

Ultimate Blazor

WebAssembly

for

Web Development

Unlock the Full Potential of Blazor

WebAssembly 8.0 and C# to Build

High-Performance Web Applications

with Ease

Chandradev Prasad Sah

www.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot

guarantee the accuracy of this information. The use of general descriptive

names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names

are exempt from the relevant protective laws and regulations and therefore free

for general use.

First published: May 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-96862-06-0

www.orangeava.com

http://www.orangeava.com/

Dedicated To

My Beloved Father, Mother, Wife, and Daughter:

Without Their Moral Support, it was Very Difficult to

Complete This Book

About the Author

Chandradev Prasad Sah holds B.E (Computer Science)

from VTU. He is a web application developer with over 16

years of experience. He has a strong background in

computer science and is a recognized expert in Blazor

development, having completed over 50 web products using

this framework.

Sah is a highly credentialed professional with certifications

like MCC (Microsoft Community Contributor) and C# Corner

MVP. He has also been awarded the Top Rated Plus

Freelancer distinction.

A seasoned developer with experience at Dell, Intel,

Walmart, and DXC, Sah now puts his knowledge to work as

an independent consultant, providing services in Blazor, C#,

WebApi Core, Azure, and AWS.

An active member of the Blazor community, Sah shares his

knowledge and expertise by regularly publishing blog posts

and content related to Blazor development on his personal

blog.

About the Technical Reviewer

Trevoir Williams is a passionate software and system

engineer dedicated to creating efficient and effective IT

solutions that enhance service delivery in organizations. His

educational achievements include a Master’s degree in

Computer Science (majoring in Software Development) and

several Microsoft Azure Certifications.

With years of experience in software consulting, software

engineering, database development, cloud systems, and

server administration, Trevoir has the technical expertise to

design and develop innovative systems. He is also a skilled

musician.

Trevoir enjoys sharing his knowledge with students globally

and is committed to teaching IT and development skills and

guiding students in gaining the latest knowledge with

practical application in the modern industry.

Acknowledgements

Writing a book is never a solitary endeavor. It requires the

support, encouragement, and assistance of many

individuals along the way.

I would like to express my deepest gratitude to my family:

my father, Biswanath Sah, my mother, Sanmathi Devi, my

wife, Runali Sah, and my daughter, Anvi Sah. Their love,

encouragement, and unwavering belief in me fueled my

determination at every turn. They are the guiding lights in

my life, and this book is a testament to their enduring

influence and the sacrifices they made.

Special thanks to my Technical Reviewer, Trevoir Williams,

for his invaluable guidance, wisdom, and encouragement.

Your insights and feedback have been instrumental in

shaping this book and improving my craft as a writer.

I am also deeply grateful to the entire team at "AVA™ - An

Orange Education Label", for their professionalism,

expertise, and dedication to bringing this book to life. Their

hard work and commitment to excellence have made this

project a reality.

I also extend my gratitude to Sonali and her team and

Priyanka for their assistance with research, proofreading,

and providing valuable feedback throughout the writing

process.

Lastly, I would like to thank the readers who will embark on

this journey with me. Your interest and support mean the

world to me, and I hope this book brings you knowledge,

inspiration, and enjoyment.

Thank you all for being a part of this incredible journey.

Preface

The chapters are as follows:

Chapter 1. Introduction to Blazor WebAssembly: This

chapter introduces Blazor, exploring its key features,

advantages, and the underlying concepts that make it a

powerful tool for web development.

Chapter 2. Razor Components: This chapter covers how

to create, reuse, and compose components to build dynamic

user interfaces.

Chapter 3. Routing and Navigation: This chapter

explores Routing and Navigation in Blazor WebAssembly,

guiding you through the process of configuring client-side

routing for single-page applications.

Chapter 4. Razor Class Library: This chapter explores

Razor Class Library (RCL) in Blazor, demonstrating how to

organize and share UI components and logic across multiple

projects.

Chapter 5. State Management: This chapter focuses on

state management in Blazor WebAssembly, presenting

various techniques for managing and preserving state

within your applications.

Chapter 6. REST Services: This chapter covers the

integration of RESTful services in Blazor WebAssembly,

showcasing how to consume external APIs to retrieve and

manipulate data.

Chapter 7. Entity Framework Core: This chapter dives

into Entity Framework (EF) Core in Blazor WebAssembly,

illustrating how to interact with databases using EF Core for

data access.

Chapter 8. Validation in Blazor WebAssembly: This

chapter addresses validation in Blazor WebAssembly,

discussing how to implement client-side and server-side

validation to ensure data integrity and security.

Chapter 9. JavaScript Interop in Blazor: This chapter

explores the integration of JavaScript interop in Blazor

WebAssembly, allowing you to leverage existing JavaScript

libraries and functionality within your Blazor applications.

Chapter 10. Azure Service in Blazor: We shift our focus

to Azure services, demonstrating how to leverage various

Azure services to enhance the scalability, performance, and

security of your Blazor applications.

Chapter 11. Security in Blazor WebAssembly: Finally,

the last chapter covers security in Blazor WebAssembly,

discussing best practices for securing your applications and

protecting sensitive data.

Whether you're a beginner looking to get started with Blazor

or an experienced developer seeking to enhance your skills,

this book provides you with the knowledge and tools you

need to build robust and engaging web applications with

Blazor WebAssembly.

Happy coding!

Downloading the code

bundles and colored images

Please follow the link or scan the QR code to download the

Code Bundles and Images of the book:

https://github.com/ava-orange-

education/Ultimate-Blazor-Web-

Assembly-for-Web-Development

The code bundles and images of the book are also hosted

on

https://rebrand.ly/153597

https://github.com/ava-orange-education/Ultimate-Blazor-Web-Assembly-for-Web-Development
https://rebrand.ly/153597

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education

Pvt Ltd and follow best practices to ensure the accuracy of

our content to provide an indulging reading experience to

our subscribers. Our readers are our mirrors, and we use

their inputs to reflect and improve upon human errors, if

any, that may have occurred during the publishing

processes involved. To let us maintain the quality and help

us reach out to any readers who might be having difficulties

due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

ARE YOU INTERESTED IN

AUTHORING WITH US?

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

from tech experts and help them build learning and

development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Blazor WebAssembly

Introduction

Structure

Types of Blazor Applications

Blazor Server

Blazor WebAssembly

Blazor Web App

Advantages of Blazor WebAssembly

Disadvantages of Blazor WebAssembly

Blazor Server vs. Blazor WebAssembly

New Features Added to Blazor 8.0

Benefits of .NET 8.0

Prerequisite Software for Blazor WebAssembly

Application

Creating Hello World Blazor Application Using Visual

Studio 2022

Creating Blazor WebAssembly Using VS Code

Project Structure in Blazor WebAssembly 8.0 Application

Conclusion

References

Multiple Choice Questions

Answers

2. Razor Components

Introduction

Structure

Introduction to Blazor Component

Creating a Blazor Component

Razor Component Lifecycle

Parameters in Blazor Component

Non-cascading Parameters

Cascading Parameters

Data Binding in Blazor Components

One-Way Data Binding

Two-Way Data Binding

Passing Data from Parent to Child Component

Passing Data from Child to Parent Component

Nested Component in Blazor

Code Segregation Approach in Blazor Component

Inline Approach

Code-Behind Approach

Styling Component in Blazor

Conclusion

References

For Source Code

Multiple Choice Questions

Answers

3. Routing and Navigation

Introduction

Structure

Introduction to Routing and Navigation

Router Components

Route Parameter in Blazor

Optional Parameters in Blazor

Route Overloading

Navigation in Blazor

Forcing a Page Reload

Conclusion

References

Multiple Choice Questions

Answers

4. Razor Class Library

Introduction

Structure

Introduction to Razor Class Library

Creating RCL and Sharing Code with Multiple Application

Creating NuGet Package of RCL

Advantages of Razor Class Library

Conclusion

References

For Source Code

Multiple Choice Questions

Answers

5. State Management

Introduction

Structure

State Management in Blazor WebAssembly

Component Parameters

Cascading Values and Parameters

Services

Local Storage or Session Storage

Server-Side State Management

Conclusion

References

For Source Code

Multiple Choice Questions

Answers

6. REST Services

Introduction

Structure

Creating REST Service Using Asp.net Core

Standalone Web API Core Service

Shared Web API Core in Blazor WebAssembly

HttpClient in Blazor WebAssembly

CRUD Operation in Blazor WebAssembly

Conclusion

References

Multiple Choice Questions

Answers

7. Entity Framework Core

Introduction

Structure

EF Core 8.0

Reasons to Use EF Core

When Not to Use EF Core

EF Core Supported Application Types

Entity Framework Core Approaches

Database First Approach

Code First Approach

Supported Databases

CRUD Operation with EF Core in Blazor WebAssembly

Conclusion

Reference

Multiple Choice Questions

Answers

8. Validation in Blazor WebAssembly

Introduction

Structure

Blazor Form

Form Validation in Blazor

Data Annotation in Blazor

Custom Validation in Blazor

Complex or Nested Model Validation in Blazor

Best Pattern and Practices for Validation in Blazor

Conclusion

References

Source Code

Multiple Choice Questions

Answers

9. JavaScript Interop in Blazor

Introduction

Structure

Calling JavaScript from C#

Handling Function Return Value

Passing C# Objects to JavaScript

Calling C# from JavaScript

Advanced JavaScript Interop Demo

Error Handling and Debugging

Security Considerations

Performance Optimization Tips

Conclusion

References

Source Code

Multiple Choice Questions

Answers

10. Azure Service in Blazor

Introduction

Structure

Key Features and Components of Microsoft Azure

Azure Account Creation

Static WebSite Deployment

CI/CD Pipeline on GitHub

Azure Function

Benefits of Using Azure Functions

Different Types of Triggers on Azure Functions

Creating Azure Function

Http CRUD Operation in Azure Function

Azure Function Deployment

Consuming Azure Function in Blazor WebAssembly

Azure App Service

App Deployment with CICD Pipeline

Conclusion

References

Source Code

Multiple Choice Questions

Answers

11. Security in Blazor WebAssembly

Introduction

Structure

Authentication and Authorization

Authentication and Authorization Using OIDC

Exploring Practical Use Scenario of Microsoft Entra ID

Google Authentication and Authorization in Blazor

WebAssembly

Custom Token-Based Authentication in Blazor

WebAssembly

Asp.net Core Web API

Blazor WASM Client Side

Tips and Tricks While Implementing Security in Blazor

WebAssembly

Common Mistakes While Implementing Security in Blazor

WebAssembly

Conclusion

References

Source Code

Multiple Choice Questions

Answers

Index

CHAPTER 1

Introduction to Blazor

WebAssembly

Introduction

Blazor is a free and open-source web framework that

enables developers to create web apps using C# and HTML.

It is a web development single-page framework developed by

Microsoft to compete with industry-leading platforms like React,

Angular, Vuejs, and more. Before Blazor, there were not any

alternative options to develop the single-page application using

C#.

In all leading JavaScript frameworks, we were developing single-

page applications using JavaScript and it was very difficult for a

.Net developer to master all technologies.

At the 2017 Microsoft MVP (Most Valuable Professional) Summit,

Steve Sanderson (https://github.com/SteveSandersonMS) gave

an experimental demo of Blazor. He showed how to create a

single-page application using C# instead of JavaScript. It was so

exciting for all the .Net developers. Since then, Microsoft and

Steve’s team started to work on that idea.

They released the first official stable version of Blazor Server in

2018 and Blazor WebAssembly in 2020 with .Net 5.0. Blazor is

combination of Browser and Razor.

We will write the UI code in Razor, which is a combination of C#

and HTML.

Structure

In this chapter, we will cover the following topics:

Blazor and Types of Blazor Applications

https://github.com/SteveSandersonMS

Blazor Web App

Advantages of Blazor WebAssembly

Disadvantages of Blazor WebAssembly

Blazor Server vs. Blazor WebAssembly

New Features in .Net 8.0

Advantages of .Net 8.0

Creating Blazor WebAssembly with .Net 8.0 with Visual

Studio and VS Code

Project Structure for Blazor WebAssembly Application

Types of Blazor Applications

There are three types of Blazor Applications:

Blazor Server

Blazor WebAssembly

Blazor Web App (with Blazor 8.0)

Blazor Server

Blazor Server is a type of Blazor application where the UI

components are rendered on the server and then sent to the

client using SignalR, allowing for fast and responsive user

interfaces. It will provide real-time communication between the

client and the server.

In the following figure, we can see that Razor Components and

DOM will communicate with each other using SignalR.

Figure 1.1: Communication using SignalR (Source: Microsoft Website)

As you know, SignalR is a real-time communication library

developed by Microsoft that allows bi-directional communication

between client and server over HTTP.

It provides a way for server-side code to push content to

connected clients instantly as it becomes available, without the

need for the client to constantly poll the server for updates.

SignalR can be used with various client-side technologies, such

as JavaScript, .NET, and Xamarin, making it a useful tool for

building real-time web and mobile applications.

Note : This project type is only available on older version, that is,

Blazor 6.0 and 7.0.

Blazor WebAssembly

It is a true native single-page and open-source framework where

C# and Razor component will compile into .Net assemblies and

download to the user browser. With the help of WebAssembly, C#

code can run directly in the browser. It supports all features of a

single-page application.

Thanks to WebAssembly for making this possible.

Figure 1.2: Blazor WebAssembly (Source: Microsoft Website)

In the preceding figure, we can see that with the help of the

WebAssembly, Razor Component and C# will communicate with

the DOM element.

In this approach, it will work in the following sequence:

1. Razor Component and C# Compile into .NET assemblies.

2. .Net assemblies and run time downloaded to the browser.

3. Blazor WebAssembly bootstraps the .Net runtime and

configures the runtime to load the assemblies for the app.

4. Blazor WebAssembly runtime uses JavaScript interop to

handle Document Object Model (DOM) manipulation and

browser API calls.

First, it will download the compiled code on a browser similar

to other single-page applications like Angular, React, and so

on. After that, it will execute from there.

Blazor Web App

In Blazor 8.0, a new project type called Blazor Web App has been

added. This is a combination of Blazor Server and Blazor

WebAssembly. We can seamlessly switch between rendering

modes or even mix them within the same page.

Figure 1.3: Project Template

There are four types of rendering mode added in Blazor Web

App:

Static Server-Side Rendering (SSR): This mode renders

the entire page as static HTML on the server and sends it to

the client. This results in faster initial page loads and

improved SEO but lacks interactivity after the initial load.

Interactive Server: Components are rendered on the

server and streamed to the client, enabling real-time

updates and interactivity without full page reloads. This

mode offers a good balance between performance and

interactivity.

Interactive WebAssembly (WASM): Components are pre-

compiled to WebAssembly and run directly in the browser,

providing full client-side interactivity and offline capabilities.

However, it has a larger initial download size and might

have slightly slower initial rendering compared to other

modes.

Interactive Auto: This mode automatically chooses the

best render mode based on the component and its usage

within the application. It’s ideal for applications with mixed

requirements for static content and interactive features.

Mode Description Advantages Disadvantages

Static SSR Pre-rendered HTML Fastest initial load,

good SEO

No client-side

interactivity

Interactive Server Server-side

rendering with

updates

Real-time updates,

good mix of

performance and

interactivity

Requires constant

server connection

Interactive WASM Client-side

rendering with

WebAssembly

Full interactivity,

offline capabilities

Larger initial

download, potential

performance

overhead

Interactive Auto Automatic mode

selection

Flexible, adapts to

component needs

Relies on complex

logic for mode

selection

Table 1.1: Four rendering modes and their differences

Note: In this book, we are not going to cover all concepts of

Blazor Web App. Instead, we will only focus on Blazor

WebAssembly.

Is WebAssembly faster than JavaScript?

Yes, it is faster than JavaScript in certain scenarios. In general,

WebAssembly (WASM) is faster than JavaScript when it comes to

performance-critical tasks, such as mathematical calculations or

complex algorithms.

WebAssembly (Wasm) is designed to provide a low-level, efficient

way to run code on the web. JavaScript, on the other hand, is a

high-level language that needs to be interpreted by the

browser’s JavaScript engine.

Wasm is designed to be executed by a virtual machine that runs

directly on the computer’s processor, which makes it faster and

more efficient than JavaScript in some cases.

Wasm code is also compiled ahead of time, which means that it

can be optimized before it is executed, leading to faster

performance.

However, it’s important to note that the performance benefits of

WebAssembly over JavaScript depend on the specific use case

and the type of application you are building.

For some types of applications, JavaScript may be just as fast or

even faster than Wasm like DOM manipulation and event

handling tasks.

Additionally, Wasm and JavaScript can work together to create

high-performance applications. For example, you can use Wasm

to implement performance-critical parts of an application, while

using JavaScript for other parts that do not require the same

level of performance.

Advantages of Blazor WebAssembly

The following are the advantages of Blazor WebAssembly:

Improved Performance: Blazor WebAssembly uses ahead-

of-time (AOT) compilation, which allows it to load and run

faster than traditional JavaScript-based web applications. It

also has smaller file sizes than many JavaScript frameworks,

resulting in faster load times.

Seamless Integration with .NET: Since Blazor is built on

top of .NET, it offers seamless integration with other .NET

technologies such as ASP.NET Core and Entity Framework

Core. Developers can use the same language and tools

across the entire stack, making it easier to develop and

maintain complex applications.

Increased Security: Blazor WebAssembly offers improved

security over traditional JavaScript-based web applications.

Since the code runs in a sandboxed environment, it is much

harder for malicious code to access sensitive data or

perform unauthorized actions.

Familiar Development Experience: Blazor WebAssembly

offers a familiar development experience for .NET

developers, making it easier for them to transition to

building web applications. The syntax is similar to other .NET

languages, and the development environment is similar to

other Visual Studio tools.

Code Reusability: Since Blazor WebAssembly is built on

top of .NET, developers can reuse existing .NET libraries and

components in their web applications. This can significantly

reduce development time and improve code quality.

It is supported by all streaming browsers, such as Chrome,

Edge, Firefox, Opera, and Safari, along with the ability to run

on old (non-WebAssembly) ones using asm.js.

It will compile into static files, which can be deployed

anywhere like an html page.

Blazor WebAssembly does also support Progressive Web App

(PWA).

It also supports offline behavior, which means you can run

the application without the internet. This will save a lot of

development time and cost as compared to other JavaScript

frameworks like Angular, React, Vue.js, and so on.

Disadvantages of Blazor WebAssembly

Blazor WebAssembly has a few disadvantages:

The initial page load will be a little bit slower.

It is restricted to the capabilities of the browser. So

performance will vary depending on the browser.

It will not work on older browsers.

We need to write a little bit more code since the code will

run on the Browser Sandbox.

Blazor Server vs. Blazor WebAssembly

The following table shows the differences between Blazor Server

and Blazor WebAssembly.

