gate are performed. Then an inverse QPE
gate is applied. This strange flip-flop action seems pointless, but
actually serves an important purpose.

In the initial QPE step, we apply the gate to estimate the phase angle
(9) associated with the target quantum state, meaning we only apply
the gate to B. This phase angle is directly related to the variable we
want to estimate. QPE gives us an estimate of 9, but it’s not yet a
direct estimate of P. The inverse itself is critical because it lets us flip
the state of the phase angle which allows us to correctly estimate B.

After the initial QPE, we apply a gate (e.g., a rotation gate) to invert
the phase. This means we effectively flip the sign of the phase angle.

This operation doesn’t change the magnitude of B, but inverts its sign.
Now, we have a pretty good idea of ~P.
We repeat the process of off-again-on-again QPE gates to the now

inverted phase to get =0 and 9, both of which allude to the value of B.

Again, all of these gates are being directly applied to B and whatever
it is attached to.

To get there though, we need to apply the Grover diffusion operator
gate that was explained earlier. This is designed to raise the
probability of measuring the proper result while simultaneously
decreasing the probability of measuring the improper result.

In the current context the diffusion operator chooses a value for B
based on the phase angle. Keep in mind that this entire process, from
QPE through diffusion operators, must be repeated a number of
times in order to maximize accuracy.

Finally, we measure the result. An output of |1) means B is more

approximately 11) than 10). A result of |0} would have the opposite
implications.

Conclusion

Quantum algorithms may be primitive for now, but understand them at
their early stage will prove incredibly advantageous as society
advances. For example, being on the ground floor of the creation of
ARPANET(1969), the first version of the internet, definitely inspired
those who worked on it and understood it as the technology
progressed. Their strong foundational knowledge grew alongside
technology, giving them a unique perspective and a variety of
opportunities to innovate. In fact, the lead manager of ARPANET, Bob
Taylor, went on to invent the personal computer, inspiring graphical
user interfaces in the Apple Lisa and Macintosh.

Carrying this unique and illuminating information about quantum
computing here in the early days will benefit you in some way in the
future.

CHAPTER 5

Quantum Neural Networks

At the time of this book, the world is in the “Golden Age” of artificial
intelligence and neural networks. ChatGPT, DALL-E, Bard, and
others are now gradually integrating themselves into our daily lives.
But imagine a marriage between the quantum phenomena we've
unraveled and the neural networks that drive many of today’s Al
advancements. This union gives birth to a new breed of computational
power: Quantum Neural Networks.

Before we dive into the intricacies of Quantum Neural Networks
(QNNSs), let’s understand why we need them. Classical neural
networks have made remarkable strides in solving complex problems,
from image recognition to natural language processing. However,
there are computational tasks so demanding that even the most
advanced classical computers struggle to provide quick and efficient
solutions, such as extremely complex problems that may require
complex, high-dimensional nonlinearities instead of nonlinear
approximations. Here is where quantum computing steps in.

Quantum computers, as we've learned, harness the power of qubits
and quantum gates to perform certain calculations exponentially
faster than classical computers. QNNs leverage this quantum
advantage to enhance the capabilities of neural networks, particularly
in areas where classical machines fall short.

Let’s first understand classical neural networks.
Classical Neural Networks

While it may seem like magic to most (and still is to passionate
researchers), neural networks are just math. Designed to simulate

human minds, they consist of a layer of interconnected
nodes(neurons) that perform calculations. These neurons, also called
nodes, each have internal parameters called weights and biases.

For example, if | want to plan a trip, the most important factors would
be cost and having a good time. An unimportant (but still present!)
factor might be the weather. In this scenario, a neural network would
place heavier weights on the variables of cost and fun, signifying their
importance. The opposite is executed on the weather.

Now that we understand weights, it is critical to imagine them
mathematically.

y=mx+b

Remember this from middle school? It’s back! Your 6th grade teacher
was right; you will be using this throughout your life.

Mathematically, ™ might be the weight of a certain variable, and b
might be the bias.

So the weight amplifies the value of a variable, it extends its
importance, and the bias adds a constant level of significance

regardless of the value of X.

Essentially, ™ depends on X while P is independent, and both
represent significance. Higher weights and biases = more important
factors.

Now, in these individual nodes, weights and biases might not mean
much. In fact, they mean nothing alone. But when you connect the
layers and form the “brain” of the program, everything comes
together.

You can't think with just a single neuron, it takes many of them all
working together. The same is true for neural networks, which are
really just artificial simulations of the mind.

But our neurons also have “activation” meaning some sort of process
that incoming signals must deal with. These “activation functions” exist
in machine learning as well. Activation functions decide whether the

output of each neuron is significant enough to contribute to the
system. The activation function introduces nonlinearity into the model,
allowing neural networks to learn from and be applied to everything
from videos and images to textual or audible conversations.

Whenever anything is passed into a neural network, from images to
words, it is all transformed into numbers. We won't get into the
specifics but further independent research is strongly encouraged.

Now that we know what a neural network is, let’s talk about training.
All we really know right now is a giant fancy math figure acts like a
virtual brain. But how exactly does it function like one?

The specifics of the learning process involve heavy calculus, but
essentially the network is fed testing data and updates its weights
using derivatives, by shifting incorrect weights gradually towards
being correct until eventually neural networks function as they should,
and are ready to be tested on data they haven’t seen before.

