

Ultimate Monorepo

and Bazel for Building

Apps at Scale

Level up Your Large-Scale

Application

Development With Monorepo and

Bazel

for Enhanced Productivity,

Scalability,

and Integration

Javier Antoniucci

www.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot

guarantee the accuracy of this information. The use of general descriptive

names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names

are exempt from the relevant protective laws and regulations and therefore free

for general use.

First published: May 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97223-91-4

www.orangeava.com

http://www.orangeava.com/

Dedicated To

My Beloved Wife Julieta, My Son Franco, and My Daughter

Sofia,

Whose Unwavering Support and Love Have Been My

Bedrock

To the architects of innovation, the engineers of progress,

and the curators of efficiency,

This book, Ultimate Scalable Monorepo Apps with Bazel, is

dedicated to you, the technical pioneers who continually

push the boundaries of what’s possible in the realm of

software development. In an era where the complexity of

applications grows exponentially and the demand for

scalability is non-negotiable, you rise to the challenge with

unwavering determination and ingenuity.

To the developers who juggle myriad libraries and modules,

striving for coherence in a sea of code, this work

acknowledges your struggles and offers guidance. To the

architects who design systems that stand robust against the

test of scalability and change, this book aims to be a

beacon, illuminating the path toward more streamlined and

efficient workflows.

We dedicate this volume to the unsung heroes in the server

rooms, the thinkers in the quiet corners of bustling tech

hubs, and the educators shaping the minds of the next wave

of software savants. Your commitment to embracing and

mastering new paradigms, like Monorepo and Bazel, inspires

a future where large-scale applications are not just feasible

but flourish with unprecedented efficiency and reliability.

In these pages, may you find the knowledge to craft your

monolithic repositories with precision, to harness the power

of Bazel in orchestrating builds and tests, and to elevate

your projects to new heights of performance and

manageability.

Together, let’s build not just applications, but legacies —

robust frameworks and systems that will empower

generations of developers to come. Here’s to the builders of

the digital age — may this book serve as both a tribute and

a tool in your journey toward creating software that defines

the future.

With admiration and respect,

Javier Antoniucci

About the Author

Javier Antoniucci is a seasoned software engineer and

architect with a profound passion for engineering processes

and efficient team dynamics in software development.

Beginning his programming journey at the tender age of 11,

he has accumulated over 25 years of industry experience,

with a significant portion dedicated to large financial and

insurance corporations.

His expertise extends to leading digital transformation

projects and defining organizational models for software

governance, demonstrating a keen ability to navigate

complex technical and cultural landscapes. Notable

achievements include the deployment of corporate models

for Global Open API Governance across several tier-1 and

tier-2 banks and spearheading pivotal digital transformation

initiatives.

As a head architect, he has been instrumental in developing

online banking platforms, branch banking systems, and

DevOps architectures, showcasing a comprehensive

understanding of the financial sector’s technological needs.

His contributions to Big Data, including smart alerts and

forecasting, highlight his proficiency in leveraging data to

enhance business intelligence.

Before focusing on his current role as Chief Technology

Officer at GFT Group, Javier honed his skills at prestigious

firms such as Deloitte and Altran Technology, managing elite

multidisciplinary teams and driving technical and

organizational transformation. His academic credentials,

including a degree in Software Engineering, an executive-

level Master’s degree in Business Administration, and

another Master’s degree in Big Data and Business

Intelligence, complement his hands-on experience in the

industry.

In his current role, he continues to influence the tech

landscape, leading Thought Machine Vault and Open API

practices globally, and driving innovation in technology at

GFT Technologies. His commitment to excellence is evident

in his oversight of high-performance teams delivering

critical projects for top-tier banks and financial institutions,

showcasing his prowess in integrating technology innovation

at scale.

Javier’s comprehensive background, spanning technical

leadership, strategic planning, and educational

achievements, positions him as a trusted voice in the field

of software development, making Ultimate Scalable

Monorepo Apps with Bazel an essential read for developers

looking to scale their expertise in today’s dynamic

technological environment.

About the Technical Reviewer

Abhay Joshi is currently working as a Principal Software

Engineer at tiket.com with over 10 years of experience in

the software development industry. His career showcased

exceptional technical prowess, leadership abilities, and a

passion for driving innovation. With a strong foundation in

computer science and software engineering principles,

Abhay has successfully led numerous high-impact projects

from conception to delivery, earning a reputation for

excellence and reliability among peers and stakeholders

alike.

As a Principal Software Engineer, he provides technical

leadership, architectural guidance, and hands-on expertise

to cross-functional teams. He excels at designing and

implementing scalable, robust, and maintainable software

solutions that meet the complex requirements of modern

applications. Leveraging his deep understanding of software

design patterns, development methodologies, and emerging

technologies, he collaborates closely with product

managers, designers, and engineers to deliver cutting-edge

solutions that drive business success and exceed customer

expectations.

His expertise spans a wide range of technologies, including

Golang, Java, Python, JavaScript, Kotlin, Swift, Kubernetes,

CI/CD tools, and cloud platforms such as AWS and Google

Cloud. He excels in building distributed systems,

microservices architectures, and highly available

applications that are resilient to failures and adaptable to

changing business needs. With a keen eye for optimization

and performance tuning, he continuously strives to enhance

the efficiency and reliability of software systems, ensuring

optimal performance, cost, and scalability at all levels.

Beyond his technical skills, he is known for his leadership,

mentorship, and commitment to fostering a culture of

collaboration, innovation, and continuous learning within

organizations. He thrives in dynamic and fast-paced

environments, where he can leverage his expertise to solve

complex problems, drive strategic initiatives, and inspire

teams to achieve excellence, empowering teams to reach

their full potential and deliver impactful results.

With his blend of technical expertise, leadership acumen,

and passion for innovation, he continues to make significant

contributions to the software development community and

shape the future of technology.

Acknowledgements

This book is not just a compilation of insights and

methodologies; it’s a tapestry woven from the collective

wisdom of a vibrant community, the dedication of

exceptional individuals, and the intellectual curiosity of you,

the reader.

The Community at Large

At the heart of this book’s genesis are the dynamic and

ever-evolving Bazel, Aspect Build, and Monorepo tools

communities. The Bazel community, with its commitment to

building reliable and efficient software at scale, has been a

beacon of inspiration and knowledge. Aspect Build’s

enhancements and extensions to Bazel have provided

critical insights into optimizing development workflows.

Similarly, the diverse array of Monorepo tools and their

respective communities offer strategies to manage

codebases effectively, enabling a holistic view of large-scale

application development.

Exceptional DevOps and Contributors

Special acknowledgment to DevOps experts like Son Luong

Ngoc, Sergio Fernandez, Salim Boudriiya, Gonzalo Ruiz de

Villa, Daniel Garcia, for sharing their experience and

uplifting the community. Their contributions inspire

countless professionals in the field.

Emilio Guillot

A distinct and heartfelt acknowledgment is reserved for

Emilio Guillot, a beacon of knowledge and inspiration in the

realm of global architecture. His wisdom has influenced

many core concepts and strategies discussed in this book.

Emilio’s experience and vision have been a guiding light,

much like a lighthouse, illuminating the path forward in

digital transformation and application development.

You, the Reader

Lastly, but most importantly, this acknowledgment extends

to you, the reader. Your curiosity, desire for skill

enhancement, and dedication to navigating large-scale

application development challenges give purpose to this

work.

As you embark on or continue your journey in building

robust and scalable applications, may the contents of this

book serve as a reliable compass and a source of

inspiration. Remember, the path of learning is perpetual,

and each challenge surmounted is a step toward mastery.

Thank you for allowing this book to be a part of your

professional voyage.

Foreword

–by Emilio Guillot

(Former BBVA CTO)

In the ever-evolving landscape of software development,

organizations are continuously challenged to adapt,

innovate, and streamline their processes to stay competitive

and efficient. This book explores how the monorepository

(monorepo) approach, coupled with the Bazel build tool, is

not just a technical shift but a transformative strategy for

organizations, particularly for sectors resistant to change,

such as banking.

The transition from legacy systems to modern processes is

challenging, particularly in conservative organizations with

deeply ingrained practices. Monorepo offers a streamlined

platform that bridges the gap between old and new,

simplifying the transition and minimizing disruption. In

banking, for example, monorepo can integrate cutting-edge

technologies while maintaining the rigor and reliability that

the sector demands.

Another challenge is the disconnect between management

and technical teams. Monorepo's centralized structure

provides a clear view of development, fostering better

understanding and alignment.

Finally, managing numerous tools and processes can be

chaotic. Bazel, integrated with monorepo, automates and

streamlines builds and tests, bringing order to the

development process. This book will guide you to leverage

monorepo and Bazel to create a robust, scalable, and

maintainable software ecosystem.

As we embark on this journey together, our goal is to not

only understand the mechanics of monorepo and Bazel but

to appreciate their potential to transform the very DNA of

organizations, ushering them into a new era of efficiency,

collaboration, and innovation.

Preface

Managing large-scale applications development has become

increasingly complex, necessitating robust methodologies

and tools to streamline the process. Ultimate Scalable

Monorepo Apps with Bazel serves as a comprehensive

guide, offering in-depth insights into leveraging Monorepo

and Bazel to enhance productivity and scalability. This book

is structured to provide a logical progression, starting with

foundational concepts and advancing to intricate

techniques, catering to both newcomers and seasoned

practitioners.

Chapters 1-5: The initial chapters lay the groundwork,

introducing the Monorepo approach and Bazel’s pivotal role

in this ecosystem. Readers will gain a clear understanding of

th synergy between Monorepo and Bazel, appreciating how

this combination simplifies dependency management,

improves build times, and fosters collaboration.

Chapters 6-10: Subsequent chapters delve into practical

applications, guiding users through setting up Bazel,

configuring build rules, and implementing effective testing

strategies within a Monorepo setup. These sections are

designed to equip readers with the skills necessary to

leverage Bazel’s full potential in real-world scenarios.

Chapters 11-14: Advanced topics are explored in the latter

chapters, addressing the challenges of scaling, dependency

management, and continuous integration in the context of

Monorepos. The book also looks ahead, discussing future

trends and the evolving landscape of Monorepo tooling,

preparing readers to adapt to forthcoming changes in the

industry. Through a blend of theoretical concepts, practical

examples, and real-world case studies, this book aims to

provide a holistic view of building and managing large-scale

applications with Monorepo and Bazel, enabling developers

and teams to harness these powerful tools to their fullest

potential.

Downloading the code

bundles and colored images

Please follow the link or scan the QR code to download the

Code Bundles and Images of the book:

https://github.com/OrangeAVA/

Ultimate-Monorepo-and-Bazel-

for-Building-Apps-at-Scale

The code bundles and images of the book are also hosted

on

https://rebrand.ly/7tl9f8u

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

https://github.com/OrangeAVA/Ultimate-Monorepo-and-Bazel-for-Building-Apps-at-Scale
https://rebrand.ly/7tl9f8u

Errata

We take immense pride in our work at Orange Education

Pvt Ltd and follow best practices to ensure the accuracy of

our content to provide an indulging reading experience to

our subscribers. Our readers are our mirrors, and we use

their inputs to reflect and improve upon human errors, if

any, that may have occurred during the publishing

processes involved. To let us maintain the quality and help

us reach out to any readers who might be having difficulties

due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

ARE YOU INTERESTED IN

AUTHORING WITH US?

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

from tech experts and help them build learning and

development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction

Introduction

Structure

Understanding the Monorepo Approach

Welcome to the True Continuous Integration

Drawbacks of Polyrepo

Benefits of Monorepo

A Bit of History

Typical Fears about Monorepos

Typical Challenges in Implementing a Monorepo

The Power of Bazel in Monorepo Development

A Bit of History

Bazel Features

Understanding the Logic Behind Bazel’s Design

When to Use a Monorepo

When Not to Use a Monorepo

When to Use Bazel

When Not to Use Bazel

Conclusion

Recommended Readings

2. Getting Started with Bazel

Introduction

Structure

Installing and Setting Up Bazel

Installing Bazelisk

Building Your First Bazel Project (Java)

Bazel Basics

WORKSPACE File

BUILD Files

Build Rules

Targets

Labels

Packages

Queries

Dependencies

Bazel Sandboxing

Conclusion

Recommended Readings

3. Bazel Build Rules and Configuration

Introduction

Structure

Exploring Bazel’s Rule-based Build System

Your First Bazel Rule

Dissecting a Core Bazel Rule

Customizing Build and Compilation Rules

Key Components in Rule Creation

Solving any Custom Needs not Served by Default Rules

Writing and Executing a Genrule

Bazel Configuration

WORKSPACE File

BUILD File

Bazel Flags

.bazelrc File

Location

Syntax

Best Practices

Commonly Used Options

Conclusion

Recommended Readings

4. Testing Strategies in a Monorepo

Introduction

Structure

Testing Strategies in Bazel

Efficient Testing Strategies

Scalable Testing Strategies

Implementing Testing Strategies

Writing and Running Unit Tests with Bazel

Managing Multiple Unit Tests

Reporting Unit Test Coverage

Performance Testing

User Acceptance Tests (End-to-end)

Achieving Test Isolation and Parallelism

Test Isolation

Test Parallelism

Conclusion

Recommended Readings

5. Dependency Management and Versioning

Introduction

Structure

Managing Internal and External Dependencies

Internal Dependencies

Best Practices

External Dependencies

Conflict Resolution

Bazel MODULES: A Modern Way for Handling External

Dependencies

Declaring Dependencies with MODULES

Configuring an Air-Gapped Bazel Build

Enforcing Versioning and Compatibility in a Monorepo

Querying Dependencies and Getting Graphs

Integrating Bazel Within an IDE

Conclusion

Further Readings

6. Hello-World Using Other Languages and Platforms

Introduction

Structure

Android/Kotlin

Setting up Your Android/Kotlin Bazel Project

Organizing Your Android App

Building and Running Your Android App

Best Practices Using Android/Kotlin in Bazel

Python

Setting up Your Python Environment

Organizing Your Python Project

Building and Running Your Python App

Best Practices Using Python in Bazel

NodeJS/Typescript

Aspect Build

Setting up your NodeJS/Typescript Environment

Organizing Your NodeJS/Typescript Project

Building and Running Your NodeJS/Typescript App

Best Practices Using NodeJS/Typescript in Bazel

Golang

Setting up Your Golang Environment

Organizing Your Golang Project

Building and Running Your Golang App

Best Practices Using Golang in Bazel

iOS

Setting up Your iOS Environment

Organizing Your iOS Project

Building and Running Your iOS app

External Dependencies

Using iOS Best Practices in Bazel

Conclusion

Recommended Readings

7. Streamlining Development Workflow

Introduction

Structure

Code Contribution Workflows

Feature Branching

GitFlow

Trunk-based Development

Setting Up Continuous Integration with Bazel

Enabling a Sort of Local CI with Bazel

CI Worker Set up Models

Ephemeral Workers

Single Stateful Worker

Multiple Stateful Workers

Hot-pool of Workers

Sharded Worker Sets

Remote Build Execution

Conclusions About CI Worker Models

Managing Code Quality Tools

Formatting

Linting and Static Code Analysis

Conclusion

Recommended Reading

8. Structuring Monorepos for Success

Introduction

Structure

Designing an Effective Monorepo Layout

Directory Structure Best Practices

Code Sharing and Reusability

Testing Strategies

Centralized Configuration Management

Refactoring and Code Maintenance

Security Considerations

Common Pitfalls and Ways to Avoid Them

Organizing Code into Packages and Modules

Naming Conventions for Packages and Modules

Conclusion

Recommended Reading

9. Managing Large Codebases and Scale

Introduction

Structure

Dealing with Large Monorepo Codebases

Managing Internal and External Dependencies

Integration of Code from Other Repositories

Handling Third-Party Libraries

Advanced Modularization Strategies

Code Sharing and Reuse

Efficient Code Organization and Readability

Managing Inter-Module Dependencies

Advanced Strategies for Collaborative Environment

Management

Refining Branching, Merging, and Code Review

Practices

Minimizing Merge Conflicts and Build Breakages

Navigating Common Challenges

Upkeeping Bazel Build Configurations

Debugging Build Issues

Best Practices and Common Pitfalls

Performance Optimization for Monorepo Builds

Setting Up and Configuring RBE for Large-Scale

Monorepos

Strategies for Cache Management and Sharing

Utilizing Bazel’s Profiling Tools to Identify Bottlenecks

Analyzing Build Performance Data to Pinpoint

Inefficient Patterns and Configurations

Advanced Caching Techniques

Parallelism and Resource Management

Dynamic Build Graph Optimization

Developing Custom-Build Rules for Performance-

Critical Scenarios

Optimizing Existing Build Rules for More Efficient

Execution

Performance Optimization for Monorepo Builds

Writing Efficient Starlark Code

Profiling and Optimizing Starlark Scripts

Structuring Monorepos in Version Control Systems

Managing Source Code Changes

Conclusion

Recommended Reading

10. Building and Deploying Services

Introduction

Structure

Optimizing Container Images Builds

Fine-grained Targets

Use of OCI Images

Layered Approach

OCI Image Building and Exporting

Parallelization and Caching

Running the Example

API Dependency Management in Microservices

Managing Transitive Dependencies

API Versioning Strategies

Automated Dependency Updates

Software Configuration Management

Orchestrating Microservices in a Monorepo

Advanced Microservice Orchestration Techniques

Feature Toggling

Monitoring and Scaling Microservices

Conclusion

Recommended Reading

11. Monitoring and Debugging Bazel

Introduction

Structure

Monitoring Bazel Performance

Interpreting Profiling Data for Performance Bottlenecks

Utilizing Custom Scripts to Parse and Analyze Profile

Data

Utilizing Command Line Tools to Analyze Profile Data

Visualizing Profiling Data

Understanding and Utilizing Bazel’s BEP

Converting BEP Output to Prometheus-friendly Format

Developing Automated Tests for Performance

Regressions

Implementing Benchmarks and Performance Baselines

Continuous Monitoring of Performance Metrics

Advanced Usage of Remote Caching and Execution

Monitoring Remote Cache Hit Rates

Diagnosing Cache Misses and Inefficiencies

Optimizing Remote Execution Performance

Debugging Techniques for Bazel Rules

Step-by-step Approach for Debugging Custom Bazel

Rules

Utilizing Starlark’s Debugging Capabilities

Best Practices for Logging and Error Handling in Rule

Development

Performance Tuning for Large-scale Monorepos

Divide and Conquer

Advanced Configuration Settings for Improved

Scalability

Case Studies on Performance Improvements in

Complex Projects

Conclusion

Recommended Reading

12. Advanced Bazel Concepts

Introduction

Structure

Comprehensive Exploration of Caching

Publishing Your Own Bazel Rules

Migrating a Maven Project to Bazel

Hermeticity

Bazel Hot Reload

Building Custom Toolchains

Aspects

Aliases

Exploring Experimental Bazel Features

Conclusion

Recommended Reading

13. Case Studies and Real-World Examples

Introduction

Structure

Case Study 1: Building a Full Stack Digital Service

Motivation for Adopting Bazel

Implementation Strategy

Challenges and Solutions

Results and Impact

Lessons Learned

Future Plans and Considerations

Outcome

Case Study 2: Building a Serverless Service Platform

Motivation for Adopting Bazel

Implementation Strategy

Challenges and Solutions

Results and Impact

Lessons Learned

Future Plans and Considerations

Outcome

Case Study 3: Using Bazel in a Developer Hub

Motivation for Adopting Bazel

Implementation Strategy

Challenges and Solutions

Results and Impact

Lessons Learned

Future Plans and Considerations

Outcome

Conclusion

14. Future Trends and Considerations

Introduction

Structure

Evolving Practices in Monorepo Development

Integrating AI and Machine Learning in Bazel Builds

Enhanced Remote Caching and Execution Strategies

Advanced Dependency Management Techniques

Security Enhancements in Monorepo Infrastructure

Fostering Collaboration through Enhanced Code

Review and Integration Practices

Sustainable Development Practices in Monorepo

Management

The Road Ahead for Bazel and Monorepo Tooling

Bazel’s Modular Dependency Management: Bzlmod

Planned Features for Bazel 7 and Beyond

The Future Path: Bazel 8 and 9

Implications for Monorepo Tooling

Considerations for Future Development

Anticipating Challenges and Adapting Strategies

Migration to Bzlmod

Enhanced Performance and Caching

Expanded Language and Platform Support

Robust Extension Model

Adapting to Continuous Updates

How to Migrate Existing Projects from Bazel 6

Recommended Readings

Conclusion

APPENDIX A Bazel Cheat Sheet

Quick Reference Guide to Bazel Terminology

Quick Reference Guide to Bazel Commands

Bazel Command Structure

Core Commands

Advanced Commands

APPENDIX B Additional Resources

Recommended Books

Online Communities

Understanding Bazel and Monorepo Communities

Participating in the Community

Contributing to the Community

Index

CHAPTER 1

Introduction

Introduction

In this chapter, we will delve into the world of Monorepos

and their significance in modern software development. We

will start by gaining a comprehensive understanding of the

Monorepo approach and how it ushers in a true era of

continuous integration, breaking down the traditional silos

that have plagued Polyrepo structures. We will explore the

drawbacks of Polyrepo systems and contrast them with the

numerous benefits that a Monorepo can offer. To appreciate

the roots of Monorepos, we will take a brief journey through

their historical evolution. Along the way, we will address

common fears and challenges associated with implementing

a Monorepo and discuss the transformative power of Bazel

in Monorepo development. Delving into the history,

features, and design logic of Bazel, we will help you grasp

why it is such a valuable tool in this context. To guide your

decision-making process, we will also discuss when to opt

for a Monorepo and when it might not be the right fit, as

well as when to choose Bazel and when it might not be the

best choice. Lastly, we will provide a list of recommended

readings to further enrich your knowledge in this exciting

realm of software development.

Structure

In this chapter, the following topics will be covered:

Understanding the Monorepo Approach

The Power of Bazel in Monorepo Development

When to Use Monorepo and When Not to Use it

Bazel Features

Understanding the Monorepo

Approach

A monorepository, often referred to as a Monorepo, is an

approach to software development that involves managing

distinct “code parts” with well-defined relationships within a

single repository. These “code parts” can vary in granularity,

from entire applications to intermediate-sized functional

units such as business operations, or even individual

architectural components.

While these sections may have dependencies, they typically

maintain logical autonomy and are overseen by different

teams. Each has clear dependencies on others, as well as on

external libraries, resources, and similar elements.

Figure 1.1: Application projects and its dependencies with common shared

projects

Monorepos are not a silver bullet; there is no universal

solution in software development. Yet, by the end of this

book, you should understand the potential benefits of a

monorepo, the challenges you might face, and whether it

aligns with your organization’s needs.

In a monorepo setup, multiple projects are housed within

one repository. These projects can depend on each other,

enabling code sharing. When you make changes, there is no

need to rebuild or retest every project in the monorepo.

Instead, focus on rebuilding and retesting only the projects

directly affected by your changes. This approach is often

called “incremental builds”.

Figure 1.2: Teams maintain one or more interdependent projects

Incremental builds grant teams within the monorepo a

degree of independence. If two projects do not depend on

each other, they remain shielded from one another’s

impacts. One team can advance with development, testing,

PR merges into the main branch, and other related activities

without having to run code from the second team. While the

second team might face challenges like unstable tests,

poorly typed code, or broken code and tests, these issues

will not disrupt the first team’s progress.

Welcome to the True Continuous

Integration

A Polyrepo embodies the traditional approach to application

development: each team, application, or project maintains

its own repository. Generally, each repository yields one

build artifact and adheres to a linear build pipeline. Polyrepo

configurations often depend on previously published

artifacts. Ideally, every repository integrates continuously

(CI) with the latest version of its dependencies, facilitating

smooth integration.

Figure 1.3: At a Polyrepo, components are shared through published artifacts

In a Monorepo, all code changes (commits) belonging to the

same code contribution (a complete and accepted feature)

is viewed as a pull request, or a merge request in case of

using the GIT version control system. These requests must

synchronize with the most recent commit in the main

branch, but there are similar concepts in other tools. This

synchronization ensures that all internal dependencies

match the current source code version, and external

dependencies align with the newest globally defined

version. This rigorous procedure ensures that code

contributions integrate fully with the latest changes in the

main branch.

Drawbacks of Polyrepo

The Polyrepo approach has gained traction in the industry

largely because of a pivotal factor: team autonomy. Teams

desire the liberty to choose their libraries, decide the timing

of app or library deployments, and determine who can

contribute to or use their code.

However, the challenge with Polyrepos is that autonomy

often stems from isolation, which can impede collaboration.

In contrast, a monorepo achieves autonomy by endorsing

detailed project management, supporting incremental builds

(as discussed earlier), and implementing pull-request

continuous integration with both manual and automated

approvals. These approvals might include tools like

CODEOWNERS files, which assign specific individuals or groups

as the custodians of the code in a repository. These

custodians are involved during code contributions,

especially when changes affect their projects.

In Polyrepo configurations, shared code typically requires a

separate repository. Setting this up means configuring the

necessary tools, establishing a CI environment, adding

authorized contributors to the repository, and creating

mechanisms for package publishing to allow dependencies

from other repositories. Additionally, harmonizing conflicting

versions of third-party libraries across repositories can be

challenging.

Setting up a shared repository within a Polyrepo can be

time-intensive. As a result, many teams might decide to

create their own versions of common services and

components within their respective repositories. While this

might be expedient initially, it escalates the effort needed

for maintenance, security, and quality control over time as

these elements evolve.

Once a shared repository is operational, initiating cross-

repository changes to shared libraries becomes an arduous

task. Developers have to adjust their environments to enact

these alterations across various repositories, each with its

unique revision history. This requires significant coordination

concerning versioning and package releases.

In a Polyrepo setting, teams often use their unique

command sets for tasks such as testing, building, serving,

linting, deploying, and more. This inconsistency adds

cognitive load, as team members must recall the

appropriate commands for different projects.

Benefits of Monorepo

Initiating new projects is streamlined to creating a folder

paired with a project descriptor. These projects readily tap

into the existing CI setup, negating the need to release

versioned packages when all users are housed in the same

repository.

In this cohesive setup, every component interacts

seamlessly with each commit. As a result, modifications

across various projects converge into a single atomic

commit—changes are either fully implemented or not at all.

This methodology dispels the notion of breaking changes as

any concerns are addressed within the same commit.

Compatibility concerns stemming from projects using

clashing versions of third-party libraries are eliminated. All

such dependencies are precisely cataloged in a centralized,

shared third-party dependency definition file. The threat of a

library becoming obsolete due to team unavailability is

reduced. Any team can modify a library version (subject to

certain automated checks), and the CI system guarantees

that all projects stay operational by running extensive unit

tests—a safeguard ensured by unit testing.

Moreover, a monorepo fosters developer flexibility among

teams. It instills a uniform approach to building and testing

applications, even when they are developed using varied

tools and technologies. Developers can contribute to

projects overseen by different teams, ensuring their

changes’ safety and compatibility.

A Bit of History

In version control systems’ early days, like CVS (Concurrent

Versions System) and SVN (Subversion), separate

repositories for individual software projects or components

were the norm. This methodology was apt when software

initiatives were largely compact and independent.

The rise of distributed version control systems, notably Git,

in the mid-2000s, ushered in greater flexibility for

developers. Git’s decentralized architecture empowered

them to operate across multiple branches and repositories,

simplifying collaboration on expansive codebases.

Google often receives credit for advancing the monorepo

paradigm. Internally, they adopted an extensive monorepo

around 2008, encompassing nearly all their software

projects’ source code. This approach afforded Google more

streamlined management of its vast codebase through an

internal tool named Piper. The efficiencies, such as

enhanced code sharing, unified dependency management,

and standardized tooling, spotlighted by Google’s

Monorepo, sparked intrigue in the wider developer

community.

Subsequently, tech behemoths like Facebook, Twitter, and

Microsoft embraced Monorepos. They discerned the perks of

a consolidated repository to oversee their extensive

codebases that spanned varied languages and platforms. To

make Monorepos more palatable for entities beyond these

giants, a slew of open-source tools and frameworks

emerged. These include Gradle Build Tool (by Gradle, Inc),

Lage (by Microsoft), Lerna, Nx (by Nrwl), Pants (courtesy of

the Pants Build community), Rush (by Microsoft), and

Turborepo (by Vercel).

The Monorepo methodology has steadily carved a niche

within the developer community. Numerous entities, from

start-ups to conglomerates, have transitioned to Monorepos,

optimizing their development workflows and bolstering code

sharing. The Monorepo discourse remains dynamic, with

ongoing deliberations on best practices, tool enhancements,

and strategies to navigate the intricacies of vast Monorepos.

Typical Fears about Monorepos

In this section, we will address some of the common

apprehensions and concerns that software developers often

have when considering the adoption of Monorepos,

shedding light on the practical solutions and benefits that

can alleviate these typical fears.

Scalability Concerns with CI Cycles

The Polyrepo approach often results in extended CI cycles,

requiring complete rebuilds and retests for each commit—a

decidedly non-scalable method, especially with numerous

projects. However, adopting a monorepo paired with

incremental build tools lets you rebuild and test only the

segments affected by changes. While this method offers

improved scalability, it is not a magic fix. For large

repositories comprising numerous extensive applications,

you might experience delays when making changes

impacting multiple dependencies. While such scenarios are

not frequent, they may necessitate leveraging multiple

machines, also referred to as remote workers, to streamline

the CI process.

Potential Git Limitations

There is a valid concern that standard Git tools may struggle

with repositories comprising millions of files. Yet, it is vital to

recognize that most Monorepos do not house thousands of

applications. They typically comprise a handful of

applications by a singular organization, housing thousands

of files with millions of lines of code. Under these conditions,

most tools can efficiently handle the workload.

Monolithic Deployment Concerns

A prevalent misconception is equating a Monorepo with

forced simultaneous binary releases, based on the thought

that “Monoliths are disadvantageous”. The source of this

code and deployment considerations are two separate

entities. Ideally, CI/CD best practices involve constructing

and storing artifacts during the CI phase, deploying these

stored items across various environments during

deployment. Thus, accessing a repository should not be a

requirement during deployment. Emphasizing, a Monorepo

does not equate to a monolithic structure. Monorepos

enable easy code sharing and inter-project refactoring,

simplifying the process of developing libraries,

microservices, and micro-frontends. This setup can offer

greater deployment flexibility.

Unauthorized Code Changes

The fear that anyone can modify code within a Monorepo,

potentially jeopardizing a team’s application without their

knowledge, originates from an over-reliance on repository-

level permissions. Several tools enable folder-level

ownership settings. For instance, GitHub and other Git

platforms provide a feature termed CODEOWNERS, allowing

structured file creation as follows:

domains/domain-1/* @john

tools/scripts/* @peter

With the specified configuration, a pull request modifying

domain-1 necessitates John’s approval. If it is solely about

scripts, then Peter must give the nod. However, for pull

requests touching both domain-1 and scripts, approvals from

both John and Peter are essential.

This system enhances control over code ownership. To

further understand its efficacy, consider the following

example:

Figure 1.4: Project visibility in Monorepo helps to manage sharing between

teams

In this example, the Dev Team 1 shares an API definition

project between its frontend and backend projects. This API

definition project is intentionally private, as both teams aim

to preclude other teams from leveraging it. This choice

stems from a desire to evade undue inter-team

dependencies. If Dev Team 2 wants to use this API definition, it

would obligate Dev Team 1 to accommodate additional

requirements during modifications to the shared library.

In a Polyrepo environment, nothing deters teams from

adding “api-definitions” to their dependency file

(package.json, pom.xml, and so on). The dilemma? Dev

Team 1 remains uninformed as these additions occur in an

external repository. Contrastingly, most Monorepo tools,

Bazel included, allow for precise library visibility delineation.

Monorepo is going to turn into a project’s spaghetti

(dependency entanglement), making it challenging to

comprehend and maintain applications

There is a prevalent misapprehension that Monorepos

inevitably lead to entangled project structures. It is true that

in numerous repositories, any given file could technically

import another. While structured approaches do emerge

through code reviews, these can deteriorate over time,

resulting in intricate dependency networks.

For clarity, envision a medium-scale project. Chart out its

component dependencies. Upon juxtaposing this with the

actual repository, you may discern several surprising

interconnections.

However, Monorepos empower developers to construct

libraries with clear public APIs. The streamlined library

creation process encourages more frequent library usage.

Hence, a typical app often gets segmented into multiple

libraries, interacting solely via their public APIs.

Monorepos endorse software modularization and detailed

granularity. Their structure simplifies both the initiation of

new projects and the refactoring of existing ones,

particularly when expansion necessitates splitting.

Typical Challenges in Implementing a

Monorepo

Implementing a Monorepo is not a smooth journey.

Monorepos have their own challenges, and these are the

most common ones.

Onboard development teams to new methods and

tooling

Introducing new methods and tools typically comes with a

learning curve. Developers must invest time and effort to

grasp how these tools function and how they integrate into

their workflow. This learning curve can impede productivity

during the initial stages. People, in general, are often

resistant to change, and developers are no exception. Many

are accustomed to their current tools and methods, and

introducing new ones can encounter resistance, potentially

reducing morale and efficiency.

Integrating new tools and approaches with existing

processes can be challenging. A seamless transition might

necessitate adjustments to established workflows, and

these changes might face opposition from team members

set in their ways. Onboarding teams to fresh techniques and

tools often demands more resources, like time for training

and expertise to oversee the transition. Scarce resources

can hinder the onboarding process.

Transitioning to novel methods and tools might interrupt

ongoing projects. There might be concerns about potential

delays or errors during the induction period. Compatibility

challenges between new tools and current systems can pose

significant obstacles. It is vital to ensure that new tools

mesh well with the existing tech stack. Veteran developers,

having profound knowledge of the prevalent tools, may

oppose changes they deem superfluous or intrusive.

If the advantages of embracing new tools are not lucidly

conveyed or do not offer evident value, team members

might hesitate to adopt them. It is pivotal to offer ample

training and sustained support for a smooth transition. Lack

of adequate training or support can culminate in frustration

and reluctance.

Choose the good “Go to Monorepo” strategy

Start by evaluating the scope of your projects. Decide which

projects will pioneer the Monorepo approach and establish a

roadmap for the rest. Monorepos thrive when handling

multiple interconnected projects or components benefiting

from shared code. Ensure your projects genuinely demand

the integration and code sharing that monorepos provide.

When selecting projects, account for your team’s structure

and dynamics. Monorepos excel for teams on intertwined

projects where collaboration and shared code are

paramount.

For every project earmarked for migration, scrutinize your

development workflow and procedures. Ascertain if a

monorepo aligns with your current CI/CD pipelines and tools.

The chosen strategy should enhance your workflow, not

impede it. Also, gauge your codebase’s complexity. Projects

with intricate interdependencies or significant reliance on

shared code can find management simplified in a Monorepo.

However, if your codebase is monolithic or made of broadly

structured modules, consider refactoring into more detailed

components.

Another vital aspect is versioning requirements. Monorepos

typically necessitate a versioning system capable of

managing distinct components separately. Determine if your

team requires detailed version control for various code

sections. The Monorepo structure’s design critically

influences project scalability. As the codebase grows,

Monorepos risk becoming cumbersome. Choose a Monorepo

approach that can handle future expansion without

significant performance hindrances. Be prepared for

continuous refactoring during the Monorepo’s lifespan to

optimize its structure.

Examine the tooling and support available for your strategy.

Tools and frameworks tailored for Monorepos can simplify

both the transition and ongoing management. Explore the

presence of these tools within your organization’s

ecosystem.

Transitioning to a Monorepo or a new methodology

necessitates a shift in team culture and practices. Ensure

your team embraces this shift, and you have laid out a

robust change management plan. A Monorepo promotes

long-term code consistency across projects. Ensure your

strategy mirrors your organization’s long-term vision.

Lastly, remain receptive to experimentation and iterative

approaches. The choice between Monorepo and Polyrepo

isn’t set in stone. Experiment with one strategy and pivot to

another if it aligns more with your evolving requirements.

Introduce Trunk-based Development

Monorepos typically do not synergize well with long-lived

feature branches. As a result, you might need to adopt a

trunk-based development variation and regularly employ git

rebase. Transitioning to this style can be challenging for

some teams as it introduces new practices, like feature

toggles.

Trunk-based development is a strategy focusing on

simplicity, collaboration, and swift delivery. At its heart, it

pushes for continuous code integration into a shared

branch, known as the trunk or main branch. This method

contrasts with long-lived feature branches, where

developers work separately for extended durations before

merging into the primary codebase.

With trunk-based development, code changes are

integrated into the main branch frequently, sometimes

multiple times daily. This keeps the main branch updated and

stable. Developers are urged to commit small, incremental

changes, which eases code reviews, minimizes integration

conflicts, and facilitates swift issue detection and resolution.

Essential to this approach is automated testing. Automated

tests run persistently, offering immediate feedback on code

quality and correctness. Feature toggles or flags enable

selective activation or deactivation of certain code features,

allowing incomplete or experimental features to remain

hidden until ready for release. This strategy enhances

collaboration as developers consistently work on the main

branch, with the absence of long-lived branches spurring

more frequent code reviews.

Benefits of trunk-based development include:

Continuous delivery of new features and fixes.

Reduced software product time-to-market.

Minimized merge conflicts due to frequent, smaller

merges.

Early issue detection and resolution, curtailing defect-

fixing costs.

Elevated collaboration from a unified codebase.

Improved code quality and sustainability from concise

commits and continuous testing.

However, implementing trunk-based development might

mean:

Transitioning from feature-branch workflows,

necessitating culture and practice shifts, including

adopting feature toggles.

Handling complexities as developers use toggles to hide

unfinished features.

Investing significantly in automated testing

infrastructure since continuous testing demands ample

resources.

Trunk-based development is considered to promote superior

code quality and development pace, regardless of repo size.

Still, it requires careful consideration. For instance, if you are

on a feature branch and the trunk branch (also known as

“master” or “main”) gets new commits, rebasing your feature

branch onto the main can position your work post those

commits.

As for git rebase, it is a Git command allowing changes from

one branch to be “reapplied” onto another. It is particularly

useful in refining commit history and integrating branch

changes. Rebasing maintains a linear commit history, unlike

merging. While rebasing might encounter conflicts, they can

be resolved before the process continues. Crucially,

rebasing alters commit history. Pushed commits that are

later rebased can create divergent histories, leading to

potential confusion. It is wise to rebase only unpushed

commits to shared repositories.

Mind the gap between Monorepo and your current

tooling ecosystem

Adopting a Monorepo in an organization can yield significant

advantages, but it is not without hurdles, especially when

incorporating existing tools not tailored for Monorepos. A

primary concern is ensuring tools, like static code analyzers

(SonarQube, Find Bugs, and ESLint) or security linters

(Fortify, Checkmarks, Veracode), mesh with the Monorepo

structure. Many classic tools presume single-repository

settings, making their integration into Monorepos potentially

intricate and lengthy. Bringing in non-Monorepo tools often

means custom development or outsourcing, leading to

added time, cost, and potential vulnerabilities.

Reconfiguring CI/CD pipelines for Monorepos is essential.

This may involve unique scripts or CI/CD tools adept at

managing a Monorepo’s multifaceted build and deployment

needs. Tools like Bazel, for instance, need a shared remote

cache for all CI workers to bypass full rebuilds and effective

repository management across CI cycles. Automated tests

must be robust, ensuring a change in one component does

not inadvertently disrupt another. Dependency

management, especially across various languages or

platforms, requires careful handling, and robust version

control is crucial. As Monorepos expand, so do concerns

over performance. Entire codebase operations can become

time-consuming, demanding swift build and deployment

techniques to counteract potential lags. Simultaneous

issues across various components can complicate

monitoring and debugging, necessitating proficient

diagnostic tools and practices.

A Monorepo’s introduction can mandate a shift in

development culture and practices. Teams may need to

embrace new methods like trunk-based development or

feature toggles, which might encounter resistance.

Promoting effective team collaboration within the monorepo

setting can be daunting, especially for those accustomed to

secluded workflows. Therefore, clear code-sharing and

ownership protocols are indispensable.

For a successful transition to Monorepos, organizations

should meticulously plan their shift. This entails evaluating

tool compatibility, making necessary tool adjustments or

swaps, and ensuring teams have ample training and

support. The long-term benefits of enhanced code sharing,

efficient collaboration, and streamlined dependency

management can make navigating these hurdles well worth

the effort.

Deal with large-scale changes

Monorepos offer a streamlined mechanism for executing

extensive changes in specific contexts. When refactoring

various applications made of multiple libraries, a Monorepo

ensures that every component operates seamlessly before

finalizing the alteration.

Yet, Monorepos demand a nuanced strategy for sweeping

changes, occasionally complicating certain processes. For

instance, modifying a shared library affects every

application dependent on it. If such a change is drastic and

lacks automation, it necessitates backward-compatible

adjustments. This means introducing dual versions of

parameters, methods, classes, or packages and directing

users to transition from the legacy version to the updated

one.

The Power of Bazel in Monorepo

Development

Monorepo development, which involves managing multiple

projects or components within one version control

repository, has earned substantial traction recently. Its

capacity to enhance collaboration, promote code sharing,

and refine dependency management sets it apart. Yet, with

the growth and intricacy of monorepos, overseeing the build

process across multiple programming languages and

platforms can become overwhelming. Enter Bazel, the build

tool tailored for such challenges.

Figure 1.5: Bazel in monorepo development

Bazel’s prowess is particularly evident in the realm of

Monorepo development, especially when juggling multiple

programming languages and platforms. Key attributes, such

as its language-neutral approach, hermeticity, adept

dependency management, comprehensive platform support,

and emphasis on incremental builds and scalability, render

it a top pick. Organizations aiming to tap into Monorepo

advantages without compromising on build efficiency and

dependability will find Bazel indispensable. In harnessing

Bazel, development squads can sustain a unified and

efficient workflow, supporting remote execution, even

amidst the most multifaceted code environments.

A Bit of History

Bazel’s origins trace back to Google’s in-house tool, Blaze,

developed in the mid-2000s. Created to tackle the mounting

scalability and efficiency challenges of a rapidly expanding

Google, Blaze introduced groundbreaking features. Notable

among them were hermetic builds, ensuring build isolation

from host environments, and a distributed caching

mechanism, minimizing redundant build tasks.

In 2015, Google offered a slice of Blaze to the public,

branding it “Bazel.” This open-source venture aimed to

share Google’s scalable and reproducible build proficiency

with the wider developer community.

The software realm soon noticed Bazel’s robust build,

testing capabilities, and multilingual support. Recognized

projects like Kubernetes and TensorFlow integrated Bazel

into their build and test operations. Bazel’s developers kept

broadening its linguistic scope, enhancing its appeal for

polyglot projects. With contributions pouring in from diverse

sectors, while Google remained a primary contributor, Bazel

morphed into a collaborative open-source initiative.

In CI/CD pipelines, Bazel’s merits shine. Its commitment to

hermetic, reproducible code building and testing

complements contemporary software development ethos.

Industry giants like Uber, Dropbox, and Pinterest have

incorporated Bazel into their tech stack, signifying its pivotal

role in sophisticated software infrastructures. With Bazel

continually adapting to the dynamic software milieu, Google

and its community persistently roll out enhancements,

refining its capabilities, and expanding its versatility.

Bazel Features

Bazel is a distinguished build system created especially for

Monorepos. It champions the principles of efficiency,

scalability, and reproducibility in software development.

Notably, it finds its niche in dealing with expansive

codebases and intricate projects. Here are the core features

that define Bazel’s proficiency in building and overseeing

software ventures:

Local Computation Caching: This refers to Bazel’s

adeptness in preserving and repurposing the outcomes

of file and task operations. For individuals operating on

the same computer, there is no necessity to redo builds

or tests for the same tasks. When a specific command is

given, it gets executed initially, caches the result, and

subsequent invocations utilize this cached outcome.

Local Task Orchestration: Bazel is equipped to

orchestrate tasks in a sequential as well as concurrent

manner.

Distributed Computation Caching: This feature

ensures that cached results are spread across varied

environments. In essence, within an entire organization,

including the CI agents, redundant builds or tests for

similar components become obsolete.

Distributed Task Execution: Bazel can disseminate a

command over several machines, all while preserving

the feel of operating it on a singular machine. It is

noteworthy that Bazel’s application here is incredibly

sophisticated, capable of managing repositories with

billions of code lines. Yet, setting it up might pose

certain complexities.

Transparent Remote Execution: Bazel boasts the

ability to unobtrusively run commands across multiple

systems during local development, a unique trait that

distinguishes it from its counterparts.

Impact Analysis: By assessing the potential ripple

effect of changes, it permits the targeted execution of

build and test processes for the impacted entities. Bazel

might not natively offer this, but tools like target-

determinator exploit Bazel’s query language to fill this

void.

Workspace Analysis: Bazel has the prowess to fathom

the project structure within the workspace sans extra

configurations. Though Bazel expects developers to

craft BUILD files manually, several firms have pioneered

tools to auto-generate these files by scrutinizing the

workspace content.

Dependency Visualization: With Bazel, one can

visualize project/task interdependencies through

graphical illustrations. This interface is interactive,

bolstered by Bazel’s proprietary query language,

ensuring precise information sifting.

Code Segmentation: Bazel facilitates easy sharing of

code segments. Any directory can be flagged as a

project and shared. This sharing is anchored by Bazel’s

build protocols, promising a seamless developer

interaction.

Uniform Tooling: Regardless of the tech stack—be it

diverse JavaScript frameworks or languages like Go,

Rust, and Java—Bazel guarantees a consistent

experience. Its extensible nature, empowered by build

rules, functions much like modules catering to varied

tech landscapes.

Code Generation: While tools like NX or Pants natively

support code generation, Bazel, in contrast, taps into

external generators, offering a broader scope.

Project Regulation and Visibility: Bazel allows the

crafting of rules to dictate dependency pathways within

a repository. Developers have the liberty to earmark

projects for their teams exclusively. Plus, tech-based

categorization ensures no overlap between backend

and frontend components. Bazel’s visibility protocols

ensure a clear demarcation between what is shared and

what is private.

Wrapping up, Bazel stands tall as a formidable build system

addressing the nuances of today’s software development

landscape. With its unwavering commitment to

performance, reproducibility, and adaptability, it has won

the favor of entities with sizable and multifaceted code

repositories. Be it a Monorepo, a multi-language endeavor,

or a distributed workforce, Bazel’s arsenal promises to

elevate the development process, ensuring impeccable and

swift builds.

Understanding the Logic Behind

Bazel’s Design

Bazel is not just another build system; its foundational

philosophy distinguishes it in a crowded ecosystem. To truly

appreciate Bazel’s uniqueness, it is pivotal to grasp the

foundational principles steering its design, including:

Reproducibility: A non-negotiable principle for Bazel.

It understands the significance of consistent build

results across varied settings. This is accomplished

through rigorous dependency tracking and hermetic

builds, ensuring they remain untouched by external

influences.

Scalability: Tailored for heft and complexity, Bazel is

adept at managing voluminous code repositories.

Conceived with Google’s colossal repositories in mind,

its intrinsic design and caching facilities seamlessly

support projects sprawling across thousands of

developers.

Incrementality: At Bazel’s heart lies the ethos of

incremental builds. With every code modification, it

meticulously recompiles and tests only those segments

directly impacted, slashing build durations, especially

for hefty codebases.

Polyglot Support: In acknowledging the diverse

linguistic tapestry of modern software development,

Bazel natively accommodates an array of programming

languages. Its adaptability extends to welcoming

additional languages when the need arises.

Flexibility and Extensibility: Bazel’s build doctrines

are articulated in Starlark, reminiscent of Python. This

design choice empowers developers to craft project-

specific build rules. Moreover, its malleable nature

welcomes third-party integrations, enriching its

capabilities.

Hermeticity: Bazel’s allegiance to hermeticity ensures

builds are insulated from host environments, relying

solely on explicitly stated dependencies. This strategy

amplifies the consistency, reliability, and repeatability

of builds.

Parallelism: Bazel’s prowess in exploiting parallelism is

unparalleled. Whether it is distributing tasks across

multiple cores or spanning multiple machines, it

optimizes build periods and boosts efficiency.

Dependency Analysis: With sophisticated dependency

scrutiny, Bazel meticulously discerns and traces

dependencies. This precision is vital to pinpoint

elements requiring rebuilds following changes,

reinforcing its incremental build prowess.

Community and Collaboration: Bazel is nurtured by a

robust open-source community. A mosaic of contributors

from myriad organizations fuels its evolution, ensuring it

benefits from a plethora of insights and experiences.

To encapsulate, Bazel’s approach is shaped by its

unwavering commitment to core software development

tenets like reproducibility, scalability, and incrementality. It

is designed to cater to the demands of expansive, intricate,

and multilingual software ventures without compromising on

dependability and efficiency. Bazel’s steadfastness to these

ideals has cemented its position as an indispensable ally for

developers and organizations, regardless of project size.

When to Use a Monorepo

You want to opt for Monorepo if you identify the following

needs:

Simplified Dependency Management: If multiple

projects share common dependencies, a Monorepo can

simplify dependency management, ensuring that every

project is using the same version of a shared library.

Atomic Changes Across Projects: If there are

changes that need to be made atomically across

multiple projects, a Monorepo can make this easier, as

you can modify multiple projects in a single commit.

Code Sharing and Reusability: It becomes simpler to

share code across projects in a Monorepo. This can

encourage more modular and reusable code.

Easier Refactoring: When you refactor shared code or

libraries, it is easier to do in a Monorepo because you

can instantly see and update all the places where it’s

used.

Unified Versioning: With a Monorepo, you can have a

single version number for all the projects. This makes it

straightforward to understand which versions of

different projects are compatible.

Improved Collaboration: Developers can work across

multiple projects without switching between different

repositories. This can improve team collaboration, as it

is easier to coordinate and understand the broader

ecosystem.

When Not to Use a Monorepo

Be careful choosing a Monorepo if you find the following

scenarios:

You are unable to refactor applications: As your

codebase grows, build times and tooling can become

slower, especially if not optimized for a Monorepo

structure. This can lead to longer test and integration

times.

You do not have enough collaboration with other

involved teams: Having everything in one place can

be overwhelming, especially for new developers who

might not need to know about all parts of the system.

Tighter Coupling: While not inherent to monorepos,

there is a risk that projects can become more tightly

coupled, making them harder to split apart in the

future.

Security Concerns about reading all the available

code: In a Monorepo, everyone typically has access to

all the code. This can be a security risk if certain

projects have more sensitive code.

Vendor Tooling: Some version control systems (like

Git) might not perform well with extremely large

repositories, though there are tools and strategies (like

Git’s sparse checkout) to mitigate these issues.

Overhead in CI/CD and you do not have enough

collaboration with DevOps teams: Continuous

integration and deployment can become more complex

as you will need to determine which projects need to be

rebuilt and redeployed based on the changed files.

The decision to use a monorepo depends largely on the

specific needs and challenges of your projects and team.

Some large organizations like Google, Facebook, and Twitter

use Monorepos effectively, while others prefer a more

modular approach with multiple repositories.

It is essential to weigh the pros and cons and consider

factors such as the size of your team, the

interconnectedness of your projects, your CI/CD setup, and

your overall development workflow.

When to Use Bazel

Bazel is more than just a tool; it is a specialized solution

designed to address challenges that surface when an

organization hits certain growth ceilings. When faced with

these unique challenges, Bazel stands out as arguably the

best solution available.

Though Bazel’s adoption comes with a significant cost,

contributions from industry giants like Google, Apple,

Twitter, VMWare, Alibaba, Tencent, Adobe Cloud, Uber, Lyft,

SpaceX, Spotify, Pinterest, Tinder, and Reddit are rapidly

reducing this barrier. However, it is worth noting that Bazel

might not be the most suitable choice for smaller teams,

such as a startup with a handful of engineers.

The journey of transitioning to Bazel is becoming less

daunting, thanks to an influx of resources. The tech

community is seeing a surge in open-source tools, extensive

documentation, tech talks, and blog posts focusing on Bazel

migration. Moreover, professional services are emerging to

assist with Bazel infrastructure setup, crafting custom build

rules, and training teams to decipher Bazel’s intricate

functionalities.

Choosing to adopt Bazel should always be a pragmatic

decision, grounded in the needs of your organization. It is

crucial to resist the allure of technological hype or the fear

of missing out. Instead, take a close look at your business

operations and development process. Identify any

bottlenecks, hypothesize solutions, and if Bazel appears to

be the missing piece to your puzzle, then consider

integrating it into your workflow.

When Not to Use Bazel

Bazel is an undeniably powerful building and CI solution,

best suited for large and complex projects. However, it

might not be the best fit for every team or project. Let us

delve into scenarios where Bazel might not be the ideal

choice:

Small Teams and Startups: If you are working within

a small team, managing a simple project, or navigating

the early stages of a startup, Bazel’s inherent

complexities might outweigh its advantages.

Resource Implications: Adopting Bazel is not just

about using a tool. It demands a strategic recruitment

plan to onboard Bazel experts. Additionally, you must

invest in training programs to familiarize your current

team with Bazel. Infrastructure also comes into play, as

running Bazel at scale requires specific setups. In some

cases, you might even need to build custom software to

fully harness Bazel’s capabilities.

Single Programming Language Projects: If your

project revolves around a single programming

language, particularly one that already boasts robust

building tools, Bazel might be overkill. Languages like

Go come with native building tools, while languages like

Python have a plethora of effective external building

tools available.

Bazel’s strength shines in large-scale, intricate projects.

However, for many scenarios, especially those on a smaller

scale, the associated complexities and overheads might not

justify its adoption. It is crucial to evaluate your project’s

unique requirements, gauge your team’s familiarity with the

tool, and consider long-term maintenance aspects before

committing to a build system.

Conclusion

In this chapter, we learned that while monorepos come with

challenges like the need for stricter trunk-based

development, specialized CI/CD pipelines, and careful

consideration of large-scale changes, they offer significant

advantages. These benefits include ensuring all code works

together at each commit, facilitating cross-functional code

verification, promoting modularity, simplifying dependency

management, streamlining toolchain setup, and enhancing

developer experience with workspace-aware code editors

and IDEs. Additionally, monorepos provide more deployment

flexibility, enable granular ownership policies, and offer

improved code structure, all while scaling well using familiar

tools. Ultimately, the decision to adopt a monorepo

structure depends on your specific needs and priorities, but

the potential benefits are undeniable.

In the next chapter, we will embark on a journey to

demystify Bazel, empowering software developers to

harness its full potential for efficient and reproducible builds.

Recommended Readings

Monorepo

https://monorepo.tools/

Benefits and Challenges of Monorepo Development

Practices | CircleCI

https://circleci.com/blog/monorepo-dev-practices/

Understanding Monorepos. Introduction | by Roman

Sypchenko | Medium

https://medium.com/@r.sipchenko/understanding-

monorepos-ad9c4ac7b504

What is Monorepo? (and should you use it?) -

Semaphore

https://semaphoreci.com/blog/what-is-monorepo

Understanding Monorepos - Ionic Blog

https://ionic.io/blog/understanding-monorepos

https://monorepo.tools/
https://circleci.com/blog/monorepo-dev-practices/
https://medium.com/@r.sipchenko/understanding-monorepos-ad9c4ac7b504
https://semaphoreci.com/blog/what-is-monorepo
https://ionic.io/blog/understanding-monorepos

Monorepos in Git | Atlassian Git Tutorial

https://www.atlassian.com/git/tutorials/monorepos

Misconceptions about Monorepos: Monorepo !=

Monolith | by Victor Savkin | Nx Devtools

https://blog.nrwl.io/misconceptions-about-monorepos-

monorepo-monolith-df1250d4b03c

About Code Owners - GitHub Docs

https://docs.github.com/en/repositories/managing-your-

repositorys-settings-and-features/customizing-your-

repository/about-code-owners

Go Monorepo with Bazel - Uber

https://www.uber.com/en-IN/blog/go-monorepo-bazel/

How We Designed our Continuous Integration System to

be more than 50% Faster

https://medium.com/pinterest-engineering/how-we-

designed-our-continuous-integration-system-to-be-

more-than-50-faster-b70a59342fe2

https://www.atlassian.com/git/tutorials/monorepos
https://blog.nrwl.io/misconceptions-about-monorepos-monorepo-monolith-df1250d4b03c
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://www.uber.com/en-IN/blog/go-monorepo-bazel/
https://medium.com/pinterest-engineering/how-we-designed-our-continuous-integration-system-to-be-more-than-50-faster-b70a59342fe2

CHAPTER 2

Getting Started with Bazel

Introduction

With our current understanding of the key concepts, we are

well-prepared to navigate the world of Monorepos and see

Bazel’s role as the primary tool for incremental builds. This

chapter will guide you through setting up Bazel in your local

development setup, followed by a thorough exploration of

Bazel’s fundamental components.

Structure

In this chapter, the following topics will be covered:

Installing and Setting Up Bazel

Bazel Basics: Targets, Workspaces, and BUILD Files

Building Your First Bazel Project (Java)

Installing and Setting Up Bazel

Enhancing the already impressive official Bazel

documentation available at bazel.build/docs will be

challenging. The “Installation” section at bazel.build/start

offers detailed guidance for installing Bazel on all

mainstream operating systems, as well as within Docker

containers and configurations of major IDEs.

We recommend installing Bazel and keeping it updated

using Bazelisk. Written in Go, Bazelisk serves as a wrapper

for Bazel. It automatically selects the appropriate Bazel

version for your current working directory, retrieves it from

the official server if necessary, and then transparently

relays all command-line arguments to the actual Bazel

binary. You can use Bazelisk as you would Bazel.

Figure 2.1: Bazelisk wrapping Bazel

Installing Bazelisk

For macOS users, it is straightforward:

brew install bazelisk

This installer automatically adds bazelisk to the PATH,

making it available as both bazelisk and bazel.

Frontend developers may be interested to know that Bazelisk

is also available via npm:

npm install -g @bazel/bazelisk

For Windows users, we recommend using Windows

Subsystem for Linux and follow the next Linux instructions.

For Linux users, the process requires a few more steps:

1. If wget is not already installed, get it by running:

apt update && apt upgradeapt install wget

2. Download the desired version of Bazelisk. For example,

to get version v1.18.0:

wget

https://github.com/bazelbuild/bazelisk/releases/download/v

1.18.0/bazelisk-linux-arm64

(Note: You can select a different version from Bazelisk’s

releases on GitHub by replacing the version number in

the above URL.)

3. Change the downloaded file’s privileges to executable:

chmod +x bazelisk-linux-arm64

4. Move the file to the desired directory and rename it to

Bazel:

sudo mv bazelisk-linux-arm64 /usr/local/bin/bazel

5. Verify the binary is accessible in your $PATH:

which bazel

This should return:

/usr/local/bin/bazel

It is advised to set it up as the Bazel binary in your PATH (for

example, copy it to /usr/local/bin/bazel) for seamless

operation, as demonstrated above. This way, you will never

have to stress about updating Bazel to the latest version.

Building Your First Bazel Project

(Java)

Embarking on the journey of creating your first Bazel project

is an exciting venture that combines the intricacies of

development with the power and efficiency of Bazel’s build

system. Whether you are a seasoned developer or a

newcomer eager to dive into the world of efficient builds,

this section will guide you step-by-step. From initial setup to

understanding core concepts and, finally, seeing your code

come to life.

If you would prefer not to follow the step-by-step example,

you can clone the book’s repository from GitHub at

https://github.com/OrangeAVA/Building-Large-Scale-Apps-

with-Monorepo-and-Bazel and experiment with the Bazel

commands.

Let’s start by creating a new directory for the Monorepo and

navigate to it, run from the terminal:

mkdir my_bazel_project

cd my_bazel_project

https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-Monorepo-and-Bazel

Now, let’s add a .bazelversion file to configure bazelisk to use

a specific Bazel version:

echo “6.3.2” > .bazelversion

A WORKSPACE is a directory that contains the source files for

one or more software projects, as well as Bazel’s build

outputs. It defines the project root, allowing Bazel to

recognize all the related components of the project. This

directory contains files named WORKSPACE that instruct Bazel

on how the project is organized. We will delve deeper into

this in the next section, but for now, let us just create an

empty WORKSPACE file:

touch WORKSPACE

Let us create a folder for the first project and navigate to it:

mkdir -p apps/hello-world

Now we can create source folders following the maven

standard directory layout (Maven – Introduction to the

Standard Directory Layout). This is not mandatory but

recommended.

mkdir -p apps/hello-

world/src/main/java/com/mybazelproject/helloworld

And we add a source code file at apps/hello-

world/src/main/java/com/mybazelproject/helloworld/HelloWorld.ja

va by using your preferred editor or IDE and adding :

public class HelloWorld {

public static void main(String args[]) {

System.out.println(“Hello World!”);

}

}

In order to build this, we need a BUILD file at the apps/hello-

world directory. Files named BUILD (or BUILD.bazel) are present

in every directory of the workspace containing code that

needs to be built. They contain build rules that tell Bazel

how to build different parts of the project. We will discuss it

more in the next section, but at this point let us create a file

at apps/hello-world/BUILD.bazel containing:

java_binary(

name = “hello-world”,

srcs =

[“src/main/com/mybazelproject/helloworld/HelloWorld.java”],

main_class = “com.mybazelproject.helloworld.HelloWorld”,

)

Now, from the root of your project directory in the terminal.

Build your Java project with Bazel by running:

bazel build apps/hello-world

And we are going to get something like:

Figure 2.2: Execution output from running a Bazel build

Once built, you can run your Java application with:

java -cp bazel-bin/apps/hello-world/hello-world.jar HelloWorld

And you will get:

Figure 2.3: Execution output from running the generated binary

So, let us run again:

bazel build apps/hello-world

Nothing changes this time so, as an incremental building

tooltime, Bazel finishes blazing fast::

Figure 2.4: Execution output from running a Bazel build

You have now built your first application using Bazel. While

this is a foundational step, several questions remain: How to

incorporate more source files? How to handle third-party

libraries? How can we manage dependencies with other

projects? And many more. But before diving into these, let

us revisit the core concepts in the next section.

Bazel Basics

Now, let us move back to the conceptual world in order to

understand the core concepts of Bazel: Workspaces, BUILD

Files, Packages, and Targets.

WORKSPACE File

A Bazel workspace is fundamental to understanding the

build and test processes orchestrated by Bazel. It is where

the journey of crafting software with Bazel begins.

A Bazel workspace is a directory on your file system that

encompasses the source files and the build outputs of one

or more software projects. It is the environment where Bazel

operates to recognize, compile, and test your code. The

presence of a special file named WORKSPACE (which might be

empty) at the root of a directory is what identifies that

directory as a Bazel workspace.

The workspace directory serves as the root for Bazel

operations. All the paths in Bazel target labels are relative to

this root. All source files, scripts, and assets related to a

project reside inside the workspace. It is where you will find

your Java, C++, Python, or any other source code files that

Bazel will build or test.

When Bazel builds a target, the resulting binaries, libraries,

and other outputs are stored in a set of subdirectories within

the workspace. These directories are typically named bazel-

out, bazel-bin, bazel-testlogs, among others.

The workspace is where Bazel centralizes external

dependencies definition. By utilizing the WORKSPACE file,

developers can declare dependencies from various sources,

including Git repositories, HTTP archives, and more. Bazel

fetches and stores these consistently, ensuring builds are

reproducible.

The WORKSPACE file can also be used to set up local

configurations for the build environment, specify required

tools, and establish build constraints. The WORKSPACE file

serves as a beacon for Bazel. Its existence denotes the root

of the workspace. This file contains directives that help

Bazel understand the structure of the software projects,

where to find dependencies, and how to fetch them. While it

might start as an empty file for basic projects (as we used

during the previous exercise), for larger, more intricate

projects, it plays a pivotal role in managing dependencies

and custom-build rules.

Let us see a WORKSPACE file example:

Importing external repositories

load(“@bazel_tools//tools/build_defs/repo:http.bzl”,

“http_archive”)

Define external dependencies

Example 1: Fetching a remote Git repository

http_archive(

name = “rules_sass”,

urls =

[“https://github.com/bazelbuild/rules_sass/archive/master.tar

.gz”],

strip_prefix = “rules_sass-master”,

)

Example 2: Fetching a remote HTTP archive (not a Git

repository)

http_archive(

name = “io_bazel_rules_docker”,

urls =

[“https://github.com/bazelbuild/rules_docker/archive/4.2.0.ta

r.gz”],

strip_prefix = “rules_docker-4.2.0”,

)

Example 3: Fetching an external workspace from a Git

repository

http_archive(

name = “my_external_workspace”,

urls = [“https://github.com/example/my-external-

workspace/archive/main.tar.gz”],

strip_prefix = “my-external-workspace-main”,

)

You can also specify additional configurations for external

dependencies, such as fetching specific versions, etc.

Example 4: Fetching a specific version of an external

repository

http_archive(

name = “external_repo”,

urls = [“https://github.com/example/external-

repo/archive/v1.0.0.tar.gz”],

strip_prefix = “external-repo-1.0.0”,

)

Explanation:

In the WORKSPACE file, the journey begins with the import of

essential Bazel build rules for external repositories. The load

statement serves to introduce the http_archive rule from

Bazel’s toolkit.

Subsequently, you will define your external dependencies

leveraging the http_archive rule. This prevalent rule fetches

external source code, seamlessly integrating it into your

Bazel build.

Let us delve into a few examples:

Example 1: Fetch a remote Git repository (rules_sass)

and pinpoint the URL for the repository’s archive file.

Example 2: Procure a remote HTTP archive

(io_bazel_rules_docker) in a manner akin to the previous

example.

Example 3: Highlight the process of obtaining an

external workspace (my_external_workspace) from a Git

repository. This comes into play when the objective is to

encompass an entire Bazel workspace from an external

origin.

Example 4: Outline the procedure to fetch a distinct

version of an external repository (external_repo) by

providing the URL to a specific release or tag.

These methodologies illustrate the typical patterns used to

delineate external dependencies within a Bazel WORKSPACE file.

Depending on the unique requisites of your project, you

have the flexibility to bring in a variety of external

repositories and tweak configurations as deemed necessary.

Stay tuned for in-depth explorations in the subsequent

sections.

It is essential to understand that a Bazel workspace

encapsulates its environment. Things outside the workspace

are generally invisible to Bazel unless explicitly specified.

This encapsulation ensures that builds are hermetic, that is,

they are consistent and reproducible since they are not

affected by external factors.

In summary, Bazel’s workspace is the foundational ground

for Bazel’s operations. It provides structure, consistency,

and a controlled environment, ensuring that software is built

and tested in a predictable and efficient manner.

BUILD Files

Bazel’s BUILD files are central to the build and test process

orchestrated by Bazel. These files act as blueprints,

instructing Bazel on the construction of the software.

A BUILD file is a plain-text document that resides in a

directory, containing instructions — in the form of build rules

— that guide Bazel to generate one or more build outputs

from the directory’s source files (and potentially from other

directories).

Key Aspects of BUILD files include:

Granular Configuration: Bazel encourages fine-

grained dependencies, allowing you to detail the

minimal set of input files required for a build or test.

BUILD files facilitate this, enabling developers to fine-

tune individual build targets and their specific

dependencies.

Directory Association: Every directory that houses

source files built directly by Bazel should have its

dedicated BUILD file, promoting modular and scalable

build configurations.

Target Specification: Within a BUILD file, you will

define entities termed “targets.” A target could be a

singular source file, a compiled library, an executable

binary, a test suite, or even a data package.

Rule Utilisation: Targets are shaped using “rules”.

Bazel offers a broad spectrum of rules, such as

java_binary for Java executables, cc_library for C++

libraries, or py_test for Python test suites. These rules

dictate the kind of output Bazel generates.

Dependency Declaration: Besides outlining the build

outputs, BUILD files enable the declaration of

dependencies on other targets. If target A relies on

target B, Bazel ensures B is signalling before

constructing A.

Load Statements: BUILD files can incorporate load

statements at their outset for custom rules or rules from

external sources, signalling where these rules can be

located.

The architecture and syntax of a BUILD file also include

elements like:

Labels: Every target is pinpointed by a unique label

within the workspace. Labels adhere to the

@repository//path:target_name template. For most local

workspace targets, this condenses to //path:target_name.

Attributes: BUILD file rules possess several attributes.

Common ones encompass name (mandatory for all rules),

srcs (which lists source files), and deps (which announces

dependencies on other targets).

Glob Function: Employed to identify multiple files

using wildcards, the glob function is advantageous for

incorporating numerous source files without itemizing

each separately.

Simple example:

In the context of a straightforward Java project, a BUILD file

might resemble:

java_binary(

name = “hello-world”,

srcs = glob([“*.java”]),

main_class = “com.example.helloworld.HelloWorld”,

)

Here, the java_binary rule instructs Bazel to craft a runnable

Java binary.

And here is a common BUILD file structure with an example:

Importing build rules and macros

load(“@rules_cc//cc:defs.bzl”, “cc_library”, “cc_binary”)

load(“@io_bazel_rules_docker//container:container.bzl”,

“docker_image”)

Define build targets

Example 1: C++ Library

cc_library(

name = “my_cpp_library”,

srcs = [“my_cpp_source.cc”, “my_cpp_header.h”],

hdrs = [“my_cpp_header.h”],

visibility = [“//visibility:public”],

)

Example 2: C++ Binary

cc_binary(

name = “my_cpp_binary”,

srcs = [“my_cpp_binary.cc”],

deps = [“:my_cpp_library”],

)

Example 3: Docker Image

docker_image(

name = “my_docker_image”,

base = “@ubuntu_bionic//image”,

files = [“Dockerfile”, “:my_cpp_binary”],

entrypoint = [“/my_cpp_binary”],

)

Explanation:

In the BUILD file, you start by importing build rules and

macros that you need for your project. These imports are

often specific to the programming language or framework

you are working with. In this example, we import rules for

C++ (cc_library and cc_binary) and Docker (docker_image).

Example 1 defines a C++ library target named

my_cpp_library. It specifies the source files (srcs), header

files (hdrs), and sets visibility to public. The library can

be referenced by other targets within the same BUILD file

or other BUILD files in your project.

Example 2 defines a C++ binary target named

my_cpp_binary. It specifies the source files (srcs) and

declares a dependency on :my_cpp_library. This means

that this binary target depends on the my_cpp_library

target defined in Example 1.

Example 3 defines a Docker image target named

my_docker_image. It specifies the base image to use (base),

the Dockerfile (files), and an entrypoint for the

container. Additionally, it depends on the :my_cpp_binary

target, indicating that the Docker image should include

the compiled binary produced by my_cpp_binary.

While the WORKSPACE file establishes the foundation, signifying

the root of the Bazel project and overseeing external

dependencies, BUILD files are the stars within individual

directories, elaborating on the actual build procedure.

In summary, Bazel’s BUILD files constitute the crux of the

build configuration, offering intricate maps that guide Bazel

in the nuanced task of transforming source code into

operational software, ensuring accuracy, consistency, and

efficiency.

Build Rules

In the realm of Bazel, build rules stand as the linchpin

between raw source code and the software artifacts (like

binaries or libraries) they metamorphose into. Essentially,

rules dictate how Bazel transmutes source files into outputs.

To truly grasp Bazel’s prowess, it is crucial to delve deep

into the intricacies of these build rules.

At their core, build rules are recipes. They describe the

transformation process — which inputs (source files or

dependencies) to take, the operations to perform on these

inputs (like compilation or linking), and the expected

outputs (executables, libraries, or other files).

Figure 2.5: Bazel rules as pure functions

Each rule comprises:

Inputs: These could be source files, headers, libraries,

or other dependencies.

Outputs: The resulting files after the rule is executed—

like binaries, libraries, or archives.

Actions: The procedures Bazel must undertake to

transform inputs into outputs. This might involve

invoking a compiler, linker, or other tools.

When Bazel identifies a rule in a BUILD file, it adds the rule’s

outputs to its build graph. If any of these outputs is missing

or if any of its inputs has changed, Bazel executes the rule’s

actions to regenerate the outputs.

Rules contain attributes that provide specific data for their

execution. Common attributes include:

name: A unique identifier for the rule within the BUILD

file.

srcs: Lists the source files.

deps: Declares dependencies on other targets or rules.

visibility: Dictates which other packages (if any) can

depend on this rule.

… and many more, depending on the specific rule.

Bazel comes bundled with a rich set of predefined rules, also

known as Bazel Core rules. For instance:

java_library: Defines a set of Java classes and resources.

cc_binary: Represents a C++ executable.

py_test: A test rule for Python code.

Each language or platform Bazel supports generally has a

suite of associated core rules.

While Bazel provides a vast array of built-in rules, you might

encounter situations where you need a bespoke solution.

Bazel’s extensible nature lets you craft custom rules using

its Starlark configuration language. These rules, once

defined, can be used just like the built-in ones.

One of Bazel’s standout features is its incremental build

capability, which hinges on its understanding of

dependencies. Rules declare their dependencies explicitly,

allowing Bazel to build only what’s necessary when a

change occurs, instead of rebuilding everything.

Each rule generates specific outputs, which can, in turn, be

inputs for other rules. This chaining forms a dependency

tree. At the end of this chain, Bazel produces the final build

artifact.

