


 

 

 

 

 

 

3S Technology Applications 
in Meteorology 

Spatial information technology and its integration, such as remote sensing, geographic information 
systems (GIS), and global navigation satellite systems (GNSS), known as 3S technology, have 
been extensively utilized in managing and monitoring natural disasters. This book illustrates the 
3S integrated applications in the feld of meteorology and promotes the role of 3S in developing 
precise and intelligent meteorology. It presents the principles of 3S technology and the methods for 
monitoring different meteorological disasters and hazards as well as their application progress. The 
case studies from the United States, Japan, China, and Europe were conducted to help all countries 
understand the 3S technology functions in handling and monitoring severe meteorological hazards. 

FEATURES 

• Presents integral observations from GNSS, GIS, and remote sensing in estimating and 
understanding meteorological changes 

• Explains how to monitor and retrieve atmospheric parameter changes using GNSS and remote 
sensing 

• Shows three-dimensional modeling and evaluations of meteorological variation processing 
based on GIS 

• Helps meteorologists develop and use space-air-ground integrated observations for 
meteorological applications 

• Illustrates the practices in monitoring meteorological hazards using space information 
techniques and case studies 

This book is intended for academics, researchers, and postgraduate students who specialize in 
geomatics, atmospheric science, and meteorology, as well as scientists who work in remote sensing 
and meteorology, and professionals who deal with meteorological hazards. 
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1 A Review of 3S Technology 
and Its Applications 
in Meteorology 

Haiyong Ding and Shuanggen Jin 

1.1 BACKGROUND 

Meteorological disaster is the direct or indirect damages caused by the atmosphere to human life, 
economy, and national defense construction, which usually includes climate disasters and derived 
disasters (Guan et  al., 2015; Ye, 2022). Climate disasters are directly caused by severe weather 
such as typhoons, rainstorms, blizzards, thunderstorms, hail, high temperatures, drought and other 
meteorological factors (Allan et  al., 2006). The derived meteorological disasters are caused by 
meteorological factors. According to statistics, nearly 90% of natural disasters were related to the 
bad weather (United Nations, 2015). The derived meteorological disasters mainly include forest 
fres, debris fow and landslides. Traditional meteorological disaster monitoring mainly uses quan-
titative observation instruments. For example, anemometers, rain gauges and temperature measur-
ing instruments are used to monitor high wind hazards, urban rainstorms and high temperatures, 
respectively. Traditional meteorological disaster monitoring methods have various defciencies. For 
instance, mechanical rain gauges such as siphon type gauges are mainly used to monitor rainstorms 
(Li et al., 2010), while such instruments are cumbersome in operation and lack self-adjustment and 
self-adaptation ability. In addition, the monitoring of meteorological hazards requires not only a 
conventional meteorological observation network, but also a focus on the structural changes in the 
atmospheric boundary layer that affect human activities and the human habitat, as well as the impact 
of changes in the subsurface on meteorological conditions (Wang et al., 2009). However, such detec-
tion is diffcult to achieve, only relying on traditional ground-based observation instruments. 

3S technology specifcally refers to the Global Navigation Satellite System (GNSS), Remote 
Sensing (RS), and Geographic Information System (GIS) (Zhang, 2020; Li, 2003). 3S technology, 
as the core technology of spatial informatics, can provide a full range of resource and environ-
mental data and quickly obtain multi-platform, multi-temporal, multi-band, high-precision and 
high-resolution massive space-time information (Li, 2003; Li et al., 1998). The combination of 3S 
technology observations in meteorology can overcome the shortcomings of traditional meteorologi-
cal instruments such as low accuracy and poor self-adaptive capability for observing certain meteo-
rological parameters. For example, images acquired from satellite remote sensing can draw a map 
of water distribution in the atmosphere and rainfall distribution through light recognition equipment 
and infrared sensors, which can effectively improve the observation ability of rainfall in heavy rain-
storms. GNSS Radio Occultation (GNSS RO) can achieve high vertical resolution and spatial cover-
age of the atmospheric parameter profles, which can effectively solve the problems of poor stability 
and low vertical resolution of traditional observation means such as radar and reanalysis data and 
effectively improve the monitoring ability of meteorological disasters. 3S technology can not only 
enrich the means of meteorological observations and improve the ability of meteorological observa-
tions, but also collect, store and analyze meteorological data by GIS. For example, GIS can carry 
out statistical analysis of meteorological disaster data, assess meteorological disasters risks and 
improve the ability to defend against meteorological disasters. GIS can also evaluate the disaster 
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situation of meteorological disasters through the integration and analysis of information. Therefore, 
3S technology has become an important means of meteorological observation, processing and anal-
ysis, and can improve the comprehensive management and assessment of meteorological disasters 
(Li, 2003; Li, 1998). With the development of 3S, more closely combined meteorological parameter 
observation and disaster monitoring and forecast will be constantly improved. 

1.2 3S TECHNOLOGY AND DEVELOPMENT 

1.2.1 Basic concepts 

The “3S” is the general name of Global Navigation Satellite System (GNSS), Geographic Information 
System (GIS), and Remote Sensing (RS), which is the integration of space technology, satellite navi-
gation and positioning technology, computer technology, sensor technology and other disciplines 
(Li, 2003). The 3S technology system is used to quickly acquire spatial data using RS and GNSS 
and use GIS as the basic platform to store, manage and analyze spatial information. 

The GNSS is a satellite-based radio timing and navigation system that provides high precision 
time and spatial location data for users in aviation, space, land and sea, online or offine (Lechner, 
2000; Dow, 2009; Norman, 2012). The GIS refers to the representation of geospatial objects’ nature, 
characteristics and motion state and all relevant and useful knowledge. GIS is a computer system 
that collects, stores, manages, analyzes, displays and applies geographic information (Goodchild, 
2009). In a broad sense, RS refers to remote sensing technology for objects or natural phenomena 
without direct touch (Campbell & Wynne, 2011). In a narrow sense, RS is a modern technical sci-
ence that uses various sensors (such as cameras and radars) to acquire surface information on vari-
ous platforms at high altitudes and in outer space, and studies the shape, size, position and nature of 
ground objects and their relationship with the environment through data transmission and process-
ing. GNSS and RS are respectively used to acquire point and surface spatial information or monitor 
its changes, while GIS is employed to store, analyze and process spatial data. Due to the obvious 
complementarity of the 3S technologies, one gradually realizes in practice that when 3S techniques 
are integrated in a unifed platform, their respective advantages can be fully played. 

Since the 1990s, 3S integration has attracted increasing attention and gradually developed into 
a new interdisciplinary discipline: geomatics (Gomarasca, 2009). But before that, the three went 
through independent and parallel development. RS obtains real-time, rapid geometric and physical 
qualitative or quantitative data on large areas of the landscape and environment. GNSS provides 
real-time or quasi-real-time target positioning information. GIS is a platform for storing, managing, 
analyzing and applying data from various sources. These three technologies have different char-
acteristics. The 3S technology integrates the relevant parts of the three separated technologies to 
form a powerful and integrated system. It can provide users with accurate data and map information 
and realize the collection, processing and update of various spatial and environmental information 
quickly, accurately and reliably. As shown in Figure 1.1, the relationship of 3S technology is more 
like “one brain and two eyes”. 

The comprehensive application of 3S technology is one of the hot topics in current informati-
zation applications. It is also a comprehensive informatization means to realize dynamic acquisi-
tion, editing and processing, storage management, analysis and mining of spatial information. The 
GNSS, RS and GIS are independent and complementary, which are widely used in many felds, such 
as meteorological disaster monitoring, intelligent transportation, food monitoring, drought preven-
tion and control, land management, landslide warning and ecological and environmental protec-
tion. The application of 3S technology in these felds can make good use of its advantages, enrich 
observation data, improve observation capacity, and achieve information integration, processing, 
analysis, prediction and display through GIS with improving the observation and governance level. 
The different needs of each application area have also contributed to and improved the continuous 
development of 3S technology. 



 

    

  
  

 
    

 
 

 
  

 

 

 
 

 

 

   

3 A Review of 3S Technology and Its Applications in Meteorology 

FIGURE 1.1 The relationship between GIS, RS and GNSS. 

1.2.2 3s technology deVelopMent 

1.2.2.1  GNSS 
Global Navigation Satellite System (GNSS) is a space-based radio navigation and positioning system 
that can provide users with all-weather three-dimensional coordinates, speed and time information at 
any place on the Earth’s surface or near-Earth space (Wang, 2005;  Jin, 2012). GNSS mainly includes 
four global navigation satellite systems, namely, China’s BeiDou Navigation Satellite System (BDS), 
the United States’ Global Positioning System (GPS), Russia’s GLONASS satellite navigation system 
(GLONASS) and the European Union’s GALILEO satellite navigation system (GALILEO). 

GPS is the frst global positioning system established and applied to navigation and positioning 
in the world. The US Department of Defense began to build GPS in 1973 and launched the frst 
test satellite in 1978, and the entire GPS was completed in March 1994. The construction of GPS is 
divided into three stages. The frst stage is the project demonstration and preliminary design stage. 
From 1973 to 1979, 4 experimental satellites were launched, and the ground receiver and tracking 
network were developed. The second stage is the comprehensive development and test stage as well 
as the networking stage, and the positioning accuracy of GPS was verifed. The third stage is the 
practical networking stage, which began with the successful launch of the frst GPS operational 
satellite in 1989 and ended with the complete completion of the GPS in 1994. The GPS satellite con-
stellation is a combination of satellites in space, distributed in six orbits covering the entire Earth. 
The GPS has an orbital altitude of 20,200 km, an orbital inclination of 55 degrees, and an operat-
ing cycle of 11 hours and 58 minutes. GPS is one of the most signifcant achievements of space 
technology in the twentieth century. The emergence of GPS has expanded mapping and positioning 
technology from land and offshore to the entire ocean and outer space, from static to dynamic, from 
post-processing to real-time (quasi-real-time) with absolute and relative accuracy. The absolute and 
relative accuracy of GPS reaches the level of meter, centimeter and even sub-millimeter, which 
greatly broadens its application range and role in all walks of life. 

The GPS consists of three main components: the space satellite component, the ground monitor-
ing component and the user equipment. The ground monitoring part is composed of several tracking 
stations distributed all over the world. It is divided into master control station, monitoring stations, 
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and ground antennas (Jin, 2012). The master control station is located at Falcon Air Force Base, 
Colorado. Its function is to calculate the correction parameters of satellite ephemeris and satellite 
clocks according to the GPS observation data of each monitoring station and send these data into the 
satellite through the ground antennas. At the same time, it also controls the satellite, issues instruc-
tions to the satellite and dispatches the standby satellite to replace the failed operational satellite. 
The master control station also performs a monitoring station. There are fve monitoring stations. 
In addition to the main station, the other four are in Hawaii, the Ascension Islands, Diego Garcia 
and Kwajalein. The function of these stations is to receive satellite signals, monitor the working 
state of the satellite and provide satellite observation data for the master control station. Each of the 
fve monitoring stations uses a GPS receiver to conduct integral Doppler observations and pseudo-
distance measurements for each visible satellite and collect meteorological element data every six 
minutes. There are three injection stations, which are in the Ascension Islands, Diego Garcia and 
Kwajalein. The function of the injection station is to send the satellite ephemeris and clock correc-
tions calculated by the master control station into the satellite. The station sends the ephemeris of 
14 days three times a day each time. It also automatically sends signals to the master control station 
to report its operational status in minutes. 

GLONASS is a satellite positioning system similar to the GPS, which was built by the Soviet 
Union in 1976. It went through several twists and turns, experienced the collapse of the Soviet 
Union, and is now managed by the Russian Space Agency. From 1982 to 1985, the Soviet Union suc-
cessfully launched 3 simulated and 18 prototype satellites for testing. Due to the limited technology 
at that time, the average time of these satellites in orbit was only 14 months. In 1985, the GLONASS 
navigation system was offcially under construction, and in 1985–1986, 6 real GLONASS satellites 
were launched. These satellites had improved frequency accuracy over the prototype, but the satel-
lite life was still poor with an average of only 16 months. Since then, the Soviet Union has launched 
another 12 satellites with an average life span of 2  years. By 1987, GLONASS had launched a 
total of 30 satellites and realized 9 operational satellites in orbit. From 1988 to 2000, GLONASS 
launched 54 satellites and further improved the service life of the satellites. In 1996, the GLONASS 
space constellation was completed, and the system entered the phase of full operation and daily 
updates and maintenance. 

The GLONASS also consists of three parts: satellite constellation, ground monitoring control 
station and user equipment (Hofmann-Wellenhof et al., 2007). The GLONASS satellite constella-
tion consists of 24 satellites and one spare satellite evenly distributed in 3 nearly circular orbital 
planes, with 8 satellites in each orbital plane. As of 8 March 2015, GLONASS has 28 satellites with 
24 satellites in operation, one in reserve, two in fight test, and one in inspection. The ground sup-
port system consists of a system control center, a central synchronizer, telemetry and remote-control 
stations (including laser tracking stations) and outfeld navigation control equipment, all located in 
Russia. The system control center and central synchronization processor are located in Moscow, 
and the telemetry and remote-control stations are located in St. Petersburg, Ternopol, Yeniseysk 
and Komsomolskaya. GLONASS user equipment (receiver) can receive the navigation signal trans-
mitted by the satellite, convert it into pseudo range and pseudo range change rate, and simultane-
ously extract and process the navigation message from the satellite signal. The receiver processor 
can process the these data and calculate the user’s position, speed and time information. Unlike 
the GPS in the United States, GLONASS uses Frequency Division Multiple Access (FDMA) to 
distinguish satellites by carrier frequency (GPS is Code Division Multiple Access [CDMA], which 
distinguishes satellites by modulation code). The single point positioning accuracy of GLONASS 
is 16 m horizontally and 25 m vertically. To further improve GLONASS’s positioning capability, 
Russia plans to spend four years updating the system, including improving ground monitoring and 
control station facilities and changing the frequency of the waves to further improve the positioning 
accuracy and system stability. 

GALILEO Satellite Navigation System (GALILEO) is a global satellite navigation system devel-
oped and established by the European Union. The project was established in February 1999 and is 



 

5 A Review of 3S Technology and Its Applications in Meteorology 

jointly the responsibility of the European Commission and ESA. In 2011, the frst two satellites of 
GALILEO were successfully launched. In 2012, the second batch of two satellites were successfully 
launched, indicating that GALILEO can initially play the function of accurate positioning on the 
ground. In December 2016, the GALILEO system was offcially put into use. The satellite constel-
lation component of the GALILEO system consists of three independent circular orbits, 30 GNSS 
Medium Earth Orbit (MEO) satellites (24 operational satellites and 6 spare satellites). Each orbital 
plane is evenly distributed with 10 satellites, and one serves as a spare satellite. The ground system 
built 3 control centers in Europe, 30–40 monitoring stations and 9 injection stations worldwide. 
The positioning principle is the same as GPS, and the navigation positioning accuracy is higher 
than other system at present, and can be combined with the existing GPS, BDS and GLONASS to 
achieve global navigation and positioning, so that the positioning accuracy is higher and the posi-
tioning time is faster. GALILEO provides open service, life safety, commercial, public concession, 
search and rescue and other basic services. 

The BeiDou Navigation Satellite System (BDS) is a global navigation satellite system indepen-
dently developed and operated by China. In the 1980s, China began to explore a navigation satellite 
system development path for its national conditions and formed a “three-step” development strategy 
to realize the goal of building BDS-1, BDS-2 and BDS-3 in three steps. The BDS-1 project con-
struction was started formally in 1994. The successful launch of two navigation satellites in 2000 
marked that China had established the frst generation of an independent navigation satellite system, 
which provides China with positioning, timing, wide area difference and short message communi-
cation services. In 2004, the construction of the BDS-2 project was launched. Eight years later, the 
goal was achieved, and BDS began to provide services to users in Asia-Pacifc. Construction of the 
BDS-3 began in 2009, and the basic system was completed in 2018. In 2020, the BDS-3 completed 
its global network and began to provide all-weather satellite navigation and positioning services, 
such as precise positioning, precise timing, satellite navigation and short message communication 
to global users. 

The BDS consists of three parts: the space segment, the ground segment and the user segment. 
The space segment consists of several geostationary orbit satellites, inclined geosynchronous orbit 
satellites and medium earth orbit satellites. The ground segment includes several ground stations 
such as the master control station, time synchronization/injection station and monitoring station, as 
well as the operation and management facilities of the inter-satellite link. The user segment includes 
BeiDou navigation chips, modules, antennas and other terminal devices. The BDS has the following 
characteristics: frstly, the space segment of the BDS adopts a mixed constellation with three kinds 
of orbiting satellites. Compared with other global navigation satellite systems, it has more high-
orbiting satellites and strong anti-occlusion capability, especially in low-latitude regions. Secondly, 
the BDS provides navigation signals with multiple frequency points, which can improve the service 
accuracy by combining multiple frequency signals. In addition, BeiDou can also integrate indoor 
and outdoor positioning technologies. A series of indoor and outdoor integrated navigation tech-
nologies such as BeiDou + inertial navigation system (Sun et al., 2016), BeiDou +ultra-broadband 
(Sun et al., 2020), BeiDou +WIFI, and BeiDou +5G are developing continuously. BeiDou’s position-
ing accuracy is constantly improving, and its application scenarios are increasingly wide. Thirdly, 
the BDS innovatively integrates navigation and communication capabilities. BDS has fve functions: 
real-time navigation, rapid positioning, precise timing, location reporting and short message com-
munication services. 

Since the BeiDou Navigation Satellite test system was formally offered in 2003, China has made 
great steady progress in theoretical research, application technology development and receiver 
manufacturing applications. It is widely used in many felds such as transportation, marine fshery, 
hydrological monitoring and management, meteorology, forest fre prevention and management, 
power dispatching and earthquake prevention and disaster reduction. It provides convenient ser-
vices and effciency for people and produces particularly signifcant social and economic benefts. 
The rapid development of the BeiDou Navigation Satellite System is complementary to the growing 
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economic level and the improvement of China’s comprehensive national strength. China will con-
tinue to promote the construction and application of the navigation satellite system, encourage more 
scientists, engineers and users to join this feld, and actively promote the exchange and cooperation 
of new navigation and positioning technologies in China and abroad. 

In addition to the four global navigation satellite systems mentioned in this section, GNSS also 
includes regional navigation systems and navigation-related enhancement systems, such as Quasi-
Zenith Satellite System (QZSS) in Japan, Indian Regional Navigational Satellite System (IRNSS) 
in India, WAAS (Wide Area Augmentation System) in the United States and EGNOS (European 
Geostationary Navigation Overlay Service) in Europe. In addition, GNSS includes other satellite 
navigation systems under construction and to be built in the future. In the next 20 to 30 years, the 
development of a global, all-weather, high-precision, continuous, real-time global satellite naviga-
tion system will be further improved. The multi-navigation equipment or sensors are combined into 
a combined navigation system and a comprehensive navigation system are integrated with commu-
nication, navigation, command and other functions. Navigation equipment will achieve miniatur-
ization, digitization, automation and unattended. 

1.2.2.2 Remote Sensing 
The basic principle of RS is shown in Figure 1.2. Based on the characteristics of different electro-
magnetic waves from different objects, sensors are used to detect the refection and emission of 
electromagnetic waves to extract the information of these objects and realize remote recognition of 
objects (Khorram et al., 2012). 

Satellite remote sensing can be divided into ultraviolet, infrared, multi-band, visible light and 
microwave remote sensing according to the electromagnetic wave segment. According to the sen-
sor platform, it can be divided into ground remote sensing, aerial remote sensing and space remote 
sensing. RS has a relatively wide visual range and relatively fast updated information. It can take 
advantage of different electromagnetic wave characteristics of objects to obtain specifc informa-
tion of each object and identify objects with relatively far distances after sorting them out. Remote 
sensing observation can help get a large range of spatial data in a very short time and understand 
the dynamic change of the Earth. It can provide a large amount of information to monitor and 
understand the dynamic change process of the surface. With the continuous development of RS, it 
will play a more important role in mineral exploration, tidal fat monitoring, weather forecast, fre 
warnings and other aspects. 

The development of remote sensing can be divided into four stages, which are the unrecorded 
ground remote sensing stage, the recorded ground remote sensing stage, the aerial remote sensing 

FIGURE 1.2 Basic principle of RS. 
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stage and the space remote sensing stage. Modern RS originated from the aerial flm interpreta-
tion technology after the frst photograph was obtained in 1858. With the development of technical 
means, especially after the successful launch of the world’s frst artifcial satellite in 1957, RS has 
made a major breakthrough. Since then, the United States has launched Pioneer 2 and completed the 
mission to photograph the Earth’s clouds. In 1960, the United States launched TIROS-1 and NOAA-1 
solar synchronous satellites, which truly realized long-term exploration of the Earth from space-
craft. In 1961, the International Symposium on Remote Sensing of Environment was successfully 
held in the University of Michigan, USA. Since then, RS has developed rapidly as a new subject in 
the world. As an advanced and emerging space-based observation technology, RS has unique tech-
nical advantages when compared with traditional methods. First of all, RS has the characteristics 
of a large observation range, comprehensive and macroscopic, which provides favorable conditions 
for macroscopic study of various phenomena and their relationships. Secondly, the large amount of 
information in remote sensing images and the many technical means enable people to observe the 
Earth in a multi-faceted and all-weather capacity. In addition, remote sensing has the characteristics 
of fast information acquisition, short updating period and dynamic monitoring. These advantages 
of remote sensing prompt different countries to accelerate the development of remote sensing. In 
the late 1980s, France, Japan, China and India launched their remote-sensing satellites, and many 
countries have remote-sensing satellite programs. In the second half of 1999, the successful launch 
of the 1 m resolution commercial remote sensing satellite IKONOS marked the arrival of the high-
resolution space remote sensing era. Then in 2000 and 2001, QuickBird with 0.61 m, OrbView-3/4 
with 1 m resolution and other high-resolution commercial remote sensing satellites were launched 
successively, which greatly improved data selection from remote sensing images. 

In recent years, with the continuous development and improvement of RS, the types of sensors 
carried on the remote sensing platform are constantly enriched, and the detection ability is con-
stantly improved. The rapid development of radar interferometry, high resolution satellite remote 
sensing, hyperspectral remote sensing and other new technologies have promoted new applications 
of aerial remote sensing in many felds. At present, the RS will tend to be international cooperation, 
common development and common use in the world. At the same time, the spatial resolution and 
time resolution of the sensor will be further improved, and the multi-sensor integration will further 
improve the accuracy of data acquisition. In addition, the 3S integrated technology will continue to 
provide dynamic basic information and scientifc decision-making for many industries. 

1.2.2.3 GIS 
Geographic Information Systems (GIS) are computer-based devices that use advanced computer 
technology to collect and apply data about geographic conditions on the surface of the earth. The 
information is further processed and analyzed to provide a more intuitive picture of the data and 
to provide the necessary information. With the “visualization” of GIS technology, we are able to 
grasp the changes in information through the feedback images. GIS is the integration of many pro-
fessional disciplines, such as geospatial science and computer information technology. It is mainly 
composed of the computer hardware system, computer software system and spatial data. The hard-
ware system is mainly used to collect, store and output geographic information data, and the soft-
ware system is used to analyze data information. According to the content, GIS can be divided 
into two basic types: applied GIS and tool-type GIS. Applied GIS takes a certain profession, feld 
or work as the main content, including thematic GIS and regional integrated GIS. Thematic GIS 
is the GIS with limited goals and specialty characteristics, serving a specifc specialized purpose, 
such as forest dynamic monitoring information system and water resources management informa-
tion systems. While regional information systems are mainly aimed at regional integrated research 
and comprehensive information services with different scales, such as national (Canada’s National 
Geographic Information System), regional or provincial (Sweden’s Stockholm Regional Information 
System), municipal and county level. Tool-type GIS provides the user with a package of tools, such 
as ArcGIS. It has spatial data input, storage, processing, analysis and other functions. According to 
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the system structure, GIS can be divided into stand-alone GIS and network GIS. According to the 
data structure, it can be divided into vector data structure GIS, raster data structure GIS and mixed 
data structure GIS. 

GIS technology was frst started by Canadian researchers, who found that GIS technology needs 
computer processing technology to effectively improve its work effciency and quality, and the 
effect of GIS technology has a signifcant correlation with the level of computer technology. In the 
early GIS technology, there were widespread problems such as insuffcient functions and low speed 
of data information processing. In practical applications, GIS technology is closely combined with 
computer technology, RS and GNSS technology to realize real-time monitoring and analysis of GIS 
system information, providing users with possible or forthcoming situations. It also provides an 
important basis for users’ follow-up work and decision-making. The electronic computer is devel-
oping towards miniaturization and intellectualization. It can process a large amount of data and 
information in a short period. At the same time, it can carry out intelligent analysis on a number of 
contents and reasonably predict the changes of relevant data and information in a certain stage in the 
future to provide decisions for the subsequent links. GIS technology has been applied in resource 
management, medical and health care, urban planning and design, disaster monitoring and other 
felds (Qin et al., 2015). In the future, it will be further developed towards the direction of intelli-
gence, digitalization and high precision, and its application range will continue to expand. 

There are four main areas of GIS technology development. The frst one is the mobile GIS. In the 
narrow sense, mobile GIS refers to the GIS system that runs on mobile terminals and has the desk-
top GIS function. It does not interact with the server and is an off-line operation mode. The broad 
sense of mobile GIS is an integrated system which integrates GIS, GNSS, mobile communication, 
Internet service, multimedia technology and so on. 

The second is three-dimensional GIS, which can only handle and manage two-dimensional 
graphics and attribute data. Three-dimensional GIS has a good advantage in replacing the tradi-
tional two-dimensional GIS, since it breaks the defects of two-dimensional GIS in the representa-
tion of spatial information and can accurately depict all parts and details of the city in the real 
three-dimensional space to promote the development of digitization, informatization and intelli-
gence of the city. 

The third is component GIS, which refers to the GIS provided by a group of components with 
some standard communication interface that allows cross-language applications based on compo-
nent object platform. It can make GIS software more confgurable, extensible and open, more fex-
ible in use and more convenient in secondary development. 

The last one is WebGIS. The main difference between WebGIS and GIS is that WebGIS inte-
grates the functions of information browsing, uploading and downloading in the computer network 
to ensure that users can quickly query and analyze the contents of GIS data and information, fur-
ther expanding the scope of information retrieval by users. Compared with the traditional GIS, the 
adaptability and application range of WebGIS have been further expanded with avoiding the tedious 
steps of information retrieval under the traditional GIS technology model. WebGIS is subdivided 
into two kinds: passive and active. The advantages of passive WebGIS lie in the high development 
rate, but its higher requirements on server performance and information retrieval time are relatively 
long, so the practicability is limited to a certain extent. The active technology does not use the server 
for information processing and retrieval. However, it sends the relevant program code to the client 
to achieve interaction with the customer, which is more effcient than the passive mode. Therefore, 
the application of active WebGIS has been increasing in recent years. 

1.2.3 3s integration 

3S integration technology was proposed in the early 1990s and has been developed for more than 
30 years. 3S technology integration is a new integrated technology based on RS, GIS and GNSS, 
which forms a whole by organically forming the relevant parts of RS, GIS and GNSS in three 
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FIGURE 1.3 Brief principle of 3S technology. 

independent technology felds and other high technology felds such as network technology and 
communication technology ( Figure 1.3 ). 3S technology is one of the three major supporting tech-
nologies for the acquisition, storage, management, updating, analysis and application of spatial 
information in the current Earth observation system. It is an important technical means for the 
sustainable development of modern society, rational planning and utilization of resources, urban 
and rural planning and management, dynamic monitoring and prevention of natural disasters, etc. 
It is also one of the scientifc methods for geological research towards quantifcation ( Li, 1998 ;
 Li, 2003 ). 

GNSS is mainly used to provide the spatial location of targets, including all kinds of sensors 
and delivery platforms such as vehicles, ships, aircraft and satellites in real time and quickly. RS 
is used to provide semantic or non-semantic information about targets and their environment in 
real time or quasi-real time and to discover various changes on the Earth’s surface and update data 
for GIS in time. GIS, on the other hand, is a comprehensive processing, integration and dynamic 
access of spatial-temporal data from multiple sources management and dynamic access. As the 
basic platform of a new integrated system, GIS provides knowledge for intelligent data acquisition 
and analysis. 

3S integration is the inevitable result of the development of GIS, GNSS and RS. After decades 
of development, 3S technology has been quite mature in terms of each technology. GNSS, GIS and 
RS are put forward as separate technologies, which constitute the three supporting technologies 
in the Earth observation system. But with the deepening of 3S technology research and applica-
tion, people gradually realize that it is often diffcult to meet the practical engineering application 
by using one of these technologies alone. Only by studying and applying the three technologies 
as a unifed whole and making comprehensive use of the advantages of these technologies can 
provide comprehensive capabilities for Earth observation, information processing, analysis and 
simulation. GIS, RS and GNSS combine their advantages to compensate each other’s shortcom-
ings. The integrated application of 3S can be divided into the combination of GNSS and RS, the 
combination of RS and GIS, the combination of GNSS and RS, and the integrated application of 
the three techniques. 

Combining RS with GNSS: Target positioning in remote sensing has always depended on ground 
control points. Supposed the remote sensing target positioning without ground control is to be 
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realized in real time. In that case, the spatial position and sensor attitude of the instant acquired 
by remote sensing images need to be recorded synchronously by GNSS/INS. The pseudo-distance 
method is used for medium and low accuracy, and the phase difference method is used for high-pre-
cision positioning. GNSS dynamic phase difference has been used in aerial/aerospace photogram-
metry for ground-free aerial triangulation, and is called GNSS photogrammetry. It can improve 
operation effciency and save external workload. RS data volume is large and data accuracy is low, 
while GNSS has high data precision and low data volume, which can be organically combined to 
realize positioning, qualitative and quantitative earth observation. 

Combining GIS with GNSS: Using the electronic map in GIS and the real-time differential posi-
tioning technology of GNSS receiver, various electronic navigation systems of GNSS + GIS can 
be formed, which are used in traffc, public security detection, vehicle and ship automatic driving. 
GNSS can be used as the data source of GIS to fnd the target, and GNSS data can also be used to 
update the GIS database, while GIS provides the technical means for GNSS to manage and analyze 
spatial data. At present, there are three integration methods of GIS and GNSS: one is GNSS single 
machine positioning + raster electronic map. The system can automatically calculate and display 
the best path according to the target position and the current position of vehicles and ships, guide 
the driver to reach the destination as soon as possible and give the driver a hint through multimedia 
means. The second way is GNSS single machine positioning + vector electronic map. This system 
is similar to the frst one. The third method is GNSS differential positioning + vector/raster elec-
tronic map. The positioning accuracy can reach ± (1–3) m through the differential technology of two 
GNSS between fxed stations and mobile vehicles and vessels. At this time, the communication data 
link is needed, which can be one-way or two-way. 

Combining RS with GIS: In this integrated mode, RS provides GIS with important data sources 
and data updating means, while GIS provides RS with technical means of spatial data management 
and analysis, which is used for the automatic extraction of semantic and non-semantic information. 
The combination of GIS and RS is the most widely used and mature technology. The key to the 
combination of the two lies in the software. The integration of GIS and RS can be used in global 
change monitoring, agricultural harvest area monitoring and yield estimation, automatic update of 
spatial data and so on. Remote sensing image processing and GIS are two separated systems using 
two separated databases, but fle conversion tools are used to transfer fles between different systems. 
Integrating remote sensing image processing and GIS into the same software system, a consistent 
user interface is used to process and display different types of data synchronously, but the tool library 
and database are separated. The same software system and database management system are used to 
realize the unifed processing and management of remote sensing image and GIS spatial data. 

The 3S integration is mainly to realize the dynamic management, analysis and application of 
multi-source information (multi-time, multi-scale and multi-type) in the same coordinate system. 
3S integration is not a combination of equal structure, but a hierarchical organic combination. There 
are two main approaches: the integration approach centered on GIS (non-synchronous data process-
ing) and the integration approach centered on GNSS/RS (synchronous data processing). The overall 
integration of 3S not only has the function of collecting, processing and updating data automati-
cally and in real time, but also can analyze and apply data intelligently, provide scientifc decision-
making consultation for various applications and answer all kinds of complex questions that users 
may raise. 

Due to the functional complementarity of RS, GIS and GNSS, various integration schemes were 
formed, which can give full play to their respective advantages and produce many new functions. 
The individual application of RS, GIS and GNSS can improve the accuracy, speed and effciency of 
spatial data acquisition and processing, while the advantages of 3S integration are also manifested 
in the dynamic, fexible and automatic aspects. Dynamicity refers to the synchronization between 
data sources and the real world, the synchronization between different data sources, and the syn-
chronization between data acquisition and data processing. Flexibility means that users can decide 
the corresponding data acquisition and data processing methods according to different application 
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purposes and establish the connection and feedback mechanism between the two to complete the 
specifed task most appropriately. Automation means the integrated system can automatically com-
plete all links from data acquisition to data processing without manual intervention. 

3S technology has been well applied in dynamic monitoring, crop yield estimation and other 
felds, thus opening new topics in the development of geography and other disciplines. Although 3S 
integration has been widely used, in the coming of the information age today, the development of 
digital Earth technology research and network information requires the combination of higher-level 
3S technology and other high and new technologies, such as the combination of network technology, 
and distributed object technology, so as to form a multifunctional all-around integrated information 
system. However, there are still many problems that have not been solved, and the cooperation of 
more disciplines is needed. 

3S integration is still a frontier in the feld of spatial information science. Its development goal 
is “online connection, real-time processing”. In order to realize 3S integration, it is necessary to 
explore the theory of 3S integration, improve the technical method of 3S integration and broaden 
the application range of 3S integration. 3S integration should solve the problems of data storage, 
data processing, data transmission and data visualization. From the perspective of RS, the appear-
ance of a variety of high-resolution satellites makes the application of RS more and more extensive. 
The sensor technology is used to update GIS data to combine the two “S” in 3S more closely. The 
remote sensing image and GNSS can be directly linked to refect the GIS signal in real time, and 
the three “S” are connected. 3S technology integration is an important part of spatial information 
science, with the concept of the “Digital Globe”. Its importance is more and more prominent, and 
its application feld is also expanding. In these increasing applications, higher requirements are 
put forward for the dynamic and real-time performance of 3S technology. To meet these demands, 
3S technology integration must also be combined with communication technology and take full 
advantage of the current rapid development of communication technology to create a new era of 
geospatial information science. 

1.3 CURRENT STATUS OF 3S METEOROLOGICAL APPLICATIONS 

1.3.1 Flood Monitoring and assessMent 

Flooding is a natural disaster with high suddenness, high frequency and serious hazards. Floods not 
only damage the ecological environment, but also seriously threaten the safety of human life and 
property and stall the process of economic development (Aja et al., 2020; Ramkar, 2021). Therefore, 
a quick and effective analysis of food simulation, risk zoning and risk assessment can provide a 
timely and effective indication of the damage caused by foods and help the government to carry 
out timely relief and formulate disaster prevention and mitigation policies to reduce the impact of 
food disasters. 

3S technology has been widely used in food simulation and assessment due to its fast, conve-
nient and effcient nature. The basic principle is that RS images are used to extract information 
effciently and obtain information on changes in water bodies and the spatial analysis technology of 
GIS is used to simulate and analyze the fooded areas well as assess the risk of the affected area with 
dividing it into different levels of risk zones. In addition, the combination of RS imagery and GIS 
technology can simulate the entire process of fooding and post-disaster assessment as a complete 
food monitoring system. 

1.3.1.1 Flood Extraction from Multi-Source Remote Sensing 
Because satellite remote sensing has a very good current situation and wide coverage, remote sens-
ing data are widely used for food information extraction and food disaster monitoring. Zhou et al. 
(2021) extracted the food range of the food in Sri Lanka on 25 May 2017 using the data obtained by 
GF-3 and Sentinel-1 during and after the disaster. For Sentinel-1 data, it was frst processed to form 
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FIGURE 1.4 Flood areas extracted from GF-3 and Sentinel-1 images. 

  Source:   Zhou et al. (2021 ) 

a binary map, then further generated a log histogram, and fnally a suitable threshold was selected 
for food extent extraction. For the GF-3 data, a threshold extracted from the minimum error method 
is used for binary segmentation to extract the food range. The results are shown in  Figure 1.4, where 
the offcial fooded areas are compared with the GF-3 fooded areas, which are much closer to the 
fooded areas with high accuracy. In addition, the combination of GF-3 and Sentinel-1 with a com-
mon calibration will give more information and make the data more reliable. 

Wang and Zengzeng (2022) used Sentinel-1A data to monitor the catastrophic food disasters 
occurred in the Poyang Lake area since the food season in 2020 based on supervised classifcation 
and unsupervised classifcation. The range of water bodies before and after the disaster is extracted 
to show the extent of fooding.  He et al. (2022) took Guangxi’s “Xijiang Flood No. 1 in 2020” as 
an example to study the impact of foods on various regions in Guangxi. Due to the changes in 
light brightness before and after the food (the power line damage and the collapse of buildings led 
to a signifcant decrease in light brightness), the NPP-VIIRS night light remote sensing data was 
used for radiation normalization, and the different method was used to extract the changed and the 
affected areas. The affected area and the degree of post-disaster recovery show that the affected 
area is mainly distributed in the urban built-up area. 

1.3.1.2 Analysis of Flood Inundation Based on GIS 
Using GIS to conduct inundation analysis to obtain the scope of the inundated area, and then math-
ematical analysis to calculate the height difference between the food level and the DEM grid, the 
submerged water depth can be obtained. Overlay analysis in GIS can obtain the impact of foods 
on the watershed, and hydrological analysis can obtain information such as river network and water 
fow area.  Zhang et al. (2021) studied the Jinpu New District of Dalian City using the DEM data 
and the observation data of food level and tide level collected for many years. Based on the spatial 
analysis tool of ArcGIS, the active inundation analysis and calculation were carried out using the 
seed spreading method, and the scope of the inundated area was obtained, as shown in  Figure 1.5(a). 
After the difference calculation between the food level and the DEM grid, the submerged water 
depth distribution map is obtained, as shown in  Figure 1.5 (b).          

1.3.1.3 Assessment of Flood Disaster Risk Based on GIS 
Using GIS technology combined with the theory and method of natural disaster risk assessment, the 
food disaster risk assessment is carried out from three aspects: the hazard of the hazard, the stabil-
ity of the disaster-forming environment, and the vulnerability of the disaster-affected body. Flood 
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FIGURE 1.5 Maps of the food-submerged area in Jinpu New District with food-submerged area (a) and 
food depth (b). 

Source: Zhang et al. (2021) 

risk assessment has two components: the food risk impact assessment, which includes the disaster-
causing factors and the disaster-forming environment factor, and the food vulnerability impact 
assessment, which mainly refers to the hazard-bearing body. Sometimes the ability to prevent and 
mitigate disasters can also be included in the assessment of the impact degree of food vulnerability. 
The Analytical Hierarchy Process (AHP) and the weighted comprehensive evaluation method are 
often used to evaluate the degree of infuence of specifc indicators in each part and then determine 
the weight (Ramkar, 2021; Seejata et al., 2018). Yi (2012) used GIS technology and the weighted 
comprehensive evaluation method for the urban area of Guilin City, Guangxi, and constructed a 
food disaster risk assessment from the four aspects of disaster-causing factors, disaster-forming 
environment, disaster-bearing body and disaster prevention and mitigation capabilities. Then, the 
model was used to evaluate and analyze the food disaster risk in the study area. Finally, the natural 
distance classifcation method was used to divide the food disaster risk in Guilin into low-risk, 
medium-risk and higher-risk areas. 

1.3.1.4 Flood Disaster Evaluation with Combining RS and GIS 
Under the conditions of the food submerged range with the help of high-precision DEM data, the 
elevation distribution of the water and land boundary (i.e., water surface) is obtained, and the water 
depth is calculated from the difference between the water surface elevation and the ground eleva-
tion. Dong et al. (2012) studied the food disaster in Kouqian Town, Yongji County, Jilin Province, 
on 28 July 2010. Firstly, high-resolution remote sensing images were used to divide the grid accord-
ing to study area’s residential buildings to facilitate subsequent calculation of water depth. Then the 
remote sensed images were utilized to extract the normalized water index method to separate water 
bodies and non-water bodies. The segmentation threshold was determined by comparing with the 
standard false-color image, and then the submerged area of the food was extracted. As for the water 
depth of the submerged area, GIS is used to process the elevation points of the food submerged 
boundary frst, and then the water surface elevation of each grid is obtained. Finally, the food sub-
merged water depth of each grid is calculated by the water depth GIS method to realize the complete 
evaluation of food disasters from submerged range to water depth. 
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1.3.2 drought risk Mapping and assessMent 

1.3.2.1 Drought Disaster 
Meteorological disaster risk assessment requires the use of multidisciplinary theoretical knowledge 
such as meteorology, physical geography and disaster science, as well as certain methodologies 
such as analytic hierarchy process, risk index method and comprehensive weighting method. Based 
on GIS technology and disaster censuses, drought disaster risk analysis and assessment are made 
according to several elements such as the similarities and differences of the disaster-forming envi-
ronment, intensity and frequency distribution of disaster-causing factors, and the vulnerability of 
the carrier. Among them, drought disaster refers to the social, economic and environmental condi-
tions below a certain level caused by drought, which is the result of severe drought acting on fragile 
social, economic or sensitive ecological environment systems (Mishra et al., 2010). It is one of the 
most serious natural disasters in the world. Its frequency of occurrence, duration, the scope of infu-
ence and losses caused it to rank frst among all natural disasters. With the rapid development of 
economy, population growth and the global climate change marked by climate warming, drought 
disasters tend to be further aggravated, causing incalculable damage to economic growth, social 
progress and ecological environment. Therefore, it is of great signifcance to scientifcally assess the 
risk of drought disasters to mitigate disasters and improve economic and social benefts. 

1.3.2.2 Drought Risk Assessment 
Drought disaster risk assessment can characterize the form and degree of regional drought, which is 
the basis for formulating comprehensive disaster prevention and mitigation countermeasures. With 
the support of GIS software, a meteorological disaster database can be established, which includes 
basic geographic data, economic population data, meteorological data and disaster information. 
Through the comprehensive analysis of multiple factors such as the risk of hazard-causing factors, 
the sensitivity of the disaster-forming environment, the vulnerability of the hazard-bearing body, 
and the ability to prevent and mitigate disasters, several risk assessments factors such as the risk of 
the hazard-causing factor, the sensitivity of the disaster-forming environment, and the vulnerability 
of the hazard-bearing body are constructed. The evaluation model of nature, disaster prevention and 
resilience are established, and historical disaster data are combined to calibrate the model param-
eters. Finally, the disaster risk is evaluated, the division unit is determined, the disaster division 
level is divided, and the disaster division is carried out using the functions of GIS spatial overlay 
analysis, map spot merger and attribute database operation. 

Chen et al. (2022) conducted the in-depth analysis of the causes of drought risk in the Loess 
Plateau, combining with the climate characteristics of the Loess Plateau and the occurrence of 
drought events. A natural disaster risk assessment system of “disaster stress-social vulnerability-
exposure” was selected and corresponding remote sensing data and socioeconomic data were used 
as the data source of drought disaster risk. The drought disaster risk assessment model was con-
structed by Analytic Hierarchy Process (AHP). The spatial superposition analysis of the three index 
factors was carried out using GIS technology. Finally, the natural breakpoint method was used to 
analyze the drought risk classifcation and assessment. 

Using the geographic data including county-level administrative division data of Qingyang City, 
digital elevation model (DEM) data, Palmer Drought Index (PDSI) data, vegetation cover index 
(NDVI) data, land surface temperature (LST) data, land cover data, soil moisture data, the con-
stituent elements of the drought disaster risk assessment system can be determined. The Analytic 
Hierarchy Process (AHP) is used to calculate the weight of each index factor, and then GIS software 
is used to normalize the individual indicators contained in each element. The drought risk zoning 
can be constructed from the drought disaster data in Qingyang City. The technical framework is 
shown in Figure 1.6 (Chen et al., 2022). 

Drought disaster risk assessment is jointly determined by multiple factors, and the dimension 
units of each factor are different. In order to eliminate the dimensional infuence of the factors under 
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FIGURE 1.6 Framework of drought risk assessment in Qingyang City. 

  Source:   Chen et al. (2022 ) 

each index, normalization processing is required for each factor. According to the nature of indica-
tors, it can be divided into positive indicators and negative indicators. Positive indicators are the 
refected risk factor indicators. The larger the corresponding value, the higher the risk. The negative 
indicator is the larger for the corresponding value of the refected risk factor indicator, the lower 
the risk is (Chen et al., 2022). 

1.3.3 high teMperature disaster risk assessMent 

1.3.3.1  High Temperature Disaster 
High temperature disasters change the city’s thermal environment, which will seriously impact the 
climate, air quality, hydrological conditions and urban soil of the whole city (Shan et al., 2022; Liu 
et al., 2015). At the same time, it will also change the distribution and activity of organisms in the 
city, resulting in a series of urban ecological problems. Research on high temperature disasters and 
putting forward countermeasures can effectively alleviate the impact of high temperature disasters 
on the ecological environment and improve the ecological environment, e.g., improving the abnor-
mal weather caused by high temperature, reducing the frequency of urban disasters creating a suit-
able environment for urban organisms and restoring their growth environment. 

High temperature disasters, especially persistent high temperature heat wave disasters, have a 
wide range of social impacts, which can endanger human health and cause diseases or death. At the 
same time, the formation of high temperature disasters is closely related to urban energy consump-
tion and these factors complement each other. During the high temperature disaster in summer, the 
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use of engineering measures to cool down consumes a lot of energy, and the energy consumption 
of electricity and water for urban production and living increases, which leads to the shortage of 
urban electricity consumption. When energy is used at the same time, a large amount of exhaust 
gas and heat will be emitted, which will aggravate the rise of urban temperature and aggravate the 
high temperature disaster in the city, forming a vicious circle. Therefore, through the study of high 
temperature disasters, strategies to deal with and mitigate high temperature disasters are proposed 
to reduce urban temperature and break this vicious circle. 

The risk zoning of high temperature heat damage mainly includes four aspects: the hazard of 
hazard-causing factors, the sensitivity of disaster-forming environment, the vulnerability of hazard-
bearing bodies, and the ability of disaster prevention and mitigation. The occurrence frequency of 
high temperature heat damage, topography, population density, local economy, etc., were selected 
as evaluation factors, and relevant indicators were established. The distribution of high temperature 
heat damage risk coeffcient can be obtained by weighted synthesis and analytic hierarchy process. 

1.3.3.2 High Temperature Disaster Risk Assessment 
In order to provide references for reasonable responses to high temperature disasters, Fang et al. 
(2016) adopted a multi-factor weighted comprehensive evaluation method, using the meteorological 
observation data in Jiangsu, Zhejiang and Shanghai from 1961 to 2009 and the socioeconomic data 
in Jiangsu, Zhejiang and Shanghai from 2008 to 2010. Based on the comprehensive assessment of 
the disaster environment, disaster-bearing bodies and disaster resistance capabilities, the risk map 
of high temperature disasters in Jiangsu, Zhejiang and Shanghai was obtained. Using the daily 
maximum temperature data of 144 meteorological stations in Jiangsu, Zhejiang and Shanghai from 
1961 to 2009, the daily maximum temperature, daily average temperature and duration of high 
temperature disasters are extracted. Based on the 2008–2010 Jiangsu, Zhejiang and Shanghai urban 
construction statistical yearbooks, economic yearbooks, statistical bulletins and other references, 
the socioeconomic data in Jiangsu, Zhejiang and Shanghai were obtained. 

Traditional methods for analyzing disaster-causing factors include feld investigation, searching 
for historical disaster data, building models, laboratory analysis and remote sensing acquisition. The 
risk of hazards refers to the abnormal degree of meteorological disasters, which is mainly determined 
by the scale and frequency of activities of hazards. The risk of disaster-causing factors is frst deter-
mined based on the principle that the higher the level of high temperature disasters is, the greater the 
harm is, and the weight of the hazard-causing factors is determined (Fang et al., 2016). 

Topography, land cover and water system are the main factors refecting the high temperature 
disaster-forming environment. Among them, altitude has the most obvious impact on high tem-
perature disasters, and the higher the altitude, the smaller the impact. Based on this principle, the 
terrain impact index of Jiangsu, Zhejiang and Shanghai is calculated. According to the sensitivity 
of land cover type to high temperature and the ordering principle of city, cultivated land, grassland, 
woodland and water area, assign values from high to low, and draw the impact index of different 
land use types in Jiangsu, Zhejiang and Shanghai. During the disaster period, the water system has 
the function of alleviating and mitigating the high temperature disaster, through the evaluation and 
analysis of the river network density and the fow buffer zone, the assignment of the water system 
impact index can be normalized (Fang et al., 2016). 

The vulnerability of hazard-bearing bodies refers to the objects of meteorological disasters, 
including the material and cultural environment of human beings, which is the collection of various 
resources in human activities and the society in which they live. Combined with the socio-economic 
data of Jiangsu, Zhejiang and Shanghai, the vulnerability indicators of disaster-affected bodies are 
evaluated by selecting indicators such as population density, per capita GDP, proportion of cultivated 
land, and per capita energy consumption. The indicators of population density, per capita GDP, pro-
portion of cultivated land, and per capita energy consumption are normalized and interpolated. The 
vulnerability index of high temperature disaster-affected bodies in Jiangsu, Zhejiang and Shanghai 
is calculated comprehensively using equal weight and natural breakpoint methods (Fang et al., 2016). 
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The grid calculator in the ArcGIS spatial analysis module was used to analyze the four factor 
layers of the high temperature disasters in Jiangsu, Zhejiang and Shanghai: the risk of hazards, the 
sensitivity of disaster-forming environments, the vulnerability of disaster-affected bodies, and the 
ability to resist disasters. Based on the superposition calculation, according to the grading method 
of high-risk areas, sub-high-risk areas, medium-risk areas, sub-low-risk areas and low-risk areas, 
the comprehensive risk zoning of high temperature disasters in Jiangsu, Zhejiang and Shanghai was 
obtained (Fang et al., 2016). 

To assess the high temperature risk on 973 communities in Wuhan city, Shan et al. (2022) used 
the geography-weighted regression method using remote sensing data and geographic information 
data. A risk assessment model of high temperature disasters is established from disaster-causing 
danger, disaster-generating sensitivity and disaster-bearing vulnerability. The spatial distribution of 
high disaster-causing danger in the community is very consistent with its surface temperature. The 
spatial distribution of disaster-generating sensitivity in the community shows the spatial character-
istics of the clustered distribution of high sensitivity areas. 

1.3.3.3 High Temperature Disaster Risk Mapping 
According to the high temperature characteristics of Fujian, combined with the analytic hierarchy 
process, expert scoring method and the spatial analysis function of GIS, the possibility, severity, 
sensitivity of the disaster-forming environment and the effectiveness of disaster prevention in Fujian 
were analyzed (Jin, 2017). Based on the evaluation of the regional differences in the degree of 
high-temperature disaster risk in Fujian, the risk level of high-temperature disasters in Fujian was 
divided, which provided the basis for the relevant departments to carry out urban planning, disaster 
management and formulate disaster prevention and mitigation measures. 

Different data have been utilized to map a high temperature disaster risk zone, such as the daily 
temperature data from 67 meteorological stations in Fujian Province, the basic geographic infor-
mation data, and social and economic data including the road area, GDP and per capita medical 
beds in each city at the end of 2009. The analytic hierarchy process was used to calculate the index 
weight coeffcient. In fact, on the basis of establishing an orderly and hierarchical index system, the 
pros and cons of each index in the system were judged through pairwise comparisons between the 
indexes, and this evaluation result was used to synthesize and calculate the weight coeffcient of 
each indicator. Through the analytic hierarchy process, the high temperature disaster risk assess-
ment system is established by using three factors: the risk of disaster-causing factors, the sensitivity 
of the disaster-forming environment and the disaster-resistant ability. Comparing the scores to get 
the weight of each impact factor. The evaluation system is divided into target layer (A), index factor 
layer (B) and impact factor layer (C) from top to bottom. The index factor layer mainly considers 
the risk of disaster-causing factors, the sensitivity of disaster-forming environment and the ability 
to resist disasters. 

Through the use of related functions in the spatial analysis and spatial statistics toolbox in ArcGIS 
software, based on remote sensing image data and basic geographic information data, the data are 
spatially calculated, integrated and superimposed, and visualized. The application of the GIS spatial 
analysis method provides technical support and guarantees for the analysis of the comprehensive risk 
of high temperature disasters, the spatial distribution characteristics of each index and the spatial 
heterogeneity of the factors affecting the built environment of the community. The ArcGIS software 
was used to perform inverse distance weighted interpolation, and the observation point data were 
interpolated into raster data. The grid overlay calculation is performed in ArcGIS, and natural breaks 
(Jenks) classifcation is used to obtain the distribution map of the high temperature risk level. 

The degree of heat disaster risk is also affected by the effectiveness of local disaster control mea-
sures and post-disaster remedial measures. Disaster resilience refers to the ability of the disaster-
affected area to resist and recover when and after being hit by a high temperature disaster. The ratio 
of per capita garden and green area, the number of medical beds per capita in hospitals and the per 
capita GDP are used to represent the effectiveness of existing disaster resistance capabilities. After 
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normalizing these data, the weighted comprehensive evaluation method of AHP was used to obtain 
the weighting coeffcients for the percentage of garden area per capita, number of hospital medical 
beds per capita and GDP per capita, respectively, and the disaster resistance index was calculated in 
ArcGIS software. The larger the index value, the more effective the control measures and the lower 
the risk of high temperature. The high temperature disaster resilience index of each city is divided 
into four grades: low, second-low, medium and high. 

1.3.4 agricultural Frost daMage risk Mapping 

1.3.4.1 Agricultural Frost Damage 
Freezing injury is a kind of agricultural meteorological disaster that belongs to a low-temperature 
disaster. It refers to the sudden drop of the temperature near the plants to 0℃ or below, causing 
the water seal in the crops to freeze, causing damage to the crops and affecting the plants’ nor-
mal growth, leading to reduced production or crop failure. Freezing damage includes low tem-
perature freezing, cold wave, strong cooling, frost, late spring cold and low temperature in autumn. 
The impact of meteorological disasters on agriculture has become an important factor restricting 
the steady and sustainable development of agriculture. Data show that the losses caused by agro-
meteorological disasters such as droughts, frosts, foods and low temperature freezes account for 
more than 60% of agricultural disasters, and years of severe low temperature disasters can cause 
grain output losses of more than 10 billion kilograms. In addition, meteorological disasters are often 
accompanied by other secondary disasters, and the risk of disasters continues to increase. At the 
same time, disaster chains and disaster clusters will be formed, which will cause more serious and 
huge losses. Frost damage occurs in a wide range in my country, ranging from Heilongjiang in the 
north to Guangdong and Guangxi in the south. 

The development of remote sensing technology has made it possible to monitor changes in large 
areas and long-term sequences. It can realize rapid extraction and accurate identifcation of crop 
information and obtain the required temperature information, spatial distribution of crops, planting 
area, growth status and production and other information. The spatial analysis ability and carto-
graphic expression of GIS technology can establish the comprehensive risk index of freezing injury 
and the assessment model of freezing injury risk, and based on this, establish the freezing injury 
risk zoning. Remote sensing methods can be broadly divided into three types: minimum surface 
temperature retrieval methods, vegetation index difference methods and hyperspectral methods. 