It is also important not to overtrain models, because they become too
used to the data. Models will adapt to the data they are being trained
on, and will become too specific in their weights to be able to
generalize their training to accurate predictions, leading to large
amounts of error. The best models are trained on data enough times
to be able to accurately recognize the data, but not so many times
that they can't apply the patterns to other data.

Quantum Neural Networks(QNNSs)

At their core, Quantum Neural Networks are similar to classical neural
networks. They consist of layers of interconnected nodes, where
each node performs computations. However, what sets QNNs apart
are the quantum gates used for these computations.

In a classical neural network, nodes perform mathematical operations
like activations. In a QNN, these nodes are quantum nodes, each
representing a qubit or a quantum state. These quantum nodes are
manipulated using quantum gates, such as the Hadamard gate and
CNOT gate.

The choice of quantum gates in a QNN is critical. Commonly used
gates include:

1. Hadamard Gate (H): Since it places qubits in a superposition
of states, it enables them to explore multiple possibilities
simultaneously.

2. RX, RY, and RZ Gates: These gates allow rotations of qubits
around the X, Y, and Z axes of the Bloch sphere, modifying
their quantum states which could benefit training in a
multidimensional sense.

3. CNOT Gate: The Controlled-NOT gate entangles qubits,
meaning they can create complex quantum correlations
between them that might aid in training.

Training a QNN involves adjusting the parameters of quantum gates
to minimize a loss function, just like in classical neural networks. The
difference lies in how these parameter adjustments are computed.

We will examine a number of different quantum machine learning
models in order to better understand how the dynamic field of
quantum computing can be hybridized with classical neural networks
in order to optimize efficiency and accuracy.

Quantum Convolutional Neural
Networks(QCNNSs)

Classical convolutional neural networks, or CNNs, are responsible for
interpreting image-based data. CNNs can perform everything from
image classification to object detection, all by using pixel data. As we
know, our computer screen is made up of tiny little dots called pixels,
which can represent different colors. However pixels are not only
physical but virtual as well. Each pixel is digitally represented by 3
numbers, each number having an inclusive range from [0,255].

This is the RGB (Red Green Blue) system and it serves to encode
the color of specific entities into your computer so the screen knows

how to display them. For example, a completely red pixel might look
like this:

(255,0,0)

As you can see, the red component is on full charge, while the green
and blue components are not being utilized. If all values are 0, the
pixel is black, and if all are 255, the pixel is white.

But the interesting part of pixels is their ability to mix colors. For
example, if | want my pixel to be neon yellow, | would have:

(255, 240, 31)

Except quantum machines tend to view things in grayscale, meaning
the computer might extract an “intensity” value from this pixel,
deeming it brighter or dimmer based on the overall value of the pixel.
This is because encoding in color takes a lot of data, and it is
currently under heavy research in the quantum computing community.
For now, we will look at grayscale(colorless) examples for QNNs.

Classical CNNs actually process these pixels using convolutions, or
layers designed to detect patterns in the vast array of pixels they are
given. This quest for the pattern in images is transferred into quantum
CNNs(QCNNSs) as well, although of course there are some key
differences.

The quantum convolutional neural network training process begins
with the encoding of the input image into quantum states. In a
classical CNN, each pixel’s intensity is a numerical value. In QCNNS,
we represent this pixel information using qubits (so we can perform
gates on the data). Each qubit corresponds to a specific pixel or
feature of the image.

For example, consider a grayscale image of 8x8 pixels. One common
encoding method is amplitude encoding, where the amplitude of a
qubit represents the pixel value. A representative quantum state might
look like this:

|00)— Pixel intensity value 0

At the start of the actual convolutions, a Hadamard gate is applied to
create superposition. This allows the QCNN to explore multiple
feature combinations simultaneously. Then, Rk (controlled phase)
gates are applied to either suppress or emphasize certain features in
the target image based on their relative positions. For example, the
prime target of the image might be emphasized, while the grainy fuzz
in the background might be suppressed due to a lack of relevance.

The CNOT gate is then applied to introduce entanglement between
certain qubits, letting the computer capture spatial relationships
between the features. This serves to give the computer a more
dimensional view of the image, letting it see how different pixels
affect other pixels.

Finally, more entanglement gates are applied to enable the QCNN to
capture complex feature dependencies.

It’s like letting the computer zoom out and see the effect of different
pixels on the rest of the image.

Although every scenario is different based on the needs and goals of
each model, most QCNNs follow this general format.

After this fascinating process occurs, QCNNs then go through pooling
and subsampling to reduce dimensionality, a highly mathematical
operation that essential just means “get to the important stuff.”

Of course this process is repeated countless times through different
layers through the network. Remember we are talking about a very
well connected virtual organism.

What makes QCNNSs truly remarkable, though, is their ability to
examine the big picture and almost mimic human eyes. When us
humans look at an image, we don't just see the floating balloons (or
only any single pixel of them), but the way the setting sun
complements the balloons as they drift higher and higher into the sky.

These networks have the unique ability to gain an incredible
perspective, making them critical to the field of quantum computing
and image processing due to their impressive ability to analyze
images in a new fashion.

Quantum Natural Language Processing
Networks(QNLP)

Natural language processing is the art of analyzing and classifying
textual input. Just as with CNNs, the input is transformed to fit a
number. But how do we turn text into numbers?

The answer is strange. We cut all the sentences into words, and after
removing stopwords like “and,” “the,” and “is,” we reduce all forms to
their roots. Thus, “running” becomes “run”. Every word becomes
lowercase as well.