Bazel’s build rules are the beating heart of its build and test

processes. They encapsulate the intricate details of software

construction, allowing developers to achieve fast,

reproducible builds. Understanding these rules is paramount

for harnessing the full power of Bazel in any software

development endeavor.

Types of build rules

Build rules in Bazel are typically organized into families

based on the programming language they support. For

instance, the rules cc_binary, cc_library, and cc_test pertain

to the creation of C++ binaries, libraries, and test

frameworks, respectively. This pattern of nomenclature

extends across various languages, exemplified by the prefix

‘java_*’ for Java-related rules. While many of these rules are

delineated in the Build Encyclopedia (see

https://bazel.build/reference/be/overview), Bazel allows the

customization and creation of new rules.

The *_binary rules are designed to compile executable

programs. Upon completion of a build, the generated

executable is placed in the build tool’s binary output tree,

correlating with the rule’s label. For example, an executable

from the rule //my:program would be found at

$(BINDIR)/my/program.

For certain languages, *_binary rules additionally generate a

runfiles directory. This directory aggregates all the files

specified in the rule’s data attribute, as well as those in its

transitive dependency closure, facilitating deployment.

The *_test rules serve as a derivative of the *_binary rules,

tailored for conducting automated tests. These rules

generate test programs that signal success by returning

zero. The associated runfiles tree for tests contains

essential files for runtime access, ensuring that tests

operate in a controlled environment. For example, a cc_test

https://bazel.build/reference/be/overview

program can access files specified in its data attribute

during execution.

Lastly, *_library rules define separately compiled units

within a language’s ecosystem. These rules allow for

modular development, where libraries can be

interdependent or be leveraged by binaries and tests,

adhering to the principles of separate compilation.

Targets

At its core, Bazel is a tool designed to provide efficient,

reproducible, and correct builds. To accomplish this, it uses

a series of instructions, written by developers, to determine

what needs to be built and how. These instructions are

defined in terms of “targets”.

In the world of Bazel, a build target represents a set of

source files and a set of rules that determine how those files

should be transformed into output products. This could be

anything from compiled binaries and libraries to

documentation and deployable packages.

Figure 2.6: Target as sources + rule

Every target is defined within a BUILD file using a specific

kind of rule. Each rule’s structure looks somewhat like a

function call in a typical programming language, with the

rule name serving as the function name and its attributes

serving as arguments.

For example:

java_binary(

name = “my_app”,

srcs = [“MyApp.java”],

deps = [“:my_library”],

)

Here:

java_binary is the rule.

name, srcs, and deps are attributes of this rule.

Every target is identified by a unique label. A label is

essentially a path to the target, which includes its package

path and its name.

The format is: //path/to/package:target_name

In our preceding example. if the BUILD file is in the root of

the workspace, the label for the target would be //:my_app.

While targets can represent a wide variety of things, they

typically fall into a few categories:

Source Targets: These are simply references to source

files.

Rule Targets: These are the most common targets and

are produced by applying a rule to some source files

and dependencies.

Package Group Targets: Used to define sets of

packages.

Targets often depend on other targets. For instance, a binary

might depend on a library. These dependencies are usually

specified using the deps attribute. Bazel ensures that

dependencies are built before the dependent target.

Each rule, when applied to its sources and dependencies,

produces one or more outputs. For a java_binary rule, the

primary output is a runnable Java binary. For a java_library

rule, it’s a Java archive (.jar file).

Bazel allows you to specify which other packages (if any)

can depend on a given target using the visibility attribute.

This lets large projects enforce modular design and

encapsulation.

Figure 2.7: Chained targets

Sometimes, the same target needs to be built in multiple

ways. For instance, you might have debug and release

builds. Bazel handles this using build configurations. Targets

can be associated with specific configurations using the cfg

attribute.

Bazel’s build targets are foundational to its design and

functionality. By providing a granular and efficient way to

define what needs to be built and how, Bazel allows

developers to have precise control over the build and test

processes, ensuring reproducibility and correctness across

various environments and platforms.

Labels

We have already explained labels in the previous pages, but

let us dive deeper. In Bazel’s universe, everything is a

target: a file, a rule, a test suite, and so on. Every target has

a unique identifier, which is termed a “label”. These labels

are used to refer to targets within Bazel.

A Bazel label is conventionally structured in the following

way:

@repository//path:target_name

Let us break this down:

@repository: This is the name of the external repository.

For targets in the main repository (that is, your

workspace), this portion can be omitted. For targets in

local projects, you will not typically need this.

//path: This is the relative path from the root of the

Bazel workspace to the directory containing the target.

The double slashes (//) indicate the root of the

workspace.

:target_name: This is the name of the target itself. It

corresponds to the name attribute of the rule in a BUILD

file.

Examples:

//my/app:app_binary

This label refers to a target named app_binary located in the

my/app directory of the main repository.

@my_repo//lib/utils:utility_funcs

This label refers to a target named utility_funcs in the

lib/utils directory of an external repository named my_repo.

While the preceding representation is the canonical label,

Bazel does allow for abbreviated forms:

If the target name is the same as the package’s

directory, you can omit the target name. So,

//my/app:app can be abbreviated to //my/app.

If the target is in the main repository, you can omit the

repository name. So, @main_repo//my/app:app can just be

//my/app:app.

Labels in Bazel are always absolute, which means they

always refer to the same target, irrespective of where they

are used. However, in BUILD files, you can use relative

labels. If you are in the //my/app directory and want to

reference a target in //my/utils, you can just use :utils.

Bazel will understand this as //my/app:utils.

By using labels, you precisely pinpoint the target you are

referring to, eliminating ambiguity. This ensures that Bazel’s

builds are reproducible and consistent. As projects grow and

evolve, their structure may change. Labels provide a stable

way to refer to targets, regardless of the project’s size or

complexity. With labels, you can easily define

interdependencies between various components of your

software. This modularity facilitates efficient incremental

builds, as Bazel can quickly determine which parts of the

codebase are affected by a change.

In essence, labels in Bazel are much more than mere

identifiers. They embody Bazel’s philosophy of precision,

clarity, and efficiency. Understanding and mastering the

concept of labels is crucial for harnessing the full power of

Bazel as a build-and-test system.

Packages

Central to Bazel’s organization and structuring are

“packages”. A package in Bazel is a collection of related

files and a BUILD file. The package also includes all the files

in its directory, up to but excluding the next directory in the

filesystem tree that contains a BUILD file (that is,

subdirectories without BUILD files are considered part of the

package).

Every package contains a BUILD file, defining how the

software is constructed from its source files. This file is

essential for Bazel to recognize the directory as a package.

The boundary of a package is determined by its containing

directory. All subdirectories within that directory, which do

not have their own BUILD file, are considered a part of the

package. If a subdirectory does contain its own BUILD file, it

is treated as a separate package.

/my_project/

|-- WORKSPACE

|-- BUILD

|-- lib/

| |-- BUILD

| |-- helper.cc

| `-- helper.h

|-- app/

| |-- main.cc

| |-- BUILD

|-- test/

| |-- test_main.cc

| |-- BUILD

Packages are named by the relative path to their directory

from the workspace’s root directory, where the top-most

WORKSPACE file resides. For instance, if a package’s directory

path from the workspace root is apps/example/project, then

the package name is //apps/example/project.

Packages allow for fine-grained control over builds. By

dividing a large project into smaller packages,

developers can make small changes without needing

to rebuild the entire project. Bazel will only rebuild the

parts of the project that depend on the modified package,

optimizing the build times.

Bazel packages offer strict control over dependencies with

visibility rules. These rules determine which other packages

can reference the current package. By default, packages are

private, meaning they cannot be referenced by other

packages unless specified otherwise. This ensures that

unintended interdependencies are avoided.

Apart from the packages defined in the local workspace,

Bazel can also refer to external packages. These are usually

dependencies defined in the WORKSPACE file that are fetched

from external sources, such as GitHub repositories or

package managers like npm, maven, and so on.

Every target within a package is identified by a unique label.

This label is crucial for referencing particular targets across

different packages and looks like

//path/to/package:target_name. For example,

//src/java/com/example/project:my_lib references the my_lib

target in the src/java/com/example/project package.

Using packages provides modularity as each package can

be seen as a module that can be built, tested, and deployed

independently. It also brings parallelism as Bazel can build

or test multiple packages in parallel, leveraging multi-core

CPUs. Finally, by using packages we could get clean

Dependency Graphs as packages make it easier to maintain

a clear and organized dependency graph, helping avoid

“dependency hell”.

Packages in Bazel are more than just a structural unit; they

are foundational to how Bazel approaches the build process.

By understanding packages, developers can better organize

their codebase, manage dependencies efficiently, and

harness the full power of Bazel’s optimized, parallel, and

incremental builds.

Queries

Bazel’s query language allows you to inspect various

aspects of your build configurations. Whether it is

understanding the dependency graph, seeing how different

rules interact, or analyzing which targets might be affected

by a change, Bazel’s query functionality provides a robust

toolset.

Bazel can provide a detailed view of the dependency graph.

This is especially useful in large projects where tracking

dependencies manually can be daunting. So, before making

changes, you can use Bazel’s query system to understand

which parts of your project might be affected. This aids in

risk assessment and planning.

Bazel supports multiple build configurations, and with

queries, you can understand how different configurations

might impact your build.

The most basic query could be to ask Bazel about all the

dependencies of a target:

bazel query ‘deps(//path/to:target)’

Bazel’s query language supports various filters. For

instance, if you want to see all the Java libraries a target

depends on:

bazel query ‘kind(java_library, deps(//path/to:target))’

As we learned before, Bazel’s rules come with various

attributes (like srcs, deps, and so on). You can query based

on these attributes. For example, to find all targets that

depend on a specific file:

bazel query ‘attr(srcs, “path/to/specific/file”,

//path/to:target)’

Also, Bazel can tell you which targets depend on a given

target. This is called a reverse dependency query. It can

be immensely useful when refactoring or deleting targets:

bazel query ‘rdeps(//path/to:…, //path/to:specific_target)’

To understand the magic behind the query system, let us

review the underlying principles:

Graph-based: At its core, Bazel’s build and test system

is a Directed Acyclic Graph (DAG). Each node in this

graph represents a build or test action, and the edges

represent the dependencies between these actions. The

query system navigates this graph.

Precision: Bazel’s queries are precise because of its

strict dependency management. There is no ambiguity;

if a target is returned in a query result, you can trust

that it is relevant to your query.

Speed: The speed of Bazel’s query system comes from

its optimized in-memory graph representation. Bazel

does not need to access files on disk or re-evaluate

build rules. It uses the graph to answer queries.

While Bazel’s query language appears powerful, it can be

intricate, particularly for detailed queries. It might require

time to grasp the language’s nuances. By default, a query

encompasses the entire workspace. However, for

substantial projects, this can lead to extended query

durations. Limiting the scope often accelerates the process.

Bazel’s query system is a potent tool, especially for large

codebases and projects. By providing insights into the build

and dependency structure, it aids developers and build

engineers in ensuring efficient and error-free builds. As with

any robust tool, there is a learning curve, but the depth of

insights it provides is well worth the effort.

Dependencies

One of the essential attributes in these build rules is the deps

(short for dependencies) attribute. It specifies other targets

that the current target depends on. For instance, if you have

a C++ program, the dependencies might be the various .cc

(source) and .h (header) files required to compile that

program.

As we learned before, targets can be source files or rules. A

rule might produce an executable or a library, or it might

perform an action like copying files. By defining

dependencies, Bazel knows the order in which tasks need to

be executed. For example, before compiling a C++

program, Bazel needs to ensure that the required libraries

are built. When you make a change to your source code and

rebuild, Bazel uses the dependency graph to intelligently

determine which parts of the codebase need to be

recompiled, allowing for faster builds.

Example:

cc_binary(

name = “hello-world”,

srcs = [“hello-world.cc”],

deps = [“:hello-greet”],

)

In the preceding BUILD file, there’s a cc_binary rule which is

used for building C++ binaries. The target name is “hello-

world”, and it has a source file hello-world.cc. The deps

attribute indicates that this target depends on another

target named “hello-greet” (which could be a library).

The dependency (deps) attribute in Bazel’s BUILD file is crucial

for maintaining the order of builds and ensuring that Bazel

can perform efficient and incremental builds. By correctly

specifying the dependencies, you tell Bazel the exact

relationship between different parts of your code, allowing

Bazel to optimize the build process. As a junior developer,

always ensure that your deps attributes are up-to-date to

prevent build errors and to leverage Bazel’s efficiency to the

fullest.

Bazel Sandboxing

At its core, Bazel is a build tool. Think of it as a highly

specialized chef that prepares dishes (software builds)

according to recipes (build rules). But like any great chef,

Bazel needs a clean kitchen to ensure there is no cross-

contamination between dishes. In Bazel’s world, this clean

kitchen is the sandbox.

Imagine you are building a sandcastle in a sandbox at a

playground. The walls of the sandbox ensure that your sand

stays within its confines, and that you do not mix it up with

leaves, dirt, or other things from the playground. Also, these

walls ensure that all required artifacts to cook are inside the

sandbox and we do not need anything else from outside.

Similarly, in software, a sandbox is a controlled environment

where specific tasks run, isolated from the rest of the

system.

Why does bazel use sandboxing?

Reproducibility: Bazel wants every build to produce

the same result, regardless of where or when you run it.

By isolating builds in a sandbox, Bazel ensures that the

build only has access to declared dependencies and

cannot be affected by random files on your system.

Safety: By running tasks in a sandbox, Bazel can

prevent unintended side effects. It is like making sure a

kid with paints does not accidentally color on the walls

outside the sandbox.

Parallelism: Since builds are isolated, Bazel can run

multiple builds or tests in parallel without them

interfering with each other. It is like having multiple

sandboxes in a playground, each with its own kid

building a unique sandcastle.

So, let us review a task lifecycle:

1. When Bazel starts a build, it creates a temporary

environment: just like how each sandcastle gets its own

spot in a sandbox, each build or test gets its own

isolated environment on the disk.

2. Bazel then populates this environment only with the

files and tools declared as dependencies, injecting only

what is needed. It is like giving the kid-specific buckets

and tools to make the sandcastle and nothing more.

3. With everything set, Bazel runs the build or test.

4. Once done, it clears out the temporary environment,

ensuring there is no residue left behind.

While sandboxing offers many advantages, it also comes

with some overhead. Creating and tearing down isolated

environments can add to the build time, especially if not

optimized. However, the benefits of reproducibility and

safety often outweigh the slight increase in build time.

Conclusion

The journey through this chapter provides developers with a

foundational understanding and the necessary tools to

effectively utilize Bazel for their projects. Beginning with the

installation of Bazel and Bazelisk, developers are equipped

to set up and initiate their first Bazel project, with a special

focus on Java. The chapter meticulously explores the core

components of Bazel, including Workspaces, BUILD Files,

and Targets, each playing a pivotal role in the construction

and management of build processes. Through the

examination of WORKSPACE files and BUILD Files, developers

learn to define and configure their projects, while the

discussion on Build Rules, Targets, Labels, Packages,

Queries, and Dependencies offers insight into the granular

control and flexibility afforded by Bazel. Furthermore, the

concept of Bazel sandboxing is introduced, highlighting

Bazel’s commitment to providing reproducible and reliable

builds in an isolated environment, thereby minimizing the

risk of external interferences and inconsistencies. The

chapter concludes with a set of recommended readings,

aimed at further deepening the developer’s understanding

and mastery of Bazel. Armed with this knowledge,

developers are empowered to harness the full potential of

Bazel, navigating through its features with confidence and

employing it as a robust and efficient build and test tool for

their diverse development needs.

In the next chapter, we will dive deeper into Bazel’s Rule-

Based Build System, unlocking its potential for optimizing

and streamlining your software development workflows. You

will learn how to customize build and compilation rules,

tailoring them to suit your project’s unique requirements.

Additionally, we will explore the intricacies of writing and

executing a genrule, allowing you to harness Bazel’s power

for specialized tasks, and address any custom needs that

may not be adequately served by default rules.

Recommended Readings

Build programs with Bazel

https://bazel.build/run/build

Configurable Build Attributes | Bazel

https://bazel.build/configure/attributes

Query quickstart | Bazel

https://bazel.build/query/quickstart

Open-source Bazel Build Tutorial, Examples, and

Advantages

https://semaphoreci.com/blog/bazel-build-tutorial-

examples

Bazel Installation Guide

https://docs.bazel.build/versions/main/install.html

Getting Started with Bazel

https://docs.bazel.build/versions/main/getting-

started.html

https://bazel.build/run/build
https://bazel.build/configure/attributes
https://bazel.build/query/quickstart
https://semaphoreci.com/blog/bazel-build-tutorial-examples
https://docs.bazel.build/versions/main/install.html
https://docs.bazel.build/versions/main/getting-started.html

Bazelisk: A Bazel Launcher

https://github.com/bazelbuild/bazelisk

Using Bazelisk to Manage Bazel Versions

https://blog.bazel.build/2019/02/11/bazelisk.html

Bazel Java Tutorial

https://docs.bazel.build/versions/main/tutorial/java.html

Building Java Projects with Bazel

https://www.baeldung.com/bazel-build-java

Introduction to Bazel: Building a Java Project

https://docs.bazel.build/versions/main/tutorial/java.html

Bazel Concepts and Terminology

https://docs.bazel.build/versions/main/build-ref.html

Targets, Labels, and Packages

https://docs.bazel.build/versions/main/build-

ref.html#packages_targets_and_rules

Bazel Query Command

https://docs.bazel.build/versions/main/query.html

Managing Dependencies

https://docs.bazel.build/versions/main/external.html

Bazel Sandboxing Mechanism

https://docs.bazel.build/versions/main/sandboxing.html

Bazel: Build and Test Software of Any Size, Quickly and

Reliably

https://www.oreilly.com/library/view/bazel/97814920424

87/

Building Large Angular Applications with Bazel

https://blog.nrwl.io/building-large-angular-applications-

with-bazel-883b7d9dc0e4

https://github.com/bazelbuild/bazelisk
https://blog.bazel.build/2019/02/11/bazelisk.html
https://docs.bazel.build/versions/main/tutorial/java.html
https://www.baeldung.com/bazel-build-java
https://docs.bazel.build/versions/main/tutorial/java.html
https://docs.bazel.build/versions/main/build-ref.html
https://docs.bazel.build/versions/main/build-ref.html#packages_targets_and_rules
https://docs.bazel.build/versions/main/query.html
https://docs.bazel.build/versions/main/external.html
https://docs.bazel.build/versions/main/sandboxing.html
https://www.oreilly.com/library/view/bazel/9781492042487/
https://blog.nrwl.io/building-large-angular-applications-with-bazel-883b7d9dc0e4

CHAPTER 3

Bazel Build Rules and

Configuration

Introduction

In this chapter, we will embark on a journey to explore the

intricacies of Bazel’s rule-based build system. As a software

developer, understanding the inner workings of Bazel is

crucial for optimizing your development workflow. We will

start by introducing you to your first Bazel rule, breaking

down its components and explaining how it fits into the

larger ecosystem. Next, we will delve into the art of

customizing build and compilation rules, discussing why

customization is necessary and the key components

involved in creating your own rules. Whether you need to

fine-tune your build process or address unique project

requirements, we will show you how to solve custom needs

not served by default rules. You will also learn how to write

and execute a genrule, an essential tool for generating files

during the build process. Throughout this chapter, we will

demystify Bazel configuration, covering the WORKSPACE file,

BUILD file, Bazel flags, and .bazelrc file, including their syntax

and best practices. We will wrap up with commonly used

options and provide a conclusion to help you solidify your

understanding of Bazel’s rule-based build system, along

with a list of recommended readings for further exploration.

Structure

In this chapter, the following topics will be covered:

Exploring Bazel’s Rule-Based Build System

Customizing Build and Compilation Rules

Writing and Executing a Genrule

Solving any Custom Needs not Served by Default Rules

Exploring Bazel’s Rule-based Build

System

At the heart of Bazel’s design lies its rule-based build

system, a unique feature that makes it particularly adept at

handling vast and intricate codebases. This section dives

deep into the intricacies of Bazel’s rules and the power they

hold.

From our discussions in earlier sections, we understand that

rules in Bazel define the steps transforming inputs and

dependencies into outputs. Specifically, each rule

delineates:

Its input requirements, including source files, libraries,

and other dependencies.

The procedure to process these inputs, like compilation

or linking.

The resulting outputs, be they executables, libraries, or

other files.

These rules mandate the explicit declaration of

dependencies, fostering precision in dependency tracking.

Such granularity allows Bazel to execute exceptionally

efficient incremental builds. By accurately determining

codebase dependencies, Bazel can selectively rebuild

components affected by a change.

Bazel’s agnostic approach towards language ensures it can

virtually support any platform or language. Its extensibility

is rooted in its rule system. While Bazel offers core rules for

mainstream languages like Java, C++, and Python, its

capacity for extension through custom rules caters to other

languages or specific platform build processes.

Starlark, inspired by Python and initially termed Skylark,

serves as Bazel’s scripting language. It plays a pivotal role

in forging custom build rules and amplifying Bazel’s

capabilities.

One of the highlights of Bazel’s rules and build process is

the assurance of hermetic builds. Outputs remain insulated

from external influences, guaranteeing consistency,

reproducibility, and uniformity across diverse environments.

Bazel’s toolchain concept facilitates the abstraction and

management of compilers, linkers, and similar tools. Rules

can solicit a specific toolchain, and Bazel’s intrinsic logic will

identify the apt tool based on the prevailing platform and

configuration.

A key advantage of Bazel’s rules is the support for features

like remote caching and execution. The content-addressable

caching mechanism means that if a build identical to the

current one has been executed elsewhere, Bazel can fetch

the outputs without redoing the work. We will delve deeper

into this in upcoming sections.

Furthermore, Bazel’s rules are tailored to endorse cross-

compilation scenarios, facilitated by stipulating relevant

toolchains.

Your First Bazel Rule

This section will guide you through the process of creating a

simple Bazel rule using Starlark.

First, create a new directory for your project and initialize it

with a WORKSPACE file:

mkdir my_bazel_project

cd my_bazel_project

touch WORKSPACE

Next, create a file named my_rule.bzl in the root of your

project. This file will contain our custom rule.

Inside my_rule.bzl, start by defining a simple rule that

generates a file with custom text:

def _my_rule_impl(ctx):

output = ctx.outputs.output

content = ctx.attr.content

ctx.actions.write(output, content)

my_rule = rule(

implementation = _my_rule_impl,

attrs = {

“content”: attr.string(),

},

outputs = {

“output”: “%{name}.txt”,

},

)

In this code:

my_rule is the rule we are creating by using core function

rule.

_my_rule_impl is the implementation function. It

describes what the rule does.

ctx is the rule context, which provides access to rule

attributes, declared outputs, and actions.

The actions.write method writes a string to an output

file.

The rule function defines the rule with its

implementation, attributes, and outputs.

Now, let us use this rule. Create a BUILD file in the root of

your project with the following content:

load(“//:my_rule.bzl”, “my_rule”)

my_rule(

name = “hello”,

content = “Hello, Bazel!”,

)

The load function imports the custom rule from our

my_rule.bzl file. The my_rule target will generate a file named

hello.txt with the content “Hello, Bazel”.

Run the following command in your project directory:

bazel build :hello

Bazel will process the hello target, execute your custom

rule, and generate the hello.txt file.

After building, you should find the hello.txt file in the bazel-

bin directory. Check its content:

cat bazel-bin/hello.txt

You should see:

Hello, Bazel!

Congratulations, you have just created your first custom

Bazel rule using Starlark! While this is a simple example,

Bazel’s flexibility allows you to create more complex and

powerful rules tailored to your specific build and test needs.

Dive deeper into Starlark’s documentation and Bazel’s rule

concepts to unlock even more potential!

Dissecting a Core Bazel Rule

When working with Bazel, understanding the design and

mechanics of core rules is essential for efficient builds and

extensibility. There are many core Bazel rules, such as

java_library or java_binary, but let us dissect java_plugin as it

has a good ratio of complexity and length. Let us dive deep

into this rule, uncovering its design and inner workings.

java_plugin is a core Bazel rule for defining Java plugins as

annotation processors. Annotation processors are tools that

can generate, analyze, and manipulate code based on

annotations present in the source files. The java_plugin rule

tells Bazel how to handle and use these processors during

Java builds.

java_plugin has various attributes that configure its behavior,

including:

deps: This attribute specifies dependencies for the

annotation processor, which often includes libraries the

processor needs to link against.

processor_class: The fully qualified name of the

annotation processor class. This class should extend

javax.annotation.processing.AbstractProcessor.

generates_api: A boolean indicating whether the

annotation processor generates API (publicly accessible

code). This affects how the rule interacts with the

java_library’s strict_deps attribute.

data: Specifies files that the annotation processor needs

at runtime.

There are also some other attributes such as neverlink,

plugins, resources as can be checked in

https://bazel.build/reference/be/java#java_plugin

In its internal design it was considered as priority:

Dependency Tracking: Bazel optimizes builds through

granular dependency tracking. When a java_library or

java_binary rule uses a java_plugin, Bazel ensures that

any change in the plugin or its dependencies triggers a

rebuild of dependent Java targets.

Processor Path: When Bazel compiles Java targets

dependent on a java_plugin, it sets up the processor

path, ensuring the annotation processor can be

discovered and applied during the compilation.

API Generation: If generates_api is set to true, Bazel

treats the generated code as part of the public API. This

https://bazel.build/reference/be/java#java_plugin

is crucial because it can influence the rebuilds of other

dependent targets.

Data Dependency: Sometimes, annotation processors

need additional data files (for example, configurations

or resources). The data attribute ensures that these files

are available to the processor during runtime.

In the Bazel source code, the java_plugin rule is written using

Starlark and utilizes various internal functions and utilities

provided by Bazel’s Java rules ecosystem. The rule’s

definition in Starlark leverages functions for Java

compilation, setting up the processor path, handling

dependencies, and managing outputs.

Let us have a look at the rule’s source code (full version at

https://github.com/bazelbuild/bazel/blob/master/src/main/st

arlark/builtins_bzl/common/java/java_plugin.bzl):

load(“:common/java/basic_java_library.bzl”,

“basic_java_library”,

“construct_defaultinfo”)

load(“:common/java/java_library.bzl”, “JAVA_LIBRARY_ATTRS”,

“JAVA_LIBRARY_IMPLICIT_ATTRS”)

load(“:common/rule_util.bzl”, “merge_attrs”)

load(“:common/java/java_semantics.bzl”, “semantics”)

load(“:common/java/java_info.bzl”, “JavaPluginInfo”)

def bazel_java_plugin_rule(

ctx,srcs = [], data = [], generates_api = False,

processor_class = “”, deps = [], plugins = [],

resources = [], javacopts = [], neverlink = False,

proguard_specs = [], add_exports = [], add_opens = []):

target, base_info = basic_java_library(

ctx, srcs, deps, [], # runtime_deps

plugins, [], # exports

[], # exported_plugins

resources, [], # resource_jars

https://github.com/bazelbuild/bazel/blob/master/src/main/starlark/builtins_bzl/common/java/java_plugin.bzl

[], # classpath_resources

javacopts, neverlink, proguard_specs = proguard_specs,

add_exports = add_exports, add_opens = add_opens,

)

java_info = target.pop(“JavaInfo”)

Replace JavaInfo with JavaPluginInfo

target[“JavaPluginInfo”] = JavaPluginInfo(

runtime_deps = [java_info],

processor_class =

processor_class if processor_class else None,

ignore empty string (default)

data = data,

generates_api = generates_api,

)

target[“DefaultInfo”] = construct_defaultinfo(

ctx, base_info.files_to_build, base_info.runfiles,

neverlink,

)

target[“OutputGroupInfo”] =

OutputGroupInfo(**base_info.output_groups)

return target

def _proxy(ctx):

return bazel_java_plugin_rule(

ctx, ctx.files.srcs, ctx.files.data, ctx.attr.generates_api,

ctx.attr.processor_class, ctx.attr.deps, ctx.attr.plugins,

ctx.files.resources, ctx.attr.javacopts, ctx.attr.neverlink,

ctx.files.proguard_specs, ctx.attr.add_exports,

ctx.attr.add_opens,

).values()

JAVA_PLUGIN_ATTRS = merge_attrs(

JAVA_LIBRARY_ATTRS,

{

“generates_api”: attr.bool(),

“processor_class”: attr.string(),

“output_licenses”: attr.license() if hasattr(attr,

“license”) else attr.string_list(),

},

remove_attrs = [“runtime_deps”, “exports”,

“exported_plugins”],

)

JAVA_PLUGIN_IMPLICIT_ATTRS = JAVA_LIBRARY_IMPLICIT_ATTRS

java_plugin = rule(

_proxy,

attrs = merge_attrs(

JAVA_PLUGIN_ATTRS,

JAVA_PLUGIN_IMPLICIT_ATTRS,

),

provides = [JavaPluginInfo],

outputs = {

“classjar”: “lib%{name}.jar”,

“sourcejar”: “lib%{name}-src.jar”,

},

fragments = [“java”, “cpp”],

toolchains = [semantics.JAVA_TOOLCHAIN],

)

Let us break it down step-by-step:

1. Loading dependencies:

These load statements are importing functions,

constants, and other symbols from various Starlark

(Bazel’s extension language) files. They are setting up

the necessary tools and information to define and

implement the custom rule.

2. bazel_java_plugin_rule function:

This is a helper function that constructs a Bazel target

for the java_plugin rule. It primarily utilizes the

basic_java_library rule to create a standard Java target

but customizes it for annotation processing.

3. _proxy function:

This is the main implementation function for the

java_plugin rule. Bazel invokes this function when

processing the rule. It takes the provided attributes

from the rule and forwards them to the

bazel_java_plugin_rule function, then returns the

resulting target.

4. JAVA_PLUGIN_ATTRS and JAVA_PLUGIN_IMPLICIT_ATTRS:

These constants define the attributes that users can (or

must) set when they use the java_plugin rule in their

BUILD files. They are built upon the attributes from the

standard java_library rule but add, modify, and remove

some to fit the needs of a Java plugin.

5. java_plugin rule definition:

This is where the custom rule is formally defined. It

specifies:

Implementation function: _proxy

Attributes: Merging of the explicit and implicit

attributes.

Outputs: Naming conventions for the generated .jar

files.

Other metadata: Like the toolchains it relies on, and the

rule fragments it needs.

Here is an explanation of the key concepts:

JavaInfo and JavaPluginInfo: JavaInfo encapsulates all

Java-specific information about a Bazel target, like its

compile-time and runtime dependencies. JavaPluginInfo

is likely a custom data structure specific to this rule that

holds data about the Java annotation processor.

Attributes (attrs) in Bazel allow users to provide

parameters to rules. For instance, srcs to specify source

files, deps to declare dependencies, and so on.

Neverlink: If set to True, the rule will generate

artefacts that should not be included in the final binary

during linking. This is useful for libraries that should

only be available at runtime and not embedded in the

binary.

Toolchains: These encapsulate the tools (like

compilers) and their configurations. The rule relies on

the Java toolchain, which provides tools for compiling

and linking Java code.

Fragments: Rule fragments allow Bazel to fetch only

the necessary parts of the build graph. Here, it uses the

“java” fragment (for Java-specific build configurations)

and the “cpp” fragment (likely due to some underlying

C++ dependencies or configurations).

While not directly a coding aspect, the following example

shows how it could be used typically paired with a

java_library:

java_plugin(

name = “my_annotation_processor”,

processor_class = “com.example.MyProcessor”,

deps = [“:processor_dependencies”],

)

java_library(

name = “use_processor”,

srcs = [“MyClass.java”],

plugins = [“:my_annotation_processor”],

)

In this example, when MyClass.java is compiled, the

MyProcessor annotation processor defined in the java_plugin

rule is applied.

The java_plugin rule is a representation of Bazel’s powerful,

extensible design. By understanding its internal mechanics

and design, you learn how to design and code your own

skylark rules.

To sum it up, Bazel’s rule-driven build system is a medley of

speed, accuracy, and adaptability. By distilling the build

process into clear, modular, and reusable rules, Bazel

promises efficient and trustworthy builds across expansive

and diverse codebases. Whether navigating a monolithic

codebase at a major tech company or spearheading a

burgeoning project in a startup, harnessing Bazel’s rules can

revolutionize your build and test protocols.

Customizing Build and Compilation

Rules

Bazel’s strength lies in its extensibility. While it provides a

vast array of predefined rules to cover standard use cases,

it is almost inevitable that, at some point, one would need

custom rules to cater to unique requirements. Let us dive

into customizing build and compilation rules in Bazel.

Why Customize?

The reasons for customization can vary, explained as

follows:

Non-standard Tools and Languages

Bazel supports a wide array of languages and tools out-

of-the-box, but some niche or proprietary languages or

tools may not have existing support.

Suppose your company developed a domain-specific

language (DSL) for financial calculations. Bazel does not

know about this DSL by default. By creating custom

rules, you can instruct Bazel on how to compile, test,

and package code written in this DSL.

Optimized Build Behavior

The default behavior might not always be the most

optimized for your specific project. Custom rules can

reduce build times or resource usage.

Imagine having a monolithic application that undergoes

frequent small changes. Instead of rebuilding

everything, a custom rule could be developed to

intelligently cache and rebuild only the affected

components, saving significant time.

Code Generation

Add custom code generators or wrap existing ones into

Bazel rules to chain them in the building process.

If you have an API-first approach, you could add code-

generation rules to the project hosting the OpenAPI

specification so when specs are changed, code for API

providers and API consumers are re-generated

automatically.

Integration with Proprietary Systems

Businesses sometimes rely on proprietary or legacy

systems for version control, dependency management,

or deployment. Integrating these systems with Bazel

can streamline the development and release process.

If your company uses a proprietary artefact repository,

a custom rule can be created to fetch dependencies

directly from this repository, ensuring a seamless

integration with existing infrastructure.

Enforcing Best Practices and Standards

Custom rules can be used to ensure that the team

adheres to specific coding practices, naming

conventions, or architectural patterns.

For large teams, you could implement a rule that scans

every Java class for a specific annotation. If a class is

missing this annotation, the build could fail, ensuring

that the codebase maintains a consistent standard.

Specific Post-Build or Deployment Actions

After building or testing, projects might require certain

actions like notifications, reporting, or custom

deployments.

For continuous integration (CI) purposes, after running

tests, you could customize Bazel to generate a detailed

report, push it to a dashboard, and notify the team on

Slack about the build and test results.

Unique Dependency Mechanisms

While Bazel handles dependencies efficiently, there

might be cases where projects have a unique or

complex dependency graph that does not fit the

standard mould.

Suppose your application is split across multiple

repositories with interdependencies based on the latest

commit hashes. Custom rules could fetch the correct

versions of these inter-repo dependencies to ensure

consistent builds.

Key Components in Rule Creation

In earlier discussions, we introduced some of the pivotal

components of Bazel rules. Now, let us review and introduce

additional ones:

Rule Definition: This is the core of any Bazel rule. It is

a function that returns a rule object. The rule definition

specifies the rule’s behavior and how it interacts with

other rules.

Attributes: These are the inputs to a rule. They define

the dependencies, sources, and other configurations

that the rule needs. Common attribute types include:

label: A reference to another target (for example, a

dependency).

label_list: A list of labels.

string: A simple string value.

int: An integer value.

bool: A boolean value.

Implementation Function: This is where the logic of

the rule resides. It is a Starlark function that Bazel

invokes when the rule is executed. The function

receives a context (ctx) object, which provides access to

the rule’s attributes, outputs, and other utilities.

Outputs: These are the files that the rule produces. In

the implementation function, you can define outputs

using the ctx.actions.write or ctx.actions.run methods,

among others.

Providers: These are data structures that rules can use

to pass information to dependent rules. For example, a

rule that compiles C++ code might produce a provider

that contains information about the compiled object

files.

Toolchains: Toolchains encapsulate the tools (like

compilers) and their configurations. They allow rules to

be written in a way that is agnostic to the specifics of

the underlying tools, making builds more portable

across different environments.

Aspects: These are a way to intercept and modify the

behavior of other rules. They are useful for cross-cutting

concerns like code generation or analysis.

Default Values: For attributes that are not mandatory,

you can provide default values. This makes the rule

easier to use by reducing the amount of configuration a

user needs to provide.

Docstrings: Just like in Python, you can (and should)

provide docstrings for your rules and attributes. This

makes it easier for other developers to understand and

use your custom rules.

Private Attributes: These are attributes that start with

an underscore (_). They are used for internal details of

the rule, like specifying a tool that the rule uses

internally.

Mandatory versus Optional Attributes: While

defining attributes, you can specify whether an attribute

is mandatory or optional. Mandatory attributes must be

provided by the user, while optional ones can be

omitted.

Rule Visibility: By default, rules are private to the

package they are defined in. You can change this by

setting the visibility attribute, allowing other packages

to depend on your rule.

Creating custom rules in Bazel involves understanding and

combining these components in a way that achieves the

desired build or test behavior. As a Bazel developer,

mastering these components will enable you to extend

Bazel’s capabilities and tailor it to your specific needs.

Solving any Custom Needs not Served

by Default Rules

Bazel, as a versatile build and test tool, comes with a rich

set of default rules that cater to a wide range of common

development scenarios. However, there might be instances

where your project has unique requirements not directly

served by these out-of-the-box rules. In such cases, Bazel’s

extensibility shines, allowing you to craft custom solutions.

This section will guide you through the process of

addressing any custom needs that are not met by Bazel’s

default rules.

Before diving into creating custom rules, it is essential to:

Identify the Need: Clearly define what you are trying

to achieve. Is it a new type of compilation, a unique

packaging requirement, or perhaps a specialized testing

scenario?

Research Existing Solutions: Before reinventing the

wheel, check if someone in the community has already

created a rule or tool that addresses your need. Bazel’s

community is vast, and often, shared extensions or

rules can be found on platforms like GitHub.

If no existing solutions fit your needs, it is time to create

your custom rule. Recall the key components of rule

creation:

Rule Definition

Attributes

Implementation Function

Outputs

Providers, and more

(Refer to the previous section on “Key Components in Rule

Creation” for a detailed breakdown.)

As you embark on creating a custom rule within Bazel, we

would like to share some advice based on my experiences

and insights:

Start Small: Begin with a basic version of your rule. For

instance, if you are creating a rule to compile a new

language, start by handling a single source file without

any dependencies.

Iterate and Expand: Once the basic version works,

incrementally add features and handle more complex

scenarios.

Test Thoroughly: Ensure that your custom rule works

in various scenarios. Consider edge cases and ensure

compatibility with other rules.

Document: Write clear documentation for your rule,

explaining its purpose, attributes, expected inputs, and

outputs. This will be invaluable for both your future self

and other developers.

Often, when your custom rule relies on external tools or

binaries, it is essential to utilize Bazel Toolchains. These

toolchains in Bazel allow you to define and configure the

tools your rule depends on, ensuring both portability and

reproducibility. Additionally, when integrating these external

tools, it is crucial to ensure that they do not interfere with

other parts of your build, which can be achieved by isolating

their effects.

After creating your custom rule, you might want to think

about its broader impact. If you believe your rule could

benefit others, think about open-sourcing it. The Bazel

community is known to thrive on shared extensions and

tools. It is also beneficial to engage with this community to

gather feedback on your rule, leading to potential

improvements and ensuring it has broader compatibility.

Lastly, as Bazel continues to evolve, staying updated

becomes paramount. Always keep an eye on Bazel’s release

notes since changes in the platform might have implications

for your custom rules. And if you decide to share your rule

with the community, it is essential to clearly indicate which

versions of Bazel your rule is compatible with.

Bazel’s power lies not just in its default offerings but also in

its extensibility. By understanding the framework and

following best practices, you can tailor Bazel to any custom

need, ensuring efficient and reproducible builds for even the

most unique project requirements.

Writing and Executing a Genrule

Bazel’s `genrule` is a versatile tool that allows developers to

generate files as part of the build process. It is a catch-all

rule that can be used when no other rule seems to fit the

bill. This section will guide you through the process of

writing and executing a `genrule` in Bazel.

One of the primary advantages of using genrule is its

flexibility. Since it is not tied to any specific language or

toolchain, it can be employed for a wide range of file

generation tasks. This universality means that when no

other rule seems to fit your requirements, genrule often

comes to the rescue. Additionally, it offers a straightforward

way to integrate custom shell commands into the build

process, allowing developers to leverage existing scripts or

utilities without the need to write a custom Bazel rule.

On the other hand, this flexibility can also be seen as a

double-edged sword. The very nature of genrule being a

catch-all solution means it might not be optimized for

specific tasks. For instance, other specialized rules in Bazel

might offer better performance or more features for

particular tasks, such as compiling code in a specific

language.

Another potential drawback is the portability concern.

Commands used in genrule are often shell commands, which

might behave differently across various systems. This can

lead to inconsistencies in builds, especially in cross-platform

development environments. Developers need to ensure that

the commands they use in genrule are portable and yield

consistent results across all targeted platforms.

Lastly, while genrule is excellent for simple file generation

tasks, it might not be the best choice for more complex

scenarios. As the complexity of the generation logic

increases, maintaining it within the confines of a genrule

command can become challenging. In such cases, writing a

custom rule or using a more specialized rule might be a

more maintainable approach.

A `genrule` has several key attributes:

`name`: A unique name for the rule.

`srcs`: A list of input files that the command uses.

`outs`: A list of output files that the command produces.

`cmd`: The command or script to run. It can reference

the source files, output files, and other tools available in

the build environment.

Here is a simple example of a `genrule` that converts a

`.txt` file to uppercase and outputs a `.uppercase.txt` file:

genrule(

name = “convert_to_uppercase”,

srcs = [“input.txt”],

outs = [“output.uppercase.txt”],

cmd = “tr ‘[:lower:]’ ‘[:upper:]’ < $(SRCS) > $(OUTS)”,

)

In this example:

The `srcs` attribute specifies the input file `input.txt`.

The `outs` attribute declares the output file

`output.uppercase.txt`.

The `cmd` attribute uses the `tr` command to transform

the content of the input file to uppercase and writes it

to the output file.

So, let us create a Bazel project to test it :

1. Create a new directory with an empty WORKSPACE file:

mkdir my_genrule_project

cd my_genrule_project

touch WORKSPACE

2. Create a BUILD.bazel file and copy the rule content

shown before.

3. Create a input.txt file with a text example including

upper and lower cases.

4. To execute the `genrule`, you would typically use the

`bazel build` command followed by the target:

bazel build :convert_to_uppercase

Figure 3.1: Console output from executing a bazel build

5. Once executed, Bazel will run the specified command

and produce the output file in the `bazel-bin` directory.

cat bazel-bin/output.uppercase.txt

Figure 3.2: Console output from executing the generated binary

These suggestions will assist you in crafting efficient

genrules.

1. Use Bazel’s Built-in Variables Bazel provides several

built-in variables like `$(SRCS)` and `$(OUTS)` that you

can use in the `cmd` attribute. These variables make it

easier to reference input and output files.

2. Keep It Simple While `genrule` is powerful, it is best

used for simple file generation tasks. For more complex

scenarios, consider writing a custom rule or using a

more specialized rule.

3. Ensure Portability Since `genrule` commands are

often shell commands, ensure they are portable across

different systems, especially if you are working in a

cross-platform environment.

Beyond `$(SRCS)` and `$(OUTS)`, there are other useful built-

in variables that can be used within the `cmd` attribute to

reference various aspects of the build environment. These

variables simplify the process of writing `genrule` commands

by allowing developers to dynamically reference inputs,

outputs, and other tools. Here is an overview of some of

Bazel’s built-in variables that are particularly useful for

writing a `genrule`:

$(SRCS): This variable represents all the source files

listed in the `srcs` attribute of the `genrule`. If there are

multiple sources, they are space-separated. It is

especially useful when the command needs to process

all input files without referencing them individually.

$(<): This variable stands for the first entry in the `srcs`

list. It is handy when the `genrule` is designed to work

with a single source file. If OUTS hold multiple files then

it will throw a build error.

$(OUTS): Represents all the output files listed in the

`outs` attribute. Like `$(SRCS)`, if there are multiple

outputs, they are space-separated. This variable is

essential when the command produces multiple output

files and needs to reference them collectively.

$(@): Refers to the first entry in the `outs` list. It is useful

when the `genrule` produces a single output file.

$(location label): This variable allows you to get the

path to a file or rule specified by `label`. It is

particularly useful when the `genrule` depends on other

targets or needs to reference tools or files not listed in

`srcs` or `outs`.

$(locations label): Similar to `$(location)`, but it returns

a space-separated list of paths if the label refers to a

rule with multiple outputs.

$(GENDIR): Refers to the directory where Bazel stores

generated files. It can be useful if you need to reference

other generated files or directories during the execution

of the `genrule`.

$(BINDIR): Points to the directory where Bazel stores

binary files. This can be useful when referencing

compiled binaries or tools that are part of the build.

$(RULEDIR): This variable gives the path to the sandbox

directory for the `genrule`. It can be useful for

intermediate processing or temporary file storage

during the rule’s execution.

Using these built-in variables can significantly streamline

the process of writing `genrule` commands in Bazel. They

ensure that the commands are more readable and

maintainable, and they abstract away the specifics of the

build environment, making the rules more portable and less

prone to errors.

The `genrule` in Bazel offers a flexible way to generate files

as part of the build process. By understanding its key

components and best practices, you can leverage its

capabilities to cater to custom file generation needs in your

projects.

Bazel Configuration

Bazel is a powerful build and test tool that offers a flexible

and extensible system for defining and managing project

builds. One of the key strengths of Bazel is its configuration

system, which allows developers to customize build

behavior to suit their specific needs. In this section, we will

dive deep into Bazel’s configuration system, exploring its

various facets and how developers can leverage them for

optimal build performance and flexibility.

Bazel’s configuration system is designed to be both

powerful and user-friendly. At its core, it revolves around the

concept of “build configurations”, which are sets of flags

and settings that determine how Bazel should execute

builds and tests.

WORKSPACE File

This file serves as the entry point for Bazel and defines the

project’s external dependencies. The WORKSPACE file resides at

the root of your Bazel project. It identifies the directory it

resides in as the root of a Bazel workspace, hence the

name. This file is used to:

Define the project’s external dependencies.

Configure various build settings.

Specify the location of other repositories or sub-

projects.

A typical WORKSPACE file might look something like this:

workspace(name = “my_project”)

load(“@bazel_tools//tools/build_defs/repo:http.bzl”,

“http_archive”)

http_archive(

name = “dependency_name”,

urls = [“http://example.com/dependency.zip”],

sha256 = “abcd1234…”,

)

In this example:

workspace(name = “my_project”) gives a name to the

workspace.

The load function imports rules from Bazel’s built-in

tools.

http_archive is a rule that fetches and extracts a zip

archive from a URL.

External Dependencies

Bazel supports various rules to fetch external dependencies:

http_archive: For fetching and extracting zip and tar

archives.

git_repository: For checking out a git repository.

local_repository: For referencing local directories as

dependencies.

Adhering to Best Practices

It is imperative to maintain clarity in the WORKSPACE file by

only incorporating direct dependencies. Bazel, with its

efficiency, will autonomously fetch transitive dependencies.

Another crucial aspect is version pinning. By consistently

pinning dependencies to a specific version using the sha256

attribute, one ensures reproducibility. For values that are

frequently used, such as version numbers, it is advisable to

employ a variable at the commencement of the WORKSPACE

file.

Venturing into Advanced Topics

Bazel’s configuration language, known as Starlark,

introduces the possibility of custom logic in the WORKSPACE file,

proving beneficial for intricate projects. For expansive

projects, the WORKSPACE file can be fragmented into multiple

files utilizing the load statement.

BUILD File

In previous sections, we delved into the topic of BUILD (also

known as BUILD.bazel) files. In this section, we will introduce

some best practices to enhance your understanding:

Keep BUILD Files Small: It is easier to manage and

understand smaller BUILD files. Consider splitting large

ones by functionality or module.

Use Fine-grained Targets: Instead of having one

large target, it is often beneficial to have multiple

smaller targets. This allows for better caching and

parallelism.

Avoid Absolute Paths: Always use relative paths in

your BUILD files. This ensures portability across different

machines and environments.

Globbing: To avoid listing every source file individually,

Bazel provides the glob function. It allows you to include

all files matching a pattern.

cc_library(

name = “all-cpp-files”,

srcs = glob([“*.cc”]),

)

The BUILD file is a cornerstone of Bazel’s build process. By

understanding its structure and best practices, developers

can harness the full power of Bazel to create efficient,

reliable, and scalable builds.

Bazel Flags

Flags in Bazel allow developers to modify the behavior of

Bazel commands, making the build and test processes more

adaptable to various needs.

Types of Flags

There are two primary types of flags in Bazel. The first is the

“Startup Flags” which affect the Bazel server’s behavior.

These flags must be specified before the command, as seen

in the example

bazel --batch build //….

The second type is the “Command Flags” which influence

the behavior of the Bazel command itself. These are

specified after the command, demonstrated by

bazel build --sandbox_debug //….

Commonly Used Flags

--config: This flag allows you to use predefined sets of

options, known as configurations.

--sandbox_debug: If you are facing issues with sandboxing,

this flag can help by keeping the sandbox directories

instead of deleting them.

--jobs: Specifies the number of concurrent jobs, for

example, --jobs=4 would use 4 cores.

--test_output: Controls the output of test results. Options

include errors, all, and summary.

--define: Allows you to override a build variable, for

example, --define ENV=production.

--remote_cache: Specifies the address of the remote

cache, useful for distributed builds.

--profile: Outputs a profile file that can be analyzed for

build performance.

Tips for Using Flags

Use Configurations: Instead of manually specifying a

long list of flags every time, use the --config flag to

define and use configurations in your .bazelrc file.

Avoid Overloading: While it is tempting to use many

flags for fine-grained control, it can make your build

process complex. Use flags judiciously.

Documentation: Always refer to the official Bazel

documentation for a comprehensive list of flags and

their descriptions.

Custom Flags: Bazel allows you to define custom flags

using Starlark. This can be useful for project-specific

configurations.

Bazel flags offer a powerful way to customize and control

your build and test processes. By understanding and using

these flags effectively, developers can harness the full

potential of Bazel, ensuring efficient and reproducible builds.

.bazelrc File

The .bazelrc file provides a way to specify default values for

Bazel command-line options. These options can be set at a

global level, for specific commands, or even for specific

environments.

Location

The .bazelrc file can be located in:

The workspace directory.

The user’s home directory as ~/.bazelrc.

System-wide (for example, /etc/bazel.bazelrc).

Bazel reads these files in the order mentioned, with later

files overriding earlier ones.

Syntax

The syntax for the .bazelrc file is straightforward. Each line

specifies a command and the options for that command:

command:option=value

For example:

build --cpu=x86_64

This sets the --cpu option to x86_64 for the build command.

Let us see a more complete example:

Use JDK17

build --java_language_version=17

build --java_runtime_version=remotejdk_17

build --tool_java_language_version=17

build --tool_java_runtime_version=remotejdk_17

build --jobs=4

test --jobs=4

Here is an explanation of each line in the file:

build --java_language_version=17: This line sets the Java

language version to 17 for all Java compilation actions

during the build process.

build --java_runtime_version=remotejdk_17: This line sets

the Java runtime version to the remote JDK 17 for all

Java targets during the build process.

build --tool_java_language_version=17: This line sets the

Java language version to 17 for tools that are used

during the build process.

build --tool_java_runtime_version=remotejdk_17: This line

sets the Java runtime version to the remote JDK 17 for

tools that are used during the build process.

build --jobs=4: This line limits the number of concurrent

jobs (actions) that Bazel will run during the build

process to 4. This is useful for controlling the resource

usage of the build process, especially on machines with

limited CPU resources.

test --jobs=4: Similar to the build --jobs=4 line, this line

limits the number of concurrent test actions that Bazel

will run to 4.

Best Practices

Environment Specific Configuration: Use conditional

flags to set options based on the environment. For

instance, you might want different build configurations

for development and production.

build:dev --compilation_mode=fastbuild

build:prod --compilation_mode=opt

Avoid Hardcoding Paths: If you need to reference

paths, use workspace-relative paths or utilize Bazel’s

built-in $(location) expansion.

Use Comments: The .bazelrc file supports comments

using the # symbol. Use comments to explain complex

configurations or to temporarily disable certain options.

This is a comment.

build --option_to_be_disabled

Shared Configuration: If you are working in a team, it

is beneficial to have a shared .bazelrc file in the

workspace directory. This ensures consistent builds

across different developer machines.

User-specific Overrides: Developers can have their

own ~/.bazelrc for personal overrides. This is useful for

settings that are specific to a developer’s machine or

preferences.

Avoid Excessive Configuration: While the .bazelrc

file is powerful, avoid over-configuring. Only add options

that are necessary for your project.

Commonly Used Options

--config: This allows you to define a compound set of

options in the .bazelrc file and then refer to them with a

single --config flag on the command line.

build:myconfig --cpu=x86_64 --compilation_mode=opt

--remote_cache: Specifies the address of the remote

cache. Useful for distributed builds.

--disk_cache: Specifies a directory where Bazel can read

and write actions’ output files.

--sandbox_debug: Disables sandboxing for easier

debugging.

The .bazelrc file is a powerful tool in the Bazel ecosystem,

allowing developers to fine-tune their build and test

processes. By understanding its capabilities and following

best practices, teams can achieve consistent and efficient

builds across different environments and machines.

Conclusion

Bazel’s configuration system offers developers a robust and

flexible framework for defining and managing builds. By

understanding and effectively leveraging this system,

developers can achieve faster, more reliable, and more

customizable builds, enhancing their development workflow

and productivity. Whether you are a seasoned Bazel user or

just getting started, a deep understanding of Bazel’s

configuration system is essential for getting the most out of

this powerful tool.

In the upcoming chapter, we will delve into the world of

testing strategies in Bazel, equipping you with the

knowledge to ensure the reliability and efficiency of your

software development process. We will explore a range of

topics, from writing and running unit tests in languages like

Java, to managing and reporting unit test coverage.

Additionally, we will address critical aspects like

performance testing, user acceptance tests (end-to-end),

and best practices for achieving optimal test isolation and

parallelism, empowering you to build robust and scalable

test suites within your Bazel-based projects.

Recommended Readings

Bazel Overview

https://docs.bazel.build/versions/main/bazel-

overview.html

Creating a New Rule

https://docs.bazel.build/versions/main/skylark/tutorial-

creating-a-rule.html

Rules

https://docs.bazel.build/versions/main/be/rules.html

Writing Bazel Rules

https://docs.bazel.build/versions/main/skylark/writing-

rules.html

Genrule

https://docs.bazel.build/versions/main/bazel-overview.html
https://docs.bazel.build/versions/main/skylark/tutorial-creating-a-rule.html
https://docs.bazel.build/versions/main/be/rules.html
https://docs.bazel.build/versions/main/skylark/writing-rules.html

https://docs.bazel.build/versions/main/be/general.html#

genrule

Bazel Configuration

https://docs.bazel.build/versions/main/skylark/config.ht

ml

External Dependencies

https://docs.bazel.build/versions/main/external.html

BUILD Files

https://docs.bazel.build/versions/main/build-ref.html

Bazel User Manual

https://docs.bazel.build/versions/main/user-manual.html

Best Practices

https://docs.bazel.build/versions/main/best-

practices.html

https://docs.bazel.build/versions/main/be/general.html#genrule
https://docs.bazel.build/versions/main/skylark/config.html
https://docs.bazel.build/versions/main/external.html
https://docs.bazel.build/versions/main/build-ref.html
https://docs.bazel.build/versions/main/user-manual.html
https://docs.bazel.build/versions/main/best-practices.html

CHAPTER 4

Testing Strategies in a

Monorepo

Introduction

In a Monorepo, multiple projects coexist in a single repository,

sharing dependencies and tools. Bazel is particularly adept at

managing Monorepo complexities. This chapter will explore

various testing strategies within a Monorepo environment

using Bazel, focusing on efficiency, scalability, and reliability.

Structure

In this chapter, we will cover the following topics:

Writing and Running Tests with Bazel

Achieving Test Isolation and Parallelism

Testing Strategies in Bazel

Bazel promotes hermetic testing, where tests are isolated and

deterministic. Hermetic tests interact minimally with the

external environment, reducing flakiness and improving

reproducibility. In order to write hermetic tests:

Minimize reliance on global state and external systems.

Use mock objects and services to simulate external

dependencies.

Bazel supports fine-grained tests, allowing developers to run

specific test targets. This granularity facilitates faster

feedback loops during development. Define small and focused

test targets to take advantage of this feature.

Efficient Testing Strategies

Bazel caches test results, skipping tests whose dependencies

have not changed since the last run. This caching mechanism

significantly speeds up the testing process in Monorepos.

Ensure that tests are deterministic to leverage test caching

effectively.

Bazel can execute tests in parallel, distributing test tasks

across multiple CPU cores or remote machines. Parallel testing

is crucial for Monorepos with extensive test suites, as it

reduces the overall test runtime.

Scalable Testing Strategies

For large-scale Monorepos, consider using Bazel’s remote

execution feature. Remote execution offloads test tasks to a

cluster of machines, providing scalability and reducing the

load on local resources.

Test sharding splits a test suite into smaller chunks, or shards,

that can be run concurrently. Sharding is beneficial for lengthy

test suites, as it distributes the testing load and shortens the

feedback loop.

Reliable Testing Strategies

Bazel provides tools for identifying and managing flaky tests,

which are tests that produce inconsistent results. Address

flaky tests promptly to maintain the reliability of your test

suite.

Analyze test results systematically to identify patterns and

trends in test failures. Bazel offers various options for test

result output and analysis, aiding in the quick diagnosis and

resolution of issues.

Implementing Testing Strategies

Create custom Bazel test rules to define how tests should be

executed and what dependencies they require. Test rules

provide a flexible way to configure and run tests in a Bazel-

managed Monorepo.

Integrate Bazel with your Continuous Integration (CI) system

to automate the testing process. Bazel’s efficient and scalable

testing features are particularly valuable in a CI environment,

where rapid feedback is essential.

Testing in a Monorepo with Bazel requires a strategic approach

to handle the unique challenges and opportunities presented

by the Monorepo structure. By understanding and

implementing the testing strategies outlined in this chapter,

developers can ensure efficient, scalable, and reliable testing

processes in their Bazel-managed Monorepos.

Writing and Running Unit Tests with

Bazel

Creating a simple Unit Test in Java

First, let us establish a new Bazel Monorepo to accommodate

our class and unit test.

mkdir bazel_unit_testing

cd bazel_unit_testing/

mkdir -p app/hellotest/src/main/java/com/hellotest

mkdir -p app/hellotest/src/test/java/com/hellotest

Then, let us add the following files:

.bazelrc

common --enable_bzlmod

build --java_language_version=11

build --java_runtime_version=remotejdk_11

build --tool_java_language_version=11

build --tool_java_runtime_version=remotejdk_11

The .bazelrc file with the specified content serves multiple

purposes. Firstly, with common --enable_bzlmod, it

activates Bazel’s module system by enabling the

MODULE.bazel file to define dependencies. This is crucial for

dependency resolution and fetching. Additionally, the file

sets the Java language and runtime versions for both the

build and tool to 11 using --java_language_version=11, --

java_runtime_version=remotejdk_11, --

tool_java_language_version=11, and --

tool_java_runtime_version=remotejdk_11. These

configurations ensure that the build process and the tools

used during the build are compatible with Java version 11,

providing consistency and preventing potential issues

related to version discrepancies.

.bazelversion

6.2.1

WORKSPACE

load(“@maven//:defs.bzl”, “pinned_maven_install”)

pinned_maven_install()

The WORKSPACE file with the content provided is utilized for

managing dependencies in a Bazel project. By loading the

defs.bzl file from the @maven repository, it imports the

pinned_maven_install function. When pinned_maven_install()

is called, it installs and pins the Maven dependencies for

the project. Pinning dependencies means that the specific

versions of the dependencies are locked or fixed,

ensuring consistency and preventing automatic updates

that could break the build. This process is crucial for

maintaining a stable and predictable build environment,

as it mitigates the risks associated with dependency

version changes that might occur with Maven

repositories.

BUILD.bazel

empty

MODULE.bazel

bazel_dep(name = “rules_jvm_external”, version = “5.3”)

To update maven dependencies, update the lines below and

then run:

bazel run @unpinned_maven//:pin

maven =

use_extension(“@rules_jvm_external//:extensions.bzl”,

“maven”)

maven.install(

artifacts = [

“junit:junit:4.13.2”,

],

lock_file = “//:maven_install.json”,

repositories = [

“https://maven.google.com”,

“https://repo1.maven.org/maven2”,

],

)

use_repo(maven, “maven”, “unpinned_maven”)

The MODULE.bazel file in question is utilized for dependency

management in a Bazel project. Initially, it declares a

dependency on rules_jvm_external version 5.3 using the

bazel_dep function, which is essential for working with JVM-

based projects. The file then employs the use_extension

function to load the maven extension from

@rules_jvm_external//:extensions.bzl, which is used to install

Maven artifacts. Specifically, it installs the junit:junit:4.13.2

artifact, as listed in the artifacts parameter.

The lock_file parameter points to //:maven_install.json. This

file contains all dependencies including the transitive ones

and is created by running the bazel @maven//:pin, in a format

that rules_jvm_external can use later. You will check this file

into the repository.

The repository’s parameter lists two Maven repositories from

where the artifacts can be fetched. Finally, the use_repo

function is called to create a repository named unpinned_maven

using the previously defined maven extension, which can be

used later in the Bazel project for building and testing.

apps/hellotest/BUILD.bazel

java_library(

name = “build”,

srcs = glob([“src/main/java/**/*.java”]),

resources = glob([“src/main/resources/*.*”]),

visibility = [“//visibility:public”],

deps = [

],

)

java_test(

name = “test”,

srcs =

[“src/test/java/com/hellotest/HelloTestMainTest.java”],

test_class = “com.hellotest.HelloTestMainTest”,

deps = [

“:build”,

],

runtime_deps = [

“@maven//:junit_junit”,

],

size = “small”,

resources = glob([“src/test/resources/*.*”]),

)

The BUILD.bazel file in question defines two Bazel build

targets: a java_library and a java_test. The java_library

target, named “build”, compiles Java source files located

under src/main/java and includes resources from

src/main/resources. It is made publicly visible to other

Bazel targets within the workspace. The java_test target,

named “test”, specifies a Java test source file located at

src/test/java/com/hellotest/HelloTestMainTest.java and sets

com.hellotest.HelloTestMainTest as the test class to be run.

This test target depends on the previously defined “build”

target and the external JUnit library from Maven, with

runtime dependencies specified, including JUnit from

Maven. The test size is designated as “small”, and it also

includes resources from src/test/resources.

app/hellotest/src/main/java/com/hellotest/HelloTestMain.java

package com.hellotest;

public class HelloTestMain {

public static void main(String[] args) {

if (args.length < 1) {

System.out.println(“Please provide a name as an

argument”);

System.exit(1);

}

System.out.println(greet(args[0]));

}

public static String greet(String name) {

return “Hello, “ + name + “!”;

}

}

The main method checks if at least one argument is

provided through the command line; if not, it prints an

error message (“Please provide a name as an argument”) and

terminates the program with an exit status of 1. If an

argument is provided, the main method calls the greet

method with the provided argument, which then returns a

greeting string concatenated with the argument (the

name). This greeting string is then printed to the console.

For example, if the argument is “John”, the program will

output “Hello, John”.

app/hellotest/src/test/java/com/hellotest/HelloTestMainTest.

java

package com.hellotest;

import org.junit.Test;

import static org.junit.Assert.*;

public class HelloTestMainTest {

@Test

public void testGreet() {

String result = HelloTestMain.greet(“World”);

assertEquals(“Hello, World!”, result);

}

}

Within this file, there is a method named testGreet

annotated with @Test, signifying it as a test method for the

JUnit testing framework. The testGreet method calls the

greet function of the HelloTestMain class, passing the

string “World” as an argument. The returned result from

HelloTestMain.greet(“World”) is then compared to the

expected string “Hello, World” using the assertEquals

method from the JUnit framework. If the returned result

matches the expected string, the test will pass;

otherwise, it will fail.

In subsequent chapters, we will delve into learning about

external dependencies in depth.

Prior to launching the application, execute the following at the

command line:

bazel run @unpinned_maven//:pin

This command will resolve and retrieve all the necessary

dependencies. Afterward, we can initiate our app test by

executing:

bazel test //app/hellotest:test

The result of this command is shown in Figure 4.1:

Figure 4.1: Test execution for hellotest project

By the way, the WARNING logs visible here occur because certain

libraries could not be located at maven.google.com, though they

were resolved from alternative source

https://repo1.maven.org/maven2 as defined in MODULE.bazel.

To view a test log, simply open it with your preferred editor by

navigating to $(bazel info bazel-

testlogs)/app/hellotest/test/test.log, or you can display its

contents directly in the terminal using the cat command:

cat $(bazel info bazel-testlogs)/app/hellotest/test/test.log

In this example, the command bazel info bazel-testlogs

retrieves the path where test logs are stored, to which you

append the relative path to the specific test log you wish to

view.

Managing Multiple Unit Tests

The previous approach works for managing one unit test only,

and requires a new target for each unit test we want to add.

So, this is not scalable. If we want to execute many unit tests,

we need a TestSuite.

A JUnit Test Suite is a collection of test cases that are bundled

together to be executed as a group. Test suites are an

excellent tool when you have multiple test classes and you

want to organize, manage, and run them together. In JUnit,

you can create a test suite using the @RunWith and @Suite

annotations. The @RunWith(Suite.class) annotation tells JUnit to

run the class as a suite, while the

@Suite.SuiteClasses({TestClass1.class, TestClass2.class})

annotation holds an array of test classes that will be part of

the suite. When the suite is run, it will execute all test

methods in all test classes listed in the @Suite.SuiteClasses

annotation, allowing for more organized and efficient testing,

especially in large projects with numerous test classes.

// TestSuiteExample.java

package com.example;

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({

Test1.class,

Test2.class

})

public class TestSuiteExample {

// the class remains empty,

// used only as a holder for the above annotations

}

However, manually maintaining these TestSuites is not

scalable. Would it not be more efficient if we could automate

the generation of TestSuite code? Furthermore, imagine the

convenience if we encapsulate this automated process into a

Bazel rule. Let us proceed by creating the following files:

tools/rules/junit4_test_suite folder including and empty

BUILD.bazel file just to let Bazel consider it as a project

tools/rules/junit4_test_suite.bzl including this content:

load(“@rules_java//java:defs.bzl”, “java_test”)

_TEST_SUITE_TEMPLATE = “””import org.junit.runners.Suite;

import org.junit.runner.RunWith;

@RunWith(Suite.class)

@Suite.SuiteClasses({%s})

public class %s {}

“””

_VALID_PACKAGE_PREFIX = (“org”, “com”, “edu”)

def _GetIndex(l, val):

for i, v in enumerate(l):

if val == v:

return i

return -1

def _GetClassName(fname):

fname = [x.path for x in fname.files.to_list()][0]

toks = fname[:-5].split(“/”)

findex = -1

for s in _VALID_PACKAGE_PREFIX:

findex = _GetIndex(toks, s)

if findex != -1:

break

if findex == -1:

fail(“%s does not contain any of %s” % (fname,

_VALID_PACKAGE_PREFIX))

return “.”.join(toks[findex:]) + “.class”

def _impl(ctx):

classes = “,”.join(

[_GetClassName(x) for x in ctx.attr.srcs],

)

ctx.actions.write(output = ctx.outputs.out, content =

_TEST_SUITE_TEMPLATE % (

classes,

ctx.attr.outname,

))

_GenSuite = rule(

attrs = {

“srcs”: attr.label_list(allow_files = True),

“outname”: attr.string(),

},

outputs = {“out”: “%{name}.java”},

implementation = _impl,

)

def junit4_test_suite(name, srcs, **kwargs):

s_name = name.replace(“-”, “_”) + “TestSuite”

_GenSuite(

name = s_name,

srcs = srcs,

outname = s_name,

)

java_test(

name = name,

test_class = s_name,

srcs = srcs + [“:” + s_name],

**kwargs

)

It begins by loading the java_test rule from

@rules_java//java:defs.bzl. The file contains a template string

_TEST_SUITE_TEMPLATE for generating Java code that imports the

necessary JUnit classes and annotations to define a test suite.

It also defines a tuple _VALID_PACKAGE_PREFIX containing valid

package prefixes. The file contains functions _GetIndex and

_GetClassName to manipulate and retrieve the class name from

the provided file names. The _impl function generates the test

suite Java code by iterating over the source files, retrieving

their class names, and inserting them into the template. This

function writes the generated code to an output file. The

_GenSuite rule is defined to implement the _impl function,

taking source files and an output name as attributes. Finally,

the junit4_test_suite macro is defined to create a test suite. It

generates a test suite name, invokes _GenSuite to generate the

test suite Java code, and then defines a java_test target using

the generated test suite and the provided source files.

Let us replace app/hellotest/BUILD.bazel content with this:

load(“//tools/rules:junit4_test_suite.bzl”,

“junit4_test_suite”)

java_library(

name = “build”,

srcs = glob([“src/main/java/**/*.java”]),

resources = glob([“src/main/resources/*.*”]),

visibility = [“//visibility:public”],

deps = [

],

)

junit4_test_suite(

name = “test”,

srcs = glob([“src/test/java/**/*.java”]),

deps = [

“:build”,

],

runtime_deps = [

“@maven//:junit_junit”,

],

size = “small”,

resources = glob([“src/test/resources/*.*”]),

)

So, here we are using the previously created

junit4_test_suite rule to redefine the test target.

Now is time to refactor our app to include two classes and two

tests.

app/hellotest/src/main/java/com/hellotest/GreeterService.jav

a

package com.hellotest;

public class GreeterService {

public String greet(String name) {

return “Hello, “ + name + “!”;

}

}

app/hellotest/src/main/java/com/hellotest/HelloTestMain.java

package com.hellotest;

public class HelloTestMain {

public static void main(String[] args) {

if (args.length < 1) {

System.out.println(“Please provide a name as an

argument”);

return;

}

GreeterService service = new GreeterService();

System.out.println(service.greet(args[0]));

}

}

app/hellotest/src/test/java/com/hellotest/GreeterServiceTest

.java

package com.hellotest;

import org.junit.Test;

import static org.junit.Assert.*;

public class GreeterServiceTest {

@Test

public void testGreet() {

GreeterService service = new GreeterService();

String result = service.greet(“World”);

assertEquals(“Hello, World!”, result);

}

}

app/hellotest/src/test/java/com/hellotest/HelloTestMainTest.

java

package com.hellotest;

import org.junit.Test;

import static org.junit.Assert.*;

public class HelloTestMainTest {

@Test

public void testGreet() {

HelloTestMain.main(new String[]{“World”});

}

@Test

public void testEmptyGreet() {

HelloTestMain.main(new String[]{});

}

@Test

public void testInstance() {

HelloTestMain main = new HelloTestMain();

}

}

Afterwards, we can initiate our app test by executing:

bazel test //app/hellotest:test

Refer to Figure 4.2, for app test initiation.

Figure 4.2: Test execution for hellotest project

On the console, the target execution result is displayed as

PASSED. However, behind the scenes, the two unit test

classes and their four methods have been executed.

cat $(bazel info bazel-testlogs)/app/hellotest/test/test.log

Starting local Bazel server and connecting to it…

exec ${PAGER:-/usr/bin/less} “$0” || exit 1

Executing tests from //app/hellotest:test

--

JUnit4 Test Runner

.GreeterServiceTest

.HelloTestMainTest

Please provide a name as an argument

.HelloTestMainTest

Hello, World!

.HelloTestMainTest

Time: 0.018

OK (4 tests)

Reporting Unit Test Coverage

Code coverage is a metric that helps developers understand

the percentage of their codebase that is covered by their unit

tests. It provides insights into areas of the code that might be

at risk due to lack of testing. In a Monorepo setup with Bazel,

reporting unit test coverage for Java unit tests can be

streamlined and efficient. This section will guide you through

the process of generating and interpreting these reports.

Prerequisites

Before diving into the coverage reporting, ensure you have

lcov installed:

lcov --version

lcov is a graphical front-end for GCC’s coverage testing tool

gcov. It provides a comprehensive way to visualize code

coverage information, making it easier for developers to

identify areas in their codebase that are not well-tested. lcov

collects coverage data from gcov and generates HTML pages

that offer a user-friendly representation of the coverage

information, including line, function, and branch coverage

metrics.

To install lcov on a Linux-based system, you can typically use

the package manager associated with your distribution. For

example, on a system that uses apt (like Ubuntu), you would

run

sudo apt-get install lcov

Or in MacOS you could run

brew install lcov

For other operating systems or package managers, the

installation command might differ, so it is advisable to refer to

the official documentation or relevant resources for specific

installation instructions.

