

Ultimate Django for
Web App

Development Using
Python

Build Modern, Reliable, and Scalable
Production-Grade Web Applications

with Django and Python

Leonardo Luis Lazzaro

www.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capital. However, Orange
Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

First published: January 2024
Published by: Orange Education Pvt Ltd, AVA™
Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96815-11-0
www.orangeava.com

http://www.orangeava.com/

About the Author

Born in Buenos Aires (la Ciudad de la Furia), Argentina, Leonardo Luis
Lazzaro has always been fascinated by the idea of creating something out
of nothing. His first contact with computers began at an early age, fueled by
classic video games like Maniac Mansion and Monkey Island.
By the age of 12, Leonardo was already running his own Bulletin Board
System (BBS) using ProBoardBBS Software, making him one of the
youngest participants in online communities in Argentina. The BBS
allowed him to meet other tech enthusiasts who introduced him to the
programming world. His fascination with computer demos from the
demoscene became a strong motivation for his continued discovery in
programming.
Leonardo's academic path led him to study computer science at the
prestigious Facultad de Ciencias Exactas, Universidad de Buenos Aires
(UBA). He embarked on a Ph.D. in drug discovery, trying to apply
computational skills to solve highly complex challenges on GPU
simulations. However, his journey took a turn, leading him away from the
academic world and becoming a Ph.D. dropout.
With 12 years of experience in Python, Leonardo has developed a profound
expertise in this programming language. He is proficient in several Python
frameworks, including Flask, Pyramid, Django, FastAPI, and others,
showcasing his versatility and deep understanding of web development and
application design.

About the Technical Reviewer

David Wobrock is a seasoned software engineer in the domains of backend
web development, cybersecurity, and developer experience for multiple
years. As an active contributor to Django, he plays a significant role in the
Django Triage & Review team, showcasing his commitment to the
advancement of the framework. Within Django, his primary focus revolves
around contributions to the Django ORM and database migrations.
Additionally, David is dedicated to maintaining open-source Python
packages within the Django ecosystem.
He has worked for several startups, contributing not only to the growth of
their technical stacks with reliable and secure software but also enhancing
team efficiency by providing internal tools, guidelines, and best practices
within the organizations. He believes that having the right tools, which
make it easy for developers to do the right thing, is essential for building a
great developer experience. Thus, when these tools are enablers for teams,
they not only become more efficient but also build more reliable, scalable,
and secure products.

Acknowledgements

Since childhood, I’ve always been fascinated by creating something from
nothing. As a child, my imagination had intricate ideas, many of which
magically took on lives of their own. This magical ability to turn thought
into reality has stayed with me until now. This very power of creation has
given life to this book.
This book is not a tribute to a single individual. Instead, it stands as a mark
of respect and recognition for the open-source community. This work is a
testament to the community's spirit of collaboration and shared knowledge.
To my readers, I offer this book as a guide into the world of Django. The
book was crafted not from a place of ego but to contribute to our
community's knowledge.
Special thanks to Nicolas Rebagliati for his review of Chapter 4. His
insightful feedback and attention to detail have significantly enhanced the
chapter, greatly contributing to the book's overall quality.

Preface

This book guides readers through building a comprehensive web
application using Django and Python. Each chapter builds upon the last,
from setting up a development environment to deploying a fully functional
application running in a Kubernetes cluster.
Who this book is for
Beginners will find comprehensive coverage of foundational topics, while
more experienced programmers will delve into advanced subjects, such as
preventing double-form submissions and implementing offline pessimistic
and optimistic locking techniques.
Download the code files
The complete code for this book is available on the GitHub repository at
https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-
Development-Using-Python Each chapter's content is organized into
separate branches, allowing you to practice alongside the book.
How to use the book
For beginners, a sequential reading of this book is recommended, as each
chapter incrementally adds to the knowledge from the previous one.
Experienced developers can directly jump to specific chapters or sections
aligned with their interests or areas where they seek a more profound
understanding.
As readers progress through the chapters of this book, the invitation is
extended to share knowledge and contribute to the community. The hope is
that this book enriches the reader’s experience and is enjoyable to read, just
as intended during the writing process.
What this book covers
This book guides readers through building a comprehensive web
application using Django and Python. Each chapter builds upon the last,
from setting up a development environment to deploying a fully functional
application running in a Kubernetes cluster.
Chapter 1: Introduction to Django and Python

https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python

This chapter introduces Python and the Django framework, detailing
Django's philosophy, the latest features in Django 4.2, and the compatibility
of Python's syntax and semantics with Django.
Chapter 2: Setting Up Your Development Environment
This chapter guides you through establishing a reliable development
environment, including Python installation, version management with
pyenv, and creating isolated environments with poetry, equipping you for
efficient Django development.
Chapter 3: Getting Started with Django Projects and Apps
This chapter introduces you to the initial steps of starting Django projects
and apps. You'll learn about the Django project structure, the role of each
component, Django's MVT architecture, configuring Django projects, and a
brief introduction to Django's development server.
Chapter 4: Django Models and PostgreSQL
This chapter, focused on Django models and PostgreSQL integration,
delves into creating models, Django's database API, ORM, queries,
aggregations, and ensuring data integrity with model constraints.
Chapter 5: Django Views and URL Handling
This chapter explores the creation of views and management of URLs in
Django, which are critical components in building the user interface of a
Django application.
Chapter 6: Using the Django Template Engine
This chapter explores the Django Template Engine. Learn to create dynamic
HTML content for Django apps, including static files, template inheritance,
and custom template tags and filters.
Chapter 7: Forms in Django
This chapter covers handling and creating forms in Django, a crucial aspect
of user interaction. It includes advanced form handling like ModelForms,
Formsets, and techniques to prevent double form submission.
Chapter 8: User Authentication and Authorization in Django
This chapter provides a detailed look at Django's built-in tools for user
authentication and authorization. It explains how to manage users and their
access levels.

Chapter 9: Django Ninja and APIs
This chapter introduces Django Ninja, a modern framework for building
APIs with Python and Django, focusing on creating efficient, robust, and
scalable APIs.
Chapter 10: Testing with pytest
This chapter introduces pytest, guiding you through writing practical tests
for Django apps. It covers testing views and forms, ensuring code reliability
and maintainability.
Chapter 11: Deploying Django Applications with Gunicorn and Docker
This chapter discusses deploying Django applications using Gunicorn and
Docker. It includes insights into creating Dockerfiles, configuring
Kubernetes clusters, and adding liveness and readiness probes for
application scaling.
Chapter 12: Final Thoughts and Future Directions
This concluding chapter reflects on building a Django task management app
and looks ahead at Django's future. It discusses the Django ecosystem,
additional tools, and staying updated with the community.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-
education/Ultimate-Django-for-Web-App-

Development-Using-Python

The code bundles and images of the book are also hosted on
https://rebrand.ly/808c99

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python
https://rebrand.ly/808c99

Errata

We take immense pride in our work at Orange Education Pvt Ltd and
follow best practices to ensure the accuracy of our content to provide an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To
let us maintain the quality and help us reach out to any readers who might
be having difficulties due to any unforeseen errors, please write to us at :
errata@orangeava.com
Your support, suggestions, and feedback are highly appreciated.

mailto:errata@orangeava.com

DID YOU KNOW
Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.orangeava.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: info@orangeava.com for more details.
At www.orangeava.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on AVA™ Books and eBooks.

PIRACY
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com
with a link to the material.

ARE YOU INTERESTED IN AUTHORING
WITH US?

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please write to us at
business@orangeava.com. We are on a journey to help developers and
tech professionals to gain insights on the present technological
advancements and innovations happening across the globe and build a
community that believes Knowledge is best acquired by sharing and
learning with others. Please reach out to us to learn what our audience
demands and how you can be part of this educational reform. We also
welcome ideas from tech experts and help them build learning and
development content for their domains.

REVIEWS
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!
For more information about Orange Education, please visit
www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Django and Python
Introduction
Structure
Introduction to Python

Understanding variables as references
Parameter passing
Interfaces or protocols
Standard modules
Error handling
List comprehensions
F-Strings
Type hinting
Coding style

Introduction to Django
The Django Philosophy

Don’t repeat yourself
Loose coupling and High cohesion
Less code and quick development
Explicit is better than implicit
Models: Include all relevant domain logic
Separate logic from the presentation on templates
Views
Caching

Django 4.2 highlights
Support for psycopg3
Comments on columns and tables
In-memory file storage
Custom file storages
Updates in password validation
Minor updates and additions

Python for Django
Conclusion
Questions

2. Setting Up Your Development Environment
Introduction
Structure
Introduction to Development Environments
Managing Python Versions with Pyenv
Understanding Virtual Environments
Introduction to Poetry for Dependency Management
Setting up a Django Project with Poetry
Basic Configuration for a Django Project
Introduction to Git for Version Control
Creating a GitHub repository
Branching models

Git Flow
GitHub Flow
Trunk-based
Advanced Git Usage: Using Worktree

Conclusion
Questions

3. Getting Started with Django Projects and Apps
Introduction
Structure
Introduction to the task manager
Django project versus Django application
Creating a new Django project
Understanding the Django project structure
Starting your first Django app
Understanding the Django app structure
MVT design patterns in Django

Extending the MVT pattern with a service layer
Configuring your Django app
Brief introduction to Django’s development server

Running your first Django app
Conclusion
Questions
Exercises

4. Django Models and PostgreSQL
Introduction
Structure
Understanding Django models
Creating your first model
Django’s database API: Create, retrieve, update, and delete operations
Understanding Django migrations
Django’s admin interface: Registering models and manipulating data
Introduction to Django’s ORM: Queries and aggregations
Extending the models
Ensuring data integrity with model constraints
Conclusion
Questions
Exercises

5. Django Views and URL Handling
Introduction
Structure
Understanding Django Views
Introducing Django’s Generic Views
Writing Your First Django View
Class-based Views Mixins
URL Configuration in Django
Creating URL Patterns for your Views
Handling Dynamic URLs with Path Converters
Understanding Django’s URL Namespace and Naming URL Patterns
Using Django’s HttpRequest And HttpResponse Objects
Introducing to Function-based Views
Using Function-based Views with a Service Layer
Pessimistic and Optimistic Offline Locking using Views and a Service

Layer
Error Handling with Custom Error Views
Conclusion
Questions
Exercises

6. Using the Django Template Engine

Introduction
Structure
Introduction to Django Template Engine
Django Template Language: Variables, Tags, and Filters
Inheritance in Django Templates
The Home Page View: Showing Tasks by Status
Custom Template Tags and Filters
Using Static Files in Django Templates: CSS, JavaScript, Images
Django Template Context Processors
Debugging Django Templates
Optimizing Template Rendering
Securing Django Templates
Conclusion
Questions
Exercises

7. Forms in Django
Introduction
Structure
Understanding Django Forms
Creating Your First Django Form
Rendering Forms in Templates
Handling Form Submission in Views
Working with Form Fields

Custom form fields
File and Image Upload Field
Data Validation with Django Forms

Validators
Clean methods
ModelForm Validation

Displaying Form Errors
Advanced Form Handling: ModelFormsSets and Formsets
Preventing Double Submission in Forms
Conclusion
Questions
Exercises

8. User Authentication and Authorization in Django
Introduction
Structure
Understanding Django’s Authentication System
Introduction to Django’s Middleware

Understanding Django Middleware
User Registration with Django’s User Model

Authenticating Users: Login and Logout
Managing User Sessions
Session customization
Session usage
Session good practices

Password Management in Django: Change and Password Reset
Protecting Views with Login Required Decorators

User Authorization: Permissions and Groups
Multi-tenant authentication with Custom Django’s User Model
Security Best Practices in Django

Update all your libraries and frameworks
Project Settings Hardening
Turn off Debug in production
Use Secure Cookies
HTTP Strict Transport Security (HSTS)
Content Security Policy (CSP)
X-Content-Type-Options
X-XSS-Protection
Secure Referrer Policy
Use Secure Password Hashing Algorithms
Limit Access to Admin
Keep SECRET_KEY Secret
Set ALLOWED_HOSTS

Conclusion
Questions
Exercises

9. Django Ninja and APIs
Introduction
Structure

Introduction to API design
API Design-first approach
HTTP Response status codes
Introduction to Django Ninja
Setting Up Django Ninja in Your Project
Building Your first API with Django Ninja
Request and Response Models with Pydantic
API Documentation
Understanding HTTP Methods in Django Ninja
API Pagination
Working with Path Parameters and Query Parameters
Validation and Error Handling in Django Ninja
Authenticating API Users
Securing APIs: Permissions and Throttling

Permissions
Throttling

Versioning Your API
Conclusion
Questions
Exercises

10. Testing with pytest
Introduction
Structure
Introduction to testing and pytest

Understanding test
Test-driven development
Introduction to pytest
Installing and setting up pytest for Django

Understanding Django test database and pytest
Pytest-django fixtures
Mocking and patching in tests
Behavior-driven development

Advanced pytest features: Parametrization, plugins, and configuration
Parametrization
Plugin coverage
Plugin xdist

Using marks
Configuration tips

Conclusion
Questions
Exercises

11. Deploying Django Applications with Gunicorn and Docker
Introduction
Structure
Introduction to Gunicorn
Configuring Gunicorn for Django Deployment
Understanding and Creating Dockerfiles for Django
Using the image registry
Introduction to Kubernetes

Cluster
Node
Scheduler
Pods
Deployments
ReplicaSets
Services
Configmaps and Secrets
Ingress
StatefulSets

Configuring a Kubernetes cluster for a Django application
Adding liveness and readiness probes
Adding Instrumentation for Django
Prometheus configuration
Jaeger configuration
Database Optimization: Queries and Indexing
Conclusion
Questions

12. Final Thoughts and Future Directions
Introduction
Structure
Summary of learnings: Building a task management app

Evaluating the Django ecosystem: Strengths and weaknesses
Exploring additional Django tools and libraries
Potential enhancements for the task management app
Staying updated with Django: Resources and communities
Career opportunities with Django skills
Thoughts on Django’s future: Upcoming features and trends
Tips for continued learning and improvement
Conclusion

Index

CHAPTER 1
Introduction to Django and Python

Introduction
Django has proven to be a robust and reliable framework, making it a
popular and demanded tool in the Python ecosystem. Its high-quality
standards and versatility enable the creation of unique web applications. In
this chapter, we will dive into the core features of Python and explore how
they interact with Django to promote effective web development. We will
guide you through the philosophies of Django and explain why following
them from the beginning is essential for a successful project. You will learn
Python’s language nature of dynamically and strongly typed language,
which are fundamental to master. In addition, we will highlight the
importance of Python’s style guide, PEP 8, which guarantees the craft of
clean, professional, and comprehensible code. As we conclude this chapter,
a deeper understanding of the framework’s features will increase your
productivity.

Structure
In this chapter, we will cover the following topics:

Introduction to Python
Introduction to Django
The Django Philosophy
Notable features of Django 4.2
Python Syntax and Semantics
Python for Django
Conclusion

Introduction to Python

Python is a strongly and dynamically typed language. Dynamically typed
means that the type checking is being done at runtime and is strongly typed
because it does not implicitly convert types under most circumstances.

Statically Typed Dynamically Typed

Strongly Typed Java, C#, C++ Python, Ruby

Weakly Typed C, C++ JavaScript, PHP

Table 1.1: Categorization of programming languages based on two different typing characteristics

Working with a dynamically typed language for the first time could be a
shock for software developers used to statically typed, and it could feel
incorrect. If you are coming from Java or C#, you must change your
mindset and learn a new way of coding without private methods or
interfaces in the traditional sense.
To contrast the difference between strong and weak typing, let’s compare
JavaScript and Python.
JavaScript:
console.log([] + []); // prints: ""

// things can get more interesting

console.log([] + {}); // prints: "[object Object]"

console.log({} + []); // prints: "[object Object]"

As you can see, JavaScript doesn’t throw any errors, and the results of the
operations are peculiar (and can seem unexpected).
However, with Python, things are quite different:
print([] + []) # prints: []

print([] + {}) # Raises TypeError

Python’s strongly typed nature leads to different behaviors than JavaScript’s
weakly-typed nature. The first operation returns expected, and refusing to
convert values silently could prevent bugs.

Understanding variables as references
Python differs from other programming languages; it doesn’t need to
declare variable types beforehand. In Python, variables act as pointers to
objects, not the objects themselves.

To understand how it works, check this simple Python code:
x=5

y=x # At this point, x and y point to the same object 5.

print(id(x)) # outputs the integer 139691746963400

print(id(y)) # outputs the integer 139691746963400

x=10 # Now, x points to a different object, 10, but y still

points to 5.

print(id(x)) # outputs 139691746963560

The id() function is used to print the unique identifier for objects that x and
y are referencing. The first two call returns the same ID since x and y are
referencing the same object. The third call of id prints a different id since x
references a different object now.

Parameter passing
Python uses the pass-by-object-reference strategy when passing
parameters. This approach means that references to the objects are passed
and not the copies; this translates to cheaper function calls since object copy
is expensive.
For immutable objects like strings or integers, Python doesn’t modify the
variable value beyond the function’s scope:
def update_number(n: int) -> None:

n = 10

x = 5

update_number(x)

print(x) # prints: 5

However, extra caution is necessary when working with mutable objects.
When a function or method changes a mutable object, it can produce
unexpected side effects.
def update_list(numbers: list[int]) -> None:

numbers.append(10)

x = [5]

update_list(x)

print(x) # prints: [5, 10]

Remember that the function directly interacts with the original object in
memory, not a copy of it. Such behavior might not align with a
programmer’s intentions, and it’s the reason for hard-to-detect bugs.
Mutability and immutability have been two approaches discussed for a long
time. Immutability brings more safety and fewer side-effects to your code
and therefore makes it easier to reason about. However, mutability can be
interesting for performance and flexibility during development. Both
approaches are valid and can co-exist. You will have to decide how to
tackle your problems.

Interfaces or protocols
In Python, you can create an abstract base class as an interface for
implementing subclasses. The ABC can specify some methods that any
child classes must implement.
from abc import ABC, abstract method

class AbstractAnimal(ABC):

@abstractmethod

def make_sound(self) -> str:

pass

class Dog(AbstractAnimal):

def make_sound(self) -> str:

return "Woof!"

Sometimes, you may not find any abstract base classes in Python
codebases, and the contract could be implicit. This concept is often called
duck typing - If it walks like a duck and it quacks like a duck, then it must
be a duck. With duck typing, the type or class of an object is less important
than its methods and properties. Duck typing enables a polymorphism
where the developer doesn’t require the object to be of a specific type but
only to implement certain methods or properties. The implicit interface
allows developers to replace objects with different implementations as long
as the replacements fulfill the same contract, i.e., they have all the required
methods and properties.
Duck typing is an inherent feature of Python and many other dynamically
typed languages where type-checking is done at runtime. The principle

allows for greater flexibility in code, but it also places more responsibility
on the developer to ensure that objects are properly used.

Standard modules
Python’s standard library is vast and includes numerous modules. Given its
broad scope, covering all of it in an introductory segment is impossible.
This section will show the most common modules used while working with
a Django project.
Let’s start with pathlib, an object-oriented module to handle filesystem
paths. One of its common usages is in the settings of the project.
Let’s see an example:
from pathlib import Path

BASE_DIR is the project root (the directory containing

manage.py)

BASE_DIR = Path(__file__).resolve().parent.parent

This is how you would define the location of the static

files directory

STATIC_ROOT = BASE_DIR / 'staticfiles'

As you can see, the / is the operator to join paths; the pathlib module was
introduced in Python 3.4, and it offers a great way to handle the filesystem.
JavaScript Object Notation (JSON) is a universally recognized format for
storing and transferring data. Converting objects to JSON is named
serialization, while the reverse is called deserialization. The standard library
has a module that works with JSON, the json module.
Here are some examples of how to use the JSON module:
import json

let's create a dictionary to represent a person

person = {

"name": "John",

"age": 30

}

serialization of the object

person_json = json.dumps(person)

deserialization of the json, loads returns a dictionary

person_dict = json.loads(person_json)

assert person == person_dict

When the object is not serializable, dumps will raise TypeError. To make
the object serializable, you must provide a function that translates the object
to a dictionary and pass it using the default parameter.
class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def person_serializer(obj: Any) -> dict:

if isinstance(obj, Person):

return {"name": obj.name, "age": obj.age}

raise TypeError(f"Type {type(obj)} not serializable")

p = Person("John", 30)

import json

json.dumps(p, default=person_serializer)

The datetime module is another helpful module to learn. While Django
provides several utilities for handling date-times, there might be occasions
when it’s necessary to resort to the functionalities of the standard datetime
module. Let’s see an example of the helpful timedelta class:
from datetime import datetime, timedelta

with Django it's important to always use datetime timezone

aware

current_datetime = datetime.utcnow()

let's add 7 days to the current_datetime

future_datetime = current_datetime + timedelta(days=7)

Python offers a plethora of other modules to explore. We advise readers to
consult the official Python documentation for a deeper understanding of
these modules.

Error handling
When converting a string to an integer, one has to anticipate that the string
is not a valid integer. Thus, it is important to understand Python’s error-
handling system.

Python is a strongly typed language that will raise an exception when an
error occurs, like trying to convert a string to an integer that is not valid. In
this case, it raises a ValueError exception. But fear not, for Python equips
us with a way to catch and address these exceptions: the
try/except/else/finally block.
Here is how to work with exceptions with Python:
def get_integer(raw_number):

try:

Code that might raise an exception

res = int(raw_number)

except ValueError:

What to do if the exception occurs

print("Not possible to convert to integer")

res = None

else:

Code to run if no exception was raised

print("String to integer was successfully converted.")

finally:

Code to run no matter what

if res is not None:

print(f"The integer is: {res}")

return res

In our get_integer function, we enclose our code within this block. We
optimistically try to convert the string to int. If all goes well, we log an
informational message to say we’ve converted the string. If Python can’t
convert the string, it raises the ValueError exception, which we promptly
catch. We log an error message, and instead of returning a default integer,
we play it safe and assign None to our result.
No matter what happened in the try or except blocks, we move on to the
final block. Here, if an integer is converted, we log its value. The function
returns the result - the integer if it was converted or None if it wasn’t.
And that’s how you deftly handle errors in Python. So, when the
unexpected happens, your program doesn’t falter but takes a different path.
In Chapter 9, Django Ninja and APIs, we will see that we don’t need to
create this function to convert payloads to Python objects. We will use

serializers that convert payloads to their respective objects.
It’s important to note that catching the generic Exception is not always a
good practice since it can silence bugs and it make troubleshooting bugs
harder. Try to always be explicit when catching exceptions. The application
should fail and detect the error rather than have a silent bug hidden deep in
the application codebase.

List comprehensions
Suppose you have a list named ‘numbers’ with integers. Your mission is to
generate a new list, mod_results, where each element is the modulus of the
corresponding number from numbers when divided by a certain value, say
5. You could march down the traditional path, using a for-loop to calculate
the modulus for each number and then appending it to mod_results. It’s a
decent method, but Python has syntactic sugar to write these types of loops
in one line and keep the code more concise.
In a single code, you can generate the result:
numbers = range(0, 100)

mod_results = [n % 5 for n in numbers]

The last line will generate a list of integers with the computation of
modulus with 5 for each number from 0 to 100.
Python also allows the inclusion of conditionals in list comprehensions.
Want to compute the modulus for only the even numbers? Here is how to do
it:
even_mods = [n % 5 for n in numbers if n % 2 == 0]

This feature can turn your multi-line tasks into one-liners, making your
code compact, and readable.
Sometimes, list comprehensions can become cumbersome, especially when
dealing with complex logic or multiple levels of loops and conditionals. If
you find your list comprehension stretching over numerous lines or
becoming so tricky that it’s hard to understand at a glance, it might be time
to reconsider using it.

F-Strings

Python f-strings, introduced in Python 3.6, provide a concise and
convenient method to embed expressions inside string literals. The
expressions are evaluated at runtime and formatted using the curly braces
{}.
name = "Pepe"

age = 30

greeting = f"Hello {name}, you are {age} years old."

print(greeting)

Output: Hello Pepe, you are 30 years old.

The f-string evaluates the variables’ name and age within the string.
You can also have an expression inside the f-strings:
x = 5

y = 10

result = f"The sum of {x} and {y} is {x + y}."

print(result)

Output: The sum of 5 and 10 is 15.

f-strings also support format specifiers, allowing more control over the
formatting of the embedded expressions.
import math

pi_value = f"Pi value up to 10 decimal places: {math.pi:.10f}"

print(pi_value)

Pi value up to 10 decimal places: 3.1415926536

Type hinting
As mentioned before, Python is dynamically typed, and taking over
someone else’s code can sometimes feel like solving a puzzle, especially if
you are new to Python. Since no type is specified, the developer needs to
read the code to infer the types of the argument or the return type.
Type hinting in Python serves as a specification. With type hinting, you can
annotate your function definitions to specify what type of arguments the
function expects and what type it will return.
Let’s see an example to understand how it works:
def hello_world(person_name: str) -> str:

return f'Hello, {person_name}!!'

The parameter person_name is expected to have type str in this function, but
it could receive anything during runtime. Using the syntax with a colon is a
way of telling that the hello_world function expects a string. The arrow
after the function arguments -> str is another type hint that specifies a
string as the return type.
Python 3.10 introduced the pipe operator (|) or PEP 604 syntax as a more
readable way to denote Union types.
from typing import Union

print(int | str == Union[int, str]) # This will print: True

As you can see the pipe operator is the same as the Union.
Let’s look at another example:
def get_task_details(task_id: int | str) -> dict[str, str |

int]:

dummy data

tasks = {

'001': {'title': 'Write report', 'priority': 1},

'002': {'title': 'Plan meeting', 'priority': 2},

'003': {'title': 'Review code', 'priority': 3},

}

return tasks[str(task_id)]

In the get_task_details function, the type hint task_id: int | str
means that the function accepts an integer or a string as the task ID. The
function returns a dictionary indicated by -> dict[str, str | int]. This
dictionary maps to a string for the task title and an integer for the task
priority. If the task isn’t found, the function raises a KeyError exception.
Even when using type hints, Python is still a dynamically typed language.
The interpreter doesn’t enforce these types of hints during the code
execution. Therefore, you can still pass arguments of any type to your
function, and it will attempt to execute it. Python won’t raise any errors
because the argument type doesn’t match the type hint.
Type hints serve as a form of documentation that can make the code more
understandable and maintainable, and when used with a type checker like
mypy (https://mypy-lang.org/), it can make it more robust.

https://mypy-lang.org/

Coding style
Writing Python code is not only understanding the syntax but also how the
code is crafted and structured. Think of Python’s style guidelines, glorified
in PEP 8, as the dress code of the Python world—followed in writing clean,
professional, and easy-to-read code.
Some of these guidelines include:
Indentation: Python sets the bar at four spaces per indentation level—not
two, not eight, but four. Keeping to this rule results in a neat, organized
code.
def example_function(arg1: Any, arg2: Any) -> None:

if arg1 is not None and arg2 is not None:

print("Both arguments are not None.")

Line Length: Keep lines within a limit of 129 at most. The line length limit
facilitates reading.
Whitespace: Spaces around binary operators aren’t just empty areas—they
are bridges connecting parts of your code, making it easier to comprehend.
Variable names should be declarative, and the use of single characters
should be avoided—they should be clear and self-explanatory.
Better

box_cost = box_size**5 + 9

difference = (box_size + box_cost) * (box_size - box_cost)

Avoid

box_cost=box_size**5+9

difference=(box_size+box_cost)*(box_size-box_cost)

By convention, function names should be lowercase letters, with
underscores used as links between words to enhance legibility, known as
snake_case.
Preferred

def calculate_mean(numbers: list[int]) -> int:

return sum(numbers) // len(numbers)

Discouraged

def calc_m(n):

return sum(n) // len(n)

Pairing well with these style guidelines are linters; the most common ones
are flake8, pylint, and ruff. Linters ensures that your code stays clean,
consistent, and up to the high-quality standards set by the Python
community. A common practice in enterprise projects is to have a
continuous integration pipeline with linters to check the code; this will
prevent any developer from adding code, not PEP8 compatible.
As the wisdom of PEP 8 puts it, A Foolish Consistency is the Hobgoblin of
Little Minds. Remember to always find the right balance. Sometimes style
guide recommendations just aren’t applicable.
But it’s important to remember that coding is as much an art as a science.
While adherence to best practices is highly encouraged, there are moments
when deviating slightly from a rule could lead to a more comprehensible
piece of code.
It’s all about finding the sweet spot—the perfect blend of consistency and
adaptability.

Introduction to Django
Django is a high-level Python web framework loaded with features that
allow you to immerse yourself in developing your application’s
functionality. Django comes with batteries included, which means it offers a
full-featured and complete framework to build sophisticated web
applications. Django makes building better web apps more quickly and with
less code easier.
The framework comes with session management, Object-Relational
Mapping (ORM), an automatic admin interface, a template engine and
many more. This reduces the need for multiple third-party libraries and
accelerates the delivery process.
The community around Django is a thriving ecosystem, making it an
excellent choice for building an enterprise application. Since it is widely
used, most errors and common gotchas are easy to find on the internet. The
project has high-quality standards and a robust codebase demonstrating
open-source success.
Even when the framework lacks certain features, the community has created
thousands of libraries to expand the framework functionality and most of
which have been actively maintained for years.

You can see the true power of a dedicated and creative community when
you look at how they’ve taken this framework to this point.
Django’s high-security standards are highly recognized in critical industries
like finance. But also, for media companies, managing high-volume and
dynamic content is easy through Django’s user-friendly content
administration features. Fast-paced startups with high delivery velocity
leverage this framework to turn those brainwaves into reality.

The Django Philosophy
Django documentation explains philosophies that encourage good practices
and help to standardize projects. Adhering to these philosophies will keep
the project healthy and easy to maintain but also facilitate the onboarding
process for new developers into projects by reducing the learning curve.

Don’t repeat yourself
The Don’t repeat yourself (DRY) is a general principle to prevent
duplication. The principle seeks to prevent the repetition of the same code
in different parts of a project, or the re-implementation of a feature already
provided by the framework or library.
However, sometimes it’s hard to understand what constitutes duplication
fully. Remember that duplication can appear anywhere – in code,
architecture, requirement documents, or user documentation.
Using a feature-rich framework like Django may paradoxically increase the
risk of violating the DRY principle. For instance, suppose that you need to
capitalize a word in a template. Using the built-in feature the framework
provides will uphold the DRY principle. A deep knowledge of the
framework’s capabilities and features is a must to prevent breaking the
DRY.

Loose coupling and High cohesion
In software development, two essential principles exist for creating
maintainable, modular, and efficient code. These principles are Loose
Coupling and High cohesion.

Loose coupling refers to how much the modules or components of your
application are independent of each other. Having Loose coupling allows
developers to make changes to modules without affecting others.
High cohesion refers to how modules are functionally related. This means
that a module performs a specific task. High cohesion goes hand in hand
with The Single Responsibility Principle (SRP), which dictates that a class
or module should have only one reason to change.
Loose coupling ensures that changes in one class or module don’t cascade
issues in others. Loose coupling promotes code that is easy to read,
maintain, and test. Think of it as the butterfly effect. If adjusting one line of
code causes problems in a separate module or class, you likely have a case
of tight coupling. The same happens when you try to write a unit test, and
it’s tough to write it. Hard-to-write tests are a code smell sometimes related
to coupling.
Design patterns exist in software development, functioning similarly to
blueprints. Developers often rely on these patterns to simplify
communication and systematically address common problems. A service
layer is a design pattern encapsulating the application’s business logic. It
separates business logic from the user interface and data access layers. An
interface within the service layer ensures that business logic is readily
accessible to various applications in your project.
Many Django projects lack a service layer bringing maintenance problems
since those projects tend to have coupling problems. Having a service layer
helps to reduce coupling and increases cohesion, as we will see in later
chapters.
Building a fully decoupled and cohesive system is complex, and could be
expensive. Engineers often have to cut corners or work with an existing
codebase. But don’t worry - in this book, we’ll work with good practices to
keep coupling low and cohesion high.
Software engineering is the art of finding the right balance in decisions to
deliver the project on time; sometimes, engineers often have to cut corners.
A wholly decoupled and cohesive system could be expensive, especially if
the project needed to follow good practices.

Less code and quick development

Every Django application should embrace the idea that less is more.
Applications should be lean and without a boilerplate. The less the code, the
less chance of having a bug. This idea applies to every aspect of the Django
framework, and where there is too much code, most likely, you are missing
a framework feature.
With the batteries-included philosophy Django is a framework that allows
developers to focus on the problem they need to solve and not on
technicalities, eliminating the need to build everything from scratch, like
authentication and admin interfaces.

Explicit is better than implicit
Code should not hide its behavior or reply to implicit operations. When
reading the code, there should not be any hidden operations and the
programmer’s intent should be transparent. This principle is part of the Zen
of Python (PEP-20).
For example, Django models should declare all their attributes and
properties; behaviors should be explicit in the code. When a model contains
a title attribute, and since all titles are required, it should be explicitly set so
that no blank titles are allowed in the attribute properties.

Models: Include all relevant domain logic
Models should be responsible for storing and retrieving themselves; this
idea uses the Active Record architectural pattern, from the Ruby on Rails
framework. This principle also applies to the operation that can be
performed on the object, and the business logic should live in the model.
However, it’s important to note that this principle works well for small
projects. Moving the business logic to a service layer is essential when the
project grows.
It’s common to see many Django projects without a service layer since the
principles are too open for interpretation. Both solutions are valid, but using
a service layer goes hand in hand with the loose coupling.
Having a service layer helps provide an interface from other modules and
will make future refactors easier since other modules will rely on the
service layer’s interface.

As we go deep into the following chapters, we will see how to think about
interfaces first and the service layer’s importance.

Separate logic from the presentation on templates
Templates control presentation and the logic it implements should relate to
presentation and nothing else. Having business logic in the templates is a
mistake and must be avoided. However, having some basic logic to control
how to present the data is expected.
The template engine provides features to prevent code duplication, so if
your website contains a common header or footer, ensure you are using the
template engine to extend or include templates.

Views
A Django view is a function or a class that receives input from users via the
web browser, makes a process of the input and returns a response to the
user’s browsers.
Views must be as simple as possible; its responsibility should be to translate
the request and call the service layer. Views should not contain any business
logic. The view implementation should not depend on the template engine.

Caching
The cache framework of Django provides a common interface across
different cache backends and an easy way to extend it. Currently, the
Django caching framework supports Memcached, database caching,
filesystem, and local memory.
The framework does not provide a built-in solution for caching with Redis,
but it offers an easy way to extend it and use Redis for caching. A well-
known and battle-proven 3rd party library exists for that
(https://github.com/jazzband/django-redis).

Django 4.2 highlights
Django 4.2, a long-term support release (LTS), that guarantees security and
data loss fixes for an expected timeframe of about three years.

https://github.com/jazzband/django-redis

This Django version is compatible with Python versions from 3.8 to 3.11.
Support for Python 3.11 was introduced, starting with Django version 4.1.3.
You could opt for the more conservative route with Python 3.10. However,
with the release of several patches for 3.11, choosing the most recent
Python version could be valuable given its speed improvement of 1.22x as
per standard benchmark tests.

Support for psycopg3
Psycopg is a popular PostgreSQL adapter for the Python programming
language. The release of the major version of Psycopg brings significant
changes. Its asyncio support enables Django’s integration of asyncio into its
framework. Django allows you to create async views using the async def,
and for WebSockets, you can use the channel’s library. Django 4.1 has
introduced asynchronous database interaction methods, indicated by an a
prefix, and extended in 4.2 to include more methods. Here is an example of
async ORM:
async for task in

Task.objects.filter(title__startswith="Story"):

creator = await task.creator.afirst()

Comments on columns and tables
You can now annotate columns and tables with comments using the new
Field attributes db_comment and models Meta.db_table_comment options.
The comments are directly within the database. The annotated columns or
tables improve the documentation of the database schema for future
developers in the project.

In-memory file storage
Sometimes, when unit tests on Django apps need to access the hard drive, it
slows testing down. This version added new in-memory file storage to
accelerate test runs and reduce development times.

Custom file storages

Now, you can configure all storage settings in a dictionary, enabling the
setup of multiple custom file storage backends in one place. Chapter 3,
Getting Started with Django Projects and Apps will show how to configure
this setting for managing static files.

Updates in password validation
Password reuse is a significant security risk, contributing to the potential for
unauthorized access. In the past, leaks occurred in several databases,
exposing that people tend to use common words as passwords. The
framework provides a CommonPasswordValidator to prevent the use of
common passwords, and this version introduces new common passwords.

Minor updates and additions
Like any other release, the developers have made numerous minor
improvements concentrating on updating the request-response lifecycle for
improved performance. There are refinements in the generation of sitemaps
and handling of static files, along with enhancing error reporting and
internalization. This minor release of the Django framework comes with
many new features and improvements.

Python for Django
Python has an elegant and easy-to-read syntax, and Django philosophies fit
perfectly, making it a natural fit.
Python’s cross-platform compatibility makes Django able to run on any
system making it easy to develop and deploy. The simplicity of Python
enhances Django’s framework, reducing the cognitive load, which allows
one to focus on business logic. Its “batteries-included” philosophy aligns
with the “don’t reinvent the wheel” mantra, allowing the use of all the
features that the language and framework provide.
Django has a healthy and extensive community that extends and improves
the framework and libraries and makes the project more robust and secure.
The language enforces good coding practices, such as proper indentation,
resulting in clean, understandable code. This coding practice aligns
perfectly with Django’s aspiration to be the framework for perfectionists

with deadlines, emphasizing the importance of maintainable and readable
code.
In a nutshell, Python complements Django like a well-crafted puzzle piece.
The language’s core strengths—readability, an extensive support ecosystem,
and simplicity—harmonize with Django’s mission of simplifying web
development.

Conclusion
Django is a framework with batteries included, which promotes good
practices. Knowing those good practices will keep the project healthy and
easy to maintain. Understanding the framework and language features will
help you keep your application simple and striking to the DRY principle.
Python is a dynamic and strongly typed language, and if you come from a
statically typed language, it could be hard to read code without type
annotations. The language has coding practices that it’s essential to follow
to maintain high levels of quality in your project, and several open-source
tools can help you to follow them, like pylint, flake8, or ruff. Python and
Django are a natural fit, and the framework follows Python Zen and both
were built in harmony.
In the next chapter, our focus will be on configuring our development
environment with tools that reproduce the production environment. We will
explore the foundational aspects of team-based development processes, Git
Flow, GitHub Flow and trunk-based development.

Questions
1. What are the purposes of Python’s try/except/else/finally blocks

in error handling?
2. When would it be considered good practice to catch the generic

Exception in Python? When might it be harmful?
3. Explain in your own words what a list comprehension is and provide

an example.
4. How does type hinting in Python help with code maintenance and

robustness?

5. What are some of the key guidelines from PEP 8 for writing clean and
professional Python code?

6. How can linters be used to enforce Python coding standards in
enterprise projects?

7. How does the syntax and design of Python contribute to the
effectiveness of the Django framework?

8. Describe what is meant by Python being a dynamic and strongly
typed language. How can this be a challenge for developers coming
from statically typed languages?

9. Why is Django referred to as a framework for perfectionists with
deadlines?

10. How do Python and Django together contribute to the DRY (Don’t
Repeat Yourself) principle in software development?

CHAPTER 2
Setting Up Your Development

Environment

Introduction
Reproducibility refers to consistently replicating the same output using the
same source code and data. This is a foundational principle crucial for
verifying and validating results in software.
This chapter will explain the importance of reproducibility and guide you in
creating a development environment, mirroring your production setup as
closely as possible.
We will walk you through steps to build your development environment to
work on more than one project at the same time.
Using the dependency management tool Poetry, we will make our project
dependencies easier to maintain.
Once we’ve covered the necessary tools for setting up a development
environment, we’ll set up the environment for working on our ongoing
project within this book.
An overview of git, a control version system, will teach you primary use
cases to start working on a Django project.
Finally, we will review different branching models, Git Flow, GitHub Flow,
and trunk-based, essential for any team-oriented project. As a bonus, we
show the git worktree feature to improve your git skills even further.

Structure
In this chapter, we will cover the following topics:

Introduction to Development Environments
Managing Python Versions with Pyenv
Understanding Virtual Environments

Introduction to Poetry for Dependency Management
Setting Up a Django Project with Poetry
Basic Configuration for a Django Project
Introduction to Git for Version Control
Creating a GitHub Repository
Branching Models
Advanced git usage: using worktree

Introduction to Development Environments
Dealing with development environments can sometimes feel like navigating
a maze. There are vast options for hardware and software, a combination that
can create all sorts of challenges. Have you noticed that certain things work
fine on your computer but fail to operate on another one? A well-known
phrase for it is It works on my computer. Usually, this phrase appears when
everything works well, except in the production environment.
When we say development environment, we’re talking about the specific
setup we used to develop and test new software features. This setup is
usually run on the developer’s computer.
Docker is a popular platform for developing, shipping and running container
applications. A container is a standalone package of software that includes
everything needed to run an application, including the runtime, system tools,
libraries, and settings.
Docker has become a standard way of fixing reproducibility problems. But
as with everything, it could be better. There are other options in the
ecosystem, like Nix, which focuses on making reproducibility as perfect as
possible. Nix is a powerful package manager for Linux and other Unix
systems, making package management reliable and reproducible. Nix
provides isolation between different versions and configurations, addressing
the dependency hell issue often encountered in traditional package
managers.
We aim to build a flexible development environment that allows switching
between Python versions for various projects. One of the big players in your
development environment is your Integrated Development Environment or
IDE for short. A whole bunch of open-source and commercial solutions

work nicely with virtual environments. We will cover the virtual
environment in this chapter.

Managing Python Versions with Pyenv
Pyenv is a version management tool that allows you to switch between
Python versions.
Imagine you are working on a project coded in Python 3.8 and want to
upgrade it to 3.9. The standard procedure is to upgrade your system
interpreter to 3.9, which could remove 3.8. Changing your OS Python
interpreter could bring other issues since other software depends on it. Using
the system interpreter has some drawbacks. Pyenv isolates your environment
and allows you to easily switch Python versions without changing your
system Python interpreter.
The installation of Pyenv is straightforward. Curl is a tool used to fetch data
from a server, and it’s necessary to download the Pyenv installer.
Pyenv can be installed using the pyenv-installer, with steps documented in
the official GitHub repository: https://github.com/pyenv/pyenv-installer
Pyenv allows you to install almost any Python version. It will download the
source code and compile it. Pyenv also supports virtualenvs, but we will use
poetry virtualenv in the following sections.
Let’s install version 3.11:
pyenv install 3.11

Note: Your operating system will require some compilation dependencies
for Pyenv to install Python. You can install it with the following
commands:
Debian/Ubuntu
sudo apt install -y make build-essential libssl-dev zlib1g-dev

\

libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm

libncurses5-dev \

libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev

python-openssl

macOS

https://github.com/pyenv/pyenv-installer

brew install openssl readline sqlite3 xz zlib

Now you are ready to switch your Python version to 3.11. Here are some
common and helpful commands:
switches the version for a specific application

if your global is 3.10, opening a new terminal will not use

3.11

pyenv local 3.11

changes the version to use it everywhere

opening a new terminal will use this version

pyenv global 3.11

test that the version was changed correctly

pyenv version

verify that your python command is using the one installed by

pyenv

which python

it should output: /home/username/.pyenv/shims/python

Tip: With Pyenv you can install several Python interpreters. A good
exercise is to play with other interpreters.
For example, Jython, a Python interpreter on the Java platform, enables
integration with Java components. PyPy, another interpreter, often exceeds
the standard Python interpreter (CPython) in execution speed due to Just-
In-Time (JIT) compilation.

Understanding Virtual Environments
Projects have their dependencies, which are locked to specific versions to
ensure reproducibility. Installing the dependencies for multiple projects in
your existing global environment could lead to conflicts or create an
environment that differs from the production environment. Virtual
environments isolate projects’ dependencies. Typically, you’ll have one
virtual environment per project. However, there could be exceptions, like
when a project needs to migrate to a newer Python version.
Virtual environment, or virtualenv, is an additional layer that isolates the
dependencies of your Python project.

Creating virtualenvs is straightforward, and there are multiple ways to do so.
Pyenv has a plugin to manage virtual environments or you could use a
dependency management like Poetry, which provides support for
virtualenvs.

Introduction to Poetry for Dependency
Management
Using a dependency management tool could make the project dependencies
easier to maintain; some dependencies depend on others, and conflicts could
go undetected. Versioning pinning is when the dependencies versions are
fixed to a specific version; having this with all application dependencies
could make the reproducibility of the environment easier to ensure.
Imagine not using versioning pinning, and everything works in your local
environment. When you deploy the project to production, a new
incompatible library release was added, and now your project is failing with
errors.
Poetry is a dependency management tool that promotes good dependency
management practices, like versioning pinning. The tool uses a file
pyproject.toml to specify project settings and a .lock file to save the
dependency tree. Most of the time, you will make changes via the poetry cli
and are discouraged to manually modify the .toml file and the .lock file is
prohibited from being changed.

Setting up a Django Project with Poetry
Let’s configure our environment to use Poetry. Here are the steps to follow:
pip install poetry

Now, with Poetry installed, we can start a new project:
poetry new task_manager

Let’s add our most awaited dependency, django:
cd task_manager

let's add Django dependency

this will automatically update the pyproject.toml and

poetry.lock

poetry add django

optionally, you can specify the version you want to install

poetry add django==4.2.2

you can also specify dependencies only for the development

environment

poetry add --dev pytest

now we can install the dependencies with

poetry install

spawns a new shell within the virtual environment

where dependencies are isolated

poetry shell

Test that Django was installed properly

python -c "import django"

if no error code was returned, it means that Django was

successfully installed!

echo $?

it should print "0"

if you want to see the tree of dependencies, use show

poetry show

Another important command is the lock

Locks the project's dependencies in the poetry.lock file,

creating a snapshot of all dependencies and sub-dependencies

poetry lock

Tip: Semantic versioning or ‘semver’ is a versioning schema for software
that communicates changes in a release. It comprises 3 parts using the
format X.Y.Z, where:
X is the major version. This number changes when incompatible changes
and some changes in your application could be required.
‘Y’ is the minor version. This number changes when new features are
introduced that are backward-compatible.
‘Z’ is the patch version. This number changes when there are backward-
compatible bug fixes. Typically, these upgrades are the safest to apply to
your application; ideally, you should update it since it contains the latest
security fixes.

Congrats! You are one step closer to starting with a Django project.

Basic Configuration for a Django Project
In this book, we will build a task management system, and the database to
use is PostgreSQL. The basic configuration of our development environment
should also use a PostgreSQL database to mimic the production
environment; for this, we will use docker-compose.
Docker enables developers to build, package, and distribute applications in
containers. A container is a software unit that packages code and its
dependencies, enabling quick and reliable application setup and
configuration.
Docker-compose is a tool that helps to define and share multi-container
applications. Following good Docker practices, each container should have
one application; you might have one container with the web server, a
database in another, and a caching server in another. Docker is another layer
in your development environment, and docker-compose is a tool for defining
and managing multi-container Docker applications. Docker-compose allows
users to define a multi-container application in a single file, and then spin up
the application with a single command.
Our first step will be to install docker and docker-compose.
curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

For macOS arm64

curl https://desktop.docker.com/mac/main/arm64/Docker.dmg

For macOS intel chip

curl https://desktop.docker.com/mac/main/amd64/Docker.dmg

sudo hdiutil attach Docker.dmg

sudo /Volumes/Docker/Docker.app/Contents/MacOS/install

sudo hdiutil detach /Volumes/Docker

docker-compose configuration is being done by a YAML file; this file
specifies the configuration of each container. Let’s see an example that we
will use in this book.
All the code used here is in the public GitHub repository
https://github.com/llazzaro/web_applications_django; by the end of this
chapter, you will learn more about Git and how to use it.
Here is a simple Docker Compose configuration that sets up a PostgreSQL
database:

https://github.com/llazzaro/web_applications_django

version: '3.8'

services:

db:

image: postgres:latest

restart: always

environment:

POSTGRES_USER: postgres

POSTGRES_PASSWORD: mysecretpassword

POSTGRES_DB: task_manager

volumes:

- postgres_data:/var/lib/postgresql/data/

ports:

- "5432:5432"

volumes:

postgres_data:

In this Docker Compose file:

We are using the official PostgreSQL image latest version.
The restart: always policy ensures that the database container
automatically restarts if it stops.
Environment variables are used to set the username, password, and
database name for PostgreSQL.
We map a named volume postgres_data to
/var/lib/postgresql/data to ensure that the data remains persistent
across container restarts.
We map port 5432 inside the Docker container to port 5432 on the host
machine, allowing us to connect to the PostgreSQL server using local
tools.

Remember to replace your_username, your_password, and your_database
with your actual username, password, and database name.
Now you can test the docker-compose configuration by running:
-d stands for "detached" mode

docker-compose up -d

let's open a database client inside the container

docker-compose exec -u postgres db psql

you should see the postgres prompt, try to show the current

time

select now();

Introduction to Git for Version Control
When working with a team, multiple people work on the same project and
make changes to different parts of the code, potentially to the same piece of
code. Git is a tool that helps to share changes in an ordered way. There are
several processes to use Git within a team; one of the most common is Git
Flow, but today Trunk-Based development is gaining popularity.
Before going deeper into the processes, let’s explain what Git is. Git is a
distributed version control system that tracks file changes, typically used for
source code. A repository is where Git saves and tracks all the changes, and
you will always have a local repository that uses the .git directory and may
optionally be connected to a remote repository.
Git is decentralized, meaning multiple local or remote repositories could
store the code. Most companies choose one central repository as a source of
truth.
You can think of a git repository as a timeline or history of changes. Every
time you make some changes to your local project, those changes will be in
a status called unstaged. Once you are sure your changes must be included in
the history, you must add them to the stage. You can think of the stage status
as a draft status. Finally, you create a snapshot using the commit command,
creating a milestone in the repository’s history.
Another critical concept to learn is the branches. A git branch is a pointer to
a snapshot or commits of your changes.
To better understand, let’s practice with our GitHub repository for the book.
Our first step is to clone the repository or repo. Since the GitHub repo is
public, you don’t need to authenticate now.
git clone https://github.com/llazzaro/web_applications_django

cd web_applications_django

now let's check the current branch

git branch

It should output 'main'

let's create a new branch with switch

git switch -c update_readme

let's check our current branch

git branch

Now, open the README.md file with your favorite editor

note there is a typo, search for "directory" and fix it

nano README.md

save the changes and check that the file is shown as unstaged

git status

You are now ready to stage the changes

git add README.md

now let's add more changes to the README.md

vim README.md

save the file and check for changes

> $ git status

>On branch main

>Changes to be committed:

> (use "git restore --staged <file>…" to unstaged)

> modified: README.md

>

>Changes not staged for commit:

> (use "git add <file>…" to update what will be committed)

> (use "git restore <file>…" to discard changes in working

directory)

> modified: README.md

Now you will see that the file is shown with unstaged and staged changes. If
you commit now, only the staged changes will be added to the snapshot.

Info:

init: initializes a local directory as a Git repository. This operation is
usually executed when starting a new project.
status: Shows the state of the working directory and staging area.
clone: Makes a copy of the project from an existing repository.
branch: You can create, list, rename and delete branches.
checkout: Switches branches and restores files from a commit. You
can also create a new branch using git checkout -b

<new_branch_name>.

switch: Switches between branches. You can create a new branch
using git switch -c <new_branch_name>.
restore: Discards staged local changes when using --staged and
unstashed without it.
add: Adds changes to the staging.
commit: Creates a snapshot in the repository’s history.
pull: Fetches the changes from the remote repository.
push: Submits the local changes to the remote repository.
fetch: Retrieves updates from a remote repository to your local
repository without merging changes into your working directory.
stash: Saves changes in your working directory that you’re not ready
to commit.

Now we are ready to commit our changes, let do it with:
git commit -m "fix: Correct typo in README.md"

try again with git status

you should only see the unstaged changes

to see the history use log

git log

> Mon Jul 3 13:54:01 2023 +0200 f5142c2 (HEAD -> main) feat:

Initialize project with poetry dependencies and README.md

[Leonardo Lazzaro]

Here, you can see information about the commit, like the date, the hash, and
the commit message. The hash is important information since it allows you
to uniquely identify the changes in the repository.

Info: Conventional Commits is a specification for the structure of commit
messages. Adhering to this specification improves the readability of the
messages since they follow a structured format.
This practice is particularly beneficial in improving collaboration when
everyone in the team uses the same format, especially in large or open-
source projects.
By improving communication, it makes code review easier, giving more
context about the changes.

In Conventional Commits, each commit message includes a type, which
indicates the changes made. Common types include feat (new feature),
fix (bug fix), docs (documentation changes), style (formatting, missing
semi-colons, etc.), refactor (code change that neither fixes a bug nor adds
a feature), test (adding missing tests or correcting existing tests), chore
(changes to the build process or auxiliary tools and libraries).
Throughout this book, we will consistently adhere to the Conventional
Commits specification.

Up until now, your changes are committed to your local copy. The next step
is to push it to the remote repository by using the git push.
git push origin update_readme

However, this command will fail since your remote called origin is a public
repository with read-only access.
For fixing this issue you will need to create a fork or a new repository and
change the remote.

Creating a GitHub repository
GitHub is one of the most popular platforms where developers can host and
share code using Git. GitHub provides a space for developers to collaborate,
contribute to open-source projects, and manage repositories both publicly
and privately. It offers various tools and features to facilitate software
development and collaboration among developers.
You will need to create a GitHub account or login to your account. Once you
log in, go to the settings page: https://github.com/settings/profile
In the Access section, go to SSH and GPG keys and click New SSH Key.
Now you will need to generate a new SSH key, to do so follow these steps:
ssh-keygen -t ed25519 -C "email@example.com"

Replace email@example.com with your GitHub email, the command will
generate two files; one file is the private key (id_rsa) and the other one is
the public key (id_rsa.pub).
Now, you are ready to add the public key to GitHub.

https://github.com/settings/profile

Info: Remember to never share your private key or store it online, a
common mistake is to push it into a public repository.

You are now ready to create a new repository, browse to the URL
https://github.com/new, specify the name web_applications_django and
click Create repository.
Once the repository is created GitHub will generate a URL, which could be
HTTP or SSH. Switch to the SSH URL type and copy it.

Info: Usually, SSH URLs are like this one git@github.com:llazzaro/test.git

Now open a terminal and go to the web_applications_django that you
clone before:
cd web_applications_django

The remote named origin is pointing to book repository

and needs to be deleted

git remote rm origin

The next command will create a new remote named origin

pointing to your repository

git remote add origin

git@github.com:your_username/web_applications_django.git

Now you can push the changes

git push

You should now see the code in your repository, congrats!

Branching models
Having standards makes communication and work more accessible since the
rules and processes are well known by everybody. When using git, there are
unique working methods called branching models. Each branching model
has a particular use case, and a defined working method. Choosing the
suitable model that best aligns with the features of a specific project is
crucial.

Git Flow
Git Flow is a branching model that is widely used and is an ideal solution for
projects requiring a scheduled release cycle, or for those that require

https://github.com/new

maintenance across multiple versions.

Info: Organizations which design systems…are constrained to produce
designs which are copies of the communication structures of these
organizations…
Conway’s Law

With Git Flow, there are at least 5 different types of branches. Let’s describe
them first:

main: This branch represents the production-ready state.
develop: This branch contains the latest delivered changes for the
upcoming release.
feature: Feature branches are where new capabilities for future
releases are being developed.
release: Release branches serve the purpose of preparing a new
production release.
hotfix: Hotfix branches emerge when a critical bug in production
requires an immediate fix.

Figure 2.1: The Git Flow Branching Model

Suppose we need to develop a new feature called NewTask. We start by
branching from the develop branch. As the feature undergoes development,
commits occur in the local repository. Upon completion, we create a merge
or pull request for the changes to be reviewed. After approval of the
changes, it can be merged into the develop branch.
When the team determines the develop branch is ready for release, then a
new branch will be created from the develop branch. Usually, these branches
are named release/X.Y.Z. This branch undergoes thorough review and
testing to confirm its readiness for production; once verified, it is then
merged into the main branch.
Each time a release merges into the main branch, it requires a tag. The final
step involves merging the main branch back into the develop branch.
Most projects should have a deployment pipeline that is triggered when any
changes are merged into the main branch.

Info: CI/CD stands for Continuous Integration and Continuous Delivery.
Continuous integration consists of checks on the code and the execution of
tests. Typically, the checks on the code are static, like security checks, code
formatting, type checking, running tests, and many more.
Continuous Delivery is a strategy in software development where changes
to the software are automatically prepared for a release to production.

When a hotfix is required, the branch hotfix/name-of-the-hotfix is then
created from the main branch. These changes usually go through the review
process. Once approved, the changes can be merged into the main branch.
Once all changes are in the main branch, a new tag will be created, and the
patch’s version number must be increased. Finally, the changes from the
main branch are merged into the development branch to include the hotfix.
The changes applied to the main branch should trigger the pipeline to create
the release as before.

GitHub Flow
Before diving into the trunk-based approach, let’s first review GithubFlow,
which sits somewhere between GitFlow and trunk-based development.
GithubFlow can be viewed as a trunk-based approach that simplifies the
GitFlow process.

Figure 2.2: The GitHub Flow Branching Model

In GithubFlow, there is only one branch, the main branch. This branch
contains production-ready code.
As you can see in the diagram, GithubFlow is a linear approach and utilizes
far fewer branches than GitFlow, this makes this process a better fit for
projects that require faster iterations.

Let’s say that you need to develop the feature NewTask but using the
GithubFlow, the first step is to create a branch from the main. As a
developer, you will commit changes in your local repository, once the
feature is ready, a new merge or pull request is usually created. This merge
request will be reviewed by the team, and once it receives the necessary
approvals, it will be merged into the main branch. Every time there is a
commit in the main branch, the CI pipeline will run a set of tests and checks
and finally deploy the changes into production.
When a hotfix is needed, the procedure mirrors the process used for feature
development, which simplifies the process.
While this process is more straightforward, that doesn’t necessarily make it
better or worse—it depends on the specific needs of the project.

