ULTIMATE

Blazor WebAssembly
for Web Development

Unlock the Full Potential of
Blazor WebAssembly 8.0 and C# to Build

High-Performance Web Applications
with Ease

Chandradev Prasad Sah
>

AVA

ULTIMATE

Blazor WebAssembly
for Web Development

Unlock the Full Potential of

Blazor WebAssembly 8.0 and C# to Build
High-Performance Web Applications
with Ease

Chandradev Prasad Sah

Ultimate Blazor
WebAssembly
for
Web Development

Unlock the Full Potential of Blazor
WebAssembly 8.0 and C# to Build
High-Performance Web Applications
with Ease

Chandradev Prasad Sah

AVA

WWW.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the author
nor Orange Education Pvt Ltd or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information
about all of the companies and products mentioned in this book by the
appropriate use of capital. However, Orange Education Pvt Ltd cannot
guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names
are exempt from the relevant protective laws and regulations and therefore free
for general use.

First published: May 2024
Published by: Orange Education Pvt Ltd, AVA™
Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,
N1 7AA, United Kingdom

ISBN: 978-81-96862-06-0

WWW.Oorangeava.com

http://www.orangeava.com/

Dedicated To

My Beloved Father, Mother, Wife, and Daughter:

Without Their Moral Support, it was Very Difficult to
Complete This Book

About the Author

Chandradev Prasad Sah holds B.E (Computer Science)
from VTU. He is a web application developer with over 16
years of experience. He has a strong background in
computer science and is a recognized expert in Blazor
development, having completed over 50 web products using
this framework.

Sah is a highly credentialed professional with certifications
like MCC (Microsoft Community Contributor) and C# Corner
MVP. He has also been awarded the Top Rated Plus
Freelancer distinction.

A seasoned developer with experience at Dell, Intel,
Walmart, and DXC, Sah now puts his knowledge to work as
an independent consultant, providing services in Blazor, C#,
WebApi Core, Azure, and AWS.

An active member of the Blazor community, Sah shares his
knowledge and expertise by regularly publishing blog posts
and content related to Blazor development on his personal
blog.

About the Technical Reviewer

Trevoir Williams is a passionate software and system
engineer dedicated to creating efficient and effective IT
solutions that enhance service delivery in organizations. His
educational achievements include a Master’'s degree in
Computer Science (majoring in Software Development) and
several Microsoft Azure Certifications.

With years of experience in software consulting, software
engineering, database development, cloud systems, and
server administration, Trevoir has the technical expertise to
design and develop innovative systems. He is also a skilled
musician.

Trevoir enjoys sharing his knowledge with students globally
and is committed to teaching IT and development skills and
guiding students in gaining the Ilatest knowledge with
practical application in the modern industry.

Acknowledgements

Writing a book is never a solitary endeavor. It requires the
support, encouragement, and assistance of many
individuals along the way.

| would like to express my deepest gratitude to my family:
my father, Biswanath Sah, my mother, Sanmathi Devi, my
wife, Runali Sah, and my daughter, Anvi Sah. Their love,
encouragement, and unwavering belief in me fueled my
determination at every turn. They are the guiding lights in
my life, and this book is a testament to their enduring
influence and the sacrifices they made.

Special thanks to my Technical Reviewer, Trevoir Williams,
for his invaluable guidance, wisdom, and encouragement.
Your insights and feedback have been instrumental in
shaping this book and improving my craft as a writer.

| am also deeply grateful to the entire team at "AVA™ - An
Orange Education Label", for their professionalism,
expertise, and dedication to bringing this book to life. Their
hard work and commitment to excellence have made this
project a reality.

| also extend my gratitude to Sonali and her team and
Priyanka for their assistance with research, proofreading,
and providing valuable feedback throughout the writing
process.

Lastly, | would like to thank the readers who will embark on
this journey with me. Your interest and support mean the
world to me, and | hope this book brings you knowledge,
inspiration, and enjoyment.

Thank you all for being a part of this incredible journey.

Preface

The chapters are as follows:

Chapter 1. Introduction to Blazor WebAssembly: This
chapter introduces Blazor, exploring its key features,
advantages, and the underlying concepts that make it a
powerful tool for web development.

Chapter 2. Razor Components: This chapter covers how
to create, reuse, and compose components to build dynamic
user interfaces.

Chapter 3. Routing__and Navigation: This chapter
explores Routing and Navigation in Blazor WebAssembly,
guiding you through the process of configuring client-side
routing for single-page applications.

Chapter 4. Razor Class Library: This chapter explores
Razor Class Library (RCL) in Blazor, demonstrating how to
organize and share Ul components and logic across multiple
projects.

Chapter 5. State Management: This chapter focuses on
state management in Blazor WebAssembly, presenting
various techniques for managing and preserving state
within your applications.

Chapter 6. REST Services: This chapter covers the
integration of RESTful services in Blazor WebAssembly,
showcasing how to consume external APIs to retrieve and
manipulate data.

Chapter 7. Entity Framework Core: This chapter dives
into Entity Framework (EF) Core in Blazor WebAssembly,
illustrating how to interact with databases using EF Core for
data access.

Chapter 8. Validation in Blazor WebAssembly: This
chapter addresses validation in Blazor WebAssembly,
discussing how to implement client-side and server-side
validation to ensure data integrity and security.

Chapter 9. JavaScript Interop in Blazor: This chapter
explores the integration of JavaScript interop in Blazor
WebAssembly, allowing you to leverage existing JavaScript
libraries and functionality within your Blazor applications.

Chapter 10. Azure Service in Blazor: We shift our focus
to Azure services, demonstrating how to leverage various
Azure services to enhance the scalability, performance, and
security of your Blazor applications.

Chapter 11. Security in Blazor WebAssembly: Finally,
the last chapter covers security in Blazor WebAssembly,
discussing best practices for securing your applications and
protecting sensitive data.

Whether you're a beginner looking to get started with Blazor
or an experienced developer seeking to enhance your skills,
this book provides you with the knowledge and tools you
need to build robust and engaging web applications with
Blazor WebAssembly.

Happy coding!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-
education/Ultimate-Blazor-Web-
Assembly-for-Web-Development

O B A
C AVA C
rnct TR :
] S E A s

The code bundles and images of the book are also hosted
on

https://rebrand.ly/153597

https://github.com/ava-orange-education/Ultimate-Blazor-Web-Assembly-for-Web-Development
https://rebrand.ly/153597

In case there’s an update to the code, it will be updated on
the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education
Pvt Ltd and follow best practices to ensure the accuracy of
our content to provide an indulging reading experience to
our subscribers. Our readers are our mirrors, and we use
their inputs to reflect and improve upon human errors, if
any, that may have occurred during the publishing
processes involved. To let us maintain the quality and help
us reach out to any readers who might be having difficulties
due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly
appreciated.

mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook
versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at
www.orangeava.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch
with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection
of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on
AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would
provide us with the location address or website name.
Please contact us at info@orangeava.com with a link to
the material.

ARE YOU INTERESTED IN
AUTHORING WITH US?

If there is a topic that you have expertise in, and you are
interested in either writing or contributing to a book,
please write to us at business@orangeava.com. We are
on a journey to help developers and tech professionals to
gain insights on the present technological advancements
and innovations happening across the globe and build a
community that believes Knowledge is best acquired by
sharing and learning with others. Please reach out to us
to learn what our audience demands and how you can be
part of this educational reform. We also welcome ideas

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

from tech experts and help them build learning and
development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this
book, why not leave a review on the site that you
purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions. We at
Orange Education would love to know what you think
about our products, and our authors can learn from your
feedback. Thank you!

For more information about Orange Education, please
visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Blazor WebAssembly

Introduction

Structure

Types of Blazor Applications
Blazor Server

Blazor WebAssembly,

Blazor Web App

Advantages of Blazor WebAssembly

Disadvantages of Blazor WebAssembly,

Blazor Server vs. Blazor WebAssembly

New Features Added to Blazor 8.0

Benefits of .NET 8.0

Prerequisite Software for Blazor WebAssembly
Application

Creating_Hello World Blazor Application Using_Visual
Studio 2022

Creating_Blazor WebAssembly Using VS Code

Project Structure in Blazor WebAssembly 8.0 Application

Conclusion

References

Multiple Choice Questions
Answers

2. Razor Components

Introduction

Structure

Introduction to Blazor Component

Creating_a Blazor Component

Razor Component Lifecycle

Parameters in Blazor Component
Non-cascading Parameters

Cascading_Parameters
Data Binding_in Blazor Components
One-Way Data Binding
Two-Way Data Binding,
Passing_Data from Parent to Child Component
Passing_Data from Child to Parent Component
Nested Component in Blazor
Code Segregation Approach in Blazor Component
Inline Approach
Code-Behind Approach
Styling_Component in Blazor
Conclusion
References
For Source Code
Multiple Choice Questions
Answers

3. Routing_and Navigation
Introduction
Structure
Introduction to Routing_and Navigation
Router Components
Route Parameter in Blazor
Optional Parameters in Blazor
Route Overloading
Navigation in Blazor
Forcing_a Page Reload
Conclusion
References
Multiple Choice Questions

Answers

4. Razor Class Library
Introduction
Structure

Introduction to Razor Class Library
Creating RCL and Sharing_Code with Multiple Application

Creating NuGet Package of RCL

Advantages of Razor Class Library

Conclusion

References

For Source Code

Multiple Choice Questions
Answers

5. State Management

Introduction

Structure

State Management in Blazor WebAssembly
Component Parameters
Cascading Values and Parameters
Services
Local Storage or Session Storage
Server-Side State Management

Conclusion

References
For Source Code

Multiple Choice Questions
Answers

6. REST Services
Introduction
Structure
Creating REST Service Using_Asp.net Core
Standalone Web API Core Service
Shared Web API Core in Blazor WebAssembly
HttpClient in Blazor WebAssembly
CRUD Operation in Blazor WebAssembly
Conclusion
References

Multiple Choice Questions
Answers

7. Entity Framework Core
Introduction
Structure
EF Core 8.0
Reasons to Use EF Core
When Not to Use EF Core
EF Core Supported Application Types
Entity Framework Core Approaches
Database First Approach
Code First Approach
Supported Databases
CRUD Operation with EF Core in Blazor WebAssembly
Conclusion
Reference
Multiple Choice Questions
Answers

8. Validation in Blazor WebAssembly
Introduction
Structure
Blazor Form
Form Validation in Blazor
Data Annotation in Blazor
Custom Validation in Blazor
Complex or Nested Model Validation in Blazor
Best Pattern and Practices for Validation in Blazor
Conclusion
References
Source Code
Multiple Choice Questions
Answers

9. JavaScript Interop in Blazor
Introduction
Structure
Calling.JavaScript from C#
Handling_Function Return Value

Calling_C# from JavaScript

Advanced JavaScript Interop Demo

Error Handling_and Debugging

Security Considerations

Performance Optimization Tips

Conclusion

References

Source Code

Multiple Choice Questions
Answers

10. Azure Service in Blazor
Introduction
Structure
Key Features and Components of Microsoft Azure
Azure Account Creation
Static WebSite Deployment
Cl/CD Pipeline on GitHub
Azure Function
Benefits of Using Azure Functions
Different Types of Triggers on Azure Functions
Creating Azure Function
Http CRUD Operation in Azure Function
Azure Function Deployment
Consuming_Azure Function in Blazor WebAssembly
Azure App Service

Conclusion
References

Source Code
Multiple Choice Questions
Answers

11. Security in Blazor WebAssembly
Introduction
Structure
Authentication and Authorization
Authentication and Authorization Using OIDC
Exploring_Practical Use Scenario of Microsoft Entra ID
Google Authentication and Authorization in Blazor
WebAssembly
Custom Token-Based Authentication in Blazor
WebAssembly
Asp.net Core Web API
Blazor WASM Client Side
WebAssembly
Common Mistakes While Implementing_Security in Blazor
WebAssembly
Conclusion
References
Source Code
Multiple Choice Questions
Answers

Index

CHAPTER 1

Introduction to Blazor
WebAssembly

Introduction

Blazor is a free and open-source web framework that
enables developers to create web apps using C# and HTML.

It is a web development single-page framework developed by
Microsoft to compete with industry-leading platforms like React,
Angular, Vuejs, and more. Before Blazor, there were not any
alternative options to develop the single-page application using
C#.

In all leading JavaScript frameworks, we were developing single-
page applications using JavaScript and it was very difficult for a
.Net developer to master all technologies.

At the 2017 Microsoft MVP (Most Valuable Professional) Summit,
Steve Sanderson (https://github.com/SteveSandersonMS) gave
an experimental demo of Blazor. He showed how to create a
single-page application using C# instead of JavaScript. It was so
exciting for all the .Net developers. Since then, Microsoft and
Steve’s team started to work on that idea.

They released the first official stable version of Blazor Server in
2018 and Blazor WebAssembly in 2020 with .Net 5.0. Blazor is
combination of Browser and Razor.

We will write the Ul code in Razor, which is a combination of C#
and HTML.

Structure
In this chapter, we will cover the following topics:

e Blazor and Types of Blazor Applications

https://github.com/SteveSandersonMS

e Blazor Web App

» Advantages of Blazor WebAssembly

» Disadvantages of Blazor WebAssembly
e Blazor Server vs. Blazor WebAssembly
 New Features in .Net 8.0

e Advantages of .Net 8.0

e Creating Blazor WebAssembly with .Net 8.0 with Visual
Studio and VS Code

e Project Structure for Blazor WebAssembly Application

Types of Blazor Applications

There are three types of Blazor Applications:

e Blazor Server
e Blazor WebAssembly
» Blazor Web App (with Blazor 8.0)

Blazor Server

Blazor Server is a type of Blazor application where the Ul
components are rendered on the server and then sent to the
client using SignalR, allowing for fast and responsive user
interfaces. It will provide real-time communication between the
client and the server.

In the following figure, we can see that Razor Components and
DOM will communicate with each other using SignalR.

ASP.NET Core

SignalR DOM

Razor Components

NET

Figure 1.1: Communication using SignalR (Source: Microsoft Website)

As you know, SignalR is a real-time communication library
developed by Microsoft that allows bi-directional communication
between client and server over HTTP.

It provides a way for server-side code to push content to
connected clients instantly as it becomes available, without the
need for the client to constantly poll the server for updates.
SignalR can be used with various client-side technologies, such
as JavaScript, .NET, and Xamarin, making it a useful tool for
building real-time web and mobile applications.

Note : This project type is only available on older version, that is,
Blazor 6.0 and 7.0.

Blazor WebAssembly

It is a true native single-page and open-source framework where
C# and Razor component will compile into .Net assemblies and
download to the user browser. With the help of WebAssembly, C#
code can run directly in the browser. It supports all features of a
single-page application.

Thanks to WebAssembly for making this possible.

.

o
!Eﬂ-J

o
i

blazor

Razor Components
DOM

WebAssembly

Figure 1.2: Blazor WebAssembly (Source: Microsoft Website)

In the preceding figure, we can see that with the help of the
WebAssembly, Razor Component and C# will communicate with
the DOM element.

In this approach, it will work in the following sequence:

1. Razor Component and C# Compile into .NET assemblies.
2. .Net assemblies and run time downloaded to the browser.

3. Blazor WebAssembly bootstraps the .Net runtime and
configures the runtime to load the assemblies for the app.

4. Blazor WebAssembly runtime uses JavaScript interop to
handle Document Object Model (DOM) manipulation and
browser API calls.

First, it will download the compiled code on a browser similar
to other single-page applications like Angular, React, and so
on. After that, it will execute from there.

Blazor Web App

In Blazor 8.0, a new project type called Blazor Web App has been
added. This is a combination of Blazor Server and Blazor
WebAssembly. We can seamlessly switch between rendering
modes or even mix them within the same page.

Figure 1.3: Project Template

There are four types of rendering mode added in Blazor Web
App:

» Static Server-Side Rendering (SSR): This mode renders
the entire page as static HTML on the server and sends it to
the client. This results in faster initial page loads and
improved SEO but lacks interactivity after the initial load.

e Interactive Server: Components are rendered on the
server and streamed to the client, enabling real-time
updates and interactivity without full page reloads. This
mode offers a good balance between performance and
interactivity.

e Interactive WebAssembly (WASM): Components are pre-
compiled to WebAssembly and run directly in the browser,
providing full client-side interactivity and offline capabilities.
However, it has a larger initial download size and might

have slightly slower initial rendering compared to other
modes.

e Interactive Auto: This mode automatically chooses the
best render mode based on the component and its usage
within the application. It’s ideal for applications with mixed
requirements for static content and interactive features.

Mode Description Advantages Disadvantages
Static SSR Pre-rendered HTML | Fastest initial load, | No client-side
good SEO interactivity
Interactive Server Server-side Real-time updates, | Requires constant
rendering with | good mix of | server connection
updates performance and
interactivity
Interactive WASM Client-side Full interactivity, | Larger initial
rendering with | offline capabilities | download, potential
WebAssembly performance
overhead
Interactive Auto Automatic mode | Flexible, adapts to | Relies on complex
selection component needs logic for mode
selection

Table 1.1: Four rendering modes and their differences

Note: In this book, we are not going to cover all concepts of
Blazor Web App. Instead, we will only focus on Blazor
WebAssembly.

Is WebAssembly faster than JavaScript?

Yes, it is faster than JavaScript in certain scenarios. In general,
WebAssembly (WASM) is faster than JavaScript when it comes to
performance-critical tasks, such as mathematical calculations or
complex algorithms.

WebAssembly (Wasm) is designed to provide a low-level, efficient
way to run code on the web. JavaScript, on the other hand, is a
high-level language that needs to be interpreted by the
browser’s JavaScript engine.

Wasm is designed to be executed by a virtual machine that runs
directly on the computer’s processor, which makes it faster and
more efficient than JavaScript in some cases.

Wasm code is also compiled ahead of time, which means that it
can be optimized before it is executed, leading to faster
performance.

However, it’'s important to note that the performance benefits of
WebAssembly over JavaScript depend on the specific use case
and the type of application you are building.

For some types of applications, JavaScript may be just as fast or
even faster than Wasm like DOM manipulation and event
handling tasks.

Additionally, Wasm and JavaScript can work together to create
high-performance applications. For example, you can use Wasm
to implement performance-critical parts of an application, while
using JavaScript for other parts that do not require the same
level of performance.

Advantages of Blazor WebAssembly

The following are the advantages of Blazor WebAssembly:

 Improved Performance: Blazor WebAssembly uses ahead-
of-time (AOT) compilation, which allows it to load and run
faster than traditional JavaScript-based web applications. It
also has smaller file sizes than many JavaScript frameworks,
resulting in faster load times.

« Seamless Integration with .NET: Since Blazor is built on
top of .NET, it offers seamless integration with other .NET
technologies such as ASP.NET Core and Entity Framework
Core. Developers can use the same language and tools
across the entire stack, making it easier to develop and
maintain complex applications.

 Increased Security: Blazor WebAssembly offers improved
security over traditional JavaScript-based web applications.
Since the code runs in a sandboxed environment, it is much
harder for malicious code to access sensitive data or
perform unauthorized actions.

« Familiar Development Experience: Blazor WebAssembly
offers a familiar development experience for .NET

developers, making it easier for them to transition to
building web applications. The syntax is similar to other .NET
languages, and the development environment is similar to
other Visual Studio tools.

« Code Reusability: Since Blazor WebAssembly is built on
top of .NET, developers can reuse existing .NET libraries and
components in their web applications. This can significantly
reduce development time and improve code quality.

e It is supported by all streaming browsers, such as Chrome,
Edge, Firefox, Opera, and Safari, along with the ability to run
on old (non-WebAssembly) ones using asm.js.

e It will compile into static files, which can be deployed
anywhere like an html page.

e Blazor WebAssembly does also support Progressive Web App
(PWA).

e It also supports offline behavior, which means you can run
the application without the internet. This will save a lot of
development time and cost as compared to other JavaScript
frameworks like Angular, React, Vue.js, and so on.

Disadvantages of Blazor WebAssembly
Blazor WebAssembly has a few disadvantages:

e The initial page load will be a little bit slower.

e It is restricted to the capabilities of the browser. So
performance will vary depending on the browser.

e |t will not work on older browsers.

e We need to write a little bit more code since the code will
run on the Browser Sandbox.

Blazor Server vs. Blazor WebAssembly

The following table shows the differences between Blazor Server
and Blazor WebAssembly.

Features Blazor Server Blazor WebAssembly

Offline Mode Support Does Not support Support

PWA application Does Not support Support

Initial Page Load Fast Slow

Static web Deployment Does Not support Support

Development time and cost | Less A little bit more, since we
need to create a separate
API layer

For Intranet application It is more suitable Not suitable

For public-facing large web | Not suitable More suitable

portal

Table 1.2: Differences between Blazor Server and Blazor WebAssembly

In this book, we are going to use .Net 8.0. This is the latest
framework from Microsoft. As you know, .Net 8.0 is 20% to 30%
faster than .Net 6.0 and .Net 7.0.

For more details you can refer Microsoft blog post:
Performance Improvements in .NET 8 - .NET Blog (microsoft.com)

)

7.02M 0.60M

requests / sec requests / sec

Java Servlet NET Node.js

Figure 1.4: .Net Performance

Data sourced from official tests available at TechEmpower Round
21:

Round 21 results - TechEmpower Framework Benchmarks

New Features Added to Blazor 8.0

Blazor 8.0 brings several exciting new features, making it a
significant upgrade for web development:

Unified Project Template:

Using a single Blazor Web App template, we can create a Blazor
Server and WebAssembly project.

Enhanced Render Modes:

Static Server-Side Rendering (SSR): Pre-render HTML on
the server for faster initial loads and SEO benefits.

Interactive Server-Side Rendering: Stream components
for real-time updates without full page reloads.

Interactive WebAssembly (WASM): Utilize WebAssembly
for full client-side interactivity and offline capabilities.

Interactive Auto: Automatically choose the best render
mode based on component usage.

Other Notable Features:

Sections: Define outlets in your layout for components to
fill, fostering modularity.

Named Routing: Route directly to elements using standard
URL fragments.

Enhanced Navigation and Form Handling: Avoid full
page refreshes for improved user experience.

Stream Rendering: Efficiently handle large datasets or
dynamic content updates.

QuickGrid Component: Simplified data grid creation with
built-in features.

Authentication Components: Streamlined user
authentication and authorization flows.

Benefits of .NET 8.0

Beyond Blazor’'s enhancements, .NET 8.0 offers broader benefits:
Performance Improvements:

Dynamic PGO enabled by default for optimized code.

Faster JIT compiler and performance-focused data
structures.

Kestrel web server optimizations for ASP.NET Core.

e Interpreter-based runtime and garbage collection
improvements in Blazor WebAssembly.

Improved Developer Experience:

 Enhanced tooling and diagnostics support.

e Modern C# features Ilike minimal interfaces and
parameterless constructors.

e .NET MAUI platform for cross-platform desktop apps.
Cloud-Native Readiness:
 .NET Aspire preview provides opinionated cloud-native stack

guidance.
e Improved containerization and deployment support.

Unified Stack with Blazor:

e Develop full-stack web applications with a consistent
framework across server and client.

« Combine static, interactive, and WebAssembly rendering
modes within a single project.

Overall, .NET 8.0 and Blazor 8.0 offer significant advancements
for web development, providing performance gains, modern
features, improved developer experience, and a unified approach
to building web applications.

In this book, we are covering Blazor WebAssembly with .NET 8.0,
so we will only focus on content related to this.

Prerequisite Software for Blazor
WebAssembly Application

All the following software are totally free for developers. You can
download it from the given URLs:

e Visual Studio 2022 (Any Edition): Visual Studio 2022
Community Edition - Download the Latest Free Version
(microsoft.com)

e SQL Server 2019 or any other version: Download Microsoft®
SQL Server® 2019 Express from Official Microsoft Download
Center

e If you have a low-configuration system, then you can also
use VS Code: Download Visual Studio Code - Mac, Linux,
Windows

Creating_Hello World Blazor Application
Using Visual Studio 2022

Here are the steps to create “Hello World” project:

Step 1: Install Visual Studio 2022 from the URL mentioned in the
previous section.

Step 2: Open Visual Studio 2022 and Select the Blazor
WebAssembly Standalone app as given in the following figure.

Figure 1.5: Project Template

Step 3: Give the Project name as HelloWorld as follows:

Configure your new project

Blazor WebAssembly Standalone App ¢

Figure 1.6: Project Name

Step 4: Select the Framework as .Net 8.0 and click on the Create
button.

Additional information

Blazor WebAssembly Standalone App ¢

Figure 1.7: Framework Selection

Step 5: Now, run the application using F5 or click here on Visual
Studio.

¥~ B
Imports.razor = X A
let.Http.Json

t.AspNetCore.Components. Forms
: rtlor ting

firtualization
sembly .Http

HelleoWorld
HelloWorld. Layout

Figure 1.8: Blazor App
You will see the following output:

Hello, world!

BRI B0 ORI e B0

& How in BLADOr working For you'? e take our bosd sunvry and bell us what you Fan

Figure 1.9: Output

Congratulations on creating the Hello world application. As you
can see, it is very straightforward to create a Blazor
WebAssembly application using Visual Studio 2022.

If you have a low configuration system and you want a very
lightweight development experience, then you can choose Visual
Studio (VS) Code.

It is a lightweight open-source code editor. It will work on all
platforms.

Creating Blazor WebAssembly Using VS
Code

The following are the steps to create Blazor WebAssembly using
VS Code:

Step 1: Install the VS Code on your system.
Step 2: Open the VS Code in your working folder as follows:

|

©

“ VSCODEDEMO

Recent

Figure 1.10: VS Code

Step 3: Open the terminal as shown in the following figure:

= WHSLODEDEMO

Figure 1.11: VS Code Terminal

Step 4: Write the command for creating a Blazor WASM
application as follows:

dotnet new blazorwasm -n HelloWorld

Walkthroughs

*

Started with VS Code

Learn the Fundamentals
Recent
Boost your Productivity
TERMINAL

> dotnet new blazorwasm

Figure 1.12: VS Code Command

Step 5: Go to the application folder.

TERMIMAL

PS D:\WasmBook\VSCodeDemo> cd HelloWorld]]

Figure 1.13: VS Code Command

Step 6: Execute the dotnet build command on the terminal as
shown in the following figure:

Figure 1.14: VS Code Build

Step 7: Now, execute the dotnet run command.

TERMINAL

@ Warning(s)
@ Error(s)

Time Elapsed ©0:00:84.51
PS D:\WasmBook‘\VSCodeDemo\HelloWorld> dotnet run
Building...
: Microsoft.Hosting.Lifetime[14]
Now listening on: http://localhost:5668
: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
Microsoft.Hosting.Lifetime[9]
Hosting environment: Development
Microsoft.Hosting.Lifetime[@]
Content root path: D:\WasmBook\VSCodeDemo\HelloWorld

Figure 1.15: VS Code Run

Step 8: If you are not getting the https port, then you can run
this command on the terminal as follows:

dotnet dev-certs https --trust
dotnet watch run --urls https://localhost:5001

Note: You can provide any port number. For demo purposes, let
us give it as 5001.

« O 3 localhost

HelloWorld

A tom Hello, world!

Waelcoma to your now app.

How is Blazor working for you? Please lake our brel survay and tell us what you think.

Figure 1.16: VS Code Output

As you can see in both approaches, creating a Blazor application
using Visual Studio 2022 is very straightforward. If you are a
beginner, then you can choose Visual Studio 2022.

Project Structure in Blazor WebAssembly
8.0 Application

Let’s open our Hello World Project in Visual Studio 2022.

Solution Explorer
A o0~ % F=
Search Solution Explorer (Ctrl+;)
= Solution 'HelloWorld' (1 of 1 project)
4 S1HelloWorld
& Connected Services
#& Dependencies
ad Properties
wwwroot
B3 Pages
B3 Shared

[@ _Imports.razor
[@ App.razor

c# Program.cs

Figure 1.17: Blazor Project
As you can see, we have the following folders and files:
* wwwroot
* Pages
Shared

e Imports.razor

e App.razor

e Program.cs
Let us look at each one of them:

* wwwroot Folder: It is used for storing CSS, JavaScript, Images
and Static Content files like html and json data files.

2 wwwroot
4 [css

By
>

B3 bootstrap

» B open-iconic
1 app.cs
4 [sample-data
0l weather.json
7] favicon.png
£% icon-192.png

..} index.html

Figure 1.18: Blazor Project wwwroot

e Pages: It is used for storing razor component files. We will
deep dive into this topic in the next chapter.

4 [Pages
[@ Counter.razor
[@ FetchData.razor
[@ Index.razor

4 [Shared

b [@ MainLayout.razor

[&) NavMenu.razor
[@ SurveyPrompt.razor

&) Imports.razor

(@) App.razor

.
L

c# Program.cs

Figure 1.19: Blazor Project Page

e Shared: It is used for storing shared components, which can
be reused in the entire application.

4 BB Shared

[@ MainlLayout.razor

[@ NavMenu.razor

[@ SurveyPrompt.razor

Figure 1.20: Blazor Shared Folder

In this folder MainLayout, NavMenu shared components are present
that can be used for the entire application.

e _Imports.razor: It is used for storing all global namespaces,
which can be applied to an entire application.

Imports.razor = X
System.Net.Http
System.Net.Http.Json
Microsoft.AspNetCore.Components.Forms
Microsoft.AspNetCore.Components.Routing
Microsoft.A re.Components.We
Microsoft.AspNetCore.Components.Web.Virtualization

Microsoft.AspNetCore.Components.WebAssembly.Http
Microsoft.JsI

HelloWorld

HelloWorld.Shared

Figure 1.21: Blazor Import Razor

e App.Razor: It is a special file in the Blazor application, which is
used to serve as the root component of the application (refer
to Figure 1.21). The app.razor file defines the layout and
structure of the application, including the navigation and the
content that is displayed on each page. It is responsible for
rendering the initial user interface of the application.

