

Ultimate
Microservices

with Go

Combine the Power of Microservices with
Go to

Build Highly Scalable, Maintainable, and
Efficient Systems

Nir Shtein

www.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capital. However, Orange
Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

First published: April 2024
Published by: Orange Education Pvt Ltd, AVA™
Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,
N1 7AA, United Kingdom

ISBN: 978-81-97223-98-3

www.orangeava.com

http://www.orangeava.com/

Dedicated To
My Beloved Mom:

Anat Shtein
All the People Who Supported Me Along the Way

To You, Dear Reader, for Making This
Journey Worthwhile

About the Author

Nir Shtein is a multifaceted engineer, lecturer, public speaker, and author
with a deep focus on open-source software (OSS), Kubernetes, Golang,
DevOps, and backend engineering. He has imparted his knowledge through
lectures, articles, and podcasts and has held various leadership positions,
including Academy Lecturer, Tech Lead, Team Lead, and Software
Engineer.
Throughout his career, Nir has transitioned from working in large
corporations to dynamic early-stage startups, embraced academic roles, and
developed distinctive open-source projects. He has been an active
participant in Accelerate programs, further enriching his professional
experience.
Over the years, Nir has delivered lectures on an international scale and
authored several articles that have reached a global audience. He has
contributed to numerous OSS projects, with his most successful project
amassing over 100,000 users.
In addition to his professional achievements, Nir has mentored many
individuals, guiding them into the high-tech industry and helping them to
kickstart their careers. Beyond work, he enjoys reading, listening to
podcasts, engaging in sports, cooking, and exploring new places, constantly
seeking new experiences and knowledge.

About the Technical Reviewers

Noopur Tanwar is a professional in Software Development, specializing in
backend development and mobile app development, with a focus on
Microservices. She has worked in various industries such as automobiles,
telecommunications, retail, and transport. With expertise in languages such
as Java, Kotlin, and Golang, Noopur possesses a strong understanding of
their technical concepts and idiomatic coding practices. Her experience in
software development could provide insights into how technology is
portrayed in literature.
Currently, Noopur works as a Senior Backend Developer in Golang at
Quest Global, where she is working on developing APIs for the Jio App.
Her work contributes towards making code more readable, maintainable,
scalable, and reliable across the organization. Noopur’s passion lies in
writing code that is not only functional but also solve problems efficiently
and elegantly. This passion drives her to constantly strive for improvement,
to meticulously refine every piece of code she works on, and to explore new
technologies and methodologies.

Gaurav Arora is a Microsoft MVP award recipient. He serves as a Mentor
of Change with AIM NITI Aayog, Government of India, and as a Business
Coach with Business Blaster, Government of NCT of Delhi. Additionally,
he is a lifetime member of the Computer Society of India (CSI) and serves
as an advisory member and senior mentor at IndiaMentor. Gaurav is
certified as a Scrum trainer and coach, ITIL-F certified, and PRINCE-F and
PRINCE-P certified. He is also an open-source developer and contributes to
the Microsoft TechNet community. Gaurav has authored books across
various technologies and has recently been recognized as a world record
holder for writing books on exceptional technologies.

Acknowledgements

Writing Ultimate Microservices with Go has been an incredible journey, and
I owe immense gratitude to the individuals who have been instrumental in
making this book a reality. This project could not have been achieved
without the steadfast support, wisdom, and expertise graciously provided by
so many.
Firstly, I would like to thank everyone involved in writing this book in one
way or another. I discussed the content of this book with colleagues,
employees, friends, and managers—people who mainly supported me in
sharing my knowledge and leveraging it into this book. Special thanks to
the technical reviewers, whose thorough assessments and valuable feedback
significantly improved the book. Their commitment and knowledge were
crucial in polishing the content and guaranteeing its precision.
I am grateful for the constant support from my family. A special
acknowledgment goes to my mother, Anat Shtein, whose encouragement
and understanding have strengthened me during this writing journey. I also
extend heartfelt thanks to my father, Ron Shtein, for his unwavering support
throughout this project.
Lastly, thank you, the readers, for selecting this book as your guide on this
learning journey.

Preface

Welcome to a fantastic journey through the world of microservices
architecture with the Go programming language. This book is intended for
developers looking to broaden their understanding and grasp the bigger
picture of microservices. It emphasizes the importance of holistic
comprehension over specific technical details, especially in an era when AI
can automate many simple tasks.
The objective is to provide a panoramic view of microservices architecture
and its practical applications rather than diving into every detail. The aim of
the book is to equip you with the foundational knowledge and skills to
develop robust services in Go, architect scalable systems, and ensure their
successful deployment to production.
Throughout this book, we will explore the essentials of Go programming,
delve into advanced topics, and navigate the complexities of building and
deploying microservices. We will emphasize the strong connection between
microservices, Go, RESTful APIs, and Kubernetes, covering key areas such
as service communication, API design, container orchestration, security,
and observability.
By the end of this journey, you will have a solid grasp of architecting and
implementing microservices using Go, preparing you to tackle the
challenges of efficiently bringing your services to production. This book is
not just a guide but a stepping stone to continue developing your skillset
and exploring new horizons in the ever-evolving world of software
development.
Chapter 1. Introduction to Microservices: The chapter explores the
evolution of microservices from alternative architectures, highlighting their
benefits and drawbacks. We also examine the rising popularity of
microservices and the synergy between Go and microservices, showcasing
how Go's simplicity and efficiency complement microservice-based
applications.
Chapter 2. Usability of Go: The chapter delves into the reasons behind
Go's creation, its core principles, and the typical experience of a Go

developer. We explore Go's simplicity, minimalist design, suitability for
cloud environments, maintainability, and ease of transitioning from
onboarding to production. Additionally, we'll examine Go's vibrant
ecosystem, including its communities and extensive support network.
Chapter 3. Go Essentials: The chapter equips you with the essential
knowledge and tools necessary to become proficient in the Go
programming language.
Chapter 4. Embarking on the Go Journey: The chapter delves deeper
into Go's advanced topics and principles, building upon the essentials
previously covered. We will explore a few Go best practices, techniques,
generics, and contexts.
Chapter 5. Unlocking Go's Concurrency Power: The chapter continues
our exploration of advanced Go topics by unlocking the language's
powerful concurrency features. We'll delve into the world of Goroutines and
Channels. Additionally, we'll cover the Pub/Sub pattern, Channel Closing
Principle, strategies for avoiding Goroutine leaks, and more.
Chapter 6. Core Elements of Microservices: The chapter dives into the
core components of microservices architecture, shedding light on the
elements that transform a standard architecture into a microservices-
oriented one.
Chapter 7. Building RESTful API: The chapter delves deeper into the
development of RESTful APIs, building on the foundations laid in the
previous chapter. We'll start with an overview of the RESTful approach and
its constraints. We'll discuss essential API capabilities using Go, including
documentation, versioning, caching, and so on.
Chapter 8. Introduction to Kubernetes: The chapter introduces
Kubernetes, providing developers with the basic tools and knowledge to
work effectively with this powerful container orchestration platform.
Chapter 9. Deploying to Production: This chapter focuses on safely
delivering production services from a developer's perspective rather than
the operational side. We'll explore the challenges and obstacles developers
face during the deployment process.
Chapter 10. Next Steps in Production: This chapter addresses the crucial
phase after deploying your application to production: maintaining the
service and managing potential failures. We'll explore strategies for

monitoring and ensuring observability, utilizing logs, metrics, and tracing to
gain insights into the system's behavior.
It is advised not to stop here and strive to learn and gain more knowledge.
Today, it is essential to keep learning and discovering new topics and tools
because the software industry is moving at breakneck speed.
Happy reading and continuous learning!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/OrangeAVA/Ultimate-
Microservices-with-Go

The code bundles and images of the book are also hosted on
https://rebrand.ly/bprpy51

https://github.com/OrangeAVA/Ultimate-Microservices-with-Go
https://rebrand.ly/bprpy51

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and
follow best practices to ensure the accuracy of our content to provide an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To
let us maintain the quality and help us reach out to any readers who might
be having difficulties due to any unforeseen errors, please write to us at :
errata@orangeava.com
Your support, suggestions, and feedback are highly appreciated.

mailto:errata@orangeava.com

DID YOU KNOW
Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.orangeava.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: info@orangeava.com for more details.
At www.orangeava.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on AVA™ Books and eBooks.

PIRACY
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com
with a link to the material.

ARE YOU INTERESTED IN AUTHORING
WITH US?

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please write to us at
business@orangeava.com. We are on a journey to help developers and
tech professionals to gain insights on the present technological
advancements and innovations happening across the globe and build a
community that believes Knowledge is best acquired by sharing and
learning with others. Please reach out to us to learn what our audience
demands and how you can be part of this educational reform. We also
welcome ideas from tech experts and help them build learning and
development content for their domains.

REVIEWS
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!
For more information about Orange Education, please visit
www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Microservices
Introduction
Structure
Brief History of Microservices
Monolithic, SOA, and Serverless

Monolithic
SOA
Serverless

Benefits of Microservices
Independent Workloads
Easy to Scale
Plug and Play
Fault Tolerance
Increase Agility

Drawbacks of Microservices
Operations Overheads
Complexity
Hard to Troubleshoot

Popularity of Microservices
Popularity of Golang
Conclusion
References

2. Usability of Go
Introduction
Structure
Invention of Go
Core Principles and Paradigms

Go Paradigms
Go Properties

Simplicity and Minimalist Design Approach
A Fast Language Suitable for the Cloud

Fast Compiling

Bearing a Resemblance to C
Concurrency Approach

Maintainability of Go
Compatibility
Go Simplicity
Error Handling

From Onboarding to Production
Go’s Ecosystem — The Communities and Beyond
Conclusion
References

3. Go Essentials
Introduction
Structure
Basic Overview of Golang

Hello World
Variables
Primitive Data Types
Comments
Operators
If statement
Loops
Arrays
Slices
Functions
Maps
Switch
Consts
Other Language Specifications

Packages
Project Structure
Structs
Composition
Interfaces
Conclusion
References

4. Embarking on the Go Journey
Introduction
Structure
Functional Options Pattern
Generics
Understanding Context in Go
Errors — Talking About Error Propagation

Error Handling: Difference between Go and Other Languages
Errors are Here to Tell a Story
Conventions

Testing - Best Practices, Mocking, and Fuzzy Tests
Mocking
Fuzzy Testing

Microservices Testing
Performing Benchmark
Race Detector

Conclusion
References

5. Unlocking Go’s Concurrency Power
Introduction
Structure
Goroutines
Channels - Buffered vs. Unbuffered

Closing a Channel
Range Over a Channel
Selecting a Channel
Channels Directions
Synchronization Between Goroutines
Leveraging Channel Strength

Sync Package
WaitGroups
Locks
Singleton in Golang - Once.Do
Low-Level Routines

Pub/Sub
Channel Closing Principle

Avoiding Goroutine Leak
Forgotten Sender
Abandoned Receiver
Detecting Goroutine Leak

Fan In Fan Out Pattern
Fan Out
Fan In

Conclusion
References

6. Core Elements of Microservices
Introduction
Structure
Communication Between Services

API Calls
Message Brokers
gRPC

API Gateway
Service Discovery

Client-Side Discovery
Server-Side Discovery
Service Registry

Load Balancer
Database per Service
Backends for Frontends
External Configuration
Service Mesh
Event-Driven Architecture

Event Versus Message
Event Sourcing
CQRS

Conclusion
References

7. Building RESTful API
Introduction
Structure

A Brief About the RESTful Approach
Resource and Representation
Constraints
Client–Server
Uniform Interface
Stateless
Layered System
Cacheable
Code on Demand

Designing an API
Capabilities
Documentation: Swagger and OpenAPI
API Folder Structure
Resources Methods

Crafting a Server
Gin Gonic Setup
Chains of Responsibilities
CORS

API Capabilities
Pagination
Rate Limit
Panic Recovery
Graceful Shutdown
Filter and Sort
Filter
Sort

Caching
Conventions
Versioning and Deprecation

Versioning Strategies
Versioning Best Practices
Deprecation

Common Pitfalls
Conclusion
References

8. Introduction to Kubernetes

Introduction
Structure
Kubernetes Adoption
Kubernetes Essential Tools

Kind
Kubectl
Kubectx

Basic Resources
Node
Namespace
Pod

Workload Management
Deployment
DaemonSet
StatefulSet
Job
CronJob

Important Resources
ConfigMap
Secret
HPA
Ingress

Readiness and Liveness Probes
Resources Allocations
Kubernetes Best Practices

Maintaining Good YAML Hygiene
Logging — Specifically for Kubernetes
Environments Management
Proper Monitoring

Conclusion
References

9. Deploying to Production
Introduction
Structure
CI/CD
Design of Failures

Timeouts
Retries
Fallback
Circuit Breaker
Closed
Open
Half-Open
Bulkhead

Security
Authentication
Authorization

Feature Toggling
Rollouts

Basic Deployment
Rolling Update
Blue-Green Deployment
Multi-Service Rollout
Canary Deployment

Rollbacks
Conclusion
References

10. Next Steps in Production
Introduction
Structure
Monitoring
Observability

Logs
Metrics
Tracing

Production Troubleshooting
The Power of Theory

Profiling
PGO
Performance Issues

Alerting
Performance Metrics

Conclusion
References

Index

CHAPTER 1
Introduction to Microservices

Introduction
In this chapter, we will explore the world of microservices, a revolutionary
architectural style that has transformed how we build and deploy software in
the modern era. Microservices offer a granular approach to software
development, where applications are broken down into smaller, independent
services, each responsible for a specific function. This modular structure
promotes agility, scalability, and resilience, enabling organizations to adapt
to changing market demands and technological advancements rapidly.
During this chapter and throughout the book, we will overview the trends
and coupled relations of the two major topics of this book: Microservices
architecture and the Golang programming language. We will see their strong
correlation, why it happens, and how.
This chapter will provide a concise overview of the contemporary method
used in constructing architectures—the microservices architect. We will
compare it to other architectures, and we will see when it is beneficial to use
this architecture and when Microservices create adverse effects.

Structure
In this chapter, we will discuss the following topics:

Brief History of Microservices
Monolithic, SOA, and Serverless
Benefits of Microservices
Drawbacks of Microservices
Popularity of Microservices
Popularity of Golang
Combination of Go and Microservices

Brief History of Microservices
Let’s start by saying that many people claim they have the right to invent the
microservices architecture. According to Wikipedia, the first person who
mentioned something similar to microservices was Fred George in 2004. He
worked on architecture that he called “Bayesian Principles”. In 2005, Peter
Rodgers introduced the term “Micro-Web services” at the Web Services
Edge conference. Many individuals can claim that they invented it because
there isn’t a clear definition of a microservices architecture. Since then,
many people have presented things that look like or feel like microservices.
It is important not to confuse between microservices and SOA, which we
will later detail the difference between them. Since then, its popularity
increased over the years and accelerated between 2014 and 2015 (Figure
1.1).

Figure 1.1: Microservices searches over the web by Google Trends

A note on Google Analytics: This is a great free online tool. It can primarily
be utilized for entertainment, as observing trends is fascinating. It is highly
valued for exploring subjects and aggregating information.

Monolithic, SOA, and Serverless
It is helpful to know the other alternatives to some terms or technologies to
have a clear understanding of them. The common architecture styles used for
a while from the early days of the software industry are Monolithic,
“Service-Oriented Architects,” aka SOA, and some other architecture we
won’t elaborate on in this book.

Monolithic
“Mono” from ancient Greek means solo, single. As the name suggests, this
architecture is structured as a single block of code deployed on a single
platform. Usually, in a monolith architecture, there are three main parts -
storage (DB), web app with client-side, and backend that acts as server-side,
which contains all the business logic, data layer, and everything (Figure 1.2).

Figure 1.2: Simple Monolith Structure

DAL is an acronym for Data Access Layer. This software middleware is
responsible for giving software layers that have direct access to the DB and
provide tools like retries, error handling, cache, and so on.
As we can see from the simple diagram, this architecture is straightforward.
However, all the components are strongly interdependent.
In a nutshell, these are the pros and cons of a monolith:
Pros

Simple to develop and simple to deliver to production.
Minimum amount of hops: No need to communicate between one
service to another, and we can save a lot of time by decreasing the
latency, which leads to better performance.
Very easy to implement the DRY principle (don’t repeat yourself) —
due to the single codebase.

Cons

Spaghetti code: As the codebase is extending, the code has more
potential to be cumbersome.
Harder to troubleshoot and debug: Navigating a large codebase can
be challenging. Even harder to find a malicious bug that caused a side
effect in a hidden function somewhere.
IDE: The integrated development environment (IDE) is overwhelmed.
Note that there is an approach for writing microservices in a Monorepo,
a single repository for all the services.
Easy to gain legacy code and technologies: We are afraid to change
core functionalities, infrastructure, and technologies in a large
codebase. These changes can dramatically affect the application
because keeping old code and old technologies is convenient.

Nowadays, microservices architecture is the most famous in the market, and
people tend to reject monolith architecture because they think it is outdated.
However, Monolith architecture can benefit in various use cases.

SOA

SOA stands for Service-Oriented Architecture. While the name might be
misleading compared to microservices, they do have commonalities.
However, there are a lot of differences between them. SOA is an
architectural style that organizes software systems as a collection of loosely
coupled and reusable services. In SOA architecture, there are two main parts
- providers and consumers. The provider and consumer can be on the same
deployable component/application/server. This is the significant difference
between SOA and microservices. This approach was developed in the early
90s. In those times, the operation part of software engineering was more
intricate. We had specialized teams focused on infrastructure, security,
databases, and so on.
We would place the SOA architecture between the monolith architecture and
the microservices architecture at the decomposition level. Monolithic
architecture behaves as a single unit, while microservices architecture
behaves as a fine-grained division.

Figure 1.3: Simple SOA Structure

In a nutshell, these are the pros and cons of SOA:
Pros

Reusability: Reusability is the core of this approach. It allows us to
separate concerns at the service/API level and reuse infrastructure, such
as hardware, network, OS, and more.
Separation of concerns: It isn’t fine-grained as microservices. Still, it
allows us to parallel and deliver our service/API without depending on
other teams.

Cons

Side effects: Issues in shared components can affect other components.
For example, if the consumer or provider consumes too many
resources, if some environment variables change, or any other side
effects, all of these can easily affect all existing services.
Performance Overhead: The additional layers of abstraction and
communication protocols in SOA can introduce performance overhead.
Service invocations across different components and networks may
cause latency, potentially impacting response times, and overall system
performance. The concerns of network issues are also the same
concerns for DBs.
Complexity : Implementing SOA can introduce complexity to our
services.

Serverless
This architectural approach is the most modern architecture from the ones
we presented here.
Naturally, the cloud’s creation led to a serverless architect’s creation. The
core of this approach is to extract infrastructure concerns and leave us with
doing the things that matter - business logic. As the name implies, this is
“server” + “less” - meaning no server exists. Of course, there is
infrastructure and a server somewhere that runs the code. But we are not
responsible for managing this server. The cloud vendor is responsible for all
that work. Examples of such technologies are the Functions service of GCP
or Lambda of AWS. And many more services/products aim to support the
serverless architecture.
Before examining the pros and cons of serverless architecture, we want to
discuss two core concepts: FaaS and Bass.

FaaS: Stands for functions as a service. We write our function/API
endpoint and let the cloud do all the other work.
BaaS : Stands for backend as a service. We can concentrate solely on
developing and maintaining the clients and not on storage, database
management, networking, and other infrastructure aspects.

Figure 1.4: Simple Serverless Structure

As we can see from the diagram, we, as developers, only wrote the green
blocks (Function), and the cloud vendor provided all the yellow blocks
(third-party service/DB).
Pros

Highly efficient development process: The development process is
highly efficient, with rapid initial development. Infrastructure concerns
are no longer a burden, as the serverless architecture seamlessly
manages them.

Easy to scale: The scaling process is very straightforward - the only
things we should worry about are the resources a function uses.

Cons

Vendor lock: Once we use a specific vendor, all the configurations and
settings are specifically for our services. Transferring to another vendor
can be very painful.
Edge cases: There are some scenarios when we want to do something
but can’t due to the limitations of the vendor services that we use.
Monitoring: Since we rely on the vendor to take care of the
infrastructure, we also need to rely upon him to provide monitoring
tools or integrate other SaaS/OSS monitoring tools.

The cost of serverless architecture is controversial. In serverless architecture,
we pay per usage, usually for CPU and memory. We have a lean billing
model, and the method of using it is simple. More than that, it goes without
saying that we save money on fewer DevOps, operations, and infrastructure
engineers. However, other opinions say doing these things ourselves will
save money, arguing that we don’t have the flexibility to utilize our specific
architecture and operation.

Benefits of Microservices
The following figure generally describes how microservices look, and we
already can see the difference between this architecture and the other
architectures.

Figure 1.5: Simple Microservices Structure

Independent Workloads
By design, microservices architecture splits the architecture into separated
services/ APIs/ components. These services are delivered and packaged
individually within self-contained deployable units. The self-contained units
principle is one of the significant differences between SOA and
microservices. The separation of many workloads decreases the size of the
codebase, which leads to more minor services.
Minor services mean lean binary, fast build, and so on. Another significant
effect is that each workload doesn’t affect other workloads. We know the
dependencies in advance, and this makes it effortless to deliver services as
containers. Containerization is the best practice when it comes to

microservices. Both of These concepts deliver the same goal—separation of
concerns.
Since the codebase is divided per service, there is no shared code (usually).
Each team can work independently on its code without disrupting other
teams. A separated codebase leads to breakneck initial development speed.
Another effect is that each team can test its services without considering
other teams’ services.

Easy to Scale
Let’s start by talking about vertical scale (scale up). Vertical scale means
adding more resources (bigger machines). However, there isn’t always a
direct correlation between resource consumption and the ability of the
service to handle more load. Microservices architecture has become much
more helpful when we want to perform horizontal scale (scale out). It is
seamless to perform scale-out, just increasing the number of replicated
machines/containers for the wanted machine.

Plug and Play
An exciting way to look at microservices is as a honeycomb structure. Each
bee builds its cell. It is also elementary to replace one cell with another. The
ability to replace a service with another service can become handy when we
want to remodel our architecture, experiment with new technologies, or
perform some tests in the current architecture. Also, the rollback/rollout
processes become simple and easy.

Fault Tolerance
Failure is a typical scenario that always happens, and we should be prepared
for this. We aren’t living in a perfect world where the code is perfect and the
server has a 100% success rate. The microservices architecture made this
preparation easier because of the loose coupling between the services. Each
service can fail without affecting the other services. Also note that there are
many other things to consider when talking about failure (retries, graceful
shutdown, and more), and we will talk about that. But at least microservices
set a ground base to handle failure properly without considering other
services, making the work easier.

Increase Agility
In a nutshell, Agile - is the ability to work fast and to be flexible. There is a
vast theory and techniques regarding how to be Agile, and we’ll discuss it
further in this book.
Each service has its codebase. A team can be responsible for one or more
services without relying on or depending on other teams, which is a crucial
capability for working with the Agile methodology. Also, when a new
member joins the team, onboarding becomes effortless. They don’t need to
learn all the service codes, only the services their team is responsible for.

Drawbacks of Microservices
Here are the drawbacks of microservices:

Operations Overheads
As we discussed before, the primary benefit of microservices is that each
workload/deployment is independent and delivered separately from other
services. We saw all the enormous advantages of this. But there is another
side to the coin. To allow each service to deliver as a separate deployment,
we need to support it from the operation side.
There are many things to consider for each service — service configuration,
packaging, separate tests, separate deliverable units, and so on. These
examples emphasize that working with microservices requires much
operation work compared to monolith or SOA.

Complexity
Naturally, with the increase in services and workloads comes the complexity
of managing them all. The previous drawback of operation overhead is that
it is just a specific use case of the complexity of microservices. Also,
managing data and consistency becomes harder — the data is distributed
among each service because each service has its database.
Each team can write its services using its favorite or most relevant
programming language. This ability has benefits and disadvantages. The
operation must create, maintain, and tackle operations issues for all these
programming languages.

Moreover, switching developers between teams will be harder when each
service is written in other programming languages.
It isn’t a coincidence that we chose to write in this book about Kubernetes
and how we will deploy the microservices architect on Kubernetes and not
on other platform/s. The primary reason is that Kubernetes is coming to
solve this complexity problem.

Hard to Troubleshoot
It is a continuation of the previous point. Due to the complexity of
microservices, it is harder to gain visibility above it and create full
observability. Many obstacles prevent us from reaching good visibility.

Popularity of Microservices
Various trends happened that led microservices to be so popular.
The first and oldest of them is the Agile methodology. Although it is a pretty
old methodology, Agile gained popularity merely when the Agile Manifesto
was published (there is a link to it in the references). We highly recommend
reading it; it exists in many languages and is very simple to read. Note that it
doesn’t contain actual practices such as Scrum and Kanban. The Agile
Manifesto is considered the doctrine of the Agile methodology.
The Agile Manifesto makes us fast and flexible, so the microservices
approach suits those reasons. It is easier and faster to deliver small software
than one big piece, which the microservices architect allows us to do.
The cloud computing industry is the second trend after the Agile Manifesto.
The leading cloud vendor, AWS, launched in 2002. And from there, this is
history; nowadays, using cloud computing is the go-to for many companies
and projects.
As we mentioned before, one of the significant disadvantages of using
microservices architecture is the operations overhead that comes with it. In
my opinion, this is the main reason why microservices weren’t prevalent
before. The ROI (aka for range of investment) was not worth it! Cloud
computing technologies have made our lives much more straightforward in
many ways, but the major one is the operations area. So suddenly, building
microservices architecture using cloud computing resources sounds like a
good ROI.

The next trend we want to look at is the Docker Engine.
Generally, containerization was invented long before docker. Docker was a
critical player that led us to use containerization; nowadays, it is so easy and
accessible. Docker was launched in 2013 and was very popular right away.
Figure 1.6 shows Docker searches trend by Google Trends:

Figure 1.6: Docker searches over the web by Google Trends

One of the core benefits of microservices is that they can deliver
independent workloads/deployment. Docker aims to deliver software as
isolated containers. Microservices aim to deliver isolated software, and no
matter how, running containers using the docker engine is perfect.
The last trend we want to talk about is DevOps methodology. It is weird to
call it methodology, but this is what it is. Nowadays, it has become a job
title. There are also very similar jobs that do similar things, such as SRE,
Production Engineer, and more. Again, as we mentioned before, the major
drawback of microservices is the operations overhead. The DevOps
methodology comes to solve it, or at least to decrease it.

Popularity of Golang
A metric we can follow to see the popularity of Go is the increase in Golang
users—developers, or we should call them Gophers. The nickname for
Golang developers is Gophers. The gopher is an animal that counts as the
official mascot of the Golang programming language. Here is a friendly
dashboard from StackOverflow insights where we can see the percentage of
developers who want to learn Golang and become professional developers in
Go.

Figure 1.7: Most wanted languages by StackOverflow insights

Moreover, another metric we would love to follow is the number of
packages written in Go. This number of packages written in Go has already
passed 1 Million packages (the data from July 2023). We link to an excellent
website that collects data regarding open-source insights in the references at
the end of the chapter. We highly recommend taking a look at it. If we
compare the age and amount of packages written in Go versus other
languages like Java, Python, or C#, Go leads right after JavaScript. That is
unbelievable. The crazy amount of packages writing in Go came from the
strong Golang community.

Conclusion
In this chapter, we took a short trip around microservices. We observed its
history and what were the trends (Agile, cloud computing, Docker, DevOps)
that led microservices to be so popular nowadays. We learned about the
alternatives for microservices such as SOA, Monolith, and serverless. There
are other alternatives in the market, but these are the most popular ones. We
compared microservices’ pros and cons and other architectures’ pros and
cons.
In the next chapter, we will talk about the usability of Golang. We will
discuss the community and detail why we think and why the community
thinks Go has become so popular in recent years. We will cover the
ecosystem around Go and deep dive into why this language was invented in
the first place. And what is the history from there until today? Finally, we
will discuss the pros and cons of using Go.

References
https://deps.dev/
https://insights.stackoverflow.com/survey/2021?
_ga=2.236209345.190202062.1628102352-
126161871.1625855113#most-loved-dreaded-and-wanted-language-
want
https://trends.google.com/trends/explore?
date=all&q=microservices&hl=en-GB

https://deps.dev/
https://insights.stackoverflow.com/survey/2021?_ga=2.236209345.190202062.1628102352-126161871.1625855113#most-loved-dreaded-and-wanted-language-want
https://trends.google.com/trends/explore?date=all&q=microservices&hl=en-GB

https://agilemanifesto.org/
https://trends.google.com/trends/explore?date=all&q=docker&hl=en-
GB

https://agilemanifesto.org/
https://trends.google.com/trends/explore?date=all&q=docker&hl=en-GB

CHAPTER 2
Usability of Go

Introduction
In this chapter, we’ll delve into the incredible world of Go. We’ll delve into
the fundamentals, examine the history, and understand why the inventors
wanted to invent this language. What was the intention behind creating such
language, and what was it aimed for?
To understand Go, we aim to understand its core principles, paradigms,
purposes, and so on. By understanding them, we will have the power to see
the whole picture while writing code in Go. Many inexperienced Go
developers start to write in Go and get annoyed by the error-handling
technique. If they clearly understand the core principles, they will realize
why Go’s current error-handling manner is the precise solution.
We’ll elaborate on each one of the core principles, understand their intention,
and profit from their advantages. Then, we will observe on top of the process
of newcomers to the language, from their onboarding until they upload their
code to production.
Then, we will explore the Golang ecosystem. The ecosystem is a giant
creature composed of many communities and Gophers. Since Golang is an
open source maintained by Google, the adoption to join the community is
enormous.
There is no need for prior knowledge of Go. It is suggested to revisit this
chapter after gaining more experience as a Go developer. Many of the points
we’ll cover here may resonate better with you. A quote from “Effective Go”
— “In other words, to write Go well, it’s important to understand its
properties and idioms.”

Structure
In this chapter, we will discuss the following topics:

Invention of Go

Core Principles and Paradigms
Simplicity and Minimalist Design Approach
A Fast Language that is Suitable for the Cloud
Maintainability of Go
From Onboarding to Production
Go’s Ecosystem — The Communities and Beyond

Invention of Go
So how was this language started? It all begins with Google. In 2007, three
folks from Google decided to create a new language. The language was
designed by Ken Thompson, Rob Pike, and Robert Griesemer, each bringing
distinct yet related backgrounds to the table. They were involved in
significant technological inventions such as UTF-8, Unix, C programming
language, and so on. The full name of the language is Golang, which is a
combination of “go” + “lang,” in which “lang” is a shortcut for language.
Instead, they prefer to call it Go and not Golang to emphasize that the
language intends to be simple and memorable. The word “Go” is a common
English term that implies movement, progress, and efficiency, which aligns
with the language’s purpose of providing a simple and efficient approach to
software development. Also, “Go” are the first two letters of Google.
After getting the green light from Google, they started developing the
language. One of their core internal agreements is that they will only include
programming principles they all agree on. Although this language was
invented in 2007, it was influenced mainly by the C programming language,
which was created in 1972, and not by newer languages like C++, Java, C#,
and so forth. There are many similarities between Go and C programming
languages. Indeed, some people refer to Go as the modern version of C.
They started writing the programming language in Go, C++, and Assembly.
By 2008, many people within Google wanted to join this project. Very fast, it
gained positive momentum within Google.
In 2009, Go was publicly announced as an open-source project via GitHub,
and developers from everywhere could and wanted to contribute to the
language. Also, the Gopher mascot we mentioned in the previous chapter
was presented in 2009. There is a link to the project in the references.

Note that many other repositories in the organization called Go are super
relevant and part of the Golang ecosystem, which we will discuss later. The
decision to open-source the language and make it accessible to the world has
been pivotal to its current success.
In 2012, the first version of Go 1.0 was published with the most extensive
guarantee for simplicity and efficiency, which we will talk about later on in
this chapter. From there, two versions of Go are being released yearly,
except in 2012. Version 1.5 was the most significant. In that version, the
compiler toolchain has been converted to Go entirely. Another fundamental
version is 1.18, where generics and fuzzy testing concepts were presented.
The current version of Go, which we will follow for this book, is 1.20 (July
2023).