Trunk-based
With the trunk-based approach, things go faster than with GithubFlow. With
the GithubFlow approach, a feature branch could be open for several days or
weeks, which could bring problems like hard or longer reviews or even
conflicts.
Trunk-based tries to solve these problems by splitting features into small
steps and deploying them as soon as possible, ideally every day. To deploy
an incomplete feature, the approach uses feature flags that are disabled in
production.
Using these feature flags allows developers to deploy the feature in
production even when it is not ready to use. This reduces the probability of
breaking production since the changes are small and feature flags can be
enabled incrementally.

Figure 2.3: The trunk-based branching model

As you can see, each approach has its particular use cases and some of them
are complex to maintain. If your project is a cloud-based web application,
ideally you should go with a GithubFlow or Trunk-based. In the last few

years, there has been a tendency to use trunk-based since it provides quicker
feedback.
Some companies could have a different approach, but understanding some
ways of working will allow you to quickly adapt.

Advanced Git Usage: Using Worktree
Sometimes, developers’ lives are intense; you happily work on a new
feature, but something goes wrong in production, and you need to create a
hotfix branch. You have unstashed code changes for the new feature, and
now you must commit incomplete work, stash or discard your changes.
A quick solution could be to clone the repository to a new directory, but this
could take several minutes for a big project.

Info: If the clone of the project takes lots of time, you can shallow clone it
by using the --depth flag
git clone --depth 5 git_repository_url

In this case, --depth 5 means that Git will only clone the most recent 5
commits from each branch of the repository located at git_repository_url.

In most cases, Git has a solution for your daily problems; in this case,
worktree is the solution. You need to use worktree from the beginning to
switch between branches quickly. There are multiple ways to use worktree,
but one particularly interesting is cloning the repository using bare.
git clone --bare

https://github.com/llazzaro/web_applications_django

The git command will clone the repository; however, a bare repository can’t
be used to write code. This bare repository and worktree will allow us to
write code.

Info: The --bare flag, when using the git clone command, creates a copy
of the source repository without a working directory. The bare clone
contains all the files, branches, and commit history. It contains only the .git
contents. This clone type is used on server-side repositories or for backups,
but it can be used with worktree.

Now let’s add a worktree to create a new feature. Adding a worktree will
create a new directory and branch. The branch will be created from the
checked-out branch’s tip or HEAD.
$ git worktree add new_task

$ ls

> FETCH_HEAD HEAD config description hooks info main new_task

objects packed-refs refs worktrees

Now you can go to the worktree to start working as usual.
$ cd worktrees/new_task

$ touch new_file

$ git add new_file

$ git commit -m 'feat: add new file'

Now let’s see how to create a hotfix from the main branch using worktree
$ cd ..

Let's create a worktree in the directory hotfix-user-not-

able-to-login from main # branch

$ git worktree add hotfix-user-not-able-to-login main

$ cd worktree/hotfix-user-not-able-to-login

now you are ready to fix the code

you can always go back to your feature branch

by changing your directory

$ cd ..

$ cd new_task

As you can see, switching between branches is non-disruptive since it only
requires you to change the directory and nothing else.
Once your hotfix is merged, it is recommended to delete the worktree by
executing the command:
git worktree remove hotfix-user-not-able-to-login

Using Git worktree is optional, but it could improve your day-to-day
development workflow and is a great feature.

Conclusion
Development environments can vary significantly, and ensuring
reproducibility across different environments can be challenging.

Pyenv enables the management of multiple Python versions without
disturbing the system interpreter. Virtual environments add a layer of
isolation by keeping project-specific dependencies separate within the same
Python interpreter. Poetry, a dependency management tool, helps to manage
and resolve dependencies efficiently.
Starting a Django project with Poetry and Pyenv ensures an organized and
isolated environment, setting a firm base for a smooth development journey.
Branching models are standards widely adopted. There is no best model, and
the choice depends on the project’s needs.
Git Flow is ideal for projects with scheduled releases. GitHub Flow is a
simplification of Git Flow, and it’s closer to a trunk-based approach,
allowing faster iterations. The trunk-based process is for faster-paced
changes, where each change is usually merged on the same day, even when
the feature is not finished.
The next chapter will tackle an overview of the project we will work on in
subsequent chapters. Exploring the distinctions between Django projects and
applications, followed by an introduction to the Model-View-Template
(MVT) design pattern.

Questions
1. What are the risks associated with not using version pinning in project

dependencies?
2. How does using a virtual environment contribute to efficient Python

project management?
3. How can a tool like Poetry help manage dependencies for a Django

project?
4. Can you explain a tag in Git Flow, and why it’s essential when merging

a release into the main branch?
5. Why is adding an SSH key to your GitHub account important? How

does it improve security?
6. How does Conway’s Law relate to the Git Flow branching model?``
7. What kind of problems does Trunk-based development try to solve that

might be encountered with GitHubFlow?

8. How can feature flags be beneficial for deploying incomplete features
in Trunk-based development?

9. What is the role of feature flags in trunk-based development?
10. Describe a scenario where you would benefit from using Git’s worktree

feature. How does it improve the development workflow?

CHAPTER 3
Getting Started with Django Projects

and Apps

Introduction
We will start by introducing the project we’ll work on in the upcoming
chapters, a task manager. After presenting the core idea of the task manager,
we will explain two essential Django concepts: projects and applications.
We will go through a tour of the project’s structure and create our first
project. We will then start our first Django application following the best
practices to keep our application independent and reusable.
You will learn about the Model-View-Template (MVT) design pattern, an
important concept to understand when working with Django projects. We
extend the idea of MVT by using a service layer to promote scalability and
maintenance.
Using the development environment configured in the previous chapter, we
start the initial configuration of the Django project to use the database
provided by docker-compose.
With our environment configured, we launch our development server,
preparing the path for creating our initial project pages—a home page and a
help page.

Structure
In this chapter, we will cover the following topics:

Introduction to the task manager
Django project vs. Django application
Creating a new Django project
Understanding the Django project structure
Starting your first Django app

Understanding the Django app structure
MVT design pattern in Django
Extending the MVT pattern with a service layer
Configuring your Django project
Brief introduction to Django’s development server
Running your first Django app

Introduction to the task manager
We are ready to unveil our book project: a task manager, which serves as the
forthcoming chapters’ central theme. Task management software helps users
to organize, track and complete tasks more efficiently.
Task managers are popular among software developers to keep track of tasks
during the sprint cycles performed by team members.

Figure 3.1: Task Manager Mockup

The central concept of the task manager is the task itself and the objects
around it, like users and comments. As we progress into the following
chapters, we’ll iteratively add and refine new features to the project.
An indispensable step before we move is to have a high-level overview of
the project. Such a high-level overview empowers us to structure the Django
project correctly.
Let’s first list all the objects relevant to the problem:

Task
Epic
Sprint
User
Comment

It’s important to define one responsibility for each concept and prevent
overlapping requirements. We need to make our applications as independent
as possible.
Here is a definition of each object.

Task: Represents the work item that needs to be done. Each task has a
creator and owner. The creator is the user who created the task, while
the owner is responsible for doing it. Tasks have a title, description,
status, due date, and other attributes.
Epic: In Agile development, an Epic is a big task that can be broken
into smaller tasks. Those smaller tasks are usually taken in a sprint. The
task can optionally be part of at most one Epic and one Epic could
contain more than one task.
Sprint: A sprint is a set period in which specific tasks are completed
for deployment review. The task is considered part of the sprint in
which it was completed. However, this doesn’t always happen, and we
will allow a Task to be part of more than one sprint to have a history of
the evolution of the Task.
User: Represent a person who uses the task management system. The
user could be a developer, product manager, or any other person
involved in the project. The User object stores user-specific data like

username, password, contact information, and user roles or
permissions. The Django framework provides this object.
Comments: Each task could optionally have a note to it. The object
provides a way for users to communicate. Each comment is associated
with a specific task and the author (user). The Comment object stores
the comment text, the user who created it, and the creation time.
Having these attributes allows for a chronological ordering of the
comments.

Django project versus Django application
A Django project comprises one more Django application, each serving a
unique function. A project also has database settings, application-specific
settings, templates, static files, and more. Conceptually, a Django project
represents the entire application that you are building.
A Django application is a module made to perform a specific function. Due
to its pluggable nature can be easily integrated into any Django project—
enhancing its reusability across different projects.

Creating a new Django project
Creating a new project is relatively simple. As a first step, we need to enter
the virtual environment and then use the command django-admin to start a
new project:
poetry shell

django-admin startproject taskmanager

The command will create a new directory, taskmanager that includes some
files for project configuration.
Throughout the project, we’ll frequently interact with the settings.py and
urls.py and regularly use Django’s management commands.

Understanding the Django project structure
Upon executing the startproject command, you will create some files.
Explore each resultant file and its purpose:

manage.py: The Django command-line utility. With this command,
you can start new applications, run a development server, create
migrations, execute migrations, and more.
taskmanager/asgi.py: This file stands for Asynchronous Server
Gateway Interface, a standard interface for asynchronous Python web
servers. It was introduced in Django 3.0 to support asynchronous
features.
taskmanager/settings.py: This file contains the configurations for
your Django project. It includes settings for database connections,
installed apps, middleware classes, template configs, and
internationalization.
taskmanager/urls.py: The URL declarations for this Django project;
In this file, you’ll define patterns for your URLs and associate them
with your views.
taskmanager/wsgi.py: This file stands for Web Server Gateway
Interface. It’s a specification that describes how a web server
communicates with web applications. Django uses the WSGI standard
as one of the interfaces to communicate with the web server.

Starting your first Django app
To start a new Django application, you need to be inside the virtual
environment and use the manage.py startapp command:
poetry shell

cd taskmanager

python manage.py startapp tasks

We still need to configure the project to use the newly created tasks
application. Later, we’ll explore enabling this application in the project by
modifying settings.py.

Understanding the Django app structure
A new application will create a new directory containing a new module,
which includes:

admin.py: The admin file is where you can define the admin interface
for the application. In this file, you can specify how to display data in

the admin related to the application and which actions can be made.
migrations: Django creates files to change the database schema in this
directory.
models.py: This file defines the data models, which are then translated
into database tables. Django detects any changes to these models and
creates migrations to apply.
tests.py: This holds the application’s tests. Sometimes, you might
change this to a directory for better organization of the tests.
views.py: You can define Python functions or classes that take a
request and return a response. Using the projects urls.py, you map a
view to one or more URLs.

MVT design patterns in Django
Design patterns are repeatable solutions to common problems within
software design. A pattern is like a blueprint, a schema, or a template for
solving a problem applicable in many different situations. These patterns can
improve communication and speed up the development process by providing
a proven solution to problems already solved.
The Model-View-Controller (MVC) finds its roots in the 1970s, and the
industry has widely adopted it. Many frameworks like Ruby on Rails,
Laravel, Spring, and others adopt MVC. The design partitions application
concerns improving maintainability, testability, and scalability.
The Model-View-Template (MVT) is a design pattern similar to the Model-
View-Controller (MVC). The pattern defines clear separation on where the
code should be written.
Django strongly focuses on why the framework adheres to MVT instead of
MVC. In essence, the underpinning concept is strikingly similar.

Figure 3.2: Django MVT Design Pattern

Model: Defines the database structure. Models are the data access
layer. This concept aligns with the M of MVC.
View: The view is responsible for processing the request and creating a
response. For modest-sized projects, it’s common to place logic within
the views, mirroring the C or Controller in the MVC paradigm.
However, we will see that adding a layer called service is a better
approach. This additional layer will structure the responsibilities better
and allow us to have an interface for our application.
Template: Determines the presentation of the data. By default,
templates are text files to define placeholders with basic control
structures. These templates use a context with data ready to render,
which could produce an HTML, JSON or similar output.

Extending the MVT pattern with a service layer
The Service Layer pattern comes from the Domain-Driven Design (DDD)
methodology, which Eric Evans explains in his book, Domain-Driven
Design: Tackling Complexity in the Heart of Software, published in 2003.
However, the concept of the service layer does not belong exclusively to
DDD. It’s a typical pattern in many software designs and architectures, like
hexagonal architecture.
The responsibility of a service layer is to encapsulate the business logic,
providing a clear separation of concerns. The service layer provides an
interface to the domain model.
When starting a project, it is an excellent exercise to first think of the service
layer interface. An effective interface will promote good practices when
using the service layer between Django applications.

Figure 3.3: The MVT Pattern extended with a service layer

One could perceive the service layer as an API, and it ideally should be the
sole module imported from an external application. In large projects,
importing from the model, rather than the service, could bring tight coupling,
given that the model should ideally be considered private between
applications. The service layer provides the interface; behind this interface,
there could be anything, a model, a cache, another service, or even a queue.
Importing the model from a Django application limits future changes in your
project.
If you write all the business logic at the view and then you need to extend
your project with a restful API or a management command, it will be hard to
reuse the view code, or it could potentially cause duplicate business logic in
your code base. A service layer will solve this problem since the view, API,
or commands will use the service layer.
In the future, you may need to migrate specific segments of your projects to
a different framework or language. A robust service layer will aid this
transition because you must recreate the same interface in the new service.

Configuring your Django app
If you follow the previous steps, you should have an initial Django project
with the tasks application created but not enabled.
The first step involves enabling the application by adding it to the
INSTALLED_APPS list. Open the taskmanager/taskmanager/settings.py
file with your favorite editor and search for the INSTALLED_APPS. Add
to the end of the list the tasks string:
INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'tasks',

]

The default settings come with some applications that the framework has,
like the well-known Django admin.
A good way to verify if the settings were set up correctly is by attempting to
create migrations for the tasks application:
$ python manage.py makemigrations tasks

> No changes detected in app 'tasks'

As evident, the application was located. Still, no changes were detected as
we haven’t altered the models.py file of the tasks application.
Now, it’s time to configure the database. By default, Django uses SQLite,
but in the previous chapter, we explained that it’s better to use the same
database engine than we use in production. We will use PostgreSQL for our
project and have configured a Postgresql using docker-compose. Let’s
change the settings to use environment variables so we can use the
PostgreSQL server of our local development environment.

Note: Employing environment variables is a best practice, and you should
never commit secrets to the repository.
There exist several methods to store secrets. The most common ones are
Hashicorp Vault and Cloud Secret Managers.
Using environment variables and a secret manager could be beneficial
since some support automatic secret rotation.
Some might argue that environmental variables aren’t optimal for storing
secrets, given their potential accidental exposure. Another approach could
be to use a secrets manager to retrieve and store the secrets.

Open the docker-compose.yml file and check for the PostgreSQL
environment values. You should have these values set:
POSTGRES_USER: postgres

POSTGRES_PASSWORD: mysecretpassword

POSTGRES_DB: mydatabase

Reopen the settings.py file and locate the DATABASES dictionary; replace its
existing content with the following:
DATABASES = {

'default': {

'ENGINE': 'django.db.backends.postgresql',

'NAME': os.getenv('DB_NAME', 'mydatabase'),

'USER': os.getenv('DB_USER', 'postgres'),

'PASSWORD': os.getenv('DB_PASSWORD', 'mysecretpassword'),

'HOST': os.getenv('DB_HOST', 'db'),

'PORT': os.getenv('DB_PORT', '5432'),

}

}

Note: The function getenv from the standard module 'os' uses the second
parameter as the default value when the environment variable was not set.

We are using localhost since we will run our development server in the host
machine, and the docker-compose configuration for PostgreSQL exposes the
database port to the localhost 5432.
we need to install the PostgreSQL driver, psycopg3

poetry add psycopg

let's spin up the database

docker-compose up -d

initialize the database

python manage.py migrate

Provided everything is functioning as expected at this stage, you should
observe a list of migrations that have been applied to the database:
>Operations to perform:

> Apply all migrations: admin, auth, contenttypes, sessions

>Running migrations:

> Applying contenttypes.0001_initial… OK

> Applying auth.0001_initial… OK

> Applying admin.0001_initial… OK

> Applying admin.0002_logentry_remove_auto_add… OK

> Applying admin.0003_logentry_add_action_flag_choices… OK

> Applying contenttypes.0002_remove_content_type_name… OK

> Applying auth.0002_alter_permission_name_max_length… OK

> Applying auth.0003_alter_user_email_max_length… OK

> Applying auth.0004_alter_user_username_opts… OK

> Applying auth.0005_alter_user_last_login_null… OK

> Applying auth.0006_require_contenttypes_0002… OK

> Applying auth.0007_alter_validators_add_error_messages… OK

> Applying auth.0008_alter_user_username_max_length… OK

> Applying auth.0009_alter_user_last_name_max_length… OK

> Applying auth.0010_alter_group_name_max_length… OK

> Applying auth.0011_update_proxy_permissions… OK

> Applying auth.0012_alter_user_first_name_max_length… OK

> Applying sessions.0001_initial… OK

Your Django project is now ready to start working with it.

Brief introduction to Django’s development server
The Django framework has an integrated and ready-to-use development
server. To initiate the server, execute the following commands:
enter the poetry virtualenv

poetry shell

start the development server

python manage.py runserver 0.0.0.0:3000

The runserver command includes optional arguments for specifying the
listening address and port. The server will default to listening on localhost
port 8000 if these are not provided.

Note: Not for production use: While the runserver command is a
powerful development tool, it’s not meant for production use. It has yet to
be designed to be particularly secure, scalable, or robust and doesn’t offer
some advanced features provided by production-level servers.

If you navigate to http://localhost:3000 using your preferred browser, you
should encounter the following welcome message:

Figure 3.4: Django default home page

The development server has a reload feature. Each time the code undergoes
modification, the server automatically refreshes itself. This auto-refresh
feature proves extremely convenient during development, allowing you to
review your changes without manually reloading the server and saving
development time.
When DEBUG mode is on and an error occurs, Django displays a detailed
traceback in the browser, helping to speed up the debugging process.

Tip: You can enhance your Django development environment by installing
packages like django-debug-toolbar (https://github.com/jazzband/django-
debug-toolbar) and django-extensions (https://github.com/django-
extensions/django-extensions).
The Django Debug Toolbar is a third-party package that provides a
configurable set of panels displaying various debug information about the
current request/response. Once installed and configured, it appears as a
toolbar at the top of the page. This package has a handy summary of the
performance characteristics of the current page, such as the total time taken
to serve the page, the number of SQL queries executed, and the number of
static files used.

https://github.com/jazzband/django-debug-toolbar
https://github.com/django-extensions/django-extensions

Django Extensions is another third-party package that adds a collection of
custom extensions for the Django Framework. These include additional
management commands, database fields, admin functionalities, and other
useful utilities. The package includes some commands like
runserver_plus, show_urls, and many more.
Remember that when using Poetry, you can install development
dependencies by appending the --dev flag while adding them.

Running your first Django app
In the previous section, we manage to run our development server, but our
application tasks is empty. At the beginning of this chapter, we introduced
the project idea and a mock, now is the time to bring the mock to life. We
will create a static template based on the mock that we will iterate
throughout the book.
Remember, it’s vital to keep our templates neat and straightforward. Having
templates with thousands of lines can be tough. So, we’ll create a base
template and break it down into manageable, small-sized sections.

Figure 3.5: Base HTML structure

There’s more than one way to structure a template, but we’ll adhere to the
layout presented in Figure 3.5. We’ll establish three subsection templates,
each with a distinct role.

header: This section contains the navigation menu, typically shared
across all project pages. It will contain the create button and the search
bar.
main: Displays the page’s content, which is the list of issues in our
case.

footer: The footer will store helpful links for easy access.

The HTML code we will use is the following:
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<title>Task Manager</title>

<!-- CSS files -->

<!-- Bootstrap CSS -->

<link

href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bo

otstrap.min.css" rel="stylesheet" integrity="sha384-

rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG

65" crossorigin="anonymous">

<!-- <link rel="stylesheet" href="styles.css"> -->

</head>

<body>

<% include "_header.html" %>

<main>

{% block content %}

{% endblock %}

</main>

<% include "_footer.html" %>

<!-- JS files -->

<!-- jQuery and Bootstrap Bundle (includes Popper) -->

<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"

integrity="sha384-

DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRk

fj" crossorigin="anonymous"></script>

<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/boot

strap.bundle.min.js" integrity="sha384-

kenU1KFdBIe4zVF0s0G1M5b4hcpxyD9F7jL+jjXkk+Q2h455rYXK/7HAuoJl+0

I4" crossorigin="anonymous"></script>

<!-- <script src="script.js"></script> -->

</body>

</html>

The Django framework offers an include statement, letting you incorporate
other HTML files. For our purpose, we’ll include two files, _header.html
and _footer.html.
Our base template leans on Bootstrap—a highly popular, open-source CSS
framework instrumental in building responsive, mobile-first websites.
The main section contains a block, which a way to define an area for child
templates can override. In this example, the block is called content. We will
see how to override this content in the child templates main and help.
Now we are going to show the contents of the two files. Contents of the file
_header.html:
<header class="d-flex justify-content-between align-items-

center p-3">

<!-- Left side -->

<div>

<button type="button" class="btn btn-primary">Create</button>

</div>

<!-- Right side -->

<div class="d-flex">

<input type="text" class="form-control" id="search"

placeholder="Search">

<button type="button" class="btn btn-success ml-

2">Search</button>

</div>

</header>

The header has a create button on the left and on the right side a search box.
This header will be shared across all the project pages.
Contents of the file _footer.html
<footer class="footer mt-auto py-3 bg-light text-center">

<div class="container">

Help

</div>

</footer>

Our footer features a centered Help link, set to be the project’s first page.

In Chapter 6: Using the Django Template Engine, we’ll explore using the
template engine to render dynamic content.
If you browse to http://localhost:3000/, the templates we’ve crafted won’t be
visible—we need to change our settings.py.
Head to taskmanager/settings.py and look for the TEMPLATES list. We must
include the application path in the DIRS list to enable the framework to locate
the templates.
TEMPLATES = [

{

'BACKEND': 'django.template.backends.django.DjangoTemplates',

'DIRS': [BASE_DIR / 'templates',],

'APP_DIRS': True,

'OPTIONS': {

'context_processors': [

'django.template.context_processors.debug',

'django.template.context_processors.request',

'django.contrib.auth.context_processors.auth',

'django.contrib.messages.context_processors.messages',

],

},

},

]

Before our changes, the DIRS was set to the empty list [], now we added the
path to the project templates. Without this configuration, the framework will
raise an error that the file was not found since it was not in the template
search path. Our project will have all the templates in the templates
directory. Each app will have a sub-directory inside the templates directory.
The directory hierarchy organizes the Task manager project’s templates for
easy access.
However, our Django project still cannot render the home page for the tasks
application. We must configure the URL routes to guide the framework on
the HTML to render.
Create a urls.py file in the tasks application containing:
tasks/urls.py

from django.urls import path

from django.views.generic import TemplateView

app_name = 'tasks' # This is for namespacing the URLs

urlpatterns = [

path('',

TemplateView.as_view(template_name='tasks/home.html'),

name='home'),

path('help/',

TemplateView.as_view(template_name='tasks/help.html'),

name='help'),

]

Our tasks application has two URL patterns, one for the home and the other
for the help. Each time a request is processed, the framework checks the
URL patterns in the order listed in urlpatterns. The first pattern—an
empty string—matches only when the path is empty.

Note: The second pattern is ‘help/’—note the trailing slash. If a user
accesses a URL without a trailing slash, and it matches a pattern with a
trailing slash, Django will issue a redirect to the version with the trailing
slash.

And we also need to change project urls.py to include the new URLs:
taskmanager/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path('admin/', admin.site.urls),

path('tasks/', include('tasks.urls', namespace='tasks')), #

Including tasks URLs with a namespace

]

Our next step is to create the home.html and the help.html, for both of
them, we are going to extend the base.html and use the block content.
Here is the templates/home.html:
{% extends "tasks/base.html" %}

{% block content %}

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor …</p>

{% endblock %}

Notice that our home HTML is quite straightforward to maintain. Since it
extends the base, it includes all styles, JavaScript, menus, and footers. All
content should be added to the content block. For now, we’re sticking with
just one content block, but remember, you can structure your page with
multiple blocks.
Now let’s look at the help.html:
{% extends "tasks/base.html" %}

{% block content %}

<div class="container mt-4">

<div class="card">

<div class="card-header">

Help Page

</div>

<div class="card-body">

<h5 class="card-title">What is a task manager?</h5>

<p class="card-text">A task management system is software

that helps users organize and track the progress of tasks.

</p>

Go Home

</div>

</div>

</div>

{% endblock %}

Again, the help page extends the base template, inheriting the same look and
feel as the other pages. Any changes made to base.html will reflect on the
help page as well.
At this point, we have only dealt with static content, and some features, like
the Create button, are not functional yet. Don’t worry; by the end of this
book, you will have a full-function task manager.

Figure 3.6: Task manager project help page

Conclusion
At the beginning of the chapter, we provided an overview of the task
manager project and defined the critical objects of the project - Task, Epic,
Sprint, User and Comment.
In the discussion on Django projects versus applications, we emphasized the
modular nature of Django and how it promotes reusability across projects.
Understanding the MVT pattern is a must when working with Django
projects, and extending it with a service layer promotes good practices to
keep your application easy to maintain and scale.
We show best practices like environment variable usage for secret data, and
the text underlines the importance of secure coding practices.
Finally, we learned the basics of templates and URL routing by creating
basic static pages for the project.
In the next chapter, we will reiterate our project by creating the models to
provide the data access layer for our future service layer. We will understand
an object-relational-mapper (ORM) and how to use it effectively.

Questions
1. Why is it essential to have a high-level overview of the project before

you start?
2. Why do the responsibilities of each object have to be defined to prevent

overlapping requirements?

3. What are design patterns in software design?
4. What is Django’s Model-View-Template (MVT) design pattern, and

how does it work?
5. How does introducing a service layer extend the MVT pattern, and

what benefits does it provide?
6. Why should the service layer be considered an API and the only

module imported from another application?
7. How does Django use migrations, and why are they important?
8. How do you confirm that migrations have been successfully applied to

a Django database?
9. Is enabling the DEBUG flag in environments not intended for

development a good security practice?
10. Why is it not a good security practice to commit secrets to the git

repository?

Exercises
1. Install the Django extensions application to your development

environment and experiment using the command it provides. For
example, try to use the show_urls command to list all the project
URLs.

2. Install and configure the Django toolbar on your local environment,
navigate to your task admin, and try to understand the information this
excellent Django application shows.

3. Change the home.html to have a mockup as shown in Figure 3.1.
4. Incorporate an About page into the project.

CHAPTER 4
Django Models and PostgreSQL

Introduction
Understanding Django models is essential to create great web applications.
We start this chapter with the foundational concepts of Django models. We
then create our first model for the task manager project, the Task. Once our
new model is ready, we deep dive into the framework database APIs. We
shall then use the migration system of the framework by showing real-world
use cases when making changes to the models.
The Django framework includes a built-in administrative interface. We’ll
explore this interface to manage our Task model and understand the
framework’s authorization tools.
The Object-Relational Mapper (ORM) stands as a pivotal component of the
Django framework. After covering ORM, we’ll analyze queries using
aggregators and functions.
Database systems have rules to ensure data integrity. This chapter will
discuss strategies to uphold database standards and prevent data corruption.
Finally, we review different relationships between models by introducing
two new models, The Epic and the Sprint. With those new models, we will
learn about one-to-one, one-to-many, and many-to-many relationships.

Structure
In this chapter, we will cover the following topics:

Understanding Django models
Creating your first model
Django’s database API: Create, retrieve, update, and delete operations
Understanding Django migrations
Running migrations to reflect model changes in the database

Django’s admin interface: Registering models and manipulating data
Introduction to Django’s ORM: Queries and aggregations
Ensuring data integrity with model constraints
Extending the models

Understanding Django models
The relational model organizes data using relations represented as tables. A
table is a collection of tuples (or rows). Each table in the database represents
a specific entity. For example, in our task manager, we will have a table for
Tasks. Entities have attributes that are mapped to columns of the table. In a
relational model, each entity has a unique identifier known as the primary
key. Entities relate to one another using these keys, with foreign keys
referencing other entities.
Operations on a relational database are carried out using a language such as
SQL (Structured Query Language). This language allows for the
manipulation and retrieval of data and can express a wide range of queries
and commands.
Python is an object-oriented language that employs classes, objects,
properties, methods, and inheritance. The Django framework provides a
Model class that Python classes can inherit from. Consider a Python class
named Task that inherits from the Django Model class. Then your class is a
Django Model. Creating a new instance of a model class in Django and
saving it will create a new row in the database. The data gets saved to the
database when you invoke the .save() method on the object. Until saved,
the object’s data remains in the application’s memory. If the application
stops or restarts without saving, this data disappears.
Django’s Object-Relational Mapping (ORM) bridges the relational model
with the object-oriented paradigm. With ORM, your application can persist
data and retrieve it across sessions or restarts. When you call .save() on a
Django model object, the ORM translates this operation into a SQL
command that the database can understand and sends this command to the
database to store your data.
ORM allows intuitive data interactions through objects, enhancing code
readability and maintenance. ORM offers a high-level API that minimizes
the need for raw SQL, simplifying database operations. The database API

through ORM ensures the project isn’t tightly bound to a specific database,
as ORM manages translations to the suitable database engine.
ORMs enhance security by promoting best practices and leveraging their
maturity in the field.
In our project, each entity will correspond to a new class: Task, Epic, Sprint,
and Comment.

Task
Epic
Sprint
Comment

For user management, we’ll use the built-in User class provided by the
framework, eliminating the need to create a custom one.

Creating your first model
The first model involves defining the class and creating and executing a
migration.
Let’s start with a minimal model that we will extend later. Open the
models.py from the tasks directory and add the Task class:
from django.db import models

from django.contrib.auth.models import User

class Task(models.Model):

STATUS_CHOICES = [

("UNASSIGNED", "Unassigned"),

("IN_PROGRESS", "In Progress"),

("DONE", "Completed"),

("ARCHIVED", "Archived"),

]

title = models.CharField(max_length=200)

description = models.TextField(blank=True, null=False,

default="")

status = models.CharField(

max_length=20,

choices=STATUS_CHOICES,

default="UNASSIGNED",

db_comment="Can be UNASSIGNED, IN_PROGRESS, DONE, or

ARCHIVED.",

)

created_at = models.DateTimeField(auto_now_add=True)

updated_at = models.DateTimeField(auto_now=True)

creator = models.ForeignKey(

User, related_name="created_tasks", on_delete=models.CASCADE

)

owner = models.ForeignKey(

User,

related_name="owned_tasks",

on_delete=models.SET_NULL,

null=True,

db_comment="Foreign Key to the User who currently owns the

task.",

)

class Meta:

db_table_comment = "Holds information about tasks"

The Task class is a subclass of Django’s Model, and its attributes are defined
using Django Fields. Each field type specifies the data type for a
corresponding database column. The framework provides a variety of types
that can be used.
Let’s review each attribute of the model:

Title: Uses CharField, a type used for short strings of characters. The
max title length is 200 chars, as specified in the attribute.
Description: The description is a text that can be arbitrarily large.
TextField is typically used when it is required to store a large amount
of text.
Status: The Status field has four predefined string options. Django’s
CharField type, when used with the choices option, restricts the
values that can be stored, as demonstrated here. The choices parameter
has to be a list of tuples containing the display string and the value to
store.
Created_at: We use the DateTime field with the auto_now_add set to
True. This sets the current time to the attribute when the object gets
created.

Updated_at: Similar to the created_at but uses auto_now to True, the
value is set to the current date time every time the object is modified.
Creator: A foreign key linked to the User model. Setting this field is
obligatory, as it cannot be null. The ‘on_delete’ parameter dictates the
action taken when the referenced user is deleted. In this case, we set the
value to cascade, which will delete the Task. We chose to use
'cascade', but the appropriate action largely depends on specific
project requirements.
Owner: The User model via a foreign key. It can be set to null,
especially if the task’s owner is not determined at the time of its
creation. When the owner object gets deleted, the owner is set to null to
prevent deleting the Task object.

By default, Django provides an auto-increment primary key named 'id' for
every model. This can be overridden by specifying a custom primary key.
When designing models in Django, it’s crucial to correctly set the null and
blank attributes for each field. As a general guideline, minimizing the use of
null values is advisable. Limiting null values can lead to more robust
software because you won’t have to deal with IS NULL or IS NOT NULL
conditions in your queries. This also ensures that attributes will always have
a value.
In our Task model, the relationship with the Owner is set to null=True
because a task can exist without an owner.
The blank option serves a different purpose than null: it specifies whether a
field is allowed to be empty when filled out in a form. For instance, our
description field allows for empty values (blank=True) but disallows NULL
values in the database (null=False). This field serves as a good example of
when not to permit null values.
Allowing a field to be both blank and null is generally not recommended.
This can create ambiguity, as both NULL and an empty string would be
considered representations of an empty or no data state, complicating both
data integrity and query logic.

Note: It’s crucial to define the appropriate value for the on_delete
property. Determining the appropriate values depends on the type of
relationships defined in your relational model.

Aggregation: In aggregation, one class (termed the whole) can
contain instances of another (the part), but the part can also exist
without the whole. In Django, this is similar to models.SET_NULL,
models.SET_DEFAULT, or models.SET() (a function that returns a
value). If the whole is deleted, the part still exists, but the foreign key
is set to NULL, its default value, or the result of a provided function,
respectively.
Composition: In composition, one class (the whole) owns or
comprises objects of another class (the parts), where the parts
cannot exist without the whole. In Django, this is similar to
models.CASCADE. If the whole is deleted, the parts are also deleted.

Neither of these concepts neatly maps onto the models.PROTECT behavior.
It would prevent deletion of the whole if there are any existing parts,
which is not typically a behavior in either aggregation or composition.
Finally models.DO_NOTHING also doesn’t directly map onto these concepts.
It would leave the part inconsistent if the whole is deleted. This behavior
is not typically associated with either aggregation or composition in object-
oriented programming.
Remember, these are not exact mappings and the behaviors of aggregation
and composition can vary.

Next, let’s guide the framework to generate the necessary migrations:
poetry shell

python manage.py makemigrations

> Migrations for 'tasks':

> tasks/migrations/0001_initial.py

> - Create model Task

Info: You can also revert migrations if you need to with:
python manage.py migrate tasks zero

Since it was the initial migration, we need to use the zero. Otherwise, you
need to specify the prefix of the migration file name corresponding to the
migration number.

Django automatically detects model changes and crafts the migration code
suitable for the database.
To apply these changes to the database, run the migrate command:
python manage.py migrate

let's verify that the tables were created

python manage.py dbshell

this will give us a SQL shell

localhost postgres@mydatabase=# \d+ tasks_task

The last command should output the created database showing the columns,
primary key, indexes, and foreign keys.

Info: The 'dbshell' command provides direct access to the database
configured in settings.py, making it handy for troubleshooting and
verifying modifications during development.

Django’s database API: Create, retrieve, update,
and delete operations
Django offers two primary ways to interact with the database: using the
.save() method of an object and the object manager.
This manager is your primary interface to the database, accessed via
Model.objects. The manager allows you to make queries to the database.
Each Django model has a manager that you can access via the
Model.objects which can be used to retrieve instances of the model.
Creating Objects. Django comes with a shell that allows you to manipulate
objects, let’s create a new Task using this shell:
python manage.py shell

>>> from django.contrib.auth.models import User

>>> creator = User.objects.create_user("developer",

"email@example.com", "password")

>>> from tasks.models import Task

>>> Task.objects.create(title="Implement User Profile Picture

Uploading", description="Design and implement a feature that

allows users to upload, change, and delete their profile

picture on their user account.", creator=creator)

<Task: Task object (1)>

>>> task = Task.objects.get(title="Implement User Profile

Picture Uploading")

>>> task.status

'UNASSIGNED'

Here, we create a user and a task, setting the newly created user as the task’s
creator. Since the creator is mandatory, we set the creator as the just-created
user. Then we get the Task by its title and print the status attribute set to
UNASSIGNED, the default value.
Using the .save() Method:
>>> task = Task(title="Implement User Profile Picture

Uploading", description="Design and implement a feature that

allows users to upload, change, and delete their profile

picture on their user account.", creator=creator)

>>> task.id is None

True

>>> task.save()

>>> task.id

3

After instantiating a Task object and verifying its id is None (meaning it’s
not yet in the database), the .save() method saves it to the database.
Subsequent interactions will update the existing database entry.
You can retrieve objects directly from the model using the objects manager.
Using the object manager has two common ways to retrieve the objects: the
get or filter.
The filter method will return a QuerySet and it could zero or multiple
results. It should be used to fetch multiple objects from the database.
The get method retrieves one object from the database; if no object is found,
the method will raise the exception DoesNotExist.
Let’s use the object manager filter:
>>> Task.objects.filter(id=3)

<QuerySet [<Task: Task object (3)>]>

>>> Task.objects.get(id=3)

<Task: Task object (3)>

>>> Task.objects.get(id=100)

Traceback (most recent call last):

File "<console>", line 1, in <module>

File

"/Users/mandarina/Library/Caches/pypoetry/virtualenvs/task-

manager-ox-Othme-py3.10/lib/python3.10/site-

packages/django/db/models/manager.py", line 87, in

manager_method

return getattr(self.get_queryset(), name)(*args, **kwargs)

File

"/Users/mandarina/Library/Caches/pypoetry/virtualenvs/task-

manager-ox-Othme-py3.10/lib/python3.10/site-

packages/django/db/models/query.py", line 637, in get

raise self.model.DoesNotExist(

tasks.models.Task.DoesNotExist: Task matching query does not

exist.

The filter method, as shown, returns a QuerySet containing a Task with an
object id of 3. The get method returned the Task object with an id equal to 3.
However, the get method raised an exception when we tried to get the object
with an id that does not exist in the database.
With the object manager, you can fetch or count all the Tasks:
>>> Task.objects.all()

<QuerySet [<Task: Task object (8)>, <Task: Task object (9)>,

<Task: Task object (10)>]>

>>> Task.objects.count()

3

In the first line, we used the all method to get a QuerySet with all the stored
Tasks in the database. The second operation returns an integer with the
number of Tasks stored in the database.
Our object was linked to the database row with a primary key value of 3.
Let’s update the title by using the model .save():
>>> task.title = "New title"

>>> print(task.title) # prints "New title"

>>> task.refresh_from_db()

>>> print(task.title) # prints "Implement Picture Uploading"

The Django framework only persists in attribute changes when the .save()
method is explicitly called. After calling the .save() an update query is
performed to the database and the new title will be persisted. Optionally you

can call refresh_from_db, which will read the object from the database and
refresh all its attributes.
Alternatively, the update operation can also be performed using the object
manager:
>>> Task.objects.filter(id=3).update(title="Implement Picture

Uploading")

1

When updating using the object manager, exercise caution; the update
method can affect multiple objects. In our example, the integer one (1) was
returning, informing that only one object was affected by the update
operation. We used the primary key to filter objects to guarantee that the
operation would affect only one object.
Now let’s try to delete the task with an id equal to 3:
>>> task = Task.objects.get(pk=3)

>>> task.delete()

(1, {'tasks.Task': 1})

The method returns a tuple of two elements:

The number of objects deleted.
A dictionary describing the number of deletions made per object type.

Instead of using 'id', you can filter by 'pk', a shorthand for ‘primary key’.
Using the object manager to delete one Task can also be used and it is
similar to the update example:
>>> Task.objects.filter(pk=2).delete()

(1, {'tasks.Task': 1})

Since we used the primary key to filter the object, only one object was
deleted. You can also call the delete without filtering, which will delete all
the tasks:
>>> Task.objects.all().delete()

(5, {'tasks.Task': 5})

In the previous example, we swapped 'filter' with 'all', which fetches a
QuerySet. Subsequently, we instructed the manager to delete all objects
returned by this QuerySet.

Understanding Django migrations
Relational databases use a specific schema, wherein each table has columns
with defined data types. SQL provides queries to manipulate the database
schema, such as creating or altering tables.
The way to change the schema with Django is through database migrations.
Django has an amazing migration system that detects the changes in the
models of your application. If you create or modify a model, Django’s
migration system detects these changes, creating versioned files to capture
schema alterations. Migrations are atomic, meaning that each migration is
treated as a single transaction to the database.
Each Django application has a 'migrations' directory containing files that
track incremental schema changes.
We have already created and applied the initial migration to our local
database for our tasks application.

Info: The makemigrations command creates new migrations based on the
changes detected in your models. Django maintains a record of your
schema in the django_migrations table, and makemigrations essentially
differ your models against the schema stored in this table to decide what
changes need to be made.

To generate the new migration files, execute:
python manage.py makemigrations

To apply the migration to the database:
python manage.py migrate

Migrations can also be reversed, undoing the applied changes.
python manage.py migrate yourappname 0017 # migrate to the

state after applying 0017 migration

python manage.py migrate yourappname zero # unapply all

migrations and revert to the initial database schema

Django’s migration system also supports inter-migration dependencies. This
means you can make and apply changes to your schema in any order and
Django will ensure everything gets applied properly.

Data migration modifies the data itself while keeping the schema unchanged,
typically to correct or adjust it. For instance, if you want to change the status
of all 'Archived' tasks to 'Completed' in your Task model, you would use
data migration. You would do this using a data migration.
You can create a data migration with the following command:
python manage.py makemigrations tasks --empty

The preceding command will create an empty migration. We can then
instruct the migration system to execute certain Python operations. In this
case, we’ll be using the migration to change the status of 'Task' from
'Archived' to 'Done'.
from django.db import migrations

def change_archived_tasks(apps, schema_editor):

Get the Task model from the apps registry

the app registry is used to ensure that you're

working with the correct version of your model

Task = apps.get_model('tasks', 'Task')

Update all 'Archived' tasks to 'Done'

Task.objects.filter(status='ARCHIVED').update(status='DONE')

class Migration(migrations.Migration):

dependencies = [

('tasks', '0001_initial'),

]

operations = [

migrations.RunPython(change_archived_tasks),

]

Execute the ‘migrate’ command to update the Task status to ‘Done’.

Tip: A common mistake is to create a loop that calls the save method.
Looping and querying are considered bad practices and will lead to the
problem known as nplus one queries.
When you need to batch update an object it is better to use the objects
manager, which was meant to affect more than one instance.

Over time, a Django application accumulates many migrations, potentially
slowing down tests and impacting local environment performance.

'Squashing' combines multiple migrations, capturing the same changes, to
optimize test runs and local setup.
For squashing migration, Django has a command squashmigrations:
./manage.py squashmigrations app_label start_migration_name

end_migration_name

If start_migration_name and end_migration_name are omitted, all the
migrations for the app are squashed.
The squash command creates a new migration file that is equivalent to the
squashed migrations and a replaces attribute is added to the Migration class
of the latest migration. The command will keep the original migration files
since other systems could require those files when squashing. The
recommended process is to squash, maintain the old files, commit and
release. Once all the systems have been upgraded, you can remove the old
files, commit the changes, and perform a second release.

Django’s admin interface: Registering models and
manipulating data
The Django admin interface is an intuitive alternative to the shell for
managing objects. To set it up, open the file tasks/admin.py and add the
following class:
from django.contrib import admin

from tasks.models import Task

class TaskAdmin(admin.ModelAdmin):

list_display = ("title", "description", "status", "owner",

"created_at", "updated_at")

list_filter = ("status",)

admin.site.register(Task, TaskAdmin)

After saving the changes in admin.py; your development server should
automatically reload. Before you can access the admin interface, you’ll need
to create a superuser account:
$ poetry shell

$ python manage.py createsuperuser

Username (leave blank to use 'mandarina'): admin

Email address: admin@example.com

Password:

Password (again):

Superuser created successfully.

Once you have input your chosen password twice, you’ll have a new
superuser account. Browse to http://localhost:8000/admin and log in with the
user you have made before.
Once you open the admin URL, you should see the login page:
Once you login with the superuser account just created, the home page of the
admin will be shown.

Figure 4.1: Admin login form

Figure 4.2: Admin home page

To create a new task via the admin, click on the Tasks link in the model list
of the admin (http://localhost:8000/admin/tasks/task/add/); you’ll be
presented with a form.

Figure 4.3: Admin Form for the Task model

Browse back to the list and confirm that you created your new Task.

Figure 4.4: Django Admin Task list

Congratulations! Your admin is ready to use the Task model.
The admin lets you define your actions for objects. An action method can
modify the selected object in the admin list. Suppose that we want our admin
to mark the selected Tasks as archived. You have to extend the TaskAdmin
with a new method and configure the following actions:
from tasks.models import Task

class TaskAdmin(admin.ModelAdmin):

list_display = ("title", "description", "status", "owner",

"created_at", "updated_at")

list_filter = ("status",)

actions = ['mark_archived']

def mark_archived(self, request, queryset):

queryset.update(status='ARCHIVED')

mark_archived.short_description = 'Mark selected tasks as

archived'

admin.site.register(Task, TaskAdmin)

By setting actions = ['mark_archived']; we add a new action to the
admin interface. The string make_archived refers to the method of the
TaskAdmin class. The method receives two parameters: 'request' and
'queryset'. The queryset contains all the tasks the admin user chose from
the list. Optionally, write a short description of the action using the
.short_description on the method.
Django’s framework includes a built-in authentication system that allows
you to set and verify specific permissions for each user.
The authentication system provides a Group model where users can be
added to those groups. In your project, you can create different groups to

manage the permissions.
In Django, each model automatically comes with a set of predefined
permission created for it. These are the permissions:

Add: Permission to add new instances for the model
Change: Permission to edit the existing instances
Delete: Permission to delete

These permissions for each model are created as part of Django’s built-in
authentication system. You can use this permission not only in the admin,
but also in the views and templates.
You could have Admins and Editors, each with the corresponding
permissions. If a user is part of the Admin group, they have extensive
permissions, allowing them to change and delete anything within the admin
area.
We’ll set up two groups: Admins and Editors. The first allows adding,
modifying and deleting Tasks, while the Editors can only change Tasks.
You can use a superuser account to create Groups within the admin interface.
However, we also show how to programmatically create a data migration to
create all the required groups programmatically.
The ModelAdmin has three methods that can be overridden to check for
permissions, the has_change_permission, has_add_permission, and
has_delete_permission. We will check for the corresponding permissions
for each of those methods. Then we are going to have three groups: Creator,
Editor, and Admin.
First we need to define our groups and their permissions. We have different
ways to achieve this creation of groups, one is via the admin page or via
code. We will first review how to do it via the admin and then we will see an
alternative way using a data migration.
Browse to the admin page http://localhost:8000/admin and on the home page
click on Groups, this will open the Groups views. Next to the Groups in the
left side click on +Add or navigate to
http://localhost:8000/admin/auth/group/add/, this will open to following
group creation page:

Figure 4.5: New group creation page

In Figure 4.5, we are about to create a new Creator permission with the
tasks.add and tasks.view permissions. All available permissions were
provided by the framework, but you can also add your custom ones.
Sometimes it’s useful to configure the groups and permission via a data
migration. First, let’s play with the Group and Permission model to
understand how they work. Once we understand how they work, we can
easily create a data migration.
Users inherit all permissions from any group they join. Let’s play with the
shell to understand how it works:
>>> from django.contrib.auth.models import Group, Permission

>>> from django.contrib.contenttypes.models import ContentType

>>> from tasks.models import Task # assuming your app name is

tasks

>>>

>>> # create a new group

>>> task_admin_group, created =

Group.objects.get_or_create(name='TaskAdmins')

>>>

>>> # get the content type for the Task model

>>> content_type = ContentType.objects.get_for_model(Task)

>>>

>>> # get the permissions for the Task model

>>> permissions =

Permission.objects.filter(content_type=content_type)

>>>

>>> # assign the permissions to the group

>>> task_admin_group.permissions.set(permissions)

>>>

>>> # save the group

>>> task_admin_group.save()

>>> # let's check that the user is not in any group

>>> user = User.objects.get(pk=2)

>>> user.groups.all()

<QuerySet []>

>>> user.has_perm("tasks.add_task")

False

>>> # Adding the user to the admin group will give permissions

>>> user.groups.add(task_admin_group)

>>> user.has_perm("tasks.add_task")

True

Once the user is added to the group, it inherits permission from that group.
You can configure your application using the admin interface and configure
the groups from it or create a data migration.
Firstly, you need to create an empty migration:
python manage.py makemigrations tasks --empty

Open the newly created migration file with your favorite editor and add the
following:
from django.db import migrations

from django.contrib.auth.models import Group, Permission

def create_groups(apps, schema_editor):

create "Creator" group with "add_task" permission

creator_group = Group.objects.create(name='Creator')

add_task_permission =

Permission.objects.get(codename='add_task')

creator_group.permissions.add(add_task_permission)

create "Editor" group with "change_task" permission

editor_group = Group.objects.create(name='Editor')

change_task_permission =

Permission.objects.get(codename='change_task')

editor_group.permissions.add(change_task_permission)

create "Admin" group with all permissions

admin_group = Group.objects.create(name='Admin')

all_permissions =

Permission.objects.filter(content_type__app_label='tasks')

admin_group.permissions.set(all_permissions)

class Migration(migrations.Migration):

dependencies = [

('tasks', '0005_task_status_check'),

]

operations = [

migrations.RunPython(create_groups),

]

Once you have your groups created, we need to add the methods that check
for the permissions:
class TaskAdmin(admin.ModelAdmin):

list_display = ("title", "description", "status", "owner",

"created_at", "updated_at")

list_filter = ("status",)

actions = ['mark_archived']

def mark_archived(self, request, queryset):

queryset.update(status='ARCHIVED')

mark_archived.short_description = 'Mark selected tasks as

archived'

def has_change_permission(self, request, obj=None):

if request.user.has_perm('tasks.change_task'):

return True

return False

def has_add_permission(self, request):

if request.user.has_perm('tasks.add_task'):

return True

return False

def has_delete_permission(self, request, obj=None):

if request.user.has_perm('tasks.delete_task'):

return True

return False

admin.site.register(Task, TaskAdmin)

Now, you can add users to a particular group to limit the admin actions. For
example, a user on the Creator Group will only be allowed to create Tasks.

Tip: Django users need the is_staff flag enabled to access the admin.
You can enable it on the admin interface for the User model.

Introduction to Django’s ORM: Queries and
aggregations
Django’s ORM offers a powerful API for model querying. As we have
previously explored its capabilities for retrieval, updates, and deletions,
mastering this API ensures clearer and more efficient code.
The most common way to query the models is via the objects manager,
which is accessed via the objects attribute of the model. We already
reviewed how the get and the filter works and how useful they are. Django
uses the double underscore is a notation to indicate a separation in the query
and it could be used to perform comparisons:
from datetime import datetime, timedelta

from django.utils import timezone

Get today's date and time in the timezone-aware format

today = timezone.now().replace(hour=0, minute=0, second=0,

microsecond=0)

Query to get tasks created before today

tasks_created_after_today =

Task.objects.filter(created_at__lt=today)

The previous query will return all the tasks created before today. The lt
means less than and Django has many operators to use like:

gt: Greater than
gte: Greater than or equal to.
lte: Less than or equal to
contains: Field contains the value. Case-sensitive
in: Within a range

isnull: is NULL (or not)

The previous list is the most common ones, but the framework ORM
supports more options.
You could have noticed by now that if you use multiple filters Django ORM
will use the AND operator in the query:
Query to get tasks with status "IN_PROGRESS" and created

before today

tasks_in_progress_before_today = Task.objects.filter(

status="IN_PROGRESS",

created_at__lt=today

)

The query the ORM will generate is and it will use the AND operator:
SELECT "tasks_task"."id", "tasks_task"."title",

"tasks_task"."description", "tasks_task"."status",

"tasks_task"."created_at", "tasks_task"."updated_at",

"tasks_task"."creator_id", "tasks_task"."owner_id" FROM

"tasks_task" WHERE ("tasks_task"."created_at" < 2023-08-29

00:00:00+00:00 AND "tasks_task"."status" = IN_PROGRESS)

If you need to use the OR operator, you will need to use Django’s Q, which
is usually used to create complex queries. As an example, let’s get all the
Tasks with status IN_PROGRESS and with title Implement Dijkstra

Algorithm:
from django.db.models import Q

from .models import Task # adjust the import based on your

project structure

Query to get tasks with status "IN_PROGRESS" or title

"Implement Dijkstra Algorithm"

tasks_filtered = Task.objects.filter(

Q(status="IN_PROGRESS") | Q(title="Implement Dijkstra

Algorithm")

)

The previous query will use the SQL OR operator:
>>> print(tasks_filtered.query)

SELECT "tasks_task"."id", "tasks_task"."title",

"tasks_task"."description", "tasks_task"."status",

"tasks_task"."created_at", "tasks_task"."updated_at",

"tasks_task"."creator_id", "tasks_task"."owner_id" FROM

"tasks_task" WHERE ("tasks_task"."status" = IN_PROGRESS OR

"tasks_task"."title" = Implement Dijkstra Algorithm)

Let’s say we want to fetch tasks that are not archived. We could use the filter
method, but the framework also provides the exclude method:
let's filter Tasks that are not archived

tasks = Task.objects.exclude(status='ARCHIVED')

an alternative with filter, but less intuitive

from django.db.models import Q

tasks = Task.objects.filter(~Q(status='ARCHIVED'))

For those new to Django’s ORM, filtering with Q might seem less intuitive.
The use of ‘exclude’ is more straightforward and doesn’t require extensive
knowledge of the framework.

Tip: If you need to print the SQL raw query, it is possible by using the
query method on a QuerySet object:
>>> print(Task.objects.exclude(status='ARCHIVED').query)

SELECT "tasks_task"."id", "tasks_task"."title",

"tasks_task"."description", "tasks_task"."status",

"tasks_task"."created_at", "tasks_task"."updated_at",

"tasks_task"."creator_id", "tasks_task"."owner_id" FROM

"tasks_task" WHERE NOT ("tasks_task"."status" = 'ARCHIVED')

Often, for the tasks model, we might want to retrieve unarchived tasks,
ordered by their creation date, in descending order:
tasks = Task.objects.exclude(status='ARCHIVED').order_by('-

created_at')

Using order_by allows the result to be ordered by the specified column. The
‘-’ sign indicates the order we want the results (from newest to oldest).
Django’s ORM also offers aggregation functions, letting you operate on
grouped objects within your database. You can compute sums, averages,
counts, minimums, maximums, etc., across multiple records. These functions
can be used with a group by clauses, allowing you to group records by
specific values before performing the aggregation.

Let’s say we are curious about the average tasks each user has:
from django.db.models import Count, Avg

avg_tasks_per_user =

Task.objects.values('owner').annotate(task_count=Count('id')).a

ggregate(avg=Avg('task_count'))

The values('owner') is equivalent to a 'group by’ clause,
annotate(task_count=Count('id')) counts the tasks per user, and
aggregate(avg=Avg('task_count')) computes the average.
With Django’s ORM, you can craft complex queries. Suppose we were
requested to calculate the average time it takes for a task to move to the DONE
status. Let’s assume that when the status changes to DONE the updated_at is
also updated. Having this in mind, we can calculate the requirement with the
following query:
from django.db.models import Avg, F, ExpressionWrapper, fields

Annotate each task with its duration from creation to

completion

tasks_with_duration =

Task.objects.filter(status='DONE').annotate(

duration=ExpressionWrapper(F('updated_at') - F('created_at'),

output_field=fields.DurationField())

)

Calculate the average duration

average_duration =

tasks_with_duration.aggregate(average_duration=Avg('duration'))

Caution: If any attribute alters, 'updated_at' updates too,

potentially skewing our query results and necessitating model

adjustments.

The F object allows you to refer to the value of a model field within a query.
ExpressionWrapper is used to wrap the subtraction operation in a new field
called duration.
fields.DurationField() is the output type of the ExpressionWrapper.
filter(status='DONE') ensures that we only consider tasks that have
reached the ‘DONE’ status.
aggregate(average_duration=Avg('duration')) calculates the average
duration across all tasks.

Note that if any attribute alters, updated_at updates too, potentially skewing
our query results and necessitating model adjustments.

Extending the models
To cater to epics and sprints, we need to enhance our application. We will
add two new models, Epic and Sprint. Separate models are in place since
epics and sprints have unique behaviors and attributes. Having two models
allows us to set up different relationships between models. For instance,
multiple tasks could belong to an epic, each to a specific sprint.
Before diving deeper, let’s touch upon some essential concepts about models
and their relationship types.
Django’s ORM offers three relationship types: one-to-one, one-to-many, and
many-to-many.
The One-to-One Relationship (OneToOneField): A one-to-one relationship
implies that one object is related to exactly one other object. This can be
seen as a constrained version of the ForeignKey, where the reverse relation
is unique.

Figure 4.6: One to one

A typical example of Django is the User Profile:
from django.db import models

from django.contrib.auth.models import User

class Profile(models.Model):

user = models.OneToOneField(User, on_delete=models.CASCADE)

Other fields…

A One-To-Many relationship implies one object can be related to several
others.

Figure 4.7: One to many relationships of the Task and User model

We already use this relation type with the Task model when we specify the
creator and the owner:
from django.db import models

from django.contrib.auth.models import User

class Task(models.Model):

…

creator = models.ForeignKey(User,

related_name='created_tasks', on_delete=models.CASCADE)

Many-to-Many (ManyToManyField): In this relationship, objects can relate to
several others, which, in turn, can associate with multiple entities.

Figure 4.8: Many-to-many relationships of the sprint and task models

Here, we introduce our first model, the Sprint. Our definition of sprint is
that one task could be into one or more sprints and vice versa. We found a
use case for the many-to-many relationship:
class Sprint(models.Model):

name = models.CharField(max_length=200)

description = models.TextField(blank=True, null=True)

start_date = models.DateField()

end_date = models.DateField()

created_at = models.DateTimeField(auto_now_add=True)

updated_at = models.DateTimeField(auto_now=True)

creator = models.ForeignKey(User,

related_name='created_sprints', on_delete=models.CASCADE)

tasks = models.ManyToManyField('Task',

related_name='sprints', blank=True)

Info: Many-to-Many relationship in a relational database is implemented
using a join table.
The junction table consists of at least two columns, each being a foreign
key to the primary key of the tables being related. Each row in the junction
table represents a relationship between one row in the first table and one in
the second.