1.3.4.2 Agricultural Freezing Damage Monitoring 
The vegetation index difference method is an index that can refect the growth status of plants by 
combining data from different bands of hyperspectral data. After the crops are subjected to freezing 
injury and low temperature stress, the activity will decrease rapidly, and the vegetation index will 
also be reduced when the activity is reduced. The vegetation index and the degree of freezing injury 
show a signifcant positive correlation. Therefore, the severity of freezing injury can be judged by 
comparing the vegetation index before and after freezing injury of crops. The hyperspectral has the 
characteristics of high spectral resolution, strong band continuity, and a large amount of spectral 
information. It can monitor crop canopies and leaves and construct narrow-band spectral indices 
through hyperspectral to explore its impact on crops under low temperature stress. 

3S technology has been utilized to assess the freezing damages on agriculture, and two case 
studies are given here. Wang et al. (2021) used the FY-3 satellite and the split window algorithm 
to invert the surface temperature, established a regression analysis with the ground minimum tem-
perature measured by the meteorological station, and used the variational technology to correct 
the more accurate remote sensing ground minimum temperature, and then collected the late frost 
disaster indicators and winter wheat development period data to realize remote sensing monitoring 
of late frost. They developed a winter wheat late frost remote sensing monitoring system supported 
by GIS, and carried out remote sensing monitoring of late frost damage according to the freezing 
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damage indicators of winter wheat at each period after jointing, produced a spatial distribution map 
of winter wheat occurrence, and calculated the affected areas of different regions and different 
levels of freezing damage, to realize remote sensing monitoring and evaluation of winter wheat. Li 
et al. (2015) selected the harmful extreme cold and frequency (danger) of winter wheat late frost, 
winter wheat planting area (exposure), irrigation-to-plow ratio and the number of machine wells per 
unit of irrigation area (vulnerability) to establish a risk assessment system, determine the weight of 
winter wheat late frost risk assessment indicators by analytic hierarchy process, and build a winter 
wheat late frost risk assessment model. Based on the climate data from 1984 to 2013, the risk assess-
ment of winter wheat late frost in Henan Province was carried out. According to the risk assessment 
model of winter wheat late frost, ArcGIS was used for grid calculation, and the risk zoning map of 
winter wheat late frost in Henan Province was obtained (Li et al., 2015). 

1.3.5 snow risk Mapping and assessMent 

1.3.5.1 Snow Mapping 
Snow cover is an important part of land cover, an important source of water resources and one 
of the important elements in the global climate system. It can regulate river runoff and guarantee 
ecosystems’ sustainable development. Its duration and coverage will affect the surface radiation 
and heat balance, the energy exchange of the earth-atmosphere system, etc. In addition, changes 
in snow cover also signifcantly affect the global and regional climate system, ecological environ-
ment and human production and life. Therefore, by obtaining or retrieving information about snow 
accumulation, the climate and ecological environment can be effectively adjusted, and the impact of 
snow accumulation on human production and life can be greatly reduced. Therefore, the snow cover 
is mainly elaborated from four directions: the calculation and inversion of snow cover depth, the 
identifcation and extraction of snow cover information, the temporal and spatial changes of snow 
cover, and the disaster risk analysis of snow cover. 

Snow depth (SD) is one of the basic attributes of snow and an important parameter refecting the 
distribution and change of snow. By obtaining continuous and uniform high-precision snow depth 
data, it can provide a scientifc basis for research on climate change, water resource analysis and snow 
distribution. In addition, it can forecast, monitor, and warn of snowmelt food disasters. The main 
methods of snow depth observation include ground observation and remote sensing data observation. 
However, ground observation mainly refers to meteorological stations or manual measurements. On 
the one hand, the obtained data is ineffcient, scattered and poorly representative, and cannot meet 
the observation requirements of large-area snow depth information. On the other hand, it also has 
limited temporal and spatial resolution, high cost, low precision and other shortcomings; a single 
application of remote sensing data cannot ensure its accuracy. Therefore, using 3S data combined 
with measured data to calculate and invert snow depth has become increasingly widespread. 

Currently GPS, InSAR and related extended technologies (such as GNSS-R, GNSS-IR and 
D-InSAR technology) are mainly used to retrieve snow depth. GNSS multipath information is 
obtained mainly through the signal-to-noise ratio at low altitude angles. Similarly, the multipath 
refection information at low altitude angles has a signifcant impact on the signal-to-noise ratio. 
Therefore, the GNSS signal-to-noise ratio data at low altitude angles can be analyzed and pro-
cessed, and then the surface environment parameters (snow depth) can be obtained. The band of 
the SAR satellite can penetrate the snow layer, so the SAR image is used to perform interferometric 
processing on the image data before and after the snowfall. The generated interference fringe pat-
tern will also contain the phase information of the snow that can be used to retrieve the snow depth. 

1.3.5.2 Snow Information Extraction 
Snow information includes snow area, snow albedo, snow water equivalent and other informa-
tion. Obtaining snow cover information can provide necessary and reliable reference materials for 
major research such as the hydrological cycle in cold regions, water resource management and snow 
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FIGURE 1.7 Details of Landsat-8, GF-3 and snow cover recognition. 

  Source:   Ma et al. (2020 ) 

disaster warning. Snow cover area (SCA) is one of the most important snow cover parameters. 
Rapid, real-time and accurate monitoring of changes in snow cover is of great signifcance for cli-
mate evolution simulation, water resource utilization management and disaster analysis and assess-
ment. Snow albedo is one of the most important parameters of snow cover, and it has a signifcant 
impact on the snow hydrological process, snow mass-energy balance process and snowmelt runoff 
process. In addition, snow radiation information dominated by snow albedo can signifcantly affect 
the climate and hydrological cycle at different scales. Snow water equivalent (SWE), which is the 
liquid depth of snowmelt, is one of the main characteristics of snow cover and an important indica-
tor for snowmelt runoff forecasting and water resource management. Therefore, obtaining snow 
water equivalent in time can provide a great reference value for snowmelt runoff forecast and water 
resource management. 

Ma et al. (2020) extracted features for snow identif cation using domestic GF-3 data, fve polar-
ization decomposition methods (Pauli decomposition [a common coherent target decomposition 
method], H-A-α decomposition, Freeman decomposition, Yamaguchi decomposition and Anyang 
decomposition). The random forest method calculates the importance of each candidate feature; 
then selects the feature that contributes more to the recognition, constructs the feature optimization 
rule to generate the optimal feature set, and fnally identifes the snow based on this feature set, 
forming a feature-based optimization method. The proposed method is compared with the three 
classifers of the maximum likelihood method, support vector machine and BP neural network, as 
shown in  Figure 1.7. It was found that the recognition accuracy was highest using the optimal fea-
ture set and the random forest method (the proposed method).          

  1.3.5.3  Snow Disaster Risk Assessment 
Snow disasters are mainly caused by large-scale snow accumulation caused by heavy snowfall. 
The disasters seriously affect the environment and the survival and health of humans and livestock, 
and are likely to have a greater impact on transportation, communications, agriculture and electric-
ity. Therefore, timely and effective disaster analysis of snow disasters can reduce their impact on 
the environment and human life and help the government and other relevant departments to make 
timely and effective disaster reduction and rescue measures. 

Based on the principle of disaster risk assessment, GIS technology is used to select the infu-
encing factors related to snow disasters, and the weights of the infuencing factors are calculated. 
Finally, according to the weights, GIS is used for spatial superposition to obtain the snow disaster 
risk zoning map to further analyze the disaster.  Xi (2020) extracted and processed snow data from 
63 stations in Heilongjiang province from 1983 to 2015. He used methods such as trend analysis, 
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spatial analysis in ArcGIS and Kriging interpolation to analyze the temporal and spatial variation 
characteristics of snow cover in Heilongjiang Province in the past 33 years. Combined with the the-
ory of natural disaster risk, from the four aspects of the risk of disaster-causing factors, the sensitiv-
ity of disaster-forming environment, the vulnerability of disaster-affected bodies and the ability to 
reduce and prevent disasters, as well as the analytic hierarchy process and weighted comprehensive 
evaluation method, the snow disaster risk assessment index system in Heilongjiang Province was 
established and the risk was assessed for local snow disasters. 

1.3.6 hail disaster risk assessMent 

1.3.6.1 Hail Disaster 
Hail is a hard spherical, cone-shaped or irregularly shaped solid precipitation. It is a severe weather 
phenomenon caused by a strong convective weather system. Its impact range is small, and its time 
is short, but it is sudden and often accompanied by strong winds, development, rapid cooling and 
other paroxysmal weather. Hail occurs worldwide, and different countries have different degrees 
of hail disasters. Generally speaking, the geographical distribution characteristics are related to 
surface morphology and dimensional factors. Plains are less than mountainous areas, coastal areas 
are less than inland areas, and high-dimensional and low-dimensional areas are less than mid-
latitude areas. However, due to its violent onset, often accompanied by thunderstorms or strong 
winds, it will cause great damage to agriculture, livestock, transportation, people’s lives and prop-
erty every year. Fujian Province, Tibet Autonomous Region and Inner Mongolia Autonomous 
Region are provinces with more frequent hailstorms and more serious hail disasters in China. 
According to statistics, the economic losses caused by hail disasters in China are as high as hun-
dreds of millions or even billions of dollars every year. In China, hail mostly occurs in spring, 
summer and autumn, and April to July accounts for about 70% of the total. It is in the golden 
period of crop growth, so the occurrence of hail will cause a devastating blow to agriculture. In 
addition, hail will also cause losses in construction, communication, electric power, transporta-
tion and other industries. Therefore, it is very necessary to apply scientifc detection equipment to 
warn of hail weather, implement artifcial hail suppression operations and keep hail from growing, 
thereby reducing disaster losses. 

Usually, a hail disaster lasts about ten minutes. Although the duration is not long, it will cause 
huge damage to vegetation and ecology. It will cause different damage to crops in different seasons. 
For example, autumn will cause sharp harvests. In spring, a large number of seedlings will die, and 
in summer, it will cause devastating damage to the growing crops. By processing the monitored data 
through satellite remote sensing technology, recording and analyzing the vegetation index before 
and after the hail disaster can monitor the damage’s degree of size. 

1.3.6.2 Hail Disaster Monitoring 
Multi-temporal and multi-angle satellites can observe hail clouds and analyze the spectral charac-
teristics, structural situation, range, boundary shape, color tone, shadow (specifc to visible light 
cloud images) and texture features of hail clouds and other characteristics of hail clouds. By ana-
lyzing various features of satellite cloud images to obtain cloud types, horizontal scales, boundary 
shapes, relative heights and thicknesses, etc., hail clouds can be identifed along with their spatial 
distribution and intensity. 

GIS has accumulated a wealth of spatial data visualization and statistical analysis methods. It 
has the function of integrating various spatial data and performing powerful spatial analysis. It can 
provide powerful tool platform support for the identifcation of strong convective weather thunder-
storms from radar data. The lightning location system can be used to identify hail clouds. During 
the formation and development of hail clouds, accompanied by strong lightning activities, the fre-
quency of lightning increases sharply. Monitoring lightning activity using the Lightning Locating 
System allows the identifcation and location of hail clouds. 
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1.3.6.3 Hail Disaster Risk Assessment 
3S technology has been used to assess the hail disaster risks. Peng et al. (2019) used fne-grained 
township hail frequency, historical disaster situation, DEM data, land and population density and 
other data in Chengde City to assess hail disasters in a targeted manner. A hail disaster risk assess-
ment model is constructed from three aspects: disaster environment, disaster prevention and mitiga-
tion capabilities. The comprehensive weighted analysis method and the AHP are used to calculate 
the weight of each index, the evaluation index is gridded by GIS spatial analysis technology, and the 
hail disaster risk map of Chengde City was made with the grid as the basic evaluation unit. Yang et al. 
(2016) studied the hail disaster by using the hail data of 39 meteorological stations from 1981 to 2015 
to fully analyze Tibet’s climate background and economic environment. According to the disaster 
occurrence theory, the formation mechanism of regional hail distribution selects the factors of land-
form, disaster frequency, population and social economy from three aspects: the disaster-causing 
environment, the possibility of disaster occurrence and the vulnerability of disaster-affected bod-
ies. They used the cluster analysis method to establish mathematical models such as meteorological 
disaster disaster-pregnant background, disaster risk and hazard-bearing body vulnerability, and oper-
ated the attribute database and graphic database by MapInfo professional software to obtain various 
disaster background, disaster risk, and vulnerability evaluation layers. After layer stacking, plate 
merging and level division, the risk partitions of various meteorological disasters were obtained. 

1.3.7 wind disaster risks assessMent 

1.3.7.1 Wind Disaster Assessment Method 
At present, the evaluation method of wind disasters is mainly divided into indicator evaluation 
methods and statistical simulation methods. The evaluation of wind disaster indicators is mainly 
aimed at the macro range, such as the severity of a certain wind disaster to damage the affected 
areas or the general degree of destruction. The current research mainly adopts regression analysis, 
fuzzy comprehensive evaluation method and analytic hierarchy process. 

The statistical simulation assessment of the wind disaster is mainly based on the intensity and 
frequency of wind disasters and the statistical simulation of the specifc structure of the disaster, 
namely the frequency, intensity and specifc characteristics and location distribution of the disaster 
body, are used to determine the threat of wind disasters. Corresponding statistical simulation is 
performed to evaluate wind disasters or risks. The statistical simulation method of typhoon disaster 
generally includes typhoon frequency, intensity, path simulation, wind feld simulation, wind dam-
age simulation of engineering structure and expected insurance loss simulation. 

Index evaluation methods are commonly used, which are the mainstream method of typhoon 
disaster risk and loss assessment. There are many specifc implementation methods. At present, the 
main problem of the statistical simulation method of wind disasters is that the complexity of each 
aspect of the simulation process and the choice of various parameters result in uncertainty and dif-
ferences in the results. For example, in the meteorological module, the uncertainty and differences 
between the wind speed model and the near-ground wind farm parameters will cause the fnal esti-
mated wind disaster loss to be more unstable. 

The fuzzy comprehensive evaluation model is a comprehensive analysis method based on fuzzy 
transformation theory based on fuzzy reasoning, combining qualitative and quantitative, accurate 
and inaccurate. At present, it is widely used in the multi-index comprehensive evaluation. AHP is a 
relatively simple and feasible decision-making method. Its main advantage is that it can solve com-
plex multi-objective problems. The AHP method is also a combination of qualitative and quantitative 
methods. It can quantify the qualitative factors, express the subjective judgment of people in math-
ematics, and test and reduce the subjective infuence to a certain extent, making the evaluation more 
scientifc. It can provide decision makers with a variety of decision-making methods, in the combina-
tion of quantitative and qualitative, according to the standard weight of each decision scheme. 
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1.3.7.2 Wind Disaster Risk Mapping Based on 3S Technology 
Based on the annual extreme wind speed data, natural environment and social and economic factors 
in Hangzhou,  Chen (2012) constructed a regional wind disaster risk assessment model by integrat-
ing disaster-causing factors, disaster-pregnant environment, disaster-bearing bodies and disaster 
prevention and mitigation capabilities. The appropriate disaster risk assessment indicators and the 
risk assessment indicators are selected with a greater correlation with the wind disaster, the spa-
tial overlay analysis of each index is conducted using the spatial analysis technology and the risk 
status of the wind disaster are evaluated and mapped with the grid as the basic evaluation unit. 
The Hangzhou area is divided into fve levels of risk: high, sub-high, medium, sub-low and low, as 
shown in  Figure 1.8  ( Chen, 2012 ).        

Sun et al. (2021) used the powerful data function of ArcGIS to establish the Xingtai gale disaster 
risk database and construct the risk assessment model of gale disaster. Through comprehensive 
analysis and evaluation of the data, the risk map of the disaster-causing factors of the strong wind 
disaster, the disaster-pregnant environment sensitivity of the strong wind disaster, the vulnerability 
of the disaster-bearing body of the strong wind disaster, the disaster prevention and resilience of the 
strong wind disaster, and the strong wind disaster in Xingtai City were obtained. 

Zhou et al. (2013) introduced the typhoon disaster risk index, comprehensively considered the risk, 
vulnerability, exposure and local disaster prevention and mitigation capabilities of typhoon disasters, 
and constructed a comprehensive risk assessment index system for typhoon disasters. Taking Zhejiang 
Province as an example, each evaluation index was quantifed according to historical statistical 

FIGURE 1.8 Flowchart of typhoon disaster risk assessment. 
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FIGURE 1.9 The risk index distribution map (a), vulnerability index distribution map (b), exposure index 
distribution map (c), disaster prevention and mitigation capacity index distribution map (d), and typhoon disas-
ter comprehensive risk distribution map of various cities in Zhejiang Province (e) were obtained. 

  Source:   Zhou et al. (2013 ) 

data, and the spatial analysis function of GIS was used to overlay the evaluation indexes according 
to their weights. The risk index distribution map (Figure 1.9a), vulnerability index distribution map 
(Figure 1.9b), exposure index distribution map (Figure 1.9c), disaster prevention and mitigation capac-
ity index distribution map (Figure 1.9d), and typhoon disaster comprehensive risk distribution map of 
various cities in Zhejiang Province ( Figure 1.9e ) were obtained ( Zhou et al., 2013 ). 

1.3.8 lightning risk eValuation and Mapping 

1.3.8.1  Lightning Risk Assessment Method 
The formation and development of lightning disasters are subject to a variety of natural and socio-
economic factors. According to its mechanism and change speed, the factors affecting the risk 
assessment of lightning disasters can be classifed into four categories: lightning hazard, exposure, 
vulnerability and the ability of disaster prevention. 

Lightning hazard is the dynamic factor causing lightning disasters. Meteorological disaster risk 
is a natural attribute, including disaster environment and disaster-causing factors. The loss caused 
by meteorological disasters depends on the risk of trigger factors. Hazard refers to the possibility 
of adverse events. Risk analysis is to study the possibility of adverse events from the perspective of 
risk inducing factors. The risk analysis of lightning disasters is to study the intensity and frequency 
of lightning in the area threatened by lightning. The intensity is expressed by the lightning intensity 
index, and the frequency is the probability, which can be expressed by lightning frequency. Here, 
the ground lightning frequency and intensity are mainly considered as the index factors to measure 
the lightning risk. 

Exposure is divided into two elements: natural physical exposure and social physical exposure. 
Vulnerability indicates the extent to which exposed objects in the affected area are affected by 

lightning disasters. 
The ability of disaster prevention and mitigation mainly describes the level of social and eco-

nomic development in the affected areas, refecting the regional disaster bearing capacity and loss 
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rate. Generally, it can be described by various statistical data, and has great regional differences and 
volatility in the time process. 

The process of regional natural disaster risk formation, danger, exposure and vulnerability are 
indispensable. In the process of the formation of lightning disaster risk, in addition to the above 
natural disaster formation factors: danger, exposure and vulnerability, the role of disaster prevention 
and mitigation capacity in the risk of lightning disaster is relatively large. Therefore, when analyz-
ing the risk of lightning disasters, it is necessary to consider the ability of disaster prevention and 
mitigation. Lightning disaster risk can be expressed as a multivariate function of dangerousness, 
exposure, vulnerability, disaster prevention and mitigation capacity. 

The risk of lightning disaster is composed of four main factors: the risk of disaster-causing fac-
tors, the sensitivity of disaster-pregnant environment, the vulnerability of disaster-bearing bodies 
and the ability of disaster prevention and mitigation. Each factor is composed of several evaluation 
indexes. According to the theory of natural disaster risk and the formation mechanism of lightning 
disaster risk, the conceptual framework of lightning disaster risk zoning is established. According 
to the above conceptual framework of lightning disaster risk, a number of specifc indicators are 
selected to evaluate the degree of lightning disaster risk. 

1.3.8.2 Lightning Risk Mapping Based on 3S Technology 
The “Regulations on the Prevention of Meteorological Disasters” implemented on 1 April  2010 
stipulates: 

local people’s governments at or above the county level should organize meteorological and other rel-
evant departments to carry out meteorological disaster censuses on the types, frequency, intensity, and 
losses of meteorological disasters occurring in their administrative regions, establish a meteorological 
disaster database, conduct meteorological disaster risk assessment according to the types of meteo-
rological disasters, and delineate meteorological disaster risk areas according to the distribution of 
meteorological disasters and the results of meteorological disaster risk assessment. 

Lightning disaster is one of the ten most serious disasters announced by the United Nations. For a 
long time, lightning prevention work only focused on engineering protection, and lightning disaster 
risk mapping is lagging behind. Therefore, delineating the lightning disaster risk area based on the 
lightning disaster database is an urgent need to perform the administrative functions of the meteoro-
logical authorities. The lightning disaster risk zoning enriches the content of meteorological disaster 
comprehensive risk zoning and lays the necessary foundation for the preparation of meteorological 
disaster prevention planning. 

Based on GIS technology, natural disaster risk assessment method and analytic hierarchy pro-
cess, Lv et  al. (2020) used lightning location monitoring data, geographic information data and 
socio-economic data in Jiangxi Province from 2010 to 2019 to carry out lightning disaster risk map-
ping from three aspects: disaster-causing factor, disaster-pregnant environment and disaster-bearing 
body, and formed lightning disaster risk zoning in Jiangxi Province. Based on the theory of natural 
disaster risk assessment, Cheng (2019) used lightning location data, geographic information data, 
socio-economic data and lightning disaster data to study the lightning disaster risk assessment and 
the risk of disaster-causing factors, the exposure of disaster-bearing bodies and the vulnerability of 
disaster-bearing bodies. The quantitative relationship between evaluation indicators and risk assess-
ment was established, and the method of lightning disaster risk assessment in Henan Province was 
formed. At the same time, combined with GIS technology, the hazard distribution map of disaster-
causing factors, the exposure distribution map of disaster-bearing bodies and the vulnerability dis-
tribution map of disaster-bearing bodies were formed. Finally, the comprehensive risk zoning map 
of lightning disaster in Henan Province was formed by superposition. 

Based on the theory of natural disaster risk, Liu et  al. (2019) selected 11 indicators to con-
struct the lightning disaster risk index using the analytic hierarchy process and established the 
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lightning disaster risk assessment model. By selecting the lightning disaster data, the grey cor-
relation assessment of lightning disasters was carried out to verify the correctness of the zoning 
results. The assessment results were generally consistent with the distribution of lightning disaster 
risk zoning. The maps of the environmental sensitivity of lightning disaster, the risk of lightning 
disaster-causing factors, the vulnerability of lightning disaster-bearing bodies, the ability of light-
ning disaster prevention and mitigation, the comprehensive risk of lightning disasters, and the grey 
correlation degree of lightning disaster were obtained. 

1.3.9 risk Mapping oF dense Fog 

1.3.9.1 Dense Fog 
Fog is a disastrous weather phenomenon in which a large number of water droplets or ice crystals 
are suspended in the air near the surface, and the horizontal visibility distance is reduced to less 
than 1 km. Fog seriously affects atmospheric visibility and can pose a certain threat to traffc, 
transportation and military activities. In recent years, the economic losses caused by fog-induced 
traffc accidents have increased with the city’s development. According to statistics, about 1/4 of 
traffc accidents are caused by bad weather with low visibility, such as dense fog. The traffc acci-
dent rate on the expressway in dense fog weather is 10 times higher than that of normal. The pol-
lutants carried by fog may induce various diseases and adversely affect human health. Therefore, 
the impact of fog on traffc and the human living environment has been widely recognized by all 
sectors of society. 

In recent decades, many experts and scholars have made in-depth analysis, research and discus-
sion on fog weather phenomenon through feld observation and experiments on fog, summarized the 
long-term climate change characteristics and environmental impact of fog, studied fog prediction 
theory and methods, conducted numerical simulation research on fog and obtained many meaning-
ful results. 

The spatial and temporal distribution of fog days of different grades in different regions has 
strong locality, and the dense fog and heavy dense fog with low visibility and long duration are more 
harmful. The classifcation of fog days plays an important role in mastering the law of fog disaster 
and objectively evaluating the disaster. According to the general survey of fog meteorological data 
and disaster investigation, when the following three conditions are met, there are usually disasters 
(fight delays, traffc accidents, etc.). Therefore, the meteorological conditions for fog disasters are 
defned as follows: (1) More than half of the stations in the city have visibility < 1000 m (range); (2) 
Visibility ≤ 100 m (intensity) observed in some areas; (3) Duration ≥ 6 h (duration). 

In the actual fog disaster risk assessment, the appropriate fog disaster classifcation standard can 
be selected according to the actual situation of the evaluated area to make the evaluation results 
more objective and accurate. The evaluation of fog disaster risk should consider the comprehensive 
effect of four factors, such as the risk of disaster-causing factors, the sensitivity of disaster-pregnant 
environment, the vulnerability of disaster-bearing bodies and the ability of disaster prevention and 
mitigation. The evaluation factors mainly include the location of the fog disaster, the scope of infu-
ence, the frequency of historical occurrence, the level of visibility. The environmental sensitivity 
of fog disasters refers to the effect of natural factors on the formation of fog disasters in a certain 
area without considering the weather background. Its evaluation indexes include the coastline index, 
river network density index and topography index. Vulnerability refers to the degree of vulnerability 
of a disaster-affected body to natural disaster events. The evaluation indicators mainly include road 
network density, population density and per capita GDP. The ability of disaster prevention and miti-
gation mainly includes the ability of human recovery and reconstruction of disaster-bearing bodies 
and the ability of government emergency response. The economic development level of the region 
and the construction of basic disaster prevention facilities are the important basis for the evaluation 
of disaster prevention and mitigation capacity. 
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1.3.9.2 Dense Fog Risk Evaluation 
In the fog disaster risk assessment, some have tried to use the grey correlation method and achieved 
good results. Based on the observation data of foggy weather in the Beijing area in the past 20 years 
and the disaster survey data derived from foggy weather, Zhang et al. (2008) analyzed the disaster 
evaluation index and disaster classifcation of fog by using the grey correlation method, established 
the evaluation model and evaluated 22 fog disaster cases. The results showed that the grey correla-
tion method had the characteristics of a small amount of calculation without requirement for the 
number of samples, and obeyed a certain distribution law. It is a simple and feasible method of fog 
disaster risk assessment combining qualitative analysis and quantitative estimation. 

There are precedents to evaluate the risk of fog disaster by grid overlay analysis, such as Hu et al. 
(2010), using GIS software to divide a certain size of square grid units in the study area. The fog 
observation data are used to measure the fog disaster risk index in urban areas. The regular grid 
is used as the evaluation unit, and the road network density in the grid area is calculated grid by 
grid, which is used as the spatial vulnerability index of fog disasters. The population density in the 
grid is selected as the vulnerability index of fog disasters. The risk index of fog disaster is calcu-
lated according to the distribution ratio of 5:2:1. Ma et al. (2014) analyzed the temporal and spatial 
distribution characteristics of marine fog in Qingdao based on the climate data from 1978 to 2007. 
Marine fog is a meteorological disaster with a great impact on urban construction and social and 
economic activities in Qingdao. Combined with the fog disaster census data from 1984 to 2007, the 
index-weighted comprehensive model of disaster risk assessment was used to carry out the sea fog 
meteorological risk assessment with geographic information system (GIS). 

1.3.10 Fire risk assessMent 

1.3.10.1 Fire Risk 
Due to the combined effects of climatic conditions, human activities, environmental factors, man-
agement and protection policies, the forest fre losses in different regions show signifcant regional 
differences (Bowman et al., 2009; Csiszar et al., 2006; Schroeder et al., 2008). In order to better 
prevent the occurrence of forest fres and effectively use resources, it is necessary to take different 
preventive policies for different regions and carry out forest fre risk mapping (Jaiswal et al., 2002; 
Dhar et al., 2023). Forest fre risk mapping refers to dividing the study area into different levels 
according to the risk of forest fres in the study area with the regional disaster-bearing capacity and 
socio-economic conditions (Eugenio et al., 2016). Forest fre risk mapping is used to estimate the 
possibility of forest fres and the potential losses caused by the vulnerability of forest systems to 
attacks, so as to quantitatively or qualitatively measure, predict, analyze and evaluate the potential 
losses caused by the uncertainty of forest fres in a certain period. Accurate fre risk classifcation 
can play a good early warning role, reduce the number of fres, protect forest resources, protect the 
life safety of frefghters and reduce the loss of personnel and resources caused by fres. According 
to the forest fre risk map, it can provide decision-making opinions for the forestry department in 
forest fre prevention, frefghting, fre prevention work construction and other aspects. Combined 
with qualitative and quantitative methods, the weight of each disaster-causing factor was deter-
mined by the analytic hierarchy process. According to the weight coeffcient of different factors, 
the forest risk map model was established, and the risk zoning was carried out according to the 
model’s results. 

1.3.10.2 Fire Risk Evaluation 
With the understanding of the fre process and mechanism, ones have successively studied 
fre risk models and risk map methods, including the Bayesian network, catastrophe progres-
sion method, cluster analysis method, cellular automata, optimal segmentation method, factor 
weighted overlay comprehensive analysis method, artifcial neural network, entropy method, 
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fuzzy comprehensive evaluation method, semi-parametric space model, logistic regression 
model and geographical weighted regression. Fire risk is the result of the comprehensive effect 
of hazard, exposure and vulnerability of bearing body, and regional fre prevention and disaster 
reduction capability. 

The study on fre risk early warning has gone through three stages. In the 1960s and 1970s, 
meteorological factors were used as the main prediction parameters to predict fre risk. In the 1980s 
and 1990s, the development of remote sensing and geographic information system technology pro-
moted the research of fre risk index, and the multi-factor fre risk prediction. Since the 1990s, the 
fre risk index has been calculated by taking into account the fuel conditions, climate conditions, 
terrain and other factors, making the use of the fre risk index faster and more convenient. Various 
indexes based on these factors, such as the Fire Weather Index (FWI), the Keetch-Byram Dry Index 
(KBDI) and the Forest Fire Danger Index (FFDI), have been widely used. 

The development and application of satellite remote sensing technology have made contributions 
to the study of fre risk on combustible types and water content through remote sensing monitoring 
and inversion technology. For example, unsupervised classifcation methods are used to classify 
combustibles, greenness maps are used to quantify the moisture content of combustibles, vegetation 
index NDVI and VCI are used to monitor the state of combustibles, and remote sensing is also used 
to estimate drought and soil moisture for fre risk assessment (Kaufman et al., 1998). Many GIS spa-
tial analysis methods are used for fre risk assessment. A multi-distance spatial clustering function 
was proposed by Ripley in 1976, belonging to the multi-distance spatial clustering analysis method. 
This function assumes that geographical things are uniformly distributed in space and counts the 
number of samples within the search circle according to a certain radius distance. By comparing 
the measured value and theoretical value of the average number of these samples and the ratio of 
sample density in the region, it fnally determines whether the distribution characteristics of the 
actual observed geographical things are spatial aggregation, spatial divergence or spatial random. 
The ensemble empirical mode decomposition method decomposes the time series of a variable into 
the oscillation components and a nonlinear trend with different time scales such as inter-annual, 
inter-decadal and inter-year. Kernel Density Estimation can estimate the probability density value 
of geographical objects in their surrounding neighborhood by setting bandwidth without any prior 
density assumption. 

Lin et al. (2013) used meteorological factors such as precipitation, maximum temperature, rela-
tive humidity, average wind speed, snow days and thunderstorm days, geographical factors such as 
elevation, slope and aspect, vegetation factors such as vegetation type and NDVI, and social factors 
such as traffc, population and residence as four risk factors for forest fre risk. The forest fre risk in 
Tibet was quantitatively evaluated by index normalization method, analytic hierarchy process and 
weighted comprehensive evaluation method. According to the fre risk level, the whole region was 
divided into fve risk areas: low, lower, medium, higher and much higher. Using the analysis func-
tion of GIS software, the map of forest fre risk level in Tibet was compiled to provide a reference 
for improving the prediction level of forest fre risk. 

Forest fre is the result of many natural factors and social factors. Its occurrence is closely related 
to climate, vegetation, human activities and terrain. According to the four risk factors of meteo-
rology, geography, vegetation and society, the spatial distribution of forest fre risk factors was 
calculated, and the results of each risk factor were normalized to the range of 0–1 according to the 
normalization method. 

Meteorological factors mainly include precipitation, temperature, sunshine duration, evapora-
tion, wind and air humidity. Meteorological factors can affect fre occurrence and fre behavior by 
changing the fre environment. The area with the highest meteorological risk factors is located in 
the southeastern region, where the altitude is the lowest. The temperature is high, and the dry and 
wet seasons are distinct. The main precipitation is concentrated in the summer food season, and the 
precipitation in the fre prevention period only accounts for less than 10% of the annual precipita-
tion. The number of snow days is small, which is most conducive to forest fres. 
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Using high-resolution DEM data to derive the corresponding terrain data such as altitude, slope 
and aspect as the geographical factors of forest fre danger, different scores are given according 
to their different effects on forest fre. For forest fres, as the altitude increases, the temperature 
decreases, the vegetation distribution decreases and the possibility of forest fres decreases. The 
infuence of slope on the occurrence and spread of forest fre was high in the middle and low on 
both sides. With the increase of slope, the surface runoff accelerated, the fuel on the ground was 
easy to dry and the fre risk was high. However, when the slope reached a steep slope, the distribu-
tion of trees decreased, and the risk of forest fre decreased. The slope direction directly affects the 
amount of solar radiation received by the ground, resulting in temperature differences in different 
slope directions. The southern slope receives higher solar radiation than the northern slope, and the 
air is drier and more likely to cause fre. 

According to the provisions of the national forest fre danger zoning grade on the fammability 
of vegetation, different vegetation types are divided: the infammable coniferous forest is given 1, 
the more infammable broad-leaved forest is 0.7, the more refractory grassland is 0.3, the refractory 
plateau meadow is 0.1 and the non-combustible lake and desert are given 0. The spatial distribution 
of vegetation risk factors was calculated by normalized NDVI and vegetation type. 

In addition to natural factors, human-induced fres are an important threat to forests. Therefore, 
forest fre risk factors formed by human factors must be considered. Considering the infuence of 
traffc, population density and village density, the highway is analyzed by the 5 km buffer zone. 
The population density is obtained by dividing the agricultural population by the county area. 
Considering the low settlement of villages in Tibet, a buffer analysis of 3 km is used for villages. 
After standardizing the three indicators, the standardized spatial distribution of social risk factors 
is obtained. 

The normalized meteorological, topographic, vegetation and social factors were given weights of 
0.30, 0.15, 0.40 and 0.15, respectively. The comprehensive evaluation value of forest fre risk in Tibet 
was obtained by comprehensive calculation, and then the risk evaluation value in the range of 0–1 
was obtained by standardization. According to the boundary of 0.2, it was divided into fve levels: 
sub-low-risk areas, low-risk areas, medium-risk areas, sub-high-risk areas and high-risk areas, and 
the forest fre risk zoning map of Tibet was obtained. 

1.4 OPPORTUNITIES AND PROSPECTIVE 

The 3S technology has been widely used in meteorological disaster monitoring and assessment. RS 
technology is mainly used to obtain the data source of disaster monitoring at a large scale. GIS links 
spatial data and attributed data to perform spatial analysis, query and cartographic comprehensive 
management of geometric features in the study area. GNSS technology is mainly used to quickly 
obtain location information in real time. In the feld of basic landslide data acquisition, 3S technol-
ogy can play the key function in landslide geographic data acquisition and rapid update, establish a 
complete landslide catalog database as much as possible, and effectively express landslide mapping 
(Zhang et al., 2015). Also, 3S technology can obtain information such as elevation, vegetation cov-
erage, surface humidity, water system distribution and topographic relief in a large area. 

With the acceleration of urbanization, the demand for 3S technology is becoming increasingly 
urgent, and its application feld is expanding. The construction of smart cities involves basic image 
map data and a large amount of spatial location data information. Based on the real-time location 
information provided by GNSS, the data transmission and processing capabilities of the system 
are further improved based on the existing path analysis of GIS, and the optimal path planning is 
provided in a short time. Reasonable diversion of traffc fow will help alleviate the current traf-
fc congestion in large cities. Affected by human activities and climate change, natural disasters 
occur frequently, and emergency management of geological and meteorological disasters based 
on 3S technology is particularly critical. 3S technology has unique advantages in data acquisi-
tion and management, two-dimensional and three-dimensional visualization of spatial information, 
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emergency monitoring and analysis, spatial data analysis and so on, which can help to better reduce 
the impact of disasters on people’s lives and property. 

Although 3S technology has made great achievements in the application of various felds, many 
problems also need to be solved in the practice process. (1) The inconsistency of data standards 
leads to low effciency of 3S technology applications. Affected by different sensors of remote sens-
ing satellites, the spatial resolution, radiation resolution and spectral resolution of satellite images 
from different sources are not uniform, and no better methods can be compatible with different 
data sources. In addition, raster data and vector data have different data structure characteristics. 
Integrating the advantages of raster and vector data to build a unifed standard and compatible 
geographic information database with different data types is one of the goals of 3S technology inte-
gration. (2) Data accuracy needs to be further improved. At present, precise GNSS navigation and 
positioning for outdoor and indoor have not yet made a breakthrough, which makes it diffcult to 
meet the needs of indoor high-precision positioning applications. Improving the accuracy of remote 
sensing data and GIS models will help apply 3S technology applications to more felds. (3) As a mul-
tidisciplinary interdisciplinary technology, 3S technology not only achieves internal integration, but 
also deeply integrates with other felds such as computer networks, artifcial intelligence and big 
data. The construction of the 3S system requires not only the knowledge base of 3S technology, but 
also availability of computer software and hardware. Therefore, it is necessary to strengthen the 
cultivation of multidisciplinary high-quality compound talents and provide suffcient talent reserve 
for the development of 3S technology. 

REFERENCES 

Aja D., E. Elias, O. Obiahu. Flood risk zone mapping using rational model in a highly weathered Nitisols of 
Abakaliki Local Government Area, South-eastern Nigeria. Geology, Ecology, and Landscapes, 2020, 
4(2): 131–139. 

Allan C., A. Curtis, N. Mazur. Understanding the social impacts of foods in Southeastern Australia. Advances 
in Ecological Research, 2006, 39: 159–174. 

Bowman D., Jr, K. Balch, P. Artaxo, et al. Fire in the earth system. Science, 2009, 324: 481–484. 
Campbell J., R. H. Wynne. Introduction to remote sensing, Fifth Edition, The Guilford Press, 2011. 
Chen S., A. Huo, D. Zhang, et al. Key technologies for drought disaster risk assessment in typical vulnerable 

areas of eastern Gansu Province. Agricultural Research in the Arid Areas. 2022, 40(2): 197–204. 
Chen X. Division into districts on wind disaster risk of Hangzhou. Nanjing University of Information Science 

and Technology, 2012. 
Cheng L. The application of analytic hierarchy process (AHP) and geographic information system (GIS) in 

lightning disaster risk-zoning in Henan province. Journal of Nanjing University of Information Science 
and Technology (Natural Science Edition), 2019, 11(2): 234–240. 

Csiszar I., J. Morisette, L. Giglio. Validation of active fre detection from moderate-resolution satellite sen-
sors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, 
2006, 44(7): 1757–1764. 

Dhar T., B. Bhatta, S. Aravindan. Forest fre occurrence, distribution and risk mapping using geoinformation 
technology: A case study in the sub-tropical forest of the Meghalay, India. Remote Sensing Applications: 
Society and Environment, 2023, 29: 1–19. 

Dong S., L. Jiang, J. Zhang, et al. Research on food vulnerability curves off rural dwellings based on “3S” 
technology. Journal of Catastrophology, 2012, 27(2): 34–39. 

Dow J., R. E. Neilan, C. Rizos. The International GNSS Service in a changing landscape of Global Navigation 
Satellite System. Journal of Geodesy, 2009, 83: 191–198. 

Eugenio F., A. dos Santos, N. Fiedler, et al. Applying GIS to develop a model for forest fre risk: A case study 
in Espirito Santo, Brazil. Journal of Environmental Management, 2016, 173: 65–71. 

Fang X., W. Du, W. Quan, et al. Study on high temperature disaster risk regionalization in Jiangsu-Zhejiang-
Shanghai region. Journal of Meteorology and Environment, 2016, 32(6): 109–115. 

Gomarasca M. Basics of geomatics. Springer Dordrecht, 2009. 
Goodchild M. F. Geographic information systems and science: Today and tomorrow. Annals of GIS, 2009, 

15(1): 3–9. 



  

  

31 A Review of 3S Technology and Its Applications in Meteorology 

Guan Y., F. Zheng, P. Zhang, et al. Spatial and temporal changes of meteorological disasters in China during 
1950–2013. Nature Hazards, 2015, 75: 2607–2623. 

He Y., X. Wang, C. Chai, et al. Flood damage assessment and visualization based on NPP-VIIRS nighttime 
light remote sensing. Journal of Natural Disasters, 2022, 31(3): 93–105. 

Hofmann-Wellenhof B., H. Lichtenegger, E. Wasle. GNSS—Global navigation satellite systems: GPS, 
GLONASS, Galileo, and more. Springer Wien New York, 2007. 

Hu H., Y. Xiong, S. Zhang. The risk assessment of the fog disaster based on vulnerability calculating related 
to the urban transportation network. Journal of Applied Meteorological Science, 2010, 21(6): 732–738. 

Jaiswal R. K., S. Mukherjee, K. D. Raju, et al. Forest fre risk zone mapping from satellite imagery and GIS. 
International Journal of Applied Earth Observation and Geoinformation, 2002, 4(1): 1–10. 

Jin S. Global navigation satellite systems—Signal, theory and applications. IntechOpen, 2012. 
Jin X. The risk evaluation and regionalization of heat wave in Fujian Province within the background of risk 

society. Master Degree, Fujian Normal University, 2017. 
Kaufman Y., R. G. Kleidman, M. D. King. SCAR-B fres in the tropics: Properties and remote sensing from 

EOS-MODIS. Journal of Geophysical Research Atmospheres, 1998, 103(D24): 31955–31968. 
Khorram S., F. H. Koch, C. F. van Wiele, et al. Remote sensing, Springer, 2012. 
Lechner W., S. Baumann. Global navigation satellite systems. Computers and Electronics in Agriculture, 

2000, 25(1–2): 67–85. 
Li D., Q. Li. The formation of geospatial information science. Advances in Earth Sciences, 1998, (4): 2–9. 
Li D. Digital Earth and “3S” technology. China Surveying and Mapping, 2003, (2): 30–33. 
Li H., Q. Li, X. Li, et al. Discussion on the algorithms of a new siphon rain gauge. Wseas Transactions on 

Circuits and Systems, 2010, 9(6): 389–398. 
Li J., H. Zhang, S. Cao. Assessment and zonation of late frost injury of winter wheat in He’nan Province based 

on GIS. Journal of Arid Meteorology, 2015, 33(1): 45–51. 
Lin Z., H. Lu, C. Luobo, et al. Risk assessment of forest fre disasters on the Tibetan plateau based on GIS. 

Resources Science, 2013, 35(11): 2318–2324. 
Liu G., L. Zhang, B. He, et al. Temporal changes in extreme high temperature, heat waves and relevant disas-

ters in Nanjing metropolitan region, China. Natural Hazards, 2015, 76: 1415–1430. 
Liu X., L. You, H. Song, et al. Analysis and evaluation of lightning disaster risk regionalization based on GIS 

and AHP in inner Mongolia. Chinese Agricultural Science Bulletin, 2019, 35(20): 75–82. 
Lv Z., Z. Yu, C. Wang. Risk zoning of regional lighting disaster in Jianxi province based on GIS technology. 

Meteorology and Disaster Reduction Research, 2020, 43(3): 228–233. 
Ma T., P. Xiao, X. Zhang, et al. Recognition of snow cover based on features selection in GF-3 fully polarimet-

ric data. Remote Sensing Technology and Application, 2020, 35(6): 1292–1302. 
Ma Y., Y. Hao, Y. Wang. Characteristics of sea fog and risk assessment for fog disaster in Qingdao. Periodical 

of Ocean University of China, 2014, 44(11): 11–15 + 29. 
Mishra A., V. P. Singh. A review of drought concepts. Journal of Hydrology, 2010, 391: 202–216. 
Norman B. A brief history of Global Navigation Satellite Systems. The Journal of Navigation, 2012, 65(1): 

1–14. 
Peng J., D. Wang, Y. Zhao, et al. Hail disaster risk zoning in Chengde City based on GIS. Desert and Oasis 

Meteorology, 2019, 13(1): 105–109. 
Qin D. Exploration of the application and development prospects of geographic information systems. Beijing 

Agriculture, 2015, 626(21): 179–180. 
Ramkar P., S. M. Yadav. Flood risk index in data-scarce river basins using the AHP and GIS approach. Natural 

Hazards, 2021, 109: 1119–1140. 
Schroeder W., E. Prins, L. Giglio, et al. Validation of GOES and MODIS active fre detection products using 

ASTER and ETM+ data. Remote Sensing of Environment, 2008, 112: 2711–2726. 
Seejata K., A. Yodying, T. Wongthadam, et al. Assessment of food hazard areas using Analytical Hierarchy 

Process over the Lower Yom Basin, Sukhothai Province. Procedia Engineering, 2018, 212: 340–347. 
Shan Z., Y. An, L. Xu, et al. High-temperature disaster risk assessment for Urban Communities: A case study 

in Wuhan, China. International Journal of Environmental Research and Public Health, 2022, 19(1): 183. 
Sun J., X. Zhang, B. Hou. Application of ABC-based BP neural network in integrated navigation system. 

Journal of Telemetry, Tracking and Command, 2016, 37(5): 40–48. 
Sun J., Z. Zhao, D. Li, et al. Risk Zoning of Gale disaster in Xingtai City based on GIS in the past 35 years. 

Journal of Agricultural Catastropholgy, 2021, 11(6): 82–84 + 86. 
Sun X., T. Li, X. Mao, et al. High precision Indoor/outdoor positioning system and positioning method based 

on Beidou UWB. Integrated Circuit Applications, 2020, 37(5): 118–119. 
United Nations. The human cost of weather-related disasters 1995–2015. UN Report, 2015. 



  

32 3S Technology Applications in Meteorology 

Wang F., Q. Wei, J. Chang, et al. Remote sensing monitoring technology of winter wheat late frost based on 
FY-3. Journal of Agricultural Catastropholgy, 2021, 11(2): 192–194. 

Wang J. Application of GPS/GPRS/GIS integrated technology in vehicle positioning and monitoring. Wuhan 
University, 2005. 

Wang L., L. Zengzeng, Remote sensing monitoring of Poyang Lake food disaster in 2020 based on Sentinel-1A. 
Geospatial Information, 2022, 20(6): 3–46. 

Wang Y., D. Zheng, Q. Li. Urban meteorological disaster. China Meteorological Press, 2009. 
Xi W. Risk assessment and regionalization of snow disaster in Heilongjiang Province. Harbin Normal 

University, 2020. 
Yang J., J. Lie, C. Yang. Risk assessment model of hail disaster in Tibet supported by GIS. Plateau and 

Mountain Meteorology Research, 2016, 36(2): 69–74. 
Ye P. Remote sensing approaches for meteorological disaster monitoring: Recent achievements and new chal-

lenges. International Journal of Environmental Research and Public Health, 2022, 19, 3701. 
Yi Y. Study on risk assessment of food disaster in Guilin area based on GIS. Guangxi University, 2012. 
Zhang C., M. Chen, R. Zheng. Landslide hazard risk assessment and zoning of Huadu District of Guangzhou 

based on “3S” technique and logistic regress-weighted SVM model. Journal of Ecology and Rural 
Environment, 2015, 31(6): 955–962. 

Zhang J., J. Ni, S. Ma, et al. GIS-based analysis of food submergence in Jinpu New District, Dalian City. 
Geology and Resources, 2021, 30(5): 590–594. 

Zhang K. Review on geological disaster monitoring and early warning system based on “3S” technology in 
China. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 1–11. 

Zhang S., D. Ding, Z. Fu, et  al. Application of grey relational grade in fog disaster evaluation in Beijing 
Region. Journal of Catastrophology, 2008, 88(3): 54–56 + 61. 

Zhou F., W. Zhang, L. Lei, et al. GF-3 and Sentinel-1 food inundation information extraction. Geospatial 
Information, 2021, 19(6): 17–21. 

Zhou Y., X. Cheng, J. Cai, et al. Study on comprehensive risk assessment of Typhoon disasters. China Public 
Security. Academy Edition, 2013, 30(1): 31–37. 



DOI: 10.1201/9781003363118-2 33  

 

  

        

     

2 Multi-GNSS Near-Real-
Time Tropospheric 
Parameter Estimation and 
Meteorological Applications 

Yidong Lou, Weixing Zhang, Yaozong Zhou, 
Zhenyi Zhang, and Zhixuan Zhang 

2.1 INTRODUCTION 

2.1.1 roles oF atMospheric water Vapor in weather systeMs 

The gas layers converged around the earth are called the earth’s atmosphere, which, from top to 
bottom, can be divided into exosphere, thermosphere, mesosphere, stratosphere and troposphere 
according to temperature, as well as ionosphere and neutral atmosphere in terms of electron density 
as shown as Figure 2.1 (https://commons.wikimedia.org). The earth’s atmosphere consists of gas 
molecules, electrons and ions as well as water, ice, dust and other liquid and solid particles. The 
gas molecules include nitrogen, oxygen and argon, accounting for about 99.96%, as well as carbon 
monoxide, carbon dioxide, ozone, methane, hydrogen, neon, helium and water vapor, accounting for 
about 0.04% (Zhang et al., 2011). 

The atmospheric water vapor (AWV) is of the lesser contents, but one of the most active and 
important components in the earth’s atmosphere. On the one hand, the AWV causes daily weather 
changes such as clouds, rain and lightning, and plays an important role in indicating extreme 
weather such as typhoons and rainstorms. On the other hand, the AWV is the most important green-
house gas and the largest contributor to Earth’s greenhouse effect (about 60%), and plays a vital role 
in Earth’s ecosystem. In addition, the three-phase transformations of the gas, solid and liquid water 
are also very important for maintaining Earth’s energy balance (Chung et al., 2014). The accurate 
knowledge of AWV is therefore crucial to human survival and development. 

2.1.2 gnss adVantages For awV Monitoring 

However, the accurate monitoring of AWV is very challenging work due to the high dynamic 
variation characteristics of AWV. The current monitoring techniques mainly include radiosonde, 
ground-based water vapor radiometer (WVR), satellite-based WVR, satellite-based infrared spec-
troradiometer, Global Navigation Satellite Systems Radio Occultation (GNSS-RO) and ground-
based GNSS (Lou et al., 2022). Radiosonde generally restricts the number of balloon launchings to 
twice daily (00:00 and 12:00 UTC) at specifc stations, considering the device cost and manpower 
consumption. Radiosonde measures the temperature, humidity, pressure and other parameters along 
the foating path, and is an important technical means for meteorology and climate research all over 
the world. However, infuenced by the balloon ascending speed error and wind drift, the observation 
results are biased from the real (Jin and Wang, 2021). What’s more, the 12 h sampling rate is inad-
equate to resolve the temporal variations of AWV, and the long-time observations usually include 
the inhomogeneity issue caused by radiosonde sensor changes (Zhang et al., 2019). 

https://doi.org/10.1201/9781003363118-2
https://commons.wikimedia.org
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FIGURE 2.1 Structure of the earth’s atmosphere. 

Ground-based WVR upwardly measures the brightness temperature at several frequencies along 
the radiation signal path, and then converts the brightness temperature to precipitable water vapor 
(PWV) and liquid water using the frequency dependence and local meteorological observations 
(generally radiosonde data). However, the WVR instruments are relatively expensive and cannot 
be operated during moderate to heavy rain, and therefore the observation space coverage is poor 
(Bevis et al., 1992). 

Satellite-based WVR downwardly measures the water vapor absorption lines from the hot back-
board of the earth, and is more useful over the oceans than over land. Satellite-based WVR can 
provide good spatial but poor temporal coverage and has opposite characteristics to the ground-
based units (Bevis et al., 1992). Satellite-based infrared spectroradiometry retrieves the AWV by 
the apparent refectance of water vapor absorption. The most representative instrument of this chan-
nel is the moderate resolution imaging spectroradiometer (MODIS). Satellite-based infrared spec-
troradiometry can obtain the global coverage of AWV, but it is susceptible to the weather condition 
and cloud cover. 

GNSS-RO retrieves the atmospheric vertical profle from the impacts of the atmosphere on the 
signal link between GNSS satellite and low Earth orbit (LEO) satellite. GNSS-RO has advantages 
of no calibration, all-weather, high precision, high vertical resolution, global coverage and so on. 
However, the GNSS-RO results have relatively poor performance in the low part of troposphere 
where most AWV is located. 
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The GNSS electromagnetic wave signals traveling through the neutral atmosphere are inevitably 
delayed and bent, yielding the hydrostatic and wet tropospheric delay. The wet tropospheric delay 
can be converted to PWV or slant water vapor (SWV) by using water vapor weighted mean tem-
perature (Bevis et al., 1992), deriving the new research line of GNSS meteorology. Compared with 
other techniques, GNSS AWV monitoring has advantages of high precision, high time resolution, 
low cost and all-weather, attracting more and more attention from meteorologists and geodesists. 

2.1.3 gnss pwV estiMation and applications 

Since the proposition of GPS meteorology by Bevis et al. (1992), GNSS meteorology has been 
rapidly developed in the last 30 years. In the early stage, the GPS meteorology only focused on 
the PWV retrieval from post-processing double-difference network solution as an auxiliary prod-
uct. With the rapid expansion of ground-based GPS networks, the low effciency problem of the 
network solution became more and more serious. To overcome the low effciency issue, the more 
fexible precise point positioning (PPP) technique based on the high-precision satellite orbit and 
clock correction product was proposed by Zumberge et al. (1997). After that, the GPS meteorology 
using the PPP technique has experienced great developments due to the advantages of fexibility 
and high effciency. In 1998, the International GNSS Service (IGS) established the troposphere 
working group and operationally released the tropospheric products from the post-processed net-
work or PPP solution, and the accuracy of the PWV derived from the IGS tropospheric products 
reaches about 1 mm. 

However, the time delay of the tropospheric product reaches serval days or longer, and there-
fore cannot be applied in operational meteorological applications. Aiming at the time delay issue, 
researchers proposed the concept of near-real-time (NRT) PWV processing whereby the PWV is 
processed by using NRT or real-time observations and ultra-rapid or real-time satellite orbit and 
clock products. The accuracy of the NRT PWV is about 2 mm, and the time delays are decreased to 
less than 1 h and even 15 minutes, and, therefore, can be used for weather monitoring, forecasting 
and early warning, showing the brilliant prospects. Afterwards, IGS implemented the Real Time 
Pilot Project (RTPP) in 2007 and released IGS Real Time Service (RTS) in 2013 (https://igs.org). 
The real-time PWV processing is gradually catching the attention of meteorologists and geodesists 
due to shorter time delays, such as 60 s and 30 s, and acceptable accuracy of better than 3 mm. 

After the successful launch of the frst artifcial satellite in 1957, GNSS has been developed rap-
idly for positioning, navigation and timing (PNT) applications. In 1995 and 1996, the United States 
and Russia established the Global Positioning System (GPS) and Global Navigation Satellite System 
(GLONASS), respectively (Li and Huang, 2005). In the twenty-frst century, the development of 
GNSS entered the golden age, and different GNSS systems showed the trend of competition, coop-
eration and coexisting. China’s BeiDou Navigation Satellite System (BDS) and the European Union 
Galileo Navigation Satellite System (Galileo) were constructed steadily, followed by GLONASS 
restart and modernization and GPS modernization. 