Core Principles and Paradigms
While designing the Go programming language, the inventors had a few
principles they led. Until today all of these core principles are still
implemented. We can see it in every release note of Go. We recommend
looking at the Go release note every time a new version is released. These
release notes are not long; reading and understanding them takes
approximately an hour. Investing 2-3 hours each year to stay updated on the
language’s latest developments is valuable. The release notes are clear,
straightforward, and easily understandable.
As observed in the previous chapter, this language is designed to be well-
suited for deployment on cloud computing platforms, multi-core computers,
handling large codebases, and more.
Before delving into the specifics of each principle, it’s essential to mention
the official Go documentation titled “Effective Go.” We recommend reading
it; it’s lucidly explained and straightforward. Another resource we find
valuable is the code review comment wiki from Go’s official GitHub
organization – we recommend perusing and utilizing it.
There are three core principles for Go:

Simplicity: Go is designed to be straightforward and easy to
understand, with a clean syntax that avoids unnecessary complexity.
This makes it easier for developers to write, read, and maintain code.

Efficiency: Go is known for its speed and performance. It compiles
directly to machine code, making it as fast as languages like C or C++
but with the ease of a higher-level language.
Maintainability: Go emphasizes clear, modular code structures and
strong typing, which helps prevent errors and makes it easier to update
and refactor code over time.

** Disclaimer - These core principles are not officially declared in Go’s
official documentation. I choose them.

Go Paradigms
The Go programming language paradigms are officially declared in the
documentation, including:

Imperative
Concurrent programming
Object-Oriented

Imperative
Here’s a brief overview of imperative programming: Imperative
programming is a software paradigm in which the code aims to solve a
problem step by step, and each line is supposed to lead us to solve the
problem. It focuses on how to solve the problem. Imperative programming
contrasts with declarative programming, which focuses more on declaring
what we want to get. Examples of declarative languages are HTML, SQL,
CSS, and so on. Go is an imperative language. Capabilities that show that
Go is an imperative programming language are statements, variables, loops,
and so on.
Concurrent programming
Concurrent programming involves designing software to execute multiple
tasks simultaneously, often leading to improved performance and
responsiveness in applications that handle multiple operations. We’ll discuss
in detail later how we can use Go concurrency. This paradigm is one of the
core reasons for creating this language. Go can be multithreaded, multi-
processing, and asynchronous, critical factors of a concurrent programming
language.

Object-Oriented
“Yes and no. Although Go has types and methods and allows an object-
oriented style of programming, there is no type hierarchy. The concept of
“interface” in Go provides a different approach that we believe is easy to
use and, in some ways, more general. There are also ways to embed types in
other types to provide something analogous—but not identical—to
subclassing. Moreover, methods in Go are more general than in C++ or
Java: they can be defined for any sort of data, even built-in types such as
plain, “unboxed” integers. They are not restricted to structs (classes).
Also, the lack of a type hierarchy makes “objects” in Go feel much more
lightweight than in languages such as C++ or Java.”
This quote is taken from Golang FAQ. The quote explains the object-
oriented concept in Go quite well. Of course, we will discuss more in detail
about composition in Go, on structs, interface, and so on.
Supported OOP Principles in Go:

Encapsulation: Go supports encapsulation through packages and
structs. We can define methods on structs to associate behavior with
data, similar to methods in traditional OOP.
Composition: Instead of classical inheritance, Go uses composition to
build complex types from simpler ones, using a concept called
embedding.

Not Supported OOP Principles in Go:

Inheritance: Go does not support inheritance in the traditional sense.
There are no classes, so we cannot define class hierarchies. Go’s
approach is to use interfaces and composition instead.
Polymorphism: While Go does not support polymorphism through
inheritance, it does support a form of polymorphism through interfaces.
A single interface can be implemented by multiple types, and a
function that takes an interface as an argument can accept any type that
implements the interface.

Go Properties

Another two properties of language are dynamic or static and strong or
weak. For Go, these properties are:

Statically typed
Strong typing

Statically typed
Once the variable type is set in Go, we can’t change it in runtime. We can’t
declare a variable without declaring its type. Note that we can do something
like this:
x := 5

In that scenario, we don’t explicitly declare the type, but Go uses “type
inference” to decide the variable type. The inference does not always work
until we use the := operator.
In that use case, the inference type is int, of course.
Strong typing
What differentiates a “strong” programming language from a “weak” one is
that we can do certain operations on variable types. Let’s take this example:
myString := “name” + 2

This line will cause a compile error because we can’t add an integer to a
string.

Simplicity and Minimalist Design Approach
Numerous programming languages are currently widely used. A prevailing
trend among many of these languages is that they have become similar with
each new release. This similarity is characterized by a growing similarity in
their capabilities and features.
Initially, each programming language was created with specific purposes in
mind, and they had a limited set of capabilities and features. However, many
enhancements occur with every subsequent version release of these
languages. These updates include bug fixes, improvements, new features,
extensions to core libraries, new libraries, new concepts, and so on.
Most programming languages adopt a “more is better” approach,
continuously expanding their capabilities, features, and libraries, enabling
them to handle various tasks.

Nevertheless, it is essential to note that this may not be the case for Go, as it
deviates from this pattern of constant expansion.
Upon examining the release notes of Go, it becomes evident that most
updates primarily focus on compilation enhancements, performance
improvements, and accuracy refinements. While there are certainly some
introductions of new features and capabilities (a significant example is
generics), they don’t make up the bulk of the changes. This emphasis on
simplicity is what Go is aiming for. They want to keep Go boring.
An example of Go’s simplicity and minimalism is the number of keywords
in the language. Here is a graph showing the number of keywords.

Figure 2.1: Programming language by keyword count

If a programming language has many keywords, it doesn’t necessarily mean
it’s a bad language. Conversely, a language with a low number of keywords
doesn’t automatically indicate that it’s a good programming language. The
quality and effectiveness of a programming language depend on many
factors beyond just the count of keywords it have.
But it is sure to say that it is easier to remember and use fewer keywords. We
can see that Go is one of the languages with the lowest keywords.
Hidden complexity
There are many concepts within the language, and a lot of effort was put into
them to create a powerful programming language on the one hand and a
simple language on the other.

The concurrency approach is an excellent example of hidden complexity. We
will talk in detail regarding the concurrency approach later in this chapter. It
only requires three keystrokes to concurrency — ‘g,’ ‘o’, ‘ ‘ - that is
amazing.
Another example of extreme simplicity is access modifiers. There are two
scenarios. The function/variable/const can be private or public. To make
something public in Go, we just need to do two things:

It needs to be declared in the highest scope.
It needs to be capitalized.

That’s it; no need for extra keywords.
A few other simple things in Go:

Garbage collection
Consts
Interfaces
Packages

All of these examples have huge complexity behind the senses.
To summarize this section, Go doesn’t compete in features. “As for Go 1.0,
the language is fixed.”

A Fast Language Suitable for the Cloud
“Go is fast and fun and productive.” - Ken Thompson.
This was one of the core reasons why this language was invented: to provide
fast language that can run concurrently on the cloud.
We will elaborate on three things that make Go so fast:

Fast compiling
Bearing a resemblance to C
Concurrency approach

Fast Compiling

Rather than Go’s intention to be fast in runtime, it also has a high intent to
compile very fast, which is similar to the state of mind of the Agile
methodology, where the release rate is significantly higher.
So what makes it compile so fast? And the binary to be so lean? Here are the
reasons:

Avoiding cyclic dependency
Compilation design
Unused imports and usages
Go simplicity

Avoiding Cyclic Dependency
If we ever try to import packages in a cyclic fashion, we will encounter a
complication error. Go can’t compile if there are some cyclic dependencies.
All the dependencies can be presented as a DAG (aka for Directed Acyclic
Graph). Due to this package structure, each package can be compiled if all
the packages in the tree are compiled before the package node.

Figure 2.2: Package dependencies DAG

In this example, packages A and B were already compiled, and we can
compile C, D, and E concurrently.
Compilation Design
A quote from Golang FAQ answering the question: “Why did you create a
new language?”
“Finally, working with Go is intended to be fast: it should take at most a few
seconds to build a large executable on a single computer. Meeting these
goals required addressing a number of linguistic issues: an expressive but
lightweight type system; concurrency and garbage collection; rigid
dependency specification; and so on. These cannot be addressed well by
libraries or tools; a new language was called for.”
As we can see, one of the main reasons for creating Go was to develop a fast
language that is easy to work with. This state of mind is and has always been
in the minds of the Go team.
Unused imports and usages
In Go, we can’t import a package that is not in use, and also, we can’t
declare a variable that is not in use. Both scenarios will lead us to get a
compile error. Go will compile only the necessary dependencies, which leads
to precise compilation and not compiling unused dependencies.
Go Simplicity
As previously mentioned, Go is a language known for its simplicity. The fact
that it consists of only around 25 keywords makes the compilation process
much more straightforward. This simplicity significantly pays off in terms of
compilation time.

Bearing a Resemblance to C
Some individuals might characterize Go as a modern version of C. While
many other languages typically use classes and inheritance, Go takes a
different approach by utilizing structs and interfaces with composition. Go
inherits various elements from both C and C++, such as data structures,
pointers, the ability to pass by reference or value, and more.
C and C++ are renowned for their speed, and Go aims to achieve a similar
level of performance. However, it also strives to be a modern and user-
friendly language, making it easier to write code with enhanced productivity.

Concurrency Approach
Concurrency is a top priority in Go. Concurrent programming in Go is made
simple and efficient through goroutines and channels. Goroutines are
lightweight threads managed by the Go runtime, allowing multiple tasks to
run independently. Channels are a way for goroutines to communicate with
each other, enabling safe and synchronized data exchange, leading to faster
and more scalable applications.
Goroutines and channels are first-class citizens. Concurrency is one of the
core concepts that Go aims to establish and do well. We will take a short
journey into Go’s unique concurrency approach.
Go is a multi-threaded language. However, Go is different from other
languages because, as a developer, we don’t have direct access to the thread.
That is implemented with the thought that threads are an asset of the OS. In
Go, we should not care about threads. Of course, there are things to worry
about, like access from different Goroutines to the same object (sync core
library should help to tackle this concern through locks, unique objects, and
so on).
Another concern is Goroutine’s leak. Both of these concerns we will tackle
in the following chapters.
So, what is Goroutine? The Go team wrapped the traditional thread through
goroutines. They are highly cost-effective regarding resource usage and
initialization.
Regarding memory footprint, initializing the Goroutine stack takes 2 KB,
and the default thread stack is 8 KB. This is 4X more lightweight! The direct
effect for Goroutines to be memory lightweight is that allocating and
deallocating them is much faster than threads.
Goroutines are revolutionary, managed entirely by the Go runtime rather
than the OS. They have accessible communication between themselves,
lightweight memory, fast initialization, and are not hardware-dependent.
To explain how Goroutines works, let’s talk about Go Scheduler. It is a
component within the runtime of Go that has direct access to the kernel and
is responsible for managing every Goroutine we execute.
Goroutines are scheduled on the thread themselves, and the Scheduler is
responsible for allocating them on the thread.

Figure 2.3: Go scheduler

In this figure, we can see the system’s cores. The OS scheduler manages a
layer of thread; above it, we can see our Go program that executes the
Goroutines thread, and the Go Scheduler manages all of that.
Let’s observe single-core system behavior.

Figure 2.4: Single-core OS allocating a goroutine

This figure shows a single-core OS that executes some Goroutines called
G1. Then another Goroutine is executed at the end, called G2.

But what happens when we have multi-cores? When a program starts in Go,
the scheduler will initial a thread; if some goroutines are executed and the
previous goroutines were not done, it allocates more threads until the
maximum number of threads is reached. The maximum number of threads in
a configuration is Go, which is set as an environment variable called
GOMAXPROCS. The default and recommended value by a benchmark done by
the Go team is the number of cores. For example, if a machine has 8 cores,
the value of GOMAXPROCS is 8, and the scheduler won’t schedule more than 8
threads. We can configure the environment variable, but this isn’t
recommended.
How does the scheduler work when more goroutines need to be executed
rather than available threads?

Figure 2.5: Multiple threads with queues managed by the scheduler

There is a dedicated queue for each thread that knows the next goroutines
that are supposed to be scheduled on this thread. A new queue is created for
each new thread being allocated. Each goroutine is allocated while running
on some thread and directly goes to the same thread’s queue. To prevent an
intense load on a single queue, the scheduler performs work, stealing
between threads and balances the work between them.
This was an explanation in a nutshell of the Go scheduler. There are many
other things that the scheduler is considering, like system locks, code locks,
communication between threads, allocating of threads, idle threads, and so
on.

Maintainability of Go
Several reasons are why Go is easy to maintain:

Compatibility
Go simplicity
Error handling

Compatibility
“It is intended that programs written to the Go 1 specification will continue
to compile and run correctly, unchanged, over the lifetime of that
specification. At some indefinite point, a Go 2 specification may arise, but
until that time, Go programs that work today should continue to work even
as future “point” releases of Go 1 arise (Go 1.1, Go 1.2, etc.).”
It is a quote from the documentation of Go when the first version of Go was
released. There is an attachment to this documentation in the references.
Note that later in the documents, they set expectations and write that things
can go wrong, like bugs, security issues, structs literals, and more.
When every version of Go is released, there is an intention for backward and
forward compatibility. According to Russ Cox from GopherCon 2022, the
Go team uses two main approaches to keep it compatible:

API Checking
Testing

API Checking
In order to prevent the breakage of previous versions of Go, we can’t remove
exported symbols, API methods, packages, and so on. Otherwise, the
program will fail. Go can’t remove libraries, structs, methods, and so on.
The Go team uses a tool that contains all the exported API signatures for all
Go versions. Then, the Go team runs tests that compare the package API to
the exported API signatures and notify if something has changed. If
something changes, they take action to either prevent it or at least minimize
its impact.
Testing

A colossal advantage that Google maintains in Go is that it can be tested
within Google. The development version of Go is being tested against all of
Google’s internal Go program tests. After all these tests pass, the Go
development branch is used in the Google production environment and
toolchain.
With every release of Go, they note if something got broken in the new
version. Go also provides a powerful tool called GODEBUG that helps us
upgrade our version and verify that our program doesn’t panic.

Go Simplicity
As we have seen before, one of Go’s main goals is simplicity. This
simplicity pays off when we examine the program’s maintainability. One
significant advantage of the Go team is that they make all the rules. In the
previous chapter, we talked about “Effective Go,” which has all the
conventions, best practices, and documentation for how to do things. Unlike
some other languages where conventions come from different places, in Go,
the Go team decides everything.

Error Handling
Go is different from other languages. In many other languages, we are
expecting to see a try-catch-finally idiom.
This is not the case with Go. In Go, we will explicitly create an error and
return it as a variable. Here is a quote from Go FAQ.
“We believe that coupling exceptions to a control structure, as in the try-
catch-finally idiom, results in convoluted code. It also tends to encourage
programmers to label too many ordinary errors, such as failing to open a
file, as exceptional.”
Sometimes it can be frustrating to see code like this:
if err != nil {

return err

}

However, if we understand its motive, we can accept it. Additionally, to Go
FAQ, the error handling in Go gives us a way to tell a story. Instead of just

returning the error, we can add context to it and, by that, create the story of
the error, for instance:
If err != nil {

return fmt.Errorf(“connecting to DB: %w”, err)

}

Now we have the context that this error happened while trying to connect to
the DB. It was just one example to understand the hidden power of error
handling in Go.

From Onboarding to Production
A programming language doesn’t consist only of language components like
compiler, syntax, and so on. It also consists of several tools crucial to the
toolchain, like a package manager, documentation, formatter, linter, test
tools, and so on.
Go aims to give the Go developer a holistic experience by providing the
tools in the toolchain. There are three reasons why the Go team wants to
create the toolchain.
One is that they don’t need to depend on anonymous contributors to create a
tool. The second and more important reason is that the Go team knows the
best way to build such a tool. The third reason is to achieve standardization.
We don’t want to have two formatters that do very similar things but operate
differently, and we can see these patterns in other languages. The formatter
is just one example of standardization. It can be a linter, tests, time package,
and so on.
What are the steps for the newcomer to the language until they deploy it to
production?

1. Getting Started
2. Plan
3. Package Management
4. Writing code
5. Troubleshoot
6. Test
7. Security

8. Build
9. Others

1. Getting Started
A newcomer to the language doesn’t know how the language syntax
looks alike. The Go team created a playground, so developers who read
about the language can already be engaged and play with it. All the
documentation and playground exist in go.dev.

2. Plan
The newcomer fell in love with the language. Now, they want to start a
project. But before jumping into the code, we want to plan. We want to
understand how the project is going to look. To do so, we must
understand and explore the packages we aim to use. There is a single
artifact manager for all Go packages, and this manager, not
surprisingly, exists in go.dev, specifically in pkg.go.dev.

3. Package management
To interact with various tools from the Go toolchain, we need to have
the Go CLI; that’s it. In the Go CLI, various tools help us to start the
project. We finished planning our project, and now we want to start.
We will run the following command to initial a project:
go mod init github.com/nirsht/microservices-with-go

If we want to install any package, we can run:
go install github.com/nirsht/myawesomepackage

There are a variety of tools that help us manage packages like go mod
tidy, go vet, and so on. These commands are powerful and allow us
to manage the packages.

4. Writing code
Once the project is set up and all the desired packages are incorporated,
we can start writing code. We might opt for an integrated development
environment (IDE) such as Visual Studio Code, Vim, or GoLand
(developed by JetBrains) for efficient code composition. These IDEs,
among others, rely on the Language Server Protocol (LSP) for their
functionality.
Great definition of LSP by Microsoft:

“The language server protocol (LSP) is the product of standardizing
the messages exchanged between a development tool and a language
server process. Using language servers or demons is not a new or
novel idea. Editors like Vim and Emacs have been doing this for some
time to provide semantic auto-completion support”
For many programming languages, the LSP is not provided by the
same author of the language. In Go, this is not the case. The LSP in Go
is gopls and is maintained by the Go team. Moreover, the Go team also
provides an extension for VScode called vscode-go.

5. Troubleshoot
Similar to all software engineers, our code sometimes functions
flawlessly. Our efforts involve reading code, debugging, and
troubleshooting annoying bugs. The Go team acknowledges this. They
developed a tool intended to assist developers in debugging and
troubleshooting. For instance, they offer the official Go debugger - gdb.
Additionally, the Go team has developed an excellent profiler known as
pprof, which enables the visualization and analysis of profiling data.

6. Test
Any software engineer who respects himself will add tests. This is an
industry standard for creating maintainability of our system. Go also
provides us with a tool to perform tests efficiently. No external library
is needed, just the Go CLI. While running:
go test.

It will iterate over all the files and indicate the ones that have a postfix
of _test, and then it will run all the functions with a prefix of Test.
The Go team provides several configurations within the go test

command. My favorite is the option for testing race conditions through
the Go CLI by running:
go test -race

From Go 1.18, fuzzy tests are available.
“Fuzzing is a type of automated testing which continuously
manipulates inputs to a program to find bugs.”
Fuzzy tests are a handy and powerful tool to verify that our program
won’t panic when we get wrong inputs.

7. Security
Now, we want to release our code for production. But there is a
problem. We need to check that there are no security vulnerabilities in
our package’s dependencies.
Since Go 1.18, we can run a command to check all our vulnerabilities -
govulncheck. Govulncheck is powered by the Go vulnerability
database that is maintained by the Go team.

8. Build
The only thing remaining is to package our code. Go has a compiler
that is responsible for compiling our code to the desired binary
architect and OS. These can be configured easily by environment
variables - GOARCH for architect and GOOS for OS.
The build command is built-in within the Go CLI, and we can use it by
running:
go build main.go

9. Others
We have only covered a few tools of the Go toolchain on this journey.
For keeping things consistent, Go centralizes several things like linting
(checking code for errors, and more) and formatting (making code look
neat, which is vital in Go). We believe the Go team has chosen suitable
packages to include in the language, like the “time” package for
handling time-related tasks.

Go’s Ecosystem — The Communities and Beyond
Most of the programming languages today are OSS (aka Open-Source
Software). Go is one of them, and it is OSS driven from its first days.
Nowadays, many people are thrilled and keen to contribute to Go or the
many other projects in the Go development toolchain. Go is one of the most
popular programming languages in terms of the number of packages (as we
saw in the previous chapter).

Figure 2.6: The number of packages for leading OSS programming languages

To improve one’s skillset, knowledge, and personal performance in
programming languages, it is essential to be involved in the ecosystem
somehow. This can be by contributing to OSS projects, joining a community,
or attending online or physical meetups. You can also join the Slack or
Discord community.
A great website to view most of these opportunities is gophersource.

Conclusion
In this chapter, we learned the concepts that compose Go. Throughout
Google’s history, we saw the motivation and reason for creating this new
language—simplicity, speed, maintainability, seamless onboarding, and so
on.
Knowing all that stuff will give us the context that some things look like
they look in Golang. The error handling in Go is a great example. Many
newcomers to Go are struggling to understand why try-catch-finally
doesn’t exist. But, after a while, they understand why. The same goes for
inheritance; many newcomers are initially surprised that inheritance doesn’t
exist, but after a while, they understand why composition is the precise
choice for Go.
In the next chapter, we will explore the syntax and basics of Go. After we
cover all the basics, we will approach more advanced topics.
We will discuss the simplicity concepts discussed in this chapter in more
detail. Furthermore, we will delve into the implementation of concurrency
and address the challenges that arise when employing concurrency in Go.

Our discussions will encompass various topics, including composition,
encapsulation, polymorphism, and more. Stay tuned!

References
https://github.com/golang/go
https://github.com/golang
https://go.dev/doc/effective_go
https://github.com/golang/go/wiki/CodeReviewComments
https://go.dev/doc/faq#Is_Go_an_object-oriented_language
https://github.com/e3b0c442/keywords
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://go.dev/doc/go1compat
https://www.youtube.com/watch?v=v24wrd3RwGo
https://go.dev/play/
https://github.com/golang/tools/tree/master/gopls
https://go.dev/doc/gdb
https://github.com/google/pprof
https://go.dev/security/fuzz/
https://gophersource.com/
https://learn.microsoft.com/en-us/visualstudio/extensibility/language-
server-protocol?view=vs-2022

https://github.com/golang/go
https://github.com/golang
https://go.dev/doc/effective_go
https://github.com/golang/go/wiki/CodeReviewComments
https://go.dev/doc/faq#Is_Go_an_object-oriented_language
https://github.com/e3b0c442/keywords
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://go.dev/doc/go1compat
https://www.youtube.com/watch?v=v24wrd3RwGo
https://go.dev/play/
https://github.com/golang/tools/tree/master/gopls
https://go.dev/doc/gdb
https://github.com/google/pprof
https://go.dev/security/fuzz/
https://gophersource.com/
https://learn.microsoft.com/en-us/visualstudio/extensibility/language-server-protocol?view=vs-2022

CHAPTER 3
Go Essentials

Introduction
This chapter will delve into the fundamental aspects of Go, including its
basic syntax, patterns, conventions, styles, and everything essential for
becoming proficient in Go development. It will give newcomers and less
experienced Go developers the minimum required knowledge to read this
book.
This chapter will provide various code examples. All the code examples are
available on the GitHub repository of this book. While reading this chapter,
you are welcome to stop reading, practice code examples, or delve into a
specific topic. If you decided to code while reading this chapter, it is
recommended to code using Go Playground or VSCode (Visual Studio
Code). But, use any IDE you find most suitable for you. There is no correct
answer. We won’t cover installation/environment setup instructions, which
you are welcome to see in Go’s official documentation - Effective Go.
Another thing worth mentioning here is that you already know how to
program in another programming language. Based on this assumption, we
won’t cover programming concepts. We will cover those concepts’ syntax,
conventions, best practices, and semantics in Go.
This chapter serves as a concise overview of the Go programming language,
designed to provide a quick and insightful introduction. It equips you with
the foundational knowledge needed to derive value from the rest of the book.

Structure
In this chapter, we will discuss the following topics:

Basic Overview of Golang
Packaging — Accessing Between Packages
Project Structure

Structs
Composition
Interfaces

Basic Overview of Golang
Let’s start exploring the basic syntax of Go!
Any programming language has a wide variety of syntax, keywords,
libraries, and so on. We won’t aim to cover them all. For that, you are
welcome to read the Go documentation.
We will concentrate on the essentials so you can proceed with this book
without going to external sources.
Regarding all the conventions and styles of Go, we recommend you read the
Uber guide to styles and conventions in Go, which is very useful and easy to
read. It is attached in the references. We aim to provide Go’s most essential
and basic styles and conventions.

Hello World
We will start with the most basic code example - a “Hello World” program
example in Golang.
package main

import “fmt”

func main() {

fmt.Println(“Hello World!”)

}

The command we used to run the program is:
go run Chapter-4/Hello-World/main.go

The first line:
package main

In Go, we use the saved keyword package and then use the package’s name;
in this case, the package name is main. The entry point package must be
main to start a Go program.

After declaring the package, we’ll declare the imports using the keyword
import and then declare the package we want to import. In this example, the
package name we use is fmt.
We can declare several packages in the same way:
import (

“fmt”

“os”

)

After declaring the package and the imports, we can declare types, consts,
methods, and functions. In the example, we declared a function called main,
the program’s entry point in the main package.
We declared a function by using the keyword func, then declaring the
function name, the parameters, “{“ to open scope and “}” to close scope.
The main() function plays a crucial role as the entry point of a Go program,
where execution begins. It is not a normal function; it is the running point to
initiate the program’s processes, making it essential for any Go application.
The last line:
fmt.Println(“Hello World!”)

This line functionality is to print the string - Hello World!. We used the
function Println, which is a function inside the package fmt.
Another essential and saved function (rather than main) is init(). This will
run at the program’s start; it is the only function that runs before main().

Variables
We have three ways to declare a variable in Go.
The first way is as follows:
var emptyMessage string

Here, we declare the keyword var, then the variable name - emptyMessage.
In the example, the variable is of type string.
There is also an option to give a value to that variable while declaring it:
var message string = “This is a message”

Note that if we don’t give it an initial value like in the first example, it will
give it a default value. There is a different value for each primitive data type,

nil for a pointer, and empty struct values for structs. We will elaborate on the
default values of primitive data types later in this chapter.
The second way to declare a variable is to let the Go compiler infer the
variable type by itself.
var inferredMessage = “This is an inferred message”

In that example, we didn’t have to declare the string. The Go compiler
inferred it from the syntax.
The third way to declare a variable in Go is by using :=.
alsoInferredMessage := “This is also an inferred message”

Here, we didn’t have to declare the keyword var or string, just “:=”.
In Go, variables can’t change their type in runtime because Go is a static
programming language, as we saw in Chapter 2, Usability of Go.
The convention for variables, functions, maps, structs, and everything we
declare in Go is camelCase unless we want them to be public, in which case
they will be PascalCase. We will discuss access modifiers in this chapter.

Primitive Data Types
Let’s have a look at this code block:
package main

import “fmt”

func main() {

message := “This is a message”

fmt.Println(message)

var zero int

fmt.Println(zero)

number := 42

fmt.Println(number)

var pi float64 = 3.14

fmt.Println(pi)

var booleanVar bool

fmt.Println(booleanVar)

trueBooleanVar := true

fmt.Println(trueBooleanVar)

}

There are four primitive data types in Go - string, boolean, float32
(also float64), and int (also int8, int 16, int32, int64, uint, unit8,
unit16, unit32, unit64).

string is for text. The default value is an empty text “”.
int is for a whole number. The default value is 0.
float32 is for a floating point number. The default value is 0.
bool is for true or false. The default value is false.

As we saw before, we can declare a variable without declaring the type, but
the type will be inferred. Go will choose the most convenient type. For
instance, if we want the variable to be int8 and not int, we must declare it.
Otherwise, the Go compiler will choose an int.

Comments
There are two types of comments:

single-line
multiline

Here is a single-line example:
func main() {

// This is simple comment

}

Here is a multiline example:
/*

This is a multi-line comment

*/

fmt.Println(“Hello World!”)

For single-line comments, use // and for multiline, start with /* and end
with */.

Operators

Let’s put here an example for all the operators in Go. The operators in Go
are very similar to any other programming language.
package main

func main() {

// Arithmetic Operators

x := 5 + 5 // 10

x = 5 - 5 // 0

x = 5 * 5 // 25

x = 5 / 5 // 1

x = 5 % 5 // 0

x++ // 6

x-- // 5

// Comparison Operators

y := 5 == 5 // true

y = 5 != 5 // false

y = 5 > 5 // false

y = 5 < 5 // false

y = 5 >= 5 // true

y = 5 <= 5 // true

// Logical Operators

a := true && true // true

a = true && false // false

a = true || true // true

a = true || false // true

a = !true // false

a = !false // true

// Bitwise Operators

b := 5 & 5 // 5

b = 5 | 5 // 5

b = 5 ^ 5 // 0

b = 5 << 5 // 160

b = 5 >> 5 // 0

// Assignment Operators

c := 5

c += 5 // 10

c -= 5 // 5

c *= 5 // 25

c /= 5 // 5

}

If statement
Like other languages, the keywords that exist are if and else. Also, their
usage is exactly the same.

Loops
There are various ways to make loops in Go; all of them use the keywords
for, and for break, use break, and to move to the next iteration, use
continue -
func main() {

// for loop with initialization, condition, and post

for i := 0; i < 5; i++ {

println(i)

}

// for loop with single condition, act as a “while”

i := 0

for i < 5 {

println(i)

i++

}

// for loop with no condition, act as a “while”

i = 0

for {

println(i)

i++

if i >= 5 {

break

}

}

// for loop with continue

for i := 0; i < 5; i++ {

if i%2 == 0 {

continue

}

println(i)

}

// for loop with range

s := []int{1, 2, 3}

for k, v := range s {

println(k, v)

}

}

Note that there isn’t while keyword in Go. For a while loop, we just use for
(with or without a condition).
The last example of a for loop with range is unique to Go. The range
keyword lets us iterate on iterable types such as array, slice, and map.

Arrays
There are two ways to declare an array in Go:
func main() {

// declare an array of 5 integers

var a = [5]int{1, 2, 3, 4, 5}

// declare an array with inferred length

var b = […]int{1, 2, 3}

}

In the first example (var a = [5]int{1, 2, 3, 4, 5}), the length was set
to 5. In the second example (var b = […]int{1, 2, 3}), the length was
inferred. Of course, we can declare an array without using the keyword var
and just using :=.
Arrays in Go can only store the same type, and the length of arrays is
immutable.

Slices
Slices are very similar data type to an array, but slices are much more
flexible. The length of the slice can change in the runtime. Slices are one of

Go’s main strengths. Here is how we declare a slice in Go:
mySlice := []string{“nir”, “david”}

The declaration is almost the same syntax as arrays, but we don’t need to
declare the size (or infer it by “…”). Another way to declare a slice in Go is
by using the make keyword.
mySlice := make([]type, length, capacity)

The length is the number of elements the slice contains, whereas the
capacity is the number of elements in the backing array, counting from the
first element in the slice.
The capacity will always be bigger than the length.
Two functions that help us to determine arrays, slice length, and capacity are
len (for measuring length) and cap (for measuring capacity).
slice := make([]int, 2, 5)

fmt.Println(slice) // [0 0]

fmt.Println(len(slice)) // 2

fmt.Println(cap(slice)) // 5

A convenient operation we can do is split a slice/array into portions. Here is
an example of doing so.
myArray := [5]int{1, 2, 3, 4, 5}

slice = myArray[1:4] // from the 1st index to the 4th index

(not included)

fmt.Println(mySlice) // [2 3 4]

Functions
In Go, a function can return several parameters with different data types:
func myFunction(amount int, prefix string) string {

return fmt.Sprintf(“%s: %d”, prefix, amount)

} // Input: 5, “nir” | Output: “nir: 5”

func multipleReturns(prefix string, amount int) (string, int) {

amount++

return fmt.Sprintf(“%s: %d”, prefix, amount), amount

} // Input: “nir”, 5 | Output: “nir: 6”, 6

func namedReturnValues(prefix string, amount int) (result

string, newAmount int) {

amount++

result = fmt.Sprintf(“%s: %d”, prefix, amount)

newAmount = amount

return

} // Input: “nir”, 5 | Output: “nir: 6”, 6

In the first example (myFunction), we can see a simple function, using the
func and return keywords. In the second example (multipleReturns), we
see a function with multiple return values. In the third example
(namedReturnValues), we see a function with multiple named return values
(a single named return value is also valid).
An instrumental ability to Go regarding functions is to use defer. The defer
keyword is a function. This function gets executed after the parent function
finishes its functionality. Here are two examples:
func functionWithDefer() {

defer fmt.Println(“This will be printed last”)

fmt.Println(“This will be printed first”)

} // Output: This will be printed first

// This will be printed last

func functionWithMultipleDefers() {

defer func() {

fmt.Println(“This will be printed last”)

}()

defer fmt.Println(“This will be printed second”)

fmt.Println(“This will be printed first”)

}

// Output: This will be printed first

// This will be printed second

// This will be printed last

The examples are pretty straightforward and explain the purpose of the
“defer” function.
In Go, functions are first-class citizens, which can be passed as arguments to
other functions, returned from functions, and assigned to variables. This
feature enables the creation of higher-order functions and facilitates
functional programming patterns.