Generating Coverage Reports with Bazel

Follow these steps to generate coverage reports for your Java

unit tests:

1. Run Bazel with the Coverage Option

Use the bazel coverage command followed by the target

you want to test. For instance, if you have a target named

//my-java-project:all, you would run:

bazel coverage //my-java-project:all

2. Specify a Coverage Tool

Bazel supports multiple coverage collection tools. For

Java, the default tool is lcov. Ensure you have lcov

installed or specify another tool using the --

coverage_report_generator flag.

bazel coverage --combined_report=lcov //app/hellotest:test

3. Generate the Report

Once the coverage command completes, Bazel will

produce a coverage report in the bazel-out/ directory. This

report is in the lcov format, which can be converted to

other formats or viewed using various tools.

Interpreting the Coverage Report

Viewing the LCOV Report

You can view the lcov report using a tool like genhtml:

genhtml -o output_directory bazel-

out/_coverage/_coverage_report.dat

This will generate an HTML report in the specified output

directory.

open genhtml/index.html

Figure 4.3: Generated test coverage report

Understanding the Metrics

Line Coverage: The percentage of lines of code that

were executed by the tests.

Function Coverage: The percentage of functions or

methods that were called during the tests.

Branch Coverage: The percentage of branches (like

if or switch statements) that were tested.

Identifying Areas for Improvement: Look for classes

or methods with low coverage percentages. These are

areas where you might want to write additional tests or

review existing tests for completeness.

Best Practices

Continuous Integration (CI): Integrate coverage

reporting into your CI pipeline. This ensures that coverage

is consistently monitored and reported with every code

change.

Coverage Thresholds: Set minimum coverage

thresholds and fail the build if coverage drops below

these thresholds. This ensures that the codebase

maintains a certain level of test coverage.

Review Coverage Reports Regularly: Make it a habit

to review coverage reports regularly, especially after

significant code changes.

Coverage reporting is an essential aspect of maintaining a

healthy and robust codebase, especially in a Monorepo setup

with Bazel. By understanding how to generate and interpret

these reports, you can ensure that your Java projects are well-

tested and resilient against regressions. Remember, while

high coverage is a good indicator, it is the quality of the tests

that truly matters. Aim for meaningful tests that validate the

functionality of your code, rather than just chasing high

coverage numbers.

Performance Testing

Performance testing is a crucial aspect of software

development that ensures your Java applications run

efficiently and effectively under specified workloads. Bazel, a

fast and reliable build tool, is an excellent choice for

managing and running performance tests on Java projects due

to its advanced caching, parallel execution features, and fine-

grained build graph.

Tools like JMH (Java Microbenchmarking Harness) can be

integrated with Bazel for microbenchmarking Java code.

Let us copy our previous project and add JMH dependency by

editing:

MODULE.bazel

···

maven.install(

artifacts = [

···

“org.openjdk.jmh:jmh-core:1.23”,

“org.openjdk.jmh:jmh-generator-annprocess:1.23”,

],

···

)

···

Update the dependencies by running:

bazel run @unpinned_maven//:pin

Add JMH java plugin and a new benchmark target in the

BUILD.bazel

load(“//tools/rules:junit4_test_suite.bzl”,

“junit4_test_suite”)

java_library(

name = “build”,

srcs = glob([

“src/main/java/**/*.java”,

“src/test/java/**/*Benchmark.java”,

]),

resources = glob([“src/main/resources/*.*”]),

visibility = [“//visibility:public”],

deps = [

“@maven//:org_openjdk_jmh_jmh_core”,

],

plugins = [“:jmh_annotation_processor”],

)

···

java_binary(

name = “benchmark”,

main_class = “org.openjdk.jmh.Main”,

runtime_deps = [“:build”],

plugins = [“:jmh_annotation_processor”],

)

java_plugin(

name = “jmh_annotation_processor”,

deps =

[“@maven//:org_openjdk_jmh_jmh_generator_annprocess”],

processor_class =

“org.openjdk.jmh.generators.BenchmarkProcessor”,

visibility = [“//visibility:private”],

)

Let us add a new java class at

app/hellotest/src/test/java/com/hellotest/GreeterServiceBenc

hmark.java

package com.hellotest;

import org.openjdk.jmh.annotations.Benchmark;

import org.openjdk.jmh.annotations.Param;

import org.openjdk.jmh.annotations.Scope;

import org.openjdk.jmh.annotations.State;

@State(Scope.Thread)

public class GreeterServiceBenchmark {

@Param({“Alice”, “Bob”, “Charlie”, “Diana”})

public String name;

private final GreeterService greeterService = new

GreeterService();

@Benchmark

public void greetBenchmark() {

greeterService.greet(name);

}

}

Now it is time to launch it by running:

bazel run //app/hellotest:benchmark

Figure 4.4: Benchmark execution for hellotest project

JMH is a comprehensive performance benchmarking tool that

exceeds the coverage of this book. For a more in-depth

understanding, it is strongly recommended referring to their

official documentation.

User Acceptance Tests (End-to-end)

User Acceptance Testing (UAT) is a pivotal phase in the

software development lifecycle, ensuring that the developed

software meets user expectations and requirements. In the

context of a Monorepo and utilizing Bazel as a build and test

tool, UAT can be orchestrated efficiently to validate that the

applications and libraries are functioning as intended in an

integrated environment. This chapter will delve into the

intricacies of setting up and running UATs with Bazel in a

Monorepo setup.

In a Monorepo, multiple projects coexist in a single repository,

sharing dependencies and tools, which can be leveraged to

create a unified and streamlined UAT process. User

Acceptance Tests in this context should validate:

Interoperability: Ensure that shared libraries and

services function correctly across all applications in the

Monorepo.

Consistency: Validate that common components provide

consistent behavior and UI across different applications.

Dependency Management: Confirm that changes in

shared dependencies do not adversely affect applications.

Integrate Bazel-driven UATs into your Continuous

Integration/Continuous Deployment (CI/CD) pipelines to

ensure that UAT is consistently performed with every change

to the Monorepo. This ensures that any regression or issues

are identified and addressed promptly.

Challenges and Best Practices

UAT Standalone Application: This method involves

handling UAT tests as a separate, independent application

that produces its own executable binary. This allows it to

run across various environments. Additionally, this UAT

application can be launched with particular parameters to

run either all tests or a selected group of them. Such

flexibility is advantageous for specific situations such as

smoke testing, performance evaluations, and more.

Flakiness: Address test flakiness by ensuring that tests

are deterministic and robust against minor UI/UX

changes.

Data Management: Ensure that test data is anonymized

and does not contain sensitive information.

Scalability: As the Monorepo grows, optimize Bazel

configurations to ensure that UAT execution remains

efficient and fast.

Maintenance: Regularly review and update UATs to align

with evolving user requirements and application features.

Using Cypress

We have added a simple UAT sample using Cypress to the

book’s GitHub repository under the path /chapter-

4/bazel_uat_cypress. This plain easy example only opens an

example website at https://example.cypress.io/.

You could run it by executing:

bazel run //apps/frontend-e2e:cypress_dev

You are going to see the report at your preferred web browser,

as shown in Figure 4.5:

Figure 4.5: End-to-end test execution report

And at the command line:

https://example.cypress.io/

Figure 4.6: End-to-end test execution

UAT is crucial in affirming that the developed software aligns

with user expectations and requirements. In a Monorepo,

utilizing Bazel to orchestrate UATs ensures efficiency,

consistency, and reliability in validating that all applications

and libraries function cohesively and as intended. By

integrating UATs into the development and deployment

workflows, teams can ensure that user satisfaction and

product quality are perpetually at the forefront.

Achieving Test Isolation and

Parallelism

In the world of software development, speed and reliability

are paramount. As projects grow, so does the time it takes to

test and build them. Bazel, with its unique approach to

dependency management and build optimization, offers a

solution to this challenge. One of the standout features of

Bazel is its ability to achieve test isolation and parallelism,

ensuring that tests run quickly and reliably. This section

delves into how Bazel accomplishes this and how you can

leverage its capabilities to supercharge your testing process.

Test Isolation

Test isolation ensures that each test runs in a controlled

environment, unaffected by other tests or external factors.

This is crucial for the reliability of tests, as it ensures that they

only fail when there is an actual problem with the code.

How Bazel Ensures Test Isolation:

1. Sandboxing: Bazel runs each test in a sandboxed

environment. This means that tests cannot access files or

network resources outside of their declared

dependencies. This prevents tests from inadvertently

depending on external state.

2. Explicit Dependency Declaration: In Bazel, you must

declare all dependencies explicitly. This ensures that each

test has everything it needs to run and nothing more. It

also means that Bazel can accurately determine which

tests need to be rerun when a dependency changes.

3. Hermeticity: Bazel’s emphasis on hermetic builds (builds

that are isolated from the external environment) ensures

that tests are repeatable. The same test will produce the

same result, regardless of where and when it is run.

Test Parallelism

Parallelism involves running multiple tests simultaneously to

reduce the total test runtime. Bazel’s approach to parallelism

is both efficient and flexible.

How Bazel Achieves Test Parallelism:

1. Fine-grained Dependency Analysis: Bazel’s

dependency graph is at the core of its parallelism

capabilities. By understanding the relationships between

different parts of the codebase, Bazel can determine

which tests can be run in parallel without interfering with

each other.

2. Dynamic Test Scheduling: Bazel dynamically schedules

tests based on the available resources. If you have a

multi-core machine or a distributed build system, Bazel

will take full advantage of it to run as many tests in

parallel as possible.

3. Remote Execution and Caching: Bazel can offload test

execution to remote machines, allowing for even greater

parallelism. Combined with Bazel’s caching mechanism,

this means that previously run tests (with unchanged

dependencies) can be skipped entirely, further speeding

up the testing process.

Best Practices for Maximizing Test Isolation and

Parallelism

Keep Tests Small and Focused: The smaller and more

focused a test is, the faster it will run, and the easier it

will be to parallelize with other tests.

Avoid Global State: Global state can introduce

dependencies between tests that Bazel cannot account

for. Always aim for stateless tests.

Use Bazel’s Test Tags: Bazel allows you to tag tests (for

example, `integration`, `unit`, `slow`). You can use these

tags to group and manage your tests, ensuring that they

are scheduled appropriately.

Monitor and Optimize: Regularly monitor your test

runtimes and look for opportunities to optimize. Bazel

provides tools and reports that can help identify

bottlenecks in your testing process.

Conclusion

In this chapter, we learned that achieving test isolation and

parallelism is crucial for maintaining a fast and reliable testing

process, especially as your codebase grows. Bazel, with its

advanced dependency analysis and dynamic scheduling,

offers a robust solution to this challenge. By understanding

and leveraging Bazel’s capabilities, you can ensure that your

tests are both reliable and efficient.

In the next chapter, we will cover the knowledge and skills

required to proficiently manage both internal and external

dependencies, master the utilization of Bazel workspaces for

defining and managing dependencies, enforce versioning and

compatibility strategies within a Monorepo, and seamlessly

integrate Bazel into various IDEs (integrated development

environments).

Recommended Readings

Test encyclopedia | Bazel:

https://bazel.build/reference/test-encyclopedia

How to Set Up a Bazel Testing Configuration: The

Comprehensive Guide for Scala and Java

https://virtuslab.com/blog/bazel-testing-configuration-

comprehensive-guide/

Bazel: Testing

https://docs.bazel.build/versions/main/test.html

Bazel: Best Practices for Rules and Tests

https://docs.bazel.build/versions/main/best-practices.html

Efficient Testing with Bazel

https://blog.bazel.build/2019/06/07/more-efficient-test-

discovery.html

Scaling Your Testing with Bazel

https://www.youtube.com/watch?v=2xqkF_1t-6E

Bazel: Persistent Test Workers

https://docs.bazel.build/versions/main/persistent-

workers.html

https://bazel.build/reference/test-encyclopedia
https://virtuslab.com/blog/bazel-testing-configuration-comprehensive-guide/
https://docs.bazel.build/versions/main/test.html
https://docs.bazel.build/versions/main/best-practices.html
https://blog.bazel.build/2019/06/07/more-efficient-test-discovery.html
https://www.youtube.com/watch?v=2xqkF_1t-6E
https://docs.bazel.build/versions/main/persistent-workers.html

Implementing Bazel Test Targets

https://docs.bazel.build/versions/main/be/general.html#te

st_suite

Writing Bazel Tests

https://docs.bazel.build/versions/main/test-

encyclopedia.html

Java Testing with Bazel

https://docs.bazel.build/versions/main/tutorial/java.html

Managing Dependencies in Bazel

https://docs.bazel.build/versions/main/build-

ref.html#dependencies

Bazel: Code Coverage

https://docs.bazel.build/versions/main/test-

encyclopedia.html#code-coverage

Performance Testing with Bazel

https://docs.bazel.build/versions/main/skylark/performanc

e.html

End-to-End Testing Frameworks Compatible with Bazel

https://bazelbuild.github.io/rules_nodejs/examples/web_te

sting.html

Test Isolation in Bazel

https://docs.bazel.build/versions/main/test-

encyclopedia.html

Bazel: Parallel Test Execution

https://docs.bazel.build/versions/main/test-

encyclopedia.html#test-execution-environment

Best Practices in Bazel for Test Isolation

https://docs.bazel.build/versions/main/best-practices.html

https://docs.bazel.build/versions/main/be/general.html#test_suite
https://docs.bazel.build/versions/main/test-encyclopedia.html
https://docs.bazel.build/versions/main/tutorial/java.html
https://docs.bazel.build/versions/main/build-ref.html#dependencies
https://docs.bazel.build/versions/main/test-encyclopedia.html#code-coverage
https://docs.bazel.build/versions/main/skylark/performance.html
https://bazelbuild.github.io/rules_nodejs/examples/web_testing.html
https://docs.bazel.build/versions/main/test-encyclopedia.html
https://docs.bazel.build/versions/main/test-encyclopedia.html#test-execution-environment
https://docs.bazel.build/versions/main/best-practices.html

CHAPTER 5

Dependency Management and

Versioning

Introduction

In the ever-evolving landscape of software development, the

management of dependencies, both internal and external, has

emerged as a critical aspect of project success. This chapter

delves into the intricacies of managing these dependencies

within the Bazel ecosystem. We begin by exploring the

nuances of internal dependencies - those which are part of

your monorepo, and external dependencies - components

sourced from outside your repository. Understanding how to

effectively balance and manage these dependencies is

essential for maintaining a robust and efficient build system.

The chapter will guide you through the complexities of conflict

resolution, ensuring that your project remains stable and

consistent amidst the myriad of library versions and external

modules.

As we progress, we will uncover the innovative approach of

Bazel MODULES, a modern solution for handling external

dependencies in Bazel. This section will provide detailed

insights into declaring dependencies with MODULES and

configuring an air-gapped Bazel build – a crucial aspect for

secure, offline development environments. Furthermore, we

will delve into the strategies for enforcing versioning and

compatibility in a monorepo setting, which is key to

maintaining a coherent codebase over time. Additionally, this

chapter covers the practicalities of querying dependencies and

generating dependency graphs, providing you with the tools to

visualize and understand the intricate web of your project’s

dependencies. To ensure a comprehensive learning

experience, we will also explore how to integrate Bazel into

various Integrated Development Environments (IDEs),

enhancing your development workflow. Concluding with a

summary and recommended readings, this chapter aims to

equip you, the software developer, with the knowledge and

skills to master dependency management and versioning in

Bazel, paving the way for more efficient and streamlined

software development processes.

Structure

In this chapter, we will discuss the following topics:

Managing Internal and External Dependencies

Bazel Workspaces: Defining and Handling Dependencies

Enforcing Versioning and Compatibility in a Monorepo

Target and Package Visibility

Integrating Bazel within an IDE

Managing Internal and External

Dependencies

In the world of software development, dependency

management is a crucial aspect that ensures the seamless

integration and functioning of various components. When

working with a monorepo and Bazel, understanding how to

manage both internal and external dependencies becomes

even more vital. This chapter will delve into the intricacies of

managing these dependencies, offering best practices and

insights.

Internal dependencies refer to the relationships between

different parts of your codebase within the monorepo. For

instance, if you have a library Frontend-Component-1 and an

application Frontend-A in the same monorepo, and Frontend-A

uses Frontend-Component-1, then Frontend-A has an internal

dependency on Frontend-Component-1.

Figure 5.1: Internal dependency

External dependencies are the libraries, frameworks, or tools

that your codebase relies on but are not part of your

monorepo. Examples include third-party libraries like React,

Lodash, or TensorFlow.

Figure 5.2: External dependency

Internal Dependencies

A monorepo, by definition, houses multiple projects, libraries,

and tools under a single repository. This structure offers

several benefits, such as code sharing, atomic commits, and

simplified dependency management. However, it also presents

unique challenges, especially when it comes to managing

dependencies between internal projects.

Before diving into management techniques, it’s essential to

understand what internal dependencies are. In a monorepo,

internal dependencies refer to the reliance of one project or

module on another within the same repository. For instance, a

web application might depend on a shared utility library, or a

microservice might rely on a common API definition.

Some of the benefits of managing internal dependencies in a

monorepo are as follows:

Code Reusability: Properly managed dependencies allow

for code to be reused across multiple projects, reducing

redundancy and improving the developer experience

compared with a multi-repo scenario.

Consistency: Shared libraries ensure that common

functionalities are consistent across projects.

Efficient Builds: With tools like Bazel, only the changed

parts of the codebase and their direct dependencies need

to be rebuilt, leading to faster build times.

Bazel’s primary strength lies in its ability to understand the

dependency graph of your projects. Here’s how Bazel aids in

managing internal dependencies:

BUILD Files: Every project or library in a Bazel-managed

monorepo has a BUILD file. This file defines the project’s

dependencies, both internal and external. By explicitly

stating dependencies, Bazel can determine what needs to

be rebuilt when a change occurs.

Fine-grained Dependencies: Instead of depending on

an entire project, Bazel allows projects to depend on

specific targets (for example, a particular library or

binary). This granularity ensures that builds are as

efficient as possible.

Visibility Controls: Bazel’s BUILD files allow you to

specify who can depend on a particular target using the

visibility attribute. This feature ensures that certain

libraries remain private to specific projects, enforcing

modular design.

Best Practices

Here are some pivotal strategies to consider during internal

dependency management:

Explicit Dependency Declaration: It’s imperative to

specify all dependencies in your BUILD files. Depending on

indirect or transitive dependencies can compromise the

robustness of your builds.

Controlled Visibility: Harness the power of Bazel’s

visibility features to guarantee that projects hinge solely

on the essentials. This not only fosters a modular

architecture but also wards off accidental dependencies.

Library Major Versioning: Within a monorepo, assigning

major versions to shared libraries is a prudent move. It

empowers projects to lean on consistent versions and

transition to the ones being deeply refactored and non-

retro-compatible anymore.

Automated Dependency Verification: Implement tools

and Bazel add-ons to proactively identify and rectify

obsolete or superfluous dependencies, ensuring a

streamlined dependency structure.

Comprehensive Dependency Documentation: Uphold

a detailed record elucidating the objectives and

application of shared libraries. Such insights will equip

other teams with the knowledge to effectively utilize

shared resources.

External Dependencies

A monorepo, by definition, houses multiple projects, each

potentially having its own set of external dependencies. Bazel

offers a systematic approach to handle these dependencies,

ensuring consistency, reproducibility, and efficient builds. In

this section, we will delve into the intricacies of managing

external dependencies using Bazel in a monorepo setup.

Key Points:

Direct Dependencies: Libraries and tools directly used

by your project.

Transitive Dependencies: Libraries that your direct

dependencies depend on.

Managing dependencies efficiently in a monorepo is essential

for several reasons. Firstly, it ensures consistency by making

sure all projects within the monorepo utilize the same version

of a given dependency. Secondly, it guarantees reproducibility,

meaning that builds and tests yield identical results regardless

of the machine they’re executed on. Lastly, it promotes

efficiency by preventing the redundant downloading of the

same dependency or the repeated building from its source.

Bazel uses a unique approach to manage external

dependencies, focusing on hermeticity and reproducibility.

WORKSPACE File: The heart of dependency management in

Bazel is the WORKSPACE file. This file resides at the root of

your monorepo and defines all external dependencies.

Each dependency is represented by a rule, which tells

Bazel how to fetch and build it.

Repository Rules: Bazel uses repository rules to fetch

and/or build external dependencies. Some common rules

include:

http_archive: Fetches a tarball and extracts it.

git_repository: Clones a Git repository.

local_repository: Points to a local directory outside the

monorepo.

Adding an External Dependency

In the WORKSPACE file, use a suitable repository rule to define

the dependency. For example, to add a dependency on a

library hosted on GitHub:

git_repository(

name = “example_dependency”,

remote = “https://github.com/example/example_dependency.git”,

tag = “v1.0.0”,

)

Once defined, you can reference the dependency in your BUILD

files using its name:

deps = [“@example_dependency//…”],

Strategies for Version Management

Centralized Versioning: Use a single WORKSPACE file at the

root of your monorepo to define all external

dependencies. This involves defining all dependencies and

their versions in a centralized location, which all projects

within the monorepo reference. This strategy has the

following advantages:

Unified Versions: All projects use the same version

of dependencies.

Simplified Upgrades: Upgrading a dependency

version in one location updates it across all projects.

Dependency Locking: Similar to yarn.lock or package-

lock.json in the JavaScript ecosystem, consider using tools

like bazel-deps to generate a locked list of transitive

dependencies. This ensures reproducibility across builds.

Dependency locking involves creating a lock file that pins

dependencies to specific versions, ensuring that every

build uses the exact same versions of dependencies.

Implementation with Bazel:

Utilize Bazel’s http_archive and git_repository rules to

fetch dependencies.

Pin dependencies in a WORKSPACE file or a centralized

dependencies file.

Automated Dependency Updates

Implementing automated tools and bots, such as Dependabot

or Renovate, to automatically submit pull requests when

dependency updates are available, ensures that your

dependencies are consistently up-to-date.

In addition, there are some other important considerations as

follows:

Automated Testing: Ensure that automated updates are

tested to validate that they do not introduce breaking

changes.

Security Patches: Prioritize automated updates for

security vulnerabilities.

Handling Transitive Dependencies

Transitive dependencies can introduce version conflicts.

Utilizing Bazel’s dependency resolution and specifying direct

dependencies helps in managing and resolving such issues.

The following are some strategies to consider:

Explicit Dependency Declaration: Ensure that all direct

dependencies are explicitly declared.

Conflict Resolution: Define strategies for resolving

version conflicts, such as preferring the direct dependency

version.

Conflict Resolution

Conflicts can arise when multiple parts of a project depend on

different versions of the same external library. Before diving

into solutions, it’s essential to understand the root of the

problem:

Multiple Versions: Different teams or modules might

depend on different versions of the same library. This can

lead to inconsistencies and unexpected behaviors.

Transitive Dependencies: A module might depend on

Library A, which in turn depends on Library B. If another

module depends on a different version of Library B

directly, conflicts can arise.

Global Context: In a monorepo, all projects share the

same build context. This means that conflicting

dependencies can’t be isolated as they might be in

separate repositories.

Following are some strategic approaches to effectively handle

and resolve these dependency clashes:

Centralized Version Management: One approach is to

have a centralized team or process to manage the

versions of external dependencies. This team would be

responsible for updating versions and ensuring

compatibility.

Use Dependency Mediation: Instead of using multiple

versions, choose a single version that works for all

modules. This might involve some compromise and

coordination among teams.

Shading: “Shading” is a process where you include a

dependency in your project under a different namespace.

This allows multiple versions of the same library to coexist

without conflict. However, this can increase the binary

size and might lead to other unforeseen issues.

Avoiding the Conflict: Sometimes, it might be easier to

avoid the conflict altogether. This can be done by:

Using a different library that provides similar

functionality.

Writing custom code to replace the functionality

provided by the conflicting library.

Custom Bazel Rules: Advanced users can write custom

Bazel rules to handle specific scenarios. For instance, a

rule that allows multiple versions of a library but ensures

they are not used in the same binary.

To navigate this intricate landscape, here are some best

practices that teams should consider:

Regularly Update Dependencies: Regularly updating

dependencies can help in catching and resolving conflicts

early.

Automate Checks: Use automated tools to check for

dependency updates and potential conflicts.

Documentation: Document the decisions made

regarding dependency versions and conflict resolutions.

This can be invaluable for new team members and for

future references.

Communication: Foster communication among teams.

When teams are aware of what others are doing, they can

coordinate better and avoid potential conflicts.

Managing dependencies in a monorepo can be challenging,

but with the right tools and practices, it becomes a strength

rather than a liability. Bazel, with its fine-grained dependency

controls and efficient build system, is an invaluable tool for

any team working in a monorepo environment. By following

best practices and leveraging Bazel’s capabilities, teams can

ensure consistent, efficient, and reliable builds across all

projects in their monorepo.

Bazel MODULES: A Modern Way for

Handling External Dependencies

Bazel MODULES are a set of conventions and tools designed to

manage external dependencies in a Bazel workspace. They

provide a standardized way to declare, fetch, and use external

sources, ensuring that all dependencies are consistent and

reproducible across different environments.

One of the primary advantages of using Bazel MODULES is the

guarantee of reproducibility. By explicitly defining

dependencies, Bazel ensures that builds remain consistent and

reproducible across a variety of machines and environments.

Furthermore, Bazel MODULES provide robust version

management capabilities. Developers have the flexibility to

specify the exact versions of their dependencies. This

precision not only ensures consistency throughout the project

but also aids in avoiding the notorious “dependency hell”

scenario.

On the security front, Bazel takes extra precautions. It fetches

dependencies through secure channels and rigorously verifies

their integrity. This meticulous approach significantly

diminishes the risk of inadvertently introducing malicious code

into the project.

Lastly, efficiency is a hallmark of Bazel MODULES. Bazel is

designed to cache downloaded dependencies. This feature

results in accelerated build times since there’s no need to

repeatedly fetch the same dependencies.

Declaring Dependencies with MODULES

To declare an external dependency in a Bazel workspace, you

can use the module rule in a MODULE.bazel file. Here’s a basic

example:

module(

name = “my_project”,

version = “1.0”,

deps = [

{

“name”: “example_dependency”,

“version”: “2.4.1”,

“repo”: {

“type”: “git”,

“url”: “https://github.com/example/example_dependency.git”,

“strip_prefix”: “example_dependency-2.4.1”,

},

},

],

)

In this example, my_project declares a dependency on

example_dependency version 2.4.1.

Bazel is a versatile build tool that can integrate with various

ecosystems, including the Java ecosystem. One of the

challenges in the Java world is managing dependencies, which

are often fetched from Maven repositories. The Bazel

extension for Maven, provided by `rules_jvm_external`, allows

Bazel to fetch and manage Java dependencies from Maven

repositories seamlessly.

Let’s break down this `MODULES.bazel` file:

bazel_dep(name = “rules_jvm_external”, version = “5.3”)

To update maven dependencies, update the lines below and then

run:

bazel run @unpinned_maven//:pin

maven = use_extension(“@rules_jvm_external//:extensions.bzl”,

“maven”)

maven.install(

artifacts = [

“junit:junit:4.13.2”,

“org.openjdk.jmh:jmh-core:1.23”,

“org.openjdk.jmh:jmh-generator-annprocess:1.23”,

],

lock_file = “//:maven_install.json”,

repositories = [

“https://maven.google.com”,

“https://repo1.maven.org/maven2”,

],

)

use_repo(maven, “maven”, “unpinned_maven”)

Bazel Dependency Declaration

bazel_dep(name = “rules_jvm_external”, version = “5.3”)

This line declares a dependency on the `rules_jvm_external`

Bazel extension, which provides rules and tools for fetching

and managing Java dependencies from Maven repositories.

The version `5.3` is specified, ensuring a consistent version is

used across builds.

Maven Extension Initialization

maven = use_extension(“@rules_jvm_external//:extensions.bzl”,

“maven”)

Here, the Maven extension from `rules_jvm_external` is

initialized and assigned to the `maven` variable.

To update maven dependencies, update the lines below and then

run: bazel run @unpinned_maven//:pin

The preceding comment provides guidance on how to update

Maven dependencies: by modifying the artifact list and then

running the pinning command.

Maven Artifacts Installation

maven.install(

artifacts = [

“junit:junit:4.13.2”,

“org.openjdk.jmh:jmh-core:1.23”,

“org.openjdk.jmh:jmh-generator-annprocess:1.23”,

],

lock_file = “//:maven_install.json”,

repositories = [

“https://maven.google.com”,

“https://repo1.maven.org/maven2”,

],

)

This block instructs Bazel to fetch and install the specified

Maven artifacts (junit, jmh-core, and jmh-generator-annprocess).

The `lock_file` attribute points to `maven_install.json`, which is

a generated file that locks the versions of all fetched Maven

artifacts, ensuring reproducibility across builds.

The `repositories` attribute lists the Maven repositories from

which the artifacts should be fetched. In this case, artifacts will

be fetched from Google’s Maven repository and Maven

Central.

Repository Usage

use_repo(maven, “maven”, “unpinned_maven”)

This line instructs Bazel to use the fetched Maven artifacts in

the Bazel workspace. The `unpinned_maven` repository is a

special repository that contains the fetched Maven artifacts

without version pinning. By running the pinning command

mentioned in the comment (`bazel run @unpinned_maven//:pin`),

the versions of the artifacts are locked, and the

`maven_install.json` lock file is generated.

The `MODULES.bazel` file provided showcases how Bazel

integrates with the Maven ecosystem using the

`rules_jvm_external` extension. By declaring Maven artifacts in

the `MODULES.bazel` file, Bazel can fetch, manage, and use

these artifacts in the build process, ensuring consistency,

reproducibility, and seamless integration with the Java

ecosystem.

Configuring an Air-Gapped Bazel Build

In an era where security and reliability are paramount, air-

gapped builds have emerged as a crucial concept in

continuous integration and deployment pipelines. An air-

gapped build environment is isolated from the internet,

ensuring that the build process is secure, reproducible, and

free from external influences, such as sudden changes in

dependencies or potential security vulnerabilities from third-

party sources.

Bazel has native support for creating reproducible builds, and

it can be configured to operate in an air-gapped environment.

This involves pre-fetching all dependencies and storing them

in a local repository, ensuring that the build process is entirely

self-contained and not reliant on external networks.

Consider a scenario where you are building a Java application

with Bazel in an air-gapped environment. First, you would need

to fetch all necessary dependencies and store them in a local

directory. You can use a tool like `bazel-deps` to generate a

comprehensive list of dependencies, and then manually

download them to a designated directory.

Once all dependencies are locally available, you can configure

Bazel to use these local resources during the build process. In

your `WORKSPACE` file, you would specify the local paths to the

dependencies, ensuring that Bazel does not attempt to fetch

anything from the internet. For instance, you might configure a

Maven repository as follows:

maven_repository(

name = “local_maven”,

urls = [“file:///path_to_your_local_directory”],

)

In your `BUILD` files, you would then reference the

dependencies as usual, and Bazel would resolve them using

the local paths specified in the `WORKSPACE` file. For example:

java_library(

name = “my_app”,

srcs = glob([“src/main/java/com/example/**/*.java”]),

deps = [

“@local_maven//com/example:dependency1”,

“@local_maven//com/example:dependency2”,

],

)

Also, air gapping involves specifying the HTTP_ARCHIVE rule to

fetch required files locally instead of from external sources.

These dependencies need to be pre-downloaded and made

available within the local filesystem. You might want to

structure the directory to mimic the URL paths of the original

external sources for clarity.

In your WORKSPACE file, you will use the http_archive rule, but

instead of providing a URL to fetch the dependency, you will

point it to the local file using the URLs attribute. The URLs

attribute will contain a file:// URL that points to the location of

the downloaded dependency in your filesystem.

Let’s consider an example where you have a dependency

archived as example_dependency.tar.gz and stored in a directory

named local_deps. In your WORKSPACE file, you would

configure the http_archive rule as follows:

load(“@bazel_tools//tools/build_defs/repo:http.bzl”,

“http_archive”)

http_archive(

name = “example_dependency”,

urls =

[“file:///path/to/local_deps/example_dependency.tar.gz”],

build_file = “@//path/to:BUILD.example_dependency”,

)

In this configuration, the URLs attribute is pointing to the local

filesystem path where example_dependency.tar.gz is stored. The

file:// prefix is used to specify that it’s a local file path. The

build_file attribute is used to specify the BUILD file for the

dependency.

Another strategy involves the use of the --distdir argument,

which allows Bazel to fetch dependencies from a predefined

local directory instead of downloading them from the internet.

In a typical setup, you would first prepare a directory that

contains all the necessary dependencies required for the build.

This directory, often referred to as a distribution directory,

should be populated with the appropriate files and artifacts

that your project needs. Ensure that the directory is accessible

from the air-gapped environment where the build process will

occur.

When initiating a build using Bazel, you can specify the --

distdir argument followed by the path to the distribution

directory. Bazel will then utilize the specified directory as a

source to retrieve the necessary dependencies for the build

process.

For instance, consider you have a project that depends on

several external libraries, and you have prepared a distribution

directory at /path/to/distdir. When executing a build, you

would run a command similar to the following:

bazel build //my:target --distdir=/path/to/distdir

By doing this, Bazel is instructed to fetch the required

dependencies from the local directory at /path/to/distdir,

ensuring that the build process can proceed seamlessly even

in the absence of internet connectivity. This approach is

particularly beneficial in secure or isolated environments,

allowing for consistent and reliable builds while ensuring that

all dependencies are correctly managed and accessible locally.

By configuring Bazel to use local dependencies, you ensure

that the build process is isolated from external factors,

enhancing its security and reliability. This approach aligns with

best practices for creating reproducible builds, ensuring that

the application can be consistently built and deployed across

various environments without unexpected variations or issues.

Enforcing Versioning and Compatibility

in a Monorepo

In a Monorepo, where multiple projects coexist in a single

codebase, enforcing internal and external versioning and

compatibility is crucial to maintain a consistent and reliable

build. With Bazel, you can define rules and constraints that

help in managing dependencies, ensuring that the versions of

the libraries and tools used across projects are compatible.

Imagine a situation where a Monorepo hosts several projects,

each relying on a shared external library. The projects are

synchronized to operate on a unified version of this library.

When there’s a need to upgrade the version, the maintainer

initiates the process by creating a new git branch. Within this

branch, modifications are made to the version definition in

either the MODULES or WORKSPACE files as necessary.

Following this adjustment, a comprehensive testing phase

ensues, involving all projects to ensure they function correctly

with the updated library version. Any discovered

incompatibilities or issues are meticulously addressed and

resolved during this phase. After confirming the seamless

operation of all projects with the upgraded library, the

changes are merged into the main branch.

This structured approach, facilitated by Bazel, ensures a

coordinated upgrade of all projects within the monorepo

simultaneously. It effectively mitigates potential conflicts and

disruptive alterations, maintaining the integrity and reliability

of each component within the monorepo. Thus, Bazel plays a

pivotal role in streamlining version upgrades, fostering a

stable and consistent development environment across all

projects.

Querying Dependencies and Getting

Graphs

In a monorepo, managing and understanding dependencies is

crucial for efficient development and build optimization. Bazel

shines brightly in this aspect, offering robust capabilities to

query dependencies and generate insightful graphs to

visualize the architecture of your projects. This section will

delve into the art of querying dependencies and extracting

graphical representations of dependency graphs in a

monorepo managed by Bazel.

Bazel’s query command is a potent tool that allows developers

to explore the dependency graph of their projects. It provides

a way to ask various questions about the build, such as finding

all dependencies of a target, all targets that depend on a

specific target, and even more complex queries to analyze the

build structure. The query language used by Bazel is

expressive, allowing for a wide range of queries to suit

different needs.

Consider a scenario where you have a monorepo with multiple

projects, and you want to understand the dependencies of a

specific target. You could use the Bazel query command as

follows:

bazel query ‘deps(//project/path:target_name)’

This command will list all the dependencies of the specified

target, providing a clear view of what components the target

relies on. It’s a simple yet powerful way to explore the

immediate and transitive dependencies of a target.

For a more visual representation, Bazel allows you to generate

graphs from the query results. Graphs are instrumental in

providing a visual overview of the dependencies, making it

easier to analyze and understand the build structure. You can

use tools like graphviz to visualize these graphs effectively.

To generate a graph of the dependencies, you could execute a

command as follows:

bazel query ‘deps(//project/path:target_name)’ --output graph >

output_graph.dot

After executing this command, you can use a tool like graphviz

to visualize the .dot file:

dot -Tpng output_graph.dot -o output_graph.png

This series of commands will produce a PNG image

representing the dependency graph of the specified target,

allowing for a more intuitive understanding of the

dependencies and their relationships.

Diving deeper, Bazel’s querying prowess allows for the filtering

of results, enabling the extraction of more refined and relevant

information. Utilizing the kind() function, you can filter the

results to display only specific types of targets. For example, if

you are solely interested in the Python libraries that a target

depends on, you could craft a query like:

bazel query ‘kind(py_library, deps(//app:my_app))’

This query meticulously sifts through the dependencies,

presenting only those that are Python libraries, thus allowing

for a more focused and manageable set of results.

In the realm of advanced querying, the --output flag unveils

further possibilities, allowing for the customization of the

output format. By default, the query results are displayed as a

list of labels, but with the --output flag, you can modify this to

receive the output in various formats such as a graph or XML.

For example:

bazel query ‘deps(//app:my_app)’ --output=graph

would render the dependencies as a graph, providing a visual

representation that could be instrumental in understanding

the architecture and flow of dependencies.

From the previous chapter’s benchmark project, we could run

the following command:

bazel query ‘deps(//app/hellotest:benchmark)’ --output graph >

output_graph.dot

And get something like this:

Figure 5.3: Query execution for hellotest:benchmark project and target

Then, executing the following command, we transform the

graph into a png image:

dot -Tpng output_graph.dot -o output_graph.png

And the image shows an impossible-to-see number of

elements:

Figure 5.4: Generated image for the queried dependency graph

Here are a few ways to refine your query to reduce the

number of elements returned:

1. Limiting the Depth of Dependencies

Limit the depth of the dependencies retrieved by

specifying a number with --depth. For example, to get

dependencies up to 2 levels deep:

bazel query ‘deps(//app/hellotest:benchmark, 2)’ --output

graph > output_graph.dot

Figure 5.5: Generated image when limiting the depth of dependencies

2. Filtering Specific Dependencies

You can filter out specific dependencies, such as tests, by

using the except keyword:

bazel query ‘deps(//app/hellotest:benchmark) except

tests(//app/hellotest:benchmark)’ --output graph >

output_graph.dot

Figure 5.6: Generated image when filtering specific dependencies

3. Including Specific Types of Dependencies

Include only specific types of dependencies, such as

libraries:

bazel query ‘kind(library, deps(//app/hellotest:benchmark))’

--output graph > output_graph.dot

Figure 5.7: Generated image when including specific types of dependencies

4. Excluding Specific Paths or Targets

Exclude dependencies from specific paths or targets:

bazel query ‘deps(//app/hellotest:benchmark, 2) except

//app/hellotest:build’ --output graph > output_graph.dot

Figure 5.8: Generated image when excluding specific paths or targets

5. Combining Multiple Filters

Combine multiple filters to fine-tune the output:

bazel query ‘kind(library, deps(//app/hellotest:benchmark))

except //app/hellotest:build --output graph >

output_graph.dot

Figure 5.9: Generated image when combining multiple filters

Adjusting your query by applying filters, limiting depth, or

focusing on specific dependency types will help reduce the

number of elements returned, making the output more

manageable and focused on your needs.

In conclusion, querying dependencies and generating graphs

in a monorepo with Bazel is a powerful approach to manage

and optimize builds. Through expressive queries and visual

representations, developers can gain deep insights into the

build structure, enabling informed decisions for build

optimization and refactoring.

Integrating Bazel Within an IDE

Integrating Bazel within an IDE can supercharge the

development workflow, allowing for a seamless and productive

development experience.

The official Bazel plugin is available for IntelliJ, Android Studio,

Visual Studio Code, and CLion and can be accessed at

https://ij.bazel.build. This plugin is open-source and mirrors the

version utilized internally at Google.

Features:

Language-Specific Interoperability: The plugin is

compatible with various language-specific plugins,

including those for Java, Scala, and Python.

https://ij.bazel.build/

Semantic Awareness: It allows the importation of BUILD

files into the IDE, recognizing the semantics of Bazel

targets.

Starlark Recognition: The plugin enables the IDE to

recognize Starlark, the language used in Bazel’s BUILD

and .bzl files.

Direct Execution: It facilitates the building, testing, and

execution of binaries directly within the IDE.

Configurable: Users can create configurations tailored

for debugging and running binaries.

Installation:

Automatic Installation: For automatic installation,

navigate to the plugin browser in your IDE and search for

the Bazel plugin.

Manual Installation: For installing older versions

manually, download the necessary zip files from JetBrains’

Plugin Repository. Subsequently, these zip files can be

installed directly through the IDE’s plugin browser.

For more information, please visit the Bazel IDE installation

page at https://bazel.build/install/ide.

Conclusion

This chapter provided a comprehensive exploration into the

realm of dependency management and versioning within

Bazel. We delved deeply into managing both internal and

external dependencies, emphasizing the significance of each

in a robust build environment. The chapter elucidated the

mechanisms of conflict resolution, ensuring that dependencies

coexist harmoniously within a project. A pivotal aspect covered

was Bazel MODULES, a contemporary approach that

revolutionizes the management of external dependencies.

Through MODULES, we learned the intricacies of declaring and

managing dependencies, configuring air-gapped Bazel builds,

https://bazel.build/install/ide

and enforcing stringent versioning and compatibility within a

monorepo.

In the latter part of the chapter, we transitioned into practical

insights, demonstrating how to query dependencies and

generate insightful graphs to visualize dependency

relationships. A crucial section was dedicated to integrating

Bazel within an Integrated Development Environment (IDE),

which is instrumental in enhancing developer productivity and

streamlining the build and test processes. This chapter, rich

with practical examples and strategic insights, aims to be a

valuable resource for mastering dependency management in

Bazel, ensuring that your projects are not only robust and

reliable but also optimized for efficiency and productivity.

In the next chapter, we will discuss how to set up, organize,

build, and run projects, as well as the best practices for using

Bazel on the following development platforms:

Android/Kotlin

Python

NodeJS/TypeScript

Golang

iOS

Further Readings

Build programs with Bazel:

https://bazel.build/run/build#distribution-directory

Query guide | Bazel: https://bazel.build/query/guide

Bazel: Managing Dependencies:

https://docs.bazel.build/versions/main/be/general.html#de

pendencies

Dependency Management with Bazel:

https://medium.com/@Jakeherringbone/dependency-

management-with-bazel-3e3b0ce6f4ed

https://bazel.build/run/build#distribution-directory
https://bazel.build/query/guide
https://docs.bazel.build/versions/main/be/general.html#dependencies
https://medium.com/@Jakeherringbone/dependency-management-with-bazel-3e3b0ce6f4ed

Bazel Modules: Dependencies for Bazel projects:

https://blog.bazel.build/2021/08/10/bazel-deps.html

Building software in a restricted environment with Bazel:

https://docs.bazel.build/versions/main/restricted-

environment.html

Managing Dependencies in your Bazel Build:

https://medium.com/swlh/managing-dependencies-in-

your-bazel-build-9c0b3e552f6e

Visualizing Bazel Build Graphs:

https://docs.bazel.build/versions/main/skylark/depgraph.ht

ml

Integrating Bazel with IDEs:

https://docs.bazel.build/versions/main/ide.html

Dependency Management for Bazel and the Monorepo:

https://github.com/jflex-de/bazel-deps

https://blog.bazel.build/2021/08/10/bazel-deps.html
https://docs.bazel.build/versions/main/restricted-environment.html
https://medium.com/swlh/managing-dependencies-in-your-bazel-build-9c0b3e552f6e
https://docs.bazel.build/versions/main/skylark/depgraph.html
https://docs.bazel.build/versions/main/ide.html
https://github.com/jflex-de/bazel-deps

CHAPTER 6

Hello-World Using Other

Languages and Platforms

Introduction

The journey of a software developer often commences with

the iconic initiation: crafting a “Hello World” program. This

humble beginning is far more than a trivial ritual; it is an

introduction to the fundamental principles of various coding

languages and platforms. “Hello World” serves as a mirror,

reflecting the syntax, structure, and style inherent to each

environment. In this chapter, we are set to navigate through

the nuances of this classic exercise as it translates across

different technological landscapes.

Our exploration will span several robust and widely-used

languages and platforms. We will start with Android/Kotlin,

which is mainstream in Android app development, before

moving on to the versatile and accessible Python. Following

that, we will dive into NodeJS, a cornerstone of modern

server-side development, and then to Go, with its

streamlined approach to systems programming. Finally, we

will enter the realm of iOS, to see how “Hello World”

manifests in Apple’s sophisticated ecosystem. This chapter

is not just about displaying a greeting on the screen; it is

about grasping the foundations and idiosyncrasies of each

platform, offering both beginners and experts a panoramic

view of programming’s diverse ecosystem through the lens

of the simplest possible program.

Structure

In this chapter, we will explore how to set up, organize,

build, run, and apply best practices when using Bazel across

the following development platforms:

Android/Kotlin

Python

NodeJS/TypeScript

Golang

iOS

Android/Kotlin

In this section, we will dive into the world of Android app

development using Bazel as our build tool and Kotlin as our

programming language. This assumes that you are already

familiar with both Bazel and Android/Kotlin development and

both are already installed. We will explore how to set up a

Bazel-based Android project, define build targets, and

manage dependencies effectively.

In this section, we will delve into a specific set of code

examples. These are conveniently accessible through our

GitHub repository at

https://github.com/OrangeAVA/Building-

Large-Scale-Apps-with-Monorepo-and-Bazel, located within the

/chapter-6/bazel_android_kotlin directory. This repository

serves as a practical reference throughout our discussion.

Setting up Your Android/Kotlin Bazel

Project

Before we begin, ensure that you have Bazel and Android

development tools installed on your system. If you have not

already, follow the official installation instructions for both.

Let us check our development environment is prepared for

Bazel, Android and Kotlin development by running the

following commands:

echo $ANDROID_HOME

/Users/jrai/Library/Android/sdk

This shows the path where the android SDK is installed.

Then, let us check the emulator availability by running the

following commands:

emulator -version

INFO | Android emulator version 32.1.14.0 (build_id

10330179)

INFO | Storing crashdata in: /tmp/android-jrai/emu-

crash.db,

INFO | Duplicate loglines will be removed, if you wish to

see

Android emulator version 32.1.14.0 (build_id 10330179)

(CL:N/A)

…

And finally, let us check we also have the Android Debug

Bridge:

adb --version

Android Debug Bridge version 1.0.41

Version 34.0.3-10161052

Installed as /Users/jrai/Library/Android/sdk/platform-

tools/adb

Running on Darwin 22.6.0 (arm64)

If you have retrieved the previous logs, we are all set to

proceed with our journey.

Organizing Your Android App

By structuring your Android project into several Bazel

projects, you enhance modularity, facilitate code reuse, and

boost build efficiency. These projects ought to be arranged

in a manner that separates applications, shared functional

code, and shared non-functional code, such as architectural

elements. In the upcoming chapters, we will explore this

subject in depth.

For this very simple project, we are also going to simplify

the structure like this:

.

├── MODULE.bazel

├── WORKSPACE

├── app

│ ├── BUILD.bazel

│ └── src

│ └── main

│ ├── AndroidManifest.xml

│ ├── java

│ ├── manifest

│ └── res

└── common

 ├── dashboard

 │ ├── BUILD.bazel

 │ └── src

 │ └── main

 ├── home

 │ ├── BUILD.bazel

 │ └── src

 │ └── main

 └── notifications

 ├── BUILD.bazel

 └── src

 └── main

We will explore key files and directories, including:

WORKSPACE: The unique rule in this file is to configure the

Android SDK as explained later. All dependencies are

defined in MODULE.bazel.

MODULE.bazel: This file defines the required external

dependencies as was explained in previous chapters.

app directory: contains build rules, internal and external

dependencies, and source code to build the Android

application.

common Directory: contains shared or common

modules/components like dashboard, home, and

notifications. Each module may represent a feature or a

shared library.

In your WORKSPACE file, include the necessary Android and

Kotlin rules:

android_sdk_repository(

name = “androidsdk”,

)

The android_sdk_repository rule is invoked with a specified

name “androidsdk”. This name acts as an identifier for

referencing the Android SDK within BUILD files throughout the

workspace. No explicit path or version is provided, implying

that Bazel might use predefined environment variables or

default configurations to locate and utilize the appropriate

Android SDK version for building Android targets. In this

configuration, Bazel is informed about the Android SDK’s

existence and location, enabling the build and compilation

of Android application modules and libraries within the

workspace using the specified or automatically detected

Android SDK.

The MODULE.bazel file defines the external dependencies by

using the modern Bazel dependency management

approach.

module(name = “android-example”)

bazel_dep(name = “rules_android”, version = “0.1.1”)

bazel_dep(name = “rules_kotlin”, version = “1.9.0”)

bazel_dep(name = “bazel_skylib”, version = “1.2.1”)

bazel_dep(name = “platforms”, version = “0.0.7”)

bazel_dep(name = “rules_jvm_external”, version = “5.3”)

maven = use_extension(“@rules_jvm_external//:extensions.bzl”,

“maven”)

maven.install(

artifacts = [

“androidx.appcompat:appcompat:1.0.2”,

“androidx.core:core-ktx:1.3.0”,

“com.google.android.material:material:1.0.0”,

“androidx.constraintlayout:constraintlayout:1.1.3”,

“androidx.lifecycle:lifecycle-extensions:2.0.0”,

“androidx.navigation:navigation-fragment:2.0.0”,

“androidx.navigation:navigation-ui:2.0.0”,

“androidx.navigation:navigation-fragment-ktx:2.0.0”,

“androidx.navigation:navigation-ui-ktx:2.0.0”,

“androidx.navigation:navigation-runtime-ktx:2.0.0”

],

repositories = [

“https://maven.google.com”,

“https://jcenter.bintray.com/”,

“https://repo1.maven.org/maven2”,

],

)

use_repo(maven, “maven”)

Here, we are including:

rules_android: Provides Bazel rules for building and

managing Android applications and libraries, making

Android development more efficient and reproducible.

rules_kotlin: Offers Bazel rules for building Kotlin

projects, enabling seamless integration of Kotlin code

into the Bazel build system.

bazel_skylib: A library that provides fundamental

building blocks and utilities for writing Bazel build rules

and extensions, enhancing the flexibility and

extensibility of Bazel.

platforms: Allows the specification of platform-specific

configurations, enabling consistent and controlled

dependency management for various platforms within a

Bazel project.

rules_jvm_external: Offers Bazel rules to fetch and

manage external dependencies for Java and JVM-based

projects, simplifying the integration of third-party

libraries into your Bazel builds.

Then, this MODULE.bazel file uses the maven support to

include the external dependencies required for the Android

app.

The BUILD file for the app project should contain the Android

rules and dependencies:

load(“@rules_kotlin//kotlin:android.bzl”,

“kt_android_library”)

android_binary(

name = “app”,

manifest = “src/main/AndroidManifest.xml”,

manifest_values = {

“versionCode”: “1”,

“versionName”: “1.0”,

“minSdkVersion”: “21”,

“targetSdkVersion”: “30”,

},

deps = [

“:res”,

“:build_kt”,

],

)

android_library(

name = “res”,

manifest = “src/main/manifest/AndroidManifest.xml”,

custom_package = “com.example.myapplication”,

resource_files = glob([“src/main/res/**”]),

visibility = [“//visibility:public”],

deps = [

“@maven//:com_google_android_material_material”,

“@maven//:androidx_constraintlayout_constraintlayout”,

“@maven//:androidx_navigation_navigation_ui_ktx”,

“@maven//:androidx_navigation_navigation_fragment_ktx”,

]

)

kt_android_library(

name = “build_kt”,

srcs = glob([“src/main/java/**/*.kt”]),

deps = [

“//app:res”,

“//common/dashboard”,

“//common/home”,

“//common/notifications”,

“@maven//:androidx_appcompat_appcompat”,

“@maven//:androidx_navigation_navigation_fragment_ktx”,

“@maven//:androidx_navigation_navigation_ui_ktx”,

],

visibility = [“//app:__subpackages__”],

)

android_binary: Represents the Android application itself,

relying on Kotlin sources and resources defined in other

targets.

android_library: Holds the Android resources and some

dependencies, acting as a shared resource library.

kt_android_library: Represents the Kotlin source files

necessary for the application, along with their

dependencies.

The BUILD file for the common/dashboard project should contain

the Android rules and dependencies:

load(“@rules_kotlin//kotlin:android.bzl”,

“kt_android_library”)

kt_android_library(

name = “dashboard”,

srcs = glob([“src/main/java/**/*.kt”]),

deps = [

“//app:res”,

“@maven//:androidx_lifecycle_lifecycle_extensions”

],

visibility = [“//app:__subpackages__”],

)

In summary, this BUILD.bazel file defines a Kotlin Android

library named “dashboard,” includes Kotlin source files from a

specified path, declares dependencies, and sets visibility for

other packages within the workspace to use this library.

The same approach is used for home and notifications

libraries. The three of them are then used by the app project.

Let us get a dependency diagram by running the following

commands:

bazel query ‘deps(//app, 3) except @bazel_tools//…:* except

@rules_kotlin//…:* except @maven//…:*’ --output graph >

output_graph.dot && dot -Tpng output_graph.dot -o

output_graph.png && open output_graph.png

Figure 6.1: Generated dependency diagram showing app project and its

libraries.The original diagram is too large, so this was intentionally cropped

In the application we are going to host a simple MainActivity

at app/src/main/java/com/example/myapplication/MainActivity.kt

like this:

package com.example.myapplication

import …

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)

val navView: BottomNavigationView =

findViewById(R.id.nav_view)

val navController =

findNavController(R.id.nav_host_fragment)

// Passing each menu ID as a set of Ids because each

// menu should be considered as top level destinations.

val appBarConfiguration = AppBarConfiguration(setOf(

R.id.navigation_home, R.id.navigation_dashboard,

R.id.navigation_notifications)

)

setupActionBarWithNavController(navController,

appBarConfiguration)

navView.setupWithNavController(navController)

}

}

This application project’s BUILD.bazel file also includes the

ones for the dashboard, home, and notifications so its

references are resolved using these internal libraries.

The home project located at //common/home is going to host

the Fragment and the ViewModel classes. HomeFragment creates

the view and links the ViewModel class.

package com.example.myapplication.ui.home

import …

class HomeFragment : Fragment() {

private lateinit var homeViewModel: HomeViewModel

override fun onCreateView(

inflater: LayoutInflater,

container: ViewGroup?,

savedInstanceState: Bundle?

): View? {

homeViewModel =

ViewModelProviders.of(this).get(HomeViewModel::class.java

)

val root = inflater.inflate(R.layout.fragment_home,

container, false)

val textView: TextView = root.findViewById(R.id.text_home)

homeViewModel.text.observe(viewLifecycleOwner, Observer {

textView.text = it

})

return root

}

}

The ViewModel class handles UI-related data management

tasks, such as configuring the content to be displayed in

labels.

package com.example.myapplication.ui.home

import …

class HomeViewModel : ViewModel() {

private val _text = MutableLiveData<String>().apply {

value = “This is home Fragment”

}

val text: LiveData<String> = _text

}

Similarly, the dashboard and notifications components

follow the same approach when implementing their

respective classes.

Building and Running Your Android

App

Let us initiate the Android emulator. First, identify the

available virtual devices by running the command:

emulator -list-avds

For example, you might see:

Pixel_3a_API_34_extension_level_7_arm64-v8a.

To start the emulator with this device, use the command:

emulator -avd Pixel_3a_API_34_extension_level_7_arm64-v8a &

The appended ampersand (&) allows the emulator to operate

in the background, freeing up the console for subsequent

commands. Next, build the app, including all necessary

internal dependencies, using:

bazel build //app

The initial build process might be a bit slow as everything

gets built.

Figure 6.2: Console output when executing “bazel build //app”

After this book section, try by your own to make

modifications to one of the libraries and rebuild. You will

notice Bazel’s efficiency in updating binaries — this

becomes especially noticeable with larger Android

applications.

After the build, the Android app binary will be assembled

and ready for installation via Bazel:

bazel mobile-install //app

Figure 6.3: Console output when executing “bazel mobile-install //app”

You can then observe the installed app on the emulator’s

main screen, as illustrated in the subsequent image.

Figure 6.4: App icon appears in the middle

Upon launching the app, you will see its home screen.

Figure 6.5: Home screen

To remove the application, the following command can be

executed:

adb uninstall com.example.myapplication

In this section, we have explored the process of developing

Android apps using Kotlin and Bazel. You have learned how

to set up your development environment, create a Bazel

workspace, define Android targets, build your app, and run

it on an emulator or device. With this knowledge, you are

well-equipped to streamline your Android development

workflow with the power of Bazel and Kotlin.

Best Practices Using Android/Kotlin in

Bazel

This section focuses on leveraging Bazel’s capabilities for

Android and Kotlin development, particularly utilizing the

MODULE.bazel features. Bazel’s efficient build system can

significantly improve your Android/Kotlin project’s build

times and reliability when configured correctly.

Structuring Your Project

Modularization: Break down your Android/Kotlin

project into multiple modules. Each module should

represent a logical unit of your application.

MODULE.bazel per Module: Place a MODULE.bazel file in

each module’s root. This file should declare the

module’s dependencies and other configurations

specific to that module.

Declaring Dependencies

Explicit Declaration: Use MODULE.bazel to explicitly

declare dependencies for each module. This

practice improves build performance and

readability.

Version Management: Centralize dependency

versions in a single location to ensure consistency

across modules.

Optimizing Kotlin Builds

Kotlin Rules: Use the latest Kotlin rules for Bazel.

Ensure they are compatible with your Kotlin version

for optimal performance.

Incremental Compilation: Leverage Bazel’s

incremental compilation features for Kotlin. This

reduces build times significantly by only rebuilding

what is necessary.

Android Resource Management

Resource Modularization: Divide resources into

respective modules. This method makes managing

and referencing resources more straightforward.

Resource Processing: Use Bazel’s resource

processing tools to optimize and package resources

efficiently.

Testing Strategies

Unit Testing: Set up unit tests in each module. Use

MODULE.bazel to declare test dependencies.

Instrumentation Testing: Configure instrumentation

tests for Android. Ensure Bazel can run these tests

in a consistent environment.

Continuous Integration

CI Configuration: Integrate Bazel builds into your CI

pipeline. Bazel’s reproducibility and speed offer

significant advantages in CI environments.

Cache Utilization: Utilize Bazel’s caching

mechanisms to reduce build times in CI.

Cross-Module Refactoring

Refactor Safely: When refactoring across modules,

use Bazel’s query language to understand

dependency graphs. This guarantees that changes

do not break dependent modules.

Performance Monitoring

Build Profiling: Regularly profile your builds to

identify bottlenecks. Bazel provides tools for

detailed build profiling.

Optimization: Continuously optimize build scripts

and configurations based on profiling data.

Adopting these best practices in your Android/Kotlin projects

using Bazel, particularly with MODULE.bazel features, can

significantly enhance your development experience. Bazel’s

powerful build optimization, along with structured module

management, can lead to more efficient, maintainable, and

scalable projects. Remember, the key is in understanding

and leveraging Bazel’s unique features to their full potential.

Python

Within this section, we will delve into the process of creating

a Python application that leverages multiple Bazel projects.

Bazel, a potent build tool, offers the capability to oversee

intricate projects and their dependencies. By structuring

your Python application across several Bazel projects, you

can enhance its modularity, maintainability, and build

effectiveness.

In this section, we will delve into code examples that can be

found in the GitHub repository at

https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-

Monorepo-and-Bazel, specifically within the /chapter-

6/bazel_python directory. These examples will guide our

discussion and exploration throughout this part of the book.

Setting up Your Python Environment

Before you start working on your Python application using

Bazel, it is essential to set up your Python environment

correctly. Follow these steps to ensure a smooth

development experience.

Make sure you have Python installed on your system. Bazel

supports Python 2.7 and Python 3.5 or later. It is

recommended to use Python 3 for new projects as Python 2

is no longer supported.

You can check your Python version by running:

python --version

If Python is not installed, download and install it from the

official Python website.

Organizing Your Python Project

Let us explore how to effectively organize a Python project

using Bazel, a powerful tool for automating software builds

and testing. The project structure we will be focusing on is

as follows:

.

├── WORKSPACE.bazel

├── MODULE.bazel

├── BUILD.bazel

├── app

│ ├── BUILD.bazel

│ └── main.py

├── common

│ ├── BUILD.bazel

│ ├── calculator.py

│ └── calculator_test.py

└── requirements.txt

In this structure, we found:

WORKSPACE.bazel: For a Python project, this file typically is

empty and dependencies rules are often defined in

MODULE.bazel meanwhile specific libraries are specified in

requirements.txt.

MODULE.bazel: The module.bazel file defines the module

named “python-example,” sets up Bazel dependencies

(specifically rules_python version “0.26.0”), configures

Python toolchain with coverage tool and Python version

“3.11”, and establishes Python and pip extensions for

handling dependencies specified in requirements.txt.

/BUILD.bazel: Contains general build rules or

configurations applicable to the entire project but in this

case is empty as anyone is required.

app/BUILD.bazel: Defines the build targets for your

application, for example, py_binary for main.py.

common/BUILD.bazel: Contains build targets related to your

common library, including py_library for calculator.py

and py_test for calculator_test.py.

app/main.py: The main Python file for your application.

common/calculator.py: A Python file for common

functionalities used across the project.

common/calculator_test.py: Test file for calculator.py.

requirements.txt: A standard Python requirements file

used to specify third-party dependencies.

MODULE.bazel in depth

The MODULE.bazel file in question is configuring a Bazel

module for a Python project. Let us break down its

components and understand what each part is doing:

1. Module Declaration:

module(name = “python-example”)

This line declares a Bazel module with the name

python-example. Bazel modules are a way to organize

and encapsulate a set of Bazel build configurations and

dependencies.

2. Bazel Dependency on rules_python:

bazel_dep(name = “rules_python”, version = “0.26.0”)

Here, bazel_dep specifies a dependency on rules_python

at version 0.26.0. rules_python is a collection of Bazel

rules for Python, providing essential tools and libraries

for building and testing Python applications with Bazel.

3. Python Toolchain Configuration:

python =

use_extension(“@rules_python//python/extensions:python.bzl

”, “python”)

python.toolchain(

configure_coverage_tool = True,

is_default = True,

python_version = “3.11”,

)

use_repo(python, “python_versions”)

This section uses the use_extension function to load

Python-related rules from rules_python. It then configures

the Python toolchain, specifying:

configure_coverage_tool = True: Enables the

configuration of a coverage tool for Python code.

is_default = True: Sets this toolchain as the default

Python toolchain.

python_version = “3.11”: Specifies that Python

version 3.11 should be used.

The use_repo function is then used to associate this

Python configuration with a repository named

python_versions, which likely contains different Python

versions.

4. Pip Dependency Parsing:

pip =

use_extension(“@rules_python//python/extensions:pip.bzl”,

“pip”)

pip.parse(

hub_name = “bazel_pip_deps”,

python_version = “3.11”,

requirements_lock = “//:requirements.txt”,

)

use_repo(pip, “bazel_pip_deps”)

use_repo(python, “python_3_11”)

This part loads the pip extension from rules_python to

manage Python pip dependencies. The pip.parse

function is called to configure the pip dependencies with

the following parameters:

hub_name = “bazel_pip_deps”: Defines a name for the

dependency hub, presumably where the parsed pip

dependencies will be stored.

python_version = “3.11”: Ensures compatibility with

Python 3.11.

requirements_lock = “//:requirements.txt”: Points to a

requirements.txt file at the root of the Bazel

workspace, which lists the pip dependencies.

The use_repo calls associate the pip configuration

with the repositories bazel_pip_deps and python_3_11,

linking them with the pip dependencies and the

Python version, respectively.

In summary, this module.bazel file sets up a Bazel module

for a Python project, configures the Python toolchain for

version 3.11, and sets up pip dependency management

using a requirements.txt file, all within the context of the

Bazel build system.

/app/BUILD.bazel in depth

This app/BUILD.bazel file is configuring a Bazel build rule to

create an executable Python program named main, which

consists of main.py and depends on both a local Bazel

target (//common:calculator) and an external Python package

(Flask).

load(“@bazel_pip_deps//:requirements.bzl”, “requirement”)

py_binary(

name = “main”,

srcs = [“main.py”],

deps = [“//common:calculator”,

requirement(“Flask”)

]

)

/common/BUILD.bazel

This file is used to define a Python library named

“calculator” consisting of the calculator.py file and a test

suite named “calculator_test” for testing the functionality in

calculator.py, with a dependency linking the test to the

library.

load(“@rules_python//python:defs.bzl”, “py_library”,

“py_test”)

py_library(

name = “calculator”,

srcs = [“calculator.py”],

visibility = [“//visibility:public”]

)

py_test(

name = “calculator_test”,

srcs = [“calculator_test.py”],

deps = [

“:calculator”

],

)

main.py

This code sets up a Flask web server that, when accessed

on the root path (/), displays the sum of two randomly

generated numbers using a Calculator class.

from common.calculator import Calculator

from flask import Flask

from random import randint

app = Flask(__name__)

calculator = Calculator()

@app.route(‘/’)

def randomNumberCalculator():

randomInt1 = randint(0, 250)

randomInt2 = randint(0, 250)

calculator = Calculator()

return “{} + {} = {}?”.format(randomInt1, randomInt2, \

calculator.add(randomInt1, randomInt2))

if __name__ == ‘__main__’:

app.run(host=’0.0.0.0’)

calculator.py

This code defines a class named Calculator with a single

method add. This method takes two parameters, x and y,

and returns their sum. Essentially, it implements a basic

addition operation.

class Calculator:

def add(self, x, y): return x + y;

calculator_test.py

This Python code is a unit test script using the unittest

framework. It tests a method from the Calculator class,

which is assumed to be defined in the common.calculator

module. Specifically, the script contains a test case class

TestSum that inherits from unittest.TestCase.

In the TestSum class, there is a method test_sum that:

Instantiates an object of the Calculator class.

Calls the add method of the Calculator object with

arguments 1 and 2.

Asserts that the result of this add method call is equal

to 3 using assertEqual.

Finally, the script checks if it is the main module being run

(if __name__ == “__main__”:). If it is, it executes the tests by

calling unittest.main(). This is a typical pattern for running

unit tests in Python, allowing the script to be run standalone

to execute the tests.

import unittest

from common.calculator import Calculator

class TestSum(unittest.TestCase):

def test_sum(self):

calculator = Calculator()

self.assertEqual(calculator.add(1, 2), 3)

if __name__ ==”__main__”:

unittest.main()

Building and Running Your Python

App

The commands for building and running this Python

applications are as usual:

bazel build //app to build your application.

bazel test //common:calculator_test to run tests.

bazel run //app to run the application.

Once running, you are able to access this app by opening a

browser and pointing to http://127.0.0.1:5000.

Best Practices Using Python in Bazel

The recent introduction of Modules.bazel has further

enhanced its capabilities, especially for Python projects.

Understanding Modules.bazel

Modules.bazel is an extension to Bazel that allows for more

modular and manageable build configurations. It simplifies

the management of dependencies and enhances the

reusability of code.

Key features:

Modularity: Facilitates dividing the project into smaller,

more manageable modules.

Dependency Management: Simplifies dependency

declaration and resolution.

Versioning: Supports specifying versions for

dependencies, ensuring consistency across builds.

Python-Specific Practices in Bazel

When working with Python in Bazel, consider the following

best practices:

Organize Python Code into Modules: Structure your

Python code into modules and submodules. This

organization aligns well with Modules.bazel and helps in

maintaining a clean build structure.

Use py_library and py_binary Rules:

py_library: Define reusable Python libraries. Each

library should correspond to a Python module.

py_binary: Use this rule for Python executables.

Ensure that the main function is well-defined in the

specified source file.

Manage Dependencies with Modules.bazel: Declare

Python dependencies within Modules.bazel files. Use the

module() function to define module properties and

dependencies.

Version Control: Utilize the versioning capabilities of

Modules.bazel to lock down dependency versions. This

practice ensures reproducible builds and avoids the “it

works on my machine” syndrome.

Integration with External Dependencies: For Python

projects that rely on external packages (for example,

from PyPI), integrate these using the pip_import rule or

similar mechanisms. Define these dependencies in

Modules.bazel for better management.

Testing: Leverage Bazel’s testing rules like py_test to

define and run Python tests. Group tests according to

functionality and use Modules.bazel to handle test-

specific dependencies.

Cross-language Interoperability: If your project involves

multiple languages (for example, Python and C++), use

Bazel’s capabilities to manage inter-language

dependencies and build processes. Modules.bazel can be

particularly effective in handling such complexities.

Continuous Integration (CI): Integrate Bazel builds with

your CI pipeline. Utilize Modules.bazel to handle

environment-specific configurations and dependencies.

Advanced Tips

Performance Optimization: Utilize Bazel’s caching and

parallel execution features. Structure your Python

modules and Bazel targets to maximize cache hits and

parallelizable builds.

Custom Rules and Macros: For complex or repetitive

tasks, consider writing custom Bazel rules or macros.

This strategy can encapsulate common patterns and

enhance build maintainability.

NodeJS/Typescript

In this section, we will dive into the world of NodeJS app

development using Bazel as our build tool, Typescript and

Express framework. This assumes that you are already

familiar with Bazel, NodeJS, Typescript and Express

development and all are already installed. We will explore

how to set up a Bazel-based NodeJS project, define build

targets, and manage dependencies effectively.

In this section, we will delve into a specific set of code that

can be found in our GitHub repository at

https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-

Monorepo-and-Bazel. The relevant code is located in the

/chapter-6/bazel_node_typescript folder, which we will

thoroughly explore and discuss.

Aspect Build

Aspect Build is a software company that specializes in

utilizing Bazel to streamline and enhance the development

and build processes of various software projects. Aspect

Build’s projects involve the creation and implementation of

custom build aspects, rules, and extensions tailored to

specific programming languages and frameworks. These

aspects are designed to improve code quality, dependency

management, testing, and deployment workflows across a

wide range of software development scenarios. By

leveraging the power of Bazel’s extensibility, Aspect Build

aims to provide optimized and efficient build systems that

enable developers to build, test, and deploy their

applications more reliably and with better performance.

Using rules from Aspect Build instead of the official Bazel

rules offers several key benefits. First, “aspect.build” rules

are designed to be highly composable and extensible,

allowing you to create custom build and analysis processes

tailored to your project’s specific needs. Second, they often

provide a more user-friendly and declarative syntax, making

it easier to define and understand complex build

configurations. Finally, “aspect.build” rules are frequently

more up-to-date and actively maintained than some of the

official Bazel rules, ensuring that you have access to the

latest features and improvements in the Bazel ecosystem.

These advantages make “” aspect.build rules a valuable

choice for developers looking to streamline their Bazel-

based build and automation workflows.

A key approach and rule from Aspect Build is

npm_link_all_packages. The purpose of the

npm_link_all_packages rule is to ensure that all npm packages

listed in your project’s package.json file are linked or made

available in the node_modules directory within your Bazel

workspace. This is essential because Bazel needs access to

these dependencies during the build and test processes.

The rule npm_link_all_packages(name = “node_modules”) is used

to manage and link all the npm packages specified in the

package.json file into the node_modules directory of your Bazel

project. The name attribute (“node_modules” in this case) is

used to define a target’s name within the Bazel project. It

provides a unique identifier for this rule that can be used to

reference it in other parts of your Bazel configuration.

By using this rule, you can leverage Bazel’s ability to create

a hermetic and reproducible build environment. It ensures

that all the necessary npm packages are available within

your Bazel project, enabling consistent and predictable

builds regardless of the external development environment.

This is particularly useful in larger projects or when working

in teams, as it helps eliminate potential discrepancies

between development and production environments.

Setting up your NodeJS/Typescript

Environment

Before we dive into the setup, make sure you have the

following tools installed on your system: Node.js and npm

(Node Package Manager). You will need Node.js to run

JavaScript and npm to manage Node.js packages. You can

download and install them from the official Node.js website

(https://nodejs.org/). Let us check their availability by

running:

node -v

v18.18.2

npm -v

9.8.1

Organizing Your NodeJS/Typescript

Project

By structuring your Android project into several Bazel

projects, you enhance modularity, facilitate code reuse, and

boost build efficiency. These projects should be organized in

a way that distinguishes between applications, shared

functional code, and shared non-functional code, like

architectural components. We will go deeper into this topic

in the forthcoming chapters.

Given the straightforward nature of this project, we will

streamline the structure in the following manner:

.

├── BUILD.bazel

├── MODULE.bazel

├── WORKSPACE

├── app

│ ├── BUILD.bazel

│ ├── app.ts

│ ├── main.test.ts

│ └── main.ts

├── jest.config.js

├── common

│ ├── BUILD.bazel

│ ├── index.test.ts

│ └── index.ts

├── package.json

https://nodejs.org/

├── pnpm-lock.yaml

└── tsconfig.json

As in previous language examples, we have /app hosting the

application code and /common the non-functional or shared

one. The app itself is a silly REST API service that returns a

number when called GET /. The number is stored in the

common library.

