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CHAPTER 1: Mathematical Habits of
Mind



A sk any adult how they feel about math, and, aside from a few math
enthusiasts, you’ll get a lot of lukewarm responses. People may say,

“Ugh, I hated math,” or “I was never good at math! I was much better at
reading [or art, or music, or writing, or sports...],” or “It was just so boring
in high school. My friend and I passed notes the whole time.” We have all
sorts of reasons for disliking math: maybe we were taught in a “drill and
kill” method that bored us to tears; maybe we tried to fit in with a certain
crowd in high school by convincing ourselves that we didn’t like math
(think of Lyndsay Lohan’s character in Mean Girls). Maybe we even liked
math until we got to that infamous train problem in Algebra class. Most of
us probably think we aren’t very good at math and may have started to
believe we weren’t “math people” sometime in grade school.

But what is a math person? What if I told you that you could be a math
person, too? In fact, anyone can be a math person. This chapter will
convince you that you can and should learn to think like a mathematician.
The rest of the book will show you how.

Many of us have an idea in our heads of what a “math person” is. Maybe it
was the kid in class who raised his or her hand the fastest or the one who
always went up to the board to solve proofs in Geometry. Maybe it was the
middle-school mathlete or the student who took college-level courses in
high school. Sure, one or two of these people may have solved previously
unsolved problems, amazing and stunning the world's math community. The
rest of them most likely didn’t revolutionize the field of mathematics but
just enjoyed math during their school years and maybe beyond.

So why did they enjoy math? What habits of mind brought them success in
mathematics?

These people knew how to think like a mathematician. Maybe they were
born with a predilection towards logical thought, maybe they were trained
by talented teachers, or maybe they just enjoyed mathematics enough when
they were young they trained their own brains. The point is they learned
how to think like a mathematician...and so can you.

Despite what you may have thought in high school, mathematicians have a
lot in common with artists, musicians, and other creative thinkers.



Mathematics is a creative field that involves visualizing, finding patterns,
asking “what if?” and experimenting. What you learned in school –
memorizing your times tables or following steps to solve an algebra
problem – has little to do with the creative thinking mathematicians do.
Many mathematics educators have argued for reforming the way math is
taught in school because it has so little to do with what math actually is.

In 2009, math teacher Paul Lockhart wrote A Mathematician’s Lament, a
short book that has become a foundational piece for many seeking to reform
mathematics education. In his Lament, Lockhart argues mathematics is an
art form akin to music or painting, but it hasn’t been recognized as such. He
faults the educational system, writing, “In fact, if I had to design a
mechanism for the express purpose of destroying a child’s natural curiosity
and love of pattern-making, I couldn’t possibly do as good a job as is
currently being done— I simply wouldn’t have the imagination to come up
with the senseless, soul-crushing ideas that constitute contemporary
mathematics education.”[i]

Lockhart’s Lament likens math education to learning to memorize the rules
of music in school but never getting to hear music until later in life. If we
think of the math we learned in grade school as a series of memorizations
without getting to experience the art and creativity of doing mathematics, it
makes us rethink who a math person is and who isn’t. So many of us who
were turned off from math at an early age would have loved it had we seen
what it truly is. How many people do you know who say “Music? Eh, it’s
just so boring. I’m not a music person.”

This is the secret that mathematicians know: math is an art. They know they
process mathematics as a musician processes a composition or an artist
visualizes a masterpiece. Paul McCartney claims the melody for
“Yesterday,” one of the Beatles’ most beautiful songs, came to him in a
dream:

‘I woke up with a lovely tune in my head,’ he told author Barry Miles for
the biography Many Years From Now, which was published in 1998. ‘I
thought, ‘That’s great, I wonder what that is?’ There was an upright piano
next to me, to the right of the bed by the window. I got out of bed, sat at the
piano, found G, found F sharp minor 7th – and that leads you through then



to B to E minor, and finally back to E. It all leads forward logically. I liked
the melody a lot but because I’d dreamed it. I couldn’t believe I’d written
it.’[ii]

Similarly, some mathematicians have claimed that critical mathematics
discoveries have come to them while they were sleeping. Srinivasa
Ramanujan, an Indian mathematician, believed equations were brought to
him in his dreams by a Hindu goddess[iii]; Rene Descartes, the French
mathematician after whom the Cartesian coordinate system (our standard
way of graphing on two axes) is named, allegedly had his best ideas while
lounging in bed in the morning, halfway between sleeping and waking.[iv]

Something about the relaxed state of sleeping or being barely awake
allowed these people’s brains to create, visualize, and dream up ideas
related to what their waking minds were focused on.

Recent neurology research has proven math is processed in different parts
of the brain than language. A 2016 study by two French neurologists found
that people process mathematics in the same parts of the brain where they
process problem-solving, which are separate from where language is
processed. This can help explain why Einstein allegedly said, “Words and
language, whether written or spoken, do not seem to play any part in my
thought processes.”[v]

Most critically, Amalric and Dehaene, the two French neurologists, found
these same parts of the brain are responsible for processing simple
mathematics, the kind we learn in grade school.

The results [of the study] revealed a series of brain areas (from both
hemispheres) of the prefrontal cortex, the parietal cortex, and the inferior
temporal lobe are activated only when mathematicians are faced with
statements or problems of their specialty. And they match the circuits that
come into play when anyone handles numbers, does addition and
subtraction, or sees a mathematical formula written on paper.[vi]

Mathematicians’ brains process advanced math as anyone processes
addition or subtraction. This is a revolutionary discovery. It proves we can
all be mathematicians or at least think like them. It proves the “innate
knowledge that Homo sapiens has of space, time and numbers.”[vii]



So, what does this mean for us, the everyday people who are (probably) not
about to make a revolutionary math discovery? It doesn’t mean we can just
go to sleep and expect a discovery to dance into our sleeping minds. You’re
not going to transition from your everyday life to being a renowned
mathematician (or composer ) overnight. But you can train your brain to
think like a mathematician’s. That’s what this book is about.

Mathematicians’ brains are not uniquely formed to solve complex math
problems while the rest of us languish amid our basic multiplication tables.
When second graders learn math, they are using the same parts of their
brains that Ramanujan and Descartes used. Sure, not everyone will grow up
to be a Ramanujan or a Descartes, just as not every musician will become
the next Paul McCartney, but we all have the necessary parts of our brain to
process mathematics.  

What is it, then, that sets mathematicians apart? Along with some degree of
innate capacity, mathematicians learned to think like mathematicians. They
developed the skills they needed to pursue the craft – the art –they loved.
Most of them also spent a great deal of time focusing on that art. They
spoke with others, they read about new ideas, they tinkered with problems,
and they even dreamt about solutions.

Let’s delve into that Paul McCartney anecdote a little more. Sir Paul didn’t
go from learning to pick out notes on the piano to writing the tune for
“Yesterday” overnight. He learned the language of music – what the notes
on the staff mean, how to read and play chords, what makes a good
harmony – and then he thought about it...a lot. His brain was trained to
think like a musician’s, and we can assume he spent much of his time each
day thinking about music.

Researchers and educators have long known training someone to think like
a mathematician is possible. How to do that, though, has been a matter of
debate. Attempts to reform mathematics education go back as far as your
parents or even grandparents can remember (Tom Lehrer wrote the song
“New Math” in 1965!). In 1996 (before Lockhart’s Lament), a seminal
article on mathematical “habits of mind” argued for reforming math
education to reflect more accurately what mathematicians do and how they
think. The authors open their argument by stating, “Past experience tells us



that today’s first graders will graduate high school most likely facing
problems that do not yet exist.” This is even more true now than it was in
1996, before the technological revolution of the 21st century. The authors
argue that math education has consisted of memorizing “a bag of facts.”[viii]

The authors called for a radical shift in mathematics education, so it focused
on the habits of mind mathematicians use rather than the specific facts they
have deduced. They proposed teaching students to think rather than
teaching them the thoughts that mathematicians have had. They wrote:

We envision a curriculum that elevates the methods by which mathematics
is created and the techniques used by researchers to a status equal to that
enjoyed by the results of that research. The goal is not to train large
numbers of high school students to be university mathematicians. Rather, it
is to help high school students learn and adopt some of the ways that
mathematicians think about problems.[ix]

The authors wanted education to focus on creating pattern sniffers,
experimenters, describers, tinkerers, inventors, visualizers, conjecturers,
and guessers. This was a far cry from the traditional idea of math as basic
arithmetic to be memorized.

To clarify what it means to teach mathematical thinking, the Common Core
State Standards for Mathematics, first published in 2010, include eight
standards for mathematical practice. The SMPs, as math teachers call them,
can be taught explicitly alongside math concepts that students learn in their
K-12 education. Sometimes, they are written in more kid-friendly language;
you may even have seen colorful posters with these practices posted on the
walls of your child’s classroom. The eight practices are:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.[x]



According to these practices, you can think like a mathematician even
without formal knowledge. Mathematicians use logic; they look for
patterns; they reason abstractly; they don’t give up when they encounter
hard problems, but rather, they persevere in solving them (or maybe they go
to sleep and continue processing them in their dreams). It’s easy to see how
thinking like a mathematician can benefit us, individually and as a society.
These are 21st-century skills.

When we think of math as preparing us for tackling the 21st century’s
problems, we know we can’t take Einstein’s words at face value. Despite
the fact that language and math are processed in different areas of the brain,
we still need language when we’re studying math. Maybe you’re one of
those people turned off by word problems in algebra. I’m not going to tell
you that you can tear up the sheets of word problems and throw them out
the window. Word problems – specifically, actual real-life problems – are
critical to math education.

The problems you saw in math class most likely weren’t that relevant to
your real life. Maybe you even remember whining to your eighth-grade
teacher, “But when am I ever going to need to know this??” Many problems
we see in math classes are contrived. You’re probably never going to be on
a train going a certain direction and need to calculate the exact time it
would meet a different train going the opposite direction. But you will
encounter all sorts of mathematical problems in your day-to-day life you
may not even recognize as mathematics.

Are you a coupon clipper? If you’re figuring out your grocery budget and
how much you’re going to save, you’re doing math. Do you look at your
cellphone and try to figure out about how much time you have left until you
need to plug it in? If so, you’re doing math. Have you ever painted the walls
of a house or apartment and had to figure out how much paint you needed
to buy? That was math.

Sure, these weren’t the most exciting math problems– Einstein probably
wasn’t pondering square footage of walls – but these are real-life problems
that involve mathematical thinking. You are probably using math every day
in ways you don’t even realize. The next step is to identify what it means to



think mathematically and to harness those skills so you can tackle more
challenging 21st-century problems.