Maps
Maps in Go are used to store key-value data. The default value of the map in
Go is nil. Maps hold references to an underlying hash table. Here is how we
declare a map and some common actions on map:
fruitsPrices := map[string]int{

“orange”: 10,

“apple”: 20,

“banana”: 15,

}

fmt.Println(fruitsPrices) // Output: map[apple:20 banana:15

orange:10]

// Add a new key-value pair

fruitsPrices[“mango”] = 25

fmt.Println(fruitsPrices) // Output: map[apple:20 banana:15

mango:25 orange:10]

// Delete a key-value pair

delete(fruitsPrices, “orange”)

fmt.Println(fruitsPrices) // Output: map[apple:20 banana:15

mango:25]

// Get a value from a map

fmt.Println(fruitsPrices[“apple”]) // Output: 20

// Get a value from a map that doesn’t exist

fmt.Println(fruitsPrices[“grapes”]) // Output: 0 (the default

value for int)

// Check if a key exists in a map

price, ok := fruitsPrices[“grapes”]

fmt.Println(price, ok) // Output: 0 false

// Iterate over a map

for fruit, price := range fruitsPrices {

fmt.Printf(“%s: %d\n”, fruit, price)

} // Output: apple: 20 banana: 15 mango: 25 (order may vary)

fmt.Println(len(fruitsPrices)) // Output: 3

// Create an empty map

emptyMap := make(map[string]int)

fmt.Println(emptyMap) // Output: map[]

Switch
Use the switch statement when selecting one of many code blocks. In Go,
the keyword break is unnecessary; it breaks by default after every case. If
you wish to go through the next switch case, use the fallthrough keyword.
Here are typical examples:
func main() {

printString(“b”) // b

printString(“a”) // a b

}

func printString(str string) {

switch str {

case “a”:

println(“a”)

fallthrough

case “b”:

println(“b”)

default:

println(“default”)

}

}

If none of the expressions matches, it will go to the default statement.

Consts
We can declare consts in the same scopes as variables using the const
keyword. During runtime, constants cannot be altered or manipulated. The
available types for consts are numbers, characters (runes), strings, or
booleans. (For more information about runes, check Reference number 5).
Here are examples that demonstrate consts in Go:
const str string = “const string”

const (

_ = iota

one

two

three

)

func main() {

println(str) // string

str = “new string” // cannot assign to str, will fail in

compilation

println(one) // 1

println(two) // 2

println(three) // 3

}

First, declaring a const string is pretty straightforward. Note that we used the
keyword string in the example, which isn’t essential.
Second, the example of iota. The iota identifier represents integer-based
constants in Go and is a convenient way to declare a sequence of constants
while keeping the code readable. The initial value of iota is 0.

Other Language Specifications
In the next sections, we will cover different topics that weren’t covered in
the earlier section, such as bytes, error, channels, goroutines, generics,
structs, interfaces, libraries, pointers, the empty interface, type conversion,
and more. We can always check the Go language specification.

Packages
A package in Go is a way to divide a program into smaller parts. The Go
compiler comes with several standard packages that are widely common and
popular. Those packages include fmt, log, net, strconv, strings,

sync, testing, os, math, errors, and so on.
We can explore all publicly available Go packages for use at
https://pkg.go.dev/.
As mentioned in the Hello World introduction, we import a package using
the import keyword at the beginning of our file. Additionally, we have the
option to rename a package like this:
import (

f “fmt”

“math”

)

https://pkg.go.dev/

We renamed fmt to f. The naming convention in Go for packages is short
and mainly single words like nouns. The only available character except for
a-z and numbers we can use in the package name is _.
The naming in Go is critical for accessing or viewing things outside a
package. It is determined by whether the first character of a variable is
uppercase (the same goes for function, consts, struct, and more).
const myName = “jack” // not public

const MyName = “jack” // public

To work on a project, we need to initialize a new module. To do so, we need
to run this line, for instance:
go mod init githubple.com/nir/mymodule

It will create a new file called go.mod, which includes the module name, the
Go version, the entire package, and the versions we use in that module.
After we declare the modules we want to use, the go.mod file should look
like this:
module github.com/OrangeAVA/Microservices-with-Go

go 1.21.0

require (

github.com/gin-gonic/gin v1.9.0

)

To download the package, we should run:
go mod download

It will create/update a file called go.sum, which maintains the checksums of
the dependencies used in the project. The go.sum file ensures that the project
uses the exact same versions of dependencies in subsequent builds,
enhancing the reproducibility and security of the build process. We don’t
need to change or edit this file, as it is auto-generated by the Go toolchain.
Occasionally, we might encounter // indirect following a package
requirement. This occurs when we don’t directly utilize the module in our
project, but one of our dependencies relies on it.
A convenient command that helps us to include only the imports that we
need is:
go mod tidy

This command removes all the dependencies that we don’t use.

Project Structure
There are many practices regarding the project structure and many use cases.
We will elaborate on the important ones. The more detailed file structure is
in the references. Here is a tree of the Go project’s standard and the crucial
files and directories.

Figure 3.1: Minimal file structure in Go

As we saw before, we must have go.mod and go.sum files to start a Go
project. Rather than those files, three crucial directories are - cmd, internal,
and pkg.
“cmd” directory - includes all the entry points of my code, and the directory
name of each program should match the name of the binary.

“pkg” directory - needs to include all the code that is fine to share with other
services. This should consist of a common code that can be useful for other
services. Note that there is usually a single pkg directory for all the services
when we work with a mono repo, and there isn’t a pkg directory within each
service.
“internal” directory - private packages used internally for the service.

Structs
Go’s structs are typed collections of fields. The struct in Go is used to create
records.
Here is how we declare a struct in Go:
type user struct {

name string

email string

}

While declaring a struct, we can only declare the struct fields. Another way
to create structs is through embedded structs:
type admin struct {

user

level string

}

Here, we embedded the user struct within the admin struct. To create a new
instance of a struct, we need to declare it and include its parameters; if some
parameter is missed, it will give it the parameter’s default value.
u1 := user{

name: “john”,

email: “john@gmail.com”,

}

fmt.Printf(“%+v\n”, u1) // {name:john email:john@gmail.com}

There isn’t a built-in constructor to create a struct in Go. The convention in
Go for creating a struct is through a function, and the function should have a
prefix of new or New if it is public, for instance:
func newUser(name string) user {

return user{

name: name,

email: fmt.Sprintf(“%s@gmail.com”, name),

}

}

u2 := newUser(“jack”)

fmt.Printf(“%+v\n”, u2) // {name:jack email:jack@gmail.com}

We declared a function called newUser, which accepts only name and, from
there, generates the email. We could use any functionality that we believe is
the right one. Let’s see an example of declaring an embedded struct:
a := admin{

user: user{

name: “john”,

email: “john@gmail.com”,

},

level: “super”,

}

fmt.Printf(“%+v\n”, a) // {user:{name:john

email:john@gmail.com} level:super}

To access/modify a value of a struct instance, we can do it like this:
u3 := newUser(“amanda”)

fmt.Printf(“%+v\n”, u3) // {name:amanda email:amanda@gmail.com}

fmt.Println(u3.name) // amanda - we access the field name of

the struct user

u3.name = “ruth” // we change the value of the field name of

the struct user

fmt.Printf(“%+v\n”, u3) // {name:ruth email:amanda@gmail.com}

Go supports methods defined on struct types. It means we declare a function
on the same scope as the struct and assign it to it. Let’s see an example:
func (u user) Print() {

fmt.Printf(“Name: %s, Email: %s\n”, u.name, u.email)

}

We declared the Print method in the same scope as the user struct. Note
that this example is a struct method as a value receiver. We can also define a
method to a struct as a pointer receiver so the method can mutate the struct
fields. For instance:

func (u *user) ChangeEmail(email string) {

u.email = email

}

Composition
Composition lets us create complex things by combining simpler parts,
making our code more modular and flexible. The inheritance feature doesn’t
exist in Go. Let’s observe an example of composition:
type Animal struct {

Sound string

}

func (a *Animal) Speak() {

println(a.Sound)

}

type Cat struct {

Animal // Embedding

}

type Dog struct {

Animal // Embedding

}

func main() {

cat := Cat{Animal{“Meow”}}

cat.Speak() // Meow

dog := Dog{Animal{“Woof”}}

dog.Speak() // Woof

}

We implemented a struct called Animal with a Speak method. We also
created two different structs called Cat and Dog that both embedded the
Animal struct. By doing so, those structs inherit all the properties and
methods of the Animal struct.

Interfaces
Interface in Go slightly differs from other languages. In Go, interfaces
contain only method signatures and not fields. We can’t create an interface

instance in Go, but we can declare a variable assigned to some type that
fulfills the interface method signatures. Let’s take a look at the following
example:
type Person struct {

Name string

}

func (m Person) Print() {

fmt.Println(m.Name)

}

type DogPerson struct {

Name string

}

type PrintInterface interface {

Print()

}

var PrintableObject PrintInterface = Person{}

var PrintableObject2 PrintInterface = DogPerson{} // This will

throw an error in compile time

We declared an interface called PrintInterface with a Print() signature.
When we declared PrintableObject, it was okay because the Person struct
implemented the Print method. On the other hand, when we try to declare
PrintableObject2, it causes a compilation error because the DogPerson
struct doesn’t satisfy the PrintInterface interface.
A vital and widely used interface in Go is the “empty interface”. The “empty
interface” is a type that specifies zero methods and looks like this -
interface{}

var i interface{}

Or

var myName interface{}

The empty interface is unique because it can hold values of any type (every
type implements at least 0 methods). Its primary usage is handling unknown
situations, which we will encounter many times throughout the book.

Conclusion

We have addressed the foundational knowledge and syntax necessary for
comprehending this book. We covered the basis of any programming
language - variables, loops, operators, code style, arrays, maps, and
comments. We also covered specific syntax related to Go, such as packages,
structs, interfaces, and project structure. Feel free to explore the Go language
specifications further through the references provided in this chapter.
In the upcoming chapters, we will dive into more advanced Go topics,
although it’s important to acknowledge that we will only cover a portion. If
you are a newcomer to Go, you can continue your exploration of the Go
language by yourself.

References
https://github.com/uber-go/guide/blob/master/style.md
https://go.dev/doc/effective_go#init
https://go.dev/doc/install
https://www.w3schools.com/go/go_variable_naming_rules.php
https://www.educative.io/answers/what-is-the-rune-type-in-golang
https://github.com/golang-standards/project-layout
https://go.dev/ref/spec#Clear

https://github.com/uber-go/guide/blob/master/style.md
https://go.dev/doc/effective_go#init
https://go.dev/doc/install
https://www.w3schools.com/go/go_variable_naming_rules.php
https://www.educative.io/answers/what-is-the-rune-type-in-golang
https://github.com/golang-standards/project-layout
https://go.dev/ref/spec#Clear

CHAPTER 4
Embarking on the Go Journey

Introduction
This chapter delves further into the intricacies of coding in Go. Unlike the
preceding chapter, all Go developers should read this chapter. Although we
will still cover known topics in Go, we will discuss the connection between
those topics and Microservices. We will cover design patterns that exist in
Go.
Design patterns are a great way to solve common problems that happen to
us as developers, regardless of which language we write in. Almost all the
known design patterns are common to each language and look similar. There
is an excellent website called https://refactoring.guru/design-

patterns, where we can look at and explore design patterns. It is very
convenient and has excellent examples demonstrating each design pattern in
various popular programming languages; as you probably guessed, one is
Golang.
While we won’t cover general coding principles like SOLID, YAGNI, KISS,
and DRY, it’s important to mention Uncle Bob’s Clean Code when
discussing coding concepts. This book is essential for every developer, and
Uncle Bob also has a more entertaining YouTube version of the book.
We will cover four crucial concepts in Go - generics, context, errors, and
testing. If we master those things, we will make our code much more
resilient, readable, and maintainable.

Structure
In this chapter, we will discuss the following topics:

Functional Options Pattern
Generics
Understanding Context in Go

Errors - Talking About Error Propagation
Testing - Best Practices, Mocking, Fuzzy Tests
Microservices Testing

Functional Options Pattern
The decision was made to focus specifically on this pattern and not on other
design patterns for two reasons. The first reason is that this design pattern is
relatively distinctive within the context of Go and is one of the most used
design patterns we can think of (maybe Singleton or Adapter are more
popular).
This pattern helps to construct structs cleanly and precisely. This is
because Go does not support overloading (overloading creates a function in
the same name but with a different signature). Also, there aren’t optional
parameters in functions in Go.
Those two facts (overloading and optional parameters not supported) can
make our life of building a struct very hard. Building a structure can
become a mess with many configurations (usually expressed as optional
parameters). The functional options pattern lets us create a single struct
constructor that receives the required parameters and a list of optional
parameters. The steps to use this pattern are:

1. Create your desired struct.
2. Create a type which is the name of the start + postfix of Option

({structName}Options) that is equal to - func(*{structName}).
3. Create your constructor New{structName}, include the required

parameters, and add options …{structNameOptions} and return *
{structName}.

4. Create a custom function for each option. The convention is to start
each one of those functions with a prefix of With.

Let’s illustrate those steps; we created a struct of shopping client that looks
like this:
type ShoppingClient struct {

endpoint string

apiKey string

userId string

shouldRetry bool

timeout time.Duration

}

The second step is to create the option type:
type ShoppingClientOption func(*ShoppingClient)

Now, we can make our constructor that should look like this:
func NewShoppingClient(endpoint string, options …

ShoppingClientOption) *ShoppingClient {

client := &ShoppingClient{

endpoint: endpoint,

}

for _, option := range options {

option(client)

}

return client

}

Note that if we don’t give any option, the fields will get their default value,
except endpoint, which is required field. All that is left is to create the
option functions.
func WithApiKey(key string) ShoppingClientOption {

return func(c *ShoppingClient) {

c.apiKey = key

}

}

func WithUserId(id string) ShoppingClientOption {

return func(c *ShoppingClient) {

c.userId = id

}

}

func WithTimeout(timeout time.Duration) ShoppingClientOption {

return func(c *ShoppingClient) {

c.timeout = timeout

}

}

func WithRetry(shouldRetry bool) ShoppingClientOption {

return func(c *ShoppingClient) {

c.shouldRetry = shouldRetry

}

}

Let’s demonstrate two usages of the pattern:
client := NewShoppingClient(“https://api.shopping.com/v1”,

WithApiKey(“my-api-key”),

WithTimeout(10*time.Second),

)

fmt.Printf(“%+v\n”, client) // &

{endpoint:https://api.shopping.com/v1 apiKey:my-api-key userId:

shouldRetry:false timeout:10000000000}

clientV2 := NewShoppingClient(“https://api.shopping.com/v2”,

WithRetry(true),

WithUserId(“my-user-id”),

)

fmt.Printf(“%+v\n”, clientV2) // &

{endpoint:https://api.shopping.com/v2 apiKey: userId:my-user-id

shouldRetry:true timeout:0}

In the examples, we created two clients with different configurations. We
applied only the configuration needed in each example, which is this
pattern’s strength. Remember this important design pattern because it will
become handy further in the book.

Generics
Generics is a new feature and was introduced in v1.18. Go have a support
generics from version 1.18. Among the significant additions to the language,
Generics stand out as a prominent concept.
Generics in programming let us write flexible and reusable code by handling
different types of data in a more adaptable way.
This section will cover the essentials of generics in Go and the points where
they differ from other languages. Generics exist for functions, structs,
interfaces, and maps. Generic behavior in Go is similar to other languages,

but some differences exist. We assume that the reader has a previous
knowledge of Generics. By assuming that, we won’t elaborate on the
concept of Generics here.
A good explanation starts with the simplest example; here is a generic
function:
func printIt[T any](item T) {

fmt.Println(item)

}

printIt(1) // 1

printIt(“Hello”) // Hello

By using [and] to declare the generic type of the function, which in this
case is any and represented by T. The only thing that differs mainly from
other languages with generics is any keyword. Each generic representation
(in the preceding example, T) must implement an interface or constraints.
For constraints - there are two built-in constraints - any and comparable.
For interfaces - the Go team provided us with a convenient package called
golang.org/x/exp/constraints, which gives us common constraints
interfaces for generics.

1. Any: Anything, meaning each type, can fulfill this constraint.
2. Comparable: Pertains to any type, we can apply comparison operators

such as == and !=. That map keys must be comparable.
3. Interfaces: we can create our custom interface as a constraint to our

generic function; see the following example:
type Number interface {

int | float64

}

func bigger[T Number, K any](a T, b T, prefix K) {

if a > b {

fmt.Println(prefix, a)

return

}

fmt.Println(prefix, b)

}

bigger(1, 2, “The bigger integer is:”) // The bigger

integer is: 2

bigger(3.0, 2.0, “The bigger float is:”) // The bigger

float is: 3

We declare a custom interface called Number, which includes two types
using the pipe symbol |. The other examples are similar to the first example.
We can also apply generic to structs. It can be advantageous to build a
flexible struct for many types. Let’s take an example of a storage struct
that can store an item and fetch that item.
type StorageInter[T any] interface {

GetItem() T

StoreItem(T)

}

type Storage[T any] struct {

Item T

}

func (s *Storage[T]) GetItem() T {

return s.Item

}

func (s *Storage[T]) StoreItem(item T) {

s.Item = item

}

The preceding code snippet has complex logic compared to the one we
discussed in the previous section. First, we declared a generic interface,
which is possible in Go. Then, we declared a simple generic struct with a
property called Item whose type is T, and the T constraint is any. Then, we
implemented the StorageInter interface functions signature. To make sure
the struct implements the interface, we declared the following line:
var _ StorageInter[int] = &Storage[int]{}

It is worth mentioning that this is a superb way in general (regardless of
Generics) to make sure that a struct fulfills an interface (declare an empty
variable - “_”). The usage of this function would look the same as any usage
of struct in Go. The only difference is that we need to instantiate the type
([int]) because it is generics. To understand this in a better way, let us
discuss the following code examples:

var intStorage StorageInter[int] = &Storage[int]{}

intStorage.StoreItem(789)

fmt.Println(intStorage.GetItem())

var stringStorage StorageInter[string] = &Storage[string]{}

stringStorage.StoreItem(“This is a string”)

fmt.Println(stringStorage.GetItem())

In the preceding two examples, we illustrate how to use a generic struct in
Golang. In the first example, we apply the type of int to the struct
Storage, and in the second example, we apply the type of string to the
struct Storage. Because the signature of StoreItem function is
StoreItem(item T), we can pass int the first example and pass string in the
second example.

Understanding Context in Go
In Golang, Context is one of the Core pillars that every Golang developer
should know.
The Go team created a Context package, which helps us manage context.
It’s as simple as that. Behind the sense, context is a struct. We can only
observe its interface - context.Context (from the context package), which
looks like this:
type Context interface {

Deadline() (deadline time.Time, ok bool)

Done() <-chan struct{}

Err() error

Value(key any) any

}

An in-depth discussion of interface signatures is beyond the scope of this
chapter. In simple words, for understanding, we can divide into three
concepts:

1. Manage key-value store: In a second, we can save and retrieve values
from context by keys. We can get values from context by a function in
the context package - Value(key any) any.

2. Handling concurrency: In the next chapter, we’ll explore
concurrency. The context is an elementary tool that helps us leverage

communication between goroutines.
3. Managing tasks: Using context, we can ensure that related tasks can

gracefully stop when needed by passing values, cancellation signals,
and deadlines (timeout).

To start using context, let’s see how to create a context from nothing using
the function context.Background()
ctx := context.Background()

We should avoid using this function if unnecessary and strive to use the
parent context. We will see in a moment how to do it.
As we saw, one of the goals of context is to serve key-value stores. Let’s
examine an instance where we aim to include the API key within the
context.
func main() {

ctx := context.Background()

childContext := context.WithValue(ctx, “apiKey”, 123456)

printAPIKey(childContext)

}

func printAPIKey(ctx context.Context) {

apiKey := ctx.Value(“apiKey”)

fmt.Println(“API Key:”, apiKey) // API Key: 123456

}

We used the function of context.WithValue, which gets the parent context
and key value. Note that these functions get any type as a parameter (any is
an alias to the empty interface - interface{}).
Context serves various purposes, such as task management, timeouts,
environment variables, and more. To illustrate context usage, consider a
scenario in task management where we must stop and gracefully terminate a
task. The Context package provides a solution through the WithCancel
function, generating a side function that cancels the context and adds an
error. This allows us to gracefully terminate tasks using the WithCancel
function, and we can retrieve an error using the Err() function. Let’s look at
an example of canceling a context for better understanding.
contextWithCancel, cancel := context.WithCancel(ctx)

cancel()

fmt.Println(“What happened ?”, contextWithCancel.Err()) // What

happened ? context canceled

Another way to conceal context is by using timeout. As an illustration, we
know tasks must adhere to a 30-second timeout, or it could affect our DB.
Let’s see an example of doing it while using the function
context.WithTimeout(parent Context, timeout time.Duration)

(Context, CancelFunc).

contextWithTimeout, _ := context.WithTimeout(ctx,

30*time.Second)

fmt.Println(“What happened ?”, contextWithTimeout.Err()) //

What happened ? <nil>

time.Sleep(35 * time.Second)

fmt.Println(“What happened ?”, contextWithTimeout.Err()) //

What happened ? context deadline exceeded

Another useful function is a WithDeadline. This function lets us define a
specific time when the context is done. Note that the function WithTimeout
uses the WithDeadline function behind the senses.
func WithTimeout(parent Context, timeout time.Duration)

(Context, CancelFunc) {

return WithDeadline(parent, time.Now().Add(timeout))

}

Here are the best practices when using context:

Avoid using Background(): We should aim to start a new context from
the parent context and not use the context.Background(). We don’t
want to break the current lifecycle and start a new one. We usually use
this function at the start of a program.
Concurrency best practices: Will be discussed in the next chapters.
Pass context explicitly: We should strive to pass it as an argument
between functions and not use it as a global variable.
Prefer Cancel over Timeout: We always strive to use manual
cancellation rather than automatic cancellation. Manual vs. automatic
cancellation is the difference between context.WithCancel and
context.WithTimeout.

All of these best practices lead us to perform propagation of context.

Context propagation involves consistently transferring contextual
information, typically through function arguments, to maintain relevant data
throughout the execution of a program or system. Context propagation
ensures the seamless flow of contextual details across different parts of the
code.
We must avoid global environment variables or repeatedly passing the same
field or struct through many functions. Context propagation creates a
hierarchy between the different logics in the code. For instance, if we
process an event, this event triggers several other child events. The child
events need all the key-value items from the parent context, but each child
event requires a different timeout. This example proves that hierarchy is
crucial.

Figure 4.1: Context propagation

This hierarchy helps us to control the lifecycles error handling between
goroutines.
As discussed, the Go team invented the language intended to run on the
cloud. With that thought in mind, context is critical here. When working in a
cloud environment, communication between services is often. It becomes
more often in Microservices’ architecture.
In Microservices architecture, each service relies upon dependencies from
others or third-party services. Propagation of context is essential to transfer
this information, which can be authentication and authorization data,
observability data (tracing, logs), request metadata, and so on.

Errors — Talking About Error Propagation
Error handling is critical and essential to any programming language. This
section will discuss the usage and implementation of error handling using
Golang.
Error handling in Go is essential, particularly when developing code within
a microservices’ architecture. Why is that?
When we encounter bugs (which will happen a lot), we must prepare and set
the proper infrastructure to investigate the bug. The most annoying thing is
to be blind when investigating a bug. The best preparation we can do while
writing code is to perform satisfying error handling.
Sometimes, an error can be propagated between many services — for
example, a service calling an internal API that fails (because of its internal
reason). At first look, the bug is in the service, but actually, the bug is the
API. We can understand it quickly if the error handling is done right!
The default error value in Go is nil, error is a type in Go. There are three
ways to create an error type in Go:
The first way is to use the fmt package like this:
err := fmt.Errorf(“a height of %0.2f is invalid”, -2.3333)

fmt.Println(err.Error()) // a height of -2.33 is invalid

The example is straightforward. For struct to be an error type, it must
include a method on the error type, which has a signature of - Error().
This function returns the error as a string. Notice to use it only when you

know the error isn’t nil. Otherwise, it will panic. The second way to create
an error in Go is to use the errors package like this:
err = errors.New(“this is an invalid height”)

fmt.Println(err.Error()) // this is an invalid height

It has the same effect as the first example but is leaner. There are sensations
where it is a convention to use this style rather than the first one. We will
elaborate on that convention in the following sections. The third way to
create an error in Go is through a custom error type. We would need to
declare a struct, and this struct should have a method called Error() that
returns a string. Let’s observe an example:
type ApiError struct {

Path string

StatusCode int

}

func (e *ApiError) Error() string {

return fmt.Sprintf(“API error: %s returned a %d”, e.Path,

e.StatusCode)

}

func main() {

err = &ApiError{Path: “/api/users”, StatusCode: 500}

fmt.Println(err.Error()) // API error: /api/users returned a

500

}

Error handling is a vast topic, and we will not cover this topic in detail.
Instead, we will focus on the following:

Why error handling in Go differs from other languages
Errors are here to tell a story
Conventions

If you want to explore error handling, there is an excellent article about Rob
Pike about error handling, which is attached in the references.
In the second chapter, Usability of Go, we elaborated on the mentioned
sections. These sections are just a reminder. Note that we won’t talk here
about panic and recovery; instead, we will talk about them in the following
chapters.

Error Handling: Difference between Go and Other
Languages
Error handling in Go is different. The Go team took a different approach
regarding that. Most of the languages include try-catch-finally. Errors
will eventually happen, as we all know. Sooner or later, we must consider
how we will handle them. Due to excellent error handling, developers can’t
forget to handle the error and return the precise error message.
Usually, many error messages in other programming languages get
swallowed between heaps of try-catch. Go gives us a very convenient way
to do multi-value returns, which makes our lives easier to return errors
properly.

Errors are Here to Tell a Story
In Chapter 2, Usability of Go, we talked about “telling a story” using errors
in Go. Telling a story becomes a force multiplier when we speak in the
context of microservices. Because a story of a single service might be
simple, but the story of an error across many services will be much more
complex. We can resolve it by using tracing between services. We will talk
more in detail about tracing in Chapter 9, Deploying to Production. In short,
tracing is the tracking code between services and errors in particular.

Conventions
We took this conventions table from the Uber-Go convention, and it
describes very well the conventions around the guidance on when to use this
error and another.

Error matching? Error Message Guidance Description

No Static errors.New A function that creates
a new error with the
given message.

No Dynamic fmt.Errorf A function that
generates formatted
error messages

Yes Static Top-level var with
errors.New

Defines top-level
variable with error

message using
errors.New

Yes Dynamic Custom error type Defining a custom
error type

Table 4.1: Error handling conventions

Testing - Best Practices, Mocking, and Fuzzy Tests
One of the things we significantly love about Go is that the testing
package is a core package maintained by the Go team. We encountered
many other situations in other languages where we were frustrated to find
the proper testing framework because there were so many of them, and each
missed something. Our recommendation is to try to avoid using an external
testing framework.
This section will discuss what tests look like in Go, how they differ from
other languages, and Go tests’ best practices.
Note that tests are an enormous topic, and we don’t aim to learn about it.
Unit tests, component tests, integration tests, smoke tests, mock, stub, fake,
and spy are examples of terms and definitions in the testing ecosystem. We
aim to learn about the adjustment to Go and the benefits of tests, particularly
in Go. Also, we will learn what we need to test when building
microservices’ architecture.
Our perspective about testing in general goes like this:

1. Tests must be independent.
2. Flaky tests are any system’s disease — tests must be reproducible.
3. Tests are a great way to document our code.

What are the steps to create a test in Go and where?

1. Create a file with a postfix of _test.go. The file can be near the tested
file (see the example in this chapter’s code). We can create the file in a
specific directory for tests.

2. In the test file, declare a function that her signature should be like that
func TestName(t *testing.T). Replace the Name with what you want
to test. Usually, we test a function, and the Name is the function’s name.
But, the Test prefix is necessary.

3. Use the Go CLI to run the test by running - go test ./

We have a function called get bigger (“example.go”)
func GetBigger(a, b float64) float64 {

return math.Max(a, b)

}

And this is how the testing file should look like (example_test.go):
package main

import “testing”

func TestGetBigger(t *testing.T) {

type args struct {

a float64

b float64

}

tests := []struct {

name string

args args

want float64

}{

{

name: “a is the bigger one”,

args: args{

a: 9,

b: 6,

},

want: 9,

},

{

name: “b is the bigger one”,

args: args{

a: 3,

b: 7,

},

want: 7,

},

}

for _, tt := range tests {

t.Run(tt.name, func(t *testing.T) {

if got := GetBigger(tt.args.a, tt.args.b); got != tt.want {

t.Errorf(“GetBigger() = %v, want %v”, got, tt.want)

}

})

}

}

There are many utilities under the testing function that help us to perform
more precise tests. There is a link to a more detailed article about the testing
package in Go.

Mocking
This is a valuable tool that helps us set consts for our tests, something that is
immutable. We can mock data, and we can mock a function. There are
various ways to mock data; the most convenient way is using a gofakeit
package. It is a very convenient package that helps us to mock data. Let’s
discuss the mocking function.
We can’t mock functions directly in Go. What we actually can mock is
interfaces. Before mocking an interface, we must know how to mock a
struct. To mock a struct in Go, we need the struct to be compatible with
an interface, and then we can mock that interface. We will see in a second
how to do it.
Before that, we will mock a function. To mock a function, as you probably
guessed, we need to assign a function to a struct. Here, we can leverage the
existence of the empty struct (struct{}). Here is a use case where we have
a function calling another two functions.
// Valid name is between 8 and 16 chars and doesn’t contain

number

func IsValidName(name string) bool {

numbersValid := IsNumbersValid(name)

lengthValid := IsLengthValid(name)

return numbersValid && lengthValid

}

func IsNumbersValid(name string) bool {

return !strings.ContainsAny(name, “0123456789”)

}

func IsLengthValid(name string) bool {

length := len(name)

return length >= 8 && length <= 16

}

Let’s say that we want to create a test for IsValidName function, but we
want to mock IsNumbersValid and IsLengthValid functions. The first step
is to create an interface and empty struct as follows:
type ValidationClient struct{}

type ValidationClientInter interface {

IsNumbersValid(name string) bool

IsLengthValid(name string) bool

}

Then, assign the function that we want to mock to our struct.
func (c *ValidationClient) IsNumbersValid(name string) bool {

return !strings.ContainsAny(name, “0123456789”)

}

func (c *ValidationClient) IsLengthValid(name string) bool {

length := len(name)

return length >= 8 && length <= 16

}

After that, we should create an instance of the struct and use that instance to
call the function that we want to mock.
var Client ValidationClientInter = &ValidationClient{}

func IsValidName(name string) bool {

numbersValid := Client.IsNumbersValid(name)

lengthValid := Client.IsLengthValid(name)

return numbersValid && lengthValid

}

Following the example, now we have a function IsValidName calling
another two functions through a struct client (Client), which fulfills an
interface.
ValidationClientInter.

Remember that we must have that interface. That is because, in Go, we can
use composition to “override” an interface. After that, let’s use a tool called
mockery. mockery helps us generate mocks by running a command. There is
an alternative called gomock, which is also very popular in Go. To run
mockery, use the following command:
mockery --all --inpackage

This will generate a separate file for each interface. When running this
command, the tool will create this file - mock_ValidationClientInter.go.
The only thing that remains now is to determine the behavior of the mocked
function and then assign the Client to the mocked client we created before.
By doing so, when running the test, it will use the mocked client and not the
original client.
mockedClient := &MockValidationClientInter{}

mockedClient.On(“IsNumbersValid”, mock.Anything).Return(true)

mockedClient.On(“IsLengthValid”, mock.Anything).Return(true)

Client = mockedClient

This functionality is happening within the test file.