7 11

“I was running over to the store” = “run”, “store”

From here, there are a variety of methods used to encode the
meaning of words, including by matrix representation, dense vector
representation, or weighing words.

After this, text is fed to the neural networks in their simplified and
numericized forms, and the input is treated just like any other (for the
basic NLP models we will quantumly transform).

Trained models are able to classify text, answer questions about text,
identify key information such as date and location, and even generate
their own text.

QNLP algorithms again adapt the gist of this process. The textual
data is still encoded, but in qubits instead of bits. One interesting
concept is that multiple words can be encoded into few qubits
because of their superpositional nature; qubits can represent more
than one word simultaneously.

Such encoding happens with the use of Hadamard gates, for the
obvious superpositional initialization, and the specialized quantum
embedding gate, which encodes the meanings and contexts of words
into quantum states.

What differentiates QNLP models from classical models is once again
their superpositional capabilities: being able to have fluidity, almost a
shapeless form, gives an immense power to predictive models

because it lets them completely and totally adapt to the complex and
multidimensional nature of text.

Textual analysis is generally considered to be incredibly nuanced and
sophisticated: to understand even a simple sentence you need to
know the definitions of all the terms involved, and even more so the
implications behind specific terms. There is context embedded in
every situation, not to mention humor and tone. Using quantum
techniques in processing text allows computers to expand their
“brains” dimensionally and adapt totally to the self-changing and
volatile nature of language.

Quantum General Adversarial Networks(QGANS)

As with QNLP models and QCNNs before them, understanding of
GANs is required to understand QGANS.

The GAN, or generative adversarial network, is a type of generative
model that learns how to produce an accurate result through
repeated competition. The GAN is actually two networks, a generator
and discriminator. The generator is tasked with replicating images, or
certain styles of text, or whatnot, and tries to create sophisticated
enough predictions to trick the discriminator, which has the job of
discerning real data from fake data generated by the discriminator.

The discriminator is surprisingly only fed random noise, in an attempt
to make the outcome “random” and therefore less predictable.

Gradually, the generator and discriminator both improve, still
challenging each other and pushing each other to be more accurate.
It's a classic game of cat and mouse, where both parties improve and
try to beat the other.

At the end of the training process, if all went well, the generator will
be very well trained to generate realistic images or whatever you fed
it; the discriminator is typically discarded.

In classical GANs, the generator creates data point by point,
following a probability distribution. In QGANs superposition plays a
critical role in allowing for an expanded solution space with added

captured complexity, but the probabilistic nature of quantum
techniques are a factor as well.

Since probabilities are kind of the “jam” for quantum techniques, the
data fed to quantum models is likely more “random” than if it were
generated by a classical algorithm, meaning the data generated by
quantum generators is likely to be more realistic, as it relies on true
randomness to create faux data. Classical computers, on the other
hand, are forced to use repetitive and predictable pseudorandom
generator algorithms in order to generate noise.

Not to mention, quantum computers provide a significant speedup
when compared with the lengthy training time accompanied by
classical GAN methods.

Essentially, the introduction of quantum methods to generative
adversarial networks allows for countless possibilities and
improvements in every way, including runtime, accuracy, and
complexity depth.

Conclusion

While we have been deprived of the nitty-gritty details of how
quantum neural networks function according to each individual step of
the process and intricacies that follow, this chapter has hopefully
given you an idea of the power that quantum computing has when
merged with the virtual human mind. The power of Al is just being
realized in this very moment, much less the power of quantum neural
networks. It is, without a doubt, more powerful and shadowy than any
other enigma. The explorations into the dark depths of quantum Al
have been brief and shallow, but even then we have struck gold.

We will finish this chapter with one though-provoking concept: when
made quantum, many neural networks become more accurate; they
are able to accomplish their tasks better, able to simulate the human
mind better. What does that say about our brains and how they
work?

CHAPTERG

Quantum Hardware

It goes without saying that quantum computing would be nothing
without quantum hardware; qubits are just an idea, if that, without
quantum computers to stand on.

For these reasons, quantum hardware needs no introduction.
Types of Quantum Systems
Superconducting Qubits

Superconducting qubits are typically considered the most widely used
method of quantum computing, and also generally agreed upon as the
simplest. Superconducting qubits are a remarkable manifestation of
quantum mechanics that take advantage of the phenomenon of
superconductivity. Superconductivity is a state of matter where
certain materials, when cooled to extremely low temperatures
(-459%\degree$, close to the lowest possible temperature attainably
in the universe), can conduct electrical current with zero resistance.
This means that if you run electricity through a wire, it would
hypothetically remain there forever: no energy would be lost. This
property opens the door to creating qubits, because energy retention
is crucial the quantum computers in order to avoid decoherence.

At the heart of a superconducting qubit lies the Josephson junction, a
tiny device that connects two superconducting materials separated by
a thin insulating barrier. This junction allows for the flow of a
supercurrent without any energy loss. Superconducting qubits also
incorporate inductors, which store magnetic energy. These inductors,
together with the Josephson junction, create an electrical circuit that

behaves quantum mechanically. Capacitance elements store electrical
energy as an electric field between two conductive plates. In
superconducting qubits, capacitance is typically formed by the
geometric arrangement of components.

There are several types of superconducting qubits, but the main
takeaway from them is that they function by taking advantage of
superconductivity. Each qubit is a physical device, an electrical circuit,
that behaves quantum mechanically.