If you ask educators what skills students need for the 21st century, you will
get a wide range of answers.[xi] Most people cite technology and the need to
sort through what’s relevant and irrelevant when presented with a constant
stream of information. What is clear is nobody knows what skills we will
need in the future, but we’re pretty sure they’re not the skills we’ve
traditionally learned in school. (So, in many ways, you were right by asking
your teacher when you’ll ever need to know that!)

In a 2008 speech, the remarkable Sir Ken Robinson likened the education
system to factories. We churn out children in “batches” (based on birth
year) and expect them all to function identically. This worked well enough
when our economy was primarily based on factory work, but our society
has changed and continues to change rapidly. “People are trying to work
out: how do we educate our children to take their place in the economies of
the 21st century?” asked Sir Ken. “How do we do that given that we can’t
anticipate what the economy will look like at the end of next week?...The
problem is that the current system of education was designed and conceived
and structured for a different age.”[xii]

Sir Ken’s answer: schools need to foster divergent thinking or “the ability to
see lots of possible answers to a question, lots of possible ways of
interpreting a question.”[xiii] In other words, we need problem-solving
skills. Whose brains are best trained in these skills? That’s right:
mathematicians’. We know problem-solving skills are needed to address the
unknowable challenges coming our way, and we know from neurology
research that mathematicians address challenges in the problem-solving
regions of their brains.

This means you, the reader, can be uniquely positioned to tackle the
challenges of the future if you take a cue from mathematicians. Whatever
your background or skillset, you can train your brain by learning how
mathematicians think and exercising those skills. In the following chapters,
you’ll learn to:

1. Develop a mathematical habit



2. Become a better pattern detective
3. Use probability and experimentation
4. Describe and speak in the language of math
5. Tinker
6. Inventing
7. Visualizing
8. Guessing

You may notice these skills are based on the Habits of Mind and the
Standards for Mathematical Practice we discussed earlier. That’s not a
coincidence. Mathematicians and leading mathematics educators know
what it takes to think like a mathematician.

In each chapter, you’ll learn how mathematicians use each skill or habit of
mind, and then you’ll find tips and exercises to help you think that way.
Don’t worry, this is not a math textbook. Rather, it offers a way to train your
brain, so you can begin to approach problems with the mindset of a
mathematician.





CHAPTER 2: Become a Pattern Detective

HAVE YOU NOTICED, WHEN the weather turns cool, leaves die and fall
off the trees? Or cats (and some dogs) like to lie in sunbeams? Of course,
you’ve noticed these things. Humans are born with the propensity to look for
patterns. Young children notice, when they cry, a grown-up comes running to
comfort them, or if they draw on the walls, the grown-up will get mad. We
expect certain behaviors and phenomena because we have observed what
usually happens.

So what is a pattern? You might be having flashbacks to math class when
your teacher asked you to extend a pattern to find an algebraic rule. (Don’t
worry, we’ll try that later!) But patterns are much more than that; they are
everywhere in nature. Look closely at a snail shell, and you will see a
pattern. Look at the way water ripples after a stone is thrown, and you will
see a pattern. Mathematicians notice and study patterns like these to figure
out why they exist and what they can tell us about our world. Sure, they also
create patterns for people to examine in algebra class, but the study of
patterns exists because people wanted to figure out the world around them.
In other words, patterns are a natural phenomenon, and the first step to
understanding them is to notice them.

Humans are born with a propensity to look for structure. Neuroscientists
have proven through functional MRIs that human brains naturally look for
patterns in a sequence of items. In fact, there’s a term – apophenia – for “the
human tendency to see patterns in meaningless data that may involve visual,
auditory, or other senses.”[xiv] Our desire to find patterns is so strong we look
for them where there aren’t any! Extreme pattern-seeking behavior is a
hallmark of Obsessive-Compulsive Disorder, Autism Spectrum Disorder,
and other conditions. It’s much more common to search for patterns
obsessively, as people do with these conditions, than it is to not see patterns
at all.



“What distinguishes us from most of the animal kingdom is the desire to find
structure in the information coming our way,” says Robert Barkman,
Professor Emeritus of Science and Education at Springfield College in
Massachusetts. The neocortex, which accounts for eighty percent of a human
brain’s weight and is found only in mammals, forms the neural networks
responsible for patterns. Humans are so good at pattern recognition that
computers have yet to outperform us in that regard.[xv]

The desire and ability to find patterns is an innate skill identified in babies.
One of the primary ways babies use their pattern-sniffing skills is through
language acquisition. Think about the way you speak. You don’t pause
between each word so a newcomer to this world (a baby) can recognize
where one word ends and the next begins. Studies have shown that babies as
young as eight months recognize patterns in speech, such as when certain
sounds are grouped together or those moments when we do pause between
words.[xvi] This pattern recognition helps them make sense of the sounds
they hear, leading to the seemingly miraculous moment when they say their
first word. 

You should be getting the sense by now that pattern-sniffing means more
than recognizing the patterns in the tile of a 1950s bathroom. Patterns can be
visual, auditory, or “the regular way something happens or is done” (as in
how babies learn language).[xvii]

Pattern sniffing, in all ways, is how we learn. Early humans (and animals)
learned which plants were safe to eat by watching what happened when their
peers ingested different plants. Mothers learn quickly that feeding or
changing a crying baby usually stops its crying. Even weather forecasting is
based on pattern recognition. While powerful machines now use algorithms
to predict the weather several weeks out, early weather forecasting was
based on observing what had happened.[xviii]

Mathematicians are adept at finding patterns because they have had years of
practice. By slowing down and taking the time to notice, you too can train
your brain to notice patterns.

Let’s try a few exercises to help you become a pattern-sniffer.



Exercise 1:

The first one is simple: The next time you’re in a bathroom with some kind
of tile or wallpaper pattern, take an extra ten seconds to examine that pattern.
How would you describe it? Does it seem to follow a rule? If it’s a pattern, it
must follow a rule; the key is in describing that rule. Do you see six squares
around a hexagon, repeated over and over? Or maybe a print that resets
every few inches? Try to imagine this pattern continuing where the tile or
wallpaper has ended. Where would each part of the pattern land on the
unadorned wall or floor?

Maybe you’re more inclined to listen to music than study the wallpaper in a
bathroom. The next time you hear a new song, try to pick out the drumbeat
or the bassline and see if you can predict when it will change (for example,
when the chorus starts). When you’re able to make this prediction, you’ve
learned the pattern. If you’re someone who listens to or plays a lot of music,
you’ve likely been doing this for most of your life. Your brain is working
like a mathematician’s without you even realizing it.

Exercise 2:

Let’s try another visual pattern. This one is a bit more challenging and gets
into some advanced math, though the pattern is quite accessible. Study the
sequence below for a few minutes.

How do you see it growing? Try sketching the next figure in the sequence.
Did you follow a rule to make your sketch? What do you think the tenth,
fiftieth, or one-hundredth figure in the sequence would look like?



If you were able to describe a rule to extend the pattern above,
congratulations! You just dipped your toe in algebra. The pattern above is a
classic growing pattern used in algebra courses. Some teachers use it to train
their students to notice patterns. Others use it specifically when beginning
the study of quadratics. That’s right, the pattern above is an example of a
quadratic function. The mathematical expression that describes the pattern
is: n(n+1)/2. Don’t put the book down and run away. That formula simply
means the number of tiles (squares) in each figure is the figure number times
one more than that number, divided by two. Let’s look at Figure 4 for visual
proof of that. If you imagine putting two of Figure 4 together to make a
rectangle, we can see why the formula works.

The width of the rectangle is 4 (n, or the figure number); the length is 5
(n+1); multiply 4x5 to make the area of the whole rectangle then divide by 2
to get the staircase figure (made of 10 squares) that makes up half the
rectangle.

Not coincidentally, those figures also represent triangular numbers. Let’s
look at the same pattern written numerically, with each figure represented by
a number:

1 3 6 10

How do you notice the numbers growing? What number would come next?



Triangular numbers are numbers that, if represented by dots, would form a
triangle. Here’s the same sequence shown as triangles:

Triangular numbers aren’t just cool to look at. They come up a lot in
probability, and they are just one example of figurate numbers, numbers that
can be represented by a shape. There are many interesting ways we can
examine and use triangular numbers and other figurate numbers, but that’s a
study for you to pursue on your own time or perhaps in an algebra class. If
that exercise didn’t pique your interest, don’t worry. Just noticing and
examining a pattern had you thinking like a mathematician. 

Another pattern that abounds in nature can be described by the Fibonacci
Sequence. The Fibonacci Sequence is a classic pattern of numbers that
begins like this:

0 1 1 2 3 5 8 13 21 34 55

Can you figure out the relationship between the numbers? Each term in the
Fibonacci Sequence is the sum of the previous two terms. After 55 would
come 89, since 55+34=89. Fibonacci numbers have been known to Indian
mathematicians for over two thousand years. They were first introduced to
the western world in 1202 by the Italian mathematician Leonardo of Pisa,
who later became known as Fibonacci.[xix]

But why does the Fibonacci Sequence exist? What significance does it have?
The numbers in the sequence have a proportional relationship to each other.
That means one term divided by the term before gives us a constant (or
almost constant) ratio. The longer the sequence continues, the closer the
ratio of terms gets to the magical number of phi, 1.618.



The number phi appears so often in nature that it has earned the name the
golden ratio. The overlapping spirals in the head of a sunflower almost
always contain two consecutive Fibonacci numbers, meaning they exist in
the golden ratio. Snail shells contain the golden ratio in the way their size
increases as it spirals out.[xx] The way trees branch out follows the golden
ratio, with the number of branches growing proportionally as the tree gets
taller. The golden ratio is everywhere.

When we look at topics in mathematics that people have studied for
thousands of years, it may be difficult to imagine how people got started on
that topic. Remember that everything starts with a single person asking a
question or noticing a pattern. Someone, at some point, probably hundreds of
thousands of years ago, noticed tree branches follow a pattern. Perhaps the
same person, or perhaps others, noticed other things around them seemed to
follow the same pattern. Eventually, a mathematical theory formed.

To become a better pattern-sniffer, look for and try to make sense of patterns
you see around you every day. Once you identify a pattern, visual or
auditory or neither, try to describe it. What part of it is repeating? Is there
something that changes each time the pattern repeats? What would happen if
the pattern continued? You’ll soon notice that patterns exist everywhere in
our world, inviting you to make sense of them.





CHAPTER 3: Probability and
Experimentation

IF YOU’VE EVER PLAYED a dice game or watched a movie that involves
gambling, you’ve probably heard of “lucky sevens.” You’ve probably heard
the phrase elsewhere too, since it seems to be everywhere. There’s a movie
called Lucky 7; numerous restaurants and bars are called Lucky Sevens;
there’s a Lucky 7 Casino and even a 2021 film challenge in Las Vegas
called the Lucky Sevens Film Challenge (“7 Feature Films. 7 days to shoot.
$7,000 budget. The ultimate film challenge!!! Are you in?”).[xxi] It seems
impossible not to have heard of lucky sevens.