Fuzzy Testing
Fuzz tests generate input for a function using supplied seed data. Fuzz
testing proves to be an effective method for uncovering unforeseen
behaviors within our code. It helps to find where the code could panic so we
can handle this particular use case we didn’t think of.
Fuzzing is a new capability in Go. Support fuzzing testing from version
1.18. Let’s look at a simple function parsing string into first and last names.
// ParseName parses a name into first and last.

func ParseName(s string) (string, string, error) {

parts := strings.Split(s, “ “)

return parts[0], parts[1], nil

}

We created a fuzz test for this function like this:
func FuzzParseName(f *testing.F) {

f.Add(“John Adams”)

f.Add(“George Washington”)

f.Fuzz(func(t *testing.T, s string) {

_, _, err := ParseName(s)

if err != nil {

t.Errorf(“%v”, err)

}

})

}

Now, let’s run the fuzzing test with a timeout of 12 seconds. Note that
fuzzing test timeout is infinite (because it always tries to find more use
cases). We can run the fuzzing test by running the following command:
go test -fuzz FuzzParseName -fuzztime=12s

After running this command, we encountered a panic error:
panic: runtime error: index out of range [1] with length 1

Pretty straightforward, the reason for the panic is that we didn’t check a case
of a string that is empty or doesn’t contain space. To solve it, we need to
handle that use case. Also, ignore the new error type in the test.
var ErrInvalidName = errors.New(“invalid name”)

// ParseName parses a name into first and last.

func ParseName(s string) (string, string, error) {

parts := strings.Split(s, “ “)

if len(parts) != 2 {

return “”, “”, ErrInvalidName

}

return parts[0], parts[1], nil

}

func FuzzParseName(f *testing.F) {

f.Add(“John Adams”)

f.Add(“George Washington”)

f.Fuzz(func(t *testing.T, s string) {

_, _, err := ParseName(s)

if err != nil {

if errors.Is(err, ErrInvalidName) {

return

}

t.Errorf(“%v”, err)

}

})

}

Note the fuzzing test must have the prefix of Fuzz in the test name.

Microservices Testing
Microservices, by their inherent design, are characterized as being
straightforward and self-contained. Following the adapter design pattern, we
should encapsulate inter-service communication by wrapping the HTTP
client. There is a reference to this design pattern to read further in the
References section.
While creating the custom client (wrapped client) that communicates to the
other services, we should strive to create those clients as structs. The structs
must implement an interface. There are two best practices regarding using
clients’ interfaces in microservices:

Each service client has its interface - higher flexibility and more work.
All services have a common interface - lower flexibility and less work.

The reason why we need an interface (regardless of the option we chose) is
to have the ability to mock the clients’ responses, as we saw in the
preceding sections (“Mocking”). We would like to mock the client response
when writing tests in the scope of a single service.
A more powerful kind of test is inter-services. Although it is much more
powerful, it also takes a lot of time and effort to do it. There are endless
theories regarding those kinds of inter-service tests. The main aspect is to set
the Setup and Teardown of those tests properly while ensuring that those
kinds of tests are reproducible. Commonly, those tests become flaky in
nimbleness. We should aspire to use the Functional Options Pattern we
saw in this chapter. In an optimal scenario, the Setup function should look
like defining many Options (basically, configuration).
Two relevant efficacious tools Golang brings when discussing building
microservices architects in Go are:

Performing benchmark
Race Detector

Performing Benchmark
The benchmark is a built-in option in the test CLI. Benchmark helps us to
test the performance of a function. Benchmarking is a powerful
methodology that helps us to achieve good performance. Building
microservices can be even more powerful because we can investigate
specific endpoints when they become slow. Let’s see how we can perform a
benchmark test.
func Fib(n int) int {

if n < 2 {

return n

}

return Fib(n-1) + Fib(n-2)

}

And we want to see what the performance of this function for large inputs is.
We need to create a test function with the prefix Benchmark and a signature
that looks like that (b *testing.B), then the test should look like this:
func BenchmarkFib(b *testing.B) {

for n := 0; n < b.N; n++ {

Fib(20)

}

}

To run the benchmark, we need to use the Go CLI as follows:
go test -bench=.

There are various configurations for running benchmark tests that can be
explored.

Race Detector
In the Go CLI, a built-in option lets us detect race conditions. A race
condition is a frequent situation that happens a lot in microservices systems.
Furthermore, it can happen easily in Go due to their concurrency approach.
The race detector can run against the executable program or the tests. Let’s
see an example where we are running a race detector against a simple case:
func main() {

i := 0

go func() {

i++

}()

fmt.Println(i)

}

In the preceding example, a goroutine has been called in the second line of
the function. When we print i, we can get two options: 0 or 1. The reason
for that is a race condition. We don’t know if the goroutine will finish until
the Println is called because they run in parallel. The command we can use
to run the race detector is:
go run -race race-detector.go

We will accept a warning
==================

WARNING: DATA RACE

Write at 0x00c00011a028 by goroutine 6:

main.main.func1()

 /Users/nirshtein/Documents/GitHub/Microservices-with-

Go/chapter-5/race-detector/race-detector.go:8 +0x3c

Previous read at 0x00c00011a028 by main goroutine:

main.main()

 /Users/nirshtein/Documents/GitHub/Microservices-with-

Go/chapter-5/race-detector/race-detector.go:10 +0xa8

Goroutine 6 (running) created at:

main.main()

 /Users/nirshtein/Documents/GitHub/Microservices-with-

Go/chapter-5/race-detector/race-detector.go:7 +0x9c

==================

Found 1 data race(s)

exit status 66

The warning is unequivocal. It is recommended to explore the variety of
configurations to detect race conditions in Go. The next chapters will
discuss techniques to resolve these race conditions.

Conclusion

In this chapter, we discussed the language’s core pillars. Each one of those
topics is much bigger than the things we discussed. We encourage you to
continue to explore each one of those pillars. The references in this chapter
are a great starting point.
The next chapter will discuss one of the main pillars of the language -
Concurrency!

References
https://refactoring.guru/design-patterns/go
https://go.dev/blog/errors-are-values
https://github.com/brianvoe/gofakeit
https://go.dev/security/fuzz/
https://refactoring.guru/design-patterns/adapter/go/example
https://pkg.go.dev/testing#hdr-Benchmarks
https://go.dev/blog/race-detector

https://refactoring.guru/design-patterns/go
https://go.dev/blog/errors-are-values
https://github.com/brianvoe/gofakeit
https://go.dev/security/fuzz/
https://refactoring.guru/design-patterns/adapter/go/example
https://pkg.go.dev/testing#hdr-Benchmarks
https://go.dev/blog/race-detector

CHAPTER 5
Unlocking Go’s Concurrency Power

Introduction
In the previous chapter, we delved into essential topics within Go and this
language’s basic principles. This chapter will focus on and delve into the
most prominent pillar - Concurrency. One core motivation behind Go’s
development is to give developers a straightforward and convenient way to
write code that runs concurrently. We will cover all the Go-related topics in
concurrency - Goroutines, channels, principles, design patterns, concurrency
pitfalls like goroutine leaks, and more. Concurrency aims to deliver optimal
performance. Good performance is a key indicator of any type of
architecture, primarily for microservices.
In Chapter 2, Usability of Go, we discussed how goroutines and the
scheduler work. We will continue from there and elaborate on goroutines in
this chapter. Before we jump into concurrency in Golang, let’s address three
potentially confusing terms:

Concurrency
Parallelism
Asynchronism

Concurrency is when the execution of multiple tasks is interleaved instead
of each task being executed sequentially, one after another.
Parallelism is when these tasks are actually being executed in parallel.

Figure 5.1: Concurrency and parallelism comparison

Asynchrony is a separate concept (even though related in some contexts).
One event might happen at a different time (not synchrony) to another. The
following diagrams illustrate the difference between a synchronous and an
asynchronous execution, where the actors can correspond to other threads,
processes, or even servers.

Figure 5.2: Synchronous process

Figure 5.3: Asynchronous process

It is essential to note the difference because, in this chapter, we will talk
about concurrency in Go.

Structure
In this chapter, we will discuss the following topics:

Goroutines
Channels - Buffered vs. Unbuffered
Sync Package
Pub/Sub
Channel Closing Principle
Avoiding Goroutine Leak
Fan In Fan Out Pattern

Goroutines
Goroutines and channels are the core concepts we use in Go to implement
concurrency. In this section, we will explore code examples demonstrating
the execution of Goroutines, examine the limitations of running Goroutines,
and discuss the implications of Goroutine leaks.
func main() {

go printHello() // Hello

go func() {

fmt.Println(“Hello from anonymous function”)

}() // Hello from anonymous function

time.Sleep(1 * time.Second)

}

func printHello() {

fmt.Println(“Hello”)

}

It is as simple as that just use the keyword go and then call a function. The
function can be declared like printHello and can be an anonymous
function. The Go scheduler will manage the Goroutines from the moment we

execute them. The scheduler is responsible for allocating new goroutines,
assigning them to a thread, executing them, pausing if needed,
communicating between them, and deallocating goroutines.
A prevalent question is the maximum amount of goroutines we can run in
Go. The answer is that it depends. A reminder from Chapter 2, Usability of
Go - behind the senses, we have threads managed by the Go scheduler. The
GOMAXPROCS configures the number of threads; the default and recommended
value is the number of cores of the machine we are running on.
Hypothetically, we can run as many goroutines as we want, but we must
consider two factors - memory usage and garbage collection performance.
Memory usage — Each goroutine uses 2KB, which means a 1GB memory
machine can hold a maximum of ~250K goroutines. We need to calculate the
maximum number of goroutines for every machine we are running on.
GC performance - As many goroutines we have, garbage collection will
become slower and slower.
A rule of thumb for the maximum goroutines is between 1000 and 10,000.
So, what is a goroutine leak? A goroutine leak is when garbage is never
collected because it sends or waits to receive data over channels. Let’s
discuss channels first and get real-life examples of goroutines leaks.

Channels - Buffered vs. Unbuffered
The best way to describe channels is that they are like queues. Their
behavior is similar to queues — we can send and receive items into them.
The difference between queues and channels is that channels aim to facilitate
goroutine communication. Channels are how goroutines communicate and
send and receive data between them.
Here is an example where we create a channel, send data to that channel, and
then receive the data in the main goroutines from the same channel:
func main() {

messages := make(chan string)

go func() {

messages <- “ping”

}()

msg := <-messages

println(msg)

}

We use the chan keyword to declare a channel. Note that each channel has a
type. In the example, the channel is of type string, which means we can
only send items from string type to it. Using the syntax of <-, we send the
ping string into the channel. We receive the data onto the channel using the
assigning syntax := and the <- syntax.
In the preceding example, we used an unbuffered channel.
There are two types of channels in Golang: buffered and unbuffered
channels. Let’s examine the difference between them.
func main() {

messages := make(chan string, 2)

messages <- “ping”

messages <- “pong”

println(<-messages) // ping

println(<-messages) // pong

}

To declare a buffered channel, we should use the following syntax:
make(chan type, int). The int is the size of the channel. As we saw,
channels are like queues. The size of the channel is the size of the queue,
which means we can’t send more items into the channel than its size unless
there is a receiver on the other side. Note that the output is like a queue
order, not a stack order (FIFO, not LIFO).
We will block the code if we try to send an item into a full channel. Unless
there is a receiver goroutine - it will unblock the sender goroutine. If all
other goroutines remain, we will enter a deadlock, and Go will notify us.
func main() {

messages := make(chan string, 1)

messages <- “ping”

messages <- “pong”

println(<-messages)

println(<-messages)

}

The only thing we changed is the size of the channel. However, if we try to
run this code, we will get the following error:
fatal error: all goroutines are asleep - deadlock!

We got this error because we tried to send an item to the full channel while
no goroutine ran a receiver that was supposed to unblock the main code.
Now, let’s take an example of an unbuffered channel.
func main() {

messages := make(chan string)

go func() {

messages <- “ping”

}()

msg := <-messages

println(msg)

}

The way to declare an unbuffered channel is exactly like a buffered channel,
just without declaring the size. The difference between them is that the
unbuffered channel has 0 length. While using unbuffered channels and
buffered channels that are full, we can’t send items to the channel (chan <-)
without having a corresponding receiver (<- chan).

Closing a Channel
When we create channels, they are, by default, open. We can use the
close(channel) syntax to close a channel. Closing a channel means we
can’t send data into the channel, but we can still receive data.
func main() {

ch := make(chan int)

close(ch)

ch <- 1 // panic: send on closed channel

}

The purpose of closing a channel is to notify the receiver that the sender has
finished its work and won’t send any more items. Note that closing a channel
must happen only from the sender side and not from the receiver side. We
will discuss the principle of closing channels in more detail in the later
section.

Range Over a Channel
We already saw the usage of the range syntax. We can use the same syntax
for iterating over values from a channel, such as the receiver side.
func main() {

ch := make(chan int, 3)

for i := 0; i < 3; i++ {

ch <- i

}

close(ch) // if you don’t close the channel, deadlock will

occur

for i := range ch {

fmt.Printf(“%d “, i) // 0 1 2

}

}

In the example, we send three items to the channels and then iterate over the
received values through the range syntax.
Please note two things.
First, we must close the channel; it will lead to deadlock! The range-for-
loop will be stuck forever if we don’t close the channel. The sender doesn’t
notify the receiver that he has finished sending items.
Second, closing a channel prevents data from being sent to the channel. It
doesn’t prevent receiving data from the channel like we did in the last three
lines in the example.

Selecting a Channel
We already saw the usage of the select syntax. We can use the same syntax
for receiving data from multiple channels.
func main() {

c1 := make(chan int)

c2 := make(chan int)

go func() {

c1 <- 1

}()

go func() {

c2 <- 2

}()

go func() {

for {

select {

case <-c1:

println(“c1”)

case <-c2:

println(“c2”)

}

}

}()

time.Sleep(1 * time.Second)

}

The two goroutines can send data over the respective channels anytime. We
need a single mechanism on the other side that will know to receive data
from multiple channels. The select syntax is the solution for that use case.
We can see how to leverage it in the example.

Channels Directions
We can specify the channel direction while using channels as function
parameters.
func main() {

ch := make(chan int, 1)

send(ch)

recv(ch)

}

func send(ch chan<- int) {

ch <- 1

}

func recv(ch <-chan int) {

fmt.Println(<-ch) // 1

}

We used the syntax of chan<- to specify that we can receive a channel as a
parameter, but we can only send data onto that channel.

Synchronization Between Goroutines
One of the most useful use cases of channels is synchronization. We can
synchronize between goroutines by notifying them about a process’s start
and end through channels. A pervasive pattern to notify of work that is
“done” between goroutines is to use a boolean channel of size 1.
func main() {

done := make(chan bool, 1)

go func() {

println(“Start goroutine”)

time.Sleep(1 * time.Second) // simulate work

println(“End goroutine”)

done <- true

}()

println(“Waiting goroutine”)

<-done

println(“All done”)

}

Leveraging Channel Strength
The usage of channels, as we saw, is communication between goroutines.
There are several use cases for leveraging channel strength:

Synchronization between goroutines
Sending and receiving notification
Accepting data from several goroutines using select
Futures and promises -> mimicking the process async/await
Acting as queues
Timeouts
Handling a fatal
Ticker

Fan In Fan Out pattern

These are a few leading examples of use cases. There are many more use
cases and examples.
When should we use buffered channels, and when should we use unbuffered
channels?
By default, we should opt for unbuffered channels. Buffered channels
become necessary when the receiver lags behind the sender, or
synchronization is required before data retrieval. These are the primary
reasons for using buffered channels over unbuffered channels. Additionally,
specific program requirements may also dictate the use of
buffered/unbuffered channels.

Sync Package
The sync package is one of the core packages in Go. This package provides
basic synchronization primitives. Most of the types in the package provide
low-level routines. Higher-lever routines should be performed via channels.

WaitGroups
WaitGroup is a type in the sync package. WaitGroup provides a way to wait
for multiple goroutines to finish their work. It is an immensely potent tool
with widespread usage.
func main() {

wg := sync.WaitGroup{}

wg.Add(5)

for i := 0; i < 5; i++ {

go func(i int) {

defer wg.Done()

time.Sleep(1 * time.Second)

println(i)

}(i)

}

fmt.Println(“Waiting…”)

wg.Wait()

fmt.Println(“Done”)

}

The output will look like this (the order of the numbers can change):
Waiting…

2

0

1

3

4

Done

WaitGroup type works as a counter. Behind the senses, the WaitGroup type
holds a counter int type, and the initialized value is 0. All the goroutines
blocked on the Wait() are released if the counter value becomes 0. We used
the Add(delta int) function to increment the counter size. To decrease the
counter’s value, we used the function Done() - which subtracts 1 from the
counter. These are all the methods on the WaitGroup type - Add, Done,
Wait.
Note that a negative value in the Add function will lead to panic. Also, if we
pass the WaitGroup instance between functions, we should do it by pointer.
The biggest disadvantage of this technique is that there isn’t a conventional
way to handle errors. There is a separate package called errgroup, which
helps us to achieve that.

Locks
To access the same data across several goroutines, we need to protect access
to the data from one goroutine while the other is accessing it. Such a
scenario can cause faulty data or, even worse - fatal errors.
func main() {

counter := 0

wg := sync.WaitGroup{}

wg.Add(10000)

for i := 0; i < 10000; i++ {

go func() {

defer wg.Done()

counter++

}()

}

wg.Wait()

fmt.Println(“counter:”, counter)

}

In the preceding example, the output of the counter should be 10,000.
Unfortunately, the counter is somewhere under it. The reason is that multiple
goroutines try to access the counter variable; some fail because other
goroutines lock the counter value and write to it. If we replace the counter
with a map and try to write to the same key, we will get an even worse
scenario - a fatal error: concurrent map writes. To avoid this situation,
we need to use mutex. Mutex is a sync package type that helps us lock and
unlock.
func main() {

counter := 0

wg := sync.WaitGroup{}

mu := sync.Mutex{}

wg.Add(10000)

for i := 0; i < 10000; i++ {

go func() {

defer wg.Done()

mu.Lock()

counter++

mu.Unlock()

}()

}

wg.Wait()

fmt.Println(“counter:”, counter)

}

Now the output will be - counter: 10000, as expected. The mutex type lets
us lock. For any other goroutine wanting to Lock() the mutex (mu), we must
wait until another goroutine Unlock() the mutex (mu).

Singleton in Golang - Once.Do

Summing up the concept of a singleton - it’s among the most recognized
design patterns for guaranteeing the creation of a single instance of a specific
type. In many other programming languages, various patterns exist to
achieve this while maintaining thread safety. In Go, it is super easy to
implement this pattern while using the Once type from the sync package.
type cache struct{}

var cacheSingleton *cache

var once sync.Once

func main() {

GetCache()

GetCache()

GetCache()

}

func GetCache() *cache {

once.Do(func() {

println(“Creating singleton object”)

cacheSingleton = &cache{}

})

return cacheSingleton

}

The output of this program is - Creating singleton object. And that’s it
(not three times).
The Do function receives a function as a parameter. The Do function ensures
that the function inside is executed exactly once, which we want to achieve
when writing a singleton. Do is also the only function that exists on the Once
type.

Low-Level Routines
There are other low-level routines we can use in the sync package that we
won’t elaborate on in this chapter:

1. sync.Map: The same purpose as the normal map in Go but is safe for
concurrent access across several goroutines.

2. sync/atomic: Managing shared counter state across several goroutines.

3. sync.Pool: Self-managed temporary retrieval object pool — this is to
facilitate the Garbage Collector work.

Pub/Sub
Publish-subscribe is one of the most known patterns. Pub/Sub pattern is a
messaging pattern that helps us to communicate between
systems/services/objects. It broadcasts data/messages from what is called a
publisher through a topic. Each subscriber is allocated to a specific topic,
and every subscriber receives all the messages associated with the topic to
which they are assigned.

Figure 5.4: Publish-Subscribe pattern

type PubSub struct {

subscribers map[string][]chan interface{}

}

func NewPubSub() *PubSub {

return &PubSub{

subscribers: make(map[string][]chan interface{}),

}

}

func (ps *PubSub) Publish(topic string, item interface{}) {

for _, ch := range ps.subscribers[topic] {

ch <- item

}

}

func (ps *PubSub) Subscribe(topic string) <-chan interface{} {

ch := make(chan interface{})

ps.subscribers[topic] = append(ps.subscribers[topic], ch)

return ch

}

func main() {

ps := NewPubSub()

ch := ps.Subscribe(“t1”)

go ps.Publish(“t1”, “hello”)

item := <-ch

println(item.(string))

}

This is a simple implementation of the publish-subscribe pattern in Go. Note
that this example is imperfect - we don’t close the channels and do not
handle concurrency properly. Utilizing existing libraries is the suggested
approach when implementing this pattern.
Pub/Sub is a pattern in microservices architecture. When building
microservices architecture, each service works independently and decouples
from one another, which is precisely what the Pub/Sub pattern aims to do. It
allows writing each subscriber independently without changing the publisher
code to get his data. He just needs to assign himself to an existing topic.
Numerous advantages of microservices architecture are reflected in this
pattern. One major example is the scalability of the services that become
seamless while using Pub/Sub.
More advanced Pub/Sub usage allows several more capabilities such as
scheduled processes, delays, workflows, and so on. Here are some real-life
examples of using Pub/Sub:

Broadcast of event data

Real-time notifications
Distributed caching
Live location tracking

Note that to use Pub/Sub between services in microservices architecture, we
need to use a third service that manages the topics, publishers, and
subscribers. Familiar technologies for Pub/Sub can be found as a service in
all the biggest cloud vendors or open-source projects like Redis.
Many people tend to confuse Pub/Sub to Message Broker. Let’s see the
difference between them in a nutshell.

PubSub Message Broker

Like broadcast - single message copies to many
subscribers

Unicast - single message to a single consumer

Publisher and Subscriber Publisher and Consumer

Ideal for broadcasting Ideal for task delegation

More susceptible to message loss More resilient and have better reliability

No FIFO capability Have FIFO capability - to keep order

Table 5.1: Comparison between PubSub and Message Broker

We will discuss message brokers more in detail in Chapter 7, Building
RESTful API.

Channel Closing Principle
We already mentioned the channel closing principle in a nutshell. However,
it is so important that we need to discuss it again. The simple principle says
we must close a channel from the sender goroutine if this is a single sender.
We shouldn’t close channels from the receiver side and shouldn’t close
channels from the sender side if we have several senders.
Although the principle is there are scenarios where we need to close the
channel from multiple senders. In that scenario, we must perform a graceful
close if we have multiple senders and need to close the channel.
func main() {

ch := make(chan int)

wg := &sync.WaitGroup{}

wg.Add(10)

for i := 0; i < 10; i++ {

go Sender(ch, wg, i)

}

go func() {

wg.Wait()

close(ch) // graceful close

}()

// receiver

for i := range ch {

println(i)

}

}

func Sender(ch chan<- int, wg *sync.WaitGroup, i int) {

defer wg.Done()

ch <- i

}

In the preceding example, we can observe a graceful channel close with
multiple sender goroutines.

Avoiding Goroutine Leak
Until now, we have experienced all the good that goroutines offer.
Unfortunately, there is a downside of goroutines - goroutine leak!
A goroutine leak can happen when a sender goroutine is blocked until the
receiver arrives at the channel and vice versa. Meanwhile, the blocked
goroutine never gets unblocked.
func leak(ch chan int) {

data := <-ch

fmt.Println(data)

}

func main() {

ch := make(chan int)

go leak(ch)

}

Let’s take a look at the preceding example; how is that a leak? It is a
goroutine leak because we don’t have a receiver! The leak function is stuck
forever.
There are two common situations where goroutines can occur:

Forgotten sender
Abandoned receiver

Forgotten Sender
This is a scenario where a sender goroutine is being “forgotten” and tries to
send data via a channel. However, there is no receiver on the other side.
func forgottenSender(ch chan int) {

data := 3

// This is blocked as no one is receiving the data

ch <- data

}

func main() {

ch := make(chan int)

go forgottenSender(ch)

println(runtime.NumGoroutine()) // 2 instead of 1

}

The forgottenSender function will keep running within a goroutine forever.
In this example, we must use a buffered channel to avoid a goroutine leak so
the forgottenSender could finish its work.
func forgottenSender(ch chan int) {

data := 3

// This is blocked as no one is receiving the data

ch <- data

}

func main() {

ch := make(chan int, 1) // avoid goroutine leak by using

buffered channel

go forgottenSender(ch)

}

It isn’t always outward that there is a goroutine leak. We can see many
scenarios where error handling can cause unintentional goroutine leaks.
func networkCall() int {

return 1

}

func anotherAction() error {

return errors.New(“data is invalid! Returning”)

}

func forgottenSender(ch chan int) {

data := networkCall()

ch <- data

}

func handler() error {

ch := make(chan int)

go forgottenSender(ch)

err := anotherAction()

if err != nil {

return err

}

data := <-ch

fmt.Println(data)

return nil

}

Everything will be fine if we eliminate the section where the anotherAction
function is being called. Unfortunately, let’s assume that this code block is
necessary. We have a goroutine leak because the forgottenSender function
keeps running in the background while the handler function returns an error,
and now that function has done its work. To solve this situation, we must run
the receiver in a goroutine before calling the anotherAction function or use
a buffered channel.
Akin to the error handling use case, it can also happen when we use a select
case for multiple channels.
func networkCall() int {

time.Sleep(3 * time.Second)

return 1

}

func forgottenSender(ch chan int) {

data := networkCall()

ch <- data

}

func handler() error {

ctx, cancel := context.WithTimeout(context.Background(),

10*time.Millisecond)

defer cancel()

ch := make(chan int)

go forgottenSender(ch)

for {

select {

case data := <-ch:

fmt.Printf(“received data! %d\n”, data)

return nil

case <-ctx.Done():

return errors.New(“timeout! Process canceled. Returning”)

}

}

}

We have the same problem: the handler function finishes its work before the
network call is done (the timeout for 10 milliseconds is lower than 3
seconds). The forgottenSender function is stuck and doesn’t have a
receiver on the other side, which leads to a goroutine leak. We can solve this
goroutine leak by using a buffered channel.
When we use buffered channels, it unblocks the goroutine, then the GC
notices that no one is using the channel ch and cleans it from memory.

Abandoned Receiver
This is a scenario where a sender sends data, but the sender never notifies
the receiver that he needs to stop receiving data.
func abandonedReceiver(ch chan string) {

for data := range ch {

println(data)

}

println(“Worker is done”)

}

func sender(ch chan string) {

for _, data := range []string{“one”, “two”, “three”} {

ch <- data

}

}

func handler() {

ch := make(chan string, 3)

sender(ch)

go abandonedReceiver(ch)

}

func main() {

handler()

time.Sleep(1 * time.Second)

println(runtime.NumGoroutine()) // 2 instead of 1

}

As we can see, the abandonedReceiver function will keep running forever.
The output of the current program will look like this:
one

two

three

The line “Worker is done” will never be printed because the
abandonedReceiver is blocked on the range for a loop — which causes a
goroutine leak. To solve it, we need to close the channel after the sender
finishes his job, as we already saw in the section on closing a channel.
func sender(ch chan string) {

for _, data := range []string{“one”, “two”, “three”} {

ch <- data

}

close(ch) // solve the goroutine leak

}

Detecting Goroutine Leak
Let’s highlight the fact that a goroutine leak manifests as a memory leak. A
goroutine in the background holds variables that aren’t being released from
memory. There are two primary ways to detect goroutine leaks:

Profiling: We will discuss profiling in more detail in Chapter 10, Next
Steps in Production. Generally, while profiling and analyzing the code,
we can check for non-terminated goroutines using the Go profile
(pprof) or gops.
Tests: The best but most exhausting way is to write unit tests that
reveal goroutine leaks. We aim to cover all the situations where a
goroutine leak can happen. The tests inherently check at the end of the
test if any goroutines are still running in the background. Go allows us
to see how many goroutines run in the background using
runtime.NumGoroutine(). We can also use an external package like -
uber-go/goleak.

Fan In Fan Out Pattern
Fan In Fan Out is a popular pattern that helps us handle multiple sources
converted into a single stream (fan-in) or input from one source being
streamed into multiple pipelines (fan-out). In Go, if we need multiple
functions to read from the same channel until the channel is closed - fan out.
A single function that can read from multiple inputs (sources) until all the
input channels are closed - fan-in.

Fan Out
We should use the fan-out pattern when we want to distribute the work
among a group of workers to perform optimization by parallelism to
resources like CPU and I/O.
func generator(numbers []int) <-chan int {

out := make(chan int)

go func() {

for _, num := range numbers {

out <- num

}

close(out)

}()

return out

}

func businessLogic(num int) int {

return num * 2

}

func main() {

data := []int{1, 2, 3, 4, 5, 6}

var wg sync.WaitGroup

ch1 := generator(data[0:3])

ch2 := generator(data[3:])

wg.Add(2)

go func() {

for num := range ch1 {

println(businessLogic(num))

}

wg.Done()

}()

go func() {

for num := range ch2 {

println(businessLogic(num))

}

wg.Done()

}()

wg.Wait()

}

In the preceding example, we have a data variable (the source), but we want
to parallelize the process of that data. We decided to split the work among
two workers. The first thing we did was to split the data into two. Then, we
called the generator function. The generator function’s purpose is to
accept input, send all the input into a channel called out, and then return that
channel. After calling the generator function twice, we used WaitGroup to
wait for all the workers to finish their work. Finally, we executed two

goroutines (workers). Each worker performed some business logic and then
finished.

Fan In
We should use the fan-in pattern to process multiple inputs (sources) into a
single function. We will do it by merging multiple channels into one. The
process of combining multiple channels into a single channel is called
multiplexing. The single channel will be closed only when all the input
channels will be closed. We will examine the multiplexing process by a
function called merge.
func merge(sourcesCh …<-chan int) <-chan int {

var wg sync.WaitGroup

wg.Add(len(sourcesCh))

out := make(chan int)

outputFunc := func(sourceCh <-chan int) {

for num := range sourceCh {

out <- num

}

wg.Done()

}

for _, sourceCh := range sourcesCh {

go outputFunc(sourceCh)

}

go func() {

wg.Wait()

close(out)

}()

return out

}

func generator(numbers []int) <-chan int {

out := make(chan int)

go func() {

for _, num := range numbers {

out <- num

}

close(out)

}()

return out

}

func main() {

data := []int{1, 2, 3, 4, 5, 6}

ch1 := generator(data[0:3])

ch2 := generator(data[3:])

ch := merge(ch1, ch2)

for num := range ch {

println(num)

}

}

The generator function is the same as we saw in the example of the fan-out
pattern. We first declare the single output channel called out in the merge
function. Second, we create a WaitGroup to determine when all the multiple
source channels are being closed. After they are closed, we will use Wait()
and close the output (out) channel. Then, we created a function
(outputFunc) that accepts the source channel and sends all the data from
that source channel to the output channel (out). Finally, we iterate onto all
the source channels and execute the goroutine, called the outputFunc.
We now have a single channel to iterate safely in the main function until the
merge function closes the channel.

Conclusion
In this chapter, we talked in detail about concurrency in Go. It is one of the
most important topics in Go, and it is crucial to understand it well to write
code. In the previous two chapters, we discussed the Go basics topic to have
a deep knowledge of how Go works, which is imperative to build a
microservices architecture with Go. Throughout these chapters, we had a
glimpse of how to leverage Go knowledge into building microservices
architecture.

In the next chapter, we will go over the fundamentals elements for building
microservices architecture

References
https://stackoverflow.com/questions/4844637/what-is-the-difference-
between-concurrency-parallelism-and-asynchronous-
methods#:~:text=Concurrency%20is%20when%20the%20execution,th
ough%20related%20in%20some%20contexts
https://pkg.go.dev/sync
https://pkg.go.dev/golang.org/x/sync/errgroup
https://www.uber.com/en-JO/blog/leakprof-featherlight-in-production-
goroutine-leak-
detection/#:~:text=A%20possible%20solution%20to%20prevent,a%20
buffer%20size%20of%201
https://github.com/uber-go/goleak

https://stackoverflow.com/questions/4844637/what-is-the-difference-between-concurrency-parallelism-and-asynchronous-methods#:~:text=Concurrency%20is%20when%20the%20execution,though%20related%20in%20some%20contexts
https://pkg.go.dev/sync
https://pkg.go.dev/golang.org/x/sync/errgroup
https://www.uber.com/en-JO/blog/leakprof-featherlight-in-production-goroutine-leak-detection/#:~:text=A%20possible%20solution%20to%20prevent,a%20buffer%20size%20of%201
https://github.com/uber-go/goleak

CHAPTER 6
Core Elements of Microservices

Introduction
After we cover all the essential knowledge related to the Go programming
language, we will combine it with the core elements of microservices
architecture. You are probably asking yourself what are those “core
elements”; microservices architecture is an approach, not a destination.
Therefore, the core elements are tech industry methodologies, design
patterns, and technologies. All of those elements together will compose an
entire system. There isn’t a recipe that tells us how to physique out an
architecture. There are many constraints, product requirements (which can
drag engineering requirements), and assumptions — each system has its
unique structure. However, all these systems have elements in common. This
chapter presents those elements, when they can become beneficial, their
advantages/disadvantages, and when to use/avoid them. We won’t be delving
into every single element; instead, the objective is to provide a framework
outlining the boundaries of each element.
We will not cover all the existing elements for microservices. Instead, we
will go through the leading ones. Here are elements we won’t cover in this
chapter:

Saga Pattern: Allows us to manage distributed transactions in a
microservices architecture by breaking them into smaller, isolated
steps, each with its compensating transaction to handle potential
failures.
Aggregator Pattern: Reduces data from multiple services to simplify
the data for other services that wish to pull it.
Decomposition Pattern: Helps us break monolithic into microservices.
Branch Pattern: Creates separated versions (branches) of the same
service. We can perform complex rollouts like blue-green or A/B
testing.