Features Blazor Server Blazor WebAssembly

Offline Mode Support Does Not support Support

PWA application Does Not support Support

Initial Page Load Fast Slow

Static web Deployment Does Not support Support

Development time and cost Less A little bit more, since we

need to create a separate

API layer

For Intranet application It is more suitable Not suitable

For public-facing large web

portal

Not suitable More suitable

Table 1.2: Differences between Blazor Server and Blazor WebAssembly

In this book, we are going to use .Net 8.0. This is the latest

framework from Microsoft. As you know, .Net 8.0 is 20% to 30%

faster than .Net 6.0 and .Net 7.0.

For more details you can refer Microsoft blog post:

Performance Improvements in .NET 8 - .NET Blog (microsoft.com)

Figure 1.4: .Net Performance

Data sourced from official tests available at TechEmpower Round

21:

Round 21 results - TechEmpower Framework Benchmarks

New Features Added to Blazor 8.0

Blazor 8.0 brings several exciting new features, making it a

significant upgrade for web development:

Unified Project Template:

Using a single Blazor Web App template, we can create a Blazor

Server and WebAssembly project.

Enhanced Render Modes:

Static Server-Side Rendering (SSR): Pre-render HTML on

the server for faster initial loads and SEO benefits.

Interactive Server-Side Rendering: Stream components

for real-time updates without full page reloads.

Interactive WebAssembly (WASM): Utilize WebAssembly

for full client-side interactivity and offline capabilities.

Interactive Auto: Automatically choose the best render

mode based on component usage.

Other Notable Features:

Sections: Define outlets in your layout for components to

fill, fostering modularity.

Named Routing: Route directly to elements using standard

URL fragments.

Enhanced Navigation and Form Handling: Avoid full

page refreshes for improved user experience.

Stream Rendering: Efficiently handle large datasets or

dynamic content updates.

QuickGrid Component: Simplified data grid creation with

built-in features.

Authentication Components: Streamlined user

authentication and authorization flows.

Benefits of .NET 8.0

Beyond Blazor’s enhancements, .NET 8.0 offers broader benefits:

Performance Improvements:

Dynamic PGO enabled by default for optimized code.

Faster JIT compiler and performance-focused data

structures.

Kestrel web server optimizations for ASP.NET Core.

Interpreter-based runtime and garbage collection

improvements in Blazor WebAssembly.

Improved Developer Experience:

Enhanced tooling and diagnostics support.

Modern C# features like minimal interfaces and

parameterless constructors.

.NET MAUI platform for cross-platform desktop apps.

Cloud-Native Readiness:

.NET Aspire preview provides opinionated cloud-native stack

guidance.

Improved containerization and deployment support.

Unified Stack with Blazor:

Develop full-stack web applications with a consistent

framework across server and client.

Combine static, interactive, and WebAssembly rendering

modes within a single project.

Overall, .NET 8.0 and Blazor 8.0 offer significant advancements

for web development, providing performance gains, modern

features, improved developer experience, and a unified approach

to building web applications.

In this book, we are covering Blazor WebAssembly with .NET 8.0,

so we will only focus on content related to this.

Prerequisite Software for Blazor

WebAssembly Application

All the following software are totally free for developers. You can

download it from the given URLs:

Visual Studio 2022 (Any Edition): Visual Studio 2022

Community Edition – Download the Latest Free Version

(microsoft.com)

SQL Server 2019 or any other version: Download Microsoft®

SQL Server® 2019 Express from Official Microsoft Download

Center

If you have a low-configuration system, then you can also

use VS Code: Download Visual Studio Code - Mac, Linux,

Windows

Creating Hello World Blazor Application

Using Visual Studio 2022

Here are the steps to create “Hello World” project:

Step 1: Install Visual Studio 2022 from the URL mentioned in the

previous section.

Step 2: Open Visual Studio 2022 and Select the Blazor

WebAssembly Standalone app as given in the following figure.

Figure 1.5: Project Template

Step 3: Give the Project name as HelloWorld as follows:

Figure 1.6: Project Name

Step 4: Select the Framework as .Net 8.0 and click on the Create

button.

Figure 1.7: Framework Selection

Step 5: Now, run the application using F5 or click here on Visual

Studio.

Figure 1.8: Blazor App

You will see the following output:

Figure 1.9: Output

Congratulations on creating the Hello world application. As you

can see, it is very straightforward to create a Blazor

WebAssembly application using Visual Studio 2022.

If you have a low configuration system and you want a very

lightweight development experience, then you can choose Visual

Studio (VS) Code.

It is a lightweight open-source code editor. It will work on all

platforms.

Creating Blazor WebAssembly Using VS

Code

The following are the steps to create Blazor WebAssembly using

VS Code:

Step 1: Install the VS Code on your system.

Step 2: Open the VS Code in your working folder as follows:

Figure 1.10: VS Code

Step 3: Open the terminal as shown in the following figure:

Figure 1.11: VS Code Terminal

Step 4: Write the command for creating a Blazor WASM

application as follows:

dotnet new blazorwasm -n HelloWorld

Figure 1.12: VS Code Command

Step 5: Go to the application folder.

Figure 1.13: VS Code Command

Step 6: Execute the dotnet build command on the terminal as

shown in the following figure:

Figure 1.14: VS Code Build

Step 7: Now, execute the dotnet run command.

Figure 1.15: VS Code Run

Step 8: If you are not getting the https port, then you can run

this command on the terminal as follows:

dotnet dev-certs https --trust

dotnet watch run --urls https://localhost:5001

Note: You can provide any port number. For demo purposes, let

us give it as 5001.

Figure 1.16: VS Code Output

As you can see in both approaches, creating a Blazor application

using Visual Studio 2022 is very straightforward. If you are a

beginner, then you can choose Visual Studio 2022.

Project Structure in Blazor WebAssembly

8.0 Application

Let’s open our Hello World Project in Visual Studio 2022.

Figure 1.17: Blazor Project

As you can see, we have the following folders and files:

wwwroot

Pages

Shared

_Imports.razor

App.razor

Program.cs

Let us look at each one of them:

wwwroot Folder: It is used for storing CSS, JavaScript, Images

and Static Content files like html and json data files.

Figure 1.18: Blazor Project wwwroot

Pages: It is used for storing razor component files. We will

deep dive into this topic in the next chapter.

Figure 1.19: Blazor Project Page

Shared: It is used for storing shared components, which can

be reused in the entire application.

Figure 1.20: Blazor Shared Folder

In this folder MainLayout, NavMenu shared components are present

that can be used for the entire application.

_Imports.razor: It is used for storing all global namespaces,

which can be applied to an entire application.

Figure 1.21: Blazor Import Razor

App.Razor: It is a special file in the Blazor application, which is

used to serve as the root component of the application (refer

to Figure 1.21). The app.razor file defines the layout and

structure of the application, including the navigation and the

content that is displayed on each page. It is responsible for

rendering the initial user interface of the application.

In the Blazor WebAssembly application, the app.razor file is

compiled into a JavaScript file that runs in the user’s web

browser. In the Blazor Server application, the app.razor file is

compiled into a .NET assembly that runs on the server. It can

also be used to define global CSS styles and other resources

that are used throughout the application. Overall, the

app.razor file is a key component of a Blazor application, and

it is responsible for defining the structure and behavior of

the user interface.

Figure 1.22: Blazor App Razor

Program.cs: It is one of the important files of the Blazor

application, which contains the entry point of the Blazor

application.

Figure 1.23: Blazor Program.cs

It is used to configure the application’s hosting environment,

services, and middleware. In a Blazor WebAssembly application,

the program.cs file typically contains code to create a new

instance of the WebAssemblyHostBuilder class and configure it with

the necessary services and middleware. This includes registering

the application’s services, configuring the HTTP client, and

adding any required middleware components.

The program.cs file is responsible for setting up the application’s

hosting environment, which includes defining the server or client

hosting mode, configuring the application’s logging, and setting

up any required authentication or authorization services.

Overall, the program.cs file plays a key role in configuring and

bootstrapping a Blazor application, and it is an essential file to

understand while working with Blazor application.

Conclusion

In this chapter, we saw what Blazor is, why we should learn the

Blazor web application, and what are the advantages and

disadvantages of the Blazor WebAssembly application. We also

saw different types of Blazor applications.

Blazor WebAssembly 8.0 is one of the leading, super-fast, and

most modern web application development frameworks. It saves

30%–40% development and support time as compared to other

competitor single page application(SPA) web development

frameworks.

We saw how to create a “Hello World’’ Application using Visual

Studio 2022 and VS Code. We also saw the project structure of

the Blazor WebAssembly application. In the next chapter, we will

discuss the basic and advanced concepts on Blazor component.

References

Host and deploy ASP.NET Core Blazor WebAssembly | Microsoft

Learn (https://learn.microsoft.com/en-us/aspnet/core/blazor/host-

and-deploy/webassembly?view=aspnetcore-7.0)

Multiple Choice Questions

1. Blazor WebAssembly run on?

a. Client browser

b. Server

c. Cloud machine

d. None

2. What does WASM stand for?

https://learn.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=aspnetcore-7.0

a. WebAssembly

b. WebActionScript Markup

c. WebAsset Scripting Model

d. WebAPI Service Module

3. Is WebAssembly faster than JavaScript for computationally

intensive tasks?

a. Yes

b. No

c. It depends on the specific task

4. Can we run Blazor application on all platforms?

a. Yes

b. No

c. Only on specific platforms

5. Is Blazor open-source project?

a. Yes

b. No

c. Only the documentation is open source

Answers

1. a

2. a

3. c

4. a

5. a

CHAPTER 2

Razor Components

Introduction

This chapter covers the Blazor component, which is the

building block of the Blazor application. We will discuss all

the basic and advanced concepts on Blazor component with

sample code.

Structure

This chapter covers the following topics:

Introduction to Blazor component

Creating a Blazor Component

Razor Component Lifecycle

Parameters in Blazor Component

Data Binding in Blazor Component

Passing Data from Parent to Child Component

Passing Data from Child to Parent Component

Nested Blazor Component

Code Segregation Approach in Blazor Component

Styling Component in Blazor

Introduction to Blazor Component

The Blazor component is the building block of the Blazor

application. It is a self-contained chunk of user interface (UI),

like a login page, popup screen, and so on.

We cannot imagine a Blazor application without components.

If you have worked with Angular or React applications, you

might already be familiar with component-driven

applications.

Blazor is a totally component-driven application, with each

component being a combination of Razor, Html, and C#

code. Components are self-contained and reusable,

encapsulating their own logic and data. They can be

composed together to build larger user interfaces.

The main benefits of a component-based application are

code sharing across multiple applications, nested UI design,

code reusability and a clean application design.

Creating a Blazor Component

The following are the steps to create a Blazor Component:

Step 1: Open Visual Studio 2022 and create a Blazor

WebAssembly application.

Figure 2.1: Project template

Step 2: Select the framework as .NET 8.0.

Figure 2.2: Project wizard

Step 3: Create the Blazor application.

Figure 2.3: Project Files

In the following figure, all pages and the shared folder

contain components that consist of directive, markup, and

logic.

Figure 2.4: Data binding syntax

Razor Component Lifecycle

Whenever we create a component, it will derive from

ComponentBase.

ComponentBase implements Icomponent, which Blazor uses to

locate components throughout the project. ComponentBase

contains important lifecycle methods.

As you work with components, you will notice that the

ComponentBase class provides a number of virtual methods that

can be overridden to hook into various points during the life

cycle of a Razor component.

Figure 2.5: Component lifecycle

These points include:

Whenever parameter values are set.

When the component is initialized.

Each time the component is rendered.

Let’s have a detailed explanation of these points here:

When Parameter Values are set

The first hook in the component life cycle is available when a

component’s parameters receive their values from the

parent component.

The virtual methods that can be overridden at this point are

OnParametersSet and its async method, OnParametersSetAsync.

These methods are called when a component is first

initialized and each time new or updated parameters are

received from the parent in the render tree.

Let’s consider a simple example.

Create the Parent component.

Create the Child component.

Whenever you run this application, you will see the following

output: "Parameters set for first time".

Figure 2.6: Output

When you click the Click button, you will see the message:

"Parameter reset to 2".

Figure 2.7: Output

This demonstrates that the method is called after parameter

values are set.

When the Component is Initialized

Once the component has received its initial parameters from

its parent in the render tree, the OnInitialized and

OnInitializedAsync methods are called.

This is the point where you would typically make calls to Web

API services to obtain data for the component before it can

be rendered.

Here is a simple code snippet that demonstrates this:

After the Component has been Rendered

At this point, The OnAfterRender and OnAfterRenderAsync

methods are called after each render of the component.

At this point, element and component references are

available, so this phase is ideal for performing the

initialization of JavaScript resources that depend on DOM

elements.

Both methods take a bool named firstRender as an argument.

This is set by the framework and is true when the component

is rendered for the first time. We can use this flag to prevent

one-time initialization being executed unnecessarily when

the component is re-rendered.

Here is the code snippet for calling the JavaScript resource

OnAfterRender:

Prevent Rendering

In this phase, the ShouldRender method is called. This method

returns a bool that determines whether a component should

be re-rendered. The component will still render at least once.

We can use this method to suppress UI refreshing.

In the following demo, the on-button click counter will

increment by 1, but the UI will only refresh on the next click

event.

Figure 2.8: Output

StateHasChanged()

This method is not a part of the component lifecycle, but it is

closely related to it. We use this method to inform the Blazor

runtime that the state of the component has changed and

that the component needs to be re-rendered.

It is called after any lifecycle method has been called and

can also be invoked manually to trigger a re-render.

Let’s take one simple example.

In the preceding code snippet, we are forcefully refreshing

the UI to re-render to fetch the latest data.

Parameters in Blazor Component

In Blazor components, parameters are a way to pass data

from a parent component to a child component. Parameters

are defined as public properties or fields in the child

component and can be assigned values by the parent

component when the child component is rendered.

There are two types of parameters in Blazor components,

including:

Non-cascading parameters

Cascading parameters

Non-cascading Parameters

Non-cascading parameters are explicitly passed from a

parent to a child component and can be defined as public

properties or fields in the child component.

To pass a non-cascading parameter to a child component,

the parent component includes the parameter in the child

component’s markup using the @ character followed by the

name of the parameter, such as: <ChildComponent

MyParameter="@myValue" />

Let’s take a look at an example of non-cascading parameters

in our sample project.

Go to the SurveyPrompt.razor component.

Figure 2.9: Non-cascading parameter

As you see in the preceding figure, Title public Property has

been created with the Parameter attribute and has been

called on @Title in Html UI.

This means that whenever the parent component passes a

specific title to the child component, it will be read and

rendered on the HTML UI using @Title.

Figure 2.10: Parameter passing syntax

Here index.razor is the parent component, and we are

passing Title as a string to the Child component.

To see the output, you can run the application.

Figure 2.11: Output

In the preceding figure, we see that by using the @Parameter

attribute, we are passing Title as a string from the parent

component (that is, Index.razor) to the child component (that

is, SurveyPrompt.razor). We have nested the child component

within the parent component.

Cascading Parameters

Cascading parameters allow data to be passed down through

a hierarchy of components, without the need to pass the

data explicitly from parent to child.

A component can define a cascading parameter using the

[CascadingParameter] attribute. The parent component can

then provide a value for the parameter by wrapping the child

component in a CascadingValue component.

Let’s create a simple example of cascading parameters by

following these steps:

Step 1: Create two child components with cascading

parameters as follows:

Figure 2.12: Cascading parameter

The complete code snippet for the Child1.razor page is as

follows:

For Child2.razor component:

Step 2: Go to the parent component, that is, Index.razor and

pass the cascading values to all child components as follows:

Step 3: Run the application.

Figure 2.13: Cascading parameter demo

In the preceding figure, we can see that we are passing the

"Index Page" from the parent page with the help of a

cascading parameter. This value is then passed to all child

components.

Data Binding in Blazor Components

Data binding in the Blazor components is one of the core

concepts when working with Blazor applications. We cannot

create any Blazor application without data binding. Whether

we are creating an entry screen or displaying data on a grid,

we need to do data binding.

In Blazor, there are two types of data binding, including:

One-way data binding

Two-way data binding

One-Way Data Binding

In this approach, data communication happens in one way.

One-way bindings have a unidirectional flow, meaning that

the value is updated only one time.

Let’s take a simple example to demonstrate one-way data

binding.

In the preceding code snippet, we are binding the title to

@Title. This binding occurs only once.

Figure 2.14: One-way data binding

We will also see one more example of one-way data binding

on Event click.

In the preceding code snippet, whenever we click a button,

the new text will be bound to the Title. So, in this demo, we

saw that value will be updated in one direction on Click

Event.

Figure 2.15: Output

One-way data binding

Figure 2.16: One-way binding workflow

Two-Way Data Binding

Two-way data binding has a bidirectional flow, allowing

values to be updated from two directions. The most suitable

scenario to use two-way data binding is in forms, although

we can use it anywhere in the application wherever we need

two-way data flow.

Two-way binding is achieved using the @bind directive in

Blazor.

Let’s see the basic demo of two-way data binding.

In the preceding example, we saw that when we update on

textbox, it will also update on the HTML UI screen.

Figure 2.17: Two-way data binding

Two-way data binding can be achieved using the following

bind attributes:

@bind=Property

@bind-Value=Property

@bind-Value:event="onevent"

We will now take a look at another example of two-way

binding on Event.

In the preceding code snippet, we saw that whenever we

change any text in the preceding textbox, it will keep

updating the UI in real-time using @bind-value:event

Figure 2.18: Output

Passing Data from Parent to Child

Component

As discussed previously, in Blazor, we can pass data from

parent to child components using the @parameter attribute.

Step 1: Create the Child component with [Parameter]

attribute.

Step 2: Call the child component in the parent component

and pass the parameter as follows:

Figure 2.19: Parent to child syntax

In the preceding figure, we are passing the title parameter as

a string, and it will render the UI on the parent component.

Figure 2.20: Output

Passing Data from Child to Parent

Component

We can communicate child components to parent

components using EventCallback.

For this demo, we will create a child component with Textbox

as input and a button. Whenever we pass input data into the

textbox and click the button, the input text will be displayed

on the parent component.

Step 1: Create the child component with EventCallback as a

string.

Step 2: Create the parent component.

Now, run the application.

Figure 2.21: Output

In this demo, we have demonstrated that by using

EventCallback, we can communicate from the child component

to the parent component.

Nested Component in Blazor

Creating nested components in Blazor is very simple and

straightforward.

We need to create parent and child components, as shown in

the following figure.

All the child components need to be nested inside the parent

component.

Figure 2.22: Nested component

Let’s create a simple sample code.

Create two child components.

Child 2 Component:

Create the nested parent component.

Now, run the application, and the output will be as follows:

Figure 2.23: Output

Code Segregation Approach in Blazor

Component

In Blazor, we can write C# and Razor code using the

following two approaches:

Inline approach

Code-behind approach

Inline Approach

Let’s take the example of the inline approach.