Did you ever stop to think about why sevens are supposed to be lucky? It’s
not random. The “luck” of the number seven can be explained by
probability, specifically for games involving dice.

Let’s imagine you’re playing a game (a gambling game, perhaps) with each
player rolling a standard pair of dice on their turn. The dice have six faces,
meaning each die has numbers one through six exactly one time. Here’s a
sample of possible outcomes from a single roll of the dice:

Die 1 Die 2 Total

1 1 2

3 4 7

6 2 8



6 6 12

Here’s an exercise for you: find a piece of paper (or open a new document
on your computer) and list all the possible outcomes of rolling two dice. Try
to work systematically, so you don’t miss any. For example, if Die 1 lands
on a one, Die 2 could land on a one, two, three, four, five, or six. Record
each of those sums separately, since those are all possible rolls.

Once you’ve worked through the possibilities for Die 1, you don’t need to
do the same for Die 2, since you’ve already accounted for each roll. (When
you recorded a roll of one of Die 1 and three on Die 2, for example, it’s the
same as landing three on Die 2 and one on Die 1 – no need to count twice).
You should have thirty-six possible outcomes.

Now, look at those outcomes – the sums of the two dice. How many ways
are there to roll (as a sum of the two dice) a one? (Zero.) How many ways
to roll a two? (One.) A three? (Two.) Keep counting the possible outcomes
until you get to seven. How many ways are there to roll a seven? That’s
right, six. There are more ways to roll a seven than there are to roll any
other total.

So are sevens lucky? No! They are just mathematically more probable. Add
personal history, culture, and superstition into the mix, and a person might
have many reasons for believing sevens are lucky. But in terms of dice, the
“luck” of the number seven can be explained by mathematics.

The probability of something happening is always described as a number
between zero and one. It’s usually described as a fraction or a percent. Zero
means absolutely no chance of it happening. What’s the probability of
rolling a zero when you roll two dice? Zero. You can’t roll that.

In the language of probability, one means certain to happen. It’s rare that
something has a probability of one, meaning it’s guaranteed to happen. We
could say the probability of rolling a sum between 2 and 12 when rolling
two dice is 1 (or 100%) because those are the only possible outcomes. But
in real life, very few things are 100% guaranteed to happen.



Between those two extremes are fractions that describe how likely a
particular outcome is. Probability is calculated by figuring out the number
of favorable outcomes – the outcomes we want or are talking about –
divided by the number of total possible outcomes. We can write this number
as a fraction or a percent.

Probability = _# of favorable outcomes_

# of total possible outcomes

In the example of rolling two dice, the denominator of the fraction – the
total possible outcomes – is 36. The numerator – the number of favorable
outcomes or ways that we could roll seven – is six. So the probability of
rolling a seven with two standard dice is 6/36, which can be simplified to
1/6.

A little understanding of how probability is measured can help you get
through daily life. Computers use advanced algorithms to predict the
weather. If the forecast one day calls for a 30 percent chance of rain, it is
somewhat likely to rain, and you may want to throw an umbrella in your
bag. If there’s a 75 percent chance of rain, it is more likely than not to rain.
If there’s a 95 percent chance of rain, put on your rain boots because you
will almost certainly be getting wet that day.

Grain of salt, here: Weather forecasts, as we know from the previous
chapter, are derived from patterns of previous weather events. While they
have gotten substantially more accurate in the past fifty years, they still
aren’t correct all the time. If the forecast says 100% chance of rain and it
doesn’t rain, please don’t throw this book at your weather forecaster, but
remember weather predictions are just that: predictions.

There’s more to probability than understanding how it’s measured, though.
If you have played a game that involved 36 rolls of the dice, you probably
didn’t roll exactly six sevens, five sixes, and so on. Probability gets a bit
messier when we play out scenarios like this in the real world.

In theory, rolling a pair of dice 36 times would give us the outcomes we
predicted above, but in practice, our results will most likely be messier. This
is the difference between theoretical probability and experimental



probability. Theoretical probability is what exists in theory – the pure, raw
math. Experimental probability is what happens when we roll those dice.

One fascinating thing about probability is that the experimental probability
of an event happening approaches the theoretical probability as the number
of trials increases. In layman’s terms, this means you’re more likely to get
those numbers you calculated the more times you roll the dice. If you roll
the dice exactly 36 times, you may end up with one seven, five twos, eight
sixes, or who knows what else. But if you roll the dice 100 times, 1,000
times, or 1,000,000 times, the fraction of those rolls that are sevens will get
closer and closer to 1/6.

This is easier to wrap our heads around when we think about flipping a
coin. In theory, the coin should land on heads 50% of the time (or ½ the
time) and tails 50% of the time. Most of us have had the experience of
flipping a coin several times in a row and having it land the same way. We
may have thought we were lucky that day or had a weighted coin. But we
probably didn’t spend an hour, five hours, or ten hours flipping the coin
repeatedly to see what happened. As the hours wore on, the overall
outcomes of the coin flips would get closer to 50% each for heads and tails.

What if we flipped two coins, though? Maybe we’ve placed a bet and we’re
convinced that flipping two coins will result in one of them landing on
heads. If there’s a 50% chance of one coin landing heads, wouldn’t there be
a 100% chance that, with two coins flipped, one of the two will land heads?
Probability doesn’t work that way, unfortunately.

If you flip two coins, each coin has a 50% chance of landing heads. We
can’t add those two probabilities because the two coins behave
independently. Coin one has a 50% chance of landing heads; so does coin
two. We now have four possible outcomes: heads-heads, tails-tails, heads-
tails, or tails-heads. The probability of one coin landing heads is still 50%
since there are two favorable outcomes out of four possible ones.  

Just like noticing patterns, understanding probability will help you
understand a lot that goes on in the world. Many aspects of our society are
based on probabilities. Think about the health insurance industry in the
United States. Before the Affordable Care Act, insurance companies could
deny insurance to individuals considered at high risk of costing them a lot



of money. These individuals may have had pre-existing conditions or what
insurance companies deemed unhealthy lifestyles – a judgment that helped
contribute to the discrimination of whole groups of people in the U.S. As
any one of these people who were previously denied insurance will tell you,
this doesn’t mean each of them will necessarily cost insurance companies
more. Rather, insurance companies looked at aggregate data to determine
how likely a person was to incur high healthcare costs.

Data can be examined on an aggregate level, but we approach dangerous
territory when we try to draw individual conclusions from it. This is how
biases are formed – when people look at aggregate data (whether or not it is
correct) and try to apply it to individuals.[xxii]

On a more personal level, understanding probability can help us make
better choices in life. Are you someone who buys a lottery ticket every day?
Unless you really like to dream (who doesn’t?), you may want to stop, as
the lottery is a notoriously bad investment. According to Investopedia, the
odds of winning the Powerball jackpot are one in 292.2 million. Put another
way, it’s a .0000000034, or .00000034%, chance you’ll win. That’s almost
240 times less likely than the chance you’ll be struck by lightning in a given
year.[xxiii] Buying multiple tickets won’t help you since the odds of winning
are so incredibly slim.

Let’s say you’re buying raffle tickets, though. If five hundred tickets are
sold, and you have one of them, you have a 1/500 chance of winning, or
.2%. If you really want that prize, you might want to chance buying a larger
number of raffle tickets. If you buy 49 more tickets, so you have 50 and the
total sold is 549 (you just added to the total sold, don’t forget), your chances
of winning are now just over 9%, almost 1 in 10. It’s still not a great way to
spend your money, since you have a 91% chance of not winning, but you do
have a better chance of winning this smaller draw than you do of winning
the lottery. Plus, the money you’ve spent on tickets is probably going to a
good cause.

The next time you’re invited to play a game of chance, or you listen to the
weather forecast, or you see a chart of predicted wins in a political race,
keep in mind that probability is just that – it can tell us what will probably



happen or not happen based on patterns and theory, but it can’t tell us for
sure what will happen.





CHAPTER 4: Describing and Speaking in
Mathematical Language

AS YOU’VE SEEN, MATHEMATICS is all around us. Mathematical
phenomena exist in nature. If you take the time to notice and have a little
knowledge about what you’re looking for, you can use mathematics to
understand the world around you.

But there is still something that separates the average person from the
mathematician: knowing the language of mathematics. Perhaps the math
taught in secondary schools is a language – a second, third, or fourth
language for many students. All that time we spend solving equations and
deciphering word problems is practice for understanding the mathematical
phenomena around us.

Let’s look more closely at the language of mathematics. The first thing to
understand is that the way we say numbers in English makes less sense than
the way they’re said in many other languages. If English isn’t your first
language, you may have struggled to pick up the counting system. Like the
customary measurements we use in the U.S. (feet, inches, pounds, etc.), our
names for numbers aren’t entirely logical.

When we count past ten, we have special numbers for 11 and 12, and then
the set of numbers 13-19 tells us how the numbers are composed: thirteen
means three and ten. Seventeen means seven and ten. Once we get to 20,
the order switches, with the number of tens coming first: twenty-one means
two tens and one. Eighty-seven means eight tens and seven ones. Romance
languages (the most common of which are French, Spanish, Italian,
Portuguese, and Romanian) have a similarly irregular set of names for the
numbers 11-15 but then switch to the “ten and” structure. Seventeen in
Spanish is “diecisiete” – literally, ten and seven. In French, it’s “dix-sept” –
ten seven.



In Chinese, Japanese, and Korean languages, the structure for counting in
teens is much more logical. Eleven is ten-one, twelve is ten-two, all the way
through nineteen. Twenty is two-ten; thirty is three-ten; ninety is nine-ten.
Ninety-seven is nine-ten-seven.[xxiv] The way you say it tells you the value
of the number. Think how much easier it would be for young English-
speaking children to learn to count if our counting system were this logical!

The English language falls short compared to Japanese again when we look
at how we say larger numbers. In English, the number 427, for example,
comprises four hundreds, two tens, and seven ones. Students spend a lot of
time learning “expanded form” so they can understand the value of each
number in our base-ten system. They learn to decompose 427 into
400+20+7. You may remember your second-grade teacher pointing to the 2
and asking what it means. If you said “Two!” like many other children do,
your teacher probably shot you an exasperated look, wondering why you
didn’t know that two actually means twenty.

In Japanese, the number 427 is said as four hundreds; two tens; seven. No
decomposing is required because the language conveys the value of each
digit.[xxv] Think how much easier it would be to learn to add and subtract if
our language conveyed the value of each digit so clearly.