The next model to introduce is the Epic. By our definition, a Task can
belong to only one Epic:
class Epic(models.Model):

name = models.CharField(max_length=200)

description = models.TextField(blank=True, null=True)

created_at = models.DateTimeField(auto_now_add=True)

updated_at = models.DateTimeField(auto_now=True)

creator = models.ForeignKey(User,

related_name='created_epics', on_delete=models.CASCADE)

We need to modify the Task model to add a foreign key that references the
Epic model:
class Task(models.Model):

…

epic = models.ForeignKey(Epic, on_delete=models.SET_NULL)

As we’ve explored the relationship types, it’s vital to note potential querying
issues that can impact your web application’s performance.
Imagine wanting to display all tasks alongside the associated epics for users.
Typically the query will be something like this:
Task.objects.all()

When querying a database, if you retrieve a list of objects and then, for each
object, query its related objects separately, you end up with N+1 queries. ‘N’
represents the number of objects, and ‘+1’ is the initial query. This common
performance snag is dubbed the “N+1 selects” issue.
Various methods detect the N+1 issue. You can log queries by tweaking
project settings or use the django-tool-bar to view the framework’s total
query count.

Tip: Logging slow queries in PostgreSQL can be invaluable for diagnosing
performance issues. By keeping track of queries that take an unusually long
time to run, you can focus your optimization efforts where they’re most
needed.

Django provides optimization tools to solve the N+1 problem, the
select_related and the prefetch_related.

select_related: Uses a join query to return all the data from the
objects and their relationships. This operation gets all the objects in one
query, which could make the initial query more time-consuming and
memory-intensive if the relationship has lots of objects. This type of
operation can be done when the model has one-to-one or many-to-one.
prefetch_related: Performs separate lookup and Python does the
join. Using prefetch_related could be faster for one-to-many or
many-to-many.

In summary, for foreign keys or one-to-one relationships, select_related is
ideal. For reverse foreign key lookups or many-to-many relationships, opt
for prefetch_related.
Here is an example of using it:
Task.objects.prefetch_related('epic').all()

Info: The open-source community has created amazing packages to detect
the N+1 problem, like the nplusone or django-perf-rec. nplusone is a
Python library that automatically detects the N+1 queries problem, while
django-perf-rec is more like a regression testing tool for performance

You can also filter using relationship models by using double underscore
“__”.
Let’s suppose that we need to filter all the Tasks of the Sprint with name
"Amsterdam":
Task.objects.filter(sprint__name="Amsterdam")

The previous query will select the tasks that are in the sprint with the name
"Amsterdam". This query will perform a join:
python manage.py shell

>>> from tasks.models import Task

>>> print(Task.objects.filter(sprints__name="Amsterdam").query)

SELECT "tasks_task"."id", "tasks_task"."title",

"tasks_task"."description", "tasks_task"."status",

"tasks_task"."created_at", "tasks_task"."updated_at",

"tasks_task"."creator_id", "tasks_task"."owner_id" FROM

"tasks_task" INNER JOIN "tasks_sprint_tasks" ON

("tasks_task"."id" = "tasks_sprint_tasks"."task_id") INNER JOIN

"tasks_sprint" ON ("tasks_sprint_tasks"."sprint_id" =

"tasks_sprint"."id") WHERE "tasks_sprint"."name" = Amsterdam

Ensuring data integrity with model constraints
A database constraint is a rule used to ensure data integrity. Using
constraints restricts the type of data stored in the database, which prevents
accidental storing of invalid data.
Without constraints, our models could have invalid values. Think of a sprint
ending before its start or tasks with unacceptable statuses.
Several types of constraints exist in databases:

Primary Key: One of the most important constraints defining the
model’s identity that uniquely identifies a record in the table.
Foreign Key: Identifies a record in another table.
Unique: Ensures that all the values in a column are unique.
Not null: Ensures that a column cannot have null values.
Check: A rule that verifies whether the values in a column meet a
specific condition.
Default: This constraint sets a value when none was previously
defined.

Let’s now implement constraints for the Sprint model, ensuring logical start
and end dates:
class Sprint(models.Model):

…

start_date = models.DateField()

end_date = models.DateField()

class Meta:

constraints = [

models.CheckConstraint(check=models.Q(end_date__gt=models.

F('start_date')), name='end_date_after_start_date'),

]

Place all configurations that are unrelated to fields within the model’s
optional Meta options. The meta options are not only for constraints but also
for setting a different table name, ordering, verbose name or many more.

Constraints get listed as CheckConstraint objects, and they all must be
valid. The CheckConstraint accepts a Q instance, which is a way to
encapsulate a SQL condition into a Python object. In Django, the function F
lets you directly reference model field values and perform related database
operations. F('start_date') refers to the value of the start_date field.
After adding constraints to the class meta, regenerate the migrations:
python manage.py makemigrations

add the constraints to the database

python manage.py migrate

If a sprint is saved with a start date that is not less than the end date, Django
will raise an IntegrityError.
>>> from tasks.models import Sprint

>>> from django.utils import timezone

>>>

>>> from datetime import timedelta

>>> current_time = timezone.now()

>>> one_day_ago = current_time - timedelta(days=1)

>>>

>>> from django.contrib.auth.models import User

>>> creator = User.objects.get(pk=1)

>>> Sprint.objects.create(name="Eternals epic",

start_date=current_time, end_date=one_day_ago, creator=creator)

Traceback (most recent call last):

File

"/Users/mandarina/Library/Caches/pypoetry/virtualenvs/task-

manager-ox-Othme-py3.10/lib/python3.10/site-

packages/django/db/backends/utils.py", line 89, in _execute

return self.cursor.execute(sql, params)

File

"/Users/mandarina/Library/Caches/pypoetry/virtualenvs/task-

manager-ox-Othme-py3.10/lib/python3.10/site-

packages/psycopg/cursor.py", line 723, in execute

raise ex.with_traceback(None)

psycopg.errors.CheckViolation: new row for relation

"tasks_sprint" violates check constraint

"end_date_after_start_date"

This demonstrates the effectiveness of the constraint we added.
Let’s now consider the status field of the Task object:
>>> from tasks.models import Task

let's try to filter with a status that is not defined in the

choice field

>>> Task.objects.create(title="test", creator=creator,

status="INVALID")

<Task: Task object (14)>

Like the Sprint model, we’ll integrate a Meta class into the model,
constraining the status attribute values:
class Meta:

constraints = [

models.CheckConstraint(

check=models.Q(status='UNASSIGNED') |

models.Q(status='IN_PROGRESS') | models.Q(status='DONE') |

models.Q(status='ARCHIVED'),

name='status_check',

),

]

Next, generate the migrations once more:
python manage.py makemigrations

add the constraints to the database

python manage.py migrate

If your database has any Task instance with an invalid status, the migrate
command will fail with an IntegrityError, and you will need to proceed
with data migration to fix the invalid status.

Conclusion
Models are foundational to your web application. Models bring life to your
project. The framework provides many tools to work with these models, like
the migration system and the database API.
The admin interface is user-friendly. With just a few lines of code, you can
create a versatile admin panel with various roles.

The ORM lets you craft high-level object operations, which can be easily
understood and converted to SQL. It adds a layer that enables the use of any
database engine behind it.
Using model constraints to enforce rules and maintain data consistency is
essential.
In many projects, you’ll often need to know how to set up relationships
between Django models. Knowing how these relationships work will enable
you to build more efficient web applications.
Databases have three relationship forms: one-to-one, one-to-many, and
many-to-many. For data integrity and effective operations, these
relationships control the specific and shared associations between data
records in various tables.
In the next chapter, we’ll explore how to link URLs with views. We will tour
different ways to implement views, with function views and class-based
views. With this knowledge, we will implement our first views.

Questions
1. What is the role of a primary key in a relational database and how does

it relate to Django models?
2. Explain how Django’s ORM translates Python code into SQL

commands. Use the .save() method as an example.
3. What are the differences between models.CASCADE, models.SET_NULL,

and models.PROTECT with regards to on_delete property in a
ForeignKey field?

4. What is the difference between the get and filter methods in Django,
and what do they return?

5. What is the result of calling the .delete() method on a Django model
instance or a QuerySet? What does the returned tuple represent?

6. What are Django migrations and what purpose do they serve in Django
projects?

7. What does squashing migrations mean in Django, and how can it be
done? What are the benefits of squashing migrations?

8. What is the purpose of the has_change_permission,
has_add_permission, and has_delete_permission methods in

Django’s ModelAdmin class?
9. Why is the is_staff flag important for Django users, and how can it

be enabled?
10. What is Django’s built-in authentication system, and how can it be

utilized with Group models to manage permissions?
11. Can you explain the difference between the exclude method and the

filter method in Django’s ORM? Why might one be more intuitive
than the other?

12. How is a Many-to-Many relationship implemented in a relational
database?

13. How does the related_name attribute function in Django’s ForeignKey
and ManyToManyField relations?

14. What is the purpose of a database constraint and why is it important?
15. What is the role of the Meta class in a Django model?

Exercises
1. Extend the Task model by adding a new field due_date to represent

when the task is due. You must generate and apply migrations, verify
that the changes were applied as expected, and add the field to the
admin. Think about the default values for this new attribute.

2. Play more with the Django shell and try to create a Task without an
owner. Does Django raise any errors? Was it possible to create the
Task?

3. Configure the Django Admin to filter Task by created_at date.
4. Create a constraint that the due_date has to be greater than the

created_at.

Squash all the migration created in this chapter.

CHAPTER 5
Django Views and URL Handling

Introduction
We begin the chapter with a precise definition of a view and its
responsibilities. We’ll then explore the framework’s various generic views
for common scenarios.
We will write our first views using Django’s generic views and configure
the URL paths to allow users to interact with tasks in our project
management project.
With a path converter, we will understand how to pass arguments to the
views and, with namespaces, how to prevent name clashing between URLs
from multiple applications.
Through function-based views with a service layer, we will implement our
first business logic to add a Task to a Sprint atomically
Tackling concurrent data access is a challenging problem to solve. Utilizing
pessimistic and optimistic locking techniques, we’ll engineer a robust
solution for concurrent data access, employing Django views and a service
layer.
Lastly, we will customize HTTP error codes to better align with the
aesthetics of our project.

Structure
In this chapter, we will cover the following topics:

Understanding Django Views
Introduction to Django’s Generic Views
Writing Your First Django View
Class-based Views Mixins
URL Configuration in Django

Creating URL Patterns for Your Views
Using Django’s HttpRequest and HttpResponse Objects
Handling Dynamic URLs with Path Converters
Understanding Django’s URL Namespace and Naming URL Patterns
Introduction to Function-based Views
Using Function-based Views with a Service Layer
Pessimistic and Optimistic Locking Using Views and a Service Layer
Error Handling with Custom Error Views

Understanding Django Views
Before understanding views, it’s crucial to understand the Hypertext
Transfer Protocol (HTTP). HTTP is an application-level protocol in the OSI
model and forms the backbone of the World Wide Web (WWW). The
protocol is the foundation of any data exchange and transmits different
hypermedia documents, like HTML and JSON.
HTTP follows a client-server model, where the client submits a request to
the server and the server returns a response. The protocol is stateless,
meaning each command is executed independently without referencing
previous ones.
HTTP uses methods for its requests. The most common methods are GET,
POST, DELETE, and PUT. Once the server processes the request, it will return
a response with a status code that helps us understand what happened on the
server. Well-known response codes are 200, 404, and 500, for example.
To adhere to best practices for views, we need to define their responsibility.
They handle the request, delegate it to the suitable service layer, and return
a response. Views will take everything related to the HTTP world, directing
authentication, producing the correct HTTP code, and making redirects.
Our recommendation is to avoid adding business logic to the view. There
are multiple reasons not to add business logic to the views. Some of them
are:

Reusability: Embedding business logic directly into the view severely
hampers its reusability elsewhere, given that views are tightly coupled
with HTTP requests and responses.

Testability: If you have the business logic in the view, it is more
difficult to test, since it requires mocking the response object. When
your logic is in a service layer or domain model, you can test it in
isolation.
Coupling: If you have the business logic in the views, changing the
business logic will require changes in the view and vice-versa.

Note: In the MVC architecture, the onus of managing HTTP requests falls
squarely on the controller. Given that MVC also employs a component
called ‘view,’ it’s easy to get confused when you toss the MVT pattern
into the mix—especially since the terminology overlaps. In the MVT
pattern, the view is the controller.

Now that we know business logic has no place in our views, we’re prepared
to construct lean, laser-focused components that coordinate requests and
responses. We are ready to learn about the framework’s different views.

Introducing Django’s Generic Views
The framework provides class-based views for common scenarios, allowing
you to create fewer code views.
Generic views can handle much boilerplate code, like pagination,
processing forms, and more. Generic views will make your code easier to
maintain but sometimes more challenging to understand if you are
unfamiliar with the framework.

Note: Class-based views tempt you to write the business logic in the class
implementation. Remember that class-based views are still views, so
avoid writing business logic in class-based views.

Applying them judiciously fast-tracks the implementation of robust
solutions. As a rule of thumb, use generic views when you don’t need to
customize them often.
Let’s review the generic views the framework provides.
List and detail views:

ListView: A view that displays a list of objects from a model.

DetailView: A view that shows a single object and its details.

Date-based views:

ArchiveIndexView: A date-based view that lists objects from a date-
based queryset in the “latest first” order.
YearArchiveView: A date-based view that lists objects from a year-
based queryset.
MonthArchiveView: A date-based view that lists objects from a month-
based queryset.
WeekArchiveView: A date-based view that lists objects from a week-
based queryset.
DayArchiveView: A date-based view that lists objects from a day-
based queryset.
TodayArchiveView: A date-based view that lists objects from a
queryset related to the current day.
DateDetailView: A date-based view that provides an object from a
date-based queryset, matching the given year, month, and day.

Editing views:

FormView: A view that displays a form on GET and processes it on
POST.
CreateView: A view that shows a form for creating a new object,
which is saved to a model.
UpdateView: A view that shows a form for updating an existing object,
which is saved to a model.
DeleteView: A view that shows a confirmation page and deletes an
existing object.

The base view:

TemplateView: A view that renders a specified template. This one
does not involve any kind of model operations.

As we’ll uncover later, class-based views and the service layer concept are
far from a match. We advise you to learn how to use the framework’s tools
correctly.

Writing Your First Django View
Generic class-based views usually fit the most common scenarios. We’ll
develop Task views to handle typical scenarios: creating, modifying,
updating, and deleting Task instances. For now, we won’t delve into
authentication; however, Chapter 8: User Authentication and Authorization
in Django will revisit these views and add security.
Code for tasks/views.py

from django.urls import reverse_lazy

from django.views.generic import DetailView, ListView

from django.views.generic.edit import CreateView, DeleteView,

UpdateView

from .models import Task

class TaskListView(ListView):

model = Task

template_name = "task_list.html"

context_object_name = "tasks"

class TaskDetailView(DetailView):

model = Task

template_name = "task_detail.html"

context_object_name = "task"

class TaskCreateView(CreateView):

model = Task

template_name = "task_form.html"

fields = ("name", "description", "start_date", "end_date")

def get_success_url(self):

return reverse_lazy("task-detail", kwargs={"pk":

self.object.id})

class TaskUpdateView(UpdateView):

model = Task

template_name = "task_form.html"

fields = ("name", "description", "start_date", "end_date")

def get_success_url(self):

return reverse_lazy("task-detail", kwargs={"pk":

self.object.id})

class TaskDeleteView(DeleteView):

model = Task

template_name = "task_confirm_delete.html"

success_url = reverse_lazy("task-list")

Adhering to the Single Responsibility Principle (SRP), each class has a
distinct function. The class name and its parent class signify the view’s
specific operation.
For each view in Django, there is usually a corresponding HTML template
that the view uses to generate the webpage. Here’s an example of how you
might structure the HTML templates for each view:
templates/tasks/task_list.html: This template displays a list of tasks.
{% extends "base.html" %}

{% block content %}

<h1>Task List</h1>

{% for task in tasks %}

{{ task.name }}

{% empty %}

No tasks available.

{% endfor %}

{% endblock %}

The template will iterate all the tasks and show a link for each task to see
more details using the template tag URL. If there are no tasks, it will show No
Tasks available.
templates/tasks/task_detail.html: This template displays the details of a
single task.
{% extends "base.html" %}

{% block content %}

<h1>{{ task.name }}</h1>

<p>{{ task.description }}</p>

Edit

Delete

{% endblock %}

The task detail template will show the name and description of the task with
two links, one to update the task and the other to delete the task. Both links
use the template tag url and the URL name to refer to the appropriate view.
templates/tasks/task_form.html: This template is used for creating and
updating tasks.
{% extends "base.html" %}

{% block content %}

<h1>New Task</h1>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Save</button>

</form>

{% endblock %}

The update task renders the task form and shows a Save button to perform
the update operation.
templates/tasks/task_confirm_delete.html: This template asks the user to
confirm before deleting a task.
{% extends "base.html" %}

{% block content %}

<h1>Delete Task</h1>

<p>Are you sure you want to delete the task "{{ task.name

}}"?</p>

<form method="post">

{% csrf_token %}

<button type="submit">Yes, delete</button>

</form>

No, take me

back

{% endblock %}

Using generic views is simple and it will keep your project code lean. Use
them when there is no need for custom logic. Later in this chapter, we will
see how to use a service layer with function-based views.

Class-based Views Mixins

A way to provide code reusability using inheritance is through the mixin
concept. A mixin is a class with defined properties and methods that
provides a particular generic behavior and is not meant to be instantiated.
Mixin does not require a hierarchical relationship between those classes;
you can add as many as you want to extend your class behavior.
In object-oriented design, inheritance should be used to model an is-a
relationship based on the behavior. The idea is that a class should inherit
from another class based on the behavior.
As an example, we will create a SprintTaskWithinRangeMixin. This mixin
ensures a task being created or updated is within the date range of its
associated sprint.
tasks/mixins.py

from django.http import HttpResponseBadRequest

from django.shortcuts import get_object_or_404

from .services import can_add_task_to_sprint

class SprintTaskWithinRangeMixin:

"""

Mixin to ensure a task being created or updated is within

the date range of its associated sprint.

"""

def dispatch(self, request, *args, **kwargs):

task = self.get_object() if hasattr(self, "get_object")

else None

sprint_id = request.POST.get("sprint")

if sprint_id:

If a task exists (for UpdateView) or is about to be

created (for CreateView)

if task or request.method == "POST":

if not can_add_task_to_sprint(task, sprint_id):

return HttpResponseBadRequest(

"Task's creation date is outside the date range of the

associated sprint."

)

return super().dispatch(request, *args, **kwargs)

In Django’s class-based views, the dispatch method is the entry point for the
incoming HTTP requests. When the framework processes a request, the
dispatch method will delegate the request to the appropriate method (get,
post, put, delete) based on the HTTP method.
Our Mixin overrides the dispatch method, checking sprint start and end date
using the service layer before invoking the relevant method via the super
call.
We will return a wrong HTTP response if the interval is invalid.
Using the mixing is simple. You need to inherit from it:
tasks/views.py

from django.views.generic import CreateView, UpdateView

from .models import Task

from .mixins import SprintTaskMixin

class TaskCreateView(SprintTaskMixin, CreateView):

model = Task

template_name = "task_form.html"

fields = ("name", "description", "start_date", "end_date")

def get_success_url(self):

return reverse_lazy("task-detail", kwargs={"pk":

self.object.id})

class TaskUpdateView(SprintTaskMixin, UpdateView):

model = Task

template_name = "task_form.html"

fields = ("name", "description", "start_date", "end_date")

def get_success_url(self):

return reverse_lazy("task-detail", kwargs={"pk":

self.object.id})

The code for the service layer is the following:
from django.shortcuts import get_object_or_404

from .models import Sprint

def can_add_task_to_sprint(task, sprint_id):

"""

Checks if a task can be added to a sprint based on the

sprint's date range.

"""

sprint = get_object_or_404(Sprint, id=sprint_id)

return sprint.start_date <= task.created_at.date() <=

sprint.end_date

It’s a simple check using the start_date and end_date using the task
creation date.

Info: Inheritance is a powerful object-oriented tool that can help reduce
code duplication. However, overuse of inheritance for code reuse can lead
to several problems.
Whenever you want to inherit from a class, don’t think about code
reusability; think more about behavior.
Invalid inheritance could lead to:

Tight coupling: Inheritance creates a strong relationship between the
parent and child classes. Any changes in the parent class may
unintentionally affect the behavior of the child classes.
Exposing too many public methods: When a class inherits from
another, it gets access to all its public methods, even those it doesn’t
need.

For code reusability, composition often beats inheritance. Composition
creates complex objects by using other, more simple objects.
For example, in terms of object-oriented design, one might be tempted to
make Sprint a subclass of Epic to reuse fields like name, description,
created_at, updated_at, and creator.
However, it is incorrect to model this relationship with inheritance
because a Sprint is not a type of Epic. In terms of Agile methodology, they
are different. Understanding the business domain you are trying to model
is crucial to creating the right abstractions in your application.
If the application evolves to a point where Epic and Sprint share a lot of
expected behaviors, consider using a mixing to share a common code.

When crafting a mixin, aim for a singular responsibility and strive for
generality. A mixin class that solves multiple problems could be a sign of
bad design or a code smell. Another essential convention to follow when

creating a mixin is to use the postfix “Mixin”. This will denote the usage of
the class. Not adding this postfix is a mistake, leading developers to create a
hierarchy from this class instead of adding it for behavior.

Note: There is an anti-pattern called the god object when the object knows
or does too much. This anti-pattern is an example of poor design, as it
contradicts modular design principles.
Not using mixins with a single responsibility could lead to an object that
contains all the standard methods and attributes just for the sake of code
reuse and it might become a god object.

The key is to ensure that each class adheres to the Single Responsibility
Principle (SRP). Django’s framework furnishes an abundant array of mixins
for augmenting view behaviors.
Here is a list of the most common and valuable mixins the framework
provides:
Attribute Mixins:

ContextMixin: Adds extra context data to the view.
TemplateResponseMixin: Renders templates and returns an HTTP
response.
SingleObjectMixin: Provides handling to get a single object from the
database.

Data Modification Mixins:

FormMixin: Used to handle form submission and validation.
ModelFormMixin: Extends FormMixin to deal with model forms.
CreateModelMixin: Used to save a new object to the database.
UpdateModelMixin: Used to update an existing object in the database.
DeleteModelMixin: Used to delete an object.

Fetching Data:

SingleObjectMixin: Used to fetch a single object based on the
primary key or slug

MultipleObjectMixin: Used to fetch multiple objects (often used for
listing views)
Pagination

MultipleObjectMixin: Provides pagination functionality if the
paginate_by attribute is set

Redirect and Success URL Handling

RedirectView: Used to handle simple HTTP redirects.
SuccessMessageMixin: Used to display a success message after acting
successfully.

The ListView that we use to list the Task objects inherits the
MultipleObjectMixin and the TemplateResponseMixin. Doing this will
give you the pagination behavior and template rendering capabilities.

URL Configuration in Django
We have already touched upon URL configurations in previous chapters.
However, to delve deeper into the subject, it’s crucial to understand regular
expressions.
A regular expression, often abbreviated as regex, is a sequence of characters
forming a search pattern. The sequence of characters is used to match a
pattern in a text. Regex can be straightforward, like matching help as we
did in Chapter 2, Setting Up Your Development Environment, or a complex
one, like the ones used to identify an email address within a document.
Understanding regex may initially be challenging, but vital for effective
URL manipulation.
Let’s review some fundamental components of regular expressions:

Literal characters: These are the most straightforward, matching in
any text string. For instance, the regex ‘a’ would match ‘a’ in any text
containing ‘a’.
Special characters: These are reserved characters that carry special
meanings. For instance, ‘.’ represents any character except a newline.
Quantifiers: Dictate the number of instances for a character or group
of characters you want to match. Examples include ‘*’, ‘+’, ‘?’, ‘{n}’,

‘{n,}’, and ‘{n,m}’.
Character classes: Set of characters enclosed between square
brackets []. It will match any one character in the brackets. For
example, ‘[abc]’ will match any of ‘a’, ‘b’, or ‘c’.
Escape sequences: Sometimes, you will need to match special
characters that are reserved. You will need to use the backslash (\) to
do this. For example, if you want to search for a period, you’d need to
use ‘\.’ in your pattern.
Anchors: Anchors are used to specify the position of the pattern
concerning a line of text. ‘^’ is used to check if a string starts with a
specific character, and ‘$’ is used to check if a string ends with a
particular character.
Groups and capturing: Parentheses define groups and capture
specific character sets. These captured groups can be reused through
numbered back-references.
Alternation: The pipe character (|) defines alternatives matching the
pattern.
Flags: These are options to modify the behavior of the pattern match.
For example, ‘i’ is used for case-insensitive matches, ‘g’ for global
search, and so on.

Django URL configuration uses regex to match the URL’s path to a specific
view.
The following is a Django example that retrieves tasks archived in a
specific year:
from django.urls import re_path

from . import views

urlpatterns = [

re_path(r'^tasks/(?P<year>[0-9]{4})/$', views.year_archive),

]

The regex begins with ‘^’, indicating that the path should start with
'tasks/’. The next part (?P<year>[0-9]{4}) will match a four-digit
number and it will pass this value as a year parameter to the view. The $
specifies that the end of the URL has to have “/” at the ending to match this
pattern.

Note: That the ‘r’ preceding the string is a flag, informing Python that this
is a raw string. In raw strings, backslashes are treated as literal characters.
Raw strings are useful because regular expressions often contain a lot of
backslashes; without this flag, Python would try to interpret these
backslashes as escape sequences.

It’s important to note that for most basic URL patterns, complex regex is
not required. However, as your application grows or when dealing with
more intricate routing requirements, the versatility of regex becomes
invaluable. Regular expressions offer a powerful tool for matching various
string patterns, allowing greater flexibility and control over your URL
configurations.

Creating URL Patterns for your Views
Having set up our class-based views, we can now proceed to create their
corresponding URL patterns:
from django.urls import path

from django.views.generic import TemplateView

from .views import (

TaskCreateView,

TaskDeleteView,

TaskDetailView,

TaskListView,

TaskUpdateView,

)

urlpatterns = [

path("",

TemplateView.as_view(template_name="tasks/home.html"),

name="home"),

path("help/",

TemplateView.as_view(template_name="tasks/help.html"),

name="help"),

path("tasks/", TaskListView.as_view(), name="task-list"), #

GET

path("tasks/new/", TaskCreateView.as_view(), name="task-

create"), # POST

path("tasks/<int:pk>/", TaskDetailView.as_view(), name="task-

detail"), # GET

path(

"tasks/<int:pk>/edit/", TaskUpdateView.as_view(),

name="task-update"

), # PUT/PATCH

path(

"tasks/<int:pk>/delete/", TaskDeleteView.as_view(),

name="task-delete"

), # DELETE

]

Each view is associated with a unique URL pattern.
Notably, generic class-based views are only engineered to handle one HTTP
method within a single class. Therefore, we adhere to the Single
Responsibility Principle (SRP) by utilizing different classes for each
operation. The angle brackets in the URL patterns signify dynamic
segments, capturing portions of the URL to be passed as arguments to the
view functions.
These generic views in Django are each designed for a specific type of
request:

DetailView and ListView are designed to handle GET requests.
CreateView, UpdateView, and DeleteView are designed to handle GET
and POST requests. We need the GET to ask the user for the data to
submit in the POST.

Notice that our urls.py file does not import any models, adhering to
Django’s best practices by avoiding tight coupling between the URL
patterns and the models.
Although the URLs we’ve defined are not strictly RESTful, we’ll delve into
designing a RESTful API in Chapter 9, Django Ninja and APIs.

Handling Dynamic URLs with Path Converters

When using the path function in the URL patterns, it is possible to use the
angle brackets to define parts of the URL that can be captured and passed as
a parameter to the view:
path('tasks/<int:pk>/', TaskDetailView.as_view(), name='task-

detail'),

In this case, <int:pk> is a path converter. The first part, int is the converter
type telling the framework what type to match. The second part, pk, serves
as the variable name to which the matched value is assigned; this variable is
then passed as a parameter to the view.
Django has several built-in converters:

str: Matches any non-empty string, excluding the path separator, ‘/’.
int: Matches zero or any positive integer.
slug: Matches any ASCII alphanumeric string, hyphens and
underscores.
uuid: Matches a formatted UUID.
path: Matches any non-empty string, including the path separator, ‘/’.

If the built-in converters fall short of your needs, you can also roll out your
custom path converter.
Let’s see how to create a custom path converter for the date type. The
converter we are going to define handles dates in the format “YYYY-MM-DD”,
where “YYYY” is the 4-digit year, “MM” is the 2-digit month, and “DD” is the
2-digit day.
To craft your custom path converter, either inherit from one of Django’s
built-in converter classes or independently implement two requisite
methods.
Let’s see the implementation of the DateConverter class by implementing
the class protocol:
tasks/converters.py

from datetime import datetime

class DateConverter:

regex = "[0-9]{4}-[0-9]{2}-[0-9]{2}"

def to_python(self, value):

return datetime.strptime(value, "%Y-%m-%d")

def to_url(self, object):

return object.strftime("%Y-%m-%d")

You’ll need to implement two core methods: to_python and to_url. The
former takes a string and morphs it into an object, while the latter
transforms a datetime object into a string. The regex is designed to match
strings formatted as dates in the “YYYY-MM-DD” pattern.
To use the converter, you will need to register it:
tasks/urls.py

from django.urls import path, register_converter

from . import views, converters

register_converter(converters.DateConverter, "yyyymmdd")

urlpatterns = [

…

path("tasks/<yyyymmdd:date>/", views.task_by_date),

…

]

The task_by_date view will be spotlighted in this chapter’s Introduction to
Function-based Views section.

Understanding Django’s URL Namespace and
Naming URL Patterns
URL patterns can be organized in a friendly way using namespaces and
names. Each URL has an optional parameter name:
path("tasks/", TaskListView.as_view(), name="task-list"),

Once you have named a URL, you can use this alias across various parts of
your application, a lifesaver for future changes to the URL path. Using the
name is a good practice since if you decide to change the path in the future,
you will not need to change it somewhere else:
Suppose we want to redirect the user to the task list view:
from django.shortcuts import redirect

from django.urls import reverse

def task_home(request):

return redirect(reverse("task-list"))

Info: HTTP redirects instruct the client to stop loading the current page
and start loading a different URL.
Redirects are used for many different purposes. For example, it could be
used to ensure that users always use HTTPS or when they are not
authenticated to show the login page.
The HTTP status codes for redirect are in the range of 3xx. The most
common ones are:

301: Moved permanently, meaning the resource is permanently
located at the new address.
302: Moved temporarily: This indicates that the resource has moved
temporarily to a new URL, but future requests should still target the
original URL.

In this case, home_view shuttles the user off to the Task List view; notably,
the view references the URL by its name rather than its explicit path. This
allows the user to change the path in the future without changing all its
usage.
Within a multi-app environment, you could run into clashing URL names.
The framework uses the namespace to differentiate URLs with the same
name but from different applications.
To set the namespace for URLs, use the app_name variable in the urls.py
file:
app_name = "tasks" # namespace

urlpatterns = [

path("tasks/home/", task_home, name="task-home"),

path("tasks/<int:pk>/", TaskDetailView.as_view(),

name="task-detail"),

#…

]

Utilizing a namespace alters how you reference the URL:
from django.shortcuts import redirect

from django.urls import reverse

def home_view(request):

return redirect(reverse("tasks:detail"))

A colon is the delimiter between the tasks namespace and the URL name.
In this way, if there is another view with the name detail it won’t clash
with the task’s detail view.

Using Django’s HttpRequest And HttpResponse
Objects
The framework provides valuable object representations of the HTTP
request and response. These objects are meant to exist within the scope of
the view functions and shouldn’t be passed beyond that boundary.
Whenever a request hits the Django server, the framework instantiates an
HttpRequest object, passed as the first argument to the view function.
Let’s review some crucial attributes of the HttpRequest:

method: An upper case string with the method used in the request sent
to the server, for example, GET, POST.
user: An instance of the framework User class representing the
logging-in user. When the user is not logged in, instead of the User
instance, you will find an AnonymousUser instance. We will see more
on how to handle authentication in Chapter 8, User Authentication
and Authorization in Django.
path: A string with the requested URL path.
GET: A dictionary-like object containing all available GET parameters.
POST: A dictionary-like object containing all available POST
parameters.
FILES: A dictionary-like object containing all available file upload
input parameters.
headers: A dictionary-like object containing all available HTTP
headers.

Using the HttpRequest object, you gain straightforward access to incoming
request data, simplifying your view logic.

The HttpResponse object is the view return type, encapsulating Django’s
HTTP response to the client.
Here is an example that returns an HTML-rendered template using the
HttpResponse.
from django.http import HttpResponse

from django.template import loader

def example_view(request: HttpRequest) -> HttpResponse:

template = loader.get_template("example.html")

context = {"name": "Test"} # data to inject into the

template

html = template.render(context, request)

return HttpResponse(html)

The HttpResponse object accepts a parameter that contains the content
destined for the client. The function example_view is a function-based view,
we will see more about this type of function in the next section.

Info: Instead of using the template loader and rendering the template, you
can use a Django frameworks shortcut render:
from django.shortcuts import render

def example_view(request):

context = {"key": "value"} # data to inject into the

template

return render(request, "example.html", context)

The HttpResponse has a status_code and content_type parameters that
can be used to return different types of responses, like not found 404. For
some exceptional common cases, the framework provides other objects that
can be useful:

HttpResponseRedirect: Redirect the user to a different URL. The
status code is 302.
HttpResponseNotFound: Used to inform that the resource was not
found. The status code is 404.
HttpResponseBadRequest: This response is used to inform that the
server cannot or will not process the request due to something that is
perceived to be a client error. The status code is 400.

HttpResponseForbidden: Indicates that the server understands the
request but refuses to authorize it. The status code associated with the
response is 403.
HttpResponseServerError: When an unexpected error occurs on the
server side, there is a status code (500) to inform about it.
JsonResponse: This class converts a serializable Python object into a
JSON-formatted HTTP response. This type of response will add the
content-type header to the response with the value application/json.

Info: The Content-Type header plays a crucial role in ensuring the correct
interpretation of data. Specifically, when this header is set to
application/json, it means that the data being sent or received is
formatted as JSON. By specifying application/json, developers ensure
that the receiving end understands that the transmitted data should be
treated as a JSON object.

Django offers additional subclasses of HttpResponse tailored for various
common scenarios. You can always use the HttpResponse to return any
response type, but using the built-in classes makes the code lean and easy to
understand.

Introducing to Function-based Views
The framework has two different ways to implement views: function-based
views (FBV) and class-based views (CBV).
Since the introduction of CBV in March 2011, Django’s official
documentation has promoted its usage, and many developers in the Django
community prefer CBVs. There is a tendency to reject FBV, saying it’s the
old way and everything should be implemented using CBV. This statement
is not entirely true; sometimes, it’s better to use FBV than CBV.
Function-based views are the most straightforward way to define a view
with Django. FBVs are simply Python functions that accept an
HttpRequest object as an argument and return an HttpResponse object.
Let’s see one example of FBV:
from datetime import date

from django.http import HttpRequest, HttpResponse

from django.shortcuts import render

def task_by_date(request: HttpRequest, by_date: date) ->

HttpResponse:

tasks = services.get_task_by_date(by_date)

context = {"tasks": tasks}

return render(request, "task_list.html", context)

The function takes a HttpRequest object and uses the render shortcut to
return a HttpResponse object. The render function allows you to render a
template with a context. In Chapter 6, Using the Django Template Engine,
we will learn more about the template engine that the framework provides.
Path converters feature can be used with function and CBV. However, when
using function views with type hints, you no longer have to check the
URLConf to be sure about the type.
You can’t define argument types in the method signature with class-based
views, as CBVs don’t include these parameters. This can make the code
more challenging to read.
Now, let’s suppose we need to process a POST request that receives the
task’s ID to check the task using the service layer:
from django.http import HttpRequest, HttpResponse,

HttpResponseRedirect

from django.shortcuts import render

from django.urls import reverse

def check_task(request: HttpRequest) -> HttpResponse:

if request.method == "POST":

Extract the 'task_id' parameter from the POST data.

task_id = request.POST.get("task_id")

if services.check_task(task_id):

return HttpResponseRedirect(reverse("success"))

if task_id:

return HttpResponseRedirect(reverse("success"))

else:

If no ID was provided, re-render the form with an error

message.

return render(

request, "add_task_to_sprint.html", {"error": "Task ID

is required."}

)

else:

If the request method is not POST, just render the

form.

return render(request, "check_task.html")

First, our code checks for the method type to equal POST. When it’s not, we
render the template with the HTML form.
The request method can be POST, while no data is sent; therefore, we need
to check if the task_id is present in the payload. If we find the expected
payload in the request, we can do something with it and then redirect the
user to the success page; otherwise, we show an error to inform the user that
the first name is required.
The template code of the check_task.html with the form to request the
user for the task_id is:
<form method="post">

{% csrf_token %}

<label for="name">Please insert Task ID:</label>

<input id="id" type="text" name="id">

<input type="submit" value="Submit">

{% if error %}

<p>{{ error }}</p>

{% endif %}

</form>

Our template contains an HTML form that prompts the user for data. When
the user clicks the submit button, the browser generates a POST request to
the server. In Chapter 7: Forms in Django, we will see an alternative, more
Django way to implement form and explain the security mechanism of the
CSRF token in depth.
Using function-based views gives you more direct control over the request
and response objects since it allows you to manipulate the objects with no
abstraction layer. But more control also gives you more responsibility for
handling different cases and, therefore, a foot gun. It requires rigor to avoid

too much code duplication and long function-based views that contain too
much logic.
Starting with FBVs is advisable for Django beginners because they are
straightforward and don’t require in-depth knowledge of the framework’s
API.
Deciding when to use FBV is a challenging task. When the view is simple
or the framework class views don’t match the behavior you need to
implement, using functions as views could be a good idea. Keeping your
code lean and easy to understand is part of the framework’s philosophy.
Don’t hesitate to use functions as views; simplicity is the key.

Using Function-based Views with a Service Layer
Using function-based views with a service layer is ideal, as there is no need
to override or change the behavior of class-based views to integrate the
service layer. Our views will only handle the request and generate a
response based on the return values of the service layer. The models will be
small and straightforward, and their purpose will be as data holders.
Let’s consider the use case where we must create a new task and associate it
with an active sprint. An active sprint is defined as a Sprint with a start
date on or before today and an end date on or after today.
Let’s first start with the services.py to implement the business logic of our
use case:
tasks/services.py

from datetime import datetime

from django.contrib.auth.models import User

from django.db import models, transaction

from django.core.exceptions import ValidationError

from .models import Task, Sprint, User

def create_task_and_add_to_sprint(

task_data: dict[str, str],

sprint_id: int,

creator: User

) -> Task:

"""

Create a new task and associate it with a sprint.

"""

Fetch the sprint by its ID

sprint = Sprint.objects.get(id=sprint_id)

Get the current date and time

now = datetime.now()

Check if the current date and time is within the sprint's

start and end dates

if not (sprint.start_date <= now <= sprint.end_date):

raise ValidationError("Cannot add task to sprint: Current

date is not within the sprint's start and end dates.")

with transaction.atomic():

Create the task

task = Task.objects.create(

title=task_data["title"],

description=task_data.get("description", ""),

status=task_data.get("status", "UNASSIGNED"),

creator=creator

)

Add the task to the sprint

sprint.tasks.add(task)

return task

Our function create_task_and_add_to_sprint will create a new Task and
add it to the sprint using a transaction. Using the transaction.atomic
ensures that all operations are completed successfully or not at all; no
intermediate states will exist. For example, a task not added to a sprint will
not be created.

Info: Transactions ensure that a series of database operations either all
occur successfully or none at all, preserving the all-or-nothing principle.
This is particularly vital in scenarios involving multiple related changes,
where the failure of one part could lead to data corruption or
inconsistency.
However, it’s important to exercise caution when employing transactions,
especially in high-traffic systems. Transactions can become a bottleneck

in database performance. When a transaction is in progress, it can lock
certain parts of the database, preventing other operations from proceeding
until the transaction completes.

Let’s move on to our view implementation:
from django.http import HttpRequest, HttpResponseRedirect,

Http404

from django.shortcuts import render, redirect

from .services import create_task_and_add_to_sprint

def create_task_on_sprint(request: HttpRequest, sprint_id:

int) -> HttpResponseRedirect:

if request.method == 'POST':

task_data: dict[str, str] = {

'title': request.POST['title'],

'description': request.POST.get('description', ""),

'status': request.POST.get('status', "UNASSIGNED"),

}

task = create_task_and_add_to_sprint(task_data, sprint_id,

request.user)

return redirect('task-detail', task_id=task.id)

raise Http404("Not found")

All our views are public, allowing any unauthenticated user to create,
update, view, or delete tasks. In Chapter 8, User Authentication and
Authorization in Django we will make all our views secure by adding
authentication and authorization using Django’s security features.

The first thing you should notice is that there is no import of models for the
function-based views. We only import things related to HTTP,
authentication, and the service helpers.
The code then checks if the HTTP request method is POST. If it is POST, it
converts the POST parameters to a dictionary, otherwise it returns 404.
Using the task_data dictionary and sprint_id, we call the service layer
function. Finally, we redirect the user to the task-detail view, passing the ID
of the newly created task.

It’s important to note that views.py has no implementation related to the
business logic. The function create_task_and_add_to_sprint can be
easily used from an API or a management command.
We will work extensively with services and function-based views in the
following chapters. Class-based views are not inherently wrong; they may
be the better choice sometimes. Your choice between function-based and
class-based views should depend on your specific requirements, but
remember always to keep your implementation simple.
Finally, our URL pattern for this new view:
tasks/urls.py

urlpatterns = [

…

path("tasks/sprint/add_task/<int:pk>/",

create_task_on_sprint, name="task-add-to-sprint")

]

Pessimistic and Optimistic Offline Locking using
Views and a Service Layer
We should introduce the problem it solves to understand pessimistic and
optimistic offline locking. Let’s consider multiple team members trying to
claim ownership of a task. If they do it simultaneously, they could claim the
task simultaneously and the result is not guaranteed, a condition known as a
race condition.
Pessimistic and optimistic locking ensures that only one team member can
claim a task at any moment. Once the task has an owner set, nobody else
can claim ownership.
Understanding race conditions and finding them are not simple tasks. When
a race condition exists, it is hard to detect it due to some randomness of the
bug. The easiest way to understand a race condition is to consider context
switches and invalid variable states in your server.

Database managers provide generic concurrency control mechanisms
that might not be tailored to specific application needs. For instance,
your application might have complex business rules or workflows that
need custom handling of concurrent accesses which goes beyond what

the DBMS offers. Implementing optimistic or pessimistic locking at
the application level allows for finer control and integration with
these business rules.

Let’s add a new view to our task manager project to claim ownership of a
task:
from django.http import JsonResponse, HttpResponse

from rest_framework import status

from .services import claim_task

def claim_task_view(request, task_id):

user_id = request.user.id # Assuming you have access to the

user ID from the request

try:

claim_task(user_id, task_id)

return JsonResponse({'message': 'Task successfully

claimed.'})

except Task.DoesNotExist:

return HttpResponse("Task does not exist.",

status=status.HTTP_404_NOT_FOUND)

except TaskAlreadyClaimedException:

return HttpResponse("Task is already claimed or

completed.", status=status.HTTP_400_BAD_REQUEST)

The view will use our service claim_task using the user_id and the
task_id. If the service claims the task, it will return a JSON response. The
function claim_task could raise two exceptions, one when the task was
already claimed and the other if the task was not found.
Now let’s see the service implementation:
tasks/services.py

from django.db import models, transaction

from django.contrib.auth.models import User

class TaskAlreadyClaimedException(Exception):

pass

@transaction.atomic

def claim_task(user_id:int, task_id:int) -> None:

Lock the task row to prevent other transactions from

claiming it simultaneously

task = Task.objects.select_for_update().get(id=task_id)

Check if the task is already claimed

if task.owner_id:

raise TaskAlreadyClaimedException("Task is already claimed

or completed.")

Claim the task

task.status = "IN_PROGRESS"

task.owner_id = user_id

task.save()

Our service uses the transaction.atomic decorator to encapsulate the service
inside a database transaction without it, select_for_update will not work
as expected. The first thing the service does is select_for_update. This
uses a database query that will lock the selected rows at the database level.
With the locked rows, we proceed with updating the task.
When the function execution ends, the transaction gets committed and the
lock is released. Since the owner was set to the task, we also moved the task
status to IN_PROGRESS.
Using pessimistic offline locking has advantages and disadvantages. Let’s
review them:

Advantages

Data Integrity: Guarantees that once a process holds a lock, it can
safely read and update the resource without interference from other
processes.
Simplicity: Easier to implement and to understand how it works.
No Dirty Reads: Prevents scenarios where one transaction reads
uncommitted data from another.

Disadvantages

Reduced Throughput: Each resource can be accessed only one
process at a time.
Deadlocks: If not managed carefully, it can lead to situations where
two or more processes are waiting indefinitely.

Resource Intensive: Managing locks can consume system resources,
and holding locks for extended periods can block system resources.

Optimistic offline locking uses a different approach. The code will not lock
the database record. Optimistic offline locking will check that no other
transaction has changed the record since you read it before you try to
commit any changes.
Since we are using a service layer, we can implement an additional service
that will use optimistic locking and you can reuse the same view.
However, optimistic locking requires a change in the model. We need to
add a new column to the Task model to add a versioning.
class VersionMixing:

version = models.IntegerField(default=0)

class Task(VersionMixing, models.Model):

… (other fields remain the same)

Now let’s create the migration and execute them:
poetry shell

python manage.py makemigrations

python manage.py migrate

Once we have our Task model migrated, we can add our new service
claim_task_optimistically:
from django.db import transaction

from django.db.models import F

from django.core.exceptions import ValidationError

def claim_task_optimistically(user_id: int, task_id: int) ->

None:

try:

Step 1: Read the task and its version

task = Task.objects.get(id=task_id)

original_version = task.version

Step 2: Check if the task is already claimed

if task.owner_id:

raise ValidationError("Task is already claimed or

completed.")

Step 3: Claim the task

task.status = "IN_PROGRESS"

task.owner_id = user_id

Step 4: Save the task and update the version, but only if

the version hasn't changed

updated_rows = Task.objects.filter(id=task_id,

version=original_version).update(

status=task.status,

owner_id=task.owner_id,

version=F('version') + 1 # Increment version field

)

If no rows were updated, that means another transaction

changed the task

if updated_rows == 0:

raise ValidationError("Task was updated by another

transaction.")

except Task.DoesNotExist:

raise ValidationError("Task does not exist.")

The implementation is straightforward. First, we get the Task and its
version. We then check if the owner was set before and raise an error if the
task has an owner set.
We then set the new status and the owner, but instead of using the same
method, we use an update query. The key is that the update query is filtered
by the original version, and we also use the database function to increment
the value which is made through an atomic operation.
The ORM will return the number of update rows, and we can check against
this number to verify if the operation was performed.

If you are interested in learning more about Pessimistic and Optimistic
Offline Locking, I highly recommend exploring Chapter 16 of ‘Patterns of
Enterprise Application Architecture’. This chapter provides an in-depth
analysis and comparison of both locking strategies. It covers the scenarios
where each approach is most effective, illustrating how they can be
implemented in various enterprise applications. The chapter also discusses

the trade-offs and considerations associated with each pattern, helping you
understand when to use one over the other.

Advantages:

High Concurrency: Allows multiple transactions to read the data
simultaneously.
Resource-Efficient: This does not require the system to manage
locks.
No Deadlocks: Records are not locked.
Better Responsiveness: Transactions are less likely to be blocked,
which can lead to better system responsiveness.

Disadvantages:

Complexity: More complex to implement correctly, particularly in
systems with multiple operations that must be performed as a unit.
Potential for Conflicts: If two transactions read the same record and
then attempt to update it, the latter will fail and typically will have to
retry, adding complexity and potentially reducing efficiency.
Stale or Dirty Reads: Without additional controls, there’s the
potential to read stale or “dirty” data being updated by another
transaction but hasn’t been committed yet.
Eventual Consistency: Unlike pessimistic locking, the system’s
consistency is eventual and may require additional effort.

Choosing between the two often depends on your specific requirements. If
consistency and simplicity are more important and you can afford to queue
or serialize transactions, pessimistic locking might be more appropriate.
Optimistic locking may be better if you require high concurrency and are
okay with handling the occasional update conflict.

Error Handling with Custom Error Views
By default, Django comes with predefined views for handling HTTP error
codes such as Page Not Found (404) and Internal Server Error (500).

You can customize these views to integrate seamlessly with the overall
aesthetic of your web application.
Let’s see how to create custom error views:
tasks/views.py

from django.shortcuts import render

def custom_404(request, exception):

return render(request, '404.html', {}, status=404)

This function-based view is configured to render the 404.html template
when invoked. However, don’t forget to update your urls.py to set this
function as the 404 handler:
tasks/urls.py

handler404 = 'tasks.views.custom_404'

For handling internal errors, you can adopt a similar approach; just replace
'handler404' with 'handler500'.

Info: When the DEBUG setting is set to True, the framework displays
detailed error messages with views. You must select the DEBUG settings
to False to see the custom errors.

Be cautious with the data you reveal in custom error views; disclosing too
much can pose security risks. As a rule of thumb, try to customize the error
views for the look and feel and keep it as simple as possible.
Go ahead and create a 404.html file, then place it in the templates directory
of your Django project:
{% extends "base.html" %}

{% block content %}

<h1>Page Not Found</h1>

<p>We're sorry, but the page you were looking for doesn't

exist.</p>

<p>Return to the homepage</p>

{% endblock %}

Conclusion
The key to architecting a robust Django project is crafting clean, lean views
without any business logic. We delved into the realm of generic opinions on

how to develop our initial Django views and tinkered with URL
configurations to use them.
Next, we embarked on an exploratory tour of HttpRequest and
HttpResponse objects, using path converters for dynamic URL
management and leveraging URL namespaces to prevent clashes across
multiple applications.
Both pessimistic and optimistic locking serve as potent solution to race
conditions amidst a torrent of simultaneous server requests.
Finally, we discovered how to handle errors effectively through custom
error views.
In the next chapter, we’ll augment our task manager project by utilizing the
features of the framework’s template engine. Furthermore, we’ll explore the
art of serving static assets such as CSS, JavaScript, and images.

Questions
1. What is the stateless nature of requests and how does it affect the

interaction between client and server?
2. What are the primary responsibilities of views in Django?
3. Why is it not recommended to add business logic in Django views?
4. In the context of class-based views in Django, why is inheritance not

recommended purely for code reuse? What problems could arise from
invalid inheritance?

5. What is the god object antipattern and how does it contradict the
Single Responsibility Principle (SRP)? How does Django Mixins help
avoid this problem?

6. How can dynamic URLs be handled with path converters in Django?
7. What are the roles of to_python and to_url methods in a custom

Django path converter?
8. What are some advantages of using function-based views in Django?
9. How can function-based views be used with a service layer in Django?

10. When might it be better to use class-based views instead of function-
based views in Django?

11. How is a race condition described when multiple team members try to
claim the same task? Why is it hard to detect?

12. How does optimistic locking differ from pessimistic locking regarding
database record locking?

13. In what scenarios might one prefer pessimistic locking over optimistic
locking and vice versa?

Exercises
1. Refactor the services.py to a directory and create a new module with

the services for the sprint, task and epic.
2. Implement a service layer to implement the business logic for Sprint.

a. create_sprint: This service should take the sprint details like
name, description, start_date, end_date, and the user creating
the sprint. It should create a new Sprint object and return it. Make
sure to validate the dates - the end date should be after the start
date.

b. remove_task_from_sprint: This service should take a sprint ID
and a task ID. It should validate both IDs, check if the task exists
in the sprint, and then remove the task from the sprint.

c. set_sprint_epic: This service should take a sprint ID and an
epic ID. It should validate both IDs and then assign the sprint to
the epic.

3. Create the views to call the services created in point 2.

CHAPTER 6
Using the Django Template Engine

Introduction
Django templates define the application’s front end, allowing us to present
information to users. Understanding the interplay between contexts, tags,
and filters in the template system accelerates web application development.
The Django framework offers myriad features, simplifying the process of
serving static content. We’ll delve into employing CDNs and compressing
and optimizing static content, ensuring our web apps run fast. Template
inheritance and inclusion make maintaining our web application easier,
ensuring a consistent look and feel across all pages.
Additionally, we’ll dive into the when and how of crafting custom template
tags and filters, elevating the efficiency of our template designs.
As this chapter winds down, we’ll cover the debug template tag, essential for
troubleshooting template issues. By presenting our checklist, we’ll cover
various techniques to supercharge the rendering performance and slash your
app’s load times. By the end of the chapter, we’ll dissect the nuances of
templates, aligning them with the high standards of security practices.

Structure
In this chapter, we will cover the following topics:

Introduction to Django Template Engine
Creating Your First Django Template
Django Template Language: Variables, Tags, and Filters
Using Static Files in Django Templates: CSS, JavaScript, Images
Inheritance in Django Templates
Including Templates: Reusing Template Code
The home page view: Showing Tasks by status

Custom Template Tags and Filters
Django Template Context Processors
Debugging Django Templates
Optimizing Template Rendering
Securing Django Templates

Introduction to Django Template Engine
The Django framework boasts two primary template engines: Django
Template Language (DTL) and Jinja2. The framework also allows creation
of custom template backends, allowing third parties to support more
template languages.
Since DTL is Django’s inherent template system, it’ll be our focus in this
chapter. Jinja2 remains an option, hinging on your project’s specifics;
however, its usage isn’t on our current book’s agenda.

Tip: You can mix DTL and Jinja2, but it’s not recommended. Using only
one template engine is better since it will make maintainability easier and
reduce the probability of making mistakes.
For consistency’s sake, opt for a single template engine for your project.

Django templates are text files that contain a mix of HTML and template
language. These files are used to define your web application’s structure and
layout. Context comes into play when these templates render into the final
HTML. That’s what browsers tap into, bringing our web application to the
end-users.
Fast forward to Chapter 3, Getting Started with Django Projects and Apps.
There, we birth our core HTML file: base.html. The base.html file contains
all the boilerplate for our web application and all our templates will extend
this base template, making the look and feel of our application the same over
all the pages. This base template will make our maintenance easier since
changing something in the base will be reflected in all other pages extending
the base.
In Django’s MVT paradigm, when a user requests, the view determines
which template to use and what context data to provide. The template then

renders this data, producing the HTML sent back to the user.

Django Template Language: Variables, Tags, and
Filters
There are three essential constructs in the template language: variables, tags,
and filters.
The best way to understand variables is to consider how they work with the
template context. The context refers to a dictionary passed to the template
engine during rendering. A dictionary is a key-value data structure; each key
will be a variable name and the value will be the value of the template
variable. Let’s see an example:
views.py

from django.shortcuts import render

def custom_view(request, exception):

context = {'task_name': 'Develop GeoPathFinder'}

return render(request, 'my_view.html', context, status=200)

Then, in our template, if we want to show our task_name:
{% block content %}

<p>Task Name: {{ task_name }}</p>

{% endblock %}

As you can see, the keys of the context dictionary will translate to variables
in your template.
Dictionaries could contain other types of values, such as lists, instances of
objects, or even a dictionary. The template language allows access to this
data structure:
views.py

from django.shortcuts import render

def custom_view(request, exception):

user = request.user

context = {'tags':['backend', 'frontend'], 'scores': {101: 5,

105: 13}, 'user': user}

return render(request, 'my_view.html', context, status=200)

In our template, here’s how we can access these data structures:

{% block content %}

<h1>Welcome, {{ user.username }}!</h1>

<p>The first tag is {{tags.0}} and the score for the task with

pk 101 is: {{score.101}} </p>

{% endblock %}

The template language lets you access attributes of objects, as well as
indexes and keys of lists and dictionaries. Django templates fail silently.
This means that if you access the index “0” of a list and the list is empty, it
will not raise an error.

Info: Django templates have a peculiar characteristic that can be both a
benefit and a pitfall - they fail silently. This means that if an error occurs in
your template, instead of raising an explicit error, Django will often ignore
the problem and continue rendering the rest of the template as if nothing
happened. While this can keep your application running smoothly in the
face of minor issues, it can also make debugging quite challenging, as
errors in your templates might not be immediately apparent.

Filters are functions that take one or more arguments and are used to
transform the values of variables.
Let’s see some common examples of using template filters:
{% block content %}

<h1>{{ task.title|title }}</h1>

<p>Description: {{ task.description|truncatechars:25 }}</p>

<p>Created on: {{ task.created_at|date:"F j, Y"}}</p>

{% endblock %}

In the preceding example, we use two filters: the truncatechars and date.
The first one, truncatechars, will trim a string after a certain number of
characters and add an ellipsis (…). The date filter will change the string
representation of the date object and has a lot of flexibility to change the
format. The format we are using is “F j, Y”, which means:

F: Full textual representation of a month, such as ‘January’ or ‘March’.
j: Day of the month without leading zeros.
Y: A full numeric representation of a year, consisting of 4 digits.