The qubits themselves can be measured using microwave pulses,
which indicates either 10} or 1),

As mentioned previously, superconducting qubit-based quantum
computers are very popular, especially with companies like IBM and
Google, who have even developed their own.

Trapped lon Qubits

Trapped ion qubits are a fascinating and highly promising quantum
computing architecture that relies on the precise control and
manipulation of individual ions—electrically charged atoms. These
quantum systems literally are based in the electrical nature of real
ions themselves. This approach has gained significant attention due to
its remarkable coherence times and the potential scalability.

Trapped ion qubits operate based on the quantum states of individual
ions. These ions are isolated from their environment and held in place
using electromagnetic fields, hence the name “trapped ion qubits”.
The entire setup usually consists of the following key components: the
ion trap, the ions themselves, the laser system, and the electrodes.

The ion trap is the heart of the system. It creates a stable
environment for ions to be captured and manipulated. There are
various types of ion traps, such as linear Paul traps or Penning traps,
each with its unique characteristics. The details differ as you
approach the problem in closer examination, but that’s a question for
professional physicists. The ion trap keeps the qubits in a stable
place for us to use them.

The ions themselves. Typically, a specific isotope of an element is
chosen for qubit operations. For example, in the case of ytterbium,
the Yb+ ion is used. These ions have very well-defined energy levels
(internal states), which is important for encoding quantum information.

High-precision laser systems are then employed to cool the ions
down to their quantum ground state (near absolute zero temperature)
and to manipulate their quantum states. This is because when things
cool down, they slow down as well, letting us observe the ions
without them dashing all over the place. The lasers are also used for
state manipulation.

Finally, a set of precisely controlled electrodes generates the
electromagnetic fields necessary for trapping and manipulating ions.
These electrodes create the trapping potentials and facilitate the
movement of ions within the trap. Essentially, the electrodes are able
to influence the position and entrapment of the ions.

The qubits are able to measured by fluorescence. A certain laser
illuminates a qubit, and its fluorescence gives away its state.

Trapped ion computers are especially good at maintaining coherence,
which allows for longer calculation time and lets qubits keep their
states. Overall, trapped ion computers are a very solid option for
quantum systems.

Photonic Qubits

Photons, the fundamental particles that form light itself, make
excellent qubits. They can transmit data over long distances and
manipulate information with ease and are even resistant to some
types of quantum error. Photons also naturally exist in superposition,
where they may have multiple polarizations at once.

Polarization describes the orientations of oscillating electric and
magnetic fields that propagate through space. Simply, polarization
tells us whether the waves are horizontal or vertical.

Photons can also be easily entangled, and have very high coherence.

This is because photons tend to interact very little with their
surroundings, reducing the possibility of contamination or corruption
from unwanted environmental noise.

This type of quantum computer can be constructed starting with a
mere laser. Simply split the laser into two entangled particles, and
you can perform operations. Typically, operations tend to be carried
out with waveplates, beam splitters, and phase shifters. Photonic
qubits are typically measured using devices called avalanche
photodiodes, which convert incoming photons into electrical current
and measuring that. From this output, a definitive state determination
can be made about a given qubit.

Photonic computers are unique because you don't need millions of
dollars and an incredibly low-temperature environment in order to run
them. The drawback is scalability: photonic systems are very difficult
to grow. A small number of qubits works just fine, but handling much
more becomes a significant challenge with photonic computers, much
more so than systems like trapped ion and superconductive.

This is because photons are very delicate carriers, and can easily be
lost as they pass through gates. Photons also don'’t play very nicely
with each other; they have been known to interact weakly and refrain
from unifying with other qubits.

While photonic qubits might not be the best choice for building the
most high-level systems, they are great examples of how nature
continues the pattern of embedding quantum mechanics in each of its
creations.

Topological Qubits

Topological physics is a field that studies the properties of materials
that remain unchanged even after continuous deformations. In short, if
something is topological, it is able to remain in a stable, constant
state even through a multitude of changes. An example is the Mobius
strip, a 2d surface with only one edge and one side. No matter how
you stretch or bend the strip, you will never distort the fact it only has
one edge and side.

Topological qubits are no different in their efforts to avoid change:
they can cut down on error and noise with ease, remaining stable and
continuing quantum calculations. Data encoded into topological qubits
will most likely be strongly rooted there.

But to understand topological qubits, we must first grasp the concept
of topological insulators. Topological insulators are materials that
conduct electricity on their surface but act as insulators in their
interior. What makes these materials special is their topological order,
which endows them with unique electronic properties, which forms a
state of matter that is impervious to outside changes, allowing for a
robust and steady state.

The keys to topological qubits are the Majorana zero modes, which
facilitate superposition and introduce quantum mechanics to
topological physics.

Majoranas are extremely stable and resistant to errors. They'’re like
super-reliable switches that can handle a lot of noise and still give you
the correct answer. This is essential for building powerful and error-
free quantum computers.

The output for these types of quantum computers is measured
through measured charge and statistics, which indicate certain
quantum states.

Currently, Microsoft is one of the main players in the topological
quantum computer industry.

They do have a lot of potential to be very powerful in the future,
especially due to their resistant and unchanging nature yet still being
able to hold superposition.

Diamond NV Centers

One of the most intriguing and promising quantum systems that has
captured the attention of researchers is the use of diamond nitrogen-
vacancy (NV) centers. Diamonds, known for their dazzling beauty,
hold a secret within their crystal lattice that makes them valuable for
quantum computing and sensing applications. This secret is the NV

center, a naturally occurring defect in the diamond’s structure that
behaves as a unique qubit.