In this code snippet, we can see that C# code and Razor

code are present in the same file. By default, blazor supports

the inline code approach. However, if the application is

growing and creating enterprise-level applications, this

approach is not recommended.

Code-Behind Approach

Using this approach, we write Razor code and C# code in two

separate files. So, it will look more organized and cleaner. As

the application grows, it will be easier to maintain the code.

In this approach, create the razor component, for example,

Hello.Razor, and write the code as follows:

@page "/hello"

<h3>This is Code behind razor page demo</h3>

<p>Message from C# Code Block: @msg</p>

<button @onclick="SayHello">Click Here</button>

Create the C# partial class as Hello.Razor.cs.

By segregating the Razor and C# code behind two files, the

code looks neater and cleaner as compared to the inline

approach.

Figure 2.24: Output

Styling Component in Blazor

Whenever working on a Blazor application, we receive a

requirement to write CSS classes.

There are various approaches to writing CSS classes in

Blazor, such as:

Shared/Global CSS

Embedded CSS

External CSS

Isolated CSS

Shared/Global CSS

To implement this approach, we need to write a CSS class on

app.css in Blazor WebAssembly and /wwwroot/css/site.css in

Blazor Server.

Figure 2.25: CSS file path

Embedded CSS

In this approach, we write the CSS class in the Razor

component itself, which is also known as inline CSS class.

Figure 2.26: Output

External CSS

In this approach, we store all CSS classes in external CSS

files and use them in our components. This is very similar to

the Asp.net WebForm approach.

Isolated CSS

In this approach, we create an isolated CSS class file with the

component name and write the CSS class there. This CSS

class will only apply to the specific component. So all

unnecessary CSS classes will not get loaded on the browser.

This can improve the performance of the page load.

Figure 2.27: Isolated CSS

Write the CSS class as follows:

Now, run the application, and you will see the output as

follows:

Figure 2.28: Output

In this approach, CSS classes are applied at runtime of the

application.

Conclusion

In this chapter, we covered all the basic concepts related to

components, which are essential while developing a Blazor

WebAssembly application.

In the upcoming chapters, we will be using these component

concepts. If you have a clear understanding of these basic

concepts, it will be much easier to develop complex Blazor

projects.

References

ASP.NET Core Razor components | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is a Blazor component?

a. A reusable piece of UI that can be rendered on a web

page

b. Class that contains all of the logic for a web page

c. An interface for defining the structure of a web page

2. What are the two types of Blazor components?

a. Razor components and code-behind components

b. Server-side components and client-side components

c. Class components and function components

3. What is the syntax for defining a Blazor component?

a. @component MyComponent { … }

b. <MyComponent> … </MyComponent>

c. @code { … }

4. What is the purpose of the @code block in a Blazor

component?

a. To define the HTML markup for the component

b. To define the CSS styles for the component

c. To write the C# code that controls the behavior of

the component

5. What is the difference between a Razor component and

a code-behind component?

a. Razor components use HTML markup and C# code in

the same file, while code-behind components

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

separate the HTML markup and C# code into

different files.

b. Razor components are rendered on the client side,

while code-behind components are rendered on the

server side.

c. Razor components are used for simple UI elements,

while code-behind components are used for more

complex UI elements.

6. What is the purpose of the @inherits directive in a code-

behind component?

a. To specify which class the component should inherit

from

b. To specify which HTML element the component

should render as

c. To specify which CSS styles should be applied to the

component

7. How can you pass data from a parent component to a

child component in Blazor?

a. Using the @parameter directive

b. Using the @inject directive

c. Using the @component directive

8. What is the purpose of the @on{EventName} directive in a

Blazor component?

a. To specify a method that should be called when a

certain event occurs

b. To specify a CSS class that should be applied when a

certain event occurs

c. To specify a data binding that should be updated

when a certain event occurs

9. What is the difference between a local parameter and a

CascadingParameter in Blazor?

a. A local parameter is passed directly to a child

component, while a CascadingParameter is passed

through a chain of parent components.

b. A local parameter is defined in the same component

as it is used, while a CascadingParameter is defined in a

parent component.

c. A local parameter can only be used once in a

component, while a CascadingParameter can be used

multiple times.

10. How can you handle user input in a Blazor component?

a. Using the @on{EventName} directive to specify a

method to handle the event

b. Using the @bind directive to create a two-way data

binding between a property and a form field

c. Using the @code block to write JavaScript code that

handles the user input.

Answers

1. a

2. a

3. b

4. c

5. a

6. a

7. a

8. a

9. a

10. a or b

CHAPTER 3

Routing and Navigation

Introduction

This chapter will cover routing and navigation in the Blazor

application, which is a very important concept while

developing any web application. We will discuss all the basic

and advanced concepts of Routing and Navigation with

sample code.

Structure

This chapter covers the following topics:

Introduction to Routing and Navigation

Router Components

Route Parameter

Route Constraints

Optional Parameters

Route Overloading

Navigation in Blazor

Forcing a Page Reload

Introduction to Routing and

Navigation

Routing and Navigation is an essential part of any web

application framework. Without this, we cannot develop any

web application. Routing is the concept of navigating from

one page to another on a website. Routing in Blazor involves

mapping URLs to components or pages in your application.

Navigation in Blazor refers to the process of

programmatically navigating between different components

or pages within the application.

Now, we will see how routing works in the Blazor application.

Router Components

Whenever we type any page URL in a browser such as:

https://localhost:7224/counter

The preceding URL will go to the router component of the

app.razor file, which will scan all the razor pages in the

current assembly.

Figure 3.1: Route Component

If it is found in the assembly, then RouteView will render the

given component with the Default page Layout; in the

preceding case, it will render Counter Component.

If you enter:

https://localhost:7224/counter123

It will search for Conter123 in the assembly file, which is

unavailable in the application. In this scenario, it will go to

the NotFound Section and display the following message:

Sorry, there’s nothing at this address.

Figure 3.2: Not Found

Route Parameter in Blazor

Route parameters are placeholders for values you want to

pass to a specific component via the URL. The placeholder is

represented in a route template within curly braces such as {

Id }.

The parameter name must match a public property within

the component that is decorated with the [Parameter]

attribute

Let’s see the basic demo code snippet for the route

parameter:

In the previous code snippet, we see there are public

properties of UserId as a parameter and within curly braces: {

UserId }.

Whenever we pass UserId on the browser, it will read the

route parameter value and display it on the page, as shown

in the following screenshot:

Figure 3.3: Found Path

The key points of route parameters are as follows:

By default, all route data values are strings.

Route parameters are placeholders for values. Blazor will

bind the parameter value to the public property

automatically.

If you want to work with different data types, you must apply

a constraint to the parameter in the route template. You can

do this by adding a colon, followed by the data type that you

want to work with:

There are a large number of constraints, but Blazor Supports

only supports the following constraints.

Constraints Descriptions Example

bool Matches a Boolean value {isActive:bool}

int Matches a 32-bit integer value {id:int}

datetime Matches a DateTime value {dob:datetime}

decimal Matches a decimal value {price:decimal}

double Matches a 64-bit floating-point value {latitude:double}

float Matches a 32-bit floating-point value {x:float}

long Matches a 64-bit integer value {y:long}

guid Matches a GUID value {id:guid}

Table 3.1: Constraints

Optional Parameters in Blazor

In Blazor, you can define optional route parameters by

specifying a default value for the parameter, or by using a

nullable data type. This allows you to have routes that can

match with or without a specific parameter value.

To define an optional route parameter in Blazor, you must

provide a default value for the parameter in the @page

directive of a Blazor component. Here’s an example using a

nullable data type:

In the preceding example, the @page directive specifies a

route pattern /users/{userId:int?}.

The int? indicates that the userId parameter is of type int,

and it is optional (? denotes optional).

It will not be mandatory to pass it as a parameter. UserId is

an optional parameter.

Figure 3.4: Not Found Path

Route Overloading

Blazor does not support route overloading in the same way

as some traditional server-side frameworks. Route

overloading typically refers to defining multiple routes with

the same URL pattern but different HTTP verbs or other

parameters to differentiate them.

In Blazor, the @page directive is used to define a route for a

specific component.

The route pattern specified in the @page directive determines

when the component is rendered based on the URL.

To achieve similar functionality as route overloading, you can

use parameterized routes and handle the differentiation

within the component itself.

Here is the code snippet for route overloading:

Here are two @page directives: "/users/{userId:int}" and

"/users".

The first directive matches URLs like /users/123, where userId

is an integer.

The second directive matches the base URL /users.

When a user navigates to /users/123, the component will

display the user details for the provided userId.

If a user navigates to /users (without a specific userId), the

component will render the section displaying all users.

Figure 3.5: Route Overload

Navigation in Blazor

In Blazor, navigation refers to the process of moving

between different pages or components within a web

application. Blazor provides several ways to perform

navigation, including programmatic navigation and

declarative navigation.

Programmatic navigation: Programmatic navigation

allows you to navigate to different pages or components

in response to user actions or events. To perform

programmatic navigation in Blazor, you can use the

NavigationManager service, which provides methods for

navigating within your application. Here’s an example of

programmatic navigation using the NavigationManager

service:

In this example, when the button is clicked, the NavigateToPage

method is executed, which uses the NavigationManager to

navigate to the /anotherpage URL. You can provide relative or

absolute URLs depending on your navigation needs.

Declarative navigation: Declarative navigation allows

you to define navigation links directly in your Blazor

markup using the NavLink component. The NavLink

component renders an anchor tag (<a>) that

automatically applies an active CSS class when the

associated URL is the current active URL.

Here’s an example of declarative navigation using the

NavLink component:

In this example, two NavLink components are used to create

navigation links for the "Users" and "Products" pages. When

the associated link is clicked, Blazor handles the navigation

automatically.

We can also do navigation using html anchor tag as given in

the following syntax:

Forcing a Page Reload

In Blazor, you can force a page reload by utilizing the

NavigationManager service and its Reload method. The Reload

method is responsible for reloading the current page,

effectively refreshing the entire Blazor application.

When the button is clicked, the ReloadPage method is

executed, which in turn calls the Reload method of the

NavigationManager service. This will reload the current page

and refresh the entire Blazor application.

Please note that forcing a page reload in Blazor should be

used sparingly, as it disrupts the normal flow of the

application and may result in data loss or inconsistencies. It

is generally recommended to rely on Blazor’s built-in

mechanisms for handling state and updating components

rather than relying on full page reloads.

Conclusion

In this chapter, we saw all the concepts of routing and

navigation of Blazor, which is common in Blazor Server and

Blazor WebAssembly. These concepts are very important

while working on the Blazor project. We also provided code

snippets to illustrate each concept. In the next chapter, we

will discuss Razor class library and its implementation.

References

ASP.NET Core Blazor routing and navigation | Microsoft

Learn

For source code:

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. Which directive is used to define the route pattern for a

Blazor component?

a. @route

b. @url

c. @page

d. @nav

2. How can you perform programmatic navigation in

Blazor?

a. Using the <NavLink> component

b. Using the NavigationManager service

c. Using the @route directive

d. Using the BlazorNavigation class

3. Which attribute is used to specify a route parameter in

Blazor?

a. [Route]

b. [NavParameter]

c. [Parameter]

d. [RouteParam]

4. How can you pass route parameters during navigation in

Blazor?

a. By using the @route directive

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

b. By calling the NavigateTo method with the parameter

value

c. By using the NavLink component with the parameter

value

d. By appending the parameter value to the URL

5. How can you access the current URL in a Blazor

component?

a. By using the @url directive

b. By injecting the NavigationManager service

c. By calling the GetCurrentUrl method

d. By using the @page directive

Answers

1. c

2. b

3. c

4. b

5. b

CHAPTER 4

Razor Class Library

Introduction

This chapter will focus on one of the cool features of Blazor,

that is code reusability. Using Razor Class Library, we can

use our Razor component in all Blazor type projects,

including Blazor Server, WASM, and MAUI Hybrid.

If we have a requirement to develop a product that should

work in all environments, then we can take advantage of

Razor Class Library. It will save 70% of development time

and money. We will also learn the advantages of Razor Class

Library.

Structure

This chapter covers the following topics:

Introduction to Razor Class Library

Creating Razor Class Library Project

Sharing Code with Multiple Applications

Integrating Bootstrap in Razor Class Library

Creating NuGet Package of RCL

Advantages of Razor Class Library

Introduction to Razor Class Library

A Razor Class Library (RCL) in Blazor is a reusable

component library that contains Razor components, pages,

and other supporting files. It allows you to package and

distribute UI components and resources that multiple Blazor

applications can consume.

Figure 4.1: Razor Class Library

Creating RCL and Sharing Code with

Multiple Application

We will create a simple POC project for the Class library

using Syncfusion Blazor Control and use it in Blazor Server,

Blazor WASM, and MAUI Blazor Hybrid application. Here is

the step-by-step process:

Step 1: Open the Visual Studio Project template and select

Razor Class Library:

Figure 4.2: Class Library

Step 2: Give the Project Name as "RazorClassDemo":

Figure 4.3: Project Name

Step 3: In the RazorClassDemo, add the syncfusion Controls

using NuGet Package Manager, as shown in Figure 4.4:

Figure 4.4: Syncfusion Grid

Note: Syncfusion is a very popular Blazor Control provider.

You can create a very interactive and rich Blazor project

using this library.

For more details about this, please refer to the following URL:

Blazor DataGrid Example | Grid Overview | Syncfusion

Demos

Step 4: Create the reusable Orders Component, as shown in

Figure 4.5:

Figure 4.5: Razor Component

Step 5: Write the code for populating the Syncfusion grid, as

shown in the following code:

Step 6: Now create Blazor Server, Blazor WebAssembly, and

Blazor MAUI Hybrid as separate standalone project as

follows:

Blazor Server:

Figure 4.6: Blazor Server App

Blazor WebAssembly App:

Figure 4.7: Blazor WebAssembly

Blazor MAUI Hybrid App:

Figure 4.8: MAUI Blazor App

Now that we have created all the required projects, we are

going to consume the Razor Class Library Orders

Components.

Step 7: Add the project references as Razor Class Library in

all projects, including Blazor WebAssembly, Blazor Server,

and Blazor MAUI Hybrid.

Figure 4.9: Project Reference

Step 8: For Blazor WebAssembly, go to Program.cs file and

register the Syncfusion Control, as shown in Figure 4.10:

Figure 4.10: Program.cs

Add the CSS and JavaScript file in index.html page as follows:

Figure 4.11: Index.html

File Change for Blazor Server Application:

Program.cs file:

Figure 4.12: Program.cs

In Layout.html page:

Figure 4.13: Layout.html

File Changes for Blazor Hybrid MAUI App

MauiProgram.cs:

Figure 4.14: MauiProgram.cs

In Index.html page:

Figure 4.15: Index.html

Step 9: Go to Index.razor page of all projects and call Razor

Class Library component as follows:

Figure 4.16: Index.razor

Step 10: Now run the Blazor Server application.

Figure 4.17: Output

Step 11: Now run the Blazor WebAssembly application.

Figure 4.18: Output

Step 12: Run the Blazor MAUI Hybrid App.

Figure 4.19: MAUI Output

In this demo, we saw that by using Razor Class Library (RCL),

we can easily create a similar look and feel of the UI for all

applications using a single code base.

Creating NuGet Package of RCL

We can also create NuGet Package from our Razor Class

Library by following these steps:

Step 1: Go to the Razor Class Library project properties >>

Package >> General and configure the input as follows:

Figure 4.20: Package

Step 2: Build the application and go to

RazorClassDemo\bin\Debug folder.

You will see a NuGet package file.

Figure 4.21: Debug

Step 3: Create Blazor WebAssembly application and add this

package as follows:

Figure 4.22: Blazor WASM

Step 4: Go to the NuGet of project:

Figure 4.23: NuGet Package

Step 5: Add the NuGet package on our application as follows:

Figure 4.24: NuGet Package

In the preceding figure, the Source is the path of the NuGet

package on our local system. We have kept the NuGet

package on a given folder path.

Figure 4.25: NuGet Package

Step 6: Install the preceding NuGet package in the Blazor

WebAssembly application.

Step 7: Now, configure all the required dependencies in

Blazor application.

In Program.cs file

Figure 4.26: Program.cs

In Index.html page, add the Bootstrap and required

JavaScript file as follows:

Figure 4.27: Index.html

Step 8: Go to the Index.razor file and call the OrderPage

component as follows:

Figure 4.28: Page Route

Step 9: Run the application:

Figure 4.29: Output

In the preceding demo, we saw that using NuGet Package,

we are able to call Razor Class Library Components in any

project.

Advantages of Razor Class Library

Razor Class Library (RCL) in Blazor offers several advantages

for organizing and distributing reusable components and

resources. Here are some key advantages of using a RCL in

Blazor:

Reusability: RCL allows you to create a collection of

reusable UI components, pages, and supporting files in a

single library. These components can be easily shared

and reused across multiple Blazor applications. It

promotes code reuse, reduces duplication, and improves

development efficiency.

Modular Development: RCL enables modular

development by encapsulating related components and

resources into a self-contained library. This modular

approach simplifies project organization and promotes

the separation of concerns. Developers can focus on

building and maintaining individual components without

worrying about the larger application context.

Versioning and Updates: RCL provides versioning

capabilities, allowing you to manage and distribute

updates to the library independently from the

consuming applications. This makes it easier to maintain

and evolve the library over time while ensuring

backward compatibility. Developers can update the

library in one place, and the changes can be propagated

to all applications that use it.

Consistent User Interface: By using RCL, you can

maintain a consistent user interface across different

applications. The library enforces consistent styling,

behavior, and functionality, ensuring a unified user

experience. Changes made to the library components

will be automatically reflected in all applications that

utilize them.

Separation of Concerns: RCL promotes the separation

of UI concerns by encapsulating the UI components and

associated logic in a separate library. This separation

allows for better organization, code maintainability, and

testability. Developers can focus on specific areas of

development, such as UI, business logic, or data access,

independently.

Packaging and Distribution: RCL provides a

convenient way to package and distribute your reusable

components and resources. The library can be published

as a NuGet package or shared via other distribution

mechanisms. This simplifies the process of sharing

components with other developers or teams, making

collaborating and leveraging each other’s work easier.

Using a Razor Class Library in Blazor brings modularity,

reusability, versioning, and distribution advantages to your

application development. It promotes efficient development

practices, code sharing, and consistency across applications,

leading to faster development cycles and improved software

quality.

Conclusion

In this chapter, we saw how to create a Razor Class Library in

real time project. Using the Razor Class library, we can

create reusable and optimized code. We can also create

NuGet packages and consume them in multiple projects.

These are cool and nice features to optimize any project’s

cost and development time.

We also understood how to register external third-party

controls such as Blazor syncfusion with Bootstrap and

JavaScript. In the next chapter, we will explore the state

management in Blazor WebAssembly.