The filter will output:

<p>Published on: September 21, 2023</p>

Info: The available string formats for the template language are very
extensive and you can always check the framework’s documentation. The
format was designed to be compatible with PHP.
Here are some common format characters:

j: Day of the month without leading zeros, for example, 7
l: Day of the week in textual long, for example, Monday
S: Ordinal suffix for the day, for example, ‘st’
F: Month in textual long, for example, March
Y: Year in 4-digit long, for example, 2023
H: Hour in 24 hours with leading zeros
i: Minutes
s: Seconds in 2-digit format with leading zeros
e: Timezone name

Here is a list of the most useful filters provided by the framework:

length: Returns the length of the object.
slugify: Converts the string to a format compatible with URLs.
upper/lower: Returns a string or char’s uppercase or lowercase.
title: Converts a string into title case by making words start with an
uppercase character and the remaining characters lowercase.
default: Returns the value if available; otherwise, it returns the default
value.
first/last: Returns a collection’s first/last element.
filesizeformat: Allows to convert the size of files to human-readable
format.

Django template tags are a way to provide functionality to the templates.
You can loop objects, inherit from templates, use conditional operators, and
more with tags. Tags are noted with braces and percent signs ({% %}).
Here are some of the commonly used Django template tags:

{% for %} and {% endfor %}: These are used to create a loop in the
template.
{% if %}, {% else %} and {% endif %}: These tags are used for
conditional rendering in the template.
{% url %}: This tag generates URLs. You pass in the name of a view
and, optionally, any arguments or named arguments.
{% block %} and {% endblock %}: These tags define a block that can
be overridden in child templates.
{% extends %}: This tag is used for template inheritance. It allows you
to use the structure of a parent template and override parts of it.
{% load %}: This tag makes custom template tags and filters accessible
within the template.
{% include %}: This tag allows you to include the contents of another
template file.

Best practices suggest keeping heavy logic out of templates. Instead, service
layers should handle this logic, passing only the necessary processed data to
templates for rendering. This ensures a separation of concerns and maintains
both clarity and efficiency.

Inheritance in Django Templates
The template language allows you to reuse parts of your HTML using
inheritance with the {% extends %} template tag. As previously mentioned,
it’s common practice to utilize a base template containing the boilerplate and
then override specific sections using blocks. Using a base template allows
you to perform easier maintenance.
Though we have touched base.html earlier, we can enhance it with
additional template tags:
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

{# Using a block for the title allows child templates to

provide their specific titles. We use the default filter to

set a fallback title if not provided. #}

<title>{% block title %}{{ page_title|default:"Default Title"

}}{% endblock %}</title>

{# This block is intended for page-specific CSS. Override in

child templates as needed. #}

{% block extra_css %}{% endblock %}

<!-- Bootstrap CSS -->

<link

href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bo

otstrap.min.css" rel="stylesheet" integrity="sha384-

rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG

65" crossorigin="anonymous">

</head>

<body>

{# Use of the 'include' tag helps in modularizing the HTML,

making maintenance easier by breaking the layout into smaller

parts. #}

{% include "tasks/_header.html" %}

<main>

{# Main content block can be overridden in child templates to

provide page-specific content. #}

{% block content %}{% endblock %}

</main>

{% include "tasks/_footer.html" %}

{# A block for adding custom JavaScript ensures flexibility

for child templates to introduce or override scripts. #}

{% block extra_javascript %}{% endblock %}

<!-- Using external libraries can be beneficial for

consistency and speed. Always ensure they're from trusted

sources. -->

<script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"

integrity="sha384-

DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRk

fj" crossorigin="anonymous"></script>

<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/boot

strap.bundle.min.js" integrity="sha384-

kenU1KFdBIe4zVF0s0G1M5b4hcpxyD9F7jL+jjXkk+Q2h455rYXK/7HAuoJl+0

I4" crossorigin="anonymous"></script>

</body>

</html>

In this updated base template, we’ve incorporated additional blocks.
Specifically, the title is now dynamically set by {{

page_title|default:"Default Title" }}, which either displays the
page_title or defaults to Default Title. To customize the title block,
simply override it in your child template.
We’ve also introduced two new blocks, extra_css and extra_javascript,
for incorporating custom CSS and JavaScript.
Template blocks, especially those intended for overriding, should be
adequately explained using comments to ensure clarity for developers who
might work with the template in the future.
In a child template, this block can be overridden to include page-specific
scripts:
{% extends "base.html" %}

{% block extra_javascript %}

{{ block.super }}

<script src="path/to/custom/script.js"></script>

{% endblock %}

Sometimes, you might want to include the content from the base template’s
block and add to it. The {{ block.super }} tag allows you to do it.

Including Templates: Reusing Template Code
Our base template uses the include for the header and footer. Using the
include is very useful for reusing common template parts. It also makes the
template simpler to understand and structure.
Using the include is very simple:
{% include "tasks/_footer.html" %}

Using an underscore as a filename prefix is not mandatory, but it is
commonly used for templates meant to be included by other templates.
The included tag has some limitations and drawbacks. The tag uses the
current context to render the included template. You will get an error if the
included template refers to some variables not included in the context.
For every template inclusion, the system triggers a file read operation.
Overusing template inclusions can lead to performance bottlenecks. As best
practice, avoid including templates within loops.
Another limitation arises when the “include” usage makes you hardcode the
filename of the intended template. Using the filename in the template will
make future refactoring more difficult if you want to change the filename.
There are ways to circumvent the hardcoding issue on the template
inclusion. One of them is to define the template parts in the settings.py and
then pass the template filename as a context variable from the views.
Add template names to Django’s settings:
settings.py

TEMPLATE_PARTS = {

"footer": "tasks/_footer.html",

other template parts can be added here

}

Then, in your views:
from django.conf import settings

def my_view(request):

context = {

"footer_template": settings.TEMPLATE_PARTS["footer"]

}

return render(request, "my_template.html", context)

This way, you centralize the template paths in the settings and avoid
hardcoding them in the templates or views. When you need to refactor or
change paths, it’s done in one place in the settings.
However, remember that over-abstracting can make the code harder to
follow for some developers. The key is to strike the right balance based on
the project’s needs

The include tag is a handy tool for reusing template code in Django and is
widely used.
One of the potential issues with the included tag is that the included template
relies on the current context to render. Any variable not available in that
context can result in an error. To mitigate this issue, Django offers context
processors. In the upcoming sections, we will dive deeper into context
processors. This will provide a robust solution to avoid variable availability
issues in included templates, ensuring smoother and more reliable template
rendering.

The Home Page View: Showing Tasks by Status
We have all the tools to build a functional task manager home page to show
our tasks, as we introduced in Chapter 3, Getting Started with Django
Projects and Apps.
First, let’s change our home view implementation to this:
def task_home(request):

Fetch all tasks at once

tasks = Task.objects.filter(status__in=["UNASSIGNED",

"IN_PROGRESS", "DONE", "ARCHIVED"])

Initialize dictionaries to hold tasks by status

context = defaultdict(list)

Categorize tasks into their respective lists

for task in tasks:

if task.status == "UNASSIGNED":

context["unassigned_tasks"].append(task)

elif task.status == "IN_PROGRESS":

context["in_progress_tasks"].append(task)

elif task.status == "DONE":

context["done_tasks"].append(task)

elif task.status == "ARCHIVED":

context["archived_tasks"].append(task)

return render(request, "tasks/home.html", context)

We structured our implementation to use a context where the tasks are pre-
filtered by their status. Using this context during template rendering avoids
unnecessary duplicate iterations for each task status.

Now, our new tasks/home.html template is as follows:
{% extends "tasks/base.html" %}

{% block content %}

<div class="container mt-5">

<h2>Tasks by Status</h2>

<div class="row mt-4">

<!-- Unassigned Tasks -->

<div class="col-md-3">

<h4>Unassigned</h4>

{% for task in unassigned_tasks %}

<div class="card mb-2">

<div class="card-body">

<h5 class="card-title"><a href="{% url 'tasks:task-

detail' task.pk %}">{{ task.title }}</h5>

<p class="card-text">Owner: {{

task.owner.username|default:"None" }}</p>

</div>

</div>

{% endfor %}

</div>

<!-- In Progress Tasks -->

<div class="col-md-3">

<h4>In Progress</h4>

{% for task in in_progress_tasks %}

<div class="card mb-2">

<div class="card-body">

<h5 class="card-title"><a href="{% url 'tasks:task-

detail' task.pk %}">{{ task.title }}</h5>

<p class="card-text">Owner: {{

task.owner.username|default:"None" }}</p>

</div>

</div>

{% endfor %}

</div>

<!-- Completed Tasks -->

<div class="col-md-3">

<h4>Completed</h4>

{% for task in done_tasks %}

<div class="card mb-2">

<div class="card-body">

<h5 class="card-title"><a href="{% url 'tasks:task-

detail' task.pk %}">{{ task.title }}</h5>

<p class="card-text">Owner: {{

task.owner.username|default:"None" }}</p>

</div>

</div>

{% endfor %}

</div>

</div> <!-- End of row -->

</div> <!-- End of container -->

{% endblock %}

Our updated home template showcases three distinct columns, with each
column representing a specific task status. Each task title provides a link to
its detailed page, displaying the task owner.
To populate your project with tasks, simply use the admin page to add either
tasks or users. In Chapter 8, User Authentication and Authorization in
Django, we will add authentication and the task create form will allow us to
create new tasks as normal users.
Here is the result of our new home tasks page:

Figure 6.1: The Task homepage

You can always check the GitHub repository,
git@github.com:llazzaro/web_applications_django.git, and check out the
branch chapter_6 to see the project code.

Custom Template Tags and Filters
Creating custom template tags can significantly aid in structuring and
organizing your project. For example, we will create a mini-report to
summarize tasks of a particular sprint.
We must review our requirements carefully before designing custom
template tags or filters.
Since we need to create a mini report of the sprint tasks, it is more complex
than a simple transformation of one value to another, and using a tag is more
suitable.

Tip: While crafting a filter for the mini-report is technically feasible, doing
so is more complicated since the operation goes beyond a basic
transformation. Creating a filter for the mini-report will be difficult and its
implementation messy, which needs to be aligned with the framework’s
philosophy.
If you are in doubt and it feels hard to implement a filter, you could create
a tag instead.

In your application’s root directory, establish a 'templatetags' directory
and include an __init__.py file. Django will search for custom template
filters for each installed application in this directory.
Inside the templatetags directory, create a new file called sprint_tags.py.
This file will contain the custom tag implementation:
from django import template

from django.db.models import Count

from taskmanager.tasks.models import Sprint

register = template.Library()

@register.simple_tag

def task_summary(sprint: Sprint) -> dict:

Group tasks by status and count each group

task_counts = (

sprint.tasks.values("status").annotate(count=Count("status"))

.order_by()

)

Convert the result into a dictionary: {status: count}

summary = {item["status"]: item["count"] for item in

task_counts}

return summary

The new filter task_summary takes a sprint as a parameter and returns a
dictionary to be merged into the context. It is required to register the
template tags by using a decorator that the framework provides. The code
just counts the tasks of the sprint by status using a query.
For using the template tag in your template, you need to load it first:
{% load sprint_tags %}

{% task_summary sprint as summary %}

<p>Task summary:</p>

Unassigned: {{ summary.UNASSIGNED }}

In progress: {{ summary.IN_PROGRESS }}

Completed: {{ summary.DONE }}

Archived: {{ summary.ARCHIVED }}

Our example uses the keys of the dictionary to access the summary
dictionary returned by the template tag.
The filters are the way to go when you need a simpler value transformation.
Let’s create a custom filter to see the difference.
For our tasks management system, we are requested to display the
percentage of completed tasks in an Epic or Sprint. Let’s create a custom
filter to show this information by following these steps to create your filter.
Now, let’s create a new file called templatetags/tasks_filters.py and add the
following contents:
from django import template

from django.db.models import Count, Case, When, FloatField

register = template.Library()

@register.filter

def percent_complete(tasks):

if tasks.exists():

Aggregate count of all tasks and count of completed tasks

aggregation = tasks.aggregate(

total=Count("id"),

done=Count(Case(When(status="DONE", then=1)))

)

Calculate the percentage

percent_done = (aggregation["done"] / aggregation["total"]) *

100

return percent_done

else:

return 0

The custom filter takes a single parameter: the tasks from which the
percentage is computed. The filter uses the ORM to count the total and the
tasks in DONE. We use a different decorator this time, which is a
@register.filter.
For using the filter, you need to use the load template tag, as shown in the
following example:
{% load tasks_filters %}

<h2>{{ epic.name }}</h2>

<p>{{ epic.tasks|percent_complete }}% complete</p>

<h2>{{ sprint.name }}</h2>

<p>{{ sprint.tasks|percent_complete }}% complete</p>

Crucially, our custom filter assumes that neither the epic nor the sprint will
contain an overwhelming number of tasks. Otherwise, the filter could be
very slow. Given our domain problem, it sounds reasonable that an epic or
sprint will not contain hundreds of tasks each.
This section, dedicated to “Debugging Django Templates”, delves deeper
into template optimization before applying any caching or optimization
strategies.

Using Static Files in Django Templates: CSS,
JavaScript, Images
Managing static files in Django is straightforward. Static files, such as CSS,
JavaScript, and images, remain unchanged during the application’s runtime
since it’s not so common to dynamically generate them.
For using the static files in your templates, you can use the template tag {%
static 'css/styles.css' %}, where the second argument is the path to the
file. The template tag generates the URL that points to the specific static file.
Django offers a built-in mechanism to modify the storage system used for
static files. By default, the framework uses StaticFilesStorage, which
uses the filesystem to store and serve the files. This can be changed via the
STORAGES setting.
Django offers two methods to handle static files when using the
development server. The first way is to have the DEBUG settings set to True.
When the setting is enabled, the development server will service the files
from the locations you specify in your STATICFILES_DIRS setting. When the
DEBUG setting is set to False, the development server will not serve the
static files.
Later, we will see how to serve the files in production. First, we need to
configure some settings to use static files:
First, set STATIC_URL and STATIC_ROOT in settings.py. STATIC_URL is the
URL for static files, and STATIC_ROOT is the absolute path to the directory
where collectstatic will collect static files for deployment. The
collectstatic command in Django is used to gather all static files from
each of your applications into a single location, defined by the STATIC_ROOT
setting.
settings.py

STATIC_URL = "/static/"

STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles")

We need to set the STATICFILES_DIRS, a list where Django will search for
the static files aside from each “static” directory of every installed
application.
STATICFILES_DIRS = [

(os.path.join(BASE_DIR, "tasks/static"),

]

With this setting, we are ready to execute the management command
“collectstatic”:
python manage.py collectstatic

You can use the static files by using the template tag “static”. Here are
some examples:
{% load static %}

<link href="{% static 'css/styles.css' %}" rel="stylesheet">

<script src="{% static 'js/main.js' %}"></script>

The first example shows how to use the static template tag to show an
image, the HTML tag img can be used anywhere inside your body.
Let’s include a logo in the header template of our project:
{% load static %}

<header class="d-flex justify-content-between align-items-

center p-3">

<!-- Left side -->

<div class="d-flex align-items-center">

<!-- Logo -->

<img src="{% static 'images/logo.png' %}" alt="Task Manager"

width="50" class="mr-3">

<a href="{% url 'tasks:task-home' %}" class="btn btn-

secondary mr-2" role="button">Home

<a href="{% url 'tasks:task-create' %}" class="btn btn-

primary" role="button">Create

</div>

<!-- Right side -->

<div class="d-flex">

<input type="text" class="form-control" id="search"

placeholder="Search">

<button type="button" class="btn btn-success ml-

2">Search</button>

</div>

</header>

Next step is to execute the collect static command:

poetry shell

python manage.py collectstatic

You should see the new logo in the header, as shown in Figure 6.2:

Figure 6.2: Task manager home page with the new logo

For including CSS, the HTML “link” tag can be used in the head of the
HTML. A similar approach can be done for including JavaScript files

using the HTML script tag.
Django’s development server serves static files in an inefficient and insecure
manner. It’s not advisable to use the development server in a production
environment. Using the setting makes using a different storage backend for
static files possible. Different storages allow you to serve static files from
cloud providers or a content delivery network (CDN).

Info: A Content Delivery Network (CDN) consists of a globally
distributed network of servers that collaboratively deliver internet content
swiftly.
CDNs are also particularly useful for static assets like CSS, JavaScript
files, and images. When using a CDN for serving CSS, JavaScript, and
others, the website’s load times can be reduced since the CDN will be
closer to the client, leading to faster load times.

Numerous cloud providers present various storage solutions. One of the
most used ones is AWS S3. The Django framework does not come with a
storage solution for S3, but many third-party libraries allow the use of S3.
For our production setup, we’ve opted for django-storages, a reputable and
well-maintained library.
First, add the dependency using poetry:
poetry add django-storages

Then, we will need to update our INSTALLED_APPS and add the storages
application:
settings.py

INSTALLED_APPS = [

"django.contrib.admin",

"django.contrib.auth",

"django.contrib.contenttypes",

"django.contrib.sessions",

"django.contrib.messages",

"django.contrib.staticfiles",

"tasks",

"storages",

]

Since we are using Django 4.2, we need to set up the new STORAGES settings:
#settings.py

STORAGES = {"staticfiles": {"BACKEND":

"storages.backends.s3boto3.S3StaticStorage"}}

Finally, we need to set the access key ID and access key for AWS
authentication:
settings.py

AWS_S3_ACCESS_KEY_ID = os.getenv("AWS_S3_ACCESS_KEY_ID")

AWS_S3_SECRET_ACCESS_KEY =

os.getenv("AWS_S3_SECRET_ACCESS_KEY")

Once we have all these settings configured, we are ready to execute collect
static to upload the static files to the S3 bucket:
python manage.py collectstatic

If you browse your project, you will see that your S3 bucket provides the
URLs of your static content.

Django Template Context Processors
Django creates a context each time it renders a template. The view provides
the context, which is then gathered using context processors. The template
context processor is a way to include data available globally to all the
templates. Simply put, a context processor is a Python function that yields a
dictionary.
Django comes with several built-in context processors; you can change them
in the settings.py configuration file of the project.
Our project has four context processors configured:
TEMPLATES = [

{

"BACKEND": "django.template.backends.django.DjangoTemplates",

"DIRS": [

BASE_DIR / "templates",

],

"APP_DIRS": True,

"OPTIONS": {

"context_processors": [

"django.template.context_processors.debug",

"django.template.context_processors.request",

"django.contrib.auth.context_processors.auth",

"django.contrib.messages.context_processors.messages",

],

},

},

]

Let’s review what each of the context processors does:

django.template.context_processors.debug: If the DEBUG setting
is True, this adds a debug flag to the context.
django.template.context_processors.request: Adds the request
object.
django.contrib.auth.context_processors.auth: Adds the user and
perms objects, representing the currently logged-in user and their
permissions.
django.contrib.messages.context_processors.messages: Adds
messages for the Django messages framework.

You can also create your custom context processor. Before crafting a custom
context processor, find out its global necessity; if not, merely embed it in
your view.
Using a context processor can be an elegant way to manage feature flags,
especially if the visibility of a feature depends on the user and needs to be
determined for every rendered template.
First, create a context_processors.py file in the tasks application directory.
Inside that file, let’s add the context processor function for the feature flag:
from django.contrib.auth.models import Group

def feature_flags(request):

user = request.user

flags = {

"is_priority_feature_enabled": False,

}

Ensure the user is authenticated before checking groups

if user.is_authenticated:

flags["is_priority_feature_enabled"] = user.groups.filter(

name="Task Prioritization Beta Testers"

).exists()

return flags

Every template’s context will be augmented with the variable
is_priority_feature_enabled through the context processor.
Then, you will need to add the new context processor to your project
settings.py:
TEMPLATES = [

{

…

"OPTIONS": {

"context_processors": [

…

"tasks.context_processors.feature_flags",

],

},

},

]

When using the feature flag in your template, treat it as a variable:
{% if is_priority_feature_enabled %}

<!-- Render UI elements related to task prioritization -->

{% else %}

<!-- Show a teaser: "Stay tuned for our upcoming feature: Task

Prioritization!" -->

{% endif %}

Remember to be cautious when adding a new context processor; it will be
accessible globally and the context processor should avoid heavy processing.
If you need to access the database, consider using a cache.
Here is an example of our previous context processor using a cache:
from django.core.cache import cache

def feature_flags(request):

user = request.user

flags = {

"is_priority_feature_enabled": False,

}

Ensure the user is authenticated before checking groups

if user.is_authenticated:

Using the user's id to create a unique cache key

cache_key = f"user_{user.id}_is_priority_feature"

Try to get the value from the cache

is_priority_feature = cache.get(cache_key)

if is_priority_feature is None: # If cache miss

is_priority_feature = user.groups.filter(name="Task

Prioritization Beta Testers").exists()

Store the result in the cache for, say, 5 minutes (300

seconds)

cache.set(cache_key, is_priority_feature, 300)

flags["is_priority_feature_enabled"] = is_priority_feature

return flags

Ensuring each user has a unique cache key is vital. This prevents two users,
accessing the context processor simultaneously, from retrieving each other’s
cached data. If user group details change over time, you might have to
invalidate that user’s cache to fetch the latest values.
While this example illustrates Django’s caching framework simply, cache
usage can often be more intricate than shown here.

Debugging Django Templates
While debugging templates, the template tag {% debug %} proves
invaluable. Placing the debug template tag in your template outputs a textual
depiction of all accessible context variables.
If you want to use the debug template tag, add it to your template at the
location where you want to display the context variables:
<pre>{% debug %}</pre>

We advise employing the pre-HTML tag; it retains formatting, enhancing
readability within the browser.
In a development environment, this template tag becomes helpful for
troubleshooting issues. As a piece of advice, always avoid using the {%
debug %} template tag in a production environment to prevent potential
security vulnerabilities and inadvertent exposure of sensitive data.

Optimizing Template Rendering
As your application grows in complexity and scale, the need to optimize
template rendering intensifies. Here is a checklist of common optimization
you can do to your project.

Minimize Database Queries
Often, the primary bottleneck in your application is the database. Here are
some tips to tackle them:

Use select_related and prefetch_related: When dealing with
ForeignKey or OneToOneField, select_related fetches related
objects in a single query. When dealing with reverse ForeignKey or
ManyToMany fields, consider using prefetch_related. There are some
situations where the select_related can lead to worse performance
since the join query could be more expensive that query each table.
Avoid using len(queryset): Instead, use queryset.count() to get the
number of items in a queryset without evaluating it. Note that is the
query was already evaluated you may prefer to use len instead of count.
Limit QuerySets: If you only need a few items, use [:n] slicing. For
example, Article.objects.all()[:5] only fetches five articles.

Keep templates simple
If you follow good practices, all your business logic should live in the
service layer. Ensure your templates remain focused purely on presentation.
Utilize {% extends %} and {% block %} tags for code reuse in templates,
helping prevent redundant code.

Use caching
You can use the cache template tag to do fragment caching. Use {% cache
%} to cache stable sections of a template. This is especially useful when
dealing with a part of your template that is expensive to calculate.

Optimize Static Content
Multiple Django packages are available to enhance static content
performance. django-compressor offers on-the-fly compression for CSS and

JavaScript files. Installing ‘compressor’ is simple and optimizes CSS and
JavaScript files.
For images, you can use django-imagekit, which processes and optimizes
images. You can also generate thumbnails and convert images to different
formats.
As a general rule, keep your custom template tags and filter usage to a
minimum and avoid large looping structures.

Securing Django Templates
Many developers emphasize backend security but often overlook the
security of templates. Securing your templates is just as crucial as fortifying
your backend. Here are some methods for securing your templates:

Don’t turn off autoescape
Django auto-escapes all the content by default, which will protect against
Cross-Site Scripting (XSS) attacks. However, you can disable autoescape in
the template or employ the 'safe' filter.
Only use |safe or {% autoescape off %} when you’re confident about the
safety of the content. Always validate and sanitize the content before
marking it as safe.

Be careful with template caching
For fragment caching, always use unique caching keys per user or context to
prevent data exposure. Using the wrong keys for caching could expose
information between users.

Custom Template Tags and Filters: Validate Input
If not validated and handled appropriately, custom template tags and filters
in Django might lead to vulnerabilities.
Consider an example of a filter to convert markdown to HTML:
import markdown

@register.filter(name="markdown_to_html")

def markdown_to_html(content):

return markdown.markdown(content)

And in your template:

<div class="post-content">

{{ post.content|markdown_to_html|safe }}

</div>

Now a malicious user could use the following markdown to attack our
website:
This is bold text

<script>

// Malicious script here

alert('Hacked!');

</script>

When our filter markdown_to_html processes the malicious payload, it will
convert the bold text to HTML, but it will leave the script tag untouched. As
the 'safe' filter is applied in the template, executing this script would result
in an XSS attack.
You can solve this vulnerability by sanitizing the content from the user:
@register.filter(name='markdown_to_html')

def markdown_to_html(content):

return markdown.markdown(content, output_format='html5',

extensions=["escape_html"])

Using the escape_html extension will escape any HTML in the markdown
preventing the script execution.
In Chapter 8, User Authentication and Authorization in Django, we will use
the Content Security Policy header to provide additional protection against
attacks.
Staying updated with Django’s latest releases is important for your
application’s security and stability. By ensuring that your project is always
running on the latest version, you protect against malicious attacks.

Conclusion
The template engine represents the “V” in Django’s MVT architecture,
serving as a foundational concept to learn for mastery over the framework.
By mastering the workings of the template context and Django’s tags and
filters, you’re well-equipped to craft a safe and efficient web application.

The static template tag lets you incorporate static content through the
template engine. Leveraging third-party packages to compress and minify
static content can significantly enhance your web application’s load time.
With the template engine, you can use inheritance and embed other
templates, ensuring yours remains consistent and maintainable. You can also
extend the template engine by developing template tags, filters, and context
processors. Finally, we learned how to optimize and follow best security
practices to keep our project secure and fast.
In the next chapter, Chapter 7, Forms in Django, we will uncover the
intricacies of handling forms in Django, a crucial aspect of user interaction
in any web application

Questions
1. Is it recommended to mix DTL and Jinja2 in a Django project? Why or

why not?
2. What are filters in the Django template language, and how are they

used?
3. How does the {% url %} tag function in Django templates?
4. Why is it a best practice to keep heavy logic out of templates?
5. What are the limitations or drawbacks of using the include tag in

Django templates?
6. What is the primary difference between a Django template tag and a

filter?
7. Why is it important to include an __init__.py file in the ‘templatetags’

directory?
8. How does a Content Delivery Network (CDN) improve website

performance for static assets?
9. Why is the development server of Django not suitable for serving static

files in a production environment?
10. Why should you be cautious when adding a new context processor?
11. What does Django auto-escape protect against?
12. How can you potentially expose data between users with fragment

caching?

Exercises
1. Write a custom template tag called task_priority_summary, which

takes a sprint as input and returns a summary count of tasks based on
their priority levels (for example, High, Medium, Low). Note: you will
need to make a migration for this exercise!

2. Considering the importance of template security, write a template
snippet that securely displays user comments that have been converted
from markdown to HTML.

3. Design and implement the views for both the Sprint and Epic models.
Create the associated templates to display their respective data in a
user-friendly manner.

CHAPTER 7
Forms in Django

Introduction
In web application development, capturing and validating data is essential.
As we will see through this chapter, Django offers an object-oriented
approach to managing HTML forms. To start, we will understand how
HTML forms operate without using Django. Subsequently, we’ll delve into
the framework’s capabilities by creating our first Django Form.
Integrating Django Forms with templates makes your application more
elegant and maintainable. The framework offers numerous tools to simplify
a developer’s tasks. We’ll explore these features to enhance our ability to
capture user input.
We’ll implement different views to get a clearer picture of form submission
handling and the presentation of errors.
By the chapter’s end, we’ll see advanced strategies, like using a token to
prevent double submissions.

Structure
In this chapter, we will cover the following topics:

Understanding Django Forms
Creating Your First Django Form
Rendering Forms in Templates
Handling Form Submission in Views
Working with Form Fields
File and Image Upload Field
Data Validation with Django Forms
Displaying Form Errors
Advanced Form Handling: ModelForms and Formsets

Preventing Double Submission with Forms

Understanding Django Forms
Using forms allows us to capture user input in web applications. The form
can contain various input elements, like text fields, checkboxes, radio
buttons, and more.
The elements form, input, label, select, and textarea are commonly used
in HTML forms. The form element contains all the inputs and label
elements. The form has two essential attributes: action and method. Action is
the URL where the form’s data is sent and the method refers to the HTTP
method to use, which could be POST or GET. While these are crucial for basic
form functionality, other attributes like 'enctype' may be necessary
depending on specific form requirements, such as file uploads.
Input elements have three essential attributes: type, name and value. The
type determines which input to display: text, email, password, checkbox,
radio, or submit. The name attribute specifies the name for the data sent
when the form is submitted and the value contains the optional initial value
of the input.
Here is an example of a raw HTML form to create a new Task object
without using Django forms:
<form action="/tasks/new/" method="POST">

<label for="title">Title:</label>

<input type="text" id="title" name="title" required>

<label for="description">Description:</label>

<textarea id="description" name="description"></textarea>

<label for="status">Status:</label>

<select id="status" name="status">

<option value="UNASSIGNED">Unassigned</option>

<option value="IN_PROGRESS">In Progress</option>

<option value="DONE">Completed</option>

<option value="ARCHIVED">Archived</option>

</select>

<input type="submit" value="Create Task">

</form>

The action attribute of the form utilizes the URL from the view we discussed
in Chapter 5, Django Views and URL Handling. Since the view supports the
POST method for creation, the attribute method is set to POST.
The input for the title is required, so we are using the required in the input.
The description uses textarea because the description could be arbitrarily
big, and this type of field is ideal for the description.
Then, we select the status of the task with all the possible options to choose
from.
Finally, we have the submit button.

Figure 7.1: The task creation form

Some pitfalls exist when employing raw HTML forms with Django. One of
them is the maintainability of the HTML. If we want to add a new status, we
are forced to change the HTML too. Also, if we want to display errors, the
current HTML form will be minimal. The same happens with complex
validations. Using raw HTML forms could also bring some security issues,
and handling complex fields like datetime or foreign keys could be
challenging. The following raw HTML form has no protection against
Cross-Site Request Forgery (CSRF).

The framework provides a feature to make our lives easier when handling
forms. Django forms are powerful, which allows us to simplify form
handling. Django Forms will render the HTML form for you, which will
reuse form markup across multiple pages. Django forms create an object-
oriented representation of the HTML form, which helps to create an
excellent bridge between the HTML world and the Python object-oriented
world. Django forms also have a great way of handling form validation to
specify conditions to ensure the input data meets the requirements.
There are several types of forms in the framework. Let’s review four
fundamental types:

Form: This is the basic form class in Django. You can use it when no
model is associated with the form, like a search or login form.
ModelForm: This form is an extension of the Form but has additional
support to create forms based on a model. ModelForm will inspect the
model, create the appropriate input types, and use validations using
model attributes. For example, if the Task model specifies that the title
is required, ModelForm will create a title input with the required type of
text.
FormSet: This class is used when it is required to work with multiple
forms on one page.
ModelFormSet: Equivalent to the FormSet but allows to create multiple
instances of ModelForm instead.

Let’s review what happens when we use Django forms. When a user submits
a form on a web page, a POST request is sent to the server. A Django view
will process this request and this view will capture the request in an
argument.
Typically, the view initializes an instance of the form, passing in the POST
payload:
form = TaskForm(request.POST)

Note: If you’re new to Django, you might wonder where TaskForm comes
from. The TaskForm is a Django Form class we will define later in this
chapter. When we say form = TaskForm(request.POST), we initialize this
Django Form class with the POST data received from the user’s form
submission.

The next step is to validate the form using the is_valid method. This
method performs a series of validation checks on the provided payload.
if form.is_valid():

…

The is_valid method returns Python’s built-in boolean types True or False.
It returns true when the payload is valid; otherwise, it returns false.
When using ModelForm, an additional method save will persist the model to
the database when the data is valid.

Creating Your First Django Form
In our task management project, we must design a form that allows users to
generate a new task. The form should validate all the fields.
We will start by creating our Form class. Given that our needs revolve
around the task model and its creation, ModelForm is our go-to:
from django import forms

from .models import Task

class TaskForm(forms.ModelForm):

class Meta:

model = Task

fields = ["title", "description", "status"]

Place this TaskForm class in a file named forms.py within your tasks
application directory, following the Django convention for better
organization and readability.
The Meta inner class serves as the configuration center for your form in
Django. Here, the model attribute specifies which Django model the form is
linked to. The fields attribute is a list of model fields you want to include in
the form for display and validation. Note that this list should only contain
attributes that are part of the specified model.
In the upcoming sections, we will integrate this TaskForm class into our
application’s views to handle task creation and updates. Specifically, we’ll
use our views, TaskCreateView and TaskUpdateView.

Rendering Forms in Templates

Numerous methods exist for rendering forms in templates. To control the
CSS classes, utilize template tags and iterate through form fields, adjusting
the HTML entities as necessary.
To enhance our form’s appearance, we’ll employ the django-widget-tweaks
package. While Django provides a robust system for form rendering, certain
customizations, especially those related to CSS and layout, can be
cumbersome. The django-widget-tweaks package simplifies this, making
template improvements more straightforward.
Let’s install and configure it:
poetry shell

poetry add django-widget-tweaks

Then open your taskmanager/settings.py and add widget_tweaks to the
INSTALLED_APPS list.
INSTALLED_APPS = [

…

"widget_tweaks",

]

Let’s see an example of the task creation form template. Create a new file in
templates/tasks/task_form.html:
{% extends "tasks/base.html" %}

{% load widget_tweaks %}

{% block content %}

<div class="d-flex justify-content-center align-items-center

vh-100">

<div class="w-50">

<div class="card">

<div class="card-header">

<h2 class="text-center">Create a New Task</h2>

</div>

<div class="card-body">

<form method="post" action="{% if task.pk %}{% url

'tasks:task-update' task.pk %}{% else %}{% url

'tasks:task-create' %}{% endif %}">

{% csrf_token %}

{% for field in form %}

<div class="mb-3">

<label for="{{ field.id_for_label }}" class="form-

label">{{ field.label }}</label>

{% if field.errors %}

<div class="alert alert-danger">

{{ field.errors }}

</div>

{% endif %}

{{ field|add_class:"form-control" }}

</div>

{% endfor %}

<button type="submit" class="btn btn-primary w-

100">Save</button>

</form>

</div>

</div>

</div>

</div>

{% endblock %}

To use widget tweaks in the template, we include the line {% load

widget_tweaks %} to load the necessary template tags.
The csrf_token template tag adds a hidden input type field to the form. This
field is used to prevent the vulnerability of Cross-Site Request Forgery
(CSRF). Django, often regarded for its “batteries-included” approach, has
many security measures to protect web applications. CSRF protection is just
one of many security protections.
The form uses the task-create or the task-update action URL from the
task creation or update view. These views were created in Chapter 5, Django
Views and URL Handling. The generic view TaskCreateView allows us to
change the form class using the attribute form_class. Then, we render all
the form fields with a loop iteration of the form. Inside the loop, we render
the label, the errors (if any) and the field itself.
For form submission, we use a submit button.
Here is the new TaskCreateView using the new form:
from django.urls import reverse_lazy

from django.views.generic.edit import CreateView

class TaskCreateView(CreateView):

model = Task

template_name = "tasks/task_form.html"

form_class = TaskForm

def get_success_url(self):

return reverse_lazy("tasks:task-detail", kwargs={"pk":

self.object.id})

It’s essential to note that we omitted the ‘fields’ attribute because using both
form_class and fields can lead to unexpected behavior.

Info: In a CSRF attack, an authenticated user’s browser is manipulated by
a malicious website, email, or program to perform undesired actions on our
web application.
Without CSRF protection, the malicious application could submit a form
that deletes the sprint without the user’s consent.
The protection adds a unique token as a hidden input value. When the form
is submitted to the server, the CSRF middleware checks the form token
against the token stored in the user’s session or cookie-based approach. If
the tokens match, the form is submitted. Otherwise, the server will return
403 Forbidden.
Browsers implement additional security measures to block malicious apps
from accessing session tokens. The CSRF token is stored in a cookie that is
httpOnly, making it inaccessible by JavaScript.

Handling Form Submission in Views
In Chapter 5, Django Views and URL Handling, we created a class-based
view, TaskCreateView, which can process form submissions easily. The
class inherits from the generic view CreateView. The CreateView class
inherits behavior from the ModelFormMixin, which allows the process and
validation of a Django Form for the model Task.
The framework also provides a generic class-based view for handling forms
that aren’t tied to a specific model; this is suitable for general-purpose usage.
The task management project now requires handling a contact form that

sends an email and it does not store anything in the database. We cannot use
CreateView because we don’t have an email model.
We need first to create a contact form in our file tasks/forms.py. This time,
we will inherit from Form:
from django import forms

class ContactForm(forms.Form):

from_email = forms.EmailField(required=True)

subject = forms.CharField(required=True)

message = forms.CharField(widget=forms.Textarea,

required=True)

The form has three fields, and all of them are required.
Each field has a designated type. We use the Textarea widget for the
message field, enabling users to input their message in a spacious textbox.
Now our form view handles the ContactForm, open tasks/views.py and add
the new view:
from django.views.generic import FormView

from django.urls import reverse_lazy

from tasks.forms import ContactForm

from tasks import services

class ContactFormView(FormView):

template_name = "tasks/contact_form.html"

form_class = ContactForm

success_url = reverse_lazy("tasks:contact-success")

def form_valid(self, form):

subject = form.cleaned_data.get("subject")

message = form.cleaned_data.get("message")

from_email = form.cleaned_data.get("from_email")

services.send_contact_email(subject, message, from_email,

["your-email@example.com"])

return super().form_valid(form)

The ContactFormView uses specific attributes to set up the class-based view.
The template_name is to specify the filename of the form template. The
form_class is set to the new ContactForm we previously created and the
success_url is the URL that the view will redirect the user to when the
form was submitted successfully.

The view will validate the form based on the request’s payload for each
request. The view will call the method form_valid if the payload is valid.
The method has one parameter, which is the instance of the form. From the
parameter “form” we extract the data of the form using the cleaned_data
attribute. Recall our guideline: views shouldn’t contain business logic. Thus,
form_valid should invoke the service layer instead. In our case, we will call
our notification service layer send_contact_email function.
Let’s add the send contact email service to the tasks/services.py file:
from django.core.mail import send_mail

def send_contact_email(subject: str, message: str, from_email:

str, to_email: str) -> None:

send_mail(subject, message, from_email, [to_email])

To make send_mail functional, you’ll need to set up the email
configurations in the Django project’s settings file
projectmanager/settings.py
import os

if DEBUG:

Using the console backend will simply print the emails to

the console

EMAIL_BACKEND =

"django.core.mail.backends.console.EmailBackend"

else:

EMAIL_BACKEND = "django.core.mail.backends.smtp.EmailBackend"

EMAIL_HOST = os.getenv("EMAIL_HOST", "mailhog")

EMAIL_PORT = int(os.getenv("EMAIL_PORT", "1025"))

EMAIL_USE_TLS = os.getenv("EMAIL_USE_TLS", "False") == "True"

EMAIL_HOST_USER = os.getenv("EMAIL_HOST_USER",

"default@example.com")

EMAIL_HOST_PASSWORD = os.getenv("EMAIL_HOST_PASSWORD",

"defaultpassword")

We also need to create a new contact form template. Place this template in
the templates/tasks/ directory and name it contact_form.html.
{% extends "tasks/base.html" %}

{% load widget_tweaks %}

{% block content %}

<div class="d-flex justify-content-center align-items-center

vh-100">

<div class="w-50">

<div class="card">

<div class="card-header">

<h2 class="text-center">Contact Us!</h2>

</div>

<div class="card-body">

<form method="post" action="{% url 'tasks:contact' %}">

{% csrf_token %}

{% for field in form %}

<div class="mb-3">

<label for="{{ field.id_for_label }}" class="form-

label">{{ field.label }}</label>

{% if field.errors %}

<div class="alert alert-danger">

{{ field.errors }}

</div>

{% endif %}

{{ field|add_class:"form-control" }}

</div>

{% endfor %}

<button type="submit" class="btn btn-primary w-

100">Send</button>

</form>

</div>

</div>

</div>

</div>

{% endblock %}

We need to add the URLs we are going to use for the contact form and edit
the tasks/urls.py:
from django.urls import path

from .views import ContactFormView

from django.views.generic import TemplateView

urlpatterns = [

path("contact/", ContactFormView.as_view(), name="contact"),

path(

"contact-success/",

TemplateView.as_view(template_name="contact_success.html"),

name="contact-success",

),

…

]

The templates/tasks/contact_success.html template just shows a simple
message to the user:
{% extends "base.html" %}

{% block content %}

<div class="container">

<h1>Contact Message Sent!</h1>

<p>Thank you for reaching out! We have received your message

and will respond as soon as possible.</p>

Return Home

</div>

{% endblock %}

Let’s add a link to the contact form in our footer
templates/tasks/_footer.html:
{% load url %}

<footer class="footer mt-auto py-3 bg-light text-center">

<div class="container">

Help |

<a href="{% url 'tasks:contact' %}" class="text-

dark">Contact

</div>

</footer>

Testing the contact form should output the email in the terminal since the
DEBUG setting is set to True in our development environment:
[12/Sep/2023 19:15:26] "GET /contact/ HTTP/1.1" 200 3511

Content-Type: text/plain; charset="utf-8"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Subject: Celebration Time!

From: happynews@example.com

To: ['your-email@example.com']

Date: Tue, 12 Sep 2023 19:17:03 -0000

Message-ID: <169453542365.11010.6693373536973317817@mandarinas-

mbp.home>

Hello! I'm excited to announce that I've just achieved a

significant milestone in my project.

It wouldn't have been possible without the support and

encouragement of this beautiful community.

Thank you for being a part of this journey. Let's celebrate

together!

[12/Sep/2023 19:17:03] "POST /contact/ HTTP/1.1" 302 0

[12/Sep/2023 19:17:03] "GET /contact-success/ HTTP/1.1" 200

2073

Note: If you want to test the emails locally, you can extend the docker-
compose configuration to use the MailHog SMTP service.
services:
…

mailhog:

image: mailhog/mailhog

ports:

- "8025:8025" # Web UI

- "1025:1025" # SMTP server

MailHog is an email testing tool with a fully featured web UI out of the
box. MailHog starts an SMTP server that accepts all emails and displays
them in the web interface.
In our GitHub repository, you can check how MailHog is configured with
the task management project to test emails.

Leveraging FormView or CreateView for form handling is optimal. These
views are designed for this purpose, leading to concise and straightforward
code.
However, we also have the option to handle the form using function-based
views. We will see an example of handling the ContactForm:

from django.shortcuts import render, redirect, reverse

from .forms import ContactForm

from .services import send_contact_email

def contact_form_view(request):

if request.method == 'POST':

form = ContactForm(request.POST)

if form.is_valid():

subject = form.cleaned_data.get('subject')

message = form.cleaned_data.get('message')

from_email = form.cleaned_data.get('from_email')

send_contact_email(subject, message, from_email, 'your-

email@example.com')

return redirect(reverse('contact-success'))

else:

form = ContactForm()

return render(request, 'contact_form.html', {'form': form})

The view first checks for the request method to be POST, otherwise for a
GET it renders an empty form. Then, it initializes the ContactForm using the
request payload stored in the request.POST dictionary. If the form is valid,
we can extract the data from the clean_data attribute of the form and call
our service layer.
Finally, we redirect the user to the contact-success view.

Working with Form Fields
Django offers a variety of field types to process the different data input
needs in web forms. While the ModelForm class auto-generates form fields
from the associated model attributes, you may need to define form fields if
you are not using ModelForm explicitly. As shown with ContactForm, you
can explicitly declare fields to customize form behavior.
We enumerate some frequently utilized fields Django offers:

CharField: One of the most common form fields used to handle text
input. You can limit the maximum length of input using the
max_length attribute.
TextField: A text field for arbitrarily large amounts of text.
IntegerField: This field is for integer input.

DecimalField: A field for handling decimal numbers. It’s mandatory to
specify max_digits and decimal_places attributes.
BooleanField: A field for handling boolean values.
ChoiceField: This field presents the user with a list of choices. You
provide the choices by using a list of tuples.
DateField: A field for collecting dates. It uses a widget attribute that
can be set to SelectDateWidget to provide a date-picker interface.
EmailField: A field that checks if the provided input is a valid email
address.
FileField: A field for handling file upload. It must be used in
conjunction with Django’s file storage API.
ImageField: Similar to FileField, but validates that the uploaded
object is a valid image. Requires Pillow to be installed.

We already learned how to render fields by using iteration on the form ({%
for field in form %}) and then using the variable to render the field ({{
field }}). However, the framework provides other ways to render the fields.
Here is an alternative way to render the fields:
<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Submit</button>

</form>

In this new template, we are not doing the iteration and manually rendering
the fields, but we use the method “as_p”. The form supports at least four
types of rendering:

{{ form.as_div }} Input elements will be wrapped between divs.
{{ form.as_table }} Fields will be rendered to a table
{{ form.as_p }} Input elements will be wrapped between p tags.
{{ form.as_ul }} Inputs will be rendered using the HTML unordered
list.

Sometimes, you will need more control over rendering the fields. In that
case, you will need to use the iteration.

Custom form fields
There are instances where Django might not have the specific field we
require for our form. For those scenarios, it is possible to create our field
class.
To implement a custom form field in Django, you typically would override
the following methods of the django.forms.Field class:

to_python(self, value): This method converts the value into the
correct Python datatype. For example, if you have a custom field that
deals with numeric data, you would use this method to ensure that the
data is converted into a Python integer or float.
validate(self, value): This method runs field-specific validation
rules. You could raise the ValidationError from here if the validation
fails.
clean(self, value): This method is used to provide the cleaned
data, which is the result of calling to_python() and validate(). You
usually don’t need to override this unless you need to change its
behavior fundamentally.
bound_data(self, data, initial): This returns the value that
should be shown for this field when rendering it with the specified
initial data and the submitted data. This method is typically used for
fields where the user’s input is not necessarily the same as the output.
prepare_value(self, value): Converts Python objects to query
string values.
widget_attrs(self, widget): This adds any HTML attributes needed
for your widget based on the field.

Suppose you want to create a form that accepts a list of email addresses in a
comma-separated format. While Django doesn’t provide this field type out
of the box, you can easily create a custom field to fulfill this need. Here, we
show how to implement this custom field and use it in a Django model form.
Create a new file in the tasks application, fields.py:
from django import forms

from django.core.validators import EmailValidator

email_validator = EmailValidator(message="One or more email

addresses are not valid")

class EmailsListField(forms.CharField):

def to_python(self, value):

"Normalize data to a list of strings."

Return an empty list if no input was given.

If not value:

return []

return [email.strip() for email in value.split(',')]

def validate(self, value):

"Check if value consists only of valid emails."

Super().validate(value)

for email in value:

email_validator(email)

The class implements two methods, the to_python and validate. The method
to_python converts the comma-separated string to a list of strings. The list
comprehension also cleans up the string by removing white spaces.
The validation method uses the forms.EmailValidator and if one of those
strings is not an email, a ValidationError will be raised.
We are requested to add a watcher list to our Task model. This new
requirement aligns with our custom EmailsListField.
The current Task model does not support the watcher’s email list, forcing us
to change the schema. Since there could be more than one watcher, we will
use a separate related model, the SubscribedEmail. Open the file
tasks/models.py and add the new model:
class SubscribedEmail(models.Model):

email = models.EmailField()

task = models.ForeignKey(Task, on_delete=models.CASCADE,

related_name="watchers")

Using a related model allows us to keep the Task schema unchanged; this
approach is normalized.
Let’s create the migration and migrate our development environment:
poetry shell

python manage.py makemigrations

python manage.py migrate

Now we will update our TaskForm to incorporate emails by using the new
custom field, EmailsListField. This modified form will be used in the view
that handles task creation and updates, edit the file tasks/forms.py, and
change the TaskForm class to use the new field:
from django import forms

from tasks.fields import EmailsListField

from .models import SubscribedEmail, Task

class TaskForm(forms.ModelForm):

watchers = EmailsListField(required=False)

class Meta:

model = Task

fields = ["title", "description", "status", "watchers"]

def __init__(self, *args, **kwargs):

super(TaskForm, self).__init__(*args, **kwargs)

Check if an instance is provided and populate watchers

field

if self.instance and self.instance.pk:

self.fields['watchers'].initial = ', '.join(email.email

for email in self.instance.watchers.all())

def save(self, commit=True):

First, save the Task instance

task = super().save(commit)

If commit is True, save the associated emails

if commit:

First, remove the old emails associated with this task

task.watchers.all().delete()

Add the new emails to the Email model

for email_str in self.cleaned_data["watchers"]:

SubscribedEmail.objects.create(email=email_str,

task=task)

return task

The form now uses the new EmailListField for the watchers’ relationship.
It also implements the __init__ and the save methods. The __init__ is
required when the form is used for editing a Task, and it will populate the
watcher’s emails.
The save method is implemented to save the Task first, delete all the
watchers, and then save the new ones.

We’ll now modify the form template to incorporate the newly added watcher
list, open the file templates/tasks/task_detail.html and update the template:
{% extends "tasks/base.html" %}

{% block content %}

<div class="vh-100 d-flex justify-content-center align-items-

center">

<div class="container text-center">

<h1 class="mb-4 ">{{ task.title }}</h1>

<div class="card">

<div class="card-body">

<h2 class="card-title">Description</h2>

<p class="card-text">{{ task.description }}</p>

<!-- Emails list -->

<h3>Watchers</h3>

<ul class="list-unstyled">

{% for watcher in task.watchers.all %}

{{ watcher.email }}

{% endfor %}

</div>

</div>

<div class="mt-4 d-inline-block">

<a href="{% url 'tasks:task-update' task.id %}" class="btn

btn-primary me-2">Edit

<a href="{% url 'tasks:task-delete' task.id %}" class="btn

btn-danger me-2">Delete

<a href="{% url 'tasks:task-list' %}" class="btn btn-

secondary">Back to List

</div>

</div>

</div>

{% endblock %}

If a task has associated watchers, their email addresses will be displayed in a
list. This is achieved using the {% for watcher in the

task.watchers.all %} loop, which iterates over the related Email model
instances to render each watcher’s email address.

File and Image Upload Field
To improve our project management, we will extend it to support file and
image uploads for the Task model. We must change our models and settings
before using the form file and image upload fields.
Let’s add new attributes to our Task model:
class Task(models.Model):

…

file_upload = models.FileField(upload_to="tasks/files/",

null=True, blank=True)

image_upload = models.ImageField(upload_to="tasks/images/",

null=True, blank=True)

We need to create the migrations and execute them:
poetry add Pillow # Pillow is required for the ImageField

poetry shell

python manage.py makemigrations

python manage.py migrate

Open the taskmanager/settings.py to set the MEDIA_ROOT and
MEDIA_URL, this defines the absolute filesystem path to the directory for
storing uploaded files and their URL base.
MEDIA_ROOT = os.path.join(BASE_DIR, "media/")

MEDIA_URL = "/media/"

Note: MEDIA_ROOT and MEDIA_URL are settings in Django that specify how
media files are handled. These settings are crucial for file uploads, image
uploads, and any other user-generated static content that needs to be
served.
MEDIA_ROOT: This is an absolute filesystem path to the directory where all
uploaded media files will be stored.
MEDIA_URL: This is the base URL used for serving the media files stored in
MEDIA_ROOT. When you need to reference or link to the saved media files in
your templates or views, Django will use MEDIA_URL as the base to
construct the URL for those files.

To be able to use these fields in the Task create or upload view, we need to
add the fields to the form:
class TaskForm(forms.ModelForm):

…

class Meta:

model = Task

fields = ["title", "description", "status", "watchers",

"file_upload", "image_upload"]

…

Django will automatically generate the necessary form fields for file and
image upload. This automatic generation also applies to the admin interface.

Figure 7.2: Django form with file and image upload fields

Since we are using the development server, let’s add a way to serve media
files, open the projectmanagement/urls.py and add the following
conditional URL:
from django.conf import settings

from django.conf.urls.static import static

urlpatterns = [

…

]

if settings.DEBUG:

urlpatterns += static(settings.MEDIA_URL,

document_root=settings.MEDIA_ROOT)

The preceding code allows serving the uploaded media using the
development server. This view is only available when the DEBUG setting is
set to true. In Chapter 11, Deploying Django Applications with Gunicorn
and Docker, we will use a cloud provider to upload and serve our uploaded
files and media.

Note: It’s important to note that serving media files using Django’s built-in
development server, as shown in this guide, is only intended for
development purposes. The DEBUG setting should never be set to True in
a production environment, as it exposes various security vulnerabilities.

If we want to see a file download link and an image preview, we need to
modify our templates/tasks/task_details.html template.
Just before the actions buttons, add the following template code:
{% if task.file_upload %}

Download

File

{% endif %}

{% if task.image_upload %}

<div>

<img src="{{ task.image_upload.url }}" alt="Task Image"

style="max-width: 300px;">

</div>

{% endif %}

Data Validation with Django Forms
Django forms simplify the task of data validation, offering a wide array of
tools to both validate and sanitize data. Django Forms performs validation
on each field type. For example, EmailField checks if the given data is a
valid email format.

Validators
When the field type check is insufficient and additional constraints have to
be added, it is possible to use validators. Form fields allow a list of
validators:
from django import forms

from django.core.validators import MaxValueValidator

class TaskForm(forms.Form):

priority = forms.IntegerField(validators=

[MaxValueValidator(100)])

In the preceding code, we are using the MaxValueValidator that checks if
the priority of the task is less than 100.
The framework provides a variety of validators. Here is a list of some of the
most useful ones:

EmailValidator: Validates that a value is a valid email address.
URLValidator: Validates that a value is a valid URL.
RegexValidator: Validates a value based on a provided regular
expression.
MinLengthValidator: Validates that a value has at least a certain
length.
MaxLengthValidator: Validates that a value doesn’t exceed a certain
length.
MinValueValidator: Validates that a value is at least a specified
minimum.
MaxValueValidator: Validates that a value doesn’t exceed a specified
maximum.
FileExtensionValidator: Validates that a file has a specific
extension.

Clean methods
The form also has what is called cleaning methods. There are two types per
attribute and a general cleaning. The cleaning methods are part of the
validation process and are called automatically when the is_valid method
is called.
For each field, it is possible to implement a method clean_<fieldname>()
and you can perform validation against the attribute. If your form has the
attribute email, you can implement the clean_email method to make
additional validation against this email attribute:
def clean_email(self) -> str:

email = self.cleaned_data.get("email")

email = email.strip()

validate_email(email)

return email

The method associated with the clean attribute gives back the sanitized value
specific to that field. In the example, we strip the white spaces from the
email. We also validate the email str using a validate_email function that
raises ValidationError if the email is invalid. Finally, we return the email
string.
The general clean method should return a dictionary containing all the
cleaned data.
def clean(self) -> dict:

cleaned_data = super().clean()

perform validations or cleanups

return cleaned_data

You can employ the generic clean method when there’s a need to validate
multiple fields sharing a validation logic simultaneously.
Clean methods should raise forms.ValidationError when there is invalid
data.
When the is_valid method returns false, the form will contain errors that
can be accessed via the attribute errors. These errors are a dictionary
structure with field names as keys and a list of messages as values.

ModelForm Validation
With ModelForm, you get extra validation for free, derived from the
associated model’s constraints. For instance, if a model’s char field has
max_length=100, the associated form field will inherit this constraint.
However, you can still use clean_<fieldname>() and clean() methods for
additional validation logic.

Displaying Form Errors
Whenever a form gets submitted to the server, Django verifies the submitted
form data. Effective form validation ensures that users input data correctly.
By displaying concise error messages, you assist users in recognizing
mistakes. A user encountering an unexplained form rejection may abandon
the task entirely, potentially losing conversions, sign-ups, or any other
desired action.

Note: From a user experience perspective, how errors are communicated
can have a significant impact. Errors should not simply highlight mistakes;
they should do so in a way that feels constructive rather than punitive.
Therefore, while implementing form validation in Django, you may want
to customize error messages to align with this approach.

Each form field comes with its own set of validation rules. For example, the
EmailField requires a string that is a valid email. When it is invalid, the
form allows access to the errors via the errors attribute of the form instance.
The errors attribute is a dictionary holding fields that did not meet the
validation criteria.
In our template, the errors attribute displays the validation issues. However,
it can be customized for a better user experience.
<form method="post">

{% csrf_token %}

{% for field in form %}

<div class="form-group mb-3">

<label for="{{ field.id_for_label }}" class="form-label">{{

field.label }}</label>

{{ field|add_class:"form-control" }}

{% if field.errors %}

<div class="alert alert-danger mt-2">

{% for error in field.errors %}

<p class="mb-0">{{ error }}</p>

{% endfor %}

</div>

{% endif %}

</div>

{% endfor %}

{% if form.non_field_errors %}

<div class="alert alert-danger">

{% for error in form.non_field_errors %}

{{ error }}

{% endfor %}

</div>

{% endif %}

<button type="submit" class="btn btn-primary">Submit</button>

</form>

For simplicity, the example code iterates over form fields to render them.
You could also use built-in methods like as_p for a simpler output, but
further appearance customization can be done by iterating the fields as
shown. The template employs a conditional to check for the presence of any
errors. When there are errors, it shows all the errors inside a div with CSS
classes to alert the user about the error after processing the form.
Each error message is displayed inside an HTML unordered list by iterating
over the form’s errors attribute or non_field_errors attribute, as
applicable. It’s important to note that a single field could encompass multiple
errors, necessitating the iteration through all of them.
In Django forms, the errors and non_field_errors attributes play a crucial
role in form validation and user feedback. The errors attribute is a
dictionary that holds the validation errors for each field in the form. Each
key-value pair in the dictionary corresponds to a form field and its associated
list of error messages. On the other hand, the non_field_errors attribute
holds errors that are not associated with a specific field but are form-wide
issues, such as conflicting field values or missing required combinations.