China’s BDS system construction has experienced three stages. The frst stage completed the 
BDS-1 system by the end of 2000 and provided PNT services over China. The second stage com-
pletely established the BDS-2 system by the end of 2012 and provided services over the Asia-Pacifc 
region. The last stage entirely constructed the BDS-3 system by 2020 and provided global PNT ser-
vices. On July 31, 2020, the BDS-3 system was offcially announced in service. The heterogeneous 
BDS-3 constellation includes 24 medium Earth orbit (MEO) satellites, 3 geostationary Earth orbit 
(GEO) satellites and 3 inclined geosynchronous orbit (IGSO) satellites (http://www.beidou.gov.cn). 
The development of Galileo also experienced three steps, namely in-orbit validation element (IOVE), 
in-orbit validation (IOV) and full operational capability (FOC). As of September 28, 2022, the num-
ber of available Galileo FOC satellites reaches 24 (https://igs.org/mgex/constellations/#galileo). 

Around 2008, GLONASS initiated the restart and modernization plan. On the one hand, the 
global PNT capabilities of the GLONASS system were recovered by the launch of GLONASS-M 

https://igs.org
http://www.beidou.gov.cn
https://igs.org
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satellites. On the other hand, the GLONASS-K satellites with code division multiple access 
(CDMA) signal were launched for the interoperability and compatibility with other GNSS systems. 
As of September 28, 2022, the GLONASS constellation contains 22 GLONASS-M satellites and 2 
GLONASS-K satellites. GPS has undergone continuous satellite renewal, system maintenance and 
modernization. As of December 20, 2021, the GPS constellation includes 25 Block-II and 4 Block-
III satellites (http://www.csno-tarc.cn). 

At present, GNSS covers four GNSS systems, namely BDS, GPS, GLONASS and Galileo. All 
the GNSS systems compete, cooperate and interoperate with each other, and the number of vis-
ible GNSS satellites at user receiver is up to 40 to 50. The GNSS applications have penetrated into 
various felds of national economy and people’s livelihood, such as national defense, military, aero-
space, surveying, meteorology, transportation, communication, navigation, remote sensing and so 
on (Cao, 2016), generating great political, economic and social values. GNSS has become the key 
infrastructure in the national PNT system (Yang, 2016). 

The multi-GNSS can provide much more abundant observations with respect to any single GNSS 
system that will be benefcial to the tropospheric products and PWV retrieval, especially for NRT 
and RT processing. Li et al. (2015b) analyzed the results of multi-GNSS PPP and RT PWV retrieval, 
and found the accuracy improvement of 25%–52% for multi-GNSS processing. Lu et al. (2017) and 
Dousa et al. (2018b) further pointed out the multi-GNSS zenith total delay (ZTD) accuracy improve-
ment of 10%–22%. Hadas et al. (2020) showed an inner ZTD accuracy improvement of about 37% 
from the multi-GNSS estimation. 

In recent years, with the rapid development of GNSS systems and continuous tracking net-
works, ground-based GNSS water vapor sounding has attracted more and more attention. The 
World Meteorological Organization (WMO) Global Climate Observing System Reference Upper-
Air Network (GRUAN) has listed ground-based GNSS as the class I means of AWV monitoring 
(Seidel et al., 2009). The major international satellite navigation and meteorological organizations 
have successively set up working groups to carry out relevant research work. IGS established the 
troposphere working group in 1998 to carry out GNSS tropospheric parameter estimation and 
application research (https://igs.org/wg/troposphere). WMO GRUAN as well as Global Geodetic 
Observing System (GGOS) in Austria listed GNSS water vapor monitoring as one of the main 
observation tasks. 

In 2005, the European Meteorological Association launched the EIG EUMETNET GNSS Water 
Vapor Programme (E-GVAP) (http://egvap.dmi.dk/), which is the most well-known NRT water 
vapor monitoring program in the world (Jones et al., 2020). After more than ten years of devel-
opment, E-GVAP currently covers dozens of NRT ZTD analysis centers, and operationally pro-
cesses the ZTD and horizontal gradient products over more than 3,500 globally distributed stations 
(mainly in Europe) for the extreme weather forecast and numerical weather assimilation applica-
tions (http://egvap.dmi.dk/). In 2019, the International Association of Geodesy (IAG) established 
the Inter-Commission Committee on “Geodesy for Climate Research” (ICCC) to carry out climate 
research based on space geodetic techniques such as GNSS. 

In China, the China Meteorological Administration (CMA) has successively launched the proj-
ects of “GPS/MET Application Pre-Research”, “Atmosphere and Ocean Space Monitoring and 
Early Warning Application Pilot Project Based on BDS”, “National BDS Augmentation Service 
System (NBASS)–Meteorological Industry Data Processing Center” and other projects. Through 
more than 20 years of development, CMA has formed the norms, standards and processes for GNSS 
meteorological observation. In 2018, Wuhan University cooperated with E-GVAP and jointly built 
the frst non-European and American E-GVAP analysis center in Wuhan University (WUHN) for 
NRT processing the tropospheric products of global and regional networks, realizing the product 
interaction and sharing with E-GVAP. In 2019, the WUHN analysis center was completed and oper-
ationally processed the NRT tropospheric products of more than 300 stations. In 2021, the WUHN 
analysis center was upgraded for multi-GNSS processing, deriving the multi-GNSS analysis center 
named WUHM (http://egvap.dmi.dk/). 

https://igs.org
https://egvap.dmi.dk
https://egvap.dmi.dk
http://www.csno-tarc.cn
https://egvap.dmi.dk
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2.2 NRT TROPOSPHERIC PARAMETER ESTIMATION AND PROCESSING 

This section focuses on the NRT tropospheric parameter estimation. Sections 2.2.1, 2.2.2 and 2.2.3 
introduce the basic theory of NRT GNSS data processing, including GNSS error sources, tropo-
spheric models and tropospheric parameter estimation. Section 2.2.4 takes the operational WUHM 
analysis center as an example and describes the NRT tropospheric parameter processing method 
and fow as well as some results. 

2.2.1 gnss error sources 

The GNSS observation impacts by various error sources. At the satellite end, the observation is 
mainly affected by the satellite orbit error, satellite clock error, satellite antenna phase center off-
set and variation, satellite hardware delay bias, relativistic effect and phase wind-up effect. In the 
propagation path, the error sources mainly include ionospheric delay error, tropospheric delay error 
and multipath effect. At the receiver and station, the receiver clock error, receiver antenna phase 
center offset and variation, receiver hardware delay bias, solid earth tide, ocean tide, polar tide, 
ocean load effect and atmospheric load effect are involved. In addition, the GNSS pseudorange and 
carrier phase observations also contain the measurement noises (Li and Huang, 2005). 

The error sources can be handled mainly by three methods. The frst method is by using a cor-
rection model or correction product whereby most errors in GNSS observation can be substantially 
eliminated. The second method is the linear combination of observations, such as ionosphere-free 
combination for eliminating the frst-order ionospheric delay effect, and double-difference observa-
tions for eliminating the errors at both the satellite and receiver end and weaking the atmospheric 
delay error. The third method is parameter estimation, and it can be used for the highly dynamic 
tropospheric delay error, receiver clock error and so on. In addition, errors such as multipath effect 
and electromagnetic interference can be weakened by receiver hardware design or avoided by re-
selecting station location (Li and Huang, 2005). 

2.2.2 tropospheric Model 

2.2.2.1 Tropospheric Parametrization 
The signals of GNSS satellites passing through neutral atmosphere (Figure 2.2) suffer the tropo-
spheric slant total delay (STD), which is related to the elevation angle and the azimuth, and varies 
with time, which means that different GNSS observations are impacted by different STD. Therefore, 
how to deal with the STD in GNSS observations has become a diffculty in research. 

Since the GNSS observation contains not only the tropospheric STD error, but also the ambiguity 
parameter and the errors related to both the satellite and receiver end, the STD error cannot be directly 
estimated due to the rank-defcit problem. Therefore, it is necessary to parameterize the tropospheric 
STD, establish the prior constraint relationship or model and reduce the number of tropospheric param-
eters to be estimated. Usually, the tropospheric STD is divided into isotropic and anisotropic delay 
wherein the isotropic part is modeled as zenith path delay and mapping function, and the anisotropic 
part is expressed the function of north–south and east–west horizontal gradient as (Landskron, 2017): 

ìSHD e,a )= MFh e ZHD + ( )  cos a + ( )( ( )× e × é ( )  sin a ù 
ï 

MFgh ëGnh Geh û 
ï × e × éGnw cos ( )  sin ( )  (2.1)íSWD e( ,a )= MFw ( )e ZWD + MFgw ( )  a +Gew a ùë û
ïSTD SHD + SWD=ïî 

where SHD and SWD are slant hydrostatic and wet delay. e and a denote the elevation angle and 
azimuth. MFh and MFw ( )e  represent hydrostatic and wet mapping function, respectively. ZHD 
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FIGURE 2.2 Diagram for GNSS signals traveling through neutral atmosphere. 

and ZWD are zenith hydrostatic and wet delays.  MFgh and MFgw stand for hydrostatic and wet 
gradient mapping functions. Gnh  and Gnw  are the hydrostatic and wet horizontal gradient in north– 
south direction. Geh and Gew are the hydrostatic and wet horizontal gradient in east–west direction. 
In GNSS data processing, the zenith path delay and mapping function models are commonly used 
to provide  a priori isotropic delay, with the remaining tropospheric delay as a to-be-estimated 
parameter.

  2.2.2.2  Zenith Path Delay Models 
The zenith path delay models mainly contain two categories, namely the calculation model depen-
dent on meteorological parameters and the correction model independent of meteorological 
parameters. When the meteorological observations are available, the calculation model, such as 
Hopfeld, Saastamoinen, Black and Askne and Nordius, can accurately calculate the zenith path 
delay (Hopfeld, 1971;  Saastamoinen, 1972; Black, 1978;  Askne and Nordius, 1987). In cases with-
out meteorological observations, we can resort to the meteorological parameter models, such as the 
UNB3 model and GPT series model (Collins, 1999; Landskron and Böhm, 2018a). In addition, the 
correction model, which directly provides zenith path delay and does not depend on meteorological 
parameters, has also attracted attention, such as the SHAO series model, IGGtrop series model and 
TropGrid series model (Chen et al., 2020; Li et al., 2018;  Schüler, 2014). 

In June 2018, the European Centre for Medium-Range Weather Forecasts (ECMWF) released 
the ffth-generation re-analysis product (ERA5) (Hersbach et al., 2020). Focusing on the high spa-
tial-temporal resolution advantages of ERA5 (0.25°´0.25° and 1 h), some scholars have further 
refned the zenith path delay model and established a series of high spatial-temporal resolution 
models, such as the HGPT series model, CPTw model and IGPT model (Mateus et al., 2021;  Li 
et al., 2020; Li et al., 2021). 

https://0.25��0.25
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In GNSS data processing, the Saastamoinen (SAAS) and Askne and Nordius models are usually 
used for the a priori zenith path delay calculation aided by the GPT series model. The improved 
SAAS model can be expressed as (Davis et al., 1985): 

ì PsZHD = 0 002277´.ï f (j, hs )ï 
ïï es 0 2789 ö 
í ZWD = ´

æ . 
+ . (2.2)ç 0 05÷ 

ï f (j, hs ) è Ts ø 
ï ) 1 0  00266cos ( ) - .ï f (j, hs = - . 2j 0 00028hs 
ïî 

where Ps  (hPa), es  (hPa) and Ts (K) are the site-wise pressure, water vapor pressure and tempera-
ture. j  (rad) and hs  (km) denotes the station latitude and height. Askne and Nordius (1987) further 
introduced the temperature lapse rate and water vapor lapse rate into the ZWD calculation and con-
structed a new ZWD calculation formula: 

10-6 (k2¢ + k3 / Tm ) × RdZWD = × es (2.3)
(l +1) × gm 

where k2¢  and k3 denote the atmospheric refraction index coeffcients, which are 16.5221 K/hPa and 
377600 K2/hPa, respectively. Tm  (K) represents the water vapor weighted mean temperature. Rd 
stands for the dry gas constant and its value is 287.058 J/kg/K. gm is the average gravity acceleration 
and takes value of 9.80665 m/s2. λ denotes the water vapor lapse rate. 

Landskron and Böhm (2018a) developed the highly comprehensive GPT3 model, which not only 
retains all the parameters from the GMF, GPT2 and GPT2w models, but also adds the horizontal 
gradient parameter. The model parameters contain mapping function coeffcients (ah and aw), hori-
zontal gradients (Gnh , Geh, Gnw  and Gew), pressure (P), temperature (T), temperature lapse rate (a ), 
water vapor weighted mean temperature (Tm), water vapor pressure (e), water vapor lapse rate 
(λ) and geoid undulation (undu). The GPT3 model takes into account the annual and semi-annual 
variations of the parameter, and the spatial resolution of GPT3 model is 1° 1́°. In its usage, only the 
modifed Julian date (MJD) as well as the station longitude, latitude and geodetic height are input 
for retrieving the target parameters, which can be widely used in space geodesy and meteorological 
research. 

2.2.2.3 Mapping Function Model 
The mapping function is the key to realize the conversion between zenith path delay and slant path 
delay, and is commonly expressed as the following continued fraction: 

a1+ b1+ 
MF ( )e = 

1+ c 
(2.4)

asin e( )+ 
sin e( )+ 

b 
sin e( )+ c 

where a, b  and c are the mapping function coeffcients. The mapping function models mainly 
contain two categories, namely empirical model and discrete product. The well-known empirical 
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mapping function models include NMF, GMF and GPT2 (Niell, 1996; Böhm et al., 2006a; Lagler 
et al., 2013). The commonly used discrete mapping function is VMF1, with spatial-temporal reso-
lutions of 2.5°´2.0° and 6 h (Böhm et al., 2006b). The VMF1 products includes the post (ERA-
Interim, EI), rapid (Operational, OP) and real-time (Forecast, FC) products, where the time delay 
of the rapid product is about 1 day and the real-time product can be real-time access (https://vmf. 
geo.tuwien.ac.at/). 

On the basis of VMF1 and GPT2, Landskron and Böhm (2018a) established the latest-generation 
discrete and empirical mapping function of VMF3 and GPT3 by using the ERA-Interim reanalysis 
data from ECMWF. The VMF3 spatial-temporal resolutions are 1° 1́° and 6 h. The GPT3 model 
consider the annual and semi-annual variations of a, b  and c mapping function coeffcients. Similar 
to VMF1, the VMF3 products also contain three modes of EI, OP and FC. The difference is that the 
VMF3 adopts a more rigorous modeling method and has higher spatial resolution, and therefore is 
more accurate than VMF1. 

The mapping function carries out the conversion between zenith path delay and slant path delay, 
and the mapping function accuracy will impact the vertical (U) coordinate and ZTD estimations. 
Vey et al. (2006) analyzed the impacts of NMF and IMF mapping functions on GPS network solu-
tion, and found that the maximum ZTD difference reached 5 mm. Dousa et al. (2017) indicated that 
the U coordinate repeatability by using the VMF1 mapping function improved by about 10% from 
using the GMF model. Yuan et al. (2019) pointed out that, in real-time PPP water vapor retrieval, 
the ZTD RMS can reduce by about 1 mm by using the VMF1-FC mapping function to substitute 
the GPT2 and GPT2w models. 

Zhou et  al. (2021) evaluated the accuracy and GNSS PPP performance of GPT3, grid-wise 
VMF3-FC (VMF3-FC-G) and site-wise VMF3-FC (VMF3-FC-S) at 33 globally distributed IGS 
Multi-GNSS Experiment (MGEX) stations spanning 40 days in 2020, and the STD modeling accu-
racy and the coordinate repeatability difference distribution for the three mapping functions are 
shown in Table 2.1, Table 2.2 and Figure 2.3. 

From Table 2.1, we can fnd that the STD modeling accuracy decreases with the elevation angle. 
The accuracy of VMF3-FC-S is better than VMF3-FC-G at all the elevation angles, indicating the 
superiority of the site-wise product. At 3°, 30° and 90° elevation angles, the improvements reach 3.2, 
0.3 and 0.2 cm, respectively. As for the empirical GPT3 model, the modeling accuracy signifcantly 
decreases at all the elevation angles. At 3°, 30° and 90° elevation angles, the modeling accuracy 

TABLE 2.1 
Statistical STD Modeling Accuracy (cm) for the Three Mapping Functions 
Model 3° 5° 7° 10° 15° 30° 70° 90° 

GPT3 53.7 36.3 27.1 19.6 13.3 7.0 3.7 3.5 

VMF3-FC-G 20.4 13.8 10.2 7.4 5.0 2.6 1.4 1.3 

VMF3-FC-S 17.2 11.7 8.7 6.3 4.3 2.3 1.2 1.1 

TABLE 2.2 
PPP Coordinate Repeatability for the Three Mapping Functions 
Models BDS3/mm GPS/mm 

E N U E N U 

GPT3 2.8 2.0 5.7 1.5 1.4 4.7 

VMF3-FC-G 2.8 2.0 5.2 1.6 1.4 4.2 

VMF3-FC-S 2.8 2.0 5.2 1.5 1.4 4.2 

https://vmf.geo.tuwien.ac.at
https://vmf.geo.tuwien.ac.at
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FIGURE 2.3 Distribution of the U coordinate repeatability differences. 

decreases by 36.5, 4.7 and 2.4 cm compared with VMF3-FC-S, illustrating that the real-time map-
ping functions based on the forecast numerical weather model (NWM) are superior to those of the 
empirical model. 

From Table 2.2, we can fnd that different mapping functions mainly impact the U coordinate 
repeatability. By adopting the VMF3-FC-G and VMF3-FC-S mapping functions to substitute 
GPT3, the statistical U coordinate repeatability improvements can reach 0.5 mm, while the U coor-
dinate repeatability for the two VMF3-FC mapping functions is nearly identical. From Figure 2.3, 
we can further fnd that the U coordinate repeatability improvements are different at different sta-
tions. The stations located in North America (STJ3) and southern South America (RGDG) show 
very signifcant improvements, and the maximal improvement reaches about 4 mm. Based on the 
aforementioned modeling accuracy and PPP performance evaluations, we recommend using the 
two VMF3-FC mapping functions to substitute GPT3 in NRT or real-time GNSS data processing. 

2.2.3 tropospheric paraMeter estiMation 

2.2.3.1 Function Model 
Ignoring some errors, the GNSS pseudorange (P ) and carrier phase (L) observation equations can 
be expressed as: 

ì s s s s s s sP = r + c t( - t ) + c b( - b ) + I + T + er j, r r r j, j r j, r r j,ï
í (2.5) 

s s s s s s s sïLr j, = rr + c t( - t ) + l ( B , - B ) + l N , - I , + T + e r jr j r j j j r j r j r ,î 

swhere s, r  and j  denote satellite, receiver and frequency, and rr  is the geometric distance from 

satellite to receiver. c is the speed of light in vacuum. t s and tr  represent the satellite and receiver 

clock correction, respectively. br j,  and bs
j  stand for the pseudorange biases while Br j,  and Bs

j  are the 
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s suncalibrated phase delays at frequency j . Ir j,  is the ionospheric delay. Tr  denotes the tropospheric 
sSTD. l j  stands for the wavelength for the carrier phase at frequency j . Nr j,  is the integer ambiguity. 

s ser j,  and e r j,  represents the pseudorange and carrier phase measurement noise. 

2.2.3.1.1 PPP Function Model 
The ionosphere-free combination model is the frequently used observation model in GNSS PPP, and 
can be expressed as: 

2ì f 2 f js i s sïP = P - Pr I, Fi j, 2 2 r i, 2 2 r j,
ï f - f f - fi j i j
ï 

s s s I, Fi j, s sï= r + c t  - t + c b - b + T + er ( r ) ( r ,IF ) r r I, Fï i j, i j, 

í (2.6)
22ï f f js i s s

ïLr I, Fi j, 
= 2 2 

Lr i, - 2 2 
Lr j,f - f f - fï i j i j 

ï s s s s,IFI i j, s sï= r + c t( - t ) + l ( N + B - B ) + T + er r IF r I, F r I, F r r I, Fi j, i j, i j, i j,î 

s swhere P  and L  denote the pseudorange and carrier phase ionosphere-free combinationr I, F r I, Fi j, i j,
observations for i  and j  frequencies from satellite s to receiver r . fi  and f j  stand for the frequency 

,values. b , bs IFi j,  and es  are the receiver pseudorange bias, satellite pseudorange bias andr I, F r I, Fi j, i j, 
s

pseudorange measurement noise after the ionosphere-free combination. lIFi j,
 and Nr I, Fi j  are the , 

,s IF 
wavelength and ambiguity for the ionosphere-free combination observation. B , F , B i j,  andr I i j, 

se r I, Fi j,
 denote the receiver uncalibrated phase delays, satellite uncalibrated phase delays and phase 

measurement noise after the ionosphere-free combination. 
sIn equation 2.6, the tropospheric STD Tr  can be further written as: 

sT e( , a) = MF e( ) × ZHD MF e+ ( ) × ZWDr h w 
(2.7) 

+ MF e × éG cos a + G sin a ùg ( ) ë n ( )  e ( )û 

where the smoothly variable ZHD can be accurately corrected by using the a priori zenith path 
delay models. The rapidly changed ZWD cannot be greatly eliminated by the a priori models, and 
needs the additional estimation of the DZTD  parameter for absorbing the un-modeled ZWD error. 
The horizontal gradient can also be corrected by the a priori horizontal gradient models such as 
GPT3 and GRAD (Landskron and Böhm, 2018b). However, considering the millimeter magnitude 
(generally smaller than 5 mm), the Gn and Ge horizontal gradient parameters are usually estimated 
in GNSS data processing. 

In GNSS data processing, the satellite orbit and clock errors as well as the pseudorange bias at 
both the satellite and receiver end can be corrected by using the external products, and the rest of 
the parameters include the foat ambiguity (N ) (including uncalibrated phase delay), inter-system 
bias (ISB ) (if using multi-GNSS), station location (X s , Ys and Zs), receiver clock correction (tr ) 
and tropospheric delay (DZTD , Gn and Ge ). The to-be-estimated vector X can expressed as 
(Li et al., 2015c): 

X N X Y Z t DZTDG G ISB
T 

(2.8)= ( s s  n )s r  e 
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After that, the uncalibrated phase delays can be corrected by external product or eliminated by 
double-differenced combination to restore the integer feature of the ambiguity parameter and can be 
fxed by using methods such as the least-squares ambiguity decorrelation adjustment (LAMBDA) 
method. 

2.2.3.1.2 Double-Differenced Function Model 
The double-differenced observation model is the fundamental function model in GNSS data pro-
cessing. Ignoring some error sources, the pseudorange and carrier phase double-differenced obser-
vation equations for receivers k  and ℓ and satellites i  and j  at frst and second frequencies can be 
written as (Dach et al., 2015): 

ij ij ij ijì P = r + I + T1k˜ k˜ k˜ k˜ï 
2ï ij ij f1 ij ijP = r + I + Tï 2k˜ k˜ 2 k˜ k˜

ï f2
í (2.9) 

iij ij ij ij ijï L = r - I + T + l N1k˜ k˜ k˜ k˜ 1 1k˜ 
ï 2
ï ij ij f1 ij iij N ijL = r - I + T + l22k˜ k˜ k˜ k˜ 2k˜ï f 2î 2 

ij ij ij ijwhere P1k˜, P2k˜ , L1k˜  and L2k˜  are the pseudorange and carrier phase double-differenced observa-
ij ij ijtions at frst and second frequencies, respectively. rk˜ , Ik˜  and Tk˜ d̃enote the geometric distance, 

ijionospheric delay and tropospheric delay after double-differenced combination. l1 and N k are1 ˜ 
wavelength and ambiguity for the frst frequency double-differenced combination observation, and 
l2 and are wavelength and ambiguity for the second frequency. The double-differenced combination 
observation can eliminate the impacts from satellite and receiver clock correction and weaken the 
atmospheric delay errors. In addition, the double-differenced ambiguity is with the integer charac-
teristic and can be directly fxed by the LAMBDA method. 

2.2.3.2 Random Model 
The piece-wise constant assumes that the to-be-estimated parameter is constant in a Dt  time inter-
val, and considers the parameter time variations by adding a parameter in every ∆t time interval. 
As for the tropospheric delay parameter estimation, the piece-wise constant can be expressed as: 

T e, ,a t ) = MF e  × ZHD MF e  + ( ) × (ZWD + ×ZTD )ì ( h ( )  w i
ï 
ï +MFg e × é jcos a + Ge, sin ( )a ùû( ) ëGn, ( )  e j
í (2.10) 
ï t £ £t t t, = t + Dti-1 i i i-1 ZTD
ï t t t t  t + Dt£ £  , = HTG î j-1 j j j-1 T 

where t  is the observation epoch. DZTDi denotes the i th DZTD  parameter. Gn j,  and Ge j,  are the j 
th Gn and Ge  parameters. ti-1 and ti  are the lower and upper bound epochs for the DZTDi parameter. 
DtZTD stands for the segmentation time for DZTD  estimation, and it generally takes 1 h or 2 h for 
post-processing and 15 min or 30 min for NRT processing. t j-1 and t j  are the lower and upper bound 
epochs for the G  and G  parameters. DtHTG  represents the segmentation time for horizontal n j, e j, 
gradient estimation, which is generally taken as 6 h or 12 h for post-processing and 1 h or 2 h for 
NRT processing. 

In GNSS data processing, the frst-order discrete Gaussian Markov process can be used to describe 
the variation characteristics of tropospheric delay and satellite clock correction parameters. When 
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the correlation time tends to infnity, the frst-order discrete Gaussian Markov process degrades into 
the random walk process. The random walk process for the tropospheric delay estimation can be 
written as (Hadas et al., 2017): 

E P  - P ) = e Dt (2.11)( t+Dt t 

where Pt +Dt denotes the to-be-estimated tropospheric delay parameters (including DZTD , Gn and 
Ge ) at t + Dt  epoch. Pt  represents the parameters at t  epoch. Dt  is the time interval. e  stands for the 
random walk noise. In GNSS post-processing, the tropospheric parameters are generally estimated 
by using piece-wise constant and random walk between segments, and the random walk noises for 

the DZTD  and Gn and Ge parameters are commonly set to be constants, such as 15mm / h  and 

10 mm / h , respectively. In GNSS dynamic or real-time data processing, the random walk mode is 
frequently used where the noise is determined according to the carrier (such as cellphone, train and 
unmanned aerial vehicle) moving speed and the tropospheric atmosphere state. 

2.2.3.3 Parameter Estimation Method 
The recursive least squares method is widely used in GNSS data processing. This method divides all 
to-be-estimated parameters to two types, namely time variant parameters (X ) (e.g., receiver clock 
correction and tropospheric delay) and time invariant parameter (Y ) (e.g., ambiguity), and the cor-
responding error equation can be expressed as: 

V A= X B+ Y L- , P (2.12) 

where A  is the coeffcient matrix for time variant parameters ( X ), and B  is the coeffcient matrix for 
time invariant parameter (Y ). L  is the observation vector, and P  denotes the weight matrix. Using 
the parameter elimination method to eliminate X, we can obtain the normal equation with respect 
to Y  as: 

T T Té A PA A PBù é N N ù é A PLù11 12ê ú = ú = ê ú (2.13)êT T TN NB PA B PB ë 21 22 û B PLêë úû êë úû 

-where N  is the normal equation coeffcient matrix. Setting Z = N N 1, this equation can be trans-21 11 
formed: 

I 0 N N N N é A PLùé ù é 11 12 ù é 11 12 ù T 

= ê = ê ú (2.14)ê ú ê ú ˜ ú-Z I N N 0 N ˜Të û ë 21 22 û ë 22 û êëB PLúû 

˜ T T -1 T -1 T ˜where I  is the unit matrix, and N = B PB - B PAN A PB = N A P, N22  can be. Setting J A22 11 11 

written as Ñ = BT ( I J- )T P I - J B. Setting ˜ = ( I - J B( ) B ) , the new normal equation respect to22 
Y  can be expressed as: 

˜T ˜ ˜TB PBY = B PL (2.15) 

After that, Y  can be estimated by using equation (2.15), and X  can be calculated as: 

˜ -1X = N ( A P  - 12 ) (2.16)11 
T L N Y 
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˜where X  is the estimated matrix for X . Through the classifed recursive processing, the normal 
equation size can be reduced, and the large matrix inversion operation can be avoided. 

2.2.4 near-real-tiMe processing results 

2.2.4.1  NRT Processing Method 
In GNSS data processing, the tropospheric delay, satellite and receiver clock corrections and station 
height component are strongly correlated as shown as  Figure 2.4  (Nilsson et al., 2013), and the high-
precision satellite clock correction product is therefore very important to improve the GNSS station 
height and tropospheric delay estimation. To date, the real-time satellite clock correction product is still 
hard to support the NRT tropospheric product estimation with high precision and reliability, and we 
generally need to additionally estimate the NRT satellite clock correction in the NRT data processing. 

There are two data processing methods for NRT tropospheric parameter estimation. The frst one 
is a one-step network solution method. This method simultaneously estimates the satellite clock cor-
rection and tropospheric parameters by double-differenced network solution. The second one is the 
two-step method. This method frstly estimates the satellite clock correction by double-differenced 
network solution, and then estimates the tropospheric delay by using the estimated NRT satellite 
clock correction product and PPP solution. 

However, the data processing effciency of the one step method will signifcantly decrease with 
the increase of the station number. In addition, the one step method can only estimate the relative 
ZTD and horizontal gradient product if the network size is smaller than 500 km (Duan et al., 1996). 
Therefore, we choose the two-step method for establishing the WUHM analysis centers. 

  2.2.4.2  NRT Processing Flow 
We established the EGVAP WUHM analysis center based on the high precision GNSS data pro-
cessing software PANDA. The WUHM center processes the tropospheric ZTD and horizontal gra-
dient product at more than 300 stations in NRT mode. The fow chart for WUHM center is shown 
in  Figure 2.5. The data and product preparations are necessary before NRT processing. The hourly 

FIGURE 2.4 Different elevation dependence for tropospheric delay (red), clock (green) and height  component 
(blue). 
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FIGURE 2.5 Flow chart for WUHM analysis center. 

multi-GNSS RINEX data in the local server are derived from the data streams of the MGEX, 
CMONOC and NBASS networks. The table fles, ultra-rapid satellite orbit products, broadcast 
ephemeris fles and SINEX fles are downloaded from IGS analysis centers. 

The frst step is the NRT satellite clock correction processing by the double-differenced network 
mode. The 6 h observation data from the globally distributed MGEX stations and nationally distrib-
uted NBASS stations and real-time satellite orbit product are used for the satellite clock correction 
estimation in 6 h sliding window length and hourly sliding mode, deriving the NRT satellite clock 
correction fles. 

The second step is the NRT tropospheric product processing by subnetwork mode. The 6 h obser-
vation data from MGEX, CMONOC and NBASS networks are divided into serval subnetworks, and 
then the PPP processing for every subnetwork is carried out by using the estimated satellite clock 
correction fles in parallel processing mode, deriving the tropospheric parameter for every subnet-
work. Finally, the tropospheric parameter fles for these subnetworks are merged into one fle. By 
adopting the two-step method, the processing time for more than 300 stations is less than 50 min. 

2.2.4.3 Satellite Clock Correction 
We took the post-processing satellite clock correction product from IGS Wuhan University analysis 
center as a reference and evaluated the accuracy of the estimated NRT satellite clock correction 
accuracy, and the RMS and STD results for GPS week 2195 are shown in Figure 2.6. We can fnd 
that the STDs for the four GNSS systems are all better than 0.1 ns, indicating the good performance 
of the estimated satellite clock correction. 

2.2.4.4 Zenith Total Delay 
We also evaluated the estimated NRT ZTD accuracy by taking the post-processing ZTD product as 
a reference, and the RMS distribution and histogram for GPS week 2195 are shown in Figure 2.7. 
We can fnd that the RMSs for all stations are generally smaller than 20 mm, and the statistical 
RMS for NBASS, CMONOC and MGEX are better than 10 mm. 
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FIGURE 2.6 NRT satellite clock correction RMS and STD (GPS week: 2195). 

FIGURE 2.7 NRT ZTD RMS distribution and histogram (GPS week: 2195). 
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2.3  METEOROLOGICAL APPLICATIONS 

2.3.1 data assiMilation and weather Forecasting 

2.3.1.1  Status 
In the area of weather forecasting, even the most advanced numerical weather prediction systems 
are currently unable to accurately predict the location, time and intensity of extreme precipitation, 
mainly due to the inadequate ability to describe the spatial and temporal variability of atmospheric 
humidity.  Ducrocq et al. (2002) found the importance of the initial humidity feld for improving 
forecasts of heavy precipitation events.  Vedel and Huang (2004) and  Poli et al. (2007) assimilated 
GPS-ZTD products to numerical forecast models using three-dimensional variational assimilation 
(3D-Var) and four-dimensional variational assimilation (4D-Var), respectively, and found improve-
ments in precipitation forecasting.  Lindskog et al. (2017) used 2.5 km horizontal resolution based 
on 3D-Var to assimilate GPS-ZTD data into the HARMONIE-AROME model and found that it was 
possible to improve effective forecasting, particularly for humidity, by up to one and a half days. 
Mahfouf et al. (2015) showed that although GNSS-ZTD accounts for a relatively small proportion of 
all assimilated observations, ZTD can systematically improve the accuracy of moisture initial felds 
and thus precipitation forecasts in short-term forecasts compared to other water vapor observations. 

According to an assessment by the Met Offce in the UK, ground-based GNSS ranked second 
in average contribution to numerical weather prediction (Figure 2.8) among all observational tools 
(Jones et al., 2020). With the development of GNSS systems and the construction of ground-based 
station networks, refned atmospheric water vapor products will be more benefcial to improve the 
quality of numerical weather forecasts (Singh et al., 2019). However, there are still problems with 
the assimilation of ground-based BeiDou/GNSS water vapor products for forecasting that need 
further research. For example, the current assimilation strategies and methods ignore the spatial 

FIGURE 2.8 Contributions of different meteorology observations on weather forecasting. 
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correlation of GNSS water vapor products, and the forecast bias becomes larger after increasing the 
GNSS station density, which cannot truly exploit the advantages of high spatial and temporal resolu-
tion of ground-based GNSS. The current numerical assimilation forecasting studies usually carry 
out spatial and temporal sparse degradation correlation processing, and do not pay enough attention 
to the accuracy of BeiDou/GNSS water vapor products, which cannot fully exploit the advantages 
of high accuracy and high resolution of BeiDou/GNSS water vapor, and further optimization of the 
existing assimilation operators and methods is needed.        

The most commonly used platform for numerical assimilation forecasting is the weather research 
and forecasting model (WRF), a next-generation mesoscale numerical weather prediction system 
designed for atmospheric research and operational forecasting applications, which began to be devel-
oped in the late 1990s by a collaborative effort between the National Center for Atmospheric Research 
(NCAR), the National Oceanic and Atmospheric Administration (NOAA) and the National Centers 
for Environmental Prediction (NCEP). The latest version of the WRF is version 4.4 (September 2022). 
With its support for parallel computing and system scalability, the WRF includes powerful features 
such as model forecasting and data assimilation, allowing researchers to use the WRF to carry out 
simulations based on real atmospheric conditions or simulated conditions. The WRF currently has a 
cumulative total of over 57,800 registered users in over 160 countries as of 2021 and is used exten-
sively in real-time forecasting at NCEP and other national meteorological centers as well as laborato-
ries, universities and companies. The Advanced Research WRF (ARW) modeling system has been in 
development for the past 20 years and is applicable to scientifc research for model forecasting. It is in 
the public domain and is freely available for community use. The overall framework and processing 
fow of WRF-ARW is shown in  Figure 2.9  (Skamarock et al., 2019), which mainly consists of four 
parts: WRF preprocessing system (WPS, Real), forecast model (WRF-ARW), WRF data assimilation 
system (WRFDA) and post-processing and visualization tools. 

FIGURE 2.9 Flowchart for the WRF modeling system version 4. 
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2.3.1.2  Methods 
Data assimilation is a technique that optimally combines observations with the initial background 
feld using some criteria to obtain an improved and updated background feld. The data assimila-
tion system (WRFDA) module of the WRF model supports both 3D-Var and 4D-Var, where the 
difference is that the 4D-Var includes a numerical forecast model and considers the time difference 
between background and observations. Because the 4D-Var method is very resource demanding and 
complicated, the most widely used method in meteorological operations is still 3D-Var, which will 
be introduced in the following text. The core idea of 3D-Var is to assimilate the different observa-
tions into a representation of the analysis feld (analysis, i.e., the updated background feld) based 
on the criterion of minimizing the objective function of the deviation of the analysis feld from the 
initial background feld and the observations, which can be defned as: 

1 T -1 1 T -1x x = x - x B x - x + y - x y H x ( 2.17 ) ( ) ( ) ( ) ( H ( )) R ( - ( ))a a b a b 0 a 0 a2 2

 where xa  is the analysis to be resolved,  xb is the initial background, y0  represents the observations 
assimilated, H  is the observing matrix, and B  and R  are initial background feld error and obser-
vations error, respectively. The workfow of the WRFDA for GNSS ZTDs is given in  Figure 2.10 . 

FIGURE 2.10 Workfow of WRFDA based on GNSS ZTDs and WRF forecasting. 
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GNSS ZTD can be assimilated only after passing quality control, whereby outliers and bias are 
detected and removed and covariance is determined to contain observation error information. It is 
common to use NWMs ZTDs to help quality control. Thereafter, quality assured GNSS ZTDs will 
be saved in LITTLE_R format, which is the system’s intermediate observation data in the WRFDA 
preprocessing, and then extracted into a usable data assimilation format by the OBSPROC (observa-
tion preprocessor) module.         

  2.3.1.3  Results 
GNSS ZTD assimilation has been studied in the past decades, with abundant assessment 
carried out and fner techniques developed.  Boniface et  al. (2009) studied heavy rain in the 
Mediterranean region and indicated that the assimilation of GPS ZTD can further improve the 
precipitation forecast when the atmosphere state can be described well with traditional obser-
vations assimilated (Figure  2.11). Rohm et  al. (2019) found that GNSS data assimilation can 
signifcantly change moisture felds and rain, whereas GNSS ZTD always reduces the humidity 
feld bias and improves the frst 24-hour rain forecast.  Singh et al. (2019) indicated that ZTD 
assimilation can beneft the lower to middle tropospheric moisture, upper air temperature, and 
middle and upper tropospheric wind, where errors reduced up to 4% compared to the model run 
without ZTD assimilation.  Macpherson et al. (2008) found a mixed impact of ZTD assimilation 
on the precipitation forecast, with positive impacts for heavy rainfall events but damage for small 
threshold rainfall accumulation. GNSS ZTD has the advantage of high temporal and spatial res-
olution. However, some studies found that this may not help in WRF assimilation.  Nykiel et al. 
(2016) found that assimilating GNSS ZTD too frequently can lead to incorrect results when the 
method 3D-Var is used and without upper atmosphere data assimilated together. Assimilating 
GNSS ZTD together with the upper air and surface data every 6 hours outperforms assimilat-
ing every hour or only assimilating ZTD. In general, most studies indicated positive impacts of 
GNSS ZTD assimilation but generally in certain cases and at certain areas and heights. Stable 
contribution of GNSS ZTD to assimilation needs further development of assimilation technique 
and improvement of GNSS ZTD accuracy. 

2.3.2 ppp augMentation 

2.3.2.1  Status 
Precise point positioning (PPP) has been widely used during the past decades with centimeter 
or decimeter level accuracy (Zumberge et  al., 1997). However, PPP still suffers from some 
limitations in its real-time applications. Due to the high coupling between tropospheric delay 

FIGURE 2.11 24-hour accumulated precipitation on November  22, Mediterranean region for (a) only 
traditional observations assimilated; (b) GPS ZTD also assimilated; (c) rain-gauge observations. 
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and the vertical position, PPP processing usually requires a long time to separate these two 
parameters for convergence, which signifcantly limits its real-time applications (De Oliveira 
et al., 2017). Therefore, the introduction of an accurate a priori ZTD helps to constrain the ZTD 
in PPP processing and thereby accelerates the convergence effciently. The currently used a 
priori ZTD values are derived from empirical models, such as UNB3m model (Leandro et al., 
2006) and GPT series models (Böhm et al., 2015), which can provide approximate tropospheric 
delay without external data as inputs. However, empirical models usually have diffculty in cap-
turing the high variability in ZTD, limiting their accuracy in real-time applications. It is thus 
necessary to adopt external data sources to obtain precise a priori ZTD. With the development 
of the numerical weather model (NWM) and PPP-RTK technique, the precise ZTD relying 
on meteorological reanalysis products and measured atmospheric information have been used 
to interpolate ZTD for users, providing more accurate real-time ZTD than a priori empirical 
models. Dousa et al. (2018b) summarized that the standard empirical models have an accuracy 
limit of about 3.5  cm, NWM-derived ZTD is capable of achieving an accuracy of approxi-
mately 0.8–1.2 cm, and GNSS-derived ZTD estimated using real-time PPP can be accurate to 
within 0.5–0.9 cm. 

In recent years, there have been some studies focusing on wide-area real-time tropospheric 
product establishment. For example, Zhang et  al. (2018) utilized the CMONOC network and 
the IGGtrop empirical model (Li et  al., 2015a) to generate a grid-based tropospheric product 
(GTP) based on the undifferenced and uncombined PPP (UU-PPP) technique. Lou et al. (2018) 
developed an inverse scale height model based on ERA-Interim reanalysis data and applied it to 
real-time ZTD solutions at GPS stations to generate real-time ZTD grid product (RtZTD) over 
China for PPP users. Zheng et al. (2018) established a real-time tropospheric grid point (RTGP) 
model in China with improved modeling the zenith wet delay. They adopted the decrease factor 
of water vapor pressure and the temperature lapse rate provided by the GPT2w empirical model, 
and introduced a modifed height parameter for the uniformity of ZWD. It is noteworthy that in 
operational applications, precise real-time tropospheric products can be diffcult to achieve. Near-
real-time tropospheric products are suffcient for numerical assimilation forecasting applications, 
since we can generally assume that ZTD variations are small over a short period of time, which 
enables our NRT products to be adopted in real-time positioning and navigation as well. In prac-
tical terms, NRT products can assist in the rapid convergence of positioning by supporting the 
generation of enhanced ZTD model products. 

2.3.2.2 Methods 
The generation and application of real-time ZTD grid product proposed by Lou et al. (2018) can be 
briefy introduced as follows, with the overall fowchart shown in Figure 2.12. 

Firstly, the meteorological reanalysis product (ERA-Interim) is used to estimate ZTD at a given 
location. The estimation method divides ZTD into two sections, including the ZTD section from the 
location to the top level and the hydrostatic section above the top level, and calculates each section 
separately. Secondly, the ZTD profles derived from ERA-Interim are used to analyze the vertical 
variations, results of which show near exponentially decreasing trends with altitude. Based on this 
analysis, the inverse scale height model can be determined. 

æ 1 öZTD ZTD= × exp - × h (2.18) 0 
è
ç H ø

÷ 

where ZTD0 is the zenith tropospheric delay at mean sea level (MSL), 1/ H denotes the inverse scale 
height, and h is the target height (m) above MSL. 

Thirdly, the temporal variations of 1/H are analyzed based on the ERA-Interim ZTD time series, 
which mainly contain annual and semi-annual periodical signals. Thus, the function as expressed in 
equation (2.19) is used to ft 1/H at each grid point. 
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FIGURE 2.12 Real-time ZTD grid product generation and application fowchart. 

doy doy1/H a= + a cos( × 2p ) + a sin( × 2p )0 1 2365 25. 365 25. (2.19) 
doy doy

+ b cos( × 4p ) + b sin( × 4p )1 23655 25 . 365 25. 

where doy  is the day of the year,  a0 is the mean value,  (a1, a2) and (b1, b2) are the annual and semi-
annual amplitudes, respectively. Finally, the real-time ZTD grid product for each grid point is gen-
erated from the GPS-derived ZTD at stations within 1000 km. Based on this inverse scale height 
model, the GPS-derived ZTD is converted from the station height to the grid point height. Then the 
inverse distance weighted (IDW) method is applied to horizontally interpolate ZTD to the grid point. 
In practical application, the real-time ZTD grid product can be converted to the target height using 
the inverse scale height model, and then horizontally interpolated from the nearest four surrounding 
grid points to the target location. 

  2.3.2.3  Results 
The real-time ZTD grid product (RtZTD) generated by  Lou et al. (2018) can provide precise  a priori 
ZTD for PPP users, which can help accelerate the PPP convergence. Taking post-processing ZTD 
as references, the real-time ZTD provided by RtZTD has a bias of 0.39 cm and an RMS of 1.56 cm, 
signifcantly better than the empirical models ( Figure 2.13 ).        
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FIGURE 2.13 Accuracy comparison of the real-time ZTD grid product with empirical models. 

FIGURE 2.14 Convergence time for BDS/GPS PPP in horizontal component and vertical component. 
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TABLE 2.3 
Convergence Time for Non-RtZTD PPP and RtZTD PPP (unit: min) 

Non-RtZTD PPP RtZTD PPP 

H (95%) H (68%) V (95%) V (68%) H (95%) H (68%) V (95%) V (68%) 

BDS 84.5 62 149.5 87.5 57.5 58 52 30.5 

GPS 73.5 60.5 62.5 36 71.5 57.5 44.5 27 

Besides, as Figure  2.14 and Table  2.3 indicate, the BDS PPP convergence time introducing 
RtZTD as a priori achieves approximately 32% (6%) and 65% (65%) improvements in the horizon-
tal and vertical components in 95% (68%) situation, compared with the cases adopting a priori ZTD 
provided by Saastamoinen and GPT2w models. For GPS PPP, the convergence time also improves 
over 30% in the vertical direction. 

2.4 CONCLUSIONS 

In past decades, GNSS tropospheric parameter estimation has been through the rapid developments 
from post-processing to NRT processing as well as single system processing to multi-system pro-
cessing. Compared with the single system post-processing, the multi-system NRT processing has the 
advantages of short time delay and acceptable accuracy, and therefore is very prospective in weather 
forecasting application and real-time PPP augmentation. In this chapter, we described the basic theory 
of multi-GNSS tropospheric parameter NRT estimation and summarized the current status of opera-
tional multi-GNSS NRT processing by taking the E-GVAP WUHM analysis center as an example. 
Then the applications of the NRT ZTD in data assimilation, weather forecasting and PPP augmenta-
tion were introduced. We validated that the operational multi-GNSS NRT tropospheric parameter 
processing is robust and effective for the weather forecasting and PPP augmentation applications. 
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3 Spatial-Temporal Variation 
of GNSS ZTD and Its 
Responses to ENSO Events 

Tengli Yu, Yong Wang, Shuanggen Jin, 
Ershen Wang, and Xiao Liu 

3.1 INTRODUCTION 

In recent years, global meteorological disasters such as rainstorms, foods, high temperatures, 
droughts, and typhoons have occurred frequently, and the impact of extreme climate events on 
people’s health and the sustainable development of society has become more serious. As the global 
monitoring and early warning service capacity of severe weather constantly improve, comprehen-
sive urban and rural disaster prevention and mitigation have signifcantly improved. However, with 
global warming, the risk of natural disasters has further intensifed, and extreme weather tends to 
be stronger, heavier, and more frequent. The causes are complex and diffcult to predict accurately. 
The monitoring and early warning accuracy of meteorological disaster events need further improve-
ment to ensure people’s health and property safety. The heavy rain event in July 2021 affected many 
jurisdictions in Henan Province, China, resulting in signifcant economic losses and social impacts. 
The National Meteorological Center of the China Meteorological Administration indicated that this 
event is related to La Niña (the cold phase event of the El Niño-Southern Oscillation event) and that 
the GNSS meteorological elements had a good indication for this disastrous rainstorm event (Shi 
et al., 2022). China is located in the East Asian monsoon region. The El Niño-Southern Oscillation 
(ENSO) event affects the East Asian monsoon precipitable water vapor (PWV) transport by affect-
ing the changes of atmospheric circulation, such as the Western Pacifc subtropical high, which 
indirectly leads to the extreme climate in China (Chen et al., 2018). It is of great signifcance to use 
continuous zenith tropospheric delay (ZTD) series to monitor the evolution of ENSO events with 
interannual and interdecadal variations. 

Global Navigation Satellite System (GNSS) technology has the advantages with continuous 
operation, low cost, high accuracy, and high spatial and temporal resolution (Wang and Liu, 2012; 
Wu et al., 2021). Using GNSS technology to remotely sense the environmental status of the earth’s 
atmosphere and surface meteorology and conduct research and application of meteorological theo-
ries and methods, such as measuring atmospheric temperature, PWV content, soil moisture, and 
sea wind, which is called GNSS meteorology. It’s a proven tool for weather and climate monitor-
ing (Bevis et al., 1992, 1994). The standard product of GNSS meteorology is the ZTD. The GNSS 
signal is infuenced by the refraction effect of the atmospheric medium when passing through the 
troposphere, thus causing a delay in signal transmission. The resulting path delay is called ZTD 
(Jin et al., 2011). GNSS ZTD has fewer sources of error because it avoids the subsequent inversion 
process (Zhou et al., 2020a). The researchers found that GNSS ZTD has the potential to monitor 
meteorological disasters and evaluated the application value of GNSS ZTD in identifying climate 
events such as rainstorms, drought, and heavy haze weather. GNSS ZTD is widely used in numeri-
cal weather forecasts and extreme climate monitoring (Giannaros et  al., 2020; Guo et al., 2021; 
Wang et al., 2019; Yao et al., 2016, 2018; Zhao et al., 2021; Zhou et al., 2020a). 

https://doi.org/10.1201/9781003363118-3
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The ENSO event is manifested as a large-scale abnormal sea surface temperature variation in 
the eastern equatorial Pacifc Ocean. It appears as a La Niña event in the cold phase and an El Niño 
event in the warm phase (Ren et al., 2012). The ENSO event not only directly causes catastrophic 
events such as droughts and foods in the tropical Pacifc and its surrounding areas but also indirectly 
affects climate parameters in other regions in a “teleconnection” manner, such as temperature, pres-
sure, precipitation, clouds, and radiation balance, which causes meteorological disasters (Ren et al., 
2012). The infuence mechanisms of El Niño events on extreme rainfall in different regions of China 
have been discussed by related scholars (Liu et  al., 2018; Song et  al., 2020). Experiments show 
that El Niño events and precipitation strongly correlate, leading to the phenomenon of “southern 
fooding and northern drought” in mainland China. According to the research, the response char-
acteristics of climate to ENSO events differ in different regions of mainland China. El Niño and La 
Niña events cause roughly opposite environmental effects (Cao et al., 2013; Lei and Huang, 2018). 
Different types of ENSO events will lead to global temperature increase and annual average pre-
cipitation decrease globally in El Niño years. In La Niña years, the global temperature is low, and 
the yearly average precipitation increases (Wang and Gong, 1999). Since the 1990s, the frequency of 
new types of El Niño events has increased signifcantly. This new El Niño pattern is different from 
the traditional one. The anomalous warming area of the maximum sea surface temperature (SST) 
is not in the eastern equatorial Pacifc but in the central equatorial Pacifc. Researchers refer to this 
new type of El Niño event as the Central-Pacifc type of El Niño (CP-El Niño) and the traditional El 
Niño event as the Eastern-Pacifc type of El Niño (EP-El Niño) (Kao and Yu, 2009). This criterion 
also distinguishes La Niña events. ENSO events with different SST anomaly types have different 
atmospheric effects (Cao et al., 2013; Ren et al., 2012; Zhang et al., 2018). 

Compared with precipitation, GNSS ZTD data has better temporal continuity and is suitable 
for capturing long-term climate change patterns. Therefore, GNSS meteorology can be applied to 
ENSO monitoring. Foster et al. (2000) frst explored the impact of ENSO events on climate change 
using two GNSS stations in the tropical monsoon climate zone. Barindelli et al. (2018) and Zhao 
et al. (2020) proved the correlation between ENSO events and meteorological factors using GNSS 
observation data. Yao et  al. (2013) demonstrated that GNSS ZTD has a signifcant semi-annual 
variation period, and the abnormal change of this cycle has responses to El Niño events. Wang et al. 
(2021) explored the impact of El Niño events on the climate of mainland China by using regional 
GNSS ZTD in China. The aforementioned research shows that GNSS ZTD can indicate the evolu-
tion of ENSO events, which provides theoretical support for applying GNSS ZTD to ENSO events 
monitoring. However, there are differences in the case selection in the foregoing studies, which lead 
to different results, and some regions have insuffcient quantitative analysis. Therefore, the use of 
GNSS ZTD for monitoring and early warning of extreme climate events can systematically quantify 
the impact of climate anomalies in different regions of China on various ENSO events and provide 
technical reference for meteorological monitoring and forecasting departments and disaster preven-
tion and control departments. 

3.2 GNSS OBSERVATIONS AND ZTD CALCULATIONS 

3.2.1 the principle oF gnss Ztd MeasureMent 

When the radio wave signal of the GNSS satellite passes through the atmosphere, it will be affected 
by the atmospheric medium’s refraction effect, resulting in the signal transmission delay. The delay 
caused by crossing the ionosphere is called the ionospheric delay. The delay caused by crossing the 
troposphere and stratosphere is called the tropospheric delay. The ionospheric delay can be elimi-
nated by using GNSS dual-frequency receivers. The tropospheric delay can be estimated by using 
model simulation. The ZTD includes the zenith hydrostatic delay (ZHD) and the zenith wet delay 
(ZWD). The ZHD is mainly related to meteorological elements such as pressure and temperature. 
The ZWD contains the primary information on atmospheric PWV. The ZHD content is more than 
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90%, but it is relatively stable, with minor changes in a short period. The ZWD accounts for a small 
proportion of the ZTD but contains almost all PWV information in the atmosphere. It is active, 
mainly for atmospheric PWV inversion. Assuming that GNSS satellite signals propagate along a 
straight line at the speed of light in a vacuum, the atmospheric delay can be defned as the difference 
between the length of the actual propagation path and the assumed straight-line length. Based on 
this defnition, a GNSS ZTD simulation model can be constructed. 

ZTD can be expressed by the increased length of the signal propagation path: 

DL n s d( ) s G= - (3.1) ò 
L 

where n s( ) represents the atmospheric refractive index at s on the signal propagation path L; G rep-
resents the path length between the satellite and the receiver (not affected by atmospheric refraction 
interference). The previous equation can be expressed as: 

DL = én s -1û
ù ds + S G  (3.2) ë ( )  ( - )ò 

L 

where S represents the path length along L, én s( ) -1ù dsis affected by the slowing down of signal ò ë û 
L 

propagation, (S G) is affected by signal bending. When the ray points in the zenith direction, the ray -
is straight and (S G) is 0. The atmospheric refractive index N is often used to indicate n s - ù,- é ( )  1û
N = 106 ´(n -1). 