The NV center’s quantum states primarily involve the spin of electrons
associated with the nitrogen atom’s atomic nucleus. They have two

fundamental spin states: the ground state) and the excited state \U,
akin to the binary representation of classical bits. The NV center can
achieve superposition by adopting both the ground and excited
states, making it eligible as a qubit.

Diamond NV center-based qubits can be passed through gates via
the use of finely tuned microwave or radiofrequency pulses, which
speak directly to the core of the diamond. These qubits can be
measured with specialized lasers, which activate fluorescence not
dissimilar to that given off by qubits in trapped ion computers.

Of course, this technique isn't without its challenges. While they have
a decently long coherence time, scaling up the number of qubits is
difficult, as with photonic computers. However, researchers may be
able to make diamond NV center-based computing work in hybrid
with other quantum computing methods.

Silicon Qubits

Silicon qubits capitalize on the unique properties of silicon, a material
abundant in classical computing and electronics. In these quantum
systems, qubits are encoded in the quantum states of specific atoms
embedded within a silicon substrate(slices of highly purified silicon).
Phosphorus atoms, in particular, have garnered significant attention.

Silicon qubits primarily utilize the electronic and nuclear spins of
phosphorus atoms as the basis for quantum information encoding.
These spins serve as the quantum analogs of the classical “0” and “1”
bits. The electron spin represents the qubit, while the nuclear spin is
employed for qubit readout and manipulation. Think of the electron
spin as literally the direction that the electron spins in, and the nuclear
spin as the orientation of the spin-generated magnetic field relative to
an external magnetic field.

To build such a quantum computer, first doping is necessary. Doping
is the process in which atoms of phosphorus are introduced to the
silicon substrate. Said atoms are then isolated, and each is initially
given an electron spin of either up or down.

Magnetic fields and microwave radiation are commonly used for qubit
manipulation, such as the same old gates and algorithms we have
viewed in the rest of the book.

Qubit state is typically derived by the interaction between the qubit’s
electron spin and nearby nuclear spins.

In short, silicon-based quantum computers are great because they
are scalable, very coherent, and even compatible with existing
classical computers(which are also based on silicon technology).

Quantum Circuits

Quantum circuits are the bedrock upon which quantum algorithms and
computations are built. They are the quantum analogs of classical
digital circuits, but instead of classical bits, quantum circuits
manipulate quantum bits or qubits.

With the knowledge we have accumulated so far, quantum circuits
should be pretty simple to grasp. Just as classical circuits apply
certain steps or operations to bits, quantum circuits apply certain
steps or operations to qubits. Algorithms like Shor’s or Grover’s were
all implemented in quantum circuits, and thus they are the backbone
of the quantum computing environment.

Typically, quantum circuits begin by initializing qubits in a certain

state(usually ‘0)) and perform gates. Controlled gates then create
entanglement. The qubits are finally measured in order to produce the
output of the gate, and classically transformed in order to represent
usable data (look up “ASCII binary to text” for more information).

So while quantum circuits are a vital component of quantum
computers, they are very intuitive and easy to grasp.

Conclusion

This chapter wasn't designed to outline every single functional
characteristic of quantum computers; that would have taken hundreds
more pages. Instead, the main takeaways should be a general
understanding of each type of computer, and the patterns present in
each of the methods.

Quantum hardware such as that discussed is all in its infancy, and

most of the people reading this book won't get a physical glimpse at
it for a long time, if ever.

But understanding how and why this technology exists holds power;
however far off the future is, it still exists.

CHAPTER 7

Ethical Considerations

Quantum computing is a transformative technology that promises to
revolutionize fields ranging from cryptography and drug discovery to
optimization and artificial intelligence.

Like any disruptive new technology before it, such as the printing
press, the cellphone, and Manhattan project, quantum computing will
bring about major change to our lives. With this tidal wave of new
problem-solving methods follows ethical concerns and responsibilities,
which will be thoroughly covered in this chapter.

Cryptography and Security

Cryptographic algorithms defend systems ranging everywhere from
popular video games and online movies to the FBI and the nuclear

arsenal of the United States of America. Arguably, cryptography is

one of the most vital computerized inventions every developed.

And it has developed at a slow and steady pace. The first
cryptographic “algorithm” was invented in the 16th century: a simple
cipher in which the letters of the alphabet were rearranged in order to
hide the meaning of sentences. Since then, of course, technology has
developed to revolve around mathematics and hidden keys.

Take RSA (Rivest-Shamir-Adleman) encryption, a protocol used to
protect a variety of content, including US military secrets. The
algorithm works using a set of keys, public and private. The public
key is used to encrypt the data, while the private key is used to
decrypt the data.

The whole algorithm rests upon one seemingly unbreakable security
measure: RSA derives its security from the difficulty of factoring
large integers that are the product of two large prime numbers.

See a problem yet?

RSA made the (reasonable at the time) assumption that nothing
could divide huge numbers into prime factors.

Enter Shor’s algorithm.

Although no quantum machines can perform it to such a scale today,
technology is increasing steadily. One day, it will be a reality that the
might of RSA, AES, SHA-256 — will be defeated by a clever scientist
and a couple of spinning particles.

So is quantum computing ethical? Can we continue to employ this
type of computing in good faith if it is going to do so much harm?

Whether or not quantum computing is ethical is a pure matter of
opinion.