Service Orchestration: We will cover this in Chapter 8, Introduction
to Kubernetes.
Design of Failures: We will cover this in Chapter 9, Deploying to
Production.
Monitoring: We will cover this in Chapter 10, Next Steps in
Production.

A final note to acknowledge before starting this chapter is that most of the
patterns we will discuss in this chapter have an internal implementation in
Kubernetes. Nowadays, using Kubernetes when crafting microservices
architecture is an industry standard.

Structure
In this chapter, we will discuss the following topics:

Communication Between Services

API Calls
Message Brokers
gRPC

API Gateway
Service Discovery
Load Balancer
Database per Service
Backends for Frontends (BFF)
External Configuration
Service Mesh
Event-Driven Architecture

Event Sourcing
CQRS

Communication Between Services

As we saw in Chapter 1, Introduction to Microservices, microservices
architecture comprises small, independent, and decoupled services. Each
service intends to fulfill a single purpose. However, the system wants to use
all the services to achieve bigger goals. In pursuit of these goals, the services
need a means of communication, enabling them to exchange data through
sending and receiving. This communication form has many faces due to its
complexity.
There are many aspects to consider — message type, message size, response
manner, latency, failures, documentation, packing of messages, and more.
Following are the leading forms for communicating in a microservices
architecture:

API Calls
Message Brokers
gRPC

We won’t explore these forms in depth, as each one is vast and requires
thorough understanding. To use them correctly and precisely, we must know
how to build them correctly. We must also familiarize ourselves with their
advantages and disadvantages to make the best decision when choosing
between them. Moreover, several other factors, constraints, and assumptions
contribute to the situation’s complexity.

API Calls
API stands for Application Programming Interface. API calls are composed
of requests from the service that sends the call and responses from the
services that receive the requests. Each request contains parameters that tell
which data is requested. We send API requests over layer 7 of the network,
the application layer.
API calls are the most frequent communication approach between services in
the microservices architecture. Diverse API styles, such as REST, SOAP,
and GraphQL, warrant in-depth discussion. Among them, REST stands out
as the most widely adopted. Consequently, the next chapter (Chapter 7,
Building RESTful API) will explore RESTful APIs.

Figure 6.1: API Call

Message Brokers
We mentioned message brokers in the previous chapter and compared them
to the Pub/Sub design pattern. A fitting description for message brokers is to
characterize them as an intermediary of messages between one service and
another. Instead of sending a request directly from one service to another, a
service sends a message to a broker. The message contains mainly data,
configuration, and sometimes instructions. The message broker is a separate
service, often composing many services and acting as an independent cluster.
The broker’s goal is to receive the message and notify another service/s
about this message or store it until another service pulls it. Message brokers
have many additional capabilities like retries, store DLQ (aka for Dead
Letter Queue), monitoring, temporary storage, encryption, controlling the
pace of message mediation, and so on.

Figure 6.2: Message Broker

It is important to emphasize that building a message broker from scratch is
strenuous and not recommended. There are various excellent and well-tested
technologies in the market. Here are the leading ones:

Apache Kafka
RabbitMQ
Amazon MQ

gRPC
gRPC is a modern, open-source Google Remote Procedure Call (RPC)
framework. gRPC allows language-agnostic API definitions to be defined
using Protocol Buffers. Protocol Buffers (protobuf) is a language-agnostic
serialization format that is efficient for structuring and serializing data. We
can quickly create client and server implementations using Protocol Buffers
in various programming languages. gRPC framework leverages HTTP/2 as
the underlying protocol, allowing multiple capabilities like bidirectional
streaming and real-time communications. Behind the scenes, it is just an API
call, but it takes advantage of HTTP/2 capabilities, which makes it very
powerful. While simple APIs are straightforward, gRPC takes little time to
learn. Moreover, the gRPC framework doesn’t have support for all
programming languages.

API Gateway
There are various ways to communicate between services in a microservices
architecture. The standard way is via simple APIs, as we saw.
API gateway is a service that acts as an entrance (gateway) to the
microservice architecture. The API gateway accepts all the requests from all
the clients and then directs the client request to the desired service, also
returns the response to the client. Having a single entrance point to the
system gives us complete control over what is going in and out. We can
implement a few capabilities categories using the API gateway:

Security: Each service can use authentication, authorization, and
encryption capabilities. Each service doesn’t have to force those
security requirements. Instead, most things can happen in the API

gateway. Sometimes, it isn’t feasible to do anything due to business
logic constraints.
Observability: Each service Can use capabilities like metrics, logs,
and traces. We can start tracking all the requests from the API
Gateway.
Routing: Rate-limiting, caching, failure handle, load balancing, rolling
updates capabilities, and more. All of those logics can be implemented
inside the API gateway.

Figure 6.3: API gateway, clients sending requests to services

In the preceding figure, we can see different clients sending requests to the
API gateway. The API knows how to direct each request to the desired
service by the requested path and domain. This example illustrates the API
gateway routing capability, among others we mentioned.
The most crucial thing to remember while building architecture is
prioritizing simplicity. The API gateway pattern is beneficial and powerful
because it helps us achieve simpler architecture. It centralizes many worries
- security, observability, load balancing, rate-limit, and so on. When a
problem occurs, we’ll know where to investigate the incident.
Note that each API gateway varies from one to another. Each architecture
has different requirements, leading to different API gateway approaches.
Chapter 8, Introduction to Kubernetes, will discuss how Kubernetes

independently implements some API gateway pattern capabilities - using a
resource called ingress.

Service Discovery
In a microservices architecture, the way for services to communicate
between them, as we said, is through APIs. Whenever a service needs to
send an API request, it must determine the targeted service’s network
location (IP address and port). Each service may have several instances due
to system requirements (each server has limitations to how many requests he
can handle concurrently). Each service instance has a different network
location (IP address and port). In the dynamic cloud environment, the
network location of each service instance is temporary and changing
urgently due to updates, scaling, failures, and so on. We need assistance
identifying the existing service instances and their corresponding network
locations.
The solution for this problem is the service discovery. The service discovery
pattern lets a service know the network location of the requested service
instance. The requested service can start communicating with the desired
service when he learns the service network location. There are two patterns
for implementing service discovery, as follows:

Client-side discovery
Server-side discovery

Client-Side Discovery
The client determines the requested service’s instance network location
using this pattern. The requesting service sends a request to a known storage
that keeps each service’s network locations. The so-called service

registry is the storage that owns the network locations of all service
instances.

Figure 6.4: Service discovery via client-side discovery

The Requesting Service Instance asks the service registry for the
network locations of ServiceA instances via the HTTP request. The service
registry has the network locations of the ServiceA instance. The service
instances are responsible for sending their network locations to the service
registry. After the Requesting Service Instance gets the network location,
he can request every ServiceA instance he wishes. In the preceding figure,
we request the instance with the address 1.2.3.4:5555.
The main drawback of this pattern is that we must implement a complex
logic of load balancing and discovery logic on the client side, which means
that we must duplicate the logic for each programming language.

Server-Side Discovery
This Server-Side Discovery pattern is the more prevalent of the two. In this
pattern, all the “problems” are transferred to a load balancer, which counts as
the “Server.” The client sends a request to the load balancer, and the load
balancer acts like the client in the client-side discovery pattern.

Figure 6.5: Service discovery via server-side discovery

All the functionality regarding load balancing is in the Load Balancer

instead of the client. This pattern separates the discovery logic from the
Requesting Service Instance to the Load Balancer, which is the main
advantage of this pattern.
NGINX, AWS ALB, and AWS ELB are popular load balancers that can act
as server-side. In Chapter 8, Introduction to Kubernetes, we will discuss
Kubernetes, which has implemented a service discovery pattern using the
server-side approach.

Service Registry
We already mentioned the service registry components while discussing
client-side and server-side approaches. The service registry is a database
containing all the service instances’ network locations. It exposes the ability
of service instances to register/unregister their network locations and
delegates the job of network location registration to the service instances.
Moreover, the service registry requires them to send their heartbeat to
determine if instances are still alive and can accept traffic. As we can see,
there isn’t an explicit service registry in Kubernetes; instead, Kubernetes
leverages existing storage - etcd. Kubernetes has an internal logic that
registers instances’ network locations to etcd. Etcd is used for that purpose
and has many other usages by Kubetenes. Etcd, in general, is a highly
available, distributed, consistent key-value storage.

Load Balancer
A load balancer is a crucial component of any software architecture. On the
one hand, we have various clients who wish to request a service from our
system. On the other side, our dynamic and changing environment composes
our services. Our environment can be highly dynamic due to version
updates, failures, load, and many reasons. Between those two sides stands
the load balancer, a policeman who routes the traffic.
The load balancer is responsible for regulating and distributing the network
traffic among the existing servers and doing it effectively. It should know
which services are currently available and which aren’t. Understanding the
services’ availability can direct new requests and redirect existing requests
from a faulty service to an operating service. It ensures the availability and
reliability of all services.
As mentioned, the service discovery server can act as a load balancer, and
the API gateway can serve as the service discovery. Therefore, the API
gateway can be a load balancer. When talking about load balancers, the
primary intention is the ability to distribute requests to available services.
Request distribution can be highly complex, and we will give examples of
different use cases and algorithms in a second.
There are various types of load balancers. This section of the book mainly
describes L7 load balancers. A trendy way to divide different groups of load
balancers is by L4 and L7. L4 load balancers are for the transport layer and
focus on network layers like IP addresses and ports, while L7 load balancers
concentrate on the application layer. Nowadays, there is no need to write a
load balancer. Various load balancers, such as NGINX, HAProxy, AWS
ELB, and AWS ALB exist.
This expansive subject could also fill an entire book with discussion. It is
important to emphasize that load balancers are necessary and, luckily, easy
to operate (usually). Unless we wish to write a load balancer or contribute to
an existing project, we should focus on knowing only how to deploy,
troubleshoot, and use it. The usage and configuration vary from one load
balancer to another, and we can usually find an online guide that will walk
us through how to deploy it.
The next point to understand is the algorithm governing the load balancer.
We can configure a load balancer to our specific needs and requirements.

Each load balancer technology has a variety of algorithms. Eventually,
selecting the appropriate load balancer algorithm is essential for meeting our
system requirements. Here are some widely used algorithms for load
balancing:

Round Robin: The request is distributed sequentially, one after
another, in a loop. Round Robin is the most common and
straightforward algorithm.
Least Connections: The server with the lowest number of connections
gets the next request.
Least Time: A formula that calculates a combination of the number of
connections and response time; the server that is faster and has a lower
number of connections gets the next request.
Hash: A key definition for distributing the request. The key definition
can be the URL path, encoding type, port, IP address, and so on.
Random with Two Choices: Choose two servers using an algorithm
(Least Connections, Least Time, or something else), and select one
randomly.

There are benefits and drawbacks to every algorithm. When choosing a load
balancer algorithm, we should investigate and seek the best algorithm that
suits our system. Other configurations can also benefit our system.

Database per Service
Database per service is a typical pattern in microservice architecture. Every
system with multiple services will likely need a persistent data storage
system. Establishing robust data separation is paramount in fostering loose
coupling among services within a microservices architecture. Keep in mind
that different services have different data storage requirements. Rational
databases will be a great option; sometimes, NoSQL and others are the best.
But that isn’t the focus here.
Data separation can occur internally in the database itself — the so-called
shared database pattern. However, in this pattern, we’ll discuss the database
per service. Let’s illustrate the difference between a shared database (rational
database, for example) and a database per service in a microservices
architecture.

Figure 6.6: Shared database in the rational database vs. database per service

A shared database among various services can be through a single database
and table or schema per service. Developers are often tempted to perform
SQL joins or read another service data directory. To avoid this temptation,
we can use the Database per Service pattern. The separation of databases per
service gives us the highest level of separation, which manifests itself in
several advantages:

The services are loosely coupled - as we want!
Each service can use a different database. As we mentioned, each
database has other needs.
Scaling limitation - many databases have limitations in terms of speed
and size. When we have a separation of databases per service, it is

easier to replicate and scale. We can manage each database
independently, free from constraints imposed by other services.

However, separating databases per service has a few disadvantages:

The complexity significantly increases when creating and managing
more databases.
Aggregations and joins between services become much more
complicated and challenging. SQL joins are between different
databases. Therefore, we need an external service or tool to facilitate it.
Implementing transactions across services becomes tricky and
complex. Distributed transactions are challenging; however, using the
Saga pattern mentioned earlier might help us resolve it.

Imagine the pattern of database per service as another barrier between the
services. Many companies usually use a shared database at the start because
it is easy and fast. After a while, they realize they must separate the database
per services/s. Still, the time-spending cost of separating the databases after
a long time is very high compared to the scenario in which they would first
separate a database per service.

Backends for Frontends
BFF, or Backends for Frontends, is a pattern that helps us improve client
communication with our backend system. When building a system, we
usually have different types of clients: web-based applications using
HTML/JS, web frameworks like React, mobile clients for iOS or Android,
desktop applications, direct API requests, or third-party applications. Each
client will need data from a different variety of backend services in a
different structure.
Our problem is how all those clients can communicate with all the backend
servers without overcalling the complexity and making it cumbersome. The
solution is to use the API gateway pattern discussed earlier in this chapter
but for each client.

Figure 6.7: Backends for frontends through API gateways

This pattern’s main disadvantage is the same disadvantage of the API
gateway we described: the need to maintain another service, another moving
part, which adds complexity. Also, adding another service is another
network hop that causes slower latency.
On the other hand, using backends for frontends has the same advantages as
API gateway. Backends for Frontends pattern is beneficial when creating
optimal APIs for each client. The optimization of each client can vary from
one client to another; for example, web-based applications probably need
much more data than mobile applications.

External Configuration
While developing services in microservices architecture, we deploy the code
we write into several environments, not one. Every environment is isolated
from one another. The popular environment types are production, staging
(sometimes called pre-production), QA, and development. Each service will
need a different configuration in each environment. For example, each
environment has a separate DB, connection configurations to third-party
services are diverse, credentials, and many other differences. We don’t want
to create a duplication of each service; as developers, we hate duplications
(DRY). The problem is deploying all those services to different
environments without creating code duplications.

The solution is this pattern — make the configuration external to the service.
When the service starts, it will pull a configuration from an external
service/source via environment variables most of the time. Configuration
injection can also be performed in other ways than environment variables. It
is essential to be cautious. Confusion between environment configurations
can be very painful, like switching the DB configuration of dev and
production.
In Chapter 8, Introduction to Kubernetes, we will see how Kubernetes
seamlessly helps in injecting configuration through the environment
variables. A widespread tool, Helm, is a force multiplier above Kubernetes
and provides a templating engine for even more seamless configuration.

Service Mesh
The best way to describe service mesh is as a dedicated infrastructure layer
that handles communication between microservices. It usually provides tools
in the network layer like elements described in this chapter - load balancers,
service discovery, security, and monitoring (logging, metrics, and so on).
Understanding that this technology exists and can help us a lot is essential.
The main drawback of using service mesh is that it can be challenging to
configure. When we reach some capability that our framework doesn’t exist,
we often don’t have the flexibility to suit our needs.
Three popular market technologies that provide service mesh are Istio (for
Kubernetes), Linkerd, and Consul. It is recommended to thoroughly read
about it; this section was just a summary.

Event-Driven Architecture
Event-driven architecture is a vast topic. We’ll discuss the collision of
implementing event-driven architecture with microservices architecture.
Event-driven architecture is a fascinating topic, and unfortunately, we won’t
be able to discuss it properly in this book. Instead, a highly recommended
book for this topic is “Designing Event-Driven Systems”.
Before jumping into the interface of microservices with event-driven, let’s
understand the basics of event-driven architecture.

Event Versus Message

A message is specific, and we send a message from a particular service to
another. Both services, the sender and the receiver, are aware of the schema.
The sender requests data, and he knows how to request it from the receiver
(by the agreed schema). On the other hand, the receiver is expecting a
request by the agreed schema by responding to the data as promised. The
schema is unique for the sender and receiver, and the location is pre-
determined.
An event is something more general. An event will contain data, not
requests or instructions. An event has no specific destination. It is emitted
and broadcast to those who will listen and consume this event. The event
also contains an ID to be unique. Events are immutable, and they can’t be
changed.
Event-driven architecture is based on the Pub/Sub pattern we learned in the
previous chapters. We need three components to implement the event-driven
architecture: publisher, event broker, and consumer, as discussed in the
Pub/Sub pattern. Here are common usages of event-driven architecture:

Tracking another system’s events: If we want to create a system that
tracks another system with events, we will probably be forced to build
event-driven architecture.
Auditing.
Big Data processing: The CRUD operation can create many
collisions; moving to event-driven architecture can reduce that friction.
Backend processing: Due to requirements of business logic.

Pros

Decoupled Services: Like microservices, event-driven architecture
helps us even more to reduce the friction between services and turn
them into loosely coupled.
Scalability: For the same reason, Pub/Sub helps us scale. We can
control the producer and consumers separately, scale them separately,
handle failures, deploy new versions, and more.

Cons

Data consistency: The downside of segregating publishers and
subscribers is that subscribers may experience delays in processing

events, mainly when dealing with a high volume of messages.
Maintaining consistency and processing events becomes challenging,
especially when events involve logic correlated with others or
interactions with third-party services.
Duplicate events: Event-driven architecture works with breakpoints. If
something terrible happens, we can always “redrive” events from the
previous checkpoint. The problem is that we may already have
processed some events until the failure, so we must process the same
events again.
Complexity: As mentioned a few times in this book - our system will
become more complex when we add more components and services.

Event Sourcing
Event sourcing is a pattern that helps to leverage the benefits and
characteristics of events. Due to the power of the events, we don’t have to
expose update and delete operations. Instead, all the events will always be
saved and aggregated when requested by a service. This is basically what
event sourcing patterns do. Typically, services that use the API would like to
perform CRUD (create, read, update, delete) operations on the data. Instead,
the data would look like an aggregation of events into a state. The final
result should be the same whether or not it is used in event sourcing.

Figure 6.8: Event sourcing vs. CRUD operations.

Event sourcing “shrinks” the amount of CRUD operations. It “disables” the
Update and Delete operation, “enables” only Create operation, and creates
an alternative for the Read operation. This pattern has two advantages,
including:

Immutability: Everything is retained and updated. The original data is
being saved, and we don’t have to guess what the original data was. We
get powerful visibility without significant effort of what exactly
happened.
Replayability: Bugs and problems will occur, eventually. In other
scenarios, we had nothing to do with that. But now, we have all the
data (events) needed to stream the event from when the bug was
introduced.

The significant disadvantage of this pattern is that now we need to store
much more data! Handling a large amount of data reveals many hidden
problems. For example, we’ll have to manage data retention, indexing, and
integrity; this is just the tip of the iceberg. We can achieve data retention
only when we know that we don’t need those events at some point.
Instead, the querying time can be prolonged because we need to perform
aggregation in each request, but for that, we have CQRS.

CQRS
CQRS, which stands for Command and Query Responsibility Segregation, is
a pattern that helps us perform updates and reads in independent processes.
CQRS is based on an event sourcing pattern. CQRS pattern aims to create a
segregation between writing and reading handlers. As we mentioned, the
user eventually wants to retrieve data, but the data is saved as a group of
events. Instead of calculating the aggregation on each read request, each
time an event is handled (creation), it triggers an aggregation of all the
events with some logic. Finally, it will save the aggregation as a state into a
view. A handler will expose an API to read the data from the view.

Figure 6.9: CQRS standard usage

The preceding figure shows three types of events - EventA, EventB, and
EventC. All those event types are streaming events into the handlers (there is
a Pub/Sub between them that we didn’t draw). Then, the handlers write all
the events into the Tables. Each write triggers a logic that calculates a state
and writes that state into the View. When the user in the figure (Reader)
wishes to read the data, it requests the View (green arrow) and not the Tables
(red arrow).
The great advantage of CQRS is obvious - it gives us a fast read! Although
the great advantage, there are two drawbacks to CQRS:

We need to reduce all the events into a state, which sometimes can be a
lot of data and consequently taking a long time to execute.
The read is not available immediately after the write.

Conclusion
In this chapter, we briefly introduce the core elements of microservices
architecture. Although we didn’t delve into each element and pattern, we got
a clear, bounded understanding of the significant elements of microservices
architecture. Often, we won’t use all the elements we described in this

chapter in each microservices architecture. However, most of the patterns
described in this chapter are implemented in various ways in most
microservices architectures. Also, remember that we are developers, and the
operations person (usually DevOps) will probably craft all those elements.
They will set up all the necessary infrastructure to deploy our applications
and services into production. As developers, we must understand how the
entire system’s operations work. This knowledge will assist us in
understanding the boundary between our singular service to other services
and the whole system.
All the elements we described don’t include the business logic of our
business. The business logic influences the decisions and designs of the
elements discussed in this chapter. We didn’t delve into the practices of
writing a single service, which is the business logic. This is what we need to
do in the next chapter. We will delve into the best practices and techniques
for writing a specific service with Go in microservices architecture.

References
https://www.thegeekyminds.com/post/how-microservices-
communicate#:~:text=Message%20Brokers%20%2D%20Software%20
tools%20called,an%20intermediate%20between%20various%20syste
ms
https://www.nginx.com/blog/service-discovery-in-a-microservices-
architecture/
https://www.nginx.com/learn/api-
gateway/#:~:text=An%20API%20gateway%20is%20a%20data%2Dpla
ne%20entry%20point%20for,%2C%20routing%2C%20and%20load%
20balancing
https://www.nginx.com/resources/glossary/load-balancing/
https://medium.com/@crazy_nuclei/l4-vs-l7-load-balancers-
64e47610e2ef#:~:text=In%20summary%2C%20L4%20load%20balanc
ers,based%20on%20application%2Dspecific%20data
https://hasithas.medium.com/introduction-to-message-brokers-
c4177d2a9fe3
https://pkg.go.dev/github.com/golang/protobuf

https://www.thegeekyminds.com/post/how-microservices-communicate#:~:text=Message%20Brokers%20%2D%20Software%20tools%20called,an%20intermediate%20between%20various%20systems
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/learn/api-gateway/#:~:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/resources/glossary/load-balancing/
https://medium.com/@crazy_nuclei/l4-vs-l7-load-balancers-64e47610e2ef#:~:text=In%20summary%2C%20L4%20load%20balancers,based%20on%20application%2Dspecific%20data
https://hasithas.medium.com/introduction-to-message-brokers-c4177d2a9fe3
https://pkg.go.dev/github.com/golang/protobuf

https://microservices.io/patterns/data/database-per-service.html
https://istio.io/
https://linkerd.io/
https://www.consul.io/

https://microservices.io/patterns/data/database-per-service.html
https://istio.io/
https://linkerd.io/
https://www.consul.io/

CHAPTER 7
Building RESTful API

Introduction
REST, which stands for REpresentational State Transfer, is an architectural
style. REST defines sets of constraints that API should fulfill to meet the
requirements of the REST style. RESTful is an adjective for an API that is
ahead of REST constraints. In this first section of this chapter, we’ll
elaborate on these constraints.
In this chapter, we’ll delve into the constraints of REST and illustrate them
through a service in Go. In the previous chapter, we discussed the manner of
communication between services in a microservices architecture. The
prevalent pattern for communication is through API calls, with REST being
the most widely adopted architectural style for APIs. Consequently, our
primary focus will be on the REST architectural pattern. The microservices
architecture inherently encompasses the REST constraints throughout the
system and vice versa. There is a powerful connection between
microservices and REST. More widely, there is an even more powerful
connection between Microservices <> Go <> REST <> Kubernetes.

Figure 7.1: “REST” search term by Google Trends

The REST approach has become very popular over the years, as we can see
by Google Trends. With that popularity, many RESTful APIs exist, some of
which became very popular due to their praiseworthy REST implementation.
When learning REST at the start or just writing a new RESTful API, looking
at famous APIs is pleasant and instructive. Here is an example of two of
them:

Strip API
Twilio API

There are three topics that we won’t cover in this chapter and will cover in
the next chapters that are related to REST:

Design of Failures
Monitoring
Security - Authentication, Authorization

It is vital to remember that REST is an architectural style, and there isn’t a
single way or the right way to implement REST. Some things are suitable for
REST, and some are apparent and opposed to REST. In any meeting room,
when designing REST APIs, there will be the stricter REST people called
RESTafarians, and there are people who can deviate from REST’s hard
constraints. We sometimes can deviate from the constraints of REST to
simplify/improve the API or answer edge cases. REST style is not boolean,
1, or 0. It is more abstract, and API can be “more REST” or “less REST”.

Structure
In this chapter, we will discuss the following topics:

A Brief About the RESTful Approach

Resource and Representation
Constraints

Designing an API

Capabilities
Documentation - Swagger and OpenAPI
API Folder Structure

Resources Methods

Crafting a Server

Gin Gonic Setup
Chains of Responsibilities
CORS

API Capabilities

Pagination
Rate Limit
Panic Recovery
Graceful Shutdown
Filter and Sort
Caching
Conventions
Versioning and Deprecation
Common Pitfalls

A Brief About the RESTful Approach
As we mentioned in the introduction, REST is a set of constraints, and
RESTful API is an API that meets the constraints of REST. Let’s emphasize
that REST is a style, not a Protocol like HTTP. There is a familiar mix-up
between REST and HTTP. Roy Fielding allows the use of any preferred
protocol to implement REST. Although this option is available, most
RESTful APIs use HTTP protocol, which Roy recommended as the
preferred protocol, but it isn’t a mandate. Other types of protocols can be
FTP, SMTP, IMAP, and so on. The popular type of representation (the RE
from REST) is JSON (stands for JavaScript Object Notation), and again, this
isn’t a constraint. RESTful API can use other representations like XML,
HTML, CSV, plain text, PDF, and so on.
There are various ways to craft a RESTful API, depending on our choices,
needs, and business constraints. Eventually, every RESTful API fulfills the
REST constraints, but in different ways.

Figure 7.2: REST constraints

There are six constraints of REST. Eventually, we can do whatever we want
with our code. The REST style aims to guide us in building a more sensible
system. Implementing these constraints aims to improve the client’s
performance, stability, and scalability on the server side. These constraints
are combined to solve and fix common and familiar problems that most
systems have already experienced and been burned by.

Resource and Representation
We have mentioned resources and representation a few times. These two
terms are the core of the REST style.

Resource: A resource is a piece of information representing functional
data as a single unit. For example, resources can be an object (account,
user, chair), collection of objects, document, picture, and so on. We can
change the state of resources by using so-called resource methods,
which need to be uniform (as the Uniform Interface constraint). For
example, HTTP methods like GET, POST, PUT, DELETE, and more
behave as the resource methods.
Representation: Resource representation refers to the state of the
resource, which includes data, metadata, and hyperlinks.

Constraints
Here are the six constraints.

Client–Server
This constraint is also the core principle of microservices architecture. It
encourages us to keep client and server loosely coupled. The client and the
server must not share any dependency between them. Components need to
be developed independently and separately; the client only knows the URIs
that the server exposes.

Uniform Interface
This is the most complex constraint, composed of four other sub-constraints.
URI, which stands for Uniform Resource Identifier, is a sequence of
characters web technologies know to recognize and associate specific
resources.

Figure 7.3: URI composition

Unlike the protocol and representation mentioned earlier, URIs aren’t a
choice. REST forces us to use URIs to determine the uniqueness of
resources. Between the server and the client, there is an interface. This
constraint aims to create solidarity while establishing that interface by the
four sub-constraints:

Identification of resources: It involves ensuring that each URI is
unique to a specific resource. This uniqueness is crucial, preventing the
manipulation of the same resource from different interfaces.
Manipulation of resources through representations: The
representation the server needs to expose is the desired modification.
This representation needs to be as explicit as possible.

For example, the HTTP method like DELETE + URI to a specific resource
(DELETE https://domain:port/api/account/{accountId}) indicates that
the client requests the API to delete an account that has accoundId Account
ID. The developer must understand the URI easily without further
documentation (at least most of the time).

Self-descriptive messages: The message must contain all the
“instructions” on the desired resource. The server should only have all
the necessary information from the message without further questions
or information.
Hypermedia As The Engine Of Application State (HATEOAS) :
Hypermedia refers to all forms of media such as movies, pictures, files,
and more. When a client requests the RESTful API server to get data
on a resource, it expects to get that resource’s data. A portion of the
data can be hypermedia, and REST aims to provide links to the media
data instead of the data in some form.

Stateless
Each request from the client to the server is isolated. The server must neither
rely on previous requests in any manner nor on the local dynamic context of
the server. Client requests must contain all the necessary data to execute the
request as desired.

Layered System
Each request from the client to the server goes through layers. There is never
a direct connection between the client and the business logic. These layers
can be, for example, authentication, caching, load balancing, and more. This
constraint encourages us to create separated layers between the client and the
server, such as in microservices architecture. The client is agnostic to the
different layers between him and the server. Most layers often exist in the
API gateway — as described in the previous chapter.

Cacheable
This constraint forces the server to return a response, which includes data
indicating whether the data is from the cache.

Code on Demand
This constraint isn’t frequent nor required. The server can provide the client
with additional functionality by downloading applets or scripts. For
example, the client wants to convert JPEG to PDF, so he requests from the
server a script that does it. The client gets the script and executes it.

Designing an API
Before approaching writing a service, the first step is to understand the
product requirements, engineering constraints, and anything that can impact
decisions. Define what it will look like, what the necessary capabilities are,
what isn’t, and how to implement it. Decide what the available resources are
and their corresponding representations.

Capabilities
Standard capabilities across RESTful APIs are as follows:

Documentation
Authentication and Authorization (can be at the API gateway layer)
RBAC (can be at the API gateway layer)
Pagination
Rate limit
Caching
Filtering
Sorting
Monitoring and Observability
Feature toggling
Alerting
Error handling
Auto code-client generated

Each API probably doesn’t need all those capabilities and probably needs
other capabilities we didn’t mention here. When building microservices
architecture, each API will want to implement a portion or more of these
capabilities, probably in the same shape as the other APIs. If we implement
the same capabilities repeatedly for each API (even if we use a package for
each capability), we will end up with tons of boilerplate code that differs
slightly in each API.
To solve this problem, we need to create a shared infrastructure. One way to
implement shared infrastructure is through shared code (when using
monorepo). In Go, this code will be in a directory called pkg. Another way

to implement shared infrastructure is to use SDKs (when using polyrepo);
each API will import and use this SDK for its own needs).

Documentation: Swagger and OpenAPI
The most crucial part of constructing an API is documenting the API
specification. An industry standard to document the API specification is to
use Swagger and OpenAPI.
OpenAPI is the official name for a specification that standardizes API
documentation. It has a unique syntax and can be written in JSON or YAML.
Swagger is a set of tools that helps implement OpenAPI. Most Swagger
tools are accessible in the OSS project; paying is an option for advanced
tools.

Swagger Editor: A tool allowing us to edit Swagger YAML online and
view the changes.
Swagger UI: A tool that generates UI for OpenAPI specification.
Swagger Codegen: With OpenAPI specific, Swagger Codegen can
generate various API clients and servers in many programming
languages.
Other tools that can help with various needs that we will not mention
here.

Figure 7.4: Swagger editor (https://editor.swagger.io/)

Swagger is the most potent and widespread set of tools due to its simple
syntax, but it has many options for describing APIs. The agreement between
the client and the server is to use centralized documentation. Many times, the
developers/teams that work on the API server vary from the
developers/teams that work on the client.

API Folder Structure
In Chapter 3, Go Essentials, we discussed Go’s folder structure. We’ll
combine that folder structure with the API folder structure into a united
structure. A well-designed folder structure will serve the developers’ needs.
From onboarding — whether they know the project or not — the navigation
will be without hesitation until writing code — where to find logic and
where to add new resources or capabilities.
Here, we’ll show two famous file structures, but first, let’s observe their
commonalities.

https://editor.swagger.io/

Figure 7.5: The highest level of API structure

The first folder is cmd, which we already discussed, but now we have another
executable: the docs.

Figure 7.6: cmd structure in API

The docs directory contains another main.go, which is the entry point like
the server main.go but for deploying the documentation. We can use
Swagger UI to generate UI on the swagger.yaml.
The second directory name is deploy, which contains all the configurations
for deploying the executables and other assets that are related to the server,
such as networking, configuration, autoscaling, and more. The pkg and
scripts directories have the same purpose as described in the third chapter -
they contain shared code between servers and scripts, respectively. The files

go.mod, go.sum, README.md, and Dockerfile will be in the leading
directory.
In the two examples of API structures, we’ll follow the structure of a grocery
store. For simplicity, we’ll divide the products in the shop into two
categories (so-called tags in OpenAPI) - fruits and vegetables.
For the category of fruits, we have apples and bananas. For the category of
vegetables, we have tomatoes and cucumbers. Each fruit (apple, banana) and
each vegetable (tomato, cucumber) is a resource by the REST definition. We
can buy more cucumbers (CREATE), see how many cucumbers we have
(READ), sell some of them (DELETE), or update their new price today
(UPDATE).