References

Share assets across web and native clients using a Razor

Class Library (RCL) | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is a Razor Class Library (RCL) in Blazor?

a. A library containing only Razor components

b. A library containing only C# code

c. A library containing both Razor components and C#

code

d. A library used exclusively for CSS stylesheets

2. Which of the following statements about RCL in Blazor is

true?

a. RCLs cannot be shared across different Blazor

applications

b. RCLs can contain reusable UI components and pages

c. RCLs are exclusively used for server-side Blazor

applications

d. RCLs cannot contain code-behind files

3. What is the purpose of using a RCL in Blazor?

a. To create standalone Blazor applications

b. To encapsulate and share UI components and pages

across multiple Blazor applications

c. To improve the performance of Blazor applications

d. To restrict access to code for security purposes

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

4. Which file extension is typically used for Razor

component files within a RCL?

a. .cs

b. .js

c. .razor

d. .html

5. How can you reference a RCL in a Blazor application?

a. By adding it as a reference in the Blazor

application’s project file

b. By copying the RCL’s files directly into the Blazor

application’s folder structure

c. By creating a symbolic link to the RCL’s folder

d. By embedding the RCL’s files into the Blazor

application’s assembly

Answers

1. c

2. b

3. b

4. c

5. a

CHAPTER 5

State Management

Introduction

State Management is a key concept in any web application.

Without state management, we cannot develop modern

interactive web applications.

As you know, in any web application, whenever a user is

logged in, we need to maintain all information about their

profile throughout the entire application until they logs off. In

this scenario, we need to use state management.

Another scenario is when we create a survey page that

contains multiple pages, and on each page, the user will

keep filling in input until the survey is completed. In this

scenario, we need to preserve the state of the object.

Structure

This chapter covers the following topics:

State Management in Blazor WebAssembly

Type of State Management

State Management with Code Snippet

Tips and Tricks While Using State Management

State Management in Blazor

WebAssembly

State Management is the process of preserving the state of

the user and object while navigating from one page to

another page.

Since Blazor WebAssembly applications are client-side web

applications, they run entirely in the browser and don’t have

a server-side state like traditional server-rendered web

applications.

So, we will discuss only the client-side state management

approach.

State management in Blazor WebAssembly can be achieved

using various techniques, including:

Component Parameters

Cascading Values and Parameters

Services

Local Storage or Session Storage

Server Side

Component Parameters

This is one of the simple approaches to passing data from

parent to child components. In this approach, the child

component will receive data from the parent component.

For this approach, create the razor child component as

shown in the following code:

Create the Parent Component as follows:

Now run the application, and it will show output as follows:

Figure 5.1: Component parameter demo

Cascading Values and Parameters

Blazor provides a mechanism called cascading values and

parameters that allow data to be passed down the

component tree implicitly. A parent component can define a

value or parameter that its child components can consume

without explicitly passing it as a parameter.

For this approach, create the Child Component as follows:

Create the parent component as follows:

Figure 5.2: Cascading value and parameter demo

Services

Services in Blazor WebAssembly are singleton objects that

can be registered and injected into components. Services

can hold application state and provide data and functionality

to multiple components. By injecting the same service

instance into multiple components, they can share and

manipulate the same state.

Step 1: For this approach, create the variable properties

that we want to maintain the state for. In this case, we are

maintaining the state for the CounterCount variable. So, we will

create the class as follows:

Step 2: Inject the service into a program file as follows:

builder.Services.AddScoped<CounterState>();

Figure 5.3: Dependency injection

Step 3: Go to the counter page and inject the CounterState

Service and use it as shown here:

In the preceding code, we saw that we are injecting the

service and creating an instance as represented here:

And we are holding the value as follows:

Now if we will run the code, we will see output, as shown in

the following figure:

Figure 5.4: Output

Now click another tab and come to the same page, you will

not lose the state.

Local Storage or Session Storage

Local Storage and Session Storage are two web storage

mechanisms provided by modern web browsers to store data

locally on a user’s device.

They are a part of the Web Storage API, which allows web

applications to store data within the user’s browser for future

retrieval.

Both Local Storage and Session Storage provide a way to

persist data between page reloads and browser sessions

without the need for server-side storage.

However, they have some key differences in terms of scope

and lifespan, such as:

Local Storage:

Scope: Data stored in local storage is accessible across

all tabs and windows from the same origin (domain).

Lifespan: The data persists even after the browser is

closed and is stored until explicitly removed by the user

or cleared by the website/application.

Usage: Local storage is typically used for long-term

storage of data, such as user preferences, settings, or

cached data that should be available across multiple

sessions.

Session Storage:

Scope: Data stored in session storage is limited to the

current tab or window. It is not accessible from other

tabs or windows of the same origin.

Lifespan: The data is retained as long as the tab or

window is open. Once the user closes the tab or window,

the session storage is cleared, and the data is lost.

Usage: Session storage is suitable for temporary

storage of data that should only last for the duration of

the user’s visit to the website. It is often used to store

state information during a user session, which can be

useful for preserving data between page reloads or

navigations within the same tab.

When to use Local Storage or Session Storage depends on

your specific use case, such as:

Use local storage when storing data that should be

available across multiple sessions and accessible from

different tabs or windows within the same origin.

Use session storage when you need to store temporary

data that is specific to the current tab or window and

should not persist beyond the current session.

Both local storage and session storage are limited in

terms of capacity (usually around 5-10 MB), and they are

accessible only on the client-side, so sensitive data or

critical information should not be stored in them. For

such data, server-side storage with proper security

measures is more appropriate.

Now, let us see the example of local storage in Blazor

WebAssembly.

For this demo, we are going to use Blazored.LocalStorage and

Blazored.SessionStorage NuGet package. It is very popular

NuGet package in Blazor community.

Figure 5.5: NuGet package

After this, we need to register for the program.cs file as

follows:

Figure 5.6: Adding NuGet package in program.cs file

Now create the new Razor Component and write the code as

follows:

In the preceding code snippet, we are creating an instance of

IlocalStorageService, that is, localStorage using dependency

injection.

We are saving the value in localstorage using

localStorage.SetItemAsync method and reading a value from

localstorage using localStorage.GetItemAsync:

Figure 5.7: Local Storage demo

If you will see it on a browser using F12, you can see the

localstorage value, as shown in Figure 5.8.

Figure 5.8: Local Storage in browser

Now, let us see SessionStorage code snippet:

For this also, all the processes will be the same as local

storage. Now, we will create new Razor component and write

the code as follows:

In the preceding code snippet, sessionStorage.SetItemAsync is

used for saving data in session storage, and

sessionStorage.GetItemAsync is used for reading data from

session storage.

Figure 5.9: Session Storage demo

If you will see it on a browser using F12, you can see the

session value, as shown in Figure 5.10:

Figure 5.10: Session Storage in browser

Server-Side State Management

In this approach, we will save the state in the database or

cloud storage with the help of web API. However, this is not

the best approach to use in Blazor WebAssembly. It would

make an extremely slow application since we are constantly

calling the database.

It is the least used approach in Blazor WebAssembly.

Tips and Tricks for Choosing State Management in

Blazor WebAssembly

So far, we have seen that there are various approaches to

maintaining state management in Blazor WebAssembly. We

can decide to use each one depending on our scenario:

Component State:

Use for a simple and isolated state that is specific to a

particular component.

Ideal for local UI state that doesn’t need to be shared

across components.

Suitable for managing state with limited scope and not

requiring communication between components.

Cascading Parameters:

Utilize when passing data from a parent component

down to its descendants.

Useful for scenarios where multiple components require

access to the same data.

Avoid excessive nesting of cascading parameters as it

can lead to unnecessary complexity.

Services and Dependency Injection:

Choose for managing application-wide state or data that

needs to be shared across different components.

Helpful for decoupling state management logic from the

components, promoting cleaner code organization.

Use for state that requires complex business logic, data

fetching, or communication with external services.

Local Storage and Session Storage:

Opt for browser storage when persisting data across

page reloads or browser sessions.

Ideal for saving user preferences, settings, or cached

data to provide a better user experience.

Avoid using it for sensitive data or large amounts of data

due to storage limitations.

If you are saving sensitive data, then please use it as an

encrypted format.

Server-Side versus Client-Side State:

Choose server-side state management for applications

with complex business logic or when the state needs to

be shared among multiple clients. It can be achieved

using the web API method. We will store data in some

database.

Opt for client-side state management for applications

that require fast, responsive UI updates without frequent

server communication.

Scalability:

Evaluate how well the state management solution scales

as your application grows.

Ensure it remains maintainable and efficient as the

complexity of your app increases.

Performance Considerations:

Consider the performance implications of the state

management approach you choose.

Avoid over-engineering state management for simple

applications to maintain optimal performance.

Testing and Debugging:

The chosen state management approach is testable and

facilitates debugging.

Tools like Blazor DevTools can aid in monitoring state

changes and debugging Blazor applications.

Conclusion

In this chapter, we explored various approaches for

maintaining the state in Blazor WebAssembly. We can choose

depending on our scenario and use case.

We also learned the tips and tricks to decide the state

management approach in Blazor WebAssemblyapplication. In the

next chapter, we will discuss REST services using Asp.net.

References

ASP.NET Core Blazor state management | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. Which of the following options is NOT a state

management approach in Blazor WebAssembly?

a. Component State

b. Cascading Parameters

c. Local Storage

d. Blazor Server

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

2. Which state management approach is recommended for

simple applications with limited shared state

requirements?

a. Blazor Fluxor

b. Server-Side State Management

c. Component State

d. Cascading Parameters

3. In Blazor WebAssembly, where is the state managed

when using Blazor Server hosting model?

a. On the server

b. On the client’s browser

c. In a centralized database

d. In local storage

4. Which one is a good approach to store sensitive data in

state management?

a. Local Storage on browser

b. Session Storage on browser

c. Encrypted Local Storage or Session Storage

d. Cookies

Answers

1. d

2. c

3. a

4. c

CHAPTER 6

REST Services

Introduction

Blazor WebAssembly is a client-side web framework that

enables us to build interactive web applications using C#

and .NET in the browser.

While Blazor WebAssembly is primarily designed to work with

RESTful services like other client-side JavaScript SPA

frameworks, we can use the HttpClient class provided by

.NET to communicate with RESTful services from Blazor

WebAssembly. This chapter will dive deep into creating REST

Service using Asp.net core. We will also learn how to call

REST service in Blazor WebAssembly with complete code

snippets.

Structure

This chapter covers the following topics:

How to Create REST Service using Asp.net Core

Web API Controller

HttpClient

Configuring and Injecting HttpClient

CRUD Operation in Blazor WebAssembly

Creating REST Service Using Asp.net

Core

A Representational State Transfer (REST) service is a type of

web service architecture that follows the principles of

RESTful design. It is an architectural style for designing

networked applications, particularly web services, that rely

on a stateless, client-server communication model.

REST services are based on standard HTTP methods, such as

GET, POST, PUT, DELETE, and so on, and use simple, human-

readable formats, including JSON or XML, to exchange data

between clients and servers.

There are so many approaches to creating a REST Service.

However, we will only focus on Asp.net Web API Core. This is

one of the best and highly performed backend API services.

How to create REST Service using Asp.net core in

Blazor?

For creating Web API core REST service, we can create a

Standalone Web API core service or a Shared Web API core

service in Blazor WebAssembly.

Standalone Web API Core Service

If we choose this approach, we can deploy Web API service

on any server as a standalone. We can use this service on

multiple applications that have been deployed on other

servers.

Figure 6.1: Web API Service

Note: In the preceding image, we have created an Emp Web

API service and deployed it on Azure. If we have used this

service on Blazor WebAssembly or angular application, which

has been deployed on GitHub or AWS, it will be a more

scalable approach.

Now we will see, how to create a Standalone Web API

Service:

Step 1: Create the project using Visual Studio as follows:

Figure 6.2: Web API Project

Step 2: Give the project name as follows:

Figure 6.3: EmpService

Step 3: Select the framework

Figure 6.4: Framework

Step 4: Now go to the Controllers folder and add a new

EmpController as follows:

Figure 6.5: EmpController

Now basic EmpController scaffolding code will be created as

follows:

Now run the application using F5 and go to the home

controller. The output will be as follows:

Figure 6.6: Output

This API endpoint we can consume anywhere in any

application.

Shared Web API Core in Blazor

WebAssembly

In this approach, ASP.NET Web API Core service will be

created with Blazor WebAssembly application. We can use

this service within Blazor WebAssembly and Blazor Server

approach. If we have a simple requirement and need more

re-usabilities, then this will be a good approach. You can use

this project template up to Blazor WebAssembly 7.0.

For creating the Web API Core service with Blazor

WebAssembly, we have to select Asp.net Core Hosted, as

shown in Figure 6.7:

Figure 6.7: Asp.net core hosted

When you click on next, the project will be created as shown

in the following screenshot. It will contains Blazor UI Layer,

Web API Layer, and Shared Model:

Figure 6.8: Asp.net core hosted

In this approach, we can share the Model in Web API and

Blazor WebAssembly and Blazor Server application. It is a

good architecture for simple applications.

Now, we will see when to use Standalone and Shared Web

API approach.

Standalone Web API Approach:

Complexity and Scalability: If your Web API is a

complex system with its own requirements, business

logic, and data access layers, it might be better to

create it as a standalone project. This approach allows

you to manage the Web API independently and gives

you more flexibility in terms of scalability and code

organization.

Separation of Concerns: A standalone Web API project

ensures a clear separation of concerns between the

client (Blazor WebAssembly) and the server (Web API).

This can make the codebase more maintainable and

easier to understand for developers working on different

application parts.

Shared Web API Project in Blazor WebAssembly:

Simplified Development and Deployment: If your

Web API logic is relatively simple and closely related to

the functionality of your Blazor WebAssembly

application, creating a shared project can simplify

development and deployment. You can avoid the

overhead of maintaining two separate projects and

reference the shared Web API project in both the client

and server parts of your application.

Code Reuse: When both your Blazor WebAssembly and

Blazor Server projects require the same API endpoints

and data models, having a shared Web API project

enables code reuse. Any changes or improvements

made to the shared Web API project will reflect in both

hosting models, reducing duplication and ensuring

consistency.

Consistency in API Definition: Creating a shared Web

API project helps ensure that the API endpoints,

request/response models, and overall API contract

remain consistent across the application, regardless of

the hosting model.

Note: If you are using .Net 8.0, then you will not get Shared

Web API Core in Blazor WebAssembly project template.

This project template has been removed now. You can create

standalone projects for Blazor WebAssembly and Web API

Project, but code will be the same.

.Net 8.0 Web API Project:

Figure 6.9: Web API project template in .Net 8.0

Blazor WebAssembly 8.0 Project:

Figure 6.10: Blazor WASM project template in .Net 8.0

HttpClient in Blazor WebAssembly

In Blazor WebAssembly, the HttpClient class is a

fundamental component for making HTTP requests to APIs or

services from the client-side code. It allows your Blazor

WebAssembly application to communicate with backend

servers, Web APIs, or other HTTP-based resources. You can

use HttpClient to send HTTP requests and process the

responses asynchronously.

To use HttpClient into your component, you need to inject

HttpClient at the top of the page, as follows:

In the preceding code snippet, we have injected HttpClient at

the top of the page, and then we are calling any API service

using Http.GetFromJsonAsync method.

If you go to the definition of Http.GetFromJsonAsync method,

you will see the sets of Json Extension methods that are

created by Microsoft for insert, update, and delete operations

with REST Service.

Figure 6.11: httpClient

We will write a summary of all Json Extension methods along

with when to utilize each one:

GetFromJsonAsync

PostAsJsonAsync

PutAsJsonAsync

DeleteFromJsonAsync

PatchAsJsonAsync

GetFromJsonAsync

This method makes a GET request to the specified requestUri

and attempts to serialize the response into the type

represented by the T parameter or the Type parameter. You

can see an example of this in the FetchData component in the

standard Blazor WebAssembly project templates.

PostAsJsonAsync

This method is used to send a POST request with JSON data

as the payload. It’s typically used for creating new resources

on the server.

PutAsJsonAsync

Similar to the PostAsJsonAsync method, but it is used for

updating existing resources on the server using a PUT

request

DeleteFromJsonAsync

Similar to the GetFromJsonAsync method, but it would be used

to send a DELETE request and potentially receive a JSON

response. This is useful for deleting resources on the server.

PatchAsJsonAsync

This method sends a PATCH request with JSON data as the

payload. It’s often used for updating a resource partially

instead of replacing the whole resource.

CRUD Operation in Blazor

WebAssembly

Here are the code snippets for CRUD operation using

HttpClient Json Extension Method.

Assuming you have a TodoItem class model:

And you have an HttpClient instance named HttpClient that’s

configured to communicate with your API.

Create (POST):

Read (GET):

Update (PUT or PATCH):

Using PUT:

Using Patch (it is used for partial update):

Delete (DELETE):

Conclusion

In this chapter, we understood REST Service and how to

create it using Asp.net Core. We also learned how to call

REST service in Blazor WebAssembly with complete code

snippets. It is one of the important concepts while working

with any Blazor application.

In the next chapter, we will explore more details about REST

Service Call with Entity Framework Core.

References

Call a web API from an ASP.NET Core Blazor app | Microsoft

Learn

https://learn.microsoft.com/en-us/aspnet/core/blazor/call-

web-api?view=aspnetcore-7.0&pivots=webassembly

Multiple Choice Questions

1. What does REST stand for in the context of web

services?

a. Representational Entity State Transfer

b. Remote Execution and State Transfer

c. Representational State Transfer

d. Remote Entity Service Transfer

2. How does Blazor communicate with RESTful services?

a. Using WebSockets

b. Using gRPC

c. Using JSON-RPC

d. Using HTTP requests

3. Which HTTP methods are commonly used when

interacting with RESTful services in Blazor?

a. GET, POST, PUT, DELETE

b. READ, CREATE, UPDATE, DELETE

c. FETCH, ADD, MODIFY, REMOVE

d. QUERY, INSERT, UPDATE, DELETE

4. In Blazor, which component lifecycle method is

commonly used to make REST API calls?

a. OnInit()

b. OnInitialized()

https://learn.microsoft.com/en-us/aspnet/core/blazor/call-web-api?view=aspnetcore-7.0&pivots=webassembly

c. OnRender()

d. OnLoad()

Answers

1. c

2. d

3. a

4. b

CHAPTER 7

Entity Framework Core

Introduction

Nowadays while working with any Blazor Application, you will

see Backend API Service with Entity Framework Core or EF

Core. This is a very popular and productive ORM from

Microsoft. It is one of the alternate and popular options for

creating a Backend service. Before EF Core, we were using

Ado.net.

EF Core is a very vast topic. It will be very difficult to include

all the concepts in a single chapter.