In the Blazor WebAssembly application, the app.razor file is
compiled into a JavaScript file that runs in the user’s web
browser. In the Blazor Server application, the app.razor file is
compiled into a .NET assembly that runs on the server. It can
also be used to define global CSS styles and other resources

that are used throughout the application. Overall, the
app.razor file is a key component of a Blazor application, and
it is responsible for defining the structure and behavior of
the user interface.

Figure 1.22: Blazor App Razor

e Program.cs: It is one of the important files of the Blazor
application, which contains the entry point of the Blazor
application.

Figure 1.23: Blazor Program.cs

It is used to configure the application’s hosting environment,
services, and middleware. In a Blazor WebAssembly application,
the program.cs file typically contains code to create a new
instance of the WebAssemblyHostBuilder class and configure it with
the necessary services and middleware. This includes registering
the application’s services, configuring the HTTP client, and
adding any required middleware components.

The program.cs file is responsible for setting up the application’s
hosting environment, which includes defining the server or client

hosting mode, configuring the application’s logging, and setting
up any required authentication or authorization services.

Overall, the program.cs file plays a key role in configuring and
bootstrapping a Blazor application, and it is an essential file to
understand while working with Blazor application.

Conclusion

In this chapter, we saw what Blazor is, why we should learn the
Blazor web application, and what are the advantages and
disadvantages of the Blazor WebAssembly application. We also
saw different types of Blazor applications.

Blazor WebAssembly 8.0 is one of the leading, super-fast, and
most modern web application development frameworks. It saves
30%-40% development and support time as compared to other
competitor single page application(SPA) web development
frameworks.

We saw how to create a “Hello World’’ Application using Visual
Studio 2022 and VS Code. We also saw the project structure of
the Blazor WebAssembly application. In the next chapter, we will
discuss the basic and advanced concepts on Blazor component.

References

Host and deploy ASP.NET Core Blazor WebAssembly | Microsoft

Learn (https://learn.microsoft.com/en-us/aspnet/core/blazor/host-
and-deploy/webassembly?view=aspnetcore-7.0)

Multiple Choice Questions

1. Blazor WebAssembly run on?

a. Client browser
b. Server

c. Cloud machine
d. None

2. What does WASM stand for?

https://learn.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=aspnetcore-7.0

a. WebAssembly

b. WebActionScript Markup
c. WebAsset Scripting Model
d. WebAPI Service Module

3. Is WebAssembly faster than JavaScript for computationally
intensive tasks?

a. Yes
b. No
c. It depends on the specific task

4. Can we run Blazor application on all platforms?

a. Yes
b. No
c. Only on specific platforms

5. Is Blazor open-source project?

a. Yes
b. No
c. Only the documentation is open source

Answers
1.

B W
v U N o o

o

CHAPTER 2
Razor Components

Introduction

This chapter covers the Blazor component, which is the
building block of the Blazor application. We will discuss all
the basic and advanced concepts on Blazor component with
sample code.

Structure
This chapter covers the following topics:

e Introduction to Blazor component

e Creating a Blazor Component

 Razor Component Lifecycle

 Parameters in Blazor Component

« Data Binding in Blazor Component

» Passing Data from Parent to Child Component

e Passing Data from Child to Parent Component

e Nested Blazor Component

» Code Segregation Approach in Blazor Component
» Styling Component in Blazor

Introduction to Blazor Component

The Blazor component is the building block of the Blazor
application. It is a self-contained chunk of user interface (Ul),
like a login page, popup screen, and so on.

We cannot imagine a Blazor application without components.
If you have worked with Angular or React applications, you
might already be familiar with component-driven
applications.

Blazor is a totally component-driven application, with each
component being a combination of Razor, Html, and C#
code. Components are self-contained and reusable,
encapsulating their own logic and data. They can be
composed together to build larger user interfaces.

The main benefits of a component-based application are
code sharing across multiple applications, nested Ul design,
code reusability and a clean application design.

Creating_a Blazor Component

The following are the steps to create a Blazor Component:

Step 1: Open Visual Studio 2022 and create a Blazor
WebAssembly application.

Create a new project

Recent project templates

Figure 2.1: Project template
Step 2: Select the framework as .NET 8.0.

Additional information

Figure 2.2: Project wizard

Step 3: Create the Blazor application.

» b hops - - -

Blarorl cemponent

Figure 2.3: Project Files

In the following figure, all pages and the shared folder
contain components that consist of directive, markup, and
logic.

Apage "/counter" DIRECTIVES

<h1>Counter</hi> MARKUP
<p>Current count: @currentCount</p>

<button claas-'btﬁ hisprimary™ @onclick="IncrementCount”>Click me</button3

"

Acode { ot LOGIC
int currentCount = 0; 1

void IncrementCount() =~

{
}

currentCount++;

Figure 2.4: Data binding syntax

Razor Component Lifecycle

Whenever we create a component, it will derive from
ComponentBase.

ComponentBase implements Icomponent, which Blazor uses to
locate components throughout the project. ComponentBase
contains important lifecycle methods.

As you work with components, you will notice that the
ComponentBase class provides a number of virtual methods that
can be overridden to hook into various points during the life
cycle of a Razor component.

ha & §onbi ¢ . .
= “ghrosoltAspietCore Components. Componenidase

spietCore.Components ;
: IComponent, IHandleEvent, IHandleAfterRender
_renderFragment ;

nderHandle;

uedRender;

terRender;

» Task.CompletedTask;

OnParametersSet()

Task OnParametersSetAsync()

» Task.CompletedTask;

StateHasChanged()

Figure 2.5: Component lifecycle
These points include:

« Whenever parameter values are set.
« When the component is initialized.
e Each time the component is rendered.

Let’s have a detailed explanation of these points here:
« When Parameter Values are set

The first hook in the component life cycle is available when a
component’'s parameters receive their values from the
parent component.

The virtual methods that can be overridden at this point are
OnParametersSet and its async method, oOnParametersSetAsync.
These methods are called when a component is first

initialized and each time new or updated parameters are
received from the parent in the render tree.

Let’s consider a simple example.
Create the Parent component.

<l=-=- Parent Component -->
@page "/home"
<hl>Hello, world!</hl>
Welcome to your new app.
<Counter count=theCount />
<button @onclick=incrementCount:Click</button:
Ecode {
int theCount { get; set; } = 1;
vold incrementCount()

{
}

theCount++;
}

Create the Child component.

<!-- Child Component -->
@page "/counter"

<hl>Counter</hls
<prfimessage</p>
@code {
[Parameter]
public int count { get; set; } = @;
string? message { get; set; }
protected override void OnParametersSet()

{
if (string.IsNullOrEmpty(message)})
{
message = "Parameters set for the first time";
}
alse
{
message = "Parameter reset to " + count;
¥
base.OnParametersSet();
}

}

Whenever you run this application, you will see the following
output: "Parameters set for first time".

localhost

BlazorComponent

Hello, world!

Welcome to your new app.

Counter

Parameters set for the first time

Click

Figure 2.6: Output

When you click the ctick button, you will see the message:
"Parameter reset to 2".

r- E;-' BlazorComponent

localhost 7

BlazorComponent

Welcome to your new app.

Counter

Parameter reset to 2

Counter

S Felch dala

Click

Figure 2.7: Output

This demonstrates that the method is called after parameter
values are set.

« When the Component is Initialized

Once the component has received its initial parameters from
its parent in the render tree, the onInitialized and
OnInitializedAsync methods are called.

This is the point where you would typically make calls to Web
API services to obtain data for the component before it can
be rendered.

Here is a simple code snippet that demonstrates this:

protected override asyne Task OnInitializedAsyne()

{

forecasts = await Http.GetFromlsonAsync<WeatherForecast[]>
{"sample-data/weather.json");

}

 After the Component has been Rendered

At this point, The onAfterRender and OnAfterRenderAsync
methods are called after each render of the component.

At this point, element and component references are
available, so this phase is ideal for performing the
initialization of JavaScript resources that depend on DOM
elements.

Both methods take a bool named firstRender as an argument.
This is set by the framework and is true when the component
iIs rendered for the first time. We can use this flag to prevent
one-time initialization being executed unnecessarily when
the component is re-rendered.

Here is the code snippet for calling the JavaScript resource
OnAfterRender:

@inject IJSRuntime 15
JsObjectReference module;
protected override void OnAfterRender(bool firstRender)
{
if(hrstRender)

{

module = await J5.InvokeAsync<JSObjectReferencex>("import",
"./is/examplelsInterop.js™);

}
}

Use OnAfterRenderAsync to call asynchronous methods.

protected override Task OnAfterRenderAsync(bool firstRender)

{
}

T

 Prevent Rendering

In this phase, the ShouldRender method is called. This method
returns a bool that determines whether a component should
be re-rendered. The component will still render at least once.
We can use this method to suppress Ul refreshing.

@page "/shouldrendertest”
<hl>Counter</hl>
<prCurrent count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</but-
ton>

ficode {
private int currentCount = @;
private bool shouldRender;
protected override bool ShouldRender() => shouldRender;
private void IncrementCount()

{

currentCount++;
shouldRender = currentCount % 2 == 8;

}

In the following demo, the on-button click counter will

increment by 1, but the Ul will only refresh on the next click
event.

tps://localhost:7175/test123

BlazorComponent

Counter

Current count: 4

Counter

Fetch data

Figure 2.8: Output

StateHasChanged()

This method is not a part of the component lifecycle, but it is
closely related to it. We use this method to inform the Blazor
runtime that the state of the component has changed and
that the component needs to be re-rendered.

It is called after any lifecycle method has been called and
can also be invoked manually to trigger a re-render.

Let’'s take one simple example.
@code {

private WeatherForecast[] forecasts;

protected override async Task OnInitializedasync()

{

var httpClient = new HttpClient();
forecasts = await httpClient.GetFromlsonAsync<WeatherForecast[]>
("sample-data/weather.json");
StateHasChanged();
}
}

In the preceding code snippet, we are forcefully refreshing
the Ul to re-render to fetch the latest data.

Parameters in Blazor Component

In Blazor components, parameters are a way to pass data
from a parent component to a child component. Parameters
are defined as public properties or fields in the child
component and can be assigned values by the parent
component when the child component is rendered.

There are two types of parameters in Blazor components,
including:

e Non-cascading parameters
e Cascading parameters

Non-cascading Parameters

Non-cascading parameters are explicitly passed from a
parent to a child component and can be defined as public
properties or fields in the child component.

To pass a non-cascading parameter to a child component,
the parent component includes the parameter in the child
component’s markup using the @ character followed by the
name of the parameter, such as: <ChildComponent
MyParameter="@myValue" />

Let’s take a look at an example of non-cascading parameters
in our sample project.

Go to the SurveyPrompt.razor component.

SurveyPromptrazor = *

Figure 2.9: Non-cascading parameter

As you see in the preceding figure, Title public Property has
been created with the Parameter attribute and has been
called on @Title in HtmI UI.

This means that whenever the parent component passes a
specific title to the child component, it will be read and
rendered on the HTML Ul using @Title.

FetchDatarazor + X Indexrazor « X

Index
Hello, world!

Welcome to your new app.

="How 1is

Figure 2.10: Parameter passing syntax

Here index.razor is the parent component, and we are
passing Title as a string to the Child component.

To see the output, you can run the application.

(&) ht localhast

BlazorComponent

Hello, world!

YWilCome 10 your new app

How is Blazor working for you?

Figure 2.11: Output

In the preceding figure, we see that by using the @Parameter
attribute, we are passing Title as a string from the parent
component (that is, Index.razor) to the child component (that
IS, SurveyPrompt.razor). We have nested the child component
within the parent component.

Cascading Parameters

Cascading parameters allow data to be passed down through
a hierarchy of components, without the need to pass the
data explicitly from parent to child.

A component can define a cascading parameter using the
[CascadingParameter] attribute. The parent component can
then provide a value for the parameter by wrapping the child
component in a CascadingValue component.

Let’s create a simple example of cascading parameters by
following these steps:

Step 1: Create two child components with cascading
parameters as follows:

Blaror omponent

Figure 2.12: Cascading parameter

The complete code snippet for the Childl.razor page is as
follows:

<h3>Childl</h3>

<p>Parent name: @ParentMame</p>

@code {

[CascadingParameter] string? ParentMame { get; set; }

}

For Child2.razor component:
<h3>Child2</h3>

<p>Parent name: @ParentMame</p>

@code {

[CascadingParameter] string? ParentMame { get; set; }

}

Step 2: Go to the parent component, that is, Index.razor and
pass the cascading values to all child components as follows:

@Jage “,l'"'
@using BlazorComponent.Pages.Cascading

<PageTitle>Index</PageTitle>

<hl>Demo of Cascading Parameter</hl>
<hr />

<CascadingValue Value="{@Name">
<Childl></Childl>
<Child2></Child2>

</CascadingValue>

@code {
5tring Name = "Index Page";

}
Step 3: Run the application.

= () ol localhast

BlazorComponent

Demo of Cascading Parameter

Child1

Parent name: Index Page

Child2

Paront namo: Indox Page

Figure 2.13: Cascading parameter demo

In the preceding figure, we can see that we are passing the
"Index Page" from the parent page with the help of a
cascading parameter. This value is then passed to all child
components.

Data Binding_ in Blazor Components

Data binding in the Blazor components is one of the core
concepts when working with Blazor applications. We cannot
create any Blazor application without data binding. Whether

we are creating an entry screen or displaying data on a grid,
we need to do data binding.

In Blazor, there are two types of data binding, including:

e One-way data binding
» Two-way data binding

One-Way Data Binding

In this approach, data communication happens in one way.
One-way bindings have a unidirectional flow, meaning that
the value is updated only one time.

Let's take a simple example to demonstrate one-way data
binding.

page "/Sfonewaybinding"
<hl>@Title</hl>

@code {
private string Title { get; set; } = "This is one way databinding
dema” ;

}

In the preceding code snippet, we are binding the title to
@Title. This binding occurs only once.

localhost

BlazorComponent

A rome This is one way databinding demo

Figure 2.14: One-way data binding

We will also see one more example of one-way data binding
on Event click.

@page "/Sonewaybinding2"
<h1>@Title</hl>

<button @onclick="UpdateTitle":>Update Title</button:

@code {
private string Title { get; set; } = "Hello, World!";

private void UpdateTitle()

{
Title = "Hello, Updated text message!"”;

}
}

In the preceding code snippet, whenever we click a button,
the new text will be bound to the Title. So, in this demo, we
saw that value will be updated in one direction on Click
Event.

localhost

BlazorComponent

e (Hello, Updated text message!
+ Update Title

Figure 2.15: Output

One-way data binding

Event or User Action

.,

Value Updated

¥

New Value Rendered

Figure 2.16: One-way binding workflow

Two-Way Data Binding

Two-way data binding has a bidirectional flow, allowing
values to be updated from two directions. The most suitable
scenario to use two-way data binding is in forms, although
we can use it anywhere in the application wherever we need
two-way data flow.

Two-way binding is achieved using the @bind directive in
Blazor.

Let’'s see the basic demo of two-way data binding.

@page "/TwoWayDataBinding"
<h3>TwoWayDataBinding</h3>

<hl>@Title</hl>
<input @bind="@Title" />
f@code {

private string Title { get; set; } = "Hello, World!";

}

In the preceding example, we saw that when we update on
textbox, it will also update on the HTML Ul screen.

localhost 717

BlazorComponent

TwoWayDataBinding

Hello, World!

Hello, World!

Figure 2.17: Two-way data binding

Two-way data binding can be achieved using the following
bind attributes:

e @bind=Property

e @bind-Value=Property

e @bind-Value:event="onevent"

We will now take a look at another example of two-way
binding on Event.

@page "/TwowayBindEvent”
<h3>TwowayBindEvent</h3>
<hl>@Title</hl>

<input @bind-value="Title" @bind-value:event="oninput” />

@code {
private string Title { get; set; } = "Hello, World!";

}

In the preceding code snippet, we saw that whenever we
change any text in the preceding textbox, it will keep
updating the Ul in real-time using @bind-value:event

localhost 71

BlazorComponent

A Home TwowayBindEvent

Vigniaminl Chandradev

Chandradev

as Feich data

Figure 2.18: Output

Passing Data from Parent to Child

Component

As discussed previously, in Blazor, we can pass data from
parent to child components using the @parameter attribute.

Step 1: Create the Child component with [Parameter]
attribute.

<div class="alert alert-secondary mt-4">

@Title

<fdiv>

@code {
// Demonstrates how a parent component can supply parameters
[Parameter]
public string? Title { get; set; }

b

Step 2: Call the child component in the parent component
and pass the parameter as follows:

Debug - Any CPU = P https = [>

FetchDatararor + X Indexrazor = X

Index

HE'].J.‘:a"_; Il"u.'::'r-"]n"j !

Welcome to your new app.

Figure 2.19: Parent to child syntax

In the preceding figure, we are passing the title parameter as
a string, and it will render the Ul on the parent component.

Hello, world!

Wialcoma 10 your new app

How is Blazor working for you?

Figure 2.20: Output

Passing Data from Child to Parent
Component

We can communicate child components to parent
components using EventCallback.

For this demo, we will create a child component with Textbox
as input and a button. Whenever we pass input data into the
textbox and click the button, the input text will be displayed
on the parent component.

Step 1: Create the child component with EventCallback as a
string.

<div>

<input type="text" @bind="{@Emessage" />

<button @onclick="DisplayMessage">Click Here</button:
< fdiv>

@code {

[Farameter]

public string InputParam { get; set; }

[Parameter]

public EventCallback<string> OnClickCallback { get; set; }

private string message;
private async Task DisplayMessage()

{
}

await OnClickCallback.InvokeAsync(message);
}
Step 2: Create the parent component.
@page "/"
<PageTitle>Index</PageTitle>

<surveyPrompt InputParam="message" OnClickCallback="@ShowMessage" />
<p>@message</p>

f@code
{

private string message;

private void ShowMessage(string _message)

{
}

message = _message;
¥

Now, run the application.

lacalhost 71

BlazorComponent

A Home Parent
Child
Chandradey

Chandradav

+ Counter

Figure 2.21: Output

In this demo, we have demonstrated that by using
EventCallback, we can communicate from the child component
to the parent component.

Nested Component in Blazor

Creating nested components in Blazor is very simple and
straightforward.

We need to create parent and child components, as shown in
the following figure.

All the child components need to be nested inside the parent
component.

Childl Component

Parent Component

Childl Component

Child2 Component

Child2 Component

%,

Figure 2.22: Nested component

Let’s create a simple sample code.

Create two child components.
<h3>ChildCompl</h3>
<div class="alert alert-secondary mt-4":

@Title</strong:
<fdiv>

@code {

[Parameter]

public string? Title { get; set; }
¥

Child 2 Component:

<h3>ChildComp2</h3>

<div class="alert alert-secondary mt-4">

@Title
<fdiv>

@code {
[Parameter]
public string? Title { get; set; }

h

Create the nested parent component.

ipage "/nested”
<h3>Nested Demo</h3>
<hr [
<div>
<ChildCompl Title="This is Childl Component"»</ChildCompl:
<ChildComp2 Title="This is Child2 Component":</ChildComp2:
</div>

Now, run the application, and the output will be as follows:

o] localhost

Nested Demo
ChildComp1
This is Child1 Component

ChildComp2

This is Child2 Component

Figure 2.23: Output

Code Segregation Approach in Blazor
Component

In Blazor, we can write C# and Razor code using the
following two approaches:

e Inline approach
e Code-behind approach

Inline Approach
Let’s take the example of the inline approach.

@page "/statehaschanged"

<h3>StateChanged</h3>

<p>Current count: @currentCounte</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button:

@code {

private int currentCount = 8;

private async Task IncrementCount()

1

currentCount++;
StateHasChanged();

}

In this code snippet, we can see that C# code and Razor
code are present in the same file. By default, blazor supports
the inline code approach. However, if the application is
growing and creating enterprise-level applications, this
approach is not recommended.

Code-Behind Approach

Using this approach, we write Razor code and C# code in two
separate files. So, it will look more organized and cleaner. As
the application grows, it will be easier to maintain the code.

In this approach, create the razor component, for example,
Hello.Razor, and write the code as follows:

@page "/hello”
<h3>This is Code behind razor page demo</h3>

<p>Message from C# Code Block: @msg</p>
<button @onclick="SayHello">Click Here</button>

Create the C# partial class as Hello.Razor.cs.

namespace BlazorComponent.Pages.CodeSeperation

{

public partial class Hello

{
public string msg = string.Empty;
private void SayHello()

{
msg = “Hello Blazor";

}
}

By segregating the Razor and C# code behind two files, the
code looks neater and cleaner as compared to the inline
approach.

localhost

BlazorComponent

This is Code behind razor page demo

Message from C# Code Block: Hello Blazor

Click Hero

Figure 2.24: Output

Styling Component in Blazor

Whenever working on a Blazor application, we receive a
requirement to write CSS classes.

There are various approaches to writing CSS classes in
Blazor, such as:

e Shared/Global CSS

« Embedded CSS

e External CSS

e Isolated CSS

Shared/Global CSS

To implement this approach, we need to write a ¢ss class on
app.css in Blazor WebAssembly and /wwwroot/css/site.css in
Blazor Server.

wwwroot
B3 css
> B3 bootstrap
P B open-iconic
1 app.css
b B3 sample-data

favicon.png

=
3

| icon-192.png

Y index.html

Figure 2.25: CSS file path
Embedded CSS

In this approach, we write the CSS class in the Razor
component itself, which is also known as inline css class.

Bpage "/mystyle"
<h33Inline Style Demo</h3>

<p class="parastyle"> This is test message</p>

<style>
.parastyle
{
background-color:green;
font-size:22px;
}
</style:

localhost

Inline Style Demo

Figure 2.26: Output

External CSS

In this approach, we store all CSS classes in external CSS
files and use them in our components. This is very similar to
the Asp.net WebForm approach.

<link href="/css/external-css-file.css” rel="stylesheet" />
<h2 class="external-style":>ExternalCssStyle.</h3>»

Isolated CSS

In this approach, we create an isolated CSS class file with the
component name and write the CSS class there. This CSS
class will only apply to the specific component. So all
unnecessary CSS classes will not get loaded on the browser.
This can improve the performance of the page load.

<YourComponent>.razor.css

4 [Styleling

4 [IsolatedCSS.razor

') IsolatedCSS.razor.css

Figure 2.27: |solated CSS

Write the CSS class as follows:

.parastyle {
background-color: green;
font-size: 22px;

}

hi {
color: red;
font-style: italic;
text-shadow: 2px 2px gray;
}

Now, run the application, and you will see the output as
follows:

St root folder Dot thow agan

Isclated CSS Demo =
Meswsimossage.] :

Figure 2.28: Output

In this approach, CSS classes are applied at runtime of the
application.

Conclusion

In this chapter, we covered all the basic concepts related to
components, which are essential while developing a Blazor
WebAssembly application.

In the upcoming chapters, we will be using these component
concepts. If you have a clear understanding of these basic
concepts, it will be much easier to develop complex Blazor
projects.

References
ASP.NET Core Razor components | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is a Blazor component?

a. A reusable piece of Ul that can be rendered on a web
page

b. Class that contains all of the logic for a web page

c. An interface for defining the structure of a web page

2. What are the two types of Blazor components?

a. Razor components and code-behind components
b. Server-side components and client-side components
c. Class components and function components

3. What is the syntax for defining a Blazor component?

a. @component MyComponent { ... }
b. <MyComponent> ... </MyComponent>

C. @code { ... }
4. What is the purpose of the @code block in a Blazor
component?

a. To define the HTML markup for the component
b. To define the CSS styles for the component

c. To write the C# code that controls the behavior of
the component

5. What is the difference between a Razor component and
a code-behind component?

a. Razor components use HTML markup and C# code in
the same file, while code-behind components

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

separate the HTML markup and C# code into
different files.

b. Razor components are rendered on the client side,
while code-behind components are rendered on the
server side.

c. Razor components are used for simple Ul elements,
while code-behind components are used for more
complex Ul elements.

6. What is the purpose of the @inherits directive in a code-
behind component?

a. To specify which class the component should inherit
from

b. To specify which HTML element the component
should render as

c. To specify which CSS styles should be applied to the
component

7. How can you pass data from a parent component to a
child component in Blazor?
a. Using the @parameter directive
b. Using the @inject directive
c. Using the @component directive

8. What is the purpose of the @on{EventName} directive in a
Blazor component?

a. To specify a method that should be called when a
certain event occurs

b. To specify a CSS class that should be applied when a
certain event occurs

c. To specify a data binding that should be updated
when a certain event occurs

9. What is the difference between a local parameter and a
CascadingParameter in Blazor?

a. A local parameter is passed directly to a child
component, while a CascadingParameter iSs passed
through a chain of parent components.

b. A local parameter is defined in the same component
as it is used, while a CascadingParameter is defined in a
parent component.

c. A local parameter can only be used once in a
component, while a CascadingParameter can be used
multiple times.

10. How can you handle user input in a Blazor component?
a. Using the @on{EventName} directive to specify a

method to handle the event

b. Using the @bind directive to create a two-way data
binding between a property and a form field

c. Using the @code block to write JavaScript code that
handles the user input.

Answers

© 00N A WNE
Q0 Y VY YN T

o
o

orb

CHAPTER 3
Routing_and Navigation

Introduction

This chapter will cover routing and navigation in the Blazor
application, which is a very important concept while
developing any web application. We will discuss all the basic
and advanced concepts of Routing and Navigation with
sample code.

Structure
This chapter covers the following topics:

e Introduction to Routing and Navigation
e Router Components

» Route Parameter

» Route Constraints

e Optional Parameters

» Route Overloading

» Navigation in Blazor

e Forcing a Page Reload

Introduction to Routing_and
Navigation

Routing and Navigation is an essential part of any web
application framework. Without this, we cannot develop any
web application. Routing is the concept of navigating from
one page to another on a website. Routing in Blazor involves
mapping URLs to components or pages in your application.

Navigation in Blazor refers to the process of
programmatically navigating between different components
or pages within the application.

Now, we will see how routing works in the Blazor application.

Router Components

Whenever we type any page URL in a browser such as:
https://localhost:7224/counter

The preceding URL will go to the router component of the
app.razor file, which will scan all the razor pages in the
current assembly.

(App). Assembly™
="routeData"
"grouteData™
="@routeData”

Not found
" ['_- - Jout :] ™

role="alert“>Sorry, there's nothing at this address.

Figure 3.1: Route Component

If it is found in the assembly, then Routeview will render the
given component with the Default page Layout; in the
preceding case, it will render Counter Component.

If you enter:

https://localhost:7224/counterl23

It will search for conter123 in the assembly file, which is
unavailable in the application. In this scenario, it will go to
the NotFound Section and display the following message:

Sorry, there’s nothing at this address.

& O) () https://localhost:7224/Counter123

) aws-net-guides/Ru... D Bookmarks [7] MyFav [) AspnetCore [] GoodPost [7)

Blazor_Routing

A Home Sorry, there's nothing at this address.
ne

+ Counter

a= Fetch data

Figure 3.2: Not Found

Route Parameter in Blazor

Route parameters are placeholders for values you want to
pass to a specific component via the URL. The placeholder is
represented in a route template within curly braces such as {
Id }.

The parameter name must match a public property within
the component that is decorated with the [Parameter]
attribute

Let’'s see the basic demo code snippet for the route
parameter:

@page "/Jusers/{userId}"
<h3>User Details</h3>
<p>User ID: @userId</p»

ficode {

[Parameter]
public string? userld { get; set; }

In the previous code snippet, we see there are public
properties of UserId as a parameter and within curly braces: {
UserId }.

Whenever we pass Userld on the browser, it will read the
route parameter value and display it on the page, as shown
in the following screenshot:

n:] L_::-" Blazor_Routing W +

localhost 7

aws-net-guides/Ru... E] Bookmarks [l MyFav [l AspnetCore [l Good Post [l Useful Site URL

Blazor_Routing

User Details
User ID:[123

Counter

Fetch data

Figure 3.3: Found Path
The key points of route parameters are as follows:

» By default, all route data values are strings.

 Route parameters are placeholders for values. Blazor will
bind the parameter value to the public property
automatically.

If you want to work with different data types, you must apply
a constraint to the parameter in the route template. You can
do this by adding a colon, followed by the data type that you
want to work with:

There are a large number of constraints, but Blazor Supports

@page “/fdetails/{id:int}"
<hl>Details</hl>
Beode{

[Parameter] public int Id { get; set; }

}

only supports the following constraints.

Constraints

Descriptions

Example

bool

Matches a Boolean value

{isActive:bool}

int

Matches a 32-bit integer value

{id:int}

datetime Matches a DateTime value {dob:datetime}
decimal Matches a decimal value {price:decimal}
double Matches a 64-bit floating-point value {latitude:double}
float Matches a 32-bit floating-point value {x:float}

long Matches a 64-bit integer value {y:long}

guid Matches a GUID value {id:gquid}

Table 3.1: Constraints

Optional Parameters in Blazor

In Blazor, you can define optional route parameters by
specifying a default value for the parameter, or by using a
nullable data type. This allows you to have routes that can

match with or without a specific parameter value.

To define an optional route parameter in Blazor, you must
provide a default value for the parameter in the @page
directive of a Blazor component. Here’s an example using a

nullable data type:

@page "fusers/{userld:int?}"
<h3sUser Details</h3>

@if {userId.HasValue)
{

}

else

{
}
@cade {

[Parameter]
public int? userId { get; set; }

<p>User ID: @userId.Value</p>

<prNo user ID provided</p>

}

In the preceding example, the @page directive specifies a
route pattern /users/{userId:int?}.