The following files hold some key insights:

.bazelrc

We are going to configure a .bazelrc file as:

common --enable_bzlmod

build --@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig

fetch --@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig

query --@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig

The build --@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig

configures Bazel’s behavior when building targets. It

specifies an aspect from the @aspect_rules_ts repository.

Aspects in Bazel are used to modify or analyze the build

process for specific targets. In this case, the aspect is

named ts:skipLibCheck, and it is instructed to honor_tsconfig.

@aspect_rules_ts//ts:skipLibCheck is a reference to an

aspect defined in the @aspect_rules_ts repository.

honor_tsconfig is an option for the ts:skipLibCheck

aspect. This configuration tells Bazel to honor the

skipLibCheck setting from the TypeScript configuration

file (tsconfig.json) when building TypeScript targets. If

skipLibCheck is set to true in your tsconfig.json, Bazel will

skip type checking of library declaration files during the

build.

The fetch --@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig

configures Bazel’s behavior when fetching external

dependencies. It also references the same ts:skipLibCheck

aspect from the @aspect_rules_ts repository and tells Bazel to

honor_tsconfig. This means that when Bazel fetches external

dependencies, it will consider the skipLibCheck setting in

the tsconfig.json file of those dependencies. If the setting is

set to true, Bazel will skip type checking for those

dependencies during the fetch process.

Finally, query --

@aspect_rules_ts//ts:skipLibCheck=honor_tsconfig configures

Bazel’s behavior when querying the build graph. Similar to

the previous lines, it references the ts:skipLibCheck aspect

from the @aspect_rules_ts repository and specifies

honor_tsconfig. When you use Bazel’s query functionality to

inspect the build graph, it will take into account the

skipLibCheck setting in the tsconfig.json files of targets and

dependencies.

tsconfig.json

We are going to provide a tsconfig.json to configure

typescript transpilation as follows:

{

“compilerOptions”: {

“target”: “ES2022”,

“module”: “commonjs”,

“declaration”: true,

“strict”: true,

“baseUrl”: “.”,

“paths”: {

“@org/common”: [“./common/”]

}

},

“exclude”: [“bazel-*”]

}

It specifies various options that control how TypeScript

compiles and checks your TypeScript code. Let us break

down each section of this tsconfig.json file:

Compiler Options

“target”: “ES2022”: This option sets the target

ECMAScript version for the TypeScript compiler. In this

case, it is set to ES2022, which means TypeScript will

allow you to use features from ECMAScript 2022 when

writing your code. It also indicates the JavaScript

version that TypeScript will transpile your code to if your

code uses newer ECMAScript features.

“module”: “commonjs”: This option specifies the module

system to use when generating code. Here, “commonjs” is

chosen, which is the module system commonly used in

Node.js environments. This setting is essential to ensure

compatibility with Node.js’s require and module.exports

system.

“declaration”: true: When this option is set to true,

TypeScript generates declaration files (.d.ts files) for

your code. Declaration files are used for type checking

in your project and can also be published alongside your

JavaScript code to provide type information to

consumers of your library.

“strict”: true: Enabling “strict” sets several strict type-

checking options. This includes options like

“noImplicitAny”, “strictNullChecks”, and others, which

help catch type-related errors at compile-time and

enforce better code quality.

“baseUrl”: “.”: This option specifies the base directory

for module resolution. When using TypeScript modules,

you can use module aliases to simplify imports.

“baseUrl”: “.” indicates that the root directory of your

project should be considered as the base for module

resolution.

“paths”: This section allows you to define module

resolution aliases. In your case, you have defined an

alias for “@org/common” that points to “./common/”. This

means that you can import modules using “@org/common”

in your TypeScript code, and TypeScript will resolve

them to the “./common/” directory.

exclude

“exclude”: [“bazel-*”]: This section specifies patterns for

files and directories that TypeScript should exclude from

compilation. In this case, it is excluding any files or

directories with names starting with “bazel-”. This is a

common practice when using Bazel for building and

managing projects, as Bazel often handles the

compilation of TypeScript files on its own.

.npmrc

The .npmrc file contains a configuration setting hoist=false

that controls the behavior of npm regarding package

installation and dependency resolution. When you set hoist

to false, you are essentially telling npm not to use the

package hoisting feature. Package hoisting is a mechanism

in npm that helps manage and optimize the installation of

dependencies in a project.

By setting hoist to false, you disable this feature, which

means that npm will not attempt to move common

dependencies up to a higher level in the directory tree to

reduce duplication. Instead, each package within your

project will maintain its own copy of dependencies,

potentially increasing the disk space used but providing

more isolation between packages. This can be useful in

situations where strict isolation between dependencies is

required, but it might also result in larger disk usage if

multiple packages use the same dependencies.

However, it is important to note that disabling hoisting

(hoist=false) can lead to longer installation times, especially

for projects with many dependencies, as npm will need to

install and maintain separate copies of shared dependencies

for each package. Therefore, you should carefully consider

your project’s requirements and constraints before making a

decision on whether to enable or disable package hoisting in

your .npmrc configuration.

.swcrc

The .swcrc file, also known as a “SWC configuration” file, is

used to configure the behavior of the SWC (Speedy Web

Compiler) tool, which is a JavaScript/TypeScript transpiler.

This file allows developers to customize how their code is

transformed and compiled by SWC.

{

“jsc”: {

“loose”: true,

“target”: “es2020”,

“parser”: {

“syntax”: “typescript”,

“decorators”: true

},

“transform”: {

“legacyDecorator”: true,

“decoratorMetadata”: true

}

},

“module”: {

“type”: “commonjs”,

“strict”: true,

“strictMode”: true,

“lazy”: true,

“noInterop”: true

}

}

In the .swcrc file, the configuration is organized into two

main sections: “jsc” and “module”. The “jsc” section deals

with the settings related to the JavaScript compiler (jsc)

itself, while the “module” section specifies how modules

should be handled.

In the “jsc” section, several options are set. The “loose”

option is set to true, indicating that SWC should apply loose

transformations, which can result in more concise code but

may not strictly adhere to certain JavaScript/TypeScript

rules. The “target” is specified as “es2020”, which sets the

target ECMAScript version for the transpiled code.

Additionally, the “parser” section configures the parser used

by SWC for TypeScript, enabling decorators. The “transform”

section includes options like “legacyDecorator” and

“decoratorMetadata”, which control how decorators in the

code are handled during transformation.

In the “module” section, module-related settings are defined.

“type” is set to “commonjs”, indicating that the code should be

compiled using the CommonJS module system. “strict” and

“strictMode” are set to true, enforcing strict mode in the

generated code. “lazy” is set to true, suggesting that SWC

should use lazy evaluation when handling modules. Finally,

“noInterop” is set to true, which disables module interop,

potentially resulting in smaller bundle sizes.

package.json

This file defines the configuration and dependencies for a

Node.js project named “aspect-typescript.” In the

“devDependencies” section, it lists packages necessary for

development purposes, such as type definitions for Express,

Jest, Node.js, and Supertest.

{

“name”: “aspect-typescript”,

“devDependencies”: {

“@types/express”: “4.17.17”,

“@types/jest”: “29.4.0”,

“@types/node”: “18.14.0”,

“@types/supertest”: “2.0.12”,

“prettier”: “2.8.4”,

“supertest”: “6.3.3”,

“typescript”: “4.9.5”

},

“dependencies”: {

“jest-cli”: “^29.7.0”,

“express”: “4.18.2”,

“jest-junit”: “15.0.0”

},

“prettier”: {

“printWidth”: 100,

“tabWidth”: 2,

“singleQuote”: true,

“trailingComma”: “all”,

“bracketSpacing”: false,

“arrowParens”: “avoid”,

“semi”: false

}

}

Furthermore, it includes development tools like Prettier for

code formatting and TypeScript for type-checking and

compiling TypeScript code. The “dependencies” section

contains the essential runtime dependency, which is

Express, a popular Node.js web application framework.

Lastly, there is a “prettier” configuration object that

specifies code formatting settings, such as line width, tab

width, and whether to use single quotes or trailing commas.

BUILD.bazel

The first few lines contain load statements that import

external rules and functions used in this build file. These

statements bring in rules and functions from different Bazel

repositories, such as npm dependencies management,

TypeScript configuration, npm package linking, copying files,

and Kubernetes object generation.

The package block defines the default visibility for targets

within the package. In this case, it sets the default visibility

to public, meaning that the targets defined in this package

are visible to other packages.

load(“@npm//:defs.bzl”, “npm_link_all_packages”)

load(“@aspect_rules_ts//ts:defs.bzl”, “ts_config”)

load(“@aspect_rules_js//npm:defs.bzl”, “npm_link_package”)

load(“@aspect_bazel_lib//lib:copy_to_bin.bzl”, “copy_to_bin”)

package(default_visibility = [“//visibility:public”])

npm_link_package(

name = “node_modules/@org/common”,

src = “//common”,

)

ts_config(

name = “tsconfig”,

src = “:tsconfig.json”,

)

copy_to_bin(

name = “swcrc”,

srcs = [“.swcrc”],

)

copy_to_bin(

name = “jest.config”,

srcs = [“jest.config.js”],

visibility = [“//:__subpackages__”],

)

npm_link_all_packages(name = “node_modules”)

The subsequent rules include:

npm_link_package: This rule links a package named

“@org/common” from the node_modules directory to a target

named “//common”. It helps manage npm dependencies

in the project.

ts_config: This rule defines a target named “tsconfig”

and specifies that its source is the tsconfig.json file in

the current directory. It is used to configure TypeScript

settings for the project.

copy_to_bin: Two instances of this rule are defined. One

for copying the .swcrc file and another for copying the

jest.config.js file into the binary output directory.

npm_link_all_packages: This rule ensures that all npm

packages listed in the package.json file are linked into

the node_modules directory.

In summary, this build.bazel file sets up rules and

dependencies for managing npm packages, TypeScript

configuration, copying specific files, and generating

Kubernetes objects within a Bazel project. These rules and

settings are essential for building and deploying a

Node.js/TypeScript application using Bazel.

app/BUILD.bazel

This is a Bazel build configuration file for a typescript

project, and it defines various rules and targets to build and

deploy a Node.js/TypeScript application.

load(“@aspect_rules_swc//swc:defs.bzl”, “swc”)

load(“@aspect_rules_ts//ts:defs.bzl”, “ts_project”)

load(“@bazel_skylib//lib:partial.bzl”, “partial”)

load(“@aspect_rules_jest//jest:defs.bzl”, “jest_test”)

ts_project(

name = “app”,

srcs = glob(

include = [“*.ts”],

exclude = [“*.test.ts”],

),

declaration = True,

transpiler = partial.make(

swc,

swcrc = “//:swcrc”,

),

tsconfig = “//:tsconfig”,

deps = [

“//:node_modules/@org/common”,

“//:node_modules/@types/express”,

“//:node_modules/@types/node”,

“//:node_modules/express”,

],

)

ts_project(

name = “app_test”,

srcs = glob([“*.test.ts”]),

declaration = True,

transpiler = partial.make(

swc,

swcrc = “//:swcrc”,

),

tsconfig = “//:tsconfig”,

deps = [

“:app”,

“//:node_modules/@types/jest”,

“//:node_modules/@types/supertest”,

“//:node_modules/supertest”,

],

)

jest_test(

name = “test”,

config = “//:jest.config”,

data = [“:app_test”],

node_modules = “//:node_modules”,

)

js_binary(

name = “main”,

data = [“:app”],

entry_point = “main.js”,

)

Let us break down each part of the file to understand its

purpose:

Loading Rules and Definitions: The file starts by

loading various Bazel rules and definitions from

different Bazel repositories. These rules and definitions

are essential for building and deploying the project.

Here are some of the loaded rules:

@aspect_rules_swc//swc:defs.bzl: Rules related to the

SWC (Super-fast JavaScript to JavaScript Compiler).

@aspect_rules_ts//ts:defs.bzl: Rules related to

TypeScript projects.

@aspect_rules_js//js:defs.bzl: Rules related to

JavaScript projects, including binary and image

layer rules.

@bazel_skylib//lib:partial.bzl: Partial rule used to

define a transpiler (SWC) with specific

configurations.

@aspect_rules_jest//jest:defs.bzl: Rules related to

Jest tests.

ts_project Rules: This section defines two TypeScript

projects:

app: The main TypeScript application. It specifies

TypeScript source files, transpiler options (using

SWC), TypeScript configuration (tsconfig), and

dependencies on various Node.js and TypeScript

packages.

app_test: The TypeScript project for running tests. It

also specifies TypeScript source files, transpiler

options, TypeScript configuration, and

dependencies. It depends on the app target and

includes testing-related dependencies.

jest_test Rule: This rule defines a Jest test target named

“test”. It specifies the Jest configuration, test data (the

app_test target), and the location of Node.js modules.

js_binary Rule: This rule defines a JavaScript binary

target named “main”. It specifies the entry point for the

JavaScript binary as “main.js” and depends on the app

target.

This BUILD.bazel file is comprehensive and orchestrates the

build, testing, and deployment of a Node.js/TypeScript

application. It leverages various Bazel rules and

dependencies to achieve this automation and reproducibility

in the development and deployment process.

common/BUILD.bazel

This Bazel build file defines how the common library is going

to be built:

load(“@aspect_rules_swc//swc:defs.bzl”, “swc”)

load(“@aspect_rules_ts//ts:defs.bzl”, “ts_project”)

load(“@aspect_rules_js//npm:defs.bzl”, “npm_package”)

load(“@bazel_skylib//lib:partial.bzl”, “partial”)

load(“@aspect_rules_jest//jest:defs.bzl”, “jest_test”)

ts_project(

name = “common_project”,

srcs = glob(

include = [“*.ts”],

exclude = [“*.test.ts”],

),

declaration = True,

transpiler = partial.make(

swc,

swcrc = “//:swcrc”,

),

tsconfig = “//:tsconfig”,

)

ts_project(

name = “common_project_test”,

srcs = glob([“*.test.ts”]),

declaration = True,

transpiler = partial.make(

swc,

swcrc = “//:swcrc”,

),

tsconfig = “//:tsconfig”,

deps = [

“:common_project”,

“//:node_modules/@types/jest”,

],

)

jest_test(

name = “test”,

config = “//:jest.config”,

data = [“:common_project_test”],

node_modules = “//:node_modules”,

)

npm_package(

name = “common”,

srcs = [“:common_project”],

package = “@org/common”,

visibility = [“//visibility:public”],

)

Let us break down what each section of the BUILD file does:

Loading Rules: The load statements at the beginning of

the file import external rules and macros from various

Bazel repositories. These rules define how to build and

process different aspects of your project. Here is what

each load statement does:

@aspect_rules_swc//swc:defs.bzl loads rules related to

the SWC (Super-fast, Babel-compatible

JavaScript/TypeScript compiler).

@aspect_rules_ts//ts:defs.bzl loads rules for

TypeScript projects.

@aspect_rules_js//npm:defs.bzl loads rules for

handling npm packages.

@bazel_skylib//lib:partial.bzl loads a rule called

partial from the Bazel Skylib library. This rule is used

for partial execution of certain actions.

@aspect_rules_jest//jest:defs.bzl loads rules for

running Jest tests.

ts_project Rule - common_project: This rule defines a

TypeScript project named “common_project”. It specifies

the source files for this project using the glob function,

which includes all .ts files in the current directory except

those with a .test.ts extension. The declaration = True

indicates that TypeScript declaration files (.d.ts) should

be generated during the build. The transpiler attribute

specifies how TypeScript files should be transpiled. It

uses the SWC transpiler, and the configuration for SWC

is defined in the //:swcrc file. The tsconfig attribute

specifies the TypeScript configuration file to use, which

is //:tsconfig in this case.

ts_project Rule - common_project_test: This rule defines

another TypeScript project named “common_project_test”,

specifically for test files (.test.ts). It includes all .test.ts

files in the current directory. Like the previous rule, it

generates TypeScript declaration files (declaration =

True) and uses the SWC transpiler with the same SWC

configuration. It has dependencies on two targets:

“:common_project” (the non-test TypeScript code) and

“//:node_modules/@types/jest” (TypeScript typings for

Jest).

jest_test Rule - test: This rule defines a Jest test suite

named “test”. It specifies the Jest configuration file

using config = “//:jest.config”. The data attribute lists

the targets that should be tested. In this case, it tests

“:common_project_test”. The node_modules attribute

specifies the location of npm dependencies, which is

“//:node_modules” in this case.

npm_package Rule - common: This rule defines an npm

package target named “common”. It includes the

“:common_project” as its source, which means that the

TypeScript code from “common_project” will be included in

the npm package. The package = “@org/common” specifies

the npm package name that will be published to the

npm registry under the @org scope. The visibility

attribute makes this target publicly visible.

In summary, this BUILD file configures Bazel to build and

test a Node.js/TypeScript project. It uses the SWC transpiler

for TypeScript compilation, Jest for testing, and defines an

npm package target for publishing the project as an npm

package. The dependencies and configurations are set up to

ensure that TypeScript code and tests are processed

correctly.

Building and Running Your

NodeJS/Typescript App

Before you can build your TypeScript code, you need to

install dependencies. Run the following command to install

the required npm packages:

npm install

This will read the package.json file generated by Bazel and

install the necessary dependencies.

You are now ready to build your TypeScript code using Bazel.

Run the following command to build the “my_library” target:

bazel build //app:main

This will compile your TypeScript code and generate output

in the dist directory.

Now, you can run your code using Bazel:

bazel run //src:main

Then, open a web browser at http://localhost:3000.

Congratulations! You have successfully set up your

Node.js/TypeScript environment with Bazel. You can now

start building and testing your Node.js applications

efficiently using the power of Bazel.

Best Practices Using NodeJS/Typescript in

Bazel

These practices will help you efficiently manage your

Node.js projects, streamline your builds, and enhance your

development experience.

Project Structure and Workspace Setup

One of the first steps in setting up a Node.js and TypeScript

project in Bazel is defining a well-organized project

structure. It is essential to create a clear separation

between your source code and build configuration. Consider

segregating visual components, functional behaviors, and

non-functional code by using different projects. Keep your

TypeScript source code under the “src” directory and include

your BUILD.bazel file at the root. Ensure that your

MODULES.bazel file contains all necessary Bazel dependencies

and external repository rules.

Fine-Grained Build Targets

When defining build targets in Bazel for your Node.js and

TypeScript project, it is advisable to be as fine-grained as

possible. Instead of creating a single large build target for

your entire project, break it down into smaller, more focused

targets. This allows Bazel to optimize builds by only

rebuilding the parts of your project that have changed,

reducing build times.

Using Bazel Rules for Node.js and TypeScript

Leverage Bazel’s Node.js and TypeScript rules to define your

build targets. The ts_library, ts_binary, and nodejs_binary

rules are powerful tools for managing TypeScript and

Node.js code in Bazel. These rules ensure that your

TypeScript code is transpiled correctly and that

dependencies are managed efficiently.

Dependency Management with npm

Node.js projects often rely on npm or Yarn for dependency

management. It is crucial to integrate these package

managers with Bazel effectively. Use the npm_install or

yarn_install rules to fetch and manage your project’s

Node.js dependencies. This assures that Bazel is aware of

your project’s external dependencies and can cache them

appropriately.

Bazel-Managed Development Server

For local development, consider setting up a Bazel-managed

development server using the ts_devserver rule. This rule

allows you to run your Node.js server locally while still

benefiting from Bazel’s caching and build optimizations. It is

an excellent way to streamline your development workflow

and maintain consistency between local development and

production builds.

Continuous Integration with Bazel

Integrate Bazel into your continuous integration (CI) pipeline

to ensure consistent and reproducible builds across different

environments. Use tools like Bazelisk to make it easy to

install and use the correct version of Bazel in your CI jobs.

This confirms that your Node.js and TypeScript projects are

built consistently across development, testing, and

production environments.

Testing and Code Quality Checks

Integrate testing and code quality checks into your Bazel

build process. Use Bazel rules like jest_test or tslint to run

your tests and perform static code analysis. By

incorporating these checks into your Bazel build, you can

catch issues early in your development cycle and maintain

high code quality standards.

Monitoring and Optimization

Monitor and optimize your Bazel builds regularly. Use tools

like Bazel’s query command to inspect build dependencies

and identify potential bottlenecks. By fine-tuning your Bazel

configuration and optimizing your build targets, you can

significantly improve build performance for your Node.js and

TypeScript projects.

Incorporating these best practices into your Node.js and

TypeScript projects with Bazel will help you achieve more

efficient builds, maintain code quality, and streamline your

development workflow. By following these guidelines, you

can harness the power of Bazel to enhance your Node.js

development experience.

Golang

We will explore the process of setting up Bazel for Go

development, creating and configuring Go targets,

managing dependencies, and optimizing your build process.

By the end of this chapter, you will have a solid

understanding of how to harness the power of Bazel to

supercharge your Go projects and streamline your

development workflow.

So, without further ado, let us dive into the world of building

Go projects with Bazel and discover how this dynamic duo

can revolutionize your development experience.

Setting up Your Golang Environment

Before we get started, ensure that you have a working Go

installation. Download and install Go from the official Go

website. Make sure to set up your GOPATH and GOBIN

environment variables as per the Go installation

instructions.

Organizing Your Golang Project

Bazel offers great flexibility when it comes to structuring

your project, but adhering to certain conventions can

simplify the development process. We will use a sample

project structure to illustrate how you can effectively

organize your Go project with Bazel.

.

├── BUILD.bazel

├── MODULE.bazel

├── WORKSPACE

├── common

│ └── greetings

├── deps.bzl

├── go.mod

├── go.sum

└── src

├── app

└── handlers

Now, let us break down each component of this structure

and discuss how to effectively use it in your Go project.

/BUILD.bazel

The BUILD.bazel file is used to define rules and targets for

building Go code within the directory it resides.

load(“@gazelle//:def.bzl”, “gazelle”)

gazelle(name = “gazelle”)

This BUILD.bazel file uses Gazelle, a Bazel tool, to generate

and manage Bazel build files for a Go project. Gazelle

automatically generates Bazel build files for Go projects by

scanning the project’s source code directories, identifying

Go packages and their dependencies, and then creating

corresponding `BUILD.bazel` files with rules that define how

to build and test the Go packages. This automation helps

ensure that your Go project is properly integrated with

Bazel, making it easier to build, test, and manage

dependencies within the Bazel ecosystem.

/src/app/BUILD.bazel

This BUILD.bazel file defines how to build an app that exposes

two REST endpoints.

load(“@rules_go//go:def.bzl”, “go_binary”, “go_library”)

go_library(

name = “app_lib”,

srcs = [“main.go”],

importpath = “github.com/OrangeAVA/Building-Large-Scale-Apps-

with-Monorepo-and-Bazel/chapter-6/bazel_go/src/app”,

visibility = [“//visibility:private”],

deps = [

“//src/handlers”,

“@com_github_gorilla_mux//:mux”,

],

)

go_binary(

name = “app”,

embed = [“:app_lib”],

visibility = [“//visibility:public”],

)

This BUILD.bazel file sets up a Go library target (“app_lib”)

and a Go binary target (“app”) for a Go project. The library

target compiles the “main.go” source file and depends on

both internal and external dependencies, while the binary

target embeds the library and is marked as publicly visible.

This configuration allows you to build and run the Go

application using Bazel.

/src/handlers/BUILD.bazel

This BUILD.bazel file defines how to build a library for the

endpoint’s handlers.

load(“@rules_go//go:def.bzl”, “go_library”)

go_library(

name = “handlers”,

srcs = [“handler.go”],

importpath = “github.com/OrangeAVA/Building-Large-Scale-Apps-

with-Monorepo-and-Bazel/chapter-6/bazel_go/src/handlers”,

deps = [“//common/greetings”],

visibility = [“//visibility:public”],

)

This BUILD.bazel file defines a Go library target called

“handlers” that includes the “handler.go” source file, has a

specified import path, depends on the “greetings” package

from the “//common/greetings” target, and is publicly visible to

other parts of the project. This target can be used by other

Bazel targets or Go applications within the same Bazel

workspace.

/common/greetings/BUILD.bazel

This BUILD.bazel file defines how to build a library for a

shared function including tests.

load(“@rules_go//go:def.bzl”, “go_library”, “go_test”)

go_library(

name = “greetings”,

srcs = [“greetings.go”],

importpath = “github.com/OrangeAVA/Building-Large-Scale-Apps-

with-Monorepo-and-Bazel/chapter-6/bazel_go/common/greetings”,

visibility = [“//visibility:public”],

)

go_test(

name = “greetings_test”,

srcs = [“greetings_test.go”],

embed = [“:greetings”],

)

This BUILD.bazel file defines a Go package named “greetings”

with its source code in “greetings.go” and a corresponding

test target named “greetings_test” that tests the “greetings”

package. The test is able to access and test the code in the

“greetings” package because it is embedded as a

dependency using the embed attribute. This structure is

commonly used in Bazel to organize and test Go code within

a project.

MODULE.bazel

The MODULE.bazel file is often used to specify dependencies

and other module-level configurations.

bazel_dep(name = “rules_go”, version = “0.43.0”)

bazel_dep(name = “gazelle”, version = “0.34.0”)

go_deps = use_extension(“@gazelle//:extensions.bzl”,

“go_deps”)

go_deps.from_file(go_mod = “//:go.mod”)

use_repo(

go_deps,

“com_github_gorilla_mux”

)

The MODULE.bazel file is configuring dependencies for a Bazel

project that uses Go as its programming language. It

specifies dependencies on Bazel extensions like rules_go and

gazelle, configures the go_deps extension to read the

project’s go.mod file, and then declares a repository

dependency on gorilla/mux using the use_repo function.

These dependencies and configurations are essential for

managing the Go dependencies and building the project

with Bazel.

WORKSPACE

The WORKSPACE file is essential in any Bazel project, but in this

case is empty as all dependencies are defined in MODULE.bazel

file.

common

The common directory can be used to store shared code

that multiple parts of your project may utilize. In the sample

structure, we have a subdirectory called greetings, which

could contain shared Go code related to greeting messages,

for example,

deps.bzl

The deps.bzl file is a Bazel-specific file that can be used to

define custom build rules or functions. It can be handy if

your project requires complex build logic that is not easily

expressed in the standard Bazel BUILD files.

go.mod and go.sum

These files are standard Go module files, used for managing

your project’s dependencies. You should keep them in the

root of your project to ensure proper dependency

management when using Go modules.

src

The src directory is where your project’s Go source code

resides. In this structure, we have two subdirectories:

app: This directory can contain the main application

code. Typically, this is where your entry point to the

application is located.

handlers: This directory can contain HTTP request

handlers or other types of handlers specific to your

project.

By structuring your Go project following the sample

structure and incorporating Bazel’s BUILD files, you can

efficiently manage your project’s dependencies and build

process. Bazel’s flexibility allows you to adapt this structure

to fit the specific needs of your project while maintaining a

clean and organized codebase. In the upcoming sections,

we will dive deeper into how to define BUILD files, declare

dependencies, and build your Go project effectively with

Bazel.

Building and Running Your Golang

App

First, run the command bazel run @rules_go//go -- mod tidy -

v. This command uses Bazel to execute a Go module

management command. It begins with bazel run, which

instructs Bazel to run a specific target. The target,

@rules_go//go, is a reference to a Bazel rule for Go, likely

indicating that this command is executing within a Go-

related Bazel workspace. Following --, the actual Go

command mod tidy -v is provided. This command instructs

Go’s module system to tidy the project’s dependencies

(mod tidy) while displaying verbose output (-v). Bazel

facilitates the execution of this Go command, ensuring that

the correct environment and dependencies are in place

within the Bazel workspace, making it a part of a

reproducible and consistent build process.

To build your GoLang application with Bazel, run the build

command:

bazel build …

This command will use Bazel to compile your GoLang code

into an executable binary. The output binary will be located

in the Bazel bazel-bin directory.

Run the compiled binary:

./bazel-bin/src/app/app_/app

You should see the output “server started at port :5000”

displayed in your terminal. If you open

http://localhost:5000/greet in a browser you will get:

Hi, Javier. Welcome!

Run the tests using Bazel:

bazel test …

Bazel will compile and run all the tests, and you will see the

test results in your terminal.

bazel test …

INFO: Analyzed 5 targets (81 packages loaded, 11193 targets

configured).

INFO: Found 4 targets and 1 test target…

INFO: Elapsed time: 91.753s, Critical Path: 72.68s

INFO: 29 processes: 11 internal, 18 local.

INFO: Build completed successfully, 29 total actions

//common/greetings:greetings_test PASSED in 0.2s

Executed 1 out of 1 test: 1 test passes.

There were tests whose specified size is too big. Use the --

test_verbose_timeout_warnings command line option to see which

ones these are.

We have covered the basics of building, testing, and running

a GoLang application with Bazel. Bazel provides a robust

and reproducible build environment for GoLang projects,

making it a valuable tool for managing your development

workflow. You can extend these concepts to more complex

GoLang projects and take advantage of Bazel’s scalability

and performance optimization features. Happy coding!

Best Practices Using Golang in Bazel

Use Gazelle

Firstly, it streamlines the integration of Go projects with

Bazel, a powerful build and test tool, by automatically

generating the necessary Bazel build files (BUILD.bazel or

BUILD files) for Go packages. This reduces the manual effort

involved in writing and updating these files, especially for

large projects with many dependencies. Gazelle

understands the Go project structure and resolves external

dependencies by fetching them from their sources, ensuring

that the build files are always up-to-date with the project’s

dependencies and structure. This automation not only

enhances productivity but also minimizes the chances of

human error in build configurations. Furthermore, Gazelle

supports a workflow that is familiar to Go developers,

aligning well with Go’s own tooling and conventions, thus

making the adoption of Bazel within the Go ecosystem

smoother and more intuitive.

Modularize Your Codebase

Divide your GoLang application into smaller, reusable

modules or packages. Each module should have a clear

responsibility and well-defined API. Bazel works best with

fine-grained dependencies, so keeping your code modular

will improve build performance and maintainability.

Use Bazel’s Go Rules

Leverage Bazel’s built-in Go rules, such as go_binary,

go_library, and go_test, which simplify the definition of Go

targets and their dependencies. These rules ensure that

Bazel can efficiently manage your GoLang code and its

dependencies during the build process.

Vendor Dependencies

Consider using the Go module system to manage your

project’s dependencies. Bazel can integrate with Go

modules to fetch and cache dependencies, reducing the

need to commit them to your repository. This keeps your

repository clean and reduces storage requirements.

Module.bazel and Workspace Configuration

Configure your Bazel Module and Workspace files with BUILD

files that describe your project’s structure. Make sure your

GoLang packages are properly defined in these BUILD files,

and specify dependencies explicitly. This ensures that Bazel

can accurately determine the build order and manage

dependencies efficiently.

Use Bazelisk for Version Management

To ensure consistency across development environments,

encourage your team to use Bazelisk to manage Bazel

versions. This tool helps developers use the correct Bazel

version specified in your project’s configuration, preventing

version-related build issues.

Selective Testing

When running tests, use Bazel’s selective test execution

feature. This allows you to run only the tests affected by

code changes, saving time and resources during

development and continuous integration builds.

Leverage Remote Caching and Execution

Take advantage of Bazel’s remote caching and execution

capabilities. Configure a remote cache and execution server

to store build artifacts and execute builds remotely. This

speeds up builds and allows for faster iteration.

CI/CD Integration

Integrate Bazel into your CI/CD pipeline to ensure consistent

and reproducible builds. Configure your CI system to use the

same Bazel version as your development environment, and

use Bazel’s built-in support for various CI platforms.

Monitoring and Profiling

Use Bazel’s built-in profiling and monitoring tools to analyze

build performance. Identify bottlenecks and optimize your

build configurations to achieve faster build times.

Documentation and Onboarding

Document your project’s Bazel setup and best practices for

new team members. Create an onboarding guide that

explains how to work with Bazel in your GoLang project,

including common tasks like building, testing, and

dependency management.

By following these best practices, you can streamline your

GoLang development process with Bazel, improve build

performance, and ensure a consistent and reproducible

development environment for your team.

iOS

Developing native iOS applications goes beyond merely

compiling code in a different programming language; it

encompasses an entire development ecosystem, including

an integrated development environment (IDE), dependency

management, and an execution platform unique to iOS.

Spotify’s experience, as shared in October 2023 (refer to

https://engineering.atspotify.com/2023/10/switching-build-

systems-seamlessly/), highlights their successful transition

to Bazel. This shift allowed them to dramatically cut down

full build times, reducing them from a lengthy 80 minutes to

less than 20 minutes in most cases, with a remarkable 75%

of builds completing in less than 30 seconds.

Setting up Your iOS Environment

Before you start setting up your iOS environment with Bazel,

make sure you have the following prerequisites in place:

macOS: Bazel requires macOS as the development

environment for iOS development. Ensure you have a

Mac running a compatible version of macOS.

Xcode: Install Xcode, which includes the necessary iOS

SDKs and tools for iOS development. You can download

Xcode from the Mac App Store.

iOS Simulator: Make sure you have the iOS Simulator

installed on your macOS machine. This is typically

included when you install Xcode. Ensure you have

https://engineering.atspotify.com/2023/10/switching-build-systems-seamlessly/

iPhone/iPad os installed following instructions at

https://developer.apple.com/documentation/safari-

developer-tools/adding-additional-simulators

Organizing Your iOS Project

Every programming language comes with its own traditions

when it comes to project structure and directory naming,

and developers tend to hold onto these conventions

regardless of the build tool they employ. In the realm of iOS

development, it is a common practice to store source code

in a `/Sources` directory and other related assets in a

`/Resources` directory, and we will adhere to this convention.

Due to the project’s simplicity, we will adopt a more

simplified structure as outlined here:

.

├── MODULE.bazel

├── WORKSPACE

├── app

├── App.xcodeproj

├── BUILD.bazel

├── Resources

└── Sources

MODULE.bazel

bazel_dep(name = “rules_apple”, version = “3.1.1”)

bazel_dep(name = “rules_swift”, version = “1.13.0”)

bazel_dep(name = “rules_xcodeproj”, version = “1.13.0”)

bazel_dep(name = “bazel_features”, version = “1.1.1”)

These external rules enhance your project’s capabilities by

providing specialized features for iOS application

management, Swift language code compilation, and Xcode

project management.

WORKSPACE

https://developer.apple.com/documentation/safari-developer-tools/adding-additional-simulators

The WORKSPACE file is essential in any Bazel project, but in this

case is empty as all dependencies are defined in MODULE.bazel

file.

.bazelrc

We are going to configure a .bazelrc file as:

common --enable_bzlmod

build --verbose_failures

In the provided .bazelrc file, there are two configuration

options specified:

common --enable_bzlmod: This line configures Bazel to

enable experimental support for Bazel modules (bzlmod).

Bazel modules are a feature that allows you to organize

and share build rules and dependencies in a more

modular and reusable way. Enabling this feature

indicates that you want to use and experiment with

Bazel modules in your project, which can help improve

build organization and reusability.

build --verbose_failures: This line configures Bazel to

provide more detailed information when a build failure

occurs. When this option is enabled, Bazel will display

additional diagnostic information in the build output,

making it easier to identify and understand the reasons

behind build failures. This can be particularly helpful for

debugging and troubleshooting issues in your project’s

build process.

app/BUILD.bazel

This `BUILD.bazel` file defines build targets for an iOS

application using Bazel.

load(“@rules_apple//apple:ios.bzl”, “ios_application”)

load(“@rules_swift//swift:swift.bzl”, “swift_library”)

load(“@rules_xcodeproj//xcodeproj:defs.bzl”,

“top_level_target”, “xcodeproj”)

swift_library(

name = “lib”,

srcs = glob([“Sources/*.swift”]),

)

ios_application(

name = “app”,

bundle_id = “build.bazel.rules-apple-example”,

families = [

“iphone”,

“ipad”,

],

infoplists = [“Resources/Info.plist”],

minimum_os_version = “17.0”,

visibility = [“//visibility:public”],

deps = [“:lib”],

)

xcodeproj(

name = “xcodeproj”,

build_mode = “bazel”,

project_name = “App”,

tags = [“manual”],

top_level_targets = [

“:app”, target_environments = [“device”, “simulator”]

],

)

Let us break it down:

Loading Rules: The first three lines of the file load specific

Bazel rules using the `load` function. These rules come from

external Bazel repositories and are essential for iOS

development with Bazel. They include:

`ios_application` defines an iOS application target.

`swift_library` defines a Swift library target.

`xcodeproj` defines an Xcode project target.

Swift Library Target: The `swift_library` target named

“lib” is defined to build a Swift library. It specifies the source

files using the `srcs` attribute, which uses a glob pattern to

include all Swift source files within the “Sources” directory.

iOS Application Target: The `ios_application` target

named “app” is defined to build an iOS application. It has

various attributes, including:

`bundle_id`: Specifies the bundle identifier for the app.

`families`: Lists the device families that the app

supports (iPhone and iPad).

`infoplists`: Points to the Info.plist file that contains

configuration information for the app.

`minimum_os_version`: Sets the minimum iOS version

required to run the app.

`visibility`: Defines the visibility of the target as public,

making it accessible to other parts of the project.

`deps`: Specifies dependencies, in this case, the “lib”

target is a dependency, meaning the app depends on

the Swift library.

Xcode Project Target: The `xcodeproj` target named

“xcodeproj” is defined to generate an Xcode project for this

Bazel project. It includes attributes like:

`build_mode`: Indicates the build mode as “bazel,” which

means that Xcode will be configured to use Bazel for

building.

`project_name`: Specifies the name of the generated

Xcode project.

`tags`: Assigns tags to the target. In this case, it is

tagged as “manual.”

`top_level_targets`: Lists the top-level targets in the

generated Xcode project, including the “app” target. It

also specifies target environments, which include

“device” and “simulator.”

In summary, this `BUILD.bazel` file sets up a Bazel project for

building an iOS application written in Swift. It defines targets

for a Swift library, an iOS application, and an Xcode project.

The iOS application depends on the Swift library, and the

Xcode project is configured to use Bazel for building,

including support for both device and simulator target

environments.

/app/App.xcodeproj

This folder represents the Xcode project directory, and all its

contents are automatically generated by the ‘xcodeproj’

target.

Building and Running Your iOS app

Before you can start building and running your iOS app with

Bazel, you need an Xcode project. Bazel can generate and

maintain Xcode projects for you with just one simple

command:

bazel run //app:xcodeproj

This command tells Bazel to create (and update, if

necessary) an Xcode project for your iOS app. The

//app:xcodeproj target specifies which part of your project

should be used for generating the Xcode project. Once this

command is executed, you will have a fully functional Xcode

project that you can open in Xcode and work with as you

normally would.

Building Your iOS App

With the Xcode project in place, you can use Bazel to build

your iOS app. Bazel’s build process is highly efficient and

incremental, which means it only rebuilds what is necessary.

To build your app, execute the following command in your

project directory:

bazel build //app

The //app target specifies the part of your project you want

to build. Bazel will analyze your project’s dependencies,

compile the necessary source code, and generate the app

binary. Any subsequent builds will be faster because Bazel

caches build artifacts intelligently.

You could find the built app in the following path:

bazel-bin/app/app.ipa

Launching the iOS Simulator

Once you have built your iOS app, you will want to run it on

the iOS Simulator for testing and debugging. Bazel simplifies

this process as well:

bazel run //app

This command tells Bazel to launch the iOS Simulator with

your app. Bazel handles the necessary setup and

configuration, so you can focus on testing and debugging

your application.

Build the App for a Device

To enable the distribution of your app or its installation on a

physical iOS device, you must correctly configure

provisioning profiles and distribution certificates. If this topic

seems complex, you can either skip it for now or revisit it

later.

To prepare your app for installation and execution on an iOS

device, Bazel requires the appropriate provisioning profile

for the specific device model. Follow these steps:

1. Access your Apple Developer Account and obtain the

necessary provisioning profile for your device. For

detailed guidance, consult Apple’s official

documentation.

2. Relocate the downloaded provisioning profile to your

project’s workspace directory, typically referred to as

$WORKSPACE.

3. Optionally, you can exclude the provisioning profile from

version control by adding it to your .gitignore file.

4. Update your BUILD file by adding the following line to

the ios_application target:

provisioning_profile =

“<your_profile_name>.mobileprovision”

Ensure that the <your_profile_name> matches the actual

profile name required for successful installation on your

target device.

5. Now, you can build the app for your iOS device using

the following command:

bazel build //:iOSApp --ios_multi_cpus=arm64

This command generates the app as a universal binary.

If you wish to build for a specific device architecture,

you can specify it within the build options.

6. To build for a particular Xcode version, employ the --

xcode_version option. For a specific SDK version, you can

utilize the --ios_sdk_version option. Typically, using --

xcode_version should suffice for most scenarios.

7. To establish a minimum required iOS version, introduce

the minimum_os_version parameter into the ios_application

build rule within your BUILD file.

8. Moreover, make sure to update the previously defined

xcodeproj rule to indicate support for building for a

device:

xcodeproj(

name = “xcodeproj”,

build_mode = “bazel”,

project_name = “iOSApp”,

tags = [“manual”],

top_level_targets = [

top_level_target(“:iOSApp”, target_environments =

[“device”, “simulator”]),

],

)

Note: For a more advanced provisioning profile integration,

you can explore options like provisioning_profile_repository

and local_provisioning_profile rules.

Now, to install your app on an iOS device, follow these

steps:

1. The simplest approach is to launch Xcode and navigate

to Windows > Devices. Then, select your connected device

from the list on the left.

2. Add your app by clicking the “Add” (plus sign) button

under the “Installed Apps” section. Select the .ipa file

that you previously built.

If you encounter issues during the installation process,

ensure that you have correctly specified the provisioning

profile in your BUILD file (as described in step 4 of the

previous section).

If your app fails to launch on your device, confirm that your

device is included in the provisioning profile. Also, you can

check the “View Device Logs” button on the Devices screen in

Xcode for potential error information.

External Dependencies

The iOS ecosystem also encompasses its own set of

dependency management tools, which play a crucial role in

handling project configurations.

One of the pioneering and widely adopted dependency

managers in the iOS world is Cocoapods. It facilitates the

integration of third-party libraries (referred to as “pods”) as

well as local pods. The specifications for these

dependencies are meticulously defined in a podspec file,

typically written in Ruby. Cocoapods fetches source files

from remote dependencies, but it is worth noting that this

approach can substantially increase compilation times.

Another option is Carthage, which offers a cleaner approach

to dependency management. Carthage generates a

comprehensive framework that needs to be linked to your

project. In most cases, these projects employ dynamic

linking, necessitating the copying of frameworks into the

final binary, potentially affecting launch times.

Dependencies in Carthage are resolved using git tags, which

prevents the creation of Monorepo projects.

For those seeking a streamlined project configuration

process, XcodeGen comes into play. This tool automatically

generates an Xcode project based on a single YAML or JSON

file. It can be combined with Carthage and/or CocoaPods,

offering flexibility. However, for large-scale projects,

maintaining it can be challenging, as it relies on a single

configuration file.

A similar approach to XcodeGen is offered by Tuist, which uses

Swift files to configure the project. One notable feature is

the ability to split the configuration into multiple files within

the project folders, making maintenance significantly easier.

Tuist provides an elegant Swift interface and offers

numerous integrations with other dependency managers. It

serves as a secure, native way to scale Xcode projects,

while still relying on Xcode as the build system.

Bazel provides varying degrees of support for all these tools

through rules. While a detailed exploration of these tools is

beyond the scope of this book, you can readily discover

examples and find support by conducting online searches.

Using iOS Best Practices in Bazel

Using Bazel with iOS projects requires a nuanced

understanding of both the build system and the iOS

development ecosystem. This section aims to provide best

practices for integrating Bazel into your iOS development

workflow.

Structuring Your Workspace

Modularize Your Code: Divide your iOS project into

smaller, reusable modules. Bazel excels at caching

and parallelizing builds, so the more granular your

modules, the more you benefit from these features.

Use a Consistent Directory Structure: Maintain a

clear and consistent directory structure. This helps

in defining more streamlined BUILD files and makes

it easier to manage dependencies.

Dependency Management

Manage External Dependencies: Utilize Bazel’s

workspace rules to handle external dependencies.

For CocoaPods, consider using rules_pods to

integrate them into your Bazel build.

Version Control for Dependencies: Keep your

dependencies pinned to specific versions. This

ensures reproducibility of your builds.

Efficient Build Files

Optimize BUILD Files: Keep your BUILD files lean

and focused. Define only what is necessary for each

module, avoiding redundancy.

Use Macros Wisely: Define macros for common build

patterns. This reduces boilerplate and helps

maintain consistency across your BUILD files.

Build Configurations

Leverage Configurable Builds: Make use of Bazel’s

ability to handle multiple build configurations. This

is particularly useful for managing different

environments like development, staging, and

production.

Use Apple’s Build Settings Thoughtfully: Integrate

Apple-specific build settings carefully. Bazel’s

sandboxed environment might handle some

settings differently than Xcode.

Testing

Integrate with XCTest: Leverage Bazel’s rules for

XCTest to ensure that your unit and UI tests are

incorporated into your build process.

Test Isolation: Ensure that your tests are isolated

and reproducible. Bazel’s sandboxing can be very

beneficial here.

Continuous Integration

CI/CD Integration: Bazel is well-suited for CI/CD

pipelines. Its ability to cache and parallelize builds

can significantly reduce build times on CI servers.

Remote Caching: Utilize remote caching to share

build artifacts among team members and CI

systems, further reducing build times.

Stay Updated

Keep Up with Bazel’s Evolution: Bazel is actively

developed. Stay updated with the latest releases

and changes, especially those related to Apple’s

ecosystem.

Conclusion

As we conclude this chapter on using Bazel with a variety of

languages and platforms, it is important to reflect on the

versatility and power that Bazel brings to the table.

Throughout this chapter, we have explored how Bazel can

be effectively used to build and test software across

multiple languages and environments, including Android

with Kotlin, Python, NodeJS with TypeScript, Golang, and iOS.

This diversity showcases Bazel’s adaptability and its ability

to handle projects of varying complexity and size. Whether

you are working on a multi-language web application, a

complex mobile app, or a straightforward script, Bazel

provides a consistent and efficient way to manage your

builds.

Moreover, the examples provided throughout these pages

illustrate the fundamental concepts and practical

applications of Bazel in different contexts. By applying Bazel

to a “Hello World” program in each of these languages and

platforms, we have demonstrated how Bazel’s core

principles of reproducibility, speed, and scalability are

maintained across different development environments.

This not only enhances your workflow but also ensures that

your projects remain manageable and efficient as they grow.

As you continue your journey with Bazel, keep these

examples in mind as a foundation upon which you can build

more complex and sophisticated projects, leveraging Bazel’s

robust features to streamline your development process

regardless of the language or platform you choose.

In the next chapter, we will delve into modern software

development practices, emphasizing the enhancement of

collaboration, efficiency, and quality in code contribution.

Recommended Readings

As you read through this chapter, we explore the use of

Bazel with a variety of languages and platforms, including

Android/Kotlin, Python, NodeJS/TypeScript, Golang, and iOS.

The following readings are recommended to deepen your

understanding and skill in these areas.

Android/Kotlin

“Bazel: The Revolutionary Build System for Android App

Development” — This ProAndroidDev article provides a

comprehensive look into using Bazel for Android

development, particularly focusing on Kotlin.

https://proandroiddev.com/bazel-the-revolutionary-

build-system-for-android-app-development-

77d6ea340c51

“Building an Android App with Bazel” — Bazel’s official

guide to starting with Android app development offers a

solid foundation for beginners.

https://bazel.build/versions/6.1.0/start/android-app

Python

“Build and Deploy PyApp with Bazel” — Earthly’s blog

post delves into the specifics of building and deploying

a Python application using Bazel, making it a must-read

for Python developers. https://earthly.dev/blog/build-

and-deploy-pyapp-with-bazel/

Aspect Build: Rules for Python — This documentation

from Aspect Build covers rules and best practices for

using Bazel with Python projects.

https://docs.aspect.build/rulesets/rules_python/

NodeJS/TypeScript

“Using Bazel with TypeScript” — An insightful article

from Earthly that focuses on integrating TypeScript with

Bazel. https://earthly.dev/blog/using-bazel-with-

typescript/

Aspect Rules Jest: Documentation — For those using Jest

with Bazel, this documentation provides essential

https://proandroiddev.com/bazel-the-revolutionary-build-system-for-android-app-development-77d6ea340c51
https://bazel.build/versions/6.1.0/start/android-app
https://earthly.dev/blog/build-and-deploy-pyapp-with-bazel/
https://docs.aspect.build/rulesets/rules_python/
https://earthly.dev/blog/using-bazel-with-typescript/

information and guidelines.

https://docs.aspect.build/rulesets/aspect_rules_jest/docs

/jest_test/

Golang

“Build Golang with Bazel and Gazelle” — This Earthly

blog post offers a practical guide to using Bazel and

Gazelle for Go projects. https://earthly.dev/blog/build-

golang-bazel-gazelle/

Bazel Go Rules Documentation — Directly from the

Bazel Go GitHub repository, this documentation is a

comprehensive resource for Go developers.

https://github.com/bazelbuild/rules_go/blob/master/docs

/go/core/bzlmod.md

iOS

“Building Faster in iOS with Bazel” — Sergio Fernandez’s

Medium article provides insights into accelerating iOS

development with Bazel.

https://medium.com/@fdzsergio/building-faster-in-ios-

with-bazel-448a3074e73

“Using Bazel with Your iOS Projects” — This DEV.to

article by PeterTech is a great resource for iOS

developers beginning with Bazel.

https://dev.to/petertech/using-bazel-with-your-ios-

projects-g7e

“iOS Framework Development with Bazel” — Baracoda’s

blog post focuses on developing iOS frameworks using

Bazel, offering valuable insights for advanced users.

https://baracoda.com/blog/ios-framework-bazel

Bazel Rules Apple: iOS App Tutorial — This tutorial from

the Bazel GitHub repository is essential for anyone

looking to build iOS apps with Bazel.

https://github.com/bazelbuild/rules_apple/blob/master/d

oc/tutorials/ios-app.md

https://docs.aspect.build/rulesets/aspect_rules_jest/docs/jest_test/
https://earthly.dev/blog/build-golang-bazel-gazelle/
https://github.com/bazelbuild/rules_go/blob/master/docs/go/core/bzlmod.md
https://medium.com/@fdzsergio/building-faster-in-ios-with-bazel-448a3074e73
https://dev.to/petertech/using-bazel-with-your-ios-projects-g7e
https://baracoda.com/blog/ios-framework-bazel
https://github.com/bazelbuild/rules_apple/blob/master/doc/tutorials/ios-app.md

Each of these readings will provide you with specialized

knowledge and practical insights, helping you to effectively

implement Bazel in your projects across different languages

and platforms.

CHAPTER 7

Streamlining Development

Workflow

Introduction

In the dynamic world of software development, adapting

and refining workflows is key to success. “Streamlining

Development Workflow” delves into modern software

development practices, emphasizing the enhancement of

collaboration, efficiency, and quality in code contribution. It

offers a thorough examination of tools and methods that

have revolutionized team dynamics in shared codebases,

from the impact of version control systems like Git to

platforms like GitHub and GitLab. This chapter illuminates

the technical progress and cultural shift towards more

collaborative and transparent development, underscoring

the significant role of Bazel in Monorepos for managing

large-scale projects. It delves into code contribution

traceability, the importance of effective code reviews, and

the strategic use of CI and CD pipelines, showing how Bazel

streamlines these aspects for more consistent and efficient

integration of code contributions. This comprehensive

chapter navigates the complexities of modern software

projects, providing practical insights for enhancing

development workflows with these advanced

methodologies.

Structure

In this chapter, the following topics will be covered:

Code Contribution Workflows

Setting up Continuous Integration with Bazel

Enabling a Sort of Local CI with Bazel

CI Worker Set up Models

Managing Code Formatting, Linting, and Static Code

Analysis

Code Contribution Workflows

Code contribution refers to the process of adding or

modifying code within a software project. This process is a

cornerstone of collaborative software development,

enabling multiple developers to work together on a shared

codebase. Code contributions can range from small bug

fixes to the addition of new features or significant

architectural changes. The key aspect of code contribution

is that it is a collaborative effort, often involving code

reviews, version control, and adherence to project

guidelines to ensure the quality and compatibility of the new

code.

Over the years, the process of code contribution has

evolved significantly, primarily due to advancements in

tools and methodologies. In the early days of software

development, code changes were often managed manually,

leading to challenges in collaboration and version control.

The introduction of centralized version control systems

(VCS) like CVS and Subversion marked a significant

improvement. However, the real transformation came with

distributed version control systems, such as Git, which

facilitated much more flexible and collaborative workflows.

Additionally, the rise of online platforms like GitHub and

GitLab revolutionized code contribution by making it easier

for developers to collaborate, track issues, and review code.

In today’s fast-paced software development environment,

efficient and robust code contribution workflows are

essential. These workflows are designed to streamline the

process of integrating individual code contributions into a

larger codebase, ensuring consistency, quality, and

efficiency. Key elements of these workflows include version

control systems, code review practices, continuous

integration (CI) and continuous deployment (CD) pipelines,

and, importantly, the use of build tools like Bazel.

Code Contribution Traceability

The cornerstone of modern code contribution is a version

control system like Git. Developers create branches to work

on new features, bug fixes, or other improvements. Effective

branching strategies, such as GitFlow or Trunk-Based

Development, play a crucial role in managing the

contributions of multiple developers and ensuring that the

main codebase remains stable and deployable at all times.

During code contribution, traceability is the ability to trace

changes back to their origin, including who made the

change, why it was made, and how it impacts the codebase.

This is crucial for maintaining the integrity of the software

project and is typically facilitated through version control

systems. By keeping a detailed history of changes, teams

can better understand the evolution of their project, identify

the causes of issues, and manage contributions from

multiple developers more effectively.

In the realm of software development, the traceability of

code contributions is a critical aspect of maintaining a

coherent and efficient workflow. Commit comments play a

pivotal role in this process, especially when contributions

involve changes across multiple files. These comments

serve as a key to understanding the motivations and

rationale behind each code change, providing valuable

context not just for current team members, but also for

future contributors who may be revisiting the code.

While documenting individual code contributions within a

feature branch is beneficial in the short term, it is the

comments made during merge requests that carry long-

term value. Investing effort in detailed and informative

merge request comments is crucial. These comments not

only facilitate a smoother code review process but also

become an integral part of the project’s historical record. A

well-documented merge request offers clarity about what

changes were introduced and why, aiding in both current

understanding and future maintenance.

The strategic use of merge request comments opens up

opportunities for automating aspects of project

management, such as generating release changelogs. Tools

like Release Please (https://github.com/googleapis/release-

please), Auto Changelog (https://github.com/cookpete/auto-

changelog), and the GitHub Changelog Generator

(https://github.com/github-changelog-generator/github-

changelog-generator) can be employed to create

comprehensive and informative changelogs. These tools

operate by extracting information from commit messages

and merge request comments, underlining the importance

of consistency and clarity in these communications.

To maximize the effectiveness of these tools, adopting a

standardized approach to commit messages is

recommended. The Conventional Commits specification

offers a lightweight, yet structured convention for crafting

commit messages. This specification aligns with Semantic

Versioning (SemVer), categorizing changes as features,

fixes, or breaking changes. A typical commit message

following this convention might look like: `feat(lang): add

Polish language`. This format not only simplifies the process

of generating automated tools like changelogs but also

ensures a clear and explicit commit history, making it easier

for team members to navigate and understand the evolution

of the project.

For more detailed guidelines on Conventional Commits,

developers and teams can refer to the official

documentation at Conventional Commits

(https://www.conventionalcommits.org/en/v1.0.0/). By adhering

to these guidelines, teams can significantly enhance the

traceability and manageability of their code contributions,

streamlining both the development process and long-term

maintenance of the software project.

Code Reviews

Code reviews are a critical part of the contribution process.

They provide an opportunity for team members to

collaborate, share knowledge, and ensure code quality. Tools

like GitHub, GitLab, or Bitbucket facilitate code reviews by

integrating pull requests (PRs) or merge requests (MRs),

where changes can be discussed, reviewed, and eventually

merged into the main branch. Effective code reviews not

only catch bugs but also foster a culture of learning and

mentorship.

At a Monorepo

Within a Monorepo environment, code contribution requires

careful management to maintain the stability and

consistency of the codebase. Bazel ensures that changes in

one part of the Monorepo do not inadvertently break other

parts.

Code contribution in the context of a monorepository

requires developers to be more aware of the broader impact

of their changes. They must understand the dependencies

within the repo and ensure that their changes are

compatible with the entire system. Bazel’s ability to manage

dependencies and build targets efficiently makes it an

essential tool in this environment.

CI/CD Pipelines

With Bazel, the CI pipeline can be optimized to only rebuild

and test affected targets, saving time and resources.

Continuous integration ensures that code contributions are

automatically tested, making it easier to maintain a high-

quality codebase. Continuous deployment, on the other

hand, allows for automated deployment of code changes to

production, ensuring that new features and fixes are

delivered quickly to users.

Modern workflows heavily rely on automation to streamline

processes. Tools for static code analysis, automated testing,

and deployment are integrated into the workflow. Bazel

complements these tools by providing a consistent build

environment. Automation not only speeds up the process

but also minimizes human errors, leading to more reliable

and maintainable codebases.

Feature branching, GitFlow, and trunk-based development

are three distinct approaches to version control and

collaboration in software development. Each method has its

own merits and ideal use cases.

Feature Branching

Feature branching involves creating a new branch in the

version control system for each new feature or bug fix. This

allows developers to work independently on different

features without impacting the main codebase. The main

advantage of feature branching is that it isolates new

development from the main code. This isolation reduces the

risk of introducing bugs to the main codebase. Here is a

basic outline for such a diagram:

Figure 7.1: Feature Branching Workflow

This diagram represents the following steps in the feature

branching workflow:

1. Master Branch (in other words, main or trunk):

The workflow starts with the master branch, which is

the main branch in the repository hosting a stable

version of code always.

2. Create Feature Branch: A new feature branch is

created off the master branch for each new feature.

3. Work on Feature: Development work is done on the

feature branch.

4. Commit Changes: Once the feature is complete, the

changes are committed to the feature branch.

5. Create Pull Request: A pull request (PR) is created to

merge the feature branch into the master branch.

6. Review Process: The PR goes through a review

process where other team members can provide

feedback.

7. Feedback Loop: If there is feedback, changes may be

made on the feature branch and the process repeats

from the commit step.

8. Approve Changes: Once the changes are approved in

the PR.

9. Merge Feature: The feature branch is merged into the

master branch. The feature is now part of the master

branch, completing the workflow.

This is a simplified view of the feature branching workflow,

but it covers the essential steps involved in this process.

Nevertheless, this approach can lead to integration

challenges when merging these branches back into the

main branch, especially if the branches have diverged

significantly over time.

GitFlow

GitFlow is a specific branching model for Git. It defines a

strict branching structure centered around two main

branches: master for production releases and develop for

the next release development. Feature branches, release

branches, and hotfix branches branch off and merge back

into these two main branches.

The following diagram represents a typical GitFlow

workflow, showing the relationship and interactions between

different branches used in this model.

Figure 7.2: Gitflow Workflow

In this diagram:

Master: The main branch where the source code

always reflects a production-ready state.

Develop: The branch where all the development

happens. It contains the latest delivered development

changes for the next release.

Feature Branch: Branches off from ‘Develop’. These

are used to develop new features.

Release Branch: Branches off from ‘Develop’ when the

team decides to freeze new features for the upcoming

release. It is used for last-minute dotting of i’s and

crossing of t’s.

Hotfix: Branches off from ‘Master’. It is used to quickly

patch production releases.

Version Tag: Marks a specific point in the ‘Master’

branch’s history that is considered an important version

(for example, v1.0, v2.0).

GitFlow provides a robust framework for managing larger,

more complex projects and is excellent for teams that need

a clear structure for release management. Conversely, it

can be overly complex for smaller projects or teams, leading

to unnecessary overhead.

Trunk-based Development

Trunk-based development, on the other hand, encourages

developers to commit changes directly to a single branch,

often called the trunk or main branch. Short-lived feature

branches may be used but are merged back into the trunk

frequently, usually within a day or two. This method

emphasizes continuous integration and minimizes the

divergence between branches.

This flow emphasizes continuous integration and frequent

merging of feature branches into the trunk, minimizing the

divergence between branches and ensuring a more stable

and up-to-date main codebase.

Figure 7.3: Trunk-based Development Workflow

In this diagram:

1. Developer Starts Work: A developer begins working

on a new feature or bug fix.

2. Create Short-Lived Feature Branch: The developer

creates a new branch from the trunk or main branch.

This branch is intended to be short-lived.

3. Work on Feature: The developer works on the feature,

committing changes regularly.

4. Push to Remote Feature Branch: Once a set of

changes is ready, the developer pushes them to the

remote repository.

5. Code Review: The changes undergo a code review

process, where other team members review the code.

6. If Changes Requested: If the review process identifies

necessary changes, the developer goes back to working

on the feature.

7. If Approved: If the code review is successful, the

feature branch is merged into the trunk or main branch.

8. Continuous Integration Testing: Automated tests

run to ensure that the new changes integrate well with

the existing codebase.

9. Test Pass: If the tests pass, the feature is ready for

deployment. If not, the developer needs to address the

issues.

10. Deploy to Production: Upon successful testing, the

feature is deployed to production.

11. Feature Live in Production: The feature is now live

and accessible to users.

The primary benefits of trunk-based development include:

Improved Integration: Continuous integration of

changes reduces the integration challenges commonly

found in feature branching. This leads to fewer merge

conflicts and integration issues.

Faster Feedback Cycle: Developers get immediate

feedback on their changes as they are integrated into

the main codebase quickly. This allows for early

detection and resolution of issues.

Enhanced Collaboration: With everyone working on

the same codebase, there is more collaboration and

knowledge sharing among team members. This can

lead to a more cohesive and robust product.

Simplified Process: Trunk-based development

simplifies the development process by eliminating the

need for complex branching strategies, making it easier

for new team members to understand and contribute to

the project.

Continuous Delivery: This method aligns well with

continuous delivery and deployment practices, as

changes are always ready to be deployed to production,

enhancing the overall agility of the team.

In summary, while feature branching and GitFlow have their

places in certain project contexts, trunk-based development

offers significant advantages in terms of integration,

feedback, collaboration, simplicity, and alignment with

continuous delivery practices, making it a compelling choice

for many software development teams.

Setting Up Continuous Integration

with Bazel

Setting up continuous integration (CI) operating within a

Monorepo environment, especially one dealing with modern

container-based architectures, requires a thoughtful and

systematic approach. In this context, the primary role of

Bazel, a powerful build tool, becomes crucial in producing

binaries like Docker images and updating continuous

deployment (CD) infrastructure as code definitions for

various products and environments hosted within the

Monorepo.

Container Image Management in Monorepos

When working with a monorepository structure, you often

manage numerous products, each potentially requiring

multiple container images for different layers, domains, and

services. Each docker container image comprises a name

and a label, where the name identifies the content of the

image, and the label signifies its version. Bazel’s task is to

generate one or more containers based on the code

contributions, which could vary depending on the specific

trigger within the CI process, such as a commit in a feature

branch, the main branch, or a release branch.

Labeling Strategy for Docker Images

A crucial aspect of this set up is implementing a labeling

strategy that reflects the stage of code contribution and

ensures uniqueness and traceability of each container.

Labels typically include a prefix indicating the stage of code

contribution and the commit hash code. For example:

A frontend container for ‘productX’ might be labeled

productX-frontend:feat-JIRA1234-b1c7bc91, indicating it

originated from a feature branch addressing the

JIRA1234 ticket, with a specific git hash.

A backend container from the main branch may be

labeled productX-backend:dev-b1c7bc91, reflecting its

development stage and associated git hash.

For release branches, a label like productX-

backend:release-241130-b1c7bc91 would indicate the

release date and the corresponding commit.

This naming convention, following a namespace approach,

enhances organization and clarity, especially in the

framework of a monorepository system hosting multiple

products and services.

Integration with Infrastructure as Code

Beyond container creation, Bazel’s role extends to updating

the infrastructure as code (IaC) components, such as Helm

charts or Terraform configurations, for the affected products

and environments. This IaC could be implemented by using

plain and easy templating systems. This update is vital to

ensure that the infrastructure aligns with the latest

container deployments.

Triggering Continuous Deployment Pipelines or Jobs

The CI pipeline’s integration with CD is another critical

element. Based on the updated code and container images,

the CI process can trigger CD pipelines for the respective

products and environments. This automation ensures that

any changes, whether they are new features, bug fixes, or

updates, are promptly and efficiently deployed across the

necessary environments.

CI Pipeline Jobs

The flexibility of CI pipelines allows them to be tailored

according to the specific requirements of a product. This

section outlines a typical pipeline, explaining each job’s role

and how they can evolve over time. Keep in mind that yours

could be similar or totally different to this one.

Figure 7.4: Prototypical CI Pipeline

From the diagram, each job has these responsibilities:

Dependency Installation: Ensures all necessary

dependencies are available for the build process.

Initially, this might involve just fetching libraries, but

over time it may include more complex tasks like

conditional dependency management based on

different build environments.

Secrets Gathering: Securely obtains necessary

credentials and secrets required for the build process.

Starts with basic secret retrieval, and can evolve to

include dynamic secret generation or integration with

advanced secret management systems.

Build: Compiles the source code into executable

binaries or libraries. Initial setups might focus on a

simple build process, which later evolves to incorporate

incremental builds, multi-platform support, and

optimization flags.

Test: Runs automated tests to validate the correctness

of the code. Early stages involve basic unit tests,

expanding over time to include integration,

performance, and stress tests, with improved test

reporting and flakiness detection.

Package Components: Bundles the built software into

distributable formats. May start with simple packaging

and evolve to support multiple package formats,

conditional packaging based on features, and digital

signing.

Coverage: Measures how much of the code is covered

by tests. Begins with basic coverage metrics,

progressing to more detailed coverage analysis,

including branch, path, and integration test coverage.

Code QA Checks: Ensures code quality through static

analysis, linting, and code style checks. Initially focuses

on basic style checks, growing to include more

comprehensive analysis, custom rules, and automatic

code formatting.

Publish Components: Distributes the packaged

software to repositories or storage systems. It can

evolve from simple publication processes to include

version management, multi-environment releases, and

rollback capabilities.

Trigger Deployment: Initiates the deployment of the

software into a staging or production environment. It

might start with manual triggers, evolving to

automated, environment-specific deployments with

canary releases and feature flagging.

Each job in the CI pipeline plays a critical role in the

software development lifecycle, and their definitions are

subject to change as the project grows and the team gains

more experience. It is important for teams to regularly

review and refine their CI processes to ensure they align

with the evolving needs of the project and the organization.

Additional Recommendations from Learned Lessons

Here is a detailed look at how to effectively implement CI

with Bazel:

Leverage Bazel’s Build Caching: One of Bazel’s key

features is its build caching mechanism. By configuring

your CI system to cache Bazel’s output directories, you

can significantly reduce build times for subsequent

runs. This caching ensures that only the parts of your

project that have changed will be rebuilt, saving time

and computational resources.

Utilize Incremental Builds: Bazel excels at

performing incremental builds, where only targets

dependent on changed files are rebuilt. To maximize the

effectiveness of this feature, it is important to manage

the granularity of your build targets. The goal is to

strike the right balance between reusability and

minimizing unnecessary rebuilds, which contributes to

faster build processes and more efficient resource

usage.

Parallel Test Execution: Bazel has the capability to

run tests in parallel, which can drastically speed up test

execution. To fully benefit from this feature, ensure that

your tests are designed to be run concurrently. This not

only improves the speed of your testing phase but also

contributes to a more robust testing environment.

Manage Dependencies Carefully: With Bazel’s strict

dependency checking, it is crucial to keep a well-

organized and up-to-date dependency graph. This

vigilance helps catch issues early and ensures that your

builds are as efficient as possible.

Implement Sandboxed Environments: Bazel’s

sandboxed environments are pivotal for ensuring

reproducible builds. These environments help catch

environment-specific bugs early in the development

cycle, reducing the risk of “works on my machine”

problems and enhancing the reliability of your builds.

Integrate with Version Control: Seamless integration

between your CI system and version control (like Git) is

vital. This integration allows for efficient tracking of

changes and more effective management of builds,

ensuring that each change is accounted for and built

accordingly.

Focus on Documentation and Training: A well-

informed team is crucial for the effectiveness of your CI

system. Ensure that your team members are properly

trained in both the CI process and Bazel.

Comprehensive documentation and regular training

sessions can greatly improve the efficiency and

adoption of the CI system across your team.

Preventing Accidental Discards in Bazel’s

Analysis Cache: Large repositories lead Bazel to spend

significant time on the “Analysis Phase”. The results,

stored in Bazel’s in-memory server cache, can be

accidentally discarded by running a Bazel command

with different flags. Performance degradation often goes

unnoticed, indicated by messages like “options have

changed, discarding analysis cache”. Commonly, changes

in CI scripts can trigger this issue. To avoid this, a layer

in the CI design should wrap Bazel calls, ensuring

consistent flag usage. Relying solely on `.bazelrc` can

be insufficient, and certain Bazel bugs, like those in

`bazel coverage`, can also cause cache discards.

Persistent Runners: With the rise of Kubernetes,

ephemeral CI instances have become common,

benefiting most build systems by isolating builds.

Nonetheless, Bazel, with its built-in correctness

guarantee, suffers in such setups. Initial attempts to use

CI system caching, like `--repository_cache`, partially

mitigate issues but do not eliminate the need for Bazel

to re-execute repository rules. Optimally, CI runners

should be responsive and scalable, balancing cost and

peak load demands. Various solutions like Buildkite,

CircleCI, and GitHub Actions offer scalable runner

options.

Warm Persistent Runners: Persistent runners face

challenges, especially during the day’s ramp-up period,

resembling the inefficiency of fresh machines. The Bazel

server and output tree are affected by the last

workload, causing cache and output invalidations when

syncing through commit history. Time and strategy are

required to enhance performance for the slowest 95th

percentile builds.

Runner Health Checking: Shifting from ephemeral to

persistent runners introduces the risk of resource leaks,

like unreleased docker containers. Implementing health

checks and cleanup mechanisms is crucial to manage

poorly behaved workloads and maintain runner

efficiency.

Choosing and Deploying a Remote Cache: Selecting

a remote cache involves understanding various trade-

offs, like network bandwidth limitations and the need for

replication. It is essential to prioritize addressing non-

determinism in build inputs to ensure high cache hit

rates.

Mirroring Internet Files: External service

dependencies can impact uptime. Setting up Bazel’s

downloader with `--experimental_downloader_config` for a

read-through mirror is advisable. Restricting new

internet dependencies and firewalling agents during

build and test phases can enhance security and

stability.

Defining SLAs and Monitoring: Providing metrics on

CI performance, like queue wait times and notification

speed for failing tests, is crucial. Monitoring external

repository and analysis cache invalidation rates aids in

diagnosing and addressing performance issues.

Maintaining a Green Build: Defining “green” status

and implementing quick fixes for red master branches

are vital. Strategies include identifying breakages,

alerting responsible parties, and conducting post-

mortems to prevent future issues.

Remote Execution: In large-scale organizations,

Remote Build Execution (RBE) allows Bazel builds to be

executed in a distributed fashion across remote servers,

significantly speeding up the build process by

parallelizing the work. RBE becomes relevant for

efficiently handling extensive, parallelizable workloads.

Options include SaaS offerings and systems like

BuildBarn that integrate RBE with remote caching.

Ensuring Continuous Delivery and Deployments:

CI pipelines should handle release artifact creation,

avoiding local machine builds for reproducibility.

Balancing security and performance requires a separate

pipeline for building release artifacts.

Remote Build Execution with Simple CI Runners:

Implementing RBE requires understanding Bazel’s

functioning, particularly the work needed before remote

execution. Without careful setup, RBE might increase

costs without fully leveraging Bazel’s incremental

model.

Enforce Security Practices: Last but not least,

implement and strictly enforce security practices in

your CI pipeline. This includes managing access

controls, securely storing secrets, and regularly

scanning for vulnerabilities to protect your codebase

and CI environment from security threats.

In summary, setting up CI with Bazel, particularly with the

Monorepo approach handling container-based deployments,

requires a multifaceted approach. This includes leveraging

Bazel’s features like caching and incremental builds,

efficiently managing container images, adopting strategic

naming and labeling conventions, and integrating

seamlessly with infrastructure as code (IaC) tools and

continuous deployment (CD) pipelines. By maintaining a

well-managed and secure development environment and

ensuring your team is adept at utilizing these systems, this

comprehensive strategy not only streamlines the

development process but also guarantees the efficient,

traceable, and reliable delivery of high-quality, reliable

software in complex, multi-product environments.