As children get older and move beyond the study of place value, they spend
many years learning the language of mathematics, particularly algebra.
Were you confused the first time you saw letters in an equation? Until about
6th grade, we were taught that math was about numbers. Suddenly, there are
equations with letters in them, and our teachers tell us that x no longer
means multiplication but some value we don’t know yet. If we’ve been
taught in a procedural way without understanding much of what we do, as
many students in the U.S. have been taught math, no wonder we hated it in
middle school!

Education reforms have sought to correct many of these misconceptions
about math. Place value is emphasized from kindergarten; students now see
unknown values in equations from a young age and equations written in
different ways (7= ♥  +2). The Common Core State Standards made a
serious effort to help children understand the meaning of mathematics. This



meant teachers had to shift the way they taught, focusing on meaning rather
than procedures.

Algebra has long been known as a “gatekeeper” in mathematics. In New
York City, students must pass the Algebra I Regents Exam to graduate from
high school. This leads to large percentages of students taking algebra
courses once, twice, or even three times. Various studies have shown that
algebra pass rates predict high school graduation rates, with some showing
those who fail algebra have only a twenty percent chance of graduating
high school.[xxvi]

If you’re one of those people who didn’t pass algebra, don’t fear. It’s not
nearly as scary as you think it is. Algebra is simply the rules of arithmetic
you learned previously abstracted. In other words, it takes the rules you
already know and generalizes them. For example, look at the simple
equation 8-3=5. If we rewrote this using an “unknown” (a variable) for the
three, it might look like 8-x=5. Solving for x here just means using what
you know about subtraction (or addition, if you wanted to solve it that way).
Eight minus some quantity is equal to five. How would you figure out that
quantity? Would you count down on your fingers? Add up from five? Any
way you solve it is fine because you’re demonstrating you understand the
structure of subtraction.

Algebra does get more complicated, but even linear equations, such as
y=3x+2, are based on arithmetic students learn in elementary school (the
four operations of multiplication, division, addition, and subtraction). An
equation like this, while it seems abstract, represents a scenario in real life
you may deal with all the time. Let’s say, for example, you take a cab or a
ride-share somewhere. Often, there is a base fare you must pay just for
getting in the car – let’s say $$2. The driver then charges you $3 per mile
you travel. By the end of the ride, you owe the $2 base fare plus $3 for each
mile. The x in the equation represents the miles traveled, and the y
represents the amount you owe. If you traveled ten miles, you would owe
$32 – three times ten plus two.

The reason we use algebra in the above scenario is so we can figure out
how much it would cost to ride any number of miles (or our driver knows
how much to charge us). The formula is a generalization that allows us to



make predictions and see structure. Without it, we might throw a fit when
the cab driver announced our fare was $32 because the number would seem
arbitrary.

Another way you might use algebra is when figuring out which coupon to
use. Bed Bath and Beyond sends out 20% off coupons and $5 off coupons.
How do you know which one to use to get the better deal? If you’ve ever
calculated which coupon would save you more money for a purchase,
you’ve thought algebraically.

For those Bed Bath and Beyond coupons, we want to know whether 20% of
an item or $5 is the larger amount. The mathematical way to say this is to
write two equations: y=.8x and y=x-5. It may help your understanding to
explain the equations in words, so you can see exactly how they relate to
the scenario. The first equation tells us the price you will pay, y, is equal to
80 percent of the original price of the item, x; the second says the price you
will pay, y, is equal to the original price of the item, x, minus $5. For the
first equation, you may have been thrown off by that .8. We could have
written the equation as y=x-.2x (the final cost is the original cost minus
twenty percent of the original cost), but we can simplify that to .8x (think
about it: if you’re not paying for 20% of an item, you are paying for 80% of
it, since 100% would be the original amount).

When you solve for a cost of an item – let’s say a pillow that costs $18 –
you’re figuring out which equation will give you a lower value for y:

y=.8(18) (the cost equals eight tenths times 18)

or

y=18-5 (the cost equals 18 minus 5)

Here, the 20% off coupon would give you a final price of $14.40. The $5
off coupon would give you a final price of $13, so it is a better deal for an
item that costs $18.

If you wanted to take the Bed Bath and Beyond scenario a step further, you
could use algebra to figure out exactly when to use the 20% off coupon and
when to use the $5 off coupon. While this seems like complicated math,
remember algebra is just the abstraction of rules you already know. It’s a



language to be learned, but it represents concrete scenarios. We could set
those two equations equal to each other to find the price at which they give
us an equally good deal. Then we would solve for x, the unknown, the price
we’re trying to determine.

.8x=x-5

Let’s try translating that into regular English first: 80 percent of some
amount (x) is equal to that same amount (x) minus 5. Then use the rules of
arithmetic you know (or trial and error, picking numbers for x) to solve for
x. It turns out $25 is the magic price at which a 20% off coupon and a $5
off coupon yield the same savings. If the price of an item is higher than $25,
use the 20% off coupon; if it’s lower, use the $5 off coupon. Here’s a graph
that shows that, where the red line represents the 20% off coupon and the
blue line represents the $5 off coupon. The x (horizontal) axis shows the
original price of the item, and the y (vertical) axis shows the price after the
coupon is applied.

Congratulations! You just studied a system of linear equations! More
important, you learned how the language of algebra can help you
understand a real-life situation. Just as with studying patterns and
probability, understanding the language of math can give you insight into
the world around you.



Mathematics is a visual language with symbols and graphs lending
information. Think about this when you see infographics in magazines or
newspapers. Rather than breezing past those images, ask yourself what
information they are trying to convey. Take this one, for example:

NOAA predicts above-normal 2022 Atlantic Hurricane Season[xxvii]

Study it for a minute to see what it’s trying to tell you. The title (“2022
Atlantic Hurricane Season Outlook”) and the labels give you necessary
information. We know from the label at the bottom that the pie chart is
showing us “Season probability.” We discussed probabilities, so you’ve got
this! Remember probability is always represented by a number between
zero and one, or 0% to 100%. The blue chunk of the pie chart (or circle
graph) represents 65% of the chart, and the information at the bottom tells
us the chunk shows the probability for an “Above-normal” season. That
means it is somewhat likely (65% chance) we will have more hurricanes
than usual in the 2022 season. There’s a slim chance – 10%—the season
will be “Below-normal” in terms of hurricane frequency.

This infographic conveys important information in the language of
mathematics. Understanding it can help you plan for the hurricane season if
you live in an area frequently hit by hurricanes. It also lends information to
the effort to understand the effects of climate change.



If you found yourself confused by numbers or graphs in school or
intimidated by variables and equations, remind yourself that math is a
language that represents our world. It is not obscure, created just to perplex
generations of students, but a way of communicating information that can
help you make more sense of the world around you.

Finally, describing ideas and speaking in mathematical language is
important because it enhances our understanding. This seems
counterintuitive when you think about a typical classroom. In the traditional
classroom, students raise their hands when they think they have an answer;
the teacher calls on them and confirms if their answer is correct. Research
has shown that this type of instruction, often called I-R-E for Initiate-
Respond-Evaluate, doesn’t work nearly as well as discussion-based
instruction.[xxviii]

In “A Discourse Primer for Science Teachers,” published in 2015, the
authors lay out five reasons talk is so important in a classroom. First, and
most powerfully, they argue talk is a form of thinking. Linguists and
psychologists have proven we don’t fully form thoughts before we start
thinking; much of our understanding comes from the process of speaking.
[xxix] Though we think we know what we want to say, we test, alter, and
solidify our thoughts when we speak.

The authors of the Science Primer also point out that students’ ideas serve
as resources for others. Think about a typical discussion. A good discussion
isn’t each person monologuing their ideas. It consists of different people
sharing ideas, building on each other, and coming to a new or shared
understanding. In a good math discussion, people may share partially
formed ideas, get feedback, and revise their original thinking, eventually
landing on a stronger understanding of the topic they’re discussing.

Just as mathematicians aren’t afraid to experiment, they’re not afraid to test
ideas before they are formed. They know a discussion will lead to deeper
understanding. The next time you have an idea about something, don’t be
afraid to share it. The process of vocalizing it and getting feedback will
only make your idea stronger.





CHAPTER 5: Tinkering: Breaking it
Down and Putting it Back Together



W hen you were a child, did you ever take something apart to see
how it works? Even something as simple as a pen or a mechanical

pencil can fascinate a curious child or a bored middle-schooler. If you ever
did this, you know the value of tinkering with things. Discoveries don’t
usually come to us as epiphanies but rather as the result of exploration.
Mathematicians wouldn’t be able to make the discoveries they do without
tinkering.

Educators and psychologists have pointed out for nearly a century that
people learn by experimenting and trying new things. We construct
knowledge rather than having knowledge poured into our brains. Piaget,
Dewey, and Montessori contributed to the theory of constructivism, which
states children learn by experiencing new things and incorporating them
into their existing schema, thereby constructing understanding.[xxx]

Constructivism or experiential education is what mathematicians have long
known: phenomena need to be tinkered with, broken down, examined, and
then put back together to create knowledge. Tinkering has become more
popular in schools, as educators realize it leads to better understanding than
memorization does. Many schools now have maker spaces or
STEM/STEAM classes, built on the foundation of tinkering and
experimentation.

Let’s look at a concrete example of how tinkering – breaking things down
into smaller pieces and putting them back together – comes up in math
class. Elementary school teachers talk about composing and decomposing
numbers to help young children gain number sense and an understanding of
place value. When adding thirteen and eight, for example, first graders
might learn to decompose the thirteen into its pieces—one ten and three
ones. They might tinker with the eight, thinking about ways to decompose it
that would make the problem easier for them to solve. Six and two? Five
and three? They might realize that seven and one give them friendly
numbers to work with: the three ones from the thirteen can be combined
with the seven ones to make a new ten. So, thirteen plus eight can be
understood as one ten (from the thirteen), another ten (three plus seven),
and one one. In other words, twenty-one.



You might be thinking that’s a ridiculously complicated way to add two
small numbers. Nobody is arguing this is the most efficient way to add.
Rather, it’s a step towards fluency. Educators know memorization without
understanding rarely works. Being able to work through this process of
decomposition demonstrates and builds fluency with numbers. Students
who can break numbers apart like this, looking at their pieces and thinking
strategically about how to combine them again, have a much higher chance
of succeeding with more sophisticated mathematics.[xxxi] They have a
stronger number sense and understanding of place value.