The int? indicates that the userId parameter is of type int,
and it is optional (? denotes optional).

It will not be mandatory to pass it as a parameter. Userld is
an optional parameter.

@ @ @ B8lazor_Routing x I
< C M () https://localhost:7224/users

Blazor_Routing

A Home User Details

No user ID provided

+ Counter

= Fetch data

Figure 3.4: Not Found Path

Route Overloading

Blazor does not support route overloading in the same way
as some traditional server-side frameworks. Route
overloading typically refers to defining multiple routes with
the same URL pattern but different HTTP verbs or other
parameters to differentiate them.

In Blazor, the @page directive is used to define a route for a
specific component.

The route pattern specified in the @page directive determines
when the component is rendered based on the URL.

To achieve similar functionality as route overloading, you can
use parameterized routes and handle the differentiation
within the component itself.

Here is the code snippet for route overloading:

fpage “/fusers/{userId:int}"
@page "/users"

<h3:>User Details</h3>

@if (userId.HasValue)

{

<h4:User Details</h4:>

<p:=User ID: @userld.Value</p>
}

else

{
<h4>All Users</hd>
<!-- Display all users --:

}

fcode {
[Parameter]
public int? userlId { get; set; }

}

Here are two @page directives: "/users/{userId:int}" and
“/users".

The first directive matches URLSs like /users/123, where userld
is an integer.

The second directive matches the base URL /users.

When a user navigates to /users/123, the component will
display the user details for the provided userId.

If @ user navigates to /users (without a specific userId), the
component will render the section displaying all users.

@ @ @ Blazor_Routing x =

https://localhost:7224/users
- R (3 https://localhost:7224/

Blazor_Routing

A Home User Detalls
All Users

+ Counter

Fetch data

Figure 3.5: Route Overload

Navigation in Blazor

In Blazor, navigation refers to the process of moving
between different pages or components within a web
application. Blazor provides several ways to perform
navigation, including programmatic navigation and
declarative navigation.

e Programmatic navigation: Programmatic navigation
allows you to navigate to different pages or components
in response to user actions or events. To perform
programmatic navigation in Blazor, you can use the

NavigationManager service, which provides methods for
navigating within your application. Here’s an example of
programmatic navigation wusing the NavigationManager
service:

@inject NavigationManager NavigationManager
<button @onclick="NavigateToPage"»>Go to Another Page</button:

@code {
private void NavigateToPage()

{

NavigationManager.NavigateTo("/anotherpage");

}
¥

In this example, when the button is clicked, the NavigateToPage
method is executed, which uses the NavigationManager tO
navigate to the sanotherpage URL. You can provide relative or
absolute URLs depending on your navigation needs.

 Declarative navigation: Declarative navigation allows
you to define navigation links directly in your Blazor
markup using the NavLink component. The NavLink
component renders an anchor tag (<a>) that
automatically applies an active CSS class when the
associated URL is the current active URL.

Here's an example of declarative navigation using the
NavLink component:

<MavLink href="/users" class="nav-link">Users</NavLink>
<NavLink href="/products” class="nav-link">Products</NavLink>

In this example, two NavLink components are used to create
navigation links for the "Users" and "Products" pages. When
the associated link is clicked, Blazor handles the navigation
automatically.

We can also do navigation using html anchor tag as given in
the following syntax:

Users
Products

Forcing_ a Page Reload

In Blazor, you can force a page reload by utilizing the
NavigationManager service and its Reload method. The Reload
method is responsible for reloading the current page,
effectively refreshing the entire Blazor application.

@inject MWavigationManager NavigationManager

<button @onclick="RelcadPage">Reload Page</button:

@code {

private void ReloadPage()

{

NavigationManager.Reload();

}
}

When the button is clicked, the ReloadPage method is
executed, which in turn calls the Reload method of the
NavigationManager service. This will reload the current page
and refresh the entire Blazor application.

Please note that forcing a page reload in Blazor should be
used sparingly, as it disrupts the normal flow of the
application and may result in data loss or inconsistencies. It
is generally recommended to rely on Blazor's built-in
mechanisms for handling state and updating components
rather than relying on full page reloads.

Conclusion

In this chapter, we saw all the concepts of routing and
navigation of Blazor, which is common in Blazor Server and
Blazor WebAssembly. These concepts are very important
while working on the Blazor project. We also provided code
snippets to illustrate each concept. In the next chapter, we
will discuss Razor class library and its implementation.

References

« ASP.NET Core Blazor routing and navigation | Microsoft
Learn

e For source code:

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. Which directive is used to define the route pattern for a
Blazor component?

d. @route
b. @url
C. @page
d. @nav
2. How can you perform programmatic navigation in
Blazor?
a. Using the <NavLink> component
b. Using the NavigationManager service
c. Using the @route directive
d. Using the BlazorNavigation class

3. Which attribute is used to specify a route parameter in
Blazor?
a. [Route]
b. [NavParameter]
C. [Parameter]
d. [RouteParam]

4. How can you pass route parameters during navigation in
Blazor?

a. By using the @route directive

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

b. By calling the NavigateTo method with the parameter
value

c. By using the NavLink component with the parameter
value

d. By appending the parameter value to the URL

5. How can you access the current URL in a Blazor
component?

a. By using the @url directive

b. By injecting the NavigationManager service
c. By calling the GetCurrenturt method

d. By using the @page directive

Answers

1.

s
o o0 o0

d

w N

CHAPTER 4
Razor Class Library

Introduction

This chapter will focus on one of the cool features of Blazor,
that is code reusability. Using Razor Class Library, we can
use our Razor component in all Blazor type projects,
including Blazor Server, WASM, and MAUI Hybrid.

If we have a requirement to develop a product that should
work in all environments, then we can take advantage of
Razor Class Library. It will save 70% of development time
and money. We will also learn the advantages of Razor Class
Library.

Structure
This chapter covers the following topics:

e Introduction to Razor Class Library
Creating Razor Class Library Project
Sharing Code with Multiple Applications
Integrating Bootstrap in Razor Class Library
Creating NuGet Package of RCL
Advantages of Razor Class Library

Introduction to Razor Class Library

A Razor Class Library (RCL) in Blazor is a reusable
component library that contains Razor components, pages,
and other supporting files. It allows you to package and

distribute Ul components and resources that multiple Blazor
applications can consume.

T

\ /

\/
X

Blazor WASM This will work on all Mobile and
window Platefors

Blazor MAUI Hybrid
Blazor Server

Figure 4.1: Razor Class Library

Creating RCL and Sharing Code with
Multiple Application

We will create a simple POC project for the Class library
using Syncfusion Blazor Control and use it in Blazor Server,
Blazor WASM, and MAUI Blazor Hybrid application. Here is
the step-by-step process:

Step 1: Open the Visual Studio Project template and select
Razor Class Library:

Create a new project

Recent project templates

Figure 4.2: Class Library

Step 2: Give the Project Name as "RazorClassDemo":
Configure your new project

Razor Class L brar}.r c# Linux mac0s Windows Library

ChUsers\cprasad8\source\repos

Solution name (1)

| Place solution and project in the same directory

Figure 4.3: Project Name

Step 3: In the RazorClassDemo, add the syncfusion Controls
using NuGet Package Manager, as shown in Figure 4.4:

¥ Syncfusion.Blazor.Grid b,

{f] This package piowvides the funct

Figure 4.4: Syncfusion Grid

Note: Syncfusion is a@ very popular Blazor Control provider.
You can create a very interactive and rich Blazor project
using this library.

For more details about this, please refer to the following URL:

Blazor DataGrid Example | Grid Overview | Syncfusion
Demos

Step 4: Create the reusable Orders Component, as shown in
Figure 4.5:

ataGrid component and more,
Kazor Component...

MNew Item..

1 Item

MNew EditorConfi

Lelolo

iny licenses to, third-party packages.

Rename

Figure 4.5: Razor Component

Step 5: Write the code for populating the Syncfusion grid, as
shown in the following code:

@using Syncfusion.Blazor
f@using Syncfusion.Blazor.Grids

<div class="my-component">
<b*Syncfusion Blazor Grid Demo

<SfGrid DataSource="@0rders" /»

<fdiv>

ficade {
public List<Order> Orders { get; set; }

protected override void OnInitialized()
{
Orders = Enumerable.Range(l, 5).5elect(x => new Order()

{
OrderID = @ + X,
CustomerID = (new string[] { "ALFKI", "ANANTR", "ANTON",
"BLONP", "BOLID" })[new Random().Next(5)],
}).ToList();
}

public class Order

{
public int? OrderID { get; set; }

public string? CustomerID { get; set; }

}

Step 6: Now create Blazor Server, Blazor WebAssembly, and
Blazor MAUI Hybrid as separate standalone project as
follows:

Blazor Server:

Recent project templates

Figure 4.6: Blazor Server App

Blazor WebAssembly App:

Recent project templates

Figure 4.7: Blazor WebAssembly
Blazor MAUI Hybrid App:

Recent project templates

Figure 4.8: MAUI Blazor App

Now that we have created all the required projects, we are
going to consume the Razor Class Library Orders
Components.

Step 7: Add the project references as Razor Class Library in
all projects, including Blazor WebAssembly, Blazor Server,
and Blazor MAUI Hybrid.

Reference Manager - Blarcr\Wasm ? X

Figure 4.9: Project Reference

Step 8: For Blazor WebAssembly, go to Program.cs file and
register the syncfusion Control, as shown in Figure 4.10:

Figure 4.10: Program.cs

Add the CSS and JavaScript file in index.html page as follows:

Figure 4.11: Index.html

<link href="_content/Syncfusion.Blazor.Themes/bootstrap5.css”
rel="stylesheat" />

<script src="_content/Syncfusion.Blazor.Core/fscripts/
syncfusion-blazor.min.js" type="text/javascript"»</script»

File Change for Blazor Server Application:
Program.cs file:

Program.cs & X
&1 BlazorServerDemo
{4 BlazorServerDemo.Data;
Syncfusion.Blazor;

builder = WebApj tion.CreateBuilder(¥;
builder.Services.AddRazorPages();
* builder.Services. AddSeruer51deﬁlazur(}|
builder.Services.AddSingleton<W

bullder Services. Addbyncfu51on81a?ﬂ1(),f

= builder.Build();
-if (!app.Environment.IsDevelopment())
{

app.UseExceptionHandler("/Error");

app.UseHsts():
}

app.UseHttpsRedirection();

app.UseStaticFiles();

Figure 4.12: Program.cs

In Layout.html page:

Figure 4.13: Layout.html

<link href="_content/Syncfusion.Blazor.Themes/bootstraps.css”
rel="stylesheet" />

<script src="_content/Syncfusion.Blazor.Core/scripts/
syncfusion-blazor.min.js" type="text/javascript":></script:>

File Changes for Blazor Hybrid MAUI App
MauiProgram.cs:

MauiProgram.cs @ X

CreateMauiApp()

builder = Mau .CreateBuilder();
builder
UseMauiApp<App=()
.ConfigureFonts(fonts
{
fonts . AddFont("0OpenSans=R

builder.Services.AddMauiBlazorWebView();
f DEBUG
builder.Services.AddBlazorWebViewDeveloperTools();

cfusionBlazor():

Figure 4.14: MauiProgram.cs

In Index.html page:

Figure 4.15: Index.html

Step 9: Go to Index.razor page of all projects and call Razor
Class Library component as follows:

Debug ~ AnyCPU = BlarorServerDemo

Figure 4.16: Index.razor

Step 10: Now run the Blazor Server application.

. Thed cormponand 4 defred in T RazorClassDems b ey

Figure 4.17: Output

Step 11: Now run the Blazor WebAssembly application.

CrdariD Contpmaril
1 ALF

4 BO

5 AR

Figure 4.18: Output
Step 12: Run the Blazor MAUI Hybrid App.

Android Emulator - pixel_5_-_api_33:5554

526 &

MauiDemo

Synfussion Blazor Grid Demo
- OrderlD CustomerlD :
L BOLID
2 ALFKI
B ALFKI :
- BLONP
5 ANTON

..

--

This component is defined in the
RazorClassDemo library.

..

Figure 4.19: MAUI Output

In this demo, we saw that by using Razor Class Library (RCL),
we can easily create a similar look and feel of the Ul for all
applications using a single code base.

Creating NuGet Package of RCL

We can also create NuGet Package from our Razor Class
Library by following these steps:

Step 1: Go to the Razor Class Library project properties >>
Package >> General and configure the input as follows:

Razosr(lassDema « X

Generate Huhet package on buskd
Juring buld operations

4 Package

Pack a8 [s]
General

Figure 4.20: Package

Step 2: Build the application and go to
RazorClassDemo\bin\Debug folder.

You will see a NuGet package file.

POC » BlazorServerDemo » RazorClassDemo » bin > Debug v D
Mame Date modified Type
net6.0 6/7/2023 1:10 PM File folder
I | Learn.MyFirstGridLibrary.0.1.0-alphal.nupkg 6/26/2023 6:36 PM MNUPKG File

o

Figure 4.21: Debug

Step 3: Create Blazor WebAssembly application and add this
package as follows:

Configure your new project

Blazor WebAssembly App ¢ tinu

Project name
BlazorWasmNuget

Location

Ch\Users\cprasad 8\source\repos

Solution name (i)

¥ Place solution and project in the same directary

Project will be created in “*ChUsers\cprasadBisource\reposi\BlazorWasmMNuget\®

Figure 4.22: Blazor WASM

Step 4: Go to the NuGet of project:

sarch = Blazory ki Build
Rebuild

I:: = AN

LW
\ AT
v IEWY

Solution Explore

~ m Analyze and Code Cleanup
Pack

c

Search S

olution -

Publish...
Configure Application Insi
¢ EF Core Power Tools
Owverview
Mew Solution Explorer View
File Nesting
Edit Project File
Add

Manage NuGet Packages...

Manage Client-5Side Libranes...

Sync Namespaces

Confiqure Startup Pr
Figure 4.23: NuGet Package

Step 5: Add the NuGet package on our application as follows:

Manager: Blazor\Wasrn

Pachae soarcey

b Crona Platiorm A mapetong
¥ Dusbaburse Tock bt SV e et o e o
b EF Core Powes Took L] Mcroaoft Visual Studa Offire Paduges
B F# Tospls CAProgram Fled EBSPMECroLoft SO N et sl
| inteliCode
b Live Share

¥ Live Uiest Tty
d Mt Pachsoge Mmoo

ey ol
Parkngs Soorce
Pachpoge Sovrce Warpineg
B Saenvcw Fabias Tools
¥ Sraprchod Db
b SO0 Server Toch r
B b et B (AhyCraiCerno
¥ Tewt Terplating Courcw O AL Mot e sl o Ot P oo Bl or Wbt
b Wedy Fowrm, Dapicyras -
¥ Wb Ly Praviess

Figure 4.24: NuGet Package

In the preceding figure, the Source is the path of the NuGet
package on our local system. We have kept the NuGet
package on a given folder path.

Blaz Muget
MulGet: BlarorfasmMNuget « X v O

Installed MNuGet Package Manager: BlazorWasmMNuget

i% Learn.MyFirstGridLibrary by chandrad 0.1 0-alphat 8

‘a gcenit ik ary w

Figure 4.25: NuGet Package

Step 6: Install the preceding NuGet package in the Blazor
WebAssembly application.

Step 7: Now, configure all the required dependencies in
Blazor application.

In Program.cs file

Figure 4.26: Program.cs

In Index.html page, add the Bootstrap and required
JavaScript file as follows:

Figure 4.27: Index.html

Step 8: Go to the Index.razor file and call the orderPage
component as follows:

Debug est

Debug =~ AnyCPU

Figure 4.28: Page Route
Step 9: Run the application:

m U W Inde k4 + s (u]
“ G @ A hittpssiocalhost 721 o5 H A 0 @ ¥ [

BlazorWasmNuget About

i Synlusslon Blazor Grid Demo

OrderiD CustomeriD

1 BOLID
AMTON

| ALFE|

4 BLONP

5 BLONP

Figure 4.29: Output

In the preceding demo, we saw that using NuGet Package,
we are able to call Razor Class Library Components in any
project.

Advantages of Razor Class Library

Razor Class Library (RCL) in Blazor offers several advantages
for organizing and distributing reusable components and
resources. Here are some key advantages of using a RCL in
Blazor:

Reusability: RCL allows you to create a collection of
reusable Ul components, pages, and supporting files in a
single library. These components can be easily shared
and reused across multiple Blazor applications. It
promotes code reuse, reduces duplication, and improves
development efficiency.

Modular Development: RCL enables modular
development by encapsulating related components and
resources into a self-contained library. This modular
approach simplifies project organization and promotes
the separation of concerns. Developers can focus on
building and maintaining individual components without
worrying about the larger application context.

Versioning and Updates: RCL provides versioning
capabilities, allowing you to manage and distribute
updates to the library independently from the
consuming applications. This makes it easier to maintain
and evolve the library over time while ensuring
backward compatibility. Developers can update the
library in one place, and the changes can be propagated
to all applications that use it.

Consistent User Interface: By using RCL, you can
maintain a consistent user interface across different
applications. The library enforces consistent styling,
behavior, and functionality, ensuring a unified user
experience. Changes made to the library components
will be automatically reflected in all applications that
utilize them.

Separation of Concerns: RCL promotes the separation
of Ul concerns by encapsulating the Ul components and

associated logic in a separate library. This separation
allows for better organization, code maintainability, and
testability. Developers can focus on specific areas of
development, such as Ul, business logic, or data access,
independently.

- Packaging and Distribution: RCL provides a
convenient way to package and distribute your reusable
components and resources. The library can be published
as a NuGet package or shared via other distribution
mechanisms. This simplifies the process of sharing
components with other developers or teams, making
collaborating and leveraging each other’s work easier.

Using a Razor Class Library in Blazor brings modularity,
reusability, versioning, and distribution advantages to your
application development. It promotes efficient development
practices, code sharing, and consistency across applications,
leading to faster development cycles and improved software
quality.

Conclusion

In this chapter, we saw how to create a Razor Class Library in
real time project. Using the Razor Class library, we can
create reusable and optimized code. We can also create
NuGet packages and consume them in multiple projects.
These are cool and nice features to optimize any project’s
cost and development time.

We also understood how to register external third-party
controls such as Blazor syncfusion with Bootstrap and
JavaScript. In the next chapter, we will explore the state
management in Blazor WebAssembly.

References

Share assets across web and native clients using a Razor
Class Library (RCL) | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions
1. What is a Razor Class Library (RCL) in Blazor?

a. A library containing only Razor components
b. A library containing only C# code

c. A library containing both Razor components and C#
code

d. A library used exclusively for CSS stylesheets

2. Which of the following statements about RCL in Blazor is
true?

a. RCLs cannot be shared across different Blazor
applications
b. RCLs can contain reusable Ul components and pages

c. RCLs are exclusively used for server-side Blazor
applications

d. RCLs cannot contain code-behind files
3. What is the purpose of using a RCL in Blazor?

a. To create standalone Blazor applications

b. To encapsulate and share Ul components and pages
across multiple Blazor applications

c. To improve the performance of Blazor applications
d. To restrict access to code for security purposes

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

4. Which file extension is typically used for Razor
component files within a RCL?

a.
b.

C
d

.CS

JS
.razor
.html

5. How can you reference a RCL in a Blazor application?

a. By adding it as a reference in the Blazor
application’s project file
b. By copying the RCL'’s files directly into the Blazor
application’s folder structure
c. By creating a symbolic link to the RCL’s folder
d. By embedding the RCL's files into the Blazor
application’s assembly
Answers
l.c
2. b
3.b
4. C
5. a

CHAPTER 5
State Management

Introduction

State Management is a key concept in any web application.
Without state management, we cannot develop modern
interactive web applications.

As you know, in any web application, whenever a user is
logged in, we need to maintain all information about their
profile throughout the entire application until they logs off. In
this scenario, we need to use state management.

Another scenario is when we create a survey page that
contains multiple pages, and on each page, the user will
keep filling in input until the survey is completed. In this
scenario, we need to preserve the state of the object.

Structure
This chapter covers the following topics:

» State Management in Blazor WebAssembly

e Type of State Management

» State Management with Code Snippet

e Tips and Tricks While Using State Management

State Management in Blazor
WebAssembly

State Management is the process of preserving the state of
the user and object while navigating from one page to
another page.

Since Blazor WebAssembly applications are client-side web
applications, they run entirely in the browser and don’t have
a server-side state like traditional server-rendered web
applications.

So, we will discuss only the client-side state management
approach.

State management in Blazor WebAssembly can be achieved
using various techniques, including:
e Component Parameters
Cascading Values and Parameters
Services
Local Storage or Session Storage
Server Side

Component Parameters

This is one of the simple approaches to passing data from
parent to child components. In this approach, the child
component will receive data from the parent component.

For this approach, create the razor child component as
shown in the following code:

@page "/child"

<pr@Message</p»
@code {

[Parameter]
public string Message { get; set; }

Create the Parent Component as follows:
@page "/parent”
<ChildComp Message="@message" />

@code {
private string message = "Hello from parent!";}

Now run the application, and it will show output as follows:

StateManagementWASM

Hello from parent!
Q p

== Counter

8= Fetch data

Figure 5.1: Component parameter demo

Cascading_Values and Parameters

Blazor provides a mechanism called cascading values and
parameters that allow data to be passed down the
component tree implicitly. A parent component can define a
value or parameter that its child components can consume
without explicitly passing it as a parameter.

For this approach, create the Child Component as follows:
fipage "/cascadingchild"”

<p>@Message</p>
f@code {

[CascadingParameter]
public string? Message { get; set; }

Create the parent component as follows:

@page "/cascadingparent”

<CascadingValue Value="{imessage" >
<CascadingChild />

</CascadingValue:
code {
private string message = "Helloc from parent Cascading Demo!";}
@ [@ -stateManagementWASM x |+

<« G Gﬁ a https://localhost: 707 6/cascadingparent

StateManagementWASM

Whir Hello from parent Cascading Demo!

Counter

Fetch data

Figure 5.2: Cascading value and parameter demo

Services

Services in Blazor WebAssembly are singleton objects that
can be registered and injected into components. Services
can hold application state and provide data and functionality
to multiple components. By injecting the same service
instance into multiple components, they can share and
manipulate the same state.

Step 1: For this approach, create the variable properties
that we want to maintain the state for. In this case, we are
maintaining the state for the CounterCount variable. So, we will
create the class as follows:

namespace StateManagement.Pages.Service

{

public class CounterState

{
1t

public int CounterCount { get; set; }

Step 2: Inject the service into a program file as follows:

builder.Services.AddScoped<CounterState>();

Figure 5.3: Dependency injection

Step 3: Go to the counter page and inject the CounterState
Service and use it as shown here:

@page "/counter"

flusing StateManagement.Fages.Service
@inject CounterState State;
<PageTitle>Counter</PageTitle>
<hl>Counter</hl>»

<p>Current count: @State.CounterCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button:

@code {

private int currentCount = 2;

private void IncrementCount()

{
}

State.CounterCount++;

In the preceding code, we saw that we are injecting the
service and creating an instance as represented here:

@inject Counterstate State;
And we are holding the value as follows:
State.CounterCount++;

Now if we will run the code, we will see output, as shown in
the following figure:

Counter

localhost 7

StateManagement

Counter

Current count: 4

Counter

= Fetch data

Figure 5.4: Output

Now click another tab and come to the same page, you will
not lose the state.

Local Storage or Session Storage

Local Storage and Session Storage are two web storage
mechanisms provided by modern web browsers to store data
locally on a user’s device.

They are a part of the Web Storage API, which allows web
applications to store data within the user’s browser for future

retrieval.

Both Local Storage and Session Storage provide a way to
persist data between page reloads and browser sessions
without the need for server-side storage.

However, they have some key differences in terms of scope
and lifespan, such as:

Local Storage:

» Scope: Data stored in local storage is accessible across
all tabs and windows from the same origin (domain).

 Lifespan: The data persists even after the browser is
closed and is stored until explicitly removed by the user
or cleared by the website/application.

» Usage: Local storage is typically used for long-term
storage of data, such as user preferences, settings, or
cached data that should be available across multiple
sessions.

Session Storage:

» Scope: Data stored in session storage is limited to the
current tab or window. It is not accessible from other
tabs or windows of the same origin.

» Lifespan: The data is retained as long as the tab or
window is open. Once the user closes the tab or window,
the session storage is cleared, and the data is lost.

« Usage: Session storage is suitable for temporary
storage of data that should only last for the duration of
the user’s visit to the website. It is often used to store
state information during a user session, which can be
useful for preserving data between page reloads or
navigations within the same tab.

When to use Local Storage or Session Storage depends on
your specific use case, such as:

e Use local storage when storing data that should be
available across multiple sessions and accessible from
different tabs or windows within the same origin.

e Use session storage when you need to store temporary
data that is specific to the current tab or window and
should not persist beyond the current session.

 Both local storage and session storage are limited in
terms of capacity (usually around 5-10 MB), and they are
accessible only on the client-side, so sensitive data or
critical information should not be stored in them. For
such data, server-side storage with proper security
measures is more appropriate.

Now, let us see the example of local storage in Blazor
WebAssembly.

For this demo, we are going to use Blazored.LocalStorage and
Blazored.SessionStorage NuGet package. It is very popular
NuGet package in Blazor community.

NuGet: 5t...anagement < X

Browse Installed Updates

Search (Ctrl+L) 2 ¥ Include prerelease

~ Top-level packages (5)

Blazored.LocalStorage by Chris Sainty

A library to provide access to local storage in Blazor applications

Blazored.SessionStorage by

A library to provide access to session stor

Figure 5.5: NuGet package

After this, we need to register for the program.cs file as
follows:

JStateManagement
Blazared.SezzinnStarage;
Blazored.LocalStorage;
Microsoft.AspNetCore.Components.Web;
Microsoft.AspNetCore.Components.WebAssembly.Hosting;
StateManagement;
StateManagement.Pages.Service;

builder = WebAs lyHostBuilder.CreateDefault(
builder.RootComponents.Add<App>("#
builder.RootComponents.Add<H

builder.S .AddScoped(sp

builder. vices.AddScoped<c

builder.Services.AddBlazoredSessionStorage();

builder. vices.AddBlazoredLocalStorage();
der.Build().RunAsync();

Figure 5.6: Adding NuGet package in program.cs file

Now create the new Razor Component and write the code as
follows:

page "/localstorage"

<h3>Local Storage</h3>

@inject Blazored.lLocalStorage.IlocalStorageService localStorage
@Name

fcade {

public string? Name { get; set; }

protected override async Task OnInitializedAsync()

{
await localStorage.SetItemAsync("name", "Chandradev");
Mame = await localStorage.GetItemAsync<strings>("name");

}

In the preceding code snippet, we are creating an instance of
IlocalStorageService, that is, localStorage using dependency
injection.

We are saving the value in localstorage using
localStorage.SetItemAsync method and reading a value from

localstorage using localStorage.GetItemAsync:

) StateManagement

& @) https//localhost 7

StateManagement

Local Storage

Chandradev

= Fetch data

Figure 5.7: Local Storage demo

If you will see it on a browser using F12, you can see the
localstorage value, as shown in Figure 5.8.

Identify your project's root folder to open source files in Visual Studio Code and sync changes.

set root folder Don't show again

Manifest Key Value
service Workers name “Chandradev™

Storage i18nextLng en-us

Local Storage
https://flocalhost:7180/
) n Storage
Nocalhost: 7180/

IndexedDB

Figure 5.8: Local Storage in browser

Now, let us see SessionStorage code snippet:

For this also, all the processes will be the same as local
storage. Now, we will create new Razor component and write
the code as follows:

@page "/sessionstorage”
<h3>Session Storage</h3>
@inject Blazored.SessionStorage.lSessionStorageService sessionStorage

@Name

ficode {
public string? Mame { get; set; }
protected override async Task OnInitializedAsync()

{

await sessionStorage.SetItemAsync(“name”, "Chandradev");
Name = await sessionStorage.GetItemAsync<string>("name");
}

In the preceding code snippet, sessionStorage.SetItemAsync iS
used for saving data in session storage, and
sessionStorage.GetItemAsync is used for reading data from
session storage.

= p
D r\:/' StateManagement

«) . localhost

StateManagement

A Home Session Storage

Chandradev

== Counter

m= Felfch data

Figure 5.9: Session Storage demo

If you will see it on a browser using F12, you can see the
session value, as shown in Figure 5.10:

Identify your project's root folder to open source files in Visual Studio Code and sync changes

Set root folder Don't show again

Manifest ikey = Value

service Workers t name “Chandradev™

Storage

alhost: 7180/

https://localhost:7 180/

IndexedDB

Figure 5.10: Session Storage in browser

Server-Side State Management

In this approach, we will save the state in the database or
cloud storage with the help of web API. However, this is not
the best approach to use in Blazor WebAssembly. It would
make an extremely slow application since we are constantly
calling the database.

It is the least used approach in Blazor WebAssembly.

Tips and Tricks for Choosing State Management in
Blazor WebAssembly

So far, we have seen that there are various approaches to
maintaining state management in Blazor WebAssembly. We
can decide to use each one depending on our scenario:

Component State:

» Use for a simple and isolated state that is specific to a
particular component.

e |ldeal for local Ul state that doesn’t need to be shared
across components.

e Suitable for managing state with limited scope and not
requiring communication between components.
Cascading Parameters:
» Utilize when passing data from a parent component
down to its descendants.

o Useful for scenarios where multiple components require
access to the same data.

» Avoid excessive nesting of cascading parameters as it
can lead to unnecessary complexity.