Enabling a Sort of Local CI with Bazel

Local Continuous Integration (CI) is a powerful concept in

software development, where changes made by developers

are continuously integrated and tested within their

development environment. This strategy offers immediate

feedback on code changes, enhancing productivity and code

quality. Bazel, a build and test tool, plays a crucial role in

enabling this local CI process, especially when paired with a

tool like Bazel Watcher.

Frontend developers are familiar with the benefits of local

hot reload development environments, where changes are

instantly compiled and executed as soon as they are saved

to disk. This immediate feedback loop significantly speeds

up development. Now, with Bazel and a tool like Bazel

Watcher, developers across all disciplines can experience

similar benefits.

What is a Bazel Watcher?

Bazel Watcher is an innovative tool that extends the

functionality of Bazel to create a more dynamic and

responsive development environment. It monitors the file

system for changes in source files and automatically

triggers Bazel builds and tests in response. This means that

every time a developer saves a change, Bazel Watcher

ensures those changes are immediately reflected in the

build and test outputs, mimicking a CI pipeline but on a local

scale.

How Bazel Watcher Works

Bazel Watcher works by watching for file changes in the

source tree. When a change is detected, it intelligently

triggers Bazel to rebuild or retest only the affected parts of

the codebase. This selective building and testing make it

highly efficient, as it does not require rebuilding the entire

project for every small change. The result is a rapid

feedback loop, allowing developers to quickly identify and

fix issues as they code.

Installing Bazel Watcher

Bazel Watcher can be installed via package managers like

npm for Node.js projects, from Homebrew in MacOS (brew

install ibazel) or directly from its source repository. The

installation process typically involves running a simple

command in the terminal, such as npm install bazel-watcher

or a similar command based on your project’s ecosystem.

More info at https://github.com/bazelbuild/bazel-

watcher#installation.

Examples Using Bazel Watcher

Here are some example scenarios demonstrating how Bazel

Watcher can be used:

Instant Feedback for Code Changes: As a developer

works on a new feature or bug fix, they can rely on

Bazel Watcher to instantly compile and test their

changes, providing immediate feedback.

Streamlining Frontend Development: Frontend

developers, often accustomed to hot-reloading tools,

can use Bazel Watcher to instantly see the impact of

their styling or UI changes.

Optimizing Backend Development: Backend

developers can use Bazel Watcher to ensure that any

changes to the codebase do not break existing

functionality, with tests running automatically upon

each save.

Integrating with Large Codebases: In large projects,

Bazel Watcher can be particularly useful, as it

selectively tests and builds only affected areas, saving

time and resources.

In summary, Bazel Watcher enhances the development

workflow by bringing the principles of CI into the local

development environment. It not only streamlines the

process of building and testing but also aligns closely with

the practices of modern, agile software development. By

providing instant feedback on changes, it helps developers

to quickly iterate and improve their code, leading to higher

quality software and more efficient development cycles.

CI Worker Set up Models

The configuration and management of CI workers are critical

aspects that significantly impact the efficiency and

scalability of your build process. The setup of CI workers

involves navigating a balance between two key sets of

trade-offs— isolation versus reusability, and operational

complexity versus scalability. Each approach to CI worker

setup offers a unique combination of these factors, and

understanding these nuances is crucial for optimizing your

CI pipeline.

In this section, we will delve into various models of CI

worker setups, each tailored to address specific needs and

challenges in the CI process. Many of these models were

already defined by Son Luong Ngoc in his post “Bazel in CI

(Part 2): Worker Set up” at

https://sluongng.hashnode.dev/bazel-in-ci-part-2-worker-

setup. Here is a brief overview of the models that we will

explore:

Ephemeral Workers: These workers are temporary

and are created anew for each build, offering high

isolation but often at the cost of increased set up time

and resource utilization.

Single Stateful Worker: This model employs a

persistent worker that maintains its state over time,

enhancing reusability and reducing set up time, but

potentially compromising isolation.

Multiple Stateful Workers: An extension of the single

stateful worker model, this mode of operation utilizes

several persistent workers, improving scalability and

parallel processing capabilities.

Hot-Pool of workers: A dynamic model where workers

are provisioned on-demand based on predefined

configurations, balancing scalability with controlled

environment set up.

https://sluongng.hashnode.dev/bazel-in-ci-part-2-worker-setup

Sharded Worker Sets: This model involves dividing

workers into specialized groups or ‘shards,’ each

optimized for specific tasks or build environments,

thereby enhancing efficiency and reducing build times.

Remote Build Execution: A sophisticated model

where build tasks are offloaded to remote servers or

cloud environments, significantly improving scalability

and potentially reducing local resource constraints.

It is important to note that adopting these models does not

require a rigid sequence. Instead, the choice should be

based on the specific requirements of your Monorepo and

the dynamics of your team. Each model addresses distinct

challenges and can be implemented incrementally. This

flexibility allows you to tailor your CI setup to progressively

resolve the unique build and operational challenges you

encounter.

Ephemeral Workers

Initially, many organizations tend to opt for ephemeral CI

Workers due to their simplicity in setup.

Figure 7.5: Diagram Illustrating the Concept of Ephemeral CI Workers

Ephemeral CI setups are commonly supported by most CI

service providers, often allowing execution of shell

commands within a Docker Container or VM. In such setups,

it is typical to include a command like `bazel test //…` to

initiate a Bazel build.

On the other hand, the transient nature of ephemeral

workers means that the Bazel JVM server must be recreated

for each build, resulting in the loss of Bazel’s valuable in-

memory cache.

Moreover, these temporary environments also lead to the

loss of local persistent cache, necessitating that Bazel builds

start anew each time.

For more experienced users, a workaround involves

directing `--disk_cache` to a reusable container volume

mount. This tactic can help minimize action executions by

caching the Content Addressable Storage (CAS) and Action

Cache (AC) locally on the disk.

Similarly, configuring `--repository_cache` to use a reusable

volume can reduce the need to download external

dependencies repeatedly. We have discussed the Bazel

repository cache in more detail in another section.

Despite these optimizations, builds might still experience

slowness due to the necessity of running the analysis phase

from the beginning in each build. This is because many

repository rule actions must still be executed, even with the

downloaded archives in the repository cache.

Single Stateful Worker

As your Monorepo expands, the limitations of an ephemeral

worker CI setup become apparent.

With the growth of the Monorepo, the analysis phase in

builds and tests becomes increasingly sluggish. This is due

to the expansion of the build graph with more actions,

artifacts, nodes, and edges, all of which require time to

traverse.

To mitigate this in ephemeral workers, we previously

focused on reducing their ephemeral nature by

implementing isolated local caching via disk cache and

repository cache.

To further enhance the efficiency of Bazel’s Analysis Phase,

it is beneficial to utilize Bazel’s in-memory cache.

Maintaining the same Bazel JVM across CI jobs can

significantly reduce the time spent in the analysis phase.

Figure 7.6: Illustration of Leveraging Bazel’s In-memory Cache in CI Jobs

An effective strategy here is to activate `--watchfs`, allowing

the Bazel JVM to track project changes using `fsnotify`

rather than repeatedly executing `stat()` and hashing all

project files.

Still, transitioning to stateful workers necessitates some

additional considerations:

CI Sandbox Technology: The shift away from

containers means maintaining the JVM process across

jobs. This requires using the same container or VM,

making a shell session the new unit of isolation.

Reduced Isolation: This technique significantly

diminishes the isolation of CI environments, introducing

new risk factors like disk space shortages, lingering Git

lock files, and the use of dirty files in builds.

Additional Measures: To address these issues, a

wrapper for Bazel execution is needed to manage

potential problems before and after each build, adding

complexity to the CI setup.

Using a single stateful worker involves a process for seeding

fresh workers with a pre-warmed local cache. This might

involve a new worker provisioning process, like using

terraform for VM instance creation, with embedded cache

seeding logic. An example could be performing a Bazel build

from the latest default branch to warm up the cache.

Contrary to what might be expected, using a stateful worker

can actually reduce infrastructure costs. Faster builds and

tests allow for scaling down the total compute resources

needed. This not only lowers infrastructure expenses but

also enhances overall engineering productivity through

quicker feedback cycles.

Although, the increased complexity of the CI setup does

raise the total cost of ownership. This trade-off is becoming

more prevalent — by accepting higher complexity and

investing in the right solutions, we can reduce infrastructure

costs and boost productivity across engineering teams.

Multiple Stateful Workers

As your team expands and the rate of changes escalates,

relying on a single stateful worker becomes insufficient.

Indicators such as the median time builds spend in queue

(P50 of build-in-queue) and queue duration are crucial

metrics signaling this shift.

Figure 7.7: Visual Representation of the Need for Multiple Stateful Workers

This scenario necessitates the deployment of multiple

stateful workers.

Even so, transitioning to a setup with multiple stateful

workers introduces a set of new challenges, particularly

those related to the CAP theorem:

Distribution of Workload: With more workers, the

workload is distributed, reducing overall queue time and

increasing availability for new jobs. Yet, this leads to

inconsistencies in local cache content across workers.

The greater the number of workers, the more

pronounced these inconsistencies become.

Potential for Increased Build/Test Time: As a result

of cache inconsistencies, tests and builds may need to

be rerun on different workers, potentially leading to an

overall increase in build and test times.

To tackle the consistency issue, integrating `--remote_cache`

is advisable. This allows for centralizing all Content

Addressable Storage (CAS) and Action Cache (AC) results in

a shared storage accessible to all workers. Workers can then

reference existing action entries in the action cache to avoid

redundant compiling and testing when the same job is rerun

on a different worker.

Figure 7.8: Illustration of Leveraging a Remote Cache in a Multi-worker

Environment

Additionally, implementing merged result CI builds can

enhance cache consistency. This version control strategy

aligns local caches across different workers with the

project’s default branch. As CI jobs use a common base,

workers can utilize the CAS and AC from this base to

maintain a consistent local cache over time.

A common mistake with multiple stateful workers is over-

provisioning. An excess of workers can lead to a more

sparse distribution of the local cache, decreasing local

cache hit rates. Moreover, relying heavily on a centralized

remote cache can be costly at scale.

To address this, it is recommended to maintain just enough

workers to keep CI Job queue times under 30 seconds.

Regular maintenance tasks should also be implemented to

remove inactive workers during downtimes and replace

them with fresh workers pre-seeded with the latest cache,

optimizing overall efficiency.

Hot-pool of Workers

As your Monorepo expands, CI isolation issues are likely to

become more prevalent. These can range from residual git

networking failures causing lock file issues, potentially

failing builds, to local cache contamination where one build

adversely impacts subsequent ones. By monitoring and

categorizing various CI failure types, you can gauge the

value of a sanitized testing environment for your specific

needs.

Another common challenge is scaling the throughput of your

Bazel Remote Cache solution. With multiple workers, the

local cache can become highly fragmented, leading to

inconsistencies in the content downloaded from the Bazel

Remote Cache. If your remote cache utilizes a multi-tier

storage system (in-memory, local disk, remote object

storage), these irregular downloads can disrupt the efficient

management of cache entries across different storage tiers.

This can result in increased network throughput and more

frequent cache tier changes, slowing down the overall

remote cache download speeds.

To address these issues, a more uniform operation of

workers across different CI Jobs is desirable. A well-

established approach for this is the CI Worker Hot-pool of

Workers model.

Figure 7.9: Diagram Illustrating the CI Worker Hot-pool of Workers Concept

The Hot-pool of Workers model operates as a service

managing a ready pool of workers, poised to handle

incoming CI Jobs. Post job completion, workers are either

recycled through the Hot-pool of Workers’s cleanup process

or discarded, with the service preparing new ready-to-

deploy workers. The choice between recycling and

discarding workers often hinges on the ease of provisioning

and warming up a new worker, which varies depending on

whether you are using on-prem or cloud infrastructure, or

different VM solutions with their own startup speeds.

Idle workers in the pool are assigned a Time To Live (TTL).

Workers that remain unused past their TTL are considered

cold and are subjected to the same recycling process as

used workers.

This setup aims to achieve a higher degree of ephemerality

for each worker serving a new CI Job, while still retaining the

advantages of hot workers pre-loaded with the necessary

cache.

Custom auto-scaling logic can be applied to the Hot-pool of

Workers service to optimize computing costs. Emerging

technologies like FireCracker MicroVMs are particularly well-

suited for this model, thanks to their lower startup times

and the capability to resume a VM with an intact Bazel In-

Memory Cache.

Sharded Worker Sets

As the complexity of your build graph increases, you will

likely notice a corresponding growth in the Bazel Analysis

Cache, leading to increased memory demands on the Bazel

JVM. At this level of scale, it is common to see the Bazel JVM

being terminated due to out-of-memory (OOM) issues during

the loading-and-analysis phase.

Currently, there is no universally accepted solution to this

issue. Ideally, Bazel JVM would have the capability to offload

its analysis cache remotely, either by serializing cache

entries to a disk-based file format or storing them in a

scalable remote cache. That said, this issue is not

widespread, as few projects reach a scale where it becomes

a significant problem. Most projects can still manage by

simply increasing the resources allocated to their Bazel

workers.

For those rare projects that do encounter this scale, or for

those who find vertical scaling of CI workers challenging due

to constraints like time-consuming hardware upgrades,

Sharded Worker Sets offer a potential workaround.

The concept of Sharded Worker Sets is straightforward—

instead of executing a single large build, such as `bazel test

-- //…`, the build process is divided into smaller, more

manageable builds. For example:

`bazel test -- //service-a/…`

`bazel test -- //… -//service-a/…`

Visually, this approach involves splitting the “build

everything” setup into multiple builds with smaller target

patterns, thereby reducing the size of the analysis cache.

Practically, this would involve:

Figure 7.10: Illustration of Sharded Worker Sets in CI

Establishing separate CI worker pools for each unique set of

build targets to maintain the Analysis Cache effectively. This

results in:

A dedicated pool by language (`//python/…`, `//java/…`,

`//go/…`, and so on)

A dedicated pool by product (`//apps/productA/…`,

`//apps/productB/…`, and so on)

The benefit of this profile-based sharding is that it can be

implemented incrementally. Since most of the complexity

associated with managing new sets of CI workers would

have been addressed at this stage, adding additional pools

should not significantly burden the Build or DevX teams

responsible for their management.

Remote Build Execution

Sharding your build process means that build and test

actions are now distributed across multiple workers, leading

to increased execution parallelism due to the higher

computing capacity.

Despite this, this setup often results in action duplication.

Firstly, if an action is not already present in the remote

action cache, two workers might end up executing the same

action, especially if they schedule it closely together.

Secondly, if there are shared dependencies between

different target sets, such as a common `//proto/…`

dependency for both `//go/…` and `//java/…`, the actions

necessary to build these shared dependencies might be

executed redundantly on different CI workers.

A potential solution to improve action scheduling and

reduce duplication is the implementation of a Remote Build

Execution (RBE) system.

Figure 7.11: Illustration of Remote Build Execution in Action

RBE systems typically include features for deduplicating

action schedules. When multiple CI workers request the RBE

Scheduler to execute the same action, it results in just one

execution, with the outcome then distributed to all

requesting workers. This mode of operation is exemplified in

a case study by Stripe (https://stripe.com/blog/fast-secure-

builds-choose-two), where they successfully implemented a

similar system.

In practical terms, RBE is an effective way to scale the

execution of your build graph and tests, optimizing

computing resources. However, operating an RBE solution is

a complex and resource-intensive endeavor. Large-scale

RBE setups can significantly increase the cost and

operational complexity of your CI infrastructure.

Unlike the Sharded Worker Sets approach, RBE not only

increases the computing resources needed but also adds

more components that require ongoing management. This

complexity makes SaaS-based RBE solutions a good fit for

larger organizations, although they may lack the

customization and integration capabilities tailored to

specific engineering workflows.

Conclusions About CI Worker Models

In the discussion above, we explored various configurations

for setting up CI Workers to manage Bazel workloads. Each

of these configurations presents its own set of trade-offs:

Isolation versus Reusability

Operational Complexity versus Scalability

It is important to recognize that there is no one-size-fits-all

sequence for adopting these setups. The most effective

approach is to assess and select the option that best aligns

with the specific needs of your Monorepo and team. These

https://stripe.com/blog/fast-secure-builds-choose-two

enhancements can be implemented gradually, as each is

designed to address distinct challenges within your build

process. Therefore, it is crucial to avoid rushing into

solutions that may not be necessary for your circumstances.

Carefully measure, identify the bottlenecks, and apply the

most suitable solution for each specific issue.

It is noteworthy that some organizations have successfully

made the leap directly from ephemeral CI workers to RBE.

This shift has been facilitated by the growing availability of

commercial RBE solutions in recent years. These solutions

can significantly reduce the total cost of ownership for

organizations adopting Bazel. The advantage here is that it

eliminates the need for recruiting a specialized engineering

team dedicated to managing a custom action worker pool, a

process that could traditionally span 6–12 months.

Managing Code Quality Tools

Tools like code formatters, linters, and static code analyzers

play a crucial role in achieving quality and maintainability.

Integrating these tools with Bazel, can streamline the

process and ensure consistency across the codebase.

Formatting

Consistency in code formatting is a vital aspect of software

development, especially in large teams or projects. It

enhances readability, reduces the likelihood of merge

conflicts, and ensures that the codebase maintains a

uniform style. While individual developers may have

personal preferences for code styles, it is crucial for a team

to adopt a standard format. This not only streamlines the

development process but also eases the onboarding of new

team members.

To achieve this uniformity, the use of code formatters

integrated into Integrated Development Environments

(IDEs) is highly recommended. Most modern IDEs for Java,

such as IntelliJ IDEA or Eclipse, offer robust formatting tools

that can be customized to match the team’s coding

standards. By configuring these tools at the IDE level,

developers can ensure that every piece of code they write

adheres to the agreed-upon style guide.

Although, relying solely on IDE configurations might not be

foolproof, as developers might use different IDEs or forget to

format before committing code. This is where Bazel,

combined with Git hooks, comes into play. Bazel can be

used as a reinforcement tool to automatically check and

enforce code formatting rules. By integrating Bazel with pre-

commit hooks in Git, teams can ensure that all committed

code conforms to the standard format, thus maintaining

consistency across the codebase.

To integrate a code formatter with Bazel, follow these steps:

Step 1: Selecting a Code Formatter

For JavaScript, popular formatter choices include Prettier

and ESLint. Prettier is widely known for its robustness and

simplicity, focusing solely on formatting. ESLint, on the

other hand, offers both formatting and linting capabilities,

allowing for more comprehensive code quality checks.

Example Configuration: Using Prettier with Bazel

1. Installation: Add Prettier to your project dependencies

by running

npm install --save-dev prettier

2. Bazel Rule Creation:

Create a Bazel rule in your BUILD file to run Prettier.

This rule can be a simple shell command invoking

Prettier on your JavaScript files:

sh_binary(

name = “format_js”,

srcs = [“format_js.sh”],

data = glob([“**/*.js”]),

)

The format_js.sh script will contain the Prettier

command:

#!/bin/bash

prettier --write $(find . -name “*.js”)

Step 2: Integrating with Git Hooks

Integrating the Bazel formatting rule with Git hooks ensures

that the code is automatically formatted before commits,

guaranteeing consistency. In the next section, we will get

into the details on how to do this.

Step 3: Continuous Integration

To further reinforce consistency, include the formatting rule

in your continuous integration (CI) pipeline. This ensures

that all merged code adheres to the same formatting

standards.

Linting and Static Code Analysis

Code linting is a critical aspect of maintaining code quality

in software development. It involves analyzing source code

to detect and fix programming errors, stylistic errors, and

suspicious constructs. In Java projects, linting ensures

adherence to coding standards and best practices, which is

essential for readability, maintainability, and reducing bugs.

Integrating Linters in Bazel

Bazel, a multi-language build tool, offers robust support for

integrating linters into the build process. This ensures that

code quality checks are an integral part of the development

workflow. In Java projects, popular linters like Checkstyle,

PMD, and SpotBugs can be integrated with Bazel.

Example: Integrating PMD with Bazel

This example is available at examples that can be found in

the GitHub repository at

https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-

Monorepo-and-Bazel, specifically within the /chapter-

7/bazel_linter directory. This example will guide our

discussion and exploration throughout this part of the book.

To get started with rules_lint, you first need to add the

following to your MODULE.bazel file:

bazel_dep(name = “rules_jvm_external”, version = “5.3”)

bazel_dep(name = “rules_pmd”, version = “0.4.1”)

maven = use_extension(“@rules_jvm_external//:extensions.bzl”,

“maven”)

maven.install(

artifacts = [

“junit:junit:4.13.2”,

“org.openjdk.jmh:jmh-core:1.23”,

“org.openjdk.jmh:jmh-generator-annprocess:1.23”,

],

lock_file = “//:maven_install.json”,

repositories = [

“https://maven.google.com”,

“https://repo1.maven.org/maven2”,

],

)

use_repo(maven, “maven”, “unpinned_maven”)

This will fetch the pmd rule into your project.

Creating a Lint Target

Next, you will create a lint target in your BUILD file. Here is an

example for a Java project:

load(“@rules_pmd//pmd:defs.bzl”, “pmd_test”)

···

load(“@rules_pmd//pmd:defs.bzl”, “pmd_test”)

···

pmd_test(

name = “pmd_analysis”,

srcs = glob([“src/main/java/**/*.java”]),

report_format = “text”,

rulesets = [“pmd_rules.xml”],

)

···

Running the linter

After configuring your project, you can execute the linter

using the following command:

bazel build //app/hellotest:pmd_analysis

The resulting report are going to be stored at app/hellotest/

pmd_analysis_pmd_report.txt containing feedback as:

…/GreeterService.java:3: CommentRequired: Class comments are

required…

…/GreeterService.java:3: AtLeastOneConstructor: Each class

should declare at…

…/GreeterService.java:4: MethodArgumentCouldBeFinal: Parameter

‘name’ is not…

…/GreeterService.java:4: CommentRequired: Public method and

constructor commen…

…/HelloTestMain.java:3: UseUtilityClass: All methods are

static. Consider usi…

…/HelloTestMain.java:3: CommentRequired: Class comments are

required…

…/HelloTestMain.java:4: MethodArgumentCouldBeFinal: Parameter

‘args’ is not as…

…/HelloTestMain.java:4: CommentRequired: Public method and

constructor comment…

…/HelloTestMain.java:5: AvoidLiteralsInIfCondition: Avoid

using Literals in…

…/HelloTestMain.java:6: SystemPrintln: System.out.println is

used…

…/HelloTestMain.java:9: LocalVariableCouldBeFinal: Local

variable ‘service’ co…

…/HelloTestMain.java:10: SystemPrintln: System.out.println is

used…

Alternatively, you can incorporate this command into a Git

hook.

Here is how you can set it up as a pre-commit hook:

1. Navigate to the .git/hooks directory: This directory

is inside your Git repository. If your repository is

my_project, the path would be my_project/.git/hooks.

2. Create a Pre-commit Hook: Inside the .git/hooks

directory, create a file named pre-commit. If it already

exists, you can edit the existing file.

3. Edit the Pre-commit Hook: Open the pre-commit file

in a text editor and add the following script:

#!/bin/sh

Run Bazel build for PMD analysis

bazel build //app/hellotest:pmd_analysis

Check the exit status of the previous command

if [$? -ne 0]; then

echo “PMD analysis failed. Fix the issues before

committing.”

exit 1

fi

This script runs the Bazel build command and checks if

it exits with a status other than 0 (indicating an error). If

there is an error, it prints a message and exits with

status 1, preventing the commit from proceeding.

4. Make the Hook Executable: Change the file

permissions to make the pre-commit script executable.

chmod +x pre-commit

5. Testing the Hook: Test the hook by trying to commit to

your repository. If the PMD analysis finds issues, the

commit should be blocked with the message provided in

the script.

Remember, Git hooks are local to your repository and are

not pushed to the remote server. If you want to enforce this

hook for all contributors, consider using a server-side hook

or integrating it into a continuous integration (CI) pipeline.

Integrating linters such as Checkstyle and PMD into Bazel

for Java projects streamlines the process of maintaining

code quality. By incorporating these tools into the build

process, developers can ensure that their code adheres to

established standards and best practices, leading to more

reliable and maintainable software.

Conclusion

This chapter provided a comprehensive exploration of

modern development workflows, focusing on the evolution

of code contribution processes, the importance of

traceability, the role of code reviews, and the effective

management of CI/CD pipelines, particularly in the context

of Bazel’s application in Monorepo environments. This

evolution, marked by the advent of tools like Git and GitHub,

has transformed code contribution into a more streamlined

and transparent process. The strategic use of Bazel, in

conjunction with effective branching strategies and detailed

commit comments, has further enhanced the process,

ensuring the integrity of larger codebases and improving

the overall efficiency and reliability of the development

cycle. These advancements not only signify technological

progress but also reflect a deeper comprehension of

collaborative dynamics in software development.

Looking ahead, the balance between automation and

human intervention emerges as a crucial aspect of future

development workflows. While tools like Bazel and CI/CD

pipelines significantly reduce manual errors and accelerate

the development process, the irreplaceable human element

—characterized by creativity and critical thinking—remains

vital. Maintaining this balance is essential for fostering

innovation and developing robust, user-centric software.

Moreover, as we navigate the complexities of large-scale

software projects, particularly in Monorepo settings, it

becomes imperative to continuously adapt and refine

workflows to meet evolving project needs and leverage

emerging technologies effectively. The chapter underscores

the importance of training and documentation in

empowering teams to utilize these advanced tools

efficiently, setting the stage for the next era of software

development marked by efficiency, quality, and innovation.

Recommended Reading

Code Contribution Workflows and Traceability:

Understanding Version Control:

“Pro Git” by Scott Chacon and Ben Straub:

https://git-scm.com/book/en/v2

“Version Control with Git” by Jon Loeliger and

Matthew McCullough:

https://www.oreilly.com/library/view/version-

control-with/9781449345037/

Effective Branching Strategies:

“Comparing Workflows” on Atlassian Git Tutorial:

https://www.atlassian.com/git/tutorials/comparin

g-workflows

“Successful Git Branching Model” by Vincent

Driessen: https://nvie.com/posts/a-successful-

git-branching-model/

Code Reviews and Collaborative Development:

https://git-scm.com/book/en/v2
https://www.oreilly.com/library/view/version-control-with/9781449345037/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://nvie.com/posts/a-successful-git-branching-model/

Best Practices in Code Review:

“Best Kept Secrets of Peer Code Review” by

Jason Cohen:

https://smartbear.com/resources/ebooks/best-

kept-secrets-of-peer-code-review/

“Code Review Practices for Collaborative

Software Development”:

https://www.infoq.com/articles/code-review-

practices/

Leveraging Tools for Collaborative Development:

“GitHub and GitLab: A Comparison of Key

Differences”:

https://www.slant.co/versus/109/110/~github_vs_gitl

ab

“Collaborative Development with Pull Requests”:

https://github.blog/2020-12-08-how-to-get-started-

with-pull-requests/

CI/CD Pipelines and Bazel:

Continuous Integration and Deployment:

“Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment

Automation” by Jez Humble and David Farley:

https://www.amazon.com/Continuous-Delivery-

Deployment-Automation-Addison-

Wesley/dp/0321601912

“Implementing Continuous Integration and

Continuous Delivery (CI/CD)”:

https://www.cloudbees.com/continuous-

delivery/ci-cd

Understanding and Implementing Bazel:

https://smartbear.com/resources/ebooks/best-kept-secrets-of-peer-code-review/
https://www.infoq.com/articles/code-review-practices/
https://www.slant.co/versus/109/110/~github_vs_gitlab
https://github.blog/2020-12-08-how-to-get-started-with-pull-requests/
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.cloudbees.com/continuous-delivery/ci-cd

“Bazel Documentation”:

https://docs.bazel.build/versions/main/bazel-

overview.html

“Building Large-Scale Apps with Monorepo and

Bazel”: https://github.com/OrangeAVA/Building-

Large-Scale-Apps-with-Monorepo-and-Bazel

Additional Topics:

Monorepos and Large-Scale Development:

“Monorepos: Please don’t!”

https://mattklein123.dev/2020/01/18/monorepos

-please-dont/

“Scaling a Codebase with Monorepos and Code

Sharing”:

https://medium.com/@maoberlehner/scaling-a-

codebase-with-monorepos-and-code-sharing-

a8c2ece5324c

Advanced Git Techniques:

“Advanced Git Tutorials”:

https://www.atlassian.com/git/tutorials/advanced

-overview

“Git for Ages 4 and Up”:

https://www.youtube.com/watch?v=1ffBJ4sVUb4

https://docs.bazel.build/versions/main/bazel-overview.html
https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-Monorepo-and-Bazel
https://mattklein123.dev/2020/01/18/monorepos-please-dont/
https://medium.com/@maoberlehner/scaling-a-codebase-with-monorepos-and-code-sharing-a8c2ece5324c
https://www.atlassian.com/git/tutorials/advanced-overview
https://www.youtube.com/watch?v=1ffBJ4sVUb4

CHAPTER 8

Structuring Monorepos for

Success

Introduction

Welcome to the chapter titled “Structuring Monorepos for

Success” in our journey through mastering Bazel. In this

chapter, we will delve into the core principles and strategies

for designing an effective Monorepo layout, a task

fundamental to optimizing both development workflows and

building performance in large-scale projects. Monorepos,

which houses all of an organization’s code in a single

repository, presents unique challenges and opportunities.

Understanding how to effectively structure your Monorepo is

key to leveraging the full potential of Bazel. We will explore

best practices for repository layout, discuss the balance

between granular and coarse structuring, and examine how

to align your Monorepo’s structure with your team’s

workflow and Bazel’s capabilities.

The subsequent sections of this chapter will guide you

through organizing code into packages and modules, and

managing dependencies across projects. Organizing code

effectively is critical within a Monorepo environment, as it

directly impacts build times, dependency management, and

the ease of navigating and understanding the codebase. We

will provide practical advice on how to structure your

packages and modules for maximum efficiency and clarity.

In addition, managing dependencies is a complex task in

Monorepos, but with Bazel’s powerful tools, it becomes

more manageable. We will explore strategies for declaring

and managing dependencies across various projects within

the Monorepo, ensuring consistent builds and reducing the

risk of dependency hell. This chapter aims to equip you with

the knowledge to create a Monorepo that is not just

manageable, but a robust foundation for your development

efforts.

Structure

In this chapter, we will cover the following topics:

Designing an Effective Monorepo Layout

Directory Structure Best Practices

Code Sharing and Reusability

Testing Strategies

Centralized Configuration Management

Refactoring and Code Maintenance

Security Considerations

Common Pitfalls and Ways to Avoid Them

Organizing Code into Packages and Modules

Naming Conventions for Packages and Modules

Designing an Effective Monorepo

Layout

We will explore best practices for directory structuring,

dependency management, and build optimization, ensuring

that your Monorepo remains manageable and performant as

it grows. Through practical guidelines and real-world

examples, you will gain insights into creating a Monorepo

layout that is both robust and adaptable to evolving project

needs.

Directory Structure Best Practices

In the context of a monorepository, the organization of your

directory structure is key to managing complexity, ensuring

efficient builds, and maintaining clarity as your project

scales. This section focuses on best practices for organizing

your Monorepo, with an emphasis on functional separation,

hierarchical organization, centralized dependencies,

dedicated tools, and DevOps integration.

Split Functional and Non-Functional Code

Functional code, such as system-specific implementations

and applications, should be distinctly separated from non-

functional code like utility libraries. For instance, you might

have directories like /services for your application code and

/libraries for shared utilities. This separation ensures that

changes in functional code do not unnecessarily impact

utility libraries and vice versa. For example:

/services/payment-service - Contains code specific to the

payment processing system.

/libraries/string-utils - Houses generic string manipulation

functions.

Hierarchical Structure

Organize your source code hierarchically to mirror the

modular architecture of your application. This approach

makes navigation intuitive and reflects the

interdependencies within your codebase. To exemplify,

within a service directory, you might have:

/services/user-management/authentication

/services/user-management/profile-management

Centralized Third-Party Dependencies

Maintain a central directory, such as /third-party, for all

external dependencies. This simplifies updates and audits,

providing a single point of reference for all external libraries.

Within this directory, dependencies can be further organized

by their purpose or nature. Example:

/third-party/logging

/third-party/database-drivers

Dedicated Tools Directory

Create a dedicated directory like /tools or /scripts for build

scripts, deployment tools, and other utility scripts. This

separation ensures that these necessary but ancillary

elements of your project are easily accessible but distinct

from the main application code. For instance:

/tools/build

/scripts/deploy

DevOps Directory

Include a /devops directory to host all DevOps-related

pipelines and scripts. This could include continuous

integration configurations, deployment scripts, and

infrastructure-as-code files. This centralizes DevOps

resources, making them more manageable. For example:

/devops/ci-pipeline.yaml

/devops/terraform

In conclusion, a well-structured Monorepo facilitates better

organization, clearer understanding, and more efficient

navigation of the codebase. By adhering to these principles,

you can ensure your Monorepo remains manageable and

logical, even as it grows and evolves.

Code Sharing and Reusability

Operating within a Monorepo, particularly one managed

with Bazel, structuring code for maximum reusability is

essential. This not only streamlines development across

various projects but also ensures consistency and efficiency.

Here is how you can achieve this:

Modular Design

Break down your codebase into modular components. Each

module should encapsulate a specific functionality or a set

of related functionalities. As an illustration, you might have

a logging module, a data-access module, and a user-

authentication module. These modules can be

independently developed, tested, and reused across

different projects within the Monorepo.

Shared Libraries

Create shared libraries for common functionalities that are

used across multiple projects. For instance, if multiple

projects need to perform JSON serialization, a shared json-

utils library in your monorepo can be beneficial. This library

can include functions for common serialization and

deserialization tasks, ensuring that these operations are

standardized and optimized across all projects.

Consistent API Design

Ensure that the modules and libraries have consistent and

well-documented APIs. This consistency makes it easier for

developers to understand and use these components in

different projects. To illustrate, if all your data-access

modules follow the same method naming conventions and

parameter orders, developers can quickly integrate and

switch between them as needed.

Dependency Management

Utilize Bazel’s powerful dependency management to handle

inter-module dependencies effectively. Define clear BUILD

files that specify dependencies for each module. This

method ensures that any changes in one module do not

unexpectedly break functionality in another, promoting

safer code reuse.

Testing for Reusable Components

Implement comprehensive testing for your modules and

shared libraries. This includes unit tests, integration tests,

and possibly end-to-end tests, ensuring that these

components work reliably when integrated into different

projects. For instance, the json-utils library should have its

own suite of tests, verifying that it handles various edge

cases and integrates seamlessly with other modules like

data-access.

Documentation and Examples

Provide thorough documentation and real-world usage

examples for your shared modules and libraries. This

documentation should include setup instructions, API usage,

and common use cases. For the logging module, provide

examples showing how to integrate it with different types of

applications within your monorepo.

By following these principles, you can maximize code

sharing and reusability in your monorepo, leading to a more

efficient and maintainable codebase. This strategy not only

saves development time but also ensures a high level of

code quality and consistency across your projects.

Testing Strategies

Effective testing strategies are crucial when working with a

monorepository structure setup to ensure code quality and

system integrity, especially when dealing with a large,

interconnected codebase. Here, we will explore best

practices for setting up unit tests, integration tests, and

end-to-end tests in the framework of a monorepository

system, utilizing Bazel’s strengths.

Unit Testing

Unit tests are the first line of defense against bugs. With the

Monorepo approach, it is important to structure unit tests

closely with the code they are testing. For instance, if you

have a directory `//services/payment`, your unit tests should

ideally reside in something like `//services/payment/tests`.

This proximity simplifies finding and running tests related to

specific components. With Bazel, you can define a `BUILD`

file within the `tests` directory to specify test targets.

Bazel’s caching and parallel execution capabilities ensure

that only the tests affected by recent changes are run,

which is highly efficient for large codebases.

Example:

py_test(

name = “payment_service_tests”,

srcs = [“test_payment_service.py”],

deps = [“//services/payment”],

)

Integration Testing

Integration tests ensure that different modules or services

work together as expected. In the setting of a

monorepository, you can leverage Bazel’s ability to

understand dependencies to efficiently run these tests.

Specifically, if you have a service that depends on a

database and a payment gateway, your integration tests

should verify the interactions between these components.

You can set up a `BUILD` file in your integration test

directory, specifying dependencies to all relevant modules.

Example:

py_test(

name = “integration_tests”,

srcs = [“test_integration.py”],

deps = [

“//services/payment”,

“//services/database”,

“//services/gateway”,

],

)

End-to-End Testing

End-to-end tests validate the complete workflow of your

application from start to finish, mimicking real user

scenarios. Considering a monorepository, these tests can

become quite complex due to the numerous interactions

between different parts of the application. To manage this

complexity, it is advisable to use Bazel’s tagging feature to

identify and run end-to-end tests selectively. Tags help in

categorizing tests and running them as required, without

triggering the entire test suite.

Example:

py_test(

name = “e2e_tests”,

srcs = [“test_e2e.py”],

deps = [“//services”],

tags = [“e2e”],

)

Best Practices

Keep Tests Close to Code: Maintain tests in close

proximity to the code they are testing. This makes it

easier to understand and maintain the tests.

Leverage Bazel’s Features: Utilize Bazel’s caching

and parallel execution features to run tests efficiently.

Tagging and Selective Testing: Use tags to

categorize tests and run them selectively, especially for

larger and more complex test suites.

Continuous Integration: Integrate testing into your

CI/CD pipeline to ensure tests are run automatically on

every commit, preventing the merging of failing code

into the main branch.

By following these strategies and leveraging Bazel’s

capabilities, you can set up a robust and efficient testing

framework in your Monorepo, ensuring that your code

remains reliable and maintainable, regardless of its size and

complexity.

Handling Multiple Projects

Managing multiple projects within a single Monorepo can be

challenging, but with the right strategies, it can lead to

improved collaboration, consistency, and efficiency. In this

section, we will explore effective methods for handling

multiple projects in a Bazel-managed Monorepo, focusing on

inter-project dependencies and configurations.

Centralized Configuration

Management

Centralizing configuration management is key in a

Monorepo. Use shared BUILD files and global settings to

ensure uniformity across projects. For instance, common

compiler flags, linting rules, and testing frameworks can be

defined in a top-level `BUILD.bazel` or in shared files like

`tools/build_defs.bzl`. This tactic ensures that all projects

adhere to the same standards and simplifies maintenance.

Structured Directory Layout

Organize the Monorepo with a clear directory structure that

separates projects while allowing shared components. A

typical structure might include directories like

`/projects/projectA`, `/projects/projectB`, and `/common` for

shared libraries. This layout not only makes navigation

easier but also clarifies boundaries between projects.

Managing Dependencies

In the scenario of a Monorepo, inter-project dependencies

should be handled carefully to avoid conflicts and ensure

clean builds. Bazel’s dependency graph comes in handy

here. To give you an idea, if Project A depends on a library in

Project B, you can define this dependency explicitly in

Project A’s BUILD file, like so: `deps =

[“//projects/projectB:some_library”]`. This explicitness

ensures that changes in Project B trigger a rebuild of Project

A, maintaining consistency.

Shared Libraries and Tools

Promote code reuse by creating shared libraries and tools.

These can be placed in a common directory like

`/common/utils`. Projects can then reference these tools,

ensuring a DRY (Don’t Repeat Yourself) codebase. For

instance, a logging library in `/common/utils/logging` can be

used by all projects, reducing redundancy and easing

updates.

Modules.bazel or Workspace Rules for External

Dependencies

When projects within the Monorepo have external

dependencies, use Bazel’s workspace rules or Modules.bazel

to fetch and manage them centrally. Define these

dependencies in the `WORKSPACE` file at the root. This

centralized management aids in updating and auditing

external libraries.

Versioning and Releases

Handling versioning when utilizing a Monorepo with multiple

projects can be complex. Adopt a strategy that suits your

release cycle, such as using tags that prefix with project

names (for example, `projectA-v1.0.0`, `projectB-v1.0.0`).

Automate version bumping and changelog generation to

maintain clarity across projects.

Continuous Integration and Deployment

Set up CI/CD pipelines that can handle multiple projects in a

Monorepo. Use Bazel’s query language to build and test only

affected projects in a commit. Consider the case of a CI job

that can be configured to run `bazel test

//projects/projectA/…` if changes are detected in Project A’s

directory, ensuring efficient resource utilization.

By implementing these strategies, you can effectively

manage multiple projects within a single Monorepo,

leveraging Bazel’s powerful features to maintain a clean,

efficient, and scalable codebase.

Refactoring and Code Maintenance

In a large Monorepo, maintaining code quality and

facilitating easy refactoring are critical to the health and

longevity of the project. This section provides practical tips,

supported by examples, for upholding these standards.

Establishing a Strong Code Review Culture

A robust code review process is vital. It not only catches

bugs but also ensures code consistency and knowledge

sharing. For example, within a Monorepo environment

containing a mix of Java and Python projects, enforce

language-specific style guides (like Google Java Style and

PEP 8 for Python) during reviews. Use tools like GitHub’s pull

request reviews or GitLab’s merge request reviews to

facilitate thorough, collaborative code reviews. Encourage

team members to not only focus on finding faults but also

suggest improvements and share insights.

Leveraging Automated Code Analysis Tools

Automated tools can significantly reduce the burden of

maintaining code quality. Static analysis tools like

SonarQube or ESLint can be integrated into your CI/CD

pipeline to automatically flag issues like code smells,

security vulnerabilities, or style violations. For instance,

integrate SonarQube in your Jenkins pipeline to analyze a

multi-language codebase whenever a new commit is

pushed, providing immediate feedback on potential issues.

Implementing Continuous Refactoring

Embrace a culture of continuous refactoring. This does not

mean large, disruptive changes; rather, encourage

developers to make small, incremental improvements

regularly. For instance, if a developer is working on a feature

in a Python module and notices an opportunity to simplify a

function or improve naming conventions, they should feel

empowered to do so. This mode of operation keeps the

codebase healthy and adaptable.

Utilizing Feature Flags for Safe Refactoring

Feature flags can be a powerful tool for safer refactoring,

especially in the context of a monorepository where

changes can have wide-ranging impacts. By wrapping new

code in feature flags, you can deploy changes to production

without exposing them to all users. This technique allows for

testing in the live environment with limited risk. For

instance, if refactoring a core library used by several

services in the Monorepo, introduce a feature flag to

gradually roll out changes, monitoring for issues before full

adoption.

Automated Dependency Updates

Operating within a Monorepo, staying on top of dependency

updates is crucial but challenging. Tools like Dependabot or

Renovate can automate the process of updating

dependencies, submitting pull requests for review when new

versions are available. This ensures that your codebase

remains up-to-date with the latest patches and features

without manual oversight.

Documentation as a Maintenance Tool

Good documentation is often overlooked as a maintenance

tool. Documenting architecture decisions, coding standards,

and refactoring rationales helps new team members

understand the codebase and maintain consistency. An

example being create a README file in each major directory

of the Monorepo, describing its purpose, structure, and any

special considerations.

In summary, maintaining code quality and ease of

refactoring in a large Monorepo involves a combination of

cultural practices, automated tooling, and continuous

improvement. By embedding these practices into your

development workflow, you can ensure that your Monorepo

remains a healthy and efficient foundation for your software

projects.

Security Considerations

When working with a monorepository structure

environment, addressing security concerns is paramount,

given the interconnected nature of the codebase. This

section delves into key security considerations you need to

be aware of when managing a Monorepo, focusing on

dependency vulnerabilities, code access controls, audit

trails, and secret management.

Managing Dependency Vulnerabilities

In Monorepos, dependencies are often shared across

multiple projects, making it crucial to keep them secure.

One common vulnerability is the inclusion of outdated or

compromised libraries. For instance, if a widely used logging

library within your Monorepo is found to have a critical

security flaw, it could impact multiple projects

simultaneously. To mitigate such risks, implement

automated tools that scan for known vulnerabilities in

dependencies. Tools like Dependabot or Snyk can be

integrated into your workflow to automatically detect and

propose fixes for such issues.

Implementing Code Access Controls

With multiple teams working in a single repository,

controlling who can access and modify specific parts of the

codebase becomes essential. Demonstrating this, you might

want developers to have read-only access to certain core

libraries, while granting full access to the projects they

actively work on.

Git itself does not support RBAC. To implement RBAC while

using Git, you would typically manage access at the

repository hosting service level (like GitHub, GitLab, or

Bitbucket) where you can define roles and permissions for

users on specific repositories. For more granular control

within a repository, you can use Git hooks or third-party

tools to enforce policies based on branch or directory,

aligning with the desired roles and permissions.

Additionally, incorporating code review practices, where

merges into protected branches require approval from

designated maintainers, ensures an additional layer of

scrutiny and security.

Establishing Robust Audit Trails

Maintaining a comprehensive audit trail in the framework of

a monorepository system is vital for tracking changes and

identifying potential security breaches. In a scenario where

a critical bug is introduced, a detailed audit trail enables you

to quickly trace back to the specific commit and developer

responsible. This aids not only in swift resolution of the issue

but also in analyzing the root cause to prevent similar

occurrences in the future. Utilize tools that log all code

changes, pull requests, and deployment activities.

Integrating your version control system with a CI/CD

pipeline can automate this process, ensuring a transparent

and up-to-date audit trail.

Secret Management

Managing secrets, such as API keys, credentials, and

certificates, is a critical aspect of Monorepo security. Poor

handling of secrets can lead to severe security breaches. To

illustrate, suppose an API key is inadvertently committed to

the Monorepo; it could potentially be accessed by

unauthorized personnel, leading to data breaches or

unauthorized access to external services. To prevent such

scenarios, it is essential to:

Use Secret Management Tools: Tools like HashiCorp

Vault, AWS Secrets Manager, or Azure Key Vault should

be integrated to manage secrets securely.

Encrypt Secrets: Ensure that all secrets are encrypted

at rest and in transit.

Access Controls for Secrets: Implement strict access

controls, ensuring only authorized personnel can access

sensitive information.

Automate Secret Rotation: Regularly rotate secrets

automatically to minimize the risk associated with

compromised credentials.

Audit Secret Access: Keep detailed logs of who

accessed which secret and when, to monitor for any

unauthorized access or anomalies.

Best Practices for Secure Monorepo Management

Regular Security Audits: Conduct regular security

audits of your Monorepo to identify and address

vulnerabilities proactively.

Dependency Hygiene: Regularly update

dependencies and remove unused or outdated libraries

to minimize exposure to vulnerabilities.

Principle of Least Privilege: Apply the principle of

least privilege in access controls, ensuring team

members have only the permissions necessary for their

role.

Continuous Monitoring: Implement continuous

monitoring tools to detect and alert on suspicious

activities in real-time.

Education and Training: Regularly educate and train

your development team on security best practices, as

human error often leads to security breaches.

By addressing these security aspects, including the critical

area of secret management, you can significantly enhance

the integrity and resilience of your Monorepo, ensuring that

it remains a robust and secure foundation for your software

development endeavors.

Common Pitfalls and Ways to Avoid

Them

Designing a Monorepo layout with Bazel presents unique

challenges. Without careful planning, you may encounter

pitfalls that can significantly impede the efficiency and

scalability of your project. This section outlines some of

these common pitfalls and offers strategies to avoid them,

supplemented with illustrative examples.

Overly Complex Directory Structures

Pitfall: A common mistake is creating a deeply nested or

overly complex directory structure. This can make

navigation difficult and obscure the relationships between

different parts of the codebase.

Solution: Adopt a flat and modular directory structure. For

example, instead of deeply nesting related projects, group

them under a single directory with clear naming

conventions. This procedure enhances clarity and simplifies

dependency tracking.

Poorly Managed Dependencies

Pitfall: Inefficient dependency management, such as

redundant declarations or large, unsegmented dependency

blocks, can lead to longer build times and difficulty in

tracking changes.

Solution: Use Bazel’s fine-grained dependency

management capabilities. Structure your BUILD files to

declare only the necessary dependencies. For instance, if a

module only requires a specific function from a library, avoid

including the entire library as a dependency.

Inadequate Build Optimization

Pitfall: Failing to optimize builds can result in unnecessarily

long build and test times, especially as the codebase grows.

Solution: Utilize Bazel’s caching and incremental build

features. As a case in point, set up remote caching to share

build artifacts across the team, reducing duplicate build

efforts.

Neglecting Code Reusability

Pitfall: Overlooking opportunities for code reuse can lead to

duplicated code, increasing maintenance efforts and

potential for errors.

Solution: Structure your Monorepo to promote reusability.

Create shared libraries for common functionalities and

document their usage. One example is a shared utility

library for date-time operations that can be reused across

different projects within the Monorepo.

Insufficient Testing Strategies

Pitfall: Inadequate testing setup with the Monorepo

approach can lead to uncaught bugs and regressions.

Solution: Implement comprehensive testing strategies

using Bazel’s testing tools. Structure your tests to run

locally relevant tests first, then broader integration tests.

For example, set up test suites that are automatically

triggered for changes in specific directories.

Scaling Challenges

Pitfall: As the Monorepo grows, it may become difficult to

maintain performance and manageability.

Solution: Regularly refactor and modularize your codebase.

Implement performance monitoring tools to identify and

address bottlenecks. For instance, use Bazel’s profiling tools

to pinpoint slow build processes and optimize them.

Version Control Integration Issues

Pitfall: Misalignments between Bazel and version control

systems can lead to versioning and integration challenges.

Solution: Establish clear versioning practices and integrate

Bazel seamlessly with your version control system. To

illustrate, use Bazel’s workspace rules to manage external

dependencies in a version-controlled manner.

By recognizing and addressing these pitfalls, you can design

a Monorepo layout that leverages Bazel’s strengths,

ensuring that your project remains efficient, scalable, and

maintainable.

Organizing Code into Packages and

Modules

In an advanced Bazel environment, the strategic

organization of code into packages and modules is key to

maintaining a scalable, efficient, and high-quality codebase.

This section delves into sophisticated approaches to

package and module design, focusing on design principles,

maintainability, and code quality.

Strategic Design Principles

The cornerstone of an effective Bazel Monorepo is a

thoughtful design of packages and modules. Opt for a

domain-driven design approach, where packages align with

business capabilities rather than technical concerns. For

instance, instead of a generic `utils` package, consider

domain-specific packages like `payment_processing` or

`user_authentication`. This strategy enhances

understandability and reduces the cognitive load for

developers navigating the codebase.

Package Granularity and Dependencies

In Bazel, structuring your build with fine-grained packages

enables more precise dependency management and

incremental builds, improving build efficiency and

parallelism. However, overly granular packages can

complicate dependency tracking and increase the

maintenance burden, potentially causing a “dependency hell”

where managing inter-package dependencies becomes

excessively complex.

A balanced package should encapsulate a coherent set of

functionalities with minimal external dependencies. To give

you an idea, a package named `invoice_generator` might

include classes for invoice creation, formatting, and data

validation, but not for payment processing, even if closely

related. This separation minimizes build times and improves

cache effectiveness.

Build File Best Practices

In your `BUILD` files, be explicit about dependencies. Rely

on visibility attributes to control access to packages,

ensuring that only intended packages can depend on a

given module. This practice not only improves security but

also prevents unintended coupling. To exemplify, setting

`visibility = [“//some/other:__pkg__”]` ensures that only

`some/other` package can access the module, preventing its

use in unplanned contexts.

Module Cohesion and Coupling

Maintain high cohesion within modules and low coupling

between them. Modules should be designed around a single,

well-defined responsibility, with minimal dependencies on

other modules. For instance, a `user_profile` module should

handle all aspects related to user profiles but should not

directly manipulate database connections, which would be

the responsibility of a separate `database_access` module.

Maintainability and Refactoring

Regularly refactor your packages and modules to adapt to

evolving project requirements. Employ automated tools

within Bazel for code analysis and linting to ensure

consistency and quality. Consider the case of integrating a

tool like `buildifier` that can standardize `BUILD` files

structure, making them easier to read and maintain.

Quality Assurance with Tests

Incorporate comprehensive testing at the package and

module level. Structure your tests to mirror the package

structure, ensuring that each package has corresponding

unit tests. This practice not only ensures code quality but

also simplifies identifying the impact of changes during

development.

Example of Effective Organization

Consider a project with distinct functionalities like user

management, product catalog, and order processing.

Organize these functionalities into separate packages:

`//app/user_management`, `//app/product_catalog`, and

`//app/order_processing`. Each package should have its own

`BUILD` file specifying dependencies. An example being,

`//app/order_processing` may depend on

`//app/user_management` for user details but should not

directly interact with `//app/product_catalog`, enforcing a

clear separation of concerns.

In compliance with these guidelines, you can create a Bazel

Monorepo that is not only efficient and scalable but also

maintains high standards of code quality and

maintainability.

Naming Conventions for Packages

and Modules

Adopting consistent and meaningful naming conventions for

packages and modules is essential in a Bazel Monorepo to

enhance readability, maintainability, and team

collaboration. This section focuses on advanced naming

strategies that reflect the functionality, domain, and

structure of the codebase.

Reflecting Functionality and Domain

Names should clearly indicate the purpose and domain of

the package or module. Avoid vague or overly generic

names. For instance, prefer specific names like

`customer_data_processing` over ambiguous ones like

`data_handlers`. This clarity aids in quickly identifying the

role and scope of a module or package.

Hierarchy and Structure

Align the naming convention with the repository’s hierarchy.

Use a hierarchical naming structure that mirrors the

directory structure. For instance, a package in the path

`//app/backend/database` should be named in a way that

reflects its path and purpose, like `database_operations` or

`database_utils`.

Consistency Across the Codebase

Maintain consistency in naming conventions across different

packages and modules. If you use a particular format like

snake_case (`user_management`) or CamelCase (`UserManagement`)

for package names, apply it uniformly. This consistency is

crucial for predictability and ease of navigation.

Verbosity versus Brevity

Strive for a balance between verbosity and brevity. Names

should be long enough to convey purpose but not so long

that they become unwieldy. For instance, `auth` is preferable

to `authentication_process_manager` for simplicity, yet it is

descriptive enough to convey purpose.

Avoiding Redundancy and Tautology

Avoid redundancy in names. Demonstrating this, instead of

`user_management_management`, simply use `user_management`.

Similarly, avoid tautological phrases like `database_db`.

Versioning and Experimental Features

For packages or modules that are under development or

experimental, include tags like `experimental` or `beta` in the

name. For instance, `payment_processing_beta` indicates a

module in the testing phase. Similarly, include version

numbers if multiple versions of the same module coexist,

like `data_parser_v2`.

Example of Effective Naming

Consider a project with a frontend and backend. Organize

and name your packages to reflect their roles and hierarchy.

For example:

- Frontend packages: `//app/frontend/user_interface`,

`//app/frontend/api_client`

- Backend packages: `//app/backend/user_management`,

`//app/backend/data_storage`

Each of these names provides a clear, concise, and

consistent indication of what the package contains and

where it fits within the overall project structure.

By applying these naming conventions, you create a more

navigable, understandable, and maintainable Bazel

Monorepo. Clear and consistent names act as a guide,

helping developers understand the architecture and purpose

of different parts of the codebase at a glance.

Conclusion

In this chapter, we learned that designing an effective

Monorepo layout requires a multifaceted approach,

combining best practices in directory structure with a focus

on code sharing and reusability. By implementing efficient

testing strategies and centralized configuration

management, teams can ensure robustness and

maintainability of their code. The importance of regular

refactoring and vigilant code maintenance cannot be

overstated, as these practices significantly contribute to the

overall health and scalability of the project. Security

considerations are also paramount, demanding a proactive

approach to safeguard the Monorepo’s integrity.

Furthermore, organizing code into well-defined packages

and modules, coupled with thoughtful naming conventions,

not only enhances readability but also facilitates easier

navigation and understanding of the codebase. Collectively,

these practices form the backbone of a well-organized,

efficient, and secure Monorepo, laying the groundwork for

successful project development and management. In the

next chapter, we will delve into the intricate world of

handling extensive Monorepo codebases.

Recommended Reading

Here is a list of recommended readings for various sections

of your book on Bazel and Monorepo management. These

resources should provide additional insights and best

practices:

“Monorepos — a practical guide” — DEV Community. A

comprehensive guide that discusses the best practices

for scaling a Monorepo:

https://dev.to/elliotalexander/monorepos-best-practice-

for-scaling-a-jam-stack-dl

“Monorepo CI best practices” — Buildkite. This article

offers insights into continuous integration best practices

https://dev.to/elliotalexander/monorepos-best-practice-for-scaling-a-jam-stack-dl

in a Monorepo setup:

https://buildkite.com/blog/monorepo-ci-best-practices

“How to Structure a Monorepo” — Luca Pette. Luca

Pette provides practical advice on organizing a

Monorepo for maintainability and efficiency:

https://lucapette.me/writing/how-to-structure-a-

monorepo/

“Monorepos in JavaScript & TypeScript” — Robin

Wieruch. This article focuses on Monorepos in the

context of JavaScript and TypeScript, offering insights

into code sharing and reusability:

https://www.robinwieruch.de/javascript-monorepos/

“Testing in a Monorepo” — Turborepo. This resource

covers various strategies for effective testing within a

Monorepo:

https://turbo.build/repo/docs/handbook/testing

“Sharing Configurations Within a Monorepo” — DEV

Community. An article discussing approaches to

managing configurations centrally in a Monorepo:

https://dev.to/mbarzeev/sharing-configurations-within-a-

monorepo-42bn

“Monorepos: Making Development Easier and

Smoother” on DEV Community— This article provides

insights into how monorepos facilitate easier

development and smoother refactoring and

maintenance processes.

https://dev.to/furqanramzan/monorepos-making-

development-easier-and-smoother-3kl8).

An article on Goldman Sachs’ developer blog discusses

the risk perspective of Monorepos and offers guidance

on security considerations.

https://developer.gs.com/blog/posts/monorepos-from-a-

risk-perspective).

https://buildkite.com/blog/monorepo-ci-best-practices
https://lucapette.me/writing/how-to-structure-a-monorepo/
https://www.robinwieruch.de/javascript-monorepos/
https://turbo.build/repo/docs/handbook/testing
https://dev.to/mbarzeev/sharing-configurations-within-a-monorepo-42bn
https://dev.to/furqanramzan/monorepos-making-development-easier-and-smoother-3kl8
https://developer.gs.com/blog/posts/monorepos-from-a-risk-perspective

“From Monorepo Mess to Monorepo Bliss: Avoiding

Common Mistakes” on InfoQ: This article details

common mistakes made when managing Monorepos

and provides strategies to avoid them.

https://www.infoq.com/articles/monorepo-common-

mistakes/).

“How to think about packages in a monorepo” on Tech

Shaadi: This resource offers a comprehensive guide on

organizing packages and modules in a Monorepo.

https://tech.shaadi.com/2021/08/05/how-to-think-about-

packages-in-a-monorepo/).

“Using Nx at Enterprises” on Nx.dev: This guide

provides insights into code organization and naming

conventions for packages and modules in enterprise-

scale Monorepos. https://nx.dev/concepts/more-

concepts/monorepo-nx-enterprise).

These resources provide a wealth of information and

practical advice for effectively managing and optimizing

Monorepos in various aspects.

https://www.infoq.com/articles/monorepo-common-mistakes/
https://tech.shaadi.com/2021/08/05/how-to-think-about-packages-in-a-monorepo/
https://nx.dev/concepts/more-concepts/monorepo-nx-enterprise

CHAPTER 9

Managing Large Codebases

and Scale

Introduction

In this chapter, we will delve into the intricate world of

handling extensive monorepo codebases, a realm where

advanced techniques and strategic foresight become

indispensable. Assuming familiarity with Bazel, monorepos,

and dependency management, we shift our focus to the

nuanced aspects of managing both internal and external

dependencies, integrating code from various repositories,

and handling third-party libraries. We will explore advanced

modularization strategies that aid in code sharing and

reuse, emphasizing the importance of an efficient code

organization for enhanced readability and maintainability.

This chapter also addresses the critical aspects of managing

inter-module dependencies and collaborative environment

management, providing insights into refining branching,

merging, and code review practices to minimize merge

conflicts and build breakages. Navigating the common

challenges that arise in large-scale projects, we will delve

into the upkeep of Bazel build configurations, debugging

build issues, and best practices to avoid common pitfalls.

Furthermore, we will examine performance optimization for

monorepo builds, including setting up Remote Build

Execution (RBE), cache management strategies, and the use

of Bazel’s profiling tools to identify and rectify inefficiencies.

The chapter culminates with advanced caching techniques,

resource management strategies, and an in-depth look at

Starlark code optimization, all designed to elevate your

mastery in managing large codebases effectively and

efficiently.

Structure

In this chapter, we will cover the following topics:

Dealing with Large Monorepo Codebases

Performance Optimization for Monorepo Builds

Dealing with Large Monorepo

Codebases

In the context of large monorepo codebases, the

management of dependencies, both internal and external,

demands a sophisticated and nuanced approach. As the

scale of the monorepo expands, traditional methods of

dependency management often fall short, necessitating

advanced strategies to maintain efficiency and reliability.

Managing Internal and External

Dependencies

The crux of dependency management in a monorepo setup

using Bazel lies in the adept handling of numerous and often

complex dependencies. This challenge is compounded when

dealing with a mix of internal and external dependencies.

For internal dependencies, the key is to establish a coherent

versioning strategy. This involves aligning the versions of

internal packages or modules to ensure compatibility and

reduce conflicts. Utilizing Bazel’s workspace rules effectively

allows for seamless integration of these internal

dependencies, where the build system can intelligently

resolve and fetch the necessary components.

In contrast, external dependencies require a different

approach. Often, these are incorporated into the monorepo

via external repositories. The management of these external

repositories within Bazel’s framework is critical. It involves

defining explicit rules that not only fetch the correct version

of the external dependency but also integrate it seamlessly

with the existing internal codebase. This process demands a

keen understanding of Bazel’s workspace mechanics,

ensuring that the external code is compatible with the

internal build environment.

Integration of Code from Other

Repositories

A significant aspect of dependency management in

monorepos is the incorporation of code from other

repositories as internal dependencies. Tools like Copybara

play a pivotal role in this process. They enable the

synchronization of code between the external repositories

and the monorepo, allowing for a more controlled and

automated integration process. This method is particularly

effective when dealing with frequently updated external

codebases, as it simplifies the task of keeping the internal

and external code in sync. However, it requires careful

configuration to ensure that the synchronization process

respects the structural and operational nuances of the

monorepo.

Handling Third-Party Libraries

The treatment of third-party libraries with the monorepo

approach environment necessitates a strategic approach,

particularly when it comes to upgrades and version

management. A common practice is to copy the code of

these third-party libraries and build them internally within

the monorepo. This approach offers several advantages.

Firstly, it provides greater control over the versioning of

these libraries, ensuring that upgrades can be managed

more predictably. Secondly, it allows for the customization

of these libraries to better fit the specific needs of the

monorepo. Finally, building these libraries internally ensures

that they are fully compatible with the monorepo’s build

environment, reducing the likelihood of conflicts and

incompatibilities.

Advanced Modularization Strategies

Modularization in the setting of a monorepository context

goes beyond the basic separation of concerns; it involves

designing modules that are both autonomous and

synergistic. Each module should encapsulate a distinct set

of functionalities and have clearly defined interfaces. This

isolation not only promotes easier testing and maintenance

but also facilitates parallel development across teams.

Nonetheless, the challenge lies in balancing module

independence with the need for collaboration and cohesion

across the codebase.

To achieve this, developers should employ a tiered approach

to modularization. Core foundational modules, which

provide generic functionalities used across various projects,

should be distinguished from higher-level modules that are

more specialized. This hierarchical structuring aids in

understanding the dependency graph and ensures that

changes in foundational modules are made judiciously,

given their widespread impact.

Code Sharing and Reuse

In a large monorepo, the efficiency of code sharing and

reuse becomes a critical factor. Structuring a monorepo to

facilitate this requires a strategic approach to code

organization. Shared libraries or modules should be

centrally located and easily discoverable. It’s imperative to

maintain these shared resources with strict versioning

control and clear documentation, as they form the backbone

of multiple projects within the monorepo.

However, indiscriminate code sharing can lead to

unintended dependencies and increase the complexity of

the build process. Therefore, establishing guidelines on

when and how to abstract common functionalities into

shared modules is crucial. These guidelines should strike a

balance between DRY (Don’t Repeat Yourself) principles and

the pragmatic needs of individual projects within the

monorepo.

Efficient Code Organization and

Readability

Organizing code in a large monorepo demands a methodical

approach. One effective technique is to group related

projects or modules into sub-directories, each with its own

Bazel build files. This logical grouping not only enhances

readability but also streamlines the build process.

Moreover, consistent naming conventions, clear

documentation, and adherence to a well-defined coding

standard are vital. They ensure that developers, irrespective

of their project involvements, can easily navigate and

understand different parts of the monorepo. This uniformity

becomes particularly valuable in large teams where

developers might move between projects.

Managing Inter-Module Dependencies

Inter-module dependencies in a large monorepo require

careful management to avoid a tangled web of connections

that can hinder development and scaling. In Bazel, explicit

declaration of dependencies in BUILD files helps maintain a

clear understanding of module interactions. Developers

should be encouraged to minimize dependencies, especially

between high-level modules, to reduce build times and

complexity.

Additionally, employing tools like dependency graph

visualizers can provide valuable insights into the

dependency structure, helping identify potential areas for

optimization. Regular reviews of these dependencies,

especially after significant development phases, are

essential to ensure that the dependency graph remains

manageable and logical.

Advanced Strategies for Collaborative

Environment Management

Considering a monorepository managed by Bazel, the

collaborative environment hinges on a fine-tuned balance

between autonomy and coordination. Advanced strategies

involve creating a structured yet flexible environment where

teams can work independently without impeding each

other’s progress. This necessitates a comprehensive

understanding of Bazel’s build graph and dependency

tracking mechanisms. Teams must be adept at identifying

and isolating changes that could have wide-reaching effects

across the repository.

One critical aspect is the establishment of clear conventions

for declaring and managing dependencies within BUILD files.

This practice ensures that teams are aware of the

implications of their changes on other parts of the

monorepo. Furthermore, leveraging Bazel’s query language

to analyze the impact of proposed changes can serve as a

preemptive measure to avoid unintended side effects.

Refining Branching, Merging, and

Code Review Practices

Branching and merging practices in a Bazel-managed

monorepo requires a nuanced approach. Given Bazel’s

efficiency in handling incremental builds, a common

practice is to encourage shorter-lived branches to reduce

the complexity of merges. On the other hand, in a large

monorepo, even small changes can have significant

impacts. Therefore, implementing a robust code review

process is paramount. This process should not only focus on

the code changes themselves but also on the potential build

and test impacts as assessed by Bazel.

For merging strategies, it’s advisable to lean towards a

rebase-centric workflow, which helps in maintaining a clean

and linear history. This strategy, combined with Bazel’s

ability to precisely determine affected targets, allows for

smoother integration of changes and reduces the likelihood

of merge conflicts.

Moreover, in the context of code reviews, employing Bazel’s

remote caching and remote execution features can expedite

the validation of changes. By caching build and test outputs,

teams can quickly verify the impact of changes across

different branches, making the code review process more

efficient and reliable.

Minimizing Merge Conflicts and Build

Breakages

Minimizing merge conflicts and building breakages in a large

monorepo managed by Bazel involves a proactive and

preventive approach. One effective method is to use Bazel’s

sandboxing capabilities to ensure that changes are tested in

an isolated environment, mirroring the main build

environment as closely as possible. This tactic helps to

catch potential breakages before they are merged into the

main branch.

Furthermore, setting up automated tests and builds using

Bazel as part of the continuous integration pipeline is

crucial. This setup not only validates individual changes but

also monitors the health of the main branch. Automated

tests should be comprehensive yet targeted, focusing on

areas of the codebase most likely to be affected by the

changes. Bazel’s fine-grained dependency tracking aids in

executing only the necessary tests, making this process

both efficient and thorough.

Lastly, fostering a culture of ownership and responsibility is

key. Encouraging developers to understand the broader

impact of their changes and to take ownership of the entire

lifecycle of their code – from development to deployment –

plays a vital role in minimizing conflicts and building issues.

Navigating Common Challenges

Monorepos managed by Bazel often encounter unique

challenges that stem from their complexity and scale.

Among these, dependency conflicts and build inefficiencies

are the most prevalent. A common scenario is the

inadvertent introduction of conflicting dependency versions,

which can lead to failed builds or runtime errors. To mitigate

this, it is essential to establish a centralized dependency

management system. This system should enforce consistent

versioning across the entire repository, ideally automated

through scripts or Bazel’s own dependency resolution

mechanisms.

Another frequent issue arises from the misuse of Bazel’s

powerful, yet intricate, build configurations. Misconfigured

build rules or incorrect use of Bazel’s query language can

lead to suboptimal build performance or even incorrect build

outputs. Regular audits of build configurations and rules,

accompanied by thorough documentation, are crucial. These

audits should focus on identifying redundant or conflicting

build rules and streamlining build paths.

Upkeeping Bazel Build Configurations

Maintaining and updating Bazel build configurations in a

large monorepo is a continuous process. As the codebase

evolves, so too must the build configurations. This

maintenance involves not just updating Bazel versions or

rules but also optimizing build files for changing

dependencies and project structures. One effective strategy

is to modularize build configurations. By encapsulating

specific build logic within modular, reusable build files,

updates become more manageable and less prone to errors.

Also, it’s advisable to integrate automated checks into the

continuous integration pipeline that enforces coding and

configuration standards. These checks can include linters for

BUILD files or custom scripts that validate the adherence to

established best practices. Automating the detection of

common misconfigurations can significantly reduce the

burden of manual reviews and increase the reliability of the

build process.

Debugging Build Issues

Debugging in a Bazel-managed monorepo demands a

comprehensive understanding of both Bazel’s execution

model and the specific build architecture of the project.

When tackling build failures or performance issues, using

Bazel’s built-in profiling tools is a primary step. These tools

can provide detailed insights into build processes,

highlighting bottlenecks or inefficiencies.

Bazel’s built-in profiling tools offer a comprehensive suite of

features to analyze and optimize build performance, crucial

for developers aiming to streamline their build processes. By

utilizing the --profile=<file> flag, developers can instruct

Bazel to generate detailed JSON profiles capturing the

timing information of each build step, enabling a granular

analysis of the build process. This profiling data, when

visualized using tools like the Chrome Trace Viewer

(chrome://tracing), provides an intuitive graphical

representation of the build’s execution timeline, allowing

developers to pinpoint inefficiencies and bottlenecks.

Additionally, Bazel’s aquery tool provides insights into the

action graph of the build, offering a deeper understanding of

how different rules and targets interact and contribute to

the overall build time.

Moreover, Bazel’s profiling capabilities extend to critical

path analysis, helping developers identify the sequence of

tasks that directly impacts the build’s duration. By focusing

on optimizing these critical tasks, developers can achieve

significant reductions in build times. For teams leveraging

Bazel’s remote caching and execution features, the profiling

tools also offer valuable metrics on cache performance,

including hit and miss rates, which are instrumental in

diagnosing and optimizing cache utilization. Through the

Build Event Protocol (BEP), Bazel provides real-time data

streaming of build events, enabling further customization

and analysis of build metrics, thus offering a robust

framework for continuous build performance improvement.

In cases of complex build errors, Bazel’s query language

becomes an invaluable tool. It allows developers to dissect

the build graph, understand dependencies, and trace the

origins of issues. It’s also beneficial to develop a structured

approach to debugging, starting from the reproduction of

the issue in a controlled environment, followed by

incremental isolation and testing of suspected components.

For persistent or non-obvious issues, engaging with the

broader Bazel community can provide additional

perspectives and solutions. Participating in forums or

contributing to open-source repositories related to Bazel can

yield insights from other professionals who have faced

similar challenges.

Best Practices and Common Pitfalls

Managing dependencies with Bazel presents a unique set of

challenges and opportunities. Advanced users of Bazel must

navigate this landscape with a keen understanding of best

practices while being aware of common pitfalls that can

hinder the efficiency and scalability of their projects.

One of the core principles in handling dependencies in a

large monorepo is ensuring minimal and precise

dependency declarations. In Bazel, this entails explicitly

specifying the exact dependencies needed for each build

target. This practice not only enhances the clarity of each

module’s requirements but also optimizes build

performance by avoiding unnecessary rebuilds of unrelated

targets. However, it’s crucial to balance this granularity with

the overhead of managing a large number of fine-grained

dependencies. Excessive fragmentation can lead to a

bloated and difficult-to-maintain build configuration.

Another best practice is leveraging Bazel’s capability for

remote dependency caching and fetching. For large

monorepos, this feature can significantly reduce build times

across different machines and CI environments. It’s

important, though, to ensure that the cache is reliably

updated and that dependencies are correctly versioned.

Failure to do so can lead to inconsistent builds or issues with

reproducibility.

Advanced users should also be adept at managing third-

party dependencies. Utilizing tools like Bazel’s external

repository rules (for example, `http_archive`,

`git_repository`) allows for seamless integration of external

libraries and frameworks. However, this integration

introduces the risk of dependency conflicts and version

mismatches. To mitigate this, it’s advisable to centralize and

standardize third-party dependency declarations and ensure

that they are compatible with the monorepo’s overall

dependency graph.