Quantum computing is likely as ethical as classical computers were
when they were first introduced. Just as we fear for our security with
potential quantum-powered encryption-breaking, most people were
afraid of their computers when they first arrived on the scene in the
late 20th century.

Even though quantum computers are threatening to disrupt our digital
security, the extent of their effect will simply be just that: disruption.
Quantum computers can be used to shatter encryption, yes, but they
can also build it. Using quantum phenomena such as no-cloning, as
discussed earlier, can be used to fashion a sort of quantum
cryptographic system in which quantum keys cannot be cloned or
copied by anyone else, not even individuals with quantum computers.

So in short, no, the quantum revolution won’t majorly harm the world
in terms of digital security. No nuclear weapons are going to be
hijacked, and our military documents are safe. Widespread adoption
of quantum techniques will definitely require most organizations and

governments to redesign their security, but quantum computers
shouldn’t leave a lasting mark on digital security and data protection.

Social Media

As quantum algorithms advance, they have the potential to unlock
unprecedented insights from data, but this power also brings ethical
dilemmas regarding the analysis of individuals’ personal information
and the responsible use of data.

We know quantum computers are truly superior at naturally detecting
relationships between two things, linking them even when they aren’t
directly connected(entanglement). When applied to larger-scale data
analytics, quantum methods can potentially expose more reliable
information about an individual or group than classical algorithms.

Social media addiction affects an estimated population of more than
200 million individuals worldwide, according to a University of
Michigan study. Classical neural networks are already great at
predicting what kind of content people want to interact with on social
media: who they want to “friend,” what they want to watch, and what
they want to buy. But what happens when this predictive technology
is too good, when serious addiction is a growing threat?

This is a question of knowledge and consent. It is like smoking: we
know the effects of smoking on the human body and lungs, but if you
know and accept the risks, its up to you whether to smoke or not.
With the quantum power of in-depth analysis beyond our shallow-
dimensional “flat” neural networks, quantum predictive techniques are
likely to greatly exceed their current classical capacity. But again, this
doesn’t necessarily need to be a bad thing. So long as companies
and organizations are honest and open about the predictive modeling
techniques they use to analyze user data, and each user is informed
accurately and gives informed consent, quantum predictive techniques
in social media would generally be as ethical as an informed and
willing human being smoking a cigarette.

Of course, this begs an argument over whether allowing people to
choose in the first place is ethical, or adopting a tactic that could

potentially be very addictive to users, which is again of opinion.

So in summary, it depends largely on whether you personally accept
the idea of potentially very accurate predicative models to be applied
to social media and entertainment platforms. This is a choice that
each individual must make for themselves, and it is critical to be
informed of both sides of the argument.

Social Inequality

The rapid development of quantum computing technology has the
potential to exacerbate existing social inequalities, raising significant
ethical dilemmas. As we delve into this complex issue, we encounter
various dimensions of social inequality impacted by quantum
computing.

Widespread access to technology is already a growing issue. The
term “digital divide,” a widely used phrase, aptly describes the
problem at hand with classical computers.

The issue is that highly developed countries have the resources to
obtain classical computers and internet, while developing countries
might not have as easy access to them. Classical computer/internet
access was initially concentrated in only the most privileged
individuals. Of course, there is a large-scale effort to change this,
with entities such as the Alliance for Affordable Internet(A4Al)
working to bring these technologies to previously ignored parts of the
world.

When examined in a quantum lens, this problem is magnified tenfold.
Quantum computers require extremely specific environmental
conditions and hardware in order to operate, which won't be easily
replicable without a vast array of resources. Quantum computers are
at risk of developing as a luxury only for the wealthiest of the wealthy,
with a 50 qubit quantum machine costing around $50,000,000.

So how can we introduce quantum computing to socially unequal
situations? How can we be ethical in developing technologies that are
essentially closed off to lower-income users inherently?

Quantum computing, as discussed earlier, is still in its infancy. For
now, excluding high-level research institutions, quantum computing is
closed off to everyone, exuberantly wealthy or not. This gives us time
to prepare for the eventual quantum inequality, to begin educating the
public.

Quantum simulators are a great way to do. Simulators can be
accessed online, and some particularly good ones are STAQ,
QUuEST, and Qrack, which are all free to use. Keep in mind that users
need to know some classical programming languages before using
this software. However, simulator software still needs to be run on
computers, meaning it is generally difficult to access in low-income
situations, not to mention having the luxury to learn programming
languages. The only way to fix this is continued education and
outreach programs.

As quantum technology advances, it is important to continue
programs to educate developing countries and supply them with
computers, which in turn allow users access to the world of both
classical and quantum computing, at least at this stage.

We must not allow the barrier of ignorance to fall between us. If we
can accomplish that, quantum computing will grow and be connected
to everyone, not just the powerful and extremely wealthy.

In short, preventing low-income individuals and groups from falling
behind in classical computing will prevent them from falling behind in
terms of quantum computing, allowing everyone to be able to have a
part in the future of quantum systems. Now more than ever, it is
imperative to spread technology and educate people of all social and
economic classes.

Quantum Supremacy

The Cold War was a dark period in the histories of the US and Russia
following World War |1, in which both countries rushed to develop as
many nuclear weapons as they could. This “arms race” lead to
heightened political tensions in the regions, as well as unhealthy
competition and aggression.

The same may occur in quantum computing unless action is taken
against it.

Countries like the US and China are both racing to develop their
quantum programs faster than the other. Currently, the US is ahead in
quantum computer development and quantum sensing capabilities,
but China is leading in quantum communications and total number of
quantum technology patents.