Figure 7.7: API internal file structure A

The preceding figure presents the file structure for option A, which is the
only difference between option B. Let’s go through the directories and files
inside it.

common: This directory includes boilerplate code used across all
resources, shared functionality, utils, and abstraction that each resource
needs to use. For example, a file called query-params.go helps to
serialize all query parameters from the request.
middleware: The middleware fulfills the constraint of a layered system.
In this directory, we’ll find the layers. These layers exist between the
request’s entry point and the endpoint handler. Examples of
middleware can be:

Authentication and authorization
Caching
Request parsing
Logging
Rate limit
Monitoring
Security
Caching
Adding context for business logic, such as connection to cache or
database

tests: Contains all the service tests. Here, we’ll elaborate on the
internal structure of the tests.
routes_registrator.go: Each resource has several endpoints. This
file aggregates all the routes and registers them to the API so the
server.go will know to direct each request to the desired handler.
server.go: Build the API engine. It uses the routes_registor.go,
uses the middleware, and sets the portion of the configuration.
Directory for each category (tag): There is a different directory for
each tag - fruits, vegetables, and so on.

Figure 7.8: API structure option A for each category

There is a different directory for each resource in each category directory.
Note that a single resource can contain several endpoints. For example, GET
/api/fruits/apple/:id, POST /api/fruits/apple, UPDATE

/api/fruits/apple/:id, DELETE /api/fruits/apple/:id — all of these
four endpoints are related to the same resource — apple. In each resource
directory, there can be four files:

controller.go: This is the primary handler where the request starts
after all the middlewares. It parses the request, notifies the client of
errors (4XX status code), and returns the data by the OpenAPI
commitment.
db.go: This is sometimes named as - repository.go. This file
contains all the operations against the database, whichever database it
is. The power of this structure is that we can switch databases, and all
we need to take care of are the db.go files. Note that this file shouldn’t
contain the model/entity by itself. Usually, there is a separate
mechanism for managing the database, like ORM and migrations tool
(gorm is a standard and widely used tool for achieving ORM).
routes.go: Define all the endpoints for a resource. Note that a single
resource can contain several endpoints. This file will contain a function
like this:
func RegisterRoutes(group *gin.RouterGroup) {

group.GET(“/fruits/apple/search”,gin.HandlersChain{Process

RequestSearch}…)

group.GET(“/fruits/apple/:id”,

gin.HandlersChain{ProcessRequestID}…)

}

service.go: It contains all the business logic.

The second option for the file structure is similar. The main difference is in
the order of the files and directories.

Figure 7.9: API structure option B

We created four files for each resource in a single directory in the previous
structure.
We are creating four directories in option B: controllers, routes,
repositories, and services. In each directory, we’ll find another group of
directories as the number of categories and, in each one, a single file for each
resource.

Resources Methods
As mentioned, REST doesn’t force us to use specific protocols, but the
HTTP method currently dominates the market as the most used REST
protocol. This section will focus on HTTP; however, we can conduct the
same behavior on other protocols.

GET: It is used to retrieve information only; it doesn’t change the state
in any way. This method represents the Read operation. Each time we
use the GET method, we should get the same result, unless another
request by another HTTP method modified the resource. Such types of
requests can be cacheable and have length restrictions. Examples:
GET https://www.example.com/accounts

GET https://www.example.com/accounts/search?name=john

GET https://www.example.com/accounts?page=5

POST: It creates new data for a particular resource — a single row or
several rows. This type of request can’t be cacheable and has no length
restriction. Usually, data is sent in the request body and not in the URI.
POST and GET methods are the most widely used over HTTP
methods. Examples:
POST https://www.example.com/accounts

POST https://www.example.com/accounts/myaccount_id/users

PUT: It is usually used to update an existing resource state. However, it
can also create new data like the POST method. The main difference
between POST and PUT is that PUT is idempotent, and POST isn’t. This
difference means that calling the PUT method several times will give the
same result, while POST doesn’t promise that due to potential side
effects. Example:

PUT https://www.example.com/accounts/{myaccount_id}

DELETE: It is used to delete specific resources.
Others: PATCH, OPTIONS, HEAD, CONNECT, and TRACE are other
HTTP methods we can use but aren’t as often as the preceding
methods.

Let’s briefly overview the standard HTTP status codes (X refers to any
number, and 1XX means 100-199):

1XX: Information responses. They aren’t used often.
2XX: Successful responses, the status code we’ll want to see.

200 OK: Usually used by the GET method to determine that the
data is retrieved successfully.
201 Create: Usually used by POST/PUT.

3XX: Redirection message, usually used to redirect requests to other
servers, endpoints, domains, and so on.
4XX: Client errors responses, meaning there is a problem with the
request, which is the client’s responsibility. These kinds of responses
are caught in the middleware or the controller.

400 Bad Request: The client didn’t give the correct/right
information to process the request.
401 Unauthorized: The server can’t identify the client.
403 Forbidden: The client is identified but cannot access the
requested data.
404 Not Found: It is among the most popular status codes,
indicating that the request is unrecognized.

5XX: Server error responses, meaning a problem with the server
himself, and the users usually don’t have much to do with that.

500 Internal server error: The server went into a scenario we
don’t know how to handle.

Crafting a Server

This section will review the essentials of creating a RESTful API server in
Go. We’ll focus on setting up a server with Gin and what to notice. Go
provide us with a default package called http, which we’ll use and utilize.

Gin Gonic Setup
Gin is an HTTP web framework. First, we’ll start from the main.go, where
we declare and execute a server.
func main() {

port := 8080

engine := internal.BuildEngine()

srv := &http.Server{

Addr: fmt.Sprintf(“:%d”, port),

Handler: engine,

}

log.Printf(“Starting server on port %d”, port)

if err := srv.ListenAndServe(); err != nil && err !=

http.ErrServerClosed {

log.Print(“error while running API gin server”, “error”,

err.Error())

os.Exit(1)

}

}

After declaring the port and building the gin engine (we’ll see how in a
second), we created an instance of http.Server struct. After that, we started
the server using the ListenAndServe() function.
func BuildEngine() *gin.Engine {

engine := gin.New()

engine.Use(gin.Logger())

engine.Use(gin.Recovery())

engine.Use(CORS())

group := engine.Group(“/api”)

RegisterRoutes(group)

// engine.use(<any middleware you want>)

return engine

}

To create a new engine, we used gin.New(). While building the engine,
we’ll declare all the middlewares that apply to all endpoints in the server. In
the example, these include logger, recovery, and CORS (we’ll discuss them
in the next section). After declaring all the wanted middlewares, we’ll
declare the groups. Gin let us divide the server into groups. We won’t focus
on it and assign a single group for all the servers. Sometimes, developers
assign a group to a category and a subgroup to a subcategory. In the
example, the group is just “/api”. We’ll assign all the endpoints to the group
by using the RegisterRoutes function in the routes_registrator.go file.
func RegisterRoutes(routerGroup *gin.RouterGroup) {

apple.RegisterRoutes(routerGroup)

}

Using multiple groups in this function, we can assign more relevant
middleware to that specific group. Now, let’s observe the internal of a single
endpoint is a single resource. This code is what we’ll find in the routes.go
file:
package apple

import “github.com/gin-gonic/gin”

var Path = “/fruits/apple”

func RegisterRoutes(group *gin.RouterGroup) {

group.GET(Path, gin.HandlersChain{ProcessRequest}…)

}

And in the controller.go file:
package apple

import “github.com/gin-gonic/gin”

func ProcessRequest(c *gin.Context) {

c.JSON(200, gin.H{

“color”: “red”,

“date”: “2023-12-11”,

“taste”: “sweet”,

})

}

The response, of course, is just mocked data; instead, we’ll need to execute a
business logic function in the server.go file, which almost always will
query the data from the db.go file.

Chains of Responsibilities
If we simplify it, chains of responsibility are a design pattern linking several
commands so one command will lead to another. This pattern helps us fulfill
the constraint of a layered system. The implementation of this pattern
happens through middleware.
Using the modularity we presented before, we can apply relevant
middleware to the entire API (in the BuildEngine function). We can be more
specific and apply middleware to a particular group (a category) in the
RegisterRoutes function. In even more detail, we can apply a particular
middleware at the resource level in routes.go.

CORS
CORS, a browser security feature, stands for Cross-Origin Resource
Sharing. This feature aims to restrict unwanted HTTP requests. We must
specify what origins are acceptable for sending requests from a web browser
to our RESTful API server. Here is how to create gin middleware that can
take care of that:
func CORS() gin.HandlerFunc {

return func(c *gin.Context) {

c.Writer.Header().Set(“Access-Control-Allow-Origin”, “*”)

c.Writer.Header().Set(“Access-Control-Allow-Credentials”,

“true”)

c.Writer.Header().Set(“Access-Control-Allow-Methods”, “POST,

GET”)

c.Next()

}

}

API Capabilities
As mentioned, each API needs to support capabilities that are derivatives of
the product needs. Many popular capabilities exist in almost every API, and
some are not. We’ll elaborate here about the popular ones. Each API
capability will probably be used by more than one API, at least the popular
ones. The best practice is creating a configurable shared infrastructure that is
served as a package or under the pkg directory if it is monorepo. For

example, if one API uses a particular type of pagination, the other services in
the same company will probably need to use pagination in the same manner.

Pagination
Pagination is the process of separating content into separate pages/parts. It is
usually used for navigation or to get data if it is massive. For example, if a
user reads an online book, we don’t need to get all the book content
simultaneously. Instead, we can ask for the next page whenever he swipes a
page. Another example is when we need all the users of a specific account,
but there is an enormous number of users, and it is impossible to get all of
them as a single response; instead, we can use pagination.
There are various pagination algorithms, and a portion of the algorithm can
be applied in the DB-level. For example, using limit and offset in SQL for
PostgreSQL. The popular pagination algorithms are:

Page number: The most straightforward and most unused algorithm.
Choosing const limit, then multiply the limit and the page number.
GET /api/users?page=2

Offset and Limit: Like the previous pagination algorithm. The
difference is that we must choose the limit size instead of the default
limit. The client needs to use an offset between each request, which
complies with the client interaction. This is the most used pagination
algorithm.
GET /api/users?limit=10

GET /api/users?limit=10&offset=10

GET /api/users?limit=10&offset=20

Auto Incremental PK of the ID: Also a ubiquitous algorithm. This
algorithm depends on some ID to arrange the data, and that ID is used
as a cursor.
GET /api/users?limit=10

GET /api/users?limit=10&cursor=

<last_id_from_previous_request>

GET /api/users?limit=10&cursor=

<last_id_from_previous_request>

Rate Limit
A rate limit is a way to block the over-using amount of users, bots, and
requests. To keep the server up and functioning, we must limit the number of
requests going to the server. The rate limit is usually a constant number of
requests per interval, for example, 10,000 requests per minute.
We’ll implement the rate limit as middleware in a shared package and use
this middleware in every service. It is unnecessary to implement rate limits
by ourselves. There are great packages that are suitable for gin to do so.
Finally, the HTTP status code returned when the number of requests passed
the limit of 429 (Too Many Requests).

Panic Recovery
We’ve already discussed error handling in Go and on panic() in a nutshell.
We can liken panic to raise/throw exceptions in other programming
languages. We use panic() when something unexpected happens, so we
must crash the whole application. When writing RESTful API, the panic()
inside an endpoint is odd because a single endpoint isn’t supposed to affect
other endpoints.
We must return the error status code if something terrible happened at that
endpoint. When writing RESTful APIs, we’ll probably panic() when the
server goes up or functionality related to the whole server crashes. Please
also note to use panic wisely because it will execute all the defer statements
when a panic() occurs.
Developers often use panic() incorrectly and put it accidentally within an
endpoint or use a package that propagates a panic() to our program. To
tackle that scenario, we can create a middleware that can recover from panic.
We can use the default panic recovery middleware of gin:
engine.Use(gin.Recovery())

Or we can craft custom panic recovery using the recover() function:
func WithCustomRecovery() gin.HandlerFunc {

return func(c *gin.Context) {

defer func() {

if err := recover(); err != nil {

_ = c.Error(fmt.Errorf(“[recovered] panic: %v”, err))

c.AbortWithStatusJSON(http.StatusInternalServerError,

gin.H{“Error”: “Internal Server Error”})

}

}()

c.Next()

}

}

In the preceding example, we crafted a custom recovery and can put any
customized functionality we want. Not that this middleware will occur for
each on-flight request.

Graceful Shutdown
Graceful shutdown is when a system or application is turned off or gets
signals that it needs to go down (rollout or any other reason). While
receiving a signal to go down, the application has on-flight tasks. Graceful
shutdown gives the application a grace period to finish its tasks.
When building RESTful APIs, it is crucial to implement a graceful shutdown
at the server level. We want to let all on-flight requests finish their work
whenever something bad or a rollout occurs. Here is an example of a
graceful shutdown from the main.go:
func main() {

port := 8080

engine := internal.BuildEngine()

srv := &http.Server{

Addr: fmt.Sprintf(“:%d”, port),

Handler: engine,

}

log.Printf(“Starting server on port %d”, port)

startHTTPServer(srv)

}

func startHTTPServer(srv *http.Server) {

// Create context that listens for the interrupt signal from

the OS.

sigCtx, stopSig := signal.NotifyContext(context.Background(),

syscall.SIGINT, syscall.SIGTERM)

defer stopSig()

go func() {

if err := srv.ListenAndServe(); err != nil && err !=

http.ErrServerClosed {

log.Print(“error while running API gin server”, “error”,

err.Error())

os.Exit(1)

}

}()

// Listen for the interrupt signal.

<-sigCtx.Done()

// Restore default behavior on the interrupt signal and notify

a user of a shutdown.

stopSig()

// Requests are currently on-flight; wait 10 seconds for them

to finish.

ctx, cancel := context.WithTimeout(context.Background(),

10*time.Second)

defer cancel()

if err := srv.Shutdown(ctx); err != nil {

log.Print(“server forced to shutdown: “, “error”,

err.Error())

}

}

The function that implements the graceful shutdown is startHTTPServer.
First, we take the background context and listen for interrupted signals from
the system. Then, we run the ListenAndServe() function in a goroutine.
When some signal is received, we give the system 10 seconds to finish its
work using context.WithTimeout. Note that this time is different between
each server and depends on the server’s internal functionality and the API
purpose.

Filter and Sort
These two functionalities, filter and sort, are the most popular functionalities
we can implement in an endpoint. This is in addition to the pagination

functionality that we saw before.

Filter
There are three significant ways to implement filtering:

Path Parameters: We’ve already mentioned path parameters in this
chapter. Filtering by path parameter is usually used in specific use
cases.
GET /api/accounts/{category} -> GET

/api/accounts/Enterprise

In this example, we filtered all accounts from the Enterprise category.
Of course, we’ll need to declare it in the OpenAPI and implement it in
the server.
Query Parameters: These are the most popular way to perform
filtering. The URL is supposed to be pretty straightforward, mainly
using ‘?’ and ‘&’ keywords to separate between filtering parameters.
Query parameters filtering has URL constraints, and we’ll want to keep
it as simple as possible. If it becomes more complicated, we should
consider the third option for filtering.
GET /api/accounts?category=Enterprise&size_gt=500

In this example, we want to get all enterprise accounts whose size is
greater than 500. On the same coin, we can use different filters like -
size_lt (size it lower than), size= (size it is equal to), size_not (size
isn’t equal to), and size_gte (size is greater than or equal to).
Request Body: Occasionally, we will need more complex filtering.
Here, using body requests comes in handy.
POST /api/accounts

Content-Type: application/json

{

“or”: {

“category”: “Enterprise”,

“size_gt”: 500,

}

}

In the preceding example, we used HTTP POST requests with JSON
and asked for all the accounts that are enterprise or whose size is
greater than 500.

Sort
Sorting is the ability of the API to arrange the responded data in a specific
order, like the user requirements. There are three significant ways to sort
data:

Ascending: This technique is used to sort the data from the lowest
value of a specific field to the highest value of the same field.
GET /api/accounts?sort=size&order=asc

In the example, we sort all the accounts from a minor account to the
biggest. The convention is to use the sort and order as query
parameters.
Descending: The same as ascending, but opposite. It returns the data
from the highest value to the lowest value.
GET /api/accounts?sort=size&order=desc

The convention is to use asc for ascending and desc for descending.
Multiple Sorting: When a single field is insufficient, we can use more
complex sorting using multiple fields.
GET /api/account?sort=effective_score,-size

In the preceding example, the field effective_score is a rank number
between 1 and 5 that determines how much to account for if effective.
We want to retrieve the accounts from the most effective account
(ascending order) with the smallest size (descending order due to -
sign).

Caching
Caching is the ability to store data that is frequently used. The location of the
cache can change depending on the situation. The place can be at the load
balancer or server level, and distributed cache is usually an option using
Redis. Let’s have a quick reminder of HTTP methods caching:

GET: Are cached by default unless a particular case occurs.

POST: Aren’t cached by default unless the request explicitly declares it
wants cached data.
PUT and DELETE aren’t cachable at all.

To implement caching, we need to leverage the power of middleware and
implement a middleware. The caching functionality relies upon TTL (Time-
To-Live) and request header definitions:

Expires: This header specifies the absolute time when the cache
expires.
Expires: Sun, 21 June 2023 16:27:59 GMT

Cache-Control: This header declares directives, whether a response is
cachable or not. Examples of directives are - max-age=3600, must-
revalidate, no-cache, and so on. They can be found at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-
Control.
Last-Modified: It determines when the last response was generated.

Lastly, it is essential to remember that the purpose of a cache is to improve
latency and reduce server work while responding to the desired data. If the
cache doesn’t accomplish its original goal, we need to remove or fix the
caching layer.

Conventions
Here, we will detail all the conventions and best practices related to RESTful
API.

A resource can be a collection or singleton. For example:
GET /api/accounts: Collection resource
GET /api/accounts/{id}: Singleton resource; when we wish to
retrieve a singleton resource, we will use accounts in “plural”.
Collection/Singleton resource can contain sub-collection, for example:
GET /api/accounts/{id}/users - the users is the sub-

collection resource.

Use a noun, not a verb: URI aims to describe a resource as an entity
(noun) and not as an action (verb). Also, don’t include the operation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

name in the URI.
GET /api/deleteAccounts/{id} - bad

DELETE /api/accounts/{id} - good

Chars convention:

Use “-” to improve the readability of URI:
GET /api/user-management

Don’t use trailing flash:
GET /api/account/ - bad

GET /api/account - good

Always use forward slack ‘/’ and not backward slash ‘\’
Avoid using file extension:
GET /api/accounts/billing.json - bad

GET /api/accounts/billing - good

In a few scenarios, the endpoint will become highly complicated, and we
need to simplify it as much as possible. We should consider splitting it into
two or more endpoints if it becomes overcomplicated.

Versioning and Deprecation
API is a commitment, and the documentation is a promise to the user.
Developers want to introduce new features or make breaking changes due to
product/engineering needs. Versioning the API comes in handy for achieving
this goal. Versioning allows developers to make a clear separation between
one promise and another (promise=version) without breaking existing
clients.

Versioning Strategies
Let’s take a look at the prevalent strategies for versioning the API.

URI Versioning: The API version is included inside each endpoint.
GET /api/v1/accounts

GET /api/v2/accounts

This method is trendy and very easy to implement. However, the REST
approach desires to include only the resource details in the URI, not the

version.
Query Parameter Versioning: Like URI versioning, the version in the
URI, but not as path parameter; instead, it is included as a query
parameter.
GET /api/account?version=1

GET /api/account?version=2

It is the same as the previous, less famous strategy but doesn’t require
the client to change the URL, only the parameter.
Header Versioning: It includes a header that indicates the API version.
GET /api/accountsHeaders: { “X-API-version”: “1” }

GET /api/accountsHeaders: { “X-API-version”: “2” }

This approach is most suitable with the REST approach. However, the
version can be hidden from the user.

Versioning Best Practices
Let’s explore some best practices:

Utilize three-part versioning: The best practice for the versioning
schema is as follows: major.minor.patch. For example, 1.3.2 -
version major is 1, minor is 3, and patch is 2:

Major: To introduce breaking or massive API changes.
Minor: Every time new capabilities and features that are still
backward-compatible are introduced,
Patch - bug fixes.

Backward compatibility: Always aim to support old features and
capabilities rather than break them. We use backward compatibility to
reduce the effect on the end client.
Communicate Changes: Whenever we release a new version, it is
essential to reflect and elaborate on what was changed to the customer
and to do it well.

Deprecation

We’ll do it gracefully when it is necessary to deprecate old API versions.
The grace period must be very long, and we must frequently report changes
to the customers. We must give the users enough time to migrate to the new
version. The documentation also reflects the deprecation, and endpoints are
marked as deprecated.

Common Pitfalls
Here are some common pitfalls in REST:

Overusing POST HTTP method: Developers tend to stick to POST
operation even when it isn’t the right choice. We must utilize all the
other HTTP methods: DELETE, PATCH, PUT, GET, and so on.
Not sticking to a convention mentioned earlier: The term resource
can be confusing for REST newcomers, leading to lousy resource
naming.
Lack of versioning: We must keep the API versioning and deprecation
as described in the previous section.
Choosing inappropriate HTTP status codes: Developers use 200,
400, and 500 status codes all the time instead of using the appropriate
HTTP status code.
Messy and misinformation in swagger documentation.
Overcomplicating: The biggest pitfall for developers is making the
API cumbersome and confusing. Keeping it simple isn’t easy, but we
must do it.

Conclusion
In this chapter, we reviewed the concepts and constraints of RESTful APIs.
We learned what makes general APIs go from being just APIs into being
RESTful APIs - the REST constraints. We elaborated on those constraints
and saw their implementation during the chapter. We learned how to start an
API — from the first step of designing architecture well, building proper
documentation in OpenAPI using Swagger, and building the right structure
for Go and RESTful API. Then, we started crafting a gin-gonic server using
Go and implemented several standard capabilities for RESTful APIs, like
pagination, filtering, rate limit, and so on. Finally, we discussed conventions

around RESTful APIs and how to version and deprecate the API when
needed. While doing so, we remind ourselves of the common pitfalls that
can happen when RESTful newcomers write APIs.
In the next chapter, we’ll explore a crucial aspect of the service cycle in
microservices architecture: the deployment phase. We’ll explore the
deployment phase while using the best technology in the market for that -
Kubernetes.

References
https://restfulapi.net/
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://trends.google.com/trends/explore?date=all&q=REST&hl=en-
GB
https://stripe.com/docs/api
https://www.twilio.com/docs/api
https://www.baeldung.com/cs/uniform-resource-identifiers
https://swagger.io/
https://github.com/go-gorm/gorm
https://github.com/gin-gonic/gin
https://pkg.go.dev/net/http
https://go.dev/doc/tutorial/web-service-gin
https://medium.easyread.co/how-to-do-pagination-in-postgres-with-
golang-in-4-common-ways-12365b9fb528
https://www.atatus.com/blog/rest-api-design-filtering-sorting-and-
pagination/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-
Control
https://medium.com/@nadinCodeHat/rest-api-naming-conventions-
and-best-practices-1c4e781eb6a5
https://readwrite.com/api-design-patterns-best-practices-for-building-
resilient-
apis/#:~:text=REST%20API%20Design%20Patterns&text=CRUD%20

https://restfulapi.net/
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://trends.google.com/trends/explore?date=all&q=REST&hl=en-GB
https://stripe.com/docs/api
https://www.twilio.com/docs/api
https://www.baeldung.com/cs/uniform-resource-identifiers
https://swagger.io/
https://github.com/go-gorm/gorm
https://github.com/gin-gonic/gin
https://pkg.go.dev/net/http
https://go.dev/doc/tutorial/web-service-gin
https://medium.easyread.co/how-to-do-pagination-in-postgres-with-golang-in-4-common-ways-12365b9fb528
https://www.atatus.com/blog/rest-api-design-filtering-sorting-and-pagination/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://medium.com/@nadinCodeHat/rest-api-naming-conventions-and-best-practices-1c4e781eb6a5
https://readwrite.com/api-design-patterns-best-practices-for-building-resilient-apis/#:~:text=REST%20API%20Design%20Patterns&text=CRUD%20(Create%2C%20Read%2C%20Update,for%20resource%20discovery%20and%20navigation

(Create%2C%20Read%2C%20Update,for%20resource%20discovery
%20and%20navigation
https://codedamn.com/news/backend/rest-api-versioning-best-practices

https://readwrite.com/api-design-patterns-best-practices-for-building-resilient-apis/#:~:text=REST%20API%20Design%20Patterns&text=CRUD%20(Create%2C%20Read%2C%20Update,for%20resource%20discovery%20and%20navigation
https://codedamn.com/news/backend/rest-api-versioning-best-practices

CHAPTER 8
Introduction to Kubernetes

Introduction
Before talking about Kubernetes, there is a fundamental technology that
needs to be explained first, which is Docker. Docker is a platform that uses
OS-level virtualization to operate packed software called containers. These
containers encapsulate an application and its dependencies, ensuring
consistency across various environments. As developers, we must get
familiar with the basic terms of containerization - image, container, and so
on. And learn the basic syntax of the Docker file:
https://docs.docker.com/engine/reference/builder/. If you aren’t familiar with
virtualization and containerization, it is recommended reading about them in
more detail.
In a world where developers develop many services as part of bigger
microservices architecture, they usually package those services into
deliverable units called containers, which leads to a world where we need to
manage enormous amounts of containers. It is almost impossible to manage
and operate this number of containers while supporting each developer’s
needs and specific requirements. Fortunately, some folks at Google saw this
coming problem and crafted a single project to resolve it. This project is
called Kubernetes.
Why should we learn Kubernetes? “I need to write my code and let the
operation side (usually DevOps) do all the other work for me.” This answer
would be acceptable in a perfect world, but it isn’t the case. There is a
coupling between the application and the way it is deployed. As developers,
we must ensure our functionality happens as expected in production. There
is a vast difference between the local and production environments —
different parameters, edge cases we didn’t think of, scale issues, security
concerns, and more. To mitigate problems in that difference, we as
developers need to know the basics about Kubernetes - common resources,

https://docs.docker.com/engine/reference/builder/

rollout procedure, troubleshooting, central best practices, monitoring, and so
on. In this chapter, we are going to explore those topics.
What is the relation between Kubernetes and microservices architecture?
In simple words, Kubernetes is solving many issues and downsides of
microservices architecture. For example, using an external configuration in a
microservices architecture is recommended. Kubernetes solves it by
providing ConfigMaps and Secrets (storage resources) to inject data into the
application containers. That is why the combination of the two is powerful.
Another example is that routing capabilities can be implemented efficiently
using Ingress (Kubernetes resource).
Kubernetes is an open-source container orchestration system. This system
was invented by Google in 2014 and is now maintained by the CNCF (Cloud
Native Computing Foundation). A shortcut for Kubernetes is K8s (due to the
8 letters between K and S).

Figure 8.1: Microservices architecture uses Kubernetes example

Structure
In this chapter, we will discuss the following topics:

Kubernetes Adoption
Kubernetes Essential Tools - kind, kubectl, kubectx

Basic Resources

Node
Namespace
Pod

Workloads Management

Deployment
DaemonSet
StatefulSet
Job
CronJob

Important Resources

ConfigMap
Secret
HPA
Ingress

Readiness and Liveness Probes
Resources Allocations
Kubernetes Best Practices

Maintaining Good YAML Hygiene
Logging - Specifically for Kubernetes
Environments Management
Proper Monitoring

Kubernetes Adoption
Nowadays, Kubernetes is widely used, and most companies in the world use
it. The community of Kubernetes is enormous and keeps growing year after
year. There are a considerable number of conferences worldwide whose
topic is only Kubernetes. There are tons of open-source projects and tools
that are related to Kubernetes.

Furthermore, some companies have products that are natively for
Kubernetes. It is already industry standard to use Kubernetes as the place to
deploy our services and workloads.

Figure 8.2: Kubernetes Adoption December 2022

Kubernetes aims to manage containerized workloads and services.
Moreover, the goal is to automate the complex procedure of deployment.
Kubernetes takes care of several aspects regarding the deployment process -
networking, configuration, rollout, and so on — and also takes care of the
management - storage, security, and so on.
Kubernetes composes several tools and projects inside it and leverages the
power of each one of them. For example, Kubernetes uses Docker as the
container runtime engine and doesn’t have its own container runtime engine.
Kubernetes comes as a single unit called - cluster. We can create resources
in that cluster by defining the desired resources. We’ll configure the desired
resource that we want using YAML. Kubernetes will perform all the other
work for us and strive to reach the desired state we defined. Further in this
chapter, we’ll elaborate on the different Kubernetes resources relevant to
software engineers.

Kubernetes Essential Tools
Let’s discuss some necessary tools of Kubernetes:

Kind
Kind stands for Kubernetes IN Docker, a tool for running a Kubernetes
cluster as a Docker container. It is straightforward and usually used for local
or testing environments because it is lightweight and easy to use. Other tools
that do the same are Minikube and K3s. Here is how we can start a cluster
using kind:
kind create cluster --name example

Kubectl
Kubectl is a tool that is part of the Kubernetes OSS project. It is a CLI that
lets us interact easily with Kubernetes API. Here are some common
commands of kubectl:
Get resources:
kubectl get pods

kubectl get nodes --output json

Figure 8.3: kubectl get pods output sample response

The first example shows how to get all pods in the cluster in the default
namespace. The second example gets all the nodes in the cluster with the
output format of JSON.
Create a new resource:
kubectl create -f pod.yaml

Modify/Create a resource:
kubectl apply -f pod.yaml

Delete a pod called frontend:

kubectl delete pods/frontend

To see all the commands kubectl has, we can run:
kubectl help

kubectl help <command-name>

Kubectx
Minimalist CLI tool that helps us to switch between clusters. When we use
kubectl, it goes to the cluster API declared in the ~/.kube directory. By
using kubectx, it just switches the context to the desired cluster. For
example:
kubectx <cluster-name>

Basic Resources
The following three resources are widely used in Kubernetes. It is essential
to know what they are to understand Kubernetes. We’ll mention them
repeatedly in this chapter.

Node
“A Node is a worker machine in Kubernetes and may be either a virtual or a
physical machine, depending on the cluster. Each Node is managed by the
control plane. A Node can have multiple pods, and the Kubernetes control
plane automatically handles scheduling the pods across the Nodes in the
cluster.”
This is a quote from official Kubernetes documentation. This quote explains
pretty well what Node is. As developers, this is enough, and we don’t need
to operate them or tackle node issues. However, note that sometimes our
application will have a problem due to node issues. At the very least, we
need to understand that the issue is related to the node and transfer it to the
operation person to tackle it.

Namespace
Namespaces in Kubernetes are a mechanism of separation and isolation
between resources. Some resources can be namespaced, and some are not.
Each time we get resources using kubectl get, it will bring us all the

resources from the default namespace unless we specify differently; by
adding -A, we can get all resources in all namespaces. Names of resources
and kinds need to be unique inside a namespace. To see which resources are
namespaced and which aren’t, we can run:
kubectl api-resources

Figure 8.4: kubectl api-resources output

Note the column “NAMESPACED”, which gives a boolean answer if the
resource kind is namespaced.

Pod
Pod resources are the smallest deployable unit in Kubernetes. A Pod is a set
of containers with shared volumes, environment, and context. We’ll
probably not need to deploy a Pod alone; a Pod is usually part of the running
workload. However, most investigations will be around the pod, describing
it, getting its logs, or getting basic data about the Pod.

Figure 8.5: get pods while using wide output

Describe a pod:
kubectl describe pods/nginx-deployment8-6dcf8bbd4c-459fx

Describe a pod is a typical command; it gives us many details regarding the
Pod and the last events of the Pod. We can also use the describe command
for any other resource in the following format –
kubectl describe <resource-kind>/<resource-name>

See the logs:
kubectl logs pods/frontend2

Like the describe command, we can use the logs command for each
resource, but it is less valuable.

Workload Management
A workload is an application running on Kubernetes. The workload is a
service in a microservices architecture. As we have already seen, deploying
and managing service (workload) is challenging, complicated, and requires
much work. Kubernetes provides solutions for deploying and managing
service through workload resources. Here, we’ll present and explain about
the built-in workload resources.