Many concepts in math can be understood by breaking them down. Let’s
look at a concept that may have scared you in Algebra 1: the distance
formula. Many students stumble through Algebra 1, barely understanding
what they’re doing, memorizing whatever they need to in order to pass
tests. The distance formula is one particularly nasty formula that students
often balk at (or cry over) when their teachers tell them to memorize it. This
formula tells us the distance between two points on the coordinate plane can
be found this way:

You might be asked to use the distance formula to find the distance between
points p and q on the graph below, for example:



If your eyes just glazed over, don’t panic! Mathematicians come up with
formulas, so others can follow specific rules and get a reliable outcome
(more on that in chapter 6). Teachers teach those formulas in the hopes that
they’re helping their students get answers, particularly on tests. But the
understanding behind formulas like this is what is important, and this
formula masks a somewhat simple concept.

To break down this formula, let’s recall the Pythagorean Theorem, which
you may have learned in eighth grade. The Pythagorean Theorem is a
method for finding an unknown side length in a right triangle. (We could
spend time building squares and triangles to derive this Theorem, but we’ll
skip that part, assuming that, at some point you learned and understood it).
Let’s look at a typical right triangle. We can label the sides a, b, and c.
Mathematicians have agreed on conventions in the past; we need to accept
that c will always represent the hypotenuse, or the longest side of the
triangle, which is always across from the right angle. The other two sides –
the legs – are called a and b, and it doesn’t matter which one we call a and
which one we call b.



The Pythagorean Theorem tells us the sum of the squares of the two legs is
equal to the square of the hypotenuse. The formula looks like this:

a2 + b2 = c2

We can use this formula to find the length of the hypotenuse if we have the
lengths of the two legs or to find the length of one leg if we have the length
of the hypotenuse and the other leg.

Now, let’s return to our graph. We can draw a line to connect points p and q,
and then make that line the hypotenuse of a triangle (why not?):



If we know the Pythagorean Theorem, which we do, we can find the
distance. We can find the length of the two legs on the graph then use the
Pythagorean Theorem to find the length of the hypotenuse. To find the
length of each leg, simply count on the graph or subtract the two x-values
and the two y-values. In this example, the leg on the bottom of the triangle
would be three units (or 4-1), and the vertical leg would be four (5-1).
Substitute those into your formula, and you have:

32 + 42 = hypotenuse2

To find the hypotenuse (rather than the square of the hypotenuse), we would
have to take the square root of both sides of the equation, so we would
have:

Now, look at the distance formula: that’s all it is! We’ve used the
Pythagorean Theorem to figure out the distance between points p and q is
five. If you substituted x and y values into the distance formula for those
same points, you would also get five. We can understand what looks like a
complicated algebraic formula by drawing a triangle and using what we
know about side lengths.

We broke down a formula into something we knew a little better then
reconstructed it, creating understanding along the way. That’s one way to
think about what it means to tinker. Mathematicians tinker by playing
around with numbers and formulas, trying things, breaking them apart, and
putting them back together, hoping they come to a greater understanding.

Another way to think of tinkering is as a form of experimentation. Tinkerers
take ideas, break them into smaller components, and then try things. Will
this formula work? What happens if I try this rule? Can I add three to both
sides of the equation and get the same thing? These are the questions
mathematicians might ask as they tinker and experiment with an idea.

As grown-ups, the rest of us (non-mathematicians) are often hesitant to
tinker, particularly with numbers. We’ve been told that learning, especially
in math class, is all about getting the right answer. We are often terrified of



doing or saying something wrong in front of others, but we can’t expect to
learn or make progress if we approach life this way. Every failure teaches us
something; we would never learn or achieve anything if we stuck to what
we know.

To be a tinkerer, ask yourself, “what if?” Don’t be afraid to be extreme!
(There’s an entire website and multiple books that consist of people asking,
“what if?” and coming up with all sorts of wild answers.[xxxii] It’s a fun
read, particularly if you’re in a creative rut!) Anytime you can, try to break
ideas (or things!) into their smallest parts, examining and questioning each
part. Try different ways of putting ideas back together, changing one small
piece to see what effect it has on the whole. Think of the number eight
being broken apart in different ways then reconstructed.

Tinkering is especially important if you’re trying to accomplish a big task
or solve a hefty problem. Try first thinking about the smaller steps you
might take to get started. Then experiment. What can you change? What
can you try that might help get you to your solution? What new ideas have
you found you can incorporate? Don’t be afraid to try something and fail. If
you’ve broken down a project into smaller pieces, you’ve only failed at
something small, and that failure has led to learning. Adjust your approach
and try again.  





CHAPTER 6: Inventing: Understanding
Algorithms and Using Them

DO YOU RECALL YOUR teachers telling you, “Don’t ask why; invert and
multiply,” or “keep-change-flip”? These are tricks for remembering how to
divide fractions. Tricks aren’t inherently bad, but they don’t tell you how
things work. They are memorization tricks that teachers often rely on,
believing they’re helping their students succeed on future tasks and tests.

Tricks like these often obscure the understanding students need to learn and
remember mathematics. There have been several well-known articles and
books in recent years that have circulated in the math education community
advocating against tricks or artificial “rules” (see Nix the Tricks[xxxiii] and
“Thirteen Rules that Expire”[xxxiv] for more).

While memorizing rules and tricks can obscure learning, building rules for
yourself can make you more efficient. That’s what algorithms in math are
all about.

If you have school-age children, you may have found yourself baffled by
their math homework. Parents often complain about the way math is taught
now, with an emphasis on deconstructing numbers, building understanding,
and solving problems in different ways. The Common Core Standards for
Mathematics, published in 2012, have been a source of much contention.
[xxxv] Parents and some educators have argued we need to return to the
traditional way of teaching math, with an emphasis on memorizing and
following algorithms. “It worked for us,” they often say, “so why change
it?”

The problem is it didn’t work for us. The American education system has
long been known for producing unequal results, with significant racial and
economic disparities.[xxxvi] The U.S. has also lagged behind other wealthy
nations in international tests of academic progress.[xxxvii] If you’re still not



convinced, ask the average American on the street to divide two fractions.
They will likely try to recite some algorithm they memorized years ago but
will misapply it and get the wrong answer. And that’s sixth-grade math. Try
throwing in a mixed number, and you’ll have them stumped!

The Common Core Standards attempt to bring equity to mathematics
education and prepare American students for a future yet unknown. They
are based on years of research on how people learn. They are based, in part,
on the same habits of mind this book strives to teach you – the habits of
mind that mathematicians have.

So what is the role of algorithms in the Common Core, or, more broadly, in
the life of a mathematician? Let’s start by defining algorithm. An algorithm
is a procedure for getting a certain outcome. It is a set of steps to be
followed that will always work. In math class, “the standard algorithm,”
refers to how you, your parents, and your grandparents most likely learned
to do something. For multi-digit multiplication, for example, the traditional
algorithm looks like this[xxxviii]:

BUT AN ALGORITHM IS much more than the traditional way you learned
to do something. Remember, an algorithm can be any set of steps that
reliably works. If a fourth grader has another method for multiplying multi-
digit numbers that reliably works, it’s an algorithm. When you balk at your
child’s math homework, you are likely seeing alternative algorithms you
didn’t know existed.

The most important aspect of an algorithm is that the person who uses it
understands it and can rely on it for solving that type of problem. It is a
strategy for making work more efficient. Rather than trying to invent a new



way each time, for example, a person can say, “Oh, I know how to do this! I
follow these steps.”

Algorithms don’t appear out of nowhere. The standard algorithm for
multiplication (the one illustrated above) exists because, at some point in
history, mathematicians decided that was the most efficient way for most
people to multiply. Efficiency is based on understanding and being able to
follow the steps. Memorization comes easily once someone understands
what they’re doing and why.

To think like a mathematician, you can’t just follow algorithms; you must
understand them and invent them. This doesn’t mean you need to invent a
whole new way to multiply. It means you could spend time thinking about
how you do something and why it works then formalizing the steps so you
can do that same thing more efficiently next time.

Algorithms apply to much more than the mathematics you learned in
school. Algorithms serve as the basis for computer programming and
science, for cooking (recipes are algorithms), for advertising, and even for
online dating.[xxxix] Online matchups aren’t magic (though, if they work,
they may seem like it!); computer programs use data to match your specific
characteristics with a potential mate’s.

You might even use an algorithm when you make a sandwich. You probably
have a certain order you follow each time because you know it will be
efficient and get you the sandwich you want. Do you smear the peanut
butter all over the whole piece of bread, or do you cut it in half first and
then smear it on each half? Do you stick the same knife you just used on the
peanut butter into the jelly, or do you get a new knife? Whichever method
you use, you likely do it the same way each time. You’re following your
own particular algorithm for making the best peanut butter and jelly
sandwich.

So how does one invent algorithms? Inventing algorithms calls for using
other habits of mind we’ve already talked about. First, you need to slow
down and observe what is happening. Break the process into smaller, more
understandable parts, examining each one. Then put the process back
together in an order that makes sense to you and could be repeated another



day. When you understand the steps and can follow them again, making
your process more efficient, you have an algorithm.

Mathematicians are all about efficiency. There’s a saying that
mathematicians are lazy.[xl] This means they are always looking for
shortcuts. They observe phenomena, look for patterns, and find more
efficient ways to do things. They think algorithmically.

One simple way we use algorithms in our everyday life, even when we
think we’re not using them, is by planning for a change in behavior.
Psychologists call this “if-then” planning.[xli] We might think we want to
spend less money on eating out, for example. An if-then pattern of thought
might be, “If I cook at home five nights a week, then I will spend less
money on eating out.”

If-then thinking is a powerful psychological tool. It involves thinking about
the change you want to make and committing to following the steps to
make that change happen. It works precisely because the steps are known
and because they are simple or efficient. In this way, it’s an algorithm, a
formula that can be followed to get a desired result.

Just as a mathematical algorithm makes solving a problem more efficient,
if-then thinking takes the stress out of behavioral change. If you convince
yourself you are following an algorithm for a desired result, the stress over
how to achieve that result dissipates.

Let’s look at another example of if-then thinking. Imagine your doctor has
said you need to move more every day. Imagine you work on the third floor
of an office building. Your plan – the algorithm you’re going to follow –
could simply be to use the stairs every time you go to your office. If you are
at work, then you will take the stairs, and you’ll achieve the desired result:
moving more. Whether or not you follow the plan is up to you, but having
the plan takes the stress out of trying to figure out how you’re going to
follow your doctor’s orders.[xlii]

Another example of algorithmic thinking that can help you in your daily life
is what people call “habit stacking.” Habit stacking is when you tack a new
desired behavior onto an existing habit to ensure the new behavior will



become a habit. As Esquire Magazine puts it, it “turns your nagging to-do
list into unconscious acts.”[xliii]

Let’s look at a task that frequently gets ignored and then becomes a source
of stress: sorting the mail. Every day, we may get five to twenty pieces of
mail, most of which are probably junk.[xliv] It takes most people less than a
minute to sort through this mail, yet we procrastinate on doing it until we
have a foot-tall stack of mail teetering on the kitchen table and reminding us
we need to sort through it.