ë 

The atmospheric refractive index N can be calculated by using the functional relationship 
between air temperature, air pressure, and water vapor pressure, which can be expressed as: 

æ P ö æ Pw öN = 77 6. ´ç ÷ + 3  73´105 ́ ç. (3.3) 
è T ø è T 2 ÷ 

ø 

where P is the total surface atmospheric pressure (hPa), T is the surface atmospheric temperature 
(K), Pw is the water vapor pressure (hPa). 

3.2.2 Ztd solution Model 

Currently, the main models used to calculate ZTD are the Hopfeld model (Vey et al., 2010), the 
Saastamoinen model (Vey et al., 2009), and the Black model (Suparta, 2013). 

3.2.2.1 Hopfeld Model 
In the ideal gas state, the Hopfeld model solution equation is as follows: 

Kd KwZTD = ZHD ZWD = ++ (3.4) 
2 2 2 2sin  ( )

1 

( . )
1 

E + 6 25. sin E + 2 25 

P
ZHD = 155 2 10. ´ -7 ´ s ´ (hd - hs ) (3.5) 

Ts 

. 4810 ( w - hs )Kw = 155 2 10´ -7 ´ ´ h (3.6) 
Ts 
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hd = 40136 +148 72´(Ts - 273 16. (3.7). ) 
hw = 11000 (3.8) 

where ZTD is the zenith tropospheric delay (m), ZHD is the zenith hydrostatic delay (m), ZWD is 
the zenith wet delay (m). Tsis the absolute temperature (K). Ps is the surface pressure (hPa). E is the 
satellite elevation angle (°). hd  is the effective height from the top of the troposphere to the geoidal 
surface (m); hw  is the effective height of tropospheric moisture to the geoidal (m). 

3.2.2.2 Saastamoinen Model 
The formula for the Saastamoinen model is expressed as follows: 

é ù0 002277 æ1255 ö B.ZTD = ´ êPs + ç + 0 05. ´ - ú´W (j · H ) +d R (3.9)
sin E ê è

ç Ts 
÷
ø 
÷ es tan2 E úë û 

where W (j · = + . cos 2 + 0 00028. ´hs , j  is the latitude of the station (°), hs  is theH ) 1 0  0026´ j 
altitude of the station (km), B is the list function of hs , d R  is the list function of E and hs . After 
numerical ftting, the formula can be expressed as: 

é ùæ ö0 002277. 1255 aZTD = ´ êPs + ç . ú+ 0 05÷´ es - (3.10)
sin E¢ ê ç Ts ÷ tan2 E¢ úë è ø û 

E¢ = + DE (3.11)E 

16¢¢ æ 4810 ö 
DE = ´ç Ps + es ÷÷´ cot E (3.12) 

è
çTs Ts ø 

-3 -3 2a =1 16 0  15. - . ´10 ´h + 0 716´10. ´hs (3.13) 

3.2.2.3 Black Model 
The formula for the Black model is expressed as follows: 

é 2 ù é ù2ê æ ö ú ê æ ö ú 
ê ç ÷ ú ç ú 
ê ç cos E ÷ ú 

ê
ê ç cos E ÷

÷ ú (3.14)ZTD = Kd ´ ê 1-ç ÷ -b E  ú + K ´ 1-ç -b E  ú( ) w ê ÷ ( )
ê ç1 1+ - ´

hd ÷ ú ê 1 1+ - l ´ hw ÷ ú 
ê ç

è 
( l0 ) rs ÷ ú ê 

ç
ç
è 

( 0 ) rs ÷
ø ú 

ê ø ú ê úë û ë û 

-0 3. El0 = 0 833. + éë0 076 + 0 00015. ´ (Ts - (3.15). 273 16. )ùû 

-12b E( ) = . ´(E + 0 6) (3.16)1 92 . 
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hd =148 98´(Ts -3 96. ). (3.17) 

hw =13000 (3.18) 

sKd = 0 002312´(T - 3 96)´ 
T
P

s 
2 

(3.19) . .s 

Kw = . (3.20) 0 20 

In equation (3.16), b E( )represents the path bending correction, and the other parameters have the 
same meaning as in the Hopfeld model. 

In high-precision GNSS data processing, the ZTD solution model is frst selected according 
to the actual situation, and the model’s value is calculated as an approximate value. Then the 
accurate value of tropospheric delay is estimated by rigorous adjustment calculation. It has been 
verifed that the results of the three models are equivalent when the station elevation is less than 
1 km, while the Hopfeld model is not applicable when the station elevation is greater than 1 km 
(Wang et al., 2012). 

The basic observation equation of the carrier phase in GNSS data processing is as follows (Zhou 
et al., 1999): 

f j i j f jji t = ´r ( )t + ´f dt t - dt t( )] - N t( ) + ´[D ( ) D j ( )]t (3.21) j ( )  [ ( )  i i i 0 i I. P
t + ii T.c c 

where ji
j ( )t  is the carrier phase from the satellites j to the observation stationTiat the observation 

epochti . f is the carrier frequency. cis the propagation speed of the electromagnetic wave. ri
j ( )t 

is the geometric distance from the satellites j to the observation stationTiat the observation epochti . 
i[ ( )t t - (  )] is the clock error of the receiver clock relative to the satellite clock at the observation d dt ti 

j jepoch ti . N t( )0  is the carrier phase integer cycle. Di I  ( )t  is the effect of the ionospheric delay at i 
j 

. P 

the observation epoch ti . Di T ( )t  is the infuence of the tropospheric delay at the observation epoch . 
ti , which can be obtained from the GNSS data processing results. 

3.2.3 Mapping Function 

During the GNSS data processing, the tropospheric delay in the zenith direction is estimated as 
an unknown for each station and projected onto each oblique direction by the hydrostatic mapping 
function and the wet delay mapping function. The model is as follows: 

atdel el  dryzen drymap el  + wetzen wetmap el ( ) = ´ ( )  ´ ( )  (3.22) 

where el  is the satellite elevation angle, dryzen is the hydrostatic delay, wetzen  is the wet delay, 
drymap is the hydrostatic delay mapping function, wetmap is the wet delay mapping function. 

The mapping function is a mathematical model related to the elevation angle of each delay. 
Mapping functions are approximately equal to the cosecant of elevation angles. However, the cur-
vature of the earth and the propagation path of GNSS signals in the atmosphere make the mapping 
function and the cosecant theorem signifcantly deviate. The accuracy of the mapping functions 
affects not only the delayed solution accuracy but also the positioning accuracy. Mapping functions 
are divided into two main categories: the empirical mapping function model represented by NMF 
and GMF, which are used without introducing external data information; the other is the mapping 
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function model based on the numerical weather model represented by VMF1 (Jiang, 2000). These 
three models are all continued fractions, which can meet the accuracy requirements even at an alti-
tude angle of 3° (Niell et al., 2001): 

a1+ b1+ 
mf ( )e = 1+ c (3.23)

asin ( )e + 
sin ( )e + 

b 
sin ( )e + c 

where e is the elevation angle, and the coeffcients a, b, and c are constants far less than 1, which are 
related to factors such as surface temperature, station latitude and altitude. Currently, most mapping 
functions are constructed based on Eq. (3.23). 

3.2.3.1 NMF Model 
The projection function of the model consists of two components: the dry componentmfd  and the 
wet component mfw. The dry component is: 

1 é 1 ù 
d ht1+ 

a ê
ê 1+ 

a ú 
ú 

1+ 
bd ê 1+ 

bht ú 
1 ê 1 1+ ú H+ cd chtmfd ( )e = + ê - ú ́  (3.24)

1 sin( )e 1 1000ê ú 
ad ê aht úsin( )e + sin( )e +ê úbd bhtsin( )e + ê sin( )e + ú
sin( )e sin( )e+ cd êë + cht úû 

where, e is the altitude angle, aht = 2.53 ́  10–5, bht = 5.49 ́  10–3, cht = 1.14 ́  10–3, and H is the posi-
tive height. When the station is between 15° and 75° latitude, the coeffcients ad , bd , and cd  can be 
obtained by interpolation from Eq. (3.25): 

j ji -
pd ( , )t = pavg (ji ) [  avg (ji+1) - pavg ( )]ji ´ +j + p 

ji+1 -ji 
(3.25)

ì j j æ t - 28 öüï - i ï( (j 1) - j ´ cosç 2pí pamp ji )) [+ pamp i+ pamp ( )]i ´ ÷ý
ï ji+ -ji 365 25 øþïî 1 è . 

where j  denotes the latitude of the station, ji represents the latitude corresponding to 
Table 3.1, t is DOY (day of year). The mean and amplitude of the coefficients are shown in 
Tables 3.1–3.2. 

The wet projection function of NMF is calculated by Eq. (3.23); the projection coeffcients ad , bd , 
and cd  can be obtained by using Eq. (3.26) and Table 3.3. 

j ji -
pw = pavg ji + ( pavg (ji+ pavg (ji )) ́  (3.26)( )  1) -

ji+1 -ji 
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TABLE 3.1 
The Mean of the NMF Model Dry Component Projection 
Function Coeffcient 
Latitude(deg) ad ́ 10–3 bd ́ 10–3 cd ́ 10–3 

≤15 1.2769934 2.9153695 62.620505 

30 1.268323 2.9152299 62.837393 

45 1.2465397 2.9288445 63.721774 

60 1.2196.49 2.9022565 63.824265 

≥75 1.2045996 2.9024912 64.258455 

TABLE 3.2 
The Amplitude of the NMF Model Dry Component Projection 
Function Coeffcient 
Latitude(deg) ∆ad ́ 10–3 ∆bd ́ 10–3 ∆cd ́ 10–3 

≤15 0 0 0 

30 1.2709626 2.1414979 9.0128400 

45 2.6523662 3.0160779 4.3497037 

60 3.4000452 7.2562722 84.795348 

≥75 4.1202191 11.723375 170.37206 

TABLE 3.3 
The Wet Delay Projection Function of the NMF Model 
Latitude(deg) ´10–4aw ´10–3bw ´10–2cw 

≤15 5.8021897 1.4275268 4.3472961 

30 5.6794847 1.5138625 4.6729510 

45 5.8118019 1.4572752 4.3908931 

60 5.9727542 1.5007428 4.4626982 

≥75 6.1641693 1.7599082 5.4736038 

3.2.3.2 VMF1 Model 
The form of the VMF1 model is similar to that of NMF. The coeffcients ah  and aw  are obtained by 
interpolating the grid generated from the measured meteorological data with a spatial resolution of 
2.5°´2° and a temporal resolution of 6 h. The coeffcient b takes a fxed value of 0.0029. The coef-
fcient c was divided into two cases considered for the southern and northern hemispheres and was 
calculated using Eq. (3.27), and the coeffcients in the equation are shown in Table 3.4. 

éææ æ doy - 28 öö ö c ù 
c c= + cos × p j  +1 × 11 + c × -2 + 1 cos j (3.27)0 êççç ç ÷÷ ÷÷ 10 ú ( ( ))

365 2ê è è øø úëè ø û 

The accuracy of the VMF1 projection function is higher than that of the NMF model, but the 
VMF1 projection function is expressed by the grid form, which is inconvenient to use. It needs to be 
calculated using the measured meteorological parameters, and the formula is complicated. 
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TABLE 3.4 
The Correlation Coeffcient Used to Calculate the Dry 
Delay Projection Coeffcient c 
Hemisphere c0 c10 c11 A 

Northern Hemisphere 0.062 0.000 0.006 0 

Southern Hemisphere 0.062 0.001 0.006 π 

3.2.3.3 GMF Model 
bd , bw, cd , and cw in the GMF model follow the calculation of the VMF1 model. The annual mean 
and amplitude of the coeffcients ad  and aw are subjected to spherical harmonic expansion. The 
spherical harmonic coeffcients are obtained by least squares ftting. 

doy - 28 a a= avg  + aamp × cos( × 2p )
365 

9 n (3.28) 
a = åå p (sinj) [× A ×co os(  m ×j) + B ×sin(m ×j)]i  nm nm nm 

n=0 m=0 

The accuracy of the GMF model is similar to that of VMF1 and does not require measured 
meteorological data. It is currently the most commonly used projection function model. 

The China Mainland Tectonic Environment Monitoring Network (CMTEMN) has 262 GNSS 
continuous observation stations, including 31 Crustal Movement Observation Network of China 
(CMONOC) stations (Figure 3.1). The data of the CMONOC reference stations have been recorded 

FIGURE 3.1 GNSS sites distribution from CMONOC and CMTEMN. 
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since 1999. The new 231 continuous stations of the CMTEMN have been producing data since mid-
2010, and nearly 12 years of GNSS observations have been accumulated. The processing strategy 
is as follows: the ephemeris type is precision ephemeris, loose solution mode is selected, satel-
lite cutoff height is 10°, and GMF mapping function is selected. The estimated time resolution 
is 1 hour, and the default horizontal gradient of GAMIT is used. The length of observation data 
accumulated at each site is different. The different times of network engineering and land-based 
network construction lead to the different lengths of the accumulated observations at each station. 
This study gets the longest time series of GNSS ZTD: 2008/1–2021/6, and the shortest time series: 
2011/1–2021/6. We removed sites with large numbers of missing values, such as LALX, LALB, 
and YONG. For the hourly ZTD series with a small number of missing values, we flled the data 
using the neighbor mean interpolation method in SPSS software, and the GNSS ZTD series were 
denoised using wavelet transform (Yu et al., 2022). 

3.3 GNSS ZTD SPATIAL-TEMPORAL VARIATION ANALYSIS 

3.3.1 gnss Ztd spatial distriBution characteristics 

The EOF method was used to analyze the typical spatial distribution characteristics of GNSS ZTD 
in the Chinese mainland. EOF can decompose the original data set into patterns ordered by their 
temporal variances. The initial feld of relevant variables is decomposed into several unrelated spa-
tial functions and temporal coeffcients without losing the original data information (Hannachi and 
Neill, 2001). The frst few modes that pass the signifcance test in the EOF analysis results contain 
the primary variation information of the actual feld. Regarding the EOF decomposition, the covari-
ance matrix of the original data is constructed at frst (Hannachi et al., 2007). The matrix form of 
the spatial and temporal grid data is: 

é x x ˜ x ù11 12 1n
ê úx x ˜ xê 21 22 2n úX = (3.29) ê ° ° ˛ ° ú 
ê ú x x ˜ xêë m1 m2 mn úû 

where X(i, t) is the observation corresponding to position i (i∈(1, m)) and time t (t∈(1, n)), m is the 
spatial station, and n is the time series. 

Construct covariance matrix C: 

1 TCm m  = X × X (3.30) ´ n 

The eigenroots (l l, ,˜˜,  and eigenvectors V  of C are:´1 2  lm ) m m

Cm m´ ´Vm m  =Vm m  ́  Em m  (3.31) ´ ´ ´ 

él1 0 ˜ 0 ù 
ê ú0 l2 ˜ 0E = ê ú (3.32) ê ° ° ˛ ° ú 
ê ú0 0 ˜ lmêë úû 

where l1 is the eigenvector value corresponding to the frst mode of the EOF. A higher l  value indi-
cates that its corresponding modality is more essential and contributes more to the total variance. 
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The explanatory rate of the k modality to the total variance can be expressed as: 

l 
r = k ´100% (3.33) k 

åm 
lii=1 

The analysis results are tested for signifcance (North et al., 1982): 

2Dl = l (3.34) 
N* 

where l  represents the characteristic root. N* represents the degree of freedom of data. l  is ranked 
in order, and its error range is analyzed. If the error ranges of the twol  before and after overlap, it 
does not pass the signifcance test. 

We interpolated the EOF results of GNSS ZTD using the Kriging method to optimize the visu-
alization of the ZTD spatial distribution. According to the analysis results, the frst and second spa-
tial modes passed the signifcance test (North et al., 1982). The frst mode variance contribution is 
87.4%, the second mode variance contribution is 4.04%, and the cumulative contribution of the two 
modes’ variance is 91.44% (Figure 3.2[a–b]). The frst mode spatial eigencoeffcients are all positive 
values, refecting the consistent increase and decrease of GNSS ZTD variation in mainland China, 
and show an increasing trend from northwest to southeast (Figure 3.2[a]). The second mode has both 
positive and negative spatial eigencoeffcients, refecting the differences in GNSS ZTD variations in 
different regions (Figure 3.2[b]). Related studies have shown signifcant differences in atmospheric 
humidity and precipitation distributions in different climate regions, and ENSO events have differ-
ent effects on different climate regions (Cao et al., 2013; Lei et al., 2018; Ren et al., 2012). Therefore, 
the GNSS ZTD distribution characteristics were compared with the fve climatic type divisions, and 
the results are in good agreement. The frst mode shows that the GNSS ZTD spatial distribution 
forms a signifcant boundary at the junction of the temperate continental zone (TCZ), mountain 
plateau zone (MPZ), and temperate monsoon zone (TMZ), and tropical monsoon zone (TPMZ). It 
shows that the GNSS ZTD in TMZ, TPMZ, and subtropical monsoon zone (SMZ) is higher than in 
TCZ and MPZ. The GNSS ZTD distribution characteristics of the second mode form a signifcant 
dividing line at the junction of TMZ, MPZ, and SMZ. It shows the distribution characteristics that 
GNSS ZTD increases in the TMZ and decreases in other regions. 

The TPMZ and SMZ have high temperatures and rainfall all year round. The TMZ is hot and 
rainy in summer and cold and dry in winter. The TCZ is far from the ocean and lacks humid air 
mass transport with low annual rainfall. The MPZ is rainy on the windward side of humid air 
currents with less precipitation on the leeward side and inside the plateau. Related studies show 
that the distribution characteristics of GNSS ZTD correlate with the distribution characteristics of 
meteorological factors such as atmospheric humidity and precipitation (Isioye et al., 2018; Wang 
et al., 2019). Therefore, the experimental analysis was combined with related research results. The 

FIGURE 3.2 GNSS ZTD spatial characteristics and regional division results. 
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regional division of mainland China was carried out according to fve major climate types to explore 
the response patterns of climate to ENSO events in different regions. The distribution of CMTEMN 
sites after division is shown in Figure 3.2(c). Fifteen representative sites with special notes (tri-
angles) are the stations that show the results. 

3.3.2 gnss Ztd tiMe-Frequency Variation characteristics 

The GNSS ZTD time series has signifcant nonlinear characteristics. The fast Fourier transform 
(FFT) and wavelet transform (WT) methods are used to explore the change rules of GNSS ZTD 
time series from the perspective of the time domain and frequency domain, respectively. Discrete 
Fourier transform (DFT) establishes the corresponding relationship between the time and fre-
quency domain characteristics and realizes the signal’s mutual conversion in the time and frequency 
domains. Compared with the computationally intensive DFT, the FFT method accelerates the com-
putational process. It can successfully capture the energy change in multi-dimensional data and 
signifcantly reduce the computational complexity of the DFT using unit complex roots as rotation 
factors. FFT can refect the amplitude and phase characteristics of continuous signals in the fre-
quency domain that cannot be refected in the time domain (Zheng, 2015). The core equation is: 

N 
( j-1)(k -1)x k( ) = 

1 å X j W (3.35) ( )  NN j=1 

2p
- j

WN =e N (3.36) 

where x k( ),  k =1,  2,˜, N  represents the distribution of the signal in the frequency domain. 
X j  j =1( ),  ,  2,˜, N  represents the distribution of the signal in the time domain. 

The GNSS ZTD time series of mainland China were analyzed in three dimensions: year, month, 
and day. The oscillation characteristics of GNSS ZTD were analyzed in the frequency domain using 
the FFT with the Hanning window. The analysis results show no apparent regional difference in 
the frequency domain oscillation characteristics of GNSS ZTD in mainland China. Four uniformly 
distributed stations are selected to present the analysis results (Figure 3.3). 

In Figure 3.3, cpy (cycle per year) represents the signifcant change cycle in the year dimen-
sion, cpm (cycles per month) represents the signifcant change cycle in the month dimension, and 
cpd (cycle per day) represents the signifcant change cycle in the day dimension. The horizontal 
axis represents the frequency, and its reciprocal is the corresponding period. The most signifcant 
period corresponds to the maximum amplitude. It can be seen from the annual scale analysis that 
GNSS ZTD has a signifcant annual period and semi-annual period. Excluding the interference of 
these two change periods, it is found that there is a more signifcant 9-month period (corresponding 
to frequency 1.1 cpy) and a seasonal period (corresponding to frequencies of 3 cpy and 4 cpy). It 
can be seen from the monthly scale analysis that GNSS ZTD has many signifcant change periods 
within 3 days–3 months (corresponding to the frequency interval of [0.3, 10]). From the fgure of the 
daily scale analysis results, it can be concluded that there are signifcant daily and semi-daily wave 
variation cycles in GNSS ZTD. The GNSS ZTD wavelet coeffcients corresponding to each change 
period will be extracted by the wavelet transform method to verify the accuracy of the signifcant 
change period analysis. The signifcant change period will be judged according to the size of its 
amplitude. 

The fast Fourier transform provides a more accurate frequency domain location of signals, while 
the time domain location corresponding to frequency domain information can be provided by the 
wavelet transform (WT). Fourier analysis is the main support theory of traditional signal analysis, 
and its global variation characteristics lead to certain limitations of the analysis. The WT was 
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FIGURE 3.3 Signifcant change period of GNSS ZTD time series. 

generated through the continuous improvement of the Fourier transform. It is another effective 
time-frequency analysis method after Fourier transform in signal processing, image processing, and 
many nonlinear scientifc felds. It has a good “zoom” function, which refnes the signal progressively 
on multiple scales using extension and translation operations to achieve the effect of time subdivi-
sion at high frequencies and frequency subdivision at low frequencies (Li et al., 2020). WT is widely 
used in signal processing, image processing, and many nonlinear scientifc felds due to its time-
frequency localization and multi-resolution analysis capabilities (Cai et al., 2019). The Db6 wavelet 
basis function with tightly supported standard orthogonal wavelets was chosen to carry out a time-
frequency analysis of the GNSS ZTD time series (He et al., 2019). The principle of WT layering is 

Jto decompose the signal f(t) (frequency band is 0–F) into J+1 signal bands using 2, 4, 8,˜,  2  as 

the scale, where 0 - F 2n - F2J  is the low-frequency term (AJ) and F 2n-1(n =1, 2,3,˜,J ) is 
the high-frequency term (D1, D2, . . ., DJ). The corresponding periods of each frequency band are 
shown in Table 3.5. 
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TABLE 3.5 
The Corresponding Period of Wavelet Coeffcients at Each Scale 
Layers D1 D2 D3 D4 D5 D6 D7 

Period (h) 2–4 4–8 8–16 16–32 32–64 64–128 128–256 

Layers D10 D11 D12 D13 D14 D15 D16 

Period (h) 1024– 2048– 4096– 8192– 16384– 32768– 65536– 
2048 4096 8192 16384 32768 65536 131072 

D8 

256–512 

A16 

131072– 
∞ 

D9 

512–1024 

The data time length of this study corresponds to the D16 layer period range. After the test, the 
GNSS ZTD time series was divided into 16 layers using the Db6 wavelet basis function to satisfy 
the stratifcation qualifcation criteria. D1–D16 layers are high-frequency terms, and the A16 layer 
is low-frequency terms (Figure 3.4). 

FIGURE 3.4 Wavelet coeffcients for each scale of GNSS ZTD time series. 
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It can be seen from Figure 3.4 that the WT can divide the original time series into high-frequency 
terms of different period scales and can obtain the characteristics of the variation of any high-
frequency term in the time domain. The signifcance of the period can be judged by the amplitude 
of wavelet coeffcients in each layer. The analysis results of each site show that the wavelet coef-
fcient amplitude thresholds of the D1, D14, D15, and D16 layers are signifcantly smaller than those 
of other layers. Therefore, the corresponding cycles of these layers are not signifcant and are not 
the dominant periods of GNSS ZTD timing variation. Among the wavelet coeffcients with more 
signifcant amplitudes, D2–D4 layers correspond to diurnal and semi-diurnal periods, and D5–D10 
layers correspond to cycles of variation within 3 days–3 months. This conclusion corresponds to 
the frequency interval (0.3, 10) where signifcant variation cycles exist in the FFT analysis results. 
The D11 layer corresponds to seasonal variation periods, layer D12 corresponds to semi-annual 
variation periods, and layer D13 corresponds to annual variation periods (containing signifcant 
9-month variation periods). The threshold values of wavelet coeffcients at each scale coincide with 
the results of the FFT analysis. It is concluded that the variation of the GNSS ZTD time series is 
mainly driven by the high-frequency term in layers D2–D13 and the trend term (A16). Wavelet coef-
fcients in layers D1, D14, D15, and D16 are the anomalous variation time series of GNSS ZTD. The 
D1 layer corresponds to a smaller period. It is treated as noise because the amplitude of the normal 
wavelet component is larger when the orthogonal wavelets are processed for signals, in contrast to 
the uniform variation of the noise in the high-frequency part exactly. After WT decomposes the 
signal, the larger amplitude is the useful signal, and the smaller amplitude is generally the noise. 
Related research shows that the noise generally exists in D1 and D2 layers after the original signal 
is processed by WT (Peng and Chen, 2016). The D1 layer wavelet coeffcients of GNSS ZTD are 
removed as the noise layer, and the other wavelet coeffcients are reconstructed to denoise each sta-
tion’s original GNSS ZTD sequence in mainland China. 

In summary, the spatial distribution of GNSS ZTD shows an increasing trend from northwest to 
southeast, and the regional pattern is more consistent with the fve major climate-type divisions in 
mainland China. There are signifcant annual periods, 9-month periods, semi-annual periods, sea-
sonal periods, diurnal and semi-diurnal waves, and other signifcant variation periods in the GNSS 
ZTD time series. 

3.4 THE CORRELATION FEATURES BETWEEN GNSS 
ZTD ANOMALY AND ENSO EVENT 

3.4.1 gnss Ztd anoMaly sequence 

In this chapter, GNSS ZTD anomaly sequences were used to analyze the impact of ENSO events 
on climate anomalies in mainland China. The GNSS ZTD anomaly time series can be obtained by 
removing the trend signal and the signifcant periodic signal (Zhao et al., 2020). The original time 
resolution of GNSS ZTD is 1 hour, and its monthly average was taken to match the time resolu-
tion of the ENSO discriminant index and to explore the correlation characteristics between them. 
The GNSS ZTD monthly mean time series is decomposed into 7 layers using the WT method. 
According to the table of corresponding periods of wavelet coeffcients at each scale (Table 3.5), it 
is known that the D1 layer corresponds to 2–4 monthly variation periods, the D2 layer corresponds 
to semi-annual periods, the D3 layer is an annual period, and A7 layer is a trend term. It can be 
concluded that the change of GNSS ZTD is mainly driven by the trend term (A7), the annual period 
term (D3), the semi-annual period term (D2), and the seasonal period term (D1) by comparing the 
amplitudes of wavelet coeffcients at each scale. Therefore, GNSS ZTD anomaly sequences can 
be obtained by removing D1, D2, D3, and A7 and reconstructing the high-frequency terms in the 
D4–D7 layer. The results are shown in Figure 3.5. The black solid line is the original GNSS ZTD 
monthly mean sequence, the red line is the primary GNSS ZTD driver term, and the dark blue line 
is the reconstructed GNSS ZTD anomaly sequence. 
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FIGURE 3.5 GNSS ZTD anomaly sequence reconstruction. 

3.4.2 enso eVents discriMinatory index 

ENSO events consist of two components: El Niño (mainly for the ocean) and the Southern Oscillation 
(mainly for the atmosphere). These two components are manifestations of the same phenomenon 
in different media, and the two phenomena constitute a cyclic system. There is no signifcant pat-
tern in the evolution of ENSO events, and there are differences between each event. The formation 
mechanism of the ENSO phenomenon is a question that has been explored by related scholars. The 
ENSO event discriminatory index has been evolving with the continuous improvement of monitor-
ing tools and monitoring areas. The Southern Oscillation Index (SOI) was the most commonly used 
in the early days (McBride and Nicholls, 1983), which discriminated against ENSO events mainly 
from the atmospheric perspective. Trenberth (1997) later verifed that using the sea surface tem-
perature (SST) index for the Niño 3.4 region of the eastern Pacifc was more accurate. Figure 3.6 
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shows the key monitoring areas for ENSO events, where the Niño 1 + 2 area (0–10°S, 90–80°W) is 
the smallest of the monitoring areas. It is located in the coastal region of South America, where El 
Niño was frst detected. The Niño 3 region (5°S–5°N, 150–90°W) used to be the main observational 
area for monitoring and predicting ENSO events. However, Trenberth found that the key region 
for ENSO event sea-air interactions is further west. The Niño 4 region (5°S–5°N, 160°E–150°W) 
captures the SST anomaly in the central equatorial Pacifc more accurately. Therefore, the Niño 
3.4 region (5°S–5°N, 170–120°W) becomes the main observation area. The National Oceanic and 
Atmospheric Administration (NOAA) defnes the 3-month sliding average of the Sea Surface 

FIGURE 3.6 The sea surface temperature monitoring area. 

FIGURE 3.7 The time series of ENSO events discrimination index. 
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Temperature Anomaly (SSTA) in the Niño 3.4 region as the Oceanic Niño Index (ONI). Since the 
variation of Niño 3.4 SSTA and SOI are sometimes inconsistent, Wolter and Timlin proposed a 
Multivariate ENSO Index (MEI) (Wolter and Timlin, 1998). The index incorporates multiple atmo-
spheric and oceanic meteorological elements to provide a more comprehensive characterization of 
ENSO events. A new version of MEI (MEI.v2) has now been created, which was obtained by prin-
cipal component analysis of fve variables: sea level pressure (SLP), sea surface temperature (SST), 
surface zonal winds (U), surface meridional winds (V), and outgoing longwave radiation (OLR). 
These fve variables were obtained by principal component analysis. In this chapter, the three most 
commonly used ENSO event discriminant indices, SOI, ONI, and MEI, will be analyzed separately 
to screen out the index with the strongest correlation with GNSS ZTD in mainland China. NOAA 
provides SOI, ONI, and MEI data (https://psl.noaa.gov/enso/), all with a temporal resolution of 1 
month (Figure 3.7). When SOI £ -0.5 for 5 consecutive months or more, an El Niño event was deter-
mined. When SOI ³ 0.5 for 5 consecutive months or more, a La Niña event was determined. When 
ONI/MEI ³ 0.5 for at least 5 consecutive months, it is judged as an El Niño event, and when ONI/ 
MEI £ -0.5 for at least 5 consecutive months, it is judged as a La Niña event. 

3.4.3 construction oF generaliZed additiVe Models 

The time series of GNSS ZTD anomaly and ENSO event discriminant index have complex nonlin-
ear variation characteristics. Therefore, the linear or nonlinear correlation characteristics between 
GNSS ZTD anomalies and various ENSO events in different regions of mainland China are deter-
mined based on generalized additive models (GAMs). The ENSO event discriminant index with the 
most signifcant correlation with the GNSS ZTD anomaly sequence was selected. GAMs can simul-
taneously ft explanatory variables with linear and complex nonlinear relationships with response 
variables into the model (Hastie and Tibshirani, 1986). Its core equation is: 

g u( ) = f x1 1  2 2( )+f x( )+  +˜ fi ( )i + X q a+ (3.37) x j 

where u represents the expected value of the response variable, g u( ) represents the connection 
function, x x2 ,˜, x  represents the explanatory variable, and f xi is a smooth function of the1, i ( )i 
linear or nonlinear relationship between the explanatory variable and the response variable. 

The model does not require the analyst to pre-specify the form of the nonlinear relationship. It 
uses a smooth spline function to establish the relationship between the explanatory and response 
variables and can automatically select the appropriately segmented polynomial (He and Lin, 2017). 
The model was constructed using the mgcv package in R ́ 64 4.2.0 software (https://mirrors.bfsu. 
edu.cn/CRAN/). The three ENSO event discriminant indices ONI (°C), MEI, and SOI were used as 
explanatory variables. The GNSS ZTD anomaly in each region was used as the response variable 
to construct the GAMs. The degree of correlation between each explanatory variable and response 
variable was analyzed, and the analysis results are shown in Table 3.6. In the table, * * * indicates 
that the variable is signifcant at the 0.001 level. The effect graphs of ONI, MEI, and SOI on the 
variation of GNSS ZTD anomaly sequences in different regions were obtained (Figure 3.8). 

In Table 3.6, the equivalent degree of freedom (edf) is the number of variables that are not 
restricted in their values when calculating a statistic. When the edf is 1, it means linear cor-
relation; when the edf is greater than 1, it means nonlinear correlation. The F-value represents 
the test statistic set, and the larger the F-value indicates the more signifcant the relative impor-
tance of the infuencing factors. The P-value represents the signifcance index, and the smaller 
the P-value indicates the more signifcant correlation. The adjusted coeffcient of determination 
(R²) is the ratio of the sum of squares of regression to the sum of squares of total deviations. 
The higher the R² and deviance explained indicates the better model ft and the stronger the 
correlation between the two. 

https://mirrors.bfsu.edu.cn
https://mirrors.bfsu.edu.cn
https://psl.noaa.gov
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TABLE 3.6 
Analysis Results of GNSS ZTD Anomalies and ENSO Index GAMs Models in Each Region 
Region Explanatory variables edf F-value P-value Deviance explained (%) R² 

TPMZ ONI 8.49 120.21 <2e-16 *** 49.11 0.4869 

MEI 8.23 123.59 <2e-16 *** 50.5 0.501 

SOI 8.56 50.39 <2e-16 *** 44.71 0.4426 

SMZ ONI 8.87 560.79 <2e-16 *** 46.43 0.4635 

MEI 8.9 824.8 <2e-16 *** 54.6 0.545 

SOI 8.89 490.87 <2e-16 *** 43.21 0.4313 

TMZ ONI 8.72 546.41 <2e-16 *** 47.97 0.4787 

MEI 8.96 615.4 <2e-16 *** 52 0.519 

SOI 8.87 468.69 <2e-16 *** 43.92 0.4382 

TCZ ONI 8.86 440.72 <2e-16 *** 51.6 0.514 

MEI 8.93 1508.3 <2e-16 *** 48.63 0.4854 

SOI 8.9 360.17 <2e-16 *** 45.63 0.4549 

MPZ ONI 8.43 325.87 <2e-16 *** 43.43 0.4331 

MEI 8.54 378.43 <2e-16 *** 43.89 0.4376 

SOI 8.66 230.78 <2e-16 *** 41.48 0.4135 

In Figure 3.8, the blue shaded areas represent the upper and lower limits of the 95% conf-
dence intervals. The solid line represents the smoothed ft curve of each explanatory variable 
to the GNSS ZTD anomaly series. The horizontal axis indicates the actual values of each 
explanatory variable, and the values in parentheses in the vertical axis indicate the edf. The 
analysis results show that all ENSO event discriminant indices signifcantly affect the GNSS 
ZTD anomaly variation in each region at the P < 0.001 level. This result indicates that ENSO 
events are statistically signifcant as explanatory variables for GNSS ZTD anomaly variation. 
ONI, MEI, and SOI are all non-linearly correlated with GNSS ZTD in each region (the edf 
greater than 1). The GAMs of MEI-GNSS ZTD anomaly for each region has the highest devi-
ance explained and R², indicating that MEI is the best correlated with the GNSS ZTD anomaly 
in each area. Therefore, MEI is involved in further analytical studies as the best ENSO event 
discriminant index. 

3.5 GNSS ZTD VARIATION AND RESPONSE TO ENSO 

3.5.1 the response threshold oF gnss Ztd anoMaly to enso 

Quantifying the correlation between MEI and GNSS ZTD anomaly series is benefcial for a more 
effective analysis of the infuence patterns of ENSO events on climate change in different regions 
of mainland China. Since the GNSS ZTD anomaly is non-linearly correlated with MEI, the cor-
relation coeffcients of the two are analyzed by moving the window correlation analysis (MWCA). 
The moving window size was frst determined, and each independent window’s local correlation 
coeffcient was calculated. Eventually, a smoothed time series of correlation coeffcients was gener-
ated (Zhao et al., 2020). The best common period between GNSS ZTD anomaly and MEI is used 
as a moving window to reduce the effect of temporal heterogeneity between MEI and GNSS ZTD 
anomaly sequences. The signifcant change periods of MEI and GNSS ZTD anomaly sequences 
were extracted separately using the FFT method, and a comparative analysis was carried out. The 
analysis results show no signifcant difference in each station’s primary variation periods of GNSS 
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FIGURE 3.8 Correlation characteristics of ENSO discriminant index with GNSS ZTD anomaly in each 
region of mainland China. 

ZTD anomaly sequences. Four evenly distributed stations were taken as examples, and the common 
period analysis results are displayed (Figure 3.9). 

As can be seen from Figure 3.9, there are signifcant 90-month (corresponding to frequency 0.011 
cpm), 40-month (corresponding to frequency 0.025 cpm), 24-month (corresponding to frequency 
0.042 cpm), and 18-month (corresponding to frequency 0.056 cpm) signifcant variation periods of 
MEI. The GNSS ZTD anomaly sequences of each region also have the same variation period, the 
most signifcant of which is the 24-month variation period. The moving window correlation analysis 
of GNSS ZTD anomaly with MEI at each site was conducted to analyze the best common period 
using four common periods as the moving windows. The magnitudes of the average correlation 
coeffcients of GNSS ZTD anomaly and MEI in each region under different moving windows were 
compared, and the analysis results are shown in Table 3.7. 
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FIGURE 3.9 Common signifcant variation period of MEI and GNSS ZTD anomaly sequences. 

TABLE 3.7 
Comparison of the Correlation Coeffcient between GNSS ZTD Anomaly and MEI under 
Different Moving Windows 
Regions 90-Month 40-Month 24-Month 18-Month 

TPMZ 0.234 0.332 0.463 0.577 

SMZ 0.258 0.353 0.467 0.569 

TMZ 0.266 0.356 0.452 0.559 

TCZ 0.209 0.340 0.435 0.556 

MPZ 0.234 0.349 0.451 0.556 

The correlation coeffcients in Table 3.7 all pass the 0.01 level of a signifcance test. The com-
parison results show that the correlation of each region under the 18-month moving window is better 
than that under other window lengths, and 18 months is the optimal common period. Therefore, 
the moving time window is set to 18 months. The results of sliding correlation analysis between 
GNSS ZTD anomaly series and MEI in each region are shown in Figure 3.10 (randomly selected 
uniformly distributed stations). Different types of ENSO events have different effects on the GNSS 
ZTD anomaly in various regions of mainland China. The EP-El Niño event positively affects the 
GNSS ZTD anomaly in tropical and subtropical monsoon zones. In the temperate monsoon, tem-
perate continental, and mountain plateau zones, the GNSS ZTD anomaly has contrary responses to 
the development and recession years of the EP-El Niño event. The EP-El Niño event development 
year has a negative effect on the GNSS ZTD anomaly in these three regions. In contrast, the EP-El 
Niño recession year positively affects them. The presumed reason is that in the development year 
of the EP-El Niño event, the East Asian summer monsoon weakened, and the central monsoon rain 
belt in summer shifted southward. It leads to suffcient precipitable water vapor in the southern 
region and is prone to high temperature and drought in the northern region. In the decay year of the 
EP-El Niño event, the Western Pacifc subtropical high (WPSH) is stronger and located southward. 
The westward shift of the WPSH transports precipitable water vapor from the Pacifc Ocean to the 
southern and central-eastern regions of China. Under the infuence of the East Asia-Pacifc “remote 
correlation”, the Asian west blocking high and east blocking high establish low-pressure troughs in 
the middle and high latitudes. It is conducive to continuously transporting Arctic Ocean precipitable 
water vapor to northwest China and north China. Therefore, the GNSS ZTD in China is constantly 
rising during this period (Wu et al., 2017; Zhai et al., 2016; Zhou et al., 2020b). The CP-El Niño 
event has a negative effect on the GNSS ZTD anomaly of temperate monsoon, temperate conti-
nental, tropical monsoon, and mountain plateau zones. It has a positive impact on the subtropical 
monsoon zone. The reason is the northward position of the WPSH during the CP-El Niño event, and 
a large amount of Pacifc evaporative precipitable water vapor is transported to the subtropical mon-
soon zone (Chen et al., 2019; Liu et al., 2019; Yuan et al., 2012). During the EP-La Niña and CP-La 
Niña events, the GNSS ZTD anomaly in China showed positive responses to them. The presumed 
reason is that during the La Niña event, the SST in the equatorial eastern Pacifc decreased, and 
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FIGURE 3.10 The moving window correlation analysis of GNSS ZTD anomaly and MEI in each region. 

the current sea temperature in the western Pacifc increased, resulting in a northward shift of the 
WPSH. The East Asian monsoon intensifes, and the major monsoon rain belts are northward, lead-
ing to abundant precipitable water vapor in temperate monsoon, temperate continental, and moun-
tain plateau zones. Due to the strong cold air masses from Siberia, Mongolia is rapidly moving to 
the southern regions, so precipitable water vapor is continuously transported to southern China. The 
meeting of cold and warm air currents increases rain and snow in central China (Shi et al., 2022; 
Zhang, 2021). The precipitable water vapor and rain/snow content are closely related to GNSS ZTD. 

This analysis shows that the GNSS ZTD anomaly in each region of mainland China has a more 
signifcant response to ENSO events. In this study, a linear ft of the correlation between MEI 
and GNSS ZTD anomaly series was used to quantify the effect of ENSO on GNSS ZTD anomaly 
in different regions of mainland China and to investigate the response threshold of GNSS ZTD 
anomaly to ENSO events. The correlation coeffcients between MEI and GNSS ZTD anomaly 
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FIGURE 3.11 The MEI threshold for GNSS ZTD anomaly in each region response to ENSO events. 

sequences were divided using the percentile method for quantitative analysis. The percentile 
method is a simple method commonly used to represent the distribution status of variables. The 
percentile method is commonly used to represent a variable’s distribution status. The calculation 
process sorts the sample data from smallest to largest and calculates the corresponding cumula-
tive percentile. At present, the 25-percentile and 75-percentile methods are widely used. The total 
sample size is divided into three parts, with the upper and lower percentiles being 75% and 25%, 
respectively. The middle 50% is the normal part (Zhao et al., 2020). Figure 3.11 shows the scatter 
plot of the correlation between MEI-GNSS ZTD anomaly and MEI. From the analysis results, it 
can be seen that different regions have different response thresholds to ENSO events. The MEI 
thresholds for GNSS ZTD anomaly in the tropical monsoon zone response to El Niño and La 
Niña events are -1.12 and 1.92, respectively. Therefore, the anomaly changes of GNSS ZTD in 
China’s tropical monsoon zone when the MEI exceeds the range of (-1.12, 1.92) are infuenced 
by El Niño and La Niña events. The MEI thresholds for GNSS ZTD anomaly in the subtropical 
monsoon zone response to El Niño and La Niña events are -1.12 and 1.61, respectively. When the 
MEI exceeds the range of (-1.12, 1.61), the anomaly changes of GNSS ZTD in the subtropical 
monsoon zone of China are infuenced by ENSO events. Similarly, the MEI thresholds for the 
GNSS ZTD anomaly response to ENSO events are (-1.19, 1.62) for temperate monsoon climate 
regions. The MEI thresholds for the GNSS ZTD anomaly to ENSO events are (-1.26, 1.64) for 
temperate continental zones and (-1.22, 1.72) for mountain plateau zones. 

3.5.2 the response pattern oF gnss Ztd Frequency doMain Variation to enso 

In this chapter, the response of GNSS ZTD frequency domain oscillation characteristics to ENSO 
events is investigated to more comprehensively analyze the impact of ENSO events on GNSS ZTD 
in China. The ENSO event occurrence period and its corresponding normal climate period were 
intercepted from the complete time series, and the signifcant variation period amplitudes of GNSS 
ZTD were compared for each period. The change frequency (cpm) of each element was analyzed 
using FFT, and the change period (frequency) and amplitude were accurately extracted using the 
[pks, locs] function. Three normal climate periods and one ENSO event period were selected for 
comparative analysis to ensure the accuracy and reliability of the results. A total of nine ENSO events 
were included in this study period, and six ENSO events that occurred after 2010 were selected for 
analysis based on the completeness of GNSS ZTD data and the duration of ENSO events (Table 3.8). 
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TABLE 3.8 
Screening Results of ENSO Event Periods and Normal Climate Periods 
Event Type Abnormal Climate Normal Climate1 Normal Climate2 Normal Climate3 

EP-El Niño 2015/5–2016/4 2012/5–2013/4 2013/5–2014/4 2016/5–2017/4 

CP-El Niño-1 2018/9–2019/6 2012/9–2013/6 2013/9–2014/6 2016/9–2017/6 

CP-El Niño-2 2019/11–2020/3 2012/11–2013/3 2013/11–2014/3 2016/11–2017/3 

EP-El La Niña-1 2010/6–2011/5 2012/6–2013/5 2013/6–2014/5 2016/6–2017/5 

EP-El La Niña-2 2020/8–2021/3 2012/8–2013/3 2013/8–2014/3 2016/8–2017/3 

CP-El La Niña 2011/8–2012/3 2012/8–2013/3 2013/8–2014/3 2016/8–2017/3 

3.5.2.1 The Effect of El Niño Events on the GNSS ZTD Signifcant Change Period 
This study period includes three El Niño events, of which October 2014 to April 2016 is an 
EP-El Niño event period. Three normal climate periods and one EP-El Niño event period were 
selected for comparison and analysis. This EP-El Niño event lasts 19 months, and only one time 
series of normal climate corresponds to it in the studied time series range (2012/10–2014/4). 
We intercepted 12 months (2015/5–2016/4) forward and backwards from the peak time of this 
event to carry out the analysis to ensure the accuracy of the results. The signifcant variation 
periods of GNSS ZTD during four periods were analyzed using FFT to explore the differences 
and patterns during the EP-El Niño event compared with normal climate periods. Due to the 
intercept length of 12 months, the FFT results only show the GNSS ZTD signifcant variation 
periods within 9 months and less. These include the 9-month period (corresponding to a fre-
quency of 0.11 cpm) and the signifcant variation period within 0.8–3 months (corresponding 
to a frequency interval of [0.3, 1.3]) as well as the daily and semi-diurnal waves (correspond-
ing to frequencies of 1/30cpm and 1/60 cpm, respectively). The analysis results of three uni-
formly distributed stations in each climate type region were selected separately for presentation 
(Figures 3.12–3.16). 

As seen from Figure 3.12, the amplitude of the 9-month signifcant variation period (correspond-
ing to frequency 0.11 cpm) of GNSS ZTD in the TPMZ during the EP-El Niño has decreased to 
varying degrees compared to the three normal climate periods. The amplitude of the GNSS ZTD 
0.9-month variation period for HISY and QION has increased to different degrees. The amplitude 
of the GNSS ZTD 2.5-month variation period at QION has increased. There is a signifcant increase 
in the amplitude of the 3-month and 1.5-month signifcant change periods for the GNSS ZTD at 
the YNMH site. The amplitude of the GNSS ZTD diurnal and semi-diurnal waves at the HISY site 
and the semi-diurnal wave amplitudes at the QION and YNMH sites decreased. The GNSS ZTD 
diurnal wave amplitude at the QION and YNMH sites increased. 

From Figure 3.13, the amplitude of the 9-month signifcant variation period of GNSS ZTD 
in the subtropical monsoon climate region during the EP-El Niño event decreased to varying 
degrees compared to the three normal climate periods. The amplitudes of daily and semi-
diurnal waves of GNSS ZTD at KMIN decreased, while those at LUZH and WUHN increased 
signifcantly. 

According to Figure 3.14, the amplitude of the 9-month signifcant change period of GNSS 
ZTD in the TMZ during the EP-El Niño event is signifcantly lower than that of the three 
normal climate periods. In the frequency interval of (0.2, 1.4), the amplitude of GNSS ZTD 
signifcant variation during the EP-El Niño event has increased in different degrees compared 
with the normal time. During the EP-El Niño event, the 3-month period amplitudes of CHUN 
and BJFS are signifcantly higher, the 1.3-month period amplitude of XIAA is signifcantly 
higher, and the 0.8-month period amplitude of all three stations is enhanced. The diurnal wave 
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FIGURE 3.12 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the TPMZ. 

FIGURE 3.13 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the SMZ. 
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FIGURE 3.14 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the TMZ. 

FIGURE 3.15 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the TCZ. 
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FIGURE 3.16 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the MPZ. 

amplitude decreases at BJFS and increases at XIAA, and the semi-diurnal wave amplitude 
increases at all three sites. 

Figure 3.15 shows that the GNSS ZTD period variation patterns of individual stations in TCZ 
are relatively consistent. The amplitude of the signifcant variation period of the GNSS ZTD about 
9 months during the EP-El Niño event is slightly lower than that of the three normal climate periods. 
In the frequency range of (0.6, 1), the amplitude of GNSS ZTD signifcant variation period during 
the EP-El Niño event has a more obvious increase compared with the normal climate period. The 
amplitudes of the 1.5-month and 1-month periods of the GNSS ZTD at each station are signifcantly 
higher. The amplitudes of the diurnal and semi-diurnal waves of the GNSS ZTD at the YANC sta-
tion decrease, and the amplitudes of the diurnal and semi-diurnal waves of the GNSS ZTD at the 
DIXN station increase. 

From Figure 3.16, the amplitude of the 9-month period of GNSS ZTD in the MPZ during the 
EP-El Niño event decreases to different degrees compared to the three normal climate periods. The 
amplitudes of the GNSS ZTD signifcant change period at the LHAZ site in the (0.3, 0.6) frequency 
interval are signifcantly higher. The 1.2-month period amplitudes of the GNSS ZTD at the WUSH 
and DLHA sites are signifcantly higher. The amplitudes of the diurnal and semi-diurnal periods of 
the GNSS ZTD at the LHAZ site and the semi-diurnal periods of the GNSS ZTD at the DLHA site 
increase to different degrees. The amplitudes of diurnal and semi-diurnal periods of GNSS ZTD at 
the WUSH site have decreased to various degrees. The results of all the analyzed sites in China are 
summarized as shown in Figure 3.17. 

The analysis results of each station show that the amplitude of the 9-month signifcant variation 
period of GNSS ZTD in mainland China is reduced to different degrees under the infuence of the 
EP-El Niño event. The amplitudes of the signifcant variation periods of 0.8, 1.2, 1.5, and 3 months 
have increased to different degrees. Only a few stations have no variation pattern, and these stations 
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FIGURE 3.17 Response patterns of GNSS ZTD signifcant change period amplitudes to EP-El Niño events. 

are located at higher latitudes in mainland China, where the GNSS ZTD (PWV) content is low, and 
the variation is not active. Moreover, during this EP-El Niño event, the northerly wind fow in the 
northern region was suppressed, which affected the normal circulation of precipitable water vapor 
in some regions (Liu et  al., 2018). Some stations’ GNSS ZTD diurnal and semi-diurnal periods 
respond to the EP-El Niño event, but there is no signifcant change pattern. Because the GNSS 
ZTD small-scale period is signifcantly affected by local climatic conditions and is prone to fuctua-
tions and amplitude instability, the regional pattern of GNSS ZTD diurnal period and semi-diurnal 
period amplitude changes are not signifcant. 

The study period contains two CP-El Niño events. For CP-El Niño-1, three normal climate peri-
ods, 2012/09–2013/06, 2013/09–2014/06, and 2016/09–2017/06, were screened for comparison and 
analysis. For the CP-El Niño-2, three normal climate periods, 2012/11–2013/03, 2013/11–2014/03, 
and 2016/11–2017/03, were selected for comparison with it. FFT analyzed the signifcant variation 
period of GNSS ZTD in each period, and the differences and patterns of GNSS ZTD time series 
oscillation characteristics between the CP-El Niño event and normal climate periods were investi-
gated. The duration of the CP-El Niño-1 is 10 months. The FFT results can only show GNSS ZTD 
signifcant variation periods of 3 months and less and some linear trends of 9-month signifcant 
variation periods. The signifcant period of 3 months or less includes a 1.2–3 months signifcant 
period (corresponding to frequency interval [0.3, 0.8]) and diurnal and semi-diurnal periods (cor-
responding to frequencies of 1/30 cpm, 1/60 cpm, respectively). The duration of the CP-El Niño-2 
is 5 months. The FFT results only show GNSS ZTD signifcant variation periods of 2 months and 
less, including 1.2–1.5 months signifcant variation periods (corresponding to the frequency interval 
of [0.6, 0.8]) as well as diurnal and semi-diurnal periods. The analysis results of the GNSS ZTD 
signifcant variation periods of some stations in different regions in response to the CP-El Niño-1 
are presented in Figures 3.18–3.22. 

Figure  3.18 shows that the amplitude of GNSS ZTD signifcant change period in the TPMZ 
during the CP-El Niño-1 event has different degrees of increase in the frequency interval of (0.4, 



 

86 3S Technology Applications in Meteorology 

FIGURE 3.18 The effect of CP-El Niño-1 on the GNSS ZTD signifcant change period in the TPMZ. 

0.7) compared with the normal climate. The 1.4 monthly cycles amplitude of GNSS ZTD at HISY 
and QION sites increases. The amplitude of GNSS ZTD diurnal waves at HISY and QION sites 
increases. The amplitude of the GNSS ZTD diurnal wave at the YNMH site decreases. The ampli-
tude of the GNSS ZTD semi-diurnal wave at the QION site increases while that of all other sites 
decreases. Due to the limitation of time series length, the 9-month signifcant variation period of 
GNSS ZTD cannot be shown completely. However, the trend lines of the 9-month signifcant varia-
tion period can be judged. The amplitude of the GNSS ZTD 9-month signifcant variation period in 
the TPMZ decreases during CP-El Niño-1. 

According to Figure 3.19, the amplitude of GNSS ZTD signifcant change period in the SMZ 
during the CP-El Niño-1 event has different degrees of increase in the frequency interval of (0.4, 
0.7) compared with the normal climate. The 2-month period amplitude of GNSS ZTD at KMIN and 
WUHN sites increased. The 2.5-month period amplitude of GNSS ZTD at LUZH and KMIN sites 
increased. The 1.4-month period amplitude of the GNSS ZTD at the LUZH site increases. The diur-
nal period amplitude of the GNSS ZTD at the WUHN site decreases, while there is no signifcant 
change at other sites. The semi-diurnal period amplitude decreases at all three sites. The amplitude 
of the 9-monthly signifcant variation period at each site decreases as judged by the partial trend line 
of the 9-monthly period of GNSS ZTD. 

As seen in Figure 3.20, the amplitude in the (0.3, 0.7) frequency interval of the GNSS ZTD in 
the TMZ during the occurrence of CP-El Niño-1 has increased to different degrees compared to the 
normal climate. The 2-month period amplitude of the GNSS ZTD at the CHUN and BJFS sites is 
signifcantly increased. The 3-month period amplitude of the GNSS ZTD at the XIAA site is sig-
nifcantly raised. The daily period amplitude of GNSS ZTD increases at the CHUN site. The diur-
nal and semi-diurnal periods amplitude of GNSS ZTD decreases to different degrees at BJFS and 
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FIGURE 3.19 The effect of CP-El Niño-1 on the GNSS ZTD signifcant change period in the SMZ. 

FIGURE 3.20 The effect of CP-El Niño-1 on the GNSS ZTD signifcant change period in the TMZ. 
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FIGURE 3.21 The effect of CP-El Niño-1 on the GNSS ZTD signifcant change period in the TCZ. 

XIAA sites. The 9-monthly signifcant change period amplitude of the GNSS ZTD in this region 
decreases as judged by the partial trend line of the 9-monthly signifcant change period. 