Advanced Form Handling: ModelFormsSets and
Formsets

Django offers tools like ModelFormSets and FormSets to handle multiple
objects simultaneously.
In our task management application, users need the capability to edit the
details of multiple tasks within an epic all at once. A form can represent each
task, and a FormSet enables simultaneous display and processing.
In the Django framework, both FormSet and ModelFormSet allow developers
to work with multiple forms collectively, making it ideal for scenarios where
batch processing or editing is required. A FormSet is a layer of abstraction
that permits you to manage and validate multiple forms simultaneously,
irrespective of any specific database model. On the other hand,

ModelFormSet is intrinsically tied to a specific Django model. It provides an
interface to create, update, or delete multiple model instances.
While a ModelFormSet is similar to a FormSet, its unique association with a
Django model makes it different.
Here is an example of how to use ModelFormSet with the Task model:
tasks/forms.py

EpicFormSet = modelformset_factory(Task, form=TaskForm,

extra=0)

We set the extra parameter to zero in the modelformset_factory for this
EpicFormSet, ensuring we only modify existing tasks without adding new
ones to the epic. Using extra with 1 or more will force the user to create a
new task every time the form gets submitted. Using zero ensures that users
can only modify existing tasks within an epic and are not prompted to add
new ones.
We will opt for a function-based view because FormSets are more
straightforward to manipulate within this view.
from django.shortcuts import render, redirect

from .models import Task

from .forms import EpicFormSet

def manage_epic_tasks(request, epic_pk):

epic = services.get_epic_by_id(epic_pk)

if not epic:

raise Http404("Epic does not exist")

if request.method == "POST":

formset = EpicFormSet(request.POST,

queryset=services.get_tasks_for_epic(epic))

if formset.is_valid():

tasks = formset.save(commit=False)

services.save_tasks_for_epic(epic, tasks)

formset.save_m2m() # handle many-to-many relations if

there are any

return redirect('tasks:task-list')

else:

formset =

EpicFormSet(queryset=services.get_tasks_for_epic(epic))

return render(request, 'tasks/manage_epic.html', {'formset':

formset, 'epic': epic})

The manage_epic_tasks view employs the epic_pk parameter as an integral
part of its functionality. If the epic isn’t found using this parameter, Django
raises a 404 error. If the method is POST, the code first validates the form.
When the form is valid, it retrieves the tasks but doesn’t immediately
commit the changes. Using the services, we save all the tasks for the epic.
Django will not automatically save the many-to-many data. After manually
handling and saving the primary instance, you should call save_m2m() to
ensure the many-to-many relationships are properly saved.
Our new services will be:
from .models import Epic, Task
def get_epic_by_id(epic_id: int) -> Epic | None:

return Epic.objects.filter(pk=epic_id).first()

def get_tasks_for_epic(epic: Epic) -> list[Task]:

return Task.objects.filter(epics=epic)

def save_tasks_for_epic(epic: Epic, tasks: list[Task]) -> None:

for task in tasks:

task.save()

task.epics.add(epic)

The new services perform basic operations and there is no custom business
logic for now.

get_epic_by_id: gets the Epic object by pk
get_tasks_for_epic: returns all the tasks for an epic
save_tasks_for_epic: saves all the tasks and adds them to the epic

For FormSet and ModelFormSet the template is slightly different:
{% extends "tasks/base.html" %}

{% load widget_tweaks %}

{% block content %}

<div class="container mt-5">

<h1>Epic: {{epic.name}}</h1>

<form method="post">

{% csrf_token %}

{{ formset.management_form }}

<div class="row">

{% for form in formset %}

<div class="col-md-6 mb-3">

<div class="card">

<div class="card-body">

{% for field in form %}

<div class="mb-3">

<label for="{{ field.id_for_label }}" class="form-

label">{{ field.label }}</label>

{{ field|add_class:"form-control" }}

{% if field.errors %}

<div class="alert alert-danger mt-2">

{% for error in field.errors %}

<p class="mb-0">{{ error }}</p>

{% endfor %}

</div>

{% endif %}

</div>

{% endfor %}

</div>

</div>

</div>

{% endfor %}

</div>

<div class="mt-3">

<button type="submit" class="btn btn-primary">Save</button>

</div>

</form>

</div>

{% endblock %}

Pay attention to formset.management_form. It’s a specialized form in all
FormSets, containing their management data. Including this in your template
is essential, or Django will need help to process the FormSet correctly.
Don’t forget to add the new URL pattern to the tasks tasks/urls.py file:

path("epic/<int:epic_pk>/", manage_epic_tasks, name="task-

batch-create"),

Figure 7.3: ModelFormSet is used to edit all the tasks for an epic

Preventing Double Submission in Forms
Sometimes, it’s expected for Django Forms to allow users to submit data
multiple times. Still, there are scenarios where we want to prevent double
submission. For example, preventing double submissions when processing
reservations or payments is critical.

Note: Allowing users to make multiple form submissions might seem
harmless initially. However, from a user experience perspective, this can

lead to confusion and unintended consequences. For instance, if users
unknowingly submit a payment form twice, they might be charged twice,
leading to unnecessary stress and potential disputes.

There are various methods to prevent double submission. We are going to
focus on two possible solutions. The first approach, commonly implemented,
is to simply disable the form’s submit button using JavaScript. The second
solution is more complex and uses an ID to keep track of the submitted
forms.
We will change the TaskForm to add the JavaScript solution:
{% block content %}

<div class="d-flex justify-content-center align-items-center

vh-100">

<div class="w-50">

<div class="card">

<div class="card-header">

<h2 class="text-center">Create a New Task</h2>

</div>

<div class="card-body">

<form id="taskForm" method="post" action="{% if task.pk %}

{% url 'tasks:task-update' task.pk %}{% else %}{% url

'tasks:task-create' %}{% endif %}">

…

{% endblock %}

{% block extra_javascript %}

<script>

document.getElementById('taskForm').addEventListener('submit',

function(){

this.querySelector('button[type="submit"]').disabled = true;

});

</script>

{% endblock %}

The template will stay almost the same, on the content block we will only
add the id attribute to the form. This will allow us to disable the form submit
button using JavaScript.
Next, we’ll expand on the extra_javascript block from Chapter 6, Using
The Django Template Engine. The script will listen to the form submit and

disable the button to prevent multiple clicks.
While this frontend solution enhances user experience, there is still the
possibility of multiple form submissions, which can be bypassed by
determined users. Restrictions on the frontend side can always be bypassed
and for a more robust solution, we need to implement a restriction on the
backend side.
The backend solution uses a unique token associated with the form. This
token is universally unique and will be stored in a hidden field of the form.
The form now will have a UUID field:
class TaskForm(forms.ModelForm):

uuid = forms.UUIDField(required=False,

widget=forms.HiddenInput())

watchers = EmailsListField(required=False)

class Meta:

model = Task

fields = ["title", "description", "status", "watchers"]

def __init__(self, *args, **kwargs):

super(TaskForm, self).__init__(*args, **kwargs)

Check if an instance is provided and populate watchers

field

if self.instance and self.instance.pk:

self.fields["watchers"].initial = ', '.join(email.email for

email in self.instance.watchers.all())

self.fields["uuid"].initial = uuid.uuid4()

def clean_uuid(self):

uuid_value = self.cleaned_data.get("uuid")

with transaction.atomic():

Try to record the form submission by UUID

try:

FormSubmission.objects.create(uuid=uuid_value)

except IntegrityError:

The UUID already exists, so the form was already

submitted

raise ValidationError("This form has already been

submitted.")

return uuid_value

def save(self, commit=True):

First, save the Task instance

task = super().save(commit)

If commit is True, save the associated emails

if commit:

First, remove the old emails associated with this task

task.watchers.all().delete()

Add the new emails to the Email model

for email_str in self.cleaned_data["watchers"]:

Email.objects.create(email=email_str, task=task)

return task

The FormSubmission model is simple and unrelated to business. We only
store the UUID as a unique value to prevent duplicates.
We have not implemented this in the service layer since our form handles the
prevention of double submissions directly, and our business logic does not
dictate it.
The __init__ method generates a new UUID for each form creation. The
form now includes a hidden UUID as an input, with the UUID as a value.
When the form is validated, it will automatically call the
clean_<attribute_name> methods. The clean_uuid method saves the
UUID using the create method of the object manager. If the form was
already submitted, the unique constraint in the database will prevent the
creation of the FormSubmission object and prevent the double submission.
This approach hinges on the principle that UUID generation yields a unique
value with every call.

Note: The Universally Unique Identifier (UUID) is a 128-bit number used
to identify information uniquely.
The probability of creating two identical UUIDs is extremely low and it
works well in distributed systems.
UUID is written as a sequence of lower-case hexadecimal digits in five
groups separated by hyphens, in the form 8-4-4-4-12 for 32 digits. Here’s
an example of a UUID: c6b3b76c-f700-4d55-8a48-50fae11f9e26

Let me present you the model to store the form UUIDs:

from django.db import models

class FormSubmission(models.Model):

uuid = models.UUIDField(unique=True)

We need to create the migrations and migrate the database again:
poetry shell

python manage.py makemigrations

python manage.py migrate

If you want to avoid creating a new model due to database overhead, you
can handle duplication with Django’s caching mechanism. Naively using the
caching could bring race conditions, so we have to use atomic operations
with the caching solution carefully.

Note: A race condition occurs in a multi-threaded or distributed system
when two or more operations must execute in the correct sequence, but the
program does not guarantee the sequence. Typically, race conditions
manifest when checking for a record’s existence in the database. If a
context switch occurs at this point—before confirming non-existence—
other threads might create the record. Once the initial thread regains
control, it operates under the assumption that the record doesn’t exist, even
though it might have been created during the context switch.

Redis is an open-source, high-performance, in-memory data structure store
that can be used as a caching backend. Redis has a command similar to the
SELECT … FOR UPDATE, which is the SETNX. The syntax of the SETNX
command is the SETNX key value, which will set the key with the value if
the key does not exist. No operation is performed when the key already
exists.
First, we need to install the django-redis third-party package:
poetry add django-redis

Now let’s add redis to our docker-compose configuration:
services:

…

redis:

image: redis:latest

ports:

- "6379:6379"

volumes:

- redis_data:/data

volumes:

postgres_data:

redis_data:

The redis server will have a mapped port to localhost at 6379. We also
added a volume for the Redis container, which is optional for our use case.
Next, open the project settings taskmanager/settings.py and set the
backend to RedisCache and the location to use the redis provided by docker:
CACHES = {

"default": {

"BACKEND": "django_redis.cache.RedisCache",

"LOCATION": "redis://127.0.0.1:6379/1",

"OPTIONS": {

"CLIENT_CLASS": "django_redis.client.DefaultClient",

}

}

}

Next is the code of our form to use redis:
class TaskForm(forms.ModelForm):

…

def clean_uuid(self):

uuid_value = str(self.cleaned_data.get("uuid"))

was_set = cache.set(uuid_value, "submitted", nx=True)

if not was_set:

If 'was_set' is False, the UUID already exists in the

cache.

This indicates a duplicate form submission.

raise ValidationError("This form has already been

submitted.")

return uuid_value

The form implementation is the same except for the clean_uuid, which uses
the Django-cache framework. We use the set method of the cache and the
nx parameter to true. This will use the Redis SETNX command. The set

method will return false if the value was not previously set. Otherwise, it
will return true. When the set returns true, we raise a ValidationError.
Setting this UUID can consume a significant amount of memory over time.
To prevent the problem of memory usage, we can set a timeout to the set
call. Using this timeout, we can also allow re-submission of the form, so we
must be careful with the value we set it to. Using a small timeout will
potentially allow resubmission to happen.
Using Redis for form uniqueness offers performance advantages due to its
in-memory nature, ensuring fast read and write operations compared to
traditional databases. Redis’s atomic operations, like SETNX, effectively
handle race conditions, making the system more robust. Additionally, Redis
can automatically expire old form tokens with its TTL feature, reducing
manual overhead. These qualities make Redis particularly well-suited for
high-concurrency, real-time applications where quick data access is critical.

Note: In the chapter_6 branch on the project repository
https://github.com/llazzaro/web_applications_django.git, you will find two
classes for the TaskForm, one using the database (TaskFormWithModel) and
the other one using redis (TaskFormWithRedis). By default, the task view
uses the Redis form (TaskFormWithRedis), but you can easily change the
form class via the form_class attribute.

Conclusion
Using Django’s form system is indispensable. It provides an abstraction that
allows you to validate the data your users send to your web application.
Django offers several ready-to-use generic views designed to work with
forms.
Forms in Django are highly customizable; using templates to alter their
appearance and modifying fields for specific validations are just a couple of
possibilities.
Django’s built-in file and image fields offer a reliable way to handle
attachments in our Task model.
Form sets in Django enable batch creation and editing of objects; for
instance, they proved invaluable when crafting a view to modify Tasks
linked to an Epic.

https://github.com/llazzaro/web_applications_django.git

While client-side validation can enhance the user experience, backend
restrictions are needed to ensure data integrity. Both frontend and backend
approaches are essential for a robust form submission process to tackle
different layers of potential issues.
By employing UUIDs, we’ve developed a robust mechanism using forms to
prevent duplicate submissions.
In the next chapter, we will add authentication and authorization to our task
management project using the framework security features.

Questions
1. How do Django Forms alleviate the drawbacks of using raw HTML

forms?
2. How does the Django framework use the “Meta” inner class in form

classes?
3. Explain the role of CSRF protection in Django forms.
4. How do Django’s different form field types, like CharField,

IntegerField, and EmailField, handle data input?
5. When might you use FormView instead of CreateView for handling

form submissions?
6. What are cleaning methods in Django forms and when are they

invoked?
7. What should the cleaning methods raise when they encounter invalid

data?
8. How can Django’s forms be customized for a better user experience?
9. What is the use of modelformset_factory in Django?

10. How can double submission in forms be prevented in Django? Provide
two methods.

Exercises
1. Using Django Forms, create a ModelForm for a model “Sprint” which

has attributes title (required), content, and author. Make sure the author
is the authenticated user creating the blog post.

2. Create a custom Django form field that accepts a phone number and
validates that it’s in the correct format (that is, exactly 10 digits). The
form should raise a ValidationError if the format is incorrect.

3. Implement a ModelFormSet for the Sprint model. Add the capability to
edit multiple objects simultaneously and save them to the database.

CHAPTER 8
User Authentication and Authorization in

Django

Introduction
Until now, our task manager project lacks authentication and authorization. This
missing functionality renders our project unusable for everyday use.
This chapter will introduce essential concepts of authentication and authorization
that are crucial for securing web applications. The Django middleware system is
vital to providing authorization and authentication to our web application. We will
learn how it works and how to customize it.
We will enhance our task management project by incorporating authorization
features, including registration, login, and logout views. After establishing
authentication, we will focus on implementing authorization mechanisms to our
views.
Modifying Django’s user model will allow our task manager to serve multiple
customers or tenants.
As we conclude this chapter, we will evaluate security practices that are useful to
review before launching any project to production.

Structure
In this chapter, we will cover the following topics:

Understanding Django’s Authentication System
Introduction to Django’s Middleware
Understanding Django Middleware
User Registration with Django’s User Model
Authenticating Users: Login and Logout
Managing User Sessions
Password Management in Django: Hashing and Password Reset
User Authorization: Permissions and Groups

Protecting Views with Login Required Decorators
Multi-tenant authentication with Custom Django’s User Model
Security Best Practices in Django

Understanding Django’s Authentication System
The HTTP protocol is stateless, meaning that each request to the server is treated
as an isolated event. The protocol requires a mechanism to manage state
continuity across multiple requests. The server creates cookies, which is a way to
store information on the client side. Using these cookies, we can identify an
authenticated user using a session identifier.
To understand Django’s authentication system, there are two essential concepts:
authentication and authorization.
Authentication is the process of verifying the identity of a user or entity.
Authentication answers the question, “Are you who you say you are?”
Authorization occurs after authentication and determines what an authenticated
user is allowed to do. Authorization answers, “Are you allowed to access or do?”
When a user uses username and password credentials to log in, we term this as
authentication. Authorization is when the server checks for the proper permissions
to allow the operation the user wants to perform. For example, an authenticated
user with the role Editor who wants to delete a Task will get an authorization
error. Many APIs use tokens, such as JSON Web Token (JWT) or OAuth tokens,
for authentication and authorization. We will see more about tokens in Chapter 9,
Django Ninja and APIs.
There are specific HTTP response status codes, 401 and 403, respectively, for
denied authentication and authorization.
The Django framework provides features that work with HTTP authorization and
authentication, which we will see throughout the chapter.

Introduction to Django’s Middleware
Before diving deep into the authentication system, it’s essential to understand
middleware first.
Consider middleware as layers inserted before processing each view or after a
view has returned a response.
These middlewares are configured under the MIDDLEWARE section in the
taskmanager/settings.py file. MIDDLEWARE configuration is a list, and the

framework will execute each middleware in the order of this list for requests, but
then in the reverse order for the response of processing.
Middleware can modify requests or responses, add security, enable redirects, or
embed valuable data for views. Middleware can also raise exceptions when some
conditions are unmet, making them ideal for checking authentication and
authorization.
Now, let’s suppose the scenario where the user navigates to the Task view and
makes an HTTP request to the server.
The server received the request and will go through a chain of middleware. The
default MIDDLEWARE configuration looks like the following one:
MIDDLEWARE = [

"django.middleware.security.SecurityMiddleware",

"django.contrib.sessions.middleware.SessionMiddleware",

"django.middleware.common.CommonMiddleware",

"django.middleware.csrf.CsrfViewMiddleware",

"django.contrib.auth.middleware.AuthenticationMiddleware",

"django.contrib.messages.middleware.MessageMiddleware",

"django.middleware.clickjacking.XFrameOptionsMiddleware",

]

Each layer may evaluate the request as the request traverses this middleware
chain. If a layer detects an issue, it can halt further processing, returning the
relevant status code.

Figure 8.1: Journey of an HTTP Request Through Django’s Architecture

The SecurityMiddleware checks for generic security configurations, like secure
SSL redirects. We will deeply review the best security practices by the chapter’s

end.
Once the SecurityMiddleware checks are successful, the framework will
continue with the next middleware in the list, the SessionMiddleware. The
SessionMiddleware provides a way to store data in the session, making this data
available in the request object.
CommonMiddleware handles redirects based on URL trailing slashes. Additionally,
it uses the PREPEND_WWW setting and appends a content-length header.
Django protects against Cross-site request forgery using the middleware
CsrfViewMiddleware. This middleware checks if the requests are safe based on
the token verification. This middleware uses the token we set in forms, covered in
the previous chapter, when we added {% csrf_token %}.
When AuthenticationMiddleware is enabled in the settings, it associates the
corresponding user, if any, with the request object. If the user is authenticated, it
will use the session store to locate the user. If the user is not authenticated, it will
assign an instance of AnonymousUser.
The Django framework allows showing onetime informational messages to the
users. The middleware MessageMiddleware stores these messages in the request.
Lastly, XFrameOptionsMiddleware protects against clickjacking by setting the X-
Frame-Options header, dictating if browsers can render a page within tags like
<frame>, <iframe>, <embed>, or <object>.

Info: Clickjacking is a malicious technique where an attacker tricks a user into
clicking something different from what the user perceives. Clickjacking can lead
to unintended actions on a different application without the user’s consent.
When using the X-Frame-Options, the browser will allow or not to render a
page inside an <iframe>.

Understanding Django Middleware
The framework makes it very easy to create your custom middleware. You will
need to create a new class and implement some methods.
We’ll create a middleware in Django to measure request render times, helping us
address any efficiency issues.
Create a new file tasks/middlewares.py with the following code:
import time

import logging

logger = logging.getLogger(__name__)

class RequestTimeMiddleware:

def __init__(self, get_response):

self.get_response = get_response

def __call__(self, request):

Start the timer when a request is received

start_time = time.time()

Process the request and get the response

response = self.get_response(request)

Calculate the time taken to process the request

duration = time.time() - start_time

Log the time taken

logger.info(f"Request to {request.path} took {duration:.2f}

seconds.")

return response

The class defines __init__ and __call__ methods, where __init__ receives the
get_response function to obtain the response later.
In Python, the __call__ method allows class instances to be callable, meaning
they can be invoked using parentheses, like functions.
The __call__ method records the current time, gets the response, and then
calculates the duration it took to process get_response. For logging, we use an f-
string, a formatted string literal. The brackets allow the value of a variable to be
inserted into the string. This syntax also allows the format’s specification using a
colon and some configuration. In the preceding example, we use .2f to format the
value as a floating-point number with exactly two decimal places.
Finally, the code returns the response for the next middleware or view.
You can now add the RequestTimeMiddleware to the MIDDLEWARE setting in the
settings.py file:
MIDDLEWARE = [

"tasks.middlewares.RequestTimeMiddleware",

…

]

Your custom middleware is ready to use! Note that the new middleware is placed
at the beginning of the list. It will be the first to be called on an incoming request
and the last to be called on the given response object.

If you want to manipulate the response, you can easily add data after calling the
get_response. If you want to add a new header, here is an example:
def __call__(self, request):

response = self.get_response(request)

response["X-Custom-Header"] = "This is a custom header value"

return response

User Registration with Django’s User Model
We need to provide a way to allow users to register for our task management
project. The Django framework has a built-in authentication system that provides
views for logging in, logging out, and making password changes and resets.
Django doesn’t provide a built-in view specifically for user registration, so we
must define ours.
For setting up the authentication application, we need to verify that the following
framework application was added to the INSTALLED_APPS:
INSTALLED_APPS = [

…

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

…

]

Verify that AuthenticationMiddleware and SessionMiddleware have been
added to your MIDDLEWARE setting.
To follow best practices, we will place anything related to authentication into a
new application called accounts.
poetry shell

python manage.py startapp accounts

Open the project settings.py and add the newly created application to the
INSTALLED_APPS.
INSTALLED_APPS = [

…

"accounts",

]

We are ready to create our registration view in the accounts/views.py.

Our registration view will use the UserCreationForm provided by the framework,
and we’ll handle the user registration flow using this form.
from django.shortcuts import render, redirect

from django.contrib.auth.forms import UserCreationForm

from django.contrib import messages

def register(request):

if request.method == "POST":

form = UserCreationForm(request.POST)

if form.is_valid():

form.save()

username = form.cleaned_data.get("username")

messages.success(request, f"Account created for {username}!")

return redirect("login") # Redirect to the login page or any

other page you want

else:

form = UserCreationForm()

return render(request, "accounts/register.html", {"form": form})

Our view will first check for the method type. If the request is a POST, we use the
request.POST payload to instantiate the UserCreationForm. When the form is
valid, the form is saved, causing the user to be created.
We then use the message framework to add a notification to let the user know that
the account was created successfully and redirect the user to the login page.
When the request is of type GET, we render the form using the register.html
template.
We still need to create our registration template. Let’s create a new directory in
the templates directory, called accounts. In this new directory accounts, let’s
create the register.html file with the following contents:
{% extends "tasks/base.html" %}

{% block content %}

<div class="container">

<div class="row justify-content-center">

<div class="col-md-6">

<h2 class="mb-4">Register</h2>

<form method="post" class="border p-4 rounded">

{% csrf_token %}

{% for field in form %}

<div class="mb-3">

<label for="{{ field.id_for_label }}" class="form-label">{{

field.label }}</label>

{{ field }}

{% if field.help_text %}

<small class="form-text text-muted">{{ field.help_text }}

</small>

{% endif %}

{% for error in field.errors %}

<div class="text-danger">{{ error }}</div>

{% endfor %}

</div>

{% endfor %}

<button type="submit" class="btn btn-

primary">Register</button>

</form>

</div>

</div>

</div>

{% endblock %}

The template is straightforward. It uses the block content to render the registration
form with the CSRF token.
We need to set up our URLs. Let’s create the URL patterns in our newly created
accounts application, open accounts/urls.py and add the register view path:
from django.urls import path

from . import views

app_name = "accounts"

urlpatterns = [

path("register/", views.register, name="register"),

]

Finally, we need to add our accounts application URLs to our project URLs, open
the project taskmanager/urls.py and add the accounts URLs:
from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path("admin/", admin.site.urls),

path("accounts/", include("accounts.urls")),

path("", include("tasks.urls")),

]

Now navigate to http://localhost:8000/accounts/register and you should see the
registration form:

Figure 8.2: Task manager registration form

Note: Some third-party packages offer registration out of the box, saving you
time when developing the registration flow. You can check the well-known
Django-registration (https://github.com/ubernostrum/django-registration), which
will provide an out-of-the-box solution that integrates with the framework’s
authentication system.

Authenticating Users: Login and Logout
Luckily, the framework provides login and logout views. We need to set up the
URLs and the templates for it.
Open the accounts/urls.py and add two new paths:
from django.urls import path

from django.contrib.auth.views import LoginView, LogoutView

from . import views

app_name = "accounts"

urlpatterns = [

https://github.com/ubernostrum/django-registration

path("register/", views.register, name="register"),

path("login/",

LoginView.as_view(template_name="accounts/login.html"),

name="login"),

path("logout/", LogoutView.as_view(), name="logout"),

]

Our login template will extend the base as always and use the content block.
Create a new file in templates/accounts/login.html:
{% extends 'tasks/base.html' %}

{% load static %}

{% block content %}

<div class="container">

<div class="row justify-content-center">

<div class="col-md-6">

<div class="card mt-5">

<div class="card-body">

<h2 class="text-center">Login</h2>

<form method="post" class="mt-3">

{% csrf_token %}

<div class="mb-3">

<label for="{{ form.username.id_for_label }}" class="form-

label">Username</label>

<input type="text" class="form-control" id="{{

form.username.id_for_label }}" name="{{ form.username.name

}}">

</div>

<div class="mb-3">

<label for="{{ form.password.id_for_label }}" class="form-

label">Password</label>

<input type="password" class="form-control" id="{{

form.password.id_for_label }}" name="{{ form.password.name

}}">

</div>

<div class="d-grid gap-2">

<button type="submit" class="btn btn-primary">Login</button>

</div>

</form>

</div>

</div>

</div>

</div>

</div>

{% endblock %}

As we have seen in Chapter 6, Using the Django Template Engine, the template
renders the Django form with some customization to make it look nicer.
You can access the login page at the URL http://localhost:8000/accounts/login:

Figure 8.3: The Login Form

The logout view we added in the urlpatterns will redirect the user to a URL. You
can specify the destination URL using the LOGOUT_REDIRECT_URL and
LOGIN_REDIRECT_URL settings in the taskmanager/settings.py.
LOGIN_REDIRECT_URL = "tasks:task-home"

LOGOUT_REDIRECT_URL = "accounts:login"

In the following sections, we will add protections to the views. Users who are not
authenticated will be redirected to the login page.
To allow our users easy access to the login and logout functionalities, let’s update
the header to show a login link when the user is not authenticated and a logout
link otherwise. Open the templates/tasks/_header.html and update it with the
new authentication links:
<!-- Login/Logout links →

{% if user.is_authenticated %}

<a href="{% url 'accounts:logout' %}" class="btn btn-danger ml-2"

role="button">Logout

{% else %}

<a href="{% url 'accounts:login' %}" class="btn btn-info ml-2"

role="button">Login

{% endif %}

The template context processor django.contrib.auth.context_processors.auth
adds the user variable to the context, allowing us to check if the user is
authenticated. If the user is authenticated, we show the logout button; otherwise,
we show the log-in one.

Managing User Sessions
Django allows the storage and retrieval of arbitrary data associated with each site
visitor. Sessions are built on the middleware SessionMiddleware so that you can
use it out-of-the-box.
Usually, to keep track of data like shopping carts or user preferences, sessions are
the way to store preferences.
The framework has different backends to store the session data. By default,
Django uses the database backend, which uses the configured database.
When you use the database backend and execute the migrate command, it will
create the table django_session. The django_session table is where all the
sessions will be stored.
You can explore the table using the psql command:
docker-compose exec -u postgres db psql

postgres=# \c mydatabase

mydatabase=# \d+ django_session

Table "public.django_session"

| Column | Type |

------------+--------------------------+

session_key | character varying(40) |

session_data | text |

expire_date | timestamp with time zone |

Indexes:

"django_session_pkey" PRIMARY KEY, btree (session_key)

"django_session_expire_date_a5c62663" btree (expire_date)

"django_session_session_key_c0390e0f_like" btree (session_key

varchar_pattern_ops)

Access method: heap

We executed the psql command inside the database container. Then we switched
to the taskmanager database mydatabase. Using \d+ we can show the table
schema with the indexes.
If you are just starting with your project, using the database backend is the most
common and appropriate choice. If you face scalability issues, switching to a
different backend could be required to meet the application demands.
If you start to have a high volume of concurrent users, you may need to switch to
the cached session backend. You can change the backend to cached by setting
SESSION_ENGINE in the settings.py file:
SESSION_ENGINE = "django.contrib.sessions.backends.cache"

The cache backend will reduce latency and database usage.
Using the cache backend has some drawbacks. First, you have another service to
maintain in your infrastructure and another potential point of failure. Caches are
volatile and any reset of the cache service could potentially lose the data.
There is another session backend that uses the cache and database together. This
is the cached_db backend. The cache_db backend primarily utilizes caching.
When the framework needs to get the session data, it will go first to the cache; if
not found, it will go to the database. When the framework needs to store the
session data, it will always write to the database. This backend will reduce the
latency, but it will not reduce the database usage on the writing part. This backend
could be used as a transition to the cache backend.
The framework also provides a file backend to store the session in the file system.
This file backend is rare since it has many unwanted drawbacks. The most critical
problem with the file backend is that it only allows you to scale the application
with one server quickly. Using the file backend is also a terrible idea if you are
planning to deploy the application to the Kubernetes cluster since the cluster
could restart or kill the container at any moment, and this will produce lost
sessions without using volumes.
If you are using file backend and you have multiple instances of the server on
different servers or containers, the user always has to use the same server or it will
lose the session. Session data will be stored in the filesystem; if those files don’t
have the appropriate permission, this will be a security risk. There are scenarios
where the file backend could be helpful, but for most common scenarios, the
database is the most appropriate backend.
Following the principle that your local environment should be as similar as
possible to the production environment, using the same session backend as in

production is recommended.

Session customization
The session has many settings. Let’s review some of them:
When dealing with an application that handles sensitive data, consider setting a
shorter session timeout to log out the user and reduce the potential risk of
unauthorized access.
SESSION_COOKIE_AGE = 1200 # 20 minutes in seconds. This is the

default.

Clean up the cookies when the user closes the browser:
SESSION_EXPIRE_AT_BROWSER_CLOSE = True

If you’re using cookie-based sessions or sending the session ID in a cookie, it’s a
good idea to use secure cookies in production:
SESSION_COOKIE_SECURE = True

Session usage
You can access the session data via the request object.
Here are some examples of usage:
Access to the user_profile_color value

request.session["user_profile_color"]

You can also set values as a dictionary

When you set a session value in Django, you modify an in-memory

dictionary. The session data is written to the backend storage at

the end of the request-response cycle by the SessionMiddleware,

optimizing for efficiency and performance.

request.session["user_profile_color"] = "red"

You can also get the keys

request.session.keys()

clear will delete the session data, but it will NOT delete the

cookie

request.session.clear()

flush will delete the session data and the cookie

request.session.flush()

You can also set the expiry and get it

request.session.set_expiry(100)

request.session.get_expiry_date()

cycle_key Destroys current session data and creates a new session

with a new session key.

This is useful for avoiding session fixation attacks.

request.session.cycle_key()

Session good practices
Django sessions are not meant to store extensive data. If you need to store large
amounts of information, consider using caching or database models.
Never store sensitive information like passwords or credit card numbers in
session. For sensitive data, you should use other secure mechanisms.
When using database-backed sessions, expired sessions can accumulate over time.
Use Django’s clearsessions management command regularly to clean out old
data and ensure your database remains efficient.

Password Management in Django: Change and
Password Reset
Django has built-in views for password management. We can easily handle the
password change and reset flows using these views.
We need to change our accounts/urls.py and settings to use password
management views. Let’s start first with the password change views, open the
accounts/urls.py and add the new paths:
from django.urls import path

from django.contrib.auth.views import LoginView, LogoutView,

PasswordChangeView, PasswordChangeDoneView

from django.urls import reverse_lazy

urlpatterns = [

…

path("password_change/",

auth_views.PasswordChangeView.as_view(success_url=reverse_lazy("ac

counts:password_change_done"),

template_name="accounts/password_change_form.html"),

name="password_change"),

path("password_change/done/",

auth_views.PasswordChangeDoneView.as_view(template_name="accounts/

password_change_done.html"), name="password_change_done"),

]

We have added two new paths in our URL patterns using the framework’s class-
based views. Using the template_name we can set up the template we want to use
for rendering the form and show a successful message when the password is
changed.
The next step is to define our templates. Here is the code for
templates/accounts/password_change.html:
{% extends "tasks/base.html" %}

{% load widget_tweaks %}

{% block content %}

<div class="container my-5">

<div class="row">

<div class="col-lg-6 offset-lg-3">

<div class="card">

<div class="card-body">

<h2 class="card-title">Change Password</h2>

<form method="post" class="mt-4">

{% csrf_token %}

<div class="mb-3">

<!-- Assuming you have fields like 'old_password',

'new_password', 'confirm_new_password' in your form -->

<label for="{{ form.old_password.id_for_label }}"

class="form-label">Old Password</label>

{{ form.old_password|add_class:"form-control" }}

</div>

<div class="mb-3">

<label for="{{ form.new_password.id_for_label }}"

class="form-label">New Password</label>

{{ form.new_password1|add_class:"form-control" }}

</div>

<div class="mb-3">

<label for="{{ form.confirm_new_password.id_for_label }}"

class="form-label">Confirm New Password</label>

{{ form.new_password2|add_class:"form-control" }}

</div>

<button type="submit" class="btn btn-primary">Change

Password</button>

</form>

</div>

</div>

</div>

</div>

</div>

{% endblock %}

As always, we extend our base.html template to maintain the look and feel of our
project. Then, we use the block content to render the form using the CSRF token.
The password change done template is simple and it will have a link to the login
page, open the file templates/accounts/password_change_done.html:
{% extends "tasks/base.html" %}

{% block content %}

<div class="container my-5">

<div class="row">

<div class="col-lg-6 offset-lg-3">

<div class="card">

<div class="card-body text-center">

<h2 class="card-title">Password Change Successful</h2>

<p class="card-text">Your password has been changed

successfully!</p>

<a href="{% url 'accounts:login' %}" class="btn btn-

primary">Login Again

</div>

</div>

</div>

</div>

</div>

{% endblock %}

Now our users are ready to change their password if they want to. However, if one
of our users needs to remember their password, we still need to add this
functionality to our project. The reset flow is more complex than the password
change since it involves email notifications to verify the user. Let’s review the
user password reset flow.

1. User Requests Password Reset:
The user goes to a password reset form on the website and enters their email
address. When the server receives the request to reset the password, it
checks if the email address is associated with an existing user account. If the
account exists, it continues to the next step.

2. Email is Sent:

Django generates a unique token and sends an email to the user containing a
link to this token. The user receives the email with a password reset link.

3. User Clicks on Password Reset Link:
The user clicks on the link, which leads to a password reset form on the
website. Django verifies that the token is valid and hasn’t expired.

4. User Resets Password:
The user enters and submits a new password into the form. Django verifies
the new password meets the requirements and then updates the user’s
password in the database. The token becomes invalid after use.

5. Password Reset Complete:
The user is notified that their password has been successfully changed.
Django might optionally send a confirmation email to the user, notifying
them of the change.

Figure 8.4: Password reset flow

Let’s add the new URLs to our accounts/urls.py:
urlpatterns = [

…

path('password_reset/',

PasswordResetView.as_view(email_template_name="accounts/custom_pas

sword_reset_email.html"), name='password_reset'),

path('password_reset/done/', PasswordResetDoneView.as_view(),

name='password_reset_done'),

path('reset/<uidb64>/<token>/',

PasswordResetConfirmView.as_view(),

name='password_reset_confirm'),

path('reset/done/', PasswordResetCompleteView.as_view(),

name='password_reset_complete'),

]

These four reset password views require us to create four html templates. Still,
before creating those templates, we must configure our email backend in our
taskmanager/settings.py.
As with the session backend, Django supports different backends for sending
emails. For development, it is expected to use the console backend, which will
print the email in the console.
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

For production, you will be required to set up the SMTP configuration in the
settings.py:
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

EMAIL_HOST = 'your-smtp-server.com'

EMAIL_PORT = 587

EMAIL_USE_TLS = True

EMAIL_HOST_USER = 'your_email@example.com'

EMAIL_HOST_PASSWORD = 'your_email_password'

If you want to use the same backend in both environments, you can use tools like
MailHog. MailHog is an open-source tool to test SMTP and has a web interface to
inspect emails.
Let’s update our docker-compose yaml to add MailHog in the services section:
mailhog:

image: mailhog/mailhog

container_name: mailhog

ports:

- "1025:1025" # SMTP server

- "8025:8025" # Web UI

Restart docker-compose:
docker-compose down

docker-compose up -d

Now you can navigate to localhost:8025 to open the mailhog web interface.

Finally, set the Django settings to use mailhog:
EMAIL_BACKEND = "django.core.mail.backends.smtp.EmailBackend"

EMAIL_HOST = "localhost"

EMAIL_PORT = 1025

EMAIL_USE_TLS = False

We need to define for each template the password reset flow:
Create a new file in templates/accounts/password_reset_form.html
{% extends "tasks/base.html" %}

{% block content %}

<div class="container mt-5">

<div class="row justify-content-center">

<div class="col-md-6">

<div class="card">

<div class="card-header bg-primary text-white">

<h2>Reset Password</h2>

</div>

<div class="card-body">

<form method="post">

{% csrf_token %}

<div class="mb-3">

{{ form.email.label_tag }} {{ form.email }}

{% if form.email.errors %}

<div class="alert alert-danger mt-2">

{{ form.email.errors }}

</div>

{% endif %}

</div>

<button type="submit" class="btn btn-primary">Reset

Password</button>

</form>

</div>

</div>

</div>

</div>

</div>

{% endblock %}

The preceding template shows the form with one text input and a button. This
form will allow the user to receive an email with a password reset link.

You can use the default email template that comes shipped with the framework or
if you want to customize, you can create a new template in
templates/accounts/custom_password_reset_email.html with the following
code:
{% autoescape off %}

Hi {{ user.username }},

You're receiving this email because you requested a password reset

for your account.

Please go to the following page and choose a new password:

{{ protocol }}://{{ domain }}{% url

'accounts:password_reset_confirm' uidb64=uid token=token %}

Thanks for using our site!

{% endautoescape %}

The preceding template uses auto escape off to render the special characters
correctly in plain text.
Then, it uses the user from the context to create a personalized hello message
about the password reset.
The link generation uses protocol and domain from the Sites framework that you
can configure from the admin page. The URL template tag generates the URL for
the password reset page using the uidb6 and token.
Next, we need to customize the password reset confirm form to ask the user for
the new password twice and create a new file in
accounts/templates/password_reset_confirm_form.html:
{% extends "tasks/base.html" %}

{% block content %}

<div class="container mt-5">

<div class="row justify-content-center">

<div class="col-md-6">

<div class="card">

<div class="card-header bg-primary text-white">

<h3>Set New Password</h3>

</div>

<div class="card-body">

<form method="post">

{% csrf_token %}

<div class="mb-3">

{{ form.new_password1.label_tag }}

{{ form.new_password1 }}

{% if form.new_password1.errors %}

<div class="alert alert-danger mt-2">

{{ form.new_password1.errors }}

</div>

{% endif %}

</div>

<div class="mb-3">

{{ form.new_password2.label_tag }}

{{ form.new_password2 }}

{% if form.new_password2.errors %}

<div class="alert alert-danger mt-2">

{{ form.new_password2.errors }}

</div>

{% endif %}

</div>

<button type="submit" class="btn btn-primary">Change

Password</button>

</form>

</div>

</div>

</div>

</div>

</div>

{% endblock %}

The password reset confirm form will ask the user to input the new password
twice. A complete password reset message will be shown when the user submits a
correct new password twice. For customization of this message create a new file
templates/accounts/password_reset_complete.html with the following
template:
{% extends "base.html" %}

{% load static %}

{% block content %}

<div class="container mt-5">

<div class="row justify-content-center">

<div class="col-md-6">

<div class="card">

<div class="card-body text-center">

<h2 class="card-title">Password Reset Successful</h2>

<p class="card-text">Your password has been reset successfully.

You can now log in using your new password.</p>

<a href="{% url 'accounts:login' %}" class="btn btn-primary mt-

3">Login

</div>

</div>

</div>

</div>

</div>

{% endblock %}

The password reset complete template shows a message to the user informing that
the operation was completed.

Protecting Views with Login Required Decorators
In Chapter 5, Django Views and URL Handling, we learned that there are two
types of views: function-based views (FBV) and class-based views (CBV).
Django provides different ways to protect the views depending on the view type.
The Django framework offers a login_required decorator specifically for
function-based views. When you decorate the FBV with this decorator, the
framework will check whether the user is authenticated before executing the view
code. The decorator evaluates request.user, an attribute added by the
AuthenticationMiddleware. If the user is not authenticated, it will be redirected
to the LOGIN_URL set in the settings.py file.
Let’s add a decorator to our create task on sprint view:
from django.contrib.auth.decorators import login_required

from django.http import HttpRequest, HttpResponseRedirect

from django.shortcuts import render, redirect

from .services import create_task_and_add_to_sprint

@login_required

def create_task_on_sprint(request: HttpRequest, sprint_id: int) ->

HttpResponseRedirect:

if request.method == "POST":

task_data: Dict[str, str] = {

'title': request.POST.get("title", "Untitled"),

'description': request.POST.get("description", ""),

'status': request.POST.get("status", "UNASSIGNED"),

}

task = create_task_and_add_to_sprint(task_data, sprint_id,

request.user)

return redirect("task-detail", task_id=task.id)

Users must now authenticate to create a task or else face redirection to the login
page.
We can employ the login_required decorator or inherit from LoginRequiredMixin
for class-based views.
In Chapter 5, Django Views and URL Handling, we created several class-based
views, TaskListView, TaskDetailView, TaskCreateView, TaskUpdateView and
TaskDeleteView. The simplest way to authenticate the views is to inherit from the
LoginRequiredMixin:
from django.contrib.auth.mixins import LoginRequiredMixin

from django.views.generic import ListView

class TaskListView(LoginRequiredMixin, ListView):

model = Task

template_name = 'task_list.html'

context_object_name = 'tasks'

With this, our task list view gains protection, enforcing user authentication
effectively. It’s important to put the LoginRequiredMixin before the ListView.
There is an alternative way using the login_required decorator:
from django.utils.decorators import method_decorator

from django.contrib.auth.decorators import login_required

from django.views.generic import ListView

@method_decorator(login_required, name='dispatch')

class TaskListView(ListView):

model = Task

template_name = 'task_list.html'

context_object_name = 'tasks'

Now our views are protected and the framework will enforce authentication. It’s
important to remember that the framework will not protect our views by default.
If you don’t inherit from LoginRequiredMixin or use the login_required
decorator, our views are public and accessible to everyone.
In the next Chapter 9, Django Ninja and APIs, we will review how to force
authentication to our API endpoints by default.
The ContactFormView will remain accessible without authentication to allow
unrestricted contact access.

User Authorization: Permissions and Groups
Permissions offer granular access control, determining who has the authority to
create, update, or delete objects. Groups facilitate the bundling of various
permissions into one set.
In Chapter 4, Django Models and PostgreSQL, we saw how to check for
permission in the admin and used the data migration to configure our project
groups. Now, we will see how to use those groups and permission in the views.
Let’s recap the groups we created:

Creator: Can create new tasks and view tasks. This group will have the
add_task permission.
Editor: Has permission to view and edit tasks. This group will have the
change_task permission.
Admin: Has permissions to create, view and delete. This group has all the
permissions enabled.

For function-based views, the decorator ‘permission_required’ can be
employed. We need to specify the permission we want to provide as a parameter.
from django.http import HttpRequest, HttpResponseRedirect

from django.shortcuts import render, redirect

from .services import create_task_and_add_to_sprint

from django.contrib.auth.decorators import permission_required

@permission_required("tasks.add_task")

def create_task_on_sprint(request: HttpRequest, sprint_id: int) ->

HttpResponseRedirect:

if request.method == "POST":

task_data: Dict[str, str] = {

"title": request.POST["title"],

"description": request.POST.get("description', ""),

"status": request.POST.get("status", "UNASSIGNED"),

}

task = create_task_and_add_to_sprint(task_data, sprint_id,

request.user)

return redirect('task-detail', task_id=task.id)

Our view now uses the permission_required to check for the permission
add_tasks; the permission’s prefix is the application name. There is no need to
use the login_required since the permission_required includes authentication
checking.

Additionally, the decorator features two optional parameters, login_url and
raise_exception.
The login_url can specify an alternative URL for the login page when the user is
not authenticated.
With raise_exception=True, the view will raise a PermissionDenied exception
if the user lacks permission rather than returning a 403 Forbidden response. You
can catch this exception and handle it as needed.
You can define custom permission at the model level using the Meta class:
from django.db import models

from django.contrib.auth.models import User

class Task(models.Model):

…

class Meta:

permissions = [

("custom_task", "Custom Task Permission"),

]

The task model is now endowed with a new permission named custom_task.
When adding custom permission, you will need to execute the makemigrations
and then execute the migrate command. This will create the new permission in the
database.
We can set the required permissions using the mixin PermissionRequiredMixin
and the permission_required attribute
from django.contrib.auth.mixins import PermissionRequiredMixin

from django.views.generic import ListView

class TaskListView(PermissionRequiredMixin, ListView):

permission_required = "tasks.view_task"

model = Task

template_name = 'task_list.html'

context_object_name = 'tasks'

Similarly to the LoginRequiredMixin, we used the PermissionRequiredMixin.
This mixin allows us to check for the permission set in the permission_required.
The permission format is the same as with FBV “model.permission_name”.
The permission_required allows you to specify more than one permission using
a tuple or list. When using multiple permissions, the user must have all of them to
access the view. As with the decorator, we can also use login_url and
raise_exception:
from django.contrib.auth.mixins import PermissionRequiredMixin

from django.views.generic import ListView

class TaskListView(PermissionRequiredMixin, ListView):

permission_required = ("tasks.view_task", "tasks.custom_task")

model = Task

template_name = 'task_list.html'

context_object_name = 'tasks'

login_url = '/login/'

raise_exception = True

In Chapter 4, Django Models and PostgreSQL, the owner attribute was set to
null=True when we created the Task model. It was set to allow null values since,
at the design time, we weren’t allowed to set the creator to the logged-in user.
Now that we have our authentication, we can set the creator.
Let’s modify our model to not allow null values in the creator attribute:
class Task(models.Model):

…

owner = models.ForeignKey(

User, related_name="owned_tasks", on_delete=models.CASCADE,

null=False

)

Now we need to create the migrations and update our database schema:
poetry shell

python manage.py makemigrations

python manage.py migrate

While it’s not necessary to make the creator non-nullable, its absence could lead
to instances without a defined creator, an undesirable outcome as every task
should be associated with a creator.
Now we need to modify the TaskCreateView to set the creator:
class TaskCreateView(LoginRequiredMixin, CreateView):

…

def form_valid(self, form):

Set the creator to the currently logged in user

form.instance.creator = self.request.user

return super().form_valid(form)

In the preceding code, we added a new method form_valid to the class view
TaskCreateView. This method overrides the form_valid and sets the task’s
creator to the logged-in user before calling super form_valid.

The framework allows a more granular way to handle the permissions for
scenarios that require a more specific check.
In the class-based view, you can override the method has_permission to make
more complex permission checks. Here is an example of how to override it:
from django.views.generic.edit import UpdateView

from django.shortcuts import get_object_or_404

from .models import Task

class TaskUpdateView(PermissionRequiredMixin, LoginRequiredMixin,

UpdateView):

model = Task

form_class = TaskForm

template_name = 'task_edit.html'

permission_required = ('tasks.change_task',)

def has_permission(self):

First, check if the user has the general permission to edit

tasks

has_general_permission = super().has_permission()

if not has_general_permission:

Then check if the user is either the

return False

Then check if the user is either the

creator or the owner of this task

task_id = self.kwargs.get('pk')

task = get_object_or_404(Task, id=task_id)

is_creator_or_owner = task.creator == self.request.user or

task.owner == self.request.user

Return True only if both conditions are met

return has_general_permission and is_creator_or_owner

The has_permission method verifies the task’s existence, as the request might
carry invalid data. If the task does not exist, a 404 response will be returned.
Then, using the task creator or owner, it will check against the logged-in user.
Finally, it will allow the logged-in user to update the task, whether it is the creator
or the owner.
As you can see, the framework provides robust authentication and authorization
features to create complex permission scenarios that allow a high degree of
customization. However, with great power comes great responsibility: without
careful planning and structuring, this system can quickly turn into a tangled web

of “permission spaghetti.” To avoid confusion and maintain clarity, it’s crucial to
implement a well-organized permission structure.

Multi-tenant authentication with Custom Django’s
User Model
Sometimes, the user class provided by the framework needs some customization
to support different use cases. The framework provides ways to customize and
change the user model to a different one.
Before opting for a different user class, let’s consider an alternative that is often
beneficial when additional attributes are needed for the user model.
The simplest way is to create a UserProfile class with a reference to the user using
a one-to-one relationship and with the extended attributes required by the
business.
Here is a user profile class example:
from django.contrib.auth.models import User

from django.db import models

class UserProfile(models.Model):

user = models.OneToOneField(User, on_delete=models.CASCADE)

biography = models.TextField()

photo = models.ImageField(upload_to='user_photos/')

The UserProfile model has a one-to-one relationship with the user class and has
two fields required by the business: the biography and the photo. Consider this
profile approach, as it obviates the need to customize the authentication backend.
The user profile class should be placed in the accounts/models.py of our project.
Imagine you have a business requirement and are building a SaaS application
where different organizations can register and have separate users, roles and
permissions. Every organization (tenant) needs a distinct namespace to avoid
username or email address conflicts with others.
For a multi-tenant scenario, we need to create a custom user model. Let’s add a
new user model in our file accounts/models.py:
from django.contrib.auth.models import AbstractUser

from django.contrib.auth.models import BaseUserManager

from django.db import models

class Organization(models.Model):

name = models.CharField(max_length=255)

class CustomUserManager(BaseUserManager):

def create_user(self, username, email, password=None,

**extra_fields):

if not email:

raise ValueError('The Email field must be set')

email = self.normalize_email(email)

user = self.model(username=username, email=email,

**extra_fields)

user.set_password(password)

user.save(using=self._db)

return user

def create_superuser(self, username, email=None, password=None,

**extra_fields):

extra_fields.setdefault('is_staff', True)

extra_fields.setdefault('is_superuser', True)

if extra_fields.get('is_staff') is not True:

raise ValueError('Superuser must have is_staff=True.')

if extra_fields.get('is_superuser') is not True:

raise ValueError('Superuser must have is_superuser=True.')

extra_fields.setdefault('organization_id', 1)

return self.create_user(username, email, password,

**extra_fields)

class TaskManagerUser(AbstractUser):

organization = models.ForeignKey(Organization,

on_delete=models.CASCADE)

username = models.CharField(max_length=255)

email = models.EmailField()

objects = CustomUserManager()

class Meta:

unique_together = (

('organization', 'username'),

('organization', 'email'),

)

We have introduced the Organization class that is related to the new
TaskManagerUser. Using the organization, username and organization, email we
can set a unique_together to guarantee no duplicate user will be created.
As always, we change our model. It’s imperative to create and execute migrations.
poetry shell

python manage.py makemigrations

python manage.py migrate

Our last step is to change the configuration of the project to use the new user
model, open the settings.py to set the AUTH_USER_MODEL:
AUTH_USER_MODEL = "accounts.TaskManagerUser"

You should be prudent when using the option for a custom user model. There are
some drawbacks to using a custom user model. Transitioning the
AUTH_USER_MODEL is a complex process, especially for projects in production with
an existing user base. Doing this will require a migration and can introduce
complexities. Transitioning a project using a custom user model with several
users is considered a bad practice. Ensure you use a custom user object from the
beginning of the project. It will be tough to change it later. Always try to find an
alternative solution before customizing the user model.
Despite these changes, our login page won’t utilize the organization ID until we
employ a custom authentication backend for organization validation.
Create a new file in accounts/backends.py with the following content:
from django.contrib.auth.backends import ModelBackend

from django.contrib.auth import get_user_model

from django.db.models import Q

class OrganizationUsernameOrEmailBackend(ModelBackend):

def authenticate(self, request, username=None, password=None,

organization_id=None, **kwargs):

UserModel = get_user_model()

if organization_id is None:

return None

user = UserModel.objects.filter(

(Q(username__iexact=username) | Q(email__iexact=username)) &

Q(organization_id=organization_id)

).first()

if user and user.check_password(password):

return user

def get_user(self, user_id):

UserModel = get_user_model()

try:

return UserModel.objects.get(pk=user_id)

except UserModel.DoesNotExist:

return None

Then update your project settings, open the file taskmanager/settings.py and
change the authentication backend to the new one:
AUTHENTICATION_BACKENDS = [

"accounts.backends.OrganizationUsernameOrEmailBackend",

]

We need to pass the new organization ID to the backend, for this, we need to
update the login form, open the file accounts/forms.py and add a new clean
method to the form:
class CustomAuthenticationForm(AuthenticationForm):

organization_id = forms.IntegerField(

required=True,

widget=forms.TextInput(attrs={'autofocus': True})

)

def clean(self):

username = self.cleaned_data.get('username')

password = self.cleaned_data.get('password')

organization_id = self.cleaned_data.get('organization_id')

if username and password and organization_id:

self.user_cache = authenticate(

self.request,

username=username,

password=password,

organization_id=organization_id

)

if self.user_cache is None:

raise forms.ValidationError(

"Invalid username, password, or organization ID.",

code='invalid_login',

)

return self.cleaned_data

The clean method extracts the username, password, and organization_id from
the form’s validated data. If the values are not None, it will call the frameworks to
authenticate, which will call our new backend since we changed it on the
settings.py.
A ValidationError is raised by the clean method if it doesn’t return a user.
Now we are going to create the authentication form. Create a new file in
accounts/forms.py with the new authentication form:
from django import forms

from django.contrib.auth.forms import AuthenticationForm

class CustomAuthenticationForm(AuthenticationForm):

organization_id = forms.IntegerField(

required=True,

widget=forms.TextInput(attrs={'autofocus': True})

)

Override the LoginView to use the new form, edit the file accounts/views.py and
add the new CustomLoginView:
from django.contrib.auth.views import LoginView

from .forms import CustomAuthenticationForm

class CustomLoginView(LoginView):

authentication_form = CustomAuthenticationForm

Update the URL patterns to use the new view:
urlpatterns = [

path('login/', CustomLoginView.as_view(), name='login'),

… your other url patterns

]

Up to this point, we will ask the user for the username, email and organization id.

Figure 8.5: The new multi-tenant login

Security Best Practices in Django
As a bonus, we will review the best settings to keep your Django project as secure
as possible. A completely secure system is challenging, and inherent security bugs
or misconfigurations exist in every framework or project.
Next, we present a list of the most common settings you should always check.
Use this list as a preflight checklist before going to production.

Update all your libraries and frameworks
Always update your libraries and keep Django with the latest hotfix upgraded.
While updating to the latest Django version isn’t mandatory, applying the newest
hotfix to your project is crucial. Many tools can check your poetry files to ensure
you are not deploying any insecure version. You can easily integrate these tools
with your continuous integration. Some of these tools are Safety, bandit, pyup.io,
and Snyk, but many more tools can help spot any trivial security issue in your
project.

Project Settings Hardening
Now we will focus mainly on the setting.py of your project.

Turn off Debug in production
DEBUG = False

Setting the DEBUG to False is a mandatory setting for production. When DEBUG is
enabled, any error page could leak information to malicious users.

Use Secure Cookies
SESSION_COOKIE_SECURE = True

CSRF_COOKIE_SECURE = True

By ensuring cookies are transmitted exclusively over HTTPS. These settings
mitigate the risk of Man-in-the-Middle (MitM) attacks.

HTTP Strict Transport Security (HSTS)
SECURE_HSTS_SECONDS = 31536000 # Equivalent to 1-year

SECURE_HSTS_INCLUDE_SUBDOMAINS = True

SECURE_HSTS_PRELOAD = True

HSTS ensures that your site is accessed only over HTTPS. The
INCLUDE_SUBDOMAINS option ensures that all subdomains are HTTPS-only, and
PRELOAD allows the domain to be included in browser preload lists.

Content Security Policy (CSP)
To enable this setting you will need to install django-csp
poetry shell

poetry add django-csp

Now open the settings.py and add the CSPMiddleware:
MIDDLEWARE = [

…

'csp.middleware.CSPMiddleware',

…

]

CSP_IMG_SRC = ("'self'", "img.com",)

CSP_SCRIPT_SRC = ("'self'", "scripts.com",)

Implementing a Content Security Policy (CSP) is instrumental in thwarting
various content injection vulnerabilities, including cross-site scripting (XSS).

X-Content-Type-Options
SECURE_CONTENT_TYPE_NOSNIFF = True

This setting prevents the browser from guessing the MIME type, which could lead
to security vulnerabilities.

X-XSS-Protection
SECURE_BROWSER_XSS_FILTER = True

This header helps protect against cross-site scripting (XSS) attacks.

Secure Referrer Policy
SECURE_REFERRER_POLICY = 'strict-origin-when-cross-origin'

This setting controls the Referrer header in links from your site, limiting the
amount of information leaked to other sites.

Use Secure Password Hashing Algorithms

PASSWORD_HASHERS = [

'django.contrib.auth.hashers.Argon2PasswordHasher',

'django.contrib.auth.hashers.PBKDF2PasswordHasher',

…

]

Django allows for the use of multiple password hashing algorithms. Argon2 is
usually recommended as it is considered among the most secure.

Limit Access to Admin
Use a non-standard URL for the admin

For example, change from /admin/ to /Luridness7880/

ADMIN_URL = 'Luridness7880/'

Changing the URL for the Django admin interface can make it harder for
attackers to find and target it.

Keep SECRET_KEY Secret
The SECRET_KEY should never be hardcoded in settings.py for production. Instead,
use environment variables or a separate configuration file to store it.