Instead of ignoring the mail until we can’t anymore, we can commit to
sorting through it daily alongside something else we do daily, say, taking off
our shoes when we walk in the door. A habit-stacking commitment might
look like this: Every day, I will take off my shoes, put them in the closet,
grab the mail, and sort through it before I do anything else. Eventually,
sorting the mail will become a daily habit simply because you have
“stacked” it with another daily habit you already do.

Habit-stacking is a form of algorithmic thinking. You have a desired
outcome – sorting the mail every day – and you come up with a formula, a
set of steps that will always work to get you the desired outcome. Following
the steps takes the stress out of achieving your goal, since you no longer
have to spend mental energy figuring out how and when you’re going to do
the task. If you follow the steps, you will achieve your goal. That’s the
whole point of an algorithm – so you can reliably achieve a goal and free up
mental energy for other things.





CHAPTER 7: Visualizing: Externalizing
the Internal



I f you’ve ever spent time with a gymnast, a concert pianist, or anyone
else performing at an elite level, you may have seen them visualizing a

performance: imagining every step of it, trying to picture themselves
performing it perfectly. You may have wondered why they were doing this
rather than spending time practicing leaps or scales. They know something
mathematicians also know: visualizing is a powerful tool.

Mathematicians are skilled at visualizing. Einstein attributed his success to
the skill: “My particular skill does not lie in calculation,” he wrote, “but
rather in visualizing effects, possibilities, and consequences.”[xlv] It makes
sense that visualizing holds such power for humans. Approximately 30% of
the brains of primates (which includes humans) is used for visual
processing.[xlvi] No wonder we are such visual creatures.

Researchers have identified five aspects of visualizing: internalizing,
identifying, comparing, connecting, and sharing.[xlvii] We will examine each
of these and discuss how you can hone these skills to incorporate
visualizing into your life.

Internalizing involves making sense of something in your head. This is the
first step to understanding a problem, particularly a complex one. Let’s
imagine you’re trying to do something that challenges most people: packing
a car for a big trip. People who are good at fitting everything into the back
of a car aren’t magicians; they’re just good at internalizing a spatial
problem.

When someone gets ready to pack a bunch of suitcases and bags into the
trunk of a car, they need to spend time internalizing the problem first. They
might ask themselves: How many large suitcases are there? What irregular
objects do I need to get in? Are there pockets of space somewhere, maybe
under the back seats, where certain items would fit? Where can I put the
bag of fragile items, so it’s protected and not squished?

The talented packer spends time picturing the answers to these questions
and manipulating items in their head before packing the car. If you watch
this person in action, you’ll see they rarely have to pack and repack the car.
They are strategic about what they put where, and they get everything in



securely. This is because they spent time internalizing the problem and have
a plan for how to solve it.

The identifying stage of visualization involves identifying or creating an
image or model that might help you. Young students learn to do this to help
them solve math problems. Many teachers use a strategy called, “Read,
Draw, Write,” which asks students to draw a model or picture to help them
solve word problems. They are supposed to read the problem, draw a
model, then write the answer in a sentence. The RDW strategy was not
created to torture kids or the parents trying to help them with their
homework. Rather, it is based on research about how visualization,
particularly the act of drawing, creates a stronger understanding and
memories of the problem.[xlviii] The process of creating a model leads to
better understanding.

Sometimes, we’re faced with problems that beg for a drawing to help us
solve them. Imagine, for example, you are trying to figure out how to
arrange seats at tables for a large party or banquet. You may want to sketch
the tables and chairs to help you see the best arrangement. This is a problem
that appears in a lot of fourth-grade math curricula when students are
learning about division with remainders. These are challenging problems,
and teachers often encourage students to draw the scenario or a
mathematical model to help them solve it.

Here's another real-life example of how modeling can help you understand
a problem. If you’ve ever shopped at Ikea, you may have used their room
planning tool that lets you map out your room to see how the furniture
(kitchen cabinets, say) would fit. This software aids your understanding.
Without it – without identifying the set-up you need – you would be flying
blind. Sure, you can internalize your kitchen cabinet needs, and you can
measure, but modeling it can help you tremendously in making a decision.
Software like Ikea’s exists because engineers know how important
modeling or drawing is. Imagine ordering a whole new kitchen without
having mapped out if it would actually fit! You’d risk ending up with
thousands of dollars of cabinets in your kitchen that needed to be sent back.

Comparing, the next step in visualizing, is a critical piece that often gets
omitted when we’re short on time. Think back to those kitchen cabinets.



Now imagine it’s a month before Thanksgiving, and you want a new
kitchen in place before your extended family shows up at your house. You
might use that kitchen planning tool and then hastily order a bunch of new
cabinets without stopping and comparing your model to other possible
models. Maybe in three months, you realize your kitchen set-up could have
been better had you swapped out one cabinet for a different type or the
drop-in sink with an under-mounted sink. In an effort to save time, you
skipped the thinking part.

Comparing is intricately tied to connecting. There is even an instructional
routine called Compare and Connect, where students look at two images or
problems and think critically about the differences and similarities between
them. The purpose of the routine is “to foster students’ meta-awareness as
they identify, compare, and contrast different mathematical approaches,
representations, concepts, examples, and language.”[xlix] A teacher might
display two or more models, usually that students have created, and ask the
class to compare the models and make connections between them.

A similar math routine is Same But Different, in which students compare
and contrast two images. Here’s a preschool or kindergarten example[l]:

In this example, young children, who are still learning to count and name
groups of objects, might see there are six purple hearts in each image (just
being able to count accurately is an accomplishment for many five-year-
olds). They might describe the bottom row of hearts as longer. This could
lead to a discussion about what it means for a row to be longer. Does that
mean the quantity is higher? How can it be that both rows have only six
hearts, but one is longer than the other? This is powerful learning for a
small child!



Here's an example of Same But Different that one might see in a Geometry
class:

This first thing you might notice is that both objects are shapes, but one is
yellow and one is purple. Keep looking, and you’ll see more. One is a cone,
and one is a cylinder. The cone has a circular base; the cylinder has two
circular bases (the bottom and top, which can both be called bases). You
might think about how the volume or surface area of the two shapes
compares. You might wonder if the cylinder could hold more liquid than the
cone and how much more. In just a minute or two, by comparing and
contrasting these two images, you thought about deep mathematical
concepts involving spatial reasoning. You also used specialized language to
discuss your ideas.

That brings us to the final aspect of visualizing: sharing. Using language to
describe what is in your head solidifies it. Think back to the chapter on
using mathematical language and remember that talking is a form of
thinking. It also makes your thinking available to others, so they can learn
from it.

Let’s return to our kitchen remodeling scenario. If you took the time to
compare and make connections between the different kitchen set-ups you
might go with, you would have your ideal kitchen. Now imagine describing
or showing that kitchen layout to a family member. While describing where
the kitchen island is, you may realize you made a mistake on a
measurement and want to revisit it. Your relative may point out that you
forgot a spot for storing pot lids, which you wouldn’t have realized if you
hadn’t shared your plan. Not only will you be checking your work, but



you’ll also be helping your family member understand the process of
planning a new kitchen, should they need to do it someday.

We looked at a couple of examples of how visualizing can help you in
everyday life. These examples included spatial problems – how to fit
luggage in a car and how to lay out a new kitchen. But visualizing can help
you with much more than spatial problems. It can help you plan for the
future and be prepared to tackle the problems you might encounter.

Just as if-then planning and habit stacking can be powerful tools,
psychologists and neuroscientists have recognized the power of visualizing.
Muhammad Ali famously said, “If my mind can conceive it and my heart
can believe it – then I can achieve it.”[li] Athletes have used visualization to
decrease performance anxiety and to increase performance results.
Musicians sometimes review how to play a piece in their head, imagining
flawless finger positions as they go along. Studies have shown that
visualizing what you want to achieve – say, a perfect tennis stroke or a
perfectly played concerto – leads to better performance. If the brain sees it,
the brain is more likely to do it.

This seems like a trick; how can visualizing something make you better at
doing it? It has been proven time and again; it actually works! A recent
study looked at a small-scale version of this: could a group of study
participants increase the strength in their pinkies just by visualizing pinkie
exercises? The study proved those who performed “mental contractions” of
their little fingers did gain muscle strength! They didn’t gain as much as the
participants who performed actual pinkie exercises, but they gained
noticeably more than the control group, which performed neither mental nor
physical exercises. The study concluded “that the mental training employed
by this study enhances the cortical output signal, which drives the muscles
to a higher activation level and increases strength.”[lii]

This tells us that visualizing can and should be regularly practiced. Anyone
can benefit from visualizing, not just elite athletes or musicians. Do you
have an upcoming dentist’s appointment you’re worried about? Picture
yourself sitting calmly in the chair, unperturbed by the drilling in your



mouth. Planning for a difficult conversation with your boss? Imagine
yourself calmly walking into his or her office, clothes unruffled, tackling
the conversation with confidence. These visualization practices will not
only help you feel less nervous, but the practice of visualizing is more
likely to make the event happen the way you want it to.

The five steps of visualization we discussed earlier are useful for tackling
complex problems. Maybe you don’t know what you want to say to your
boss, but you know you need to have a conversation. First, try to think
about what you want the conversation to be. What is the main issue you
want to discuss? How do you want to come across? What points would help
make your position stronger? Then “model” the conversation. Maybe this
means having a practice conversation with a friend or writing down what
you want to say. Compare it to other tactics or arguments you could make
and connect it to past conversations you’ve had with your boss. This can
help you see any points you may have omitted or plan a rebuttal for the
argument your boss may pose. Finally, share your plan with someone else.
The act of sharing will solidify the plan in your head and give you a chance
to hear feedback. Repeat this process as often as you need to once you’ve
gotten feedback. Now you should be prepared to talk to your boss.

Another process that can help you achieve things you want in your life is
making a vision board. A vision board, often used to map out what you
want your life to look like in a few years, can encompass each of the five
steps of visualization. First, internalize what you want your life to look like.
Then identify what those aspects of your life might look like. Find images
to represent what is in your head. Then compare and connect these images.
Are there others that might work as well? What do these images have in
common? What do they reveal about your goals? Finally, share the vision
board, either with yourself (display it somewhere you will be reminded of
it) or with a friend. This helps cement it in your mind.

Now that you’ve learned the benefits of visualizing, you are truly on your
way to thinking like a mathematician. There is one final skill to discuss:
guessing and making estimations.