Services and Dependency Injection:

 Choose for managing application-wide state or data that
needs to be shared across different components.

e Helpful for decoupling state management logic from the
components, promoting cleaner code organization.

» Use for state that requires complex business logic, data
fetching, or communication with external services.
Local Storage and Session Storage:
« Opt for browser storage when persisting data across
page reloads or browser sessions.

e Ideal for saving user preferences, settings, or cached
data to provide a better user experience.

e Avoid using it for sensitive data or large amounts of data
due to storage limitations.

» If you are saving sensitive data, then please use it as an
encrypted format.

Server-Side versus Client-Side State:

» Choose server-side state management for applications
with complex business logic or when the state needs to
be shared among multiple clients. It can be achieved
using the web APl method. We will store data in some
database.

e Opt for client-side state management for applications
that require fast, responsive Ul updates without frequent
server communication.

Scalability:

e Evaluate how well the state management solution scales
as your application grows.

e Ensure it remains maintainable and efficient as the
complexity of your app increases.

Performance Considerations:

e Consider the performance implications of the state
management approach you choose.

 Avoid over-engineering state management for simple
applications to maintain optimal performance.

Testing and Debugging:
« The chosen state management approach is testable and

facilitates debugging.

e Tools like Blazor DevTools can aid in monitoring state
changes and debugging Blazor applications.

Conclusion

In this chapter, we explored various approaches for
maintaining the state in Blazor WebAssembly. We can choose
depending on our scenario and use case.

We also learned the tips and tricks to decide the state
management approach in Blazor webAssemblyapplication. In the
next chapter, we will discuss REST services using Asp.net.

References
ASP.NET Core Blazor state management | Microsoft Learn

For Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. Which of the following options is NOT a state
management approach in Blazor WebAssembly?

a. Component State

b. Cascading Parameters
c. Local Storage

d. Blazor Server

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

2. Which state management approach is recommended for
simple applications with limited shared state
requirements?

a. Blazor Fluxor

b. Server-Side State Management
c. Component State

d. Cascading Parameters

3. In Blazor WebAssembly, where is the state managed

when using Blazor Server hosting model?
a. On the server
b. On the client’s browser
c. In a centralized database
d. In local storage
4. Which one is a good approach to store sensitive data in
state management?
a. Local Storage on browser
b. Session Storage on browser
c. Encrypted Local Storage or Session Storage
d. Cookies

Answers

B W N
0 o 0

CHAPTER 6
REST Services

Introduction

Blazor WebAssembly is a client-side web framework that
enables us to build interactive web applications using C#
and .NET in the browser.

While Blazor WebAssembly is primarily designed to work with
RESTful services like other client-side JavaScript SPA
frameworks, we can use the HttpClient class provided by
.NET to communicate with RESTful services from Blazor
WebAssembly. This chapter will dive deep into creating REST
Service using Asp.net core. We will also learn how to call
REST service in Blazor WebAssembly with complete code
snippets.

Structure
This chapter covers the following topics:

« How to Create REST Service using Asp.net Core
Web API Controller

HttpClient

Configuring and Injecting HttpClient

CRUD Operation in Blazor WebAssembly

Creating REST Service Using Asp.net
Core

A Representational State Transfer (REST) service is a type of
web service architecture that follows the principles of

RESTful design. It is an architectural style for designing
networked applications, particularly web services, that rely
on a stateless, client-server communication model.

REST services are based on standard HTTP methods, such as
GET, POST, PUT, DELETE, and so on, and use simple, human-
readable formats, including JSON or XML, to exchange data
between clients and servers.

There are so many approaches to creating a REST Service.
However, we will only focus on Asp.net Web API Core. This is
one of the best and highly performed backend API services.

How to create REST Service using Asp.net core in
Blazor?

For creating Web API core REST service, we can create a
Standalone Web API core service or a Shared Web API core
service in Blazor WebAssembly.

Standalone Web API Core Service

If we choose this approach, we can deploy Web API service
on any server as a standalone. We can use this service on
multiple applications that have been deployed on other
servers.

Emp Web API Service on Azure

WASH E TR ngular app on AWS Server
WASM application on Github Angular app on AWS Server

Figure 6.1: Web API Service

Note: /In the preceding image, we have created an Emp Web
API service and deployed it on Azure. If we have used this
service on Blazor WebAssembly or angular application, which
has been deployed on GitHub or AWS, it will be a more
scalable approach.

Now we will see, how to create a Standalone Web API
Service:

Step 1: Create the project using Visual Studio as follows:

Create a new project

Recent project templates

Figure 6.2: Web API Project

Step 2: Give the project name as follows:

Configure your new project

ASP.NET Core WEb API Cce Linuee macOs Windows Cloud Service Web WebaP

Project name
EmpSenice
Location

DAWasmBook\Rest Service),

Solution name (&)

*| Place solution and project in the same directory

Project will be created in “D:\WasmBook\Rest_Senvice\EmpSenaice\”

Figure 6.3: EmpService

Step 3: Select the framework

Additional information

ASP.NET Core Web APl ¢# Linx mac0S Windows AP Cloud Service Web Web AP

Framewaork (O

MET 8.0 (Long Term Support)
Authentication type O

MNaone

| Configure for HTTPS O

Enable Dodcker 5

)

*| Enable OpenAPl support (T
“| Do not use tap-level statements (O

*| Use controllers

Figure 6.4: Framework

Step 4: Now go to the Controllers folder and add a new
EmpController as follows:

Figure 6.5: EmpController

Now basic EmpController scaffolding code will be created as
follows:

using Microsoft.AspNetCore.Mvc;

namespace EmpService.Controllers
{
[Route("api/[centroller]”)]
[ApiController]
public class EmpController : ControllerBase

{

// GET: api/<EmpController:>
[HttpGet]

public IEnumerable<string> Get()
{

}
// GET api/f<EmpController:/S

[HttpGet("{id}")]
public string Get(int id)}
{

return new string[] { "valuel", "value2" };

return "valus";
}

J/ POST api/<EmpController>

[HttpPost]

public void Post([FromBody] string value)
{

¥

Jf PUT api/<EmpController:/5

[HttpPut("{id}")]

public void Put{int id, [FromBody] string wvalue)
{

¥

/f DELETE api/<EmpController:/S
[HttpDelete("{id}")]
public void Delete(int id)

{
¥

}

Now run the application using F5 and go to the home
controller. The output will be as follows:

I [ﬁ localhost:7150/api/emp

s € (0 https://localhost:7150/api/em;

[“"valuel”, "value2"]

Figure 6.6: Output

This APl endpoint we can consume anywhere in any
application.

Shared Web API Core in Blazor
WebAssembly

In this approach, ASP.NET Web APl Core service will be
created with Blazor WebAssembly application. We can use
this service within Blazor WebAssembly and Blazor Server
approach. If we have a simple requirement and need more
re-usabilities, then this will be a good approach. You can use
this project template up to Blazor WebAssembly 7.0.

For creating the Web APl Core service with Blazor
WebAssembly, we have to select Asp.net Core Hosted, as
shown in Figure 6.7:

Additional information

Blazor We bﬂngmbl}r App © lmx mac0S Windows

Framework @
NET 7.0 (Standard Term Support)

Authentication type @

Mone

| Progressive Web Application @

Do not use 1-::-|.|-.'-.-',-'-.-| statements (&

Figure 6.7: Asp.net core hosted

When you click on next, the project will be created as shown
in the following screenshot. It will contains Blazor Ul Layer,
Web API Layer, and Shared Model:

a4 Properties
wwwrool

B3 Pages

B3 Shared

@ _Imports.razor

Program.cs

! BlazorApp1.Server ~ Web API Layer

s Connected Services
#& Dependencies
ad Properties
b [Controllers
4 [Pages

& Program.cs
4 [&) BlazorApp1.Shared Shared Model

8 WeatherF

Figure 6.8: Asp.net core hosted

In this approach, we can share the Model in Web API and
Blazor WebAssembly and Blazor Server application. It is a
good architecture for simple applications.

Now, we will see when to use Standalone and Shared Web
APl approach.

Standalone Web API Approach:

« Complexity and Scalability: If your Web API is a
complex system with its own requirements, business
logic, and data access layers, it might be better to
Create it as a standalone project. This approach allows
you to manage the Web API independently and gives
you more flexibility in terms of scalability and code
organization.

» Separation of Concerns: A standalone Web API project
ensures a clear separation of concerns between the
client (Blazor WebAssembly) and the server (Web API).
This can make the codebase more maintainable and
easier to understand for developers working on different
application parts.

Shared Web API Project in Blazor WebAssembly:

 Simplified Development and Deployment: If your
Web API logic is relatively simple and closely related to
the functionality of your Blazor WebAssembly
application, creating a shared project can simplify
development and deployment. You can avoid the
overhead of maintaining two separate projects and
reference the shared Web API project in both the client
and server parts of your application.

« Code Reuse: When both your Blazor WebAssembly and
Blazor Server projects require the same APl endpoints
and data models, having a shared Web API project
enables code reuse. Any changes or improvements
made to the shared Web API project will reflect in both
hosting models, reducing duplication and ensuring
consistency.

 Consistency in API Definition: Creating a shared Web
APl project helps ensure that the APl endpoints,
request/response models, and overall APl contract
remain consistent across the application, regardless of
the hosting model.

Note: If you are using .Net 8.0, then you will not get Shared
Web API Core in Blazor WebAssembly project template.
This project template has been removed now. You can create
standalone projects for Blazor WebAssembly and Web API
Project, but code will be the same.

.Net 8.0 Web API Project:

Additional information

ASP.NET Core Web API

Figure 6.9: Web API project template in .Net 8.0
Blazor WebAssembly 8.0 Project:

Figure 6.10: Blazor WASM project template in .Net 8.0

HttpClient in Blazor WebAssembly

In Blazor WebAssembly, the HttpClient class is a
fundamental component for making HTTP requests to APIs or
services from the client-side code. It allows your Blazor
WebAssembly application to communicate with backend
servers, Web APIs, or other HTTP-based resources. You can
use HttpClient to send HTTP requests and process the
responses asynchronously.

To use HttpClient into your component, you need to inject
HttpClient at the top of the page, as follows:

In the preceding code snippet, we have injected HttpClient at
the top of the page, and then we are calling any API service
using Http.GetFromJsonAsync method.

If you go to the definition of Http.GetFromJsonAsync method,
you will see the sets of Json Extension methods that are
created by Microsoft for insert, update, and delete operations
with REST Service.

Figure 6.11: httpClient

We will write a summary of all Json Extension methods along
with when to utilize each one:

e GetFromJsonAsync

e PostAsJsonAsync

e PutAsJsonAsync

e DeleteFromJsonAsync

e PatchAsJsonAsync

GetFromJsonAsync

This method makes a GET request to the specified requesturi
and attempts to serialize the response into the type
represented by the T parameter or the Type parameter. You

can see an example of this in the Fetchbata component in the
standard Blazor WebAssembly project templates.

PostAsJsonAsync

This method is used to send a POST request with JSON data
as the payload. It's typically used for creating new resources
on the server.

PutAsJsonAsync

Similar to the PostAsJsonAsync method, but it is used for
updating existing resources on the server using a PUT
request

DeleteFromJsonAsync

Similar to the GetFromdsonAsync method, but it would be used
to send a DELETE request and potentially receive a JSON
response. This is useful for deleting resources on the server.

PatchAsJsonAsync

This method sends a PATCH request with JSON data as the
payload. It's often used for updating a resource partially
instead of replacing the whole resource.

CRUD Operation in Blazor
WebAssembly

Here are the code snippets for CRUD operation using
HttpClient Json Extension Method.

Assuming you have a TodoItem class model:

public class TodoItem

{
public int Id { get; set; }
public string Title { get; set; }
public bool IsCompleted { get; set; }
}

And you have an HttpClient instance named HttpClient that's
configured to communicate with your API.

Create (POST):

public async Task CreateTodoltemAsync(TodoItem newItem)

{
HttpResponseMessage response = await httpClient.PostAsJsonAsync
("api/todo”, newltem);

if (response.IsSuccessStatusCode)

{

// Item created successfully

// You might want to handle the response or update your local data

}

else

{
}

// Handle error cases
1
Read (GET):

public async Task<List<TodoItem>> GetTodoItemsAsync()
{

List<TodoItem> items = await httpClient.GetFromlsonAsync<List
<TodoItem>>{"api/todo");
return items;

¥

Update (PUT or PATCH):
Using PUT:

public async Task UpdateTodoItemAsync(TodoItem updatedItem)

{

HttpResponseMessage response = await httpClient.PutAslsondAsync
($"api/todo/{updatedItem.Id}", updatedItem);

if (response.IsSuccessStatusCode)}

{
// Item updated successfully
J// ¥You might want to handle the response or update your local data
it
else
{
// Handle error cases
}

}

Using Patch (it is used for partial update):

public async Task UpdateTodoItemStatusAsync(int itemId, boel isComplet-
ed)
{

var patchDocument = new { IsCompleted = isCompleted };

HttpResponseMessage response = await httpClient.PatchAslsonAsync(3”
api/todo/{itemId}", patchDocument);

if (response.IsSuccessStatusCode)

{
{/ Item updated successfully
// You might want to handle the response or update your local data
}
else
{
// Handle error cases
1

}
Delete (DELETE):

public async Task DeleteTodoItemAsync(int itemId)
{

HttpResponseMessage response = await httpClient.DeleteFromJsonAsync
($"api/todo/{itemId}");

if (response.IsSuccessStatusCode)

{
J/ Item deleted successfully

// You might want to handle the response or update your local data
}

else
{

f/ Handle error cases

1}

Conclusion

In this chapter, we understood REST Service and how to
create it using Asp.net Core. We also learned how to call
REST service in Blazor WebAssembly with complete code
snippets. It is one of the important concepts while working
with any Blazor application.

In the next chapter, we will explore more details about REST
Service Call with Entity Framework Core.

References

Call a web API from an ASP.NET Core Blazor app | Microsoft
Learn

https://learn.microsoft.com/en-us/aspnet/core/blazor/call-
web-api?view=aspnetcore-7.0&pivots=webassembly

Multiple Choice Questions

1. What does REST stand for in the context of web
services?

a. Representational Entity State Transfer
b. Remote Execution and State Transfer
c. Representational State Transfer
d. Remote Entity Service Transfer

2. How does Blazor communicate with RESTful services?

a. Using WebSockets
b. Using gRPC
c. Using JSON-RPC
d. Using HTTP requests
3. Which HTTP methods are commonly used when
interacting with RESTful services in Blazor?
a. GET, POST, PUT, DELETE
b. READ, CREATE, UPDATE, DELETE
c. FETCH, ADD, MODIFY, REMOVE
d. QUERY, INSERT, UPDATE, DELETE
4.In Blazor, which component Ilifecycle method is
commonly used to make REST API calls?
a. OnInit()
b. OnInitialized()

https://learn.microsoft.com/en-us/aspnet/core/blazor/call-web-api?view=aspnetcore-7.0&pivots=webassembly

C. OnRender()
d. OnLoad()

Answers
1.

B WwhN
oo a0

CHAPTER 7
Entity Framework Core

Introduction

Nowadays while working with any Blazor Application, you will
see Backend API Service with Entity Framework Core or EF
Core. This is a very popular and productive ORM from
Microsoft. It is one of the alternate and popular options for
creating a Backend service. Before EF Core, we were using
Ado.net.

EF Core is a very vast topic. It will be very difficult to include
all the concepts in a single chapter.

Structure
This chapter covers the following topics:

 EF Core 8.0

» Reasons to Use EF Core

« When Not to Use EF Core

e EF Core Supported Application Types

e Entity Framework Core Approaches

e Supported Databases

o CRUD Operation with EF Core in Blazor WebAssembly

EF Core 8.0

Entity Framework (EF) Core 8.0 is a lightweight, extensible,
open-source, and cross-platform version of the popular Entity
Framework data access technology.

It provides an object-relational mapping (ORM) framework
that allows developers to work with databases using .NET
objects.

It has introduced many cool features in EF 8.0, significantly
enhancing developer productivity. It is a highly performed
and efficient ORM as compared to other competitors in the
market.

For more details, please refer the following URL:

What's New in EF Core 8 | Microsoft Learn
(https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-
core-8.0/whatsnew)

Reasons to Use EF Core

Here are some reasons why you might consider using EF
Core in your project:

 Simplified Data Access

EF Core simplifies the process of interacting with databases
by allowing you to work with database objects as regular
.NET objects. This means you can use C# or VB.NET classes
to represent database tables, and EF Core will handle the
translation between these objects and the actual database
queries.

 Developer Productivity

EF Core can speed up the development process by
eliminating the need to write a lot of repetitive data access
code. It offers a higher-level, more abstract way to perform
CRUD (Create, Read, Update, Delete) operations on the
database.

e Cross-Platform Support

EF Core is designed to work on multiple platforms, including
Windows, Linux, and macOS. This makes it suitable for

https://learn.microsoft.com/en-us/ef/core/what-is-new/ef-core-8.0/whatsnew

building applications that need to run on different operating
systems.

« Database Provider Flexibility

EF Core supports multiple database providers, including SQL
Server, SQLite, MySQL, PostgreSQL, and more. This allows
you to switch between different database systems relatively
easily without rewriting your data access code.

EF Core

V.

Figure 7.1: EF Core
 LINQ Integration

EF Core seamlessly integrates with Language Integrated
Query (LINQ), which is a powerful querying language that
allows you to write complex queries using C# or VB.NET
syntax. This makes querying the database more intuitive and
less error-prone.

« Automatic Change Tracking

EF Core automatically tracks changes made to objects and
generates the necessary SQL statements to persist those

changes to the database. This helps to reduce the
complexity of managing data changes.

 Migration Support

EF Core includes a migration system that helps you manage
changes to your database schema over time. It can generate
SQL scripts to update the database schema as your
application’s data model evolves.

« Testability

EF Core supports in-memory database providers, which allow
you to write unit tests without needing a real database. This
can make your testing process more efficient and isolated.

 Security and Parameterization

EF Core uses parameterized queries by default, which helps
prevent SQL injection attacks. This contributes to the
security of your application.

« Open Source and Active Development

EF Core is open source and is actively maintained by
Microsoft. This means it's continually improving, and the
community can contribute to its development and bug fixes.

When Not to Use EF Core

Despite its benefits, it's important to note that EF Core might
not be the best choice for every scenario.

For extremely high-performance scenarios or when fine-
tuned control over SQL queries is necessary, a more direct
approach might be preferred like Ado.net or Dapper
approach.

However, for many applications, EF Core offers a great
balance between developer productivity and efficient data
access.

EF Core Supported Application Types

We can use Entity Framework Core on all DOT NET
applications as follows:

» Console Applications
 Windows Applications
o« ASP.NET Web Forms

e« ASP.NET MVC

e ASP.NET Core MVC
 ASP.NET Core Razor Pages
» Blazor Apps

 WPF

e Xamarin Framework
 Web API

.NET MAUI

Entity Framework Core Approaches

There are two Entity Framework Core development
approaches as follows:

e Database First
e Code First

Database First Approach

In the Database First approach, the domain and context
classes are created based on the existing Database. This
approach is mainly suitable if our database is ready and we
are going to create a domain and context on top of it.

Domain
(lasses

Database First Approach

Figure 7.2: Database First Approach

Code First Approach

In the Code First approach, the domain and context classes
are created by you, and then EF Core creates the database
using these classes.

Migration is used whenever EF Core creates or updates the
database based on the domain and context classes.

Domain
« Context —+ - —+ Database
Classes

Code First Approach

Figure 7.3: Code First Approach

Supported Databases

Entity Framework Core works on many databases as follows:

 SQL Server

« MySQL

e PostgreSQL
e SQLite
 SQL Compact
 Firebird

e Oracle
e Db2

CRUD Operation with EF Core in
Blazor WebAssembly

In this demo, we will see how to do CRUD operation with the
Employee table using EF Core 7.0 in Blazor WebAssembly
7.0.

Note: If you will use Blazor WebAssembly 8.0, you will not
get Asp.net core hosted project template. You need to create
two standalone projects, that is, Blazor WebAssembly and
Asp.net core. However, our code will be exactly the same.

Here are the steps:

Step 1: Create the Employee table in the database as
follows:

CREATE TABLE [dbo].[tbleEmp](
[Id] [int] IDENTITY(1,1) NOT NULL,
[FirstName] [nvarchar](5@) NULL,
[LastMName] [nvarchar](5@) NULL,
[Email] [nvarchar](5@) NULL,
[Salary] [money] MULL,

CONSTRAINT [PK_tblEmp] PRIMARY KEY CLUSTERED

(

[Id] ASC
JWITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY
= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SE-
QUENTIAL_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Step 2: Create the Blazor WebAssembly Application as
follows:

Create a new project

Recent project templates

Figure 7.4: Blazor WebAssembly

Step 3: Select the Asp.net Core Hosted option and create an
API project as follows:

Additional information

BIaZGr We bASSEm bly App e Linwx macs Windows Blazor Clouwd

Framework (O

MET 7.0 (Standard Term Support)
Authentication type @
MNone
¥ Configure for HTTPS @
*| ASP.NET Core Hosted O
Progressive Web Application @

Do not use top-level statements (0

Figure 7.5: Asp.net Core Hosted

Solution Explorer
- B N =
R O-HE

Search Solution Explorer (Ctrl+;)

= Solution 'EmpCRUD' (3 of 3 projects)

4 57 EmpCRUD.Client
» Connected Services
Y Dependencies
Properties
wwwroot
Pages
Shared
_Imports.razor
\&] App.razor
C# Program.cs
+1 EmpCRUD.Server
#» Connected Services
#& Dependencies
ad Properties
B3 Controllers
B3 Pages
(] appsettings.json
C# Program.cs
] EmpCRUD.Shared
#8 Dependencies

c® WeatherForecast.c:

Figure 7.6: Project Structure

Step 4: Go to the Share project folder and create the Emp
class in the Model folder as follows:

using System.ComponentModel.DataAnnotations;

namespace EmpCRUD.Shared.Model

{
public class Emp
{
public int Id { get; set; }
[Required]
public string? FirstName { get; set; }
[Required]
public string? LastMWame { get; set; }
[Required]
public string? Email { get; set; }
[Required]
public decimal? Salary { get; set; }
I
}

Step 5: Now, we will create Data access layers for fetching
data from the database. For this task, we have installed EF
Core Power Tool in Visual Studio 2022:

Mol Recent

: Created By: Dot
Date Installed

Version: 23,14

W stion Explor
Single-project MSIX Pack

Data Tools - Sql Editor

Scheduled For Install:

Scheduled For Update:

s e [eateio Scheduled For Uninstall:
Blazor Component Code Behind Templates (V... _

Figure 7.7: EF Power Tools

We will go to the EmpCRUD.Server and do Reverse Engineering
as shown:

Solution E'-;*.!-:bror
perver. Senace. [Emp P |
Search Solution E
L+ Solutien Er g
p—— =2 Publsh to AW
] '.l'.li_-f_l::!:,_
= .l:‘ :-'| ! | 1|| G
4 EmpCRU
.

3 i o b i & ¥
= JONTHGRINE AR LR
s Conne s

EF Core Power Tools

Figure 7.8: Reverse Engineer

Now, it will create the required table mapping class with the
Context file for us as follows:

Erpl RO S

Figure 7.9: Context File

Step 6: Create a Service Folder in EmpCRUD.Server project, and
create an IEmp.cs interface as follows:

using EmpCRUD.Server.Models;

namespace EmpCRUD.Server.Service

{

public inmterface IEmp

{
Task<string> AddEmp(TblEmp emp);
Task<string> UpdateEmp(TblEmp emp);
Task<string> DeleteEmp(int Id);
Task<TblEmp> GetEmpDetails(int Id);
Task<List<TblEmp>> GetAllEmps();

1

Step 7: Create the EmpService for IEmp Interface as follows:

using EmpCRUD.Server.Models;
using Microscft.EntityFrameworkCore;

namespace EmpCRUD.Server.Service

{

public class EmpService : IEmp

{

private TestContext _dbContext;

public EmpService(TestContext context)

this._dbContext = context;

}
public async Task<string> AddEmp(TblEmp emp)
{
await dbContext.TblEmp.AddAsync(emp);
await _dbContext.SaveChangesAsync();
return "Data has been added successfully”;
}
public async Task<List<TblEmp>> GetAllEmps()
{
return await _dbContext.TblEmp.TolListAsync();
}
public async Task<TblEmp> GetEmpDetails{int Id)
{
TblEmp? emp = await _dbContext.TblEmp.FindAsync(Id);
if (emp == null)
{
throw new Exception("Employee not found™);
¥
return emp;
I
public async Task<string» UpdateEmp(TblEmp emp)
{
_dbContext.Entry(emp).State = EntityState.Modified;
awalt _dbContext.SaveChangesAsync();
return "Data has been updated successfully”;
}
async Task<string> IEmp.DeleteEmp(int Id)
{
var emp = await _dbContext.TblEmp.FindAsync(Id);
if (emp != null}
{
var result = _dbContext.TblEmp.Remove(emp);
await _dbContext.SaveChangesAsync();
¥
return "Data Deleted successfully";
}

3

Step 8: Go to the API cController folder and create
EmpController with the given code snippets:

using EmpCRUD.Server,Models;
using EmpCRUD.Server.Service;
using Microsoft.AsphetCore.Mvc;

namespace EmpCRUD.Server.Controllers

[Route("api/[controller]”)]
[ApiController]
public class EmpController : ControllerBase

{
private readonly IEmp _IEmp;
public EmpController(IEmp emp)

{
_IEmp = emp;

}

f// GET: api/<EmpController:

[HttpGet]

public async Task<List<TblEmp>> Get()

{
}

// GET api/<EmpController>/5
[HttpGet("{id}"}]

public async Task<IActionResult:> Get(int id)
{

}

// POST api/<EmpController:
[HttpPost]
public async Task<string> post({TblEmp tblEmp)

{

return await Task.FromResult(await _IEmp.GetAllEmps()});

return Ok{await _IEmp.GetEmpDetails(id));

return await _IEmp.AddEmp{tblEmp};

}

f/ PUT api/<EmpController:/5

[HttpPut]

public async Task<string> Put{TblEmp tblEmp)
{

}

// DELETE api/<EmpController>/5
[HttpDelete("{id}")]

return await _IEmp.UpdateEmp(tblEmp);

public async Task<string> Delete(int id)
{

}
3

return await _IEmp.DeleteEmp(id);

Step 9: Now, in the Program.cs file, configure the required
middleware as follows:

Figure 7.10: Program.cs

Step 10: Go to the appsettings.json file of EmpCRUD.Server
project and add the connection string as shown:

Figure 7.11: Connection String

Note: Do Not store the connection in a JSON file for real-time
projects; this is only for demo purposes. For real-time
projects, we will store them in a cloud environment.

Step 11: Now, we will create the Ul layer for the Add, Fetch,
Edit, and Delete screen in the Blazor Client Project.

AddEmp.Razor

@page "/femp/add"
fipage "/emp/edit/{empId:int}"
@using EmpCRUD.Shared.Model

@inject HttpClient Http
@inject MavigationManager NavigationManager
<h3>@Title</h3>

<hr f>
<EditForm Model="@emp" OnValidsubmit="SaveEmp">
<DataAnnotationsvalidator />
<div class="mb-3">
<label for="Name" class="form-label">FirstName</label:>
¢<div class="col-md-4">
<InputText class="form-control" @bind-Value="emp.FirstName" />
¢ Sdive
¢<ValidationMessage For="@(() => emp.FirstName)" />
< fdivs
<div class="mb-3">
¢<label for="Address" class="form-label">LastName</label>
<div class="col-md-4">
<InputText class="form-control” @bind-Value="emp.LastName" />
<fdiv
<ValidationMessage For="@(() => emp.LastName)" />
</fdivs
<div class="mb-3">
¢label for="Cellnumber" class="form-label">Email</label>
<div class="col-md-4">
<InputText class="form-control” @bind-Value="emp.Email" />
< /divs
<ValidationMessage For="@(() => emp.Email)" />
<fdiv>
<div class="mbh-3">
<label for="Emailid" class="form-label">Salary</label:
¢div class="col-md-4">
<InputNumber class="form-control" @bind-Value="emp.Salary" />
</div>
<ValidationMessage For="@(() =»> emp.Salary)” />
< fdiv>
<div class="form-group">
<button type="submit" class="btn btn-primary">Save</button>
<button class="btn btn-light" @onclick="Cancel">Cancel</button>
< fdivs
</EditForm>
@code {
[Parameter]
public int empId { get; set; }

protected string Title = "Add Emp";
protected Emp emp = new();
protected override async Task OnParametersSetAsync()

{
if (empId != @)
Title = "Edit Emp";
emp = await Http.GetFromlsonAsync<Emp>("api/Emp/" + empld);
¥
}
protected async Task SawveEmp()
{
if (emp.Id != @)
{
await Http.PutAslsonAsync("api/Emp", emp);
I
else
{
await Http.Postislsonfsync("api/Emp", emp);
}
Cancel();
}
public void Cancel()
{
NavigationManager.NavigateTo("/fetchempdetails"};
11
Explanation:

In the preceding code snippets, we have created HTML code
for the Emp add and edit screen.

We are also calling Http.PostAsJsonAsync to save data and
Http.PutAsJsonAsync to edit emp data.

Additionally, we are using the pataAnnotationsValidator for the
validation of required input data.