As shown in Figure 3.21, the amplitude in the (0.3, 0.7) frequency interval of the GNSS ZTD 
in the TCZ during the occurrence of CP-El Niño-1 has increased to different degrees compared 
to the normal climate period. The 1.8-month period amplitude of the GNSS ZTD at all three sites 
increases. The daily period amplitude of the GNSS ZTD at the DXIN and HLAR sites decreases. 
The GNSS ZTD semi-diurnal period amplitude at the HLAR site increases, the GNSS ZTD semi-
diurnal period amplitude at the YANC and DXIN sites does not change signifcantly. The 9-monthly 
signifcant change period amplitude of the GNSS ZTD in this region decreases as judged by the 
partial trend line of the 9-monthly signifcant change period. 

Figure 3.22 shows that the GNSS ZTD signifcant change period amplitude in the (0.3, 0.7) fre-
quency interval during the CP-El Niño-1 has increased to different degrees than the normal period 
in the MPZ. The 3-month and 1.7-month period amplitudes of GNSS ZTD at the WUSH site are 
signifcantly higher. The 1.4-month period amplitude at the DLHA and LHAZ sites signifcantly 
increases. The diurnal and semi-diurnal amplitudes of the GNSS ZTD at the WUSH and LHAZ 
sites decreased to varying degrees. The semi-diurnal wave amplitude of the GNSS ZTD at the 
DLHA did not change signifcantly. The amplitude of the 9-month signifcant variation period of 
GNSS ZTD at the WUSH site decreases as judged by the partial trend lines of the 9-month signif-
cant variation period. The same analysis is done for the CP-El Niño-2. The results of the analysis 
of the effects of the two CP-El Niño events on the GNSS ZTD signifcant variation periods of all 
stations in China are summarized in Figures 3.23–3.24. 

According to Figures 3.23–3.24, under the infuence of the CP-El Niño event, the amplitude of the 
9-month signifcant variation period of the GNSS ZTD decreases at most stations in the mainland 
China region, while the amplitude of the signifcant variation cycle within 1.2–3 months increases to 
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FIGURE 3.22 The effect of EP-El Niño on the GNSS ZTD signifcant change period in the MPZ. 

FIGURE 3.23 Response patterns of GNSS ZTD signifcant change period amplitudes to CP-El Niño-1 
events. 
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FIGURE 3.24 Response patterns of GNSS ZTD signifcant change period amplitudes to CP-El Niño-2 
events. 

different degrees. Only some stations have no variation pattern, mainly concentrated in the MPZ. The 
amplitude changes of GNSS ZTD diurnal and semi-diurnal periods are varied in response to the two 
CP-El Niño events. Under the infuence of the CP-El Niño-1, the amplitude of GNSS ZTD diurnal and 
semi-diurnal waves decreases at most sites in the MPZ and Sichuan-Yunnan regions, while there is no 
obvious change pattern in other areas. Under the infuence of the CP-El Niño-2, the GNSS ZTD diur-
nal period amplitude decreases at some stations in the Sichuan-Yunnan region and southeast coastal 
area and increases at some stations in northwest China. There is no apparent regional pattern in the 
semi-diurnal period amplitude change. The CP-El Niño-2 has a shorter duration and weaker magni-
tude and has no signifcant effect on most sites’ small-scale variation period of GNSS ZTD. 

3.5.2.2 The Effect of La Niña Events on the GNSS ZTD Signifcant Change Period 
The effects of two EP-La Niña events and one CP-La Niña event on the signifcant change periods 
of GNSS ZTD were analyzed separately according to the analysis methods described in the previous 
section. The results are shown in Figures 3.25–3.27. The EP-La Niña-1 is 12 months, and the FFT 
results only indicate the 9-month signifcant change periods of GNSS ZTD and less. Among them, 
the signifcant variation periods that exist in response to ENSO events include a 9-month period (cor-
responding to the frequency of 0.11 cpm) and 1–3-month signifcant variation periods (correspond-
ing to the frequency interval of [0.3, 1]) as well as diurnal and semi-diurnal periods (corresponding 
to frequencies of 1/30 cpm and 1/60 cpm, respectively). The EP-La Niña-2 event is 8 months, and 
the FFT results show only signifcant change periods of 3 months and less and a partial linear trend 
of 9-month signifcant change periods. The signifcant change periods that respond to ENSO events 
include 1–3 months (corresponding to the frequency interval [0.3, 1]) and diurnal/semi-diurnal peri-
ods. The CP-La Niña event has a duration of 8 months, and the FFT results only show the signifcant 
change periods of 3 months and less and a partial linear trend of 9-month signifcant change peri-
ods. The signifcant variation periods in response to ENSO events include 1.2–3-month signifcant 
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variation periods (corresponding to a frequency interval of [0.3, 0.8]) and diurnal and semi-diurnal 
periods (corresponding to frequencies of 1/30 cpm and 1/60 cpm, respectively). 

FIGURE 3.25 Response patterns of GNSS ZTD signifcant change period amplitudes to EP-La Niña-1 events. 

FIGURE 3.26 Response patterns of GNSS ZTD signifcant change period amplitudes to EP-La Niña-2 events. 
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According to Figure  3.25, under the EP-La Niña-1, the amplitude of the 9-month signifcant 
variation period of GNSS ZTD decreases at most sites in mainland China. In contrast, the ampli-
tude of the signifcant variation period within 1–3 months increases to different degrees. There is 
no variation pattern for individual stations in the SMZ and MPZ. The precipitable water vapor base 
in the SMZ is large and active, which causes the GNSS ZTD signifcant change period amplitude 
at individual stations to show no change pattern. The amplitude of GNSS ZTD diurnal and semi-
diurnal periods decreases at most stations and shows a certain regional pattern in the MPZ and 
Sichuan-Yunnan regions. 

As shown in Figure  3.26, under the infuence of the EP-La Niña-2, the amplitude of the 
9-month signifcant change period of the GNSS ZTD decreases at most stations in main-
land China, and the amplitude of the signifcant change period within 1–3 months increases. 
Compared with the EP-La Niña-1, the EP-La Niña-2 event is shorter in duration. It has a weaker 
impact on the 9-month signifcant period in China, showing a larger number of stations with no 
variation pattern. The sites with various patterns of GNSS ZTD frequency domain oscillations 
all show a decrease in amplitude, which is consistent with the analysis results of the EP-La 
Niña-1. The diurnal and semi-diurnal period amplitudes of the GNSS ZTD decrease at most 
stations in the southern mountain plateau zone and subtropical monsoon zone, while there is no 
signifcant variation pattern in other zones. 

Figure 3.27 shows that under the infuence of the CP-La Niña event, the 9-month signifcant 
change period amplitude of the GNSS ZTD decreases at most stations in mainland China. In 
contrast, the amplitude of the signifcant change period within 1.2–3 months increases to differ-
ent degrees. The signifcant period amplitudes of GNSS ZTD in the subtropical monsoon coastal 
zone, the central temperate continental zone, and some stations in the mountain plateau zone 
have no variation pattern. Compared with other types of ENSO events, the effect of the studied 
CP-La Niña events on the 9-month and 1.2–3-month periods of GNSS ZTD is weaker, and there 

FIGURE 3.27 Response patterns of GNSS ZTD signifcant change period amplitudes to CP-La Niña events. 
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are more stations with no variation pattern. The diurnal and semi-diurnal waves of GNSS ZTD 
decrease in most stations, and the amplitude of individual stations increases, with no apparent 
regional pattern. 

In summary, the occurrence of the ENSO event has an impact on the 9-month signifcant varia-
tion period term, the 0.8–3-month signifcant variation period term, and the diurnal and semi-
diurnal periods of the GNSS ZTD in China. The 9-month signifcant variation period amplitude of 
the GNSS ZTD decreases, and the 0.8–3-month signifcant variation period amplitude of the GNSS 
ZTD increases. The variability of the diurnal and semi-diurnal periods is not signifcant. 

3.6 CONCLUSION 

GNSS ZTD is a good indicator of climate change. This chapter systematically analyzed the spa-
tial-temporal variation characteristics of GNSS ZTD in mainland China and used it to indicate the 
infuence regularity of ENSO events on climate change in different regions of mainland China. 
In the spatial domain, the GNSS ZTD shows an increasing trend from northwest to southeast. 
The regional pattern is more consistent with the fve major climate-type subdivisions in mainland 
China. In the time domain, the GNSS ZTD has signifcant annual periods, 9-month periods, 
semi-annual periods, seasonal periods and diurnal/semi-diurnal waves, and other considerable 
change periods. The response patterns of GNSS ZTD time-frequency variation characteristics 
to ENSO events in mainland China are analyzed and obtained. Different MEI thresholds exist 
for GNSS ZTD response to ENSO events in different climate type regions of mainland China. 
The MEI thresholds for the response of GNSS ZTD anomalies to ENSO events are (−1.12, 1.92) 
in the tropical monsoon zone, (−1.12, 1.61) in the subtropical monsoon zone, (−1.19, 1.62) in the 
temperate monsoon zone, (−1.26, 1.64) in the temperate continental zone, and (−1.22, 1.72) in the 
mountain plateau zone. Moreover, the occurrence of ENSO events has an impact on the signif-
cant change cycle of GNSS ZTD in China, which will lead to a decrease in the amplitude of the 
9-month signifcant change cycle of GNSS ZTD and an increase in the amplitude of the signif-
cant change period in 0.8–3 months. ENSO events also impact the small-scale periods (diurnal 
and semi-diurnal waves) of GNSS ZTD, but the amplitude changes have no signifcant regularity. 
This study can provide a reference for relevant meteorological monitoring departments and disas-
ter prevention and control departments. 
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4 Exploration of Cloud and 
Microphysics Properties 
from Active and Passive 
Remote Sensing 

Jinming Ge, Chi Zhang, Jiajing Du, Qinghao Li, 
Yize Li, Zheyu Liang, Yang Xia, and Tingting Chen 

4.1 THE IMPORTANCE OF CLOUDS 

Clouds play a crucial role in Earth’s climate by having an infuence on key parameters (Hartmann 
et al., 1992; Eerme, 2004), such as the radiation budget, the heating of the earth’s surface, and the dia-
batic heating of the atmosphere (Kondragunta and Gruber, 1996). On the one hand, clouds change the 
radiative balance and atmospheric heating rate by refecting solar radiation and absorbing surface and 
atmospheric long wave radiation, thus signifcantly affecting surface temperature and local atmospheric 
circulation; on the other hand, cloud formation is accompanied by evaporation, convection, uplift cool-
ing, supersaturation, and condensation of surface moisture, and then clouds return atmospheric mois-
ture to the surface in the form of rain or snow, thus changing moisture transport and distribution (Zhang 
et al., 2022). This changes the transport and distribution of water, which means that clouds regulate 
the water cycle by affecting atmospheric moisture transport and precipitation. Changes in water vapor 
will affect the occurrence, development, and extinction of clouds, and then change the cloud amount, 
cloud albedo, and cloud microphysical properties, thus changing the long wave and shortwave radiative 
effects of clouds, and eventually affecting the radiative balance of the earth’s atmosphere system. 

Clouds can also infuence atmospheric radiative heating and latent heat processes, which in turn 
can alter the thermodynamic state of the atmosphere. Moreover, clouds can infuence global and 
regional atmospheric thermal and dynamical processes through multiple spatial and temporal scale 
feedbacks (Slingo and Slingo, 1988), and indirectly infuence the climate system through interac-
tions with aerosols. However, the role of clouds in climate models is not well characterized in terms 
of representation and feedback, and is therefore an important factor contributing to the large uncer-
tainty in global climate model (Dolinar et al., 2015; Bony and Dufresne, 2005; Miao et al., 2021; 
Zhu et al., 2017a, 2017b). Therefore, in order to better understand climate projections, it is important 
to understand how clouds behave and how they interact with incoming solar radiation and departing 
longwave radiation (Figure 4.1). 

4.1.1 cloud radiatiVe Forcing 

In terms of the energy budget, clouds can both cool the climate by refecting incoming sunlight and 
warm it by absorbing and reemitting thermal radiation (Ramanathan et al., 1989; Hartmann et al., 
1992; Zelinka et al., 2012). The difference between the radiative fuxes at the top of the atmosphere 
(TOA), in the atmosphere, or at the surface under all sky and clear sky conditions is defned as 
cloud radiative forcing (also known as cloud radiative effect). According to the waveband, it can 
be divided into long wave cloud radiative forcing (LWCRF) and shortwave cloud radiative forcing 
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FIGURE 4.1 Impact of clouds on the energy balance of the ground-air system in IPCC AR6 (unit: W/m-2). 

(SWCRF). In addition, the defnition of net cloud radiative forcing refers to the difference in the net 
radiative fux at the TOA between clear sky and all the sky. 

4.1.2 cloud properties 

4.1.2.1 Cloud Classifcation 
The formation and distribution of clouds can be divided into two aspects: macroscopic properties 
and microscopic properties. The macroscopic properties include cloud amount, cloud height, and 
vertical overlap, while the microscopic properties include cloud water content, cloud and water phase 
change, optical thickness, cloud particle size, etc. Clouds are complex and variable, any change in 
cloud parameters may have a signifcant impact on global climate; the amount of clouds refects the 
characteristics of regional weather and climate, and the radiative effect of clouds is closely related 
to cloud height (Ding et al., 2004). Moreover, the latent heat release, cloud-forming rain, and radia-
tive effects of clouds are all infuenced by microphysical processes within clouds, which include the 
formation, growth, and interactions between warm cloud particles and ice-phase particles. 

The classifcation of clouds depends mainly on the cloud top height and optical thickness. The 
International Satellite Cloud Climatology Project (ISCCP) classifes clouds into high (CTP £ 4̃40 hPa), 
medium (440£CTP £ 680 hPa), and low (CTP £ 6̃80 hPa) clouds according to the cloud-top pressure 
(CTP), and more detailed classifcation according to the cloud-top pressure and optical thickness, i.e., 
49 types of clouds, including stratocumulus, cirrus, and deep convective clouds, etc. 

4.1.2.2 Cloud Cover 
Low clouds cover a wide area and have a dominant albedo effect, which contributes the most to the 
global average net energy balance and has a cooling effect on the earth’s atmosphere system. For 
example, marine low-level clouds effciently refect incoming solar radiation back to space while 
only weakly reducing the emission of terrestrial radiation to space, thereby exerting a strong cooling 
effect on the planet. As an important part of climate, tropical high clouds can strongly adjust the 
radiation budget of the earth by interacting with the output long wave radiation and the incoming 
solar radiation. The optically thin tropical high clouds are relatively transparent to solar radiation, 
and they typically produce more short wave cloud radiation effects (SWCRE) at the top of the atmo-
sphere to warm the earth (Lee et al., 2009). Conversely, thick tropical high clouds can refect a lot 
of solar radiation back into space, thus cooling the earth (Kubar et al., 2007). 

4.1.2.3 Optical Thickness 
Stratocumulus has infuence on both long wave and short wave fuxes. For example, stratocumulus 
and cirrus clouds of medium optical thickness mainly affect the short wave radiation fux at the top 
of atmosphere and at the surface, and stratocumulus and upper clouds of medium optical thickness 
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mainly affect the long wave radiation at the surface. In contrast, cirrus clouds, cirrus clouds and 
deep convective clouds with higher cloud top height make greater contributions to atmospheric top 
long wave radiation. 

4.1.2.4 Cloud Phase 
The cloud phase state refers to the liquid or solid state in which the cloud is located, i.e., water or 
ice clouds. Various inversion models of cloud microphysical parameters are established based on 
different phase state types. Accurate identifcation of cloud phase states is especially important 
to improve the inversion accuracy of cloud optical and microphysical parameters such as opti-
cal thickness and effective particle radius (Cho et  al., 2009; Riedi et  al., 2010). Clouds formed 
at temperatures above 0℃ can be assumed to contain only liquid droplets, while clouds found at 
temperatures below -40℃ are usually composed entirely of ice crystals (Pruppacher et al., 1998). 
However, at temperatures between -40℃ and 0℃ , clouds may consist entirely of ice crystals, 
supercooled liquid water droplets or a mixture of both (called mixed-phase clouds), which com-
plicates the estimation of their radiative effects (Wang et al., 2022). The wide global coverage and 
complex radiative properties of mixed-phase clouds can infuence climate on a global scale. The 
presence of supercooled liquid in mixed-phase clouds is particularly important because liquid water 
is opaquer to long wave radiation and increases cloud albedo more than ice crystals, especially at 
high latitudes, where it is an important driver of radiative fux (Forbes and Ahlgrimm, 2014; Kay 
et al., 2016; Matus and L’Ecuyer, 2017). 

4.1.3 cloud FeedBack 

The global warming effect would be amplifed by the doubling of CO2 concentration. Changes in 
the radiative effect of clouds directly affect the radiative balance of the earth’s atmosphere sys-
tem and the closely related temperature changes. Additionally, a mere 4% increase in global low 
cloud cover would be suffcient to offset the 2–3°C global warming caused by a doubling of CO2 

concentration, and vice versa to amplify the corresponding warming effect (Randall et al., 1984). 
Furthermore, global mean surface temperature cause changes in climate state quantities (e.g., water 
vapor, clouds, etc.), which then enhance or diminish the initial forcing by infuencing radiative pro-
cesses, a process known as climate feedback. 

Cloud feedback is defned as the change in net radiative fux at the top of the atmosphere due 
to changes in clouds for every 1°C increase in global mean surface temperature. Under warming 
conditions, a decrease in net radiative fux at the top of the atmosphere due to changes in clouds will 
partially offset the warming effect caused by the increase in greenhouse gases (negative feedback); 
conversely, it will enhance the warming effect (positive feedback). As an important component of 
climate feedbacks, cloud feedbacks are one of the largest sources of uncertainty in modeling current 
climate and predicting future climate change. According to the assessment of the Intergovernmental 
Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), the net feedback effect of clouds 
in the context of global warming is positive, i.e., amplifying the anthropogenic warming effect 
(IPCC, 2022). 

In the context of climate warming, cloudiness is decreasing in most regions, such as most 
land areas in the mid and low latitudes. It is diffcult to determine the reduction of high clouds 
in the tropics leading to cloud feedbacks, etc., because the model cannot correctly simulate the 
cloud parameterization process, etc. (Bretherton, 2015; Tobin et  al., 2013; Stein et  al., 2017). 
In addition, since the assessment of low cloud feedbacks in the tropical oceans depends on the 
atmospheric conditions, the response of low clouds will be different if the boundary layer condi-
tions change in the future, and therefore the radiative response of low-latitude ocean boundary 
layer clouds to global warming is also subject to large uncertainties (Bony and Dufresne, 2005; 
Chen et al., 2019). 
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4.1.4 cloud interactions 

Clouds can also indirectly affect the climate system through interactions with aerosols. The “aerosol-
cloud-radiation-precipitation” interaction is one of the most uncertain factors in climate prediction. 
Aerosols in the atmosphere produce direct radiation effects by absorbing and scattering solar short wave 
radiation and emitting and capturing long wave radiation; at the same time, aerosols can act as cloud 
condensation nodules, changing the albedo, lifetime, and microphysical properties of clouds, producing 
indirect radiation, which can also absorb solar radiation and heat cloud droplets to produce semi-direct 
radiation effects, affecting radiation income and expenditure and thus climate. Besides, dust aerosols 
can also affect cloud microphysical properties, radiation income and expenditure, and precipitation 
through indirect and semi-direct radiation effects (Liu et al., 2021). Latent heat release from clouds is 
an important source of energy for weather phenomena in the atmosphere at various scales, from single 
cumulus clouds to mesoscale systems up to the global atmospheric circulation. Moreover, precipitation 
formed by clouds has an important role and impact on human life and daily activities. 

The World Climate Research Program (WCRP) lists understanding clouds, atmospheric circula-
tion and climate sensitivity as one of the key scientifc challenges facing the climate community 
(Bony et al., 2015). Due to the importance of clouds, in the context of current climate warming, 
studying how clouds behave and their radiative effects and cloud feedback is an important step to 
improve our confdence in predicting future climate change. 

4.2 METHODS OF CLOUD REMOTE SENSING 

Cloud remote sensing is a technology for acquiring the radiation information of the cloud without 
making direct contact with the cloud. It may be split into passive remote sensing and active remote 
sensing according to the way the detector works (Figure 4.2). Passive remote sensing, which mea-
sures the electromagnetic radiation emitted by the cloud within a certain electromagnetic spectrum, 

FIGURE 4.2 A schematic of the difference between passive sensors and active sensors. 

Source: Adapted from the EO4GEO course which is designed and developed by Carlos Granell. 
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can provide the properties of the cloud and detect the distribution of the cloud. On the other hand, 
active remote sensing emits electromagnetic radiation of some certain wavelengths, and then mea-
sures the radiation that is refected or scattered from the cloud. Using the variability of the intensity 
of this radiation, the properties and distribution of clouds can be inferred. 

4.2.1 passiVe reMote sensing 

Passive remote sensing is a method of atmospheric remote sensing using the long wave radiant energy 
released by the atmosphere and the surface itself, as well as the refected and absorbed solar short 
wave radiant energy. This method directly collects information from nature by using the various 
radiation energy in nature rather than artifcial radiation sources. The most common instrument plat-
form of passive remote sensing is the satellite. It continually monitors the earth’s atmosphere from 
space. Passive sensors are ftted on satellites that record naturally occurring electromagnetic radia-
tion at the top of the atmosphere. Satellite inversion cloud parameters include cloud fraction, cloud 
height or cloud top temperature, cloud emissivity and refectance, cloud optical thickness, cloud type, 
and cloud microphysical properties (i.e., particle effective radius) (Stephens and Kummerow, 2007). 

4.2.1.1 Cloud Top Temperature 

Radiation L (TB ) measured by satellite is the sum of radiation L T( ) emitted by the cloud and sat l l C 

radiation 1- L T  emitted from the surface and transmitting through cloud, which can be ( el )  ( )Sc l 
expressed by 

L T  + - L T ,L T(  )  = ( ) (1 e )  ( )  (4.1) sat Bl l C lc l S 

where (1- elc ) is transmittance of cloud. If the cloud is thick and dense, it can be seen as a black 
body in the infrared spectrum and transmittance is 0. In this case, the radiation measured by the 
satellite in the infrared window comes from the cloud top. In Eq. (4.1), it is assumed that there is 
no absorption in the atmosphere, the emissivity of the surface is 1, and all the instantaneous feld 
of view is covered by clouds, regardless of cloud thickness. The cloud top temperature TC can be 
calculated, given the emissivity of cloud elc and the surface temperature TS . 

4.2.1.2 Cloud Fraction 
The most convenient method to calculate cloud fraction from satellite data is the threshold 
method (Kazuo and Baba, 1988). If T1 and T2 are the threshold for distinguishing high clouds, 
low clouds and the surface, NH, NL, and NS are the number of images of high clouds, low 
clouds and the surface according to the threshold T1 and T2, respectively. The total cloud frac-
tion can be written as 

N + NST = H L (4.2) 
N + N + NH L S 

The low cloud fraction can be expressed as 

NS = L (4.3) L N + N + NH L S 

The high cloud fraction can be expressed as 

NS = H (4.4) H N + N + NH L S 
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4.2.1.3 Cloud Emissivity 
Mosher (1976) used the luminance data of visible light cloud images to obtain the optical thickness 
of cloud. The cloud emissivity can be estimated from the cloud luminance of visible light cloud 
images, since it is related to the optical thickness of cloud. For uniform cloud, the optical thickness 
is related to the scattering cross section of particles in the cloud σ and the density of particles ρ and 
the thickness of cloud Dz. The calculation of the scattering cross section of cloud requires the cloud 
particle spectrum distribution. The optical thickness of cloud tc is 

t = srDz (4.5) c 

In order to determine the optical thickness of the cloud, the relationship between the brightness 
and the optical thickness of several typical clouds can be established in advance. According to this 
relationship, the optical thickness can be obtained from the actual cloud brightness, and then the 
emissivity of the cloud can be given by 

e = -1 expé-t ù (4.6) ë c û 

4.2.2 actiVe reMote sensing 

Active remote sensing needs to emit radiation which is directed toward the cloud from the detector. 
The radiation refected from that cloud is detected and measured by the sensor. Active remote sens-
ing can obtain measurements anytime, regardless of the time of day. Active sensors can be used for 
examining wavelengths that are not suffciently provided by the sun, such as microwaves. The most 
important feature of microwave radiation is its ability to penetrate cloud cover, fog, and rainfall, 
and can penetrate a certain depth of the surface, so microwave radiation can be used to detect the 
atmospheric conditions in and below clouds (Kollias et al., 2007, 2016). The representative active 
atmospheric remote sensing detection method is microwave radar detection. 

4.2.2.1 Principles of Radar 
The transmitter, antenna and receiver are three primary parts of a radar system. Short energy pulses 
in the radio-frequency region of the electromagnetic spectrum are produced by the transmitter. The 
antenna narrows these into a beam for usage. They spread out at a speed that is nearly equal to the 
speed of light. When the pulses intercept an object with different refractive characteristics from 
air, a current is induced in the object which perturbs the pulse and causes some of the energy to 
be scattered. In most cases, part of the scattered energy will be returned to the antenna, and if this 
backscattered component is signifcant enough, it will be detected by the receiver. 

The primary function of radar is to measure the range and direction of backscattering objects. 
Ranging is accomplished by a timing circuit that counts time between the transmission of a pulse 
and the reception of a signal. Direction is determined by noting the antenna azimuth and elevation 
at the instant the signal is received. 

4.2.2.2 Radar Equation 
The radar equation under Rayleigh scattering condition is 

23 2p PG2hqj 1 m -1 -0 2. ò0 
R kdR tP = y Z ×10 (4.7) r 21024ln2 l2 R2 m + 2 

where Pr is received echo power intensity, Pt is transmitted power of radar transmitter, G is the 
antenna gain, h is the pulse length, q is horizontal lobe width, j  is vertical lobe width, l is the radar 
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wavelength, R is the distance from the antenna to the particle, Z is the radar refectivity factor, m is 
complex index of refraction, k is the attenuation factor and y  is flling coeffcient, which shows the 
extent of the radar beam flled with the precipitation particles. 

The power intensity of the echo received by the radar is inversely proportional to the radar 
wavelength and the square of the distance. When the wavelength is shorter and the distance is 
closer, the echo is stronger. Factors affecting the radar equation mainly include radar parameters, 
meteorological factors, and the distance factor. (i) Radar parameters are as follows: increasing 
the pulse length can increase the detection range, but at the same time reduce the range resolution 
and increase the radar blind area. By decreasing the beam width, the echo power can be increased 
and the error can be reduced. Increasing the antenna gain can improve the detection capability of 
radar, but there are some problems with this increase. (ii) Meteorological factors are as follows: 

22m -1
mainly scattering and attenuation. The factor Z  shows the infuence of particle size, phase 2m + 2 

- . òstate, shape and temperature  on scattering. The factor 10 0 2  0 
R kdR  includes the attenuation of par-

ticles such as atmosphere, clouds, rain, snow and hail at different wavelengths and temperatures. 
(iii) The distance factor is as follows: the size of the echo power is inversely proportional to the 
square of the distance. Therefore, the precipitation with the same intensity will be considerably 
weaker at a long distance than at a close distance if there is no range correcting device on the radar, 
which easily creates an illusion while observing and evaluating the echo strength and movement. 

4.2.2.3 Advantage 
Microwave is radiation with wavelengths ranging from about one meter to one millimeter. Because 
of their long wavelengths, compared to the visible and infrared, microwaves have special proper-
ties that are important for remote sensing. Longer wavelength microwave radiation can penetrate 
through cloud cover, haze, dust and all but the heaviest rainfall because the longer wavelengths are 
not susceptible to atmospheric scattering which affects shorter optical wavelengths. This property 
allows the detection of microwave energy under almost all weather and environmental conditions 
so that data can be collected at any time. 

The wavelength of the millimeter wave is between the centimeter wave and the light wave, so the 
millimeter-wave radar has the advantages of microwave navigation and photoelectric navigation. 
Millimeter-wavelength radars have adequate sensitivity to detect nonprecipitating clouds, such as 
fair-weather cumuli in the boundary layer and thin cirrus aloft, excellent Doppler velocity resolution 
to observe the small fall velocities of small ice crystals and cloud droplets, and are unaffected by 
Bragg scattering and ground clutter. These advantages of millimeter-wavelength radars make them 
suitable for the detection of weak nonprecipitating clouds that are often not well characterized by 
radars operating at longer wavelengths. 

4.3 CLOUD DETECTION METHODS 

To better understand cloud processes to improve parameterization in climate models and reveal their 
evolution in response to climate change, long-term continuous observations of clouds in terms of 
both macro- and microphysical properties are essential (Ackerman and Stokes, 2003). Millimeter-
wavelength cloud radars (MMCRs) can resolve cloud vertical structure for their occurrence and 
microphysical properties (Clothiaux et al., 1995). The wavelength of MMCRs is shorter than those 
of weather radars making them sensitive to cloud droplets and ice crystals and able to penetrate mul-
tiple cloud layers (Kollias et al., 2007). Because of their outstanding advantages for cloud research, 
millimeter-wavelength radars have been deployed on various research platforms including the frst 
space-borne millimeter-wavelength Cloud Profling Radar (CPR) onboard the CloudSat (Stephens 
et al., 2002). Ground-based cloud radars are operated at the US Department of Energy’s Atmospheric 
Radiation Program (ARM) observational sites, and a KAZR (Ka-band zenith radar) was deployed 
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in China at the SemiArid Climate and Environment Observatory of Lanzhou University (SACOL) 
site (Huang et al., 2008), providing an opportunity to observe and reveal the detailed structure and 
process of the midlatitude clouds over the semi-arid regions of East Asia. 

4.3.1 cloud detection research progress 

At present, a lot of research work has been done on cloud detection algorithms, whether it is space-
based or ground-based. The main results of the development and testing of the cloud detection 
method are presented by Kostornaya, AA et  al. (2017). The main purpose of the method is the 
identifcation and classifcation of clouds in satellite images with the subsequent retrieval of quan-
titative characteristics. The method provides digital data sets in the form of maps of cloud classes, 
cloud top height and cloud top temperature. To improve the dynamic cloud detection threshold 
value, moving and nesting analysis area methods were used to improve the dynamic cloud detection 
threshold method by Liu (2010). The analysis results show that the proportion of effective cloud 
detection threshold is effectively increased and the accuracy of cloud detection is also improved 
by using the method of moving and nesting analysis area. For image cloud detection, the spectral 
threshold selection of image cloud detection and the infuence of cloud-like ground objects are two 
vital factors in determining cloud detection results of HSRI. With the purpose of solving these two 
issues, a novel cloud detection method for HSRI based on the spectrum and texture of superpixels is 
proposed by Dong et al. (2019). They obtain the adaptive image cloud detection spectral threshold 
according to the image equalization histogram. Then the initial cloud detection result is obtained 
based on spectral threshold of the cloud detection and spectral attributes of superpixels, and the 
initial cloud detection result is refned based on the gray value and angular second moment of the 
superpixels local binary patterns texture to eliminate the infuence of cloud-like ground objects. 
Finally, the cloud detection result is processed using the region growing algorithm and expansion 
algorithm to obtain an accurate cloud detection result. Clothiaux et al. (1995, 2000) frst developed a 
classical cloud detection method, which was adopted by ARM as a service algorithm for cloud radar 
signal recognition and was later adopted to the CPR on board the CloudSat (Marchand et al., 2008). 

4.3.2 a classical cloud detection Method For cloud radar 

This method assumes that the random noise power follows the normal distribution (Figure 4.3) and 
consists of two main steps. Firstly the mean value (m) and standard deviation (s) of the noise are 
calculated by selecting the radar range gate containing only noise. The parameters m and s are 
compared with return signals from other radar range gates. If the return signal, that is the power at 
the receiver antenna output terminals, is greater than m + s , it is believed that this range gate may 
contain a valid return signal and is marked as 1. Otherwise, it is considered radar noise and is set 
to zero. 

Secondly, the cloud signals are highly correlated in both space and time and have more similar 
values in near pixels, which means there may also be a certain number of cloud signals in other 
gates near the gate if a range gate is the effective echo signal of the cloud, while the random noise 
values are not correlated (Ge et al., 2017). A spatial-temporal flter is considered for low-pass flter-
ing, which can effectively remove the misjudgment noise signal. As shown in Figure 4.4, for any 
range gate, the central pixel and 24 surrounding pixels are selected to form a 5 ´  5 flter. For the 
25 pixels covered by the flter, the probability of noise being set to 1 in cloud mask is 0.16, and 
the probability of noise being set to 0 is 0.84. (The area under a normalized Gaussian curve for the 
region of values that are greater than one standard deviation above the mean is 0.16.) Therefore, the 
probability of a certain confguration of zeros and ones occurring in a square of 25 pixels is 

n n0 1p = (0 84. ) (0  16. ) (4.8) 
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FIGURE 4.3 The normal distribution diagram. 

FIGURE 4.4 The 5 ́  5 composed of 0 and 1. 



 
 

 
 

        

  

 

  
 

106 3S Technology Applications in Meteorology 

The observed values of 25 pixels are used to adjust and determine whether the central range gate 
is an effective signal, where n0 is the number in the box, and n1 is the number of ones. It can be seen 
from Eq. (4.8) that the smaller the p value is, the fewer pixels with a value of 0, and the greater the pos-
sibility that the center pixel is an effective radar signal. Clothiaux et al. (1995) obtained the threshold 
value on the basis of many experiments. After several times of fltering, the misjudgment in the frst 
step can be basically fltered out and the fnal cloud detection value can be obtained (Zhu et al., 2016). 

4.3.3 an iMproVed cloud detection Method For cloud radar 

The basic assumption of the previous cloud mask method is that the random noise power follows a 
normal distribution (e.g., Clothiaux et al., 1995; Marchand et al., 2008). However, Ge et al. (2017) 
found that noise power may not follow Gaussian distribution. Here clear-sky cases in all seasons 
from KAZR observations were frst analyzed for their background noise power distributions, and 
the probability distribution function (PDF) of the noise power from the KAZR observations of a 
clear day is displayed in Figure 4.5. The noise power is estimated from the top 30 range gates, which 
includes both internal and external sources (Fukao and Hamazu, 2014). It has an apparent non-
Gaussian distribution with a positive skewness of 1.40. The signal-to-noise ratio (SNR) is defned as 

æ Pr ö
SNR = 10log ç ÷ , (4.9) 

è Pn ø 

where Pr  is the power received at each range gate in a profle and Pn is the mean noise power that 
is estimated by averaging the return power in the top 30 range gates. Figure 4.5 shows that the 

FIGURE 4.5 PDF of the noise power and SNR from the KAZR observations on a clear day. 
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FIGURE 4.6 Comparison of original noise, reduced noise and valid signal distribution. 

SNRs for clear skies closely follow a Gaussian distribution. Instead of using radar-received power, 
the SNR is used as the input in cloud mask algorithm including estimating the background noise 
level. This is because in the method of this article the chance of a central range gate being noise or 
a potential feature relies on the probability of a given range of SNR values following the Gaussian 
distribution. 

In image processing described previously, the random noise can be smoothed out by using a 
low-pass flter, which gives a new value for a pixel of an image by averaging with neighboring pix-
els. Figure 4.6 shows a schematic comparison of the original noise, reduced noise, and valid signal 
distributions: the low-pass flter could effciently reduce the original radar noise represented by the 
green line to a narrow bandwidth (blue line) while keeping the signal preserved. By reducing the 
standard deviations of noise, which shrinks the overlap region of signal and noise and enhances 
their contrast, the weak signals (yellow area) that cannot be detected based on original noise level 
may become distinguished. 

Following this idea, Ge et al. (2017) developed a non-iterative hydrometeor detection algorithm 
by applying a noise reduction and a central-pixel weighting schemes. For given mean SNR values 
(S0 ) and 1 standard deviation (s0 ) of the original background noise, the input SNR data set is 
frst separated into two groups. The group with values greater than S0 +3s0  is considered to be 
the cloud features that can be confdently identifed. Another group with values between S0  and 
S0 +3 σ0 may potentially contain moderate (S0 +s0  < SNR ≤ S0 +3s0 ) to weak (S0  < SNR ≤ S0 +s0 ) 
cloud signals, which will further go through a noise reduction process. 

The noise reduction process is performed by convolving radar SNR time–height data with a 
low-pass flter. The Gaussian flter is one of the most common functions of the noise reduction flter. 
For the high frequency noise with random distribution, the Gaussian flter can make it more con-
centrated, so as to effectively reduce the standard deviation of noise distribution. A 2-D Gaussian 
distribution kernel can be expressed as 

2 21 æ i + j ö 
G (i j, ) = exp ç - ÷ , (4.10) 2 ç 2 ÷2ps 2sè ø 

where i and j are the indexes in a flter window and are 0 for the central pixel, and s  is the standard 
deviation of the Gaussian distribution for the window size of the kernel. This formula is used to 
flter the radar SNR image. However, this method is only aimed at the ideal case of pure noise. In 
actual observations, noise and signal pixels cannot be distinguished in advance. If noise and sig-
nal pixels are averaged together, the large echo energy gradient existing at the boundary between 
signal and noise will be blurred; that is, the signal is falsely extended. The large gradient of echo 
power corresponds to the edge of cloud, and the blurring of cloud boundary means the increase 
of false detection rate of cloud detection. To solve this problem, a bilateral fltering idea proposed 
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FIGURE 4.7 Illustration of bilateral fltering process: (1) Gaussian kernel distribution in space; (2) d func-
tion; and (3) bilateral kernel by combining Gaussian kernel with d  function. 

by Tomasi and Manduchi (1998) is adopted (Figure 4.7). First of all, the noise and signal should 
be pre-distinguished. A Cw ´ Ch matrix is selected considering the space-time correlation of the 
signal. According to the normal distribution, the radar range bin with signal values signifcantly 
higher than noise value (SNR> S0 +3s0 ) is less likely to be noise (the number of these bins is Ns ). 
This part of the signal value is directly retained as the real signal. If the remaining range bins are 
all noises, the range bin number (Nm ) with SNR greater than S0 + s0 should be about equal to 
an integral number (Nt ) of 0.16 ´ (C ´Ch - Ns ) where 0.16 is the probability for a remainingw 
range bin to have a value greater than S0 +s  for a Gaussian noise. Thus when Nm  is equal to0 
or smaller than Nt , all the (C ´ C - N ) range bins could only contain pure noise and/or somew h s 
weak cloud signals. In this case, the d  function is set to 1 for all the (Cw ´Ch - Ns ) bins. When 
Nm  is found to be larger than Nt , the (Cw ´Ch - Ns ) range bins might contain a combination of 
moderate signal, noise, and/or some weak clouds. In this case, S0 +s0  is selected as a threshold 
to determine whether the pixels are on the same side of the central pixel. If the central pixel has 
a value greater than S0 +s0 , the d  function is assigned to 1 for the (C ´Ch - Ns ) pixels with w 
SNR ³ S0 +s0 , but 0 for the bins with SNR < S0 +s0 . If the central pixel is less than S0 +s0  the δ 
function is assigned to 1 for the pixels with SNR < S0 +s0 , but 0 for the (Cw ´Ch - N ) bins withs 
SNR ³ S0 +s0 . The bilateral flter represented by Eq. (4.11) is constructed from the 2-D Gaussian 
function and the d  function: 

B(i j, ) = G i( , j ) ×d (i, j ) (4.11) 

Marking function d(i j, ) can be computed as follows: 

ì1, sign éëSNR i( , j ) - (m +s )ùû = sign éëSNR (0,0) - (m +s )ùûd(i j, ) = í
ï 

(4.12) 
ï0, signg éëSNR i( , j ) - (m +s )ùû ¹ sign éëSNR (0 0, ) - (m +s )ùûî 

where x is a sign function 

ì 1, x ³ 0
sign ( )x = í (4.13) 

-1, x < 0î 

This bilateral flter is applied in the matrix containing signal and noise to compress the noise, 
which can avoid the false expansion of the boundary caused by the mixture of noise and signal, and 
compress the noise effectively at the same time. 

In conclusion, the group which is considered to be the confdently identifed cloud feature directly 
performs initial cloud detection and spatial fltering to obtain the fnal mask. The part that may 
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contain signals uses a bilateral flter and the pure noise part uses the Gaussian flter directly to make 
noise reduction and reduce the standard deviations of noise. Then the noise level is recalculated for 
initial cloud detection and spatial fltering. 

4.4 CLOUD PHASE DETECTION 

Clouds are suspended bodies composed of single or mixed forms of water droplets or condensed ice 
crystals liquefed by water vapor in the atmosphere. According to the microscopic particle structure, 
clouds are classifed as water clouds, ice clouds, and mixed-phase clouds (Figure 4.8). Water clouds 
are mainly composed of water droplets. Water clouds are divided into two types according to the 
temperature inside the clouds: warm water clouds when the temperature is greater than 0℃ , and 
supercooled water clouds when the temperature is less than 0℃ . Clouds mainly composed of ice 
crystal particles are called ice clouds. Clouds between ice clouds and water clouds are called mixed-
phase clouds (Intrieri et al., 1993). Clouds are an important link in the global water cycle and in the 
radiative transfer between the earth and the air (Stephens, 2005). Cloud liquid water and cloud ice 
water affect Earth’s atmosphere radiation by infuencing the degree of refection and absorption of 
the sun by clouds transport. In many atmospheric studies, cloud liquid water and cloud ice water 
content is an important indicator of cloud properties. Therefore, it is very important to realize the 
continuous and high precision detection of cloud liquid water and cloud ice water in the feld of 
weather and climate change, disaster weather prediction, and so on. 

LIDAR is an active remote sensing technology that has been applied to atmospheric sounding 
since the 1970s. It has the advantages of high temporal and spatial resolution, which can reach 
the resolution in meters and seconds. Meanwhile, it also has the characteristics of high sensitivity, 
which can achieve the detection of very small amount of molecules in a small area. Therefore, it is 
widely used in the measurement of atmospheric meteorological parameters. At present, the techni-
cal means for cloud phase identifcation at home and abroad are mainly polarization LIDAR, and a 
few units have carried out research on Raman LIDAR phase water. 

4.4.1 polariZation lidar 

As a unique active remote sensing detection instrument, polarization LIDAR can detect the par-
ticle properties in clouds more effectively and is now widely used for cloud and aerosol particle 
microphysical properties detection (Qi et al., 2021). Polarization detection can expand the detection 
information from intensity, spectrum, and space according to the polarization occurrence degree, 
polarization azimuth angle, polarization ellipticity, and rotation direction, so as to improve the 
multi-directional detection ability of LIDAR. Using the depolarization properties of particles, it is 

FIGURE 4.8 Water clouds (a) and ice clouds (b). 
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FIGURE 4.9 Schematic diagram of depolarization principle. 

possible to distinguish spherical particles in water clouds from non-spherical particles in ice clouds 
(Figure 4.9), and the depolarization ratio is currently an important basis for studying the composi-
tion and interaction mechanisms of clouds and aerosols (Hu, 2007). Therefore, as an important 
detection method of LIDAR, polarization LIDAR is of great signifcance in the study of cloud and 
aerosol detection. 

At present, the identifcation of cloud phase states mainly relies on the depolarization ratio. 
The depolarization characteristics of particles in clouds are obtained by a polarization LIDAR 
system, and the laser with linear polarization characteristics interacts with particles of different 
shapes, and the scattered laser polarization state is changed. The ideal laser is a line of polar-
ized light, and the light has wave-particle duality; the particles in different states of the cloud 
can not only affect the laser scattering energy intensity, but also change the polarization state. 
The different states of particles in the cloud can not only affect the intensity of laser scattering 
energy, but also change the polarization state of the laser. When a beam of linearly polarized 
light is irradiated to a cloud particle, different polarization degrees are generated depending on 
the shape of the cloud particle, and the direction of the resulting polarization state is perpen-
dicular to the direction of the polarization state of the incident light. This phenomenon suggests 
the use of a LIDAR system with polarization channels to measure and calculate the ratio of the 
vertical and parallel components of the scattered light in the echo signal to measure the cloud 
particle morphology (Biele et al., 2000). The polarization LIDAR emits line polarized light, 
which enters the atmosphere and scatters, thus changing the polarization characteristics of the 
laser. The backscattered echo signal is received through the telescope. After passing through 
a polarizing beam splitter, the echo signal is divided into two linear directions perpendicular 
to each other. According to the polarization direction of the echo signal with respect to the 
laser source, the echo signals of the two channels are divided into vertical echo signal P  and ^ 
parallel echo signal P̃ . The parallel echo signal refects the detection information of the meter 
scattering LIDAR, and the ratio of the vertical echo signal to the parallel echo signal is the 
declination ratio δ . Depolarization ratio is an important physical parameter for cloud research 
because it can refect the microscopic characteristics of particles in clouds. At present, the size 
of depolarization ratio is one of the criteria to distinguish clouds from aerosols, water clouds 
from ice clouds, and aerosol compositions and types. When the polarization LIDAR is used 
to detect the atmosphere, the parallel and vertical components of the received atmospheric 
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backscattered echo signal power direct components, which can be given by the LIDAR equa-
tions, are expressed as: 

z -P ( )z = P C z  2b z exp 
é (a ( )  a ( )ö dz¢]^ 0 ^ ^ ( )  êëò0 

^ z¢ + ˜ z¢ ÷
ø 

(4.14) 

z -2 é ùP̃  ( )z = P C z˜ z exp -2 z dz (4.15) 0 b˜ ( )  ê ò a ( )¢ ¢úë 0 ˜ û 

where P0 is the laser transmitting power, P̃  ( )z  and P̂ ( )z  represent the parallel and vertical com-
ponents of the atmospheric return power of the backscattered light received by the LIDAR at height 
z, respectively. C˜  and C^ represent the channel constants of the parallel and vertical components, 
respectively. b˜ (z) and b^(z) represent the parallel and vertical components of the atmospheric back-
ward scattering coeffcient at height z. a˜ ( )z  and a^ ( )z  represent the parallel and vertical compo-
nents of the atmospheric extinction coeffcient at height z, respectively. 

According to the defnition of the depolarization ratio, the profle δ(z) of the depolarization ratio 
with height can be obtained using the echo signal of the volume channel, denoted as: 

P̂ ( )z / C^ b^ ( )z z 
d( )z = = exp[ (a z¢ - ˜ z¢ )dz¢]^ ( )  a ( )  (4.16) 

P̃  ( )z / C˜ b˜ ( )z ò0 

In general, K = C^/C˜  so Eq. (4.16) can be written as 

P ( )z / C P ( )z b ( )z^ ^ ^ ^d( )z = = K = (4.17) 
P ( )z / C P ( )z b ( )z˜ ˜ ˜ ˜ 

From Eq. (4.17), it can be seen that the polarization LIDAR declination ratio is not only related to the 
intensity of the echo signals of the vertical and parallel channels, but also depends on the gain ratio 
of the two channels, K which is also called the calibration factor of the polarization LIDAR system. 
Therefore, the calculation of the declination ratio needs to consider the measurement of K value. 

In the existing research of polarization LIDAR technology, most scientifc research institutions 
have carried out the research of cloud phase recognition. Table 4.1 shows the corresponding rela-
tionship between the depolarization ratio range and the cloud phase state obtained in the previous 
experiment (Sassen et al., 1992; Sassen and Zhao, 1992; Sassen, 2005; Sassen et al., 2008; Sassen 
et al., 2009). As can be seen from Table 4.1, when the depolarization ratio is less than 0.15, the 
particles in the cloud are mainly spherical particles, and the cloud phase state is judged to be water 
cloud. When the depolarization ratio is greater than 0.15 and less than 0.38, the cloud phase is 

TABLE 4.1 
Correspondence between Depolarization 
Ratio and Cloud Phase 
Depolarization Ratio Cloud Phase 

δ<0.15 water cloud 

0.15< δ<0.38 mixed-phase cloud 

0.38< δ<0.5 ice cloud 
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judged to be mixed. When the depolarization ratio is less than 0.5 and greater than 0.38, the cloud 
phase is identifed as ice cloud. 

4.4.2 raMan lidar 

Different material of molecules and atoms interact with light, and scattering of light absorption/ 
dispersion degree is different. Light through the uneven material will scatter around the material; 
the scattered light and incident light wavelength is called elastic dispersion. When the wavelength 
of the scattered light is different from that of the incident light, it is called inelastic scattering. 
Raman scattering light refers to the Stokes line whose frequency is lower than the incident light 
and the anti-Stokes line whose frequency is higher than the incident light when light interacts with 
matter. The Raman shift Δu is the difference between the Stokes line or the anti-Stokes line and the 
frequency of the incident light. The Raman shift depends on the nature of the molecule itself and 
is independent of the incident light frequency, so it can be used as a characteristic parameter of the 
molecule (Cooney, 1970). When the wavelength of the incident laser is λ0, the corresponding wave 
digit u0, the center wavelength λ of the scattered light after Raman frequency shift generated by the 
interaction between laser and atmospheric substances, can be expressed as follows: 

1
l = (4.18) 

n - Dn 0 

There are many dense transition lines between different phase water molecules, which leads to 
no relatively independent structure of Raman spectra of phase water, and is also the fundamental 
reason for the overlap between phase water Raman spectra. The overlapping information between 
phase water Raman spectra is the key to high precision extraction and accurate inversion of echo 
signals, and it is also one of the sources of detection error of atmospheric temperature and humidity. 
Figure 4.10 shows the Raman scattering spectra of liquid water and ice water measured at an excita-

FIGURE 4.10 Raman spectroscopy of three-phase water. 
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tion wavelength of 355 nm under laboratory conditions (room temperature 25℃, humidity 32%). It 
can be seen from the fgure that the Raman spectra of liquid water and ice water are continuous in 
the wavelength range of 395–408 nm, and there is an obvious overlap region. The peak value of the 
Raman spectra of liquid water is near 402.9 nm, and the bandwidth is about 8 nm. The peak value 
of Raman spectra of liquid water is around 398.7 nm, and the bandwidth is about 6 nm. Meanwhile, 
the theoretical curve of water vapor vibration Raman spectrum is given in Figure 4.10. The central 
wavelength is 407.5 nm, and the bandwidth is narrow, about 1 nm. 

4.5 CLOUD MICROPHYSICS PROPERTIES 

Cloud microphysical properties, determined by the phase, size, shape, and number concentration of 
cloud droplets, play an important role in cloud radiation feedback and have signifcant impact on the 
felds of weather and climate change. The cloud droplet spectral distribution, the cloud water content, 
the cloud water path, and the cloud droplets effective radius are all basic physical variables that charac-
terize the microphysical properties of clouds. It is necessary to obtain values on the basis of instruments 
observation and retrieval algorithm for improving cloud characterization in climate models. The basic 
defnitions and retrieval algorithm of cloud microphysical properties are introduced in this section. 

4.5.1 Basic theory 

The particle size is the basic parameter to describe the clouds microphysical properties, which 
can be characterized by the diameter or radius for spherical or nearly spherical particles and the 
equivalent diameter or maximum size for non-spherical particles. It is diffcult to measure the size 
of each particle for clouds with a large number of droplets, so the droplet size distribution should be 
quantifed using a density distribution function. That is, dividing the cloud droplets size into equal 
or unequal bins (the width of the ith bin in the unit volume is Dri ) and then counting the number of 
cloud droplets in each bin (for the ith bin in the unit volume is DNi). The number of droplets in each 
bin of the unit volume can be obtained and defned as: 

D N 
n = i , (4.19) i Dri 

where the DNi is the number density (or concentration) in the ith bin. In order to avoid the diffculty 
in comparing the size distribution of various particles with different bin widths, the bin width can be 
further reduced to be small enough by applying the concept of differentiation to obtain the particle 
number density distribution function: 

n ( )r = 
dN 

(4.20) 
dr 

where n(r) is the number density distribution function and dN represents the number density in the 
bin of [r + Dr]. The total density N can be further gained by integrating the number density over all 
bins as follows: 

¥ 

N = n r( )dr (4.21) ò 
0 

4.5.1.1 Cloud Droplet Spectral Distribution 
The cloud droplet spectral distribution is the density distribution function of the cloud, and the 
specifc function expression can be obtained by ftting the measured data. However, it is diffcult to 
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obtain accurate expression because the distribution varies with the environment (region, tempera-
ture, humidity, etc.) and the cloud development stage. There are two typical cloud droplet spectral 
distribution functions commonly used in cloud physics research, described here. 

Deirmendjian (1969) proposed that the cloud droplet spectral distribution constructed based on 
the power exponent of the radius is close to the distribution ftted by the observational data. The 
modifed Gamma distribution is expressed as: 

m gn r( ) = ar exp (-br ) (4.22) 

and the total particle density is defned as: 

¥ m+1 
-a æ m +1 öN = òn r( )dr = b g Gç ÷ (4.23) 

è øg g
0 

where r is the particle radius; a, b, μ, and g are the four non-negative control parameters that can be 
adjusted with the particle properties. The disadvantage of the modifed Gamma distribution is that 
there are too many parameters to be adjusted in the function, which means the distribution function 
has high uncertainty and complexity. 

In addition to the Gamma distribution, the lognormal distribution is also one of the distribution 
functions widely used in cloud physics. The distribution function is expressed as 

2é ù
N (ln r - ln rg )n r( ) = exp ê- ú (4.24) ú2p r lns g 

ê 2ln2 s gê úë û 

where N is the total number of cloud droplets per unit volume; r is the droplet radius; rg  and s g  are 
the geometric mean radius and standard deviation of the cloud, respectively. 

ln rg = ln r (4.25a) 

2 
s g 

2 = (ln r - ln rg ) (4.25b) 

which are the key parameters to determine the spectral shape, and vary with different algorithms for 
various instruments. 

4.5.1.2 Cloud Droplet Radius 
The cloud droplet radius is a key physical variable to quantify particle size, and its mean and vari-
ance are often used to characterize the cloud droplet spectral distribution properties. The series of 
representative statistics variable related to particle radius are defned as follows: 

(i) The average radius r 

¥ ¥ ¥ 
r = ò rn r( )dr / ò n r( )dr = 

1 
ò rn ( )r dr (4.26) 

0 0 N 0 
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(ii) The median radius rmed 

rmed 1 n r( )dr = (4.27) ò0 N 

(iii) The mode radius rc 

é dn ( )r ù 
ê ú = 0 (4.28) 
ë dr úê ûrc 

(iv) The volume-mean radius rV 

3 1 ¥ 3rV = r n r( )dr (4.29) 
N ò0 

(v) The effective radius re 

ò
¥ 3r n ( )r dr 
0r =
¥ 

(4.30) e 

r n ( )r drò 2 

0 

4.5.1.3 Cloud Water Content 
Cloud water content is the mass of liquid or solid water contained per unit volume, including liquid 
water content (LWC) for warm cloud and ice water content (IWC) for cold cloud. On the basis of the 
cloud droplet spectral distribution, the LWC and the IWC can be respectively expressed as 

¥ 4 3 (4.31) LWC = ò r N r( )  p r drw
0 3 

and 

ò
¥ 

IWC = ri N D D dD, 
p ( ) 3 (4.32) 

0 6 

where rw and ri  are the density of liquid and ice, respectively. r is the droplet radius, and D is the 
equivalent diameter of the ice crystal. The liquid water path (LWP) or ice water path (IWP) can 
be  further defned as the columnar cloud water content or the integral of the water content over 
the path, that is: 

ò
z 

LWP = 
top 

LWC z( )dz (4.33) 
zbase 

and 

ò
z 

IWP = 
top 

IWC ( )z dz . (4.34) 
zbase 
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4.5.2 retrieVal algorithM For cloud water content 

There are two important ways to obtain cloud microphysical properties. One is direct observation 
with instruments; for example, the aircraft equipped with the particle measurement system can 
directly provide data of microphysical properties such as cloud water content, cloud droplet effec-
tive particles, and cloud water path. And the other is to use appropriate algorithms for retrieval 
based on the observation data. The observation equipment includes active and passive remote sens-
ing instruments such as radar, spectrometer, microwave radiometer, etc. Observations are intro-
duced in detail in the previous section on cloud remote sensing, so the retrieval algorithm of cloud 
microphysical properties are mainly illustrated in this section. 