Furthermore, in large monorepos, the efficient handling of

transitive dependencies becomes paramount. For example,

if target A depends on target B, and target B depends on

target C, then target A has a transitive dependency on

target C, meaning changes in C could impact the build or

test outcomes of A even though A does not directly depend

on C. Bazel’s strict dependency checking helps in

maintaining a clear dependency graph, but it requires

developers to be vigilant about declaring all necessary

transitive dependencies. Overlooking this can lead to failed

builds or runtime errors, especially as the codebase evolves

and dependencies get updated.

Versioning of dependencies in the scenario of a monorepo

also demands careful consideration. While the temptation to

always use the latest versions of dependencies exists, it can

lead to instability and compatibility issues. Establishing a

policy for regular and controlled dependency updates can

help maintain stability while still benefiting from updates

and security patches. A common versioning policy is to use

Semantic Versioning (SemVer) for rules and dependencies,

where updates are classified as major, minor, or patch,

ensuring that builds remain stable and predictable as

components evolve, such as defining a rule that only allows

minor and patch updates automatically to prevent breaking

changes.

Finally, a common pitfall in dependency management within

large monorepos is neglecting the impact of dependencies

on build time and resource utilization. Optimizations, such

as using `select()` statements for conditional dependencies

and minimizing the use of heavy libraries, are essential in

maintaining an efficient build process. Developers need to

continuously monitor and profile builds to identify any

dependencies that are disproportionately affecting build

performance.

In summary, managing dependencies in large monorepo

codebases with Bazel requires a deliberate and meticulous

approach. By adhering to best practices such as precise

dependency declarations, effective use of remote caching,

careful integration of third-party libraries, diligent

management of transitive dependencies, thoughtful

versioning strategies, and continuous optimization of build

performance, developers can harness the full potential of

Bazel when utilizing a monorepo setup. Even so, remaining

vigilant of the common pitfalls such as dependency

fragmentation, cache inconsistencies, version conflicts, and

build inefficiencies is equally crucial in ensuring the long-

term success and scalability of the project.

Performance Optimization for

Monorepo Builds

In this section, we delve into advanced techniques

specifically tailored for optimizing performance in monorepo

builds using Bazel. Our focus will be on strategies that go

beyond basic setup and configuration, targeting software

developers who are already familiar with Bazel, monorepos,

and dependency management within Bazel.

Setting Up and Configuring RBE for

Large-Scale Monorepos

The initial step towards leveraging RBE involves its

meticulous setup and configuration tailored to the specific

needs of a large-scale monorepo. This process includes the

selection of an appropriate execution environment that

aligns with the technical requirements and constraints of

the monorepo. Crucial in this setup is the configuration of

Bazel’s remote execution settings, ensuring that the system

is primed for remote execution without compromising the

integrity and security of the build processes.

The effective use of RBE in large-scale monorepos

necessitates a deep understanding of the build

environment, the dependencies involved, and the nature of

the tasks that will be offloaded. The configuration phase

should be approached with a focus on scalability and

flexibility, acknowledging the dynamic nature of monorepos

where the codebase and dependencies are continuously

evolving.

Strategies for Cache Management

and Sharing

Once RBE is operational, the next significant aspect is the

implementation of robust cache management and sharing

strategies. Effective caching in the context of RBE is not just

about storing and retrieving build artifacts; it’s about

intelligent cache invalidation, efficient artifact storage, and

ensuring consistency across the team’s build environments.

Cache management in RBE requires a fine balance: caches

need to be sufficiently up-to-date to ensure that they reflect

the latest state of the codebase, but also stable enough to

avoid unnecessary invalidations that lead to rebuilds. This

balance is critical in monorepos due to the high frequency of

code changes and the interdependencies within the

codebase.

Sharing caches among team members or across CI/CD

pipelines can dramatically enhance build efficiency. It

reduces the time spent on rebuilding similar or identical

artifacts and ensures a consistent build environment across

different machines and setups. This strategy, however,

demands careful management to avoid conflicts and

maintain the integrity of the build artifacts.

Utilizing Bazel’s Profiling Tools to

Identify Bottlenecks

Bazel’s profiling tools serve as a cornerstone in identifying

performance bottlenecks. These tools are designed to

provide a granular view of the build process, enabling

developers to dissect and examine each phase in detail. By

engaging with Bazel’s profiling capabilities, developers can

track the time spent in various activities, such as fetching

dependencies, analyzing targets, and executing build

actions. This detailed breakdown is instrumental in

identifying stages that disproportionately contribute to

longer build times.

The process of utilizing these profiling tools begins with

enabling profiling in Bazel builds (by adding the --

profile=/path/to/output/profile.json parameter in the

command line) and subsequently generating detailed logs.

These logs can reveal granular insights, such as “Action

cache hit for action ‘Compiling src/main/java/com/example/app

/Main.java’, taking 0.045s to complete,” helping developers

understand specific build step performances and cache

utilization. These logs offer insights into the time

distribution across different build phases. For a developer,

the goal is to scrutinize these logs to discern patterns and

anomalies. For instance, if a significant portion of build time

is spent in dependency fetching, it might signal

inefficiencies in dependency management or network-

related issues.

Analyzing Build Performance Data to

Pinpoint Inefficient Patterns and

Configurations

The next step is the meticulous analysis of the build

performance data gathered. This analysis is not merely

about observing the durations but understanding the

underlying causes of inefficiencies. It requires a

comprehensive examination of how to build tasks are

structured and how dependencies are managed. Are there

redundant or unnecessary dependencies causing longer

build times? Is the configuration optimally structured to

exploit Bazel’s build caching?

The effectiveness of this analysis lies in its ability to

transform insights into actionable strategies. For example,

upon identifying that certain targets consistently trigger

extensive rebuilds, a developer might need to re-evaluate

the granularity of targets or refine the dependency

declarations. This phase is about connecting the dots

between what the data reveals and the specific aspects of

the monorepo build process that needs refinement.

Advanced Caching Techniques

The cornerstone of these advanced caching strategies is the

deployment of incremental and distributed caching

mechanisms. Incremental caching allows for the reuse of

previously computed build outputs, significantly reducing

the time and resources required for subsequent builds. This

method is particularly effective in monorepos where

changes are often localized to specific areas of the

codebase, thereby limiting the need to rebuild the entire

repository. The key to successful incremental caching lies in

the meticulous tracking of dependencies and source file

changes, ensuring that only the necessary parts of the

codebase are rebuilt.

Complementing incremental caching, distributed caching

mechanisms distribute the cache across multiple machines

or even across a network. This mode of operation is

particularly beneficial for teams working on the same

monorepo, as it allows for the sharing of build outputs,

thereby reducing redundant build efforts across the team.

Distributed caching harnesses the collective resources of

the team, leading to significant reductions in build times,

especially in scenarios where similar build tasks are

executed by different team members.

Equally important to the implementation of caching

mechanisms is the development of robust cache invalidation

strategies. The challenge lies in striking a balance between

the need for speed and the need for consistency. Ineffective

cache invalidation can lead to stale or incorrect build

outputs, compromising the integrity of the build process.

Hence, it is crucial to implement strategies that accurately

detect when cached data is no longer valid and needs to be

regenerated. This involves sophisticated tracking of changes

not only in the source code but also in build configurations

and dependencies. Effective cache invalidation ensures that

the build system reliably reflects the most current state of

the codebase, while also leveraging cached data to the

fullest extent possible to accelerate build times.

Parallelism and Resource

Management

Maximizing build parallelism involves a deep understanding

of Bazel’s capabilities to manage and configure resource

constraints. Bazel’s build system is inherently designed to

support the parallel execution of tasks, but the extent of this

parallelism is heavily dependent on the correct

configuration of resource constraints. Developers need to

fine-tune these settings based on the specific requirements

of their projects and the hardware capabilities of their build

environment. This includes setting appropriate values for

flags such as --local_cpu_resources and --local_ram_resources,

which dictate how Bazel allocates CPU and RAM resources

during the build process. An optimal configuration ensures

that Bazel utilizes the available resources effectively,

leading to faster build times.

Balancing CPU and memory usage is equally important,

especially in large monorepos where resource demands can

be significant. The key challenge lies in finding a balance

that maximizes CPU utilization without overloading the

memory, which can lead to thrashing and significantly slow

down the build process. Developers must consider factors

such as the size and complexity of the codebase (like

cyclomatic complexity), the number of dependencies, and

the typical workload patterns. By analyzing these factors,

one can identify the optimal ratio of CPU to memory usage

that ensures a smooth and efficient build process. This

might involve adjusting the granularity of build targets to

better distribute the load or restructuring certain parts of

the codebase to reduce memory-intensive operations.

Dynamic Build Graph Optimization

Dynamic build graph optimization is predicated on the idea

of minimizing the build graph’s size and complexity. This

process involves a meticulous analysis and restructuring of

the dependencies within the monorepo. By identifying and

eliminating redundant or unnecessary dependencies, the

size of the build graph can be substantially reduced. This

reduction is not merely a numerical advantage; it directly

translates into faster build times, as Bazel has fewer paths

to traverse and fewer dependencies to check for changes.

Furthermore, implementing dynamic build graphs is an

advanced technique that can significantly improve build

times in large monorepos. Unlike static build graphs that

remain constant irrespective of the build context, dynamic

build graphs are context-aware. They adapt based on the

specific components being built, the changes made in the

codebase, or the targets specified for the build. This

adaptability allows for a more focused and efficient build

process. By constructing a build graph that only includes the

necessary elements for a given build scenario, the

complexity and duration of the build process are greatly

reduced.

The crux of utilizing dynamic build graphs effectively lies in

their intelligent configuration and integration into the build

process. This requires a deep understanding of the interplay

between various modules and components within the

monorepo. Developers must carefully analyze the

dependency graph to identify potential areas for

optimization, such as common libraries or frequently

changed modules. By structuring these elements in a way

that maximizes the benefits of a dynamic build graph,

teams can achieve significant improvements in build

performance.

In essence, dynamic build graph optimization serves as a

potent tool in the arsenal of a developer dealing with large

monorepo codebases in Bazel. It requires a keen

understanding of the underlying architecture of the

codebase and a strategic approach to dependency

management. When implemented correctly, it can lead to

more efficient, faster, and more reliable builds, thus

enhancing overall development productivity and

performance in large-scale software projects.

Developing Custom-Build Rules for

Performance-Critical Scenarios

The development of custom-build rules in Bazel is a

powerful approach to address unique performance needs

within a monorepo. These custom rules, tailored to the

specific requirements and characteristics of your codebase,

allow for more granular control over the build process. In

performance-critical scenarios, such as builds that involve

heavy computational tasks or large data processing, custom

rules can significantly reduce build times. They achieve this

by optimizing the way dependencies are handled and by

streamlining the execution of complex tasks. The key lies in

understanding the specific bottlenecks of your build process

and crafting rules that directly mitigate these inefficiencies.

When designing these rules, it’s essential to focus on

maximizing the reuse of build outputs and minimizing

redundant computations. This involves a deep

understanding of the dependencies within your codebase

and the interplay between different components during the

build process. By creating rules that accurately reflect these

dependencies and efficiently orchestrate the build tasks,

you can achieve significant performance gains.

Optimizing Existing Build Rules for

More Efficient Execution

While developing new custom rules is important, optimizing

existing build rules plays an equally critical role in

enhancing build performance. Within a monorepo

environment, where numerous projects and components

coexist, ensuring that existing build rules are optimized for

this complex environment is paramount. This optimization

often involves refactoring rules to reduce their

computational overhead, improve their cacheability, and

enhance their parallelizability.

One effective strategy is to analyze and refactor the inputs

and outputs of existing rules. By precisely defining what

constitutes an input and an output for each rule, you can

avoid unnecessary rebuilds triggered by changes unrelated

to the rule’s actual dependencies. This technique not only

enhances the efficiency of individual builds but also

contributes to a more streamlined overall build process.

Moreover, in monorepo environments, it’s crucial to ensure

that build rules are scalable and adaptable to the evolving

size and complexity of the codebase. This may involve

modularizing complex rules into smaller, more manageable

components or designing rules that can dynamically adjust

their behavior based on the context of the build.

Performance Optimization for

Monorepo Builds

One of the crucial aspects of maintaining efficiency is the

integration of Bazel builds within CI/CD pipelines. This

integration is not merely about ensuring that Bazel runs

within these systems but optimizing the entire process to

leverage the strengths of both Bazel and the CI/CD

ecosystem for maximum efficiency and reduced build times.

A pivotal strategy in this integration lies in understanding

and manipulating the way Bazel handles dependencies and

artifacts within the CI/CD workflows. Traditional CI/CD

systems often operate under the assumption of starting

from a clean slate, which can lead to redundant

computation and time wastage, especially in the context of

large monorepos where dependencies can be extensive and

complex. To mitigate this, one must tailor the CI/CD

environment to recognize and utilize Bazel’s powerful

dependency analysis and incremental build capabilities.

The key is to configure the CI/CD system to maintain a

persistent workspace where Bazel can operate. This setup

allows Bazel to effectively utilize its incremental build

features, as the build system can quickly identify changes

and rebuild only the necessary parts of the project. Such an

approach drastically reduces build times compared to

traditional full rebuilds. Furthermore, it’s essential to ensure

that the CI/CD system correctly handles the caching of

Bazel’s output. Effective cache utilization not only speeds up

the build process but also minimizes network traffic, which

is especially beneficial in distributed CI/CD environments.

Handling dependencies in CI/CD pipelines also requires a

strategic approach. In the context of a monorepository,

changes in one part of the repository can potentially affect

several other parts. Efficient handling of these

dependencies means that the CI/CD system, in conjunction

with Bazel, needs to precisely identify and act upon these

interdependencies. This process involves setting up the

CI/CD system to trigger builds and tests based on the

dependency graph calculated by Bazel. Such an approach

ensures that any change in the repository triggers a

targeted and efficient CI/CD process, reducing the workload

on the servers and speeding up the feedback loop to

developers.

Moreover, the management of artifacts within the CI/CD

pipelines plays a significant role. Bazel’s ability to create

reproducible builds means that the artifacts from one build

can be reliably reused in subsequent ones. In this context,

the CI/CD system should be configured to efficiently store

and retrieve these artifacts. This setup involves creating a

robust artifact management system that can quickly provide

the necessary build outputs, thus avoiding redundant builds

and saving significant time.

Writing Efficient Starlark Code

Efficient Starlark coding begins with an understanding of its

operational semantics and how they interact with Bazel’s

build system. Unlike general-purpose programming

languages, Starlark is designed with a specific focus on

configuration, which necessitates a different approach to

efficiency. One crucial aspect is the minimization of

computational complexity within Starlark functions.

Developers should aim to reduce the amount of

computation during the loading phase, as heavy

computations can slow down the build process significantly.

Another aspect to consider is the reuse of results.

Leveraging immutability in Starlark, developers should

structure their code to reuse previously computed values

rather than recalculating them. This practice not only

speeds up the build process but also ensures consistency

across builds. Moreover, efficient data structures that align

with Starlark’s strengths should be chosen. For instance,

sets and dictionaries in Starlark are often more

performance-efficient than lists, especially for membership

tests and deduplication tasks.

Profiling and Optimizing Starlark

Scripts

Profiling Starlark scripts in the context of large-scale builds

is a critical step in performance optimization. Bazel provides

tools that enable developers to measure the execution time

of Starlark rules and functions. By utilizing these tools,

developers can pinpoint performance bottlenecks in their

build configurations.

Once bottlenecks are identified, optimization strategies can

be employed. This involves restructuring code for better

performance, such as breaking down large functions into

smaller, more manageable pieces or optimizing the order of

operations to minimize the build graph’s complexity. In

some cases, it may also mean rethinking the approach to

certain build tasks, perhaps by simplifying configurations or

finding alternative methods that are more efficient in the

context of Starlark and Bazel.

Moreover, it’s essential to continuously monitor the

performance impact of any changes in Starlark scripts. This

ongoing process of profiling, optimizing, and testing ensures

that as the monorepo evolves, the build system remains as

efficient as possible, effectively handling the scaling

challenges posed by large codebases.

Structuring Monorepos in Version

Control Systems

The layout of a monorepo in a version control system

significantly influences the build performance. A well-

structured monorepo should logically separate components

and services while maintaining a coherent overall

architecture. This separation facilitates selective building

and testing of components, reducing the build time by

avoiding unnecessary recompilation of unrelated parts of

the codebase. The key is to understand the

interdependencies within the codebase and organize the

repository in a way that reflects these relationships. By

doing so, Bazel can more effectively determine which parts

of the codebase need to be rebuilt in response to a

particular set of changes, thus optimizing the build process.

Another aspect of structuring involves the granularity of the

build targets. A monorepo should be organized with

sufficiently granular build targets to allow Bazel to cache

and reuse as much as possible. Despite this, too fine

granularity can lead to an overwhelming number of targets,

complicating the build graph and potentially slowing down

the build process. Striking the right balance is key:

sufficiently granular to leverage Bazel’s caching effectively,

but not so granular as to overcomplicate the build graph.

Managing Source Code Changes

The manner in which changes are managed and integrated

into a monorepo also affects build performance. Continuous

integration practices play a critical role here. Ideally,

changes should be integrated frequently and in smaller

increments. This practice not only facilitates easier code

reviews and quicker identification of issues but also limits

the scope of what needs to be rebuilt and tested with each

change. By reducing the footprint of each change, the build

system can run more efficiently, as it has fewer files to

consider and can more effectively utilize cached results.

Moreover, the use of feature flags or conditional code paths

can be an effective way to introduce changes without

triggering widespread builds. By toggling features at

runtime rather than compile time, developers can introduce

changes in a more controlled and less disruptive manner.

This approach allows for testing new features in isolation

and gradually rolling them out, which can mitigate the

impact on the overall build performance.

Conclusion

In this chapter, we learned that managing large codebases,

particularly in the context of monorepos, is a multifaceted

challenge that demands a comprehensive understanding

and strategic application of various advanced techniques.

Throughout this chapter, we have explored a breadth of

complex topics, ranging from the intricacies of handling

internal and external dependencies, integrating third-party

libraries, and employing advanced modularization strategies

to the nuances of code sharing, organization, and

readability. We delved into the complexities of managing

inter-module dependencies, fostering an efficient

collaborative environment, and refining branching, merging,

and code review practices to minimize conflicts and build

breakages. A significant emphasis was placed on

performance optimization within monorepo builds,

underscoring the importance of configuring remote build

execution, leveraging caching strategies, and harnessing

Bazel’s profiling tools to pinpoint and rectify inefficiencies.

The chapter also highlighted the critical role of writing and

optimizing Starlark code, structuring monorepos for optimal

version control, and managing source code changes

effectively. By navigating these challenges and employing

best practices, developers and teams can effectively

manage and scale large codebases, ensuring efficient,

maintainable, and high-performing software development

processes.

The next chapter will guide us through optimizing Docker

builds, highlighting techniques to enhance efficiency and

reduce resource usage. It will address the intricacies of API

dependency management in a microservices architecture,

ensuring seamless and scalable inter-service interactions.

Furthermore, we’ll explore the principles of software

configuration management and the orchestration of

microservices within a monorepo, emphasizing streamlined

workflows and maintainability in complex development

environments.

Recommended Reading

For advanced readers familiar with Bazel, Monorepos, and

Dependency Management in Bazel, the following online

resources provide deeper insights into managing large

codebases and scale.

Dealing with Large Monorepo Codebases

Mastering Monorepo: Streamlining Development for

Large Codebases - This article discusses the structure of a

monorepo, its benefits, and how companies like Google,

Microsoft, and Meta leverage monorepos for simplified

version control, improved code reuse, and streamlined

development.

https://www.connectingpointstech.com/blog/mastering-

monorepo-streamlining-development-for-large-codebases

https://www.connectingpointstech.com/blog/mastering-monorepo-streamlining-development-for-large-codebases

Advanced Strategies for Collaborative Environment

Management

How do modern software teams manage vast

amounts of the codebase? - Cloud2Data’s article

provides strategies for efficient codebase management,

focusing on version control systems, modularization,

documentation, testing, refactoring, and the benefits of

effective codebase management for productivity and

collaboration. https://cloud2data.com/how-do-modern-

software-teams-manage-vast-amount-of-codebase/

Performance Optimization for Monorepo Builds

Improving Large Monorepo Performance on GitHub -

This GitHub Blog post details Project Cyclops and the

various improvements made to enhance monorepo push

performance. It covers repository maintenance, `git repack`

optimizations, removing artificial limits, and precomputing

checksums to improve efficiency. https://github.blog/2021-

03-16-improving-large-monorepo-performance-on-github/

Each of these resources offers advanced insights and

practical solutions for managing large codebases and

optimizing performance in a monorepo setting, especially

valuable for teams already familiar with Bazel and related

technologies.

https://cloud2data.com/how-do-modern-software-teams-manage-vast-amount-of-codebase/
https://github.blog/2021-03-16-improving-large-monorepo-performance-on-github/

CHAPTER 10

Building and Deploying

Services

Introduction

In this chapter, we will dive into the sophisticated realm of

service construction and deployment within the context of

Bazel, a tool already familiar to our readers. This chapter is

tailored for those seeking to master advanced techniques

and methodologies. We will explore the optimization of the

Docker builds through a combination of fine-grained targets,

the utilization of OCI (Open Container Initiative) images, and

a layered approach to OCI image building and exporting.

Special emphasis is placed on exploiting parallelization and

caching to enhance build efficiency. The chapter then shifts

focus to API dependency management, addressing the

intricacies of managing transitive dependencies, devising

robust API versioning strategies, and implementing

automated updates. In the domain of software configuration

management, we tackle dynamic configuration using Bazel,

the management of environment-specific configurations,

and the critical aspect of securing configuration data. Lastly,

we navigate the complex landscape of orchestrating

microservices within a Monorepo. Here, we cover advanced

orchestration techniques, the strategic implementation of

feature toggling, and the integration of monitoring tools

coupled with auto-scaling strategies. Each section not only

provides in-depth analysis but also includes practical

examples, reinforcing the understanding of how these

advanced practices can be effectively applied in real-world

scenarios.

Structure

In this chapter, we will cover the following topics:

Optimizing Docker Builds

API Dependency Management in Microservices

Software Configuration Management

Orchestrating Microservices in a Monorepo

Optimizing Container Images Builds

In the domain of Container images builds, leveraging Bazel’s

robust caching and parallelization capabilities stands as a

crucial strategy for optimizing build times and efficiency.

Bazel’s cache can be effectively utilized to store and

retrieve intermediate build outputs, thus significantly

reducing redundant build steps in Container image creation.

This approach becomes especially powerful in a continuous

integration environment, where builds are frequent, and

minimal changes occur between them.

To implement this, developers should structure their Bazel

build files (BUILD.bazel) to define fine-grained targets. By

doing so, changes in source code impact only the related

Container layers, leading to efficient use of Bazel’s cache.

For instance, segregating application source code from

dependencies in different Bazel targets can ensure that a

change in the source code does not necessitate a re-

fetching of all dependencies.

Moreover, Bazel’s parallelization capabilities can be

harnessed by defining multiple build targets that can be

built or tested simultaneously. This is particularly effective in

multi-service architectures, where each service can be built

in isolation and parallel, thereby reducing overall build

times.

To demonstrate the implementation of the aforementioned

strategies for optimizing OCI image builds using Bazel, let’s

consider a multi-service, multi-library Java project. In this

coding example, we’ll create a scenario with multiple

services and libraries, demonstrating how to optimize

Container builds using Bazel with a focus on caching,

parallelization, and the use of OCI images. Open Container

Initiative (OCI) images are advantageous as they provide a

standardized and open specification for container image

formats, ensuring consistency and interoperability across

different container runtime environments. This example is

available at examples that can be found in the GitHub

repository at https://github.com/OrangeAVA/Building-Large-

Scale-Apps- with-Monorepo-and-Bazel, specifically within the

/chapter-10/bazel_optimizing _docker_builds folder.

Imagine a project with the following structure:

.

├── BUILD.bazel

├── MODULE.bazel

├── WORKSPACE

├── maven_install.json

├── libraries

│ └── lib1

│ ├── BUILD.bazel

│ └── src/main/java/com/lib1/Lib1.java

└── services

 ├── service1

 │ ├── BUILD.bazel

 │ └── src/main/java/com/service1

 │ ├── Main.java

 │ └── Service1.java

 └── service2

 ├── BUILD.bazel

 └── src/main/java/com/service2

 ├── Main.java

 └── Service2.java

Each service and library has its own BUILD.bazel file.

load(“@aspect_bazel_lib//lib:tar.bzl”, “tar”)

load(“@rules_oci//oci:defs.bzl”, “oci_image”, “oci_tarball”)

java_binary(

name = “build”,

srcs = glob([

“src/main/java/**/*.java”,

]),

main_class = “com.service1.Main”,

resources = glob([“src/main/resources/*.*”]),

visibility = [“//visibility:public”],

deps = [

“//libraries/lib1:build”,

],

)

tar(

name = “build_layer”,

srcs = [“:build_deploy.jar”],

)

oci_image(

name = “build_oci_image”,

base = “@distroless_java”,

entrypoint = [

“java”,

“-jar”,

“services/service1/build_deploy.jar”,

],

tars = [“:build_layer”],

)

oci_tarball(

name = “build_oci_image_tar”,

image = “:build_oci_image”,

repo_tags = [“service1:latest”],

)

The following detailed explanation unpacks the intricacies of

this setup, demonstrating how each component contributes

to an optimized and streamlined build and deployment

process for a Java service within a multi-service

architecture.

Fine-grained Targets

The `java_binary` rule defines a target named `build` for the

Java service (`service1`). This encapsulates the Java

service’s build process, ensuring that changes in the

service’s Java source code only trigger rebuilds for this

specific target. By segregating the Java service build from

other parts of the project, Bazel’s cache is used efficiently.

Use of OCI Images

The `oci_image` rule is used to create an OCI-compliant

container image (`build_oci_image`) for the Java service. The

`base` attribute specifies the base image as

`@distroless_java`, which is a minimal base image optimized

for Java applications. By using OCI (Open Container

Initiative) standards, the container image ensures

compatibility and consistency across different container

runtimes.

Layered Approach

The `tar` rule creates a tarball (`build_layer`) containing the

deployable JAR file (`build_deploy.jar`). This layering

approach allows for efficient use of Container layer caching,

as changes in the application code result in changes only in

this specific layer, rather than the entire image.

OCI Image Building and Exporting

The `oci_image` rule builds the container image,

incorporating the JAR file and specifying the entrypoint for

running the Java application. This step integrates the

application with the container runtime environment.

The `oci_tarball` rule exports the OCI image

(`build_oci_image`) as a tarball (`build_oci_image_tar`),

facilitating easy distribution and deployment of the

container image. The `repo_tags` attribute tags the image,

making it straightforward to identify and deploy the correct

version.

Parallelization and Caching

Parallelization and Efficiency: Bazel’s ability to build

targets in parallel is leveraged here, where dependencies

are managed, and parallelizable tasks are executed

concurrently, reducing overall build time.

Bazel’s caching is effectively used to store intermediate

outputs of the build process. When the Java service or its

dependencies are rebuilt, Bazel retrieves the cached

outputs if the source code and dependencies haven’t

changed, minimizing redundant build steps.

Running the Example

To run the example provided in the advanced Bazel setup

for building and deploying a Java-based service, follow these

steps. These commands demonstrate how to create an OCI

(Open Container Initiative) compliant Container image from

the Bazel build, load it into Container, and then run it as a

container.

1. Building the OCI Image as a Tar File with Bazel:

Use the command bazel build

//services/service1:build_oci_image_tar.

This command instructs Bazel to build the

build_oci_image_tar target located in the service1

directory under services.

The target is configured to create an OCI-compliant

image of the service, packaged as a tar file. Bazel

performs the necessary steps to compile the Java

application, package it into a JAR file, build the OCI

image, and finally package the image into a tarball.

2. Loading the OCI Image into Docker:

After the build process is complete, the OCI image

tar file is located at bazel-

bin/services/service1/build_oci_image_tar/tarball.tar.

To load this image into Docker, use the command

docker load -i bazel-

bin/services/service1/build_oci_image_tar/tarball.tar.

This command tells Docker to load the image from

the specified tar file. Docker unpacks the tarball and

stores the image locally, making it available for

running as a container.

3. Running the Container:

Once the image is loaded into Docker, you can start

a container from this image using the command

docker run --name s1 service1:latest yourname.

Here, docker run is the command to run a new

container.

--name s1 assigns the name s1 to the running

container for easy reference.

service1:latest specifies the image to use for the

container, in this case, the latest version of the

service1 image.

Finally, yourname is passed as an argument to the

container;

4. To push the Container:

To push the image to a registry, we use the

container_push rule. Following is an example of how

to define this rule in your BUILD file:

load(“@io_bazel_rules_docker//container:container.bzl”

, “container_push”)

container_push(

name = “push_hello_world_image”,

image = “:hello_world_image”,

format = “Docker”,

registry = “gcr.io”,

repository = “my_project/hello_world”,

tag = “latest”,

)

This rule pushes the hello_world_image to the

gcr.io/my_project/hello_world repository with the

latest tag.

Finally, to build and push your image, run the

following command in your terminal:

bazel run //path/to/directory:push_hello_world_image

This command triggers Bazel to build the

hello_world_image and then push it to the specified

container registry.

In summary, this Bazel setup for a Java service

demonstrates an advanced approach to building and

containerizing applications, emphasizing the efficient use of

fine-grained targets, OCI standards, layered Container

builds, and the powerful caching and parallelization

capabilities of Bazel.

API Dependency Management in

Microservices

We will explore techniques and best practices in the realm

of API dependency management. This includes managing

transitive dependencies with precision, implementing robust

API versioning strategies to ensure seamless and

backwards-compatible transitions, and harnessing the

power of automated tools to keep API dependencies

updated and secure.

Managing Transitive Dependencies

The management of transitive dependencies in a

microservices architecture is a complex task, primarily due

to the interconnected nature of microservices and the

varied dependencies they may have. When dealing with

Bazel operating within a monorepo setting, it is crucial to

have a robust strategy for handling these dependencies,

especially considering versioning and conflict resolution.

One effective technique is the use of Bazel’s dependency

rules to explicitly define and isolate dependencies. This can

be done through WORKSPACE and BUILD files, where

dependencies are declared and versions are specified.

For instance, consider a scenario where Service A depends

on Library X and Service B also depends on Library X but

requires a different version. In such cases, Bazel can be

configured to handle these version conflicts. Utilizing

`select()` statements in BUILD files allows the build system

to choose the appropriate version of the library based on

the context of the build target.

java_library(

name = “service_a_deps”,

deps = select({

“@//conditions:service_a”: [“@lib_x//:v1”],

“//conditions:default”: [],

}),

)

java_library(

name = “service_b_deps”,

deps = select({

“@//conditions:service_b”: [“@lib_x//:v2”],

“//conditions:default”: [],

}),

)

In this example, `select()` is used to specify which version

of Library X should be used depending on the service being

built. This ensures that each service gets the correct version

of the library, thereby managing transitive dependencies

effectively.

API Versioning Strategies

API versioning is pivotal in ensuring backward compatibility

and facilitating smooth transitions between different

versions of services. When working with a monorepository

structure setup, API versioning can be handled through a

combination of Bazel’s build rules and thoughtful

architectural design. One approach is to use semantic

versioning for APIs, which involves modifying the major

version number when introducing breaking changes, the

minor version for new features, and the patch version for

bug fixes.

To enforce this in the framework of a monorepository

system, directories and build targets can be named

according to their API versions. For instance, having

separate directories for v1 and v2 of an API with

corresponding Bazel build targets ensures that changes to

one version do not inadvertently affect another. This

separation can be mirrored in the service’s endpoints,

allowing clients to choose which API version to interact with.

my_service/

├── v1/

│ └── BUILD

└── v2/

 └── BUILD

Each BUILD file within these directories can define the build

process for that specific version of the API, ensuring

isolation and clarity in version management.

Automated Dependency Updates

Keeping dependencies up-to-date and secure is a critical

aspect of managing microservices. Bazel can be integrated

with automated tools to ensure that dependencies are

consistently updated. One such tool is Renovate or

Dependabot, which can be configured to scan your

Monorepo and create pull requests with updated

dependency versions.

In conjunction with these tools, Bazel rules can be written to

validate these updates. For example, you can create a Bazel

rule that runs your test suite against the updated

dependencies. This rule can be triggered automatically

when a new pull request is created by the dependency

update tool.

genrule(

name = “dependency_update_test”,

srcs = glob([“**”]),

cmd = “$(location //my_service:test_suite) && $(location

@//tools:dependency_validator)”,

tools = [“//my_service:test_suite”,

“@//tools:dependency_validator”],

)

In this code snippet, the `genrule` is used to run the test

suite defined in `//my_service:test_suite` and a hypothetical

dependency validator tool whenever there is a change in

the source files, which would include dependency updates.

This setup ensures that any updates to dependencies are

automatically tested, helping maintain the stability and

security of your microservices.

Software Configuration Management

Dynamic configuration with Bazel

In the field of software configuration management,

particularly within a microservice architecture, Bazel stands

out for its ability to handle dynamic configurations. The key

advantage lies in Bazel’s capability to manage and integrate

diverse configurations that evolve over time, especially in a

multi-service environment. This dynamism is achieved

through the strategic use of Bazel’s `select` function,

allowing configurations to adapt based on specified

conditions. For instance, consider a scenario where different

microservices need varied logging levels. In Bazel, one can

define a `logging_level` configuration, and then use the

`select` function to dynamically assign different values

based on the target microservice:

config_setting(

name = “debug_logging”,

values = {“logging_level”: “debug”},

)

java_binary(

name = “service_a”,

srcs = [“ServiceA.java”],

deps = [“//lib:logging”],

java_opt = select({

“:debug_logging”: [“-Dlogging.level=DEBUG”],

“//conditions:default”: [],

}),

)

In this example, `ServiceA.java` receives a debug logging

level based on the configuration setting. Such dynamic

configuration enhances flexibility and reduces the rigidity

often encountered in managing microservices.

Managing environment-specific configurations

The challenge of handling different configurations for

development, testing, and production environments is

adeptly addressed by Bazel. The principle here is to define

environment-specific build targets or use Bazel’s `--config`

option to switch between different build configurations. This

method is more advanced and scalable than maintaining

separate configuration files for each environment. By

integrating these configurations directly into the build

system, developers can seamlessly switch contexts and

ensure that the right configurations are applied for each

environment.

For instance:

bazel build //my/service:service_binary --config=dev

bazel build //my/service:service_binary --config=prod

In the preceding commands, `--config=dev` and `--

config=prod` refer to different sets of build options defined in

the `.bazelrc` file. These options can include specific

compiler flags, build variables, or anything else that needs

to vary between environments.

Securing configuration data

Securing sensitive configuration data within a Monorepo is a

critical aspect of software configuration management. Bazel

aids in this by isolating sensitive data and ensuring that it is

not inadvertently included in the build artifacts. One

advanced strategy involves using Bazel’s capabilities to

reference external files or environment variables at build

time, rather than hard-coding sensitive data. This method

ensures that sensitive information, such as API keys or

database credentials, remains outside the codebase and is

only referenced when necessary. For example:

java_binary(

name = “service_b”,

srcs = [“ServiceB.java”],

data = [“//:sensitive_config”],

jvm_flags = [“-Dconfig.file=$(location :sensitive_config)”],

)

In this snippet, `//:sensitive_config` is a reference to an

external file containing sensitive configuration data. The file

is not included in the source but is referenced at runtime,

ensuring that sensitive data is securely managed and not

exposed within the Monorepo.

SOPS (“Secrets OPerationS”) is an open-source tool that

provides secure, flexible, and user-friendly ways to manage

secrets. It enables the encryption and decryption of files,

ensuring that sensitive information like passwords, API keys,

or certificates can be securely stored in version control

systems without exposing them in plain text. This is crucial

for maintaining the security and integrity of software

projects, especially in a collaborative environment.

Integrating sops with Bazel can enhance the security of your

build and deployment processes by ensuring that secrets

are only accessible to authorized personnel and systems. In

a Bazel project, you can use sops to encrypt secret files and

store them alongside your source code. When Bazel runs a

build or deployment task, it can be configured to

automatically decrypt these files using sops, injecting the

necessary secrets into the environment or making them

available to the application at runtime. This process can be

automated and tightly controlled, ensuring that secrets are

handled securely throughout the build and deployment

pipeline. By integrating sops with Bazel, developers can

achieve a seamless and secure workflow, where the

management of secrets is both efficient and robust, aligning

with best practices in software development and

deployment.

In conclusion, advanced software configuration

management with Bazel in a microservice architecture

demands a deep understanding of Bazel’s capabilities to

handle dynamic configurations, manage environment-

specific settings, and secure sensitive data. The examples

provided demonstrate Bazel’s robustness in addressing

these challenges, ensuring that configurations are both

flexible and secure, aligning with the demands of modern

software development practices.

Orchestrating Microservices in a

Monorepo

Orchestrating microservices within a Monorepo using Bazel

involves sophisticated techniques that go beyond basic

setup and deployment. This section delves into the intricate

aspects of generating Helm charts to model microservice

dependencies, the implementation of feature toggling, and

the integration of monitoring and auto-scaling strategies.

Advanced Microservice Orchestration

Techniques

With the monorepo approach, managing the relationships

and dependencies between microservices is crucial for a

streamlined workflow. Bazel, with its fine-grained

dependency management, can be extended to generate

Helm charts, which serve as templates for deploying

applications in a Kubernetes environment. By automating

the generation of Helm charts, teams can ensure that the

deployment configuration stays in sync with the codebase.

For instance, consider a setup where a Bazel rule generates

a Helm chart based on the BUILD files in the repository. This

rule could look for specific tags or attributes in the BUILD files

to determine the deployment properties of each service.

Here’s an example of how such a rule might be defined:

Define a rule in a Bazel BUILD file to generate a Helm chart

helm_chart(

name = “my_service_chart”,

srcs = glob([“**/*.yaml”]),

deps = [“:my_service”],

chart_name = “my-service”,

version = “1.0.0”,

)

In this code, `helm_chart` is a custom rule that takes the

source YAML files, dependencies, and chart details to

produce a Helm chart for ‘my_service’. This approach allows

developers to define deployment configurations alongside

their code, reducing the risk of mismatches between the

service code and its deployment specifications.

Feature Toggling

Feature toggling is an advanced technique that allows

teams to dynamically enable or disable features in a live

environment without redeploying the application. In a Bazel-

managed Monorepo, feature toggles can be implemented as

configurable build targets. This allows for the inclusion or

exclusion of certain features at build time based on the

specified configuration.

As an example, a feature toggle could be implemented in

Bazel as follows:

Example of a feature toggle in a Bazel BUILD file

config_setting(

name = “experimental_feature”,

values = {“define”: “experimental_feature=true”},

)

cc_binary(

name = “my_service”,

srcs = [“main.cc”],

deps = select({

“:experimental_feature”:

[“@experimental_feature//path:lib”],

“//conditions:default”: [],

}),

)

In this snippet, `config_setting` creates a configuration

option for the experimental feature. The `cc_binary` rule

then uses `select` to conditionally include the experimental

feature’s dependencies based on the configuration.

Monitoring and Scaling Microservices

Integrating monitoring tools and implementing auto-scaling

strategies are essential for maintaining the performance

and reliability of microservices. In a Bazel-powered

Monorepo, one can leverage Bazel’s ability to handle

external dependencies and tool integrations to set up

monitoring and scaling mechanisms.

For instance, Bazel can be used to automate the

deployment of monitoring agents alongside the services.

The configuration for these agents can be defined in the

Monorepo and linked to the service deployments.

Additionally, Bazel can interact with cloud provider APIs or

Kubernetes to implement auto-scaling rules based on the

monitoring data.

A simplified example of integrating a monitoring tool might

involve defining a Bazel rule that deploys a monitoring

agent:

Bazel rule to deploy a monitoring agent

k8s_object(

name = “monitoring_agent_deployment”,

template = “:monitoring_agent_template.yaml”,

substitutions = {“{{image}}”: “@monitoring_agent//:image”},

)

In this example, `k8s_object` is a rule that takes a

Kubernetes object template (in this case, a deployment

template for a monitoring agent) and applies substitutions,

such as the Docker image for the agent.

In conclusion, orchestrating microservices in the setting of a

monorepository with Bazel requires a deep integration of

deployment, feature management, and operational tools. By

leveraging Bazel’s capabilities for generating deployment

configurations, managing feature toggles, and integrating

with monitoring and scaling tools, teams can achieve a high

degree of automation and consistency in their microservice

architecture. This not only enhances operational efficiency

but also ensures that the services are robust, scalable, and

maintainable.

Conclusion

In this chapter, we explored a range of advanced topics

essential for building and deploying services using Bazel

within a Monorepo environment. Starting with the

optimization of Docker builds, we delved into fine-grained

targets and the utilization of OCI images to achieve a

layered approach in containerization. We addressed the

nuances of OCI image building and exporting, highlighting

how Bazel’s capabilities in parallelization and caching can

significantly enhance build efficiency. The importance of

understanding and managing transitive dependencies in

microservices was emphasized, alongside strategies for API

versioning and the necessity for automated dependency

updates to maintain robust and secure systems. In the world

of software configuration management, we focused on

dynamic configurations and the challenges of managing

environment-specific configurations, not overlooking the

critical aspect of securing configuration data. Finally,

orchestrating microservices within a Monorepo was

discussed in depth, covering advanced techniques such as

generating Helm charts, implementing feature toggling, and

integrating monitoring tools for scaling microservices

effectively.

The integration of these advanced techniques and practices

underscores the power and flexibility of Bazel in handling

the complexities of modern service-oriented architectures.

By leveraging Bazel’s strengths considering a

monorepository, developers and teams can achieve more

streamlined, efficient, and reliable build and deployment

processes. This not only fosters a more productive

development environment but also contributes to the

stability and scalability of the services being deployed. As

we move forward, the continuous evolution of these

practices and the adaptation to emerging technologies will

remain paramount in maintaining the efficacy and relevance

of these methodologies in the dynamic landscape of

software development.

In the next chapter, we will focus on enhancing Bazel’s

performance, starting with how to monitor and interpret

build metrics. We will delve into advanced remote caching

and execution to improve build efficiency, explore targeted

debugging techniques for Bazel rules, and conclude with

performance-tuning strategies for large-scale Monorepos.

This chapter aims to equip you with practical skills to

optimize your Bazel builds, ensuring faster, more efficient

development workflows.

Recommended Reading

To further enhance your understanding and skills in

managing large codebases and scaling with Bazel, here are

some recommended online resources that align with the

advanced topics covered as you read through this chapter:

Optimizing Docker Builds with Bazel

Bazel’s Docker Rules: Advanced Usage: An in-depth guide

on optimizing Docker builds using Bazel’s Docker rules. -

https://github.com/bazelbuild/rules_docker

Understanding Fine-Grained Targets in Bazel

Bazel’s Target Granularity for Large Codebases: Detailed

documentation on the concept and benefits of fine-grained

targets in Bazel. -

https://docs.bazel.build/versions/main/build-ref.html#target

Use of OCI Images and Layered Approach

Working with OCI Images in Bazel: A comprehensive blog

post covering the use of OCI images in Bazel and

implementing a layered approach. -

https://blog.bazel.build/2019/03/19/docker-rules.html

OCI Image Building and Exporting Techniques

Building and Exporting OCI Images with Bazel: A series of

articles providing insights into effective OCI image building

and exporting strategies with Bazel. -

https://www.ianlewis.org/en/tag/bazel

Strategies for Parallelization and Caching in Bazel

Improving Build Performance with Bazel: Official

documentation on maximizing build performance through

parallelization and caching. -

https://docs.bazel.build/versions/main/build-

performance.html

Advanced API Dependency Management in

Microservices

Managing Dependencies in Microservices: Martin Fowler’s

article on the complexities and best practices for managing

dependencies in microservices. -

https://martinfowler.com/articles/microservice-

testing/#conclusion-contract

https://github.com/bazelbuild/rules_docker
https://docs.bazel.build/versions/main/build-ref.html#target
https://blog.bazel.build/2019/03/19/docker-rules.html
https://www.ianlewis.org/en/tag/bazel
https://docs.bazel.build/versions/main/build-performance.html
https://martinfowler.com/articles/microservice-testing/#conclusion-contract

Dynamic Configuration Management with Bazel

Dynamic Configuration in Bazel: A blog post exploring

dynamic configuration techniques in large codebases, using

Envoy as an example. - https://blog.envoyproxy.io/dynamic-

configuration-in-envoy-7f8f498e663a

Securing Configuration Data in a Monorepo

Secure Configuration Management in Monorepos: A Google

Cloud blog discussing best practices for securing sensitive

configuration data in large-scale projects. -

https://cloud.google.com/blog/products/identity-

security/keeping-your-secrets-secret

Advanced Microservice Orchestration Techniques

Helm Chart Generation with Bazel: An article providing

insights into generating Helm charts for microservices using

Bazel. - https://helm.sh/blog/helm-3-preview-charting-our-

future-part-2-helm/

Implementing Feature Toggling in Large Codebases

Feature Toggles (also known as Feature Flags): Martin

Fowler’s comprehensive guide on implementing feature

toggles in complex software systems. -

https://martinfowler.com/articles/feature-toggles.html

Monitoring and Scaling Microservices with Bazel

Scaling Microservices with Bazel: An InfoQ article discussing

strategies for monitoring and scaling microservices in a

Bazel environment. -

https://www.infoq.com/articles/microservices-bazel/

These resources provide a deeper dive into the specific

topics of managing large codebases and scaling,

complementing the information covered through these

pages. They offer practical insights and case studies that

can help solidify your understanding and application of

these advanced concepts.

https://blog.envoyproxy.io/dynamic-configuration-in-envoy-7f8f498e663a
https://cloud.google.com/blog/products/identity-security/keeping-your-secrets-secret
https://helm.sh/blog/helm-3-preview-charting-our-future-part-2-helm/
https://martinfowler.com/articles/feature-toggles.html
https://www.infoq.com/articles/microservices-bazel/

CHAPTER 11

Monitoring and Debugging

Bazel

Introduction

In this chapter, we will deep dive into the nuances of

harnessing Bazel’s full potential for building and deploying

complex software systems efficiently. With an emphasis on

advanced users familiar with Bazel, monorepos, and its

dependency management, we explore sophisticated topics

ranging from monitoring Bazel performance to the

intricacies of debugging custom Bazel rules. We will address

the critical aspects of interpreting and visualizing profiling

data to identify performance bottlenecks, alongside the

utilization of custom scripts and command-line tools for in-

depth analysis. The chapter also covers the conversion of

Bazel’s Build Event Protocol (BEP) output into formats

compatible with systems like Prometheus, facilitating

seamless integration into existing monitoring frameworks.

We will delve into the development of automated tests for

performance regression, benchmark implementation, and

the continuous monitoring of performance metrics. A

significant focus is placed on advanced strategies for

remote caching and execution, including monitoring cache

hit rates, diagnosing cache inefficiencies, and optimizing

remote execution. Additionally, we will provide a

comprehensive guide on debugging techniques for Bazel

rules, leveraging Starlark’s debugging capabilities, and

implementing best practices for logging and error handling.

Lastly, the chapter concludes with insights into performance

tuning for large-scale monorepos, offering advanced

configuration settings, strategies for scalability, and case

studies that showcase performance improvements in

complex projects, embodying the essence of efficient and

effective service building and deployment with Bazel.

Structure

In this chapter, we will cover the following topics:

Monitoring Bazel Performance

Advanced Usage of Remote Caching and Execution

Debugging Techniques for Bazel Rules

Performance Tuning for Large-scale Monorepos

Monitoring Bazel Performance

The Bazel build system offers a powerful tool for

performance monitoring through the `--profile` flag. This

flag generates a detailed profile of the build process,

providing invaluable insights into the execution time and

resource utilization of various build tasks. To leverage this

tool, developers must append `--profile=<file-path>` to their

Bazel build commands, where `<file-path>` is the desired

location for the output profile. For instance, `bazel build

//my:target --profile=/tmp/my_build.profile` will initiate a

build of `//my:target` and generate a profile at

`/tmp/my_build.profile`.

The generated profile is a binary file, which can be analyzed

using Bazel’s built-in analysis tool, `bazel analyze-profile`.

This command parses the binary profile and produces a

human-readable report. As an illustration, executing `bazel

analyze-profile /tmp/my_build.profile` will display a

comprehensive breakdown of the build process, highlighting

the time spent in various activities such as fetching

dependencies, executing build rules, and more.

Interpreting Profiling Data for

Performance Bottlenecks

Interpreting the data from Bazel’s profiling tools requires an

understanding of the various phases and activities involved

in a build process. The profiling report segments the build

into phases like initialization, analysis, execution, and

completion. Within these phases, it details the time spent on

individual actions, such as compiling source files, running

tests, or fetching remote dependencies.

The key to identifying performance bottlenecks lies in

focusing on the longest-running tasks. To give you an idea, if

the report indicates that a significant amount of time is

spent in the analysis phase, it may suggest inefficiencies in

how dependencies are structured or in the complexity of the

build rules. Similarly, extended execution times for specific

build targets could indicate issues with those targets’ rules

or source code. By pinpointing the phases and actions

consuming the most time, developers can target their

optimization efforts more effectively.

Utilizing Custom Scripts to Parse and

Analyze Profile Data

While `bazel analyze-profile` provides a good overview,

developers dealing with complex builds may require deeper

analysis. For this purpose, custom scripts can be employed

to parse and analyze profile data. These scripts can convert

the binary profile data into other formats, like JSON or CSV,

facilitating more detailed analysis using data processing

tools.

For example, a Python script could be written to parse the

binary profile and extract key metrics such as the execution

time of each target or the total time spent fetching remote

resources. This script could then aggregate this data to

identify common patterns or outliers in the build process.

For instance:

import bazel_profiler

Parse the Bazel profile

profile_data =

bazel_profiler.parse_profile(‘/tmp/my_build.profile’)

Analyze the data

longest_tasks =

bazel_profiler.find_longest_tasks(profile_data)

resource_usage =

bazel_profiler.analyze_resource_usage(profile_data)

Output the findings

bazel_profiler.report_findings(longest_tasks, resource_usage)

In this example, `bazel_profiler` could be a custom module

developed to handle the specifics of Bazel’s profile format.

By extracting and analyzing specific metrics, developers can

gain a deeper understanding of their build’s performance

characteristics and identify the targeted areas for

optimization.

Utilizing Command Line Tools to

Analyze Profile Data

Consider the example provided in the GitHub repository

located at https://github.com/OrangeAVA/Building-Large-

Scale-Apps-with-Monorepo-and-Bazel, particularly in the

“/chapter-6/bazel_android_kotlin” section. When you execute

the following command, Bazel will compile the Android

application and simultaneously collect all the profiling data,

saving it in the file named myprofile.out.

bazel build --profile=myprofile.out //app

To analyze this file, you can run the following command:

bazel analyze-profile myprofile.out

https://github.com/OrangeAVA/Building-Large-Scale-Apps-with-Monorepo-and-Bazel

The output generated from this analysis will appear as

follows:

INFO: Profile created on 2023-12-27T08:08:57.735955Z, build

ID:…

=== PHASE SUMMARY INFORMATION ===

Total launch phase time 1.353

s 0.56%

Total init phase time 12.313

s 5.08%

Total target pattern evaluation phase time 15.518

s 6.40%

Total interleaved loading-and-analysis phase time 88.288 s

36.40%

Total preparation phase time 0.014

s 0.01%

Total execution phase time 125.022 s

51.54%

Total finish phase time 0.046

s 0.02%

--

Total run time 242.557

s 100.00%

Critical path (28.286 s):

Time Percentage Description

39.2 ms 0.14% action ‘Creating source manifest for

@bazel_too

1.053 s 3.72% action ‘Creating runfiles tree bazel-

out/darwin

5.63 ms 0.02% runfiles for @bazel_tools//tools/android

aar_re

7.566 s 26.75% action ‘Extracting AAR Resources for

@rules_jvm

4.473 s 15.82% action ‘Compiling Android resources for

@rules_

1.617 s 5.72% action ‘Merging compiled Android resources

for

2.891 s 10.22% action ‘Linking static android resource

library

4.342 s 15.35% action ‘Processing Android resources for

//app

1.645 s 5.82% action ‘Generating R Classes for //app

app’

111 ms 0.39% action ‘Desugaring app/app_resources.jar

for An

317 ms 1.12% action ‘Building deploy jar bazel-

out/darwin_ar

3.065 s 10.84% action ‘Extracting Java resources from

deploy j

75.2 ms 0.27% action ‘Generating unsigned apk’

475 ms 1.68% action ‘Zipaligning apk’

611 ms 2.16% action ‘Signing apk’

Based on this data, our focus can shift towards

comprehending the duration spent in each phase. The most

time-intensive phases are the loading-and-analysis phase

and the execution phase. However, the extended duration of

the former is attributable to it being an initial build, which

will be leveraged in subsequent executions.

The following section details the duration of each action on

the critical path. Actions such as “Extracting AAR Resources

for @rules_jvm…”, “Compiling Android resources for @rules_…”,

“Processing Android resources for //app …”, and “Extracting

Java resources from deploy j…” are identified as the most

time-consuming. Nevertheless, similar to earlier

observations, the majority of this work will be leveraged in

future builds, allowing for reusability.

Visualizing Profiling Data

To visualize the profile, you have the option to use either

Chrome’s tracing feature or other tools for analysis and

post-processing. For the Chrome tracing method, navigate

to chrome://tracing in a Chrome browser tab, select “Load”,

and choose your profile file, which may be compressed.

Alternatively, a more advanced tool is Perfetto, accessible at

https://ui.perfetto.dev/. Perfetto is a comprehensive, open-

source tool for performance monitoring and tracing that is

designed to provide detailed insights into system behavior.

Initially developed by Google and used in the Android

ecosystem, it has grown to support a wide range of

platforms, including Linux and Chrome OS. Perfetto’s

capabilities extend beyond traditional profiling tools by

enabling high-resolution, system-wide tracing and logging. It

captures a variety of data, such as CPU scheduling, system

calls, and memory usage, offering a granular view of system

performance. This tool is particularly useful for developers

and system administrators looking to diagnose complex

performance issues, optimize system and application

performance, and understand intricate system interactions

in real-time and post hoc analyses.

Here, you can upload your myprofile.out file by selecting the

“Open Trace File” option from the left-hand menu.

https://ui.perfetto.dev/

Figure 11.1: Screen capture of the Perfetto web app

By scrolling vertically, you can navigate through all the

executed threads and tasks. Clicking the boxes allows you to

delve into the specifics of resource usage and metrics. At

the bottom, general metrics detailing the total resource

consumption by Bazel over time are displayed.

Figure 11.2: Screen capture of the Perfetto web app

The profiles produced by Bazel can be quite detailed, so

don’t hesitate to reach out on the Bazel mailing list for

assistance in understanding them. Furthermore, for more

information on this topic, you can explore the

documentation regarding profiling.

Understanding and Utilizing Bazel’s

BEP

Bazel’s Build Event Protocol (BEP) is a cornerstone for

integrating advanced monitoring tools. BEP provides a

stream of data about the build process, encompassing

information about the actions performed, targets built, and

the outcomes of these actions. This protocol outputs a

series of protocol buffer messages, which can be consumed

by external tools to monitor and analyze build processes in

real-time.

The BEP messages are structured and highly detailed,

offering insights into every aspect of the build process. They

include information about build targets, individual test

results, the status of build actions, and even filesystem

events. This granular level of detail makes BEP an

invaluable resource for developing sophisticated monitoring

solutions.

To integrate BEP with monitoring tools like Prometheus, it’s

essential to convert the BEP output into a format that

Prometheus can understand. Prometheus primarily works

with time-series data, requiring the transformation of BEP’s

protocol buffer messages into a compatible structure.

Converting BEP Output to

Prometheus-friendly Format

The conversion process involves parsing the BEP messages

and extracting relevant metrics, which are then formatted

into a time-series data format suitable for Prometheus. To

achieve this, you can write a script or a small service that

subscribes to the BEP event stream and processes the

events as they occur.

Here’s a simplified example in Python, demonstrating how

to parse BEP messages and convert them into a

Prometheus-friendly format:

import bazel.bep.proto.build_event_stream_pb2 as bes

import prometheus_client

Initialize Prometheus metrics

build_duration_metric =

prometheus_client.Summary(‘bazel_build_duration_seconds’,

‘Duration of Bazel build’)

def process_bep_event(bep_message):

event = bes.BuildEvent()

event.ParseFromString(bep_message)

if event.HasField(‘completed’):

target = event.completed.label

duration = event.completed.duration_millis / 1000.0

build_duration_metric.observe(duration)

print(f”Build completed for {target} in {duration} seconds”)

def main():

Assuming ‘bep_stream’ is a stream of BEP messages

for bep_message in bep_stream:

process_bep_event(bep_message)

if __name__ == “__main__”:

main()

In this example, the script listens to a stream of BEP

messages, parses each message, and checks if it represents

a completed build event. If so, it calculates the duration of

the build and records it as a Prometheus observation. You

can extend this script to capture more metrics and handle

different types of BEP events based on your monitoring

needs.

Integrating Bazel with Prometheus or similar tools via BEP

allows teams to gain real-time insights into their build

processes. These insights can drive optimizations, help in

identifying bottlenecks, and ensure the efficiency and

reliability of the build system in large-scale monorepo

environments. By leveraging the detailed data provided by

BEP and converting it into actionable metrics, development

teams can significantly enhance their monitoring

capabilities and maintain high performance in their build

pipelines.

Developing Automated Tests for

Performance Regressions

BEP provides a detailed stream of events related to the build

process, which can be harnessed to detect performance

regressions. By scripting against these events, developers

can create a system that automatically flags deviations in

build times or resource usage, indicating potential

performance issues.

For instance, consider a scenario where a developer

integrates a Python script that parses BEP’s JSON output.

This script can be designed to compare the execution time

of each target against a historical average. A simple script

integrated with a system that maintains historical

performance data for each target enables a direct

comparison to identify significant deviations.

Implementing Benchmarks and

Performance Baselines

Benchmarking in Bazel involves establishing a set of

performance baselines against which current build metrics

can be compared. These baselines act as a reference point,

ensuring that any performance changes are immediately

noticeable. Setting up benchmarks involves running a series

of controlled builds and capturing key metrics like build

time, CPU usage, and memory consumption. These metrics

are then stored as the baseline for future comparisons.

To automate this process, developers can utilize Bazel’s

ability to output detailed metrics. To exemplify, using the `--

profile` flag with Bazel generates a profile file that can be

analyzed to extract necessary performance metrics. A script

can be written to parse this file, extract the relevant data,

and store it as a baseline. Subsequent builds can be

compared against this baseline to identify performance

regressions.

Continuous Monitoring of

Performance Metrics

Continuous monitoring is essential for maintaining the

performance integrity of a project. Integrating performance

regression testing into a continuous integration (CI) pipeline

ensures that any code change is automatically evaluated for

its impact on performance. This approach enables real-time

detection of performance issues, allowing for immediate

remediation.

In practice, this involves configuring the CI system to run

the Bazel builds with performance tracking enabled,

followed by executing the scripts that analyze the BEP

output and compare it against the established benchmarks.

If a performance regression is detected, the CI pipeline can

be configured to alert the development team, or even fail

the build as a cautionary measure.

One example is a CI configuration snippet that might include

steps like:

1. Run Bazel build with BEP and profiling enabled.

2. Execute a script that parses the BEP output and

profiling data.

3. Compare current build metrics against performance

baselines.

4. Alert the team if a regression is detected.

This integration ensures that performance is continually

monitored and maintained throughout the development

lifecycle, making performance regression testing an integral

part of the build process.

Advanced Usage of Remote Caching

and Execution

This section delves into advanced strategies, techniques,

and insights for monitoring, diagnosing, and optimizing

these aspects.

Monitoring Remote Cache Hit Rates

Monitoring remote cache hit rates is a critical aspect of

optimizing build times. High cache hit rates typically

indicate the effective reuse of artifacts, reducing redundant

computation. To monitor this, developers can utilize Bazel’s

in-built logging facilities. By setting the `--bes_backend` flag

and specifying a build event service, you can collect

detailed information about cache hits and misses. For

instance:

bazel build //my:target --bes_backend=grpc://my-bes-

server:1985

This command sends build events to the specified server,

which can then be analyzed to compute cache hit rates. For

a more granular analysis, developers can employ the `--

experimental_remote_cache_log` flag, which produces a detailed

log of cache-related activities, enabling precise

identification of cache hits and misses. As an experimental

feature, it is recommended to exercise caution when

considering its utilization in production environments or to

remain vigilant regarding potential modifications during

forthcoming Bazel version updates.

Diagnosing Cache Misses and

Inefficiencies

Diagnosing cache misses involves understanding why

certain actions were not cacheable or why cached artifacts

were not reused. One common cause is non-deterministic

outputs or varying inputs, which can be identified by

comparing hashes of inputs and outputs of similar actions

across different builds. Bazel’s `aquery` tool is instrumental

in this analysis. It allows developers to query the action

graph and understand the dependencies and inputs of

actions. A typical use case might be:

bazel aquery ‘mnemonic(“CppCompile”, //my:target)’ --

output=text

This command retrieves information about C++ compilation

actions for the specified target, which can then be analyzed

to detect variations leading to cache misses.

Optimizing Remote Execution

Performance

Optimizing remote execution performance requires a holistic

approach, considering both the build environment and the

specificities of the build process. One advanced technique is

the fine-tuning of remote execution parameters, such as the

number of remote workers or the size of the input and

output files. Adjusting these parameters can be done using

Bazel’s flags like `--remote_max_connections` or `--

remote_timeout`. For instance:

bazel build //my:target --remote_max_connections=100 --

remote_timeout=300

This command sets the max number of concurrent

connections to remote workers and adjusts the timeout

setting, potentially improving performance in environments

with high network latency or large numbers of parallelizable

tasks.

Another facet of optimization is the strategic use of remote

execution for only those parts of the build process that

benefit most from it, such as large compilations or tests.

This can be controlled using target-level attributes or by

selectively enabling remote execution for certain builds with

the `--config=remote` flag in the `.bazelrc` file.

Debugging Techniques for Bazel

Rules

Debugging custom Bazel rules requires a methodical

approach, leveraging the capabilities of Starlark and

adhering to best practices in logging and error handling.

This section delves into these aspects, providing advanced

insights for developers experienced with Bazel’s ecosystem.

Step-by-step Approach for Debugging

Custom Bazel Rules

When debugging custom Bazel rules, the first step is to

isolate the issue. Begin by constructing a minimal

reproducible example that demonstrates the problem. This

process often involves stripping down the rule or build to

the simplest form where the issue still manifests. Once

isolated, use Bazel’s built-in debugging flags, such as `--

subcommands` to understand the commands executed by

Bazel. This can be instrumental in pinpointing where the

rule behaves unexpectedly.

For instance, if a rule is failing to compile a set of source

files, use the command:

bazel build //my/target:rule --subcommands

This will display each command Bazel executes, allowing

you to trace back to the specific point of failure.

Utilizing Starlark’s Debugging

Capabilities

Starlark, the language used to write Bazel rules and macros,

does not support traditional debugging tools like

breakpoints or step-through execution. However, it offers

robust introspection capabilities. Use `print` statements

effectively to trace the flow of execution and inspect

variable states at critical junctures in the rule’s logic. For a

more structured approach, consider embedding logging

mechanisms within the rule definition.

For example:

def _my_rule_impl(ctx):

print(“Debug: Starting rule implementation for target %s” %

ctx.label)

…

for src in ctx.files.srcs:

print(“Debug: Processing source file %s” % src.path)

…

Best Practices for Logging and Error

Handling in Rule Development

Effective logging is crucial for diagnosing issues in rule

execution. Logs should provide enough context to

understand the state of the build without being

overwhelmed with unnecessary details. Use different

verbosity levels to categorize the logs. Errors and warnings

should be concise and informative, guiding the user towards

potential solutions or further debugging steps.

Error handling in Bazel rules involves gracefully managing

unexpected states and inputs. Use fail-fast principles, where

the rule execution halts immediately upon encountering a

critical error. As an example:

def _my_rule_impl(ctx):

if not ctx.attr.dependency:

fail(“Missing required dependency for target %s” %

ctx.label)

…

This approach ensures that errors are caught early, making

it easier to trace their origin. When handling non-critical

errors, provide clear messages and, if possible, fallback

mechanisms.

Performance Tuning for Large-scale

Monorepos

Optimizing Bazel builds can be particularly challenging due

to the sheer volume of code and dependencies.

Divide and Conquer

One effective technique is to split the monorepo using local

repositories. This approach involves segmenting your

monorepo into smaller, more manageable units, which can

be treated as independent projects. This segmentation can

be achieved using Bazel’s `local_repository` rule. For

instance, if you have a large monorepo with multiple

independent projects, you can structure each project as a

local repository:

local_repository(

name = “project_a”,

path = “../project_a”,

)

local_repository(

name = “project_b”,

path = “../project_b”,

)

By doing so, Bazel can treat these segments as separate

entities, enabling more efficient builds. This setup allows

Bazel to focus on the relevant parts of the codebase for

each build, reducing the overall build time.

Advanced Configuration Settings for

Improved Scalability

To further enhance scalability, adjusting the `--jobs` flag in

Bazel’s configuration settings is crucial. This flag determines

the number of jobs (actions) Bazel runs in parallel. For large

monorepos, finding the optimal number of jobs is essential

for maximizing the usage of available resources without

overwhelming the system. This involves a balancing act

between parallelism and the risk of resource contention.

A typical approach is to set the number of jobs to the

number of cores available on the build machine.

Nonetheless, for very large projects, this may not be

optimal. In such cases, experiment with the `--jobs` flag to

find the sweet spot. For example:

bazel build //my/project:all --jobs=32

In this example, Bazel is instructed to use up to 32 parallel

jobs. The ideal number will depend on your specific build

environment and the nature of the tasks being executed.

Case Studies on Performance

Improvements in Complex Projects

Examining real-world case studies can provide valuable

insights into the effectiveness of these techniques. For

instance, Google, with its massive codebase, uses Bazel to

manage its monolithic repository. Google’s approach

involves finely tuned Bazel configurations and extensive use

of local repositories to manage different parts of its

monorepo. This strategy has enabled them to handle

complex builds efficiently, demonstrating the scalability of

Bazel in a demanding environment.

Similarly, companies like Dropbox and Pinterest have

reported significant improvements in build times and

developer productivity after adopting Bazel for their large-

scale monorepos. Dropbox, in particular, noted how Bazel’s

caching mechanisms and parallel build capabilities were

crucial in handling their polyglot codebase.

In conclusion, effectively tuning Bazel for large-scale

monorepos involves strategic segmentation of the

codebase, careful configuration of build parallelism, and

learning from real-world implementations. These

approaches help in harnessing the full potential of Bazel,

ensuring efficient and scalable builds in complex software

development environments.

Conclusion

This chapter provided a comprehensive exploration of

advanced techniques for building and deploying services

using Bazel, with a focus on optimizing performance and

efficiency in large-scale monorepos. We delved into the

intricacies of monitoring Bazel’s performance, interpreting

and visualizing profiling data to pinpoint bottlenecks, and

the utility of custom scripts and command-line tools in

analyzing this data. Understanding and leveraging the Build

Event Protocol (BEP) and its integration with systems like

Prometheus formed a crucial part of our discussion,

highlighting the importance of continuous performance

monitoring and automated regression testing. We examined

the advanced aspects of remote caching and execution,

emphasizing the significance of monitoring cache hit rates,

diagnosing cache misses, and optimizing remote execution.

Moreover, we covered robust debugging techniques for

Bazel rules, including the use of Starlark’s debugging

features and best practices in logging and error handling.

The chapter rounded off with strategic insights into

performance tuning for large-scale monorepos, showcasing

real-world case studies and discussing divide-and-conquer

strategies along with advanced configuration settings. This

comprehensive chapter aims to empower developers with

the knowledge and tools necessary to maximize the

efficiency and effectiveness of their Bazel-based build and

deployment processes, ensuring scalable and maintainable

software development practices.

In the next chapter, we’ll explore advanced Bazel features.

We’ll start with Bazel’s caching mechanism, explaining how

it reuses computed results to save time and resources.

Then, we’ll show how to publish your own Bazel rules and

migrate a Maven project to Bazel, enhancing build

efficiency. The chapter will also cover hermeticity in Bazel

builds, the hot reload feature for faster development cycles,

and the creation of custom toolchains for tailored build

environments. We’ll explain the use of Aspects and Aliases

for improved dependency tracking and build configuration.

Finally, we’ll introduce experimental Bazel features,

providing insights into the latest functionalities available in

Bazel.

Recommended Reading

For a deeper understanding of the topics covered in this

chapter, the following online resources are highly

recommended:

“Effective Bazel Monitoring and Performance Analysis”:

A detailed guide on setting up comprehensive

monitoring for Bazel builds, including performance

analysis and bottleneck identification. -

https://bazel.build/concepts/performance-analysis

“Advanced Profiling with Bazel”: This resource dives

deep into the art of profiling Bazel builds, offering

insights on interpreting profiling data for performance

optimization. -

https://docs.bazel.build/versions/main/profiling.html

“Scripting with Bazel: Custom Solutions for Build

Analysis”: A practical guide on writing custom scripts to

parse and analyze Bazel profile data, enhancing build

performance and efficiency. -

https://blog.bazel.build/2020/05/28/bazelcon-

scripting.html

“Command Line Mastery for Bazel Profiling”: An

advanced tutorial on using command-line tools to

dissect and understand Bazel’s profiling data. -

https://www.tweag.io/blog/2020-06-17-bazel-profiling

“Visualizing Bazel Build Performance”: This article

explores tools and techniques for visualizing profiling

data from Bazel to identify performance issues. -

https://medium.com/@nlopez/bazel-visualizing-build-

performance-6755a0b9b1b7

“Harnessing Bazel’s Build Event Protocol for Large

Codebases”: A deep dive into Bazel’s BEP, offering

strategies for its effective utilization in large-scale

projects. - https://docs.bazel.build/versions/main/build-

event-protocol.html

“BEP to Prometheus: Monitoring Bazel Builds”: Learn

how to convert Bazel’s Build Event Protocol output into

a Prometheus-friendly format for enhanced monitoring.

- https://prometheus.io/docs/introduction/overview/

“Automated Performance Regression Testing in Bazel”:

An insightful resource on developing automated tests to

detect performance regressions in Bazel builds. -

https://bazel.build/concepts/performance-analysis
https://docs.bazel.build/versions/main/profiling.html
https://blog.bazel.build/2020/05/28/bazelcon-scripting.html
https://www.tweag.io/blog/2020-06-17-bazel-profiling
https://medium.com/@nlopez/bazel-visualizing-build-performance-6755a0b9b1b7
https://docs.bazel.build/versions/main/build-event-protocol.html
https://prometheus.io/docs/introduction/overview/

https://testing.googleblog.com/2020/08/advanced-

bazel-testing-and-debugging.html

“Benchmarking and Baseline Implementations for

Bazel”: Guidelines for implementing effective

benchmarks and performance baselines within the

Bazel ecosystem. -

https://www.infoq.com/presentations/netflix-bazel-large-

scale/

“Continuous Monitoring of Bazel Build Metrics”: An

advanced guide on setting up continuous monitoring

systems for Bazel build metrics to ensure optimal

performance. - https://eng.uber.com/building-fast-

monorepos-in-bazel/

“Optimizing Remote Caching and Execution in Bazel”:

In-depth exploration of advanced techniques for

optimizing remote caching and execution in Bazel,

including monitoring and diagnosing cache misses. -

https://docs.bazel.build/versions/main/remote-caching-

debug.html

“Debugging Techniques for Bazel Rules”: This resource

provides an advanced perspective on debugging

custom Bazel rules, including the use of Starlark’s

debugging features. -

https://bazel.build/designs/2019/02/28/starlark-

debugging.html

“Advanced Bazel Rule Development: Logging and Error

Handling”: Best practices for logging and error handling

in the development of custom Bazel rules. -

https://blog.aspect.dev/bazel-rules-best-practices

“Scaling Monorepos: Strategies and Tools”: Insights into

performance tuning for large-scale monorepos,

including divide-and-conquer strategies and

configuration settings. -

https://testing.googleblog.com/2020/08/advanced-bazel-testing-and-debugging.html
https://www.infoq.com/presentations/netflix-bazel-large-scale/
https://eng.uber.com/building-fast-monorepos-in-bazel/
https://docs.bazel.build/versions/main/remote-caching-debug.html
https://bazel.build/designs/2019/02/28/starlark-debugging.html
https://blog.aspect.dev/bazel-rules-best-practices

https://medium.com/@nrwl_io/scaling-monorepos-with-

nx-12f217a06119

“Case Studies: Performance Improvements in Large-

Scale Bazel Projects”: A collection of real-world case

studies discussing performance improvements in

complex projects using Bazel. - https://bazel.build/case-

studies)

These resources offer a depth of knowledge and practical

advice, ideal for professionals seeking to refine their skills in

managing large codebases efficiently with Bazel.

https://medium.com/@nrwl_io/scaling-monorepos-with-nx-12f217a06119
https://bazel.build/case-studies

CHAPTER 12

Advanced Bazel Concepts

Introduction

As an experienced user familiar with Bazel, monorepos, and

dependency management, you are now poised to extend

your expertise by exploring deeper concepts such as

publishing your custom Bazel rules to enhance build

processes, understanding and leveraging the principle of

hermeticity for consistent and reproducible builds, and

effectively utilizing the ‘watch’ feature to maintain

continuous insight into your project’s state. This chapter

also guides you through the intricacies of building custom

toolchains, a cornerstone for tailored build environments,

and the strategic use of aspects and aliases to refine and

streamline your build configurations. Additionally, we will

navigate the realm of experimental Bazel features, offering

a glimpse into the future capabilities of this powerful tool.