Structure

This chapter covers the following topics:

EF Core 8.0

Reasons to Use EF Core

When Not to Use EF Core

EF Core Supported Application Types

Entity Framework Core Approaches

Supported Databases

CRUD Operation with EF Core in Blazor WebAssembly

EF Core 8.0

Entity Framework (EF) Core 8.0 is a lightweight, extensible,

open-source, and cross-platform version of the popular Entity

Framework data access technology.

It provides an object-relational mapping (ORM) framework

that allows developers to work with databases using .NET

objects.

It has introduced many cool features in EF 8.0, significantly

enhancing developer productivity. It is a highly performed

and efficient ORM as compared to other competitors in the

market.

For more details, please refer the following URL:

What’s New in EF Core 8 | Microsoft Learn

(https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-

core-8.0/whatsnew)

Reasons to Use EF Core

Here are some reasons why you might consider using EF

Core in your project:

Simplified Data Access

EF Core simplifies the process of interacting with databases

by allowing you to work with database objects as regular

.NET objects. This means you can use C# or VB.NET classes

to represent database tables, and EF Core will handle the

translation between these objects and the actual database

queries.

Developer Productivity

EF Core can speed up the development process by

eliminating the need to write a lot of repetitive data access

code. It offers a higher-level, more abstract way to perform

CRUD (Create, Read, Update, Delete) operations on the

database.

Cross-Platform Support

EF Core is designed to work on multiple platforms, including

Windows, Linux, and macOS. This makes it suitable for

https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-core-8.0/whatsnew

building applications that need to run on different operating

systems.

Database Provider Flexibility

EF Core supports multiple database providers, including SQL

Server, SQLite, MySQL, PostgreSQL, and more. This allows

you to switch between different database systems relatively

easily without rewriting your data access code.

Figure 7.1: EF Core

LINQ Integration

EF Core seamlessly integrates with Language Integrated

Query (LINQ), which is a powerful querying language that

allows you to write complex queries using C# or VB.NET

syntax. This makes querying the database more intuitive and

less error-prone.

Automatic Change Tracking

EF Core automatically tracks changes made to objects and

generates the necessary SQL statements to persist those

changes to the database. This helps to reduce the

complexity of managing data changes.

Migration Support

EF Core includes a migration system that helps you manage

changes to your database schema over time. It can generate

SQL scripts to update the database schema as your

application’s data model evolves.

Testability

EF Core supports in-memory database providers, which allow

you to write unit tests without needing a real database. This

can make your testing process more efficient and isolated.

Security and Parameterization

EF Core uses parameterized queries by default, which helps

prevent SQL injection attacks. This contributes to the

security of your application.

Open Source and Active Development

EF Core is open source and is actively maintained by

Microsoft. This means it’s continually improving, and the

community can contribute to its development and bug fixes.

When Not to Use EF Core

Despite its benefits, it’s important to note that EF Core might

not be the best choice for every scenario.

For extremely high-performance scenarios or when fine-

tuned control over SQL queries is necessary, a more direct

approach might be preferred like Ado.net or Dapper

approach.

However, for many applications, EF Core offers a great

balance between developer productivity and efficient data

access.

EF Core Supported Application Types

We can use Entity Framework Core on all DOT NET

applications as follows:

Console Applications

Windows Applications

ASP.NET Web Forms

ASP.NET MVC

ASP.NET Core MVC

ASP.NET Core Razor Pages

Blazor Apps

WPF

Xamarin Framework

Web API

.NET MAUI

Entity Framework Core Approaches

There are two Entity Framework Core development

approaches as follows:

Database First

Code First

Database First Approach

In the Database First approach, the domain and context

classes are created based on the existing Database. This

approach is mainly suitable if our database is ready and we

are going to create a domain and context on top of it.

Figure 7.2: Database First Approach

Code First Approach

In the Code First approach, the domain and context classes

are created by you, and then EF Core creates the database

using these classes.

Migration is used whenever EF Core creates or updates the

database based on the domain and context classes.

Figure 7.3: Code First Approach

Supported Databases

Entity Framework Core works on many databases as follows:

SQL Server

MySQL

PostgreSQL

SQLite

SQL Compact

Firebird

Oracle

Db2

CRUD Operation with EF Core in

Blazor WebAssembly

In this demo, we will see how to do CRUD operation with the

Employee table using EF Core 7.0 in Blazor WebAssembly

7.0.

Note: If you will use Blazor WebAssembly 8.0, you will not

get Asp.net core hosted project template. You need to create

two standalone projects, that is, Blazor WebAssembly and

Asp.net core. However, our code will be exactly the same.

Here are the steps:

Step 1: Create the Employee table in the database as

follows:

Step 2: Create the Blazor WebAssembly Application as

follows:

Figure 7.4: Blazor WebAssembly

Step 3: Select the Asp.net Core Hosted option and create an

API project as follows:

Figure 7.5: Asp.net Core Hosted

Figure 7.6: Project Structure

Step 4: Go to the Share project folder and create the Emp

class in the Model folder as follows:

Step 5: Now, we will create Data access layers for fetching

data from the database. For this task, we have installed EF

Core Power Tool in Visual Studio 2022:

Figure 7.7: EF Power Tools

We will go to the EmpCRUD.Server and do Reverse Engineering

as shown:

Figure 7.8: Reverse Engineer

Now, it will create the required table mapping class with the

Context file for us as follows:

Figure 7.9: Context File

Step 6: Create a Service Folder in EmpCRUD.Server project, and

create an IEmp.cs interface as follows:

Step 7: Create the EmpService for IEmp Interface as follows:

Step 8: Go to the API Controller folder and create an

EmpController with the given code snippets:

Step 9: Now, in the Program.cs file, configure the required

middleware as follows:

Figure 7.10: Program.cs

Step 10: Go to the appsettings.json file of EmpCRUD.Server

project and add the connection string as shown:

Figure 7.11: Connection String

Note: Do Not store the connection in a JSON file for real-time

projects; this is only for demo purposes. For real-time

projects, we will store them in a cloud environment.

Step 11: Now, we will create the UI layer for the Add, Fetch,

Edit, and Delete screen in the Blazor Client Project.

AddEmp.Razor

Explanation:

In the preceding code snippets, we have created HTML code

for the Emp add and edit screen.

We are also calling Http.PostAsJsonAsync to save data and

Http.PutAsJsonAsync to edit emp data.

Additionally, we are using the DataAnnotationsValidator for the

validation of required input data.

Step 12: Now, we will create the EmpDetails.Razor screen as

follows:

Explanation

In the preceding code snippet, we are calling fetch emp

details API on page load using the following command:

empList = await Http.GetFromJsonAsync<List<Emp>>("api/Emp");

After this, we bind the data in a tabular format with Edit and

Delete buttons.

We also filter employees from the tabular data. Whenever

the user clicks the Edit and Delete screen, we route them to

the respective Edit and Delete razor page.

Step 13: Create the DeleteEmp.razor screen as follows:

Explanation:

In the preceding code snippets, we fetch Emp Details based

on EmpId. We also delete Emp data based on EmpId using the

Http.DeleteAsync method.

Now, run the application. You will see the output as follows:

Figure 7.12: Output

Figure 7.13 shows the details of an employee:

Figure 7.13: EmpDetails

Figure 7.14 shows how to delete the details of a user:

Figure 7.14: Delete Emp

Source Code: For the preceding demo project, it can be

found at:

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

Conclusion

In this chapter, we gained familiarity with EF Core. We also

explored the benefits of EF Core and learned how to use it in

a Blazor WebAssembly application. If we are using EF Core

Power Tool in Visual Studio 2022, then it will create a

scaffolding code first approach for us. In the next chapter,

we will learn the validation in Blazor.

Reference

ASP.NET Core Blazor with Entity Framework Core (EF Core) |

Microsoft Learn

Multiple Choice Questions

1. What is EF Core in the context of Blazor WebAssembly

development?

a. A front-end JavaScript library

b. An Object-Relational Mapping (ORM) framework

c. A server-side rendering framework

d. A CSS preprocessor

2. Which of the following is true about EF Core in Blazor

WebAssembly?

a. It is used for client-side data manipulation

b. It provides a bridge between the client and server

for database operations

c. It is primarily used for styling and UI design

d. It is not compatible with Blazor WebAssembly

3. In a Blazor WebAssembly application, where is EF Core

typically used?

a. On the client side for authentication

b. On the client side for database operations

c. On the server side for database operations

d. None of the above

4. What is the purpose of an Object-Relational Mapping

(ORM) framework like EF Core?

a. It is used to create interactive user interfaces

b. It provides a way to interact with databases using

object-oriented code

c. It is a version control system for web development

d. It is used for server-side routing

5. Which programming language is commonly used with EF

Core in Blazor WebAssembly development?

a. JavaScript

b. C#

c. Python

d. Ruby

Answers

1. b

2. b

3. c

4. b

5. b

CHAPTER 8

Validation in Blazor

WebAssembly

Introduction

While working with any Blazor Application, you will get

requirements to validate the input. Without validation, we

can’t develop any application.

In the previous web development framework, we used

tedious JavaScript code for validation, but in Blazor

WebAssembly, we can use a straightforward approach using

C# code.

Structure

In this chapter, we will cover the following topics:

Blazor Form

Form Validation in Blazor

Data Annotation in Blazor

Custom Validation Rules

Complex or Nested Model Validation in Blazor

Best Pattern and Practices for Validation in Blazor

Blazor Form

A Blazor Form is a fundamental component in Blazor

applications used to handle user input and manage form

submissions. It is part of the Blazor framework, which allows

developers to build interactive web applications using C#

and .NET instead of relying solely on JavaScript.

In Blazor, you can create forms using the <EditForm>

component. The <EditForm> component wraps the form’s

content and provides features like form validation, form

submission handling, and model binding.

Here’s a basic example of a Blazor form:

In this example, myModel is a C# object representing the form

data. The form fields are bound to the properties of this

object using the @bind-Value directive. The OnValidSubmit event

is triggered when the form is submitted and is valid, allowing

you to handle the submission logic.

Blazor Forms also supports validation through data

annotations and provides components like

<DataAnnotationsValidator> and <ValidationSummary> to display

validation messages.

Figure 8.1: Form Validation

Form Validation in Blazor

Form validation in Blazor ensures that user input meets

specified criteria before submitting the form. Blazor provides

built-in support for both client-side and server-side validation

using data annotations.

Here’s a brief overview of form validation in Blazor:

Data Annotations: You can use data annotations in

your model class to define validation rules. These

annotations are attributes applied to the properties of

your model class. For example:

In this example, the [Required] attribute indicates that

the Name and Email properties are required, and

[EmailAddress] ensures that the Email property is a valid

email address.

Validation Components:

<EditForm>: Wraps the form and manages its state.

<DataAnnotationsValidator>: Performs client-side validation

based on data annotations.

<ValidationSummary>: Displays a summary of validation

errors.

Validation Messages:

You can use the <ValidationMessage> component to display

error messages associated with specific form fields.

This will display the error message if the Name field fails

validation.

Client-Side Validation:

Blazor performs client-side validation using the data

annotations. The <DataAnnotationsValidator> component

checks for validation errors on the client side before

allowing the form to be submitted.

Server-Side Validation:

Even with client-side validation, it’s crucial to perform

server-side validation to ensure the integrity and

security of your application. The server-side validation

can be done in the OnValidSubmit event handler or a

method called during form submission.

Combining these elements allows you to create a robust

form validation system in your Blazor applications, ensuring

that user input is accurate and meets the specified criteria.

Data Annotation in Blazor

In Blazor, data annotations are attributes that you can apply

to the properties of a model class to define validation rules.

These annotations are part of the

System.ComponentModel.DataAnnotations namespace and provide

a declarative way to express validation requirements for your

model properties.

Here are some commonly used data annotations in Blazor:

Required Attribute:

Indicates that a property is required.

Example:

StringLength Attribute:

Specifies the maximum and minimum length constraints

for a string property.

Range Attribute:

Specifies the numeric range constraints for a numeric

property.

EmailAddress Attribute:

Ensures that a string property contains a valid email

address.

RegularExpression Attribute:

Specifies that a string property must match a specified

regular expression pattern.

Compare Attribute:

Compare the values of two properties for equality.

These annotations help to define validation rules for your

model properties. When you use these annotated models in

a Blazor application with the <EditForm>,

<DataAnnotationsValidator>, and <ValidationMessage>

components, Blazor automatically performs client-side

validation and displays error messages when validation fails.

It’s important to note that while client-side validation is

convenient for providing immediate feedback to users,

server-side validation should also be implemented to ensure

the security and integrity of your application. Blazor makes

combining client-side and server-side validation in your

forms easy.

Custom Validation in Blazor

Many times, using the Data Annotation rule, we cannot

validate all input. In such scenario, we need to create our

own validation rule using ValidationAttribute.

Let’s create a simple demo for UserName custom validation

rules. If the user selects UserName as Admin, we need to

display an error message.

For this, we need to create a UserNameValidation class as

follows:

Now apply this validation attribute to a Model class as follows:

Figure 8.2: Applying validation attribute

Now run the application, and you will see the output as

follows:

Figure 8.3: Form validation output

Complex or Nested Model Validation

in Blazor

Blazor has a built-in DataAnnotationsValidator. However, the

DataAnnotationsValidator only validates top-level properties of

the model bound to the form that isn’t collection- or

complex-type properties.

For validating complex models, we can use:

Microsoft.AspNetCore.Components.DataAnnotations.Validation

package

We also need to use <ObjectGraphDataAnnotationsValidator />

inside the EditForm

We also need to decorate the model properties with

[ValidateComplexType]

Let’s create demo sample code snippets for this.

Step 1: Create the Address model as follows:

Step 2: Create the Emp model class with the Address nested

class.

Step 3: Create the Emp Entry UI screen as follows:

Step 4: Run the application and click on the Submit button.

Figure 8.4: Emp Details Screen

Best Pattern and Practices for

Validation in Blazor

Validating user input is a critical aspect of building reliable

and user-friendly applications. In Blazor, you can implement

validation using various patterns and practices. Here’s a

recommended approach and some best practices for

validation in Blazor:

1. Use Data Annotations:

Leverage the built-in .NET Data Annotations for basic

validation rules. This helps to keep your code clean and

easy to understand.

2. Client-Side and Server-Side Validation:

Implement both client-side and server-side validation to

provide a responsive user experience and ensure data

integrity.

Client-side validation can be performed using Blazor’s

built-in validation components, and server-side

validation is crucial for security and data consistency.

3. EditForm Component:

Use the <EditForm> component to encapsulate your form

and handle validation.

Include the <DataAnnotationsValidator> and

<ValidationSummary> components within the form.

4. ValidationMessage Component:

Utilize the <ValidationMessage> component for displaying

validation error messages.

Ensure that each input field has a corresponding

<ValidationMessage> with the correct For attribute.

5. Custom Validation:

Implement custom validation logic for scenarios that

cannot be handled by standard Data Annotations.

6. Validation in Event Handlers:

In your event handlers, such as OnValidSubmit, check the

form’s validity before performing any actions.

Conclusion

Validation is one of the critical aspects of building reliable

and user-friendly applications. We have also seen that with

help of C# Data Annotation attribute, we can create client-

side validation. This is one of the simple approaches to

implement validation in any web framework.

In the next chapter, we will learn about JavaScript Interop in

Blazor.

References

For more details, please refer to the following document:

ASP.NET Core Blazor forms validation | Microsoft Learn

Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the purpose of the <DataAnnotationsValidator>

component in Blazor?

a. It displays validation error messages for all form

fields

b. It enables client-side validation for Data Annotations

attributes

c. It performs server-side validation for complex

objects

d. It automatically validates all properties of a model

2. Which interface is commonly implemented for

performing custom validation on an entire object in

Blazor?

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

a. IValidationService

b. IDataAnnotationsValidator

c. IValidatableObject

d. IValidationContext

3. Which Blazor component is responsible for displaying a

summary of validation errors?

a. <ValidationSummary>

b. <DataAnnotationsValidator>

c. <ValidationMessage>

d. <EditForm>

4. In Blazor, what does the editContext.Validate() method

do in a form submission handler?

a. It triggers client-side validation for all form fields

b. It performs asynchronous validation for the entire

form

c. It returns a boolean indicating whether the form is

valid

d. It validates only the required fields in the form

5. Which attribute is commonly used for marking a

property as required in Blazor validation?

a. [Mandatory]

b. [Required]

c. [Validate]

d. [NotNull]

Answers

1. b

2. c

3. a

4. c

5. b

CHAPTER 9

JavaScript Interop in Blazor

Introduction

JavaScript Interop in Blazor refers to the ability of Blazor to

communicate and interact with JavaScript code.

Since Blazor applications run on the browser, there are

scenarios where we may need to call JavaScript functions or

use JavaScript libraries within our Blazor components. This is

where JavaScript Interop comes into play.

Figure 9.1: JavaScript Interop

In the preceding figure, if we have a Blazor application, we

may need to use the Google Chart.Js library in Blazor. In this

scenario, with the help of JavaScript Interop, we can easily

use the Chart.js library in the Blazor application.

Structure

In this chapter, we will learn the following topics:

Calling JavaScript from C#

Handling Function Return Value

Passing C# Objects to JavaScript

Calling C# from JavaScript

Advanced JavaScript Interop Demo

Error Handling and Debugging

Security Considerations

Performance Optimization

Calling JavaScript from C#

In the Blazor application, we can call the JavaScript function

with the help of the JSRuntime service.

In the following example, we will see how to do it in Blazor

application:

Step 1: Create the Blazor WebAssembly application.

Step 2: Go to wwwroot folder and create the JavaScript file,

that is, Demo.js:

Figure 9.2: JavaScript file

Step 3: Write the JavaScript global function as follows:

JavaScript global function is attached to window, so we can

also write it as follows:

Step 4: Go to index.html and register the JavaScript file as

follows:

Figure 9.3: JavaScript path

Step 5: Call the JavaScript function from C# with help of

IJSRuntime, as given in the following code:

Now run the application, and you will see the output as

shown in Figure 9.4:

Figure 9.4: Output

Handling Function Return Value

We can handle return value from JavaScript functions like this

in C# code.

Write a function to multiply two numbers and return the

value to C#:

Now call this function in Razor page as follows:

Now run the application:

Figure 9.5: JavaScript function return

In the preceding example:

The multiplyNumbers JavaScript function takes two

arguments (a and b) and returns their product.

In the Blazor component, the CallJavaScript method is

triggered when the button is clicked.

Inside CallJavaScript, JSRuntime.InvokeAsync<int> is used to

call the JavaScript function and capture the return value.

The function name is specified as

"myModule.multiplyNumbers”, and the arguments 5 and 3

are passed.

The result is then displayed in the HTML using @result.

Passing C# Objects to JavaScript

Passing C# objects to JavaScript involves serializing the C#

object into JSON and then passing the JSON string to a

JavaScript function. An example demonstrating how to

achieve this in a Blazor component is as follows:

JavaScript Function:

Now run the application:

Figure 9.6: C# object demo

In this example:

The Person class is a simple C# class with properties

representing a person’s name and age.