Set ALLOWED_HOSTS
ALLOWED_HOSTS = ['www.example.com']

This setting is a security measure to prevent HTTP Host header attacks. Only set
it to domains that should serve your application.

Conclusion
Few use cases don’t require authentication and authorization. For most of them,
identifying the users is a prerequisite for the feature you will need to develop.
Mastering and understanding authentication is basic knowledge for building web
applications. Without authentication, there is no way to protect your user’s
privacy or data.
We have created the authentication of our task management project using the
framework tools, minimizing our work. The framework provides enough
flexibility to customize how authentication pages look.
We developed a rich authorization schema for our application using permission
and groups. We have enough granularity to allow different roles to perform and

limit specific actions.
We created a multi-tenant task management authentication by customizing the
user model.
Finally, we reviewed a list of best security practices for your project that can be
used as a preflight checklist. With all this knowledge, you are now equipped to
develop secure and efficient web applications that prioritize user privacy and data
protection.
In the next chapter, we will see what it means to Restful API and how to build one
using Django Ninja.

Questions
1. What does it mean that the HTTP protocol is stateless?
2. What are the HTTP status codes 401 and 403 used for?
3. What role does middleware play in Django’s architecture?
4. How does a user typically acquire a session ID in a web application?
5. How are sessions in Django related to middleware?
6. How does Django store and manage user session data by default?
7. What are the drawbacks of using the file backend for session data storage in

Django?
8. Can you describe the steps involved in the password reset flow in Django?
9. What security measures are implemented in Django’s password reset flow to

ensure user authenticity?
10. How are permissions and groups used in Django for user authorization?
11. How can permissions be customized to create more specific authorization

scenarios in class-based views?
12. How can Django’s user model be customized to accommodate additional

attributes or functionalities?
13. How is a custom authentication backend implemented and utilized in

Django for additional authentication criteria?

Exercises
1. Update the project authentication views to support multitenant. Example:

Update registration and password reset.

2. Customize the registration email template to replace Django’s default
template.

3. Update a Django project’s settings to enhance security, including secure
cookies, HSTS, and content security policy.

CHAPTER 9
Django Ninja and APIs

Introduction
Application Programming Interface (API) allows two or more computer
programs to communicate with each other. Designing an API from the
beginning is essential because changing it becomes challenging once an API
is made public. API design-first approach is a process that will allow us to
gather quick feedback before any implementation is done, thus saving us
time.
Django Ninja was introduced as a modern, fast, easy-to-use, and intuitive
framework for building APIs on top of Django. Inspired by Flask and
FastAPI, Django Ninja integrates select features and conveniences of these
frameworks into the Django ecosystem.
This chapter guides you through extending our Task Management project
with a secure, RESTful API. We will follow API design first to craft a
shallow API specification that yields mock data. We will use the Django
ninja schemas to generate OpenAPI Specifications (OAS). OpenAPI
Specifications (OAS) provide a standard, language-agnostic interface to
RESTful APIs, allowing both humans and computers to discover and
understand the capabilities of a service without accessing its source code or
extensive documentation. The initial API will return mock data, allowing us
to save time and have quicker feedback. We finally iterated the solution to
make it functional, adding authentication and permission checking.

Structure
In this chapter, we will cover the following topics:

Introduction to API design
API Design-first approach
HTTP Response status codes

Introduction to Django Ninja
Setting Up Django Ninja in Your Project
Building Your First API with Django Ninja
Request and Response Models with Pydantic
API Documentation
Understanding HTTP Methods in Django Ninja
API Pagination
Working with Path Parameters and Query Parameters
Validation and Error Handling in Django Ninja
Authenticating API Users
Securing APIs: Permissions and Throttling
Versioning Your API

Introduction to API design
Roy Fielding introduced the concept of Representational State Transfer
(REST) in his doctoral dissertation titled “Architectural Styles and the
Design of Network-based Software Architectures”. REST is an architectural
style for designing network applications.
Roy, in his dissertation, does not strictly tie REST to HTTP. The dissertation
describes REST as an architectural style with constraints and principles for
designing distributed systems.
We are separating the architectural style from HTTP because adhering to
REST’s principles allows the creation of APIs without relying on HTTP. You
can implement a REST API with other technologies.
Most real-world RESTful systems are implemented over HTTP, given the
alignment between REST principles and HTTP semantics. In the
dissertation, Fielding uses HTTP to illustrate how REST can be applied.
The six principles are as follows:

Stateless: The server should not store anything about the client’s state
between requests. Each request is independent and must contain all the
information the server needs.

Client-Server Architecture: The client and server are different
entities. The client is responsible for the user interface and the server is
for the backend and data storage.
Layered System: The API can be composed of multiple layers. The
client cannot tell whether it is connected directly to the end server or
with intermediary layers.
Cacheability: Responses can be labeled as cacheable. If a response is
cacheable, the client cache can reuse it for equivalent responses in the
future.
Uniform Interface: All components interact through a consistent
interface, simplifying the architecture and improving visibility and
portability
Code on demand (optional): The server can return code to extend the
client functionality. This could potentially expose a security
vulnerability and its use has to be carefully considered.

There are other misconceptions related to REST; two prevalent ones are that
REST requires JSON or was meant for CRUD operations. REST is not
limited to CRUD. RESTful services can offer other operations beyond basic
CRUD, and not every RESTful service needs to implement all CRUD
operations.
JSON is a popular choice of data interchange due to its lightweight nature
and ease of use. RESTful services can return binary data, like MessagePack
or Protocol Buffers. Some other services can return CSV, images, or even
XML if you are unlucky.
The principles are sufficiently generic, allowing you to opt for technology
that suits your needs or adapt to emerging technologies.
Designing an API involves following these principles and choosing the right
technologies to solve the problems. This chapter will focus on JSON and
some CRUD operations since we plan to give this API to external users to
operate on our project management tool.

API Design-first approach
The API design-first approach is a process for building APIs where the
design of the API is prioritized before any coding takes place. Adopting an

API-first strategy enhances team and user communication, offering valuable
early feedback before coding occurs.
A simplified API design-first process could look like this:

1. Design: We design the API using a tool or document.
2. Review: Stakeholders or clients can review our design by reading the

document or using a mock.
3. Build: After sufficient iteration between design and review, we

implement the API.
4. Validation: The API is ready. We iterate by adding non-breaking

changes, new features, or fixing bugs.

Figure 9.1: API first-approach process simplified

This chapter guides you through crafting a specification using a shallow API
that returns mock data. We will use the Django ninja schemas to generate
open API documentation. The initial API will return mock data, allowing us
to save time and have quicker feedback.

Note: While various approaches exist for specification work, this book
employs Django-ninja for generating OpenAPI specifications. In the
market, several tools exist to create your open API, even when no service
is created.
In the context of our book, we already have a Django project and choose to
use Ninja. However, in another project, the technology had yet to be
decided. The first API design will allow you to start the design even when
no decision is made regarding project technology.

Here is a list of tools to create open API schemas:

OpenAPI-GUI
Apicurio
Stoplight
Swagger tools

There are more tools in the market. The previous list shows the most
popular ones.

Typically, API development starts internally, culminating in the final API
realization. Ignoring best practices often leads to APIs leaking internal
abstractions, compromising usability and clarity.
As an example of a leaky abstraction, we could expose the Epic attribute
completion_status of type float:
completion_status = models.FloatField(default=0.0)

By exposing this attribute via the API, our users must learn what its
ambiguous representation means. Is it a percentage (0-100) or a fraction (0-
1)? Furthermore, this value must be updated whenever tasks under that epic
change status, risking inconsistency if not handled correctly.
If the team working on the project does not follow an API design first
approach, thinking about how to use the API, you risk exposing internal
representation that you don’t need or want to expose.
Idempotence in the context of APIs means that making the same call
multiple times results in the same outcome as making it once. This property
is essential to ensure reliability and consistency in API interactions. For
example, HTTP methods like GET and PUT are typically idempotent.
Executing a GET request multiple times to retrieve data won’t change the
underlying data, and repeatedly updating (PUT) the same data to a specific
URL will leave the data unchanged after the first request. In contrast, non-
idempotent methods like POST can result in different outcomes when called
multiple times.
Ensuring backward compatibility is essential when designing API. There are
different strategies. We will use URI versioning in this chapter.

HTTP Response status codes
HTTP has response status codes, which are used to provide information on
the result of the operation on the server. Adhering to the appropriate use of
status codes not only aids users but also aligns with established community
standards.
Here is a summary of the most common ones used in RESTful APIs:

2xx (Success)

200 OK: The request was successful, and the result is returned in the
response.
201 Created: Indicates a new resource has been created, returning its
URI in the response.

3xx (Redirection)

301 Moved Permanently: The URL of the requested resource has been
changed permanently.
302 Found (Previously “Moved Temporarily”): Indicates that the
requested resource resides temporarily under a different URI.

4xx (Client Errors)

400 Bad Request: The request was invalid or cannot be processed by
the server.
401 Unauthorized: The client must authenticate to gain permission to
access the requested resource.
403 Forbidden: The client does not have access rights to the content.
404 Not Found: The server cannot find the requested resource.
405 Method Not Allowed: The HTTP method is not supported for the
requested resource.
429 Too Many Requests: The user has sent too many requests in a
given amount of time

5xx (Server Errors)

500 Internal Server Error: The server encountered an error and could
not fulfill the request.
502 Bad Gateway: While acting as a gateway, the server received an
invalid response from the upstream server.
503 Service Unavailable: The server is not ready to handle the request.
It could be due to being overloaded or under maintenance.

In our API’s development, status codes will be integral for implementing
views communicating precise response statuses.

Introduction to Django Ninja
Django Ninja is a third-party library for building APIs in Django
applications. One of its main features is the utilization of Python’s type hints,
which accelerates the development process. Type hints improve code
readability, enable better IDE support with auto-completion and error
checking, and facilitate easier refactoring. These benefits lead to enhanced
developer productivity and more maintainable code. The integration of
pydantic and async support enhances its performance speed. Django Ninja
integrates well with existing Django projects, allowing developers to add it
to the projects and straightforwardly build an API.
Another web framework that recently gained much traction, FastAPI, highly
influenced the framework.

Note: Pydantic serves as both a data validation and settings management
library. Utilizing type annotations, the library validates data types and
enables the addition of constraints. It is used with data structures like
dictionaries, JSON and similar formats. Classes inheriting from Pydantic
BaseModel are referred to as Pydantic models. The library can also be used
for serialization and it supports custom validators.
Django Ninja automatically generates interactive API documentation,
making it easy for developers to test and understand the API endpoints, as
in the follow-up sections.

Setting Up Django Ninja in Your Project
Begin by installing django-ninja via poetry with the command:

poetry add django-ninja

Django Ninja doesn’t require inclusion in the INSTALLED_APPS setting of
your Django project to function correctly or to serve the OpenAPI/Swagger
UI documentation.
Migrations are unnecessary – there’s nothing to migrate!

Building Your first API with Django Ninja
With our project set up, it’s time to introduce an API.
We first incorporate a router into the API utilizing the add_router method.
A router allows you to divide your API into multiple logical sections.
Employing a router contributes to a well-structured, easily maintainable
codebase.
Let’s add the new file to the tasks application, called tasks/api/tasks.py:
from ninja import Router

router = Router()

@router.get("/")

def list_tasks(request):

return {"results": [

{"id": 1, "title": "test title"},

]}

This additional file introduces a fresh API endpoint, using the GET method
to retrieve tasks. We first instantiate a new Router object, serving as a
container for handling various API routes. The @router.get('/') decorator
establishes a new API endpoint accessible via the GET method at the
router’s root path (‘/’).
This endpoint currently returns a static JSON response containing a list of
tasks. Each task is a dictionary with an id and title. In a real-world
application, this will be dynamic, fetching data from a database or another
data source. Using the service layer and schemas, we will implement this in
the following sections.
Next, create a new file named tasksmanager/api.py within the tasks
manager project. Populate it with the following content:
from ninja import NinjaAPI

from tasks.api import router as tasks_router

api = NinjaAPI()

api.add_router("/tasks/", tasks_router)

Now, let’s breakdown the key elements:
api = NinjaAPI() creates a new instance of the NinjaAPI class. It’s the
foundation of our API, where we will attach our routes and configure
settings. We have no starting point or structure to build our API without this
instance.
api.add_router("/tasks/", tasks_router) associates the tasks_router
with the API, mounting it at the /tasks/ path. Each router can be thought of
as a collection of related endpoints, and by attaching it to a path, we’re
defining where these endpoints can be accessed.
Next, we must incorporate the API into our project, open the
tasksmanager/urls.py and add the API to the urlpatterns:
from django.contrib import admin

from django.urls import include, path

from tasksmanager.api import api

urlpatterns = [

path("admin/", admin.site.urls),

path("api/v1", api.urls),

path("", include("tasks.urls")),

]

This code adds the newly created API into the Django project’s URL
configuration. The path("api", api.urls) specifically adds all the API’s
routes under the "api" prefix, establishing a clear and organized URL
structure.
In the follow-up sections, we will learn how to use API versioning. API
versioning is critical to adding new features or breaking changes to our API.
With the new API in place, let’s test its functionality using curl:
$ curl -s http://localhost:8000/api/tasks/ | python -m

json.tool

{"results": [

{

"id": 1,

"title": "test title"

}

]}

This curl command tests the API’s functionality by requesting the specified
endpoint and using python -m json.tool for a pretty-printed output. It’s
essential to verify that the API is responding as expected.
Congratulations on your first API! We still need a lot of work; our API needs
schemas and we need to remove the hardcoded results. We will refine this
solution using schemas in the following section.

Request and Response Models with Pydantic
Django Ninja uses schemas to validate, serialize, and document what is
going in and out of the API. Ninja schema is based on Pydantic and adds a
layer that wraps Pydantic for smoother integration with Django.
Two primary schema types exist: in and out. As a convention, the schema
used for input will use the postfix “In” and the schema for output or
responses will have the postfix “Out”.
An added advantage of schemas is their employment of type annotations,
used for validation and serialization. Instantiating the schema or calling a
validation method is unnecessary.
Let’s define our schemas in the new file tasks/schemas.py:
from ninja import Schema

class TaskSchemaIn(Schema):

title: str

description: str

class CreateSchemaOut(Schema):

id: int

These schemas will be used for the creation endpoint to validate and
serialize the Task object for both input and output.
Our new creation API endpoint will be:
@router.post("/", response=CreateSchemaOut)

def create_task(request: HttpRequest, task_in: TaskSchemaIn):

return CreateSchemaOut(id=1)

Our creation view code is lean and straightforward thanks of the usage of
schemas. It instantiates a CreateSchemaOut using id 1.

We can test our API using curl to create a new task:
$ curl -X POST -s http://localhost:8000/api/tasks/ -d '{"title":

"Alien Life Detection Algorithm Enhancement", "description":

"Improve the existing algorithm used for detecting alien life.

"}'

The response is expected to be a dictionary containing the id of the newly
created Task object.
{"id": 1}

Django Ninja also supports model schemas. The concept is similar to the
model views we saw in Chapter 5, Django Views and URL Handling. A
ModelSchema is a class that will generate schemas based on your models.
Let’s use ModelSchema instead of Schema for our TaskSchemaIn:
from ninja import ModelSchema

from .models import Task

class TaskSchemaIn(ModelSchema):

class Config:

model = Task

model_fields = ["title", "description"]

model_fields_optional = ["status"]

class TaskSchemaOut(ModelSchema):

owner: UserSchema | None = Field(None)

class Config:

model = Task

model_fields = ["title", "description"]

Instead of using Meta, ninja uses Config like Pydantic. In the code above,
we specify the model Task and the attributes we want in the schema.
ModelSchema has several configs to use in the schemas. We also used
model_fields_optional, which is a way to make some schema attributes
optional. Using the optional configuration, we can create a Task with an
initial status. ModelSchema will use model types to validate and serialize
data.
Response schemas transform models into the output format and contribute to
generating OpenAPI documentation. The response schemas will limit the

information that your API will return. This is very important to prevent any
information leak.
Let’s also update our lists_tasks view to use the new schemas:
@router.get('/', response=list[TaskSchemaOut])

def list_tasks(request):

return [TaskSchemaOut(title="Mock Task", description="Task

description")]

Testing it with curl with return a list of one task as expected:
$ curl -X GET -s http://localhost:8000/api/tasks/

{"items": [{"title": "Mock Task", "description": "Task

description", "owner": null}], "count": 1}

API Documentation
With Python’s type annotations and the schemas defined in your API
endpoints, Django Ninja generates API documentation automatically. Ninja
hosts the documentation at the /doc URL; access it directly via
http://localhost:8000/api/v1/docs:

Figure 9.2: OpenAPI generated documentation

Enhancing API documentation is achievable by incorporating descriptions,
examples, and additional annotations to both routes and schemas. Rich
documentation is essential to improve API usability.
Let’s review some of our previous schemas and API routes.
from ninja import Router, Schema, Field

class TaskSchemaIn(Schema):

title: str = Field(…, example="Enhanced Satellite Data

Analysis")

description: str = Field(…, example="Develop a comprehensive

analytical model to process")

class Config:

description = "Schema for creating a new task"

class CreateSchemaOut(Schema):

id: int = Field(…, example=1)

class Config:

description = "Schema for the created object output"

We can also specify tags to the router or individual endpoints via a decorator.
Let’s assign the tag "task" to the task router, open task/api/tasks.py and set
the tags:
router = Router(tags=["tasks"])

Now our API will be grouped under the "tasks" tag instead of the
"default" tag.
Up to this point, we have a shallow API that has documentation. We can
deliver this API to gather feedback from our stakeholders, clients, or users.
We can also use this specification to build the API client once everyone
agrees on the API contract.

Understanding HTTP Methods in Django Ninja
In Chapter 5, Django Views and URL Handling, we learned how HTTP
protocol works and implemented some Django views using different HTTP
methods. Next, we will apply similar concepts to our API.
In many RESTful web services, HTTP methods map to CRUD operations
somewhat straightforwardly, as shown in Table 9.1:

Action HTTP Method URL

Create POST http://localhost:8000/api/v1/tasks

Read (list) GET http://localhost:8000/api/v1/tasks

Read (object) GET http://localhost:8000/api/v1/tasks/{id}

Update PUT or PATCH http://localhost:8000/api/v1/tasks/{id}

Delete DELETE http://localhost:8000/api/v1/tasks/{id}

Table 9.1: CRUD operations mapping to REST API for Tasks

The mapping is straightforward and the URL paths are intuitive. In the URL
path, tasks denote the resource accessed. The object ID is included in the
URL and used for resource identification.
Let’s construct our CRUD API views using the Ninja framework. We are
going to leave some hardcoded data as a holder for now. Open the file
tasks/api/tasks.py and add the new endpoints:
from http import HTTPStatus

from django.http import HttpRequest, HttpResponse

from ninja import Router

router = Router()

@router.post("/", response={201: CreateSchemaOut})

def create_task(request: HttpRequest, task_in: TaskSchemaIn):

creator = request.user

return services.create_task(creator, **task_in.dict())

@router.get("/", response=list[TaskSchemaOut])

def list_tasks(request):

return services.list_tasks()

@router.get("/{int:task_id}", response=TaskSchemaOut)

def get_task(request: HttpRequest, task_id: int):

task = services.get_task(task_id)

if task is None:

raise Http404("Task not found.")

return task

@router.put("/{int:task_id}")

def update_task(request: HttpRequest, task_id: int, task_data:

TaskSchemaIn):

services.update_task(task_id=task_id, **task_data.dict())

return HttpResponse(status=HTTPStatus.NO_CONTENT)

@router.delete("/{int:task_id}")

def delete_task(request: HttpRequest, task_id: int):

services.delete_task(task_id=task_id)

return HttpResponse(status=HTTPStatus.NO_CONTENT)

We have established five API endpoints implementing CRUD operations.
Let’s review each endpoint’s code.

create_task: Extracts the currently authenticated user from the request
(request.user) and utilizes the services.create_task function to
create a task with the given input data. The creator of the task is set to
the currently authenticated user. Returns the created task’s details with
a status code of 201 Created. The output data format will be according
to CreateSchemaOut.
list_tasks: Calls the services.list_tasks function to retrieve all
tasks. Returns a list of tasks where each task is structured as per the

TaskSchemaOut.
get_task: Uses the services.get_task function to retrieve the task
details for the provided task_id. If the task is not found, it raises an
Http404 error. Returns the task details structured as per
TaskSchemaOut.
update_task: Uses the services.update_task function to update the
task with the provided input data. Returns a 204 No Content status
code, indicating that the update was successful but no content is being
returned.
delete_task: Calls the services.delete_task function to delete the
task with the provided task_id. Returns a 204 No Content status code,
indicating that the deletion was successful but no content is being
returned.

The backend logic is abstracted into a services layer in all these endpoints, as
we did in Chapter 5, Django Views and URL Handling. The service layer
contains the core logic for interacting with the database or data storage.
Let’s use the curl command to test our endpoints:
Create a new task using the post:
$ curl -X POST -s http://localhost:8000/api/tasks/ -d

'{"title": "Alien Life Detection Algorithm Enhancement",

"description": "Improve the existing algorithm used for

detecting alien life. "}'

{

"id": 5

}

We can proceed with updating the task using the PUT method:
$ curl -X PUT -s http://localhost:8000/api/tasks/5 -d

'{"title": "Alien Life Detection Algorithm", "description":

"New description"}'

For deleting the Task let’s use the DELETE method:
$ curl -X DELETE -s -w "%{http_code}\n"

http://localhost:8000/api/tasks/5

With the curl command, we can specify the HTTP method via the parameter
-X <method>. As expected, our endpoint returned an empty response.

According to HTTP standards, returning a 201 Created status code is more
appropriate when a new resource is created on the server. This provides clear
feedback that the resource was successfully created, aligning with RESTful
API best practices.

API Pagination
If our database has thousands of tasks, the API’s response could be
voluminous and potentially slow. To solve this issue, we can introduce
pagination to our API. Fortunately, Ninja features a pagination decorator that
allows us to paginate the results.
from ninja.pagination import paginate

from tasks.services import tasks as services

@router.get("/", response=list[TaskSchemaOut])

@paginate

def list_tasks(request):

return services.list_tasks()

The API now has the pagination functionality by adding the paginate
decorator. This is possible thanks to our service layer function list_tasks
returns a QuerySet that the paginate decorator will use for getting the correct
results.
The default setting limits the output to 100 items. You can change it by using
the NINJA_PAGINATION_PER_PAGE in your taskmanmager/settings.py file.
The pagination allows setting the limit and offset by using the URL
parameters limit and offset:
http://localhost:8000/api/v1/tasks/?limit=2&offset=4
The framework also provides pagination by page number. You can change it
with the setting NINJA_PAGINATION_CLASS set to the
PageNumberPagination.
If the pagination schema offered by Ninja doesn’t align with your
requirements, you can craft a custom one. In that case, you can also create a
custom pagination schema by implementing a class that overrides the Input
and Output schema classes.
Create a new file in the tasks/pagination.py with the new pagination class:
from ninja.pagination import paginate, PaginationBase

from ninja import Schema

class TaskManagerPagination(PaginationBase):

only `skip` param, defaults to 5 per page

class Input(Schema):

skip_records: int

class Output(Schema):

items: list[Any]

count: int

page_size: int

def paginate_queryset(self, queryset, pagination: Input,

**params):

skip_records = pagination.skip_records

return {

"data": queryset[skip_records: skip_records + 5],

"count": queryset.count(),

"page_size": 5,

}

Next, modify the taskmanager/settings.py file to incorporate the newly
created class:
NINJA_PAGINATION_CLASS=TaskManagerPagination

Working with Path Parameters and Query
Parameters
This section explains Path Parameters and Query Parameters:

Path parameters
Since the introduction of the API for the task model, we already used path
parameters for the task_id with type annotations. The framework will also
check for a valid integer when using type annotation in the ninja API views.
When the type of the path parameter does not match the type annotation, the
API will return a 404 status code.
We can also use the ninja path parameter with Django path converters, as we
saw in Chapter 5, Django Views and URL Handling.
@router.get("/{int:task_id}", response=TaskSchemaOut)

def get_task(request: HttpRequest, task_id: int):

task = services.get_task(task_id)

if task is None:

raise Http404("Task not found.")

return task

We only had to change the router string path to the new one using the path
converters to specify the int: /{int:task_id}. The outcome is a 404 (not
found) response from our endpoint if the path parameter type isn’t an
integer.
curl -I http://localhost:8000/api/v1/tasks/invalid_id

And the curl output displays a 404 status code:
HTTP/1.1 404 Not Found

Ninja also supports using schema for more complex path parameters. Let’s
add an API that retrieves archived tasks based on a specific date. We will
start by adding a new view in tasks/api/tasks.py:
from ninja import Path

from ninja.pagination import paginate

from tasks.schemas import PathDate

@router.get("/archive/{year}/{month}/{day}",

response=list[TaskSchemaOut])

@paginate

def archived_tasks(request, created_at: PathDate = Path(…)):

return services.search_tasks(created_at=created_at.value(),

status=TaskStatus.ARCHIVED.value)

The router decorator registers the function below it as a GET endpoint in the
Django Ninja framework. The URL pattern
“/archive/{year}/{month}/{day}” t expects three path parameters: year,
month, and day to specify a particular date. The PathDate = Path(…) is a
type-annotated function parameter.
The function calls a search_tasks of the service layer, passing the
created_at and the status. TaskStatus.ARCHIVED.value specifies that the
tasks to be fetched should have a status of ARCHIVED.
PathDate is a schema defined like this:
import datetime

from ninja import Schema

class PathDate(Schema):

year: int

month: int

day: int

def value(self):

return datetime.date(self.year, self.month, self.day)

The schema defines type int for the year, month and day. The value method
returns a date object from Python’s built-in datetime module. When called, it
constructs a date object using the schema instance’s year, month, and day
attributes.
We are now using the parameters in the search_tasks service. We must
filter the results by changing the service layer implementation at
tasks/services/tasks.py:
from datetime import date

from tasks.enums import TaskStatus

def search_tasks(

created_at: date,

status: TaskStatus,

) -> list[Task]:

tasks = Task.objects.filter(created_at__date=created_at,

status=status).order_by("status", "created_at")

return tasks

The new service will filter tasks based on created_at and status. We use a
double underscore with created_at__date to filter by date, excluding the
time. Without __date, the query would attempt to match both the date and
time, making the search criteria more restrictive
Let’s test the new API with curl:
$ curl http://localhost:8000/api/tasks/archive/2023/09/11

{"items": [{"id": 15, "title": "Mars Weather Data Aggregation

Tool", "description": "Develop a tool to aggregate and

visualize daily weather data from the Perseverance rover on

Mars.", "owner": {"id": 1, "username": "mandarina"}, "creator":

{"id": 1, "username": "mandarina"}, "status": "ARCHIVED"}],

"count": 1}

Note: Remember you can always check the GitHub repository with all the
book code. It is recommended that you write the code along with the
chapters, but if you have doubts or want to test the project management,
you can always check out the chapter branch.

Query parameters
For implementing the query parameters, we will add some filters to the task
list endpoint.
We will add the status filter. This is an interesting case since the Task model
has only four valid choices to filter on the status. We will use Ninja to
validate the query parameter. We have to change our Task model to use an
Enum.
Create a new file in tasks/enums.py with the following content:
from enum import Enum

class TaskStatus(str, Enum):

UNASSIGNED = "UNASSIGNED"

IN_PROGRESS = "IN_PROGRESS"

DONE = "DONE"

ARCHIVED = "ARCHIVED"

We introduced a new Enum class using the standard module enum. The enum
module in Python supports creating enumerations, a set of symbolic names
bound to unique constant values.
Now, we can change our Task model to use the new enum:
class Task(models.Model):

STATUS_CHOICES = [(status.value, status.name.replace('_', '

').title()) for status in TaskStatus]

…

status = models.CharField(

max_length=20,

choices=STATUS_CHOICES,

default=TaskStatus.UNASSIGNED.value,

)

…

There is no need to make migrations since our schema didn’t change. We
just changed the code to use the new enum.

A search service will support the search API as well. Since we are finding a
pattern to search, we will use the same service we use for archived_tasks
API, but we will use the status filter instead.
The new list API code will be straightforward:
@router.get("/", response=list[TaskSchemaOut])

@paginate

def list_tasks(request: HttpRequest, filters: TaskFilterSchema

= Query(…)):

return services.list_tasks(**filters.dict())

Ninja can encapsulate the filters into a FilterSchema class. Using the
FilterSchema will allow us to simplify the code of our service layer and it
will extend the search API.
We also want to filter by title. To allow this, we create the
TaskFilterSchema with the attributes:
class TaskFilterSchema(FilterSchema):

title: str | None

status: TaskStatus | None

Now, by using the TaskFilterSchema, we can add more query parameters
on the search API endpoint.
The search API will also validate the query parameters. If we try to search
using the wrong status, it will return a nice error message:
$ curl -s http://localhost:8000/api/tasks/\?status\=AAA |

python -m json.tool

{

"detail": [

{

"loc": [

"query",

"status"

],

"msg": "value is not a valid enumeration member; permitted:

'UNASSIGNED', 'IN_PROGRESS', 'DONE', 'ARCHIVED'",

"type": "type_error.enum",

"ctx": {

"enum_values": [

"UNASSIGNED",

"IN_PROGRESS",

"DONE",

"ARCHIVED"

]

}

}

]

}

The error message provided by the endpoint gives lots of information about
the error and the API user will quickly know how to solve the problem due
to a wrong status used in the query parameter.

Validation and Error Handling in Django Ninja
In this section, we will learn how to manage validation and error in Django
Ninja.

Validations
Django Ninja uses the Pydantic library for validation, attributed to its
robustness and flexibility in validating request data.
We used schemas in the previous section for validation. Let’s revisit the
PathDate schema to add more detailed validations.
from ninja import Field, Schema

class PathDate(Schema):

year: int = Field(…, ge=1) # Year must be greater than or

equal to 1.

month: int = Field(…, ge=1, le=12) # Month must be between 1

and 12.

day: int = Field(…, ge=1, le=31) # Day must be between 1 and

31.

def value(self):

return datetime.date(self.year, self.month, self.day)

The schema attributes now use the ninja Field, allowing for simple
validations on individual date components. In the code above, we use greater
or equal (ge) and less or equal (le) to ensure the numbers for the year, month,

and day are within valid numerical ranges. However, this does not guarantee
the overall date’s validity (for example, April 31st is not a valid date).
Therefore, an additional validation step is required to confirm the actual
date’s validity, as demonstrated later with a custom validator.
We can still validate using a more complex logic by using the validator
decorator
@model_validator(mode='after')

def validate_date(self) -> "PathDate":

try:

return datetime.date(self.year, self.month, self.day)

except ValueError:

raise ValueError(f"The date {self.year}-{self.month}-

{self.day} is not valid.")

This code defines a model validator in Python, executed after the primary
validation, that checks if the combination of year, month, and day fields in a
PathDate object forms a valid date, raising a ValueError if the date is
invalid.

Error handling
Ninja has built-in support for handling different types of errors and allows
you to define custom error handling.
Ninja returns an error response with an appropriate status code and detailed
error information for prevalent errors. The most common HTTP status codes
with built-in support include 400 Bad Reuqest, 404 Not Found, and 422
Unprocessable Entity.
Still, sometimes we want to have custom error handling. One way to do it is
by raising the HttpError exception.
from ninja import Router, HttpError

router = Router()

@router.get("/error")

def generate_error(request):

raise HttpError(status_code=400, detail="Custom error

message")

If you want you can register exception handlers for specific exceptions. The
typical case is when we try to fetch an object from the database that does not

exist, raising the ObjectDoesNotExist. When Django raises
ObjectDoesNotExist, Ninja will return a 500 error. A functional
customization will be to return 404 with a custom message.
Open the file taskmanager/api.py and register the new exception handler
for ObjectDoesNotExists:
from django.core.exceptions import ObjectDoesNotExist

@api.exception_handler(ObjectDoesNotExist)

def on_object_does_not_exist(request, exc):

return api.create_response(

request,

{"message": "Object not found."},

status=404,

)

Now, if any of our APIs raise the ObjectDoesNotExist exception, the
response will be 404 with the message Object not found.
It is also possible to change the error response of the built-in errors by
adding an exception handler for specific Django exceptions:

Exception

Http404

HttpError

ValidationError

AuthenticationError

By using the exception_handler decorator with the exceptions listed
previously, you can customize the built-in error responses in your
application. For instance, you can provide a more informative error message
or change the status code. An example implementation might involve
decorating a function with @exception_handler(Http404) and defining the
custom response you wish to return for a 404 error.

Authenticating API Users
In this section, we will explore two methods of adding authentication to our
API endpoints. Initially, we will begin with token-based authentication.

Subsequently, we will implement a more advanced approach using JWT
(JSON Web Tokens).

Token-Based Authentication
API token-based authentication uses a token issued by the server after the
user’s credentials are authenticated. This token is then used in every request
to the API, thus eliminating the need to send the username and password.
We must create a model for storing generated tokens to facilitate token-based
authentication. Achieve this by opening accounts/models.py and adding the
ApiToken model:
import uuid

from django.db import models

class ApiToken(models.Model):

token = models.UUIDField(default=uuid.uuid4, unique=True)

user = models.ForeignKey(TaskManagerUser,

on_delete=models.CASCADE)

def __str__(self):

return str(self.token)

This new model stores the key using uuid and the user who owns the key.
As always, generate the migrations and execute them:
poetry shell

python manage.py makemigrations

python manage.py migrate

We will incorporate ApiKeyAuth into the Ninja API next. Initiate this by
creating a new file in tasks/api/security.py and adding the new ApiKeyAuth
class:
from ninja.security import HttpBearer

from django.http import HttpRequest

from accounts.models import ApiToken

class ApiTokenAuth(HttpBearer):

def authenticate(

self, request: HttpRequest, token: str

) -> str | None:

if ApiToken.objects.filter(token=token).exists():

return token

else:

return None

Here, we’re inheriting from ninja.security.HttpBearer and overriding the
authenticate method. This method tries to get an ApiToken object from the
database that matches the provided token. If it succeeds, it returns the token.
Otherwise, it returns None, indicating failed authentication.
We must now extend the authentication across all API views, we can achieve
this by using the auth parameter within the Ninja decorators. For example,
here is the list_tasks endpoint protected with token-based authentication:
from accounts.api.security import ApiKeyAuth

@router.get("/", response=list[TaskSchemaOut], auth=

ApiTokenAuth ())

@paginate

def list_tasks(request):

return services.list_tasks()

Incorporating authentication into every view can lead to mistakes, such as
overlooking the addition of authentication to crucial endpoints. A more
efficient approach is to implement global authentication through the
NinjaAPI class. To do this, open the file taskmanager/api.py and modify it
to integrate the new authentication method.
from accounts.api.security import ApiTokenAuth

api_v1 = NinjaAPI(version="v1", auth= ApiTokenAuth ())

If we don’t want to affect the project globally, we can add authentication at
the router level:
from accounts.api.security import ApiTokenAuth

router = Router(auth= ApiTokenAuth ())

With our APIs protected, we now need a way to generate the tokens for our
users. We will create a new view to generate and display this token.
On our account’s application, create a new file for the service layer
accounts/services.py and populate it with the following contents:
def generate_token(user: AbstractUser) -> str:

token, _ = ApiToken.objects.get_or_create(user=user)

return str(token.token)

The function generate_token gets or creates a new UUID token by using
the Django objects manager method get_or_create.
Let’s now create a view to display the token to the user:
from django.contrib.auth.decorators import login_required

from django.shortcuts import redirect, render

@login_required

def token_generation_view(request):

token = generate_token(request.user)

return render(request, "accounts/token_display.html",

{"token": token})

Then we need to add the new view to the accounts/urls.py:
urlpatterns = [

…

path("show-api-token/", views.token_generation_view,

name="api-token"),

]

We still need to create the new template to display the token in the
templates/accounts/token_display.html:
{% extends 'tasks/base.html' %}

{% load static %}

{% block content %}

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<title>API Token</title>

</head>

<body class="bg-light">

<div class="container py-5">

<div class="row justify-content-center">

<div class="col-md-8">

<div class="card">

<div class="card-header">

<h1 class="card-title">Your API Token</h1>

</div>

<div class="card-body">

{% if token %}

<p class="card-text">Your token: <code>{{ token }}

</code></p>

{% else %}

<p class="card-text">No token available.</p>

{% endif %}

</div>

</div>

</div>

</div>

</div>

</body>

</html>

{% endblock %}

The template is specifically designed for displaying an API token in a user-
friendly manner. Extending from a base template (tasks/base.html), it
inherits a common structure and styling, ensuring a consistent look across
different application parts.

Figure 9.3: The API token view

If we now try to request any of our endpoints, we will get an error:
$ curl http://localhost:8000/api/tasks/archive/2023/02/12
{"detail": "Unauthorized"}

But including the authorization header will allow us to get the response:
curl -H "Authorization: Bearer e98d9a13-9289-4d40-a55f-

a231fa65d0ff"

http://localhost:8000/api/tasks/archive/2023/02/14

{"items": [], "count": 0}

It's important to acknowledge that the approaches mentioned thus far are
quite basic. For enhanced security, it is advisable to adopt best practices in
token management. A key practice is to display the token to the user only
once upon its generation, emphasizing the importance of its confidentiality.
Moreover, setting an expiration for tokens ensures they remain valid only for
a predetermined duration, reducing the risk of unauthorized long-term use.
The ability to invalidate tokens provides an additional layer of control,
enabling swift response to potential security breaches. Furthermore, tracking
the usage of each token can offer valuable insights into their activity, helping
to identify and mitigate any irregular or suspicious behavior. Implementing
these practices not only strengthens security but also instills a greater sense
of trust and reliability in the system.

JSON Web Tokens Authentication
JSON web tokens or JWT is an open standard (RFC 7519
https://tools.ietf.org/html/rfc7519) that defines a compact and secure way to
exchange data between parties as a JSON object. JWT is digitally signed
using JSON Web Signature (JWS) and can optionally encrypt using JSON
Web Encryption (JWE).
The structure of JWT is divided into three distinct sections, each separated
by dots (“.”). The first part contains the header containing the token type and
algorithm. Then, we have the payload, which contains claims. Claims are
statements about an entity and additional data. There are three types of
claims: registered, public, and private. The third part is the signature. You
have to take the encoded header, the encoded payload, a secret, and the
algorithm specified in the header and sign that to make a JWT token.

https://tools.ietf.org/html/rfc7519

To add JWT authentication to our API, we need to install PyJWT library first:
poetry add PyJWT

Then, in our tasks/api/security.py file, we will add a new class to create the
JWT Authentication:
import jwt

from django.conf import settings

from ninja.security import HttpBearer

from django.contrib.auth import get_user_model

from django.contrib.auth.models import User

class JWTAuth(HttpBearer):

def authenticate(self, request, token):

try:

Decode the JWT token

payload = jwt.decode(token, settings.JWT_SECRET_KEY,

algorithms=["HS256"])

Get the user information from the token's payload

user = get_user_model().objects.get(id=payload["id"])

return user, token

except Exception as e:

return None

The class inherits from HttpBearer and overrides the authenticate method.
The method uses the JWT library to decode the token using the secret. The
secret is retrieved from the settings, which uses environment variables to get
the JWT secret. If the token can be decoded, the code can access the payload
containing the user ID. With the user ID, we retrieve and return the user. If
any error occurs, the method returns None, making the authentication fail
due to invalid or expired tokens.

Note: It’s important to note that we have a hardcoded algorithm and we
never parse the algorithm from the token header. Using the algorithm from
the header will create a security vulnerability. This vulnerability is called
algorithm substitution. For instance, an attacker might change the “alg”
field to “none,” a valid option according to the JWT specification.

Now we need a function to issue the JWT token given to a user. Open the
accounts/service.py and add the new function to issue a JWT token:
import jwt

from django.conf import settings

from django.contrib.auth.models import AbstractUser

from datetime import datetime, timedelta

def issue_jwt_token(user: AbstractUser) -> str:

payload = {

"id": user.id,

"exp": datetime.utcnow() + timedelta(days=1) # The token will

expire in 1 day

}

token = jwt.encode(payload, settings.JWT_SECRET_KEY,

algorithm="HS256")

return token

The function issue_jwt_token accepts a User that will be used to get the id
and build the payload. The payload also contains the “exp” key to specify
the token’s expiration. Finally, we encode the payload using the same secret
from the settings. Note that we use the same algorithm HS256.
You must add the new JWT_SECRET_KEY settings in the
taskmanager/settings.py and get it from the environment variables:
JWT_SECRET_KEY = os.getenv("JWT_SECRET_KEY", "jwt_secret")

Now, we can add JWT Token authentication to our endpoints. Let’s allow
both of the authentication methods by using a list for the auth parameter:
api_v1 = NinjaAPI(version="v1", auth=[ApiKeyAuth(), JWTAuth()])

And now let’s update our token view to include the JWT token:
@login_required

def token_generation_view(request):

token = generate_token(request.user)

jwt_token = issue_jwt_token(request.user)

return render(request, "accounts/token_display.html",

{"token": token, "jwt_token": jwt_token})

It will be left as an exercise the update of the template to show the new JWT
token.
With the new JWT token, we are ready to test our API using curl:

curl -H "Authorization: Bearer JWT_TOKEN"

http://localhost:8000/api/tasks/archive/2023/02/14

JWT has the advantage of being stateless, reducing server-side database
usage. JWT tokens are more complex due to the encoding and decoding.
JWT provides a good security level since tokens are optionally encrypted,
signed and have an expiry time.
Token-based is simple to implement and understand. The server will need to
store the tokens in the database. It is also important to generate secure tokens
using good random generators. Tokens don’t usually expire, which could be
problematic if any token is leaked.
The choice between the two often depends on specific use cases, security
considerations, and scalability requirements.

Securing APIs: Permissions and Throttling
Next, we will see how to secure APIs.

Permissions
Ninja provides a way to implement handling permissions. Permissions are
utilized to grant or deny access to specific API views in our project using the
user’s attributes or other criteria.
In Chapter 9, User Authentication and Authorization in Django, we defined
three security groups: Creator, Editor, and Admin. We will use the same
groups to provide access to our APIs.
Open the file accounts/api/security.py and add a new permission class to
check if the user has a particular permission:
from functools import wraps

from django.http import HttpResponseForbidden

def require_permission(permission_name):

def decorator(func):

@wraps(func)

def wrapper(request, *args, **kwargs):

if not request.user.has_perm(permission_name):

return HttpResponseForbidden("You don't have the required

permission!")

return func(request, *args, **kwargs)

return wrapper

return decorator

This code introduces the require_permission decorator to verify if an
authenticated user has specific permission before accessing an endpoint. The
decorator accepts a permission_name and checks the request.user object’s
permissions using Django’s has_perm method. If the user lacks the
permission, an HttpResponseForbidden response is generated. Otherwise,
the original function proceeds. This decorator can be applied to any route in
the router to ensure authorization checks.
We are now equipped to restrict the task creation via the API exclusively to
users who have permission:
@router.post("/", response={201: CreateSchemaOut},

auth=ApiKeyAuth())

@require_permission("tasks.add_tasks")

def create_task(request: HttpRequest, task_in: TaskSchemaIn):

creator = request.user

return services.create_task(creator, **task_in.dict())

The create_task API endpoint now will check for the permission
tasks.add_tasks.

Throttling
In Django, the django-ratelimit library utilizes the same backend as
Django’s caching framework for storing rate limiting information, ensuring
consistent and efficient handling of data.
Throttling limits the rate at which clients can request our API. The
implementation of rate limiting serves the dual purpose of preventing API
abuse and guaranteeing the service’s quality.
We will need to install the third-party library django-ratelimit

(https://github.com/jsocol/django-ratelimit):
poetry add django-ratelimit

Let’s add the rate limit to our create task endpoint:
@router.post("/", response={201: CreateSchemaOut},

auth=ApiKeyAuth())

https://github.com/jsocol/django-ratelimit

@require_permission('tasks.add_tasks')

@ratelimit(key='ip', rate='100/h')

def create_task(request: HttpRequest, task_in: TaskSchemaIn):

creator = request.user

return services.create_task(creator, **task_in.dict())

By adding the rate-limit decorator using the IP address and with a maximum
of 100 requests per hour, the task creation endpoint is now protected against
abuse by limiting the number of requests.

Versioning Your API
API needs to evolve and it is required to introduce changes that could break
the current API. API versioning is a practice that helps developers introduce
non-breaking changes and new features or deprecate the old ones without
affecting the existing users. Ninja supports API versioning via a version
parameter of the NinjaAPI object.
Here is an example of API versioning using Ninja:
from ninja import NinjaAPI

from . import views_v1, views_v2

Create an API instance for version 1

api_v1 = NinjaAPI(version="v1")

api_v1.add_router("/tasks", views_v1.router)

Create an API instance for version 2

api_v2 = NinjaAPI(version="v2")

api_v2.add_router("/tasks", views_v2.router)

The code above creates two APIs using different routers. The value of the
version specifies the path in the URL for the version.

Conclusion
Adopting an API-first design approach allows us to focus intensely on the
problems we need to solve, providing rapid feedback even before we fully
develop a solution. Understanding the power of schemas with type
annotations in our API will make you save time and implement a robust
performant API.

This chapter shows the effectiveness of a service layer; our API efficiently
reutilized functionalities established in previous chapters.
We also explored adding authentication and authorization to our endpoints
through various methods, including token-based and JWT token strategies.
With all the tools we learned in this chapter, we are now equipped to tackle
the construction of complex APIs in any upcoming project.
Django Ninja, a recently popularized project, holds a promising future as the
foundational framework for our APIs.
In the next chapter, we will learn how to add tests using pytest to our project.
Tests will ensure code quality, detect bugs early and maintain system
reliability as the codebase evolves.

Questions
1. What does it mean for a system to be stateless in the context of REST?
2. Can REST APIs be implemented without HTTP?
3. What are some challenges of using an API-first approach, and how

does it benefit the design process?
4. What is the purpose of using routers in Django Ninja?
5. What are the advantages of using ModelSchema over Schema in Django

Ninja?
6. What is the significance of the URL path in the REST API for Tasks,

especially regarding resource identification?
7. Why is returning a 201 status code considered appropriate when

creating a new resource in a RESTful API?
8. What is the primary purpose of token-based authentication in an API?
9. How can you protect an API endpoint with token-based authentication

in Django using Ninja API decorators?
10. Can you explain the three distinct sections of a JWT?
11. What is the purpose of a refresh token in JWT authentication?
12. In what scenarios would you recommend using JWT over simple

token-based authentication?

13. Discuss the security implications of token leakage in both JWT and
simple token-based systems.

Exercises
1. Implement an API endpoint to claim a task using the service function

claim_task.
2. Implement all the endpoints to have a complete CRUD operation for

the Epic and Sprint models.
3. Add the appropriate permission to API views using the correct groups:

Creator, Editor or Admin on all the endpoints.

CHAPTER 10
Testing with pytest

Introduction
Testing is a crucial process that verifies the expected behavior of a software
application. Testing involves a variety of practices and methodologies to
rigorously evaluate different software parts, from individual functions and
integration between components to entire systems.
A multitude of tools are available for testing a Python application. Pytest has
become one of the most popular testing frameworks due to its simplicity and
ability to handle complex test scenarios.
Pytest supports different test types, including unit tests, integration tests, and
more. The framework’s capabilities can be augmented using plugins,
enhancing its power.
This chapter will guide us through incorporating tests into our project.
Initially, we’ll begin with straightforward unit test cases; subsequently,
integration tests will be added, and ultimately, we will enhance the
framework with Behavior-Driven Development (BDD) for scenario writing.

Structure
In this chapter, we will cover the following topics:

Introduction to testing and pytest
Installing and setting up pytest for Django
The Pytest conftest.py file
Writing your first test with pytest
Understanding Django test database and pytest fixtures
Pytest-django fixtures
Mocking and patching in tests
Testing Django views

Testing Django forms
Test factories
Testing the API
Behavior-driven development
Advanced pytest features: Parametrization, plugins, and configuration

Introduction to testing and pytest
Testing is a crucial component of software development that ensures your
code behaves as expected and helps maintain its quality over time. pytest is a
robust, feature-rich testing framework for Python that enables developers to
write simple and scalable test codes.

Understanding test
Testing involves executing software to verify its results to find errors, bugs,
or other issues. The primary goal of testing is to ensure the application’s
quality, reliability, and proper performance.
Many types of software testing exist. We will focus on some of them:

Unit testing
Integration testing
End-to-end tests

In software testing, there is a concept called the testing pyramid. The testing
pyramid concept refers to the distribution of different types of tests within a
software project. As shown in Figure 10.1, the pyramid’s base consists of the
unit tests, followed by the integration tests and end-to-end tests.

Figure 10.1: Testing pyramid

There are many reasons to have the test distribution, like a pyramid. The
higher we go in the pyramid, the more complex, slow, and harder it is to
maintain tests. At the top of the pyramid, we should have the essential real-
user scenarios, while at the bottom, we test isolated and small parts of the
software.

Test-driven development
Test-driven development, or TDD, is an approach to building software. In
TDD, tests are written before the actual code. Once all the tests are written,
the developer follows a process cycle known as Red-Green-Refactor. We
start by writing tests that initially fail, then develop the functionality to make
these tests pass. Finally, we refactor the code to enhance its structure and
efficiency, ensuring a robust and well-designed application. Writing the tests
first will make the developer think about how to use the classes, functions,
and methods in a usable way. When writing the code first, sometimes we get
to the point where our code is hard to use or understand.

In this book, we did not adopt TDD due to its learning curve, which can
challenge beginners to grasp the process’s final purpose.

Test coverage
In testing, there exist many measures or metrics. Test coverage describes the
degree to which the source code of a program is executed when a particular
test suite runs. It’s a metric that helps developers to understand how much of
their code is being tested. This metric can identify parts of a program that
have not been tested and could contain potential bugs.

Note: It is crucial to note that the coverage metric can be artificially
inflated by writing trivial tests that traverse the code paths without
validating the outcomes; therefore, we must use these metrics cautiously,
whether intentionally or not. Having 100% test coverage doesn’t
necessarily guarantee high-quality levels.

Introduction to pytest
Pytest is a popular framework for writing tests in a simple and scalable way.
It is known for its simplicity and powerful features.
Let us now examine the features offered by pytest.
Initiating work with pytest is straightforward. Tests are Python functions
prefixed with the word test.
To illustrate how pytest can be used for testing, let’s consider a function that
computes the Fibonacci sequence as an example. The Fibonacci sequence is
a classic problem demonstrating how different test cases, such as base cases,
general cases, and error handling, can be structured.
The Fibonacci sequence is a series of numbers where each number is the
sum of the two preceding ones. Typically, the sequence starts with 0 and 1:
def fibonacci(n):

if n <= 0:

raise ValueError("Fibonacci numbers are defined for n >= 1")

elif n == 1:

return 0

elif n == 2:

return 1

a, b = 0, 1

for _ in range(2, n):

a, b = b, a + b

return b

The function starts by ensuring the input n is valid, as Fibonacci numbers are
defined for n >= 1, and throws a ValueError for non-positive values. The
first two Fibonacci numbers return 0 and 1 when n is 1 and 2, respectively.
The function then uses an iterative approach to calculate the Fibonacci
number for a larger n. It initializes two variables, a and b, with the first two
numbers of the sequence (0 and 1) and iteratively updates them in a loop that
runs from 2 to n - 1. After completing the loop, the function returns b, which
holds the n-th Fibonacci number.
def test_base_case():

assert fibonacci(1) == 0

assert fibonacci(2) == 1

The test test_base_case verifies the base cases are computed correctly. The
function name starts with test so that pytest detects and executes this
function. Pytest uses the assert statement. When the expression evaluated by
the assert statement is true, the program continues to execute as normal.
However, if the expression is false, an AssertionError exception is raised.
def test_fibonacci_general():

assert fibonacci(5) == 3 # The 5th Fibonacci number is 3

In the preceding test, the verification is that the loop accurately calculates
the Fibonacci number. During test composition, it is common practice to
contemplate branches and coverage to fashion unit tests that verify your
code’s various components and logic.
def test_fibonacci_invalid_input():

with pytest.raises(ValueError):

fibonacci(-1)

In the last example, we test how the function behaves when the input is
outside its valid range. The test uses pytest.raises to verify that the
execution raises an exception. If the exception is not raised, the test will fail.
To run the tests, we need to execute the command pytest. Pytest will
automatically discover tests that are named according to the convention. The

convention is test_*.py or *_test.py files, with functions named test_*. In the
next section, we will install and configure pytest in our project.
Before diving deep into the writing tests for our project, learning about
fixtures is essential. Fixture is a powerful feature of pytest. It provides a
convenient way to prepare data or state before a test run. A fixture is any
function designated by the pytest decorator fixtures. Fixtures have different
scopes:

Function: run once per test function. This is the default scope.
Class: runs once per test class, regardless of how many test methods
are in a class.
Module: runs once per module, where a module is a file containing
tests.
Package: run once per package, a collection of test modules in a
directory.
Session: run once per session. A session is the entire test suite run from
start to finish.

import pytest

@pytest.fixture(scope="function")

def sample_data():

data = [1, 2, 3]

return data

def test_data_length(sample_data):

assert len(sample_data) == 3

In the preceding code, we first create a fixture sample_data with the scope
function. This fixture simply returns a list of three numbers. In the test
test_data_length, we use the sample_data fixture and verify the length of it.
Plugins are extensions to the framework that add additional functionality.
Plugins in pytest can range from those handling test discovery, output
formatting, and integration with other tools to plugins, enhancing testing
capabilities for specific frameworks like Django.

Installing and setting up pytest for Django
For setting up our project. We must install pytest and its plugin for Django
pytest-django (https://github.com/pytest-dev/pytest-django).

https://github.com/pytest-dev/pytest-django

poetry add --dev pytest pytest-django

In the previous command, we used the --dev flag to specify that the
dependency is only for the development environment.
pytest-django plugin provides useful tools and fixtures for testing Django
applications.
Then we need to configure pytest to specify where the Django settings
reside. Create a new file pytest.ini, at the root of your project with the
following contents:
[pytest]

DJANGO_SETTINGS_MODULE = taskmanager.settings

The Pytest conftest.py file
The conftest.py file is a special file where fixtures can be shared across
multiple test files. Unlike regular Python modules, conftest.py doesn’t need
to be imported explicitly by the test files. Pytest automatically recognizes
this file and makes its contents available to test files.
Besides fixtures, conftest.py can implement plugin hook functions to
modify pytest’s default behavior or add new functionality.

Writing your first test with pytest
The first test we will write will be a simple unit test. In Chapter 5, Django
Views and URL Handling, we created a view to get tasks by date. The URL
view uses a converter DateConverter, which is perfect for writing our first
unit test for the project.
Let’s review the code of the class:
from datetime import datetime

class DateConverter:

regex = "[0-9]{4}-[0-9]{2}-[0-9]{2}"

def to_python(self, value):

return datetime.strptime(value, "%Y-%m-%d")

def to_url(self, object):

return object.strftime("%Y-%m-%d")

The implementation is ideal for writing our first test since it doesn’t require
any fixture. Typically, when writing Django tests with pytest, a fixture is

required to access the database or other resources.
Let’s create a new file in tasks/tests/test_converters.py with the following
code:
import pytest

from datetime import datetime

from tasks.converters import DateConverter

@pytest.fixture

def date_converter():

return DateConverter()

def test_to_python(date_converter):

Test conversion from string to datetime

assert date_converter.to_python("2023-10-05") ==

datetime(2023, 10, 5)

def test_to_url(date_converter):

Test conversion from datetime to string

date_obj = datetime(2023, 10, 5)

assert date_converter.to_url(date_obj) == "2023-10-05"

Now, we can run the tests to verify the implementation of the
DateConverter:
poetry shell

pytest

========================= test session starts

=========================

platform darwin -- Python 3.10.11, pytest-7.4.3, pluggy-1.3.0

rootdir: /Users/mandarina/workspace/task_manager

plugins: django-4.5.2

collected 2 items

taskmanager/tasks/tests/test_converters.py …. [100%]

============================ 2 passed in 0.03s

===========================

Congrats! Your project task manager has the first tests implemented and in
the green state.

Understanding Django test database and pytest

Before writing more tests for our project, we need to understand how
databases and tests are integrated.
Django creates a separate database for testing purposes. This ensures there is
no interference with your development database. Each time you run tests, a
new database is created and destroyed at the end of the test session.
Each test is wrapped in a transaction that is rolled back at the end of the test.
Using transactions ensures that every test has a clean state.
pytest-django keeps the database usage at a minimum and when your tests
need to access the database, you will need to use the decorator
@pytest.mark.django_db. It will fail if your test accesses the database but
lacks the decorator.
For testing transactions, you should use
@pytest.mark.django_db(transaction=True), which we will explore in
subsequent sections.

Pytest-django fixtures
The plugin pytest-django comes with several useful fixtures that we will use
in the next sections to write tests.

db: Allows access to the database. This fixture ensures that the test is
run with database access. When using the DB fixture, pytest
understands that the test requires database access and automatically
sets up and tears down the database for that test. Hence, there is no
need to use the @pytest.mark.django_db decorator.
db_transactional: similar to the DB fixture, this fixture permits
transaction testing. It is more resource-intensive than its db counterpart.
client: Provides a Django test client instance. The fixture allows the
developer to make requests to simulate HTTP requests useful for
testing views or APIs.
admin_client: Provides a logged-in Django admin client. This fixture
is similar to the client with the user already logged in with admin
permissions.
settings: Allows the modification of Django settings during tests.
When using this fixture, any settings can be changed in the scope of the
test. All changes are reverted when the test ends.

django_user_model: allows tests to access the user model currently
active in the Django project, facilitating the creation and manipulation
of user instances for testing purposes.