If this quantum competition is allowed to continue, the field of
quantum computing may be marked forever by a vicious rivalry
between the US and China.

If a rivalry does indeed develop, tensions may also lead the countries
involved to misuse of quantum computers, turning them into weapons
instead of tools.

We have covered how quantum computers may be misused in
security purposes, but governments won't have ample time to defend
against such misuse in the case of a quantum race.

So how do we prevent this from happening?

One viable solution is the formation of international agreements and
regulations in order to maintain the ethics of quantum computing. This
may not be a very popular solution, because it will restrict potential
military use on both sides of the agreement, but it will overall benefit
society at large by preventing abuse and potentially dangerous acts
perpetrated using quantum machines.

In short, by forming an ethical contract between competing nations,
we can keep the competition civil and light, not “life-or-death.”

Job Disruptions

The advent of quantum computing heralds a new era of technology
with vast potential, but like any disruptive innovation, it raises ethical
concerns. One such concern centers around job disruptions caused
by the automation and optimization capabilities of quantum
computers.

Will quantum computers pose a threat to our jobs?

With every new technological advancement comes fear of economic
impact. However, quantum computing will probably open up more
career opportunities than it will close.

We will still need janitors, garbage collectors, accountants, and
teachers. But with quantum technology, careers as quantum
hardware and software engineers will blossom, followed by quantum
algorithm and policy jobs.

Quantum computing will also significantly enhance existing industries.
With quantum computers, material engineers simulate molecular
interactions, aiding in materials discovery and development. Medical
researchers can accelerate drug discovery and protein folding
simulations. Logistics specialists can optimize supply chain operations
and logistics, potentially altering how goods are distributed.

Quantum computing won't take jobs from human beings; it will
integrate into these disciplines and harmonize with workers.

However, this isn't always the case.

Quantum neural networks have the potential to outperform classical
ones, which is a completely different story. Classical neural networks
are already encroaching into data entry and processing jobs, as well
as administrative tasks, telemarketing and customer support jobs,
and even financial bookkeeping jobs. Their quantum counterparts will
likely perform even better, and will get more and more cost-effective
as quantum technology develops and becomes standardized.

Overall, the future is somewhat cloudy, but it would appear that the
influx of new, quantum-enhanced jobs will likely overtake the deficit of
quantum replaced jobs to some degree, with a probably positive net
effect on the job market and economy.

Conclusion

While the natural power of quantum computers may inspire a large
amount of fear and apprehension, remember to focus on the positive.
All problems have a solution, and at such an early stage, optimal

outcomes are definitely attainable. As with all technology, ethical
considerations are critical even in the early stages of development,
and questions about the ethical viability of quantum systems will
persist throughout the rest of your life.

Remember, new things are scary, but humanity will adapt and grow
alongside quantum machines.

CHAPTER 8

The Future

Quantum computing will continue to be shaped and evolved, as does
every field, but there are some critical factors to consider. How will
quantum computing develop? Where is it headed right now? How far
from true quantum adaptation are we as a society?

All of these are valid questions, and are the object of this final
chapter.

Scaling Quantum Hardware

A large focus of experts in the field is the number of qubits each
machine has. Quantum computers can't be useful until they have the
capacity to store larger amounts of data.

Comparable to this dilemma, performing 5,012,214 x 43,239,009
would be faster on a calculator than by hand, if the particular
calculator can store numbers that large.

Right now, the current qubit world record is held by IBM with a grand
total of 433 qubits. By the end of the year IBM hopes to release a
1,000 qubit processor. Scaling quantum computers is just about the
most important focus in the field right now, and we won't see really
any practical use emerge until we expand quantum technology to be
able to store our problems.

Another problem to consider is the physical limitations of quantum
computers. The ultimate goal for these machines is to standardize
them and use them in professional environments, which won't really
be possible until the invention of the room-temperature
superconductor.

As previously discussed, the superconducting quantum computers are
the most widely used and adopted. But since they have to be
wrapped in giant machines and restricted heavily by temperature
controls, the prices and convenience of the devices has increased
significantly.

That’s not to say quantum computers will ever be cheap, but with the
invention of room-temperature superconductors and the removal of
the bulky refrigerators that protect them, quantum computing will be
much more available for larger scale production and standardization.

In the future, we might see a steady increase in quantum capabilities
until the release of the room-temperature superconductor, when
quantum computing will erupt as a field. It is inevitable that such
superconductors will be developed, though whether they exist during
our lifetimes are a matter of speculation.

Error Correction and Fault Tolerance

Quantum computers are incredibly error prone, as you know. Error
codes are expected to continue to develop and protect quantum
computers from environmental noise and disruptions, until their
accuracy approaches 100%.

Right now, quantum computers are on shaky ground. To even have a
chance of attaining superposition, much less a usable superpositional
state, you need a fortune and a team of researchers. Eventually, as
quantum computing evolves, error codes and fault tolerance will
stabilize and be perfected (or improved to a close enough state) to
where quantum computers are just as reliable as classical computers.

For some specialized algorithms not discussed in the book, such as
QAOA(quantum approximate optimization) algorithms, their
performances will be enhanced.

QAOA algorithms estimate combinatorial optimization problems faster
than classical algorithms, an example being the Knapsack problem.

Imagine you have a knapsack. You want to walk away with the most
money you can. However, the knapsack can only hold a certain

weight. Each item to collect has a certain weight and price, and only
a certain combination of them results in the highest price yield.