The displayPerson JavaScript function takes a person

parameter, which is expected to be a JSON string

representing a person.

In the Blazor component, the PassCSharpObject method is

triggered when the button is clicked.

Inside PassCSharpObject, an instance of the Person class

is created, and it is then serialized into a JSON string

using JsonSerializer.Serialize.

The JavaScript function displayPerson is then called with

the serialized JSON string as an argument using

JSRuntime.InvokeAsync<object>.

Calling C# from JavaScript

Using DotNet.invokeMethodAsync function, we can call the C#

method in JavaScript function.

Here is the simple code snippets for this task:

Step 1: Create C# method to reverse the string in Razor

Component as follows:

Step 2: Write the JavaScript function to Call C# method as:

Now run the application:

Figure 9.7: C# from JavaScript

In the preceding code snippets, we saw that with the help of

DotNet.invokeMethodAsync, we are calling C# method from the

JavaScript function.

In C# method, we also need to decorate with [JSInvokable]

attribute. Otherwise, we cannot call the C# method in the

JavaScript function.

Advanced JavaScript Interop Demo

In this demo, we will see how to integrate Chartjs library in

Blazor application (https://www.chartjs.org/).

Step 1: Register the Chart.js library in Index.html page as:

<script

src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.3/Chart

.min.js"></script>

Figure 9.8: Chart URL

Step 2: Write JavaScript code for render chart controls as

follows:

https://www.chartjs.org/

Step 3: Write the C# code in Razor Component to pass all

the required field for chart controls, as shown in the following

code:

Now run the application:

Figure 9.9: Chart demo

In the preceding Razor code snippets, the InvokeAsync method

is called in the OnAfterRenderAsync method instead of a DOM

event handler.

OnAfterRender(Async) is the place to call JavaScript methods

that you want to take place on page or component load,

because at this point, the component has completely

rendered and DOM elements are available.

Error Handling and Debugging

Handling errors and debugging in JavaScript Interop in Blazor

is crucial for ensuring the robustness and reliability of your

application. Here are some best practices for error handling

and debugging:

Error Handling in JavaScript

Wrap your JavaScript code in try-catch blocks to handle

exceptions gracefully. This is especially important when

calling C# methods asynchronously.

Error Handling in C# Methods

In your C# methods called from JavaScript, implement

proper error handling using try-catch blocks. Log or

handle exceptions appropriately.

Debugging JavaScript Interop

Use browser developer tools to debug JavaScript code.

Set breakpoints, inspect variables, and step through

your JavaScript code.

Logging from JavaScript to Console

Utilize console.log, console.error, and other console

methods in JavaScript to output information that can

help in debugging.

Logging from C# to Browser Console

Use Console.WriteLine or Console.Error.WriteLine in your

C# code. These messages will be visible in the browser’s

console.

Inspecting JavaScript Objects

When passing C# objects to JavaScript, use

JSON.stringify to serialize objects. You can log the

serialized JSON string for inspection.

Verify Method Names and Parameters

Double-check that the method names and parameters in

your JavaScript and C# code match. Typos can lead to

invocation errors.

Handle Promise Rejections

Handle promise rejections by attaching a .catch block to

your DotNet.invokeMethodAsync calls. This can help catch

errors that occur during the asynchronous invocation.

Use Browser Debugging Tools

Leverage browser debugging tools like Chrome/Edge

DevTools or Firefox Developer Tools. Set breakpoints,

inspect network requests, and analyze the call stack.

By incorporating these practices, you can enhance the

error handling and debugging capabilities of your Blazor

application with JavaScript Interop.

Security Considerations

When working with JavaScript Interop in Blazor, it’s crucial to

consider security implications to protect your application

from potential vulnerabilities. Here are some security

considerations and best practices:

Input Validation

Validate all input parameters before passing them

between C# and JavaScript. This helps prevent injection

attacks and ensures that only valid data is processed.

Sanitize User Inputs

If your JavaScript code receives inputs from user

interactions or external sources, sanitize the inputs to

prevent cross-site scripting (XSS) attacks. Use libraries

like DOMPurify to sanitize HTML content.

Authorization and Authentication

Ensure that any sensitive operations performed through

JavaScript Interop are authorized and authenticated.

Verify the user’s identity and permissions before

executing certain actions.

Avoid Eval

Avoid using eval in JavaScript as it can introduce security

vulnerabilities. Instead, use safer alternatives for

dynamic code execution.

Using eval (avoid this):

Corrected Code

Secure JavaScript Execution

Only execute JavaScript code from trusted sources.

Avoid dynamically generating JavaScript code based on

untrusted input, as this can lead to code injection

vulnerabilities.

Content Security Policy (CSP)

Implement and enforce a Content Security Policy to

control which resources can be loaded by your

application. This helps mitigate risks associated with

malicious scripts.

Cross-Origin Resource Sharing (CORS)

Configure CORS settings appropriately to control which

origins are allowed to make requests to your Blazor

application. Limit cross-origin requests to trusted

domains.

Use HTTPS

Ensure that your application is served over HTTPS. This

helps protect against various attacks, including man-in-

the-middle attacks.

Limit Exposed C# Methods

Only expose necessary C# methods to JavaScript.

Minimize the surface area for potential attacks by only

exposing what is required for functionality.

Dispose of Object References

When passing C# objects to JavaScript, manage the

lifecycle of JavaScript object references. Dispose of them

when they are no longer needed to prevent memory

leaks and potential security risks.

Logging Sensitive Information

Avoid logging sensitive information, such as passwords

or access tokens, in JavaScript console logs. Ensure that

your application’s logging mechanisms do not

inadvertently expose sensitive data.

Updates and Patching

Regularly update and patch your application

dependencies, including JavaScript libraries and

frameworks. This helps address security vulnerabilities

that may be present in third-party code.

Audit and Code Review

Conduct security audits and code reviews regularly to

identify and address potential security issues in your

codebase. This includes both C# and JavaScript code.

Monitoring and Logging

Implement robust monitoring and logging mechanisms

to detect and respond to security incidents. Log relevant

security events and anomalies.

By following these security considerations, you can

significantly reduce the risk of security vulnerabilities in your

Blazor application that involve JavaScript Interop.

Performance Optimization Tips

Optimizing performance while working with JavaScript

Interop in Blazor is crucial for ensuring a smooth and

responsive application. Here are some tips for performance

optimization:

Minimize Interop Calls

Minimize the number of interop calls between C# and

JavaScript. Group multiple operations into a single

interop call when possible, to reduce overhead.

Batch Interop Calls

Batch together related interop calls to reduce the

communication overhead between C# and JavaScript.

This is particularly beneficial when performing multiple

operations in quick succession.

Use Efficient Data Serialization

When passing data between C# and JavaScript, use

efficient serialization methods. For example, prefer

simple types or JSON serialization over more complex

serialization mechanisms.

Limit Data Size

Avoid transferring large amounts of data between C#

and JavaScript. Limit the amount of data passed in

interop calls to only what is necessary for the current

operation.

Dispose of Object References

If you use DotNetObjectReference to pass C# objects to

JavaScript, ensure that you dispose of the object

references when they are no longer needed to prevent

memory leaks.

Use Async/Await Wisely

Be mindful of using asynchronous interop calls

excessively. While asynchronous calls can be beneficial,

too many async calls can lead to increased overhead.

Use async only when needed.

Optimize JavaScript Code

Optimize your JavaScript code for better performance.

Minimize unnecessary computations and ensure that

your JavaScript functions are well-optimized.

Client-Side Caching

Consider client-side caching for data that doesn’t

change frequently. Cache data in JavaScript to avoid

unnecessary round trips to the server.

Lazy Loading

Implement lazy loading for components or data that is

not immediately required. Load resources or

components on demand rather than all at once.

Profile and Measure

Use browser developer tools to profile and measure the

performance of your JavaScript code. Identify and

address any bottlenecks or performance issues.

Compress JavaScript Code

Minify and compress your JavaScript code before

deploying it to production. This reduces the size of the

JavaScript files, leading to faster downloads and

improved performance.

Reduce DOM Manipulations

Minimize unnecessary DOM manipulations in your

JavaScript code. Frequent manipulations can cause

reflows and repaints, impacting performance.

Avoid Synchronous Calls

Prefer asynchronous calls over synchronous ones.

Synchronous calls can block the UI, leading to a less

responsive user experience.

Update Dependencies

Ensure that you are using the latest versions of your

JavaScript libraries and dependencies. Newer versions

may include performance improvements and

optimizations.

Benchmark and Test

Conduct performance benchmarks and tests regularly.

Identify areas for improvement and fine-tune your code

based on actual performance metrics.

By following these performance optimization tips, you can

ensure that your Blazor application with JavaScript Interop

delivers a fast and efficient user experience. Remember that

performance optimization is an ongoing process, and

continuous monitoring and refinement are essential.

Conclusion

In this chapter, we understood that with the help of

JavaScript Interop, we can integrate the cool features of any

JavaScript library in the Blazor application. We can also call

C# method in JavaScript function.

In the real scenario, we will get very few scenarios with a

JavaScript library. However, it is good to know the power of

JavaScript interop in Blazor for creating interactive and

powerful single page applications.

In the next chapter, we will explore Azure service in Blazor.

References

For more details, please refer to the following document:

ASP.NET Core Blazor JavaScript interoperability (JS interop) |

Microsoft Learn

(https://learn.microsoft.com/en-

us/aspnet/core/blazor/javascript-interoperability/?

view=aspnetcore-8.0)

Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is JavaScript Interop in the context of Blazor?

a. A new programming language

b. A technique for integrating JavaScript code with

Blazor applications

c. A type of serverless computing

d. A tool for debugging JavaScript in Blazor

2. Which Blazor attribute is used to mark a C# method for

invocation from JavaScript?

https://learn.microsoft.com/en-us/aspnet/core/blazor/javascript-interoperability/?view=aspnetcore-8.0
https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

a. [CSharpInvoke]

b. [InvokeJS]

c. [JSInterop]

d. [JSInvokable]

3. How can you pass C# objects to JavaScript in Blazor?

a. Using the DotNet.createObject function

b. Directly passing the object as an argument in an

interop call

c. Using the [JSObject] attribute

d. Objects cannot be passed to JavaScript in Blazor

4. What is the purpose of DotNetObjectReference in Blazor

JavaScript Interop?

a. To create a reference to a JavaScript object

b. To reference a .NET object in JavaScript

c. To invoke C# methods from JavaScript

d. To dispose of JavaScript objects

5. How can you optimize performance when working with

JavaScript Interop in Blazor?

a. Maximize the number of interop calls to enhance

communication

b. Minimize the size of data transferred in interop calls

c. Avoid using asynchronous calls in JavaScript

d. Use synchronous calls for better responsiveness

Answers

1. b

2. d

3. b

4. b

5. b

CHAPTER 10

Azure Service in Blazor

Introduction

Microsoft Azure is a comprehensive cloud computing platform

provided by Microsoft. It offers a wide range of services that

enable individuals and organizations to build, deploy, and

manage applications and services through Microsoft’s global

network of data centers. Azure provides both Infrastructure as a

Service (IaaS) and Platform as a Service (PaaS) solutions, as well

as other services for various purposes. In this chapter, we will

focus on Azure services that are frequently used while working

with Blazor WebAssembly application.

Structure

In this chapter, we will learn the following topics:

Key Features and Components of Microsoft Azure

Azure Account Creation Steps

Static WebSite Deployment and CICD Pipeline

Creating API Using Azure Function App

CRUD Operation Using Azure Function

Deployment of Azure Function

How to Consume Azure Function in Blazor

Introduction of Azure App Service

Deployment of Blazor Application Using Azure App Service

CICD Pipeline Using Azure App Service

Key Features and Components of

Microsoft Azure

Some key features and components of Microsoft Azure include:

Compute Services

Azure offers virtual machines (VMs) for scalable computing

power, Azure Kubernetes Service for container orchestration,

and Azure Functions for serverless computing.

Storage Services

Azure provides various storage solutions, including Blob

Storage for unstructured data, Table Storage for NoSQL data,

and Azure SQL Database for relational data.

Networking Services

Azure offers a range of networking services such as Azure

Virtual Network for secure connectivity, Azure Load Balancer

for distributing incoming network traffic, and Azure VPN

Gateway for secure connections to on-premises networks.

Database Services

Azure provides fully managed database services like Azure

Cosmos DB, Azure SQL Database, and Azure Database for

PostgreSQL, MySQL, and more.

AI and Machine Learning

Azure includes services like Azure Machine Learning for

building, training, and deploying machine learning models,

as well as cognitive services for adding AI capabilities to

applications.

Identity and Access Management (IAM)

Azure Active Directory (Azure AD) is used for managing

identities and providing secure access to resources.

DevOps Services

Azure DevOps provides a set of tools for source control,

build automation, release management, and more,

facilitating the DevOps lifecycle.

Internet of Things (IoT)

Azure IoT Hub allows you to connect, monitor, and manage

IoT assets, while other services provide analytics and

insights for IoT data.

Security and Compliance

Azure offers a range of security services, including Azure

Security Center and Azure Policy, to help protect your

applications and data.

Analytics and Big Data

Azure includes services like Azure Synapse Analytics, Azure

Data Lake Storage, and HDInsight for processing and

analyzing large datasets.

Serverless Computing

Azure Functions enables you to run event-triggered code

without explicitly provisioning or managing infrastructure.

As you observed, Azure is very vast topic. However, in this

chapter, we will only focus on Azure services that are frequently

used while working with Blazor WebAssembly application.

Figure 10.1: Azure Logo

Azure Account Creation

Creating an account on Azure Portal is totally free. When you

create an account for the first time, you will receive $200 Azure

credit free of cost.

To create an Azure account, follow these steps:

1. Visit the Azure Portal:

Go to the Azure Portal at https://portal.azure.com/

2. Click Create a new Azure account:

If you don’t have an existing account, click the “Start free”

button to create a new one.

3. Fill in the required information:

You’ll need to provide details such as your email address,

password, and other necessary information. Follow the on-

screen instructions to complete the sign-up process.

4. Verify your identity:

Microsoft may require you to verify your identity by

providing a phone number for authentication purposes.

Follow the prompts to complete this step.

5. Agree to the terms and conditions:

Read and agree to the terms and conditions of using Azure.

6. Provide payment information:

Although Azure offers a free tier with limited resources, you

may need to provide payment information for verification

purposes. Rest assured that you won’t be charged unless

you explicitly upgrade to a paid plan.

7. Access your Azure Portal:

Once your account is created, you can log in to the Azure

Portal using the credentials you provided during the sign-up

process.

https://portal.azure.com/

Figure 10.2: Azure Portal Dashboard

Static WebSite Deployment

Blazor WebAssembly is a UI framework similar to Angular, React,

and Vue.Js. You can also deploy Blazor WebAssembly as static

websites on any cloud provider platform such as Azure, AWS,

Google, and so on, which is totally free. You don’t have to pay

any money for deployment and storage.

If you have created some demo or portfolio project using Blazor

WASM and need to share with someone, you can take advantage

of this service. It is totally free.

In this demo, we will show one of the easiest approaches using

Azure Static Web App.

Step 1: Create the Blazor WebAssembly app using dotnet cli

command as follows:

In the preceding command, we create a Blazor WebAssembly

application in app folder.

Step 2: Push the code on GitHub Repo.

Step 3: Go to Azure portal and create the Static Web App as

follows:

Figure 10.3: Static Web App

Step 4: Fill the mandatory field as shown in Figure 10.4:

Figure 10.4: Create Static Web

Step 5: Click Review + create button.

Figure 10.5: Static Web Review

Figure 10.6 shows “Your deployment is complete”:

Figure 10.6: Static Web deployment

Step 6: Go to your resource and click the generated URL

Figure 10.7: Static Web URL

Now, you will see your website as shown in Figure 10.8:

Figure 10.8: Blazor Application

CI/CD Pipeline on GitHub

It will also create a CI/CD pipeline for us on GitHub.

Figure 10.9: CI/CD Pipeline

Azure Function

Azure Function is a serverless computing service offered by

Microsoft Azure that allows you to write less code, maintain less

infrastructure, and save on costs.

It enables the execution of small units of code, called functions,

without the need to manage servers or any other infrastructure.

These functions are triggered by specific events or inputs,

allowing developers to respond to events in real time. By utilizing

Azure Functions, developers can focus solely on writing code and

not worry about infrastructure management.

Benefits of Using Azure Functions

Let’s learn the benefits of using Azure Functions:

Serverless Computing: Azure Functions enable serverless

computing, allowing you to focus on writing code without

managing the underlying infrastructure. This can lead to

increased development speed and reduced operational

overhead.

Cost-Efficiency: With serverless architecture, you pay only

for the compute resources used during the execution of

functions. This can result in cost savings compared to

traditional server-based approaches where you might pay

for idle resources.

Scalability: Azure Functions automatically scale based on

demand. Functions can be triggered individually, enabling

your application to handle varying workloads efficiently.

Event-Driven: Functions can be triggered by various events

such as HTTP requests, timer-based schedules, or events

from other Azure services. This makes it suitable for building

event-driven architectures and microservices.

Support for Multiple Languages: Azure Functions

supports multiple programming languages, including C#,

F#, C#, JavaScript, Python, Java, and PowerShell.

Integration with Azure Services: Azure Functions

seamlessly integrates with other Azure services, making it

easy to connect and interact with services like Azure

Storage, Azure SQL Database, or Azure Event Hubs.

Rapid Development and Deployment: The serverless

model allows for rapid development and deployment. You

can focus on writing the necessary code for your functions

without dealing with infrastructure concerns, leading to

faster time-to-market.

DevOps Integration: Azure Functions can be easily

integrated into your DevOps processes, enabling continuous

integration and deployment. This aligns with modern

development practices, promoting agility and collaboration.

Different Types of Triggers on Azure

Functions

Here is a list of different types of triggers on Azure functions:

HTTP Trigger: This trigger allows your function to be

invoked by an HTTP request. It’s commonly used for building

RESTful APIs or handling HTTP-based events.

Timer Trigger: With a timer trigger, your function can be

scheduled to run at specified intervals or according to a cron

expression. This is useful for periodic tasks or background

processing.

Blob Trigger: This trigger is activated when a new or

updated blob is detected in Azure Storage. It’s often used for

scenarios involving file processing or data ingestion.

Queue Trigger: When a new message arrives in an Azure

Storage Queue, a function with a queue trigger can be

invoked. This is useful for building decoupled systems and

handling asynchronous processing.

Event Hub Trigger: This trigger processes events from

Azure Event Hubs, which is a scalable and distributed event

streaming platform. It’s suitable for handling large-scale

event streams.

Service Bus Trigger: With a Service Bus trigger, your

function can respond to messages arriving in Azure Service

Bus queues or topics. This is useful for building reliable and

asynchronous communication between components.