Mocking and patching in tests
Mocks are objects that simulate the behavior of real objects. These mock
objects are used in tests to control the returned values and record how they
have been used. Some mocks could have some logic and raise exceptions to
test particular scenarios.
Using mocks ensures that the test only tests the code in question, not its
dependencies. It also makes the test more predictable and sometimes speeds
up the tests.
Patching temporarily replaces real objects in a module with a mock object
during a test.
Mocking and patching are powerful tools in a tester’s arsenal, enabling
effective unit testing by focusing on the unit of code itself rather than its
dependencies. We will see how to use it in the follow-up sections.

Testing Django views
In Chapter 5, Django Views and URL Handling, we created a contact view
that allows our users to claim a task. The view uses a service that will claim
the task given a task_id. Create a new file in tasks/unit/test_views.py with
the claim_task view test:
def test_claim_task_success(rf):

user_id = 1

task_id = 100

request = rf.get(f"/claim_task/{task_id}")

mock_user = MagicMock()

mock_user.id = user_id

mock_user.is_authenticated = True

request.user = mock_user

with patch("tasks.services.claim_task") as mock_claim_task:

response = views.claim_task_view(request, task_id)

mock_claim_task.assert_called_once_with(user_id, task_id)

assert isinstance(response, JsonResponse)

assert response.status_code == 200

Deserialize JSON response content

response_data = json.loads(response.content.decode())

assert response_data == {"message": "Task successfully

claimed."}

In the unit test test_claim_task_success, the functionality of Django’s
claim_task_view is tested for a scenario where a task is successfully
claimed. The test creates a simulated GET request using Django’s
RequestFactory and a MagicMock user set as authenticated. This setup
replicates a typical user request in Django.
The tasks.services.claim_task function is mocked to focus the test solely on
the view’s behavior. The test checks that this function is called with correct
parameters and verifies the view’s response. It asserts that the response is a
JsonResponse with a status code of 200 and that the JSON content of the
response matches the expected success message. The test ensures that the
claim_task_view behaves as expected in a successful task claim scenario.
The following test, test_claim_task_not_exist, is designed to verify the
correct response of the claim_task_view when it encounters a non-existent
task in a Django application.
def test_claim_task_not_exist(rf):

user_id = 1

task_id = 101

request = rf.get(f"/claim_task/{task_id}")

Create a mock user with MagicMock

mock_user = MagicMock()

mock_user.id = user_id

mock_user.is_authenticated = True

request.user = mock_user

with patch("tasks.services.claim_task",

side_effect=services.Task.DoesNotExist) as mock_claim_task:

response = views.claim_task_view(request, task_id)

mock_claim_task.assert_called_once_with(user_id, task_id)

assert isinstance(response, HttpResponse)

assert response.status_code == 404

assert response.content.decode() == "Task does not exist."

In the unit test test_claim_task_not_exist, the focus is on ensuring that
Django’s claim_task_view handles the case where a task does not exist. The
test constructs a simulated GET request with Django’s RequestFactory and
a MagicMock user to simulate an authenticated user’s request.
The tasks.services.claim_task function is mocked with a side_effect
to raise a Task.DoesNotExist exception. This setup tests the view’s error-
handling capability. When claim_task_view is called with the mock request
and a non-existent task ID, the test verifies that the mocked service is
invoked with the right parameters. It then checks the response, ensuring it’s
an HttpResponse with a 404 status code and the content correctly indicates
that the task does not exist. This test confirms the view’s appropriate
response to scenarios involving non-existent tasks.
We now examine a view interaction with the database. The following test
will verify that the task creation works as expected. Create a new file in
tasks/tests/integration/test_views.py with the following contents:
import pytest

from django.urls import reverse

from tasks.models import Task

@pytest.mark.django_db

def test_valid_form_submission_creates_task(client,

django_user_model):

url = reverse("tasks:task-create")

user = django_user_model.objects.create_user(username="user",

password="password", email="test@example.com")

client.force_login(user)

get_response = client.get(url)

csrf_token = get_response.cookies['csrftoken'].value

unique_title = str(uuid.uuid4())

data = {

"title": unique_title,

"status": "UNASSIGNED",

"csrfmiddlewaretoken": csrf_token,

}

assert Task.objects.count() == 0

response = client.post(url, data)

assert response.status_code == 302

assert Task.objects.count() == 1

created_task = Task.objects.get(title=unique_title)

assert created_task.creator == user

The test starts by setting up the context. It creates a new user and uses the
client to log in. Then, we calculate the URL and create a payload. We then
execute the post request. The last test verifies that a 302 redirection is
returned and confirms the task object’s creation. Given that our view assigns
the creator role to the authenticated user issuing the POST request, the test
corroborates that the Task’s creator aligns with expectations.

Testing Django forms
The form can be tested independently from the views. As an example, we
will test the form TaskFormWithRedis. This form was introduced in Chapter
7, Forms in Django and has the functionality to prevent multiple
submissions of the form using a UUID (Universally Unique Identifier). The
form behaves so that the second time it gets submitted to the server, it will
be rejected if the UUID was already processed.
Given the test’s reliance on the database and Redis, it is classified as an
integration test.
Let’s create a new file in tasks/tests/integration/test_forms.py with the
following test:
import pytest

from django.core.cache import cache

from tasks.forms import TaskFormWithRedis

import uuid

@pytest.mark.django_db

def test_task_form_with_redis_is_valid_fails_second_time():

Create unique UUIDs for testing

uuid1 = uuid.uuid4()

Set up form data

form_data = {

"title": "Test Task",

"description": "Test Description",

"status": "UNASSIGNED",

"watchers": "watcher1@example.com, watcher2@example.com",

"uuid": uuid1

}

First submission with uuid1

form = TaskFormWithRedis(data=form_data)

assert form.is_valid(), f"Form should be valid: {form.errors}"

Second submission with the same uuid1 should raise a

ValidationError

form_data["uuid"] = uuid1

form = TaskFormWithRedis(data=form_data)

assert not form.is_valid()

assert form.errors == {"uuid": ["This form has already been

submitted."]}

Initiation of the test occurs through generating a unique UUID and
assembling form data, which involves fields such as title, description, status,
and watchers. Initially, the form is submitted with this unique UUID, and the
test checks to ensure the form is valid. The critical part of the test involves a
second submission with the same UUID. It is expected that the form, upon a
second submission, would fail its validity, raising a specific error This form
has already been submitted. due to the UUID already used.

Test factories
Tests usually require setting up some data for the context of execution. The
context often involves models and could lead to repetitive or long code when
the relationship dependency is complex. Factory-boy
(https://github.com/FactoryBoy/factory_boy) is a library that provides an
efficient and flexible way to create test data.
A factory in factory-boy is a class that serves as a blueprint for creating
instances of Django models. Each factory is linked to one model and has
some configuration to specify how to generate new instances with default,
custom or random values.
Attributes within a factory class align with the fields of a Django model. The
library provides tools to create values that could be useful for test cases.
Let’s create a factory for our main model, the task. First, we need to install
factory–boy using poetry as a development dependency:
poetry add --dev factory-boy

https://github.com/FactoryBoy/factory_boy

Create a new file in tasks/tests/factories.py:
import factory

from accounts.models import Organization

from tasks.models import Task, TaskStatus

from django.contrib.auth import get_user_model

class OrganizationFactory(factory.django.DjangoModelFactory):

class Meta:

model = Organization

class UserFactory(factory.django.DjangoModelFactory):

class Meta:

model = get_user_model()

username = factory.Faker("user_name")

email = factory.Faker("email")

organization = factory.SubFactory(OrganizationFactory)

The UserFactory is a subclass of factory.django.DjangoModelFactory and
is configured to create instances of the user model, which it retrieves using
Django’s get_user_model() method. The factory uses factory.Faker to
generate realistic usernames and email addresses.
Let’s add a TaskFactory to generate task instances. In the same file, add the
new class:
class TaskFactory(factory.django.DjangoModelFactory):

class Meta:

model = Task

title = factory.Faker("sentence", nb_words=4)

description = factory.Faker("paragraph")

status = factory.Iterator([status.value for status in

TaskStatus])

creator = factory.SubFactory(UserFactory)

The owner field can either be null or an instance of the

User model.

This creates a User instance 50% of the time and sets the

owner to None 50% of the time.

owner = factory.Maybe(

factory.Faker("pybool"),

yes_declaration=factory.SubFactory(UserFactory),

no_declaration=None

)

version = factory.Sequence(lambda n: n)

TaskFactory is a subclass of factory.django.DjangoModelFactory,
designed to create instances of the Task model. It sets up an automatic
generation of task titles, descriptions, and status fields. The title and
description are generated using factory.Faker, producing realistic
sentences and paragraphs. The status field iterates over the possible values
defined in TaskStatus.
For the creator field, TaskFactory uses a factory.SubFactory to create
related user instances. For the owner field, it uses factory.Maybe in
conjunction with factory.Faker('pybool') to randomly decide whether to
assign a user instance or set it to None, simulating scenarios where a task
might not have an assigned owner.
Lastly, the version field uses a factory.Sequence to ensure a unique,
incrementing number for each created task instance.
In the next section, we will use the TaskFactory for the API tests.

Testing the API
To show an example of TDD, we will develop a new feature for our API. We
will create a new endpoint to claim a task. For this, we will start writing the
test cases and iterate until green.
First, we need to start with the API design. Our new API endpoint will have
the following specifications:
URL Path: /api/v1/tasks/{task_id}/claim
Method: PATCH
Body: Empty. The authenticated user will claim the task.
Response:

Success: Status Code 200 Ok. empty response
Failure cases:

404: Not found. The task_id was not found.
400: Bad Request. Task already claimed.
403: Forbidden. No authentication was provided.

Since claiming a task involves modifying its current attributes, such as status
or owner, utilizing PATCH is more suitable. We used the claim in the path to
differentiate from the CRUD operations we developed in the previous
chapter.
We opt for PATCH instead of POST for our endpoint to adhere to RESTful
principles. PATCH is intended to update an existing resource’s state, while
POST is typically used to create new resources.
The next step is to consider the test cases we want to verify. In Table 10.1,
you can read all the test cases we will implement using TDD.

Name Preconditions Action Expected Result

Test Successful Claim A task exists with a
status that allows
claiming.

The authenticated user
sends a PATCH request
to claim the task.

The user claims the
task, the status is
updated to In
Progress, and a 200
OK response is
returned with the task
details.

Test Task Not Found No task exists with the
given task_id.

The user sends a PATCH
request to claim a non-
existent task.

A 404 Not Found
response is returned
with an appropriate
error message.

Test Task Already
Claimed

A task exists but is
already claimed by
another user.

A user who tries to
claim an already
claimed task.

A 400 Bad Request
response returned with
an error message
indicating the task was
already claimed.

Test Unauthorized
Claim Attempt

A task exists that can
be claimed.

An unauthenticated or
unauthorized user
sends a POST request
to claim the task.

A 403 Forbidden
response is returned
with an error message
about lack of
authorization.

Test Claim Without
Authentication

A claimable task
exists.

A PATCH request is
sent to claim the task
without any user
authentication.

A 401 Unauthorized
response is returned,
indicating that
authentication is
required.

Table 10.1: Test cases for task claim API

We are almost ready to write our test cases using pytest. However, we need
to create fixtures to authenticate our API client using one of the

authentication methods we implemented in Chapter 8, User Authentication
and Authorization in Django.
Let’s define the fixture we will use for the test we will implement. Create the
file tasks/tests/conftest.py with the fixtures:
from .factories import UserFactory

from accounts.services import issue_jwt_token

@pytest.fixture

def user() -> AbstractUser:

user = UserFactory()

Ensure the user instance is saved if UserFactory doesn't

save it

user.save()

Fetch the content type for the Task model

content_type = ContentType.objects.get_for_model(Task)

Fetch the 'change_task' permission

change_task_permission = Permission.objects.get(

codename="change_task",

content_type=content_type,

)

add_task_permission = Permission.objects.get(

codename="add_tasks",

content_type=content_type,

)

Assign the permission to the user

user.user_permissions.add(change_task_permission)

user.user_permissions.add(add_task_permission)

return user

@pytest.fixture

def jwt_token(user: AbstractUser) -> dict[str, str]:

token = issue_jwt_token(user)

return {"Authorization": f"Bearer {token}"}

The user fixture employs a factory to instantiate a new user. The code
fetches the permission object for the change_task and add_tasks

permission to add it to the user. Lacking this permission should return a 403,
as specified by one of our test cases in Table 10.1.

Thanks to our service layer in the accounts application, we can generate a
valid JWT token in the jwt_token fixture. The jwt_token fixture is
designated for tests requiring authentication.
We will use this Django client in every test since it will allow us to request
the API. the jwt_token will be used when we need to authenticate.
Now, let’s create a new file in tasks/tests/integration/test_api.py with the
following contents:
import pytest

from ninja.testing import TestClient

The first test case will be test_successful_claim:
@pytest.mark.django_db

def test_successful_claim(client, user, jwt_token):

task = TaskFactory(status=TaskStatus.UNASSIGNED.value,

owner=None)

response = client.patch(f"/api/tasks/{task.id}/claim",

headers=jwt_token)

assert response.status_code == 200

task.refresh_from_db()

assert task.status == TaskStatus.IN_PROGRESS.value

assert task.owner == user

The test is marked with @pytest.mark.django_db, indicating that it requires
access to the Django database. It first creates an unassigned task using
TaskFactory. Next, the test simulates a patch request to the endpoint
responsible for claiming tasks, passing the task’s ID and the user’s JWT
token. The response’s status code is checked to ensure 200, indicating a
successful operation. Finally, the test verifies that the task’s status is updated
to IN PROGRESS and the task’s owner is now set to the user who claimed it.
If we run the tests, we should get the following results:
poetry shell

cd taskmanager

pytest -vvv

FAILED

tasks/tests/integration/test_api.py::test_successful_claim -

assert 404 == 200

Let’s develop the new API endpoint to call our service layer to claim a task:

@router.patch("/{int:task_id}/claim")

def claim_task_api(request: HttpRequest, task_id: int):

services.claim_task(request.user.pk, task_id)

return HttpResponse(status=HTTPStatus.OK)

The new claim endpoint is lean thanks to our service layer function
claim_task that accepts a user_id and a task_id. The endpoint returns The
HTTP status 200 and an empty response.
Let’s check if the test is now green:
pytest -vvv

This was just an example of using one test. Ideally, we should have all the
tests before the code when following TDD. Let’s add the rest of the test and
check if we have green tests, open tasks/tests/integration/test_api.py and
add the rest of the tests:
@pytest.mark.django_db

def test_task_not_found(client, user):

response = client.patch("/9999999/claim/") # Unlikely to exist

ID

assert response.status_code == 404

@pytest.mark.django_db

def test_task_already_claimed(client, user, jwt_token):

other_user = UserFactory()

task = TaskFactory(status=TaskStatus.IN_PROGRESS.value,

owner=other_user)

response = client.patch(f"/api/tasks/{task.id}/claim",

headers=jwt_token)

assert response.status_code == 400

@pytest.mark.django_db

def test_unauthorized_claim_attempt(client, user, jwt_token):

content_type = ContentType.objects.get_for_model(Task)

permission = Permission.objects.get(codename='change_task',

content_type=content_type)

user.user_permissions.remove(permission)

user.refresh_from_db()

task = TaskFactory(status=TaskStatus.UNASSIGNED.value,

owner=None)

response = client.patch(f"/api/tasks/{task.id}/claim",

headers=jwt_token)

assert response.status_code == 403

@pytest.mark.django_db

def test_claim_without_authentication(client):

task = TaskFactory(status=TaskStatus.UNASSIGNED.value)

response = client.patch(f"/api/tasks/{task.id}/claim")

assert response.status_code == 401

Let’s examine the specific conditions each test verifies:

test_task_not_found: Checks the scenario where a user attempts to
claim a task with an ID that does not exist in the database. A patch
request is sent to an unlikely-to-exist task ID. The test asserts that the
response’s status code is 404.
test_task_already_claimed: A task is created and assigned to
another user after logging in. The test then attempts to claim this
already-in-progress task for the logged-in user and checks if the
response’s status code is 400.
test_unauthorized_claim_attempt: Despite the user being logged in
and the task being unassigned, the test simulates a claim attempt with
insufficient permissions. The tests remove the permission
tasks.change_task to make sure the patch request will fail. The
assertion checks for a 403 status code.
test_claim_without_authentication: Without logging in any user,
the test tries to claim an unassigned task. The assertion for a 401 status
code checks that the system appropriately requires authentication for
task claiming.

If we try to run the test with the current implementation, we will find that
only two tests fail:
pytest

FAILED

tasks/tests/integration/test_api.py::test_task_already_claimed

- tasks.services.TaskAlreadyClaimedException: Task is already

claimed or completed.

FAILED

tasks/tests/integration/test_api.py::test_unauthorized_claim_at

tempt - assert 200 == 403

The test test_task_not_found is green since this service uses the query
Task.objects.select_for_update().get(id=task_id) which raises an
exception when the object is not found. The exception is the
ObjectDoesNotExist, for which we created a custom handler in Chapter 9,
Django Ninja and APIs, the on_object_does_not_exist.
The test test_claim_without_authentication is also green since we
added authentication to all the endpoints using the auth when we created the
NinjaAPI in the file taskmanager/api.py.
We need to update our code to make the test test_task_already_claimed
green. For this, we need to catch in the view the exception from the service
TaskAlreadyClaimedException and return the appropriate response.
Let’s define a new ninja exception handler in the file tasks/api/tasks.py:
from ninja.errors import HttpError

from taskmanager.tasks.services import

TaskAlreadyClaimedException

@router.patch("/{int:task_id}/claim")

def claim_task_api(request: HttpRequest, task_id: int):

try:

services.claim_task(request.user.pk, task_id)

return HttpResponse(status=HTTPStatus.OK)

except TaskAlreadyClaimedException:

Raise an HttpError with status code 400

raise HttpError(status_code=HTTPStatus.BAD_REQUEST,

message="Task already claimed")

By adding this custom exception handler for
TaskAlreadyClaimedException the view will return the expected error 400.
Let’s re-execute the tests and check that the test is now green:
pytest

FAILED

tasks/tests/integration/test_api.py::test_unauthorized_claim_at

tempt - assert 200 == 403

We now have one test failing. Let’s add the decorator to check for the
permission tasks.change_tasks:
@router.patch("/{int:task_id}/claim")

@require_permission("tasks.change_task")

def claim_task_api(request: HttpRequest, task_id: int):

try:

…

If we now run the test, we will see that all of them are green!

Behavior-driven development
Behavior-driven development (BDD) is a methodology that focuses on
defining specifications of software behavior from the end-user’s perspective.
These specifications can be translated into automatic tests. Using BDD
enhances the collaboration among developers, QA professionals, and non-
technical stakeholders. BDD bridges the communication gap between
technical and non-technical team members.
BDD has three key components:

Feature files: These contain user stories composed in the Gherkin
language, adopting the Given, When, Then format.
Scenarios: There are concrete examples of how the software should
behave in specific situations.
Step definitions: For each step in a scenario, step definitions are
written in code that executes these steps.

Note: Gherkin is a domain-specific language that enables you to describe
business behavior without the need to go into detail about implementation.
Gherkin language comprises a set of keywords, and among the most
fundamental are Given, When, Then, And, and But. These keywords enable
the structured writing of acceptance criteria for features.

Given steps are used to describe the initial context of the system—the
state of the world before the behavior of the feature begins.
When steps are used to describe an event or an action. This is the
behavior that triggers the subsequent outcome.
Then steps describe the expected outcome or state of the world after
the behavior specified in the When steps.
And can be used to continue any type of step and is often used to add
additional conditions or outcomes.

But is used to define an action or outcome that should not happen.

We will start with the feature file. Create a new file in the directory
tasks/tests/bdd/api.feature with the following scenario:
@django_db

Feature: Task Claiming

Scenario: User creates and claims a task

Given a user with necessary permissions

When the user creates a task

And the user claims the created task

Then when the user lists tasks, the created task is shown as

claimed

The scenario is self-explanatory. You can usually start with this when you
need to create a new feature for your project. Anyone participating in the
project can understand the scenario and discuss it correctly.
Subsequently, we must integrate pytest-bdd:
poetry add --dev pytest-bdd

Once pytest-bdd is configured, we shall create the steps. Some adjustments
are needed to use pytest-bdds with pytest-django.
Open the file tasks/test/conftest.py and add the pytest_bdd_apply_tag
hook. These pytest-bdd hooks allow us to use the tag @django_db in the
feature file to mark it as a django_db, allowing the test to access the
database.
def pytest_bdd_apply_tag(tag, function):

if tag == "django_db":

marker = pytest.mark.django_db(transaction=True)

marker(function)

return True

else:

Fall back to pytest-bdd's default behavior

return None

Next, we will create the step. Create a new file in
tasks/tests/bdd/test_api.py with the following content:
import json

from pytest_bdd import scenario, given, when, then

from tasks.enums import TaskStatus

from django.urls import reverse

@scenario("api.feature", "User creates and claims a task")

def test_task_claiming():

pass

@given("a user with necessary permissions")

def user_with_permissions(user):

return user

@when("the user creates a task", target_fixture="create_task")

def create_task(client, jwt_token):

Code to create a task via the API client

response = client.post(

reverse("api-v1:create_task"),

json.dumps({"title": "Sample Task", "description": "test

description"}),

content_type="application/json",

headers=jwt_token

)

assert response.status_code == 201, response.json()

return response.json() # Assuming the response includes task

details

@when("the user claims the created task")

def claim_task(client, create_task, jwt_token):

task_id = create_task["id"]

response = client.patch(reverse("api-v1:claim_task_api",

kwargs={"task_id": task_id}), headers=jwt_token)

assert response.status_code == 200 # Or whatever your API

returns

@then("when the user lists tasks, the created task is shown as

claimed")

def list_tasks(client, create_task, jwt_token):

response = client.get("/api/v1/tasks/", headers=jwt_token)

assert response.status_code == 200

tasks = response.json()

items = tasks["items"]

assert any([task["id"] == create_task["id"] for task in items

if task["status"] == TaskStatus.IN_PROGRESS])

Let’s review what each function is doing.

test_task_claiming: This function is a placeholder linked to the BDD
scenario defined in the api.feature file. The @scenario decorator binds
this test function to a specific narrative in the feature file.
user_with_permissions: This function is also a placeholder, since our
user fixture already contains all the permissions needed for the test.
create_task: The task is created using an HTTP POST request. The
client sends the request to the URL resolved by reverse(“api-
v1:create_task”). The request body contains JSON data representing
the new task. The jwt_token fixture is included in the request headers
for authentication. After sending the request, the function asserts that
the HTTP status code is 201, indicating successful creation. This will
be used as a fixture for posterior steps.
claim_task: The step uses the task ID from the create_task fixture
and sends an HTTP PATCH request to an endpoint designed to claim
tasks. The URL for this request is dynamically constructed using the
task’s ID. The request includes the jwt_token for authentication. The
function asserts that the response status is 200, indicating the
successful claiming of the task.
list_tasks: this function verifies that the created task is listed as
IN_PROGRESS (or IN_PROGRESS). It requests an HTTP GET to fetch a
list of tasks, including the jwt_token for authentication. After
confirming the request’s success (status code 200), it processes the
JSON response to find the relevant task. The function checks if any
task in the list matches the ID of the created task and has the status
IN_PROGRESS.

The plugin pytest-bdd has lots of features for making more interesting
BDD tests. Covering all the features could be a chapter by itself. It is
recommended to read pytest-bdd documentation https://pytest-
bdd.readthedocs.io/en/stable/.
To scale BDD tests as an application grows, tests should be modularized for
reusability and organized with a tagging system for efficiency. Utilizing
continuous integration to run targeted tests on commits and adopting parallel

https://pytest-bdd.readthedocs.io/en/stable/

execution strategies can reduce test times. Maintaining tests through regular
refactoring and involving all team members in test scenario development
ensures tests stay current and manageable.

Advanced pytest features: Parametrization,
plugins, and configuration
The advanced features of pytest can significantly elevate your testing
strategy. Parametrization enables one test function to cover numerous
scenarios by running it with various inputs. Plugins expand pytest’s
functionality, allowing for tailored integrations and enhanced output, while
flexible configurations fine-tune test behavior to fit your specific
requirements. These features make pytest a powerful asset for crafting
sophisticated and efficient test suites.

Parametrization
Up to this point, we just covered the basic features needed to write normal
test cases. Pytest is a versatile testing library offering numerous features to
facilitate the writing and maintenance of tests. Among these features,
parametrization stands out. It allows you to run a single test function
multiple times with different sets of arguments, enabling more efficient and
comprehensive testing without writing multiple test cases for similar
scenarios.
We wrote our first unit tests for the converters in a previous section. One can
consolidate the four test cases into a singular one using parametrize.
import pytest

from datetime import datetime

@pytest.mark.parametrize(

"method, input_value, expected_output, expected_exception",

[

pytest.param("to_python", "2023-10-05", datetime(2023, 10,

5), None, id="valid_to_python"),

pytest.param("to_python", "2023/10/05", None, ValueError,

id="invalid_format_to_python"),

pytest.param("to_url", datetime(2023, 10, 5), "2023-10-05",

None, id="valid_to_url"),

pytest.param("to_url", "2023-10-05", None, AttributeError,

id="invalid_object_to_url"),

]

)

def test_date_conversion(date_converter, method, input_value,

expected_output, expected_exception):

if expected_exception is None:

assert getattr(date_converter, method)(input_value) ==

expected_output

else:

with pytest.raises(expected_exception):

getattr(date_converter, method)(input_value)

The parametrize feature consolidates our test into a single one, by using four
distinct arguments; within it, the if block inspects whether
expected_exception is None. When the value is None, the test asserts that
the result of calling a method on the date_converter object with input_value
should equal expected_output. The method (to_python or to_url) is
dynamically determined using getattr(). If, however,
expected_exception is not None, the test enters the else block. The test
uses the pytest.raises context manager to assert that the specified
expected_exception is raised when the method is called with input_value.
Using parametrize allows us to extend to more cases easily. With the
previous structure, we need to write a new test case function with additional
code to maintain.

Plugin coverage
Pytest has a plugin to measure the code coverage of your Python projects.
The plugin can be installed using poetry:
poetry add --dev pytest-cov

Following the plugin installation, you may execute the tests with coverage
by appending the --cov flag:
pytest --cov=tasks

Once the execution of the tests is done, it will return a console report with
the coverage of each file in the project.

The tests introduced in the preceding section have yielded a coverage metric
of 77%.

Plugin xdist
pytest-xdist is a popular plugin for pytest that introduces several powerful
capabilities, most notably the ability to run tests in parallel. TRunning tests
in parallel can lead to significantly reduced test execution time, which is
especially beneficial for large test suites or when running tests frequently as
part of a development workflow. However, in the context of cost-effective
CI worker instances, this approach may not yield significant benefits due to
their limited processing capabilities.
You can install pytest-xdist with poetry:
poetry add --dev pytest-xdist

You can now execute the test with four workers using the flag -n:
pytest -n 4

Given the modest scale of our present test suite, employing xdist might
introduce initial overhead, potentially decelerating test execution. If test
suites are larger, executing the tests could save some time. If your tests
cannot be run in parallel, this is a code smell and you should investigate the
root cause of this problem. Each test should be isolated and independent –
tests should not depend on the order they are run and not modify each
other’s state.

Using marks
The pytest mark constitutes a feature permitting the annotation of tests with
various markers. These marks can be used for many purposes, such as
categorizing, skipping, and so on. Categorizing tests can be helpful since
they allow you to execute a subset of the tests, not the entire suite. For
example, you can mark the test as slow and then run the tests that are not
marked as slow.
Commonly Used Marks

@pytest.mark.skip: Unconditionally skips the marked test.
@pytest.mark.skipif: Conditionally skips a test based on a particular
condition.

@pytest.mark.xfail: Marks a test as an expected failure.
@pytest.mark.parametrize: Used for parametrizing tests, letting them
run with different arguments.

Here is an example of the skip usage:
@pytest.mark.skip(reason="not implemented yet")

def test_example():

pass

If you want to execute all the tests except the ones marked as slow, you can
use the not operator:
pytest -m "not slow"

In configuration tips we will see how to configure markers in the pytest.ini.

Configuration tips
The pytest.ini file is where you can specify various settings and preferences
for how pytest runs your tests. It allows you to customize and control many
aspects of your testing environment.
In the previous section, we created this file and set up the
DJANGO_SETTINGS_MODULE. We will see other valuable options to add to this
configuration file.
To define custom markers in pytest.ini, you would add a [pytest] section
and then list your markers under a markers key. A short description typically
accompanies each marker.
markers =

slow: marks tests as slow

integration: mark a test as an integration test

addopts stands for “additional options”. This setting lets you specify
command-line arguments that should be automatically used every time you
run pytest.
addopts = -ra -vv -s

The given example, addopts = -ra -vv -s, combines several command-
line flags.

vv: This is a level of verbosity. In pytest, verbosity levels are controlled
by the number of vs included in the command.

r: It specifies what extra test summary information is reported.
a: Includes information about all tests except those that pass, like tests
that fail, are skipped.
s: allows you to see the output while the tests are running, which can
be useful for debugging or when you want to see the output of print
statements or other logging.

testpaths =

tests

testpaths specify the directories (and subdirectories) that pytest will look in
to find test files.

Conclusion
Testing is a fundamental process to maintain and guarantee a certain level of
quality in your project. By having a good test suite, your project will be
robust and the team who maintains it will be able to refactor its code with
more safety.
Pytest is a great framework, and we have reviewed its main features for
writing tests for a Django project. By adopting Test-Driven Development
(TDD), you will proactively think about and design your code to fulfill its
intended use effectively.
Unit tests and integration tests serve complementary roles in a
comprehensive testing strategy. Unit tests are focused, fast, and independent,
targeting individual components to ensure that each part of the codebase
performs as expected. In contrast, integration tests verify the interactions
between modules or external systems, ensuring that combined components
work as expected.
BDD has shown its power that not only allows us to verify scenarios
automatically, but also helps in the collaboration of non-technical team
members.
In the next chapter, we will prepare our project for real production scenarios
using docker and Kubernetes to deploy our application for the first time.

Questions

1. What is the primary goal of software testing?
2. Define Test-Driven Development (TDD).
3. Why might test coverage metrics not always reflect the quality of

testing?
4. Describe a scenario in which TDD might not be the best approach.
5. Explain the different scopes available for pytest fixtures.
6. Why does Django create a separate database for testing?
7. What is the difference between db and db_transactional fixtures in

pytest-django?
8. Describe the purpose of mocking in unit tests.
9. How can integration tests differ from unit tests in Django forms

testing?
10. In BDD, what language is used to write feature files?
11. Describe linking a BDD scenario to step definitions in code.
12. What is the role of pytest marks, and how do you run tests that exclude

a particular mark?

Exercises
1. Using a coverage tool, create a test suite that achieves at least 80%

coverage on the Fibonacci function and verify the coverage.
2. Use TDD to develop a new function that calculates the factorial of a

number. Start by writing tests for the factorial function before
implementing the function itself.

3. Implement a new test case called test_claim_with_expired_token
where you simulate the claim operation with an expired JWT token.
The expected result should be a status code of 401.

4. Write a new test case called
test_claim_with_insufficient_permissions where a user with only
the add_tasks permission (and not change_task) tries to claim a
task. Assert that the status code is 403.

5. Improve the coverage of the tasks Django application by 90%.

CHAPTER 11
Deploying Django Applications with

Gunicorn and Docker

Introduction
In this chapter, we will go into the process of deploying Django applications
using modern tools and practices. Our journey begins with Gunicorn, a
robust WSGI server, and continues through creating a Docker image and
understanding of Kubernetes architecture, highlighting their roles in Django
deployment. We then explore how to add instrumentation to our Django
application, focusing on optimizing database interactions. This chapter guide
will give you the knowledge to deploy Django applications effectively,
ensuring high performance and scalability.

Structure
In this chapter, we will cover the following topics:

Introduction to Gunicorn
Configuring Gunicorn for Django Deployment
Understanding and Creating Dockerfiles for Django
Using the image registry
Introduction to Kubernetes
Configuring a Kubernetes cluster for a Django application
Adding liveness and readiness probes
Adding Instrumentation for Django
Prometheus Configuration
Jaeger Configuration
Database Optimization: Queries and Indexing

Introduction to Gunicorn
Python Web Server Gateway Interface (WSGI) is a specification that
describes how a web server communicates with Python web applications.
The standard is described in PEP 3333 (https://peps.python.org/pep-3333/).
Gunicorn is a WSGI HTTP server for UNIX systems. It is compatible with
many web frameworks, like Django and Flask. Gunicorn is commonly used
in production environments and is known for its efficiency and speed.
In terms of architecture, WSGI acts as an intermediary interface between the
Django application and the web server.

Info: A reverse proxy is a type of server that sits in front of web servers
and forwards client requests to those web servers. Reverse proxy protects
servers by hiding their identities from clients. When a client requests, the
reverse proxy is the face of the back-end servers.

The request originates from the client or browser and is sent to the web
server. The web server forwards this request to the appropriate WSGI server
and finally reaches the Django project. The response does the same, but in
the backward direction.

Figure 11.1: How Gunicorn works

Gunicorn forks multiple worker processes to handle requests. Each worker is
a separate process with its own memory space and instance of the Python
application. It supports synchronous workers based on traditional multi-
threaded or multi-process web servers and asynchronous workers.

Configuring Gunicorn for Django Deployment
In this section, we will configure our Django project for using Gunicorn in
production. Their configuration requires some changes in our settings to
guarantee a safe environment and the installation of Gunicorn.

https://peps.python.org/pep-3333/

Our project’s settings.py file, located in taskmanager/settings.py, contains
development settings like DEBUG = True, which are not suitable for a
production environment. We can use the environment variable
DJANGO_SETTINGS_MODULE to specify which configuration to use in
production. Using this environment variable, we will create a shared settings
file called taskmanager/base.py and two more files taskmanager/dev.py
and taskmanager/production.py.
Both dev.py and production.py will inherit shared configuration from
base.py and the other two files will contain the corresponding values for
each environment.
Rename the file from taskmanager/settings.py to taskmanager/base.py.
Including the base.py in the book will be too extensive, you can check the
chapter_11 branch to review its full content.
Now let’s create the development settings/dev.py file with the following
contents:
from .base import * #noqa

DEBUG = True

ALLOWED_HOSTS = ["localhost", "127.0.0.1"]

SECRET_KEY = os.getenv("SECRET_KEY")

Development-specific apps and middlewares

INSTALLED_APPS += [

"debug_toolbar",

]

MIDDLEWARE += [

"debug_toolbar.middleware.DebugToolbarMiddleware",

]

Email backend for development

EMAIL_BACKEND =

"django.core.mail.backends.console.EmailBackend:"

As you can see, we are adding configurations only related to the
development environment that we do not want to have enabled in
production. Let’s review the dev.py settings:

DEBUG is set to True. Having more verbosity when an error occurs is
beneficial for the development environment. Using DEBUG will help
troubleshoot problems while coding.

ALLOWED_HOSTS is set to [‘127.0.0.1’, ‘localhost’].
INSTALLED_APPS The only Django application that we are using for
development is the Django toolbar, which adds debug information
about the execution of the request, including the queries to the
database.
MIDDLEWARE The only middleware we use for the development
environment is the id toolbar middleware.
EMAIL_BACKEND For the development environment, we set it up to the
console printing. However, you can still use a server if you use
Mailhog instead.

For production, we have the following settings in the
taskmanager/settings/production.py file:
from .base import *

DEBUG = False

ALLOWED_HOSTS = os.getenv("ALLOWED_HOSTS",

"localhost").split(",")

SECRET_KEY = os.getenv("SECRET_KEY")

Email backend for production

EMAIL_BACKEND = "django.core.mail.backends.smtp.EmailBackend"

EMAIL_HOST = os.getenv("EMAIL_HOST", "mailhog")

EMAIL_PORT = int(os.getenv("EMAIL_PORT", "1025"))

EMAIL_USE_TLS = os.getenv("EMAIL_USE_TLS", "False") == "True"

EMAIL_HOST_USER = os.getenv("EMAIL_HOST_USER",

"default@example.com")

EMAIL_HOST_PASSWORD = os.getenv("EMAIL_HOST_PASSWORD",

"defaultpassword")

Static files storage

STATICFILES_STORAGE = 'your_production_static_files_storage'

Media files storage

DEFAULT_FILE_STORAGE = 'your_production_default_file_storage'

CACHES = {

"default": {

"BACKEND": "django_redis.cache.RedisCache",

"LOCATION": os.getenv("REDIS_LOCATION",

"redis://127.0.0.1:6379/1"),

"OPTIONS": {

"CLIENT_CLASS": "django_redis.client.DefaultClient",

},

}

}

Let’s review each of the settings:

DEBUG: is set to False. These are the recommended settings for
production. Having it enabled could lead to information leaks and a
security incident.
ALLOWED_HOSTS: This configuration ensures that Django will only
allow requests sent to yourproductiondomain.com and reject requests
to any other domain.
EMAIL_BACKEND: The email backend uses the SMTP client, and it gets
the information from environment variables.
STATICFILES_STORAGE and DEFAULT_FILE_STORAGE: we will see in a
later section how to configure a production environment using Amazon
S3 buckets.

Since we made a refactoring, we must change all the references to
taskmanager.settings to the new taskmanager.dev and
taskmanager.production.
Open these files and change them accordingly:

manager.py: Change the default value of DJANGO_SETTINGS_MODULE to
taskmanager.dev in the line:

from django.core.management import
execute_from_command_line

pytest.ini: Change DJANGO_SETTINGS_MODULE to taskmanager.dev.
taskmanager/asgi.py: Change the default value to
taskmanager.production in the line:

os.environ.setdefault("DJANGO_SETTINGS_MODULE",

"taskmanager.settings")

taskmanager/wsgi.py: Change the default value to
taskmanager.production in the line:

os.environ.setdefault("DJANGO_SETTINGS_MODULE",

"taskmanager.settings")

Now, with our settings refactor, we are ready to install Gunicorn using
poetry:
poetry add gunicorn

Before configuring Gunicorn for production, we need to test it with our
project to ensure it works as expected:
export SECRET_KEY=test

gunicorn --workers 4 taskmanager.wsgi:application

By default, Gunicorn listen to port 8000, open on your browser the URL
http://127.0.0.1:8000 and verify that the login page is shown. The --workers
parameter specifies the number of worker processes to handle the requests.
Gunicorn can be configured by using a configuration file. Since we want to
deploy the project to Kubernetes, we will extend this file with more settings.
Let’s start with some basic settings. Create a new file in the taskmanager
directory at the same level as the manager.py file. Let’s call it
gunicorn.conf.py.
bind = "0.0.0.0:8000"

workers = 3

accesslog = "-"

errorlog = "-"

Binding to 0.0.0.0 means that Gunicorn can accept requests coming from
any IP address that can reach the server. Running inside a Docker container
on Kubernetes typically takes requests from any source.
The choice of 3 workers is a starting point. Determining the optimal number
of workers depends on various factors, which will be discussed in the
subsequent sections.
These settings configure where Gunicorn will write its access and error logs.
The “-” setting tells Gunicorn to output the logs to stdout and stderr,
respectively. These settings are typical because the Docker captures anything
written to stdout and stderr.

Understanding and Creating Dockerfiles for
Django

Containers are lightweight packages that contain everything needed to run a
software application, including code, runtime, libraries and settings.
Containers will run the software in a reproducible environment in different
computing environments.
In Chapter 2, Setting Up Your Development Environment, we configured the
docker to use it in a local environment. Now, we will use docker again, but
for our production environment. To deploy our project into production, we
will need a container image. To create a container image, we need to write a
Dockerfile file. A Dockerfile contains instructions where most of them
create a new layer, while others may only alter metadata. Docker images are
made up of layers; each layer is read-only except for the last one.
Example of a Dockerfile with 5 instructions, resulting in 5 layers:

Figure 11.2: Representation of Docker layers

Here is a list of some useful Dockerfile instructions:

FROM: Creates a base layer from an image.

ENV: Sets an environment variable and creates a layer with this
configuration.
RUN: Executes commands and any files created during the process form
a new layer.
COPY: Copies files from the local file system into the container, creating
a layer with these files.
WORKDIR: Sets the current working directory for any subsequent
Dockerfile instructions.
EXPOSE: Informs Docker that the container listens to specific network
ports at runtime.
CMD: Provides the default command and arguments for an executing
container.

Layers are stacked on top of each other. When you run a container, Docker
takes all these read-only layers and adds a read-write layer. Any changes you
make to the container file system, such as writing new files, modifying
existing files, or deleting files, are made in this writable layer.

Info: Best Practices with Layers:

Minimize the number of layers: Combine related commands into a
single RUN instruction where it makes sense to reduce the number of
layers.
Clean up within layers: For example, if you install packages with
apt-get, you should clean the cache within the same RUN command
to prevent the cache from becoming a permanent part of the layer.
Use .dockerignore: To avoid adding unnecessary files to your
Docker context, which can unnecessarily increase the size of the built
images.

Docker has a feature called multi-stage. Multi-stage allows you to create
smaller images that are cleaner and more secure. The Dockerfile will have
more than one stage and each stage can copy artifacts from these
intermediate stages.
Our Dockerfile will comprise two stages: the build and the runtime stage.
The build stage will create the virtual environment and the image will have

all required dependencies. The build stage will also collect the static files.
The production stage will copy the virtual environment from the build stage
and prepare the Gunicorn command.
Let’s start with the build stage. At the root of the project directory, create a
Dockerfile and populate it with the following content:
--- Build Stage ---

FROM python:3.11.7-slim as builder

Set environment variables

ENV PYTHONDONTWRITEBYTECODE=1 \

PYTHONUNBUFFERED=1 \

POETRY_VERSION=1.7.1 \

POETRY_HOME="/opt/poetry" \

PATH="$POETRY_HOME/bin:$PATH" \

DJANGO_SETTINGS_MODULE=taskmanager.production

Install Poetry - respects $POETRY_VERSION & $POETRY_HOME

RUN apt-get update \

&& apt-get install -y --no-install-recommends curl libpq-dev

RUN pip install "poetry==$POETRY_VERSION"

Copy the project files into the builder stage

WORKDIR /app

COPY pyproject.toml poetry.lock* /app/

Install project dependencies

RUN poetry config virtualenvs.create false \

&& poetry install --no-interaction --no-ansi --no-dev

Copy the rest of the application's code

COPY taskmanager /app

Collect static files

RUN poetry run python manage.py collectstatic --noinput

The Dockerfiles create a base layer from python:3.11.7-slim. We specify the
minor version to make sure that building the image again will be more
reproducible. The name of the stage is build.
Then, we set all the environment variables. We must note that we set all of
them in one line, since having multiple lines will create multiple layers. Let’s
check what each environment variable does:

PYTHONDONTWRITEBYTECODE=1 tells Python to skip writing .pyc files,
which are unnecessary in this context.
PYTHONUNBUFFERED=1 ensures that Python outputs are displayed in real-
time, which is particularly useful for logging when running in
containers.
POETRY_VERSION=1.7.1 specifies the exact version of Poetry to use,
guaranteeing consistent builds.
POETRY_HOME="/opt/poetry" designates a custom location for Poetry’s
installation.
PATH="$POETRY_HOME/bin:$PATH" includes $POETRY_HOME/bin ensures
that the shell and other programs can find the executables provided by
Poetry without needing the full path.
DJANGO_SETTINGS_MODULE=taskmanager.production sets the Django
settings module to use, indicating that the container should run with the
production settings of the Django application.

The subsequent two RUN commands employ apt-get to install essential
dependencies needed for building and installing Python libraries. We include
libpq-dev, since it is required for psycopg.
To install poetry, the second RUN command uses pip and the environment
variable POETRY_VERSION.
With WORKDIR, we change the container’s working directory to /app. we
then copy the pyproject.toml and poetry.lock. Copying these two files will
allow us to use poetry to install all the dependencies for production.
RUN poetry config virtualenvs.create false \

&& poetry install --no-interaction --no-ansi --no-dev

The command ‘poetry config virtualenvs.create false’ is used for
disabling virtualenv usage with poetry. We don’t use virtualenv since the
container already provides isolation. Following that poetry install, --no-
interaction --no-ansi --no-dev installs the project’s dependencies as
defined in Poetry’s lock file, doing so in a non-interactive mode that avoids
the need for user input, without ANSI control characters for plain-text logs,
and excluding development-specific dependencies to reduce the size and
complexity of the production image.
Then we copy all the project source files with the instructions:

COPY taskmanager /app

The final instruction of the build stage is to collect static:
RUN poetry run python manage.py collectstatic --noinput

We use poetry run to make sure we use the poetry installed dependencies and
no import error is raised due to missing dependencies.
If you opt to distribute the static files using a CDN, the collectstatic step is
unnecessary and a different step should be followed.
Our build stage is ready. Our next step is to create the Production runtime
stage. Just after the build stage, append the following instruction to the
Dockerfile:
--- Production Stage ---

Define the base image for the production stage

FROM python:3.11.7-slim as production

Copy virtual env and other necessary files from builder stage

Copy installed packages and binaries from builder stage

COPY --from=builder /usr/local /usr/local

COPY --from=builder /app /app

Set the working directory in the container

WORKDIR /app

Set user to use when running the image

UID 1000 is often the default user

RUN groupadd -r django && useradd --no-log-init -r -g django &&

\

chown -R django:django /app

USER django

Start Gunicorn with a configuration file

CMD ["gunicorn", "--bind", "0.0.0.0:8000", "taskmanager.wsgi"]

Inform Docker that the container listens on the specified

network ports at runtime

EXPOSE 8000

The production stage creates a base layer from python:3.11.7-slim, the
same as the build stage. Then we copy the virtual environment and the
project source code:
COPY --from=builder /usr/local /usr/local

This COPY --from=builder /usr/local /usr/local command transfers
files from the /usr/local directory of the builder stage to the same directory
in the production stage.
The /usr/local directory in a Docker contains software and data that are
installed locally from the source. In the Python ecosystem, when you install
packages using poetry, they get installed into /usr/local/lib/pythonX.X/site-
packages/, where X.X is the Python version number. When using COPY --
from=builder /usr/local /usr/local, the intention is usually to copy
Python packages installed in the builder stage.
COPY --from=builder /app /app

WORKDIR /app

These commands copy the project’s source code into the /app directory and
set /app as the working directory, where all our source code resides.
RUN groupadd -r django && useradd --no-log-init -r -g django &&

\

chown -R django:django /app

USER django

The RUN command in the Dockerfile sets up a new system user and group
named django, ensuring that the application runs with restricted permissions
for enhanced security. It assigns this user ownership of the /app directory to
maintain proper file permissions. The USER directive then switches the
active user to Django so the container doesn’t run processes as the root user,
a recommended security practice. By not granting root access, the container
is restricted from making certain changes to the host system, reducing the
risk of privilege escalation attacks if the container were compromised.
Start Gunicorn with a configuration file

CMD ["gunicorn", "--bind", "0.0.0.0:8000", "taskmanager.wsgi"]

Inform Docker that the container listens on the specified

network ports at runtime

EXPOSE 8000

Finally, we have the command instruction that uses Gunicorn and then
defines the container’s listening port.

Using the image registry

A container registry allows you to store the container images with version
control. Registries are also a way to distribute your container and a critical
step in deploying a container application. When working with Kubernetes,
the registry will be used to download the images in the deployment or the
applications, as seen in the following section.
When working with a registry, docker provides commands to interact with it.
You can download an image from the registry using the docker pull
command.
docker pull ubuntu

There exist several container registries in the industry, and cloud providers
usually offer a registry as a service. There exist public and private registries.
The most popular public registry is docker hub, the default registry to pull
images when using docker.
For uploading the image to the registry, docker provides the command push.
Push will upload the image to the repository:
docker buildx create --use

docker buildx build --platform linux/amd64,linux/arm64 -t

llazzaro/web_applications_django:latest .

docker push llazzaro/web_applications_django:latest

For our example, since our GitHub repository is public, we will use the
docker hub public repository to push and pull the image. However, for a
production deployment, you must use a private repository. Exposing the
docker image to the public will allow anyone to access your application
code, which will be a security incident in most scenarios. Make sure your
repository permissions are correctly configured.
Once our image has been uploaded to the registry, we can pull it with the
docker command pull:
docker pull llazzaro/web_applications_django

Introduction to Kubernetes
A container orchestration system is software that automates the deployment,
management, scaling and networking of containers. Kubernetes (K8s) is an
open-source container orchestration system and is probably the most famous
one. Kubernetes groups containers that make an application into logical units
for easy management and discovery.

Before deploying our application to Kubernetes, we must cover some crucial
components.
For deploying our application, it is not necessary to know how Kubernetes
works internally. However, some knowledge will help us troubleshoot and
understand how our application runs.

Cluster
The Kubernetes cluster is composed of nodes. All these nodes allow you to
scale your application across different machines in terms of nodes. The
cluster also has self-healing properties. When something fails, the scheduler
will try to restart the failed container and reschedule it.

Node
Nodes are workers that run container applications. A node is a single
machine in the Kubernetes cluster. This machine could be physical or
virtual. There are two types of nodes: the master node and the worker node.
The master node is responsible for scheduling and responding to cluster
events. The other type of node is the worker node. These machines run your
applications and are managed by the master node.
Each node has several components, but we just abstract everything as a node
to keep it simple. The Kubernetes documentation
(https://kubernetes.io/docs/home/) is an excellent source for learning more
about node components.

Scheduler
The Kubernetes scheduler selects the most suitable node to run your
application. The scheduler is a critical component and fundamental to
workload management.

Pods
A pod is a set of one or more containers that share common resources like
storage, network and a specification on how to run the containers.
Kubernetes orchestrates containerized applications with a dynamic lifecycle,
managing pods as non-permanent entities. Containers within a pod may be

https://kubernetes.io/docs/home/

terminated by the scheduler to manage system resources, respond to
application scaling directives, perform updates, or recover from failures.
While containers in Kubernetes can use local filesystems and memory, it’s
important for developers to recognize that such storage is ephemeral. Any
data saved locally can be lost when the container is restarted or moved by
the scheduler, therefore, for persistent storage, they should utilize
Kubernetes volumes or external storage systems. While pods are commonly
used for stateless services, they can also be part of stateful applications,
particularly when managed through Kubernetes StatefulSet objects.

Deployments
Deployment is a way to specify to Kubernetes how to create or modify
instances of the pods. Deployments are ideal for stateless applications and
help roll out updates, roll back versions and scaling applications.

ReplicaSets
A ReplicaSet in Kubernetes is a mechanism that ensures a specific number
of identical pod replicas are always running. It automatically replaces Pods
that fail, get deleted or are terminated. ReplicaSets are crucial for ensuring
high availability and resilience of applications.

Services
Services provide a persistent endpoint to access the pods distributed across
one or more nodes. There are different types of services:

ClusterIP: A ClusterIP service in Kubernetes provides a stable
internal IP address for accessing a set of pods from within the cluster.
NodePort: A NodePort service exposes a service on the same port of
each selected node in the cluster, making it accessible from outside the
cluster using <NodeIP>:<NodePort>.
LoadBalancer: A LoadBalancer service in Kubernetes automatically
integrates with the cloud provider’s load balancer, allowing external
traffic to be evenly distributed to the pods.

Configmaps and Secrets
A ConfigMap is a store for non-confidential data as key-value pairs. The
store can be used to save configuration files, environment variables, and
command line arguments.
Secrets is similar to ConfigMap, but it provides an extra layer of security, and
its purpose is storing secrets.

Ingress
Ingress in Kubernetes is a key component for managing incoming traffic to
services within a cluster. Acting as the entry point for external access, it
routes external requests to the appropriate services. Ingress often includes
capabilities like load balancing and SSL termination, effectively directing
and securing communication with services inside the cluster.

StatefulSets
The pod component is ideal for stateless applications. However, some
applications require persistent storage or stable network identifiers.
Typically, this is used for databases or caching services. In this chapter, we
will use statefulsets, but we recommend using managed services
whenever possible. Most cloud providers offer managed database services
that will reduce maintenance and management overhead. Managed services
also provide robust security features and high reliability. Using StatefulSet
is still possible, but your team or company must manage these essential and
critical resources.

Figure 11.3: Kubernetes Architecture Overview

The Kubernetes architecture diagram represents the core components of a
Kubernetes cluster. At the forefront is the Ingress, which acts as the entry
point for external traffic, directing requests to the appropriate services.
Service serves as an abstraction layer that efficiently manages access to the
Pods. Pods are the smallest deployable units in Kubernetes. Each Pod
encapsulates one or more containers, which are running instances of
applications. This arrangement illustrates the flow from external access to
internal process management.

Configuring a Kubernetes cluster for a Django
application
The most basic Kubernetes configuration requires a deployment and a
service. Let’s start with a deployment, create a new file in the new directory
k8s at the root of the repository, then create a new file in this directory with
the name deployment.yaml and populate it with the following contents:
apiVersion: apps/v1

kind: Deployment

metadata:

name: taskmanager-deployment

spec:

replicas: 3

selector:

matchLabels:

app: taskmanagerapp

template:

metadata:

labels:

app: taskmanagerapp

spec:

containers:

- name: taskmanagerapp

image: llazzaro/web_applications_django

ports:

- containerPort: 8000

Every Kubernetes configuration file needs to specify the API version. In this
particular file, we defined it to use app/v1. The kind indicates the type of
resource we will configure, which in this case is deployment.
We use the metadata field to set a unique name. As a convention, we use the
postfix -deployment. Using this name will be helpful when troubleshooting
problems.
The spec (specification) sections set the replicas to 3. The replicas allow
Kubernetes to have three instances of the pod for the deployment. This is a
way to have high availability and load distribution for our project.

Then we use the select to instruct Kubernetes which application the
specification has to be applied, which is the taskmanagerapp.
Under the template, the spec for the containers within the Pods is defined. It
specifies that each Pod should run a single container, named
taskmanagerapp and that this container should use the Docker image
llazzaro/web_applications_django.
In this configuration, we use llazzaro/web_applications_django, pulling
the image from the dockerhub public registry. You must change this to point
to the appropriate registry when using a private registry.
The ports section under the container spec exposes port 8000 of the
container, suggesting that the Django application listens on this port for
incoming HTTP traffic. In this case, our port was set to the same one our
docker file exposes since it is the port where our Gunicorn is listening to
serve the Django application.
Next, we create a new file for the service configuration in the k8s directory.
Let’s call it services.yaml and populate it with the following contents:
apiVersion: v1

kind: Service

metadata:

name: taskmanagerapp-service

spec:

type: NodePort

selector:

app: taskmanagerapp

ports:

- protocol: TCP

port: 80

targetPort: 8000

The file starts with an apiVersion set to v1 and metadata to form the unique
name taskmanagerapp-service using the postfix -service. This name will
be handy for identifying the resource in the Kubernetes cluster for
troubleshooting.
This file creates a service using NodePort. The selector uses the same
application name, taskmanagerapp, to apply this service specification.
NodePort will expose the service on each cluster node’s IP and use the static

port 80 protocol TCP that HTTP uses. The targetPort settings indicated to
which port in the Pod the service will forward the traffic.
With these two files, we are ready to try our first deployment. There are
several ways to configure the Kubernetes cluster. We will use the official
kubectl command.

Note: To install Kubectl, follow the official installation instructions on the
Kubernetes website: https://kubernetes.io/docs/tasks/tools/.
Installing kubectl should be straightforward.
You can also have a local Kubernetes cluster using Minikube or the
official docker.
We recommend following the official Minikube installation at the website:
https://minikube.sigs.k8s.io/docs/start/
If you are willing to use official docker, you can follow these steps:
https://www.docker.com/products/kubernetes/

Our first step will be to create a new kubernetes namespace. A Kubernetes
namespace is a way to divide a cluster of resources between multiple
applications logically.
kubectl create namespace taskmanager

>namespace/taskmanager created

To apply the deploy and service config to the cluster, we need to execute two
commands:
kubectl apply -f k8s/deployment.yaml

deployment.apps/taskmanager-deployment created

kubectl apply -f k8s/services.yaml

service/taskmanagerapp-service created

To see the pods created by the deployment, let’s execute the following
command:
$ kubectl --namespace taskmanager get pods -l

app=taskmanagerapp

NAME READY STATUS RESTARTS

AGE

taskmanager-deployment-667bd87b6-gxv7c 1/1 Running 0

31s

https://kubernetes.io/docs/tasks/tools/
https://minikube.sigs.k8s.io/docs/start/
https://www.docker.com/products/kubernetes/

taskmanager-deployment-667bd87b6-lsgch 1/1 Running 0

31s

taskmanager-deployment-667bd87b6-mgjs9 1/1 Running 0

31s

You can check the logs of each container with the command:
$ kubectl --namespace taskmanager logs taskmanager-deployment-

667bd87b6-gxv7c

[2023-11-14 18:46:38 +0000] [1] [INFO] Starting gunicorn 21.2.0

[2023-11-14 18:46:38 +0000] [1] [INFO] Listening at:

http://0.0.0.0:8000 (1)

[2023-11-14 18:46:38 +0000] [1] [INFO] Using worker: sync

[2023-11-14 18:46:38 +0000] [7] [INFO] Booting worker with pid:

7

[2023-11-14 18:46:38 +0000] [8] [INFO] Booting worker with pid:

8

[2023-11-14 18:46:38 +0000] [9] [INFO] Booting worker with pid:

9

Now you can access your service using the node IP address and with the
exposed service port. You can get the service port with the kubectl
command:
$ kubectl get services --namespace taskmanager

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

taskmanagerapp-service NodePort 10.107.151.88 <none>

80:30893/TCP 8m52s

In my environment, the node port is 30893, but Kubernetes can assign any
number in the range of 30000-32767 by default. You can get the node IP
address with the command:
kubectl get nodes -o wide

If you are using macOS and docker desktop, you can use localhost and the
node port.
We still need to set the environment variables for a proper configuration of
our Django application. In the same k8s directory, let’s create a new file with
ConfigMaps called configs.yaml with the following content:
apiVersion: v1

kind: ConfigMap

metadata:

name: taskmanager-settings

data:

DEBUG: "False"

ALLOWED_HOSTS: "localhost"

DB_NAME: "mydatabase"

DB_USER: "postgres"

DB_HOST: "postgres"

DB_PORT: "5432"

In this configuration file, we define a ConfigMap with the same
taskmanager-settings. In the data section, we set the values of the
environment variables for our containers. DEBUG mode is set to False, which
indicates a production environment. The ALLOWED_HOSTS is configured for
localhost, in a natural production environment. This setting should be set
to your domain. Database configurations such as DB_NAME, DB_USER,
DB_HOST, and DB_PORT set the values to connect to a PostgreSQL database
named mydatabase running on localhost with the default port 5432.
Let’s apply the ConfigMap to the cluster:
kubectl --namespace taskmanager apply -f k8s/configs.yaml

Using statefulset for a Postgresql database is a common approach to
deploying an application that requires persistent storage and stable network
identity. Using a statefulset for a production environment has several
drawbacks and will increase your projects’ maintenance costs. For practical
reasons, we will use statefulsets in this chapter. However, always
consider using managed cloud solutions.
The first step is to set up a persistence storage for PostgreSQL. We need to
understand two concepts when setting up persistent volumes (PV).