Step 12: Now, we will create the EmpDetails.Razor screen as
follows:

@page "/fetchempdetails"
@using EmpCRUD.Shared.Model
@inject HttpClient Http

<h3>EmpDetails</h3>
<div class="row">
¢div class="col-md-&6">
<a href=’femp/add’ c¢lass="btn btn-primary" role="button":
<i class="fas fa-user-plus"»</i>»
Add User

<a href=’/emp/delete/@emp.Id* class="btn
btn-outline-danger" role="button":
Delete
<fa»
<ftds
< ftrz

</thody>
</table>

}
@code {
protected List<Emp> empList = new();
protected List<Emp> searchUserData = new(};
protected Emp emp = new();
protected string SearchString { get; set; } = string.Empty;
protected override async Task OnInitializedasync()

{
await GetEmp();

protected async Task GetEmp()

{
emplList = await Http.GetFromlsonAsync<List<Emp>>("api/Emp");
searchUserData = emplList;
}
protected void FilterEmp()
{
if (lstring.IsNullOrEmpty(3earchstring))
{
empList = searchUserData
Where(x => x.FirstName.IndexOf(SearchString,
StringComparison.OrdinallgnoreCase) != -1)
.TolList(};
}
else
{
empList = searchUserData;
}
}
protected void DeleteConfirm(int emplId)
{
emp = empList.FirstOrDefault(x =»> x.Id == empId);
}
public void ResetSearch()
{
Searchstring = string.Empty;
empList = searchUserData;
}
g
Explanation

In the preceding code snippet, we are calling fetch emp
details APl on page load using the following command:

empList = await Http.GetFromJsonAsync<List<Emp>>("api/Emp");

After this, we bind the data in a tabular format with Edit and
Delete buttons.

We also filter employees from the tabular data. Whenever
the user clicks the Edit and Delete screen, we route them to
the respective Edit and Delete razor page.

Step 13: Create the DeleteEmp.razor screen as follows:

Bpage "/emp/delete/{empId:int}"

@using EmpCRUD.Shared.Model

@inject HttpClient Http

@inject NavigationManager MavigationManager

<h2>Delete Emp</h2>

<div class="form-group">
<h4:Do you want to delete this user?</h4>
<table class="table">
<tbody>
<tr>
<td>FirstName</td>
<td>@emp.FirstName</td>
</tr:
<tr»
<td>LastName<,/td>
<td>@emp. LastName< /td>
</trs
<tr>
<td>Email</td>
<td>@emp.Email</td>
</tr>
<tr:>
<td>Salary</td>
<td>@emp.Salary</td>
</tr>
</tbody>
<ftable>
</div>
<div class="form-group">
<input type="submit" value="Delete" @onclick="(async () => await
RemoveEmp(emp.Id))" class="btn btn-danger" />
<input type="submit" value="Cancel” @onclick="(() =» Cancel())}"
class="btn btn-warning" />
</divs

fpcode {
[Parameter]
public int empId { get; set; }
Emp emp = new Emp();
protected override async Task OnInitializedAsync()

{
emp = await Http.GetFromJscnAsync<Emp>("/api/Emp/" + Convert.
ToInt32(empIld));

protected async Task RemoveEmp(int empId)

{
await Http.Deletefsync("api/Emp/" + empld);
MavigationManager.NavigateTo("/fetchempdetails");

void Cancel()

{
NavigationManager.MavigateTo("/fetchempdetails");
}
¢
Explanation:

In the preceding code snippets, we fetch Emp Details based
on EmpId. We also delete Emp data based on Empld using the
Http.DeleteAsync method.

Now, run the application. You will see the output as follows:

& o

e e
LEsENam Email Ermil Action
Prassg) Hasrmfrgrmad coem 20000, D000 Eda
Praiss s {Tpmal coim 20000 0000 Excht
Pradses Hosriafgrmael o 20000 D000 Ed
Prassdh RasmdufFgrmad oo 0000 D000 Eda
Praxsdh RamdsFormad com 20000 0000 Eda
| —— Flasmifformad coum 0000 000 Eae
Sak AreoSahfgrmal com TOO00, 0000 Ea
L2 Roanals{fgmad oo a0 o Edt

Figure 7.12: Output

Figure 7.13 shows the details of an employee:

€

AreSabTorrad oo POO00. B0 Eat D

Figure 7.13: EmpDetails
Figure 7.14 shows how to delete the details of a user:

localhost
Delete Emp
Do you want to delete this user?
FirstName Runali
LastNama Sah
Email Runalif@gmail.com
Salary 40000.0000

o SR

Figure 7.14: Delete Emp

Source Code: For the preceding demo project, it can be
found at:

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

Conclusion

In this chapter, we gained familiarity with EF Core. We also
explored the benefits of EF Core and learned how to use it in
a Blazor WebAssembly application. If we are using EF Core
Power Tool in Visual Studio 2022, then it will create a
scaffolding code first approach for us. In the next chapter,
we will learn the validation in Blazor.

Reference

ASP.NET Core Blazor with Entity Framework Core (EF Core) |
Microsoft Learn

Multiple Choice Questions

1. What is EF Core in the context of Blazor WebAssembly
development?

a. A front-end JavaScript library
b. An Object-Relational Mapping (ORM) framework
c. A server-side rendering framework
d. A CSS preprocessor
2. Which of the following is true about EF Core in Blazor
WebAssembly?
a. It is used for client-side data manipulation

b. It provides a bridge between the client and server
for database operations

c. It is primarily used for styling and Ul design
d. It is not compatible with Blazor WebAssembly
3. In a Blazor WebAssembly application, where is EF Core
typically used?
a. On the client side for authentication
b. On the client side for database operations

c. On the server side for database operations
d. None of the above
4. What is the purpose of an Object-Relational Mapping
(ORM) framework like EF Core?
a. It is used to create interactive user interfaces

b. It provides a way to interact with databases using
object-oriented code

c. It is a version control system for web development
d. It is used for server-side routing
5. Which programming language is commonly used with EF
Core in Blazor WebAssembly development?
a. JavaScript
b. C#
c. Python
d. Ruby

Answers

vk whE
o o 0N T

CHAPTER 8

Validation in Blazor
WebAssembly

Introduction

While working with any Blazor Application, you will get
requirements to validate the input. Without validation, we
can’'t develop any application.

In the previous web development framework, we used
tedious JavaScript code for validation, but in Blazor
WebAssembly, we can use a straightforward approach using
C# code.

Structure
In this chapter, we will cover the following topics:

e Blazor Form

e Form Validation in Blazor

e Data Annotation in Blazor

e Custom Validation Rules

« Complex or Nested Model Validation in Blazor

e Best Pattern and Practices for Validation in Blazor

Blazor Form

A Blazor Form is a fundamental component in Blazor
applications used to handle user input and manage form
submissions. It is part of the Blazor framework, which allows

developers to build interactive web applications using C#
and .NET instead of relying solely on JavaScript.

In Blazor, you can create forms using the <EditForm>
component. The <EditForm> component wraps the form’s
content and provides features like form validation, form
submission handling, and model binding.

Here’'s a basic example of a Blazor form:

@page "/"
@using BlazorValidation.Model

<PageTitle:>Index</PageTitle:
<h3>Form Validation</h3>

<EditForm Model="@myModel" OnValidSubmit="@HandleValidSubmit">
<DataAnnotationsvalidator />
<ValidationSummary />
<divz
<label for="name" class="form-label">Name:</label>
<InputText id="name" @bind-Value="myModel.Name" class="
form-control” />
<ValidationMessage For="@({) => myModel.Name)" />
< fdivs
cdive
<label for="email" class="form-label">Email:</label>
<InputText id="email" @bind-Value="myModel.Email" class="-
form-control” />
<ValidationMessage For="@(() => myModel.Email)" />
<fdiv>
<div class="form-group™:
<button class="btn btn-outline-primary mt-2">Submit</button:
<fdiv>
</EditForm:

f@code {
private MyModel myModel = new MyModel();

private void HandleValidSubmit()

{
// Logic te handle form submission when the form is valid

}

}

Maodel Class

public class MyModel

{
[Required{ErrorMessage = “"Name is required"}]
public string MName { get; set; }
[Required(ErrorMessage = “Email is required")]
[EmailAddress(ErrorMessage = "Invalid email address")]
public string Email { get; set; }

}

In this example, myModel is a C# object representing the form
data. The form fields are bound to the properties of this
object using the @bind-value directive. The onvalidSubmit event
is triggered when the form is submitted and is valid, allowing
you to handle the submission logic.

Blazor Forms also supports validation through data
annotations and provides components like
<DataAnnotationsValidator> and <ValidationSummary> to display
validation messages.

BlazorvValidation About

A Home Form Validation
« Name is required
« Email is required
MNarme
Name s required
Email:
I.E.rrm I is requ red

Submit

Figure 8.1: Form Validation

Form Validation in Blazor

Form validation in Blazor ensures that user input meets
specified criteria before submitting the form. Blazor provides
built-in support for both client-side and server-side validation
using data annotations.

Here’s a brief overview of form validation in Blazor:

- Data Annotations: You can use data annotations in
your model class to define validation rules. These
annotations are attributes applied to the properties of
your model class. For example:

public class MyModel

{
[Required(ErrorMessage = “Name is required")]
public string MName { get; set; }
[Required(ErrorMessage = “Email is required”)]
[EmailAddress (ErrorMessage = "Invalid email address")]
public string Email { get; set; }

}

In this example, the [Required] attribute indicates that
the Name and Email properties are required, and
[EmailAddress] ensures that the Email property is a valid
email address.

Validation Components:
<EditForm>: Wraps the form and manages its state.

<DataAnnotationsValidator>: Performs client-side validation
based on data annotations.

<ValidationSummary>: Displays a summary of validation
errors.

<EditForm Model="@myModel" OnValidsubmit="@gHandleValidSubmit">
<DataAnnotationsValidator />
<ValidationSummary />

¢!=-= Form fields and input elements go here =-»

<button type="submit":>Submit</button:
< /EditForm:

Validation Messages:
You can use the <validationMessage> component to display
error messages associated with specific form fields.

<label for="name">Name:</label>

¢InputText id="name" @bind-Value="myModel.Name" />
<ValidationMessage For="@({) => myModel.Name)}" />

This will display the error message if the Name field fails
validation.
Client-Side Validation:

Blazor performs client-side validation using the data
annotations. The <DataAnnotationsValidator> component

checks for validation errors on the client side before
allowing the form to be submitted.

e Server-Side Validation:

Even with client-side validation, it's crucial to perform
server-side validation to ensure the integrity and
security of your application. The server-side validation
can be done in the onvalidsubmit event handler or a
method called during form submission.

Combining these elements allows you to create a robust
form validation system in your Blazor applications, ensuring
that user input is accurate and meets the specified criteria.

Data Annotation in Blazor

In Blazor, data annotations are attributes that you can apply
to the properties of a model class to define validation rules.

These annotations are part of the
System.ComponentModel.DataAnnotations namespace and provide
a declarative way to express validation requirements for your
model properties.

Here are some commonly used data annotations in Blazor:

e Required Attribute:
Indicates that a property is required.
Example:

[Required{ErrorMessage = "Name is required”)]
public string Name { get; set; }

e StringLength Attribute:

Specifies the maximum and minimum length constraints
for a string property.

[5tringlLength(56, MinimumLength = 2, ErrorMessage = "Name must be be-
tween 2 and 58 characters")]
public string Mame { get; set; }

e Range Attribute:

Specifies the numeric range constraints for a numeric
property.

[Range(18, 99, ErrorMessage = "Age must be between 18 and 99")]
public int Age { get; set; }

e EmailAddress Attribute:

Ensures that a string property contains a valid email
address.

[EmailAddress{ErrorMessage = “"Invalid email address")]
public string Email { get; set; }

e RegularExpression Attribute:

Specifies that a string property must match a specified
regular expression pattern.

[RegularExpression{@"~\d{5}(-\d{4})?¢", ErrorMessage = "Invalid ZIF
code”)]
public string ZipCode { get; set; }

e Compare Attribute:
Compare the values of two properties for equality.

[Compare(“Password", ErrorMessage = "Passwords do not match™)]
public string ConfirmPassword { get; set; }

These annotations help to define validation rules for your
model properties. When you use these annotated models in
a Blazor application with the <EditForm>,
<DataAnnotationsValidator>, and <ValidationMessage>
components, Blazor automatically performs client-side
validation and displays error messages when validation fails.

It's important to note that while client-side validation is
convenient for providing immediate feedback to users,
server-side validation should also be implemented to ensure
the security and integrity of your application. Blazor makes
combining client-side and server-side validation in your
forms easy.

Custom Validation in Blazor

Many times, using the Data Annotation rule, we cannot
validate all input. In such scenario, we need to create our
own validation rule using validationAttribute.

Let’s create a simple demo for userName custom validation
rules. If the user selects uUserName as Admin, we need to
display an error message.

For this, we need to create a UserNameValidation class as
follows:

using System.ComponentModel.Datafnnotations;
namespace BlazorValidation.Model
{

public class UserNameValidatieon: ValidationAttribute

{
protected override ValidationResult IsValid(object value,
ValidationContext validationContext)

if (value != null)

{
string inputValue = value.ToString();
if (inputValue.Equals{“Admin®, StringComparison.
OrdinallgnoreCase))
{
return new ValidationResult({"The input wvalue
cannot be ‘Admin’.");
}
}

return ValidationResult.Success;

}
Now apply this validation attribute to a Model class as follows:

P PR B R R B T R W R R 6 R

System.ComponentModel.DataAnnotations;

BlazorValidation.Model

"Email is required")]

Email { -

Figure 8.2: Applying validation attribute

Now run the application, and you will see the output as
follows:

localhost 724. ' h - &

BlazorValidation About

Form Validation

1, |
« The iﬂpllt value cannot be "Admin’.
== Counter « |nvalid email address

Name:
Fetch data

| Admin ‘

The input value cannot be "Admin’.
Email:

| Ram ‘

Invalid email address

Submit

Figure 8.3: Form validation output

Complex or Nested Model Validation
in Blazor

Blazor has a built-in DataAnnotationsValidator. However, the
DataAnnotationsValidator only validates top-level properties of
the model bound to the form that isn’t collection- or
complex-type properties.

For validating complex models, we can use:
Microsoft.AspNetCore.Components.DataAnnotations.Validation

package

We also need to use <ObjectGraphDataAnnotationsValidator />
inside the EditForm

<EditForm ...>
<0ObjectGraphDataAnnotationsValidator />

<fEdi;;nrm>
We also need to decorate the model properties with
[ValidateComplexTypel
Let’s create demo sample code snippets for this.
Step 1: Create the Address model as follows:

using System.ComponentModel.Datalnnotations;

namespace BlazorValidation.Model

{
public class Address
[Required]
public string Addressl { get; set; }
public string Address2 { get; set; }
}
}

Step 2: Create the Emp model class with the Address nested
class.

using System.ComponentModel.Datafnnotations;

namespace BlazorValidation.Model

{

public c¢lass Emp

{
[Required(ErrorMessage = "Name is required")]
[UserNamevalidation]
public string Name { get; set; }
[Required{ErrorMessage = "Email is required")]
[EmailAddress (ErrorMessage = "Invalid email address")]
public string Email { get; set; }
[Required(ErrorMessage = "Address is required")]
[ValidateComplexType]
public Address Address { get; set; } = new();

}

Step 3: Create the Emp Entry Ul screen as follows:

@age "J"'EIIP"
f@using BlazorValidation.Model

<PageTitlesEmp</PageTitles
<h3:Emp Details</h3:>
<EditForm Model="@myModel" OnValidSubmit="@HandleValidSubmit">
<ObjectGraphDatadnnotationsValidator />
<ValidationSummary />
cdive
<label for="name" class="form-label">Name:</label>
<InputText id="pame" @bind-Value="myModel.Name" class="form-
control® />
<ValidationMessage For="@(() => myModel.Name)" />
<fdiv>
cdivs
<label for="email" class="form-label">Email:</label:>
<InputText id="email" @bind-value="myModel.Email" class="-
form-control” />
¢ValidationMessage For="@(() => myModel.Email)" />
<fdivs
<dive>
¢<label for="Address" class="form-label">Addressl:</label>
<InputText id="Address" @bind-Value="myModel.Address.Address1"
class="form-control" />
<ValidationMessage For="@(() => myModel.Address.Address1)" />
<fdivz
<dive
<label for="Address" class="form-label">Address2:</label>
<InputText id="Address" @bind-Value="myModel.Address.Address2"
class="form-control” /»
<ValidationMessage For="@(() => myModel.Address.Address2)" />
<fdiv>
<div class="form-group">
<button class="btn btn-outline-primary mt-2">Submit</button:
<fdiv>
</EditForm>

@code {
private Emp myModel = new Emp();

private void HandleValidSubmit()

// Logic to handle form submission when the form is valid
b}

Step 4: Run the application and click on the submit button.

BlarorValidation About

A Home Emp Details

« The Address field is required
« Name is required

« Email is required

MName

Mame is required

Email

Tha Ardedr L ol i
The Address feld 15 required

Address2

Figure 8.4: Emp Details Screen

Best Pattern and Practices for
Validation in Blazor

Validating user input is a critical aspect of building reliable
and user-friendly applications. In Blazor, you can implement
validation using various patterns and practices. Here's a
recommended approach and some best practices for
validation in Blazor:

1. Use Data Annotations:

Leverage the built-in .NET Data Annotations for basic
validation rules. This helps to keep your code clean and
easy to understand.

[Required(ErrorMessage = "Name is required")]

[stringlLength(58, ErrorMessage = "Name is too long")]
public string Name { get; set; }

2. Client-Side and Server-Side Validation:

Implement both client-side and server-side validation to
provide a responsive user experience and ensure data
integrity.

Client-side validation can be performed using Blazor’'s
built-in validation components, and server-side
validation is crucial for security and data consistency.

. EditForm Component:

Use the <EditForm> component to encapsulate your form
and handle validation.

Include the <DataAnnotationsValidator> and
<ValidationSummary> components within the form.

<EditForm Model="@EmyModel"” OnValidSubmit="HandleValidSubmit">
<DatafnnotationsValidator />
<ValidationSummary />

<! -- Your form controls and validation messages go here --»
</EditForm>

. ValidationMessage Component:

Utilize the <validationMessage> component for displaying
validation error messages.

Ensure that each input field has a corresponding
<ValidationMessage> With the correct For attribute.

<label>Name:</label>
<InputText @bind-Value="myMadel.Name" />

<ValidationMessage For="@(() => myModel.MName)" />

. Custom Validation:

Implement custom validation logic for scenarios that
cannot be handled by standard Data Annotations.

. Validation in Event Handlers:
In your event handlers, such as onvalidSubmit, check the

form’s validity before performing any actions.

private void HandleValidSubmit()

{
if (editContext.validate())

f/f Perform actions for a valid form

1}

Conclusion

Validation is one of the critical aspects of building reliable
and user-friendly applications. We have also seen that with
help of C# Data Annotation attribute, we can create client-
side validation. This is one of the simple approaches to
implement validation in any web framework.

In the next chapter, we will learn about JavaScript Interop in
Blazor.

References

For more details, please refer to the following document:
ASP.NET Core Blazor forms validation | Microsoft Learn

Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the purpose of the <bataAnnotationsValidator>
component in Blazor?

a. It displays validation error messages for all form

fields

b. It enables client-side validation for Data Annotations
attributes

c. It performs server-side validation for complex
objects

d. It automatically validates all properties of a model

2. Which interface is commonly implemented for
performing custom validation on an entire object in
Blazor?

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

. IValidationService
. IDataAnnotationsValidator
IValidatableObject
d. IvalidationContext

N T o

3. Which Blazor component is responsible for displaying a
summary of validation errors?

a. <ValidationSummary>

b. <DataAnnotationsValidators
C. <ValidationMessage>

d. <EditForm>

4. In Blazor, what does the editContext.Validate() method
do in a form submission handler?

a. It triggers client-side validation for all form fields

b. It performs asynchronous validation for the entire
form

c. It returns a boolean indicating whether the form is
valid

d. It validates only the required fields in the form

5. Which attribute is commonly used for marking a
property as required in Blazor validation?

a. [Mandatory]
b. [Required]
C. [Validate]
d. [NotNull]

Answers

1.b
2.C
3.a

v O
< 10

CHAPTER 9
JavaScript Interop in Blazor

Introduction

JavaScript Interop in Blazor refers to the ability of Blazor to
communicate and interact with JavaScript code.

Since Blazor applications run on the browser, there are
scenarios where we may need to call JavaScript functions or
use JavaScript libraries within our Blazor components. This is
where JavaScript Interop comes into play.

JavaScript Interop

: JavaScript File
(Chart.Js)

Blazor application

Figure 9.1: JavaScript Interop

In the preceding figure, if we have a Blazor application, we
may need to use the Google Chart.]Js library in Blazor. In this
scenario, with the help of JavaScript Interop, we can easily
use the Chart.js library in the Blazor application.

Structure
In this chapter, we will learn the following topics:

» Calling JavaScript from C#

Handling Function Return Value
Passing C# Objects to JavaScript
Calling C# from JavaScript
Advanced JavaScript Interop Demo
Error Handling and Debugging
Security Considerations
Performance Optimization

Calling_JavaScript from C#

In the Blazor application, we can call the JavaScript function
with the help of the JSRuntime service.

In the following example, we will see how to do it in Blazor
application:

Step 1: Create the Blazor WebAssembly application.

Step 2: Go to wwwroot folder and create the JavaScript file,
that is, Demo.js:

= Solution ‘InteropDemo’ (1 of 1 project)

4 51lInteropDemo
& Connected Services
#& Dependencies
3 Properties
wWwWwroot
B css
B3 sample-data
Demo.js
(] favicon.png
] icon-192.png
£* icon-512.png
&) index.html
) manifest.webmanifest

service-worker.js

Figure 9.2: JavaScript file

Step 3: Write the JavaScript global function as follows:

function helloFunction{) {
alert("Hello Blazor Web Assembly"};
}

JavaScript global function is attached to window, so we can
also write it as follows:

window.hellofunction = () =» {
alert("Hello Blazor Web Assembly"};
}

Step 4: Go to index.html and register the JavaScript file as
follows:

index.html = X

Figure 9.3: JavaScript path

Step 5: Call the JavaScript function from C# with help of
IJSRuntime, as given in the following code:

@Jage LY L
@inject IJSRuntime IS

<h3>JavaScript Interop in Blazor</h3:
<br f»
<button @onclick="CalllavaScript">Click Me</button>

fcade
{

private async Task CalllavaScript()

{
}

await JS.InvokeVoidAsync("helloFunction");

1

Now run the application, and you will see the output as
shown in Figure 9.4:

localhost

localhost:7044 says

Hello Blazor Web Assembly

JavaSc

Click Me

Figure 9.4: Output

Handling Function Return Value

We can handle return value from JavaScript functions like this
in C# code.

Write a function to multiply two numbers and return the
value to C#:

function multiplyMumbers{a, b) {
return a * b;
¥

Now call this function in Razor page as follows:

@page "/counter"

@inject IJSRuntime JSRuntime

<PageTitle>Counter</PageTitle>

<h3>*Handle JavaScript Function Return Value Example</h3:

<button @enclick="Calllavascript"»>Call JavasScript Function</button>
<p>Result: @result</p>

f@code {

private int result;
private async Task CalllavaScript()

// Call the JavaScript function and capture the return value
result = await JSRuntime.InvokeAsync<ints>("multiplyNumbers",
5y 3);
}
}

Now run the application:

Handle JavaScript Function Return Value Example

I Call JavaScript Function I
Result: 15

Figure 9.5: JavaScript function return
In the preceding example:

e The multiplyNumbers JavaScript function takes two
arguments (a and b) and returns their product.

e In the Blazor component, the callJavaScript method is
triggered when the button is clicked.

e Inside callJavaScript, JSRuntime.InvokeAsync<int> iS used to
call the JavaScript function and capture the return value.
The function name 15 specified as

"myModule.multiplyNumbers”, and the arguments 5 and 3
are passed.

e The result is then displayed in the HTML using @resutt.

Passing C# Objects to JavaScript

Passing C# objects to JavaScript involves serializing the C#
object into JSON and then passing the JSON string to a
JavaScript function. An example demonstrating how to
achieve this in a Blazor component is as follows:

JavaScript Function:

function displayPerson(person) {
console. log("JavaScript function called from C# with person:",

person};

}

Razor and C# code

#page "/Sweather"

f@using System.Text.Jlson

@inject IJSRuntime J1SRuntime

<h3>Passing C# Object to JavaScript Example</h3>

<button @onclick="PassCSharpObject">Pass C# Object to JavaScript</button:

@code {

public class Perscon

{
public string Name { get; set; }
public int Age { get; set; }

}

private async Task PassCSharpObject()

{

// Create an instance of the Person class
var person = new Person
{
Mame = "Anvi Sah",
Age = 8
};

// Serialize the C# object to a JSON string
var jsonString = JsonSerializer.Serialize(person);

[/ Call the JavaScript function with the serialized JSON string
await JSRuntime.InvokeAsync<object>("displayPerson”, jsonString);

Now run the application:

St rood fokder Do T shacae aguain

Passing C# Object to
JavaScript Example

I Pass C# Object to JavaScript I

Figure 9.6: C# object demo

In this example:

The Person class is a simple C# class with properties
representing a person’s name and age.

The displayPerson JavaScript function takes a person
parameter, which is expected to be a JSON string
representing a person.

In the Blazor component, the PassCSharpobject method is
triggered when the button is clicked.

Inside PassCSharpObject, an instance of the Person class
is created, and it is then serialized into a JSON string
using JsonSerializer.Serialize.
The JavaScript function displayPerson is then called with
the serialized JSON string as an argument using
JSRuntime.InvokeAsync<object>.

Calling C# from JavaScript

Using DotNet.invokeMethodAsync function, we can call the C#
method in JavaScript function.

Here is the simple code snippets for this task:

Step 1: Create C# method to reverse the string in Razor
Component as follows:

@page "Sfexample"
@inject IJSRuntime JSRuntime

<h3>Calling C# from JavaScript Example</h3>
<button @onclick=CallReverse>Clicke</button>

@code {

async Task CallReverse()

{
}

[I5Invokable]
public static Task InteropReverse(string input)

{

await JSRuntime.InvokeVoidAsync("reverseString”, "Chandradev");

var result = new String(input.Reverse().ToArray(});
return Task.FromResult(result);

1
Step 2: Write the JavaScript function to Call C# method as:

window.reverseString = function (input) {
f/f Call the C# method using DotMet.invokeMethodAsync
DotNet.invokeMethodAsync("InteropDema”, "InteropReverse", input)
.then{function (result) {
alert(result);
1);

Now run the application:

@ D @ wecpoe

&

InteropDemo localhost:7044 says
vedardnahl

H HZ_':1'1':1' Ca"ing I

Figure 9.7: C# from JavaScript

In the preceding code snippets, we saw that with the help of
DotNet.invokeMethodAsync, we are calling C# method from the
JavaScript function.

In C# method, we also need to decorate with [ISInvokable]
attribute. Otherwise, we cannot call the C# method in the
JavaScript function.

Advanced JavaScript Interop Demo

In this demo, we will see how to integrate Chartjs library in
Blazor application (https://www.chartjs.org/).

Step 1: Register the Chart.js library in Index.html page as:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.3/Chart
.min.js"></script>

Figure 9.8: Chart URL

Step 2: Write JavaScript code for render chart controls as
follows:

https://www.chartjs.org/

//Chart demo
window.showChart = (chartType, dataOptions) => {
var ctx = document.getElementById(‘myChart*).getContext(2d’};
var options = {
type: chartType,
data: {
labels: dataOptions.labels,
datasets: [{
label: dataOptions.label,
data: dataOptions.data,
backgroundColor: dataOptions.color,
borderColor: dataOptions.color,
fill: dataOptions.fill
H

}
iéw Chart{ctx, options);
Step 3: Write the C# code in Razor Component to pass all
the required field for chart controls, as shown in the following
code:
@page "/chart"
@inject IJSRuntime JSRuntime

<h3>Chart Demo</h3>
<canvas id="myChart"></canvas>

ficode {
protected override async Task OnAfterRenderAsync{bool firstRender)
{
var dataOptions = new
{
labels = new[] { "Jan", "Feb", "Mar", "Apr", "May", "Jun"
}
data = new[] { 26, 44, 54, 66, 55, 58 },
label = "Total Sales"”,
color = "#57a6da",
fill = false
|
awalt JSRuntime.InvokeVoldAsync("showChart", “line", dataOp-
tions);

+r

Now run the application:

Chart Demo

Figure 9.9: Chart demo

In the preceding Razor code snippets, the InvokeAsync method
is called in the onAfterRenderAsync method instead of a DOM
event handler.

onAfterRender(Async) is the place to call JavaScript methods
that you want to take place on page or component load,
because at this point, the component has completely
rendered and DOM elements are available.

Error Handling and Debugging

Handling errors and debugging in JavaScript Interop in Blazor
Is crucial for ensuring the robustness and reliability of your
application. Here are some best practices for error handling
and debugging:

 Error Handling in JavaScript

Wrap your JavaScript code in try-catch blocks to handle
exceptions gracefully. This is especially important when
calling C# methods asynchronously.

try {
[/ Your JavaScript code here
} catch (error) {
console.error("An error occurred:", error);}

Error Handling in C# Methods

In your C# methods called from JavaScript, implement
proper error handling using try-catch blocks. Log or
handle exceptions appropriately.

[ISInvokable(“MyCSharpMethod™)]
public async Task<string> MyCSharpMethod(string input)

{

try {
ff Your C# code here
return "Success”;
} catch (Excepticn ex) {
Console.Error.Writeline($"An error occurred: {ex.Message}");
return "Error";

¥

Debugging JavaScript Interop
Use browser developer tools to debug JavaScript code.

Set breakpoints, inspect variables, and step through
your JavaScript code.