Cosmos DB Trigger: This trigger reacts to changes in

Azure Cosmos DB collections, allowing your function to

process documents that are inserted or modified in the

database.

Event Grid Trigger: Azure Event Grid triggers enable your

function to respond to events from various Azure services or

custom sources. It provides a flexible and event-driven

architecture.

GitHub/WebHook Trigger: This trigger allows your

function to respond to events from GitHub repositories, such

as code commits or pull requests.

Durable Functions Orchestration Trigger: Durable

Functions introduce a special trigger for orchestrations,

allowing you to define workflows and manage the state of

long-running processes.

These triggers provide a wide range of options for handling

different types of events in your applications. As a web developer

working with Azure, you can choose the trigger type that best fits

the requirements of your projects, whether they involve HTTP

requests, scheduled tasks, data changes, or other events.

Creating Azure Function

This is a very vast topic, but in this chapter, a brief introduction

about all frequently used Azure services is provided.

We can create the Azure Function using Visual Studio 2022, VS

Code, and with Azure Portal website. However, as web

developers, we will choose Visual Studio 2022.

Step 1: Create the new project for Azure function as follows:

Figure 10.10: Azure Function

Here is the template for new project:

Figure 10.11: Azure Function Project Template

Figure 10.12 shows the type of Azure Function:

Figure 10.12: Azure Function Type

Step 2: Click the Create Button of the wizard window. Now, it will

create basic scaffolding code for Azure function:

Figure 10.13: Azure Function Code

Step 3: Run the application, and you will see command window

as follows:

Figure 10.14: Azure Function Output

Step 4: Now trigger the given GET and POST method from the

postman. It will call the Azure Function code and return “Welcome

to Azure Functions!”

Figure 10.15: Azure Function Output on Postman

Http CRUD Operation in Azure Function

Now, we will change the Azure Function name to EmpFunction and

create some in-memory dummy data for demo purposes.

Step 1: Create the Employee class.

Step 2: Write the Create Employee Post method as shown here:

Step 3: Write the code to fetch all employees as shown here:

Step 4: Write the UpdateEmployee method as shown here:

Step 5: Write the code for DeleteEmployee as shown here:

Step 6: Run the application:

Figure 10.16: Azure Function Endpoint

Step 7: Test the given HTTP endpoint using Postman:

Figure 10.17: Azure Function GetAllEmployees

Figure 10.18 shows how to create employee details:

Figure 10.18: Azure Function CreateEmp

Figure 10.19 depicts how to delete an employee details:

Figure 10.19: Azure Function DeleteEmp

Figure 10.20 shows to update employee details:

Figure 10.20: Azure Function UpdateEmp

In the preceding demo, we saw that with the help of HTTPTrigger,

we can create RESTful APIs.

Azure Function Deployment

We can deploy the Azure Function with the help of Visual Studio

2022 wizard by following these steps:

Step 1: Right click project Solution Explorer and click Publish…:

Figure 10.21: Azure Function Publish – step 1

Step 2: Select Azure and click Next

Figure 10.22: Azure Function Publish – step 2

Step 3: Figure 10.23 shows the next screen of process:

Figure 10.23: Azure Function Publish – step 3

Step 4: As shown in Figure 10.24, click + Create new:

Figure 10.24: Azure Function Publish – step 4

Step 5: Then, the following screen will appear:

Figure 10.25: Azure Function Publish – step 5

Step 6: Click Next, as shown in Figure 10.26:

Figure 10.26: Azure Function Publish – step 6

Step 7: This is the final step, as shown in Figure 10.27, and click

Finish:

Figure 10.27: Azure Function Publish – step 7

Now, this will generate the CICD pipeline on GitHub. Whenever

you push any code, it will auto trigger and deploy to Azure.

Figure 10.28: Azure Function CICD - 1

Figure 10.29 shows the next step:

Figure 10.29: Azure Function CICD - 2

Now, our Azure Function code has been deployed to the cloud,

and we are ready to use in any web application.

Figure 10.30: Azure Function CICD - 3

In the preceding demo, we saw that with the help of a Visual

Studio 2022 wizard, we are able to deploy the Azure Function on

the cloud. It also created CICD pipeline and application insight.

Figure 10.31: Azure Function Application Insight

Consuming Azure Function in Blazor

WebAssembly

Azure Function is web API endpoint, and we can consume Azure

Function endpoints similar to web API using “HttpClient”. Here is

a complete code snippet for API call:

Azure App Service

Azure App Service is a fully managed platform for building,

deploying, and scaling web apps. It supports various

programming languages, including C#, which you mentioned in

your profile. As a senior web developer working with Azure, you

might find Azure App Service useful for hosting your Blazor

applications.

Azure App Service offers features such as automatic scaling,

continuous integration and deployment (CI/CD), and easy

integration with Azure services.

It supports following app deployment:

Web App (Asp.net webform, Asp.net MVC, Asp.net core, and

Blazor)

Static Web App (AngularJs, Angular, ReactJs, VueJs, Blazor

WASM, and so on)

Web App +Database

WordPress Website deployment

Now, in our demo, we will see how to deploy our Blazor

Application with the help of Web App Service.

App Deployment with CICD Pipeline

Creating CICD pipeline on Azure portal for Blazor or Asp.net core

project is very simple and straightforward.

Step 1: Create the App Services on Azure portal:

Figure 10.32: Web App

Step 2: Fill all the required mandatory field as shown in the

following figure:

Figure 10.33: Web App

Step 3: Enable GitHub Action settings, as given in the following

image. This will help us to create a CICD pipeline.

Figure 10.34: Web App

Step 4: Now click Create Web App.

If you come to the GitHub repo, you will see that the Azure Web

App deployment wizard has already added a yaml file, which will

trigger the deployment process for us.

Figure 10.35: Web App

Step 5: Now change the code on source code and push to

GitHub repo. The CICD process will trigger.

Figure 10.36: Web App (1)

Now, the code has been pushed:

Figure 10.37: Web App (2)

Step 6: Now run the created Web App. We will see output as

follows:

Figure 10.38: Blazor app

In the preceding demo, we saw that without writing a single line

of code, Azure Portal can create a CICD pipeline for us. It will

hardly take 5–10 min to deploy an application with the CICD

pipeline.

We can also do the same task with help of Visual Studio 2022

Wizard.

Figure 10.39: Visual Studio Wizard

Conclusion

In this chapter, we understood all frequently used Azure Service

while doing Blazor web development. It is a very essential skill

for any .Net Developer. We also learned various tips and tricks of

the Visual Studio 2022 wizard.

We gained insights on how to create a CICD pipeline for any web

application without writing any code. These skills are time saving

and thus make them more productive for any developer. The

upcoming chapter will explain the readers about security

challenges in Blazor.

References

For more details, please refer to the following document:

https://learn.microsoft.com/en-us/azure/azure-functions/

Azure Key Vault documentation | Microsoft Learn

Azure documentation | Microsoft Learn

Source Code

https://learn.microsoft.com/en-us/azure/azure-functions/

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the primary purpose of Azure Functions?

a. Hosting static websites

b. Managing virtual machines

c. Running serverless compute functions

d. Storing relational databases

2. What is the smallest unit of execution in Azure Functions?

a. Virtual Machine

b. Container

c. Function

d. Application

3. What is the primary purpose of Azure Key Vault?

a. Hosting web applications

b. Storing and managing sensitive information such as

secrets, keys, and certificates

c. Running serverless functions

d. Analyzing big data

4. What is the primary purpose of Azure App Service?

a. Storing and managing large datasets

b. Building and deploying containerized applications

c. Creating and hosting web apps and APIs

d. Managing virtual networks

5. What type of data is Azure Blob Storage designed to store?

a. Structured data in tables

b. Large binary objects like images, videos, and documents

c. Real-time streaming data

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

d. Relational databases

Answers

1. c

2. c

3. b

4. c

5. b

CHAPTER 11

Security in Blazor

WebAssembly

Introduction

Developing web applications always comes with security

challenges, and Blazor WebAssembly is no exception.

However, understanding the security considerations specific

to client-side technology is essential to ensure your

applications are safe and secure.

As you know, Blazor WASM is client-side technology and runs

on a browser sandbox like other JavaScript libraries. So, if we

do not implement proper security in Blazor WebAssembly,

then hackers can easily hijack your application, and it would

be a big loss to you and your organization.

Structure

In this chapter, we will cover the following topics:

Introduction to Authentication and Authorization

Authentication and Authorization Using OIDC

Authentication and Authorization Using Azure AD

Authentication and Authorization Using Google

Custom Token-Based Authentication in Blazor WASM

Tips and Tricks While Implementing Security

Common Mistakes While Implementing Security

Authentication and Authorization

Authentication and authorization are essential to building

secure web applications, including those developed with

Blazor WebAssembly. Let’s understand these terms in more

detail::

Authentication

Authentication is the process of verifying the identity of a

user, ensuring that the person or system trying to access a

resource is who they claim to be. In the context of Blazor

WebAssembly, authentication typically involves validating

user credentials, such as a username and password.

Blazor WebAssembly supports various authentication

methods, including:

ASP.NET Core Identity

ASP.NET Core Identity is a membership system that adds

login functionality to your application. It provides

features like user registration, password recovery, and

user profile management.

External Providers (OAuth/OpenID Connect)

You can integrate external authentication providers like

Google, Facebook, or Azure AD to allow users to log in

using their existing accounts from these providers.

Token-based Authentication

Use JSON Web Tokens (JWT) or other token-based

authentication mechanisms to secure communication

between the client and server. Tokens are typically

issued upon successful authentication and sent with

each authorization request.

Authorization

Authorization is the process of determining what actions or

resources a user can access once their identity is verified

through authentication. In other words, it defines

permissions and controls access to specific functionalities or

data.

Figure 11.1: Authentication and Authorization Process

Authentication and Authorization

Using OIDC

OIDC stands for OpenID Connect, which is an identity layer

built on top of the OAuth 2.0 authorization framework. It is

a standard protocol for authentication and single sign-on

(SSO) on the web.

Blazor WebAssembly supports authenticating and

authorizing apps using OpenID Connect (OIDC) via the

Microsoft.AspNetCore.Components.WebAssembly.Authentication

library.

The library can authenticate against any third-party Identity

Provider (IP) that supports OIDC, which are called OpenID

Providers (OP).

The authentication support in the Blazor WebAssembly

Library (Authentication.js) is built on top of the Microsoft

Authentication Library (MSAL, msal.js).

OIDC is an authentication protocol built on top of OAuth 2.0,

designed for secure and standardized user authentication.

OIDC-compliant identity providers include Azure AD, Google,

Facebook, Okta, or Auth0, and so on.

Now, we will see how to implement the implementation of

Azure AD Authentication in Blazor WebAssembly.

Step 1: Create the Blazor WebAssembly 8.0 as follows:

Figure 11.2: Blazor Wasm Project Template

Figure 11.3: Folder Location

Step 2: Select the Microsoft identity platform as shown in the

following figure:

Figure 11.4: Microsoft Identity

Step 3: Now configure the application as given in Visual

Studio Wizard:

Figure 11.5: Next Wizard

Step 4: If this wizard will not create the JSON file, then

create an appsettings.json file and keep the TenantId and

ClientId here. It will be there in the wwwroot folder.

Figure 11.6: appsetting.json file

Step 5: Go to the Azure portal and select “Microsoft Entra

ID”:

Figure 11.7: Azure Portal

In Figure 11.8, click + Add > App registration

Figure 11.8: App Registration

Step 6: Click the Register button:

Figure 11.9: Create Application

Step 7: After clicking the Register button, you will see the

following screen. We need to copy ClientId and TenentId from

here.

Figure 11.10: Client and tenentId

Step 8: Keep this ClientId and TenentId on appsettings.json as

follows:

Figure 11.11: Client and tenentId in appsetting.json file

Step 9: Go to the Authentication section and check on both

Access Token and ID Token, as given in the following figure:

Figure 11.12: Authentication on Azure Portal

Step 10: Run the application. You will see authentication and

authorization out of box with help of

Microsoft.Authentication.WebAssembly.Msal.

This library is specifically designed to enable authentication

and authorization in Blazor WebAssembly applications.

Within this namespace, you will find classes and components

that facilitate the integration of authentication features into

your Blazor WebAssembly applications. MSAL helps you

implement secure authentication workflows using protocols

like OAuth 2.0 and OpenID Connect.

Figure 11.13: Final Output

If you want to create the Blazor WebAssembly application

with the help of the dotnet CLI command with ClientId and

TenentId, then you can write as follows:

The aforementioned CLI command will create the same

Blazor WebAssembly with all inbuilt security features.

Figure 11.14: Blazor WASM Project

Exploring Practical Use Scenario of

Microsoft Entra ID

We can use the following scenario:

1. Single Sign-On (SSO): It enables single sign-on,

allowing users to access multiple applications with a

single set of credentials. This is beneficial for both user

convenience and security.

2. Authentication and Authorization for Applications:

When developing applications that require secure

authentication and authorization mechanisms, Azure AD

can be used to manage user identities and control

access to resources.

3. Enterprise-Level Identity Management: Azure AD is

well-suited for enterprise-level identity management,

offering features such as multi-factor authentication,

conditional access policies, and comprehensive identity

protection.

4. API Protection: If your applications involve APIs, Azure

AD can secure those APIs by authenticating and

authorizing users and applications that attempt to

access them.

5. Microsoft 365 Integration: If your organization uses

Microsoft 365 services, Azure AD provides a unified

identity platform that integrates with Microsoft 365,

making it easier to manage user identities across

various Microsoft services.

6. Security and Compliance: Azure AD includes robust

security features, such as risk-based conditional access,

identity protection, and compliance reporting, making it

suitable for applications that require a high level of

security and compliance.

7. B2B and B2C Scenarios: Azure AD supports both

business-to-business (B2B) and business-to-consumer

(B2C) scenarios. You can use Azure AD B2B to enable

collaboration with external users, and Azure AD B2C for

building customer-facing applications with identity and

access management.

8. Integrating with On-Premises Active Directory: If

your organization has an on-premises Active Directory,

Azure AD can be integrated to extend identity and

access management to the cloud while maintaining a

connection with the on-premises infrastructure.

Note: Now Azure AD name has been changed to Microsoft

Entra ID.

Google Authentication and

Authorization in Blazor WebAssembly

Using OpenID Connect (OIDC), we can also integrate Google

authentication and authorization in the Blazor WebAssembly

application.

Microsoft.AspNetCore.Components.WebAssembly.Authentication

library plays a major role for doing all authentication and

authorization tasks for us.

For this, all processes will be the same except for the Azure

Portal configuration. Here, we need to configure on the

Google Developer Portal.

Step 1: Create the Blazor WebAssembly application with

Microsoft Identity platform as follows:

Figure 11.15: Blazor WebAssembly Application

This will create all the required scaffolding code for us for

doing authentication and authorization.

Step 2: Create a Google API Console project to obtain a

client ID and client secret to configure the Google

authentication in our application.

For a detailed explanation, please go through the following

post:

Integrating Google Sign-In into your web app | Authentication

| Google for Developers

Figure 11.16: Google API Console Project

Step 3: Go to the appsetting.json file, change the Authority

and Client Id as shown here:

Figure 11.17: Appsetting File

Step 4: Change the Google key on program file as shown

here:

Figure 11.18: Dependency Injection

Step 5: Run the application:

Figure 11.19: Google Login

Step 6: After clicking Next, we get the following screen:

Figure 11.20: Login Demo

In the preceding demo, we saw that with the help of OpenID

Connect (OIDC), we are able to integrate any third-party

authentication and authorization in our Blazor WebAssembly

application.

Custom Token-Based Authentication

in Blazor WebAssembly

Token-based authentication is a security mechanism widely

used in web development to authenticate users and

authorize their access to resources. It involves the use of

tokens, which are typically generated by a server upon

successful authentication and then sent to the client. The

client includes this token in subsequent requests to prove its

identity.

Figure 11.21: Token-Based Authentication

Here’s a brief overview of how token-based authentication

works:

1. User Authentication: When a user logs in or

authenticates, the server verifies their credentials (for

example, username and password).

2. Token Generation: Upon successful authentication, the

server generates a unique token (often a JSON Web Token or

JWT) that contains information about the user and their roles

or permissions.

3. Token Issuance: The server sends the token to the client,

which stores it securely, usually in a cookie or local storage.

4. Subsequent Requests: The client includes the token in

the headers of its requests to the server. This token serves

as proof of the user’s identity.

5. Token Verification: The server, upon receiving a request,

verifies the token’s authenticity and checks if the user has

the required permissions to access the requested resource.

Token-based authentication offers several advantages,

including:

Statelessness: The server doesn’t need to store

session information, making it scalable and easy to

maintain.

Cross-Origin Resource Sharing (CORS): Tokens can

be easily included in HTTP headers, allowing for cross-

origin requests.

Security: Tokens can be encrypted and signed, adding

an extra layer of security.

Decoupling: Since the client holds the token, it can be

used to access multiple services without the need to re-

enter credentials.

Now, let’s create a Token-Based Authentication demo.

Asp.net Core Web API

Here are the steps to create web API project:

Step 1: Create the web API application project

Figure 11.22: Web API Project

Here is the next screen:

Figure 11.23: Web API Project Template

Step 2: Install the

Microsoft.AspNetCore.Authentication.JwtBearer NuGet package.

It is commonly used to secure APIs by validating JWTs

received from clients. The JwtBearer authentication handler

reads the JWT from the request’s Authorization header,

validates it, and sets the user on the HttpContext based on the

information in the token.

Figure 11.24: NuGet Package

Step 3: Now, we will create a required model class for the

login page.

Step 4: Add an appSettings.json file to the API project with

the following content:

Step 5: Go to the program.cs file and add this configuration

for authentication:

For keeping the Authorization header on the swagger page,

configure the middleware pipeline as follows:

Then add authentication and authorization middleware to the

request pipeline in the Configure method. Ensure that they

are added after Routing and before EndPoint configuration:

app.UseCors(“CorsPolicy”);

app.UseAuthorization();

app.UseAuthorization();

Step 6: Add an [Authorize] attribute to the existing

WeatherForecast controller:

Figure 11.25: [Authorize] attribute

As you know, after keeping the Authorize attribute on top of

any controller, we can access outside without a valid token.

It will be a secured API controller.

Step 7: Now, we will create a login controller for validating

users and generating JWT token:

For the purpose of demonstration, the token expiry is set to 1

minute.

The Web API entry point validates the credentials. In this

example, we have given hardcoded value. However, in a

real-time project, you can validate in the actual database

table.

Step 8: Run the application and pass the valid EmailId and

Password. It will generate a Bearer token with some expiry

period.

Figure 11.26: Postman Demo

Now, we will pass the token on Swagger authorize header

and then trigger the weather forecast controller endpoint.

We will see the expected data.

Figure 11.27: Postman Output

We have completed the web API part. Now, we will create a

Blazor WebAssembly project and consume the token-based

API endpoint. For this task, we can perform the following

steps.