The algorithms for retrieving cloud water content mainly include the empirical relationship 
method based on single-wavelength radar, the differences with refectivity at two frequencies based 
on dual-wavelength radar, and the combination of radar and other instruments. 

4.5.2.1 Single-Wavelength Radar 
Based on the defnitions of the radar refectivity and cloud water content, they are related to the sixth 
power and the third power of the particle radius, respectively. Therefore, the relationship between 
radar refectivity and cloud water content can be established for warm or cold cloud as 

LWC aZ b (4.35a) = 

IWC cZ d (4.35b) = 

where a, b and c, d are the empirical coeffcient corresponding to warm or cold cloud, respectively. 
The coeffcients are affected by various factors such as the cloud location, cloud type and whether 
there is precipitation in the cloud. In addition to the empirical coeffcient method, there are several 
other algorithms for obtaining the cloud water content using single wavelength radar. For example, 
the forward mode applied to CloudSat can retrieve LWC and IWC based on 94 GHz cloud radar 
(Austin and Stephens, 2001). Additionally, the LWC retrieval algorithm can also be constructed 
using the intrinsic relationship between the attenuation, LWC and radar refectivity on the basis that 
the attenuation caused by cloud absorption is proportional to LWC. The algorithm does not rely on 
the use of assumed coeffcients to calculate the cloud droplet spectral distribution function, and is 
therefore free from the limitations of empirical coeffcients. 

For the coeffcients of liquid water content, Atlas (1954) proposed that the coeffcients for non-
precipitation stratus clouds are a = 4.564 and b = 0.5 by ftting the aircraft observation data and the 
radar refectivity; Sauvageot and Omar (1987) obtained a = 14.54 and b = 0.76 based on the obser-
vational experiments and frst proposed that the threshold of precipitation and non-precipitation 
cloud is about -15 dBZ; Fox and Illingworth (1997) proposed a = 9.27, b = 0.64 using the radar data 
of stratocumulus cloud in the North Atlantic; Baedi et al. (2000) obtained the empirical coeffcient 
of a = 0.457 and b = 0.19 for the cloud with drizzle based on the experimental data of CLARE98 
(Cloud LIDAR and Radar Experiment in 1998), and Krasnov and Russchenberg (2002) obtained the 
empirical coeffcient a = 0.258 and b = 0.633 for the cloud with precipitation particles by combin-
ing the test results of the convective precipitation clouds with the data of CLARE98. The retrieved 
results based on these empirical coeffcients are shown in Figure 4.11. 

Similarly, for the ice cloud, Sassen (1984) proposed empirical coeffcients with c = 0.037 and 
d = 0.629 for ice clouds appearing at the poles; Liu and Illingworth (2000) obtained the coeffcient 
c = 0.097 and d = 0.59 using data from several feld experiments, and Protat et al. (2007) proposed 
that the coeffcients applicable to global ice clouds, ice clouds at mid-high latitude and tropical ice 
clouds are c = 0.09, d = 0.58; c = 0.082, d = 0.54; c = 0.103, d = 0.6 respectively. 
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FIGURE 4.11 Diagram of retrieving cloud liquid water content based on Z-LWC empirical relationship. 

4.5.2.2 Dual-Wavelength Radar 
In the Rayleigh approximation regime, the attenuation caused by the cloud absorption is propor-
tional to the LWC and increases with the frequency. And the attenuation coeffcient difference of the 
cloud radar at two frequencies ( f1 and f2) is proportional to the difference with height in dual-wave-
length ratio (DWR), so it is possible to apply the DWR to retrieving the LWC. The dual-wavelength 
ratio in logarithmic units is defned as DWR Z= f - Z f  and the LWC at each range gate between 

1 2 

the height of h1 and h2 can be calculated by 

1 é DWR2 - DWR1 
ù 

LWC = ê -a f1 
+a f2 

ú (4.36) 
k f -k f êë 2(h2 - h1 ) úû1 2 

where a f is the one-way attenuation coeffcient resulting from the atmospheric gases and k f is the 
attenuation coeffcient of liquid water, which is defned as 

3 6p
k f = 4 343´10 (4.37) . Im (-K )
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where λ is the radar wavelength, rl  is the density of liquid water and K is the complex dielectric 
constant ɛ by K = (e -1) / (e + 2). 

4.5.2.3 Combination of Radar and Microwave Radiometer 
Millimeter-wave radar combined with other remote sensing equipment is one of the important man-
ners to retrieve cloud microphysical properties. The microwave radiometer is the commonly used 
passive remote sensing instrument for providing accurate LWP, which can be regarded as a con-
straint on the relationship between Z and LWC. The LWC at ith range gate can be calculated by 
(Frisch et al., 1995): 

1 

LWPZ ( )i 2 
LWC i( ) = (4.38) 1 

1 
Z i( )2 Dhå i

m 

= 

where m is the total number of radar gate within the cloud layer and Dh is the height between dif-
ferent radar gates. 

4.5.3 retrieVal algorithM For cloud droplet eFFectiVe radius 

There is also an exponential relationship between the cloud droplets effective radius re and the radar 
refectivity factor Z for retrieval, which is expressed as 

r = AZ B (4.39) e 

where A and B are empirical coeffcients. Table 4.2 lists several relationships between refectivity 
and cloud droplet effective radius obtained from previous studies. 

Furthermore, if the cloud droplet spectral distribution is assumed to satisfy the lognormal distri-
bution, the effective radius can be obtained by (Frisch et al., 1995; Wu et al., 2014) 

2 -1/6 -1  6/re = 50exp  (-0 5. s ) N Z (4.40) 

where s is the logarithmic spread of the droplet spectral distribution. 

TABLE 4.2 
The List of Algorithms for Cloud Droplet Effective Radius Retrieval in Previous Studies 
Cloud Phase Reference Relationship 

Liquid Cloud Atlas (1954) .re = 21 99Z 0 33 . 

Sauvageot and Omar (1987) 0 31.re = 52 72. Z 

Fox and Illingworth (1997) Z = 56 5. log re - 77 3. 

Ice Cloud Zhao et al. (2016) 0 06.re = 59 8. Z 

Matrosov et al. (2003) . (0 16 1- f )re = 39 9. exp (-0  16. ) Z 

Fu (1996) log  IWC = .0 06Ze - .0  0212T - .1 92 
0 331.re = 192IWC 
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For the precipitation cloud, the particle effective radius can be calculated on the basis of the radar 
radial velocity Vr ; the relationship between the radius and velocity is (Liu et al., 2012) 

re = aVT + b (4.41) 

where VT  is the falling velocity of the particle. It can be calculated from the radial velocity Vr  using 
Eq. (4.42) as follows: 

ò
max 6D

V DT ( )´ N D( )´ D dD 
minV = - D 

(4.42a) r 

ò
D 6max

N D ´ D dD 
D 

( )  
min 

2é ) ùx xN ( -
( ) = ê ú (4.42b) N D  0 exp 0 

2p sr êë 2s 2 úûx x 

where N is the density of precipitation particles; N0, x0 and s x  are the total number density, the loga-
rithmic droplet size and spread of the droplet spectral distribution, respectively; D is the particle diam-
eter; x = ln D  and x0 = ln R0 , where R0 is the average droplet size. Liu et al. (2012) proposed that the 
infuence of the air vertical velocity on the falling velocity of precipitation particles can be ignored in 
stable cloud layer, so the falling velocity of precipitation particles can be replaced by the radial veloc-
ity detected by radar. The effective radius can be calculated by radar Doppler velocity directly and the 
coeffcients of a and b in Eq. (4.41) are a =1.2´10–4 s and b =1.0 ́ 10–5 m, respectively. 

4.6 MICROWAVE REMOTE SENSING OF PRECIPITATION AND CLOUD 

Earth observation and interstellar exploration using radars, earth satellites and spacecraft have been 
carried out for 64 years since 1958. Many discoveries have been made in studying the planets of the 
solar system, the deep space and stars of the universe, and a macroscopic, real, rapid, and dynamic 
understanding of the land-ocean-atmosphere system on which mankind depends for survival has 
been achieved, which is a great achievement in human scientifc and technological development 
history. In both interstellar exploration and earth observation, we mainly use electromagnetic waves 
as a medium, and remote sensing to obtain target information (Figure 4.12). The visible spectrum 
(0.45 ~ 0.80 μm) is used to obtain the visible image of the target; the infrared band (0.8 ~ 1000 μm) 
is used to obtain the infrared image of the target; the microwave band (1 mm ~ 1 m) is used to obtain 
the microwave data and images of the target. 

Remote sensors in visible and infrared wavelengths have been the main remote sensors in remote 
sensing technology because they have high spatial resolution and can obtain images consistent with 
human visualization. However, the necessity of daylight conditions (except thermal infrared) and 
the absence of cloud cover are their weaknesses, resulting in low image acquisition rates, which 
prevent the advantages of remote sensing, such as real-time dynamic monitoring, from being fully 
exploited. Visible light and near-infrared remote sensors are used to detect the amount of scattering 
of sunlight by an object, which only refects the surface condition of the object, so the information 
obtained about the characteristics of the observed object is not rich enough. 

Microwave remote sensing employs microwave radiation using wavelengths that range from 
about 1 mm to 1 m, in frequency interval from 300 GHz to 300 MHz, which enables observation in 
all weather conditions and get a 3-dimensional structure of cloud and rain all day. 

Microwave remote sensing can be divided into two categories according to its working principle: 
active remote sensing and passive remote sensing (Figure 4.13). Active remote sensing is used to 
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FIGURE 4.12 Electromagnetic spectrum. 

FIGURE 4.13 Difference between active and passive remote sensing. 

transmit microwave signals to the detection target through sensors (mainly radar) and receive the 
backscattered signals from the interaction with the target to form a digital or analog image of 
remote sensing. Passive remote sensing uses sensors such as microwave radiometers or microwave 
scatter meters to receive the refected and emitted microwaves from the ground under natural condi-
tions, which usually cannot form images. 

4.6.1 actiVe MicrowaVe reMote sensing 

Weather radar, cloud radar and earth satellite as active microwave remote sensing system has been 
used in atmospheric science to observe cloud and precipitation since the 1940s. Especially in the 
past 20 years, microwave remote sensing technology has made great progress. Weather radar, cloud 
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radar, and meteorological satellites provide continuous observation of cloud, precipitation, and deep 
convective system, effectively making up for the shortcomings of the traditional ground observation 
network. 

Among them, weather radars in S-, C-, and X-band can detect the occurrence and development 
of precipitation structures and convective systems with high spatial and temporal resolution without 
attenuation of raindrops and have promoted the development of quantitative precipitation estimation 
(QPE) technology. The methods of estimating precipitation rates by weather radars can be broadly 
classifed into two categories. The frst one is based on the Z-I relationship to determine precipita-
tion intensity. The Z-I relationship is a direct relationship between the statistical characteristics of 
radar refectivity and precipitation rate without calibration of rain gauges. In the 1940s, Ryde (1941) 
frst established the relationship between radar refectivity and particles such as clouds, rain, fog, 
and hail for weather forecasting. Then the concept of radar precipitation measurement was proposed 
and the relationship between convective storm volume and precipitation rate was discussed and 
established (Bent, 1943; Byers, 1948; Doneaud et al., 1984; Atlas et al., 1990a and 1990b; Kedem 
et al., 1990). Besides, the probability matching method (PMM) was proposed, which thought that 
the probability of a certain rain rate and the probability of a certain value Z should be equal in a 
homogeneous climate area and the relationship can be statistically obtained from the climate aver-
age (Calheiros, R. V and I Zawadzki., 1987). 

The second one is based on the combination of accurate measurements of rain gauges at points 
and radar to estimate the precipitation rates. The method of rain gauge calibration assumes that 
the precipitation measured by the rain gauge at the point is accurate, and the calibration aims at 
minimizing the deviation between the radar and the rain gauge measurements and extracting the 
calibration feld spatially using objective analysis methods to obtain the precipitation analysis feld. 
Scientists import complicated mathematic methods to calibrate the error such as optimization, the 
Kriging method, and the Kalman flter (Ahnert et al., 1986; Krajewski, W. F, 1987; Zhang et al., 
1992). However, the QPE is still unclarifed from region to region because of the great spatial and 
temporal variation of precipitation. So, with the development of radar technology, since the 1980s, 
countries such as Europe and the United States began to develop dual-polarization Doppler weather 
radar and put it into operational use. The introduction of the dual polarization variables signifcantly 
helps us calculate the variation of the raindrop size distribution (DSD) and reduces the quantitative 
precipitation estimation (Seliga and Bringi, 1976; Ryzhkov et al., 2005). 

High spatial and temporal resolution cloud observations are essential for better understand-
ing of various cloud dynamics and microphysical processes, improving cloud parameterization 
schemes, improving the reasonable characterization of clouds in models, evaluating and con-
straining model simulation results, and reducing the cloud large uncertainties in the model. Cloud 
radar in millimeter wavelengths such as Ka- and W-band has high sensitivity to cloud droplet 
particles, has good penetration of thick and precipitation clouds, and can more accurately observe 
turbulence and other microphysical processes in clouds based on the Doppler effect. The US 
Department of Energy’s Atmospheric Radiation Measurement (ARM) program has deployed sev-
eral millimeter-wave cloud radars in different climatic areas all over the world since the late 
1980s to provide long-term continuous observations of clouds and their properties (Stokes and 
Schwartz, 1994; Ackerman and Stokes, 2003). Many studies about the macro and microphysical 
properties of clouds and their relationship with weather and climate have been based on the data. 
For example, Dong et al. (1997) studied the radiative effects of marine boundary layer clouds 
in the Azores and continental boundary layer clouds in Oklahoma and assessed their uncer-
tainties with the help of radiative transfer models; Shupe et al. (2001) studied the microphysi-
cal and radiative properties of clouds in the Arctic Ocean region and raised concerns about the 
inversion methods and radiative effects of mixed-phase clouds in the Arctic; Mace and Benson-
Troth (2002) analyzed and compared regional differences in cloud vertical overlap properties 
using millimeter wave cloud radar observations from multiple locations. The cloud overlap char-
acteristics in the tropics, mid-latitudes, and the Arctic are to some extent consistent with the 



 
 

 
 
 
 

 
 

 

    

  

122 3S Technology Applications in Meteorology 

random overlap hypothesis, while at mid-latitudes, the cloud overlap characteristics show more 
pronounced seasonal variations. In the mid-latitudes, the cloud overlap characteristics show more 
obvious seasonal variations. 

Ground-based millimeter wavelength radar provides local long-term continuous cloud observa-
tions, while satellite-based millimeter-wavelength cloud radar offers the vertical structure of global 
clouds. Thanks to the development of radar detection technology and aerospace technology, more 
and more satellites with millimeter-wave radar have been launched or are in the planning stage of 
operation in recent years. The National Aeronautics and Space Administration (NASA) launch the 
CloudSat satellite which carries the frst W-band Cloud Profling Radar (CPR) to offer vertical struc-
ture of tropical clouds and precipitation (Im et al., 2006; Lebsock and L’Ecuyer, 2011). The Japanese 
Aerospace Exploration Agency (JAXA) and NASA jointly launched the Global Precipitation 
Measurement (GPM) core satellite which carries the second generation of the dual-frequency pre-
cipitation radar (DPR) which uses the Ku-band radar (KuPR) at 13.6 GHz and Ka-band radar (KaPR) 
at 35.5 GHz to achieve global precipitation observation (Iguchi et al., 2012; Hou et al., 2014). 

4.6.2 passiVe MicrowaVe reMote sensing 

Global geophysical measurements from passive microwave radiometers provide key variables for 
scientists and forecasters. The continuous daily measurements of sea surface temperature (SST), 
wind speed, water vapor, cloud liquid water, rain rate, and, in the future, sea surface salinity 
(SSS) over the oceans have provided data sets used to signifcantly improve our understanding of 
daily variation, macro and microphysical parameters, and development mechanism of cloud and 
precipitation. 

The inversion of sea surface rainfall rates using satellite-based microwave radiometer observa-
tions dates back to the 1970s. Allison et al. (1974) earlier demonstrated that the spaceborne micro-
wave radiometer can be used to identify different rain rate distributions under the control of tropical 
cyclones. Subsequently, Wilheit et al. (1984) simulated the quantitative relationship between bright 
temperature and rainfall rate for the 19.35 GHz channel based on radiative transfer models. In the 
simulation of bright temperature, the study not only considered the absorption of oxygen, water 
vapor, liquid water in clouds, and raindrops, but also calculated the effect of raindrop scatter-
ing using the Mie scattering theory. A good dependence of the simulated bright temperature on 
the height of the ice crystal layer was found, and an important “beam flling effect”, i.e., the infu-
ence of the non-uniform distribution of rainfall on the inversion results within the surface metric of 
the microwave radiometer, was also found in this study. 

In 1997, the world’s frst TRMM satellite for measuring rainfall in the tropics was launched 
with active and passive instruments, opening a new era of microwave remote sensing of precipita-
tion (Kummerow et al., 1998). The researchers combined the active radar and passive microwave 
instruments on board the TRMM to conduct a lot of joint active-passive rainfall inversion studies 
(Haddad et al., 1997; Grecu et al., 2002). In 2014, the GPM core satellite was launched with a pre-
cipitation radar and microwave radiometer to observe the global precipitation distribution. 

4.7 SUMMARY 

This paper introduces the importance of clouds, methods of cloud remote sensing, cloud detec-
tion methods, cloud phase detection, cloud microphysical property retrieval, and microwave remote 
sensing applications for clouds and precipitation from six different perspectives, which comprehen-
sively reveal the cloud physical properties and their signifcant effects on the climate system and 
radiation balance. 

Part I introduces the importance of clouds in the Earth’s climate system from different perspec-
tives, focusing mainly on the macroscopic and microscopic physical properties of clouds and their 
radiative effects on the system, and further introducing the concept of cloud feedback and the role 
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of the greenhouse effect on clouds. Differences in cloud height, optical thickness, and phase state 
result in large differences in cloud radiation properties, as do differences in geographic location. 
In addition, the interaction between clouds and aerosols and precipitation likewise has a signifcant 
impact on the climate system; the aerosol-cloud-radiation-precipitation interaction is one of the 
most uncertain factors in climate prediction. 

Part II focuses on the means of application of remote sensing for the observation of cloud prop-
erties and radiation characteristics. Remote sensing can be divided into active remote sensing and 
passive remote sensing according to the working principle. The former emits microwave signals to 
the detection target through sensors and receives scattered signals to form remote sensing images, 
while the latter uses microwave radiometers or microwave scatter meters to receive refected and 
emitted microwaves from the ground, which usually cannot form images. Active remote sensing 
can be used to detect microwaves, because the wavelength of microwaves is long, so it is not easy 
to receive the infuence of atmospheric scattering, microwave detection is not limited by time, and 
now the mainstream of atmospheric remote sensing detection method is microwave radar detection. 
Compared with active remote sensing, passive remote sensing is usually installed on satellites to 
continuously monitor the entire atmosphere and record the electromagnetic radiation emitted at the 
top of the atmosphere. 

Long-term continuous observations of clouds in terms of macro- and microphysical properties 
are important in order to better understand cloud processes to improve the parameterization of cli-
mate models. Therefore, a detailed description of cloud detection algorithms for ground-based radar 
is given in Part III, which lists two cloud detection methods: the classical cloud detection method 
for ground-based cloud radar and a novel cloud detection method improved by Ge et al. (2017). The 
classical cloud detection method assumes that the random noise power follows a normal distribu-
tion, based on which the mean and standard deviation of the noise in a radar ranging gate contain-
ing only noise are calculated, then the valid signals in the ranging gate are fltered by these two 
covariates. Since cloud signals are highly correlated in time and space and have more similar values 
in neighboring pixels, low-pass fltering using spatial-temporal flters is required. The improved 
ground-based radar cloud detection method considers the presence of a non-Gaussian distribution 
of random noise power. The method takes the signal-to-noise ratio (SNR) as the input term, and 
the input data set is divided into two groups, where the data to be noise-reduced are processed by 
convolution. After processing the noisy data, it is bilaterally fltered to obtain the fnal cloud mask. 

In many atmospheric studies, cloud liquid water and cloud ice water content are important indi-
cators of cloud properties, and it is important to achieve high precision detection of cloud phase 
states. Part IV focuses on the detection of liquid and ice phases of clouds using LIDAR in active 
remote sensing technology. Currently, the main use is polarization LIDAR to observe the phase 
state of clouds. When the linearly polarized light emitted from the polarization LIDAR is irradiated 
onto the cloud particles, the resulting polarization state direction is perpendicular to the polariza-
tion state direction of the incident light, so the phase state of the cloud particles can be calculated 
by calculating the ratio of the vertical and parallel components of the scattered light in the echo 
signal. By using this method, the depolarization rate can be calculated in combination with the radar 
calibration factor to better distinguish the cloud phases. In addition, there are a few scientifc depart-
ments using Raman LIDAR for scientifc research, which mainly calculates the overlap information 
between phase water Raman spectra to achieve high precision extraction and accurate inversion of 
the echo signal. 

Cloud microphysical properties have important effects on weather, climate change, and radiative 
feedback, and obtaining cloud microphysical property values using instrumental observations and 
retrieval algorithms can effectively improve cloud properties in climate models. Part V focuses on 
the basic defnitions of cloud microphysical properties and retrieval algorithms. The basic param-
eters of cloud microphysics are mainly characterized by the particle size of cloud droplets, which in 
turn can be expressed by the spectral distribution of cloud droplets, the radius of cloud droplets, and 
the water content of clouds. The cloud droplet spectral distribution refers to the density distribution 
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function of the particles in the cloud, mainly using the modifed gamma distribution function and 
the log-normal distribution function. The cloud droplet radius is a key physical quantity to charac-
terize the particle size, and its mean and variance are mainly used to characterize the cloud droplet 
spectral distribution. The main approach to retrieving the cloud droplet radius is to establish a con-
nection with the radar refectivity factor. Finally, cloud water content refers to the mass of liquid 
or solid water contained in a unit volume, including liquid water content and ice water content, for 
which the empirical relationship method based on single-wavelength radar, the difference method 
based on dual-frequency refectivity of dual-wavelength radar and the combination method of radar 
and other instruments are mainly used to retrieve. 

Microwave remote sensing plays an important role in the observation of cloud and precipitation 
structures; therefore, Part VI focuses on the applications of active and passive remote sensing in 
cloud and precipitation observation. Weather radar, cloud cover radar and meteorological satellites 
from active remote sensing systems are able to provide continuous observations of clouds, precipita-
tion and deep convective systems. Weather radar in S-band, C-band and X-band can detect precipi-
tation structures and convective systems with high spatial and temporal resolution, while weather 
radar can provide good estimates of precipitation rates. Passive microwave radiometer global geo-
physical measurements provide scientists and forecasters with continuous daily data sets of ocean 
surface temperature (SST), wind speed, water vapor, cloud liquid water, rainfall rates, and future 
sea surface salinity (SSS), signifcantly improving our understanding of daily variability, macro- 
and microphysical parameters, and cloud and precipitation development mechanisms. 
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5 Remote Sensing of Cloud 
Properties Using Passive 
Spectral Observations 

Chao Liu, Shiwen Teng, Yuxing Song, and Zhonghui Tan 

5.1 INTRODUCTION 

Clouds are ubiquitous in the atmosphere with a globally averaged occurrence larger than 60%. It 
strongly modulates atmospheric circulation, radiative transfer, and energy budget of the earth’s 
atmosphere system through their interactions with radiation from solar and terrestrial sources 
(Liou, 1986; Shupe et al., 2006; Baker and Peter, 2008). On the one hand, clouds refect solar radia-
tions to space and thereby have a cooling effect on the earth’s atmosphere; at the same time, clouds 
lead to a warming effect on the atmosphere by absorbing longwave radiations emitted from the 
surface; meanwhile, clouds emit longwave radiations outward. Besides, clouds are associated with 
extreme weather phenomena such as rainstorms, hail, tornadoes, and so on. Thus, clouds are of 
great concern for weather prediction and climate change research. However, clouds show complex 
spatiotemporal variations and microphysical properties during their formation and evolution, which 
greatly limit our understanding of clouds and their radiative forcing (Lenaerts et al., 2017). The ffth 
assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2013) also indicated 
clouds are one of the largest uncertainty sources in future climate change. Therefore, accurately 
estimating cloud properties is highly important and conducive to improving our understanding of 
their roles in the Earth’s atmosphere (Wetherald and Manabe, 1988). 

To date, a large number of cloud studies, relying on multi-platforms, have been going about to 
improve our understanding of cloud macro- and micro-properties (Yang et al., 2015). However, their 
low spatial sampling and temporal resolutions limit corresponding applications based on laboratory 
or in situ platforms. The term “remote sensing”, differentiated from in situ measurements, refers to 
the acquisition of information about an object without physical contact and involves measurements 
of electromagnetic radiation and retrievals based on passive or active sensors. Currently, remote 
sensing retrievals of cloud properties have played one of the most crucial and meaningful roles in 
cloud studies (Loeb et al., 2009; Kato et al., 2006). The sensors can take measurements onboard sat-
ellite, aircraft, or ground platforms. Ground- or aircraft-based remote sensing can hardly be used to 
collect observed data over the whole earth at an acceptable temporal resolution. Thus, remote sens-
ing based on satellite measurements becomes the most practical and powerful choice for retrieving 
cloud properties over large spatiotemporal scales (Yang et al., 2015). 

Satellite-based sensors, both active and passive ones, are vital in inferring cloud properties from 
space and can provide long-term, high-resolution, and stable cloud information for weather and 
climate studies. Those space-board instruments receive radiation scattered or emitted by clouds 
from visible to microwave. Active sensors, for example, Cloud-Aerosol LIDAR with Orthogonal 
Polarization (CALIOP) (Vaughan et al., 2005) and Cloud Profling Radar (CPR) (Heymsfeld et al., 
2018), can better detect cloud vertical structures, which are signifcant for understanding cloud 
three-dimensional properties. Nevertheless, due to the limitation of current technologies, the sam-
pling effciency of cloud radar and LIDAR is low, which cannot be applied in associated meteo-
rological applications, and, again, remote sensing of cloud properties using satellite-based passive 
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spectral observations is the most practicable. Both polar-orbiting and geostationary meteorology 
satellites have advantages in cloud detection. The former can achieve higher spatial resolutions 
because of their relatively lower orbital altitude, and the latter is able to monitor a particular area 
with higher temporal resolutions. Both two types of satellites cooperate with each other to form a 
comprehensive observation system for global cloud detection. 

Key variables that quantitatively describe clouds include cloud top properties (e.g., cloud top 
pressure [CTP], cloud top temperature [CTT], and cloud top height [CTH]), cloud optical and micro-
physical properties (e.g., cloud mask, cloud phase, cloud optical thickness [COT], cloud effective 
radius [CER], and cloud water path [CWP]) during both day and night, which can be derived by sat-
ellite passive sensors (Wang et al., 2012; Iwabuchi et al., 2014; Roebeling et al., 2015; Platnick et al., 
2017). Clouds vary considerably on horizontal and vertical scales (Rossow et al., 1985; Stowe et al., 
1989); thus, a more accurate understanding of cloud properties as well as their spatiotemporal dis-
tributions and variations is crucial to global climate change studies (Wetherald and Manabe, 1988; 
Yang et al., 2015). Satellite remote sensing shows the characteristics of cloud detection with a large 
spatial range and long-time series, and passive-sensor-based cloud retrieval algorithms typically 
depend on visible and infrared bands due to their higher spatiotemporal resolutions than hyperspec-
tral and microwave ones. At present, a constellation of more than a dozen satellites, equipped with 
passive sensors with visible and infrared spectral bands suitable for deriving cloud properties, has 
facilitated an unprecedented global view from space. 

A variety of algorithms have been proposed and applied to infer pixel-level cloud properties 
utilizing satellite-based sensor measurements during the past few decades. The series of Advanced 
Very High-Resolution Radiometer (AVHRR) sensors provide one of the most comprehensive satel-
lite records, which have been in continuous operation on NOAA polar-orbiting platforms since 1978. 
Based on the AVHRR imagers, decadal records of the derived cloud properties are available currently 
(Karlsson et al., 2013; Stengel et al., 2015). The Moderate Resolution Imaging Spectroradiometer 
(MODIS) onboard the Terra and Aqua satellites, with relatively high radiometric performance and 
spatiotemporal resolution, is one of the most widely used and reliable sensors in cloud research and 
related applications, as well as the ability to offer nearly global spatial coverage by combining the 
multiple daily satellite overpasses (King et al., 1992; Baum et al., 2012; Platnick et al., 2017). The 
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting 
Partnership (Suomi NPP) satellite also can take moderate-resolution atmospheric measurements, 
which possess the capability of inferring aerosol, cloud, and surface properties (Platnick et  al., 
2020). Furthermore, a number of geostationary satellite sensors with adequate spectral bands and 
high calibration accuracy are currently applied by many remote sensing research groups around the 
world to detect clouds and derive cloud properties, such as the Advanced Himawari Imager (AHI), 
the Advanced Baseline Imager (ABI), the Geostationary Operational Environmental Satellite-R 
(GEOS-R), and so on (Menzel and Purdom, 1994; Schmit et al., 2005; Goodman et al., 2013; Bessho 
et al., 2016; Letu et al., 2020). 

This chapter reviews the development of satellite-based passive remote sensing on clouds and 
introduces some well-established retrieval algorithms to derive cloud properties including cloud 
mask, cloud phase, CTH, CTP, COT, and CER. Meanwhile, this chapter also notes concerns in 
terms of signifcant differences in retrieved results using different methods or sensor measurements 
and summarizes the main and potential causes. Accurate description and research of these cloud 
properties are of great signifcance for cloud observations and simulation, and play an essential role 
in further studies of the cloud effects on the radiative transfer of Earth’s atmosphere system. 

5.2 CLOUD DETECTION 

Accurate cloud detection is a fairly basic and essential step for associated applications in satellite 
remote sensing (Nicoll et al., 2012), which is able to lay a solid foundation for subsequent cloud clas-
sifcation, cloud properties retrievals, and further scientifc research (Liu et al., 2021). The physical 
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foundation of cloud detection is that it has relatively high refectance but low brightness temperature 
(BT) in the visible and near-infrared (NIR) bands, and there are differences between the refec-
tances and BTs over different underlying surface types. Then the radiances received by passive sen-
sors are categorized to detect whether the area is cloudy or clear. Researchers have proposed various 
approaches for cloud detection utilizing passive radiometer measurements, and these methods can 
be broadly classifed into three categories, i.e., the threshold-based method, statistical method, and 
machine learning method. 

During the 1980s and early 1990s, the threshold-based approach is the most straightforward 
approach for cloud detection by applying a set of dynamic or static thresholds of refectance, BT, and 
BT difference (BTD) (Ackerman et al., 1998; Key and Barry, 1989). However, when the cloud system 
is complex and two different classes have no signifcant BTD, the threshold cannot be confrmed; 
thus, the threshold-based method is no longer suitable for cloud detection (Liu et al., 2009). The 
statistical methods include the histogram method, the clustering method, the statistical estimation 
method, and so on (Berendes et al., 2008; Ebert, 1989; Ruprecht, 1985). Based on more information 
for available bands, these statistical methods are supposed to be more reliable than threshold-based 
ones. However, traditional statistical methods always fail in the presence of overlapping clouds (Liu 
et al., 2009). At present, many studies have acknowledged that machine learning approaches have 
provided impressive results and good prospects for cloud detection. This section focuses on intro-
ducing threshold-based and machine learning approaches. 

5.2.1 threshold-Based Method 

Most of the classical and commonly used cloud detection methods belong to threshold-based algo-
rithms. The algorithm refers to the use of multiple channels of meteorological satellite sensors based 
on empirical or statistical values to determine the threshold in each channel. It can combine cloud 
images of different channels for analysis according to different spectral characteristics of visible and 
infrared channels, and the key to threshold-based methods is the selection of appropriate thresholds 
for refectance or BT, and the differences among various threshold-based algorithms lie in the dif-
ferent combinations of selected channels and the corresponding threshold values. Literature has 
reported a variety of threshold-based algorithms for different satellite sensors, geographical loca-
tions, and underlying surface types. 

Current threshold-based methods are categorized into the spectral combined (Wang et  al., 
2011) and the frequency combined threshold-based method (Gao et al., 2014), and the former takes 
advantage of the strong refection properties of clouds at visible wavelengths. Early threshold-based 
methods include the ISCCP (the International Satellite Cloud Climatology Project) (Rossow et al., 
1989), the CLAVR (the NOAA Cloud AVHRR) (Stowe et al., 1994), and the CASPR (the Cloud and 
Surface Parameter Retrieval) algorithm (Key, 2002). At present, a cloud mask algorithm proposed 
and developed by the MODIS team of NASA (National Aeronautics and Space Administration) is 
relatively popular internationally (Ackerman et al., 1998). The algorithm uses the MODIS measure-
ments of 22 bands and sets several characteristic values for threshold determination. The cloud 
detection results are mainly represented by four categories, i.e., confdent clear, probably clear, 
probably cloudy, and cloudy. The calculation formulas of cloud mask confdence are as follows: 

F (5.1) Gj=1,N = min[ ]i i=1,m 

NQ N= Õ G (5.2) i=1 j 

where Fi  is the confdence level of an individual spectral test, m is the number of tests in a given 
group, j  is the group index, and N  is the number of groups. According to the cloud mask out-
put based on these formulas, there are four confdence levels contained including confdent clear 
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FIGURE 5.1 True-color composite (Band: 1–4 -3) from MODIS data on 18 July 2001 at 15:30 UTC from 
 Platnick et al. (2003 ). 

(Q > 0.99), probably clear ( Q > 0.95), uncertain/probably cloudy ( Q > 0.66), and cloudy ( Q £ 0.66), 
respectively.  Figure  5.1  shows a true-color composite of a study case from MODIS data on 18 
July 2001 at 15:30 UTC, and the cloud detection results using the threshold-based method for the 
granule of Figure 5.1 are shown in Figure 5.2 ( Platnick et al., 2003 ).                  

However, certain thresholds vary with the seasons and the elevation of the sun, which leads to 
variational selected thresholds for all regions and times (Mahajan and Fataniya, 2020). Meanwhile, 
the spatiotemporal climates and underlying surfaces change on a world-wide range; thus, the varia-
tion of thresholds with various infuences, including surface type, temperature, atmospheric humid-
ity, viewing geometry, and so on, will affect cloud mask results of remote sensing (Dybbroe et al., 
2005). Therefore, most threshold-based approaches are only appropriate to specifc conditions or 
radiometers with poor universality and easily lead to omissions or misjudgments, and it is often dif-
fcult to select proper thresholds during the process of cloud detection. 

With the improvement of cloud detection accuracy requirements, the threshold-based algorithm 
has gradually developed from the early fxed threshold to the dynamic threshold, adaptive threshold-
based, and multi-spectral combination threshold. For example, Wei et al. (2016) developed a general 
dynamic threshold-based method using the land surface refectance database (LSRD), which is 
on the basis of 8-day synthetic MODIS surface albedo products. According to viewing geometry, 
atmospheric, and aerosol models, the relationship between apparent refectance and surface albedo 
can be simulated. In detail, the 6S model is used to consider the aerosol scattering properties, and 
the least square method is used to establish the new cloud detection model. 



 

 
 

 

 

    
 

 
         

    

  

  

    
 

133 Remote Sensing of Cloud Properties 

FIGURE 5.2 The spatial distribution of MODIS-derived cloud mask based on the threshold-based method 
for the study case of  Figure 5.1  from  Platnick et al. (2003). 

Furthermore, MODIS Collection 6 updates to the clear sky restoral (CSR) algorithm, which is 
primarily focused on optimizing the skill of the “Not Cloudy” (i.e., CSR = 2) category (Platnick 
et al., 2017). It acknowledged that the spatial variability tests employed in MODIS Collection 5 still 
have some issues. Obtaining an aerosol-like spatial variability signature from very uniform opti-
cally thin marine stratus clouds is possible; thus, the CSR algorithm often created “holes” in cloud 
regions where retrievals should have been attempted. To remedy this issue, a neural net-based fast 
aerosol optical depth (AOD) retrieval algorithm was implemented with code from the Goddard 
Modeling and Assimilation Offce used in GEOS-5 aerosol data assimilation. The algorithm was 
designed to operate in cloud-free conditions, which was used internally by GEOS-5. Based on 
the CSR algorithm, two distinct pixel populations emerge while it is applied to all MODIS “Not 
Cloudy” pixels. One population has a reasonable AOD retrieval, while the other gives large values 
outside the expected range. For present purposes, optical depth values with log (AOD + 0.01) > 0.95 
are assumed to be associated with cloudy scenes, and the CSR category is reset to cloudy.  Figure 5.3 
shows the CSR results of a case study on 9 April 2005 at 10:50 UTC from  Platnick et al. (2017). It 
is evident that CSR results are more consistent with the true distribution of clouds. 

5.2.2 Machining learning algorithMs 

Since the 1990s, machine learning technology has made remarkable achievements in a lot of felds, 
such as computers and image recognition. Machine learning algorithms are also broadly used in 
cloud detection research due to their good universality in time and region, which can solve the 
spatiotemporal limitations of the threshold-based method to a certain extent by training data sets 
(Liu et al., 2009). Generally speaking, machine learning can be categorized into supervised and 
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FIGURE 5.3 (a) True-color-image (Band: 1–4–3) from MODIS data on 9 April 2005 at 10:50 UTC, (b) 
MOD35 cloud mask results, and (c) MOD06 Collection 6 CSR algorithm results (0-overcast, 1-cloud edge, 
2-restored to the clear sky, and 3-partly cloudy) from  Platnick et al. (2017). 

unsupervised learning, the former being more popular among kinds of cloud detection algorithms. 
Various researchers used an artifcial neural net with many variations, such as support vector 
machines, fusing multi-scale convolution features, deep learning, decision tree, Bayesian classifca-
tion, random forest-based methods, and object-based convolution neural network models. 

Machine learning-based cloud detection algorithms are independent of multi-spectral thresholds 
and have good application prospects. For different passive remote sensors, different methods are used 
to carry out a lot of research. Bankert (1994) used the probabilistic neural network method to carry out 
cloud detection for AVHRR, which started the prologue of the artifcial intelligence cloud detection 
method. Heidinger et al. (2012) adopted the naive Bayes method to develop six Bayesian classifers for 
seven underlying surface types, and the accuracy of cloud detection reached over 90% for surface types 
of the ocean, desert, and snowless land.  Thampi et al. (2017) described the new CERES (Clouds and the 
Earth’s Radiant Energy System) algorithm for improving the clear/cloudy scene classifcation, which is 
based on the atmospheric top radiation fux in the cloud and earth radiation system using machine learn-
ing algorithms.  Chen et al. (2018) developed a threshold-free cloud mask algorithm based on a neural 
network classifer driven by extensive radiative transfer simulations, which made signifcant progress 
in cloud detection on the underlying surface of the snow.  Ishida et al. (2018) proposed an adjustable 
cloud detection algorithm, which incorporates a support vector machine to satisfy the requirements so 
as to realize cloud detection under various scenes.  Wang et al. (2020) developed two machine learning 
models incorporating the random forest algorithm for VIIRS onboard the Suomi NPP. 

Due to signifcant differences in surface albedo and emission characteristics, surface type is a 
key contributor that should be taken into consideration for the development of cloud detection algo-
rithms (Platnick et al., 2003). Currently, most machine learning-based cloud detection algorithms 
establish independent classifers accounting for different surface types, and several studies also treat 
the surface type as an additional variable in the input parameters, but there is also the problem of 
how to parameterize the surface type. Therefore, for the purpose of addressing the impact of surface 
types on the stability and accuracy of cloud detection algorithms,  Liu et al. (2021) proposed three 
models with different treatments of the surface for AHI onboard the Himawari-8 geostationary satel-
lite. Instead of developing independent machine learning-based algorithms, the researchers added 



 

  
  

 
                 

    

    

135 Remote Sensing of Cloud Properties 

FIGURE 5.4 Flowchart of the machine learning-based cloud detection algorithm development and predic-
tion for AHI from Liu et al. (2021). 

FIGURE 5.5 A study case for the MODIS and AHI operational cloud product and machine learning results 
on 4 June 2018 at 05:10 UTC from Liu et al. (2021). (a) RGB image, (b) MODIS cloud mask, (c) AHI cloud 
mask, and (d-f) random forest-based results. Cloudy pixels are marked gray, and clear ones are marked blue. 

surface variables in a binary way, which enhanced the accuracy of cloud detection by ~5%.  Figure 5.4 
illustrates the fowchart of the machine learning-based cloud detection algorithm development and 
prediction for AHI, and  Figure 5.5  shows a study case of cloud mask results from the AHI, MODIS 
operational products, and the daytime random forest-based algorithms ( Liu et al., 2021 ). 
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In a word, machine learning-based algorithms are more fexible and less complicated since this 
kind of method simulates decisions on training data only but are not consistent due to model train-
ing relying on the input data set. 

5.2.3 other approaches 

Other than the aforementioned two series of methods, the literature shows new ones, such as statisti-
cal and texture analysis approach. Statistical methods are mainly divided into the statistical equa-
tion and cluster analysis methods. The statistical equation methods use the existing data set samples 
to establish the corresponding simulation formula to calculate the BT or refectance of clouds and 
then judge whether clear or cloudy. The cluster analysis method mainly uses unused ground objects 
to present differences in pixel values to achieve cloud detection. However, when the samples of 
cloud detection images are large, it is diffcult to obtain a consistent clustering result, which requires 
human intervention and greatly affects the effciency of cloud detection. 

In addition, cloud detection algorithm based on the visible bands of the satellite image is proposed 
by Tian et al. (2019). The method considers the differences between the cloud and the ground, including 
various gray levels, and accounts for a reference satellite image, which introduces a reference satellite 
image by comparing the variance corresponding to the reference. This method detects multiple cloud 
regions and determines whether or not the cloud exists in an image described. Zhang et al. (2019) pro-
posed a cloud detection method for high resolution satellite images using ground multi-features of objects 
such as color and shape, then the texture is extracted utilizing a multi-scale decomposition on the basis 
of the domain transform. The overall accuracy of this method is high while it is easy to be misidenti-
fed if the surface albedo of the non-cloudy region is relatively high. Kwan et al. (2020) summarized 
straightforward and well-performed algorithms for cloud and shadow detection, which are based on an 
inverted map to convert an image into a greyscale image. The inverted map is the threshold to generate 
the shadow mask, but this method will lead to false cloud mask when improper thresholds are grasped. 
A novel cloud detection algorithm using superpixel segmentation (SPS) is employed for all-sky images 
(Liu et al., 2014). Moreover, methods based on texture features (Cao et al., 2007) and statistical features 
(Shan et al., 2009) already have been actually applied in the China-Brazil Earth Resources 02B Satellite. 

Cloud detection is of vital importance in the process of satellite-based remote sensing, and the 
stability and accuracy of various algorithms are signifcantly improved, whereas the reports illus-
trate that there is much work required to achieve the desired correctness of cloud detection results 
for further studies. 

5.3 CLOUD THERMODYNAMIC PHASE 

Cloud thermodynamic phase, as a prerequisite for inferring cloud properties such as COT, CER, and 
CWP, is often divided into four categories including ice, liquid water, mixed-phased, and uncertain. 
All kinds of cloud optical and microphysical parameter retrieval methods are developed according 
to the different phase types, and cloud phase classifcation is a critical initial step: accurate results 
improve the accuracy of retrievals. 

Passive spectral sensors mainly receive the radiation that is refected and emitted by the surface, 
atmosphere, and clouds in a cloudy feld of view (FOV). For optically thicker clouds, the radiation 
observed by the satellite mainly comes from the top of the cloud and atmosphere, which is between the 
top of the cloud and satellite, and the radiation from the cloud top mainly depends on the size, shape, 
number density, and phase of the cloud particles (Yang et al., 2003). For the electromagnetic wave 
of a specifc incident frequency, the cloud particles will show a variety of radiation characteristics. 
For inferring the cloud phase, it is necessary to select a wavelength with different optical properties 
between the liquid water and ice clouds. According to the different selected wavelengths, this section 
summarizes the cloud phase retrieval algorithms into three categories, i.e., thermal infrared band 
method, visible and shortwave infrared (SWIR) band method, and all-spectral-band-based method. 
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5.3.1 inFrared-Band-Based Method 

The purpose of the infrared-band-based method for cloud phase classifcation is to implement an 
infrared-only-based technique that works independently of solar illumination conditions. Originally, 
a tri-spectral infrared technique based on spectral bands at 8.5, 11, and 12 μm was developed to 
infer cloud phase (Ackerman et al., 1990). The BTD between 11- and 12-μm channels is taken as the 
horizontal coordinate, the BTD between 8- and 11-μm channels is regarded as the vertical coordi-
nate, and the scatter plot of the BTD is made to distinguish the ice cloud from the liquid water cloud. 
However, misjudgments are often made for optically thin liquid water and ice clouds, which require 
correction for changes in the water vapor content in the atmosphere. 

With MODIS in orbit, the tri-spectral method has been simplifed. Baum et al. (2000) found 
that for ice COT greater than 1, the BTD of 8.5- and 11-μm channels tends to be positive, while 
for optically thick water clouds, the BTD tends to be negative, usually less than -2 K, and the 
BTD is sensitive to atmospheric absorption, especially water vapor absorption. Figure 5.6 shows 
the decision tree of the bi-spectral method from Platnick et al. (2003), which has become one of the 
algorithms for cloud phase classifcation by MODIS. Through this algorithm, the infrared-based 

FIGURE 5.6 Decision tree for MODIS Collection 5 infrared bi-spectral cloud phase determination from 
Platnick et al. (2003). 
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retrieval algorithm classifed cloud phases as ice, water, mixed-phase, and uncertain. There are two 
primary shortcomings of this method: (1) optically thin cirrus may not be classifed as ice phase, 
and (2) cloud classifcation for supercooled water clouds (SWCs) or mixed-phase ones may be prob-
lematic if only using infrared measurements (Platnick et al., 2003). 

The MODIS team further enhanced the bi-spectral cloud phase algorithm with the addition 
of a third infrared channel and the use of emissivity ratios (Baum et  al., 2012). Because infra-
red absorption bands are sensitive to CTH, the 7.3-μm channel is introduced to effectively dis-
criminate optically thin ice clouds and low-level clouds. Moreover, the use of emissivity ratios 
(i.e., β) is employed primarily to improve the discrimination of optically thin and high-level clouds 
as being ice; it is not very useful to improve the discrimination of liquid water clouds. In the MODIS 
Collection 6 infrared-based cloud phase classifcation algorithm, three different band pairs are used: 
7.3 and 11 μm, 8.5 and 11 μm, and 11 and 12 μm. Specifcally, the information contained in the 
7.3–11 μm pair helps to separate high clouds from low clouds, the 8.5–11 μm band pair is primarily 
sensitive to ice clouds, and the 11–12 μm band pair is related to cloud opacity. 

A comparison between the MODIS Collection 5 and Collection 6 infrared cloud phase results is 
presented in Figure 5.7 (Baum et al., 2012). For the results derived from MODIS Collection 5, pixels 

FIGURE 5.7 Snap-to-grid daytime results for infrared-based cloud phase on 28 August 2006 for (a) MODIS 
Collection 5 and (b) MODIS Collection 6 infrared cloud phase results from Baum et al. (2012). 
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that are not positively identifed as either ice or liquid water are labeled as uncertain. The MODIS 
Collection 6 algorithm greatly reduces the percentage of pixels that are classifed as uncertain, and 
much of pixel-level results are often labeled as ice.         

The cloud phase classifcation method based on thermal infrared multi-spectral data is not 
restricted by solar radiance and can be used for continuous retrieval during the day and night. 
However, the measurements are sensitive to surface emissivity and atmospheric absorption, espe-
cially for water vapor absorption. In the condition of optically thin clouds and discrete cloud 
fragmentation, surface radiation contributes a lot to satellite observations, which is easy to cause 
differences in cloud phase classifcation. 

5.3.2 VisiBle and swir Band-Based Method 

Both liquid water and ice clouds have non-negligible absorption in the SWIR channels, and for 
MODIS 1.6- and 2.1-μm channels, the absorption of the liquid water cloud is obviously less than 
that of the ice cloud. There is almost no absorption for both liquid water and ice clouds in visible 
bands. Therefore, assuming all other conditions are equal except phase state, the refectance ratio of 
liquid water clouds between the SWIR and the visible band is greater than that of ice clouds. And 
the ratio of refectance of MODIS SWIR channels (centered at 1.6 and 2.1 μm) to that of the visible 
channel (centered at 0.66 μm) is used by  King et al. (1992) to complete the classifcation of cloud 
phase, and its threshold is related to particle size and solar zenith angle (SZA). Optically thin cirrus 
is easily misjudged under high refectance surface conditions. Another algorithm takes advantage 
of constant optical differences between liquid water and ice clouds in selected SWIR bands, which 
are centered at 1.6 and 2.1 μm, respectively. 

According to the difference in the refectance of liquid water and ice clouds in the SWIR band 
(Figure 5.8), some indices can also be defned to identify the phase states of clouds.  Knap et al. 
(2002) completed the classifcation of cloud phase states by judging the shape parameter thresh-
old based on the fact that ice particles have a larger absorption than water particles at the 1.6-μm 

FIGURE 5.8 Imaginary part of the refractive index of ice and water as a function of wavelength between 0.5 
and 2.5 μm from  Knap et al. (2002). The arrows indicate the spectral slopes for liquid water and ice are highly 
different on the 1.67-μm channel. 



  

 

 
 
 
 

 
 

140 3S Technology Applications in Meteorology 

channel, and the change curve of the imaginary part of the complex refraction index of ice cloud 
particles has a larger slope while the slope of water particles is approximately 0. This method is 
not effective for the retrieval of optically thin cirrus clouds on the surface snow anymore and is not 
sensitive to other surface types, so it is not suitable for global cloud phase classifcation. 

Although the retrieval technology based on solar refectance is not affected by the cloud tem-
perature deviation and the geometric sampling effect of the system, it can only be used in the 
daytime and is sensitive to the SZA and satellite zenith angle (VZA). When the size of liquid water 
cloud particles is too large or ice ones is too small, the classifcation of the cloud phase will become 
uncertain. 

5.3.3 all-spectral-Band-Based Method 

So as to improve the accuracy of cloud phase classifcation, visible, NIR, and thermal infrared 
bands can be combined for daytime cloud phase determination. Arking and Childs (1985) frst used 
0.73-, 3.7-, and 11-μm channels from AVHRR data for retrieving cloud properties and obtained 
cloud optical and microphysical parameters containing cloud thermodynamic phase. According to 
the sensitivity of the 3.7-μm channel to the cloud phase, the cloud phase can be classifed by using 
this index. Baum et al. (2000) added refectance information of SWIR 1.6-, 1.9-, and visible 0.65-μm 
channels to the thermal infrared tri-spectral method for improving the accuracy of optically thin 
cirrus cloud phase classifcation. Furthermore, this method used MODIS 1.63-μm channel refec-
tance and 11-μm channel BT to identify the multi-layer clouds with liquid water clouds on the lower 
layer and optically thin cirrus clouds on the upper layer. 

The MODIS daytime-only cloud phase algorithm uses a combination of visible, SWIR, and 
infrared channels, and the results are used in the MODIS cloud optical and microphysical property 
retrievals (Marchant et al., 2016). This algorithm uses four primary tests based on the 1 km CTT, 
the 1 km infrared cloud phase, the 1.38 μm cirrus detection test from the MOD35 cloud mask, 
and three spectral CER tests (derived from 1.6-, 2.1-, and 3.7-μm channels). Although these tests 
reduce computational effciency, it is evident that the MODIS daytime-only cloud phase algorithm 
achieves high accuracy through the comparison with CALIOP. Over 90% of cloud phase tested 
results derived from MODIS Collection 6 show good agreement with those of CALIOP for single-
phase cloudy pixels. At the same time, these developments are observed for several surface types, 
including ocean, land, desert, and snow/ice, and both optically thin and thick clouds. 

The AHI cloud phase algorithm is designed on a combination of 0.6-, 1.6-, 8.6-, and 11.2-μm chan-
nels (Mouri et al., 2016a), and the fowchart of cloud phase processing is summarized in Figure 5.9. 
For an opaque cloud, the phase is classifed as ice when BT at 11.2-μm channel is below freezing tem-
perature without an ice nucleus and water when BT at 11.2-μm channel is above freezing temperature. 
The BTD between 8.6 and 11.2 μm is generally smaller for liquid water clouds than that for ice clouds, 
and a look-up table (LUT) was developed to provide reasonable thresholds for the highest skill score 
in cloud phase classifcation. Moreover, the cloud phase determination is also achieved through a ratio 
of refectances between 0.64- and 1.6-channel and radiative transfer calculation. 

In particular, clouds with temperatures below the freezing point but whose particles are still in 
the form of liquid water droplets are referred to as SWCs. Zhou et al. (2022) introduced an effcient 
algorithm to detect SWCs from passive radiometer observations, which combines information from 
the refectance difference between 1.61- and 2.25-μm channels, the BTD between the 8.5- and 
11-μm channels, and the CTT. Since the channels used for the detection are available in most current 
operational polar and geostationary satellite radiometers, this SWC detection algorithm can be eas-
ily implemented for operations such as cloud monitoring, aviation safety, and SWC-related weather 
modifcation. Figure 5.10 gives three examples of SWCs classifcation results in different seasons 
and areas from Zhou et al. (2022). 

Since the thermal infrared band-based method and visible and SWIR band-based methods 
have different strengths and shortcomings, a combination of all-spectral-band can be used to 
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FIGURE 5.9 Flowchart of AHI cloud phase processing from  Mouri et al. (2016a). 

FIGURE 5.10 (Top) Three examples of the supercooled water cloud (SWC) detection results from  Zhou 
et al. (2022). The red lines indicate the collocated CloudSat-CALIPSO tracks. (Bottom) Cloud phase ver-
tical distributions from the LIDAR-radar product, VIIRS SWC results, and SWC results from CALIOP-
CPR merged product (i.e., 2B-CLDCLASS-LIDAR) are illustrated on horizontal lines at the upper part 
of each panel. 



 
 
 

  

 
 
 
 
 
 
 
 

 

   

 

  

 
 

 
 
 
 
 

      

142 3S Technology Applications in Meteorology 

provide better cloud phase detection results. However, the all-spectral-band-based method can 
only be applied to daytime observations, and there are still some challenges that need to be 
overcome, for example, the identifcation of multi-layer clouds and dependencies of view and 
scattering angle. 