CHAPTER 8: Guessing: Making
Estimations

THE FINAL HABIT OF mind is one you use every day, whether you
realize it or not: making estimations. Every time you go to the grocery store
(unless you bring a calculator with you), you probably estimate your
spending. When you need a tank of gas, you may estimate how much it’s
going to cost. Before leaving the house, you may grab a twenty-dollar bill,
estimating that anything you need money for will cost less than that. Before
leaving for work in the morning, you estimate how much time you’ll need
to shower and get ready.

Estimating, or making educated guesses about numbers, comes up all the
time in everyday life. You may find some situations easier to estimate than
others, and you may have friends that seem better than you at estimating.
Estimating involves number sense, which is a person’s ability to understand
and manipulate quantities. Some of us have stronger number sense than
others.

Educators have realized how important number sense is, as it forms the
foundation not only for estimating, but for grasping numerical and spatial
concepts easily. Much of math class now focuses on building students’
number sense, particularly in the youngest grades. If you have heard of
students doing “number talks” in class, know these students are building
number sense. The stronger their number sense, the better their ability to
estimate will be.

Let’s look at how you use estimation in your everyday life. You use it not
just for costs, as the previous examples illustrated, but also for all kinds of
quantitative scenarios. Imagine you’re walking into a museum or large
office building, and you see a big set of stairs ahead of you. Without
realizing it, you mentally approximate how many steps there are and
therefore how much effort you’ll need to exert before deciding whether to



look for the elevator. If there are only a few stairs in front of you, you’ll
probably take them. If it’s a hefty flight, you may decide you’d be better off
with the elevator.

Now imagine you’re about to go for a long drive, maybe a once-yearly trip
back home to see relatives. The map on your phone can tell you
approximately how long it should take – let’s say five hours. Because you
have driven this route before, you know when and where you might
encounter traffic. You might estimate an additional two hours if you’re
driving during rush hour. Maybe you will have a toddler in your car, and
you’ll tack on another hour for planned bathroom breaks. When you talk to
your family on the phone the night before, you may tell them you plan to
leave at 11 and get there at 7 because you’ve estimated those additional
three hours.

This scenario demonstrates that personal experience also plays a role in
estimating well.[liii] An experienced salesperson might estimate their profit
on a new product before it’s available to the public. A kindergarten teacher
can predict how long it’ll take twenty-five five-year-olds to walk from the
playground back to their classroom. A good knitter can estimate how long
much longer it’ll take to knit a patterned sweater than a simple hat. An
experienced chef knows what a pinch of salt or approximately a teaspoon of
something looks like. These estimates are based not just on knowledge of
quantity but on personal experience.

While you can’t feign experience you haven’t had, you can improve your
number sense. One of the first things young students learn is what many
math programs call “friendly numbers” or benchmark numbers. In our base
ten system, friendly numbers are usually multiples of ten or one hundred.
Friendly numbers are much easier to work with than other – let’s say non-
friendly – numbers.

Young children learn about friendly numbers when they are first learning to
add and subtract. Let’s look at the problem 18+7 as an example. Adding
eighteen and seven is typically difficult for a first grader. Instead of
wracking their brains tackling 18+7, students might be instructed to find the
nearest friendly number to the first addend – in this case, twenty. To make
twenty, we would need to add two to eighteen. We can then compensate by



taking two away from seven. Then our math problem is 20+5, which is
much easier to solve in our heads than 18+7.

Now, let’s look at an example an adult might encounter. Have you gone out
to a meal with someone who always leaves a whole-dollar amount for the
server? Some people use a tip calculator or their phone to calculate the tip,
but others use their number sense and friendly numbers. Imagine your
check is $38.46, and you want to leave a tip somewhere around 15%,
maybe a little more. Ten percent of $38.46 would be $3.84; twenty percent
would be double that, or $7.68. Fifteen percent would be halfway between
those two numbers—$5.77, to be exact. Without a calculator, though, many
people wouldn’t figure out that exact percentage. They’d be much more
likely to think the tip should be somewhere between $4 and $8 and use a
friendly number to decide.

With the $38.46 check, your friend might leave $45 and calculate the exact
tip after they have made that decision. For most people, it’s easier to figure
out the difference between $45 and $38.46 than it is to calculate fifteen
percent, then add that fifteen percent ($5.77) to $38.46 in their head. This is
because $45 is a friendly number, since it has zero cents attached to it.
Starting from $38.46, we can count up 54 cents to the next whole dollar,
essentially counting up to the next 100 (since 100 cents makes a dollar).
This gives us $39, and then we can add six more dollars to get to $45.
We’ve estimated the tip – somewhere between ten percent and twenty
percent – and used a friendly number to figure it out exactly.

Using friendly numbers will get you far in life. It’s an essential skill for
doing mental math. It is closely related to, but not quite the same as, the
ability to round numbers. When we use friendly numbers, we keep track of
where we need to compensate, and we find an exact answer. When we
round, we’re trying to get a general idea of a quantity.

Children learn how to round in elementary school, usually focusing on it in
third or fourth grade. It is something they will use almost every day of their
adult life. When they bug their teachers with, “But will we ever need to
know this?” their teachers can resoundingly answer, “Yes!” Rounding
means turning the number into the closest group of whatever you’re asked
to round to. Fifty-four rounded to the nearest ten is fifty since fifty-four is



closer to fifty than it is to sixty. Rounded to the nearest hundred, it’s one
hundred since it’s closer to one hundred than it is to zero.

You probably use rounding most often in dealing with money, and this is
where it can be most useful. Retailers like to make prices seem lower by
taking one or two cents off. You’re more likely to see meat advertised at
$2.99 a pound than at $3 a pound. Market researchers have found that
consumers aren’t that savvy.[liv] Because we read from left to right, we’re
likely to focus on the two in $2.99 and think “two dollars a pound! That’s a
good price!” But, if we use our number sense and round to the nearest
whole dollar, we know $2.99 is basically $3.00. Next time you go shopping,
remember not to be fooled by marketing strategies but to use your number
sense!

Rounding helps us in all sorts of everyday scenarios. While you’re
shopping – hopefully after you’ve realized the meat is about $3 a pound,
not $2 a pound – you may round to keep a running tally of how much you
are spending. About $5 for that box of granola bars, $3 for that bunch of
vegetables, $4 for the carton of milk... If you’re budgeting or watching what
you’re spending, this is probably a familiar scenario.

Teenagers do this all the time since their parents are usually the ones
managing their money. A teen might get $5 to spend at the corner store on
their way to or from school. They may want chips and a drink. Before they
get to the cashier, they’re probably rounding and adding approximate
amounts in their heads. They don’t want to be caught short, and most teens
aren’t going to expend the time or effort to add, say, $2.37 and $1.98 in
their heads. Adding $2.50 and $2.00 is much easier, and they’ll know they
still have some wiggle room, maybe for a piece of candy by the register,
since they rounded up both numbers.

Builders and contractors also round and estimate. Underestimating a cost
will lead to slow-downs and upset the client, so they will round up
whenever they can. If they calculate that they need just over seventeen
boxes of tiles to complete a floor, they’ll round up and order at least
eighteen. Some contractors default to ordering ten percent more of whatever
product they need, so they don’t end up short. They give the customer an
estimated price and amount of time to complete the work, basing their



estimate on their experience doing similar projects. After their initial
assessment and set of measurements, their ability to get work depends on
estimates.

We also round when we talk about time. If your partner or roommate asks
how long until you’re ready to go, you probably won’t respond “twenty-
seven minutes and forty-nine seconds.” We round amounts of time because
a) it’s easier for us to say, and b) we know the person we’re talking to will
understand the rounded amounts. Their lived experience and sense of time
give them an idea of what approximately half an hour feels like. It also
gives us some leeway. If we’re ready in 25 minutes, great. If it’s closer to
35 or even forty minutes, our roommate probably won’t care.

So how can you improve your ability to estimate? The first thing you can
do is try solving problems in your head whenever you can – the mental
equivalent of taking the stairs instead of the elevator. If you’re given a
check at a restaurant, spend a few minutes thinking about what ten percent
of the amount might be then twenty percent. Use these numbers to figure
out the tip, or use the friendly number strategy to determine the tip after
you’ve decided what the total should be. At the grocery store, keep a
running tally of your items, and make sure you round accurately, figuring
out what whole-dollar amount the item’s real price is closest to. When it
matters, though, don’t be afraid to use a calculator – knowing how and
when to use appropriate tools is also an important skill and one of the
practice standards in the Common Core State Standards for Mathematics.

We’ll end this book with an exercise that can strengthen your number sense
and is one of the most powerful tools a teacher can use in the classroom: a
number talk. This won’t really be a number talk, since you’re reading, but
it’ll be a chance to think about a numerical expression in different ways.
This particular one is from a blog on teaching mathematics.[lv] You’ll see an
image, and your job is to figure out how many dots you see:



Think of as many ways as you can to figure out how many dots there are in
the image without counting them one by one. This is where the talk would
come in. A teacher could solicit several explanations and have students
compare them. So, since this is a book, we’ll list and describe them, and
you can try to draw the connections.

Let’s get the answer out of the way first. There are 68 dots. If you got it
wrong, don’t worry. Part of the goal of a number talk is to see different
strategies for solving (or counting) and where you went wrong. Here’s one
strategy:

The top rectangle is 5 by 6, so it contains 30 dots. The bottom rectangle is 6
by 7, so it contains 42 dots. But the two rectangles have four dots that
overlap in the middle, and we don’t want to count those dots twice, so we
have to subtract four. Our count could be represented by this equation:



Or perhaps you broke the image up into three rectangles. There are a
number of ways to do this; here is one:

In this image, we have a rectangle made of 20 dots (top left), one made of 6
dots (top right), and one made of 42 dots (bottom right). Our equation could
be:

Another way to break the image into three rectangles is like this:

An equation to represent this breakdown would be:

Or maybe you thought outside the box (no pun intended) and pictured the
shape that would go around this dot image then subtracted the number of



dots you imagined would be in the negative space:

This would give you the equation:

The next question in a number talk, and where the real mathematical
thinking lies, is why do all these equations work? They look different; how
can they all be equal? What mathematical rules underlie our equations that
allow us to write them in such different ways? What similarities and
differences do you see among the equations?

In that one number talk, we demonstrated most of the mathematical habits
of mind. We looked for a pattern, noticing the arrays the dots form; we
experimented with different ways of counting, possibly making mistakes
along the way; we described what we saw in mathematical language; we
tinkered and broke the image down into different components; we came up
with strategies or algorithms to help us solve; we visualized the different
ideas that were in our heads; we compared and connected the different
strategies (we would have done this more had we been talking, not
reading!). We didn’t need to estimate because we could find an exact
number, although we could have estimated at the beginning, before
proceeding with equations. A good number talk incorporates all these habits
and so much more.