Blazor WASM Client Side

Step 1: Create the Blazor WebAssembly application:

Figure 11.28: Project Template

Figure 11.29 shows the additional information:

Figure 11.29: Project Wizard

Step 2: Install the

Microsoft.AspNetCore.Components.Authorization NuGet package.

Figure 11.30: NuGet Package

Step 3: Create the Helper Folder and create

TokenAuthenticationStateProvider class and write code as

shown here:

Here’s a high-level explanation of the code:

1. Constructor:

The class has a constructor that takes an IJSRuntime

parameter. This parameter is used to interact with

the JavaScript code from C#.

2. SetTokenAsync method:

This method is used to set the authentication token

in the local storage of the browser.

If the token is null, it removes both the

authentication token and its expiry from the local

storage.

If the token is not null, it stores the token and its

expiry in the local storage.

Finally, it notifies that the authentication state has

changed.

3. GetTokenAsync method:

Retrieves the authentication token and its expiry

from the local storage.

If the token is not expired, it returns the token;

otherwise, it removes the token and returns null.

4. Get+AuthenticationStateAsync method:

Overrides the base method to provide the current

authentication state.

Call the GetTokenAsync method to get the

authentication token.

Creates a ClaimsIdentity based on the parsed claims

from the JWT token.

Returns an AuthenticationState object with a

ClaimsPrincipal based on the obtained identity.

5. ParseClaimsFromJwt method:

Parses the claims from the JWT token’s payload.

It decodes the payload, converts it to a JSON string,

and deserializes it into a dictionary of key-value

pairs.

Creates and returns a list of Claim objects from the

dictionary.

6. ParseBase64WithoutPadding method:

Adjusts the base64 string if it has incorrect padding

and converts it to a byte array.

Overall, this class is responsible for managing the

authentication state in a Blazor WASM application by storing

and retrieving JWT tokens from the local storage, and

providing the authentication state to the application. The

JWT token is used to represent the user’s claims and

authentication status.

Step 4: Register the AuthenticationStateProvider with the

dependency injection in Program.cs file as shown here.

Figure 11.31: Dependency Injection

Step 5: Create the login page as follows:

Step 6: Go to the App.razor file and write code as follows:

In the preceding code, we are using

CascadingAuthenticationState, this will ensure that the

authentication state is available to all components within its

scope. The authentication state typically contains

information about the current user’s identity and

authentication status.

If the user is not authenticated, the child content of the

NotAuthorized component is displayed, that is, the login

component that you just created.

Step 7: Go to MainLayout.razor page and write the code for

logout button as follows:

Step 8: Now, go to Weather.razor page and change the code

for fetching data from Weather Forecast API as follows:

Note: Make sure to keep @attribute [Authorize] on the top of

the page. Here is the complete code snippet.

Step 9: Run the application and go to weatherforecast page. It

will route to login page:

Figure 11.32: Output

After login, you can see the following screen:

Figure 11.33: Output

Note: Keep in mind that you are running Web API and Blazor

WASM Project at the same time. Otherwise, it will not work.

In the preceding demo, we saw how to consume bearer

token-based API endpoints in the Blazor WebAssembly

application.

Tips and Tricks While Implementing

Security in Blazor WebAssembly

Implementing security in Blazor WebAssembly is crucial to

ensure the protection of your application and user data. Here

are some tips and tricks to enhance security:

Authentication and Authorization:

Use the built-in authentication and authorization

mechanisms provided by Blazor. Leverage the

AuthorizeView component to control access to

components based on user roles.

JWT (JSON Web Tokens):

Consider using JWT for secure token-based

authentication. JWTs can be issued by your

authentication server and used to validate the identity of

the user in subsequent requests.

HTTPS:

Always use HTTPS to encrypt data transmitted between

the client and the server. This helps protect sensitive

information from being intercepted during

communication.

Secure API Endpoints:

Ensure that your API endpoints are secure by

implementing proper authentication and authorization

checks. Validate input parameters on the server side to

prevent injection attacks.

CORS (Cross-Origin Resource Sharing):

Configure CORS settings appropriately to control which

domains can access your Blazor WebAssembly

application. This helps prevent unauthorized access from

malicious websites.

Content Security Policy (CSP):

Implement a Content Security Policy to mitigate the risk

of cross-site scripting (XSS) attacks. This restricts the

types of content that your application can load.

Data Validation:

Validate user input on both the client and server sides to

prevent security vulnerabilities such as injection attacks

and cross-site scripting.

Logging and Monitoring:

Implement comprehensive logging to track security-

related events and monitor the application for unusual

activities. Regularly review logs to identify potential

security threats.

Dependency Scanning:

Regularly scan and update dependencies to patch

known security vulnerabilities. Use tools to automate

this process and ensure you are using the latest and

secure versions of libraries.

Session Management:

Manage user sessions securely. Use token-based

authentication with appropriate expiration times and

implement session logout functionality.

Secure Storage:

Be cautious with client-side storage. Avoid storing

sensitive information in local storage or cookies, and use

secure methods like HttpOnly cookies for storing

authentication tokens.

When a cookie is marked as “HttpOnly,” it means it is not

accessible through client-side scripts, such as JavaScript.

This restriction is designed to enhance the web

application’s security by preventing certain types of

attacks, particularly those related to cross-site scripting

(XSS).

In the context of storing authentication tokens, marking

cookies as HttpOnly is a best practice to protect sensitive

information, such as user authentication tokens, from

being accessed by malicious scripts.

Security Headers:

Set security headers in your application, such as Content

Security Policy (CSP), Strict-Transport-Security (HSTS),

and X-Content-Type-Options, to enhance overall security.

Common Mistakes While

Implementing Security in Blazor

WebAssembly

Developing secure Blazor WebAssembly applications is

crucial, and developers should be aware of common

mistakes to avoid potential security vulnerabilities. Here are

some frequently encountered mistakes:

Insufficient Authentication and Authorization:

Mistake: Failing to properly implement authentication

and authorization mechanisms, or misconfiguration roles

and permissions, can lead to unauthorized access to

sensitive functionalities.

Solution: Use the built-in authentication and

authorization features of Blazor, and thoroughly test

user roles and permissions.

Insecure Data Transmission:

Mistake: Neglecting to use HTTPS can expose sensitive

data to interception during transmission.

Solution: Always use HTTPS to encrypt data between

the client and server, ensuring a secure communication

channel.

Client-Side Trust:

Mistake: Relying too much on client-side validation

without validating input on the server side can lead to

security issues.

Solution: Implement server-side validation to ensure

that user inputs are properly validated and secure

against attacks like injection.

Lack of Input Validation:

Mistake: Failing to validate and sanitize user inputs can

expose the application to injection attacks.

Solution: Validate and sanitize all user inputs on the

server side to prevent injection vulnerabilities.

Cross-Site Scripting (XSS):

Mistake: Not properly validating and sanitizing user

inputs can lead to XSS vulnerabilities, allowing attackers

to inject malicious scripts.

Solution: Implement proper input validation, sanitize

user inputs, and use Content Security Policy (CSP)

headers to mitigate XSS risks.

Insecure Storage of Secrets:

Mistake: Storing sensitive information, such as API keys

or connection strings, directly in client-side code or in an

insecure manner.

Solution: Store sensitive information securely on the

server side and use environment variables or secure

storage mechanisms for secrets.

Client-Side Trust for Business Logic:

Mistake: Relying on client-side logic for critical business

rules without server-side verification can expose the

application to manipulation.

Solution: Perform critical business logic and validation

on the server side to prevent client-side tampering.

Over Reliance on Client-Side Security:

Mistake: Depending solely on client-side security

measures without considering server-side security

checks.

Solution: Implement a defense-in-depth strategy with

both client-side and server-side security measures.

Ignoring Security Headers:

Mistake: Neglecting to set security headers, such as

Content Security Policy (CSP) and Strict-Transport-

Security (HSTS), can leave the application vulnerable.

Solution: Set appropriate security headers to enhance

the overall security posture of the application.

Not Regularly Updating Dependencies

Mistake: Failing to update dependencies and libraries

can result in using versions with known security

vulnerabilities.

Solution: Regularly update dependencies to patch

known vulnerabilities and enhance the security of the

application.

Developers should stay informed about the latest security

best practices, conduct regular security audits, and follow

secure coding guidelines to minimize the risk of introducing

security vulnerabilities in Blazor WebAssembly applications.

Conclusion

In this chapter, we understood how to implement different

types of security approach in Blazor WebAssembly

application. We also learned tips and tricks while

implementing security. All the latest security related

concepts are kept in a very simplified way in this book.

If you are reading the chapter and are unable to implement it

in your project, then feel free to download the source code

from GitHub and play with it.

References

ASP.NET Core Blazor authentication and authorization |

Microsoft Learn

Source Code

https://github.com/ava-orange-education/Practical-Web-

Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the purpose of marking cookies as “HttpOnly” in

Blazor WebAssembly?

a. Enhancing SEO

b. Enabling cross-origin resource sharing

c. Preventing cross-site scripting (XSS) attacks

d. Improving client-side performance

2. Which of the following is a common security vulnerability

that can be mitigated by using Content Security Policy

(CSP) in a Blazor WebAssembly application?

a. Cross-Site Scripting (XSS)

b. Cross-Site Request Forgery (CSRF)

c. SQL Injection

d. Man-in-the-Middle (MitM) attacks

3. What is the purpose of setting the “Secure” attribute on

cookies in a Blazor WebAssembly application?

a. Preventing cookie theft

b. Enabling cookie access from JavaScript

c. Allowing cross-origin requests

d. Enhancing cookie expiration

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

4. Which of the following is a recommended practice for

securing API endpoints in a Blazor WebAssembly

application?

a. Implementing weak authentication

b. Using plain text for data transmission

c. Validating and authorizing requests on the server

side

d. Storing sensitive information in client-side cookies

5. What does HTTPS provide in the context of security for

Blazor WebAssembly?

a. Protection against XSS

b. Encryption of data transmitted between the client

and server

c. Prevention of SQL injection attacks

d. Enhanced client-side performance

6. In Blazor WebAssembly, what role does the

“AuthorizeView” component play in terms of security?

a. Enforcing HTTPS connections

b. Defining security policies

c. Controlling access to components based on user

authentication

d. Setting CSP headers

Answers

1. c

2. a

3. a

4. c

5. b

6. c

Index

A

Authentication

about 185

Blazor WebAssembly, utilizing 195, 196

methods, utilizing 186

OIDC, using 187-193

Token-based, analyzing 198, 199

Authorization

about 186

Blazor WebAssembly, utilizing 195, 196

OIDC, using 187

Azure

CI/CD Pipeline 161

creating 157, 158

Static Website, deploying 158-161

Azure App Service 178

Azure Function

about 162

benefits 162

Blazor WebAssembly, analyzing 177

CI/CD Pipeline, preventing 179-182

Http CRUD Operation, utilizing 167-172

service, utilizing 164-166

triggers, types 163

Visual Studio, analyzing 172-177

B

Blazor

CSS Classes, styling 41-43

Navigation 53

nested component, creating 38, 39

parameters value, specifying 50, 51

Reload Method, forcing 54

Route, parameter 49, 50

router, components 48

Blazor 8.0

benefits 8, 9

features 7, 8

Blazor Applications, types

Blazor Server 2, 3

Blazor Web App 4

Blazor WebAssembly 3

Blazor Applications VS Code, using 9-11

Blazor Code, segregation

code-behind, approaching 40, 41

inline, approaching 40

Blazor Component

about 20, 21

creating steps 21, 22

Data Binding 31

lifecycle, utilizing 22-27

parameters 28

Blazor Component parameters, types

Cascading 29-31

Non-Cascading 28, 29

Blazor Form

about 125-127

aspects, preventing 134, 135

data, annotating 128-130

error, utilizing 130, 131

nested model, analyzing 131-133

validating 127, 128

Blazor Server 2, 3

Blazor Web App 4

Blazor Web App, types

Interactive Auto 4

interactive server 4

Interactive WebAssembly 4

SSR 4

Blazor WebAssembly

about 3

advantages 5, 6

Blazor Server, comparing 6, 7

CRUD Operation 100

disadvantages 6

HttpClient 97-100

prerequisites 9

project, structure 15-18

State Management 77

VS Code, using 11-15

C

Child Component, data passing 35, 36

CRUD Operation 100

D

Data Binding 31

Data Binding, types

One-Way 32, 33

Two-Way 33-35

E

EF Core 8.0

about 104, 105

application, types 106

CRUD Operation, utilizing 108-122

uses 106

EF Core 8.0, reasons

automatic change, tracking 106

cross-platform, supporting 105

data access, simplifying 105

database provider, flexibility 105

LINQ, integrating 106

migration, supporting 106

open source, developing 106

parameterization 106

productivity, developing 105

testability 106

Entity Framework Core, types

Code First Approach 107

Database First Approach 107

Entity Framework Database, supporting 108

F

framework 92

H

HttpClient 97-100

J

JavaScript Function

about 139-141

C#, calling 144, 145

Chartjs library, utilizing 145-147

C Obejcts, passing 142, 143

error handle, debugging 147-149

performance, optimizing 151-153

return value, handling 141, 142

security, considering 149-151

M

Microsoft Azure, key features

AI, Machine learning 156

big data, analytics 157

compute, services 156

database, services 156

DevOps, services 156

IAM 156

IoT 156

network, services 156

security, compliance 156

serverless, computing 157

storage, services 156

Microsoft Entra ID, practical use 194

N

Navigation 53

Navigation, types

declarative 53, 54

programmatic 53

P

Parent Component, data passing 36-38

R

Razor Class Library, advantages

concerns, separating 74

consistent user interface 73

distribution, packaging 74

modular, developing 73

reusability 73

versioning 73

Razor Class Library (RCL)

about 57

application with code, utilizing 58-67

NuGet Package, creating 68-73

Representational State Transfer (REST)

about 90, 91

Web API Core, optimizing 91-94

WebAssembly, utilizing 94-96

Route Overloading 51, 52

S

Server-Side State Management 86, 87

State Management

about 77

Cascading Value, optimizing 79

parameters, component 78

services 79-81

storage, utilizing 81-85

Syncfusion 59

W

WebAssembly application

creating 206-215

security, implementing 217-219

tips, tricks 216, 217

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Blazor WebAssembly
	Introduction
	Structure
	Types of Blazor Applications
	Blazor Server

	Blazor WebAssembly
	Blazor Web App
	Advantages of Blazor WebAssembly
	Disadvantages of Blazor WebAssembly
	Blazor Server vs. Blazor WebAssembly
	New Features Added to Blazor 8.0
	Benefits of .NET 8.0
	Prerequisite Software for Blazor WebAssembly Application
	Creating Hello World Blazor Application Using Visual Studio 2022
	Creating Blazor WebAssembly Using VS Code
	Project Structure in Blazor WebAssembly 8.0 Application
	Conclusion
	References
	Multiple Choice Questions
	Answers

	2. Razor Components
	Introduction
	Structure
	Introduction to Blazor Component
	Creating a Blazor Component
	Razor Component Lifecycle
	Parameters in Blazor Component
	Non-cascading Parameters
	Cascading Parameters

	Data Binding in Blazor Components
	One-Way Data Binding
	Two-Way Data Binding

	Passing Data from Parent to Child Component
	Passing Data from Child to Parent Component
	Nested Component in Blazor
	Code Segregation Approach in Blazor Component
	Inline Approach
	Code-Behind Approach

	Styling Component in Blazor
	Conclusion
	References
	For Source Code

	Multiple Choice Questions
	Answers

	3. Routing and Navigation
	Introduction
	Structure
	Introduction to Routing and Navigation
	Router Components
	Route Parameter in Blazor
	Optional Parameters in Blazor
	Route Overloading
	Navigation in Blazor
	Forcing a Page Reload
	Conclusion
	References
	Multiple Choice Questions
	Answers

	4. Razor Class Library
	Introduction
	Structure
	Introduction to Razor Class Library
	Creating RCL and Sharing Code with Multiple Application
	Creating NuGet Package of RCL
	Advantages of Razor Class Library
	Conclusion
	References
	For Source Code
	Multiple Choice Questions
	Answers

	5. State Management
	Introduction
	Structure
	State Management in Blazor WebAssembly
	Component Parameters
	Cascading Values and Parameters
	Services
	Local Storage or Session Storage
	Server-Side State Management

	Conclusion
	References
	For Source Code

	Multiple Choice Questions
	Answers

	6. REST Services
	Introduction
	Structure
	Creating REST Service Using Asp.net Core
	Standalone Web API Core Service
	Shared Web API Core in Blazor WebAssembly
	HttpClient in Blazor WebAssembly
	CRUD Operation in Blazor WebAssembly
	Conclusion
	References
	Multiple Choice Questions
	Answers

	7. Entity Framework Core
	Introduction
	Structure
	EF Core 8.0
	Reasons to Use EF Core
	When Not to Use EF Core
	EF Core Supported Application Types
	Entity Framework Core Approaches
	Database First Approach
	Code First Approach

	Supported Databases
	CRUD Operation with EF Core in Blazor WebAssembly
	Conclusion
	Reference
	Multiple Choice Questions
	Answers

	8. Validation in Blazor WebAssembly
	Introduction
	Structure
	Blazor Form
	Form Validation in Blazor
	Data Annotation in Blazor
	Custom Validation in Blazor
	Complex or Nested Model Validation in Blazor
	Best Pattern and Practices for Validation in Blazor
	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	9. JavaScript Interop in Blazor
	Introduction
	Structure
	Calling JavaScript from C#
	Handling Function Return Value
	Passing C# Objects to JavaScript
	Calling C# from JavaScript
	Advanced JavaScript Interop Demo
	Error Handling and Debugging
	Security Considerations
	Performance Optimization Tips
	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	10. Azure Service in Blazor
	Introduction
	Structure
	Key Features and Components of Microsoft Azure
	Azure Account Creation
	Static WebSite Deployment
	CI/CD Pipeline on GitHub
	Azure Function
	Benefits of Using Azure Functions
	Different Types of Triggers on Azure Functions
	Creating Azure Function
	Http CRUD Operation in Azure Function
	Azure Function Deployment

	Consuming Azure Function in Blazor WebAssembly
	Azure App Service
	App Deployment with CICD Pipeline

	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	11. Security in Blazor WebAssembly
	Introduction
	Structure
	Authentication and Authorization
	Authentication and Authorization Using OIDC
	Exploring Practical Use Scenario of Microsoft Entra ID
	Google Authentication and Authorization in Blazor WebAssembly
	Custom Token-Based Authentication in Blazor WebAssembly
	Asp.net Core Web API
	Blazor WASM Client Side

	Tips and Tricks While Implementing Security in Blazor WebAssembly
	Common Mistakes While Implementing Security in Blazor WebAssembly
	Conclusion
	References
	Source Code

	Multiple Choice Questions
	Answers

	Index