Deployment
Deployment is the most common workload in Kubernetes. Deployment is
used to manage stateless services. Pods that are being managed by
Deployment are volatile. When a pod is terminated (whether an issue or
rollout causes it), the Deployment resource creates another new pod with a
different name. Deployment uses a resource called ReplicaSet to manage the
pods. Each time we release a new version (just applying new YAML), a new
ReplicaSet is being created and is replacing the old ReplicaSet and old pods.
apiVersion: apps/v1

kind: Deployment

metadata:

name: random-deployment

spec:

replicas: 3

selector:

matchLabels:

app: random-app

template:

metadata:

labels:

app: random-app

spec:

containers:

- name: random-container

image: nginx:latest

ports:

- containerPort: 80

The preceding YAML is an example of minimal Deployment YAML in
Kubernetes.

DaemonSet
DaemonSet is a workload that is suitable for running pods on nodes. The
goal of DaemonSet is to provide facilities that are relevant to local nodes.
For example, DaemonSet with one replica will schedule one pod on each
node in the cluster. Use cases can be storage daemons, network-related
daemons, logs aggregators, telemetry daemons, and others.

StatefulSet
StatefulSet is a workload resource designed for pods that require persistent
state or unique identities. Unlike Deployment resources, where pods are
interchangeable and ephemeral, StatefulSets ensure that pods are recreated
with the same name and state after termination. StatefulSet provides a
consistent volume that the pods can attach to using other resources called PV
(PersistentVolume) and PVC (PersistentVolumeClaim). Use cases for
StatefulSet can be database services, messaging systems, and so on.

Job
Job resource allows us to define a task that can run until it is completed. It’s
as simple as that. Jobs resources can be used, for example, for data
processing.

CronJob
It is a way to run Job resource but with a cron scheduler wrapping it. Usage
cases of CronJob resources can be maintenance tasks, scheduled backups,
batch processing, and so on.
apiVersion: batch/v1beta1

kind: CronJob

metadata:

name: random-cronjob

spec:

schedule: “*/5 * * * *” # Runs every 5 minutes

jobTemplate:

spec:

template:

metadata:

labels:

app: random-cronjob

spec:

containers:

- name: random-container

image: busybox

command: [“echo”, “Hello from the cronjob!”]

restartPolicy: OnFailure

In the preceding YAML example, we can see CronJob YAML; note that
inside the CronJob YAML, we define a Job YAML and wrap it with a
scheduler.

Important Resources
The following resources are common when using Kubernetes; we may
encounter them as developers.

ConfigMap
ConfigMap is a resource that stores non-confidential data in key-value pairs.
Pods can consume ConfigMap data through environment variables,
arguments, or volumes. ConfigMap helps us achieve one of the elements of
microservices: external configuration. Data that can be stored in ConfigMap
includes app properties, connection strings, environment data, endpoints, and
so on.
apiVersion: v1

kind: ConfigMap

metadata:

name: random-configmap

data:

app_name: my-app

database_url: “mongodb://localhost:27017”

The preceding YAML example describes ConfigMap.

Secret
Secret resources are just like ConfigMap resources, but store sensitive data
instead of non-sensitive data. Data that can be stored in Secrets includes
passwords, API keys, certificates, and so on.

HPA
HPA, which stands for Horizontal Pod Autoscaling, is a resource used to
auto-scale workload resources (not suited for all workloads). Horizontal auto
scaling means scaling is done by increasing or decreasing the number of
replicas (Pods). The scaling is based on metrics (CPU or memory) and their
desired values. In HPA configuration, there are minimum and maximum pod
amounts. We will often use HPA for services on a dynamic scale and a load
that occasionally differs.

Ingress
“Ingress exposes HTTP and HTTPS routes from outside the cluster to
services within the cluster. Traffic routing is controlled by rules defined on
the Ingress resource.”
In the quote, the term “services” refers specifically to a Kubernetes resource
named “service.” This resource is responsible for networking within the
Kubernetes environment and should not be confused with the broader
concept of services, especially in the context of microservices.

Figure 8.6: Ingress resource in Kubernetes

This is the most complicated resource we’ll mention in this chapter. As
developers, we’ll probably encounter Ingress only when we want to add a

new route or change a route. Lastly, please note that the Ingress resource
solves some of the significant concerns of API Gateway (core element in
microservices architecture), such as load balancing, security, and high-level
routing.

Readiness and Liveness Probes
In Kubernetes, a Pod receives traffic when all containers are running. Also,
when Kubernetes detects that a Pod is crashing (due to exit code or other
failures), it restarts it. These detections, whether a Pod is ready to receive
traffic or needs to be restarted, are automatically resolved by Kubernetes.
However, in some scenarios, we, as developers, will want to provide
additional information for Kubernetes to perform those detections. For
example, we can decide that a Pod can’t receive traffic until it establishes a
connection to the DB. Another example can be when we wish to restart a
pod if we figure that the Pod cache is invalid. The way to perform that
manual detection is readiness and liveness probes.

Readiness probe: Indicated whether the container is ready to accept
traffic and requests.
Liveness probe: Indicates whether the container is operated. If not, it
needs to be killed and restarted.

apiVersion: apps/v1

kind: Deployment

metadata:

name: web-app-deployment

spec:

replicas: 3

selector:

matchLabels:

app: web-app

template:

metadata:

labels:

app: web-app

spec:

containers:

- name: web-app-container

image: nginx:latest

ports:

- containerPort: 80

readinessProbe:

httpGet:

path: /healthz

port: 80

initialDelaySeconds: 5

periodSeconds: 10

livenessProbe:

httpGet:

path: /status

port: 80

initialDelaySeconds: 10

periodSeconds: 15

The preceding YAML example illustrates Deployment YAML using a
readiness probe to check if the container is healthy and a liveness probe to
check the status of the container if it is working as expected.
There are various ways to define probes. It can be a request to a specific
endpoint using HTTP, TCP socket, shell command, and so on. An HTTP
GET request is the most common use case (like the example).
Developers need to configure and write the probes themselves because we
are the only ones who can determine when the application can accept traffic
and when it needs to be restarted.

Resources Allocations
When specifying Pods in Kubernetes or Pods within workloads, we can
optionally specify how many resources we can allocate to the container. The
standard and frequent resources allocated are CPU and memory, but there
are more. We can specify two parameters for resource allocation - request
and limit.

Request: When defining resource requests, the scheduler uses that to
decide which node to place a Pod. The request is resource usage
expectations.

Limit: When defining resource limit, the kubelet (“node agent”)
enforces the limit and doesn’t let the container pass those limits. If
the CPU reaches the limit, the container will be throttled; if the
memory reaches the limit, the Pod the container runs on will be killed
and restarted.

It is crucial to be on top of the resources we allocate. Without proper
allocation, Pods can do whatever they want. For example, our application
can have memory leaks and consume tons of memory, affecting the other
Pods on the Node or the entire cluster. Another example from the other side
is that small memory allocation can limit our application from operating
correctly. As developers, we are responsible for determining the amount of
resources our containers need.
Here is an example of Pod YAML starting a container named hello with
requests and limits of CPU and memory:
apiVersion: v1

kind: Pod

metadata:

name: example

spec:

containers:

- name: hello

image: hello-world:latest

resources:

requests:

memory: “128Mi”

cpu: “250m”

limits:

memory: “256Mi”

cpu: “1”

Kubernetes Best Practices
The following four best practices are more relevant to Kubernetes
developers. Several other best practices are more relevant to operations. A
book recommended for more detailed best practices in Kubernetes is
Kubernetes Patterns. There is a link to it in the references. These patterns
aren’t taken from this book.

Maintaining Good YAML Hygiene
YAMLs are everything when it comes to Kubernetes. YAMLs are the desired
state in Kubernetes. As users, we define them, and Kubernetes does all the
other work for us. It strives to transform the current state to the desired state
(the YAML file). With that understanding, the YAML must answer the
following requirements:

Neat and Clean: It doesn’t contain any configuration we don’t need or
want. Also, we need to avoid declaring default configurations in
YAML files.
Labels and Annotations: Those two terms are metadata related to the
YAML resource. Annotations are used for arbitrary metadata, and
labels are used to identify resources in Kubernetes. This is a vast topic
in Kubernetes, but we won’t discuss it here. We need to leverage the
usage of those two metadata in each YAML file.
For Workloads: Specify liveness and readiness probes, as we
mentioned earlier.
ConfigMaps and Secrets Must be Adequately Configured: Never
redeclare a key value already declared in an existing ConfigMap or
Secret.

Logging — Specifically for Kubernetes
There are slight differences in how we use logs in Kubernetes compared to
how we use them in other systems. To avoid mistakes, we must tag and label
logs properly by including:

Proper service name: Not the Pod name! We must include the service
name in the log so we’ll be able to correlate logs to the same service. A
common mistake is that logs only include the instance name (Pod name
in the case of Kubernetes) instead of the service name.
Version: To determine when things changed in which version, we must
specify the service version on each log. By doing so, we can see and
observe the lifecycle of our service. For example, a log of errors started
occurring only in version 1.3.2, which means that a bug was started in
this version.

Cluster environment information: Any data that might affect the
behavior of our application. Sometimes, our service isn’t guilty of
having an issue or error. The cluster or Node might be responsible for
that issue. For example, logging the Node name can be very useful.

Environments Management
In any system, we’ll have different environments for different reasons.
Production environment, staging environment (sometimes called pre-
production), testing environment, local environment, and so on. There are
two approaches to separating environments in Kubernetes:

Different clusters for each environment: The main advantage of this
approach is that the environments are decoupled and don’t have
dependencies between them. Its main disadvantage is that it takes much
more effort to set up a different cluster for each environment and much
more effort to maintain several clusters.
Different namespaces for each environment: This approach has the
opposite advantages and disadvantages of the previous approach.
While there are dependencies between the environments (Pods from
different environments can be allocated on the same Node, for
example), it takes much less effort to set up and maintain.

Proper Monitoring
In addition to the regular monitoring we as developers tend to put on
services, there is monitoring relevant for services running on Kubernetes.
Here are three significant things to monitor:

Resources: Monitor the usage of CPU, memory, and storage. It is
essential to monitor these resources to optimize service performance,
identify bottlenecks, and ensure efficient resource allocation.
Containers Status: Monitor whether the containers are
down/up/errors/probes/restart count, and so on. These metrics are
essential to ensure reliability and the health of the services.
Furthermore, they help detect issues, facilitate troubleshooting, and
contribute to more stable and resilient services.
Kubernetes Events: Kubernetes audits the actions he takes through
events. Kubernetes events are drawing the history of the cluster. By

monitoring Kubernetes events, we can detect trends, problems, and
anomalies and gain many insights by looking at the events.

Conclusion
In this chapter, we went through the basics of Kubernetes and focused on the
resources and actions more relevant to developers, not the operation side. We
covered the three basic terms in Kubernetes - Node, Pod, and Namespace.
These terms give the base for understanding other resources in Kubernetes.
We learned about Kubernetes workloads - Deployment, DaemonSet,
StatefulSet, Jon, and CronJob. As developers, we must choose the right
workload resource for a service. After that, we covered common Kubernetes
resources we’ll probably encounter while working with Kubernetes -
ConfigMap, Secret, HPA, and Ingress.
Then, we discussed two major Kubernetes concepts pertinent to developers.
The first was readiness and liveness probes, which ensure our service is
ready to work (accepting traffic) and running properly. The second is
resource allocation — we learned what needs to be specified when working
with workloads (mainly requests and limits for CPU and memory).
Finally, we went through four best practices that are super relevant for
developers using Kubernetes - maintaining YAML hygiene, environment
management, logging, and monitoring specific to Kubernetes.
In the next chapter, we’ll take the accumulated knowledge from this chapter
and the previous chapters into production. We’ll leverage Kubernetes
capabilities to learn how to deploy services to the production environment
while maintaining the microservices architecture style.

References
https://www.avenga.com/magazine/running-kubernetes-on-premise-
versus-in-the-cloud/
https://goteleport.com/blog/microservices-containers-kubernetes/
https://kind.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://kubernetes.io/docs/reference/kubectl/

https://www.avenga.com/magazine/running-kubernetes-on-premise-versus-in-the-cloud/
https://goteleport.com/blog/microservices-containers-kubernetes/
https://kind.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://kubernetes.io/docs/reference/kubectl/

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-
intro/#:~:text=A%20Node%20is%20a%20worker,the%20Nodes%20in
%20the%20cluster
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.oreilly.com/library/view/kubernetes-
patterns/9781492050278/

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/#:~:text=A%20Node%20is%20a%20worker,the%20Nodes%20in%20the%20cluster
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://www.oreilly.com/library/view/kubernetes-patterns/9781492050278/

CHAPTER 9
Deploying to Production

Introduction
This chapter will focus on the critical things we must do when deploying our
applications or services to production. After finishing writing the code and
all the business logic, our service is “seemingly” ready to be deployed. Why
seemingly?
Addressing potential issues in advance is crucial to ensuring a smooth and
secure transition to production. This involves several preparations,
including rollout procedure, thorough testing, and precise packaging, to
ensure our services meet expectations when deployed. Most importantly, the
application must pass security measures to protect against vulnerabilities and
threats before deployment to production. This includes implementing
encryption, access controls, and regular security audits to safeguard sensitive
data and maintain the integrity of the application.
In this chapter, we’ll delve into the essential preparations required for a
successful transition to production, introducing several widely recognized
and proven techniques in the software industry. We’ll see how these
techniques can be implemented using Golang, from security basics and
CI/CD to failures design best practices and deployment strategies.

Structure
In this chapter, we will discuss the following topics:

CI/CD
Design of Failures

Timeouts
Retries
Fallback
Circuit Breaker

Bulkhead

Security

Authentication
Authorization

Feature Toggling
Rollouts

Basic Deployment
Rolling Update
Blue-Green Deployment
Multi-Service Rollout
Canary Deployment

Rollbacks

CI/CD
CI/CD, which stands for continuous integration and continuous delivery (or
continuous deployment), is not just a set of tools; it’s a cultural shift that
empowers teams to deliver better software faster and more reliably.
Before the DevOps era, the application and software release cycle was
monthly, quarterly, annually, and even longer. In the DevOps era, due to
CI/CD culture, integrating a new code life cycle is much faster — it can be a
few releases in a single day or a few releases every hour. As developers, as
fast as we deliver our code and integrate it with the real world (production
environment), we can gain a faster feedback loop and, therefore, detect bugs,
fixes, and improvements faster.

Continuous Integration (CI): Focuses on frequent code integration
and automated testing.
Continuous Delivery (CD): Adds automated packaging deployment to
environments such as production and staging.
Continuous Deployment (CD): Releases changes directly to
production without manual intervention

Figure 9.1: CI/CD lifecycle

The preceding figure describes the CI/CD pipeline’s lifecycle with the
general steps included inside.
In particular, CI refers to the process before the point of deploying the code
to production. The figure represents the blue colors (plan, code, build, and
test). The CI’s main job is to package and test the code. If the CI is
adequately passed, it will continue to the CD. CD refers to deploying the
code into other environments (mainly production). The CD process strives to
be fully automated and without any manual interaction.
Various market tools help create CI/CD pipelines, such as Jenkins, GitHub
actions, CircleCI, and more. As developers, we won’t create these pipelines
but must be aware of them and ensure our code is being tested, built, and
deployed as we want.
Using CI/CD pipelines is crucial in a microservices architecture for two
main reasons:

Maintaining Consistency: A consistent and automated deployment
process ensures that all the services can continue working together
seamlessly.
Scalability: As the system grows, the number of services will increase.
Usually, increasing the number of services will increase the amount of

work linearly. However, due to CI/CD, the amount of work will be
much less when more services are added.

Design of Failures
When deploying an application into production, there is fog and uncertainty
regarding how it will act. Although our code passed unit tests or even a
smoke test, it is possible and common for our application to encounter bugs
and errors. We need to be prepared for those scenarios. We’ll discover
several valuable ways and design patterns to handle failures while having
RESTful API services in a microservices architecture.

Timeouts
Timeouts are essential for any service that needs to send a request to another
service or if it needs bound execution time for some piece of software. We’ll
often use timeouts when sending a request from one service to another.
Using timeouts, we avoid unnecessary on-flight requests that can overload
the services. The timeout time differs between each service, usually between
10 and 60 seconds with an average of 30 seconds, but it depends on the
scenario and basically can be any selected time limit. Let’s see an example
of implementing timeouts in Golang.
** Disclaimer—The timeout is arbitrary, and the number I gave is from my
POV as an engineer. It can defer, be a maximum of 5 seconds, or last a few
minutes.
The following examples illustrate how to implement timeouts in Go using
channels. In the first example, a timeout occurs, while in the second
example, it does not. We begin by creating a channel with a capacity of 1,
followed by a goroutine that simulates a delay and then sends a message to
the channel. After the goroutine is launched, we use a select statement to
either print the result from the channel if it arrives before the timeout or print
“Timeout” if the timeout is reached first:
// Example with timeout

resultCh := make(chan string, 1)

go func() {

time.Sleep(3 * time.Second)

resultCh <- “Received before timeout”

}()

select {

case res := <-resultCh:

println(res)

case <-time.After(2 * time.Second):

println(“Timeout”)

}

// Output: Timeout

// Example without timeout

resultCh = make(chan string, 1)

go func() {

time.Sleep(1 * time.Second)

resultCh <- “Received before timeout”

}()

select {

case res := <-resultCh:

println(res)

case <-time.After(2 * time.Second):

println(“Timeout”)

}

// Output: Received before timeout

In these examples, the select statement is used to handle the timing,
checking if the result from the channel is received before the specified
timeout period.
We can also implement timeouts using context. Let’s see how:
ctx, _ := context.WithTimeout(context.Background(),

2*time.Second)

go func() {

select {

case <-ctx.Done():

println(“Timeout”)

os.Exit(1)

}

}()

time.Sleep(3 * time.Second)

fmt.Println(“Done”)

Similar to the earlier example, we also implemented a timeout mechanism in
this example, but we used context.WithTimeout and Done() functions. In
this example, the Done() function sends a signal into the channel when the
timeout occurs.

Retries
As discussed in the previous chapters, in microservices architecture, the
common communication between services is through API calls. Eventually,
API calls will fail, and we must handle these failures. A simple retry can
often solve the issue and decrease the error rate significantly (unless this is a
bug that will occur anyway). A good practice is to perform approximately
two retries (in addition to the first try). The number of retries still depends
on the use case, which can be 0 or more.
Another good practice is to wait between each retry using an exponential
backoff algorithm. The exponential backoff algorithm is a strategy used to
gradually increase the delay between retry attempts in case of failures,
reducing the load on the system and improving the chances of successful
communication.
For example, the waiting time between each retry is 1,2,4,8,16, and so on.
Let’s see an example of exponential back-off retries in action in Golang.
func main() {

err := Retry(3, time.Second, func() error {

fmt.Println(“trying…”)

return fmt.Errorf(“some error”)

})

if err != nil {

fmt.Printf(“error: %s\n”, err)

}

}

func Retry(attempts int, sleep time.Duration, f func() error)

(err error) {

currentAttempt := 1

for {

err = f()

if err == nil {

return nil

}

if currentAttempt >= attempts {

return fmt.Errorf(“after %d attempts, last error: %w”,

attempts, err)

}

time.Sleep(sleep)

sleep *= 2

currentAttempt++

}

}

The output:

trying…

trying…

trying…

error: after 3 attempts, last error: some error

In the preceding example, there is a specific implementation of exponential
back-off retries. We can implement retries in many other forms. For
example, we can also write a specific retries mechanism for requests
between services.

Fallback
In a scenario where we can experience a failure, we must handle that failure.
We can try to perform retries like in the previous section. However, it can’t
always solve the problem, and we need a fallback that we can trust. Fallback
is a known function executed without any error or a previous functionality
we can trust. In the worst case, a fallback will inform the user that
something went wrong.
func main() {

result, err := performOperation()

if err != nil {

// Fallback operation in case of an error

result = fallbackOperation()

}

fmt.Println(“Result:”, result)

}

func performOperation() (string, error) {

return “”, fmt.Errorf(“Operation failed”)

}

func fallbackOperation() string {

return “Fallback result”

}

In the preceding example, we showed a simple way to perform fallback. We
try to use the performOperation() function. Still, unfortunately, it has an
error, so we use a fallback function called fallbackOperation(), which has
a constant result.

Circuit Breaker
A circuit breaker is a design pattern used to enhance the resilience and
stability of distributed systems, in our case — microservices architecture. It
helps prevent cascading failures (failure of one service causes many services
to fail, like dominoes) by detecting and handling faults in a controlled
manner.
The circuit breaker monitors the availability of a service and, if it detects a
certain threshold of failures, “opens” the circuit, preventing further calls to
the failing service. This allows the system to gracefully handle failures,
reduce load on the troubled service, and prevent degradation of the entire
system. There are several ways to implement a circuit breaker, but using an
existing library like https://github.com/sony/gobreaker is recommended.
Let’s dive deep into the logic and behavior of this pattern. There are three
states that the circuit breaker can have: Closed, Open, and Half-Open.

Closed
This is also the initial state of the circuit breaker.

https://github.com/sony/gobreaker

Figure 9.2: Circuit Breaker in Closed State

In this state, the circuit breaker allows requests from service A to service B.
While doing so, the circuit breaker monitors the number of failures by
defined periods (10 failures per minute, for example). If the number of
failures in a period exceeds the defined threshold, the state becomes Open.

Open
Figure 9.3 shows the open state:

Figure 9.3: Circuit Breaker in Open State

In this state, the circuit breaker will block any request from service A and
return an error response to service A. Meanwhile, service B won’t receive
any requests. The circuit breaker will remain open until a defined timeout
period ends. Then, it will go into Half-Open state.

Half-Open
Figure 9.4 depicts the half-open state:

Figure 9.4: Circuit Breaker in Half-Open State

In this state, the circuit breaker will allow limited requests to go from service
A to service B. If those limited number of requests are successful, the circuit
breaker will switch again to a Closed state.

Bulkhead
Like the circuit breaker pattern, the bulkhead pattern aims to keep the system
resilient and avoid cascading failures. This pattern is inspired by ship
bulkheads that compartmentalize sections to avoid water leaks.

Figure 9.5: Ship bulkheads

In software, bulkhead pattern isolates components or services, limiting the
impact of failures in one service from affecting others. This pattern is
instrumental in concurrent (at the service level) or distributed systems (at the
system level), where it helps maintain system stability by isolating and
controlling the failures within distinct services, minimizing the risk of
cascading failures.
We implement a bulkhead pattern at the system level by deploying multiple
replicas per workload. It is essential to have as many truly isolated service
instances as possible. Take cache as an example; we would prefer to have a
separate cache per replica instead of a single cache for all replicas. Now, a
problem caused by one replica will affect all the other replicas (through the
cache).

At the service level, we’ll want goroutines to operate with as minimal
dependencies as possible between them. Moreover, we’ll often want to limit
the number of concurrent goroutines to avoid a lot of load on the service,
leading to its collapse. We have already seen the usage of waiting for
concurrent goroutines to finish using sync.WaitGroup. However, we didn’t
enforce a hard limit regarding the maximum number of concurrent
goroutines. A good implementation for limiting the number of goroutines
can be using a package called sizedwaitgroup -
https://github.com/remeh/sizedwaitgroup. Let’s see how to use it.
package main

import (

“fmt”

“time”

“github.com/remeh/sizedwaitgroup”

)

func main() {

swg := sizedwaitgroup.New(5)

for i := 0; i < 100; i++ {

swg.Add()

go func(i int) {

defer swg.Done()

logic(i)

}(i)

}

swg.Wait()

}

func logic(i int) {

fmt.Println(i)

time.Sleep(1 * time.Second)

}

In the preceding code example, we set a “special WaitGroup” from a
package called sizedwaitgroup using a function called New that accepts the
maximum number of goroutines as a numeric parameter. After that, we use a
for-loop that iterates over the numbers 0-99. Then, like a normal WaitGroup,
we use the Add() function to declare that goroutine is starting.

https://github.com/remeh/sizedwaitgroup

Inside the goroutine, we execute the logic function that prints the number
and sleeps for a second, then says the goroutine finished its work using the
Done() function. The final result is an output that will print all the numbers
in batches of 5 elements each time and wait a second between each batch.

Security
In this chapter, we’ll discuss security around services in a nutshell — mainly
from the developer’s point of view - authentication and authorization. It is
essential to deploy secured services to production to prevent access from
malicious threats — but we won’t be looking into the security manners that
need to be taken as part of the operation. This is mainly because it is the
responsibility of the operation, not the developers.
In any microservices system, we’ll want to guarantee access only to the
system users.
Moreover, each user usually has specific and different access restrictions. To
achieve those two, we must implement authentication and authorization.

Authentication
“Authentication verifies that you are who you say you are or that something
you own is not a forgery. It might involve verifying documents, asking for
input from you, or both.”
This is a quote from Okta that describes authentication well.
Several options are available for implementing authentication in a web
application, ranging from using third-party services to implementing
authentication services yourself. Here are some examples:

Third-Party Services

Auth0: Auth0 provides authentication and authorization as a
service.
Firebase Authentication: Firebase provides a suite of services for
building web and mobile applications, including authentication.

Self-Implemented Authentication

JWT (aka for JSON Web Token): We can implement
authentication using JWTs. JWTs are encoded tokens that contain

a set of claims that can be used to authenticate users.
Session-Based Authentication: We can implement authentication
using sessions and cookies. When a user logs in, a session is
created on the server, and a session ID is stored in a cookie on the
client. Subsequent requests include the session ID, which the
server uses to authenticate the user.

Libraries/Frameworks

Passport.js: Passport.js is a popular authentication middleware
for Node.js.
Spring Security: Spring Security is a powerful and highly
customizable authentication and access control framework for
Java applications.

Authorization
“Authorization in system security is the process of giving the user
permission to access a specific resource or function. This term is often used
interchangeably with access control or client privilege.” — Another quote
from Okta describes authorization.
Unlike authentication, the authorization process demands us to implement
business logic. Only when we know our system’s resources and functions
will the product team define what the users’ permissions will look like. Each
service in the system must enforce user permission using an authorization
system when having a microservices architecture.
The problem is that we don’t want to implement a separate authorization
system for each service. Usually, the authorization logic is similar across the
system, and we’ll want to leverage it to create a central authorization service
or shared code that contains the authorization logic. Whether we use an
external authorization service or just a shared code, we’ll inject the user
permissions into the context of a single service using middleware.
Like many other capabilities we mentioned in Chapter 7, Building RESTful
API, the middleware can use shared code or centralized authorization service
depending on the need. We need to enforce the user permissions manually by
code or do it more automatically at the DB level. Here are the use cases of
using authorization:

Giving access to endpoint POST /users only to account administrators.
Giving access to endpoint GET /views to all users, UPDATE /views
only to managers and administrators, DELETE /views only to
administrators.

Feature Toggling
Another way to get confidence while deploying services to production is to
use feature toggling. Feature toggling allows us to use flags (so-called
feature flags) inside our service. Flags are dynamic values, usually a
boolean, injected from other services in the service’s runtime. Flags can have
the ability to have different configurations for different users. Flags can be
used for several purposes: testing new features, A/B testing, load testing,
opening features only to specific users due to customer requirements, and so
on.
Here are a few examples of flags:

A Boolean flag named “show-billing-tab-ui” determines whether a UI
tab named “billing” is opened. We can show the feature (“billing”
tab) only to the product manager inside the company so they will
approve or refine it before releasing it to all customers.
A numeric flag named “pagination-size” determines the pagination
size of an API, which can be used to test the optimal pagination size for
the best performance.

func main() {

if getEnvBool(“feature-a”, false) {

fmt.Println(“Feature A is enabled. Performing Feature A

logic.”)

// Include Feature A logic here

} else {

fmt.Println(“Feature A is not enabled.”)

}

if getEnvBool(“feature-b”, false) {

fmt.Println(“Feature B is enabled. Performing Feature B

logic.”)

// Include Feature B logic here

} else {

fmt.Println(“Feature B is not enabled.”)

}

// Rest of the application logic

}

func getEnvBool(flagName string, defaultValue bool) bool {

value, exists := os.LookupEnv(flagName)

if !exists {

return defaultValue

}

result, err := strconv.ParseBool(value)

if err != nil {

fmt.Printf(“Error parsing environment variable %s: %v\n”,

flagName, err)

return defaultValue

}

return result

}

Here is an example of feature toggling in Golang. In the example, we have
two boolean flags — feature-a and feature-b. The function getEnvBool
dynamically checks the value of a flag using environment variables. The
same check can be made by an API request to a third-party service. In the
main function, we ask for the value of the flags and then determine whether
to execute the business logic.
We can create a feature toggling external service by ourselves, or, more
recommended is to use widely used SaaS like LaunchDarkly.

Rollouts
While deploying applications and services to production, the friction point of
switching between the previous and new versions is called rollout. There are
several techniques for performing a rollout, and all of them can be
implemented in Kubernetes by using its native utilities or external software
suitable for Kubernetes. Let’s observe the different techniques.

Basic Deployment
This is the most straightforward way to perform rollout. It immediately kills
all the previous instances (Pods) and creates new instances (Pods) with the
new version. This technique is the fastest and most cost-effective way to
perform rollout, although it is highly vulnerable to outages and has the
highest risk. In Kubernetes, we can specify this technique to the workload by
defining .spec.strategy.type==Recreate.

Rolling Update
Rolling Update allows the gradual rollout of new versions. We control the
transition dose between the old and the new versions. Rolling Update starts
new instances (Pods) of the new version and transfers traffic to them before
the old version is terminated.

Figure 9.6: Rolling Deployment

To implement this type of rollout in Kubernetes, we need to specify the
following configuration: .spec.strategy.type==RollingUpdate. Things
that can be adjusted while performing a rolling update supported in
Kubernetes can be:

Max Unavailable: Maximum number of Pods that can be unavailable
during rollout. It can be an absolute number (5, for example) or a
percentage (70%).

Max Surge: Maximum number of Pods that can be created above the
desired number (of Pods) defined in the workload. Like the previous
configuration, it can be an absolute number or percentage.

Blue-Green Deployment
This is the safest rollout technique, allowing the creation of the desired new
version with all the instances (Pods). By making a manual decision, the
developer can choose whether to route the network to the old version (blue
in the following figure) or the new version (green in the following figure).

Figure 9.7: Blue-Green Deployment

There aren’t built-in solutions to run Blue-Green Deployment in Kubernetes.
However, there are tools like ArgoCD that allow us to do so. In general,
Blue/Green Deployment refers to creating all the desired software (even the
entire system) and then deciding which version to route all the network
traffic. Although it is the safest way to perform rollout, it is the least cost-
effective technique and takes the maximum time.

Multi-Service Rollout
This rollout technique refers to rolling out from the system point of view and
not from a single service point of view. Using Multi-Services Rollout, we’ll
want to rollout several services together as a single unit. We can use any
technique that we mentioned before to perform Multi-Service Rollout.
Kubernetes doesn’t offer built-in capability to perform this technique.
However, Helm is one of the most popular native Kubernetes open-source
tools in the market, and it allows one to do so very quickly. Helm, an open-
source templating engine for Kubernetes used to manage charts, can
aggregate several Kubernetes resources and roll out all of them at once.

Canary Deployment
Canary Deployment is a combination of Rolling Update and Blue-Green
Deployment. This technique allows us to perform a gradual rollout like the
Rolling Update technique, simultaneously routing traffic to both the old and
the new versions. Like the Blue-Green Deployment, the Canary Deployment
allows us to observe the two versions and manually decide whether to route
all the traffic to the new version or keep routing traffic to the previous
version. Like Blue-Green Deployment, it doesn’t have a built-in solution in
Kubernetes, and we can use external tools like ArgoCD.

Rollbacks
A new version often won’t be as we expected and might cause several issues
and failures. In such cases, we wish to perform a Rollback. Rollback is
reverting a system or application to a previous state or version. In
Kubernetes, there are two ways to perform rollback:

Kubectl: Each resource in Kubernetes has a revision, and each time we
roll out a new version, it creates a new revision. Here is how we can
perform rollback using kubectl for example:
kubectl rollout undo <kind>/<resource-name> --to-revision=

<revision-number>

kubectl rollout undo deployment/nginx-deployment --to-

revision=2

Helm: Each chart in Helm has reversion because it is a resource in
Kubernetes. Here is how we can perform rollback using Helm, for
example:
helm rollback <RELEASE> [REVISION] [flags]

helm rollback frontend-services 13

Conclusion
In this chapter, we explored the critical steps necessary to prepare our
applications and services for deployment to production. From the initial code
completion to ensuring that our service is production-ready, we covered
various topics, including CI/CD, design for failure, timeouts, retries, fallback
mechanisms, and security measures such as authentication and authorization.
We delved into various deployment strategies, such as basic deployment,
rolling updates, blue-green deployment, canary deployment, and multi-
service rollout, each with its own advantages and considerations.
Furthermore, we discussed the importance of feature toggling as a technique
to gradually introduce new features and the concept of rollbacks to revert to
a previous stable version in case of unexpected issues.
Through practical examples, especially in the context of Golang, we
demonstrated how to implement these techniques effectively. By
understanding and applying these concepts, developers can ensure that their
services are delivered to production as anticipated and maintain their
integrity and reliability in the face of potential failures.
As we conclude this chapter, it’s clear that deploying applications to
production is a multifaceted process that requires careful planning and
execution. By adhering to best practices and leveraging the tools and
techniques discussed, developers can confidently navigate the complexities
of production deployment and ensure the success of their services in the real
world.
In Chapter 10, Next Steps in Production, we’ll cover what to consider while
our application and service are already in production.