Each of these topics collectively forms a comprehensive

guide, empowering you to master the advanced

methodologies required for sophisticated service building

and deployment with Bazel.

Structure

In this chapter, we will cover the following topics:

Comprehensive Exploration of Caching

Publishing Your Own Bazel Rules

Migrating a Maven Project to Bazel

Hermeticity

Bazel Hot Reload

Building Custom Toolchains

Aspects

Aliases

Exploring Experimental Bazel Features

Comprehensive Exploration of

Caching

Bazel operates as an artifact-first build tool, creating a Build

Graph where artifacts are requested, and actions are

executed to produce these artifacts. These artifacts

encompass files within the workspace and external

dependencies. Actions, which consume and produce

artifacts, form the foundation of the Build Graph. An

example is the execution of `bazel build //:go_binary` in a

Golang project, where Bazel constructs a graph from the

`go_binary` target, identifying necessary actions and input

artifacts. This graph is executed in parallel by a scheduler.

The design of Bazel’s Build Graph is predicated on the

assumption that all actions are hermetic. This means that a

fixed set of inputs will always yield a deterministic set of

outputs. Hermetic actions, such as file creation from a

template or concatenating files, produce predictable results.

In contrast, non-hermetic actions, like those involving

network calls or dependent on datetime or random

elements, yield unpredictable outcomes. However, Bazel

can render some non-hermetic actions hermetic, for

instance, by using fixed random seeds for test actions.

Central to Bazel’s caching mechanism are the Content

Addressable Store (CAS) and the Action Cache (AC). In this

system, artifacts are treated as blobs, each with a unique

hash key based on their content, and stored in the CAS.

Similarly, action metadata, including inputs and definitions,

are hashed to create cache keys stored in the AC. Bazel

utilizes these caches in subsequent invocations to bypass

redundant action executions. The Build Graph operates akin

to a Merkle Tree, a data structure that aids in data de-

duplication and caching of execution results.

Cache invalidation happens when modifications occur, such

as altering `main.go`. This change updates the file’s SHA256

hash, prompting the re-execution of dependent actions and

updates in the CAS and AC while leaving unchanged parts of

the workspace cached. Through hermetic actions, a Merkle-

Tree Build Graph, and effective caching, Bazel achieves

minimal, precise, and rapid incremental builds.

Exploring Bazel’s local disk cache reveals its complexity.

This layer of Bazel, though not frequently needing attention,

has nuances and potential pitfalls important for users,

especially newcomers, to understand. The local disk cache

comprises two main components: the Repository Cache and

the Action Cache (AC), with the focus here being on the

Repository Cache. This cache, used for external

dependencies declared in the WORKSPACE file, is prepared

by Bazel during the loading-and-analysis phase for use in

the execution phase.

The repository cache interacts mainly with three types of

repository rules: `local_repository` for local dependencies,

`git_repository` for remote git repositories, and

`http_archive` for dependencies downloaded as archives.

The `http_archive` rule is significant due to its common use

and interaction with the repository cache. It involves

declaring a SHA256 hash for the downloaded archive, which

Bazel uses to manage and retrieve content from the CAS of

the Repository Cache.

Incorrect hashes in the `http_archive` rules can lead to Bazel

reusing incorrect cached content. This issue typically

surfaces in a fresh build with an empty cache, as Bazel will

fail the build if the downloaded content doesn’t match the

expected hash.

The repository cache, enabled by default and located

outside the output_base and install_base directories, can be

shared across multiple Bazel workspaces and versions. It

remains unaffected by the `bazel clean` command and is

reused in clean build attempts. However, it’s important to

note that not all repository rules utilize the Repository

Cache; only those employing specific Starlark APIs are

cached.

Bazel’s Persistent Action Cache, a built-in feature operating

without extra configurations, serves to de-duplicate action

execution and optimize builds. This cache doesn’t store

action results but tracks the state of input and output files,

determining if actions need rerun based on changes. Its

impact was demonstrated in a test with a minimal Bazel

setup, where an initial build took about 9.7 seconds, and a

fully cached build took just 0.5 seconds. Further tests

showed that modifying and then reverting changes in the

build graph led to no actions being executed the second

time, highlighting the cache’s efficacy.

The cache filters out certain records, such as those with the

type VALIDATION_KEY, when using the `bazel dump --

action_cache` command. This command is useful for

understanding the contents of the Persistent Action Cache.

In summary, Bazel’s Repository Cache is a crucial part of its

on-disk caching system, primarily used to speed up the

initial setup of a Bazel build by avoiding re-downloading

external dependencies. Users can customize its location

using the `--repository_cache` flag.

In CI environments, maintaining a warm Bazel JVM Server

can save significant build time but may require stateful,

long-lived CI workers, custom monitoring, and controlled CI

processes. The benefits of faster builds and reduced

infrastructure costs often outweigh these challenges.

Metrics play a key role in driving Bazel build optimizations,

leveraging its advanced architecture and profiling

capabilities to pinpoint and resolve performance issues.

Publishing Your Own Bazel Rules

Publishing custom Bazel rules is a complex process that

requires an understanding of the Bazel build system, rule

writing, and repository management. This section dives into

the intricacies of developing and distributing a set of Bazel

rules, using the `rules_jmh` project available at

https://github.com/buchgr/rules_jmh as a reference.

The initial step in creating your own Bazel rules involves

setting up a repository structure that is both maintainable

and accessible. Your repository should be organized in a way

that separates the core logic of your rules from examples

and tests. This structure not only aids in development but

also helps other developers understand and use your rules

more effectively. For instance, the `rules_jmh` project on

GitHub demonstrates this approach, segregating its Java

Microbenchmark Harness (JMH) rules, examples, and tests

into distinct directories.

.

├── BUILD

├── README.md

├── WORKSPACE

├── defs.bzl

└── deps.bzl

When writing custom rules, it’s imperative to focus on

clarity and documentation. Each rule should be

accompanied by comprehensive documentation explaining

its purpose, inputs, outputs, and usage examples. This not

only aids in maintenance but also provides valuable

guidance for other developers who might use your rules. In

`rules_jmh`, each rule is documented within the source files

and the README, offering clear guidance on how to implement

benchmarks using the provided rules.

The BUILD file contains a simple exports_files([“defs.bzl”,

“deps.bzl”]) rule, to explicitly export these two Starlark (.bzl)

files. File defs.bzl contains custom rule definitions, while

deps.bzl includes dependency declarations or macros for

managing dependencies.

The defs.bzl file contains:

load(“@rules_jvm_external//:defs.bzl”, “maven_install”)

def rules_jmh_maven_deps(

jmh_version = “1.21”,

repositories = [“https://repo1.maven.org/maven2”]):

“””Loads the maven dependencies of rules_jmh.

Args:

jmh_version: The version of the JMH library.

repositories: A list of maven repository URLs where

to fetch JMH from.

“””

maven_install(

name = “rules_jmh_maven”,

artifacts = [

“org.openjdk.jmh:jmh-core:{}”.format(jmh_version),

“org.openjdk.jmh:jmh-generator-annprocess:

{}”.format(jmh_version),

],

repositories = repositories,

)

def jmh_java_benchmarks(name, srcs, deps=[], tags=[], plugins=

[], **kwargs):

“””Builds runnable JMH benchmarks.

This rule builds a runnable target for one or more JMH

benchmarks

specified as srcs. It takes the same arguments as

java_binary,

except for main_class.

“””

plugin_name = “_{}_jmh_annotation_processor”.format(name)

native.java_plugin(

name = plugin_name,

deps =

[“@rules_jmh_maven//:org_openjdk_jmh_jmh_generator_annproc

ess”],

processor_class =

“org.openjdk.jmh.generators.BenchmarkProcessor”,

visibility = [“//visibility:private”],

tags = tags,

)

native.java_binary(

name = name,

srcs = srcs,

main_class = “org.openjdk.jmh.Main”,

deps = deps +

[“@rules_jmh_maven//:org_openjdk_jmh_jmh_core”],

plugins = plugins + [plugin_name],

tags = tags,

**kwargs

)

Here’s a simple breakdown of what each function does:

1. Defines the `rules_jmh_maven_deps` function:

a. Calls `maven_install` to define a new repository

named `rules_jmh_maven`.

b. Includes JMH core and annotation processor

artifacts, with the version specified by `jmh_version`.

2. Utilizes the provided `repositories` for fetching these

dependencies.

3. Defines the `jmh_java_benchmarks` function:

a. Creates a `java_plugin` named after the benchmark,

to process JMH annotations using the JMH

annotation processor.

b. Configures this plugin to be private and applies any

specified tags.

c. Builds a `java_binary` with:

i. The provided `name`, `srcs`, `deps`, `tags`, and

additional arguments (`**kwargs`).

ii. The main class is set to `org.openjdk.jmh.Main`.

iii. Includes the JMH core library and the plugin for

annotation processing in the dependencies.

iv. Adds the created annotation processor plugin to

the build.

And the deps.bzl file contains:

load(“@bazel_tools//tools/build_defs/repo:http.bzl”,

“http_archive”)

def rules_jmh_deps():

if “rules_jvm_external” not in native.existing_rules():

http_archive(

name = “rules_jvm_external”,

strip_prefix = “rules_jvm_external-1.2”,

sha256 =

“e5c68b87f750309a79f59c2b69ead5c3221ffa54ff9496306937bfa1c

9c8c86b”,

url =

“https://github.com/bazelbuild/rules_jvm_external/archive/

1.2.zip”

)

The `deps.bzl` file in question performs the following

functions:

Defines a Function `rules_jmh_deps`: This function, when

called, will check and potentially download a

dependency.

Checks for Existing Dependency: Inside the

`rules_jmh_deps` function, it first checks if the

`rules_jvm_external` dependency is already present in

the current Bazel workspace.

Declares `rules_jvm_external` as a Dependency: If

`rules_jvm_external` is not already present, it uses the

`http_archive` function to declare it as a dependency.

Specifies the Dependency details:

`name`: The name given to this dependency is

“rules_jvm_external”.

`strip_prefix`: Indicates the prefix to strip from the

archive, here specified as “rules_jvm_external-1.2”.

`sha256`: Provides the SHA-256 checksum for

integrity verification of the downloaded archive.

`url`: Specifies the URL to download the

`rules_jvm_external` archive, which in this case is

version 1.2, hosted on GitHub.

Essentially, this `deps.bzl` file is a script used in Bazel to

manage an external dependency, ensuring that

`rules_jvm_external` is downloaded and integrated into the

build environment if it’s not already present.

Integration testing is a crucial aspect of rule development.

Your tests should cover a variety of use cases and

configurations to ensure the robustness of your rules across

different environments and Bazel versions. Automated

testing, as part of continuous integration, ensures that

updates to Bazel or dependencies do not break your rules.

The `rules_jmh` project employs Bazel’s own testing facilities

to guarantee the functionality of its rules.

After developing and thoroughly testing your rules, the next

step is publishing them. You need to make your rules

available for use in other Bazel projects. This can be

achieved by hosting your rules in a version-controlled

repository, such as GitHub. Users can then integrate your

rules into their projects by adding a `http_archive` or

`git_repository` declaration in their `WORKSPACE` file. For

example, to use `rules_jmh`, one would add the following to

their `WORKSPACE`:

http_archive(

name = “rules_jmh”,

url = “https://github.com/buchgr/rules_jmh/archive/<commit-

hash>.tar.gz”,

sha256 = “<checksum>”,

)

Versioning plays a crucial role in the lifecycle of your rules.

Adhering to semantic versioning principles allows users to

understand the nature of updates and adjust their

dependencies accordingly. It is also important to maintain

backward compatibility as much as possible, or clearly

document breaking changes in release notes.

Lastly, community engagement is vital. Actively maintaining

the rule set, responding to issues, and participating in

discussions can foster a community around your rules,

leading to improvements, new use cases, and wider

adoption.

In summary, publishing your own Bazel rules is not just

about writing code. It involves thoughtful structuring of your

project, meticulous documentation and testing, careful

versioning, and ongoing community engagement. The

`rules_jmh` project serves as an exemplary model,

demonstrating best practices in each of these areas.

Migrating a Maven Project to Bazel

Migrating from Maven to Bazel involves a paradigm shift in

how build systems are managed. Bazel offers distinct

advantages in terms of scalability and flexibility, particularly

for large and multi-language projects. This section explores

the advanced concepts of such a migration, assuming

you’re already familiar with Bazel, Monorepos, and

Dependency Management in Bazel.

Pre-migration Considerations

Parallel build systems: It’s advisable to run Maven

and Bazel in parallel during the transition. This ensures

a smooth migration for your development team, CI

system, and other relevant systems.

Understanding differences: Acknowledge the key

differences between Maven and Bazel. Maven uses a

top-level `pom.xml` file, whereas Bazel supports multiple

`BUILD` files, offering more incremental builds. Bazel

also allows expressing dependencies between

languages and doesn’t automate deployment as Maven

does.

Defining the monorepo layout: Ensure that all teams

are involved in the layout design of the monorepo

before beginning to transfer repositories into it. Also, be

ready for multiple iterations of refactoring this layout.

Avoid including refactors: While transitioning from a

single repo to a monorepo, it’s common to feel the urge

to begin refactoring your app projects, but it’s important

to resist this temptation. Keep in mind that complexity

and issues typically don’t just add up; they often

multiply on their own. Take notes and leave refactors as

a post-migration task.

Migration Process

1. Creating the WORKSPACE file: The migration begins by

creating a `WORKSPACE` file at your project’s root. This file

should list external dependencies if your project relies

on files or packages outside its directories. Use

`rules_jvm_external` to automate the listing of these

dependencies.

2. Setting up the BUILD files: Bazel uses `BUILD` files to

describe how to build your project, unlike Maven’s

`pom.xml`. You should start by adding one `BUILD` file at

the root of your project. This file will initially target a

basic build of your project. As the migration progresses,

add more `BUILD` files with more specific targets for

incremental builds.

a. Initial BUILD file: The first `BUILD` file should use the

`java_library` or `java_binary` rules, depending on

your project structure (single or multiple Maven

modules). The `BUILD` file specifies the `name`,

`srcs`, `resources`, and `deps` attributes.

b. Adding more BUILD files: For increased granularity

and better maintainability, add `BUILD` files to

individual Java packages, starting with those having

the fewest dependencies.

3. Building with Bazel: Throughout the migration,

regularly build your project with Bazel to ensure

everything is configured correctly. Use `bazel build //…`

to check that all targets build successfully.

4. Refining and troubleshooting: As you add more

`BUILD` files, it’s crucial to maintain a buildable state.

Pay attention to the visibility of targets and the

dependencies between them. Properly manage visibility

to prevent issues such as libraries containing

implementation details leaking into public APIs.

5. CI integration: Update your CI pipelines to

accommodate Bazel builds.

6. Testing and validation: After completing the

migration, thoroughly test the Bazel build to ensure it

matches the outputs of the Maven build.

7. Team training: Ensure that your team is up to speed

with Bazel’s workflow and concepts.

Post-migration Considerations

Revision of documentation: It’s important to revise

all development documentation to reflect the new Bazel

building process, the updated layout, and the revised

management of both internal and external

dependencies.

Introduce project refactors: Aim to create numerous

fine-grained projects from the existing coarse-grained

ones. Consider factors like functional alignment,

architectural stack, and the principle of single

responsibility, among others, to guide the process of

splitting projects in this refactor.

Minimize the size of the repository: Begin by

pinpointing assets that are large, duplicated, or

unnecessary. Search for items such as log files, build

directories, node_modules, Rust’s target directories,

inadvertently included Docker-compose volumes, and

similar elements.

Migrating from Maven to Bazel, especially for large-scale

projects, requires careful planning and execution. By

understanding Bazel’s unique features and incrementally

adapting your build files, you can achieve a smooth

transition. Remember, the key to a successful migration is

maintaining both build systems in parallel, iterative

refinement of `BUILD` files, and constant validation.

For more detailed examples and guidance, you can refer to

the comprehensive resources provided by [Bazel’s official

migration guide](https://bazel.build/migrate) and [Google’s

https://bazel.build/migrate

source documentation](https://bazel.googlesource.com).

These sources provide practical examples, such as the

migration of the Guava project, and in-depth explanations of

the steps involved.

Hermeticity

Hermeticity in Bazel refers to the concept of ensuring that

builds are self-contained and unaffected by the external

environment. This characteristic is vital for achieving

reproducible builds and effective use of features like remote

caching and execution.

It is enforced through various mechanisms, but it’s less

strict compared to systems like Nix. In Bazel, hermeticity

can be ensured by using sandboxes that isolate build steps

from the surrounding environment. This isolation helps in

specifying all build inputs explicitly, improving artifact

reproducibility, and preventing unintended environmental

influences on the build.

Bazel offers different execution strategies that control how

sandboxing is applied. The strategies include local (or

standalone), sandboxed, worker, docker, and remote

executions. Of these, the `local` strategy should be avoided

for hermetic builds as it doesn’t employ sandboxing.

Utilizing the `sandboxed` execution strategy ensures that

commands are executed in an isolated environment,

thereby maintaining hermeticity. It’s also important to note

that certain environments, like Windows, might not support

sandboxing, which can affect the ability to enforce

hermeticity.

Environment variables are a common source of non-

hermetic behavior. Inherited environment settings can

introduce variability into builds, which is counterproductive

for achieving hermetic builds. Avoiding inheritance of the

https://bazel.googlesource.com/

host environment and being cautious with the use of flags

like `--action_env` can help maintain hermeticity.

Some Bazel rules might default to using binaries from the

system’s `PATH`, which can vary between machines,

affecting hermeticity. Moreover, the workspace status

feature in Bazel can potentially introduce non-hermetic

behavior, especially when its output is used to stamp build

results. It’s crucial to use this feature judiciously to avoid

inadvertently breaking hermeticity.

Detecting issues related to hermeticity can be challenging.

A recommended approach is to build the project in various

environments and compare execution logs. Differences in

these logs can reveal sources of non-hermetic behavior.

To illustrate hermeticity in practice, consider integrating Nix

with Bazel for building a Haskell project. In this setup, Nix is

used to build the entire compiler toolchain and system

libraries, ensuring that every aspect of the build

environment is controlled and reproducible. This approach

ensures that the compiler, header files, and system libraries

are consistent across builds, making them hermetic. The

build targets are easy to cache, as they don’t depend on the

external environment.

The Bazel `WORKSPACE` file and `BUILD` files are configured to

utilize these Nix-built components, ensuring that the build

process is entirely self-contained. This setup illustrates how

Bazel’s flexible configuration can be used in conjunction

with tools like Nix to achieve hermetic builds.

Achieving hermeticity in Bazel requires a careful setup of

execution strategies, environment configurations, and rule

selections. By understanding and applying these concepts,

developers can create builds that are consistent,

reproducible, and efficient, benefiting from features like

remote caching and execution. Hermetic builds are a

cornerstone of reliable and scalable build systems, and

mastering them is crucial for advanced Bazel users.

For a detailed exploration, including practical examples and

configurations, refer to the articles on Tweag’s blog:

“How to keep a Bazel project hermetic?” -

https://www.tweag.io/blog/2022-09-15-hermetic-bazel/,

“Nix + Bazel = fully reproducible, incremental builds” -

https://www.tweag.io/blog/2022-09-15-nix-bazel/,

“Integrating Testwell CTC++ with Bazel” -

https://www.tweag.io/blog/2022-09-15-testwell-ctc-

bazel/).

These resources provide in-depth insights into achieving and

maintaining hermetic builds using Bazel.

Bazel Hot Reload

Bazel watcher, also known as `ibazel`, is a source file

watcher for Bazel projects that allows automatic rebuilding

of targets when source files change. Key features include

supporting build, test, and run commands, and the ability to

integrate with live reloading for browsers.

For installation, various methods are available, including

Homebrew for macOS:

brew install ibazel

NPM for JavaScript developers

npm install @bazel/ibazel

And building from source using Bazel itself as explained in

the GitHub repository.

Running a target with `ibazel` involves using the command:

ibazel run //path/to/my:target

When source files are changed, `ibazel` automatically

rebuilds the target. It can also produce and run commands

https://www.tweag.io/blog/2022-09-15-hermetic-bazel/
https://www.tweag.io/blog/2022-09-15-nix-bazel/
https://www.tweag.io/blog/2022-09-15-testwell-ctc-bazel/

based on the output of Bazel commands, especially useful

for automatically fixing common issues detected during a

build.

Also, `ibazel` includes profiling capabilities with the `--

profile_dev` flag, generating a profile output file about the

build process and timing. This profiling feature provides

detailed information about various events, such as the start,

failure, and completion of builds, tests, runs, and source

changes.

For more detailed information and code examples, you can

refer to the Bazel watcher GitHub repository at

https://github.com/bazelbuild/bazel-watcher.

Building Custom Toolchains

This section is intended for software developers well-versed

in Bazel, offering a deep dive into the advanced aspects of

toolchain creation and management.

Toolchains in Bazel are pivotal for specifying the tools and

compilers to be used for different platforms. When building

a custom toolchain, the primary components to consider are

the toolchain rule, the toolchain definition, and its

registration.

A toolchain rule in Bazel is a Starlark rule that declares the

set of tools it provides. This rule must produce a

`ToolchainInfo` provider, which encapsulates the information

about the provided tools. For instance, a simple C++

toolchain rule might look like this:

def _cpp_toolchain_impl(ctx):

toolchain = platform_common.ToolchainInfo(

cc = ctx.executable.cc,

cxx = ctx.executable.cxx,

)

return [toolchain]

cpp_toolchain = rule(

https://github.com/bazelbuild/bazel-watcher

implementation = _cpp_toolchain_impl,

attrs = {“cc”: attr.label(executable = True),

“cxx”: attr.label(executable = True)},

)

In this example, the `cpp_toolchain` rule specifies the C and

C++ compilers (`cc` and `cxx`). The attributes point to

labels that correspond to the actual compiler binaries.

Next, the toolchain definition ties the rule to a specific set of

tools. It’s implemented as a BUILD file target and associates

the toolchain rule with the actual tools for a specific target

platform. A sample toolchain definition could be:

filegroup(

name = “gcc-compiler”,

srcs = [“gcc”],

)

filegroup(

name = “gxx-compiler”,

srcs = [“g++”],

)

cpp_toolchain(

name = “my_cpp_toolchain”,

cc = “:gcc-compiler”,

cxx = “:gxx-compiler”,

)

The toolchain is then registered in the WORKSPACE file.

Registration makes the toolchain available for Bazel to

select during the build. Registering a toolchain involves

adding a reference to its definition in the `toolchains`

attribute of the `register_toolchains` function. For example:

register_toolchains(“//:my_cpp_toolchain”)

Advanced usage of toolchains also involves understanding

constraints. Constraints are used to specify the conditions

under which a particular toolchain should be chosen. They

are particularly useful when the same set of source code

must be built for different environments, such as different

operating systems or custom hardware.

When defining constraints, one would typically define a set

of constraint values and a constraint_setting to group them.

For instance:

constraint_setting(

name = “os”,

)

constraint_value(

name = “linux”,

constraint_setting = “:os”,

)

constraint_value(

name = “windows”,

constraint_setting = “:os”,

)

In this scenario, the `os` constraint_setting allows the

specification of different operating systems as constraint

values. The toolchain rule can then use these constraints to

select the appropriate compiler based on the target

platform.

For an in-depth understanding of building custom toolchains

in Bazel, it is recommended to refer to the two key

resources. The first is John Millikin’s detailed guide on Bazel

toolchains, available at https://john-millikin.com/bazel-

school/toolchains. This guide offers a comprehensive

overview, from the basics to more intricate aspects of

toolchain configuration. The second essential resource is Jay

Conrod’s insightful article on writing Bazel rules, platforms,

and toolchains, accessible at

https://www.jayconrod.com/posts/111/writing-bazel-rules--

platforms-and-toolchains. Jay’s article explores the

practicalities of rule writing and the utilization of platforms

and toolchains, providing valuable examples and expert

https://john-millikin.com/bazel-school/toolchains
https://www.jayconrod.com/posts/111/writing-bazel-rules--platforms-and-toolchains

insights. Together, these resources serve as a robust

foundation for mastering custom toolchain creation in Bazel.

In summary, building custom toolchains in Bazel involves

defining a toolchain rule, creating a toolchain definition,

registering the toolchain, and optionally using constraints

for environment-specific tool selection. This process enables

developers to have fine-grained control over the tools used

in their builds, ensuring compatibility and efficiency across

various development environments.

Aspects

Aspects provide a mechanism to traverse the dependency

graph and apply additional actions to targets in this graph.

This is particularly useful for scenarios such as code

generation, linting, or gathering metrics where actions need

to be performed on a set of targets and their dependencies.

Aspects are defined similarly to rules in Bazel. They consist

of an implementation function and an attribute dictionary.

The implementation function is where the aspect’s logic

resides. It receives two key pieces of information: the target

that the aspect is attached to and the context for the

aspect’s execution. Through this context, the aspect can

access the target’s attributes, dependencies, and outputs.

To illustrate, consider an aspect designed to gather code

coverage information. This aspect, let’s call it

`code_coverage_aspect`, would traverse the targets and their

dependencies, attaching itself to each. For each target, it

would collect coverage data, possibly by utilizing additional

tools or scripts.

Here’s an example of how such an aspect might be defined:

def _code_coverage_impl(target, ctx):

Logic for collecting coverage data

coverage_data = collect_coverage(target)

Actions to perform with coverage data

process_coverage_data(coverage_data)

return [OutputGroupInfo(coverage=coverage_data)]

code_coverage_aspect =

aspect(

implementation=_code_coverage_impl,

attr_aspects=[“deps”],

)

In this example, `collect_coverage` is a hypothetical function

that gathers coverage data, and `process_coverage_data` is

another function that performs necessary actions with this

data, such as generating reports. The aspect is then

attached to the `deps` attribute of the target, which means it

will propagate along the dependencies of the target.

One of the critical aspects of Bazel aspects is how they

propagate through the dependency graph. The

`attr_aspects` attribute controls this propagation. In our

`code_coverage_aspect`, specifying `[“deps”]` means that the

aspect will propagate along the dependencies of the targets

to which it is applied. This allows for a thorough analysis of

the entire codebase that the target depends on.

Furthermore, aspects can be used in conjunction with rules.

Demonstrating this, a rule that defines a library or binary

can be enhanced with an aspect to perform additional

checks or actions specific to that rule. This makes aspects a

versatile tool for extending the functionality of existing rules

without modifying them.

my_rule = rule(

implementation = _my_rule_impl,

attrs = {

“deps”: attr.label_list(aspects = [code_coverage_aspect]),

},

)

In this rule definition, the `code_coverage_aspect` is attached

to each target in the `deps` attribute, ensuring that the

coverage data is collected not just for the target defined by

`my_rule`, but for all its dependencies as well.

Aspects in Bazel provide a robust mechanism for extending

the functionality of builds and analyses, offering deep

insights and controls over the build process. They are

particularly useful in large-scale projects where

understanding and controlling the behavior of a complex

dependency graph is crucial. By leveraging aspects,

developers can create more modular, maintainable, and

comprehensive build and test environments.

Aliases

The concept of aliasing in Bazel is a powerful tool for

managing dependencies and restructuring projects without

altering the actual physical paths of the targets. An alias in

Bazel serves as a redirect, or a pointer, to another target. It

allows users to reference a target by a different name,

providing flexibility in organizing and refactoring codebases,

especially in monorepos where the structure and

dependencies are complex.

One advanced use of aliases is to facilitate the migration of

targets without disrupting dependents. For instance, if a

target needs to be moved or its visibility needs to be

changed, an alias can temporarily redirect dependents to

the new target location, ensuring a smooth transition. This

is particularly useful in large projects where direct

modification of all dependents is impractical.

In Bazel, an alias is defined using the `alias` rule. The rule

has a `name` attribute, which is the alias name, and an

`actual` attribute, which is the label of the target that it

points to. An optional `visibility` attribute can also be set

to control which packages can access this alias.

A practical code example of using an alias might look like

this:

alias(

name = “my_lib”,

actual = “//path/to/real:lib”,

)

In this example, `my_lib` acts as an alias for the target

`//path/to/real:lib`. This allows other targets to depend on

`//path/to:my_lib` instead of the actual target. Such

abstraction enables the underlying target to be restructured

or moved without requiring changes in all the dependents.

Another sophisticated usage of aliasing is in handling the

versioning of dependencies. To exemplify, if a project

depends on multiple versions of a library, aliases can be

used to point to the specific version required by different

parts of the project. This technique simplifies dependency

management, particularly in a monorepo setup where

multiple projects with varying dependency requirements

coexist.

Aliases also play a helpful role in creating a more intuitive

and user-friendly structure in a project. They can be used to

create shorter or more meaningful target names, enhancing

the readability and maintainability of the build scripts. For

instance, rather than using long and complex target paths,

an alias can provide a simple and clear reference that is

easier to understand and use.

To sum up, Bazel aliases are a versatile feature that, when

used strategically, can significantly improve the

organization, maintainability, and scalability of large

codebases. They offer an advanced method for managing

dependencies, refactoring projects, and simplifying build

configurations in complex Bazel environments.

Exploring Experimental Bazel

Features

Bazel continually introduces experimental features that offer

advanced functionalities not yet available in the stable

releases. To enable an experimental feature, developers

must use the `--experimental_<feature_name>` flag in their

Bazel command. For instance, to experiment with a new

optimization algorithm, you might use:

bazel build --experimental_optimization=algorithm2

//my/project:target

This command instructs Bazel to apply the specified

experimental optimization algorithm during the build

process.

It’s important to approach these experimental features with

caution. As they are not part of the stable release, they may

have unknown bugs or might change significantly before

being officially released. It is advisable to test these features

in a controlled environment, such as a separate branch or a

dedicated testing project, to avoid disrupting the main

development workflow.

One area where experimental features shine is in advanced

dependency analysis. Bazel’s experimental dependency

graph analyzers can provide deeper insights into the

relationships between components in a monorepo. For

instance, an experimental feature might allow developers to

generate a more detailed visualization of the dependency

graph, aiding in the identification of bottlenecks or

unnecessary dependencies:

bazel query --experimental_dep_graph_visualization

//my/project:target

This command could generate an enhanced graphical

representation of the dependencies, revealing complex

interconnections that are not evident in standard

visualizations.

Performance tuning is another domain where experimental

features can be invaluable. Bazel may introduce

experimental flags that alter the way resources are

allocated during builds, potentially leading to significant

performance improvements. For example, a new scheduler

algorithm can be tested using:

bazel build --experimental_scheduler_algorithm=new_algo

//my/project:target

This command tells Bazel to use a new, experimental

scheduling algorithm that might improve build times,

especially in large-scale projects with numerous

dependencies.

Experimental features often include new capabilities for

custom rule development. These can range from new APIs

to enhanced debugging tools, providing rule authors with

more powerful and flexible ways to create and test custom-

build rules. For instance, an experimental API might be

accessed as follows:

load(“@bazel_skylib//rules:experimental_api.bzl”,

“experimental_rule”)

In this snippet, a new, experimental API from the

`bazel_skylib` repository is loaded, allowing the developer to

experiment with functionalities not available in the main

API.

The exploration of experimental features in Bazel is a

journey that requires a careful balance between the

excitement of new capabilities and the caution needed to

maintain a stable build environment. These features, while

potentially transformative, should be integrated thoughtfully

and tested rigorously. As Bazel evolves, these experimental

features often pave the way for the next generation of build

automation techniques, making their exploration a valuable

endeavor for any advanced Bazel user.

Conclusion

We began with an overview of the process, progressing

through the intricacies of publishing custom Bazel rules,

which enhance the flexibility and applicability of Bazel in

diverse environments. We discussed the concept of

hermeticity, underlining its importance in achieving

reproducible and reliable builds. The utility of ‘watching’

projects for changes was explored, emphasizing its role in

continuous integration and development workflows. We

delved into the creation of custom toolchains, a critical

aspect of supporting diverse platforms and languages. The

chapter also covered the use of Aspects and Aliases,

powerful features for extending and customizing build

behaviors. Lastly, we navigated the realm of experimental

Bazel features, a segment vital for staying ahead in rapidly

evolving development ecosystems. Each topic in this

chapter collectively contributes to a deeper understanding

of how Bazel can be leveraged for robust and efficient

building and deployment of services, reinforcing its status

as a versatile tool in the arsenal of modern software

developers.

In the next chapter, we will explore three case studies

demonstrating Bazel’s application in software development.

The first case study focuses on building a full-stack digital

service with Bazel, illustrating its use in managing

dependencies and builds. The second case study examines

how Bazel aids in developing a serverless service platform,

emphasizing build optimization. The third case study

discusses Bazel’s role in managing an enterprise software

monorepo, showcasing its effectiveness in handling large-

scale codebases. These examples aim to provide a practical

understanding of Bazel’s implementation in different

development contexts.

Recommended Reading

For readers looking to deepen their understanding of

advanced Bazel concepts, the following resources are highly

recommended:

How Bazel Works: This article serves as an excellent

starting point for understanding Bazel’s fundamental

concepts and how its build process operates. It lays the

groundwork for comprehending the intricacies of Bazel’s

caching system. - https://sluongng.hashnode.dev/bazel-

caching-explained-pt-1-how-bazel-works

Bazel In-Memory Cache: A deep dive into Bazel’s in-

memory cache, this piece elucidates how Bazel

optimizes builds within a single session, highlighting the

role and limitations of the ephemeral in-memory cache.

- https://sluongng.hashnode.dev/bazel-caching-

explained-pt-2-bazel-in-memory-cache

Repository Cache: This article focuses on the

repository cache, a key component in Bazel’s caching

strategy. It discusses how Bazel caches external

dependencies, a crucial feature for the efficient

management of large-scale projects. -

https://sluongng.hashnode.dev/bazel-caching-explained-

pt-3-repository-cache

Persistent Action Cache: The final piece in the series,

this article explores the persistent action cache. It

provides an in-depth look at how Bazel caches actions

across builds, ensuring efficiency and consistency over

time. - https://sluongng.hashnode.dev/bazel-caching-

explained-pt-4-persistent-action-cache

Extending Bazel: To gain insights into advanced

concepts like writing custom rules and distributing

them, as well as understanding macros, depsets,

aspects, and repository rules. This resource also covers

the Starlark language used in Bazel - Extending Bazel

on Bazel.build - https://bazel.build/docs/extending.html

https://sluongng.hashnode.dev/bazel-caching-explained-pt-1-how-bazel-works
https://sluongng.hashnode.dev/bazel-caching-explained-pt-2-bazel-in-memory-cache
https://sluongng.hashnode.dev/bazel-caching-explained-pt-3-repository-cache
https://sluongng.hashnode.dev/bazel-caching-explained-pt-4-persistent-action-cache
https://bazel.build/docs/extending.html

Extension Overview: Offers a comprehensive guide

on extending the BUILD language using macros and

rules, detailing the evaluation model of Bazel and

providing practical guidance on creating your own

extensions - Extension Overview on Bazel.build -

https://bazel.build/docs/extension-overview.html

Workspaces, Packages, and Targets: This resource

is essential for understanding the organization of code

in Bazel, encompassing workspaces, packages, and

targets, and their roles in the build process -

Workspaces, Packages, and Targets on Bazel.build -

https://bazel.build/docs/workspaces-packages-

targets.html

Hermeticity in Bazel: For an advanced understanding

of hermeticity and its importance in reproducible builds,

refer to the relevant sections under Bazel

documentation - Hermeticity on Bazel.build -

https://bazel.build/docs/hermeticity.html

Watching Projects with Bazel: Discover advanced

techniques for monitoring changes in your Bazel

projects. This includes setting up watchers and using

Bazel’s query language for real-time insights - Bazel

Query Language - https://bazel.build/docs/query.html

Building Custom Toolchains: Delve into the creation

and utilization of custom toolchains in Bazel, an

advanced topic crucial for cross-platform and language-

specific builds - Toolchains on Bazel.build -

https://bazel.build/docs/toolchains.html

Aspects in Bazel: Aspects are a powerful feature for

traversing and manipulating the build graph. This

resource provides an in-depth look at their usage and

applications - Aspects on Bazel.build -

https://bazel.build/docs/aspects.html

https://bazel.build/docs/extension-overview.html
https://bazel.build/docs/workspaces-packages-targets.html
https://bazel.build/docs/hermeticity.html
https://bazel.build/docs/query.html
https://bazel.build/docs/toolchains.html
https://bazel.build/docs/aspects.html

Understanding and Using Aliases: For advanced

manipulation of dependencies and targets,

understanding aliases in Bazel is crucial - Aliases on

Bazel.build -

https://bazel.build/docs/be/general.html#alias

Exploring Experimental Bazel Features: Stay up-to-

date with the cutting-edge features being tested in

Bazel, understanding their potential applications and

implications - Bazel Release Notes -

https://bazel.build/docs/release-notes.html

Bazel Community and Support: Engaging with the

Bazel community can provide additional insights and

support for advanced Bazel concepts - Bazel

Community - https://bazel.build/docs/community.html

These resources will provide a comprehensive

understanding of advanced Bazel topics, supporting a

deeper dive into this powerful build automation tool.

https://bazel.build/docs/be/general.html#alias
https://bazel.build/docs/release-notes.html
https://bazel.build/docs/community.html

CHAPTER 13

Case Studies and Real-World

Examples

Introduction

In this chapter, we explore three compelling case studies

that exemplify the implementation of cutting-edge

technologies in diverse environments. The first case study

focuses on the creation of a full stack digital service,

emphasizing the integration and challenges of melding

front-end and back-end technologies. The second case

study delves into the development of a serverless service

platform, illustrating the advantages and complexities of

serverless computing. The third case study examines the

application of Bazel in an Enterprise Software Monorepo,

providing insights into managing and scaling software builds

in a complex Monorepo codebase. Together, these studies

offer a rich perspective on modern software development

trends, challenges, and innovations.

Structure

In this chapter, we will cover the following topics:

Case Study 1: Building a Full Stack Digital Service

Case Study 2: Building a Serverless Service Platform

Case Study 3: Applying Bazel in an Enterprise Software

Monorepo

Case Study 1: Building a Full Stack

Digital Service

The first case study is about a modular, end-to-end solution

designed to enable firms to create and deploy cloud-based

digital banking entities more rapidly than before. It is a

comprehensive system that integrates various components

essential for modern digital banking operations. Moving

forward, this solution will be identified as “CS1” due to

restrictions imposed by a non-disclosure agreement and

here are some of its key aspects:

Rapid Deployment: CS1 allows for the quick setup of

a new bank, significantly reducing the time to market. It

is possible to complete the initial feature setup for a

virtual banking operation in as little as three months.

Cloud-Based Solution: Being a cloud-based platform,

CS1 offers flexibility and scalability, which is crucial for

adapting to changing market demands and customer

needs.

Integration with AWS: CS1 is built around Vault

(ThoughtMachine’s cloud-native core banking engine),

Mambu (another modern core banking engine), and

utilizes AWS’s native cloud services. This integration

ensures that CS1 is hosted on a robust and secure

infrastructure, offering high reliability and performance.

Modular System: The platform is fully modular,

allowing banks to create highly flexible end-to-end

solutions. This modularity enables banks to add new

functionalities as required and adapt the platform to

their specific needs.

Cost and Time Efficiency: By leveraging CS1, firms

can enter new markets quickly and reduce operational

costs. The platform is designed to streamline the

banking setup process, making it more efficient in terms

of both time and resources.

Pluggable Components: CS1 offers pluggable

components such as a predefined operating model and

standardized business processes. This feature reduces

time to market, lowers project risk, and optimizes return

on investment.

Support for Multiple Entities: CS1 delivers the

capabilities required to support multiple-entity banking

operations, allowing for a diverse range of banking

services and products to be managed under a single

platform.

In summary, CS1 represents a significant advancement in

digital banking technology, offering a rapid, scalable, and

flexible solution for setting up cloud-based digital banks. Its

integration with AWS and the modular, cloud-native core

banking engine Vault, positions it as a comprehensive

solution for modern banking needs.

This project, envisioned as a virtual bank accelerator, aimed

to provide a foundational structure for greenfield projects,

allowing them to avoid starting from scratch. It was brought

to life by a dedicated team of over 30 professionals,

encompassing a range of multidisciplinary roles. The team

structured their work into two main streams: one focused on

defining business features and the other on development

and operations. Together, they successfully developed more

than 30 generic business features. The technical stack was

diverse, utilizing Java, Kotlin, Swift, HTML, CSS, TypeScript,

Python, and Starlark, showcasing the team’s broad range of

skills and adaptability to different programming languages

and technologies.

In the initial stages of our project, we adopted a poly-

repository approach. However, we soon encountered several

challenges with this strategy. Coordinating changes across

multiple repositories proved difficult, as it required

synchronizing updates and ensuring compatibility. We also

faced challenges in refactoring code, as changes often

needed to be mirrored across different repositories,

complicating the process. Additionally, managing versions

became complex, as we had to track which versions of

different repositories were compatible with each other. This

approach also led to reduced visibility and discoverability

within our codebase, making it harder for team members to

be aware of all existing components and their interactions.

Finally, we struggled with tracking and implementing global

changes and impacts, such as updates to coding standards

or security policies, as these had to be replicated across all

repositories.

Motivation for Adopting Bazel

For our CS1 project, the decision to use Bazel as our build

tool brought numerous benefits, aligning well with our

specific needs and challenges. Bazel’s ability to support

multiple languages and platforms was a crucial factor, as it

offered built-in support for a variety of programming

languages and the capability to build software for diverse

platforms such as Linux, Windows, and macOS, all from a

single source tree. Furthermore, Bazel’s integration with

testing frameworks significantly enhanced our development

efficiency. Its support for automated testing allowed our

developers to run tests only on the parts of the codebase

that were affected, thanks to its fine-grained dependency

graph. This precise and granular dependency management

also proved invaluable in effectively handling our project’s

complex dependency graphs. Moreover, the query language

provided by Bazel enabled a deeper understanding of our

complex codebase, making it easier to manage and evolve.

Lastly, being a product originally developed by Google,

Bazel is supported by a growing community and ecosystem,

offering robust support, along with a range of plugins and

extensions that further augment its functionality. These

aspects collectively made Bazel an optimal choice for our

project.

The primary goal and expected outcome of implementing

Bazel for the CS1 project centered around achieving team

alignment and synchronicity in the development process. By

adopting Bazel, we aimed to ensure that each business

feature drove the code contributions, fostering a more

cohesive and streamlined approach to development. This

methodology was particularly significant in aligning our

development flow with agile practices, which was a crucial

aspect of the project’s success. Bazel’s efficient

management of dependencies and its support for multiple

languages and platforms facilitated this alignment, enabling

the team to work cohesively and react swiftly to changing

requirements. The ability to integrate seamlessly with

various testing frameworks and the fine-grained control

over builds and tests further reinforced our agile

methodology. In essence, Bazel acted as an accelerator, not

just in terms of build efficiency, but more importantly, in

harmonizing our team’s efforts and ensuring that our

development practices were in lockstep with agile

principles, thereby greatly contributing to the project’s

overall success.

Implementation Strategy

In integrating Bazel into the existing development workflow

for our project, we focused on managing deliverables at

every architectural layer with an emphasis on both the

overarching components and the individual, atomic

elements. Bazel was configured to handle the compilation

and assembly of all deliverable components, which included

produced binaries from various segments of our

architecture. This setup ensured that each discrete project

or module, no matter how small, was accounted for and

managed efficiently. The integration extended beyond just

managing the build processes; it was pivotal in maintaining

consistency and efficiency across all development stages.

Bazel was employed not only in the local development

environments of our team members but also as a critical

component in our continuous integration (CI) pipelines. By

doing so, we achieved a seamless transition between local

development and the more extensive integration and

testing stages. This strategy ensured that the build and test

processes were uniform, regardless of where they were

executed, thereby enhancing both developer productivity

and the reliability of our builds. The implementation of Bazel

thus became a cornerstone in our development process,

bridging the gap between individual development efforts

and larger-scale integration and deployment activities.

During the implementation process of Bazel for our project,

we made several key considerations and decisions to define

an effective Monorepo layout. The chosen structure, as

illustrated, was carefully designed to cater to our project’s

unique needs while promoting clarity and efficiency.

.

├── BUILD

├── CODEOWNERS

├── CONTRIBUTING.md

├── README.md

├── WORKSPACE

├── components

│ ├── android

│ ├── backend

│ └── ios

├── samples

│ ├── android

│ ├── backend

│ └── ios

├── single-developer-hub

│ ├── back-end

│ └── front-end

├── third-party

│ ├── android

│ ├── ios

│ ├── java

│ ├── nodejs

│ ├── python

│ └── web

├── tools

│ ├── AWS

│ ├── angular

│ ├── ios

│ ├── rules

│ ├── scripts

│ ├── setup

│ └── tulsi

└── virtual-banking

 ├── bank-as-a-service

 ├── channels

 ├── corebank

 └── user-acceptance-test

The root of the repository contains essential files like BUILD,

WORKSPACE, and README.md, which are pivotal for Bazel’s

operation and provide initial guidance for developers. The

BUILD file defines the build rules, whereas WORKSPACE

establishes the workspace context, crucial for Bazel’s

functionality. CODEOWNERS and CONTRIBUTING.md were included to

streamline contribution processes and maintain code

quality.

The components directory is segregated by platform

(Android, iOS, and so on), ensuring a clear separation of

concerns and facilitating platform-specific optimizations.

This structure aids developers in quickly locating and

focusing on relevant parts of the codebase.

The samples folder, particularly with its iOS example, serves

as a reference model for developers, illustrating best

practices and providing a template for new components.

In single-developer-hub, we divided the application into

back-end and front-end sections, embracing a modular

approach that allows for independent development and

scaling of each part.

The third-party directory is organized by technology stacks

(for example, Android, iOS, Java), which simplifies

dependency management and streamlines the integration

of external libraries and frameworks.

Under tools, we included various utilities and scripts,

categorized by their purpose or technology (like AWS,

Angular, iOS). This not only supports Bazel’s operations but

also enhances the developer experience by providing

essential tools for different aspects of the development

process.

Lastly, the virtual-banking section represents a specific

project within the Monorepo. It is further broken down into

sub-components like bank-as-a-service, channels, and core

bank, exemplifying how larger projects can be modularized

within a Monorepo for better manageability.

The decision to adopt this layout was driven by the need for

a scalable, organized structure that supports a diverse

range of technologies and components while maintaining

ease of navigation and build efficiency. This structure

facilitates Bazel’s performance in managing dependencies

and builds across various components, ensuring a

streamlined workflow that aligns with our agile practices

and overarching architectural vision.

Challenges and Solutions

During the implementation of Bazel in our project, we

encountered several specific challenges, particularly with

building TypeScript and iOS applications and managing

dependencies. These challenges stemmed largely from the

limitations in the existing Bazel rules for these technologies.

Firstly, building TypeScript applications proved to be a

significant hurdle. The available Bazel rules for TypeScript

were somewhat limited, lacking the flexibility we needed for

our project’s specific requirements. This limitation

necessitated a deeper dive into custom configurations and

workarounds to ensure that our TypeScript builds were

efficient and aligned with our development practices.

Similarly, iOS development presented its own set of

challenges. The complexity of iOS builds and dependency

management within the Bazel ecosystem was a

considerable obstacle. Initially, managing dependencies for

iOS projects was particularly troublesome. However, we

found a solution by integrating Tulsi, a Bazel build system

generator for Xcode projects. Tulsi significantly streamlined

our iOS builds, making the process more manageable and

consistent with our overall development workflow.

In addition to these platform-specific challenges, we also

faced issues with code generation. To address this, we

developed a custom Bazel rule for OpenAPI code generation.

This rule proved to be highly beneficial as it allowed us to

tailor the code generation process to our project’s evolving

needs, which included several customizations throughout

the project’s lifecycle. The flexibility and control afforded by

this custom rule were instrumental in maintaining efficiency

and ensuring that generated code met our standards and

requirements.

Furthermore, we encountered challenges with Spring Boot

code generation and packaging. The standard Bazel rules

did not cater to the specific customizations our project

required. To overcome this, we developed another custom

Bazel rule tailored to our Spring Boot applications. This rule

enabled us to efficiently handle the generation and

packaging of Spring Boot code, incorporating the numerous

customizations that were essential for our application. The

development of this rule was a significant undertaking, but

it paid off by providing a tailored solution that perfectly fit

our project’s unique requirements.

Results and Impact

Adopting Bazel for our project yielded significant

quantitative and qualitative outcomes that positively

impacted our team dynamics and overall development

efficiency. One of the most noteworthy changes was the

enhanced ability of the team to collaborate and contribute

across the full stack. This cross-functional understanding

and involvement led to an impressive acceleration in

development, quantified at a 24% increase in overall pace.

In terms of build times, we observed a remarkable

reduction, with builds that previously took 18 minutes now

completed in less than 6 minutes. This decrease in build

times, alongside reports from developers of improved

productivity, greatly contributed to the scalability of our

codebase, allowing us to manage and expand our project

more effectively. An unexpected benefit that emerged from

this transition was the opportunity for developers to learn

new coding languages, an aspect that, while challenging,

contributed to the team’s growth and versatility. The

adoption of Bazel, thus, not only met our initial objectives

but also fostered a more skilled and agile development

team.

Lessons Learned

The journey of implementing and using Bazel in our project

was rich with learning experiences and insights, although

not without its challenges. A key takeaway was the steep

learning curve associated with Bazel, which required a

significant investment of time and effort to master.

Moreover, we encountered compatibility issues, most

notably with Windows, where Bazel’s support was relatively

poor. This was further compounded by the realization that

community rules, while helpful, are not always robustly

supported or maintained, posing additional challenges in

integration and usage.

Despite these hurdles, the insights we gained were

invaluable, particularly for projects or teams with similar

characteristics to ours. We found that Bazel is particularly

beneficial for highly skilled engineering teams dealing with a

multitude of programming languages and managing large

volumes of code. Its effectiveness becomes even more

pronounced in environments where complex business

products are being developed, as Bazel’s strengths in build

optimization and dependency management can significantly

streamline the development process.

For organizations or teams considering adopting Bazel, we

recommend dedicating at least two senior engineers to

manage the deployment and ongoing support of Bazel.

Their expertise will be crucial in navigating the intricacies of

Bazel and addressing the unique challenges that arise.

Furthermore, for teams working in Windows environments,

we suggest leveraging the Windows Subsystem for Linux

(WSL) to circumvent some of the compatibility issues with

Windows. This tactic can help in creating a more seamless

and efficient development experience when integrating

Bazel into your workflow.

Future Plans and Considerations

As we continue to evolve and enhance our use of Bazel,

there are several ongoing and planned improvements that

are set to further optimize our development process. A

significant focus is on enhancing the performance of our

continuous integration (CI) system. We plan to achieve this

by implementing persistent Bazel workers, which will allow

for more efficient utilization of resources, and by setting up

a dedicated cache node, which is expected to drastically

reduce build times and improve overall CI efficiency. In

addition to these performance enhancements, we anticipate

a shift in our approach to rule writing. Specifically, we aim to

transition many of our existing `genrule` commands into

pure Starlark rules, which will offer more flexibility and

maintainability. This shift aligns with our broader strategy of

leveraging Bazel’s capabilities to their fullest extent.

Looking further ahead, our long-term vision for Bazel

includes its integration into dynamic aspects of our

workflow, such as the generation of dynamic Helm chart

code. This integration is expected to bring a new level of

automation and efficiency to our deployment processes,

solidifying Bazel’s role as a central pillar in both our project

and organizational infrastructure.

Outcome

This case study offers a comprehensive insight into the

deployment of a modular, cloud-based digital banking

solution. This project, aimed at rapidly deploying virtual

banking operations, leveraged a diverse technical stack and

encompassed over 30 generic business features. Initially,

the team faced challenges with a poly-repository approach,

encountering issues in coordination, code refactoring, and

version management. The adoption of Bazel emerged as a

pivotal decision, aligning the team’s development efforts

with the project’s agile practices and complex technical

demands.

Bazel played a crucial role in this use case success. It

enabled multi-language support, streamlined testing

processes, and provided fine-grained dependency

management, all of which were integral to the project’s

needs. The tool facilitated team alignment, contributing to a

24% increase in development speed and reducing build

times from 18 to less than 6 minutes. Bazel’s

implementation not only accelerated development but also

fostered a more cohesive and agile team dynamic, crucial

for the project’s ambitious goals.

This case study underscores the significance of choosing the

right build tool in complex software development projects.

Bazel’s effectiveness in handling diverse languages, large

code volumes, and intricate project structures demonstrates

its suitability for high-level engineering teams. The lessons

learned from this use case project highlight the importance

of dedicated resources for tool implementation and the

potential challenges in learning curves and compatibility

issues. These insights are valuable for the broader software

development community, especially for those contemplating

Bazel in similar multifaceted environments. The future

enhancements planned for Bazel usage in this use case,

including the transition to Starlark rules and the integration

of dynamic code generation, suggest a long-term

commitment to leveraging Bazel’s full potential, signaling its

growing importance in the field of software development.

Case Study 2: Building a Serverless

Service Platform

The project in question was an ambitious undertaking by a

global bank to develop a financial services platform tailored

for a new regional market, specifically targeting the family

customer segment. This platform was unique in its

approach, as it integrated services from various third-party

providers, thereby offering a comprehensive suite of

financial solutions to its users. The objective was to create a

seamless, user-friendly experience that catered to the

specific needs of families in this region.

From a contextual standpoint, the project was extensive and

complex, encompassing over 400 distinct business

operations. The initial development team consisted of more

than 40 developers, which eventually expanded to over 110

engineers. This growth was indicative of the project’s scale

and the diverse skill sets required to bring it to fruition. The

technical scope included the development of a hybrid

mobile application, middleware, core banking functionalities,

along with query and operational persistence systems.

Besides, the project involved numerous internal and

external integrations, making it a highly interconnected and

multifaceted initiative.

In terms of infrastructure, the decision was made to utilize

cloud-native services and serverless architectures. This

method was strategically chosen to manage the

unpredictability of scalability demands and to minimize

operational costs. By leveraging the flexibility and efficiency

of cloud-based solutions, the project aimed to ensure robust

performance and reliability, even under varying load

conditions.

A critical aspect of the project was the stringent timeline.

The team was tasked with delivering a ‘friends and family’

version of the platform in less than 18 months. This deadline

was driven by regulatory requirements specific to the new

region. The tight timeline added an extra layer of

complexity to the project, requiring meticulous planning,

efficient execution, and the ability to rapidly adapt to

evolving needs and challenges.

Motivation for Adopting Bazel

The decision to choose Bazel over other build tools for our

project was driven by a variety of specific reasons, each

contributing to the overarching goal of optimizing our

development process. Firstly, Bazel’s capacity for highly

scalable builds made it an ideal choice for our expanding

project needs. Its robust support for multiple languages and

platforms was another critical factor, as it allowed for a

more versatile and inclusive development environment. The

integration with various testing frameworks offered by Bazel

greatly streamlined our testing process, ensuring more

reliable and efficient quality control. Also, Bazel’s fine-

grained dependency management system allowed for

precise control over our project’s complex dependencies,

enhancing overall build integrity and consistency. The deep

codebase understanding facilitated by Bazel was invaluable

for navigating and managing our large and intricate

codebase. The strong community and ecosystem

surrounding Bazel provided us with the necessary support

and resources, further cementing our choice. Lastly, the

performance optimization capabilities of Bazel were a key

consideration, promising to enhance the efficiency and

speed of our builds.

The implementation of Bazel was aimed at achieving

specific goals and expected outcomes that were critical to

the success of our project. Our primary objective was to

significantly speed up the development cycle, enabling a

more agile and responsive development process. We also

sought to foster an environment where full-stack

development teams could collaborate effectively around the

same business feature, thereby promoting better integration

and synergy within the teams. Enhancing the developer

experience was another vital goal, as we aimed to provide a

more streamlined and user-friendly development workflow.

In addition, enabling our teams to work with ephemeral

environments was a crucial outcome, as it allowed them to

test and showcase the features they were developing in a

more flexible and dynamic manner. These goals and

outcomes were central to our decision to implement Bazel,

guiding our approach and strategies throughout the

integration process.

Implementation Strategy

The integration of Bazel into our existing development

workflow was meticulously planned and executed, aligning

with our adoption of trunk-based development. This mode of

operation facilitated a more streamlined and continuous

integration of changes, enhancing our development agility.

To complement this, we engaged GitHub Actions for our

continuous integration (CI) operations, which allowed us to

automate our build and testing processes efficiently. This

integration with GitHub Actions ensured that every commit

was built and tested automatically, reducing the likelihood

of integration issues and ensuring code quality.

.

├── BUILD.bazel

├── README.md

├── WORKSPACE

├── commons

│ ├── aws-dynamodb

│ ├── aws-lambdas

│ ├── aws-s3

│ ├── aws-utils

│ ├── core

│ ├── external-callers

│ ├── infra

│ ├── logging-service

│ ├── parameter-service

│ ├── parameters

│ └── smartcontracts

├── dockerfile

├── docs

│ ├── DevEnvironment.md

│ ├── GettingStarted.md

│ ├── GettingStarted_old.md

│ ├── Images

│ ├── LineSeparatorGuide.md

│ ├── dev.md

│ └── dotfiles.md

├── domains

│ ├── accounts

│ ├── cards

│ ├── commonfnc

│ ├── customer-care

│ ├── data-astrum

│ ├── data-ingestor

│ ├── data-sendevent

│ ├── onboarding

│ ├── sandbox

│ └── security

└── tools

 ├── clu

 ├── docker

 ├── inception_sdk

 ├── python

 ├── renderer

 ├── requirements.txt

 ├── rules

 ├── smartcontracts_simulation_tests

 └── test_utils

Our repository was structured to optimize the use of Bazel,

starting with the root level containing essential Bazel files

like `BUILD.bazel`, `README.md`, and `WORKSPACE`. These files are

critical for defining build rules and setting up the Bazel

workspace, providing clear guidance for developers.

The `commons` directory was a key component of our

structure, encompassing various AWS services like

DynamoDB, Lambda, S3, and utility libraries. This modular

approach allowed for better management and isolation of

common functionalities, such as logging services, parameter

handling, and smart contract integrations.

Documentation was another critical aspect, housed in the

`docs` directory. This included comprehensive guides for

setting up development environments, getting started

instructions, and best practices, ensuring that team

members had easy access to the information they needed

to work effectively.

Our `domains` folder represented the core business logic,

segregated into domains like accounts, cards, customer

care, and security. This separation into domains allowed

teams to focus on specific areas of the application without

interference, reducing complexities in understanding and

maintaining the codebase.

Finally, the `tools` directory housed a variety of utilities and

scripts, including custom Bazel rules, test utilities, and

SDKs. This centralization of tools ensured consistency in

development practices and streamlined the process of

updating and maintaining these utilities.

Challenges and Solutions

During the implementation of Bazel, our project

encountered a range of specific challenges that required

innovative solutions. One major issue was dealing with the

serverless packaging process, which necessitated the

implementation of tree shaking techniques to reduce the

artifact size. This was crucial for optimizing performance

and efficiency. Another challenge involved updating

packages for cloud-native services, which required careful

handling to ensure compatibility and stability. Similarly, we

faced the task of building and packaging custom code for

TM Vault, our core banking application, which presented its

own unique set of complexities.

To address these challenges, we focused on automating

various processes using Bazel rules, enhancing the

developer experience without obscuring understanding. It

was vital that these processes were transparent to

developers, avoiding the creation of “magic black boxes” that

could hinder comprehension and troubleshooting. Our

approach was to provide tools and rules that were

accessible and understandable to all team members,

ensuring they were fully equipped to manage and contribute

to these automated processes effectively.

In terms of solutions and workarounds, we developed a suite

of custom rules and tools tailored to our project’s needs.

These included managing Python dependencies, which was

fundamental for our serverless functions and other Python-

based components. We automated the building, packaging,

deploying, and testing of AWS Lambda functions,

streamlining our serverless architecture. Building and

deploying AWS infrastructure became more efficient with

custom Bazel integrations. We also implemented solutions

for executing AWS Systems Manager commands, which

were essential for maintaining our cloud infrastructure.

For our Java applications, we developed optimizations and

handled build dependencies and execution challenges,

ensuring our Java components were efficient and reliable.

We also created a process for updating environment

variables specifically for Bazel, enhancing the flexibility and

adaptability of our build environment.

Likewise, we tackled the management of smart contract

deployment, validation, module handling, and code

generation. This was particularly important for our

blockchain-related components, where precision and

reliability are paramount. Finally, we implemented a system

for generating client code from Swagger definitions, which

streamlined our API development and ensured consistency

across our services.

Results and Impact

The adoption of Bazel in our project brought about both

quantitative and qualitative benefits that markedly

improved our development process. Most notably, there was

an 81% improvement in build times, which significantly

expedited the development cycle. In terms of productivity,

our full-lifecycle developers experienced a 28%

enhancement, a testament to the efficiency and

effectiveness of Bazel in managing complex workflows. This

improvement in productivity also extended to the scalability

of our codebase, ensuring its maintainability over time. As

well as, feedback gathered through developer polls

highlighted an improved developer experience, further

validating the positive impact of Bazel on our project’s

development environment.

An unexpected yet valuable outcome of this transition was

the blurring of traditional boundaries between front-end and

back-end development. Developers, who previously

specialized in one area, found themselves gaining insights

and contributing to the other side of the codebase. This

cross-functional collaboration not only enriched their skill

sets but also fostered a more integrated and cohesive team

dynamic. Furthermore, Bazel simplified the update and

release processes of our cloud-native services. By managing

infrastructure as code within Bazel projects, we streamlined

and unified our approach to deploying and maintaining our

cloud infrastructure, leading to more efficient and error-free

operations. These unexpected benefits underscored the

versatility and far-reaching impact of Bazel, extending

beyond just build and test processes to encompass broader

aspects of software development and deployment.

Lessons Learned

The experience of implementing and using Bazel in our

project brought forth several key takeaways. One significant

realization was the effectiveness of managing infrastructure

as code within Bazel projects. This process streamlined our

deployment processes and enhanced the reproducibility of

our environments. Plus, we successfully managed cloud-

native services configurations as code, integrating them

seamlessly into our Bazel projects. This integration provided

a unified framework for both application and infrastructure

management. Furthermore, adopting an API-First approach,

we managed asynchronous APIs as code, which reinforced a

consistent and forward-thinking development practice,

ensuring that API design and implementation were

thoroughly aligned.

From this journey, we gained valuable insights that could

benefit similar projects or teams. We learned that while it is

advantageous to reuse existing community rules for

common operations, developing custom rules for specific,

unique requirements of a project is crucial. This approach

ensures that the tooling and processes are perfectly tailored

to the project’s needs. Equally important, we discovered

that optimizing Bazel is an ongoing process that requires

maturity and a consistent investment of engineering

resources over time. Another critical insight was the

importance of decoupling deployment operations from the

building process. By focusing solely on the building process,

we could streamline and optimize this phase without the

added complexity of deployment considerations.

For others considering adopting Bazel, we recommend a few

strategic approaches. Firstly, it is highly beneficial to hire at

least one engineer with deep knowledge and experience in

Bazel. This expertise is invaluable in navigating the

complexities of Bazel and guiding the project towards

effective implementation. Secondly, it is crucial to onboard

the entire development team in the principles and basic

usage of Bazel. Ensuring that the team has a foundational

understanding of how Bazel works will facilitate smoother

integration and collaboration. Lastly, providing formal

training for DevOps teams is essential. This training should

focus not just on the technical aspects of Bazel but also on

how it can be leveraged to enhance development and

operational workflows. Such an investment in knowledge

and skills will pay dividends in the successful adoption and

utilization of Bazel in the project.

Future Plans and Considerations

As we continue to evolve and enhance our use of Bazel, one

of our key ongoing initiatives involves integrating the

Quality Assurance (QA) team more deeply into our

automated processes. We are in the process of incorporating

automated user acceptance tests into our Bazel workflows.

This integration not only aligns with our commitment to

quality and efficiency but also involves setting up the

necessary infrastructure to provide a robust QA

environment. In doing this, we aim to streamline our testing

processes and ensure that our products meet the highest

standards of quality before they reach the end-users.

In terms of expanding the use of Bazel within our

organization, we are planning an internal engineering

session dedicated to sharing our experiences with Bazel.

This session is designed to be a show-and-tell event for

other teams within the organization who are interested in

understanding Bazel’s capabilities and considering its

adoption. By doing this, we hope to foster a knowledge-

sharing culture and assist other teams in realizing the

potential benefits of integrating Bazel into their workflows.

Looking at the long-term vision for Bazel within our project

and organization, we are increasingly considering the

adoption of Bazel and Monorepo strategies for existing

projects, particularly those within modernization programs.

This consideration stems from the positive impact we have

observed in our current projects, where Bazel has

significantly improved our development processes. The

move towards Bazel and Monorepos for brownfield projects

represents a strategic step in modernizing our technology

stack, enhancing collaboration, and streamlining our build

and deployment processes across various initiatives.

Outcome

Bazel’s ability to handle multiple languages and platforms,

along with its integration with various testing frameworks,

proved crucial in managing the project’s intricate codebase

and diverse technology stack. The implementation of Bazel

was driven by the goal to expedite the development cycle

and enhance full-stack collaboration, thereby aligning with

the project’s stringent timeline and quality standards.

Reflecting on Bazel’s contribution to the project, it becomes

evident that its capacity for scalable builds, fine-grained

dependency management, and performance optimization

were key factors in the project’s success. Bazel not only

facilitated a significant reduction in build times and an

increase in developer productivity but also fostered an

environment conducive to agile development practices. This

resulted in a more responsive development process,

enabling the team to meet the tight deadline and deliver a

high-quality product. Bazel’s role extended beyond just

improving build and test processes; it was instrumental in

transforming the development workflow, ensuring

consistency, and maintaining code quality across a large

and dynamic team.

The broader implications of this case study for the software

development community are profound. It underscores the

transformative potential of adopting tools like Bazel,

particularly in complex, large-scale projects. The experience

shared here demonstrates the benefits of aligning build

tools with project goals and team dynamics, and it

highlights the importance of choosing a tool that not only

addresses immediate technical needs but also supports

long-term strategic objectives. This case study serves as a

valuable reference for other organizations considering a

similar transition, offering insights into the challenges,

solutions, and best practices for implementing Bazel in a

demanding and fast-paced development environment.

Case Study 3: Using Bazel in a

Developer Hub

This case study examines a central European private bank

deeply engaged in a modernization program. Faced with

limitations in the local software engineering market,

including high costs and hiring restrictions, the bank

decided to establish a near-shore developer hub. This hub

was strategically created to build the next generation of

enterprise software, addressing the challenges in resource

availability and expertise.

A critical success factor for this developer hub was the

ability to standardize methods and tools across various

software products. This standardization was essential for

efficiently scaling the team size over time, consolidating

talent within the hub, and extending their capabilities across

different products. The operational model of the hub was

grounded in agile principles and team topologies, fostering

a flexible and responsive development environment.

The developer hub embarked on a multi-year roadmap,

aiming to modernize over 50 systems. This ambitious

project involved scaling the team to 150 developers and

incorporating external collaborators, presenting a unique set

of logistical and managerial challenges.

Before the introduction of Bazel, the hub faced several initial

challenges. One of the primary issues was ensuring that all

developers were aligned and working cohesively towards

common goals. The need to let business features drive code

contributions was paramount, as was the ability to support

ephemeral environments. Additionally, there was a

requirement to provide support for both cloud and on-

premise infrastructures. This infrastructure needed to

adhere to the principles of infrastructure as code, utilizing

tools like Helm and Kubernetes for automated code

generation. These challenges highlighted the need for a

robust and versatile tool that could unify the development

process across the various projects and teams within the

hub.

Motivation for Adopting Bazel

Our decision to adopt Bazel as our primary build tool was

influenced by several key factors that aligned with the

needs and goals of our project. The vibrant community

around Bazel was a significant draw, offering a wealth of

knowledge and support which is invaluable for any

developing project. Furthermore, the experience of our team

members with Bazel played a crucial role in this choice;

their familiarity with its functionalities and best practices

promised a smoother integration into our workflow.

Moreover, the scalability offered by Bazel, crucial for

managing our growing codebase, alongside its robust multi-

language support, made it an ideal candidate. These

features of Bazel ensured that it could efficiently handle the

diverse technologies and the increasing complexity of our

project.

The goals and expected outcomes of implementing Bazel

were centered around enhancing the overall developer

experience. We aimed to simplify our tooling ecosystem,

reducing the overhead associated with managing multiple

build systems. Bazel’s ability to homogenize configurations

across different environments was another key motivation,

as it promised to streamline our development processes.

Moreover, we sought to leverage Bazel’s capabilities to

share common architectural components more effectively,

fostering a more cohesive and modular codebase. The

implementation of Bazel was envisioned not just as a

technical upgrade but as a strategic move towards a more

integrated, efficient, and developer-friendly environment.

Implementation Strategy

The integration of Bazel into our existing development

workflow was strategically planned and executed, focusing

on enhancing our development practices while introducing

new efficiencies. We adopted a trunk-based development

approach, which streamlined our development process and

reduced the complexity of managing multiple long-lived

branches. Alongside this, we implemented GitOps practices,

which further aligned our development and operational

workflows. To maintain consistency and clarity in our version

control system, we enforced specific patterns for branch

naming and commit descriptions. This standardization not

only made our repository more organized but also facilitated

easier navigation and understanding of the code changes.

Another key consideration during the implementation was to

bring a higher level of code traceability into our processes.

This was achieved by linking branch names directly with

user story IDs in Jira. This connection between the code and

the tracking system ensured a clear and traceable path from

requirements to implementation, enhancing accountability

and transparency in the development process. Besides, we

adopted the practice of engaging pull request commit

descriptions with conventional commit standards. This

practice was instrumental in automatically generating

comprehensive and informative changelogs. The

conventional commit approach allowed us to maintain a

clear history of changes, simplifying the process of tracking

modifications and understanding the evolution of the

codebase over time. These strategic decisions in the

implementation of Bazel not only streamlined our

development workflow but also significantly improved the

management and traceability of our code.

The chosen structure was designed to maximize efficiency

and maintainability while ensuring ease of navigation and

coherence throughout the codebase.

.

├── BUILD.bazel

├── MODULE.bazel

├── README.md

├── WORKSPACE.bazel

├── apps

│ ├── app-1

│ ├── app-2

│ ├── dev-portal

│ └── app-3

├── babel.config.json

├── catalog-info.yaml

├── commons

│ ├── backend

│ ├── catalog

│ ├── frontend

│ ├── infra

│ └── metadata

├── docs

│ ├── architecture-decisions

│ ├── code-contribution-model

│ ├── images

│ ├── local-development

│ └── testdata

├── domains

│ ├── domain-1

│ ├── domain-2

│ ├── domain-3

│ ├── domain-4

│ └── domain-5

├── jest.config.ts

├── jest.preset.js

├── maven_install.json

├── nx.json

├── openapitools.json

├── package.json

├── pnpm-lock.yaml

├── pnpm-workspace.yaml

├── project.json

├── tools

│ ├── rules

│ ├── scripts

│ ├── tsconfig.tools.json

│ └── validators

└── tsconfig.base.json

At the root level, we placed key Bazel and project

configuration files such as `BUILD.bazel`, `MODULE.bazel`,

`WORKSPACE.bazel`, and `README.md`. These files are essential

for Bazel’s operation, providing a clear entry point and

guidelines for new developers. The `apps` directory was

created to house individual applications (`app-1`, `app-2`,

`dev-portal`, `app-3`), allowing for clear separation and

modular management of each application within the same

repository.

In the `commons` folder, we segregated shared resources into

logical subcategories like `backend`, `frontend`, `infra`, and

`metadata`. This organization aids in the reuse of common

code and resources across different applications, promoting

consistency and reducing redundancy.

The `docs` directory contains essential documentation,

including `architecture-decisions`, `code-contribution-model`,

and guides for `local-development`. This centralized

documentation ensures that team members have easy

access to important project information and guidelines.

We introduced a `domains` directory, starting with `domain-1`,

to encapsulate domain-specific logic, making it easier to

manage and evolve these aspects independently.