A number talk can be a discussion about numbers or an image that can be
broken down in different ways, reinforcing mathematical rules. Challenge
yourself to see numbers and patterns in different ways, looking for new
strategies and connections. Thinking through tasks like this will increase



your number sense and open your eyes to the beauty of mathematics, which
can be represented in many different ways.





CHAPTER 9: How Mathematics Changed
the World

IF YOU’RE STILL FEELING skeptical about the value that mathematics
can bring to your life, perhaps a short lesson in history will help convince
you how powerful it can be. History has a funny way of being rewritten and
manipulated, depending on who’s telling the story and what purpose they
want the historical information to serve. We rarely hear about how
mathematicians changed the world, but it’s true. There are numerous
examples throughout history of the incredible contributions mathematicians
made to civilization.

Let’s start with the ancient Sumerians, one of the earliest known civilizations
in the world, often credited with being the “cradle of civilization.” The
Sumerians lived in Mesopotamia in the area that is modern-day Iraq and
flourished from approximately 5000 BCE to 2000 BCE. Sumerian
civilization bloomed, in part, because humans learned to cultivate farmland,
which lead to increased food supply, enabling population growth and the
establishment of large population centers (city-states).

What does a growing population center need to amass wealth? Math.
Specifically, the Sumerians needed a numbering system and basic
calculations to help them keep track of land and taxes. Ancient clay tablets
from the Sumerian city of Ur give us evidence of how King Shulgi, who
ruled over Ur from approximately 2094-2046 BCE, created the first
“mathematical state.”[lvi] Shulgi had hymns written about his prowess in
nearly everything (and even declared himself a god during his reign), so we
can’t be sure how much of a mathematical genius he was. He did, however,
standardize weights and measures, a crucial step in keeping track of state
finances.[lvii] (Can you imagine trying to rule an empire without standardized
weights and measures?)

The Sumerians also created one of the first numbering systems (or one of the
first we have evidence of, thanks to those clay tablets). Look at the numbers



one through fifty-nine written in cuneiform below[lviii]:

Practice your ability to notice patterns and examine the table above for a
minute. What do you see? Do you notice how the number eleven is the
symbol for ten next to the symbol for one? And the pattern continues all the
way through fifty-nine? It’s similar to the way we write numbers, using
place value to help us write numbers greater than nine. One crucial
difference between their system and ours is that, once they got to sixty, they
restarted with the same symbol used for one and then would use place value
to create higher numbers from there.[lix] Remnants of their base-60 system
still exist today, for example, in how we tell time.

There was a small problem in the Sumerians’ system, though. The numbers
one and sixty were represented with the same symbol; there was no symbol
for zero to indicate sixty was one group of sixty and nothing in the place to
the right of it. In other words, without a zero, there was no way to indicate
the difference between numbers that relied on position, or place, to be
understood. At some point, perhaps in ancient India[lx] or perhaps in multiple
civilizations at different times, a symbol was used to represent nothing (zero)
in a position.[lxi] It may seem trivial, but without the symbol for nothing,



people’s ability to indicate large quantities was limited. Once a symbol for
zero came into existence, our capacity to represent numbers using place
value became, well, infinite.

Ancient civilizations, including Indian, Mayan, and Egyptian civilizations,
came up with all sorts of fascinating mathematics that influenced later
cultures. It might be more appropriate to say they didn’t come up with the
mathematics, but they noticed and harnessed the power of mathematics,
figuring out ways to notate it and use it to their advantage. After all,
mathematics is the study of phenomena that exist around us; it’s our job to
notice and interpret those phenomena. If you look at cultures all over the
world throughout history, you’ll find countless instances of mathematical
“discoveries” that came about because someone needed mathematics to
solve a problem.

Pythagoras is one of the most well-known ancient mathematicians for good
reason. The Pythagorean Theorem (which you learned about in Chapter 5)
helps us understand basic geometry and leads us to more advanced
mathematics. It is controversial, though, whether Pythagoras discovered the
Theorem. Evidence suggests that knowledge of the Theorem –the sum of the
squares of the two sides of a right triangle equals the square of the
hypotenuse – existed in ancient India and perhaps elsewhere, and Pythagoras
may have learned of it during his travels.[lxii] In fact, Pythagoras founded a
school of philosophy (known as the Pythagoreans) and was credited with
many things that may have been proven or discovered by others. Whatever
the source, though, the Theorem was a critical discovery that allowed for
more discoveries in mathematics, physics, art, architecture, topography, and
other fields. It is one of the crucial building blocks of civilization.

The history that many residents of the Western hemisphere learn traces a line
from ancient Babylonia to ancient Greece to Renaissance Europe, focusing
entirely, or almost entirely, on Western mathematicians. Many non-Western
cultures contributed to mathematics before or contemporaneously to the
Europeans, but not as much has been written about them. Some of these
mathematical traditions exist orally or in other forms (such as music and art),
making them harder for outside cultures to learn about. More sources are
becoming available every year, though; a decade from now, we may have a



new book to write about how non-Western mathematical discoveries
changed the world.

One massive contribution between the Greeks and Renaissance Europe that
Western students do learn about is the field of algebra. While aspects of
algebra had been used for centuries in some cultures, Muhammad ibn Musa
al-Khwarizmi, a 9th century Muslim mathematician and astronomer, defined
it. Khwarizmi’s comprehensive book, titled The Compendious Book on
Calculation by Completion and Balancing, formalized the processes for
solving linear and quadratic equations. He also came up with the idea for
algorithms, paving the way for other mathematicians to formalize their
processes.[lxiii]

It’s not a stretch to say algebra exists as its own topic we study in school
because of Khwarizmi’s work. If you hated algebra, though, you shouldn’t
resent Khwarizmi. Algebra is simply the formalization and abstraction of
operations and rules you learned previously. Khwarizmi recognized this and
gave it language, so others could use it when they needed to.

Now, let’s jump ahead to 17th-century Europe, where German astronomer
Johannes Kepler paved the way for an entirely new field of mathematics
because he wanted to save money on wine. The story goes that Kepler
realized the current method for measuring how much wine a merchant sold
was faulty, leaving customers at the mercy of the wine merchant, who might
be overcharging them. Kepler wanted to figure out an exact way of
measuring how much wine was in a barrel, so he created a method for
figuring out the volume inside a curved shape (a wine barrel). He then
published a book about his findings, The New Solid Geometry of Wine
Barrels. Mathematicians see this book as a foundational text in integral
calculus, with later mathematicians drawing on Kepler’s work.[lxiv]

While most people don’t use calculus in their everyday lives, calculus is a
critical component of many fields, including engineering and medicine.
Calculus is used to figure out minimums and maximums in many fields. It is
even used to calculate minimum credit card payments.[lxv] The next time you
make a credit card payment or buy a bottle of wine for a reasonable price,
thank mathematics!



There’s an even more ubiquitous time you could be thanking mathematics:
anytime you turn on a light, watch tv, listen to music in your home, use a
computer, or do anything else that uses electricity. You probably know of
Thomas Edison as the person to invent the lightbulb, but you likely haven’t
heard of the man responsible for bringing electricity to households around
the country: Charles Proteus Steinmetz. Steinmetz, born Karl August Rudolf
Steinmetz in what is now Poland, was a mathematician whose mathematical
discovery helped create electrical circuits, the critical component bringing
electricity wherever we need it.[lxvi]

Steinmetz’s discovery involved a topic that may bring back memories (or
nightmares) from your high school years: imaginary numbers.
Mathematicians had, for centuries, been stumped by what seemed like a
mathematically impossible situation: no number multiplied by itself will
ever give you a negative number; thus the square root of a negative number
seems impossible. But there had to be some way to define the square root of
a negative number (or, more specifically, negative one) since some
mathematical operations lead to a solution that includes this.

Mathematicians called these square roots “imaginary numbers” but didn’t
really have a use for them. That was until Steinmetz came along. Steinmetz
figured out how to simplify complex formulas for electrical circuits using
imaginary numbers, thus enabling electrical circuits to be more easily and
widely produced.[lxvii] Without Steinmetz’s mathematical discoveries, we
might be – quite literally – in the dark.

Mathematical formulas are also at the heart of many scientific discoveries
that changed the course of history. Isaac Newton’s Law of Universal
Gravitation, Einstein’s Theory of Relativity, the Second Law of
Thermodynamics, and Chaos Theory all involve complex mathematics.[lxviii]

Mathematics is at the heart of civilization in every culture around the globe.
Ancient civilizations needed mathematics as their societies developed, initial
mathematical discoveries led to more complex ones, and now almost every
aspect of modern life can be traced back to a mathematical discovery or
understanding. So the next time you hear a teenager whining about when
they’ll ever need to know the math they’re learning, you can tell them what
you know: math is the foundation of everything. Our civilization wouldn’t



be where it is now if it hadn’t been for talented thinkers who noticed
mathematical phenomena and then harnessed its power for human
advancement. Math forms the basis of so many professions and so much of
our daily lives.





CHAPTER 10: Final Words

YOU HAVE LEARNED THE habits of mind that mathematicians rely on
and that underlie modern mathematics instruction. You’ve learned to sniff
out patterns, understand and use probability, speak in the language of
mathematics, tinker, invent, visualize, and make educated guesses. You’ve
also learned, if you didn’t know it before, that mathematics shaped our
history and plays a role in nearly every aspect of life.

One of the key differences between mathematicians and everybody else is
that mathematicians don’t give up when they face a mathematical
challenge. In fact, they enjoy these challenges. They know learning comes
from perseverance, mistakes lead to greater knowledge, and even seemingly
insurmountable problems may have solutions. In short, they believe in
themselves and their problem-solving abilities.

The other thing that mathematicians understand is that math makes sense.
It’s not an obscure topic designed to torture students and stump grown-ups.
Math is logical, and it can be understood by anyone who takes the time to
try to understand it. Once you begin to unlock puzzles that seemed
impossible to you, you will see that you can do it. You too can make sense
of complex mathematics and begin to harness the power of mathematics in
your life.

Whether you’re an artist, an engineer, a mechanic, a bartender, a professor,
a teacher, or anything else, the mathematical habits of mind you learned in
this book can help you as they helped centuries of thinkers before you. Try
to keep them in the forefront of your mind and draw on the habits you need
at different times. This is how to think like a mathematician – be able to
pick the right tool and discern the most efficient way to solve a problem.

Respectfully,

A.R.



Before You Go...

I WOULD BE SO VERY grateful if you would take a few seconds and rate
or review this book. Reviews – testimonials of your experience - are critical
to an author’s livelihood. While reviews are surprisingly hard to come by,
they provide the life blood for me being able to stay in business and
dedicate myself to the thing I love the most, writing.

If this book helped, touched, or spoke to you in any way, please leave me a
review and give me your honest feedback.

THANK YOU SO MUCH FOR reading this book!
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