References
https://www.mabl.com/blog/what-is-cicd

https://www.mabl.com/blog/what-is-cicd

https://github.com/sony/gobreaker
https://aws.amazon.com/blogs/containers/building-a-fault-tolerant-
architecture-with-a-bulkhead-pattern-on-aws-app-mesh/
https://github.com/remeh/sizedwaitgroup
https://www.okta.com/identity-101/authentication/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://launchdarkly.com
https://codefresh.io/learn/software-deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
#rolling-update-deployment
https://argo-cd.readthedocs.io/en/stable/
https://github.com/helm/helm

https://github.com/sony/gobreaker
https://aws.amazon.com/blogs/containers/building-a-fault-tolerant-architecture-with-a-bulkhead-pattern-on-aws-app-mesh/
https://github.com/remeh/sizedwaitgroup
https://www.okta.com/identity-101/authentication/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://launchdarkly.com/
https://codefresh.io/learn/software-deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-update-deployment
https://argo-cd.readthedocs.io/en/stable/
https://github.com/helm/helm

CHAPTER 10
Next Steps in Production

Introduction
This chapter will focus on aspects we must consider while our services operate in
production. A service that is now stable and operating in production doesn’t mean
it will keep operating correctly. Production services left unattended are like
neglected gardens — they wither over time. Many things are changing under our
noses — new vulnerabilities discovered, new customers bringing new cases we
didn’t experience, scaling effects, and so on. Maintenance is the lifeline of
resilience!
Maintenance does not only include the bugs and issues in the code. It includes
culture. A good culture will solve issues faster without blaming a specific person
for the problem.
Maintenance includes observing the systems and monitoring what is happening
through telemetry. Telemetry data can be logs, metrics, and tracing. We should
strive to have observability, which will allow us to gain control over our system.
When we observe a problem or bug, we’ll want to solve it and seek a solution -
troubleshooting. This chapter will dive into the troubleshooting process and what
is included inside.
When using a microservices system, the power of distributed maintenance is
crucial, and without it, the microservices architecture is much less powerful.

Structure
In this chapter, we will discuss the following topics:

Monitoring
Observability

Logs
Metrics
Tracing

Production Troubleshooting

The Power of Theory

Profiling

PGO
Performance Issues

Alerting

Performance Metrics

Monitoring
Monitoring allows stakeholders to deeply understand how remote environments
work, such as production or staging. It is the continuous process of observing,
collecting, and analyzing data on a system’s performance, health, and behavior.
This ensures the system operates well and as expected.
Monitoring continuously observes and analyzes the performance, health, and
availability of applications, infrastructure, and services to detect and respond to
real-time issues and ensure optimal operation. It involves collecting metrics, logs,
and other data to provide insights into the system’s behavior and identify potential
problems or improvements.
Monitoring helps us detect trends and anomalies across the system and services.
By setting predefined thresholds and conditions for data that interest us, we can
define alerts or notifications based on monitoring.
Usually, we can view the monitoring output through dashboards explaining what
is happening.

Figure 10.1: Monitoring Dashboard Example

The preceding figure shows an example of a monitoring dashboard.
Monitoring and APM are concepts that are often used interchangeably. APM,
which stands for Application Performance Monitoring, is a subset of monitoring
used to track a specific application’s performance. APM tracks whether the
application is stable and available, as well as error rate, latency, and so on.
Monitoring is a broader topic that can describe things other than performance, like
trends, number of paying customers, geographic specification data, SLO (service
level objective), and more. Examples of famous monitoring tools in the market
are Prometheus, DataDog, and NewRelic.

Observability
Observability is the ability to measure the current state of a system and aggregate
all the data into a historical view. Observability uses three types of telemetry data
- logs, metrics, and tracing. This is also the historical order in which they were
introduced.
We can refer to observability as a system property, like functionality or testability.
Observability lets us understand why and how the system behavior is as it is,
which differs from monitoring, which lets us understand what is happening
through analysis.
We’ll use the power of observability to solve real and potential problems. Without
observability, we can’t maintain our system and can’t perform troubleshooting,
which will be discussed later in this chapter.
A good analogy for telling the difference between monitoring and observability is
to treat our system as a patient. Monitoring is like viewing a patient’s vital signs
(heartbeat, blood pressure, temperature, injuries, and others). On the other end, to
heal the patient, we need to look at his historical medical issues and investigate
specific theories regarding why he is ill.
When deploying microservices architecture, we must create a monitoring system.
Creating a monitoring system while using Kubernetes includes three parts:

Centralized Monitoring System: A unified platform aggregating data from
various sources, providing tools for viewing and analyzing. We can use OSS
tools like Prometheus and Grafana or SaaS tools like DataDog and
NewRelic.
Agents: They report all the telemetry data to the centralized monitoring
system, which is usually a DaemonSet sitting on each node.

SDK: For each language we use, we must implement logic that supports
telemetry data reporting through functions, middlewares, and so on.

Let’s explore the three telemetry data types.

Logs
Logs are records of events, actions, or messages a software application or system
generates for troubleshooting, monitoring, and analysis. Logs can be used to give
information and report warnings or errors. With logs, we can understand what
happened and when it happened, like leaving breadcrumbs in the code. Logs
should be composed in human-readable JSON format and not just plain text,
although this is an option. Log comprises metadata (date, service, and so on), log
level, and the log itself. Usually, the log metadata is injected into the log manually
or during the usage of the SDK. Here are the common log levels:

Info: Useful information; usually, we don’t care too much about them. It is
typically the default log level.
Debug: This log is intended for logging information details for debugging
purposes. It will be deleted sometime in the future.
Warning: Anything that can potentially cause errors in the system. It can be
delays, high latency, and so on. These kinds of logs never require immediate
remediation.
Error: This log indicates something terrible happened and usually requires
user intervention. It usually requires immediate attention.
Fatal: An error that forces the service to go down or restart. It is an extreme
situation that will require an instant reaction.

Here are a few examples of logs:

[INFO] User was logged into the system. { “name”: “John”,

“company”: “Nick”}

[DEBUG] Query was executed. { “query”: “SELECT * FROM

accounts”, “execution_time”: “15s”}

[WARNING] Event took a lot of time to proceed. { “event_id”:

“12345”, “time”: “30s”}

[ERROR] Unable to connect to the external API. Retrying in 2

seconds.

[FATAL] Server got panic. Shutting down the application

One of Golang’s core packages is “log”, which contains log functionality. An
alternative with more advanced options is the package -
“github.com/sirupsen/logrus”.

Metrics
A metric is a quantitative measurement represented as a data point. Metrics can
include tags. Tags represent metadata on the metric; examples include account
name, user name, environment, app version, and so on. We can build graphs in
different layout forms in any monitoring system based on the metrics data points
over time. We can also create partition graphs using the metrics tags and defined
aggregated time durations of the metrics.
There are a variety of metrics types. Here, we’ll mention the three leading types.

Counter: This cumulative metric represents a value that can increase or be
restarted to zero. Examples of metrics of a counter can be the number of
failed requests, the number of total requests, the amount of users that used
the system, and so on.

Figure 10.2: Counter Metric example of “Job execution total”

Gauge: A single number metric representing an arbitrary value that can go
up or down. Examples of gauge metrics include temperature, CPU usage,
memory usage, and the number of active users.
Histogram: A metric that samples observations and counts the observations
in buckets. For example, a histogram can measure latency, request size, task
duration, and so on.

Figure 10.3: Histogram Metric example of People’s Height (cm)

Tracing
Trace is a newer telemetry than log and metric. It gives a much more
comprehensive view of the application. Trace’s goal is to follow the application’s
flow, whether data propagation or request flow, which is relevant for RESTful
API services in a microservices architecture due to the frequent request rate.
Tracing allows us to see the flow of functions from start to end, which function
invokes which function/s, the duration of each function, the parameters passed
between them, metadata about each step, and more. Each step is inside a trace
called a span. The entire trace can tell a user’s story and what happened to him
along the way.

Figure 10.4: Tracing Example

In the preceding figure, we can see an example of a trace. The trace aims to track
and endpoint GET /api/v1/articles/:article_id. In the trace, we can see three
spans - authenticate, get article:41348, SELECT FROM articles WHERE id.
For each span, we can see duration, the order of the spans, and other data not
shown in the figure. A more advanced tracing capability is to perform distributed
tracing. This involves performing a wide trace instead of a trace inside a single
application, a single trace across many services.

Production Troubleshooting
Production troubleshooting is a systematic process of taking immediate action to
remediate the issue to return the system to a healthy state, performing RCA, and
resolving the root cause to prevent the same problem from occurring again. Let’s
break this process of troubleshooting.

Figure 10.5: Troubleshooting Parts

RCA, which stands for Root Cause Analysis, is the process of identifying the
underlying reason for a bug. For example, a service has a metric that follows its
error rate for a month, and the value is between 0.1% and 0.2% all the time.
Immediately after a PR (Pull Request) named “Changing the API configuration”
was deployed to production, the error rate metric increased significantly to 50%.
We can confidently assume that the root cause is the PR mentioned.
There are various ways to perform RCA - looking at the services dashboard,
putting alerts on a service (we’ll discuss it later in this chapter), looking into
problematic logs, looking at the system metrics, Kubernetes cluster metrics,
Kubernetes logs, describing the service’ Pods in Kubernetes, CI/CD changes,
downtime of third-party service, anomaly detection, profiling (which we’ll
discuss it further in this chapter), and so on.
Remediation refers to the process of preventing a current bad state from
occurring.
Until we have performed any remediation action, our system isn’t working
correctly or, worse, not working at all. Such a situation is called P0. The
Remediation process can be performed in several ways: Rollback in Kubernetes,
as described in Chapter 8, Introduction to Microservices, reverting a PR,
increasing replicas, updating expired configuration, and so on.
Sometimes, we don’t have to perform full RCA to perform remediation, which
can be partial. For example, if we indicated a bad PR, the remediation action is
probably to revert it, although we don’t know what was inside the PR that caused
the bug.
Resolve refers to the process of preventing the lousy state from occurring again.
By understanding the root cause of the issue, we can take preventive actions.
Examples of resolve actions- fixing a bug through debugging, tweaking API/DB
configuration, increasing replica amount, and so on. Note that the remediation
action is sometimes the same as the resolve action.

The Power of Theory
There is no theory without observability and vice versa.
We already discussed observability, but let’s discuss theory and explain the
preceding statement. A theory is an idea that explains the existing data: why do
the graphs look the way they are stacked and not the other way around? For
example, we can see a graph of ongoing increments in memory usage, which can
be explained by memory leaks.
To illustrate the relationship between theory and observability, we’ll give an
analogy from Reference number 5.
Is a doctor with extensive knowledge about the human body and always up to
date with the latest medical news a good doctor? The answer is no unless the
doctor can test the patient and get data about him. Without proper testing of the
patient, he won’t be able to serve the appropriate treatments, and every treatment
without data will be a guess.
On the other hand, you are an average person without a fundamental
understanding of the human body. Still, you have the latest technology for testing
patients and all the patient data. Are you a good doctor? The answer is no unless
you have fundamental knowledge about the human body.

Figure 10.6: Observability and Theory

The analogy of a doctor is moral to a developer, the theory is moral to the doctor’s
knowledge, and data is moral to data. Without a rich theory based on software
knowledge and internal business knowledge on the one hand and data on the other
hand, we can’t gain observability.
Each time we start troubleshooting or performing RCA, we should keep some
theory in mind regarding the root cause and validate the theory against the data, or
looking at the data will lead us to consolidate another theory that we can validate.

Profiling

Profiling analyzes a program in runtime to measure metrics like execution time,
CPU usage, memory usage, goroutines running, and more. Profiling allows us to
identify bottlenecks, improve performance, and optimize code efficiency. Usually,
using third-party tools like Grafana or DataDog will create a flame graph.
Although there are other ways to view profiling data.

Figure 10.7: CPU time profiling flame graph

In the preceding figure, we can see an example of Golang application profiling of
CPU time in Google Cloud. However, we can use a native tool invented by the
Golang team - pprof. Let’s see how to use it:
package main

import (

“net/http”

_ “net/http/pprof”

“sync”

“time”

)

var leakSlice1 = []string{}

var leakSlice2 = []string{}

var leakSlice3 = []string{}

func main() {

// start pprof server

go func() {

http.ListenAndServe(“:6060”, nil)

}()

wg := sync.WaitGroup{}

wg.Add(1)

go leak(&wg)

wg.Wait()

}

func leak(wg *sync.WaitGroup) {

defer wg.Done()

for i := 0; i < 10_000_000; i++ {

appendToLeakSlice1()

if (i % 10_000) == 0 {

time.Sleep(100 * time.Millisecond)

}

}

}

func appendToLeakSlice1() {

leakSlice1 = append(leakSlice1, “a”)

appendToLeakSlice2()

}

func appendToLeakSlice2() {

leakSlice2 = append(leakSlice2, “ab”)

appendToLeakSlice3()

}

func appendToLeakSlice3() {

leakSlice3 = append(leakSlice3, “abc”)

}

In the preceding example, all we needed to start the profile was:

Importing the pprof package by declaring: _ “net/http/pprof”.
Start a goroutine in some port:
go func() {

http.ListenAndServe(“:6060”, nil)

}()

The code after that is there to demonstrate the memory usage of the program. To
look at the memory usage, we can use the Golang CLI:

go tool pprof -web http://localhost:6060/debug/pprof/heap

The -web flag opens the memory in a nice UI. We don’t need to use it.

Figure 10.8: pprof heap usage

After a few seconds, the memory heap glanced differently.

Figure 10.9: pprof heap usage 2

Let’s not focus on the data within the preceding two figures. The purpose of
bringing them is to illustrate the power of the pprof package in Golang and how
we can use it. Rather than seeing the memory distribution among functions in
runtime, we can also look at metrics like CPU and goroutines execution. To look
further into those options, look at - https://pkg.go.dev/net/http/pprof. Using
pprof is pretty straightforward when understanding the usage for one metric (like
the heap metric we presented in this section).

PGO

Profile-Guided Optimization is a compiler optimization method that uses the
information from profiling to leverage it for optimizations. The compiler will
generate high-performance binary code using this profiling data (pprof output).
PGO is available in Golang from version 1.21. Whenever building Golang code, it
will seek for default.pgo file, which contains profiling information. Another
way is to specify a specific profiling file go build -pgo=/tmp/foo.pprof. We
won’t dive into the process of using PGO; our goal is to know about the existence
of this method.

Performance Issues
Before jumping to the next section, let’s look at some common performance
issues we can resolve using profiling:

CPU Throttling: A scenario where CPU usage reaches its limits. This is a
standard Kubernetes scenario, once we reach a Pod’s CPU limit. Once this
scenario happens, it will negatively affect the application’s performance and
stability. Note that Kubernetes won’t restart the container.

Figure 10.10: CPU Throttling of Pod in Kubernetes

Memory Leak: A scenario where the application consistently consumes
memory without releasing it. In Kubernetes, the Pod will be restarted if the
memory passes the limit threshold.

Figure 10.11: Memory Leaks Types

The two left graphs show a scenario where a memory leak can occur - if the
application is consuming the memory and never releases it or stabilized
(top-left), don’t be confused from the bottom right graph. In that graph, the
application consumes an essential memory and then stabilizes. There is
much to discuss about memory leaks; however, this book won’t discuss it
more.
Goroutine Leak: We already discussed this topic in Chapter 5, Unlocking
Go’s Concurrency Power. The pprof package also allows us to track the
amount and distribution of goroutines in Golang.

Alerting
We deployed the services to production and monitored our services’ performance
and behavior; we also built a neat dashboard that will give us observability
regarding all the APIs and their communication. All that is great. Unfortunately,
we aren’t always near computers, and sometimes AFK (aka for Away From
Keyboard). However, a system is a living creature that always operates; we must
take care of it when we aren’t nearby. To align with our desired performance, we
must put an alert that will notify us when needed.
An alert is a signal generated by an automated monitoring system, determining
thresholds that are supposed to provide information for critical issues. This

information is necessary to preserve a system’s health and performance.
Popular alerting systems are PagerDuty and Atlassian Opsgenie. Those systems
have advanced escalation functionality like sending messages via Slack, email,
SMS, or even phone calls. We can configure whom to direct the alert to at a
particular moment by specifying the OnCall schedule.

Performance Metrics
These are recommended performance metrics for an RESTful API. We should
monitor and alert if some threshold is being exceeded:

Requests Success Rate: The percentage of requests that didn’t experience
errors out of all the requests. For example, two requests failed out of 1000
requests - the success rate is 99.8%. In systems where each decimal point
represents a lot of users, it is common to measure performance with the
number of 9s. For example, a success rate of 99.9992% is five times 9s.
Each request is classified to a boolean parameter to determine if the request
was a success or failure, regardless of the latency. Usually, only 5XX errors
are classified as failure. This metric indicates how many users experienced
bad journeys using your applications.
P95 Latency: P95 stands for the 95th percentile. This metric reveals that
95% of the request duration was under this metric value. For example, if
P95 is 0.5 seconds, 95% of the requests’ latency was under 0.5 seconds.
P99 Latency: This is the same as the previous metric but for the 99th
percentile. Both metrics help ensure that the vast majority of the users are
experiencing a good journey using the APIs or applications. We don’t want
to measure the average because of average flooding anomalies that don’t
reflect the real user experience. Note that when measuring these metrics, we
only consider success requests.

Conclusion
This final chapter explored the crucial aspects of maintaining services in a
production environment. We emphasized that a stable service in production
requires continuous attention and maintenance to remain resilient.
We delved into the importance of observability achieved through telemetry data
like logs, metrics, and tracing. This observability allows us to monitor our
systems, detect anomalies, and troubleshoot issues effectively. We also discussed
various strategies for handling production troubleshooting, including the power of

theory, profiling, and using Profile-Guided Optimization (PGO) for performance
enhancements.
Furthermore, we covered the significance of alerting systems to notify us of
critical issues when we are not actively monitoring our services. Lastly, we
outlined some recommended performance metrics for RESTful APIs to ensure a
positive user experience.
What’s Next?

Deep Dive into Observability Tools: Explore advanced features and
capabilities of observability tools like Prometheus, Grafana, and Jaeger.
Advanced Troubleshooting Techniques: Develop skills in advanced
troubleshooting techniques, including distributed tracing and chaos
engineering, to proactively identify and resolve potential problems.
Performance Optimization: Focus on performance optimization strategies,
including profiling and tuning, to enhance the efficiency and scalability of
your services.
Security Best Practices: Delve into security best practices for
microservices, including encryption, access control, and regular security
audits, to protect your services from threats and vulnerabilities.

By mastering these areas, you can ensure the continued reliability, performance,
and security of your services in production, ultimately leading to a more robust
and resilient system.

References
https://www.comparitech.com/net-admin/solarwinds-npm-vs-datadog/
https://blog.danslimmon.com/2019/05/03/no-observability-without-theory/
https://levelup.gitconnected.com/prometheus-counter-metrics-
d6c393d86076
https://grafana.com/docs/grafana/latest/fundamentals/intro-histograms/
https://blog.danslimmon.com/2019/05/03/no-observability-without-theory/
https://cloud.google.com/profiler/docs/interacting-flame-graph
https://www.airplane.dev/blog/kubernetes-cpu-limits-and-throttling
https://medium.com/@shivam2003/memory-leak-unveiling-the-dark-side-
of-c-the-silent-killer-lurking-in-your-code-e675599add9

https://www.comparitech.com/net-admin/solarwinds-npm-vs-datadog/
https://blog.danslimmon.com/2019/05/03/no-observability-without-theory/
https://levelup.gitconnected.com/prometheus-counter-metrics-d6c393d86076
https://grafana.com/docs/grafana/latest/fundamentals/intro-histograms/
https://blog.danslimmon.com/2019/05/03/no-observability-without-theory/
https://cloud.google.com/profiler/docs/interacting-flame-graph
https://www.airplane.dev/blog/kubernetes-cpu-limits-and-throttling
https://medium.com/@shivam2003/memory-leak-unveiling-the-dark-side-of-c-the-silent-killer-lurking-in-your-code-e675599add9

Index

Symbols

A
API Gateway 101, 102
API Gateway, capabilities

observability 102
routing 102
security 102

B
Backends for Frontends (BFF) 107
Benchmark 69

C
chan keyword 75
CI/CD 154, 155
CI/CD, reasons

consistency, maintaining 155
scalability 155

D
Data Access Layer (DAL) 3
Database per service

about 106
advantages 106
concepts 106
disadvantages 107

E
Error handling

about 59, 60
conventions 61
Go, comparing 61
usability, utilizing 61

Event-driven Architecture
about 108
CQRS 111
Event Sourcing 110

usages 109
versus, messaging 109

Event-driven Architecture, cons
complexity 110
data consistency 109
duplicate events 110

Event-driven Architecture, pros
decoupled services 109
scalability 109

Event Sourcing, advantages
immutability 110
replayability 110

F
fan-in 95, 96
fan-out 93, 95
flags

about 164
examples 164
features 166

forgottenSender function 89

G
generator function 96
Generics

about 53
concepts 53, 54
constraints, utilizing 54-56

Go Context, best practices 58
Go Context, concepts

concurrency, handling 56
key-value store, managing 56
task, managing 56

Go Context, understanding 56-59
GODEBUG 24
Go deployment, steps

building 28
code, writing 26
package, managing 26
planning 26
security 27
syntax, getting 26
testing 27
tools, centralizing 28
troubleshoot 27

Go Fast Compile, reasons
compilation, designing 20
cyclic dependency, avoiding 20

simplicity 21
usages, importing 21

Go, Functional Pattern 51-53
Go Maintainability, reasons

API, checking 24
compatibility 24
error, handling 25
simplicity 24
testing 24

Go, package testing 61-64
Go Paradigms, technologies

concurrent, programming 16
imperative 15, 16
Object-Oriented Programming 16

gophersource 28
Go programming language

about 14
composition, complexing 46, 47
interfaces, analyzing 47, 48
inventing 14
Numerous, approach 17, 18
OSS driven, analyzing 28
package 42, 43
Paradigms 15
project, structure 44
structs, initializing 44-46

Go programming language, features
concurrent, approaching 21-23
C Resemblance, bearing 21
fast, compiling 19

Go programming language, principles
efficiency 15
maintainability 15
simplicity 15

Go programming language, properties
statically, typing 17
strong, typing 17

Go programming language, styles
array 37
comments 34
const keyword 41, 42
functions 38, 39
Hello World 31
If statement 35
language, specifications 42
loops 36, 37
Maps 39
operators 34
primitive data 33, 34
slices 37, 38

switch statement 41
variables 32, 33

Goroutines
about 73, 74
channel closing, principle 87, 88

Goroutines, buffering concepts
channel, closing 77
channels, directions 79
channel, selecting 78
channels, synchronizing 79
locks 82, 83
low-level, routines 84
range syntax 77, 78
singleton, summing 83, 84
strength, leveraging 80
sync package 80
WaitGroup 81, 82

Goroutines, situations
leak, detecting 93
receiver, abanding 91, 93
sender, forgotten 89-91

Go testing, utilities
Fuzz, testing 66, 67
Mocking 64, 65

K
Kubernetes

about 140, 141
liveness probe, readiness 147, 148
resources, allocating 149
workload, managing 143

Kubernetes, aspects
ConfigMap 146
Horizontal Pod Autoscalling 146
ingress exposes 147
Secret 146

Kubernetes, best practices
environments, managing 151
monitoring 151
specifically, logging 150
YAMLs Hygiene, maintaining 150

Kubernetes, resources
Namespace 142, 143
Node 142
Pod 143

Kubernetes, tools
Kind 141
Kubectl 141, 142
kubectx 142

Kubernetes workload, resources
CronJob 145
DaemonSet 144
Deployment 144
Job 145
StatefulSet 145

L
language server protocol (LSP) 27
load balancer 104, 105
load balancer, algorithms

hash 105
least, connecting 105
least time 105
random choices 106
round robin 105

Logs, levels
debugging 173
error 173
fatal 173
info 173
warning 173

M
main() function 32
metric, variety

counter 174
gauge 174
histogram 174

Microservices Architecture
configuring 108
mesh, service 108

Microservices Architecture, aspects
API calls 100
gRPC 101
message, brokers 100, 101

Microservices Architecture, testing 67, 68
Microservices Architecture, tools

Benchmark 68, 69
race, detecting 69, 70

Microservices Security, steps
Authentication 163
Authorization 164

Micro-Web Services
about 2
Gophers, popularity 10, 11
popularity 9, 10

Micro-Web Services, benefits

agility, increasing 8
fault tolerance 8
plug, playing 8
vertical, scalling 7, 8
workloads, independency 7

Micro-Web Services, drawbacks
complexity 9
overheads operations 8
troubleshoot 9

Micro-Web Services, technologies
monolithic architecture 2, 3
serverless architecture 5
Service-Oriented Architecture (SOA) 4

mockery 65
Monitoring 171, 172
monolithic architecture

about 3
cons 3, 4
pros 3

O
Observability

about 172
Kubernetes, using 172

Observability, data types
Logs 172, 173
metric 173
tracing 174, 175

P
Production Troubleshooting

about 175
power, theory 176, 177
root cause, analyzing 176

Profile-Guided Optimization 181
Profiling analyzes

about 177, 178
concepts 180, 181
Profile-Guided Optimization 181

Profiling analyzes, issues
CPU, throttling 182
Goroutine leak 183
Memory leak 182

Pub/Sub pattern 84-87

R
RESTful API

about 115
Caching 133
data conventions 134
deprecate 136
pitfalls, using 136
representation 116
resource 116
versioning, strategies 135

RESTful API, capabilities
filtering 131, 132
Graceful shutdown 130, 131
Pagination 128
panic, recovery 129, 130
rate limit 129
sorting 132, 133

RESTful API, constraints
cacheable 117
client-server 116
code, demanding 117
layer, system 117
stateless 117
Uniform Interface 116

RESTful API, key aspects
capabilities 118
folder, structure 119-123
resources, methods 123-125
Swagger 118, 119

RESTful API, server crafting
chains, responsibilities 127
CORS 127
Gin Gonic 125-127

RESTful API version, best pratices 135
RESTful, design patterns

bulkhead 161, 162
circuit breaker 159, 160
fallback 158, 159
retries 157, 158
timeouts 155, 157

Rollback 168
rollout 166
rollout, techniques

blue-green, deploying 167
Canary, deploying 168
deployment 166
multi-service 167
roll, updating 166, 167

S
select statements 157

serverless architecture
about 5
cons 6
cost, utilizing 6
pros 6

serverless architecture, concepts
BaaS 5
FaaS 5

Service Discovery 102, 103
Service Discovery, patterns

client-side 103
server-side 104
service, registry 104

Service-Oriented Architecture (SOA)
about 4
cons 5
pros 5

string 32, 75
Swagger 119

U
Uniform Interface, sub-constraints

HATEOAS 117
resources, identifying 116
resources, manipulating 116
self-descriptive, messaging 117

W
WaitGroup 81

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Microservices
	Introduction
	Structure
	Brief History of Microservices
	Monolithic, SOA, and Serverless
	Monolithic
	SOA
	Serverless

	Benefits of Microservices
	Independent Workloads
	Easy to Scale
	Plug and Play
	Fault Tolerance
	Increase Agility

	Drawbacks of Microservices
	Operations Overheads
	Complexity
	Hard to Troubleshoot

	Popularity of Microservices
	Popularity of Golang
	Conclusion
	References

	2. Usability of Go
	Introduction
	Structure
	Invention of Go
	Core Principles and Paradigms
	Go Paradigms
	Go Properties

	Simplicity and Minimalist Design Approach
	A Fast Language Suitable for the Cloud
	Fast Compiling
	Bearing a Resemblance to C
	Concurrency Approach

	Maintainability of Go
	Compatibility
	Go Simplicity
	Error Handling

	From Onboarding to Production
	Go’s Ecosystem — The Communities and Beyond
	Conclusion
	References

	3. Go Essentials
	Introduction
	Structure
	Basic Overview of Golang
	Hello World
	Variables
	Primitive Data Types
	Comments
	Operators
	If statement
	Loops
	Arrays
	Slices
	Functions
	Maps
	Switch
	Consts
	Other Language Specifications

	Packages
	Project Structure
	Structs
	Composition
	Interfaces
	Conclusion
	References

	4. Embarking on the Go Journey
	Introduction
	Structure
	Functional Options Pattern
	Generics
	Understanding Context in Go
	Errors — Talking About Error Propagation
	Error Handling: Difference between Go and Other Languages
	Errors are Here to Tell a Story
	Conventions

	Testing - Best Practices, Mocking, and Fuzzy Tests
	Mocking
	Fuzzy Testing

	Microservices Testing
	Performing Benchmark
	Race Detector

	Conclusion
	References

	5. Unlocking Go’s Concurrency Power
	Introduction
	Structure
	Goroutines
	Channels - Buffered vs. Unbuffered
	Closing a Channel
	Range Over a Channel
	Selecting a Channel
	Channels Directions
	Synchronization Between Goroutines
	Leveraging Channel Strength

	Sync Package
	WaitGroups
	Locks
	Singleton in Golang - Once.Do
	Low-Level Routines

	Pub/Sub
	Channel Closing Principle
	Avoiding Goroutine Leak
	Forgotten Sender
	Abandoned Receiver
	Detecting Goroutine Leak

	Fan In Fan Out Pattern
	Fan Out
	Fan In

	Conclusion
	References

	6. Core Elements of Microservices
	Introduction
	Structure
	Communication Between Services
	API Calls
	Message Brokers
	gRPC

	API Gateway
	Service Discovery
	Client-Side Discovery
	Server-Side Discovery
	Service Registry

	Load Balancer
	Database per Service
	Backends for Frontends
	External Configuration
	Service Mesh
	Event-Driven Architecture
	Event Versus Message
	Event Sourcing
	CQRS

	Conclusion
	References

	7. Building RESTful API
	Introduction
	Structure
	A Brief About the RESTful Approach
	Resource and Representation
	Constraints
	Client–Server
	Uniform Interface
	Stateless
	Layered System
	Cacheable
	Code on Demand

	Designing an API
	Capabilities
	Documentation: Swagger and OpenAPI
	API Folder Structure
	Resources Methods

	Crafting a Server
	Gin Gonic Setup
	Chains of Responsibilities
	CORS

	API Capabilities
	Pagination
	Rate Limit
	Panic Recovery
	Graceful Shutdown
	Filter and Sort
	Filter
	Sort

	Caching
	Conventions
	Versioning and Deprecation
	Versioning Strategies
	Versioning Best Practices
	Deprecation

	Common Pitfalls
	Conclusion
	References

	8. Introduction to Kubernetes
	Introduction
	Structure
	Kubernetes Adoption
	Kubernetes Essential Tools
	Kind
	Kubectl
	Kubectx

	Basic Resources
	Node
	Namespace
	Pod

	Workload Management
	Deployment
	DaemonSet
	StatefulSet
	Job
	CronJob

	Important Resources
	ConfigMap
	Secret
	HPA
	Ingress

	Readiness and Liveness Probes
	Resources Allocations
	Kubernetes Best Practices
	Maintaining Good YAML Hygiene
	Logging — Specifically for Kubernetes
	Environments Management
	Proper Monitoring

	Conclusion
	References

	9. Deploying to Production
	Introduction
	Structure
	CI/CD
	Design of Failures
	Timeouts
	Retries
	Fallback
	Circuit Breaker
	Closed
	Open
	Half-Open
	Bulkhead

	Security
	Authentication
	Authorization

	Feature Toggling
	Rollouts
	Basic Deployment
	Rolling Update
	Blue-Green Deployment
	Multi-Service Rollout
	Canary Deployment

	Rollbacks
	Conclusion
	References

	10. Next Steps in Production
	Introduction
	Structure
	Monitoring
	Observability
	Logs
	Metrics
	Tracing

	Production Troubleshooting
	The Power of Theory

	Profiling
	PGO
	Performance Issues

	Alerting
	Performance Metrics

	Conclusion
	References

	Index