5.4 CLOUD TOP PROPERTIES 

Cloud top properties (i.e., CTP, CTT, and CTH) are of particular importance for determining long-
wave radiation at the top of the atmosphere and are especially valuable for aviation safety (Baum 
et al., 2012). Passive remote sensing has been an important way of cloud top property retrievals 
because of the advantages of the large FOV and high spatiotemporal and spectral resolution (Baum 
et al., 2000). There have been numerous methods to retrieve cloud top properties from passive 
remote sensing observations, including the infrared window algorithm, the CO2-slicing algorithm, 
the water vapor window algorithm, the machine learning-based algorithm, and the extrapolation 
algorithm. This section provides a review of the infrared window method and the CO2-slicing 
method, which are adopted by many operational CTH algorithms. In addition, most of the existing 
approaches are based on the assumption of a single-layer cloud, resulting in inevitable uncertain-
ties when multi-layer clouds are present. To address this problem, considerable efforts have been 
made. This section also reviews some advances in the retrieval of cloud top properties for multi-
layer clouds. 

5.4.1 inFrared window Method 

For a given cloud element in a FOV, the radiance observed R(λ) in the spectral band centering at 
wavelength λ can be written as (Baum et al., 2012): 

R l = -1 NE R  l + NE é (l Pc )ù( )  ( ) clr ( )  Rbcd , (5.3) ë û 

where Rclr(λ) is the clear-sky radiance, Rbcd(λ, Pc) is the opaque (black) cloud radiance from pressure 
level Pc, N is the fraction of the FOV covered with cloud, and E is the cloud emissivity. 

The infrared window method assumes a fully covered FOV N = 1 and optically thick clouds 
E = 1. The item (1 – NE) on the right side in Eq. 5.3 vanishes, being tantamount to no contribution 
from the surface and the atmosphere below the cloud. Assuming an atmospheric temperature and 
humidity profle, the radiance can be calculated using a radiative transfer model. The CTP is found 
by minimizing the difference between the simulated and observed radiance. With this method and 
under the aforementioned assumptions, the CTP can be derived by using only a single channel. It is 
favorable to use a wavelength with a large atmospheric transmissivity to minimize the infuence of 
the atmosphere above the cloud on the retrieval. 

For instance, AHI onboard the Himawari-8/9 satellites employs a wavelength of 11.2 μm, which 
represents a window region for water vapor (Mouri et al., 2016b). Figure 5.11 illustrates a study case of 
CTH determined using the infrared window method from Mouri et al. (2016b). The vertical profle of 
radiance at 11.2 μm is calculated using the radiative transfer model. The interpolation ratio of radiance 
between the two levels sandwiching the observed radiance refects the interpolated pressure between 
the two levels. This example shows an observed radiance of 85.2 mW converted to 591.4 hPa. 

The infrared window method has been an effective method for retrieving cloud top properties of 
opaque clouds, especially for low-level water clouds. It is possible to extend this retrieval method 
by taking cloud cover N and/or the spectral cloud emissivity E explicitly into account (Roebeling, 
2006; Menzel et al., 2008). The cloud cover N can be estimated using the high-resolution channel 
of passive sensors. Furthermore, the spectral emissivity E can be estimated from the approximate 
2:1 relationship between the COT at visible and infrared window-channel wavelengths. Rossow and 
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FIGURE 5.11 A  study case of CTT determined using the infrared window method from Mouri et  al. 
(2016 b). 

Schiffer (1999) solve frst for the visible optical depth  tvis using the refected radiance. Then, the 
emissivity E is computed as: 

E = - exp ( 0 5t / m ( 5.4 ) 1 - . )vis

 where µ is the cosine of the VZA. Taking the semi-transparency and coverage of the cloud layer into 
account, the retrieval results of the radiance ftting method can be signifcantly improved. 

5.4.2 co2-slicing Method 

The CO2-slicing method is based on the atmosphere becoming more opaque resulting from CO2 

absorption as the wavelength increases from 13.3 to 15 μm, thereby causing radiances obtained 
from these spectral bands to be sensitive to a different layer in the atmosphere (Menzel et al., 1983; 
Wylie and Menzel, 1999).  Figure 5.12  shows the weighting functions for the CO2 absorption bands 
on MODIS from  Menzel et al. (1983). Because the peaks in the weighting functions are well into the 
troposphere, CO2 slicing is most effective for the analysis of mid- to high-level clouds, especially 
semi-transparent clouds such as cirrus.         

 The CO2-slicing technique is founded in the calculation of radiative transfer in an atmosphere 
with a single cloud layer. In the case of semi-transparent clouds,  N and E in Eq. 5.3 are unknown. 
The clear sky radiance can be simulated with a radiative transfer model or estimated by locating 
clear sky measurements in the vicinity of the observation (Smith and Frey, 1990). The opaque 
(black) cloud radiance can be calculated from: 

P dB él,T p  ùs ë ( )ûR (l, P ) = R ( )l - ò t (l, p) dp ( 5.5 ) bcd  c clr 
Pc dp 
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FIGURE 5.12 Weighting functions for the four MODIS bands in the CO2 absorption band from Menzel et al. 
(1983). 

where Ps is the surface pressure, Pc is the cloud pressure, t(λ, p) is the fractional transmittance of 
radiation at frequency λ emitted from the atmospheric pressure level (p) arriving at the top of the 
atmosphere (p = 0), and B[λ, T(p)] is the Planck radiance at frequency λ for temperature T(p). The 
second term on the right represents the decrease in radiation from clear conditions introduced by 
the opaque cloud. The inference of cloud-top pressure for a given cloud element is derived from 
radiance ratios between two spectral bands. The ratio of the deviations in observed radiances R(λ) 
to their corresponding clear-sky radiances Rclr(λ) for two spectral bands of wavenumber λ1 and λ2, 
viewing the same FOV, is written as: 

P dB él ,T p  ùs ë 1 ( )ûNE t l( , p) dp( )  1 
P 

1R ( )l1 - Rclr l1 
ò 

c dp
= ( 5.6)

R l - ( )  dB é 2 ,T p  ù( )  l l ( )2 Rclr 2 Ps ( 2 , p) ëNE2 ò P 
t l  

dp 
û dp 

c 

For band pairs that are spaced closely in wavelength, the assumption is made that E1 is approxi-
mately equal to E2. This allows the CTT, CTH, and CTP within the FOV to be inferred when the 
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FIGURE 5.13 Example of MODIS (a) CTP and (b) CTT retrievals on 18 July 2001 at 15:30 UTC from 
 Platnick et al. (2003 ). 

atmospheric temperature and transmittance profles for the two spectral bands are known or esti-
mated. Figure 5.13  shows an example of the MODIS retrievals of CTT and CTP based on the CO 2-
slicing method. The image shows widespread boundary layer stratocumulus clouds off the coasts 
of Peru and Chile on 18 July 2001 at 15:30 UTC, associated with cool upwelling water along the 
Humboldt current ( Platnick et al., 2003 ).         

 The CO2-slicing method performs well for optically thick clouds located at middle to high levels 
of the atmosphere, whereas it becomes less accurate for optically thin clouds (Zhang and Menzel, 
2002; Holz et al., 2006). To date, many operational cloud top properties products have been pro-
duced based on the infrared window algorithm combined with the CO2-slicing algorithm ( Baum 
et al., 2012; Mouri et al., 2016b; Min et al., 2017). 

5.4.3 treatMent For oVerlapping clouds 

Conventional CTH retrieval algorithms, including the aforementioned infrared window method 
and CO2-slicing method, assume clouds to be homogenous and single-layer. However, it is common 
that multi-layer or overlapping clouds are in the atmosphere, accounting for approximately 25% of 
world-wide cloud observations (Li et al., 2015). Some validation studies have revealed that the CTH 
retrievals may be signifcantly biased when overlapping clouds are present.  Figure 5.14  presents the 
histogram for the differences of MODIS-CALIOP CTH separated by single-layer and multi-layer 
clouds from  Holz et al. (2008). The results indicate that multi-layer clouds dominated the MODIS 
CTH biases. To improve the accuracy of CTH retrievals, various effective retrieval methods for 
overlapping clouds have been introduced.        

By using ground-based microwave radiometers to constrain lower-layer water clouds, Huang 
(2005) proposed a multi-layer cloud retrieval algorithm to probe only the upper-layer ice cloud 
properties with satellite visible and infrared radiances. This algorithm was effective in reduc-
ing the large biases of the upper ice CWP and CTH, but the lower-layer water CTH was not 
quantitatively inferred, and ground-based microwave observations had to be used.  Lindstrot 
et al. (2010) retrieved the multi-layer CTPs by combining oxygen A-band channels for upper 
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FIGURE 5.14 Histogram of global CTH differences between MODIS and CALIOP is presented fltered by 
single-layer and multi-layer clouds using CALIOP data from  Holz et al. (2008). 

layers and an 11-µm window channel for lower layers.  Watts et al. (2011) derived the two-layer 
CTPs of overlapping clouds using only infrared channel measurements by using a simplifed 
assumption that the lower-layer clouds are gray and have a proxy height given by the surface 
temperature. 

Teng et al. (2022) provided an optimal-estimation-based multi-spectral method, which lever-
ages the merits of four shortwave infrared channels (centered at 0.86, 1.6, 2.13, and 2.25 µm) in 
distinguishing cloud optical and microphysical properties in different phases and the capabilities 
of longwave infrared channels (centered at 8.6, 11, and 12 µm) for the corresponding CTHs. The 
method performs effectively for overlapping clouds with an optically thin but detectable ice layer 
(COT less than ~7) above a liquid water layer.  Figure 5.15  presents an example of overlapping CTH 
retrieved via the multi-spectral algorithm from  Teng et  al. (2022). The single-layer-based AHI 
CTHs greatly underestimate the “true” upper-level ice CTHs (ITHs) and overestimate the “true” 
lower-level water CTHs (WTHs). Compared to the AHI operational CTHs, the CTH retrievals 
based on the multi-spectral algorithm can better characterize the vertical distribution of overlap-
ping cloud systems. 

In addition to radiative transfer-based methods, a statistics-based extrapolation method was pro-
posed to infer upper-layer ITH and lower-layer WTH simultaneously (Tan et al., 2022). Based on the 
continuity of cloud boundary, this method estimates the CTH of neighboring overlapping clouds by 
using the well-retrieved CTH of single-layer clouds.  Figure 5.16  shows an example of overlapping 
CTH retrieval based on the extrapolation method from  Tan et al. (2022). With the simultaneous 
retrieval of ITH and WTH, the vertical structures of overlapping clouds become much clearer; thus, 
the cloud radiative effects could be better evaluated.           
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FIGURE 5.15 Example of the CTHs retrieved based on (top) the conventional cloud retrieval method and 
(bottom) the multi-spectral overlapping cloud retrieval method from  Teng et al. (2022). Cloud vertical profles 
from the 2B-CLDCLASS-LIDAR are regarded as the truth. 

FIGURE 5.16 An example of overlapping CTH retrieval from  Tan et al. (2022). Comparison of the CPR-
CALIOP cloud profles (white region) with the AHI operational CTH product (black circles) and the ITH (red 
triangles) and WTH (blue triangles) derived from the extrapolation algorithm. 
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5.5 CLOUD OPTICAL AND MICROPHYSICAL PROPERTIES (COT AND CER) 

Satellite spectral radiometers measuring the outgoing radiation in the solar and thermal infrared bands 
is one of the most popular and effective tools for retrieval of cloud optical and microphysical proper-
ties. The refected solar radiation and emitted longwave radiation by cloud particles in the atmosphere 
largely depend on its radiative properties. Among various cloud properties, COT and CER, as key 
quantitative variables that can be inferred by satellite spectral radiometers, are primary for cloud 
radiative effects (Stowe et al., 1989;  Yang et al., 2015). So far, two kinds of classical cloud optical 
and microphysical property retrieval algorithms have been developed and widely applied. One is the 
solar-band-based retrieval algorithm using measured refectance at two solar refective bands and thus 
can only be used for retrievals during daytime. Another is the infrared-band-based retrieval algorithm 
using measured BTs at a series of thermal infrared bands which can be widely used during both day-
time and nighttime. This section introduces these two retrieval algorithms using solar-band-based 
remote sensing and infrared-band-based remote sensing of satellite spectral radiometers, respectively. 

5.5.1 solar-Band-Based Method 

The solar refective method, normally a bi-spectral algorithm, was frst introduced by  Nakajima and 
King (1990) and has been widely applied for various research and operational retrievals since then 
to infer COT and CER. The approach uses a weakly absorbing (visible or NIR) band refectance and 
an absorbing SWIR band refectance. The former bands are mainly sensitive to COT, and the latter 
ones are sensitive to both COT and CER. The refectance LUTs are pre-calculated for clouds with a 
wide range of COT and CER. Thus, simulated refectances at the two bands can be compared with 
measured refectances, and the corresponding COT and CER that yields the best agreement with 
the measurements can be obtained. For effcient retrievals, cloud refectances are simulated based 
on 128-stream Discrete-Ordinate-Method Radiative Transfer (Stamnes et al., 1988) forward simula-
tions in many researches (Teng et al., 2022; Liu et al., 2023). 

Figure 5.17  shows an example of refectance LUTs for a pair of bands centered at 0.87 and 
2.13 μm for liquid water (red curves) and ice (blue curves) phase clouds over a dark surface for the 

FIGURE 5.17 An example of refectance LUTs at the 0.87- and 2.13-μm bands with different confgurations 
of COT and CER for liquid water (red lines) and ice (blue lines) clouds from  Platnick et al. (2017). 
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geometry specifed in the caption from MODIS (Platnick et al., 2017). It is clear that the refec-
tance at 0.87 μm (the nonabsorptive band) is a strong function of COT with little dependence 
on CER, whereas the refectance at 2.13 μm, in contrast, is sensitive to both. Moreover, some of 
the solution space is unambiguously liquid water and some is unambiguously ice, but there are 
overlapping regions in which either phase can yield a viable physical solution. Refectance mea-
surements can occur in regions of the solution space that are unambiguously liquid water or ice 
but may also lie in regions that are ambiguous regarding phase. Comparison of liquid water and 
ice CER retrievals from SWIR bands can reduce ambiguity in the choice of thermodynamic 
phase. Due to solar bands that satisfy the requirement being included in a lot of satellite sen-
sors, the solar refective method has been widely employed for cloud optical and microphysical 
property products. Examples include the MODIS (Platnick et  al., 2003; Platnick et  al., 2017), 
the AVHRR (Heidinger et al., 2005), and the Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) ( Roebeling et al., 2006 ). 

The solar refective method shows powerful performance and wide applications in retrieving 
COT and CER, but its limitations are also quite obvious. As illustrated in  Figure 5.17, the LUT 
values converge as clouds become optically thin (COT less than ~1), and the refectance becomes 
sensitive to the surface condition (i.e., surface albedo characteristics). It indicates that the solar 
refective method becomes less accurate and inappropriate for optically thin clouds, especially for 
ice clouds. Because the single-scattering properties of ice clouds at the solar bands are sensitive to 
particle microphysical properties, e.g., shape and surface structure, the retrieval becomes extremely 
sensitive to the assumption of ice cloud habits. For example, only by updating the ice cloud model 
used for COT and CER retrievals can the MODIS products from different version collections be 
very different (Platnick et al., 2003;  Platnick et al., 2017). 

FIGURE 5.18 The true color of Aqua MODIS granule over the Indian Ocean on 10 December 2013 at 08:20 
UTC from  Yang et al. (2015). 
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As we have discussed, the solar refective method is sensitive to the ice habit assumed, and 
a case study is performed to show its performance and drawbacks. MODIS measurements, i.e., 
refectances at bands 2 and 7 (centered at 0.87 and 2.13 μm, respectively), are used to retrieve 
COT and CER. An Aqua MODIS scene taken on 10 December 2013 at 08:20 UTC is used, and 
Figure 5.18  shows the true color image of the granule. The scene is taken over the Indian Ocean 
and mostly covered by high ice clouds. The retrieval is carried out for only pixels over the 
ocean and identifed as ice clouds, and we use MODIS Level 2 Collection 5 cloud product (i.e., 
MYD06) to give the cloud mask and CTP, and the retrieval algorithm is the same as that used 
by  Bi et al. (2014 ). 

Figure  5.19  illustrates the retrieved COT and cloud effective diameters (Deff) based on the 
scattering properties assuming sphere and hexagonal column, respectively, and the hexagonal 
column model and its scattering properties given by  Bi et al. (2014) are used. The top panels are 
the results based on the spherical model, and the bottom ones are from those with the hexagonal 
column model. Overall, the two models give similar patterns on the retrieved COT, whereas the 
model based on ice spheres infers larger results than those from the hexagonal columns, and Deff 

from both retrievals range from 10 to over 100 μm, and the results based on the two models are 
quite different. 

To better compare the retrieved results,  Figure  5.20  gives the histograms of occurrence 
for retrievals based on the two different ice habit models, with red indicating the highest 

FIGURE 5.19 Retrieved COT and Deff based on the scattering properties from the sphere (top panels) and 
hexagonal column (bottom panels) models from  Yang et al. (2015). 
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FIGURE 5.20 The histograms of the occurrence frequencies for comparison of retrieved COT and Deff 

based on the sphere and hexagonal column models from  Yang et al. (2015). 

occurrence. Black solid lines, i.e., one-to-one ratio lines, are included to ease the interpreta-
tion of the results. It clearly shows that the spherical model systematically gives larger val-
ues of COT compared with those from the single-column model, and the differences increase 
and widen as ice clouds become thicker. Deff given by the spherical retrievals can give either 
larger ice particles or smaller ones, and much wider variations are shown than those of COT. 
Figure 5.20  clearly shows the importance of assumed ice habits and their scattering properties 
on inferring cloud optical and microphysical properties using the solar band retrievals and thus 
indicates the importance of developing more accurate and practical ice cloud models and scat-
tering models. 

The retrieved results are not only signifcantly affected by the ice cloud optical model but also 
show signifcant differences among various sensors due to differences in assumed auxiliary param-
eters, spectral bands, and forward radiative transfer simulations.  Figure 5.21  illustrates the pixel-
to-pixel comparison of ice COT and CER between the AHI/AGRI (Advanced Geosynchronous 
Radiation Imager) and the MODIS operational cloud products (Lai et al., 2019). The top and bottom 
panels are for AHI and AGRI, respectively. Note that only pixels that are classifed as ice clouds 
by all three cloud phase products are considered here for comparison. To quantitatively compare 
COT and CER, fve parameters, i.e., the intraclass correlation coeffcient (ICC), the average relative 
difference (RD), the slope (K), and the intercept (B) from the linear regression, and the standard 
deviation (Std), are utilized to quantify the relationships between two data sets from different satel-
lites.  Figure 5.22  shows the histograms of the occurrence frequencies of liquid water COT and CER 
( Lai et al., 2019 ).                 

Similar to  Figures 5.21  and  5.22, Figures 5.23  and  5.24  show pixel-to-pixel comparisons of COTs 
and CERs, respectively, among the three sensors but using the unifed retrieval system (Lai et al., 
2019). Here, the “unifed retrieval system” refers to using the same cloud optical models, retrieval 
method, forward radiative transfer model, and auxiliary data. The corresponding statistical analysis 
shows that the RDs between AHI and MODIS for ice cloud COT and CER decreased by 37% and 
50%, respectively, compared with the RDs from the direct comparisons of their operational products. 
The results of AHI and MODIS liquid water properties are not signifcantly changed. Moreover, the 
consistencies of AGRI cloud properties with those of MODIS are signifcantly improved, and their 
RDs are optimized by more than 50%. 
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FIGURE 5.21 Two-dimensional histograms of pixel-to-pixel comparisons between MODIS and AHI (top 
panels)/AGRI (bottom panels) ice cloud optical and microphysical properties from  Lai et  al. (2019). The 
dashed lines are the one-to-one ratio lines, and the solid lines are linear regression functions. 

FIGURE 5.22 Same as  Figure 5.21  but for liquid water cloud properties from  Lai et al. (2019). 
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FIGURE 5.23 Two-dimensional histograms of pixel-to-pixel comparisons between MODIS and AHI (top 
panels)/AGRI (bottom panels) ice cloud properties based on the unifed retrieval system from  Lai et al. (2019). 
The dashed lines are the one-to-one ratio lines, and the solid lines are linear regression functions. 

FIGURE 5.24 Same as  Figure 5.23  but for liquid water cloud properties from  Lai et al. (2019). 
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Furthermore, using solar radiation as the source, the technique is limited to daytime and is unre-
liable over poles and places in which the SZA is greater than approximately 80°. 

Furthermore, because of strong water vapor absorption at this wavelength, little outgoing radi-
ance from low clouds or surface reaches the satellite, whereas radiance refected by high ice clouds, 
above which there is little water vapor, is little attenuated. And this band is long enough that 
Rayleigh scattering from the atmosphere is negligible. These characteristics of the 1.38-μm band 
offer a unique and excellent way to derive optically thin ice cloud properties located at the high 
level of the atmosphere during the daytime (Gao et al., 1998), and, as a result, the 1.38-μm band is 
included in a lot of sensor band designs, e.g., the MODIS and VIIRS. Cloud properties retrieved 
based on the 1.38-μm band include CTH, CTP, COT, and CER. 

The 1.38-μm band also collaborated with other visible or SWIR channels to have a better quanti-
fcation of the cloud properties, and it has been used with visible bands for lots of studies. Gao et al. 
(1998) have proposed an empirical algorithm for cloud refectance using narrow channels which are 
near 1.38 and 0.66 μm, which shows good performance. COT of tropical cirrus is retrieved from 
the MODIS 0.66 and 1.38 μm measurements for each pixel in a granule image (Meyer et al., 2004). 
Techniques for retrieving COT and CER using the combination of 1.38 and 1.88 μm bands are well 
established (Gao et al., 2004). 

5.5.2 inFrared-Band-Based Method 

Another popular approach based on infrared band measurements to infer COT and CER is 
known as the split-window method, which was introduced by Inoue (1985). The method uses 
the differences of ice absorption characteristics at the infrared-window bands (e.g., centered 
at 11 and 12 μm) and has been applied to the infrared interferometer spectrometer (IRIS) 
(Prabhakara et al., 1988), the AVHRR (Heidinger and Pavolonis, 2009), and MODIS measure-
ments (Wang et al., 2011). The most signifcant advantage of the split-window method is that 
it can be applied to all data regardless of solar illumination, i.e., both daytime and nighttime 
conditions. However, the observed BTs by satellites gradually become saturated when the cloud 
gets optically thicker (i.e., COT larger than 10), so the split-window band is not sensitive to 
optically thick ice clouds. 

To illustrate the feasibility of the split-window method, Figure  5.25 shows the relationships 
between the simulated BT and BTD of three VIIRS IR-window bands with central wavelengths of 
8.5, 11, and 12 μm (Yang et al., 2015). The example is based on the US standard atmosphere con-
taining ice clouds of different properties, and the surface and CTT are 288 and 223 K, respectively. 
A VZA of 20° is assumed. Solid curves are isolines of specifed particle effective size, and dashed 
lines are ones with constant COT. The BTs are mainly dependent on COT, whereas the BTDs are 
sensitive to both COT and CER. Figure 5.25 indicates that the split-window method is more sensi-
tive to optically thin clouds (i.e., COT between 0.5 and 5) with relatively small particle sizes (i.e., 
CER less than 100 μm). As COT becomes larger than 10, the isolines converge, and the method 
cannot be applied. 

Theoretically, the observations at the IR-window bands can also be used to infer the CTTs 
because the BTs observed at those bands are not only sensitive to COT and CER, but also CTT 
and surface temperature. This was recently achieved by Iwabuchi et al. (2014). Their retrieval used 
the MODIS BTs of 8.5, 11, and 12 μm bands and the optimal estimation method (Rodgers, 2000), 
which derives an optimal solution from measurements under the constraints of prior information, 
and COT, CER, CTT, and surface temperature are simultaneously obtained. 

5.5.3 all-spectral-Band Method 

The other class of retrieval algorithms for satellite remote sensing of COT uses a combination of 
a visible band and an infrared-window band (Rossow et al., 1989), and has been applied for the 
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FIGURE 5.25 Relationships between simulated BT and BTD with respect to three VIIRS IR-window bands 
(centered at 8.5, 11, and 12 μm) from  Yang et al. (2015). 

AVHRR and the International Satellite Cloud Climatology Project (ISCCP) (Schiffer and Rossow, 
1983; Rossow and Schiffer, 1999). The premise of the algorithm is the dependence between infra-
red emissivity and visible refectance. The approach utilizes visible refectance to determine the 
visible-derived COT by a combination of theoretical or empirical models and also to infer the cloud 
infrared emissivity based on the visible-derived COT. With the emissivity in the infrared-window 
known, the CTT also can be inferred using the observed infrared radiance. 

Because the visible-light-scattering properties of ice clouds, as well as their relationship with 
those at the infrared band, are considered, the solar and infrared-window method is sensitive to the 
ice crystal habits assumed (Minnis et al., 1993). Again, the technique relies on a visible band and is 
limited to daytime and unreliable over the poles. 

5.6  SUMMARY 

This chapter has presented an overview of various retrieval algorithms of cloud properties devel-
oped for satellite passive spectral sensor measurements based on different wavelengths. We also 
review some study cases employing the MODIS, VIIRS, AHI, and AGRI radiometers and the fac-
tors contributing to the differences in cloud retrievals to illustrate the current development status of 
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remote sensing of clouds. Among various cloud optical and microphysical properties derived from 
satellite-based remote sensing, cloud mask, cloud phase, CTH, CTP, COT, and CER as key quantita-
tive variables are primary for their radiative effects, and a number of researchers have reported the 
features of retrieval algorithms. 

As the basis of cloud retrievals, cloud detection methods are comparatively mature. The thresh-
old-based algorithm used in cloud detection has gradually developed from the early fxed threshold 
to the dynamic threshold, adaptive threshold, and multispectral combination threshold. Machine 
learning algorithms are also often used in cloud detection research, which are independent of multi-
spectral thresholds. Other than these two approaches, the statistical and texture analysis approaches 
also show good performance in the associated application. Cloud detection is a fairly basic and 
essential step in satellite-based remote sensing and its accuracy is signifcantly improved, whereas 
the literature survey shows that more work is required to achieve the desired accuracy and correct-
ness for cloud detection methods. 

Clouds with different thermodynamic phase states have different absorption and scattering 
properties. All kinds of cloud optical and microphysical property retrieval methods are developed 
according to the different cloud phases, and accurate classifcation of the cloud phase would improve 
cloud properties retrieval accuracy. The tri-spectral retrieval algorithm based on the thermal infra-
red band is a relatively advanced method for cloud phase classifcation, and it has been further 
simplifed since the MODIS sensor was in orbit. The thermal infrared-band-based method can 
also effectively identify cloud phase, which is not restricted by solar radiance and can be used for 
continuous retrieval during the day and night while the measurements are sensitive to surface emis-
sivity and atmospheric absorption, especially for water vapor absorption. In addition, liquid water 
and ice clouds have non-negligible absorption in the SWIR channels. To improve the accuracy of the 
results of cloud phase classifcation, visible, NIR, and thermal infrared bands can be combined for 
retrieval, which can effectively separate multi-layer clouds from single-layer clouds. Furthermore, 
combining information from the refectance difference between 1.61- and 2.25-μm channels, the 
BTD between the 8.5- and 11-μm channels, and the CTT is developed to classify SWCs. 

Passive remote sensing sensors have been an important way of cloud top properties retrievals. 
CTP and CTH can be estimated by using the scattering and emission properties of clouds at differ-
ent heights in different spectral channels. The main algorithms for cloud top properties retrievals 
include the infrared window method and CO2-slicing algorithm. The latter relies on the fact that 
as the wavelength increases from 13.3 to 15 μm, the atmosphere becomes opaquer due to CO2 

absorption, resulting in the radiances obtained from these spectral bands being sensitive to different 
layers in the atmosphere. With the increase in the number of meteorological satellites for different 
purposes and cloud detection channels, it has become feasible to improve the retrieval accuracy of 
cloud top properties by combining other band channels (such as visible, NIR, SWIR, medium-wave 
IR, millimeter-wave band, etc.) and polar-orbit satellite measurements. Therefore, the retrieval algo-
rithms of cloud top properties based on multiple satellite sensor measurements and multi-spectral 
channel measurements has become the future development direction. 

Satellites measuring the outgoing radiation in the solar bands have been widely used to retrieve 
COT and CER. The solar refective method, normally a bi-spectral algorithm, has been widely 
applied for various research and operational cloud products. However, the solar refective method 
becomes less accurate and inappropriate for optically thin clouds, especially for ice clouds, which 
is due to the single-scattering properties of ice clouds at the solar bands being sensitive to particle 
microphysical properties. The retrieved results also show signifcant differences among various 
sensors due to differences in assumed auxiliary parameters, spectral bands, and forward radiative 
transfer simulations, and this algorithm is limited to daytime and unreliable over poles and places 
where the SZA is greater than approximately 80°. The 1.38-μm band offers a unique and excellent 
way to derive optically thin ice cloud properties during the daytime and also collaborated with 
other visible or SWIR channels to have a better quantifcation of the cloud properties. Another 
popular approach based on infrared bands is known as the split-window method, which has been 
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applied to the IRIS, AVHRR, and MODIS observations. The other class of algorithms uses a 
combination of a visible and an infrared-window band, which has been applied to the AVHRR 
and ISCCP. 

Although a lot of new algorithms for inferring cloud properties have been developed, there are 
still some open questions that should be addressed in future research. Firstly, more accurate meth-
ods are needed to detect mixed-phase clouds, multi-layer clouds, or SWCs, which may have infor-
mation close to either ice or liquid water clouds. Secondly, since cloud properties from different 
sensors over different spectral regions and different platforms are less consistent, algorithms that 
use observations from wider and more spectral observations should be developed, especially for 
those of COT and CER. Thirdly, fundamental retrieval algorithms as well as forward radiative 
transfer models with a more accurate representation of cloud properties are always needed. 
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6 Cloud Detection and Aerosol 
Optical Depth Retrieval from 
MODIS Satellite Imagery 

Jing Wei and Lin Sun 

6.1 INTRODUCTION 

Clouds pose a diffcult challenge in the extraction of atmospheric or surface information using remote 
sensing satellite data (Greenhough et al., 2005; Nakajima et al., 2011). Clouds affect the radiation 
energy transmission between land objects and the satellite sensors, seriously decreasing the retrieval 
accuracy of atmospheric or surface parameters (Li et al., 2011; Kazantzidis et al., 2011, 2013). In 
addition, the multiple types of clouds and the complexity of land structures hinder the detection of 
clouds using remote sensing images with high precision (Jedlovec et al., 2008; Hagolle et al., 2010). 

Currently, the threshold method, statistical method, artifcial neural network method, and object-
oriented method are four primary methods that have been widely used for different satellite sen-
sors. The threshold method uses the difference between clear and cloudy pixels to detect clouds, 
and several cloud detection algorithms have been developed and applied to various projects based 
on it, such as the ISCCP (International Satellite Cloud Climatology Project) cloud mask  algo-
rithm, the APOLLO (AVHRR Processing scheme Over cLouds, Land, and Ocean) cloud mask 
algorithm, the CLAVR (Clouds from the Advanced Very high Resolution Radiometer) cloud mask 
algorithm, the CO2 slicing cloud mask algorithm, and the MODIS (MODerate resolution Imaging 
Spectroradiometer) cloud mask algorithm. 

The ISCCP cloud mask algorithm utilizes the visible narrow band (0.6 µm) and infrared window 
(11µm) channels. A pixel is classifed as cloudy only if at least one radiance value is distinct from 
the inferred clear value by an amount larger than the uncertainty in that clear threshold value. The 
uncertainty can be caused both by measurement errors and by natural variability. The algorithm 
is constructed to be cloud conservative, minimizing false cloud detections but missing clouds that 
resemble clear conditions (Rossow and Schiffer, 1991; Sèze and Rossow, 1991; Rossow and Garder, 
1993). The APOLLO cloud mask algorithm uses the frst through the ffth AVHRR channels at full 
spatial resolution and is based on fve threshold tests. A pixel is defned as clear if all spectral mea-
sures fall on the “clear-sky” sides of the various thresholds or is defned as cloud-contaminated if 
the pixel fails any single test; thus, this algorithm is clear-sky conservative (Saunders and Kriebel, 
1988; Kriebel et al., 2003). The CLAVR cloud mask algorithm uses a series of spectral and spatial 
variability tests to detect clouds with the cloud and surface parameter retrieval, focusing on the 
polar areas. The CLAVR algorithm characterizes the variability of scenes, utilizing the fact that 
uniform scenes are less likely to contain partial or subpixel clouds that other tests fail to detect 
(Stowe et al., 1991; Liu and Wu, 2004). CO2 slicing has been used to distinguish transmissive clouds 
from opaque clouds and clear sky using infrared radiances in the carbon dioxide-sensitive portion 
of the spectrum (Wylie and Menzel, 1989; Wylie et al., 1994; Hutchinson and Hardy, 1995; Turner 
et al., 2001; Gao et al., 2003). The MODIS cloud mask algorithm benefts from an extended spectral 
coverage coupled with high spatial resolution and radiometric accuracy. In this algorithm, an estab-
lished effective method has been adapted to create a high-quality cloud mask project for the global 
data obtained from MODIS and mitigate some diffculties experienced by previous algorithms, 
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such as thin cirrus, fog and low-level stratus at night, and small-scale cumulus, which are diffcult 
to detect because of insuffcient contrast with the surface radiance. This algorithm uses 22 of the 
36 channels from visible to thermal infrared ranges to detect cloudy pixels (Ackerman et al., 2010). 

The statistical methods detect clouds with regression equations established utilizing statistics 
and analysis of the difference in the apparent refectance or brightness temperature among the clear 
and cloudy pixels in the satellite data. This method can effectively detect clouds in specifc data. 
However, this method is not widely used because the sample data used for the regression model are 
historical; thus, the application is limited to a specifc time and area (Molnar and Coakley, 1985; 
Kärner, 2000). The artifcial neural network methods attempt to identify the proper network weights 
and best thresholds from training samples to achieve cloud detection. This method can achieve 
automatic cloud detection and great accuracy with self-organizing and self-adapting capabilities. 
However, because the principle of such a method is unclear, training and validation samples are 
required to cover most conditions of land surface and cloud type. Because the conditions are not 
specifed during training, this method is less accurate (Karlsson, 1989; Clark and Boyce, 1999; 
Walder and Maclaren, 2000). The object-oriented method is designed to segment the images into 
meaningful “objects,” which can be described as a set of features, and realizes the “object” clas-
sifcation by the established relations or differences between the object and class structure. This 
method can achieve multiscale image segmentation and achieve a high level of cloud detection by 
making full use of related features, including color, shape, texture and level, and multiscale infor-
mation. However, the object-oriented method is more appropriate for feature extraction of high-
resolution images with rich texture features and is slow in feature selection, possibly missing the 
optimal eigenvalues (Zhu and Woodcock, 2012; Fisher, 2014; Zhang et al., 2014; Zhu et al., 2015). 

The threshold method is the most popular method used for cloud detection because of its high 
accuracy and stable results. These algorithms aim to obtain a series of proper thresholds of apparent 
refectance or brightness temperatures via certain channels for different sensors and achieve cloud 
detection with reliable accuracy. However, for complex land surface composition and cloud types, 
it is diffcult to identify proper thresholds from any wavelength to accurately detect a cloud. In fact, 
the threshold to separate the clear pixel from the cloudy is closely related to surface features. Thus, 
a universal dynamic threshold cloud detection algorithm (UDTCDA) supported by a prior surface 
refectance database was proposed. A monthly synthesis surface refectance database was created 
using the 8-day synthetic MODIS surface refectance product (MOD09A1) to provide the surface 
refectance for cloud detection, and a dynamic thresholds model related to the land surface refec-
tance, observation geometry, and other parameters was developed based on the simulated relations 
between the apparent refectance and the surface refectance using the 6S (the Second Simulation of 
the Satellite Signal in the Solar Spectrum) model (Kotchenova et al., 2006). This method effectively 
improved cloud detection accuracy, particularly for the detection of broken and thin clouds. 

6.2 CLOUD DETECTION FOR MODIS IMAGERY 

6.2.1 principles 

Figure 6.1 shows the spectra of typical features, including vegetation, soil, rock, water, and snow/ice, 
which were collected from the ASTER spectral library. The ASTER spectral library is a compilation 
of over 2,400 spectra of natural and manmade materials and was released on 3 December 2008. The 
library includes data from three other spectral libraries: the Johns Hopkins University Spectral Library, 
the Jet Propulsion Laboratory Spectral Library, and the United States Geological Survey Spectral 
Library (Baldridge et al., 2009). Moreover, the spectra of urban areas and clouds were collected from 
the Airborne Visible Infrared Imaging Spectrometer, a hyperspectral data sensor with 224 spectral 
bands covering a spectral range of 0.4–2.5µm with a spectral resolution of 10nm (Wei et al., 2015). 

Figure 6.1 shows that the refectance of the cloud is much higher than that of most typical objects, 
including vegetation, water, soil, rock, and urban areas, except snow/ice, particularly in short wavelengths. 
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FIGURE 6.1 Spectra of typical objects. 

Source: Sun et al. (2016) 

The refectance in the visible wavelength of vegetation, soil, and water is less than 0.2; however, because 
the cloud refectance is greater than 0.6, the traditional methods of cloud detection have generally used 
a fxed threshold in such wavelengths to differentiate the cloudy pixels from the clear sky, such as the 
ISCCP, APOLLO, and the CLAVR. In addition to the visible bands, the bands of near infrared and 
short-wave infrared were used to detect clouds because of differences in the refectance of clouds and 
other objects. To separate the clouds from other objects, a combination of two or more bands was also 
used for cloud detection, such as the Sand Dust Index (Hai et al., 2009) to differentiate sand from clouds 
and the Difference Snow Index or Ratio Snow Index (Lin et al., 2012) to separate snow from clouds. 

Figure 6.1 shows that the refectance is much different between a cloud and typical land objects 
at certain wavelengths; thus, traditional methods separate the cloudy pixels from the clear pixels. 
In fact, the refectance of the satellite data is much more complex than the refectance of the data. 
The refectance only represents the component refectance in one pixel; however, it is well known 
that mixed pixels are ubiquitous in remote sensing images. Mixed pixels are a combination of more 
than one distinct substance. If a pixel is pure pixel, having only one object, the refectance is nearly 
identical to the refectance of the identical object measured on land. A mixed pixel may comprise 
water and vegetation or soil and snow; a mixed pixel may also comprise water and broken or thin 
clouds. The refectance of a mixed pixel is determined by all of the components in the pixel and can 
be described by a linear equation (Keshava and Mustard, 2002). 

The difference between the cloud and the land objects only represents a thick cloud and a pure land 
object. However, in most cases, the cloudy pixels are covered by thin or broken clouds instead of thick 
clouds. Thus, the refectance of the pixel results from the cloud and the land objects together, which 
can be calculated. The refectance difference between the cloudy pixels and the land object is not 
as obvious. In the visible wavelengths, the refectance of a pixel covered by thin cloud over soil may 
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be lower than the refectance of the rock pixel, as occurred in the short-wave infrared bands when 
differentiating pixels of cloud over water from vegetation. The complex land structures rendered it 
impossible to obtain a proper threshold to separate the cloudy pixels from the clear sky. Traditional 
methods of cloud detection can accurately detect a thick cloud yet often fail to detect thin or broken 
clouds, particularly in low refectance areas. Even for a satellite with many bands, such as MODIS, 
which uses 22 selected bands from a total of 36 bands for cloud detection, the uncertainty remains. 

The traditional method uses a fxed threshold to identify all thin or broken clouds but occasion-
ally misses the cloudy pixels of thin or broken clouds over the low surface refectance areas or 
falsely identifes high-refectance land objects as clouds. The surface refectance of water, rock, and 
clouds are 0.05, 0.35, and 0.6 in the red band (approximately at 0.66µm), respectively. When the 
area ratio of the thin or broken clouds over a water pixel reaches approximately 40%, the refectance 
is approximately 0.27, which is lower than the refectance of rock. If the threshold is set at greater 
than 0.35, the pixels with an area ratio of thin or broken clouds of less than 40% over water areas 
will be missed; however, if the threshold is set lower than 0.35, the clear pixels covered by rock will 
be mistaken for cloud. 

The diffculty in differentiating real land surface from clouds is a primary reason for the failure 
of thin or broken cloud detection with high precision from satellite data. In such circumstances, it 
is diffcult to determine the appropriate threshold with which to identify clouds. If the refectance 
is known prior to cloud detection, the component of underlying surfaces in mixed pixels can be 
determined and the thresholds can be established according to the real land surface refectance. 
Thus, thin or broken clouds over water can be differentiated from clear pixels with relatively high 
accuracy with a threshold of refectance greater than 0.05, and the rock pixel will be identifed as a 
clear pixel even if the refectance reaches 0.35. 

Focusing on this problem, a new dynamic threshold cloud detection algorithm with prior surface 
refectance support was proposed to improve the accuracy of cloud detection. The surface refec-
tance is created using the current MODIS surface refectance products to provide the real surface 
refectance for the image to be detected, and then dynamic thresholds related to surface refectance 
for cloud detection can be estimated based on the radiative transfer model. 

6.2.2 Methodology 

6.2.2.1 Surface Refectance Database Construction 
MOD09A1 data were selected to represent the land surface refectance supply for the database. The 
MOD09A1 data set is the 8-day gridded Level 3 product of the MOD09 series of surface refectance 
and includes seven bands covering the visible to near-infrared wavelengths at a spatial resolution of 
500 m. The MOD09A1 product provides the best possible L2G observations during an 8-day period, 
and the observations are selected on the basis of high observation coverage, low view angle, absence 
of clouds, or cloud shadows and aerosol loading, which effectively reduces the effect of surface and 
cloud contamination. The atmospheric correction accuracy is ±(0.005 + 0.05 ́  ρ) under favorable 
conditions (Vermote and Vermeulen, 1999; Vermote and Kotchenova, 2008). 

In UDTCDA, we assumed that the surface refectance of most features remains unchanged 
during a certain period (Levy et al., 2013; Sun et al., 2016). Therefore, a monthly surface refec-
tance database was created using the minimum synthesis technology for cloud detection for that 
month. The lowest surface refectance for each pixel of four images from a given month was chosen 
to be the pixel for the 1-month series to reduce the effects of cloud and surface contamination. 
MOD09A1 products for the entire year were collected and processed to construct the prior sur-
face refectance database. The surface refectance images included the blue (0.459–0.479 µm), green 
(0.545–0.565 µm), red (0.620–0.670 µm), and near-infrared (0.841–0.876 µm) bands with a spatial 
resolution of 500 m, and are resampled to 1 km spatial resolution using the bidirectional linear 
interpolation method for MODIS. Figure 6.2 shows the false standard color composite image (RGB: 
band2-band1-band3) of a partial surface refectance image in Asia (30°–45°N, 100°–125°E) from 
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FIGURE 6.2 False standard color composite image (RGB: 214) of a surface refectance image in July. 

Source: Sun et al. (2016) 

the synthetic surface refectance database in July for demonstration. The surface refectance images 
can better refect the land cover type changes and show an overall high quality with less cloud cover, 
which can provide the actual surface refectance for underlying surfaces. 

6.2.2.2 Estimation of Dynamic Thresholds for Cloud Detection 
The estimation of the dynamic thresholds is a key step for cloud detection. Unlike the fxed thresholds 
in traditional cloud methods, the thresholds used here are related to the real land surface refectance; 
thus, the thresholds are called dynamic thresholds. The following work is included in the thresholds 
estimate: (1) band selection for the cloud detection, (2) analyzing the factors that may affect the rela-
tion between cloud and clear pixels, and (3) estimation of dynamic thresholds for cloud detection. 

6.2.2.2.1 Band Selection 
The greatest difference between the cloud and most land objects is in the wavelengths of visible to 
near infrared (NIR). Thus, the visible-to-NIR bands—bands 1, 2, 3, and 4 of the MODIS—were 
chosen for cloud detection. To differentiate snow/ice from cloud, short-wave infrared bands—band 
7 of MODIS—were also chosen for the obvious reference difference between cloud and snow/ice. 

6.2.2.2.2 Estimation of Dynamic Thresholds 
In the land surface-atmosphere system, the cross radiation among different terrain and atmospheric 
conditions is relatively complex. The apparent refectance received at the satellite sensor is a com-
bination of atmospheric path refectance and surface refectance based on the radiative transfer 
theory (Levy et al., 2013; Sun et al., 2016). Therefore, to develop the relations between the apparent 
refectance change and the surface refectance, the effects of aerosols, geometric parameters, and 
atmospheric and aerosol models were frst simulated using the 6S model. The 6S code is a basic 
radiative transfer code used for simulations of satellite observation under clear-sky conditions that 
carefully considers elevated targets, molecular and aerosol scattering, and gaseous (including H2O, 
O3, O2, and CO2) absorption (Vermote et al., 1997a; Kotchenova et al., 2006). Observation param-
eters such as spectral response function, observation, and geometric parameters; and atmospheric 
parameters such as observation, geometric, atmospheric, and aerosol models; and AOD were input 
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FIGURE 6.3 Simulated relationships between apparent refectance and surface refectance. 

Source: Sun et al. (2016) 

into the simulations using the 6S model. Therefore, the relations between apparent refectance and 
surface refectance under different conditions can be simulated. 

The 6S model was used to simulate the infuence of these factors on the apparent refectance. 
Figure 6.3 shows the simulated relations of the apparent refectance changing according to the land 
surface refectance variation in an AOD of 0.2, 0.4, 0.6, and 0.8 and a satellite zenith of 0°, 10°, 
20°, and 30°, respectively. The aerosol model was set to the continental model, and the atmospheric 
model was middle-latitude summer. The results indicate that the apparent refectance exhibits cer-
tain differences with different AODs, and the changing speeds are much different; when the land 
surface refectance is lower than 0.05 or greater than 0.4, the difference is greater. 

Using dynamic thresholds based on the prior surface refectance database is the primary char-
acteristic of the UDTCDA to detect a cloud. In the new algorithm, we assumed that if the apparent 
refectance of a pixel exceeded the maximum of the changing simulated apparent refectance calcu-
lated with the changing surface refectance under different observation and atmosphere conditions, 
this pixel would be identifed as a cloudy pixel. The possible satellite apparent values of the four bands 
of MODIS, with different land surface refectance values, were calculated with the 6S model. Solar 
and satellite zenith angles covered all possible values of the two types of satellite sensors used in this 
work. The maximum values of apparent refectance distribution can be simulated and the dynamic 
thresholds of simulated apparent refectance can be determined as a function of surface refectance 
and observation geometry under possible atmospheric conditions without clouds. The following equa-
tions show the corresponding dynamic threshold cloud detection models for MODIS: 

*¢ q j = . r + . a 0.158r q( , ,  ) 0 793 × 0 004 ×cos cosb + (6.1) B s v B 
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*¢r q q j, ,  = . × r + 0 025. ×cos cosb + .( ) 0 807 a 0 125 (6.2) G s v G 

*¢r q q j, ,  = . × r + 0 025. ×cos cosb + .( ) 0 807 a 0 125 (6.3) R s v R 

*¢ (r qs , ,q j ) = 0 928. × r + 0 01× a b + .. cos cos 0  099 (6.4) NIR  v NIR 

* *R = r - r ¢ > 0, i = B G R NIR (6.5) , , ,  i i i 

R R= È R È R È R (6.6) B G R  NIR 

*¢where ri  represents the simulated apparent refectance of different channels, ρi represents the sur-
*¢ * face refectance, α represents the solar zenith angle, β represents the satellite zenith angle, r rB i 

represents the apparent refectance, Ri represents the corresponding cloud detection results for each 
channel, and R represents the fnal cloud detection result. 

For similar spectral characteristics, snow/ice is diffcult to differentiate from cloud with the 
four bands from visible to NIR channels used above. The greatest difference between these two 
types of objects lies in the wavelength of the short-wave infrared band (approximately at 1.6 µm), 
in which, although clouds still have a higher refectance, the refectance of ice and snow is nearly 
0. Therefore, the short-wave infrared band was selected to identify clouds and snow/ice. The 
Normalized Difference Snow Index (NDSI), calculated from a visible and a short-wave infrared 
band, was selected to distinguish and mask the snow/ice from the cloud. When the NDSI > 0.4, the 
pixels are deemed snow or ice covered (Hall et al., 1995, 2002; Klein and Barnett, 2003). Figure 6.4 
shows the fowchart of the UDTCDA. 

FIGURE 6.4 Flowchart of the UDTCDA 

Source: Sun et al. (2016) 
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6.2.3 eValuation Methods 

In the current study, the cloud amount (CA) was selected to refect the total cloud content in the 
remote sensing image, and the cloud amount error (CAE) shows the error difference between the 
reference and estimated cloud amounts. A CAE greater than 0 indicates an overestimation, and a 
CAE less than 0 indicates an underestimation. In addition, the correct rate of cloudy pixels (CR), 
the correct rate of clear-sky pixels (SR), the error rate (ER), and the missing rate (MR), four typical 
evaluation indices, were selected to evaluate the cloud detection results at the pixel level: 

NcloudCA = 
N 

(6.7) 

CAE CA  = - CA product real (6.8) 

TPCR = 
Nreal-cloud 

(6.9) 

TNSR = (6.10) 
Nreal-clear 

FPER = (6.11) 
Nreal-clear 

FNMR = (6.12) 
Nreal -cloud 

where Ncloud represents the total cloudy pixels and N represents the total pixels of the image; CAproduct 

and CAreal represent the cloud amount of cloud mask product and the reference cloud mask, respec-
tively; Nreal cloud represents the total cloudy pixels; Nreal clear represents the total clear-sky pixels in 
the reference cloud mask data; TP (true positive) represents the total number of pixels identifed 
as cloudy pixels in both reference data and cloud detection results; TN (true negative) represents 
the total pixels identifed as clear-sky pixels in both reference data and cloud detection results; FP 
(false positive) represents the total number of pixels identifed as clear-sky pixels in reference data 
but cloudy pixels in cloud detection results; and FN (false negative) represents the total number of 
pixels identifed as cloudy pixels in reference data but clear-sky pixels in cloud detection results. 

6.3 MATERIALS AND EXPERIMENT 

In this paper, MODIS Level 1 calibrated radiance data at a 1km spatial resolution (MOD021KM) 
were obtained and used to perform cloud detection experiments using the UDTCDA. Moreover, the 
visual interpretation of clouds, the CALIPSO cloud product, and two MODIS cloud mask products, 
the MOD35 daily cloud mask product and the MOD04 daily aerosol product, were obtained for 
validation and comparison purposes. 

6.3.1 Visual interpretation oF clouds 

To examine the evaluation of cloud detection results quantitatively, the actual cloud information was 
extracted using remote sensing visual interpretation method. Based on the standard false-color com-
posite image, the cloud distribution in the images was extracted via artifcial quantifcation using the 
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ArcGIS software. Then, the reference and estimated cloud mask products were generated through 
the vector to raster tool, resulting in a binary cloud mask (0 =cloud, 1 =clear) at a 1,000 m spatial 
resolution. To reduce the effects of subjective or accidental errors, the cloud information from a total 
of 36 images from all the Landsat 8 and MODIS data we used in this paper was extracted. 

6.3.2 calipso cloud product 

CALIPSO is an environmental satellite constructed by the Cannes Mandelieu Space Center and was 
launched on 28 April 2006. CALIPSO follows a 705-km, circular polar orbit as part of the Aqua 
constellation and has a good collocation with the MODIS Aqua Satellite (Poole et al., 2002; Winker 
et al., 2010). CALIPSO determines the cloud phase based on polarization information derived from 
ground-based depolarization LIDAR. It provides nearly continuous, highly accurate measurements 
of the vertical structure and optical properties of clouds and aerosols and has substantially increased 
the understanding of the climate system and climate change. The LIDAR level 2 cloud products are 
produced at three horizontal resolutions—1/3km, 1 km, and 5km—and have a temporal resolution 
of 16days (Powell, 2005; Powell et al., 2009, 2013; Hu, 2007; Hu et al., 2009; Sassen et al., 2008; 
Chepfer et al., 2010). In this paper, the LIDAR level 2 cloud layer products with a spatial resolution 
of 1km are selected for validation purposes. 

6.3.3 Modis cloud Mask products 

MOD35 is the MODIS Level 2 daily cloud mask product generated at 1km and 250m (at nadir) spatial 
resolutions. The MOD35 data are generated with the MODIS cloud mask algorithm and employs a 
series of visible and infrared thresholds and consistency tests to specify confdence that an unob-
structed view of Earth’s surface is being observed (Ackerman et al., 2010; Remer et al., 2012). The 
data set of “Cloud Mask: MODIS Cloud Mask and Spectral Test Results” at 1km spatial resolution 
was selected for this paper. MOD04 is the MODIS Level 2 daily aerosol product and has been updated 
to the Collection 6 (C6) version. The MOD04 C6 provides an overland cloud mask product that is a 
combination of tests using absolute magnitude and spatial variability at 0.47µm (500-m resolution) 
and 1.38µm (1-km resolution). The fnal result is a binary cloud mask at 500-m resolution used to flter 
pixels for fnal aerosol retrieval (Levy et al., 2013). The data set of “Aerosol Cloudmask Land Ocean: 
Aerosol Cloud Mask 500 m resolution 0=cloud 1=clear” at 500-m spatial resolution was selected 
and resampled into a 1-km resolution using the bidirectional linear interpolation method in this paper. 

6.4 MODIS CLOUD DETECTION RESULTS 

MODIS data cover different cloud types over different land use types were collected and utilized in 
cloud detection experiments using the UDTCDA. For evaluation and comparison purposes, cloud 
detection results covering different cloud types, including broken, thick, and thin clouds over differ-
ent surface types (e.g., vegetation, water, bare land, and desert), as determined using Google Earth 
with areas of interest 400 ́  400 pixels in size, were randomly selected from MODIS data. 

Figure 6.5 shows typical UDTCDA cloud detection results for broken clouds (a–d) and thick and 
thin clouds (e–h) over different land use covers (i–l for bright areas) for MODIS data. Table 6.1 shows 
the corresponding evaluation of cloud detection results for the MODIS data shown in Figure 6.5. 
Evaluation results indicate that the UDTCDA can identify most broken clouds irregularly distrib-
uted in the image (a–d) with higher CR (>91%) and higher SR (>94%) rates and overall lower CAE 
(<4%), ER (<6%), and MR (<9%) values compared with the reference cloud mask. The UDTCDA 
has excellent detection accuracy for thick clouds and can also detect most thin clouds as well as the 
edges of thick clouds over different areas (e–h). The new algorithm shows overall higher CR (>80%) 
and SR (>96%) values and lower CAE (~0.25–3.26%), ER (<4%), and MR (<20%) values. For bright 
areas, the UDTCDA can correctly differentiate thick clouds from clear sky and effectively detect 
broken and thin clouds (i–l) with overall higher CR (~73–93%) and SR (>92%) values and relatively 

https://0.25�3.26
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FIGURE 6.5 UDTCDA cloud detection results for different cloud types over different regions based on 
MODIS data. 

Source: Sun et al. (2016) 

lower CAE, ER, and MR values. Validation results show that the UDTCDA has an overall higher 
cloud detection accuracy with higher SR (>92%) and lower CAE (~0.12–3.26%) values for broken, 
thick, and thin clouds over different land uses, particularly for bright areas. 