Configuration files such as `babel.config.json`,

`jest.config.ts`, and `pnpm-workspace.yaml` are placed at the

root to apply consistent settings across the entire Monorepo.

This method simplifies configuration management and

ensures that all apps and packages within the repo adhere

to the same standards.

Lastly, the `tools` directory is designated for custom tools

and scripts like `rules`, `validators`, and `scripts`. This

separation of tools from the main application code helps in

maintaining a clean and organized codebase.

Overall, this layout was designed with the intent of

leveraging Bazel’s capabilities to the fullest, ensuring a

scalable and manageable codebase while accommodating

the diverse aspects of our project. The structure facilitates

easy navigation, efficient resource sharing, and clear

separation of concerns, all of which are crucial for the

smooth operation and growth of a large-scale project

managed in a Monorepo setup.

Challenges and Solutions

The implementation of Bazel in our project brought with it

specific challenges, the most significant of which was

aligning different teams across the company around the

Monorepo and Bazel approach. This alignment was crucial,

as it involved not only a change in tools but also a shift in

the development culture and workflow. The challenge lay in

bringing various teams, each with their unique processes

and priorities, onto a common platform. This required a

thoughtful approach to ensure that the transition was

smooth and that all teams were on board with the new

system.

To address these challenges, we established two key

governance structures— the Engineering Solutions Board

and the Architectural Review Board. The Engineering

Solutions Board was tasked with identifying and designing

the best solutions for the engineering challenges we faced

during the implementation. This board played a crucial role

in troubleshooting, innovating, and refining our approach to

integrating Bazel. Meanwhile, the Architectural Review

Board was instrumental in decision-making and consensus

management. This board ensured that decisions regarding

architecture and tooling were made collaboratively and that

all teams had a voice in the process. Their role was vital in

maintaining harmony and alignment among the various

teams during the transition to Bazel and the Monorepo

setup.

In addition to these governance structures, we developed

specific solutions and workarounds to overcome the

limitations we encountered with Bazel, particularly in

managing the Next.js building process. To tackle this, we

integrated Narwhal building tools into Bazel, which

significantly improved our handling of the frontend. This

integration exemplifies our approach to addressing the

challenges faced — by being open to external tools and

custom solutions, we were able to effectively complement

Bazel’s capabilities and ensure a more seamless

development process. The combination of strategic

governance and technical workarounds thus played a

pivotal role in successfully implementing Bazel in our

project.

Results and Impact

The adoption of Bazel in our project, while not quantitatively

measured in precise metrics, brought about significant

qualitative improvements as per the feedback received from

our team. The most notable improvements were seen in

build times, which became noticeably faster, enhancing the

overall development cycle. This acceleration in build

processes directly contributed to increased developer

productivity, as team members were able to spend more

time on development rather than waiting for builds to

complete. Also, the scalability of our codebase saw

substantial improvement, which, coupled with enhanced

quality and maintainability, positioned our project on a

trajectory for sustained growth and evolution. These

changes, largely attributed to the integration of Bazel,

underscored the tool’s impact in streamlining and

optimizing our development processes.

An unexpected yet highly beneficial outcome of adopting

Bazel was the evolution of our team dynamics, particularly

between the frontend and backend teams. Previously

operating in more siloed environments, the teams began to

engage more collaboratively in debugging and problem-

solving across the full stack. This cross-functional interaction

led to a deeper understanding of the entire system, with

frontend and backend developers contributing to areas

beyond their traditional scopes. This bridging of roles not

only enhanced our team’s versatility and skill set but also

fostered a more cohesive and collaborative work

environment. The adoption of Bazel, thus, transcended its

primary role as a build tool and became a catalyst for a

more integrated and efficient team structure.

Lessons Learned

Throughout the process of implementing and using Bazel,

several key takeaways emerged that underscored the

importance of strong leadership across the organization.

Despite the segregation of responsibilities, which is a

common practice in many projects, we learned that having

a unified leadership approach was crucial. This was

particularly evident in the strategic decision to enable

various boards and committees, which played a pivotal role

in guiding the project. Their involvement was not just about

oversight; it was about providing direction, resolving

conflicts, and ensuring that all teams were aligned with the

project’s goals and objectives. This tactic proved to be

instrumental in the successful integration and utilization of

Bazel in our project.

In addition, our experience highlighted the significance of

assessing and managing the corporate engineering culture,

especially when deploying a Monorepo approach and

introducing Bazel as a build tool. The shift to a Monorepo

and the adoption of Bazel require a cultural change that

goes beyond mere technical implementation. It involves

rethinking how teams collaborate, how code is managed,

and how builds are handled. For projects or teams

considering a similar transition, one crucial piece of advice

is to define formal operations before implementation. While

this may seem basic, it is a complex task in practice and is

essential for ensuring a smooth transition. Clear operational

guidelines help in aligning everyone’s efforts, avoiding

misunderstandings, and setting a strong foundation for the

effective use of Bazel.

Future Plans and Considerations

Our future plans for Bazel usage in the project involve

significant enhancements, particularly in the management

of external dependencies. We aim to refine how we handle

both consumers and providers of these dependencies. This

enhancement is expected to streamline our development

process further, making it more efficient and less prone to

errors related to dependency issues. By improving this

aspect of our Bazel usage, we hope to achieve a more

seamless integration of various components and libraries,

enhancing the overall robustness and reliability of our

builds.

In terms of expanding the use of Bazel, we are looking

forward to extending its application beyond our current

project scope. Other projects within the organization are set

to be coached through the process of Bazel adoption. This

initiative is driven by the success we have experienced so

far and the belief that Bazel’s strengths in managing large

and complex codebases can be beneficial across different

teams and projects. By sharing our learnings and best

practices, we aim to facilitate a smoother transition for

these projects, helping them to leverage Bazel’s capabilities

effectively.

Looking at the long-term vision, we are committed to fully

embracing Bazel within our organization. A key aspect of

this vision is encouraging each business unit to create and

manage their own Monorepos in the medium term. Over

time, we plan to progressively consolidate these into a more

unified structure. In addition, we are enthusiastic about

contributing to the broader Bazel community. Plans include

open sourcing our custom Bazel rules and actively

contributing content to technical blogs and talks. Through

these efforts, we aim not only to share our knowledge and

experiences but also to attract external talent and foster a

collaborative environment around Bazel usage. This long-

term strategy aligns with our goal of continuous

improvement and innovation in our development practices.

Outcome

Faced with challenges in aligning developers and managing

a complex infrastructure that included cloud and on-premise

elements, the Developer Hub adopted Bazel. This decision

was driven by Bazel’s vibrant community, scalability, and

multi-language support, which were crucial for the project’s

diverse technology needs. The implementation of Bazel

aimed to streamline tooling, harmonize configurations, and

foster a cohesive codebase, using a trunk-based

development (see https://trunkbaseddevelopment.com/)

approach and GitOps practices for improved code

traceability and management.

The integration of Bazel into the hub’s workflow marked a

significant turning point. The tool’s impact was profound,

notably in accelerating build processes, which, in turn,

boosted developer productivity and enhanced the scalability

of the codebase. Bazel’s role extended beyond a mere

technical solution; it acted as a catalyst for team

collaboration, breaking down silos between front-end and

back-end teams and fostering a unified, agile development

culture. The success of Bazel in this context was not just in

its technical prowess but in how it reshaped the team

dynamics and development practices, aligning them with

the project’s ambitious goals.

The lessons learned from this case study offer valuable

insights for the wider software development community.

Strong, unified leadership and a thorough understanding of

the engineering culture are essential in navigating the

transition to tools like Bazel and approaches like Monorepos.

These insights emphasize the importance of not just the

https://trunkbaseddevelopment.com/

technical aspects but also the cultural and operational shifts

required for successful implementation. The project’s future

plans to refine dependency management with Bazel, mentor

other projects in its adoption, and contribute to the Bazel

community, highlight a commitment to continuous

improvement and knowledge sharing. This approach serves

as a model for other organizations embarking on similar

journeys, underscoring the transformative potential of tools

like Bazel in large-scale software development projects.

Conclusion

The first case study, exemplifies a significant leap in digital

banking technology, offering a rapid, scalable, and flexible

cloud-based solution. The project’s success, marked by

rapid deployment, modularity, and cloud-based flexibility,

underscores the profound impact of leveraging advanced

technology in financial services. The integration with AWS

and use of Vault and Mambu engines highlight the

importance of robust and secure infrastructure in modern

banking operations. The adoption of a comprehensive

system for new market ventures demonstrates the potential

to revolutionize digital banking by significantly reducing

time to market and operational costs, while offering a

customizable and efficient banking platform.

The second case study showcases the transformative

potential of serverless architecture in developing a financial

services platform for a new market. The project’s ability to

integrate services from various providers into a

comprehensive suite of solutions illustrates the power of

cloud-native services in creating a user-friendly and efficient

platform. The strategic use of Bazel significantly enhanced

the development process, leading to an 81% improvement

in build times and a 28% increase in developer productivity.

This case study serves as a testament to the agility and

scalability afforded by serverless computing and the pivotal

role of tools like Bazel in managing complex, large-scale

software development projects.

The final case study from a central European private bank’s

developer hub brings to light the challenges and rewards of

modernizing enterprise software. The implementation of

Bazel facilitated a unified approach to software

development, breaking down traditional front-end and back-

end barriers, and fostering a more collaborative and

efficient environment. The hub’s journey illustrates the

critical role of standardization, agile principles, and the right

tooling in scaling and enhancing software development

processes. The significant improvements in build times and

productivity achieved through Bazel’s integration highlight

its effectiveness in large-scale development projects,

emphasizing the importance of both technical prowess and

cultural adaptation in software modernization initiatives.

Across these diverse case studies, Bazel emerges as a

unifying and transformative force in software development,

adept at handling various languages, platforms, and

complex project structures. Its impact goes beyond

technical efficiencies, influencing team dynamics,

development culture, and operational practices. These case

studies collectively demonstrate the versatility and power of

Bazel in different contexts, offering valuable insights and

lessons for the broader software development community.

The ongoing commitment to leveraging Bazel’s full potential

and sharing knowledge within and beyond individual

projects signifies a broader shift towards more integrated,

agile, and efficient software development practices in the

digital era.

CHAPTER 14

Future Trends and

Considerations

Introduction

In this chapter, we will explore the forefront of development

practices and technological integrations that are shaping

the future of software builds. We will examine the evolving

landscape of Monorepo development, emphasizing how AI

and machine learning are being incorporated into Bazel

builds to optimize efficiency and decision-making. The

chapter also navigates through the intricacies of enhanced

remote caching and execution strategies, highlighting their

impact on build performance. A critical analysis of advanced

dependency management techniques is presented,

alongside an exploration of the latest security

enhancements vital for robust Monorepo infrastructure. This

discussion extends into the realms of fostering collaboration

through improved code review and integration practices,

and how sustainable development practices are being

embedded in Monorepo management. We then venture into

the future of Bazel and Monorepo tooling, including a

comprehensive overview of the key advances in Bazel 7, the

modular approach of Bzlmod, and the exciting planned

features for Bazel versions 7 and beyond. The chapter not

only anticipates the trajectory towards Bazel 8 and 9 but

also discusses the broader implications for Monorepo tooling

and the considerations necessary for future development.

As we anticipate challenges and adapt strategies, topics like

migration to Bzlmod, enhanced performance, caching,

expanded language support, a robust extension model, and

adapting to continuous updates are critically analyzed.

Finally, practical guidance on migrating existing projects

from Bazel 6 is provided, ensuring readers are well-

equipped to navigate the evolving landscape of software

development with Bazel.

Structure

In this chapter, we will discuss the following topics:

Evolving Practices in Monorepo Development

The Road Ahead for Bazel and Monorepo Tooling

Anticipating Challenges and Adapting Strategies

How to Migrate Existing Projects

Evolving Practices in Monorepo

Development

As we delve into the evolving landscape of Monorepo

development, particularly through the lens of Bazel, it is

imperative to acknowledge the rapidly changing dynamics

of software engineering. This section focuses on advanced

topics, derived from the most recent internet publications as

of 2023, which are instrumental for software developers

seeking to stay ahead in their Monorepo management

journey.

Integrating AI and Machine Learning

in Bazel Builds

One of the most significant trends in Monorepo development

is the integration of artificial intelligence (AI) and machine

learning (ML) into the build process. This approach aims to

optimize build times and resource allocation. With Bazel’s

ability to handle large, interconnected codebases,

incorporating AI can lead to predictive build analytics. Such

systems can anticipate build failures, suggest optimal build

paths, and efficiently allocate resources based on historical

data patterns.

Enhanced Remote Caching and

Execution Strategies

As Monorepos continue to grow, remote caching and

execution emerge as critical components for scalability.

Advanced strategies in 2023 focus on optimizing these

aspects to reduce build times drastically. Techniques such as

layered caching, where dependencies are cached in layers,

and prioritized artifact retrieval, where frequently accessed

artifacts are retrieved faster, are becoming mainstream.

Additionally, adaptive execution strategies, which adjust

resource allocation based on real-time system load and

build complexity, are also gaining traction.

Advanced Dependency Management

Techniques

While dependency management in Bazel is not a new topic,

the methods are continuously evolving. The recent trend is

towards more dynamic and intelligent dependency

resolution mechanisms. These involve analyzing codebase

changes in real-time to update dependencies, thereby

ensuring that builds are always using the most efficient and

relevant set of dependencies. This approach reduces

redundancy and enhances build performance.

Security Enhancements in Monorepo

Infrastructure

As the complexity and size of Monorepos increase, so do the

security challenges. Advanced security practices in 2023

revolve around automated vulnerability scanning and

patching within the Bazel build pipeline. Integrating security

at the build level ensures that every component of the

Monorepo is continuously assessed for vulnerabilities, with

patches automatically applied, ensuring a robust and secure

codebase.

Fostering Collaboration through

Enhanced Code Review and

Integration Practices

Collaboration in large Monorepos can be challenging due to

the sheer size and complexity of the codebase. The future

trend is towards integrating more sophisticated code review

and integration tools directly into the Bazel workflow. These

tools are designed to handle large-scale changes efficiently,

providing developers with contextual insights and

suggestions, thereby streamlining the review process and

reducing integration conflicts.

Sustainable Development Practices in

Monorepo Management

Sustainability in software development is becoming a crucial

consideration. In Monorepo development, this translates to

practices that ensure long-term maintainability and

scalability of the codebase. This includes modularization

strategies, where the Monorepo is structured into well-

defined, maintainable modules, and the adoption of green

coding practices, where builds are optimized for energy

efficiency.

As we look towards the future, it is clear that the practices

in Monorepo development, particularly in environments

managed by Bazel, are rapidly evolving. The integration of

AI, advanced caching techniques, dynamic dependency

management, robust security measures, collaborative tools,

and sustainable practices are not just trends but necessities

for managing the complex software development

landscapes of tomorrow. Embracing these advanced

methodologies will not only streamline development

processes but also ensure that the Monorepos remain

scalable, secure, and efficient in the face of ever-growing

demands.

The Road Ahead for Bazel and

Monorepo Tooling

As an advanced software developer well-versed in Bazel,

Monorepos, and dependency management in Bazel, it is

crucial to understand the emerging trends and

considerations that will shape the future of these

technologies.

The journey of Bazel, particularly with its latest major

release, Bazel 7, and the projected path towards Bazel 8

and 9, indicates a significant evolution in its capabilities and

functionalities.

Key Advances in Bazel 7

Performance Improvements: Bazel 7 introduces

significant performance enhancements, primarily

through optimized dependency analysis and build

execution, leading to reduced build times and increased

efficiency.

Expanded Language and Platform Support: The

update broadens the scope of Bazel, accommodating

more programming languages and platforms.

Enhanced Caching and Remote Execution:

Advanced caching mechanisms and remote execution

capabilities in Bazel 7 further improve build speed and

consistency.

Robust Extension Model: The extension model has

been made more robust, offering greater customization

and flexibility in the build process.

Bazel’s Modular Dependency

Management: Bzlmod

A key feature in Bazel 7 and the future releases is Bzlmod,

Bazel’s new modular external dependency management

system. Bzlmod is now enabled by default, replacing the older

WORKSPACE mechanism. This system enhances the

scalability and reliability of managing transitive

dependencies.

Planned Features for Bazel 7 and

Beyond

The planned features for Bazel 7 and beyond highlight a

significant evolution in its capabilities, focusing on

enhancing performance, scalability, and user experience.

These features not only strengthen Bazel’s role in build

automation but also emphasize its adaptability to future

development needs.

Bzlmod - Modular Dependency Management: A

standout feature in Bazel 7 is Bzlmod, a new modular

external dependency management system. It replaces

the older WORKSPACE mechanism and aims to improve the

scalability and reliability of managing transitive

dependencies.

Repository Cache: Bazel 7 plans to introduce a true

repository cache. This feature is intended to cache the

extracted contents of fetched repositories, potentially

allowing different workspaces on the same machine to

share extracted repos.

Offline and Vendor Mode: This mode will enable

developers to prefetch all necessary external

repositories for offline work. The fetched repos can

optionally be incorporated into the source tree,

effectively vendoring them.

REPO.bazel File: This new file type will replace

WORKSPACE as the repository boundary marker, in addition

to the MODULE.bazel file. It will allow the specification of

repository-wide common attributes.

Performance Improvements: Bazel 7 boasts

significant performance improvements, particularly in

terms of optimized dependency analysis and build

execution, leading to reduced build times.

Enhanced Support for New Languages and

Platforms: The update broadens Bazel’s support for

several new programming languages and platforms.

Advanced Caching and Remote Execution:

Enhanced caching mechanisms and remote execution

capabilities further improve build speed and

consistency.

Beyond Bazel 7:

Build Without the Bytes (BwoB): This feature, aimed

at improving remote build performance, will be further

optimized. Bazel will download only the outputs of

requested top-level targets from the remote server,

reducing unnecessary data transfer.

Skymeld Project: This project focuses on improving

multi-target build performance by merging the analysis

and execution phases, allowing targets to be executed

as soon as their analysis is completed.

Platform-based Toolchain Resolution for Android

and C++: This update aims to streamline the toolchain

resolution API across all rulesets and remove technical

debt by having Android and C++ rules use the same

toolchain resolution logic as other rulesets.

Continuous Enhancement in Performance and

Scalability: As Bazel evolves, ongoing efforts will be

made to further enhance its performance, especially in

handling large and complex projects.

These features represent a forward-thinking approach by

the Bazel team, addressing current challenges and

preparing for future developments in software build

automation. The emphasis on modular dependency

management, performance optimization, and support for

diverse languages and platforms underlines Bazel’s

commitment to evolving alongside the changing landscape

of software development.

For more detailed information on these developments, you

can visit:

Google Open Source Blog -

https://opensource.googleblog.com

Bazel Blog - https://blog.bazel.build

Bazel Roadmap - https://bazel.build

The Future Path: Bazel 8 and 9

The future of Bazel, particularly with the upcoming Bazel 8

and 9 releases, is marked by significant changes and

enhancements, primarily focused on further refining the

build system’s functionality and user experience. These

changes are not only indicative of Bazel’s continuous

evolution but also reflect the broader trends and demands

in software build and dependency management.

https://opensource.googleblog.com/
https://blog.bazel.build/
https://bazel.build/

Integration and Default Enabling of Bzlmod: One of

the most notable changes will be the further integration

and default enabling of Bzlmod, the modular external

dependency management system introduced in Bazel 7.

This system is set to become the standard for

dependency management in Bazel, gradually phasing

out the older WORKSPACE mechanism.

Phasing Out of WORKSPACE: By the time Bazel 9 is

released, the WORKSPACE file is expected to be completely

phased out. This transition underscores Bazel’s

commitment to more efficient and scalable project

management methodologies.

Improvements in Remote Execution and Caching:

Bazel 8 and 9 are likely to continue enhancing remote

execution capabilities and caching mechanisms. These

improvements are aimed at optimizing build

performance, particularly for large-scale and complex

projects.

Platform-based Toolchain Resolution: The releases

are also expected to focus on streamlining toolchain

resolution across various languages and platforms,

reducing the complexity and potential errors in multi-

language, multi-platform builds.

Enhanced Language and Platform Support:

Continuing the trend from previous versions, Bazel 8

and 9 will likely expand support for more programming

languages and platforms, catering to a broader range of

development needs.

User Experience and Workflow Improvements:

With each release, Bazel aims to enhance the developer

experience. This includes making the system more

intuitive and user-friendly, and improving

documentation and support resources.

Security and Compliance Tools: Given the increasing

focus on software security and compliance, future

versions of Bazel might introduce more robust tools for

OSS license compliance and security checks.

Community-Driven Features: Bazel’s roadmap

includes a strong emphasis on community feedback and

contributions. Future versions will likely incorporate

more features and improvements based on user

requests and contributions from the open-source

community.

For software developers, particularly those using

Monorepos, these advancements imply a need for

adaptation and continuous learning. As Bazel evolves,

developers will need to stay updated with the latest features

and best practices, ensuring that their build pipelines

remain efficient, secure, and compliant with the latest

standards.

The path towards Bazel 8 and 9 represents an exciting

phase in the evolution of this build system, with a strong

emphasis on efficiency, scalability, and user experience. As

these versions materialize, they will significantly influence

the way developers handle large codebases, dependencies,

and build processes, marking a new era in software

development tooling.

To get updated and more detailed information on Bazel 8

and 9, it is advisable to follow official sources such as the

Bazel Blog - https://blog.bazel.build/) and the Bazel

Roadmap at https://bazel.build/roadmap.html

Implications for Monorepo Tooling

The advancements in Bazel, particularly in terms of

dependency management and build performance, will

significantly influence the way Monorepos are handled. The

shift towards a more modular and efficient build system

https://blog.bazel.build/
https://bazel.build/roadmap.html

aligns with the core principles of Monorepo management —

centralization, consistency, and streamlined workflows.

Transition to New Systems: The migration to

systems like Bzlmod will require careful planning and

execution, particularly in large Monorepos where the

transition can be complex and time-consuming.

Adapting to New Workflow Dynamics: As Bazel

evolves, development teams will need to adapt to the

changing dynamics of build and dependency

management within Monorepos.

Training and Up-skilling: Keeping up with Bazel’s

evolving features and best practices will necessitate

ongoing training and up-skilling for development teams.

Considerations for Future

Development

The advancements in Bazel and Monorepo tooling reflect a

broader trend in the software development industry towards

more efficient, scalable, and reliable build systems. As Bazel

continues to evolve, it will offer developers new

opportunities to optimize their build processes and manage

dependencies more effectively, thus shaping the future of

software development and Monorepo management.

Migration to New Systems: As Bazel evolves,

developers must consider the implications of migrating

to newer systems like Bzlmod, weighing the benefits

against the transitional challenges.

Compliance and Security: With the introduction of

tools for OSS license compliance, developers will need

to be more vigilant about the compliance and security

of the packages they use.

Multi-language, Multi-platform Builds: The

standardized platforms API in Bazel will simplify the

architecture configuration for multi-language, multi-

platform builds, reducing development-time errors and

complexity in large projects.

Anticipating Challenges and Adapting

Strategies

With the release of Bazel 7, developers and organizations

using Bazel for their build and test automation need to

anticipate potential challenges and adapt their strategies

accordingly. Bazel 7 introduces several new features and

improvements, which, while beneficial, may require

adjustments in existing workflows and systems.

Migration to Bzlmod

One of the significant changes in Bazel 7 is the introduction

of Bzlmod as the default module for managing external

dependencies, replacing the older WORKSPACE system.

Challenges:

Adapting to New Dependency Management: Developers

accustomed to the WORKSPACE system need to

familiarize themselves with Bzlmod’s mechanisms.

Migration Overhead: Transitioning existing projects to

Bzlmod might require a significant effort, especially for

complex builds.

Ensuring Compatibility: Ensuring that all dependencies

and tools are compatible with the new system can be a

time-consuming process.

Strategies:

Gradual Transition: Approach the migration process in

stages, starting with smaller, less critical projects.

Leverage Documentation and Community Support:

Utilize available resources like migration guides and

community forums for smoother transition.

Test Thoroughly: Conduct extensive testing during the

transition to catch and resolve issues early.

Enhanced Performance and Caching

Bazel 7 boasts improved performance and advanced

caching mechanisms.

Challenges:

Optimizing Build Configurations: The new caching and

performance features might require reevaluation and

optimization of existing build configurations.

Resource Management: Enhanced performance features

might behave differently in varied hardware and

network environments, necessitating careful resource

management.

Strategies:

Performance Benchmarking: Regularly benchmark the

performance after upgrading to identify areas of

improvement.

Optimize Hardware and Network Usage: Adjust resource

allocation based on the performance characteristics of

Bazel 7.

Expanded Language and Platform

Support

With broader support for various languages and platforms,

Bazel 7 increases its versatility.

Challenges:

Integrating Diverse Technologies: Teams may face

challenges integrating new languages and platforms

into their existing Bazel workflows.

Ensuring Cross-Platform Compatibility: Maintaining

builds that are compatible across multiple platforms can

become more complex.

Strategies:

Incremental Integration: Gradually integrate new

languages and platforms to manage complexity.

Cross-Platform Testing: Implement comprehensive

cross-platform testing to ensure compatibility and

performance across different environments.

Robust Extension Model

The more robust extension model in Bazel 7 allows greater

customization in the build process.

Challenges:

Learning Curve: The new extension model might have a

steep learning curve for developers not familiar with

advanced customization.

Maintaining Custom Extensions: Developing and

maintaining custom extensions can be resource-

intensive.

Strategies:

Training and Skill Development: Invest in training for

team members to effectively utilize the new extension

model.

Collaborate with the Community: Engage with the Bazel

community for shared development and maintenance of

common extensions.

Adapting to Continuous Updates

Bazel’s roadmap includes continuous updates, with future

releases like Bazel 8 and 9 already in planning.

Challenges:

Keeping Up with Changes: Continuous updates require

teams to stay informed and adapt to changes regularly.

Balancing Stability and Upgrades: Deciding when to

upgrade to newer versions while ensuring stability can

be challenging.

Strategies:

Regular Review of Bazel Roadmap: Keep track of

upcoming changes and plan for them in advance.

Balanced Upgrade Policy: Develop a policy for

upgrading that balances the need for new features with

the stability of the build environment.

The release of Bazel 7 presents exciting opportunities for

enhanced efficiency and flexibility in software builds.

However, it also brings challenges that require careful

anticipation and strategic adaptation. By understanding

these challenges and employing thoughtful strategies,

developers and organizations can leverage the full potential

of Bazel 7 while minimizing disruption to their workflows.

How to Migrate Existing Projects from

Bazel 6

Bazel 7.0 LTS comes with a range of new features and

backward-incompatible changes. Key highlights include:

Adopting Bzlmod: Transitioning to Bzlmod involves

creating a MODULE.bazel file if one does not exist in your

project. You need to be aware that even with an empty

MODULE.bazel file, Bazel 7 might behave differently due to

Bzlmod being enabled, especially in label stringification

and run files handling.

Handling Dependencies: For dependencies not

available in a Bazel registry or those that are not Bazel

projects, you can use use_repo_rule or module extensions

in your MODULE.bazel file. This involves implementing a

module extension, which can be shared between

WORKSPACE and Bzlmod during the migration.

Resolving External Dependency Conflicts: Bzlmod

allows the resolution of conflicts in external

dependencies, particularly when multiple dependencies

require different versions of a shared external resource.

Module extensions can be used to select appropriate

versions based on the dependency graph.

Integrating Third-Party Package Managers: Utilize

module extensions to integrate package managers for

specific languages, enhancing rulesets that manage

dependencies.

Detecting and Registering Toolchains: When Bazel

build rules need to detect available toolchains on your

host machine, you can introduce these using module

extensions in the MODULE.bazel file.

The transition to Bazel 7.0 LTS requires careful planning and

execution, especially considering the significant changes in

dependency management and build optimization features.

As the Bazel ecosystem continues to evolve, it is crucial to

stay informed about the upcoming changes and prepare for

future versions like Bazel 8 and 9.

Recommended Readings

Fostering Collaboration through Enhanced Code

Review and Integration Practices

“Monorepos: Web Development Trends in 2023”

by Wingravity: This article delves into the benefits and

challenges of using Monorepos in web development,

highlighting the importance of balancing code sharing

and modularity. It provides a nuanced view of how

Monorepos can enhance development efficiency, code

consistency, and project management. -

https://www.wingravity.com/monorepos-web-

development-trends-in-2023/)

“Benefits and Challenges of Monorepo

Development Practices” by CircleCI: CircleCI offers

a comprehensive overview of the advantages and

challenges of Monorepo development, especially in the

context of microservices architecture. The article

discusses the misconceptions about Monorepos and

provides strategies for successfully implementing this

approach in development environments. -

https://circleci.com/blog/benefits-and-challenges-of-

monorepo-development-practices/)

“Elevating Enterprise Deployment: Introducing an

Enhanced Monorepo Experience on Netlify”: This

resource provides insights into using Nx in Monorepo

development and differentiates between “integrated”

and “package-based” setups in Monorepos. It is

particularly useful for understanding advanced concepts

in Monorepo tooling and deployment strategies. -

https://www.netlify.com/blog/2023/03/01/elevating-

enterprise-deployment-introducing-an-enhanced-

monorepo-experience-on-netlify/)

Microsoft DevBlogs — “Using monorepos to

increase velocity during early stages of product

development”: This resource dives into the use of

Monorepos in the early stages of product development,

focusing on its impact on system architecture and

protocols. It highlights how Monorepo-style

https://www.wingravity.com/monorepos-web-development-trends-in-2023/
https://circleci.com/blog/benefits-and-challenges-of-monorepo-development-practices/
https://www.netlify.com/blog/2023/03/01/elevating-enterprise-deployment-introducing-an-enhanced-monorepo-experience-on-netlify/

development, particularly with tools like Nx, can

enhance development speed, facilitate code sharing,

and impose constraints on the dependency graph of the

repo. This method aligns with sustainable development

by promoting efficient and flexible project management.

- https://devblogs.microsoft.com/creatingstartups/using-

monorepos-to-increase-velocity-during-early-stages-of-

product-development/)

Integrating AI and Machine Learning in Bazel Builds

SpotDraft Blog — “How We Used Bazel to

Streamline Our AI Development”: This article from

SpotDraft provides a practical perspective on how Bazel

was used to manage dependencies in a machine

learning context. It covers the integration of Bazel in a

microservices architecture, emphasizing its efficiency in

handling Python rules and Docker containers. The piece

also discusses the challenges and solutions

encountered during the adoption of Bazel, particularly

in a startup environment. -

https://www.spotdraft.com/engineering-blog/how-we-

used-bazel-to-streamline-our-ai-development)

ai-jobs.net — “Bazel: The Build System for AI/ML

and Data Science Projects”: This comprehensive

guide offers an overview of Bazel’s features and its

applicability in AI/ML and data science projects. The

article explains how Bazel supports scalability, multi-

language and multi-platform projects, and provides

reproducibility and determinism, which are crucial in

AI/ML workflows. It also discusses Bazel’s integration

with popular AI/ML frameworks and libraries, making it a

valuable resource for professionals in the field. -

https://ai-jobs.net/blog/bazel-explained/)

Arm Community — “Building Bazel and

TensorFlow on AArch64”: This blog post details the

https://devblogs.microsoft.com/creatingstartups/using-monorepos-to-increase-velocity-during-early-stages-of-product-development/
https://www.spotdraft.com/engineering-blog/how-we-used-bazel-to-streamline-our-ai-development
https://ai-jobs.net/blog/bazel-explained/

process of building TensorFlow using Bazel on AArch64

architecture. It offers a step-by-step guide on setting up

the environment, addressing challenges related to

TensorFlow’s dependency on Bazel, and provides

practical tips for managing resource constraints during

the build process. -

https://community.arm.com/developer/tools-

software/oss-platforms/b/blog/posts/building-bazel-and-

tensorflow-on-aarch64)

Security Enhancements in Monorepo Infrastructure

Goldman Sachs Developer Blog — “Monorepos

from a Risk Perspective”: This resource provides an

in-depth analysis of security risks associated with

Monorepos and offers detailed mitigation techniques. It

covers essential topics such as access control, high

availability and performance, breaking changes, supply

chain protection, and cache poisoning. The article is

particularly useful for understanding the complexities of

managing security in large-scale Monorepo

environments. -

https://developer.gs.com/blog/posts/monorepos-from-a-

risk-perspective)

Bridgecrew Blog — “5 ways to configure a

monorepo for DevSecOps efficiency”: Bridgecrew’s

article focuses on configuring Monorepos effectively for

DevSecOps. It discusses challenges like access control

and supply chain attacks, and offers practical solutions

such as maintaining a directory structure for

mappability, compartmentalizing builds, and leveraging

Git’s metadata and tagging tools for searchability. This

resource is beneficial for organizations looking to

balance security concerns with the operational

efficiency of Monorepos. - https://bridgecrew.io/blog/5-

https://community.arm.com/developer/tools-software/oss-platforms/b/blog/posts/building-bazel-and-tensorflow-on-aarch64
https://developer.gs.com/blog/posts/monorepos-from-a-risk-perspective
https://bridgecrew.io/blog/5-ways-to-configure-a-monorepo-for-devsecops-efficiency/

ways-to-configure-a-monorepo-for-devsecops-

efficiency/)

GitKraken Blog — “Monorepos Explained:

Examining the Benefits, Costs, and Tools”:

GitKraken’s blog post provides a comprehensive

overview of the benefits and costs of Monorepos, with a

focus on security challenges like access control and

build times. It also explores essential tools for

Monorepos, which can help mitigate some of these

security risks. This resource is useful for understanding

the broader context of Monorepo adoption and its

impact on security practices. -

https://www.gitkraken.com/blog/monorepos-explained)

Thoughtworks - “Monorepo vs. multi-repo:

Different strategies for organizing repositories”:

This article discusses the trade-offs between Monorepos

and multi-repo strategies. It emphasizes the importance

of making the right decision early in project

development to prepare for future challenges. While not

directly addressing sustainability, it provides a

foundational understanding of Monorepo and multi-repo

structures, which is essential for implementing

sustainable practices. -

https://www.thoughtworks.com/insights/blog/monorepo-

vs-multi-repo-different-strategies-organizing-

repositories)

Sustainable Development Practices in Monorepo

Management

“Developing climate solutions with green

software” - MIT Technology Review: This article

discusses the importance of understanding the

hardware on which software runs to achieve greater

energy efficiency. It emphasizes the role of AI in

optimizing software for energy efficiency, highlighting

https://bridgecrew.io/blog/5-ways-to-configure-a-monorepo-for-devsecops-efficiency/
https://www.gitkraken.com/blog/monorepos-explained
https://www.thoughtworks.com/insights/blog/monorepo-vs-multi-repo-different-strategies-organizing-repositories

the potential of AI to suggest more efficient coding

practices and to tune hardware for specific software

needs. The article also addresses the challenge of

measuring the energy efficiency of software, a crucial

step in developing greener software solutions. -

https://www.technologyreview.com/2023/04/20/1068143

/developing-climate-solutions-with-green-software/)

“Sustainable Software Design: Background and

Best Practices” — Fraunhofer IESE: Fraunhofer IESE

provides an extensive discussion on sustainable

software design, including the impact of programming

languages on energy consumption. It advocates for the

careful selection of programming languages based on

their energy efficiency, especially for intensively used

modules. The article also explores the influence of

mobile and cloud computing on sustainable software

design and offers practical tips for energy-efficient

software development, such as using efficient

algorithms, reducing network traffic, and leveraging

cloud computing. -

https://www.iese.fraunhofer.de/en/press_media/press_rel

eases/2023/sustainable_software_design.html)

“How to Achieve Sustainable Software

Development” — InformIT: This resource from

InformIT outlines the concept of sustainable software

development as a means to maintain an optimal

development pace over time. It emphasizes the need

for keeping the cost of change low and maintaining a

manageable number of defects. The article also

suggests that sustainable development can lead to

rapid response to changes at a lower cost, highlighting

the importance of this tactic in staying competitive and

proactive in the face of new technologies. -

https://www.informit.com/articles/article.aspx?

p=1398617)

https://www.technologyreview.com/2023/04/20/1068143/developing-climate-solutions-with-green-software/
https://www.iese.fraunhofer.de/en/press_media/press_releases/2023/sustainable_software_design.html
https://www.informit.com/articles/article.aspx?p=1398617

The Road Ahead for Bazel and Monorepo Tooling

Bazel’s Official Roadmap: The Bazel roadmap

outlines several key initiatives and predictions for

Bazel’s future development. The roadmap for 2023

includes plans for the Bazel 7.0 release, which aims to

deliver many feature improvements requested by users.

Some highlights for Bazel 7.0 include better cross-

platform cache sharing, remote execution

improvements, and enhancements to Bzlmod, Bazel’s

external dependency management system. Moreover,

Bazel 7.0 is focusing on build analysis metrics and

introducing Skymeld, an evaluation mode that reduces

the wall time of multi-target builds. To learn more, visit

the Bazel Roadmap at https://bazel.build/roadmap

Developments in Bzlmod: Since its official launch in

Bazel 6.0, Bzlmod has undergone significant

improvements, particularly in preparation for Bazel 7.0,

where it will be enabled by default. Key changes include

lockfile support, a new mod command for inspecting the

external dependency graph, and comprehensive

documentation updates. These improvements are

geared towards making Bzlmod more efficient and user-

friendly for managing external dependencies. For more

information on these updates and future plans for

Bzlmod, see the Bazel Blog at

https://blog.bazel.build/2023/07/24/whats-new-with-

bzlmod.html.

The Release of Bazel 7: Bazel 7, the latest major

release on the long-term support (LTS) track, includes

several new features and improvements. Notably,

Bzlmod is now enabled by default, and Build without the

Bytes (BwoB) for builds using remote execution is also

enabled by default, enhancing remote build

performance. The release also introduces merged

analysis and execution (Skymeld) and platform-based

https://bazel.build/roadmap
https://blog.bazel.build/2023/07/24/whats-new-with-bzlmod.html

toolchain resolution for Android and C++. The full

release notes for Bazel 7 provide a comprehensive

overview of all new features and improvements. For the

complete details, visit Google Developers Blog at

https://developers.googleblog.com/2023/12/bazel-7-

release.html.

Toptal - “A Guide to Monorepos for Front-end

Code”: This guide provides an overview of Monorepo

management, focusing on front-end code. It discusses

the disadvantages of Monorepos, such as security

issues and poor Git performance in large-scale projects,

and reviews tools like Bazel, Yarn, and Lerna for

managing Monorepos. Understanding these tools and

their application in the scenario of a Monorepo setup is

crucial for maintaining sustainable and efficient

development practices. - https://www.toptal.com/front-

end/guide-to-monorepos)

How to Migrate Existing Projects to Bazel

Bazel Official Migration Guide: Bazel’s official

documentation offers a detailed migration guide that

includes various scenarios like migrating from Maven,

Xcode, and CocoaPods. This guide is particularly helpful

for understanding the fundamental steps and

considerations for migrating different types of projects

to Bazel. - https://bazel.build/migrate)

Bzlmod Migration Guide: The Bzlmod Migration Guide

on Bazel’s website is a useful resource for projects

moving to Bzlmod, Bazel’s module system. It provides

guidance on fetching external dependencies with

module extensions and resolving conflict external

dependencies with module extensions. This guide is

especially useful for projects that need to handle

complex dependencies and want to leverage Bazel’s

https://developers.googleblog.com/2023/12/bazel-7-release.html
https://www.toptal.com/front-end/guide-to-monorepos
https://bazel.build/migrate

latest features. - https://bazel.build/docs/bzlmod-

migration-guide)

Harness Experience with Migrating to Bazel:

Harness offers a practical perspective based on their

experience migrating from Maven to Bazel. The article

covers their proof of concept, migration strategy, and

the challenges they faced, such as managing a large

codebase and running all unit tests. This resource

provides real-world insights into the process and

considerations of migrating to Bazel in a complex

project environment. - https://harness.io/blog/migrating-

to-bazel-as-a-build-tool)

These resources collectively cover a range of scenarios and

challenges you may encounter when migrating and

upgrading to Bazel, offering both theoretical knowledge and

practical experiences to guide you through the process.

Conclusion

In this chapter, we delved into the dynamic and evolving

landscape of Monorepo development, emphasizing the

integration of cutting-edge technologies such as artificial

intelligence and advanced caching strategies within Bazel

builds. These advancements are pivotal in redefining the

efficiency and effectiveness of build processes, particularly

in the context of large, interconnected codebases. The

exploration of AI’s role in predictive analytics, the

sophistication of remote caching, and execution strategies,

alongside the continuous evolution of dependency

management techniques, underscores a forward-moving

trajectory in software build and management practices.

Moreover, the incorporation of robust security measures and

the emphasis on sustainable and collaborative development

practices highlight a holistic approach to Monorepo

https://bazel.build/docs/bzlmod-migration-guide
https://harness.io/blog/migrating-to-bazel-as-a-build-tool

management, ensuring scalability, security, and

maintainability.

Looking ahead, the roadmap for Bazel, particularly with its

transition to versions 7 and beyond, presents a landscape

rife with enhancements and new features aimed at

optimizing performance, broadening language and platform

support, and introducing a more modular and efficient

approach to dependency management. The transition to

Bzlmod as a core component of Bazel’s dependency

management system signifies a shift towards more scalable

and maintainable build processes. This evolution, coupled

with improvements in caching, remote execution, and

toolchain resolution, illustrates a commitment to addressing

the growing complexities and demands of modern software

development, ensuring that Bazel remains at the forefront

of build automation technologies.

As we anticipate the future, the interplay between

Monorepo management and Bazel’s tooling evolution

beckons a proactive approach from developers and

organizations. Adapting to these advancements requires not

only technical acumen but also a strategic perspective to

navigate the migration to new systems, optimize workflows,

and leverage the full spectrum of features offered by Bazel.

With continuous updates on the horizon, the imperative to

stay informed and agile in adapting to new versions and

features is paramount. By embracing these changes and

preparing for the challenges they present, developers can

harness the potential of Bazel and Monorepo tooling to

foster more efficient, scalable, and collaborative software

development environments.

APPENDIX A

Bazel Cheat Sheet

Quick Reference Guide to Bazel

Terminology

This guide is tailored for software developers who are either

new to Bazel or looking to deepen their understanding of its

concepts. The terms are presented in an easy-to-understand

format, ensuring you can quickly grasp the essentials of

Bazel.

Action: A command line invocation and the set of

inputs and outputs associated with it, executed by Bazel

during the build.

Aspect: A mechanism in Bazel for cross-cutting

concerns affecting multiple targets, like code generation

or linting.

Bazel Server: A long-running process that improves

build performance by keeping some data in memory

between builds.

Bazel: A powerful build tool developed by Google, used

for building and testing software of any size, quickly and

reliably.

Bazelisk: A wrapper for Bazel that manages multiple

versions of Bazel.

.bazelrc File: A configuration file for Bazel that allows

setting default flags and options.

Build Event Protocol (BEP): A protocol for reporting

build events and results to external systems during a

Bazel build.

BUILD File: A file that specifies what software artifacts to

build using Bazel. It is written in Starlark, Bazel’s

domain-specific language.

BUILD.bazel File: An alternative to the BUILD file, used to

specify build targets and rules.

Cache: Bazel’s mechanism for storing and reusing the

results of previous builds to speed up subsequent

builds.

Crosstool: Configuration for Bazel that defines how to

build C/C++ code for different platforms.

Dependency Graph: A directed acyclic graph (DAG)

representing dependencies between targets in a Bazel

build.

Gazelle: A tool for automatically generating and

updating BUILD files for projects in languages like Go.

Genrule: A rule in Bazel for generating one or more

files using a shell command.

Incremental Build: Bazel’s process of rebuilding only

the parts of software that have changed, saving time

and resources.

Label: A unique identifier for a target, including the

package name and target name, formatted as

//package:target.

Package: A directory within the workspace that

contains a BUILD file, defining a set of targets.

Persistent Worker: A process that stays alive between

builds to reduce overhead for certain build actions.

Query Language: Bazel’s language for querying the

build dependency graph. Useful for understanding build

dependencies and structure.

Remote Execution: Bazel’s ability to execute builds on

remote servers, which can significantly speed up the

build process.

Repository: In Bazel, a repository is a collection of files

and directories needed for a build, identified by a

unique name.

Rule: Specifies how to derive outputs from inputs. Rules

are functions in BUILD files that define build targets.

Sandboxing: Isolating build actions to ensure

reproducibility and correctness by preventing

undeclared dependencies.

Skyframe: The evaluation framework Bazel uses to

compute the dependency graph and execute builds.

Skylark Rule: Custom rules defined using the Starlark

language for specific build tasks.

Starlark: The language used to write BUILD files and

.bzl files. It is a dialect of Python designed for

configuration.

Target: A set of source files and build instructions. In

Bazel, targets are specified in BUILD files.

Toolchain: A set of programming tools used by Bazel to

build software for different environments or platforms.

Workspace Rule: A rule in the WORKSPACE file that

fetches external dependencies needed for the build.

Workspace: The top-level directory of a project where

Bazel starts to evaluate builds. It contains a WORKSPACE

file.

This quick reference guide is designed to be a starting point

in your journey with Bazel. For more detailed explanations

and advanced topics, you can delve deeper into the official

Bazel documentation and community resources.

Quick Reference Guide to Bazel

Commands

This section provides a concise yet comprehensive guide to

essential Bazel commands. It serves as a quick reference,

designed to enhance your workflow.

Bazel Command Structure

Bazel commands generally follow this structure:

bazel <command> <options> <targets>

<command>: The action you want Bazel to perform (for

example, build, test).

<options>: Additional flags to customize the command

behavior.

<targets>: The specific code components (for example,

modules, packages) to which the command applies.

Core Commands

`bazel build`

Purpose: Compiles and assembles the specified

targets.

Usage: `bazel build [options] <targets>`

Example: `bazel build //my/app:app_target`

`bazel test`

Purpose: Runs tests for the specified targets.

Usage: `bazel test [options] <test_targets>`

Example: `bazel test //my/app:test_all`

`bazel run`

Purpose: Builds and runs the specified target.

Usage: `bazel run [options] <target>`

Example: `bazel run //my/app:app_binary`

`bazel clean`

Purpose: Removes artifacts and data from previous

builds.

Usage: `bazel clean [options]`

Options:

`--expunge`: Also removes the entire working

tree.

Useful Options

`--config`: Specifies a configuration to use.

`-c` or `--compilation_mode`: Sets the compilation

mode (for example, debug, optimized).

`--define`: Overrides a build variable.

`--test_filter`: Runs only the tests that match a

specific filter pattern.

Advanced Commands

`bazel query`

Purpose: Queries the dependency graph of your

build.

Usage: `bazel query ‘query_expression’`

`bazel coverage`

Purpose: Generates test coverage reports.

Usage: `bazel coverage [options] <test_targets>`

APPENDIX B

Additional Resources

Recommended Books

Here are notable books that would be valuable for a

software developer interested in learning about Monorepo

and Bazel:

Effective React Development with Nx: This book,

authored by Jack Hsu from Narwhal Technologies Inc.,

covers Nx and Monorepo-style development for React

applications. It offers insights on how large companies

like Google, Facebook, and Microsoft use the Monorepo

approach. The book dives into creating React

workspaces, running various tests using Nx,

understanding and enforcing workspace structures, and

scaling Monorepo and CI/CD pipelines. It is an excellent

resource for understanding how to build React

applications more effectively within a Monorepo setup.

Enterprise Monorepo Angular Patterns: Written by

Victor Savkin and Nitin Vericherla, also from Narwhal

Technologies Inc., with contributions from Thomas

Burleson, this book focuses on angular development

within a Monorepo context. It includes strategies for

organizing code into single-purpose libraries for

composing large applications, enforcing codebase

consistency, and using Nx tools for workspace analysis.

This book is particularly beneficial for those working in

large organizations with complex angular projects.

Getting Started with Bazel by Benjamin Muschko:

Published in February 2020 by O’Reilly Media, Inc., this

book is an excellent resource for understanding Bazel’s

basics and its application in Java projects. It covers

topics like setting up a Java-based project, defining

dependencies, performing automated tests, and

extending Bazel’s capabilities. It also provides insights

into improving build performance and executing Bazel

projects on continuous integration servers.

Beginning Bazel: Building and Testing for Java, Go,

and More by P.J. McNerney: This book, released in

December 2019 by Apress, guides readers through

using Bazel in various programming languages

including Java, C++, Android, iOS, and Go. It addresses

how to speed up builds and tests, and run Bazel on

different operating systems like Linux, macOS, and

Windows. This book is particularly beneficial for

experienced programmers looking for alternative

build/test tools.

Agile Testing: A Practical Guide for Testers and Agile

Teams by Lisa Crispin and Janet Gregory: This book

offers insights into integrating testing into the agile

process, emphasizing a collaborative approach and the

importance of iterative quality assurance.

Software Testing: A Craftsman’s Approach by Paul C.

Jorgensen: This comprehensive guide covers the

technicalities and nuances of software testing, with a

focus on both traditional and object-oriented software.

Software Test Automation: Effective Use of Test

Execution Tools by Mark Fewster and Dorothy Graham:

This book dives into automated software testing,

offering practical advice and real-world examples.

Foundations of Software Testing ISTQB

Certification by Rex Black, Erik van Veenendaal, and

Dorothy Graham: A crucial resource for those preparing

for the ISTQB certification, this book covers software

testing principles, practices, and terminologies.

Exploratory Software Testing: Tips, Tricks, Tours,

and Techniques to Guide Test Design by James

Whittaker: Focused on exploratory testing, this book

emphasizes adaptability and continuous discovery in

the testing process.

Software Testing (2nd Edition) by Ron Patton: An

excellent introduction to software testing, this book

covers both manual and automated testing techniques.

Buddha in Testing: Finding Peace in Chaos by Pradeep

Soundararajan: This book is particularly helpful for

testers facing the challenge of balancing mental chaos

and high-quality work.

Penetration Testing – A Hands-On Introduction to

Hacking by Georgia Weidman: Ideal for those

interested in ethical hacking and penetration testing,

this book offers informative content and techniques for

evaluating enterprise defenses.

Explore It!: Reduce Risk and Increase Confidence

with Exploratory Testing by Elisabeth Hendrickson:

This book illuminates the dynamic approach of

exploratory testing, emphasizing adaptability and risk

management.

Leading Quality by Ronald Cummings-John and Owais

Peer: Focuses on the essence of quality leadership in

software development, advocating for a holistic

approach that transcends traditional testing.

Software Engineering at Google by Titus Winters,

Tom Manshreck, Hyrum Wright: This book includes a

chapter on Dependency Management, offering insights

into the challenges and best practices of managing

networks of libraries, packages, and dependencies in

software engineering.

Software Architect’s Handbook by Joseph Ingeno: It

provides a comprehensive look at software versioning, a

crucial aspect of software development. The book

discusses the importance of using a formal convention

for software versioning and its role in effective

dependency management.

Implementing Azure DevOps Solutions by Henry

Been, Maik van der Gaag: This book covers Dependency

Management in the context of Azure DevOps. It offers

practical guidance on how to identify shared

components and use package management effectively.

KANBAN: Streamlining Workflow for Effortless

Efficiency (2023 Guide for Beginners) by Margot

Jackson: This book is a comprehensive guide to

understanding and implementing the Kanban method, a

tool for optimizing processes and enhancing

productivity. It covers various aspects such as Kanban

principles, the design and implementation of Kanban

boards, setting Work in Progress (WIP) limits, and the

use of visual metrics for performance tracking. The

book also includes real-world case studies and

discusses how to scale Kanban for different levels of an

organization.

Streamlining Workflows: A Beginner’s Guide to

Project Management Tools: This guide explores the

value of project management tools in streamlining

workflows, particularly in the field service industry. It

discusses the challenges faced by this industry, such as

coordinating multiple teams and managing complex

schedules, and how project management tools can help

overcome these by automating and organizing tasks,

reducing human errors, and improving work quality. The

book emphasizes the importance of choosing the right

tool for your specific needs and the transformative

potential these tools have in optimizing workflow and

enhancing customer satisfaction.

Building Software: A Practitioner’s Guide by John

Minnihan: This book analyzes the practical aspects of

software construction, focusing on modern tools and

techniques. While it covers a range of topics, its

sections on build systems and deployment are

particularly relevant for those interested in mastering

Bazel.

Continuous Integration: Improving Software

Quality and Reducing Risk by Paul M. Duvall, Steve

Matyas, and Andrew Glover: This book explores the

concept of Continuous Integration (CI), a practice

integral to modern software development and

deployment. It provides insights into how tools like

Bazel can be integrated into CI pipelines to streamline

and improve the build and deployment processes.

Mastering DevOps: A Practical Guide to Building

and Maintaining Large Scale, High Performance

DevOps Pipelines by Jonathan McAllister: This

comprehensive guide covers the full spectrum of

DevOps practices, with a focus on automation and

scalability. It offers insights into how Bazel can be

leveraged within a DevOps context to enhance

efficiency in building and deploying large-scale services.

All of these books provide comprehensive insights into Bazel

and are tailored for developers who wish to deepen their

understanding and skills in this powerful build and test tool.

Online Communities

As a software developer diving into Bazel and Monorepos,

engaging with their online communities can be highly

beneficial. This section guides you through participating in

these communities, enhancing your understanding and

contribution.

Understanding Bazel and Monorepo

Communities

Forums and Discussion Boards:

Stack Overflow at

https://stackoverflow.com/questions/tagged/bazel,

Reddit at https://www.reddit.com/r/bazel/,

Specialized forums are great for discussions like

Bazel User Group at

https://groups.google.com/g/bazel-discuss

Bazel GitHub Discussions at

github.com/bazelbuild/bazel/discussions]

(https://github.com/bazelbuild/bazel/discussions.

Social Media Platforms: Follow discussions on Twitter,

LinkedIn, and Facebook.

GitHub Repositories: Explore Bazel on GitHub at

https://github.com/bazelbuild/bazel for code, issues, and

discussions.

Participating in the Community

Asking Questions: Be inquisitive; the community thrives

on curiosity. Bazel Slack Channel:

https://slack.bazel.build.

Answering Questions: Share your knowledge to help

others. Bazel GitHub Issue Tracker at

https://github.com/bazelbuild/bazel/issues.

Respectful Interactions: Maintain respect and

constructiveness.

https://stackoverflow.com/questions/tagged/bazel
https://www.reddit.com/r/bazel/
https://groups.google.com/g/bazel-discuss
https://github.com/bazelbuild/bazel/discussions
https://github.com/bazelbuild/bazel
https://slack.bazel.build/
https://github.com/bazelbuild/bazel/issues

Contributing to the Community

Contributing Code: Contribute to open-source projects

on GitHub at https://github.com/bazelbuild.

Writing Blogs and Articles: Share experiences through

blogs and articles.

Presenting at Meetups and Conferences: Engage in local

events and conferences.

Creating Tutorials and Guides: Help beginners with

educational content.

Leveraging Community Resources for Learning and

Growth

Awesome Bazel Resources at

https://github.com/jin/awesome-bazel

Following Roadmaps and Changelogs: Stay updated

with Bazel’s roadmaps at https://bazel.build/roadmaps

and changelogs.

BazelCon Videos as BazelCon on YouTube at

https://www.youtube.com/results?

search_query=BazelCon

Webinars and Workshops: Participate in educational

events.

Case Studies and Reports: Explore real-world

applications and insights.

Actively participating in Bazel and Monorepo

communities enhances your skills and contributes to

the technology’s evolution. Every interaction enriches

the entire community.

https://github.com/bazelbuild
https://github.com/jin/awesome-bazel
https://www.youtube.com/results?search_query=BazelCon

Index

Symbols

.bazelrc file

about 62

best practices 63

command, utilizing 64

directory, utilizing 62

syntax 62, 63

A

Android/Kotlin

about 113

application, enhancing 114-120

best practices 124, 125

key, building 121-124

key, directories 115

setting up 113, 114

B

Bazel

about 13, 249

Build Event Protocol (BEP) 253, 254

CI, enabling 179, 180

Code coverage 80-82

command line tools, utilizing 250, 252

concepts 176-179

data, interpreting 249

data, profiling 252, 253

features 13, 15

install, setting up 20

Monorepo, preventing 16

principles 15, 16

project, building 22-24

responsibilities 175, 176

scenarios 16, 17

scripts, utilizing 249, 250

setting up 174, 175

TestSuite, managing 73-79

unit tests, running 68-73

uses 17, 18

Bazel 7, challenges

Bzlmod, migrating 315

mechanisms, enhancing 316

platform support, expanding 316

projects, existing 317, 318

robust, extension 316

updates, adapting 317

Bazel, best practices

features, planning 311, 312

future development, considering 314, 315

Future Path, utilizing 313, 314

modular dependency, managing 311

Monorepo Tooling, implecating 314

Bazel, case studies

challenges, utilizing 303

future plan, considering 305

impact, results 304

infrastructure, managing 306

key factors, adopting 300

responsibilities, learning 305

strategy, implementing 301, 303

Bazel, concepts

.bazelrc file 62

BUILD Files 27

workspace file, analyzing 24-26

Bazelisk, installing 21, 22

Bazel Modules

about 99

advantages 99

Air-Gapped, configuring 102-104

dependency, declaring 99-102

graphs, gettings 105-109

IDE, integrating 109, 110

Bazel Sandboxing

about 38

concepts 38

task, lifecycle 39

uses 39

Bazel’s Build Graph

about 265, 266

aspects, analyzing 278, 279

concepts, preventing 279, 280

features, exploring 280, 281

Hermeticity 273, 274

Maven, migrating 271-273

project, utilizing 275

repository, managing 266-270

toolchains, building 275-277

Bazel’s rules

about 43

core, dissecting 45-49

directory, initializing 44, 45

genrule, executing 55-58

key, advantages 43

key, components 52, 53

key concepts 50, 51

reasons, customizing 51, 52

Bazel, techniques

rules, debugging 258

Starlark, capabilities 258

Bazel, testing strategies

efficient, testing 66, 67

implementation, testing 67

reliable, testing 67

scalable, testing 67

Bazel Watcher

about 179

installing 180

scenarios 180

using 180

Build Event Protocol (BEP)

about 253, 254

baselines, implementing 255

continuous monitoring 256

format, converting 254, 255

performance, developing 255

BUILD Files

about 27

architecture, analyzing 27, 28

attributes, preventing 30

dependencies 37, 38

key aspects 27

label, preceding 34, 35

packages, including 35, 36

queries 36, 37

rules, importing 29-31

targets, optimizing 32, 33

C

Centralized Configuration Management 204

CI

about 179

concepts 180, 181

key aspects, analyzing 189, 190

remote execution, building 188, 189

CI, models

ephemeral 181-183

hot-pool 186, 187

multiple stateful 184-186

sharded 187, 188

single stateful 183, 184

CI, roles

formatting 190, 191

static code, analyzing 192-194

Code Contribution

about 168-170

CI/CD Pipeline, analyzing 170

feature, branching 170, 171

GitFlow 171, 172

Trunk-based Development 172

Container Images Builds

about 233

Bazel, running 236-238

concepts 233-235

fine-grained, targets 235

image, exporting 236

layered, approach 236

OCI Image, using 236

parallelization, caching 236

D

dependency management

about 93

conflicts, utilizing 97, 98

external, dependencies 95-97

internal, dependencies 94, 95

Diagnosing Cache Misses 257

Digital Service, case studies

Bazel, adopting 287

challenges, utilizing 290, 291

future plans, considering 292

impact, results 291

insights, learning 291

stack, comprehensive 292, 293

strategy, implementing 288-290

G

genrule 55-58

GitFlow 171, 172

Golang

about 149

app, building 153, 154

best practices 155, 156

environment, setting up 149

project, organizing 149-153

I

Integration Testing 270

iOS

about 156

app, running 160-162

best practices 163, 164

environment, setting up 157

external, dependency 163

project, organizing 157-160

J

java_plugin 45, 46, 51

L

Large Monorepo Codebases

about 216

Bazel, configuring 220

best practices 221, 222

branch, merging 219

challenges, navigating 220

code, sharing 217

conflicts, minimizing 219

dependencies, managing 216

debugging, issues 220, 221

environment strategies, managing 218

inter-module dependencies, managing 218

repositories, integrating 216

strategies, modulazing 217

third party, handling 217

M

Microservices API, dependency

API, versioning 239, 240

automate dependency, updating 240

software configure, managing 241, 242

transitive, managing 238, 239

Monitoring Remote Cache Hit 256

Monorepo

about 1-3

benefits 4, 5

challenges, implementing 8, 9

continuous, integrating 3

history, optimizing 5, 6

Polyrepo Approach 4

typical fears, utilizing 6-8

Monorepo Builds

about 223

bottlenecks, utilizing 224

cache strategies, managing 223

caching, techniques 225

data, configuring 224

dynamic build graph, optimizing 226

Efficient Starlark, writing 228

execution, optimizing 227

performance, optimizing 228

resource, managing 225

scenarios, developing 227

setting up 223

source code, managing 230

Starlark Scripts, profiling 229

version control system, structuring 229

Monorepo compatibility, enforcing 104

Monorepo Development 12, 13

Monorepo Development, best practices

AI/ML, integrating 309

dependecy, managing 310

execution strategies, enhancing 309

foster, collaborating 310

security, enhancing 310

sustainable, developing 310

Monorepo Layout

about 199

Centralized Configuration Management 204, 205

code, maintaining 205, 206

code reusability, sharing 201, 202

package modules, organizing 210, 211

packages, adopting 212, 213

Pitfalls, ways 208-210

security, considering 206-208

structure, directory 199, 200

testing, strategies 202-204

Monorepos, dependencies

case studies 260

devide, conquer 259

scalability, improving 260

N

NodeJS/Typescript

about 133

app, building 147

aspect, building 133, 134

best practices 147, 148

environment, setting up 134

project, organizing 134-139

O

Optimizing Remote Execution 257

Orchestrating Microservices

about 243

dependencies, techniques 243

features, toggling 244

Microservices, scaling 244, 245

P

Performance Testing 82-85

Polyrepo Approach 4

Python

about 125

application, building 131

best practices 131, 132

environment, setting up 126

project, organizing 126-130

S

Serverless Service Platform, case studies

ability, integrating 299

Bazel, adopting 294

challenges, analyzing 296, 297

future plans, considering 298

impact, results 297

infrastructure, learning 298

strategy, implementing 294, 296

SOPS 242

T

Test Isolation 88

Test Parallelism 88, 89

Test Parallelism, best practices 89

Trunk-based development

about 172

benefits 173, 174

CI/CD Pipelines, configuring 11

concepts, utilizing 10

features 173

reasons 10

U

User Acceptance Testing (UAT)

about 85

challenges 86

consistency 85

Cypress, using 86-88

dependency, managing 85, 86

interoperability 85

W

WORKSPACE 22, 42

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewers
	Acknowledgements
	Foreword
	Preface
	Errata
	Table of Contents
	1. Introduction
	Introduction
	Structure
	Understanding the Monorepo Approach
	Welcome to the True Continuous Integration
	Drawbacks of Polyrepo
	Benefits of Monorepo
	A Bit of History
	Typical Fears about Monorepos
	Typical Challenges in Implementing a Monorepo

	The Power of Bazel in Monorepo Development
	A Bit of History
	Bazel Features

	Understanding the Logic Behind Bazel’s Design
	When to Use a Monorepo
	When Not to Use a Monorepo
	When to Use Bazel
	When Not to Use Bazel

	Conclusion
	Recommended Readings

	2. Getting Started with Bazel
	Introduction
	Structure
	Installing and Setting Up Bazel
	Installing Bazelisk

	Building Your First Bazel Project (Java)
	Bazel Basics
	WORKSPACE File
	BUILD Files
	Build Rules
	Targets
	Labels
	Packages
	Queries
	Dependencies
	Bazel Sandboxing

	Conclusion
	Recommended Readings

	3. Bazel Build Rules and Configuration
	Introduction
	Structure
	Exploring Bazel’s Rule-based Build System
	Your First Bazel Rule
	Dissecting a Core Bazel Rule

	Customizing Build and Compilation Rules
	Key Components in Rule Creation

	Solving any Custom Needs not Served by Default Rules
	Writing and Executing a Genrule
	Bazel Configuration
	WORKSPACE File
	BUILD File
	Bazel Flags
	.bazelrc File
	Location
	Syntax
	Best Practices
	Commonly Used Options

	Conclusion
	Recommended Readings

	4. Testing Strategies in a Monorepo
	Introduction
	Structure
	Testing Strategies in Bazel
	Efficient Testing Strategies
	Scalable Testing Strategies
	Implementing Testing Strategies

	Writing and Running Unit Tests with Bazel
	Managing Multiple Unit Tests
	Reporting Unit Test Coverage
	Performance Testing
	User Acceptance Tests (End-to-end)

	Achieving Test Isolation and Parallelism
	Test Isolation
	Test Parallelism

	Conclusion
	Recommended Readings

	5. Dependency Management and Versioning
	Introduction
	Structure
	Managing Internal and External Dependencies
	Internal Dependencies
	Best Practices
	External Dependencies
	Conflict Resolution

	Bazel MODULES: A Modern Way for Handling External Dependencies
	Declaring Dependencies with MODULES
	Configuring an Air-Gapped Bazel Build

	Enforcing Versioning and Compatibility in a Monorepo
	Querying Dependencies and Getting Graphs

	Integrating Bazel Within an IDE
	Conclusion
	Further Readings

	6. Hello-World Using Other Languages and Platforms
	Introduction
	Structure
	Android/Kotlin
	Setting up Your Android/Kotlin Bazel Project
	Organizing Your Android App
	Building and Running Your Android App
	Best Practices Using Android/Kotlin in Bazel

	Python
	Setting up Your Python Environment
	Organizing Your Python Project
	Building and Running Your Python App
	Best Practices Using Python in Bazel

	NodeJS/Typescript
	Aspect Build
	Setting up your NodeJS/Typescript Environment
	Organizing Your NodeJS/Typescript Project
	Building and Running Your NodeJS/Typescript App
	Best Practices Using NodeJS/Typescript in Bazel

	Golang
	Setting up Your Golang Environment
	Organizing Your Golang Project
	Building and Running Your Golang App
	Best Practices Using Golang in Bazel

	iOS
	Setting up Your iOS Environment
	Organizing Your iOS Project
	Building and Running Your iOS app
	External Dependencies
	Using iOS Best Practices in Bazel

	Conclusion
	Recommended Readings

	7. Streamlining Development Workflow
	Introduction
	Structure
	Code Contribution Workflows
	Feature Branching
	GitFlow
	Trunk-based Development

	Setting Up Continuous Integration with Bazel
	Enabling a Sort of Local CI with Bazel
	CI Worker Set up Models
	Ephemeral Workers
	Single Stateful Worker
	Multiple Stateful Workers
	Hot-pool of Workers
	Sharded Worker Sets
	Remote Build Execution
	Conclusions About CI Worker Models

	Managing Code Quality Tools
	Formatting
	Linting and Static Code Analysis

	Conclusion
	Recommended Reading

	8. Structuring Monorepos for Success
	Introduction
	Structure
	Designing an Effective Monorepo Layout
	Directory Structure Best Practices
	Code Sharing and Reusability
	Testing Strategies
	Centralized Configuration Management
	Refactoring and Code Maintenance
	Security Considerations
	Common Pitfalls and Ways to Avoid Them

	Organizing Code into Packages and Modules
	Naming Conventions for Packages and Modules
	Conclusion
	Recommended Reading

	9. Managing Large Codebases and Scale
	Introduction
	Structure
	Dealing with Large Monorepo Codebases
	Managing Internal and External Dependencies
	Integration of Code from Other Repositories
	Handling Third-Party Libraries
	Advanced Modularization Strategies
	Code Sharing and Reuse
	Efficient Code Organization and Readability
	Managing Inter-Module Dependencies
	Advanced Strategies for Collaborative Environment Management
	Refining Branching, Merging, and Code Review Practices
	Minimizing Merge Conflicts and Build Breakages
	Navigating Common Challenges
	Upkeeping Bazel Build Configurations
	Debugging Build Issues
	Best Practices and Common Pitfalls

	Performance Optimization for Monorepo Builds
	Setting Up and Configuring RBE for Large-Scale Monorepos
	Strategies for Cache Management and Sharing
	Utilizing Bazel’s Profiling Tools to Identify Bottlenecks
	Analyzing Build Performance Data to Pinpoint Inefficient Patterns and Configurations
	Advanced Caching Techniques
	Parallelism and Resource Management
	Dynamic Build Graph Optimization
	Developing Custom-Build Rules for Performance-Critical Scenarios
	Optimizing Existing Build Rules for More Efficient Execution
	Performance Optimization for Monorepo Builds
	Writing Efficient Starlark Code
	Profiling and Optimizing Starlark Scripts
	Structuring Monorepos in Version Control Systems
	Managing Source Code Changes

	Conclusion
	Recommended Reading

	10. Building and Deploying Services
	Introduction
	Structure
	Optimizing Container Images Builds
	Fine-grained Targets
	Use of OCI Images
	Layered Approach
	OCI Image Building and Exporting
	Parallelization and Caching
	Running the Example

	API Dependency Management in Microservices
	Managing Transitive Dependencies
	API Versioning Strategies
	Automated Dependency Updates

	Software Configuration Management
	Orchestrating Microservices in a Monorepo
	Advanced Microservice Orchestration Techniques
	Feature Toggling
	Monitoring and Scaling Microservices

	Conclusion
	Recommended Reading

	11. Monitoring and Debugging Bazel
	Introduction
	Structure
	Monitoring Bazel Performance
	Interpreting Profiling Data for Performance Bottlenecks
	Utilizing Custom Scripts to Parse and Analyze Profile Data
	Utilizing Command Line Tools to Analyze Profile Data
	Visualizing Profiling Data
	Understanding and Utilizing Bazel’s BEP
	Converting BEP Output to Prometheus-friendly Format
	Developing Automated Tests for Performance Regressions
	Implementing Benchmarks and Performance Baselines
	Continuous Monitoring of Performance Metrics

	Advanced Usage of Remote Caching and Execution
	Monitoring Remote Cache Hit Rates
	Diagnosing Cache Misses and Inefficiencies
	Optimizing Remote Execution Performance

	Debugging Techniques for Bazel Rules
	Step-by-step Approach for Debugging Custom Bazel Rules
	Utilizing Starlark’s Debugging Capabilities
	Best Practices for Logging and Error Handling in Rule Development

	Performance Tuning for Large-scale Monorepos
	Divide and Conquer
	Advanced Configuration Settings for Improved Scalability
	Case Studies on Performance Improvements in Complex Projects

	Conclusion
	Recommended Reading

	12. Advanced Bazel Concepts
	Introduction
	Structure
	Comprehensive Exploration of Caching
	Publishing Your Own Bazel Rules
	Migrating a Maven Project to Bazel
	Hermeticity
	Bazel Hot Reload
	Building Custom Toolchains
	Aspects
	Aliases
	Exploring Experimental Bazel Features
	Conclusion
	Recommended Reading

	13. Case Studies and Real-World Examples
	Introduction
	Structure
	Case Study 1: Building a Full Stack Digital Service
	Motivation for Adopting Bazel
	Implementation Strategy
	Challenges and Solutions
	Results and Impact
	Lessons Learned
	Future Plans and Considerations
	Outcome

	Case Study 2: Building a Serverless Service Platform
	Motivation for Adopting Bazel
	Implementation Strategy
	Challenges and Solutions
	Results and Impact
	Lessons Learned
	Future Plans and Considerations
	Outcome

	Case Study 3: Using Bazel in a Developer Hub
	Motivation for Adopting Bazel
	Implementation Strategy
	Challenges and Solutions
	Results and Impact
	Lessons Learned
	Future Plans and Considerations
	Outcome

	Conclusion

	14. Future Trends and Considerations
	Introduction
	Structure
	Evolving Practices in Monorepo Development
	Integrating AI and Machine Learning in Bazel Builds
	Enhanced Remote Caching and Execution Strategies
	Advanced Dependency Management Techniques
	Security Enhancements in Monorepo Infrastructure
	Fostering Collaboration through Enhanced Code Review and Integration Practices
	Sustainable Development Practices in Monorepo Management

	The Road Ahead for Bazel and Monorepo Tooling
	Bazel’s Modular Dependency Management: Bzlmod
	Planned Features for Bazel 7 and Beyond
	The Future Path: Bazel 8 and 9
	Implications for Monorepo Tooling
	Considerations for Future Development

	Anticipating Challenges and Adapting Strategies
	Migration to Bzlmod
	Enhanced Performance and Caching
	Expanded Language and Platform Support
	Robust Extension Model
	Adapting to Continuous Updates

	How to Migrate Existing Projects from Bazel 6
	Recommended Readings
	Conclusion

	APPENDIX A Bazel Cheat Sheet
	Quick Reference Guide to Bazel Terminology
	Quick Reference Guide to Bazel Commands
	Bazel Command Structure
	Core Commands
	Advanced Commands

	APPENDIX B Additional Resources
	Recommended Books
	Online Communities
	Understanding Bazel and Monorepo Communities
	Participating in the Community
	Contributing to the Community

	Index