The QAOA algorithm estimates this peak price; it gives an
approximate “guess” of what that number might be. For example if |
had a knapsack with a maximum price yield of 10, a reasonable
approximation given by QAOA methods might be anywhere from 8-
12(including decimals).

But as error correction codes continue to develop and become more
effective, quantum approximation algorithms will approach perfection
and eventually be “good enough” to the point where an approximation
will most always be useful enough to reach a definitive result. The
range that the approximations will fall around the correct value will
shrink and become insignificant, and quantum computers will have
reached the limit of precision.

Quantum Cloud Services

Quantum computing is becoming increasingly accessible via online
methods such as quantum simulators. The future will likely see an
increase in these simulators, as quantum methods for problem solving
become more and more popular.

While such simulators aren’t the “real deal,” and can only accurately
simulate few qubits at the moment, advancements will give simulators
the edge over even supercomputers.

Even if it is resource-heavy to simulate quantum systems, it may be a
worthy tradeoff to accomplish tasks and solve problems that much
faster. At any rate, it is likely going to be more efficient than buying
an actual quantum computer, at least for the time being.

Quantum cloud computing will also makes its way into business, but
much more gradually. Businesses can certainly benefit from quantum
technology, as can every industry, but it isn't as necessary a
commodity as things like internet and email servers.

It isn’t common in most businesses to need to search an unordered

list in 0(\@ time instead of O(n) time, for example.

Rarely is it that Fortune 500 companies require the prime factors of
3,912,563,834.

So excluding research-based companies and highly technical
companies, most businesses won't require much of cloud-based
quantum computing for a while.

Hybrid Quantum-Classical Systems

Strictly quantum computers are useful, but not in an everyday sense.
In fact, quantum computers are arguable expensive paperweights
without specific problems and contexts to perform.

Classical computers are the opposite; they are generally useful in
everything, but lack in specific areas with specific contexts.

The intersection of quantum and classical technology could bridge the
gap; it could allow users to check their emails, watch internet videos,
and enable quantum-enhanced calculations simultaneously.

Very few of these systems exist, and their designs are as formless
as water for now. This type of technology is definitely possible, even
if less imagined due to the issue of quantum computing’s everyday
practicality.

Quantum Algorithms and Applications

The development of quantum algorithms and the bridge between
theoretical and practical will continue to be prevalent in the spread of
quantum machines.

Most new applications will again only result from an upgrade in
quantum hardware.

However, assuming we have achieved such quantum hardware, we
would be able to create a sort of secure quantum networking system
using quantum encryption methods, quantum repeaters, and even
quantum satellites.

Applying the principles of quantum mechanics unbounded by
hardware constraints will introduce a new wave of unimaginably
powerful technologies. Every human endeavor would be enhanced.

Quantum computers could accurately simulate complex molecular
structures and chemical reactions, revolutionizing drug discovery and
materials design.

Quantum computers could perform highly detailed climate simulations,
enabling precise long-term weather forecasts and climate change
modeling.

Quantum computers could decipher the intricate process of protein
folding, leading to breakthroughs in understanding diseases and
designing targeted therapies.

Quantum computing could optimize traffic flow in real time, reducing
congestion and emissions in urban areas.

Quantum-enhanced sensors and navigation systems could improve
spacecraft trajectory calculations and enable precise interplanetary
travel.

Quantum simulations could facilitate the study of artificial life forms
and evolutionary processes in ways that classical computers could
never replicate.

Again, all of these speculations should be considered in the context of
“quantum systems could,” meaning there is a lot riding on the
development of hardware to reach that stage and the specific nature
of how these things work.

What we can be sure of is the quantum potential to solve each and
every one of these problems, or at least enhance their solutions.

Conclusion

As we conclude our exploration into the future of quantum computing,
it is clear that we stand on the precipice of a transformative era in
human history.

Quantum computing, once a realm of theoretical musings and
laboratory experiments, is now on the verge of practical utility.

In the not-so-distant future, quantum computers with thousands,
millions, or even billions of qubits will unravel complex problems in

seconds that would stymie classical supercomputers for millennia.
They will decipher the fundamental building blocks of our universe,
revolutionize cryptography, and design groundbreaking materials.

So in conclusion, the future of quantum computing is both blindingly
bright (but also dim at the same time).

FINAL THOUGHTS

Throughout the course of this book, we have explored the mysterious
phenomena that govern the quantum world, the abstraction of
quantum gates and algorithms, and even quantum hardware and
ethical considerations. Finally, after looking forward to the next
frontier of quantum technology, our voyage is done.

Each type of quantum system brings its own unique advantages and
challenges, contributing to the vibrant tapestry of quantum technology.

But the path forward is not without its challenges. Quantum error
correction, fault tolerance, and ethical considerations loom large on
the horizon. Yet, the quantum community remains undeterred, working
tirelessly to overcome these obstacles.

The future of quantum computing is a symphony of quantum bits, a
dazzling display of entanglement, and an exploration of computational
frontiers. It holds the promise of solving problems previously deemed
insurmountable, of securing communications in an increasingly
interconnected world, and of unraveling the mysteries of the quantum
universe.

As we conclude this book and peer into the quantum future, one thing
is abundantly clear: quantum computing is not a destination but a
journey—an exhilarating expedition into uncharted territory. The
quantum revolution is underway, and its impact on science,
technology, and society will be nothing short of ultimate.

	Contents
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Final Thoughts