Logging from JavaScript to Console

Utilize console.log, console.error, and other console
methods in JavaScript to output information that can
help in debugging.

console.log("This is a log message");
console.error{"This is an error message");

Logging from C# to Browser Console

Use Console.WriteLine Or Console.Error.WriteLine in your
C# code. These messages will be visible in the browser’s
console.

Console.WriteLine("This is a log message from C#");
Console.Error.WriteLine("This is an error message from CH#"};

Inspecting JavaScript Objects

When passing C# objects to JavaScript, use
JSON.stringify to serialize objects. You can log the

serialized JSON string for inspection.

var jsonString = JSON.stringify(myCSharpObject);
console. log("C¥ Object as 1SOM:", jsonString);

Verify Method Names and Parameters

Double-check that the method names and parameters in
your JavaScript and C# code match. Typos can lead to
invocation errors.

Handle Promise Rejections

Handle promise rejections by attaching a .catch block to
your DotNet.invokeMethodAsync calls. This can help catch
errors that occur during the asynchronous invocation.

DotMet. invokeMethodAsync("InteropDemo”, "SomeMethod", argl, arg2)
.then{result =» {
/f Handle the result

1

.catch(error =» {
console.error({ "Error invoking C# method:", error);

1)

Use Browser Debugging Tools

Leverage browser debugging tools like Chrome/Edge
DevTools or Firefox Developer Tools. Set breakpoints,
inspect network requests, and analyze the call stack.

By incorporating these practices, you can enhance the
error handling and debugging capabilities of your Blazor
application with JavaScript Interop.

Security Considerations

When working with JavaScript Interop in Blazor, it's crucial to
consider security implications to protect your application
from potential vulnerabilities. Here are some security
considerations and best practices:

e Input Validation

Validate all input parameters before passing them
between C# and JavaScript. This helps prevent injection

attacks and ensures that only valid data is processed.
Sanitize User Inputs

If your JavaScript code receives inputs from user
interactions or external sources, sanitize the inputs to
prevent cross-site scripting (XSS) attacks. Use libraries
like poMPurify to sanitize HTML content.

Authorization and Authentication

Ensure that any sensitive operations performed through
JavaScript Interop are authorized and authenticated.
Verify the wuser’'s identity and permissions before
executing certain actions.

Avoid Eval

Avoid using eval in JavaScript as it can introduce security
vulnerabilities. Instead, use safer alternatives for
dynamic code execution.

Using eval (avoid this):

function executeDynamicCode(expression) {
try {
return eval(expressicn);
} catch (error) {
console.error("Error executing dynamic code:", error);
}

}

// Example usage

var result = executeDynamicCode("1 + 1");
console. log("Result:", result);

Corrected Code

function executebynamicCode(expression) {

try {
f/ Instead of eval, use a function
var dynamicFunction = new Function(“return " + expression);
return dynamicFunction();

} catch (error) {
console.error{"Error executing dynamic code:", error);

}

}

// Example usage
var result = executeDynamicCode("1 + 1");
console. log("Result:", result);

Secure JavaScript Execution

Only execute JavaScript code from trusted sources.
Avoid dynamically generating JavaScript code based on
untrusted input, as this can lead to code injection
vulnerabilities.

Content Security Policy (CSP)

Implement and enforce a Content Security Policy to
control which resources can be loaded by your
application. This helps mitigate risks associated with
malicious scripts.

Cross-Origin Resource Sharing (CORS)

Configure CORS settings appropriately to control which
origins are allowed to make requests to your Blazor
application. Limit cross-origin requests to trusted
domains.

Use HTTPS

Ensure that your application is served over HTTPS. This
helps protect against various attacks, including man-in-
the-middle attacks.

Limit Exposed C# Methods

Only expose necessary C# methods to JavaScript.
Minimize the surface area for potential attacks by only
exposing what is required for functionality.

Dispose of Object References

When passing C# objects to JavaScript, manage the
lifecycle of JavaScript object references. Dispose of them
when they are no longer needed to prevent memory
leaks and potential security risks.

Logging Sensitive Information

Avoid logging sensitive information, such as passwords
or access tokens, in JavaScript console logs. Ensure that
your application’s logging mechanisms do not
inadvertently expose sensitive data.

« Updates and Patching

Regularly update and patch your application
dependencies, including JavaScript |libraries and
frameworks. This helps address security vulnerabilities
that may be present in third-party code.

e Audit and Code Review

Conduct security audits and code reviews regularly to
identify and address potential security issues in your
codebase. This includes both C# and JavaScript code.

« Monitoring and Logging

Implement robust monitoring and logging mechanisms
to detect and respond to security incidents. Log relevant
security events and anomalies.

By following these security considerations, you can
significantly reduce the risk of security vulnerabilities in your
Blazor application that involve JavaScript Interop.

Performance Optimization Tips

Optimizing performance while working with JavaScript
Interop in Blazor is crucial for ensuring a smooth and
responsive application. Here are some tips for performance
optimization:

e Minimize Interop Calls

Minimize the number of interop calls between C# and
JavaScript. Group multiple operations into a single
interop call when possible, to reduce overhead.

 Batch Interop Calls

Batch together related interop calls to reduce the
communication overhead between C# and JavaScript.
This is particularly beneficial when performing multiple
operations in quick succession.

e Use Efficient Data Serialization

When passing data between C# and JavaScript, use
efficient serialization methods. For example, prefer
simple types or JSON serialization over more complex
serialization mechanisms.

Limit Data Size

Avoid transferring large amounts of data between C#
and JavaScript. Limit the amount of data passed in
interop calls to only what is necessary for the current
operation.

Dispose of Object References

If you use DotNetObjectReference to pass C# objects to
JavaScript, ensure that you dispose of the object
references when they are no longer needed to prevent
memory leaks.

Use Async/Await Wisely

Be mindful of wusing asynchronous interop calls
excessively. While asynchronous calls can be beneficial,
too many async calls can lead to increased overhead.
Use async only when needed.

Optimize JavaScript Code

Optimize your JavaScript code for better performance.
Minimize unnecessary computations and ensure that
your JavaScript functions are well-optimized.

Client-Side Caching

Consider client-side caching for data that doesn't
change frequently. Cache data in JavaScript to avoid
unnecessary round trips to the server.

Lazy Loading

Implement lazy loading for components or data that is
not immediately required. Load resources or
components on demand rather than all at once.

Profile and Measure

Use browser developer tools to profile and measure the
performance of your JavaScript code. Identify and
address any bottlenecks or performance issues.

« Compress JavaScript Code

Minify and compress your JavaScript code before
deploying it to production. This reduces the size of the
JavaScript files, leading to faster downloads and
improved performance.

» Reduce DOM Manipulations

Minimize unnecessary DOM manipulations in your
JavaScript code. Frequent manipulations can cause
reflows and repaints, impacting performance.

« Avoid Synchronous Calls

Prefer asynchronous calls over synchronous ones.
Synchronous calls can block the Ul, leading to a less
responsive user experience.

« Update Dependencies

Ensure that you are using the latest versions of your
JavaScript libraries and dependencies. Newer versions
may include performance improvements and
optimizations.

e« Benchmark and Test

Conduct performance benchmarks and tests regularly.
Identify areas for improvement and fine-tune your code
based on actual performance metrics.

By following these performance optimization tips, you can
ensure that your Blazor application with JavaScript Interop
delivers a fast and efficient user experience. Remember that
performance optimization is an ongoing process, and
continuous monitoring and refinement are essential.

Conclusion

In this chapter, we understood that with the help of
JavaScript Interop, we can integrate the cool features of any
JavaScript library in the Blazor application. We can also call
C# method in JavaScript function.

In the real scenario, we will get very few scenarios with a
JavaScript library. However, it is good to know the power of
JavaScript interop in Blazor for creating interactive and
powerful single page applications.

In the next chapter, we will explore Azure service in Blazor.

References

For more details, please refer to the following document:

ASP.NET Core Blazor JavaScript interoperability (JS interop) |
Microsoft Learn

(https://learn.microsoft.com/en-

us/aspnet/core/blazor/javascript-interoperability/?
view=aspnetcore-8.0)

Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is JavaScript Interop in the context of Blazor?

a. A new programming language

b. A technique for integrating JavaScript code with
Blazor applications

c. A type of serverless computing
d. A tool for debugging JavaScript in Blazor

2. Which Blazor attribute is used to mark a C# method for
invocation from JavaScript?

https://learn.microsoft.com/en-us/aspnet/core/blazor/javascript-interoperability/?view=aspnetcore-8.0
https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

a. [CSharpInvoke]
b. [Invokels]
C. [JSInterop]
d. [JSInvokable]

3. How can you pass C# objects to JavaScript in Blazor?

a. Using the DotNet.createObject function

b. Directly passing the object as an argument in an
interop call

c. Using the [JSObject] attribute
d. Objects cannot be passed to JavaScript in Blazor
4. What is the purpose of DotNetObjectReference in Blazor
JavaScript Interop?
a. To create a reference to a JavaScript object
b. To reference a .NET object in JavaScript
c. To invoke C# methods from JavaScript
d. To dispose of JavaScript objects

5. How can you optimize performance when working with
JavaScript Interop in Blazor?

a. Maximize the number of interop calls to enhance
communication

b. Minimize the size of data transferred in interop calls

c. Avoid using asynchronous calls in JavaScript

d. Use synchronous calls for better responsiveness

Answers
1. b

2.d
3.b
4. b

5.

b

CHAPTER 10
Azure Service in Blazor

Introduction

Microsoft Azure is a comprehensive cloud computing platform
provided by Microsoft. It offers a wide range of services that
enable individuals and organizations to build, deploy, and
manage applications and services through Microsoft’'s global
network of data centers. Azure provides both Infrastructure as a
Service (laaS) and Platform as a Service (PaaS) solutions, as well
as other services for various purposes. In this chapter, we will
focus on Azure services that are frequently used while working
with Blazor WebAssembly application.

Structure
In this chapter, we will learn the following topics:

» Key Features and Components of Microsoft Azure

e Azure Account Creation Steps

» Static WebSite Deployment and CICD Pipeline

e Creating API Using Azure Function App

e CRUD Operation Using Azure Function

e Deployment of Azure Function

« How to Consume Azure Function in Blazor

e Introduction of Azure App Service

e Deployment of Blazor Application Using Azure App Service
e CICD Pipeline Using Azure App Service

Key Features and Components of
Microsoft Azure

Some key features and components of Microsoft Azure include:

Compute Services

Azure offers virtual machines (VMs) for scalable computing
power, Azure Kubernetes Service for container orchestration,
and Azure Functions for serverless computing.

Storage Services

Azure provides various storage solutions, including Blob
Storage for unstructured data, Table Storage for NoSQL data,
and Azure SQL Database for relational data.

Networking Services

Azure offers a range of networking services such as Azure
Virtual Network for secure connectivity, Azure Load Balancer
for distributing incoming network traffic, and Azure VPN
Gateway for secure connections to on-premises networks.

Database Services

Azure provides fully managed database services like Azure
Cosmos DB, Azure SQL Database, and Azure Database for
PostgreSQL, MySQL, and more.

Al and Machine Learning

Azure includes services like Azure Machine Learning for
building, training, and deploying machine learning models,
as well as cognitive services for adding Al capabilities to
applications.

Identity and Access Management (I1AM)

Azure Active Directory (Azure AD) is used for managing
identities and providing secure access to resources.

DevOps Services

Azure DevOps provides a set of tools for source control,
build automation, release management, and more,
facilitating the DevOps lifecycle.

Internet of Things (loT)

Azure loT Hub allows you to connect, monitor, and manage
loT assets, while other services provide analytics and
insights for loT data.

» Security and Compliance

Azure offers a range of security services, including Azure
Security Center and Azure Policy, to help protect your
applications and data.

» Analytics and Big Data

Azure includes services like Azure Synapse Analytics, Azure
Data Lake Storage, and HDInsight for processing and
analyzing large datasets.

» Serverless Computing
Azure Functions enables you to run event-triggered code
without explicitly provisioning or managing infrastructure.

As you observed, Azure is very vast topic. However, in this
chapter, we will only focus on Azure services that are frequently
used while working with Blazor WebAssembly application.

Figure 10.1: Azure Logo

Azure Account Creation

Creating an account on Azure Portal is totally free. When you
create an account for the first time, you will receive $200 Azure

credit free of cost.
To create an Azure account, follow these steps:

1.

Visit the Azure Portal:
Go to the Azure Portal at https://portal.azure.com/

. Click Create a new Azure account:

If you don’t have an existing account, click the “start free”
button to create a new one.

. Fill in the required information:

You'll need to provide details such as your email address,
password, and other necessary information. Follow the on-
screen instructions to complete the sign-up process.

. Verify your identity:

Microsoft may require you to verify your identity by
providing a phone number for authentication purposes.
Follow the prompts to complete this step.

. Agree to the terms and conditions:

Read and agree to the terms and conditions of using Azure.

. Provide payment information:

Although Azure offers a free tier with limited resources, you
may need to provide payment information for verification
purposes. Rest assured that you won’'t be charged unless
you explicitly upgrade to a paid plan.

. Access your Azure Portal:

Once your account is created, you can log in to the Azure
Portal using the credentials you provided during the sign-up
process.

https://portal.azure.com/

Azure services

+ & 4 @ 0o =

Y
w
. Ill

%

Resources

Recent Favonte

Hama Typer Lot Wiratd

Figure 10.2: Azure Portal Dashboard

Static WebSite Deployment

Blazor WebAssembly is a Ul framework similar to Angular, React,
and Vue.Js. You can also deploy Blazor WebAssembly as static
websites on any cloud provider platform such as Azure, AWS,
Google, and so on, which is totally free. You don’t have to pay
any money for deployment and storage.

If you have created some demo or portfolio project using Blazor
WASM and need to share with someone, you can take advantage
of this service. It is totally free.

In this demo, we will show one of the easiest approaches using
Azure Static Web App.

Step 1: Create the Blazor WebAssembly app using dotnet cli
command as follows:

dotnet new blazorwasm -n WasmTest -o app

In the preceding command, we create a Blazor WebAssembly
application in app folder.

Step 2: Push the code on GitHub Repo.

Step 3: Go to Azure portal and create the static Web App as
follows:

_ Microsoft Azure 2 Search resources, services, and docs (G+/)

Home > Create a resource »

Static Web App »

Microsoft

"<.;> Static Web App < addto ravorites

Microsoft

% 4.1 (171 Marketplace ratings) | % 4 (114 external ratings)

Plan

Static Web App W I

Figure 10.3: Static Web App

Step 4: Fill the mandatory field as shown in Figure 10.4:

Microsoft Azure 2 Search resources, services, and docs (G+/)

Home » Create a resource » Static Web App »

Create Static Web App
Subscription ® (@ [Pay-as-You-Go Dev/Test (cB302302-4820-467a-813¢-51a0¢0736ec0) v |
Resource Group * [Test e |
Create new
Static Web App details
Mame * I MyDemowet] Lz]
Hosting plan

The hosting plan dictates your bandwidth, custom domain, storsge, and other avadable features. Compare plins

Plan type '@ Free: For hobby or personal projects
O Standard: For general purpose production apps

Azure Functions and staging details

Regeon for Azure Functions AP1 and Cenitral US et
$taging ernaronments *

Deployment details
Source @ GitHub O Azure DevOps I::} Onher
GitHub account Chandradev819

Review + create < Previous
Figure 10.4: Create Static Web

Step 5: Click Review + create button.

Create Static Web App

- . " . o L) 1, :’:
ﬂ I you can't find an organization or repasitory, you might need to enable additionyl permissions on GitHub,
Organization * Chandradevd19 v |
Repository * [Personal-POC kv
Branch * I master L

Build Details

Enter values to create a GitHub Actions workflow file for build and release. You can modily the workfiow file later in your

GitHub repository.

Build Presets l Blazor v |
@ These fields will reflect the app type’s default project structure. Change
the values to suit your app.

App location® (O app w

Api location O Api

Output lecation (& WWATOO!

< Previous Next : Tags »

wttne finnrtal amire rom/a
Figure 10.5: Static Web Review

Figure 10.6 shows “Your deployment is complete”:

p e L “

PR

& Microsoft.Web-StaticApp-Portal-789dc758-9e06 | Overview =

sch B Cwelete (T Redepioy 4 Dowsicad) Reteesh

& Cvervies .
ry— @ Your deployment is complete
v gt

) [reormentnime Miosof Web-SttApp- Poal TERICTSS e0 Sat time: 10702002, 104320 P

s Sutneription: Fay-As-¥ou e Test (BA02 o2 -Aal(-44T2-41% Cormelation ID: FAA0e 1 1-BOA T -87¢-000 -0 160et e beld)
= Radourcn Qromps Tedd
= Template

w Deployment details
Neat steps

G b rencsurce

Figure 10.6: Static Web deployment
Step 6: Go to your resource and click the generated URL

[MyDemoWeb =

Figure 10.7: Static Web URL

Now, you will see your website as shown in Figure 10.8:

Weather forecast

T component demonatrates fetchng dats Fom The sere

Date Tamnp. (S} Temp. [F) Sumenary

Se018 1 t5] Fromsing

STa0e L2 57 Braory

Su018 -13 o Freazing

592018 -18] Bairy
st L=

Figure 10.8: Blazor Application

Cl/CD Pipeline on GitHub

It will also create a CI/CD pipeline for us on GitHub.

Figure 10.9: CI/CD Pipeline

Azure Function

Azure Function is a serverless computing service offered by
Microsoft Azure that allows you to write less code, maintain less
infrastructure, and save on costs.

It enables the execution of small units of code, called functions,
without the need to manage servers or any other infrastructure.

These functions are triggered by specific events or inputs,
allowing developers to respond to events in real time. By utilizing
Azure Functions, developers can focus solely on writing code and
not worry about infrastructure management.

Benefits of Using Azure Functions
Let’s learn the benefits of using Azure Functions:

 Serverless Computing: Azure Functions enable serverless
computing, allowing you to focus on writing code without
managing the underlying infrastructure. This can lead to
increased development speed and reduced operational
overhead.

« Cost-Efficiency: With serverless architecture, you pay only
for the compute resources used during the execution of
functions. This can result in cost savings compared to

traditional server-based approaches where you might pay
for idle resources.

e Scalability: Azure Functions automatically scale based on
demand. Functions can be triggered individually, enabling
your application to handle varying workloads efficiently.

 Event-Driven: Functions can be triggered by various events
such as HTTP requests, timer-based schedules, or events
from other Azure services. This makes it suitable for building
event-driven architectures and microservices.

« Support for Multiple Languages: Azure Functions
supports multiple programming languages, including C#,
F#, C#, JavaScript, Python, Java, and PowerShell.

« Integration with Azure Services: Azure Functions
seamlessly integrates with other Azure services, making it
easy to connect and interact with services like Azure
Storage, Azure SQL Database, or Azure Event Hubs.

« Rapid Development and Deployment: The serverless
model allows for rapid development and deployment. You
can focus on writing the necessary code for your functions
without dealing with infrastructure concerns, leading to
faster time-to-market.

- DevOps Integration: Azure Functions can be easily
integrated into your DevOps processes, enabling continuous
integration and deployment. This aligns with modern
development practices, promoting agility and collaboration.

Different Types of Triggers on Azure
Functions
Here is a list of different types of triggers on Azure functions:

« HTTP Trigger: This trigger allows your function to be
invoked by an HTTP request. It’'s commonly used for building
RESTful APIs or handling HTTP-based events.

« Timer Trigger: With a timer trigger, your function can be
scheduled to run at specified intervals or according to a cron

expression. This is useful for periodic tasks or background
processing.

« Blob Trigger: This trigger is activated when a new or
updated blob is detected in Azure Storage. It's often used for
scenarios involving file processing or data ingestion.

« Queue Trigger: When a new message arrives in an Azure
Storage Queue, a function with a queue trigger can be
invoked. This is useful for building decoupled systems and
handling asynchronous processing.

« Event Hub Trigger: This trigger processes events from
Azure Event Hubs, which is a scalable and distributed event
streaming platform. It's suitable for handling large-scale
event streams.

« Service Bus Trigger: With a Service Bus trigger, your
function can respond to messages arriving in Azure Service
Bus queues or topics. This is useful for building reliable and
asynchronous communication between components.

« Cosmos DB Trigger: This trigger reacts to changes in
Azure Cosmos DB collections, allowing your function to
process documents that are inserted or modified in the
database.

« Event Grid Trigger: Azure Event Grid triggers enable your
function to respond to events from various Azure services or
custom sources. It provides a flexible and event-driven
architecture.

 GitHub/WebHook Trigger: This trigger allows your
function to respond to events from GitHub repositories, such
as code commits or pull requests.

« Durable Functions Orchestration Trigger: Durable
Functions introduce a special trigger for orchestrations,
allowing you to define workflows and manage the state of
long-running processes.

These triggers provide a wide range of options for handling
different types of events in your applications. As a web developer
working with Azure, you can choose the trigger type that best fits

the requirements of your projects, whether they involve HTTP
requests, scheduled tasks, data changes, or other events.

Creating Azure Function

This is a very vast topic, but in this chapter, a brief introduction
about all frequently used Azure services is provided.

We can create the Azure Function using Visual Studio 2022, VS
Code, and with Azure Portal website. However, as web
developers, we will choose Visual Studio 2022.

Step 1: Create the new project for Azure function as follows:

Recent project templates

Figure 10.10: Azure Function

Here is the template for new project:

Configure your new project

Azure Functions <# Amre Cloud

Project name
HelloAzureFunction
Location

D:AWasmBook

P | e o
Solution name (&)

¥ | Place solution and project in the same directory

Project will be created in *DAWasmBook\HelloAzureFunction\,”

Figure 10.11: Azure Function Project Template

Figure 10.12 shows the type of Azure Function:

Additional information

Azure Functions ¢# Awmre Cloud

Functions worker (D
NET 8.0 Isolated (Long Term Support)
Function @

Http trigger

Use Azurite for runtime storage account (AzureWeb)

Enable Docker (D
Authorization level @

Anonymous

Figure 10.12: Azure Function Type

Step 2: Click the create Button of the wizard window. Now, it will
create basic scaffolding code for Azure function:

1 Pl pos o ot Ty

|

Figure 10.13: Azure Function Code

Step 3: Run the application, and you will see command window
as follows:

Figure 10.14: Azure Function Output

Step 4: Now trigger the given GET and POST method from the
postman. It will call the Azure Function code and return “welcome
to Azure Functions!”

[Function({"Function1")]
public HttpResponseData Run([HttpTrigger{AuthorizationlLevel.Anonymous,
"get", "post")] HttpReguestData reg)

_logger.LogInformation("C# HTTP trigger function processed a re-
quest.");

var response = req.CreateResponse{HttpStatusCode.OK);
response.Headers. Add("Content-Type", "text/plain; charset=utf-8");

response.WriteString("Welcome to Azure Functions!");

return response;}

httpflocalhost: 7136/ apl/Function]

httpelfocalhost7136/apl/Function]

Body

Body

Pratty

Welcoma to Arure Functions!

Figure 10.15: Azure Function Output on Postman

Http CRUD Operation in Azure Function

Now, we will change the Azure Function name to EmpFunction and
create some in-memory dummy data for demo purposes.

Step 1: Create the Employee class.

public class Employee
i

public int Id { get; set; }
public string Mame { get; set; }
public decimal Salary { get; set; }

Step 2: Write the Create Employee Post method as shown here:

public class EmpFunction

{
private readonly List<Employee> employeeDataStore = new List
<Employeex>();
private readonly ILogger _logger;

public EmpFunction(ILoggerFactory loggerFactory)

{
_logger = loggerFactory.Createlogger<EmpFunction>();

InitializeDummyData();
1

J// Initialization method to populate dummy data
private void InitializeDummyData()

1
employeeDataStore.Add{new Employee { Id = 1, Name = "John
Doe", Salary = 56880 });
employeeDataStore.Add(new Employee { Id = 2, Mame = "Jane
smith", Salary = 6@@ee@ });
employeeDataStore.Add(new Employee { Id = 3, Mame = "Anvi

Sah", Salary = 70088 });
// Add more dummy data as needed
}

[Function("CreateEmployee")]
public HttpResponseData CreateEmployee(
[HttpTrigger(AuthorizationLevel.Anonymous, "post"™)]
HttpRequestData req)
{

_logger.LogInformation("CreateEmployee function processed
a request.”);

req.ReadAsstringhsync().Result;
JsonSerializer.Deserialize<Employee>

var requestBody
var newEmployee

(requestBody);

/f MNeed to Store in actual database
employeeDataStore. Add(newEmployee) ;

var response = req.CreateResponse(HttpStatusCode.0K);
response.Headers.Add("Content-Type", “application/json;

charset=utf-8");
response.WriteString(JsonSerializer.Serialize(newEmployee));
return response;

}

Step 3: Write the code to fetch all employees as shown here:

[Function("GetAllEmployees"}]
public HttpResponseData GetAllEmployees(
[HttpTrigger(AuthorizationLevel.Anonymous, “get")] HttpRequestData
req)
{
_logger.LogInformation("GetAllEmployees function processed a
request.");

var response = req.CreateResponse(HttpStatusCode.OK);
response.Headers.Add("Content-Type", “application/json; charset
=utf-8");

response.WriteString(JsonSerializer.Serialize(employeeDataStore));

return response;}

Step 4: Write the uUpdateEmployee method as shown here:

[Function("UpdateEmployee")]

public HttpResponseData UpdateEmployee(
[HttpTrigger(AuthorizationLevel.Anonymous, “put")] HttpRegquestData

req)

{

_logger.LogInformation("UpdateEmployee function processed a
request.”);

var reguestBody = req.ReadAsStringAsync().Result;
var updatedEmployee = JsonSerializer.Deserialize<Employee>
{requestBody);

// Find and update the employee based on Id

var existingEmployee = emploveeDataStore.Find(e =» e.Id ==
updatedEmployee.Id);

if (existingEmployee != null}

{

existingEmployee.Name = updatedEmployee.Name;

existingEmployee.Salary = updatedEmployee.Salary;
}

var response = req.CreateResponse(HttpStatusCode.OK);
response.WriteString("Employee updated.");

return response;}

Step 5: Write the code for DeleteEmployee as shown here:

[Function("DeleteEmployee")]
public HttpResponseData DeleteEmployee(
[HttpTrigger(AuthorizationLevel.Anonymous, “delete")]
HttpRequestData req)

_logger.LogInformation("DeleteEmployee function processed
a request.");

var requestBody = req.ReadAsStringAsync().Result;
var employeeldToDelete = JsonSerializer.Deserialize
<Employee>(requestBody) ;

// Find and remove the employee based on Id

var employeeToDelete = employeeDataStore.Find(e => e.Id
== employeeldToDelete.Id);

if (employeeToDelete != null)

employeeDataStore. Remove(employeeToDelete);
¥

var response = req.CreateResponse(HttpStatusCode.OK);
response.WriteString("Employee deleted.");

return response;

}

Step 6: Run the application:

Figure 10.16: Azure Function Endpoint

Step 7: Test the given HTTP endpoint using Postman:

http:/flocalhost: 7136/apl/GetAllEmployeas

Body

:"John Doe®,"Sal:

zah",

Figure 10.17: Azure Function GetAllEmployees

Figure 10.18 shows how to create employee details:

http:/flocalhost:7136/api/CreateEmployea

Bod ¥

Pretty

Figure 10.18: Azure Function CreateEmp

Figure 10.19 depicts how to delete an employee details:

htipifflecalhost:7136/apifDeleteEmployeatemployeeld =2

Body

Pretty

Employee deleted.

Figure 10.19: Azure Function DeleteEmp

Figure 10.20 shows to update employee details:

http:fflocalhost:7136/apifUpdateEmployee

Body

Pretty

Employee updated.
¥

Figure 10.20: Azure Function UpdateEmp

In the preceding demo, we saw that with the help of HTTPTrigger,
we can create RESTful APIs.

Azure Function Deployment

We can deploy the Azure Function with the help of Visual Studio
2022 wizard by following these steps:

Step 1: Right click project Solution Explorer and click Publish..

e
Rebuild
Clean
Solution B Analyze and Code Cleanup
5 © - Pack
Search S ' Publish...
Upgrade

= Soluti
b &4 He EF Core Power Tools

Scope to This

New Solution Explorer View
File Nesting

Edit Project File

Add

Manage NuGet Packages...

Manage User Secrets

Figure 10.21: Azure Function Publish - step 1

Step 2: Select Azure and click Next

Publish

Where are you publishing today?

Target f Azure

Host your application to the Microsoft doud
Docker Container Registry
Publish your application to any supported Container Registry that works with Doch

Folder

Publish your application to a local folder or file share

Import Profile

Import your publish settings to de yOur app

Mot

Figure 10.22: Azure Function Publish - step 2

Step 3: Figure 10.23 shows the next screen of process:

Publish

Which Azure service would you like to use to host your application?

larget ; Azure Function App (Windows)

;i pl on code to a serverless compute that scales dynamically and
Spedific target

npute that scales -:5':,'.':.|rr'|i-'..