PersistentVolume: Storage in the cluster that has been provided by and
administrator or dynamically provided using a storage class.
PersistentVolumeClaim: this is a way to request the usage of the
storage by a project. this is usually specified in the statefulset
configuration file.

You don’t have to manually create a persistent volume when using the
docker desktop for Kubernetes. The storage class will automatically create a

persistent volume that meets the requirements of the volume claim. If you
use statefulsets in Kubernetes, you may need to request the persistent
volume to your cluster administrator.
Let’s create a new file in the k8s directory called statefulset-
postgresql.yaml with the following contents:
apiVersion: apps/v1

kind: StatefulSet

metadata:

name: postgres

spec:

serviceName: "postgres"

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: postgres

image: postgres:16

ports:

- containerPort: 5432

env:

- name: POSTGRES_DB

valueFrom:

configMapKeyRef:

name: taskmanager-settings

key: DB_NAME

- name: POSTGRES_USER

valueFrom:

configMapKeyRef:

name: taskmanager-settings

key: DB_USER

- name: POSTGRES_PASSWORD

valueFrom:

secretKeyRef:

name: taskmanager-secrets

key: DB_PASSWORD

- name: PGDATA

value: /var/lib/postgresql/data/pgdata

volumeMounts:

- name: postgres-storage

mountPath: /var/lib/postgresql/data

volumeClaimTemplates:

- metadata:

name: postgres-storage

spec:

accessModes: ["ReadWriteOnce"]

resources:

requests:

storage: 10Gi

The statefulset name is PostgreSQL and uses a single replica. The
container uses the Postgresql image 16. Configuration of the environment
variables is defined in the previous ConfigMap, and the POSTGRES_PASSWORD
will be defined in the Kubernetes secret to ensure it is secured appropriately.
A volume mount (/var/lib/postgresql/data) is defined for data persistence,
which is linked to a PersistentVolumeClaim named postgres-storage. This
claim requests 10Gi of storage and will be dynamically provisioned with the
ReadWriteOnce access mode, indicating that a single node can mount the
volume as read-write. The other PostgreSQL settings use the ConfigMap
values from the taskmanager-settings.
Let’s apply the new statefulset to the cluster:
kubectl --namespace taskmanager apply -f k8s/statefulset-

postgresql.yaml

Verify its status with the get StatefulSet command of kubectl:
$ kubectl get statefulset --namespace taskmanager

NAME READY AGE

postgres 1/1 63s

We still need to set the DB_PASSWORD, SECRET_KEY and JWT
secrets, since those are secret values we need to store them in the secrets API

of Kubernetes.
The PostgreSQL StatefulSet requires a service:
apiVersion: v1

kind: Service

metadata:

name: postgres

spec:

type: ClusterIP

ports:

- port: 5432

targetPort: 5432

protocol: TCP

selector:

app: postgres

Apply the new config:
kubectl --namespace taskmanager apply -f k8s/statefulset-

postgresql.yaml

The next step is to create the file with the secrets, but since this file will
contain secrets in plain, we need to encrypt this file before committing it to
the repository.
The sops (Secrets OPerations) is an open-source tool
(https://github.com/getsops/sops) used to encrypt, decrypt, and edit sensitive
data files. Sops support key management services like AWS Key
Management Service (KMS), Google Cloud KMS, Azure Key Vault and
PGP. Sops is format agnostic and it could be used for JSON, YAML and
other types of files.

Info: you can install sops in macOS with brew:
brew install sops

In linux:
apt install sops

We are going to use sops with PGP, the first step after installing PGP is to
generate a key:
gpg --full-generate-key

https://github.com/getsops/sops

After generating your key, list your GnuPG keys to get your key ID.
gpg --list-secret-keys --keyid-format LONG

Save the pgp-key-id of the newly generated key since we are going to use it
for encrypting the secrets file we are going to create in the k8s directory with
the following contents a file named secrets.yaml:
apiVersion: v1

kind: Secret

metadata:

name: taskmanager-secrets

type: Opaque

stringData:

SECRET_KEY: "your-secret-key"

DB_PASSWORD: "your-db-password"

JWT_SECRET_KEY: "jwt_secret"

JWT_SECRET_KEY: "jwt_refresh_secret"

This configuration file creates a secret with the name taskmanager-secrets
with the secrets SECRET_KEY, DB_PASSWORD, JWT_SECRET_KEY and
JWT_SECRET_KEY.
GPG_TTY=$(tty)

export GPG_TTY

sops --pgp <pgp-key-id> -e -i k8s/secrets.yaml

Sops will open a text editor with the decrypted contents. Once you quit the
editor, it will encrypt the file if you try to open the file k8s/secrets.yaml
directly with a text editor. You see that the values of the DB_PASSWORD and
SECRET_KEY are encrypted.
Using sops will allow us to commit the file to the repository safely.

Info: When using sops, it is required to decrypt the file to apply it to the
Kubernetes cluster. If the pgp secret is only owned by one team member,
that could be a problem since it will be the only one with this power. When
using a cloud key manager, you can share the key among team members or
even with a CI/CD pipeline.

To apply the secrets to the cluster, we first need to decrypt it and apply the
decrypted secrets. You can do it with the following command:
sops -d k8s/secrets.yaml | kubectl apply -f -

Having the ConfigMaps and Secrets is not enough to have the environment
variables set in our containers, we need to change our deployment.yaml file
to instruct this:
apiVersion: apps/v1

kind: Deployment

metadata:

name: django-app-deployment

spec:

replicas: 1

…

template:

…

spec:

containers:

- name: taskmanagerapp

…

envFrom:

- configMapRef:

name: taskmanager-settings

- secretRef:

name: taskmanager-secrets

With the new change in the deployment configuration file, we describe how
to set the environment variables using a ConfigMap and secrets referenced by
the name.
Re-apply the deployment configuration to the cluster:
kubectl apply -f k8s/deployment.yaml

Note: if you need to force a new deployment to refresh secrets or config,
you can rollout restart the deployment with the command.

kubectl rollout restart deployment taskmanager-deployment

For troubleshooting is helpful to tail the logs of all the containers by
application label, the command is:
kubectl get pods -l app=taskmanagerapp -o name | xargs -I {}

kubectl logs --tail=10 -f {}

Our application is almost ready to be used. However, we need a way to run
the migrations. There are many alternatives to execute the migrations. We
will opt to create a Kubernetes job that will use the ConfigMaps and secrets
to perform the migration.
apiVersion: batch/v1

kind: Job

metadata:

name: taskmanager-migrate

spec:

template:

spec:

containers:

- name: taskmanagerapp

image: llazzaro/web_applications_django

command: ["python", "manage.py", "migrate"]

env:

- name: DJANGO_SETTINGS_MODULE

value: "taskmanager.production"

envFrom:

- configMapRef:

name: taskmanager-settings

- secretRef:

name: taskmanager-secrets

restartPolicy: Never

backoffLimit: 4

This Kubernetes configuration file defines a job resource named
taskmanager-migrate, which will execute database migrations for our
project. It specifies a container named taskmanagerapp using the image
llazzaro/web_applications_django. The primary command executed in
this container is python manage.py migrate, which applies database
migrations as defined in the Django project. The environment variable
DJANGO_SETTINGS_MODULE is set to taskmanager.production, ensuring the
correct Django settings are used. The restartPolicy is set to Never,
indicating that the job should not be restarted automatically if it fails or
completes. The backoffLimit is set to 4, which limits the number of retries
for the job to four attempts in case of failure. This job resource effectively
automates the process of database migration.

Now apply the new jobs configuration:
kubectl --namespace taskmanager apply -f k8s/jobs.yaml

Once the configuration is applied, Kubernetes will execute it and our
database will be migrated.
You can check the status of the execution when getting the pods:
$ kubectl get po --namespace taskmanager

NAME READY STATUS

RESTARTS AGE

postgres-0 1/1 Running 0

4h33m

taskmanager-deployment-8569bd7646-nvhgg 1/1 Running 0

16m

taskmanager-migrate-hvm8t 0/1 Completed 0

17m

The status should be Completed. If you want to re-execute the migrations
again, you will need to replace the current migration job with force:
kubectl replace --force -f k8s/jobs.yaml --namespace

taskmanager

If you now browse to the nodeIP:nodePort you should see the login page.
If you want to create the superuser using the management command. We can
create an interactive bash shell with the command:
kubectl exec -it taskmanager-deployment-8569bd7646-nvhgg --

namespace taskmanager -- bash

django@taskmanager-deployment-8569bd7646-nvhgg:/app$ python

manage.py createsuperuser

The last step to finish the cluster configuration is to deploy a redis service
using 1Set. For this, we need to create the StatefulSet and the service.
Create a new configuration file in the k8s directory called redis-
statefulset.yaml and populate it with the following configuration:
apiVersion: apps/v1

kind: StatefulSet

metadata:

name: redis

spec:

serviceName: "redis"

replicas: 1

selector:

matchLabels:

app: redis

template:

metadata:

labels:

app: redis

spec:

containers:

- name: redis

image: redis:7.0

ports:

- containerPort: 6379

volumeMounts:

- name: redis-data

mountPath: /data

volumeClaimTemplates:

- metadata:

name: redis-data

spec:

accessModes: ["ReadWriteOnce"]

resources:

requests:

storage: 1Gi

This configuration file defines a StatefulSet named redis, which is used
to deploy a Redis server within the cluster. The StatefulSet ensures stable
and unique network identifiers and persistent storage for the Redis instance.
It specifies a single replica, meaning one instance of the Redis server will be
running.
The selector and template sections define the label app: redis, which is
used to match the created pods with the StatefulSet. The redis container
uses the image redis:7.0 and opens port 6379, the default port for Redis.
The volumeMounts section attaches a volume for persistent data storage to
the /data directory inside the container, ensuring that Redis data persists
across pod restarts.

The volumeClaimTemplates provide a template for creating a
PersistentVolumeClaim named redis-data. This claim requests a storage
volume of 1Gi with ReadWriteOnce access mode, meaning the volume can
be mounted as read-write by a single node. This volume is used by the Redis
container to store data persistently.
We now have a single-node Redis instance in the Kubernetes cluster, with
persistent storage to maintain data across restarts and deployments.
For the service to provide access to our redis instance, create a new file in
k8s/redis-service.yaml with the following contents:
apiVersion: v1

kind: Service

metadata:

name: redis

spec:

type: ClusterIP

ports:

- port: 6379

targetPort: 6379

selector:

app: redis

This configuration provides a stable network endpoint to access the Redis
instance. It defines a ClusterIP service named redis.
The service exposes port 6379, both as its port and targetPort. The selector
with app: redis ensures this service routes network traffic to the correct
pods, specifically those labeled as part of the Redis application.
By using a ClusterIP service, this configuration ensures that the Redis
instance is consistently reachable at a known IP address within the cluster
We will need to update the ConfigMap to use the new StatefulSet, edit the
file k8s/configs.yaml and add the new environment variable with the redis
hostname:
REDIS_LOCATION: "redis://redis-

0.redis.taskmanager.svc.cluster.local/1"

Apply the new configuration to the cluster:
kubectl --namespace taskmanager apply -f k8s/configs.yaml

kubectl --namespace taskmanager apply -f k8s/redis-service.yaml

kubectl --namespace taskmanager apply -f k8s/redis-

statefulset.yaml

rollout restart the taskmanager application

kubectl rollout restart deployment taskmanager-deployment --

namespace taskmanager

If you want to test if the redis connection works, you can log in and create a
new task or open an interactive shell to connect to redis using the kubectl
exec command.

Adding liveness and readiness probes
Probes are a way for Kubernetes to understand when the container is ready
to start accepting traffic (readiness) and when it needs to be restarted
(liveness).
Liveness probes are used to determine if the application within a container is
running. When the liveness probe fails, Kubernetes will kill the container
and restart it according to the restart policy. Be careful with adding external
dependency checks like Redis or a database check to the liveness probes. If
these services are temporarily unavailable, Kubernetes will keep restarting
your containers.
Readiness determines if the application within the container is ready to
service requests. When the readiness probe fails, Kubernetes will not send
traffic to the pod, but it doesn’t restart it. Some applications could take some
time to load and this could be a useful use case.
We will implement the probes in a new Django application called Health. In
this application, we will add two views, one for liveness and the other for
readiness.
Create the new app with the startapp management command:
python manage.py startapp health

Open the taskmanager/base.py and add the health application:
INSTALLED_APPS = [

…

"health",

…

]

In health/views.py, implement your health check logic:
from django.core.cache import cache

from django.db import connections

from django.http import JsonResponse

def liveness(request):

Perform checks to determine if the app is alive

return JsonResponse({"status": "alive"})

def readiness(request):

try:

Check database connectivity

connections["default"].cursor()

Check cache (e.g., Redis) connectivity

cache.set("health_check", "ok", timeout=10)

if cache.get("health_check") != "ok":

raise ValueError("Failed to communicate with cache

backend")

return JsonResponse({"status": "healthy"}, status=200)

except Exception as e:

return JsonResponse({"status": "unhealthy", "error":

str(e)}, status=500)

The liveness probe returns a simple json, while the readiness check verifies
database and cache (Redis) connectivity in this example. If any check fails, it
returns an unhealthy status.
In health/urls.py:
from django.urls import path

from . import views

urlpatterns = [

path("liveness/", views.liveness_check,

name="liveness_check"),

path("readiness/", views.readiness_check,

name="readiness_check"),

]

In the projects taskmanager/urls.py add the health application URLs:
…

urlpatterns = [

…

path("health/", include("health.urls")),

…

]

Finally, we need to update our k8s/deployment.yaml to configure
Kubernetes to use the new probes:
apiVersion: apps/v1

kind: Deployment

…

spec:

…

template:

…

spec:

containers:

- name: your-app-container

…

readinessProbe:

httpGet:

path: /health/readiness/

port: 8000

httpHeaders:

- name: Host

value: "localhost"

initialDelaySeconds: 10

periodSeconds: 5

livenessProbe:

httpGet:

path: /health/liveness

port: 8000

httpHeaders:

- name: Host

value: "localhost"

initialDelaySeconds: 15

periodSeconds: 10

In this configuration, both the readiness and liveness probes are set up to use
the /health/readiness and /health/liveness endpoint accordingly. The
initialDelaySeconds and periodSeconds are configurable based on how
quickly your application starts and how often you want to check its health.
We set the Host headers to localhost or any other host in the ALLOWED_HOSTS.
Otherwise, django will reject the request and the probe will fail.
The implementation of these endpoints must be correctly done. If you
implement a liveness probe that checks for readiness, it could produce
unwanted restarts. The configuration of the probes is also necessary. A high
frequency and low timeout could restart the containers prematurely, not
allowing the application to recover. You can shoot yourself in the foot with
the wrong configuration or probes that don’t check what they should do.

Adding Instrumentation for Django
Instrumentation enhances a system with monitoring and observability
capabilities. Instrumentation involves the collection of metrics, logs and
traces. With all the collected data, instrumentation provides insights into our
system and helps us understand the performance and behavior of the system.
There are different ways to do instrumentation:

Code: You can embed code in your application, such as logging or
metrics collections.
Library: Use libraries or frameworks that automatically collect data,
such as request counts, response times, error rates and more.
Agent-Based: You can have an agent running along with the
application that collects metrics and traces without changing the
application.

In system observability, there are two pivotal concepts: metrics and traces.
Metrics are numerical representations of data measures over intervals of
time. These data allow system administrators to monitor trends, detect
anomalies and make informed decisions about resource allocation and
performance optimization.
On the other hand, traces contain detailed information about a single request
from our system until its culmination. Traces will provide information about
system interactions and invaluable information when diagnosing problems.

OpenTelemetry is an open-source observability framework. The framework
offers APIs and libraries to collect distributed traces and metrics from your
system. We will follow the library approach by using open telemetry to
enable instrumentation in our Django project.
For monitoring and alerts, we will use the open-source solution Prometheus.
Prometheus provides collects and stores metrics as time series data. The
project also provides a powerful query language called PromQL that allows
the user to select and aggregate data from the collected metrics. Prometheus
primarily uses a pull model for metrics collection. It scrapes metrics from
configured endpoints at regular intervals.

Info: Prometheus is a monitoring system and time series database. It is
used to record the metrics and provides a way to query the data.
Prometheus has an alerting feature that can be triggered based on the
collected data. We will use Prometheus to collect Django metrics.

As a tracing system, we will use Jaeger, another open-source solution. Jaeger
provides real-time visualization and monitoring and it is designed for high
scalability and supports cloud-native environments like Kubernetes.
Here is an overview of how our observability will be in our Kubernetes
deployment.

Figure 11.4: Overview of observability architecture

Prometheus configuration
For connecting our Django project to Prometheus, we need to expose the
metrics of our application via a URL that Prometheus will scrape
periodically. A third-party application exists that will extend our project with
a new metrics endpoint. Django-Prometheus
(https://github.com/korfuri/django-prometheus) exports the metrics of the
ORM and caching, besides requests and response metrics.
Let’s install django-prometheus:
poetry add django-prometheus

Once added, we need to change our setting taskmanager/base.py to add
Django Prometheus to the INSTALLED_APPS and then add two middlewares:
INSTALLED_APPS = [

…

'django_prometheus',

…

]

Make sure to add the PrometheusBeforeMiddleware as the first element and
the PrometheusAfterMiddleware as the last element of the MIDDLEWARE. All
other middlewares should go in the middle.
MIDDLEWARE = [

'django_prometheus.middleware.PrometheusBeforeMiddleware',

…

'django_prometheus.middleware.PrometheusAfterMiddleware',

]

Next, add to the taskmanager/urls.py the prometheus urls:
urlpatterns = [

…

path('', include('django_prometheus.urls')),

]

You can now browse to http://localhost:8000/metrics and verify that django-
prometheus was properly configured.
PROMETHEUS_LATENCY_BUCKETS is a configuration setting where you define
the buckets for a latency histogram. Selecting different bucket ranges affects
the granularity, and thus, the precision of observed latency measurements.

https://github.com/korfuri/django-prometheus

While Prometheus histograms do not directly calculate percentiles, the
bucket configuration indirectly impacts how you can estimate percentiles.
Each bucket in a Prometheus histogram accumulates the count of events that
fall into its range. By examining these counts, you can estimate your data’s
distribution and approximate percentiles.

Info: Percentiles are a statistical measure used to understand data
distribution in a dataset. They are instrumental in performance monitoring.
Percentiles are often used to analyze response times, latency, or other
metrics. For example, the 95th percentile of response times might be used
to understand the upper limits of user experience on a web application.
Percentiles help in understanding the distribution of data.

Since we are deploying our application to a Kubernetes cluster, we need to
install Prometheus and configure it to scrape our task manager service. Helm
is a package manager for Kubernetes. Helm simplifies the process of
installing complex Kubernetes applications.
You can download Helm from the official GitHub repository
https://github.com/helm/helm/releases.
First, add the Prometheus community chart repository to Helm:
helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

helm repo update

Prometheus can now be installed using Helm:
helm install prometheus prometheus-community/prometheus --

namespace taskmanager

Verify that the Prometheus pods are running with the command:
kubectl get po --namespace taskmanager

NAME READY STATUS

RESTARTS AGE

…

prometheus-alertmanager-0 1/1

Running 1 (8m27s ago) 133m

prometheus-kube-state-metrics-6b464f5b88-lghfj 1/1

Running 2 (7m12s ago) 133m

https://github.com/helm/helm/releases

prometheus-prometheus-node-exporter-zv6vv 1/1
Running 1 (8m26s ago) 133m

prometheus-prometheus-pushgateway-7857c44f49-cg9js 1/1

Running 1 (8m27s ago) 133m

prometheus-server-8fffdb69d-t7bsr 2/2

Running 2 (8m26s ago) 133m

Next, we must configure Prometheus to scrape metrics from our Task
Manager project, to do this we need to change the k8s/services.yaml file and
add some annotations.
apiVersion: v1

kind: Service

metadata:

name: taskmanagerapp-service

annotations:

prometheus.io/scrape: 'true'

prometheus.io/path: '/metrics'

prometheus.io/port: '8000'

spec:

…

Re-apply the settings to the cluster:
kubectl apply -f k8s/services.yaml --namespace taskmanager

Now Prometheus will have the taskmanager service as a target. Prometheus
will start to scrape the metrics endpoint using the cluster IP.
In a Kubernetes cluster, our service could have any IP address and it could
change on resource allocation. To solve the ALLOWED_HOSTS issue for IP
addresses, we can install a third-party application that allows us to allow by
CIDR (Classless Inter-Domain Routing), which extends the functionality of
ALLOWED_HOSTS but for ip addresses.
The project is called django-allow-cidr

(https://github.com/mozmeao/django-allow-cidr). It can be installed with
poetry:
poetry add django-allow-cidr

Open the taskmanager/base.py and add the new middleware:
MIDDLEWARE = (

'allow_cidr.middleware.AllowCIDRMiddleware',

https://github.com/mozmeao/django-allow-cidr

…

)

Once installed, open the taskmanager/production.py and append the new
configuration:
…

ALLOWED_CIDR_NETS = ['10.1.0.0/16']

This new setting will allow requests using the IP address in the range
10.1.0.1 to 10.1.255.255.
You can open Prometheus UI using port-forward:
kubectl port-forward service/prometheus-server 8001:80 --

namespace taskmanager

Open with your browser http://localhost:8001/targets?
search=taskmanagerapp-service and verify that the taskmanager is listed
with state UP (green). You can also open the logs of the taskmanager pod
and search for a request to the metrics endpoint.

Figure 11.5: Prometheus Targets showing task manager status

Jaeger configuration
The OpenTelemetry Protocol (OTLP) is a part of the OpenTelemetry project.
The protocol is designed to standardize the collection and reporting of
telemetry data for cloud-native software. Starting version v1.35, Jaeger
supports OTLP in the collector, so our integration with Jaeger will be easier
since it will not require a specific open-telemetry collector. We can now use
the native one.
We need to install an open-telemetry library to add instrumentation to our
project.
poetry add opentelemetry-sdk opentelemetry-instrumentation-

django opentelemetry-exporter-otlp opentelemetry-api

We just installed the following libraries:

opentelemetry-instrumentation-django (https://github.com/open-
telemetry/opentelemetry-python-contrib/tree/main) The official
OpenTelemetry instrumentation for Python module for Django. This
library provides automatic instrumentation for Django applications.
opentelemetry-sdk and opentelemetry-api (https://github.com/open-
telemetry/opentelemetry-python) the API provides the interfaces and
structures for telemetry, the SDK provides the actual implementation
for how traces and metrics are collected, processed, and managed.
opentelemetry-exporter-otlp (https://github.com/open-
telemetry/opentelemetry-python) The OpenTelemetry Protocol (OTLP)
exporter. Exporters in OpenTelemetry transmit collected telemetry data
to backend analytics tools.

Create a new file taskmanager/tracing.py and populate the file with the
following contents:
import os

from opentelemetry import trace

from opentelemetry.instrumentation.django import

DjangoInstrumentor

from opentelemetry.sdk.resources import Resource

from opentelemetry.sdk.trace import TracerProvider

from opentelemetry.sdk.trace.export import BatchSpanProcessor

from opentelemetry.exporter.otlp.proto.grpc.trace_exporter

import OTLPSpanExporter

def init_tracing():

jaeger_host = os.getenv('JAEGER_AGENT_HOST', 'localhost')

jaeger_port = int(os.getenv('JAEGER_AGENT_PORT', '4317'))

jaeger_insecure = os.getenv('JAEGER_INSECURE', False)

service_name = os.getenv('SERVICE_NAME', 'taskmanager')

resource = Resource(attributes={

"service.name": service_name

})

trace.set_tracer_provider(TracerProvider(resource=resource))

otlp_exporter =

OTLPSpanExporter(endpoint=f"http://{jaeger_host}:

https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main
https://github.com/open-telemetry/opentelemetry-python
https://github.com/open-telemetry/opentelemetry-python

{jaeger_port}", insecure=jaeger_insecure)

span_processor = BatchSpanProcessor(otlp_exporter)

trace.get_tracer_provider().add_span_processor(span_processor)

DjangoInstrumentor().instrument()

Since our Django application uses Gunicorn in production, we will use a
post-fork to send the metrics to Jaeger. When Gunicorn starts, it forks
multiple worker processes from a master process to handle the incoming
requests. The post-fork phase refers to the system’s actions after forking the
process. Using post-fork will add tracing to each work process separately
and the post-fork phase is used to initialize resources specific to the worker.
Open the file Gunicorn.conf.py and add the post-fork at the end of the
file:
def post_fork(server, worker):

from taskmanager.tracing import init_tracing

init_tracing()

Our Django project is ready to export telemetry to a Jaeger collector using
OTLP. We need to install Jaeger in our cluster. Since we are using a local
Kubernetes cluster, we will deploy Jaeger all-in-one using an in-memory
database. Usually, you will want to install Jaeger with persistent storage like
ElasticSearch or Cassandra in production, but for our local Kubernetes
cluster, we will opt for in-memory storage.
We will use the all-in-one collector since it has the OTLP collector, but in a
production environment, it will be more efficient to have a collector that
only accepts OTLP. The all-in-one accepts all supported formats.
To install Jaeger, we will use the helm again:
helm install jaeger-in-memory jaegertracing/jaeger \

--set provisionDataStore.cassandra=false \

--set provisionDataStore.elasticsearch=false \

--set storage.type=memory \

--set storage.memory.maxTraces=100000 \

--set allInOne.enabled=true

Finally, we need to set the environment variables for our Django containers:
apiVersion: apps/v1

kind: Deployment

metadata:

name: taskmanager-deployment

spec:

replicas: 1

selector:

matchLabels:

app: taskmanagerapp

template:

…

env:

- name: JAEGER_AGENT_HOST

value: "jaeger-in-memory-

collector.taskmanager.svc.cluster.local"

- name: JAEGER_AGENT_PORT

value: "4317"

- name: JAEGER_INSECURE

value: "True"

We are using the hostname of the Jaeger collector. The hostname is
composed of first the name of a collector service, which in this case is
jaeger-in-memory-collector, followed by the namespace and finally with svc
to indicate that the resource is a service and the last part is the default
domain name for Kubernetes clusters.
JAEGER_AGENT_PORT is set to the grpc port 4317 and we are using an
insecure connection since we never deployed certificates in our local cluster.
For a production environment, it is recommended to use a secure connection.
This chapter focuses on configuring the components to send traces to Jaeger.
Apply the new configuration changes to the cluster:
kubectl apply -f k8s/deployment.yaml --namespace taskmanager

kubectl rollout restart deployment taskmanager-deployment
It is possible to open Jaeger UI by doing a port-forward:
kubectl port-forward service/jaeger-in-memory-query 16686:16686

You can open the http://localhost:16686 to see the Jaeger UI:

Figure 11.6: Jaeger showing tracing information

Database Optimization: Queries and Indexing
As we have seen before, scaling the Django application is easy with
kubernetes since we can increase the replicas in our Kubernetes
configuration and the cluster will create more pods that can handle more
traffic. When you are in this situation where your cluster is scaling with
multiple pods, sooner or later, you will hit too much of the database and it
will become your bottleneck.
Databases are very fast, and they have a very complex architecture behind
them that is very extensive to explain, but I highly recommend studying
them.
That said, you will find that your project has slow queries. After all the
instrumentation is added, you can find a slow endpoint and with the tracking
information, you can find the slow-performing queries.

PostgreSQL has a statement explain analyze, which will generate a report
on how the database will execute your query.
Open a database shell inside the PostgreSQL in your local environment (not
Kubernetes), with the following command:
docker-compose exec -u postgres db psql mydatabase

Now you can use explain analyze to see the PostgreSQL report:
mydatabase=# explain analyze SELECT * FROM

"accounts_taskmanageruser" WHERE

"accounts_taskmanageruser"."id" = '5';

QUERY PLAN---

Index Scan using accounts_taskmanageruser_pkey on

accounts_taskmanageruser (cost=0.14..8.16 rows=1 width=1977)

(actual time=0.041..0.046 rows=1 loops=1)

Index Cond: (id = '5'::bigint)

Planning Time: 2.128 ms

Execution Time: 0.244 ms

(4 rows)

In the EXPLAIN ANALYZE output from a SQL query, we observe a detailed
breakdown of the query’s execution plan. The process utilizes an Index Scan
on the accounts_taskmanageruser table, explicitly leveraging the
accounts_taskmanageruser_pkey primary key index, indicating an efficient
search strategy based on indexed columns.
The example is the scratching surface of the vast knowledge required for
query optimization. However, knowing this tool could help you improve the
performance of queries.
When analyzing the results of an EXPLAIN ANALYZE, there are several key
aspects to consider for understanding and optimizing query performance:

Scan Type: Look at whether the query uses a Sequential Scan
(scanning the entire table) or an Index Scan/Index Only Scan (using an
index to find rows). Index Scans are generally faster, especially for
large tables.
Cost Estimates: The cost values (like cost=0.14..8.16) are estimates of
the query’s execution cost, given in arbitrary units. The first number is

the startup cost before the first row is returned, and the second is the
total cost to return all rows.
Rows and Width: The estimated number of rows (rows=) and the
average row width (width=) are crucial. Significant discrepancies
between estimated and actual row counts can indicate that the
database’s statistics must be updated, leading to suboptimal query
plans.

It’s important to understand that adding indexes is not always the solution to
performance improvement. You need to understand your application usage.
Is your application read-intensive? or is it write-intensive?
Adding indexes to a database can significantly speed up read operations,
especially for large datasets, as they allow the database to locate data
without scanning the entire table. However, excessive indexing can be
counterproductive in write-intensive applications, where data is frequently
inserted, updated, or deleted.
Every time a record is inserted, updated, or deleted, all indexes on that table
need to be updated accordingly. This update in the index data structure can
substantially increase the time it takes to write data, as each index update
involves additional disk I/O operations and processing.
Index maintenance requires additional CPU and memory resources. In a
write-intensive environment, this can increase strain on the database server,
potentially impacting overall system performance.
Although indexes significantly optimize read queries, they introduce
compromises in environments with heavy write operations. The challenge
lies in striking a balance by creating indexes that substantially enhance
critical read operations without disproportionately affecting write
performance.

Conclusion
Throughout this chapter, we have navigated the complexities of deploying
Django applications in a production environment. By employing Gunicorn,
Docker, and Kubernetes, we have demonstrated how to create robust,
scalable, and efficient deployments. Our discussion on database optimization
and static file management has further emphasized the importance of
performance tuning in web applications. You are now better prepared to

tackle the challenges of deploying Django applications, ensuring they are
well-optimized, secure, and ready to scale according to the demands of
modern web traffic.

Questions
1. Explain the concept of a Kubernetes Pod.
2. How does Gunicorn interact with Django applications?
3. Explain the difference between StatefulSets and Deployments in

Kubernetes.
4. How does instrumentation aid in Django application deployment?
5. Discuss the trade-offs of using indexes in database optimization for

Django.
6. Analyze the benefits and limitations of using Redis as a caching and

session store in a Django application deployed on Kubernetes.

CHAPTER 12
Final Thoughts and Future Directions

Introduction
This chapter summarizes our journey and guides your ongoing exploration
and growth within the Django universe. We’ll revisit important learnings
from building a Task Management App, evaluate the Django ecosystem,
and explore additional tools and libraries that complement Django’s
capabilities. Further, we’ll explore the potential enhancements for our Task
Management App, discuss staying updated with Django through resources
and communities, explore Django’s career opportunities, contemplate
Django’s future, and provide tips for continuous learning and improvement.
This chapter will consolidate your understanding and inspire you to further
your Django expertise.

Structure
In this chapter, we will cover the following topics:

Summary of learnings: Building a task management app
Evaluating the Django ecosystem: Strengths and weaknesses
Exploring additional Django tools and libraries
Potential enhancements for the task management app
Staying updated with Django: Resources and communities
Career opportunities with Django skills
Thoughts on Django’s future: Upcoming features and trends
Tips for continued learning and improvement

Summary of learnings: Building a task
management app

This book guides us from starting the task management project from scratch
to deploying it to a Kubernetes cluster. We began by building an appropriate
development environment that helped us make a homogeneous
development environment when working in a team. We then configured the
initial skeleton for our project and learned important architecture patterns
like MVT that are important to understand when working with Django.
By developing the models, we laid the foundation of our project. Every
Django project orbits around a model. We also learned the importance of
having a service layer representing a proper interface between different
Django applications. The service layer will promote loose coupling and
high cohesion, which opens the path to future easy changes.
We also learned how to deal with essential framework features, like URL
patterns, the template engine, and the forms. With this toolset, you will have
a robust set of features that will help you tackle most of the problems you
will face while building web applications.
Once we added authentication to our task management project, we started
to have an actual web application with the possibility of using groups and
permissions. Thanks to the great community of Django, the project can be
easily extended to use OAuth using libraries like django-auth

(https://github.com/pennersr/django-allauth).
Building an API using the API first approach is necessary to understand and
following it will save you time and frustration. The API first approach lets
you quickly iterate without writing or changing code.
Opting for Django Ninja over Django Rest Framework
(https://github.com/encode/django-rest-framework) enabled us to develop a
modern API, utilizing burgeoning libraries like Pydantic, known for their
superior serialization capabilities.
The famous framework for testing pytest shows that it integrates perfectly
with Django, providing an excellent development experience when writing
tests. TDD is a process that will help you think about using your classes and
functions instead of going directly to the code and writing complex code.
Understanding the distinctions between various types of tests is crucial.
Using BDD will help you improve the quality of your project and your
team’s communication since writing the scenarios is a team activity and
should be discussed to ensure they are what you need to build.

https://github.com/pennersr/django-allauth
https://github.com/encode/django-rest-framework

Finally, we learn how to build docker images following best practices and
how to use those images to deploy them into a Kubernetes cluster that
allows us to scale the application. We also learned how to add
instrumentation to our application to have better insights into the behavior
of the application and use traces to troubleshoot production issues. We also
briefly covered improving slow queries by following specific database
queries.

Evaluating the Django ecosystem: Strengths and
weaknesses
Django proves it has become the top choice framework when building web
applications. It facilitates rapid development, provides a secure
environment, and offers scalability.
It’s important to acknowledge that it has a steep learning curve for someone
without experience with any technology, since it requires learning several
concepts that could be hard to master all at once. The framework also has
some limitations in handling asynchronous requests.
Still, there are some debates on using a service layer or not. Some people
are more pragmatic and prefer not to have a service layer. However, when
the project needs to grow and the number of developers in the development
team exceeds a certain threshold, not having a service layer could create a
big ball of mud.

Exploring additional Django tools and libraries
In this book, we tried to cover the most important and most used Django
tools and libraries. However, there is a vast number of great libraries that
we could not cover.
Django Channels is a project that takes Django and extends its abilities
beyond HTTP - to handle WebSockets, chat protocols, IoT protocols, and
more.

Django Haystack: Modular search for Django, offering a way to add
search functionality with multiple backends like Solr, Elasticsearch,
and so on.

Django Filter: A reusable application for Django that provides a
simple way to filter down a query set based on user-supplied
parameters.
Django Storages: A collection of custom storage backends for
Django, supporting services like Amazon S3, Google Cloud Storage,
and more.
Django Anymail: Integrates Django with transactional email services
like Mailgun, SendGrid, Amazon SES, and so on for handling email
sending.

We also never covered how to work with background workers, which is a
significant problem to solve in many web applications. Celery is an open-
source, distributed task queue system in Python, designed to handle
asynchronous tasks and scheduling by efficiently distributing work across
threads or machines. Celery with frameworks like Django allows for
scalable, efficient task management, essential for maintaining a seamless
user experience.

Potential enhancements for the task management
app
Our task management application is in its baby steps. There are several
enhancements that we can add to the project.
Regarding our Kubernetes deployment, we didn’t cover deploying the static
files over a CDN. For applications with high traffic, this is a must for
serving the static files. It will improve your application performance and
save costs since your backend will not need to serve the files.
We added excellent instrumentation to our project. However, we didn’t
cover any monitoring tools like Grafana or Kibana, which can be used with
Kubernetes for log monitoring and analysis, providing insights into the
application’s behavior and performance.
Implementing Two-Factor Authentication (2FA) in web applications
significantly enhances security by requiring users to provide two distinct
forms of identification before granting access. In addition to securing user
accounts, 2FA delivers an added layer of trust and safety for the entire

system, making it a critical feature for applications handling sensitive data
or requiring elevated security measures.
Building a Continuous Integration and Continuous Deployment (CI/CD)
pipeline is a transformative process that automates the stages of software
development, from code integration to deployment. In a CI/CD pipeline,
developers frequently merge their code changes into a central repository,
where automated builds and tests are run. This continuous integration helps
identify and fix integration issues early, maintaining a high code quality.

Staying updated with Django: Resources and
communities
Keeping pace with technological advancements takes time and effort. Even
today, you can easily get lost and follow the wrong trend with the Internet.
The most critical resource for Django is the official GitHub repo and
checking the change log of the alpha or beta versions. Clone and install a
Django development version to try and test the new features. If you have
enough courage, you can report or fix a bug.
Following Django developers on X (previously Twitter) is important since
you will get the latest information:
https://twitter.com/djangoproject
https://twitter.com/loic84
https://twitter.com/MariuszFelisiak
https://twitter.com/simonw
https://twitter.com/carltongibson
https://twitter.com/evildmp
The Twitter links are just some of the people to follow, but there are many
more to follow related to Python and Django.
The Reddit community (https://www.reddit.com/r/django/) could be a place
to discover new libraries.
And, of course, reading books!

Career opportunities with Django skills

https://twitter.com/djangoproject
https://twitter.com/loic84
https://twitter.com/MariuszFelisiak
https://twitter.com/simonw
https://twitter.com/carltongibson
https://twitter.com/evildmp
https://www.reddit.com/r/django/

Django is one of the most popular web frameworks for Python. Many
companies are using it and its demand is growing strong. Finding a Django
developer with several years of experience is also problematic. Finding
specific candidates is hard, so learning Django will improve your
probability of getting a well-paid job.
Python has also become a programming language in high demand. Learning
Django will also make you learn Python; thus, this is a win-win scenario. If
you don’t get a job because of Django, most likely, you will get it to know
Python. It is also vital that you not only focus on the framework features,
but also on architecture patterns that will help teams to scale to an unknown
size.

Thoughts on Django’s future: Upcoming features
and trends
Django’s future is moving towards more seamless integrations with front-
end frameworks, enhanced asynchronous support, and more profound AI
and machine learning integration. Django is increasingly adopting
asynchronous features, drawing inspiration from frameworks like FastAPI.
This shift allows Django to handle a large number of simultaneous
connections, making it more suitable for real-time web applications, such as
chat applications or live notifications. These developments will probably
shape Django’s role in the web development landscape, keeping it relevant
and influential in the face of evolving technological trends. With the recent
release of Django 5.0, many projects will need to migrate over the
following years to utilize the latest features and improvements offered by
this primary version of Django.

Tips for continued learning and improvement
In the ever-evolving world of technology, continuous learning is critical.
For Django developers, this means mastering the framework and adapting
to new tools and practices. Building personal projects, contributing to open-
source Django projects, and staying engaged with the community are
effective ways to continue growing and staying relevant in the field.

Conclusion
As we conclude this book, we reflect on Django’s rich and diverse
landscape. We navigated the practicalities of building a Task Management
App, explored Django’s strengths and weaknesses, and discussed various
tools and libraries that enhance Django’s functionality. We also pondered
the potential future developments in Django, keeping an eye on upcoming
trends and features. The journey with Django continues. The field of web
development is dynamic, and Django, with its robust community and
consistent updates, remains a relevant and powerful framework. I encourage
you to continue learning, experimenting, and growing. Contribute to open-
source projects, stay connected with the community, and keep yourself
updated with the latest in Django. Remember, the learning journey is
continuous, and each step you take further enriches your skills and
understanding. Django is not just a framework; it’s a gateway to a world of
opportunities in web development. Let’s keep exploring, keep learning, and
keep building.

Index

Symbols
__call__ 216

A
admin page

reference link 82
AND operator 87
API CRUD operations

create_task 271
delete_task 272
get_task 272
list_task 272
update_task 272

API design
about 258, 259
authenticating users 283
design-first approach 260, 261
documentation 268, 269
HTTP status code 261
pagination 273, 274
versioning 293
path parameters, working 274-277
query parameters, working 277-280

API design-first approach, process
build 260
design 260
review 260
validation 260

API design, principles
cacheability 259
client-server architecture 259
code on demand 259
layered system 259
stateless 259
uniform interface 259

API RESTful, types
2xx (success) 262
3xx (redirection) 262
4xx (client error) 262
5xx (server errors) 262

app_name 120
authenticating API user

about 283
JSON web token authentication 288-291
token-based authentication 283-288

authentication 212
authorization 212
autoescape 166

B
bare metal hypervisor. See type 1 hypervisor
BDD, key components

features files 321
scenarios 321
step definitions 321

behavior-driven development (BDD) 321-325
branching models

about 34
Git Flow 34-36
GitHub Flow 36, 37
Trunk-based 37, 38

C
Continuous Integration and Continuous Delivery (CI/CD) 36
Clickjacking 215
ConfigMap 354, 357-360, 365
constraints, types

check 95
default 95
foreign key 95
not null 95
primary key 95
unique 95

ContactForm 179, 185
ContactFormView 179
Content Delivery Network (CDN) 159
context processors

lists 161
CreateView 184
customization, settings

session practices 228
session usage 227

D
database 379
DateConverter 118
development environments

about 22, 23
basic configuration 27-29

management dependency 25
virtual environments 25

Django
about 13
built-in converters 118
career opportunities 388
class-based views 110
debug toolbar 55
development server 54, 55
extensions 56
features 388
forms 170
learning tips 388
migrations 75-78
models 66, 67
optimization tools 94
regular expression 114
URL configuration 114, 115

Django 4.2 features
about 17
columns and tables comments 18
custom file 18
in-memory file 18
minor improvements, additional features 18
password validation 18
psycopg3 support 17

Django admin interface
data, manipulating 78-86
models, registering 78-86

Django advanced handling, tools
Formset 198
ModelFormSet 198

django-allow-cidr
reference link 374

Django application
about 46
app starting 48
configuring 51-54
first app running 56-62
structure 48

Django application, module
admin.py 48
migration 48
models.py 48
tests.py 48
views.py 48

Django authentication system
about 212, 213
login view 221-224
logout view 221-224

multi authentication, with user model 246-251
password management 228-238
session customization 226
user authorization 240-245
user sessions, managing 224-226
views, protecting with login required decorators 238-240

Django Debug Toolbar
reference link 55

Django ecosystem
evaluation 385

Django extensions
reference link 55

Django forms
about 170
advanced handling 198-202
cleaning methods 195
creating 174
custom form fields 186-191
data validation 194
double submission, preventing 202-208
errors displaying 195-197
field, working 184, 185
file and image, uploading 191-193
submission, handling 177-184
templates, rendering 174-177
testing 310
validation 196

Django forms, attributes
action 170-173
method 173

Django Generic views
about 103, 104
framework 103, 104, 123
HttpRequest object 121
HttpResponse object 121-123

Django HttpResponse object, types
HttpResponseBadRequest 122
HttpResponseForbidden 123
HttpResponseNotFound 122
HttpResponseRedirect 122
HttpResponseServerError 123
JsonResponse 123

Django middleware
about 213-215
basic understanding 215, 216
user model registration 217-221

Django models
about 66, 67
database API 71-75
data integrity, constraints 95-98

extending 90-94
first model, creating 67-71
ORM queries, aggregating 86-90

Django models, attributes
created_at 69
creator 69
description 69
owner 69
status 69
title 69
updated_at 69

Django MVC, concept
model 49
template 49
view 49

Django Ninja
about 263
first API, building 263-265
HTTP methods, learning 269-272
project setting 263
validation and error, handling 279-282

Django optimization tools, types
prefetch related 94
select related 94

Django ORM relationship, types
many-to-many 92, 93
one-to-many 91
one-to-one 90, 91

Django philosophy
about 14
domain logic models 16
Don't repeat yourself (DRY) 14
explicit behavior 16
framework, caching 16
High cohesion 14
logical presentation on templates 16
Loose coupling 14
quick development with less code 15
view function 17

Django project
application comparing 46
home page view, showing 148-152
MVT design patterns 48
object relevant problem 45, 46
project creating 47
reference link 209
security updates 252
structure 47

Django project problem, types
comments 46

epic 46
sprint 46
task 46
user 46

Django templates
about 140, 141
context processors 160-165
static files, using 156-159
Debugging 164
inheritance 144-147
language 141
methods 166
reusing code 147, 148
securing 165
tags, filters 153-156
template render, optimizing 164, 165

Django views
about 102, 103
writing 104-108

Djnago framework template engine, types
Django Template Language (DTL) 140
Jinja2 140

Django security, best practices
admin access, limiting 255
ALLOWED_HOSTS, setting up 255
Content Security Policy (CSP) 253, 254
cookies, using 253
debug, disabling 253
frameworks, updating 252
HTTP Strict Transport Security (HSTS) 253
libraries, updating 252
project setting 252
SECRET_KEY 255
Secure Referrer Policy 254
Secure Password Hashing algorithms, using 254
X-Content-Type option 254
X-XSS-Protection 254

Django Template Language (DTL) 140
Docker 22, 23
Docker-compose 27-29
dockerfile, instructions 340
dockerhub 351
Duck typing 5

E
EmailListField 190
EmailsListField 188
error handling 281

with custom error views 136

errors attribute 196, 198

F
ForeignKey 90
FormView 184
function-based views

about 121-124
pessimistic and optimistic, locking 130-135
service layer, using 126-129

G
Generic framework view, types

function-based views 121-124
Gherkin 321
Git

about 29
uses 29-33

Git advanced usage
about 38
worktree, using 39, 40

Git Flow 34-36
Git Flow branches, types

develop 35
feature 35
hotfix 35
main 35
release 35

GitHub
about 33
reference link 33
repository, creating 33, 34

GitHub Flow 36, 37
Gunicorn

about 334
Django deployment, configuring 335-339
dockerfiles, creating 338-344
image registry 345, 346

H
has_permission 244, 245
hello_world function 10
HttpRequest object 121
HttpResponse object 308
Hypertext Transfer Protocol (HTTP) 102

I

include tag 148, 149

J
JavaScript 159
JavaScript Object Notation (JSON) 5, 123

K
Kubernetes

about 346
architecture 349
cluster 346
configmaps, secrets 348
deployment 347
ingress 348
node 346, 347
pods 347
Replicasets 347
services 348
statefulSets 348

kubernetes applications
reference link 372

kubernetes cluster
database optimization 379-381
Django application, configuring 349-365
Django instrumentation, adding 369, 370
Jaeger, configuring 376-378
Prometheus, configuring 370-374
readiness probes and liveness, adding 365-369

L
liveness probes 365
login page

reference link 223
login_required 238-240

M
MEDIA_ROOT 192
MEDIA_URL 192
metrics 369
mixin

about 108-112
framework 113, 114

ModelSchema 267
Model-View-Controller (MVC) 49
Model-View-Template (MVT)

about 49

service layer, extending 50, 51

N
NinjaAPI 293

O
object-relational mapping (ORM) 67
on_delete 69, 70
opentelemetry-exporter-otlp

reference link 375
opentelemetry-instrumentation

reference link 375
Open telemetry protocol (OTLP)

about 375
libraries 375

opentelemetry-sdk
reference link 375

optimistic offline locking
advantages 135
disadvantages 135

P
password reset flow

password reset link 231
email sent 231
reset complete 232
resets password 231
user requests for password reset 231

path parameters 274-277
permission_required 241-243
pessimistic offline locking

advantages 132
disadvantages 132

Poetry
about 25
Django dependency 25-27

Pyenv
about 23
installing 23, 24

pytest
about 298, 300-302
conftest.py file 303
django fixtures 305, 306
Django test database, learning 305
first test, writing 303
installing 302-305
setting up 302-305

pytest advanced features
about 325
configuration 329
marks, using 328
parametrization 325-327
plugin coverage 327
plugin xdist 327

Python
about 2, 3
coding style 11, 12
comprehensions list 8, 9
error, handling 7, 8
f-strings 9
interfaces 4, 5
parameters, passing 3, 4
standard modules 5, 7
Type hinting 10, 11
variables 3

Python with Django 19, 66

Q
query parameters 277-280
QuerySet 73, 74

R
readiness probes 366
reddit community

reference link 387
Redis 207
Redis caching

reference link 17
registration form

reference link 220
regular expression, components

alternation 115
anchors 114
character classes 114
escape sequences 114
flags 115
groups and capturing 115
literal characters 114
quantifiers 114
special characters 114

request model
with Pydantic 265-267

response model
with Pydantic 265-267

runserver 55

S
Secrets operations

reference link 358
secure API

about 291
permissions 291, 292
throttling 293

security, in cloud. See cloud security
Sprint 92
Squashing 77
static files

using, in Django templates 156-159
StaticFilesStorage 156

T
task admin

reference link 80
task-create 176
TaskCreateView 176
task factory 313
TaskForm 174, 203
task management app

additional Django tools, libraries 385, 386
building 384, 385
potential enhancements 386, 387
resources and communities 387

task manager
about 44, 45
reference link 374

task-update 176
template language, types

filters 142-144
tags 144
variables 141, 142

template render, optimizing
about 164, 165
cache, using 165
database queries, minimizing 164, 165
simple keep templates 165
static content, optimizing 165

templatetags 153
test-driven development

about 299
test coverage 299, 300

testing
about 298, 299
API test 313-315
mocking, patching 306-311

test factories 311-321
testing, types 298
test verification

condition 319
Trunk-based 37, 38
two-factor authentication (2FA) 386

U
Universally Unique Identifier (UUID) 206
URL patterns

creating 116, 117
Django namespace 119-121
naming patterns 119-121
path converters, handling 117, 118

user authorization, groups
admin 241
creator 241
editor 241

UserCreationForm 218

V
validators 194
validators, framework

EmailValidator 194
FileExtensionValidator 194
MaxLengthValidator 194
MinLengthValidator 194
MinValueValidatorr 194
RegexValidator 194
URLValidator 194

virtual environment (virtualenv) 25

W
web_applications_django 34
Web Server Gateway Interface (WSGI) 334

	Cover Page
	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Django and Python
	Introduction
	Structure
	Introduction to Python
	Understanding variables as references
	Parameter passing
	Interfaces or protocols
	Standard modules
	Error handling
	List comprehensions
	F-Strings
	Type hinting
	Coding style

	Introduction to Django
	The Django Philosophy
	Don’t repeat yourself
	Loose coupling and High cohesion
	Less code and quick development
	Explicit is better than implicit
	Models: Include all relevant domain logic
	Separate logic from the presentation on templates
	Views
	Caching

	Django 4.2 highlights
	Support for psycopg3
	Comments on columns and tables
	In-memory file storage
	Custom file storages
	Updates in password validation
	Minor updates and additions

	Python for Django
	Conclusion
	Questions

	2. Setting Up Your Development Environment
	Introduction
	Structure
	Introduction to Development Environments
	Managing Python Versions with Pyenv
	Understanding Virtual Environments
	Introduction to Poetry for Dependency Management
	Setting up a Django Project with Poetry
	Basic Configuration for a Django Project
	Introduction to Git for Version Control
	Creating a GitHub repository
	Branching models
	Git Flow
	GitHub Flow
	Trunk-based
	Advanced Git Usage: Using Worktree

	Conclusion
	Questions

	3. Getting Started with Django Projects and Apps
	Introduction
	Structure
	Introduction to the task manager
	Django project versus Django application
	Creating a new Django project
	Understanding the Django project structure
	Starting your first Django app
	Understanding the Django app structure
	MVT design patterns in Django
	Extending the MVT pattern with a service layer
	Configuring your Django app
	Brief introduction to Django’s development server

	Running your first Django app
	Conclusion
	Questions
	Exercises

	4. Django Models and PostgreSQL
	Introduction
	Structure
	Understanding Django models
	Creating your first model
	Django’s database API: Create, retrieve, update, and delete operations
	Understanding Django migrations
	Django’s admin interface: Registering models and manipulating data
	Introduction to Django’s ORM: Queries and aggregations
	Extending the models
	Ensuring data integrity with model constraints
	Conclusion
	Questions
	Exercises

	5. Django Views and URL Handling
	Introduction
	Structure
	Understanding Django Views
	Introducing Django’s Generic Views
	Writing Your First Django View
	Class-based Views Mixins
	URL Configuration in Django
	Creating URL Patterns for your Views
	Handling Dynamic URLs with Path Converters
	Understanding Django’s URL Namespace and Naming URL Patterns
	Using Django’s HttpRequest And HttpResponse Objects
	Introducing to Function-based Views
	Using Function-based Views with a Service Layer
	Pessimistic and Optimistic Offline Locking using Views and a Service Layer
	Error Handling with Custom Error Views
	Conclusion
	Questions
	Exercises

	6. Using the Django Template Engine
	Introduction
	Structure
	Introduction to Django Template Engine
	Django Template Language: Variables, Tags, and Filters
	Inheritance in Django Templates
	The Home Page View: Showing Tasks by Status
	Custom Template Tags and Filters
	Using Static Files in Django Templates: CSS, JavaScript, Images
	Django Template Context Processors
	Debugging Django Templates
	Optimizing Template Rendering
	Securing Django Templates
	Conclusion
	Questions
	Exercises

	7. Forms in Django
	Introduction
	Structure
	Understanding Django Forms
	Creating Your First Django Form
	Rendering Forms in Templates
	Handling Form Submission in Views
	Working with Form Fields
	Custom form fields

	File and Image Upload Field
	Data Validation with Django Forms
	Validators
	Clean methods
	ModelForm Validation

	Displaying Form Errors
	Advanced Form Handling: ModelFormsSets and Formsets
	Preventing Double Submission in Forms
	Conclusion
	Questions
	Exercises

	8. User Authentication and Authorization in Django
	Introduction
	Structure
	Understanding Django’s Authentication System
	Introduction to Django’s Middleware
	Understanding Django Middleware
	User Registration with Django’s User Model

	Authenticating Users: Login and Logout
	Managing User Sessions
	Session customization
	Session usage
	Session good practices

	Password Management in Django: Change and Password Reset
	Protecting Views with Login Required Decorators

	User Authorization: Permissions and Groups
	Multi-tenant authentication with Custom Django’s User Model
	Security Best Practices in Django
	Update all your libraries and frameworks
	Project Settings Hardening
	Turn off Debug in production
	Use Secure Cookies
	HTTP Strict Transport Security (HSTS)
	Content Security Policy (CSP)
	X-Content-Type-Options
	X-XSS-Protection
	Secure Referrer Policy
	Use Secure Password Hashing Algorithms
	Limit Access to Admin
	Keep SECRET_KEY Secret
	Set ALLOWED_HOSTS

	Conclusion
	Questions
	Exercises

	9. Django Ninja and APIs
	Introduction
	Structure
	Introduction to API design
	API Design-first approach
	HTTP Response status codes
	Introduction to Django Ninja
	Setting Up Django Ninja in Your Project
	Building Your first API with Django Ninja
	Request and Response Models with Pydantic
	API Documentation
	Understanding HTTP Methods in Django Ninja
	API Pagination
	Working with Path Parameters and Query Parameters
	Validation and Error Handling in Django Ninja
	Authenticating API Users
	Securing APIs: Permissions and Throttling
	Permissions
	Throttling

	Versioning Your API
	Conclusion
	Questions
	Exercises

	10. Testing with pytest
	Introduction
	Structure
	Introduction to testing and pytest
	Understanding test
	Test-driven development
	Introduction to pytest
	Installing and setting up pytest for Django

	Understanding Django test database and pytest
	Pytest-django fixtures
	Mocking and patching in tests
	Behavior-driven development

	Advanced pytest features: Parametrization, plugins, and configuration
	Parametrization
	Plugin coverage
	Plugin xdist
	Using marks
	Configuration tips

	Conclusion
	Questions
	Exercises

	11. Deploying Django Applications with Gunicorn and Docker
	Introduction
	Structure
	Introduction to Gunicorn
	Configuring Gunicorn for Django Deployment
	Understanding and Creating Dockerfiles for Django
	Using the image registry
	Introduction to Kubernetes
	Cluster
	Node
	Scheduler
	Pods
	Deployments
	ReplicaSets
	Services
	Configmaps and Secrets
	Ingress
	StatefulSets

	Configuring a Kubernetes cluster for a Django application
	Adding liveness and readiness probes
	Adding Instrumentation for Django
	Prometheus configuration
	Jaeger configuration
	Database Optimization: Queries and Indexing
	Conclusion
	Questions

	12. Final Thoughts and Future Directions
	Introduction
	Structure
	Summary of learnings: Building a task management app
	Evaluating the Django ecosystem: Strengths and weaknesses
	Exploring additional Django tools and libraries
	Potential enhancements for the task management app
	Staying updated with Django: Resources and communities
	Career opportunities with Django skills
	Thoughts on Django’s future: Upcoming features and trends
	Tips for continued learning and improvement
	Conclusion

	Index