Azure Function App Container
your application as a Docker image to Azure Container Registry and run it on
Azure Function App

Azure Container Registry

Publish you 1on as a Docker image to Azure Container Reqistry

Cancel

Figure 10.23: Azure Function Publish - step 3

Step 4: As shown in Figure 10.24, click + Create new:

Publish

Select existing or create a new Azure Function

Target
spedcific target
Functions instance

Deployment type There are no existing instances available

“| Run from package file (recommended)

Figure 10.24: Azure Function Publish - step 4

Step 5: Then, the following screen will appear:

f_ ._|r'u:._=|

Function App (W B Microsoft account :

[l chandradev819@hotmail.com

Create new

MName

HelloAzureFunction20231215224941

Subscription name

Pay-As-You-Go Dev/Test

Resource group

cloud-shell-storage-centralindia (Central India)

Plan Type

Consumption

Location

Australia Central

Azure Storage

csg1003bffd8bd4afdd (Central India)

Application Insights

HelloAzureFunction® (Australia Central)

Export... Create Cancel

Figure 10.25: Azure Function Publish - step 5

Step 6: Click Next, as shown in Figure 10.26:

Publish

dasting or create a new Azure Function

=) '1";" lest

Functions instance HelloAzureFunction20231

Deployment type B3 Function App

$ HelloAzureFunction20231215224941 (Consumption)

L |-.‘-I'I:l!l"l':r'.'l'l-:'r'l'! Slats

¥ Run from package file (recommended)

Figure 10.26: Azure Function Publish - step 6

Step 7: This is the final step, as shown in Figure 10.27, and click
Finish:

Publish

How would you like to deploy your af

Target {-:« Publish (generates pubxml file)

&
- B b ' Deploys applic to target on dick of Publish button.
speahc target :

O . CI/CD using GitHub Actions workflows (generates yml file)

Deploys application to target automatically on code push to GitHub repo.

Functions instance

Deployment type

Figure 10.27: Azure Function Publish - step 7

Now, this will generate the CICD pipeline on GitHub. Whenever
you push any code, it will auto trigger and deploy to Azure.

O Chandraded®1% / HelloAnarefunction Q Type [f]to sea p B +

i Code 0 hsors I Pullreguests () Actions [Prosecs D WG D Secwity | Imights 3 Settegn

© CICD Code updated. #3

I () Sumeary
o 1 Chandradevitd puthed o cdelild maie Sucoris 9m 215 1
D budd
© deploy HelloAzureFunction20231215224941 ymi
B Urage
D Workhow fie © b : * @ deploy

Figure 10.28: Azure Function CICD - 1

Figure 10.29 shows the next step:

".n: Publish & x

Figure 10.29: Azure Function CICD - 2

Now, our Azure Function code has been deployed to the cloud,
and we are ready to use in any web application.

helloazurefunction20231215224941 azurewebsites net

Figure 10.30: Azure Function CICD - 3

In the preceding demo, we saw that with the help of a Visual
Studio 2022 wizard, we are able to deploy the Azure Function on
the cloud. It also created CICD pipeline and application insight.

e gl | e o maerm B g o el el

delabuity

Figure 10.31: Azure Function Application Insight

Consuming_Azure Function in Blazor
WebAssembly

Azure Function is web API endpoint, and we can consume Azure
Function endpoints similar to web APl using “HttpClient”. Here is
a complete code snippet for API call:

@inject HttpClient Http

@code {

private string result;

private async Task CallAzureFunction()

{
// Replace "YourFunctionUrl" with the actual URL of your Azure
Function

var functionUrl = “"https://your-function-url.azurewebsites.
net/api/YourFunction";
var response = await Http.GetAsync(functionUrl});

if (response.IsSuccessStatusCode)

{
result = await response.Content.ReadAsStringhsync();
}
else
{
result = 3"Error: {response.StatusCode}";
}
}
}
<div>
<button @onclick="CallAzureFunction">Call Azure Function</button:
cpr@result</p>

Azure App Service

Azure App Service is a fully managed platform for building,
deploying, and scaling web apps. It supports various
programming languages, including C#, which you mentioned in
your profile. As a senior web developer working with Azure, you
might find Azure App Service useful for hosting your Blazor
applications.

Azure App Service offers features such as automatic scaling,
continuous integration and deployment (CI/CD), and easy
integration with Azure services.

It supports following app deployment:

 Web App (Asp.net webform, Asp.net MVC, Asp.net core, and
Blazor)

» Static Web App (Angular]s, Angular, React]s, Vue]s, Blazor
WASM, and so on)

« Web App +Database
» WordPress Website deployment

Now, in our demo, we will see how to deploy our Blazor
Application with the help of Web App Service.

App Deployment with CICD Pipeline

Creating CICD pipeline on Azure portal for Blazor or Asp.net core
project is very simple and straightforward.

Step 1: Create the App Services on Azure portal:

= Microsoft Azure L Search

Home >

App Services x

Default Directory (chandradev819hotmail.onmicrosoft.com)

+ Create v [11] Manage Deleted Apps @ Manage view v

+ web AD
'C p I Subscription equals all Resou

~+ Static Web App

-+ Web App + Database

Name T

I: @ Helloworld819

Figure 10.32: Web App

Step 2: Fill all the required mandatory field as shown in the
following figure:

Home > App Services >
Create Web App

Resource Group * (D Test '

Creale new

Instance Details
Name * Helloworld319 '
azurewebiitesnet

Publish * (®) cede () Decker Container () Static Web App

Runtime stack * MET 8 (LTS) (Early Access) e
@ Learn more about Early Access stacks on App Service

Operating System * O Linuoe lil_\, Windows

Region * East US W

ﬂl Mot finding your App Sernce PlanT Try a different regeon of select your App
Service Environment.
Pricing plans

App Service plan pricing tier determines the location, features, cost and compute resources associated with your app.
Learn more 07

e | [(Hemombees]

Figure 10.33: Web App

Step 3: Enable GitHub Action settings, as given in the following
image. This will help us to create a CICD pipeline.

Create Web App

Basics | Deployment | Metworking Monitoring Tags Review + create

Enable GitHub Actions to continuously deploy your app. GitHub Actions is an automation framework that can build,
test, and deploy your app wheénever a néw commil is made in your repository. If your code is in GitHub, choose your
repository here and we will add a workflow file to automatically deploy your app to App Service. If your code is not in
GitHub, go to the Deployment Center once the web app is created 1o set up your deployment. Learn more &

GitHub Actions settings
Continuous deployment O Disable @ Enable

GitHub Actions details

Select your GitHub details, 50 Azure Web Apps Can 30Cess your repository. You must have write 3ccess 10 your chosen
repository o deploy with GitHub Actions.

GitHub account ChandradevB19

Qrganization * [ChandradevB19 o]
Repository [HelloWorldDemo W |
Branch * master L

Figure 10.34: Web App

Step 4: Now click Create Web App.

If you come to the GitHub repo, you will see that the Azure Web
App deployment wizard has already added a yaml file, which will
trigger the deployment process for us.

— O ChandradevB19 / HelloWorkiDemo Q Type

> Code (O bsues [] Pullrequests () Actons [Projects [Wiki @ Secusity [Insights I8 Settings

! HelloWorldDemo rt © Urwateh 1
P master - P ibaanch ©0tag Goto file Add file =
R cChandradevB1d Code $ updated v baasTI? B hours ago i) o

l . Thu by wod kflomd Add ¢ pdate the Arure App Service L i and deployment workilow ¢ I
B Chen
B Server

I Shaied
[gitatsibutes
['j gitignore

Figure 10.35: Web App

Step 5: Now change the code on source code and push to
GitHub repo. The CICD process will trigger.

= o Crardradeviny /| HelloWorkiDema Q LS el Lo
€ Code () hawri I) Pllveguets) Acsonda [moeen D Wk 0 Secway | gt B Settngn
* Hello World code has been pushed. #3 Canoel wor
@
| [T
@

Figure 10.36: Web App (1)

Now, the code has been pushed:

= 0 ChandradevB19 / HelloWorldDemo Q Ty
<3 Code Sl EETIT] I Pull requests @ Actioni E Projects [Wik C Security | Inaights ﬂ Semtingt

© Hello World code has been pushed. #3

Figure 10.37: Web App (2)

Step 6: Now run the created Web App. We will see output as
follows:

hellowordd 819 arurewebsites net

Hello, world!

Welcome o Blazor Hello World applcation

Figure 10.38: Blazor app

In the preceding demo, we saw that without writing a single line
of code, Azure Portal can create a CICD pipeline for us. It will
hardly take 5-10 min to deploy an application with the CICD
pipeline.

We can also do the same task with help of Visual Studio 2022
Wizard.

EmpCRUDLC.t: Publish = =

¢+ Publish

Arure Contabmer Apps [Linus)
& Aruse App Tervice {(Window)
Publith your acplcation ood 56 & Fan

' Aruie App Service Containe

Aryse Contames Regutry

FA Arure Virtusl Machine

Figure 10.39: Visual Studio Wizard

Conclusion

In this chapter, we understood all frequently used Azure Service
while doing Blazor web development. It is a very essential skill
for any .Net Developer. We also learned various tips and tricks of
the Visual Studio 2022 wizard.

We gained insights on how to create a CICD pipeline for any web
application without writing any code. These skills are time saving
and thus make them more productive for any developer. The
upcoming chapter will explain the readers about security
challenges in Blazor.

References
For more details, please refer to the following document:

https://learn.microsoft.com/en-us/azure/azure-functions/
Azure Key Vault documentation | Microsoft Learn

Azure documentation | Microsoft Learn

Source Code

https://learn.microsoft.com/en-us/azure/azure-functions/

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the primary purpose of Azure Functions?

a. Hosting static websites

b. Managing virtual machines

c. Running serverless compute functions
d. Storing relational databases

2. What is the smallest unit of execution in Azure Functions?

a. Virtual Machine
b. Container

c. Function

d. Application

3. What is the primary purpose of Azure Key Vault?

a. Hosting web applications

b. Storing and managing sensitive information such as
secrets, keys, and certificates

c. Running serverless functions
d. Analyzing big data

4. What is the primary purpose of Azure App Service?

a. Storing and managing large datasets

b. Building and deploying containerized applications
c. Creating and hosting web apps and APIs

d. Managing virtual networks

5. What type of data is Azure Blob Storage designed to store?

a. Structured data in tables
b. Large binary objects like images, videos, and documents
c. Real-time streaming data

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

d. Relational databases

Answers
1.

& W
o0 o 0o 0

s

CHAPTER 11

Security in Blazor
WebAssembly

Introduction

Developing web applications always comes with security
challenges, and Blazor WebAssembly is no exception.
However, understanding the security considerations specific
to client-side technology is essential to ensure vyour
applications are safe and secure.

As you know, Blazor WASM is client-side technology and runs
on a browser sandbox like other JavaScript libraries. So, if we
do not implement proper security in Blazor WebAssembly,
then hackers can easily hijack your application, and it would
be a big loss to you and your organization.

Structure
In this chapter, we will cover the following topics:

e Introduction to Authentication and Authorization

e Authentication and Authorization Using OIDC

e Authentication and Authorization Using Azure AD

» Authentication and Authorization Using Google

e Custom Token-Based Authentication in Blazor WASM
e Tips and Tricks While Implementing Security

« Common Mistakes While Implementing Security

Authentication and Authorization

Authentication and authorization are essential to building
secure web applications, including those developed with
Blazor WebAssembly. Let’'s understand these terms in more
detail::

Authentication

Authentication is the process of verifying the identity of a
user, ensuring that the person or system trying to access a
resource is who they claim to be. In the context of Blazor
WebAssembly, authentication typically involves validating
user credentials, such as a username and password.

Blazor WebAssembly supports various authentication
methods, including:

e ASP.NET Core Ildentity

ASP.NET Core Identity is a membership system that adds
login functionality to your application. It provides
features like user registration, password recovery, and
user profile management.

 External Providers (OAuth/OpenID Connect)

You can integrate external authentication providers like
Google, Facebook, or Azure AD to allow users to log in
using their existing accounts from these providers.

e Token-based Authentication

Use JSON Web Tokens (JWT) or other token-based
authentication mechanisms to secure communication
between the client and server. Tokens are typically
issued upon successful authentication and sent with
each authorization request.

Authorization

Authorization is the process of determining what actions or
resources a user can access once their identity is verified
through authentication. In other words, it defines
permissions and controls access to specific functionalities or
data.

Login
Username

(> Password
Who Are

L\ . You?

Authentication

/ \ What

Permissions do

Authorization You Have?

Figure 11.1: Authentication and Authorization Process

Authentication and Authorization

Using_OIDC

OIDC stands for OpenlD Connect, which is an identity layer
built on top of the OAuth 2.0 authorization framework. It is
a standard protocol for authentication and single sign-on
(SSO) on the web.

Blazor WebAssembly supports authenticating and
authorizing apps using OpenID Connect (OIDC) via the
Microsoft.AspNetCore.Components.WebAssembly.Authentication

library.

The library can authenticate against any third-party Identity
Provider (IP) that supports OIDC, which are called OpenID
Providers (OP).

The authentication support in the Blazor WebAssembly
Library (Authentication.js) is built on top of the Microsoft
Authentication Library (MSAL, msal.js).

OIDC is an authentication protocol built on top of OAuth 2.0,
designed for secure and standardized user authentication.
OIDC-compliant identity providers include Azure AD, Google,
Facebook, Okta, or AuthQ, and so on.

Now, we will see how to implement the implementation of
Azure AD Authentication in Blazor WebAssembly.

Step 1: Create the Blazor WebAssembly 8.0 as follows:

Create a new project

Search for templz
Recent project templates C#

5] ASP.NET ¢
Blazor WebAssembly Standalone App C &]

A project

= o = " = authentic:
= ASP.MET Core Web API C

C# Li

&] ASP.NET ¢

B Console App A project

MET MAUI Blazor Hybrid App

C# Li
¥ Azure Functions
Blazor Web App

% Class Library

Figure 11.2: Blazor Wasm Project Template

Configure your new project

Blazor WebAssembly Standalone App

|":l:!_;l.'-i| MAme

Solution name &

¥ | Place solution and project in the same directony

Project will be created in “DX\WasmBox

Figure 11.3: Folder Location

Step 2: Select the Microsoft identity platform as shown in the
following figure:

Additional information

Blazor WebAssembly Standalone App

MET B.O (Long Term Support)

Figure 11.4: Microsoft Identity

Step 3: Now configure the application as given in Visual
Studio Wizard:

Required components

Figure 11.5: Next Wizard

Step 4: If this wizard will not create the JSON file, then
create an appsettings.json file and keep the Tenantld and
ClientId here. It will be there in the wwwroot folder.

"AzureAd": {
"Authority": "",
"ClientId": "",
"WalidateAuthority": true

1}

File Edit View Git Project Build Debug Test Analyze Toc

- =" 2 Debug - Any CPU ~ P https

appsettings.json + X Homerazor Weather.razor

Schema: https://json.schemastore.org/appsettings.json
1 J
L

"AzureAd": {
"Authority™:

3

"ClientId": "",
"ValidateAuthority":

Figure 11.6: appsetting.json file

Step 5: Go to the Azure portal and select “Microsoft Entra
ID":
Azure services

+[2 |4 ® © B &» =

sale & Mrzrosoft Entra Arure AD B2C App Sericed Cost Free sendces Function App Sorsge
FeLource [] L"a..'u-._';rmfnt. SCEounts

Resources

Recent Favorite

Figure 11.7: Azure Portal

In Figure 11.8, click + Add > App registration

Home »

) Default Directory | Overview

Migroson Entra 1D

O Overview
B Preview features

X Disgnose and solve problems

Manage

& Users

& Groups

il Bxternal identities

L. Roles and administrators
& Administratiee units

% Delegated admin partners
B enterprite applications

I Devices

4 Add |@ Manage tenants What's new 53 Preview features £ Gotfeedba

User > -
now Microsolt Entrs 1D, Learn more 2

P Properties Recommendations Tutorials

Enterprise applcation

App registration
Basic information
MName Defaul Directory U
Tenant ID 631052 1-b49c-dbde-b5c-c1d58268 541 m Grg
Primary domain chandradev8 Shotmailonmicrosoft.oom Apy
Licenie Microsoft Entra ID Free D
Alerts B

Figure 11.8: App Registration

Step 6: Click the Register button:

-Iﬁlm A2 Search resources, services, and docs (G#/)

Home > Default Directory | Overiew 3

Register an application

| Demotpp /|

Supported account types

Who can use this application of access this API?

:!:' Acoounts in this organizational directory only (Delault Dwectory ondy - Single tenant) I

U Accounts in ary organizationsl directory (Any Microsoft Entra 1D tenant - Multitenant)

O Accounts in amy organizational directory [Any Microsoft Entra ID tenant - Muktitenant) and personal Microsoht accounts (e.g. Skype.
xboi)

C} Personal Micrasolt accounts only

Help me choose._.

Redirect URI (optional)

Well return the authentication response to this URI after sucoessiully authenticating the user. Providing this now is optional and it can be
changed Later, but 2 value i required for most authenbiCation soenanos.

Single-page application [(SPA) W hitpsy/fAocalhostTOM authenticationylogin-caliback ']

Register an app you're working on here. Integrate gallery apps and other apps from outssde your organization by adding from Enterprise applications
By proceeding. you agree to the Microsolt Platform Polickes o

Figure 11.9: Create Application

Step 7: After clicking the Register button, you will see the
following screen. We need to copy ClientId and TenentId from
here.

[DemoApp <

- o B ol o gy i, Y e
i
#
- ah [naavstialy
L
b k] i it
B oy b g L |
i A3
D hararsce
I i e 1 I
I 4 # s
= [rarw sl gl I e =l - o
o
- ﬂ e £ SO et el e (i By A g At Dweciory AP st Libeary GADAL) wral Apuse Bt [A agh
L -~ sty bud e mall o e e Ik e malll g b s A & e o [lwary (WA T
O

Figure 11.10: Client and tenentld

Step 8: Keep this ClientId and TenentId ON appsettings.json as
follows:

Figure 11.11: Client and tenentld in appsetting.json file

Step 9: Go to the Authentication section and check on both

Access Token and ID Token, as given in the following figure:

Selent thes tolier yond wepealkdl Bl 1o B misucd by the authedr 2ot ion erdpoent

Manage B

Cees Ioiere (ured Tor enpdac Flcms)

LEL}
= Brandeng & prOpeTTees u 1D takerd (uted Bor implon snud beybarsd B)
.
[) Authertcation I
Supported account types
L 3 & st
Wi Wh Can use Thes sppicatasm oF s00ess Thet ART
M Yoen confprntson
&) Agiouts i Uy cogamgatprad dereriony ordy (Delaall Dationy only - Sangle Lonani)
A P permisane .
[ACCTREnts i by COQanaratongd derectiony (hry MaCroaodt Entra 10 Terant - BGRRerant)
& Lo &
B ane
B App
£ Orwereeei
e Roles and aderaniatratons Ak Dot 0 temporany difprondes I fupporied Aunctionality, wi don't ricommend onabling poricnad Microso®
scoonnty for s oenting repatraton ¥ you reod 1o onable pononal scoounty, Jou Lin 89 1 g the maniest
M| e ecitor. Leam mote about Bhese rednchoes,

Support « Troubleshooting
5? Brgmalbdealacat o) ﬁ
v

Figure 11.12: Authentication on Azure Portal

Step 10: Run the application. You will see authentication and
authorization out of box with help of
Microsoft.Authentication.WebAssembly.Msal.

This library is specifically designed to enable authentication
and authorization in Blazor WebAssembly applications.

Within this namespace, you will find classes and components
that facilitate the integration of authentication features into
your Blazor WebAssembly applications. MSAL helps you
implement secure authentication workflows using protocols
like OAuth 2.0 and OpenlID Connect.

T

Hello, world!

WiehoomD 10 your New 20D

Figure 11.13: Final Output

If you want to create the Blazor WebAssembly application
with the help of the dotnet CLI command with clientId and
TenentId, then you can write as follows:

dotnet new blazorwasm --auth 5ingleOrg -c Demolpp --client-id

"981fc724-clde-4ced-be93-ec9f3bl3cefb" --tenant-id "631@5acl-b49c-
4bde-b5c8-c1d58a685e41" -f netd.8

The aforementioned CLI command will create the same
Blazor WebAssembly with all inbuilt security features.

Figure 11.14: Blazor WASM Project

Exploring Practical Use Scenario of

Microsoft Entra ID

We can use the following scenario:

1.

Single Sign-On (SSO): It enables single sign-on,
allowing users to access multiple applications with a
single set of credentials. This is beneficial for both user
convenience and security.

. Authentication and Authorization for Applications:

When developing applications that require secure
authentication and authorization mechanisms, Azure AD
can be used to manage user identities and control
access to resources.

. Enterprise-Level Identity Management: Azure AD is

well-suited for enterprise-level identity management,
offering features such as multi-factor authentication,
conditional access policies, and comprehensive identity
protection.

. APl Protection: If your applications involve APIs, Azure

AD can secure those APIs by authenticating and
authorizing users and applications that attempt to
access them.

. Microsoft 365 Integration: If your organization uses

Microsoft 365 services, Azure AD provides a unified
identity platform that integrates with Microsoft 365,
making it easier to manage user identities across
various Microsoft services.

. Security and Compliance: Azure AD includes robust

security features, such as risk-based conditional access,
identity protection, and compliance reporting, making it
suitable for applications that require a high level of
security and compliance.

. B2B and B2C Scenarios: Azure AD supports both

business-to-business (B2B) and business-to-consumer

(B2C) scenarios. You can use Azure AD B2B to enable
collaboration with external users, and Azure AD B2C for
building customer-facing applications with identity and
access management.

8. Integrating with On-Premises Active Directory: If
your organization has an on-premises Active Directory,
Azure AD can be integrated to extend identity and
access management to the cloud while maintaining a
connection with the on-premises infrastructure.

Note: Now Azure AD name has been changed to Microsoft
Entra ID.

Google Authentication and
Authorization in Blazor WebAssembly

Using OpenID Connect (OIDC), we can also integrate Google
authentication and authorization in the Blazor WebAssembly
application.

Microsoft.AspNetCore.Components.WebAssembly.Authentication
library plays a major role for doing all authentication and
authorization tasks for us.

For this, all processes will be the same except for the Azure
Portal configuration. Here, we need to configure on the
Google Developer Portal.

Step 1: Create the Blazor WebAssembly application with
Microsoft Identity platform as follows:

Additional information

Figure 11.15: Blazor WebAssembly Application

This will create all the required scaffolding code for us for
doing authentication and authorization.

Step 2: Create a Google APl Console project to obtain a
client ID and client secret to configure the Google
authentication in our application.

For a detailed explanation, please go through the following
post:

Integrating Google Sign-In into your web app | Authentication
| Google for Developers

L C b ol choud oogie fom S redentush Tol o 1 Rpsroerts ekl rramentum- 26 LE TARaldey s Sorgare st s

G-o-o-gl'e Cloud Platform 8 TestProject « 0, Search products and resources

API APIs & Services Credentials | + crearecapenmars | @ oeuere
AP by
Pashbosrd Creabe crodertialy 10 80 Liprifias v
Litwary OAuth client ID
APl Keys Requests User con
o r
O e Servics account i Ky

Quutth consent screen .
2 Dcaruen: wor s o Help me choowe

CAUth 220 Client | suis o few quest
To Page viage spreomenty

[} M Creation dute o Typs Client 1D
DO Ooogle s Blazer e B, 2021 LRLER0IIRRTE- N6y 0
Service AcCounts

Figure 11.16: Google API Console Project

Step 3: Go to the appsetting.json file, change the Authority
and Client Id as shown here:

Figure 11.17: Appsetting File

Step 4: Change the Google key on program file as shown
here:

Figure 11.18: Dependency Injection
Step 5: Run the application:

-
o

il

Sign in

Continue 10 example 1 -gide

Forgol emad?

Enghah (Urited Kirgdom) =

Figure 11.19: Google Login

Step 6: After clicking Next, we get the following screen:

Haio, Runal Krupan® Log out

Hello, world!

Weltome 1o youl New 3PP

How s Blarer working for you? Please take cur briel survey and bell us what you Bhink

Figure 11.20: Login Demo

In the preceding demo, we saw that with the help of OpenID
Connect (OIDC), we are able to integrate any third-party
authentication and authorization in our Blazor WebAssembly
application.

Custom Token-Based Authentication
in Blazor WebAssembly

Token-based authentication is a security mechanism widely
used in web development to authenticate users and
authorize their access to resources. It involves the use of
tokens, which are typically generated by a server upon
successful authentication and then sent to the client. The
client includes this token in subsequent requests to prove its
identity.

Password

Token
: i ‘ Password Authorization Server
[User Takien

Resource

Figure 11.21: Token-Based Authentication

Here's a brief overview of how token-based authentication
works:

1. User Authentication: When a wuser logs in or
authenticates, the server verifies their credentials (for
example, username and password).

2. Token Generation: Upon successful authentication, the
server generates a unique token (often a JSON Web Token or
JWT) that contains information about the user and their roles
or permissions.

3. Token Issuance: The server sends the token to the client,
which stores it securely, usually in a cookie or local storage.

4. Subsequent Requests: The client includes the token in
the headers of its requests to the server. This token serves
as proof of the user’s identity.

5. Token Verification: The server, upon receiving a request,
verifies the token’s authenticity and checks if the user has
the required permissions to access the requested resource.

Token-based authentication offers several advantages,
including:

o Statelessness: The server doesn’'t need to store
session information, making it scalable and easy to
maintain.

 Cross-Origin Resource Sharing (CORS): Tokens can
be easily included in HTTP headers, allowing for cross-
origin requests.

» Security: Tokens can be encrypted and signed, adding
an extra layer of security.

 Decoupling: Since the client holds the token, it can be
used to access multiple services without the need to re-
enter credentials.

Now, let’'s create a Token-Based Authentication demo.

Asp.net Core Web API

Here are the steps to create web API project:
Step 1: Create the web API application project

Create a new project

Recent project templates

Figure 11.22: Web API Project

Here is the next screen:

Additional information

ASP.MET Core Web APl ¢ lnx

Figure 11.23: Web API Project Template

Step 2: Install the
Microsoft.AspNetCore.Authentication.JwtBearer NuGet package.

It is commonly used to secure APIs by validating JWTs
received from clients. The JwtBearer authentication handler
reads the JWT from the request’'s Authorization header,
validates it, and sets the user on the HttpContext based on the
information in the token.

¥ "

MuGet: Cu..edAuthAPl = X

Figure 11.24: NuGet Package

Step 3: Now, we will create a required model class for the
login page.
Login. cs Class:

using System.ComponentModel.Datafnnotations;
namespace CustomTokenBasedAuthAPI.Model

public class Login

{
[Required]
public string? Email { get; set; }
[Required]
public string? Password { get; set; }
¥

LoginResult.cs Class:

namespace CustomTokenBasedAuthAPI.Model

{

public class LoginResult

{
public string? Token { get; set; }
public DateTime Expiry { get; set; }
I

Step 4: Add an appSettings.json file to the APl project with
the following content:

i
"Logging": {
"LoglLevel": {
"Default”: "Information”,
"Microsoft.AspNetCore": "Warning"
}
1,
L1} :th (L] : {
"Key": "ITNN8mPFS2ivOqrleRWKORac3sRAChQETRTTTEAGEBUYOpKAVQ\",",
"Issuer”: "CustomTokenBasedAuthaPI™,
"fudience": "CustomTokenBasedAuthAPTAudience"
s
"AllowedHosts": "*"
1

Step 5: Go to the program.cs file and add this configuration
for authentication:

J// Add services to the container.
ConfigurationManager configuration = builder.Configuration;
builder.Services.AddAuthentication(JIwtBearerDefaults.Authentication-
Scheme) . AddIwtBearer(options =»
{
options.TokenValidationParameters = new TokenValidationParameters
{
Validatelssuer = true,
Validatefudience = true,
ValidateLifetime = true,
ValidateIssuerSigningkey = true,
ValidIssuer = conhguration.GetValue<string>("Jwt:Issuer™),
ValidAudience = configuration.GetValue<string>("Jwt:Audience"),
Issuersigningkey = new SymmetricSecurityKey(Encoding.UTFS.
GetBytes(configuration.GetValue<string>{"Jwt:Key")})
};
};

builder.Services.AddCors{policy =>»
{
policy.AddPolicy("CorsPolicy”, opt =» opt
-AllowAnyOrigin()
.AllowAnyHeader()
.AllowAnyMethod()) ;
1;

For keeping the Authorization header on the swagger page,
configure the middleware pipeline as follows:

f/for keeping Authorization on Swagger
builder.5ervices.AddSwaggerGen{option =>

option.SwaggerDoc("vl", new OpenApilInfo { Title = "CustomToken-
Based API", Version = "v1" }};
option. AddSecurityDefinition("Bearer”, new OpenfpiSecurityScheme

{
In = ParameterlLocation.Header,
Description = "Please enter a valid token",
Name = "Autherization",
Type = SecurityschemeType.Http,
BearerFormat = "JWT",
Scheme = "Bearer"
1)
option.AddSecurityReguirement(new OpenApiSecurityRequirement
{
{
new OpenApiSecurityScheme
1
Reference = new OpenApiReference
Type=ReferenceType.Securityscheme,
Id="Bearer"
iy
1
new string[]1{}
}
B
1)

Then add authentication and authorization middleware to the
request pipeline in the Configure method. Ensure that they
are added after Routing and before EndPoint configuration:

app.UseCors(“CorsPolicy”);
app.UseAuthorization();
app.UseAuthorization();

Step 6: Add an [Authorize] attribute to the existing
WeatherForecast controller:

WeatherFor. .. troller.cs* « X

TokenBasedAuthAP] = "'.Z:: stomlokenBased AuthAPLControllers WeatherForecastCe

Microsoft.AspNetCore.Authorizat

Microsoft.AspNetCore

=l -
Lustorm

CustomTokenBasedAuthAPI.Controllers

[] Summaries =

Figure 11.25: [Authorize] attribute

As you know, after keeping the Authorize attribute on top of
any controller, we can access outside without a valid token.
It will be a secured API controller.

Step 7: Now, we will create a login controller for validating
users and generating JWT token:

using CustomTokenBasedAuthAPI.Model;
using Microscft.AspNetCore.Mvc;

using Microsoft.IdentityModel.Tokens;
using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;

using System.Text;

namespace CustomTokenBasedAuthAPI.Controllers

[Route("api/[controller]")]
[ApiCentroller]
public class LoginController : ControllerBase
{
private readonly IConfiguration _configuration;
public LoginController{IConfiguration configuration) => _config-
uration = configuration;

[HttpPost]
public LoginResult Login(Login objlogin}
{
// we are keeping 1 minute token expiry period
// In real scenario, we can keep longer periocd
var expiry = DateTime.Mow.AddMinutes(1);
return ValidateCredentials(objlogin) ? new LoginResult {

Token = GeneratedWT{objlogin.Email, expiry), Expiry = expiry } : new
LoginResult();

// Used for Validating User credentials
bool ValidateCredentials(Login credentials)

{
bool success = false;
// We are hardcoding the Emailld and Password for demo purposes.
if (credentials.Email == "Admin@gmail.com" && credentials.
Password == "Admin"}

{
}

return success;

success = true;

}

[/ this is used for generating JWT Token
private string GeneratelWT(string email, DateTime expiry)

{
var securityKey = new SymmetricSecurityKey(Encoding.UTF8.
GetBytes(_configuration["Jwt:Key"]));
var token = new JwtSecurityToken(
_configuration[" Jwt:Issuer"],
_configuration["Jwt:Audience"],
new[] { new Claim(ClaimTypes.Name, email) },
expires: expiry,
signingCredentials: new SigningCredentials(securi-
tykey, SecurityAlgorithms.HmacSha256)

)i
var tokenHandler = new JwtSecurityTokenHandler();

return tokenHandler.WriteToken(token);

}

For the purpose of demonstration, the token expiry is setto 1
minute.

The Web APl entry point validates the credentials. In this
example, we have given hardcoded value. However, in a
real-time project, you can validate in the actual database
table.

Step 8: Run the application and pass the valid Emailld and
Password. It will generate a Bearer token with some expiry
period.

.....

Figure 11.26: Postman Demo

Now, we will pass the token on Swagger authorize header
and then trigger the weather forecast controller endpoint.
We will see the expected data.

Figure 11.27: Postman Output

We have completed the web API part. Now, we will create a
Blazor WebAssembly project and consume the token-based
APl endpoint. For this task, we can perform the following
steps.

Blazor WASM Client Side
Step 1: Create the Blazor WebAssembly application:

Configure your new project

Blazor WebAssembly Standalone App <

Figure 11.28: Project Template
Figure 11.29 shows the additional information:

Additional information

Blazor WebAssembly Standalone App ¢t

Figure 11.29: Project Wizard

Step 2: Install the
Microsoft.AspNetCore.Components.Authorization NuGet package.

MuGet: Bl...TokenAuth = X

Installed Updates

we.Components Authorization X -

Microsoft.AspNetCore.Components.Authorization @ by Microsoft, 18.7M downloads

Authentication and authorization support for Blazor .|;!-F'|!::'.:'..-_'=I:'.

Figure 11.30: NuGet Package

Step 3: Create the Helper Folder and create
TokenAuthenticationStateProvider class and write code as
shown here:

using Microsoft.AspNetCore.Components.Authorization;
using Microsoft.JlsInterop;

using System.Security.Claims;

using System.Text.Json;

namespace BlazorWASMCustomTokenAuth.Helper

public class TokenAuthenticationStateProvider : Authentication-
StateProvider

{

private readonly IJSRuntime _jsRuntime;

public TokenAuthenticationStateProvider(IJSRuntime jsRuntime)
{

}

public async Task SetTokenAsync(string token, DateTime expiry
= default)

_JjsRuntime = jsRuntime;

if (token == null)

{
await _jsRuntime.InvokeAsync<object:("localstorage.
removeltem", "authToken");
await _jsRuntime.InvokeAsync<object>("localStorage.
removeItem”, "authTokenExpiry");

}

else

{
await _jsRuntime.InvokeAsync<object>("localstorage.
setItem”, “authToken", token);
await _jsRuntime.InvokeAsync<object>("localStorage.
setItem”, "authTokenExpiry", expiry)};

}

MotifyAuthenticationStateChanged(GetAuthentication-
StateAsync());

}
public async Task<string> GetTokenfsync()

{
var expiry = await _jsRuntime.InvokeAsync<objects("lo-
calstorage.getItem", “"authTokenExpiry"};

if (expiry != null)
{
if (DateTime.Parse{expiry.ToString()) » DateTime.MNow)

{
return await _jsRuntime.InvokeAsync<string:("local
Storage.getItem", "authToken");

}

else
await SetTokenAsync{null);
}
}

return null;

public override async Taskc<AuthenticationState» GetAuthenti-
cationStateAsync()

{
var token = await GetTokenAsync();
var identity = string.IsNullOrEmpty(token)
? new ClaimsIdentity()
: new ClaimsIdentity({ParseClaimsFromIwt{token), "jwt");
return new AuthenticationState(new ClaimsPrincipal(identity)});
}

private static IEnumerable<Claim> ParseClaimsFromIwt(string jwt)
{
var payload = jwt.split(*.’)[1];
var jsonBytes = ParseBase6dWithoutPadding(payload);
var keyValuePairs = JsonSerializer.Deserialize<Dictio-
nary<string, object>>(jsonBytes);

return keyValuePairs.Selectikvp => new Claim{kvp.Key, kvp.
Value.ToString(}));

private static byte[] ParseBasetd4WithoutPadding(string base&4)
{

switch (baseé&4d.Length % 4)
{

case 2: basepd += "=="; break;
case 31: base6d += "="; break;

¥
return Convert.FromBasesdString(basesd);

}

}
1

Here’'s a high-level explanation of the code:
1. Constructor:

e The class has a constructor that takes an IJSRuntime
parameter. This parameter is used to interact with
the JavaScript code from C#.

2. SetTokenAsync method:

e This method is used to set the authentication token
in the local storage of the browser.

e If the token is null, it removes both the
authentication token and its expiry from the local
storage.

e |If the token is not null, it stores the token and its
expiry in the local storage.

e Finally, it notifies that the authentication state has
changed.
3. GetTokenAsync method:
» Retrieves the authentication token and its expiry
from the local storage.
o If the token is not expired, it returns the token;
otherwise, it removes the token and returns null.
4. Get+AuthenticationStateAsync method:

o Overrides the base method to provide the current
authentication state.

o Call the GetTokenAsync method to get the
authentication token.

o Creates a Claimsldentity based on the parsed claims
from the JWT token.

o Returns an AuthenticationState object with a
ClaimsPrincipal based on the obtained identity.

5. ParseClaimsFromJwt method:

e Parses the claims from the JWT token’s payload.

e It decodes the payload, converts it to a JSON string,
and deserializes it into a dictionary of key-value
pairs.

e Creates and returns a list of Claim objects from the
dictionary.

6. ParseBase64WithoutPadding method:

e Adjusts the base64 string if it has incorrect padding
and converts it to a byte array.

Overall, this class is responsible for managing the
authentication state in a Blazor WASM application by storing
and retrieving JWT tokens from the local storage, and
providing the authentication state to the application. The
JWT token is used to represent the user’'s claims and
authentication status.

Step 4: Register the AuthenticationStateProvider with the
dependency injection in Program.cs file as shown here.

Figure 11.31: Dependency Injection

using BlazorWASMCustomTokenAuth;

using BlazorWASMCustomTokenAuth.Helper;

using Microsoft.AspMNetCore.Components.Authorization;

using Microsoft.AspNetCore.Components.lWeb;

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents. Add<App>("#app");

builder.RootComponents. Add<HeadCutlet>("head::after");
builder.Services.AddScoped{sp =»> new HttpClient { BaseAddress = new
Uri(builder.HostEnvironment.BaseAddress) });

builder.Services. AddAuthorizationCore();
builder.Services.AddScoped<TokenAuthenticationStateProviders>();
builder.Services,AddScoped<AuthenticationStateProvider>(provider =»
provider.GetRequiredService<TokenAuthenticationStateProvider>());

await builder.Build().RunAsync();

Step 5: Create the login page as follows:

@page "/login"

@inject HttpClient Http

@inject TokenAuthenticationStateProvider AuthStateProvider
@inject ILogger<Login> Logger

<h3>Login</h3>

<div class="container col-6">
@if (loginFailure)

<div class="alert alert-danger">Your credentials did not work.
Please try again.</div>
'
<div class="card">
<div class="card-body">
<h5 class="card-title">Login</h5>
<EditForm Model="credentials" OnValidSubmit="SubmitCre-
dentials">
<DataAnnotationsValidator />

<div class="form-group">
<label>Email address</label>
<InputText class="form-control" @bind-Value="cre-
dentials.Email” />
<ValidationMessage For="@(()=> credentials.Email)"
/>
¢ fdivs
<div class="form-group">
¢<label>Passwords</label>
<InputText type="password" class="form-control" @
bind-Value="credentials.Password" />
<ValidationMessage For="@(()=> credentials.Pass-
word)" />
<fdivs
<button type="submit" class="btn btn-outline-primary
btn-sm">Submit</button:>

</EditForm>
<fdive
<fdivs
< fdive
@code {

BlazorWAsMCustomTokenAuth.Model.Login credentials = new Blazor-
WASMCustomTokenAuth. Model. Login() ;

bool loginFailure;

EditForm loginform { get; set; }

async Task SubmitCredentials()

{
var response = await Http.PostAslsondsync("https://local-
host:7@98/api/login", credentials);
var result = await response.Content.ReadFromlsonAsync<Login-
Result:>{);
loginFailure = result?.Token == null;

if (!loginFailure)

await AuthStateProvider.SetTokenAsync(result.Token,
result.Expiry);

}

Step 6: Go to the App.razor file and write code as follows:

<CascadingAuthenticationState>
<Router AppAssembly="@typeof(Program).Assembly">
<Found Context="routeData">
<AuthorizeRouteView RouteData="{@routeData"” DefaultlLay-
out="@typecf(MainLayout)">
<NotAuthorized:
<BlazorWASMCustomTokenAuth.Pages.Login/>
</NotAuthorized>
< /AuthorizeRouteView:
</Found:>
<NotFound:
<LayoutView Layout="@typeof({MainLayout)">
<prsorry, there's nothing at this address.</p>
</LayoutView:
< /MNotFound:
< /Router:
</CascadingluthenticationState:

In the preceding code, we are using
CascadingAuthenticationState, this will ensure that the
authentication state is available to all components within its
scope. The authentication state typically contains
information about the current wuser’'s identity and
authentication status.

If the user is not authenticated, the child content of the
NotAuthorized component is displayed, that is, the login
component that you just created.

Step 7: Go to MainLayout.razor page and write the code for
logout button as follows:

@inherits LayoutComponentBase
@using Microsoft.AspNetCore.Components.Authorization
@inject TeokenduthenticationStateProvider TokenProvider

<div class="page">
<div class="sidebar">»
<MavMenu />
<fdiv>

<mainz
<div class="top-roWw px-4">
<AuthorizeView:
Logged in as @context.User.Identity.Name
<button class="btn btn-sm btn-outline-dark" @onclick="{@

(() => TokenProvider.SetTokenAsync({null))">Logout</button>
</AuthorizeView:
</div>

<article class="content px-4">
@Body
<farticle>
</main>
</fdive

Step 8: Now, go to Weather.razor page and change the code
for fetching data from Weather Forecast API as follows:

private WeatherForecast[]? forecasts;

protected override async Task OnInitializedAsync()

{

var token = await TokenProvider.GetTokenAsync();
if (token != null)

{
Http.DefaultRequestHeaders.Authorization = new Authentication-
HeaderValue("Bearer", token);
forecasts = await Http.GetFromlsonAsync<WeatherFore-
cast[]>("https://localhost:7898/WeatherForecast");

H
}

Note: Make sure to keep @attribute [Authorize] on the top of
the page. Here is the complete code snippet.

@page "/weather"

@inject HttpClient Http

@using System.Net.Http.Headers

@inject TekenAuthenticationStateProvider TokenProvider
@attribute [Authorize]

<PageTitlexWeather</PageTitle>
<hl>Weather</hl>
<p>This component demonstrates fetching data from the server.</p:>

@if (forecasts == null)
{

}

else
{

¢prLoading. .. </ em»</p>

<table class="table">
<thead>
<tr»
<th:Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th»
<th>Summary</th:
<ftr>
< /thead>
<tbody>
i@foreach (var forecast in forecasts)
{
<tre
<tdz@forecast.Date. ToShortDatestring()</td>
<td>@forecast.TemperatureC</td>
<td>@forecast.TemperatureFs</td>
<tdsiforecast. Summary«</td>
<ftr>

}
<fthody:
</table>
}

ficode {

private WeatherForecast[]? forecasts;
protected override async Task OnInitializedasync()
{

var token = await TokenProvider.GetTokenfsync();

if (token != null)

{

Http.DefaultRequestHeaders.Authorization = new Authenti-
cationHeaderValue("Bearer", token);

forecasts = await Http.GetFromlscnAsync<WeatherFore-
cast[]>("https://localhost: 7898 /WeatherForecast");
}

}

public class WeatherForecast
public DateOnly Date { get; set; }
public int TemperatureC { get; set; }

public string? Summary { get; set; }

public int TemperaturefF =»> 32 + (int)(TemperatureC / ©.5556);

}

Step 9: Run the application and go to weatherforecast page.

will route to login page:

Login

Ermai address

Fassword

Figure 11.32: Output

After login, you can see the following screen:

Logged in as Admingmail oom Logout

Weather

This cormponent demonstrates fetching data from the senver
Date Temp. (C) Temp. (F) Summary
127272023 28 B2 Swbitering
112024 33 1| Hot
V22024 32 &% Bracing
VY024 19 & Cond
V024 .} Ta hag

Figure 11.33: Output

Note: Keep in mind that you are running Web API and Blazor
WASM Project at the same time. Otherwise, it will not work.

In the preceding demo, we saw how to consume bearer
token-based APl endpoints in the Blazor WebAssembly
application.

Tips and Tricks While Implementing
Security in Blazor WebAssembly

Implementing security in Blazor WebAssembly is crucial to
ensure the protection of your application and user data. Here
are some tips and tricks to enhance security:

e Authentication and Authorization:

Use the built-in authentication and authorization
mechanisms provided by Blazor. Leverage the
AuthorizeView component to control access to
components based on user roles.

e JWT (JSON Web Tokens):

Consider using JWT for secure token-based
authentication. JWTs can be issued by your
authentication server and used to validate the identity of
the user in subsequent requests.

« HTTPS:

Always use HTTPS to encrypt data transmitted between
the client and the server. This helps protect sensitive
information from being intercepted during
communication.

 Secure APl Endpoints:

Ensure that your APl endpoints are secure by
implementing proper authentication and authorization
checks. Validate input parameters on the server side to
prevent injection attacks.

e CORS (Cross-Origin Resource Sharing):

Configure CORS settings appropriately to control which
domains can access your Blazor WebAssembly
application. This helps prevent unauthorized access from
malicious websites.

« Content Security Policy (CSP):

Implement a Content Security Policy to mitigate the risk
of cross-site scripting (XSS) attacks. This restricts the
types of content that your application can load.

Data Validation:

Validate user input on both the client and server sides to
prevent security vulnerabilities such as injection attacks
and cross-site scripting.

Logging and Monitoring:
Implement comprehensive logging to track security-
related events and monitor the application for unusual

activities. Regularly review logs to identify potential
security threats.

Dependency Scanning:

Regularly scan and update dependencies to patch
known security vulnerabilities. Use tools to automate
this process and ensure you are using the latest and
secure versions of libraries.

Session Management:

Manage user sessions securely. Use token-based
authentication with appropriate expiration times and
implement session logout functionality.

Secure Storage:

Be cautious with client-side storage. Avoid storing
sensitive information in local storage or cookies, and use
secure methods like Httponly cookies for storing
authentication tokens.

When a cookie is marked as “Httponly,” it means it is not
accessible through client-side scripts, such as JavaScript.
This restriction is designed to enhance the web
application’s security by preventing certain types of
attacks, particularly those related to cross-site scripting
(XSS).

In the context of storing authentication tokens, marking
cookies as Httponly is a best practice to protect sensitive
information, such as user authentication tokens, from
being accessed by malicious scripts.

 Security Headers:

Set security headers in your application, such as Content
Security Policy (CSP), Strict-Transport-Security (HSTS),
and X-Content-Type-Options, to enhance overall security.

Common Mistakes While
Implementing_Security in Blazor
WebAssembly

Developing secure Blazor WebAssembly applications is
crucial, and developers should be aware of common
mistakes to avoid potential security vulnerabilities. Here are
some frequently encountered mistakes:

e Insufficient Authentication and Authorization:

Mistake: Failing to properly implement authentication
and authorization mechanisms, or misconfiguration roles
and permissions, can lead to unauthorized access to
sensitive functionalities.

Solution: Use the Dbuilt-in authentication and
authorization features of Blazor, and thoroughly test
user roles and permissions.

e Insecure Data Transmission:

Mistake: Neglecting to use HTTPS can expose sensitive
data to interception during transmission.

Solution: Always use HTTPS to encrypt data between
the client and server, ensuring a secure communication
channel.

e Client-Side Trust:

Mistake: Relying too much on client-side validation
without validating input on the server side can lead to
security issues.

Solution: Implement server-side validation to ensure
that user inputs are properly validated and secure
against attacks like injection.

Lack of Input Validation:
Mistake: Failing to validate and sanitize user inputs can
expose the application to injection attacks.

Solution: Validate and sanitize all user inputs on the
server side to prevent injection vulnerabilities.

Cross-Site Scripting (XSS):
Mistake: Not properly validating and sanitizing user

inputs can lead to XSS vulnerabilities, allowing attackers
to inject malicious scripts.

Solution: Implement proper input validation, sanitize
user inputs, and use Content Security Policy (CSP)
headers to mitigate XSS risks.

Insecure Storage of Secrets:

Mistake: Storing sensitive information, such as API keys
or connection strings, directly in client-side code or in an
insecure manner.

Solution: Store sensitive information securely on the
server side and use environment variables or secure
storage mechanisms for secrets.

Client-Side Trust for Business Logic:

Mistake: Relying on client-side logic for critical business
rules without server-side verification can expose the
application to manipulation.

Solution: Perform critical business logic and validation
on the server side to prevent client-side tampering.

Over Reliance on Client-Side Security:

Mistake: Depending solely on client-side security
measures without considering server-side security
checks.

Solution: Implement a defense-in-depth strategy with
both client-side and server-side security measures.

e Ignoring Security Headers:

Mistake: Neglecting to set security headers, such as
Content Security Policy (CSP) and Strict-Transport-
Security (HSTS), can leave the application vulnerable.

Solution: Set appropriate security headers to enhance
the overall security posture of the application.

 Not Regularly Updating Dependencies

Mistake: Failing to update dependencies and libraries
can result in wusing versions with known security
vulnerabilities.

Solution: Regularly update dependencies to patch
known vulnerabilities and enhance the security of the
application.

Developers should stay informed about the latest security
best practices, conduct regular security audits, and follow
secure coding guidelines to minimize the risk of introducing
security vulnerabilities in Blazor WebAssembly applications.

Conclusion

In this chapter, we understood how to implement different
types of security approach in Blazor WebAssembly
application. We also Ilearned tips and tricks while
implementing security. All the latest security related
concepts are kept in a very simplified way in this book.

If you are reading the chapter and are unable to implement it
in your project, then feel free to download the source code
from GitHub and play with it.

References

ASP.NET Core Blazor authentication and authorization |
Microsoft Learn

Source Code

https://github.com/ava-orange-education/Practical-Web-
Development-with-Blazor-and-.Net-8

Multiple Choice Questions

1. What is the purpose of marking cookies as “Httponly” in
Blazor WebAssembly?

a. Enhancing SEO
b. Enabling cross-origin resource sharing
c. Preventing cross-site scripting (XSS) attacks
d. Improving client-side performance
2. Which of the following is a common security vulnerability
that can be mitigated by using Content Security Policy
(CSP) in a Blazor WebAssembly application?
a. Cross-Site Scripting (XSS)
b. Cross-Site Request Forgery (CSRF)
c. SQL Injection
d. Man-in-the-Middle (MitM) attacks
3. What is the purpose of setting the “Secure” attribute on
cookies in a Blazor WebAssembly application?
a. Preventing cookie theft
b. Enabling cookie access from JavaScript
c. Allowing cross-origin requests
d. Enhancing cookie expiration

https://github.com/ava-orange-education/Practical-Web-Development-with-Blazor-and-.Net-8

4. Which of the following is a recommended practice for
securing APl endpoints in a Blazor WebAssembly
application?

a. Implementing weak authentication

b. Using plain text for data transmission

c. Validating and authorizing requests on the server
side

d. Storing sensitive information in client-side cookies

5. What does HTTPS provide in the context of security for
Blazor WebAssembly?

a. Protection against XSS

b. Encryption of data transmitted between the client
and server

c. Prevention of SQL injection attacks
d. Enhanced client-side performance

6.In Blazor WebAssembly, what role does the
“AuthorizeView” component play in terms of security?

a. Enforcing HTTPS connections
b. Defining security policies

c. Controlling access to components based on user
authentication

d. Setting CSP headers

Answers

1.

e
o0 0 0

o

w N

. C

Index

A

Authentication
about 185
Blazor WebAssembly, utilizing 195, 196
methods, utilizing 186
OIDC, using 187-193
Token-based, analyzing 198, 199
Authorization
about 186
Blazor WebAssembly, utilizing 195, 196
OIDC, using 187
Azure
CI/CD Pipeline 161
creating 157, 158
Static Website, deploying 158-161
Azure App Service 178
Azure Function
about 162
benefits 162
Blazor WebAssembly, analyzing 177
Cl/CD Pipeline, preventing 179-182
Http CRUD Operation, utilizing 167-172
service, utilizing 164-166
triggers, types 163
Visual Studio, analyzing 172-177

B

Blazor
CSS Classes, styling 41-43
Navigation 53
nested component, creating 38, 39
parameters value, specifying 50, 51
Reload Method, forcing 54
Route, parameter 49, 50
router, components 48

Blazor 8.0
benefits 8, 9
features 7, 8

Blazor Applications, types
Blazor Server 2, 3

Blazor Web App 4
Blazor WebAssembly 3
Blazor Applications VS Code, using 9-11
Blazor Code, segregation
code-behind, approaching 40, 41
inline, approaching 40
Blazor Component
about 20, 21
creating steps 21, 22
Data Binding 31
lifecycle, utilizing 22-27
parameters 28
Blazor Component parameters, types
Cascading 29-31
Non-Cascading 28, 29
Blazor Form
about 125-127
aspects, preventing 134, 135

data, annotating 128-130
error, utilizing 130, 13
nested model, analyzing 131-133
validating 127, 128

Blazor Server 2, 3

Blazor Web App 4

Blazor Web App, types
Interactive Auto 4
interactive server 4
Interactive WebAssembly 4
SSR 4

Blazor WebAssembly
about 3
advantages 5, 6
Blazor Server, comparing 6, 7
CRUD Operation 100
disadvantages 6
HttpClient 97-100
prerequisites 9
project, structure 15-18
State Management 77
VS Code, using 11-15

C

Child Component, data passing 35, 36
CRUD Operation 100

D

Data Binding 31
Data Binding, types
One-Way 32, 33
Two-Way 33-35

EF Core 8.0
about 104, 105
application, types 106
CRUD Operation, utilizing 108-122
uses 106

EF Core 8.0, reasons
automatic change, tracking 106
cross-platform, supporting 105
data access, simplifying 105
database provider, flexibility 105
LINQ, integrating 106
migration, supporting 106
open source, developing 106
parameterization 106
productivity, developing 105
testability 106

Entity Framework Core, types
Code First Approach 107
Database First Approach 107

Entity Framework Database, supporting 108

F

framework 92

H

HttpClient 97-100
JavaScript Function
about 139-141
C#, calling 144, 145
Chartjs library, utilizing 145-147

C Obejcts, passing 142, 143
error handle, debugging 147-149

performance, optimizing 151-153

return value, handling 141, 14
security, considering 149-151

M

Microsoft Azure, key features
Al, Machine learning 156
big data, analytics 157
compute, services 156
database, services 156
DevOps, services 156
IAM 156
loT 156
network, services 156
security, compliance 156
serverless, computing 157
storage, services 156

Microsoft Entra ID, practical use 194

Navigation 53

Navigation, types
declarative 53, 54
programmatic 53

P

Parent Component, data passing 36-38
R
Razor Class Library, advantages
concerns, separating 74
consistent user interface 73
distribution, packaging 74
modular, developing 73
reusability 73
versioning 73
Razor Class Library (RCL)
about 57
application with code, utilizing 58-67
NuGet Package, creating 68-73
Representational State Transfer (REST)
about 90, 91
Web API Core, optimizing 91-94
WebAssembly, utilizing 94-96
Route Overloading 51, 52

S

Server-Side State Management 86, 87
State Management
about 77
Cascading Value, optimizing 79
parameters, component 78
services 79-81
storage, utilizing 81-85
Syncfusion 59

w

WebAssembly application
creating 206-215
security, implementing 217-219
tips, tricks 216, 217

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Blazor WebAssembly
	Introduction
	Structure
	Types of Blazor Applications
	Blazor Server

	Blazor WebAssembly
	Blazor Web App
	Advantages of Blazor WebAssembly
	Disadvantages of Blazor WebAssembly
	Blazor Server vs. Blazor WebAssembly
	New Features Added to Blazor 8.0
	Benefits of .NET 8.0
	Prerequisite Software for Blazor WebAssembly Application
	Creating Hello World Blazor Application Using Visual Studio 2022
	Creating Blazor WebAssembly Using VS Code
	Project Structure in Blazor WebAssembly 8.0 Application
	Conclusion
	References
	Multiple Choice Questions
	Answers

	2. Razor Components
	Introduction
	Structure
	Introduction to Blazor Component
	Creating a Blazor Component
	Razor Component Lifecycle
	Parameters in Blazor Component
	Non-cascading Parameters
	Cascading Parameters

	Data Binding in Blazor Components
	One-Way Data Binding
	Two-Way Data Binding

	Passing Data from Parent to Child Component
	Passing Data from Child to Parent Component
	Nested Component in Blazor
	Code Segregation Approach in Blazor Component
	Inline Approach
	Code-Behind Approach

	Styling Component in Blazor
	Conclusion
	References
	For Source Code

	Multiple Choice Questions
	Answers

	3. Routing and Navigation
	Introduction
	Structure
	Introduction to Routing and Navigation
	Router Components
	Route Parameter in Blazor
	Optional Parameters in Blazor
	Route Overloading
	Navigation in Blazor
	Forcing a Page Reload
	Conclusion
	References
	Multiple Choice Questions
	Answers

	4. Razor Class Library
	Introduction
	Structure
	Introduction to Razor Class Library
	Creating RCL and Sharing Code with Multiple Application
	Creating NuGet Package of RCL
	Advantages of Razor Class Library
	Conclusion
	References
	For Source Code
	Multiple Choice Questions
	Answers

	5. State Management
	Introduction
	Structure
	State Management in Blazor WebAssembly
	Component Parameters
	Cascading Values and Parameters
	Services
	Local Storage or Session Storage
	Server-Side State Management

	Conclusion
	References
	For Source Code

	Multiple Choice Questions
	Answers

	6. REST Services
	Introduction
	Structure
	Creating REST Service Using Asp.net Core
	Standalone Web API Core Service
	Shared Web API Core in Blazor WebAssembly
	HttpClient in Blazor WebAssembly
	CRUD Operation in Blazor WebAssembly
	Conclusion
	References
	Multiple Choice Questions
	Answers

	7. Entity Framework Core
	Introduction
	Structure
	EF Core 8.0
	Reasons to Use EF Core
	When Not to Use EF Core
	EF Core Supported Application Types
	Entity Framework Core Approaches
	Database First Approach
	Code First Approach

	Supported Databases
	CRUD Operation with EF Core in Blazor WebAssembly
	Conclusion
	Reference
	Multiple Choice Questions
	Answers

	8. Validation in Blazor WebAssembly
	Introduction
	Structure
	Blazor Form
	Form Validation in Blazor
	Data Annotation in Blazor
	Custom Validation in Blazor
	Complex or Nested Model Validation in Blazor
	Best Pattern and Practices for Validation in Blazor
	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	9. JavaScript Interop in Blazor
	Introduction
	Structure
	Calling JavaScript from C#
	Handling Function Return Value
	Passing C# Objects to JavaScript
	Calling C# from JavaScript
	Advanced JavaScript Interop Demo
	Error Handling and Debugging
	Security Considerations
	Performance Optimization Tips
	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	10. Azure Service in Blazor
	Introduction
	Structure
	Key Features and Components of Microsoft Azure
	Azure Account Creation
	Static WebSite Deployment
	CI/CD Pipeline on GitHub
	Azure Function
	Benefits of Using Azure Functions
	Different Types of Triggers on Azure Functions
	Creating Azure Function
	Http CRUD Operation in Azure Function
	Azure Function Deployment

	Consuming Azure Function in Blazor WebAssembly
	Azure App Service
	App Deployment with CICD Pipeline

	Conclusion
	References
	Source Code
	Multiple Choice Questions
	Answers

	11. Security in Blazor WebAssembly
	Introduction
	Structure
	Authentication and Authorization
	Authentication and Authorization Using OIDC
	Exploring Practical Use Scenario of Microsoft Entra ID
	Google Authentication and Authorization in Blazor WebAssembly
	Custom Token-Based Authentication in Blazor WebAssembly
	Asp.net Core Web API
	Blazor WASM Client Side

	Tips and Tricks While Implementing Security in Blazor WebAssembly
	Common Mistakes While Implementing Security in Blazor WebAssembly
	Conclusion
	References
	Source Code

	Multiple Choice Questions
	Answers

	Index