6.4.1 coMpared with Modis cloud Mask products 

For comparison purposes, the MOD04 and MOD35 cloud mask products corresponding to the same 
time and area as the UDTCDA cloud mask retrieved from MODIS images were obtained. The hori-
zontal groups comprise the MODIS standard false-color composite images, the UDTCDA cloud 
mask, and MOD35 and MOD04 cloud masks. Figure 6.6 compares different cloud mask products 
for broken clouds. Evaluation results indicate that the MOD35 cloud mask showed overall lower 

https://0.12�3.26
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TABLE 6.1 
Evaluation of UDTCDA Cloud Detection Results Based on MODIS Data (Sun et al., 2016) 
Cloud Types No. CAreal (%) CAnew (%) MAE (%) CR (%) ER (%) MR (%) SR (%) 

Broken cloud a 4.71 5.13 0.42 91.16 1.37 8.84 98.63 

b 7.63 10.31 2.68 98.08 3.06 1.92 96.94 

c 25.76 28.88 3.12 95.36 5.81 4.64 94.19 

d 43.9 45.24 1.34 95.65 5.79 4.35 94.21 

Thick and thin cloud e 32.91 29.64 −3.26 84.85 2.57 15.15 97.43 

f 31.64 28.95 −2.69 86.83 2.16 13.17 97.84 

g 17.08 17.33 0.25 84.61 3.47 15.39 96.53 

h 10.52 7.5 −3.02 80.21 0.97 19.79 99.04 

Bright areas i 8.27 8.33 0.43 92.48 2.5 7.52 97.5 

g 21.3 21.45 0.15 80.22 7.84 19.78 92.16 

k 6.16 4.31 −1.85 76.85 0.4 23.15 99.6 

l 0.68 0.55 −0.12 73.47 0.13 26.53 99.87 

FIGURE 6.6 Comparison of broken cloud detection results between different cloud mask products. 

Source: Sun et al. (2016) 
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cloud detection accuracy with a lower CR less than 30% and seriously underestimated the image 
cloud content (CAE ~−0.76 to 4.95%). However, the MOD04 cloud mask showed generally lower 
detection accuracy with lower SC values less than 53% and seriously overestimated the image cloud 
content (CAE ~1.64 to 19.36%). In addition, the UDTCDA cloud mask showed better cloud detec-
tion results for broken clouds with higher CR and SR values greater than 82%; the UDTCDA cloud 
mask also had a lower uncertainty rate (CAE ~−0.13 to 0.11%) with smaller ER and MR values of 
less than 1.2% and 18%, respectively. 

Figure 6.7 compares the cloud detection results of different cloud mask products for thick and 
thin clouds. Clearly, all cloud mask algorithms can better detect the thick clouds correctly in the 
images but show great differences in detection accuracy for thin clouds. Evaluation results indi-
cate that the MOD35 cloud mask algorithm cannot identify most thin clouds and underestimates the 
image cloud content (CAE ~−0.13 to 18.63%), resulting in generally poorer detection accuracy with 
higher MR (~16.54 to 97.11%) and lower CR values of less than 83%. However, the MOD04 cloud 
mask algorithm seriously overestimated the cloud content of thin clouds in the image (CAE ~4.72 
to 35.96%), leading to an overall lower detection accuracy with a higher ER (~11.91 to 55.42%) and 
lower SC values of less than 53%. However, the UDTCDA showed better cloud detection results for 

FIGURE 6.7 Comparison of thick and thin clouds detection results between different cloud mask products. 

Source: Sun et al. (2016) 
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FIGURE 6.8 Comparison of cloud detection results between different cloud mask products over bright areas. 

Source: Sun et al. (2016) 

thick and thin clouds with higher CR and SR values greater than 82% and lower estimation errors 
(CAE ~−3.26 to 0.34%) and ER and MR values of less than 5.79% and 17.6%, respectively. 

Figure 6.8 compares different cloud mask products covered with different cloud types over bright 
areas. Both the UDTCDA and MODIS cloud mask algorithms can detect most thick and thin clouds 
over bright areas more accurately but show poorer detection results for broken clouds and the edges 
of clouds. Evaluation results indicate that both MOD35 and MOD04 cloud masks seriously overes-
timated the image cloud content (CAE ~3.05 to 28.79% for MOD35 and CAE ~6.32 to 28.32% for 
MOD04 cloud mask) with higher ER values, leading to overall lower cloud detection accuracy. The 
estimation uncertainties are serious, particularly in bright areas with higher surface refectance. 
Overall, however, the UDTCDA shows better cloud detection accuracy for broken, thick, and thin 
clouds over bright areas with higher CR and SR values greater than 80% and lower CAE (0 to 1.5%) 
values, which can effectively reduce the estimation uncertainty in bright areas. 

6.4.2 coMparison with the calipso cloud product 

The UDTCDA cloud products were generated from the MODIS Aqua data from June to August 
in 2014 and were compared and validated with the CALIPSO cloud product. The selected data 
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TABLE 6.2 
Evaluation and Comparison of Different MODIS Cloud Products to the CALIPSO Cloud 
Product (Sun et al., 2016) 
Date UDTCDA Cloud Product (%) MYD35 Cloud Product (%) MYD04 Cloud Product (%) 

CR ER MR SR CR ER MR SR CR ER MR SR 

12-Jun 90.42 22.24 9(.58 77.76 77.05 0 14 79.97 97.4 50.07 2.6 49.93 

17-Jun 82.84 15.71 17.16 84.29 41.52 1.83 43.53 95.81 96.4 85.74 3.6 14.26 

23-Jun 83.28 12.5 16.72 87.5 72.32 21.58 26.96 72.98 96.4 85.74 3.6 14.26 

5-Jul 81.28 13.08 18.72 86.92 66.43 23.84 33.57 76.16 93.28 61.69 6.72 38.31 

10-Jul 83.68 10 16.32 90 60.42 68.31 39.58 31.69 83.91 62.94 16.09 37.06 

16-Jul 81.68 19.44 18.32 80.56 60.58 0.53 32.9 79.68 81.93 57.99 18.07 42.01 

26-Jul 78.9 28.8 21.1 71.2 35.81 16.08 46.2 80.23 89.08 61.53 10.92 38.47 

7-Aug 78.14 18.97 21.86 81.03 64.38 17.51 35.62 82.49 92.53 67.15 7.47 32.85 

12-Aug 72.8 22.48 27.2 77.52 59.22 20.68 40.78 79.32 89.11 67.66 10.89 32.34 

20-Aug 81.65 28.28 18.35 71.72 65.07 15.62 34.94 84.38 95.78 88.53 4.22 11.47 

25-Aug 75.75 27.01 24.25 72.99 68.23 33.76 31.77 66.24 96.22 80.13 3.78 19.87 

Average 80.95 19.86 19.05 80.14 61 19.98 34.53 75.36 92 69.92 8 30.08 

covered a large area, with a latitudinal range of 5° to 50°N and a longitudinal range of 75° to 135°E, 
and included different cloud types over different land surfaces. The corresponding MODIS Aqua 
MYD35 (C6) and MYD04 (C6) cloud mask products were also collected and compared to the 
CALIPSO cloud product. Four evaluation indexes, i.e., CR, SR, ER, and MR, were calculated, and 
the results are shown in Table 6.2. 

MOD35 cloud products have an overall lower consistency with the CALIPSO cloud products, 
with an average SR value of 61% and a higher MR value of 34.53%. The higher CR (75.36%) and 
relatively smaller ER (19.98%) indicate that the MOD35 cloud products seriously underestimated 
the cloud information in the images. The MOD04 cloud products showed an overall higher SR 
(92%), a smaller MR (8%), an average CR of less than 40%, and a higher average ER of 69.92%, 
indicating that it seriously overestimated the cloud information in the images. Compared with the 
MOD35 and MOD04 cloud products, the UDTCDA cloud products showed a better consistency 
with CALIPSO cloud products with CR and SR values greater than 80% and ER and MR values 
less than 20%. The UDTCDA can identify clouds more accurately, thereby effectively reducing the 
estimation uncertainty compared with the current MODIS cloud products. 

6.4.3 conclusions 

To reduce the infuence of mixed pixels formed of cloud and ground features on cloud detection and 
improve the cloud identifcation ability of land satellites with high spatial resolutions but low spec-
tral resolutions, a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) with 
a surface refectance database support is proposed in this paper. A monthly surface refectance data-
base was established based on the long-time series of MODIS 8-day synthetic surface refectance 
products (MOD09A1). The relation between the apparent refectance and the surface refectance 
was simulated using the 6S model, carefully considering different observation and atmospheric 
conditions. Then, the dynamic cloud detection models were built and applied to MODIS to perform 
cloud detection experiments. A visual interpretation of the clouds and the CALIPSO LIDAR cloud 
estimates were selected to verify the experimental results, and the results were also compared with 
the current MODIS cloud products. 
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The evaluation and comparison results indicate that the MOD35 cloud products exhibited an over-
all low cloud detection accuracy, with a low correct rate of cloudy pixels (CR) of less than 30%. These 
products seriously underestimated the cloud content in the images. Similarly, the MOD04 cloud prod-
ucts had an overall lower detection accuracy with a lower correct rate of clear-sky pixels (SR) less than 
60% and seriously overestimated the cloud content in the images. The UDTCDA cloud products were 
considerably more consistent with the visual interpretation and CALIPSO-derived cloud estimates 
and demonstrated overall better cloud detection accuracy, with higher SR and CR values of greater 
than 80% and lower error rate (ER) and missing rate (MR) values of less than 20%. Therefore, the 
UDTCDA products exhibit less uncertainty than the MOD04 and MOD35 cloud mask products. The 
UDTCDA can effectively reduce the effects of mixed pixels and atmospheric factors and can achieve 
cloud detection from a large-scale area and long-term sequence for different satellite data. These 
capabilities make the products highly valuable for retrieval of atmospheric and surface parameters. 

This study found that the new algorithm shows better and more effective cloud detection results. 
However, some problems still remain. The UDTCDA with the prior monthly surface refectance 
database support is established based on the assumption that the surface refectance of most features 
changes little within a certain period. Thus, this algorithm can be limited in some areas where the 
surface refectance changes obviously due to snowfall/melt, forest fres, logging, urban expansion, 
etc. The cloud detection accuracy may decrease due to the lack of terrain correction in the MODIS 
surface refectance products over areas of rugged terrain. Due to the lack of ground measurements 
of clouds, the validation work was performed via comparisons with the remote sensing visual inter-
pretations of clouds, which is a more subjective approach. Thus, more comprehensive and effective 
verifcation work needs to be performed in future studies. 

6.5 AEROSOL RETRIEVAL FROM MODIS IMAGERY 

Atmospheric aerosols play an important role in Earth’s environment and climate change from local 
to global scales; in particular, fne particles have a great infuence on human health (Li et al., 2011; 
Solomon et al., 2007; Sun, Wei, Duan, et al., 2016). Therefore, a comprehensive understanding and 
discussion of the effects of aerosols on the environment and climate are important. Satellite remote 
sensing has provided an effective way to analyze the spatial distributions and variations of aerosols 
on long-term and large scales by detecting their main optical properties, such as aerosol optical 
depth (AOD) and Ångström exponent (α). 

AOD is a measure of scattering or extinction of electromagnetic radiation at a given wavelength 
due to the presence of aerosols in the atmospheric column. For aerosol retrieval in passive remote 
sensing, the basic principle is to separate the contributions of the atmosphere and the earth’s surface 
from satellite-received signals. The most critical step is to accurately determine the surface refec-
tance. Previous studies showed that 1% estimation errors in surface refectance could lead to approxi-
mately 10% errors in aerosol retrieval when the land surface refectance (LSR) is less than 0.04; 
when the LSR increases, estimation errors increase by more than 15% with the same 1% inaccurate 
estimations for surface refectance (Kaufman, Tanré, et al., 1997; Wei et al., 2017). For dark-target 
areas (e.g., vegetation and ocean), surface refectance can be more accurately estimated due to their 
homogeneous surfaces and low surface-refectance characteristics. However, for bright surfaces (e.g., 
urban areas, arid/semiarid areas, and deserts) other than snow/ice, the sensitivity of aerosol change 
to top-of-atmosphere (TOA) refectance decreases with an increase in the LSR. Additionally, diverse 
underlying surfaces complicate the accurate estimation of LSR and increase the uncertainty of aero-
sol retrievals (Hsu et al., 2004; Li et al., 2009; Wei et al., 2017). 

Kaufman, Tanré, et al. (1997) and Kaufman, Wald, et al. (1997) found that the LSR over dense 
vegetation and dark soils was low in blue and red channels and showed nearly fxed ratios with the 
refectance at 2.1 μm. Thus, the LSR of blue and red channels could be estimated by the TOA refec-
tance at 2.1 μm, which was minimally affected by atmospheric aerosols, and the dark target (DT) 
algorithm was developed. Later, the second-generation operational DT algorithm was developed 
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with several main improvements, in which the LSR values of visible channels are estimated via 
improved dynamic empirical relationships with the TOA refectance at 2.1 μm related to the nor-
malized difference vegetation index (NDVI) calculated from the shortwave infrared channels 
(NDVISWIR) and scattering angles (Levy, Remer, & Dubovik, 2007; Levy, Remer, Mattoo, et al., 
2007; Levy et al., 2010). The DT algorithm can perform well over dark-target surfaces but not over 
bright surfaces. However, Hsu et al. (2004, 2006) found that the LSR remained low and stable in 
deep blue channels over deserts and that the AOD could be retrieved if the LSR could be accurately 
estimated. The deep blue (DB) algorithm was proposed, in which the LSRs for visible channels are 
obtained from a precalculated seasonal LSR database using the Sea-Viewing Wide Field-of-View 
Sensor surface refectance products. An enhanced DB algorithm was further developed based on 
several main improvements, including surface refectance estimation, by adopting three approaches 
for estimating the LSR over vegetated areas, urban areas, and arid and semiarid regions; aerosol 
model assumption; and cloud screening schemes (Hsu et al., 2013). 

MODerate resolution Imaging Spectroradiometer (MODIS) sensors were successfully launched 
onboard the Terra and Aqua satellites in December  1999 and May  2002, respectively, and the 
second-generation operational DT algorithm (for land and ocean; Levy et al., 2010) and the enhanced 
DB algorithm (only for land; Hsu et al., 2013) have been the main aerosol retrieval algorithms and 
have produced long-term and global-coverage daily DT and DB AOD products at a spatial resolution 
of 10 km since collection (C) 6 (MOD04_10K; Levy et al., 2013). MOD04_10K AOD products have 
been extensively evaluated over land and widely used in studies of atmospheric aerosols from local 
to global scales (Bilal et al., 2013, 2014; Levy et al., 2013; Li et al., 2007; Wei et al., 2017; Wei & 
Sun, 2017). However, analyses of the spatial distributions and variations of atmospheric pollutants 
in small- and medium-scale areas are limited due to their coarse spatial resolutions (Bilal et al., 
2013; Li et al., 2005; Wei et al., 2018a). Therefore, recently, a new global-coverage daily aerosol 
product at a higher spatial resolution of 3 km (MOD04_3K) has been released (Remer et al., 2013). 

Moreover, an increasing number of researchers have begun to focus on aerosol retrieval at high 
spatial resolutions to improve the applications in monitoring the air quality and related aerosol stud-
ies at urban or local regions. Li et al. (2005) modifed the MODIS algorithm to retrieve AODs at 
1-km resolution over Hong Kong, and the results showed that the retrievals exhibited low errors in 
sun photometer measurements and showed much better correlations with PM10 measurements than 
did MOD04 AOD products. Wong et al. (2010) proposed a refned aerosol retrieval algorithm and 
derived AODs from MODIS at a 500-m resolution with good overall accuracies over Hong Kong 
and the Pearl River Delta. Lyapustin et al. (2011) put forward a new Multi-Angle Implementation 
of the Atmospheric Correction (MAIAC) algorithm based on a time series of MODIS images to 
retrieve AODs over both dark and bright surfaces at 1-km resolution. Bilal et al. (2013) developed a 
Simplifed Aerosol Retrieval Algorithm (SARA) to retrieve AODs from MODIS images at 500-m 
resolution, and the MOD09GA level 2 daily surface refectance product was used to provide the 
surface refectance for the green channel without using a look-up table (LUT). Although these 
algorithms can produce reliable aerosol data sets, they can be applied only to specifc areas with 
low universality due to excessive dependence on assumptions and measured input parameters (i.e., 
surface refectance and aerosol types). Therefore, it is necessary to explore a more suitable aerosol 
retrieval method at the global scale, which is the main purpose of this study. 

6.5.1 study area and data sources 

6.5.1.1 Typical Local Regions 
To test and validate the adaptability of the I-HARLS algorithm, four typical regions—central and 
eastern Europe (42°N–59°N, 0–16°E; Figure 6.9a), central and eastern North America (30°N–50°N, 
80°W–100°W; Figure 6.9b), Beijing-Tianjin-Hebei (39°N–41°N, 115°E–118°E; Figure 6.9c), and the 
Sahara (12°N–40°N, 14°W–16°E; Figure 6.9d)—were selected to perform the aerosol retrieval experi-
ments. Europe is dominated by a temperate marine climate and dense vegetation coverage at low 
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FIGURE 6.9 Locations of selected typical regions: (a) Europe, (b) North America, (c) Beijing-Tianjin-Hebei, 
and (d) the Sahara. The red spots represent the AERONET sites. Black and purple solid lines represent the 
national and state borders, respectively. Land use cover is provided by ESA GlobCover product. 

Source: Wei et al. (2018b) 

elevations. The region has faced environmental pressures in recent years due to air pollution, where 
the major sources originate from industrial and agricultural production. Aerosols are dominated by 
fne particles with weak and moderate absorptions (Li et al., 2013). North America has a complex 
and diverse climate with dense vegetation coverage, and it contains abundant mineral resources with 
a strong industrial base. Air pollution is inevitable due to early unreasonable industrial development, 
and the dominant air pollutants are fne particles with weak absorption (Li et  al., 2013). Beijing-
Tianjin-Hebei is located in eastern China with a large and dense population; the region has experi-
enced increasing air pollution in recent years due to its unreasonable industrial layout and structural 
pollution and has been a hot spot for urban aerosol retrieval. Aerosols are dominated by fne modes 
with weak or moderate absorptions (Bilal et al., 2014; Wei et al., 2018a; Wei & Sun, 2017). The Sahara 
is dominated by an arid subtropical climate with low vegetation cover and sparse human activities; it 
frequently experiences sandy and dusty weather, and the aerosols are dominated by dust, where the 
distributions of dust particles extensively vary spatially and temporally because of their short lifetime 
(Hsu et al., 2004; Li et al., 2013). Figure 6.9 shows the locations of the four typical selected regions. 
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6.5.1.2 Operational MODIS Products 
The MOD09 8-day synthetic surface refectance products were selected to construct the LSR data-
base. In addition, to monitor the atmospheric particle pollution at medium or small scales, the 
National Aeronautics and Space Administration has released a global daily aerosol product at 
3 km (MOD04_3K) based on the second-generation DT aerosol retrieval algorithm. This product 
is based on the same assumptions for surface refectance and aerosol types, LUTs, numerical inver-
sion, and criteria to determine a good ft as used in the 10-km product (Levy et al., 2013). The main 
differences between the two products are the way the pixels are organized and the number of pixels 
required in the retrieval window during the pixel selection. For the MOD04_3K DT algorithm, 
pixels are organized into 6 ´ 6 pixels in the retrieval box; the 20% darkest and 50% brightest pixels 
over land are discarded, and then the measured TOA refectance of remaining pixels are averaged. 
The algorithm requires a minimum of 5 pixels over land to make a retrieval (Remer et al., 2013). 
The MOD04 3-km product is expected to resolve aerosol gradients and pollution sources that are 
missed with the 10-km product. Because there are more selected pixels in the deselection process 
at 10 km, dark or bright pixels discarded at 10 km might be retained at 3 km, which makes the 
3-km product potentially noisier than the 10-km product. Thus, the expected error (EE) for the 
MOD04 3-km product over land is [±[0.05% + 20%]), which is slightly less stringent than that of 
(±[0.05% +15%]) for the 10-km product over land (Levy et al., 2013; Nichol & Bilal, 2016; Remer 
et al., 2013). A quality assurance (QA) data set is provided to represent the data quality of AOD 
retrievals, with QA values ranging from 0 to 3 in order from low to high accuracy (Levy et al., 
2013). In this paper, MOD04_3K DT AOD retrievals with the highest quality (QA  =  3) were 
selected for comparison. 

6.5.1.3 AERONET Ground-Based Measurements 
AERONET is a worldwide network of calibrated ground-based aerosol sites where observations 
were collected using the CE-318 sun photometer measurement. This network has provided a long-
term, continuous, and accessible public database of optical properties (i.e., AOD, size distribution, 
single scattering albedo, and asymmetry parameter) in diverse aerosol regimes. AODs are measured 
at a wide range of wavelengths from visible to near-infrared channels (0.34–1.02 μm) every 15 min 
with a low uncertainty of 0.01–0.02. The AOD measurements are computed as three data quality 
levels (L): L1.0 (unscreened), L1.5 (cloud screened), and L2.0 (cloud screened and quality assured), 
indicating increasing reliability (Holben et al., 2001; Smirnov et al., 2000). 

In this paper, AERONET version 2 level 2.0 AOD measurements were selected to quan-
titatively evaluate the reliability of the AOD retrievals. To this end, we collected 11, 16, 3, 
and 10 AERONET sites over Europe, North America, Beijing-Tianjin-Hebei, and the Sahara, 
respectively. The spatial locations and site information of each AERONET site are shown in 
Figure 6.9. However, AERONET does not provide AOD measurements at 550 nm; therefore, 
they are interpolated with the Ångström exponent algorithm based on the available AOD mea-
surements at the two nearest wavelengths among 440, 500, and 675 nm to compare them with 
the satellite AOD retrievals (Levy, Remer, & Dubovik, 2007; Wei et al., 2018a, 2017; Wei & 
Sun, 2017). 

6.5.2 Methodology 

An improved high-spatial-resolution (1  km) aerosol retrieval algorithm with prior land surface 
parameters database support (I-HARLS) for MODIS images over land is proposed (Wei et  al., 
2018b). The I-HARLS algorithm requires the TOA refectance, latitude, longitude, solar zenith/ 
azimuth angles, satellite zenith/azimuth angles, and elevation, which were obtained from MOD02 
images at 1-km spatial resolution (MOD021KM). The surface refectance and aerosol types over 
land were determined from MODIS surface refectance (MOD09) products and aerosol (MOD04) 
products, respectively. 

https://0.01�0.02
https://0.34�1.02
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The TOA refectance received from the satellites contains information from both the atmosphere 
and surface refectance and is a function of successive orders of radiation interactions within the 
coupled surface-atmosphere system, which can be estimated as follows (Tanré et al., 1988; Vermote, 
El Saleous, et al., 1997a): 

r* r q( , ,q j ) = r q q j  r ( , , ) + T T( , , ) + q q j  (6.13) s v Aer  s v  Ray s v q qs v1- r * S 

where ρAer(θs, θv, ϕ) is the aerosol refectance resulting from multiple scattering in the absence of mol-
ecules; ρRay(θs, θv, ϕ) is the multiple Rayleigh refectance in the absence of aerosols; ρ is the surface 
refectance; S is the atmospheric backscattering ratio; T(θs) is the transmission of the atmosphere 
along the Sun-surface path; T(θv) is the transmission of the atmosphere along the surface-sensor 
path; and θs, θv, and ϕ are the solar zenith angle, view zenith angle, and relative azimuth angle, 
respectively. 

Aerosol refectance is retrieved at 550 nm by correcting for Rayleigh scattering and the surface 
function. The aerosol refectance received from the satellite is a function of the AOD (t), SSA (w0), 
and aerosol scattering phase function (P) as follows: 

wt P (q q js , , )vr q q j ) = ˜ (6.14) Aer  ( s , ,v q4cos cosqs v 

Rayleigh scattering is a notable factor in the radiation calculation and has a signifcant impact on 
the visible channels, especially for blue channels (412–490 nm). The Rayleigh scattering correction 
for satellite data depends on the determination of the Rayleigh phase function and Rayleigh optical 
depth (ROD; Mishchenko et al., 1999). At sea level, the ROD caused by Rayleigh scattering is a 
function of wavelength (Bodhaine et al., 1999; Bucholtz, 1995) as follows: 

- .4 05 
tRay = ) = 0 00877 éël (z = 0)exp Z / 34)ùû exp (-Z / 8.5) (6.15) (l, z Z  . ( 

where tRay is the ROD, λ is the wavelength (μm), z is the ground elevation above sea level in kilo-
meters (km), and Z is the height (km) of the surface target. 

The Rayleigh intrinsic refectance for actual pressure (P) is determined by adjusting the molecu-
lar optical depth at the standard pressure (P0; 1 atm) level as follows: 

tRay (l, P) = P P tRay (l, P0 ) (6.16) 
0 

The surface refectance is the most important factor and must be estimated accurately in aerosol 
retrieval from satellite remote sensing images. Moreover, the composition of global aerosol models 
is constantly changing in different areas, and aerosol model selection is one of the other key issues in 
AOD retrieval. Therefore, surface refectance and aerosol model are two important parameters that 
affect the accuracy of AOD retrieval and need to be carefully considered. 

6.5.2.1 Surface Refectance Estimation over Land 
The LSR for vegetated surfaces can vary greatly during growing seasons and remain unchanged for 
long periods during winter, indicating signifcant seasonal changes. However, the LSR is relatively 
high over bright areas (e.g., urban, desert, arid/semiarid, and bare areas), which reduces the sensi-
tivity of aerosol change to TOA refectance, and no stable relationship between visible and SWIR 
channels can be estimated. However, the LSRs of bright surfaces do not signifcantly vary with time, 
and the effect of the surface’s bidirectional refectance distribution function is weaker than that of 
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vegetated surfaces (Hsu et al., 2013). Therefore, improving LSR estimations for different underlying 
surfaces requires consideration of dynamic LSR variations. Extensive efforts have focused on these 
problems, and two typical surface refectance schemes have been proposed. The pixels over global 
land are divided into two categories: (1) densely vegetated areas and (2) bright and other areas. 

6.5.2.1.1 Densely Vegetated Areas 
Previous studies showed that the second-generation operational DT algorithm can retrieve stable 
and accurate AODs for dark target areas, especially for densely vegetated areas (Levy, Remer, & 
Dubovik, 2007); thus, the same approach is selected for AOD retrieval over densely vegetated areas 
in this study. The blue and red channels’ LSRs are estimated by the parameters NDVISWIR and 
scattering angle. Densely vegetated areas are similarly defned as pixels with NDVISWIR greater 
than 0.75, and the LSRs for visible channels can then be estimated (Levy, Remer, & Dubovik, 2007; 
Levy et al., 2010) as follows: 

* * r - r 2 12 >1 24. .NDVISWIR = 0 75 (6.17) .* * r + r1 24. .2 12 

* * = g ( = . .) 0 49r 0 65 + 0  005 (6.18) r0 47  r 0 65 .. . 

* * = f (r ) = ( . + . Q) r - . Q + 0.033 (6.19) r 0 21 0  002 0 00025 0 65. 2 13 2 13 . . 

Q = arccos (-cos q + sinq sin cos (6.20) qscos  v s qv j ) 

where ρ*1.24 and ρ*2.13 are the TOA refectance at 1.24 and 2.13 μm, respectively; ρ0.47 and ρ0.55 are 
the surface refectance at 0.47 and 0.65 μm, respectively; and Θ is the scattering angle. 

6.5.2.1.2 Bright and Other Areas 
For bright and other surfaces, except for snow/ice surfaces, a new approach is proposed to improve 
LSR estimations for aerosol retrieval. Carefully considering the LSR variations for vegetated 
areas at the beginning or end of the growing season, we assume that the LSRs of most features 
remain unchanged for eight days, and a prior eight-day surface refectance database is constructed 
based on the MOD09 series of surface refectance products. For this purpose, MOD09A1 products 
encompassing the entire years from 2010 to 2014 are collected and mosaiced to construct a global 
LSR database. 

The database provides 44 LSR images in one year at 1-km resolution. Each LSR image covers 
four spectral bands, including the blue (459–479 nm), green (545–565 nm), red (620–670 nm), and 
near-infrared (841–876 nm) channels. Figure 6.10 provides the LSR images for the blue (0.47 μm) 
channel over land on Julian day 161 in 2014. LSRs are apparently bright in the northern parts of 
the Northern Hemisphere at relatively high latitudes above 60°, certain tropical regions near the 
equator, and a few high-altitude areas in the mainland. However, the LSRs in most land areas are 
relatively low and generally less than 0.15 in the blue channel. Previous studies’ simulated results 
illustrated that the TOA refectance still responds well to aerosol change even when the surface 
refectance is much higher than 0.15 in the blue channel (Wei et al., 2017). Meanwhile, the LSR 
image shows an overall high quality with little cloud contamination and can better refect the LSR 
variations at the global scale. Therefore, the eight-day synthetic LSR database is used to provide 
surface refectance for cloud detection and aerosol retrieval over land. 

6.4.2.2 Assumptions Regarding Aerosol Types over Land 
The composition of global aerosol models is constantly changing in different areas, and aerosol 
model selection is another key issue in AOD retrievals. Thousands of size distribution retrievals 
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FIGURE 6.10 Surface refectance image at the blue (0.47 μm) channel on Julian day 161 in 2014 over land. 

Source: Wei et al. (2018b) 

exist, and additional AERONET sites are available around the world. Operational MODIS aero-
sol products defned aerosol types based on a cluster analysis of all AERONET almucantar and 
size distribution retrievals in 2005 (Levy, Remer, Mattoo, et  al., 2007). Later, a new cluster 
analysis was performed using AERONET aerosol optical property measurements in 2010. Most 
AERONET sites remained unchanged in the overall global pattern (Levy et al., 2013). The land 
aerosol types included a continental model, three fne models, and a dust model. The fne models 
were separated into strong, moderate, and weak absorption models employing a global map for 
four seasons. 

The key assumptions include the following: the optical properties of each aerosol type vary 
little spatially over the region during a short time (Bilal et  al., 2013; Levy, Remer, Mattoo, 
et al., 2007; Levy et al., 2013; Sun, Wei, Wang, et al., 2016), and the dominant aerosol type 
at each site is a function of the season (Levy, Remer, Mattoo, et al., 2007; Levy et al., 2013; 
Sun, Wei, Jia, et al., 2016; Wei et al., 2018a). Thus, a prior seasonal aerosol-type database over 
land is constructed. For this purpose, MOD04_10K daily aerosol-type data sets from 2012 to 
2014 are collected and used to construct the aerosol-type database. The mode value of aerosol 
types for each pixel in all images in one season is chosen to represent the pixel for the one-
season series. Then, the synthesized seasonal images are further corrected by aerosol optical 
properties measured by the AERONET ground-based observations at the same time. The data-
base provides four aerosol-type images for each season at 1-km spatial resolution, containing 
the continental model, moderate absorption model, strong absorption model, weak absorption 
model, and dust model. 

Figure 6.11 displays the four seasonal land aerosol-type images over land in March-April-May, 
June-July-August, September-October-November, and December-January-February. The database 
frst provides similar spatial patterns but clearer boundaries of different aerosol types over land 
compared to that used in the MODIS offcial aerosol retrieval algorithm (Levy, Remer, Mattoo, 
et al., 2007; Levy et al., 2013). The aerosol types are as expected in most areas in different seasons. 
Continental aerosols dominate northern Africa, central Asia, and central Australia. Weakly absorb-
ing aerosols (including urban and industrial aerosols) dominate eastern North America, western 
Europe, and Southeast Asia, especially in summer and autumn. Strongly absorbing aerosols (includ-
ing presumably savanna or grassland smoke aerosols) dominate the savannas in South America and 
Africa. The rest of the world is dominated by moderately absorbing aerosols (including background, 
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FIGURE 6.11 Spatial distribution of aerosol types over land in (a) MAM, (b) JJA, (c) SON, and (d) DJF. 

Source: Wei et al. (2018b) 

forest-smoke, and developing-world aerosols). The optical properties (i.e., w0 and g) of fve aerosol 
models at visible wavelengths are determined from monthly averages of AERONET measurements 
(Sun, Wei, Jia, et al., 2016). 

6.5.2.3 Cloud Screening 
The success of an offcial MODIS aerosol retrieval depends on its ability to discard unsuitable pix-
els, including clouds, snow, and inland water bodies. The most critical step for aerosol retrieval is 
accurate cloud detection to mask unsuitable pixels. Failure to remove clouds from images can create 
cloud contamination, and an excessively strong cloud mask produces insuffcient aerosol coverage. 
The MOD35 cloud mask product is designed to mask pixels that are unsuitable for land surface 
retrieval (clouds and heavy aerosol loads) and to fnd suitable pixels for cloud-product retrieval (not 
aerosols); MOD35 is viewed as overly cloud conservative but not clear-sky conservative enough for 
aerosol retrieval (Levy et al., 2013; Sun, Wei, Wang, et al., 2016). 

The major challenge in cloud detection is identifying thin and broken clouds over land sur-
faces, particularly in low- or bright-refectance areas, which create ubiquitous mixed pixels in 
the remote sensing images. The diffculty in separating real land surfaces from clouds is the 
primary reason for the failure to detect thin or broken clouds with high accuracy from satellite 
remote sensing images. If the surface refectance is known, the underlying surface component 
in mixed pixels can be determined, and the thresholds for cloud detection can be established. 
Therefore, the Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA), which is 
supported by a prior surface refectance database, is selected to solve the above problems. The 
dynamic cloud detection models for the visible to near-infrared channels are built based on the 
simulated relationships between TOA refectance and surface refectance. Validations and com-
parisons with Cloud-Aerosol LIDAR and Infrared Pathfnder Satellite Observation (CALIPSO) 
cloud measurements and MODIS cloud mask products indicated that it could more accurately 
detect different kinds of clouds (Sun, Wei, Wang, et  al., 2016). Therefore, the UDTCDA for 
MODIS images is selected to flter pixels for aerosol retrieval in this paper, which are described 
in the following section. 
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6.5.2.4 AOD Retrieval 
Similarly, our algorithm uses the LUT approach to provide parameters as MOD04 aerosol retrieval 
algorithms for AOD retrieval with the Second Simulation of the Satellite Signal in the Solar 
Spectrum (6S) radiative transfer model (Vermote, Tanré, et al., 1997b). The parameters are calcu-
lated for different aerosol loadings from 0.0 to 3.0. The TOA refectance is calculated for solar and 
sensor zenith angles from 0 to 60° at intervals of 6° and relative azimuth angles from 0° to 180° 
in increments of 12°. The LUTs contain fve aerosol types in tropical (30°S–30°N), midlatitude 
(30°N–60°N, 30°S–60°S) summer/winter, and subarctic (>60°N, >60°S) summer/winter atmo-
spheric models, which can be determined via the latitudes. The effective retrieval pixels should 
meet the following conditions: (1) ensure that all the values (i.e., angles and refectance) are valid; 
(2) identify and mask most clouds with the UDTCDA algorithm; and (3) identify and mask snow/ 
ice and inland water via the NDSI and normal difference water index (NDWI; Gao, 1996), respec-
tively. Moreover, due to permanent snow/ice or water cover in the polar regions, our algorithm is not 
designed to retrieve aerosols over areas with high latitudes (>80°S or 80°N). Here, MOD021KM 
images covering Europe, North America, and the Sahara during 2012–2014 and Beijing-Tianjin-
Hebei during 2010–2014 are downloaded to perform aerosol retrieval experiments. 

6.5.2.5 Validation Method 
AERONET version 2, level 2.0 ground-based AOD measurements and MOD04_3K AOD products 
with the same period are collected for validation and comparison. AOD retrievals within a com-
mon sampling window of 5 ´ 5 pixels around the AERONET site are obtained. To remove the AOD 
retrievals with large fuctuations and less reliability, the 20% highest and 20% lowest pixels are 
discarded, and the remaining values are averaged as the retrieved AOD. Then, the average of at least 
two AERONET AOD measurements at each site within ±30 min of the MODIS satellites’ overpass 
time are calculated as the true value (Bilal et al., 2014; Hsu et al., 2013; Wei et al., 2018a, 2017). To 
quantify the accuracy, three main evaluation metrics, including the mean absolute error (MAE), 
root-mean-square error (RMSE), and EE for the MOD04_3K AOD product over land (±[0.05 ± 
20%]) (Remer et al., 2013) are selected to evaluate the accuracy and uncertainty. 

6.5.3 results and discussion 

6.5.3.1 Validation with AERONET AOD Measurements 
The I-HARLS AOD retrievals at 1-km resolution from MODIS images are frst validated against 
AERONET AODs from 11 sites, 16 sites, 3 sites, and 10 sites over Europe, North America, Beijing-
Tianjin-Hebei, and the Sahara, respectively, at both the site and regional scales. Figure 6.12 provides 
the spatial distributions of I-HARLS AOD retrievals against AERONET AODs as the percentage 
of the collections falling within the EE (%), MAE, and RMSE for each site. Table 6.3 shows the 
accuracy statistics for Europe, North America, Beijing-Tianjin-Hebei, and the Sahara. 

For European sites, more than 70% of the retrievals meet the requirements of the EE at 10 out 
of 11 AERONET sites, with average MAE and RMSE values less than 0.06 and 0.09, respectively. 
However, the Hamburg site shows an overall low accuracy, with 58.46% of the collections falling 
within the EE and average large MAE and RMSE values of 0.079 and 0.102, respectively. The main 
reason is that the high-latitude location (53.57°N) and the effects of snow/ice in winter increase the 
diffculties in estimating the surface refectance. Moreover, despite good accuracies, AOD retrievals 
show overall low overestimation uncertainties at most sites (a–c). At the regional scale, a total of 
1,264 effective points are collected, and they agree well with AERONET AODs (R = 0.865), with 
79.59% of the retrievals falling within the EE, and average small MAE and RMSE values of 0.050 
and 0.069, respectively. 

The I-HARLS algorithm shows overall good performance over North America at the site scale; 
more than 60% of the retrievals fall within the EE at 15 out of 16 selected sites, with average MAE 
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FIGURE 6.12 Spatial distributions of validations of I-HARLS AOD retrievals with AERONET AOD mea-
surements in the percentages of retrievals falling within the EE (%), MAE, and RMSE at each site over (a–c) 
Europe, (d–f) North America, (g–i) Beijing-Tianjin-Hebei, and (j–l) the Sahara. 

Source: Wei et al. (2018b) 

TABLE 6.3 
Statistical Summary for Validation of I-HARLS AOD Retrievals over Four Typical Regions 
and Land (Wei et al., 2018b) 
Region N R MAE RMSE = EE > EE < EE 

Europe 1264 0.865 0.050 0.069 79.59 18.51 01.90 

North America 1439 0.817 0.052 0.072 72.69 23.49 03.82 

Beijing-Tianjin-Hebei 1273 0.943 0.090 0.138 74.71 18.46 06.83 

The Sahara 1439 0.774 0.104 0.155 61.01 23.84 15.15 

Land 5415 0.913 0.074 0.115 71.67 21.24 07.09 
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and RMSE values less than 0.06 and 0.09, respectively. Despite this, AOD retrievals show certain 
overestimation uncertainties at most sites (d–f). At the regional scale, we collect a total of 1,439 
points; they are highly correlated with the AERONET AODs (R = 0.917), and 72.69% of them meet 
the requirements of the EE with an average MAE of 0.052 and RMSE of 0.072. 

In Beijing-Tianjin-Hebei, 563, 150, and 560 pairs are collected for Beijing, Beijing_CAMS, and 
XiangHe sites, respectively. For two typical urban sites (Beijing and Beijing_CAMS), the I-HARLS 
AOD retrievals agree well with AERONET AODs (R = 0.941 and 0.950), and 70.52% and 72.67% 
of the retrievals fall within the EE, with average MAEs of 0.092 and 0.096 and RMSEs of 0.134 and 
0.148, respectively. Moreover, the highest accuracy is found for the XiangHe site, which is located 
in the suburbs and covered by vegetation, with 79.46% of the collections falling within the EE, 
and the retrievals agree well with AERONET AOD measurements with an average MAE of 0.086 
and RMSE of 0.139, respectively (g–i). Despite the good accuracies, the estimation uncertainty (i.e., 
MAE and RMSE) increases compared to those in Europe and North America. In general, we col-
lected a total of 1,273 pairs from three sites, and they are highly correlated with AERONET AOD 
measurements; 74.71% of them meet the acquirements of the EE, with an average MAE of 0.09 and 
RMSE of 0.138. Furthermore, the overall data qualities of I-HARLS AOD retrievals are obviously 
improved over those of HARLS AOD retrievals, with 65.41%, 58.95%, and 70.16% of the collections 
falling within the EE for Beijing, Beijing_CAMS, and XiangHe sites, respectively, as reported in a 
previous study (Wei & Sun, 2017). This approach improves estimations for surface refectance and 
assumptions for aerosol types. 

For the Sahara, the I-HARLS algorithm performs poorly at most sites. Only half of the 10 
selected sites show considerable accuracies, with more than 60% of collections falling within the 
EE, showing high estimation uncertainties with large MAE and RMSE values. Especially for the 
sites located deep in the Sahara Desert, AOD retrievals are poorly correlated with the AERONET 
AOD measurements, with larger average MAE and RMSE values exceeding 0.09 and 0.15, respec-
tively (j–l). The main reason is the decreasing sensitivity of aerosols changes to TOA refectance 
with the increasing surface refectance over such bright desert surfaces. At the regional scale, a total 
of 1,439 points are collected, and they show good agreements with AERONET AODs (R = 0.771); 
61.1% of them fall within the EE, with an average MAE of 0.104 and RMSE of 0.155. These results 
illustrate that the aerosol estimation uncertainty for the Sahara is greater than those for Europe, 
North America, and Beijing-Tianjin-Hebei. 

For the whole land, we have collected 5,415 effective data pairs across all selected 40 sites 
from four typical regions. It is found that our 1-km I-HARLS AOD retrievals are highly consistent 
(R = 0.913) with AERONET AOD measurements at 550 nm over land. The retrievals are evenly 
distributed on both sides of the 1:1 line with average MAE and RMSE values of 0.074 and 0.115, 
respectively. In general, the I-HARLS algorithm performs well, with approximately 71.67% of the 
retrievals falling within the EE, at the global scale over land. 

6.5.3.2 Comparison with MOD04_3K AOD Products 
Here, eight images obtained in 2012 on 25 May and 15 June over Europe, 2 and 4 June over North 
America, 26 May and 4 June over Beijing-Tianjin-Hebei, and 5 and 21 July over the Sahara are 
selected to display the aerosol spatial distributions of the I-HARLS (1-km) and MOD04 (3-km) 
AOD products (Figure 6.13). The I-HARLS AODs show consistent spatial distributions similar to 
those of the MOD04_3K AOD products over Europe and North America, where low aerosol load-
ings have always been observed. However, I-HARLS AODs could provide wider spatial coverage 
than MOD04_3K AODs, mainly due to a more accurate cloud mask, given that the MOD04 cloud 
masks used in the aerosol retrieval overestimated the cloud fraction in the images (Sun, Wei, Wang, 
et  al., 2016). Over bright urban surfaces, the MOD04_3K AOD products show a large number 
of missing values with poor spatial continuity in central urban areas, while the I-HARLS algo-
rithm could achieve aerosol retrieval in such areas and provide more constant spatial coverage. 
The MOD04_3K AODs are always higher than I-HARLS AODs in such areas. In addition, in the 
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FIGURE 6.13 Comparisons of spatial distributions of I-HARLS AOD (1 km) with MOD04_3K AOD (3 km) 
over Europe, North America, Beijing-Tianjin-Hebei, and the Sahara on selected days (dd.mm.yyyy). The solid 
black line represents national borders, and the purple solid line represents state/provincial borders. 

Source: Wei et al. (2018b) 

surrounding vegetated areas, they show close and continuous spatial coverage. Furthermore, in the 
deserts, the MOD04_3K AODs show few successful retrievals because the DT algorithm could 
not achieve aerosol retrievals over such bright surfaces with high surface refectance; in contrast, 
the I-HARLS algorithm could achieve much more successful retrievals and provide more constant 
spatial coverage over the Sahara. More importantly, the I-HARLS AOD product has a higher spa-
tial resolution at 1 km than does the MOD04_3K AOD product, indicating that it can provide more 
detailed aerosol spatial distributions and variabilities over land. 

For comparison purposes, the MOD04_3K AOD retrievals passing the highest-quality assur-
ance (QA = 3) are obtained for four regions. Table 6.4 illustrates the validation and comparison of 
common retrievals between I-HARLS and MOD04_3K AOD products against AERONET AODs, 
as well as the validation for unique I-HARLS AOD retrievals during 2010–2014 for four typical 
regions over land. In Europe, a total of 682 common AOD retrievals for I-HARLS and MOD04_3K 
AOD products are collected from all sites. The MOD04_3K AODs show close agreements with 
the AERONET AOD measurements (R = 0.870), yet only 50.73% of them fall within the EE, with 
an average MAE of 0.100 and RMSE of 0.130. However, serious overestimations with almost half 
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TABLE 6.4 
Comparisons of Common and Unique AOD Collections between I-HARLS (1 km) 
and MOD04_3K AOD Retrievals (3 km) against AERONET AOD Measurements over 
Four Regions 
Region Product N R MAE RMSE = EE > EE < EE 

Europe I-HARLS 682 0.873 0.045 0.062 83.58 14.08 02.34 

MOD04_3K 682 0.870 0.100 0.130 50.73 49.27 00.00 

Unique 582 0.866 0.056 0.075 75.04 23.59 01.37 

North America I-HARLS 644 0.864 0.041 0.056 80.43 14.91 06.66 

MOD04_3K 644 0.837 0.054 0.077 76.86 14.60 08.54 

Unique 795 0.807 0.062 0.083 66.42 30.44 03.14 

Beijing-Tianjin-Hebei I-HARLS 340 0.957 0.078 0.109 77.94 18.53 03.53 

MOD04_3K 340 0.904 0.265 0.331 35.29 64.41 00.29 

Unique 933 0.941 0.093 0.146 72.97 19.13 07.90 

The Sahara I-HARLS 96 0.766 0.112 0.159 61.46 11.46 27.08 

MOD04_3K 96 0.610 0.155 0.185 33.33 31.25 35.42 

Unique 1343 0.780 0.103 0.154 60.98 24.72 14.30 

of the collections (49.27%) falling above the EE are observed. Compared to MOD04_3K AODs, 
the I-HARLS AODs achieve a higher correlation with AERONET AODs (R = 0.873) and an aver-
age lower MAE of 0.045 and RMSE of 0.062. Meanwhile, this algorithm can signifcantly reduce 
the overestimation uncertainties. In general, 83.55% of the collections fall within the EE, which 
is approximately 1.65 times greater than that of MOD04_3K AOD retrievals. Furthermore, 582 
unique AOD pairs are collected from I-HARLS AOD product, and they are also highly correlated 
with AERONET AODs, with 75.04% of these collections falling within the EE and average MAE 
and RMSE values of 0.056 and 0.075, respectively. 

In North America, a total of 644 common AOD retrievals between the I-HARLS and MOD04_3K 
AOD products are collected from all sites. MOD04_3K AOD retrievals show good performance 
with a high correlation of 0.864 with AERONET AODs, and approximately 76.86% of the collec-
tions fall within the EE, with an average MAE of 0.054 and RMSE of 0.077. However, the I-HARLS 
AOD retrievals achieve a high correlation with AERONET AODs (R  =  0.837), and more than 
80% of them fall within the EE with an average lower MAE of 0.041 and RMSE of 0.056, show-
ing an overall improvement in the aerosol estimations. Moreover, another 795 unique AOD pairs 
for I-HARLS retrievals are collected and validated against AERONET AOD measurements. The 
retrievals agree well with the measurements (R = 0.807), and 66.42% of them are within the EE, 
with an average MAE of 0.062 and RMSE of 0.083. 

Similarly, common retrievals between I-HARLS and MOD04_3K AOD products are 
extracted, but only 340 effective pairs are obtained in the Beijing-Tianjin-Hebei region. 
MOD04_3K AODs exhibit poor performance, and only 35.29% of the retrievals fall within the 
EE, with an average MAE of 0.265 and RMSE of 0.331. Moreover, this algorithm signifcantly 
overestimates the aerosol loadings, with more than 64% of the retrievals falling above the EE. 
However, the I-HARLS algorithm is able to largely reduce the overestimation uncertainties 
and signifcantly improve the data quality over this region. The percentage of the retrievals 
falling within the EE increases to 77.94%, which is approximately 2.2 times more than that of 
the MOD04_3K retrievals. The retrievals are highly correlated with the AERONET AODs and 
show a much lower average MAE of 0.078 and RMSE of 0.109. Furthermore, 962 additional 
AOD pairs are collected from the I-HARLS retrievals, and they agree well with the AERONET 
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AODs; approximately 73% of them are within the EE, showing average MAE and RMSE values 
of 0.093 and 0.146, respectively. 

The common retrievals between the I-HARLS and MOD04_3K products are extracted from all 
sites over the Sahara. More serious is that only 96 effective points are obtained, and the MOD04 
AOD retrievals show poor performance over the Sahara, with only 33.33% of them falling within 
the EE and an average MAE of 0.155 and RMSE of 0.185. Similarly, serious estimation uncertainties 
are observed with 31% and 35% of the retrievals falling above and below the EE, respectively. There 
are no common retrievals from the desert sites, Tamanrasset_INM and Ouarzazate, which is mainly 
because the MOD04_3K DT algorithm is unable to retrieve AODs over such bright desert surfaces. 
However, the I-HARLS algorithm performs much better than the MOD04 DT algorithm, and more 
than 61.46% of the common retrievals fall within the EE, with decreasing MAE and RMSE values of 
0.112 and 0.159, respectively. Moreover, a large number of 1343 unique AOD pairs are collected from 
the I-HARLS retrievals, and they correlate well with the AERONET AODs, with 60.98% of them 
falling within the EE and an average MAE of 0.103 and RMSE of 0.154. The comparison results 
show that the I-HARLS algorithm allows aerosol retrieval from darkest to brightest surfaces, and 
it not only increases the number of successful retrievals but also improves the aerosol estimations. 

6.5.4 conclusions 

Here, an improved high-spatial-resolution aerosol retrieval algorithm with land surface parameter 
support (I-HARLS) at 1-km resolution for MODIS images is developed. A precalculated global 
land surface refectance (LSR) database is constructed using the MODIS 8-day synthetic surface 
refectance (MOD09A1) products, and a prior seasonal global land aerosol-type database is cre-
ated using the MOD04 daily aerosol products. The main aerosol optical properties and types are 
determined based on the monthly average historical aerosol optical properties from local AERosol 
RObotic NETwork (AERONET) sites. For cloud screening, the Universal Dynamic Cloud Detection 
Algorithm (UDTCDA) is selected to mask cloud pixels in remote sensing images. Then, a 1-km-
resolution AOD data set is generated based on the I-HARLS algorithm. Successful AOD retrievals 
are available over dark and bright surfaces. To test and validate the performance of the I-HARLS 
algorithm, four typical regions (including Europe, North America, Beijing-Tianjin-Hebei, and the 
Sahara) with different underlying surface and aerosol types are selected for aerosol retrieval experi-
ments. Moreover, AERONET version 2, level 2.0 AOD measurements and MODIS daily AOD 
products at 3-km resolution (MOD04_3K) are selected for validations and comparisons. 

The results show that the I-HARLS algorithm performs well overall at both the site and regional 
scales, and AOD retrievals are highly correlated with AERONET AOD measurements, with 
79.56%, 72.69%, 74.71%, and 61.01% of the collections falling within the EE for the four regions, 
respectively. However, with an increase in surface refectance over land, the overall performance of 
the retrievals decreases with increasing estimation errors, mainly due to the decreasing sensitivity 
of aerosol change to TOA refectance. The new AOD products perform better and are less biased 
than the MOD04_3K AOD product, primarily because of the improvements in LSR estimation and 
aerosol-type assumption. Furthermore, the generated 1-km-resolution AOD data sets can provide 
continuous and wide-spatial-coverage AOD distributions over land, which play an important role in 
quantitative aerosol research and air quality monitoring at the medium and small scales. 

This study shows that although the new AOD retrieval algorithm performs well overall over 
land, certain problems remain. Due to the large amount of data, four representative local regions 
with three or fve years of data are selected for this paper for aerosol retrieval experiments and 
validations. However, due to the long time series of MODIS data records, longer and wider-scale 
experiments and validations need to be undertaken. In addition, this paper only performs compari-
sons with current operational and free-open high-resolution MOD04 aerosol products; therefore, 
more comprehensive and effective comparison efforts with other high-resolution products (such as 
MAIAC products) need to be performed in future studies. 
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7 Tropical Belt Widening 
Observation and Implication 
from GNSS Radio Occultation 
Measurements 

Mohamed Darrag and Shuanggen Jin 

7.1 INTRODUCTION 

Numerous studies have indicated a widening of the tropics in observations, model simulations, and 
reanalysis. This expansion may lead to profound changes in the global climate system, even a minor 
widening of the tropical belt would have signifcant implications because the shift of the jet streams 
and subtropical dry zones poleward has direct impacts on weather and precipitation patterns. The 
widening of the tropical belt is largely considered to be a response to global warming caused by 
increased concentrations of greenhouse gases (GHGs) (Davis and Rosenlof, 2012; Davis and Birner, 
2013; Staten et al., 2018; Grise et al., 2019; Watt-Meyer et al., 2019; Meng et al., 2021; Pisoft et al., 
2021). The majority of previous research determined widening rates ranging from 0.25° to 3.0° 
latitude per decade, with statistical signifcance varying greatly depending on the metrics used to 
estimate the tropical edge latitude (TEL) and the data sets used to determine it. Furthermore, due to 
their different physics, the metrics used may respond differently to the force driving the widening 
(Davis and Rosenlof, 2012). 

In astronomy and cartography, the edges of the tropical belt are the Tropics of Cancer and 
Capricorn, at latitudes of ~23.5° north and south, where the sun is directly overhead at solstice. They 
are determined by the tilt of the earth’s axis of rotation relative to the planet’s orbital plane, and 
their location varies slowly, predictably, and very slightly by about 2.5° latitude over 40,000 years 
(Gnanadesikan and Stouffer, 2006). In climatology, tropics edges vary seasonally, interannually, 
and in response to climate forcing. They move poleward in the summer and equatorward in the 
winter (Davis and Birner, 2013). There are several indicators that defne the boundaries of the tropi-
cal belt. Generally, three main classes of metrics are employed to estimate the tropical belt borders: 
circulation-based metrics (e.g., based on the Hadley cells and the subtropical jets), temperature-
based metrics (e.g., based on tropopause characteristics), and surface climate metrics (e.g., based on 
precipitation and surface winds) (Waliser et al., 1999). Staten et al. (2018) and Adam et al. (2018) 
elaborate on the common metrics used for TEL determination. TELs estimated using various met-
rics do not always yield the same location. Their positions change much more rapidly and in unpre-
dictable ways than the astronomically defned tropics (Lee and Kim, 2003). 

In recent years, monitoring the tropopause has received increased attention for climate change 
studies. Many studies have shown that the tropopause is rising due to tropospheric warming caused 
by increased GHG emissions in the atmosphere (Davis and Rosenlof, 2012; Davis and Birner, 2013; 
Staten et al., 2018; Grise et al., 2019; Watt-Meyer et al., 2019 Meng et al., 2021; Pisoft et al., 2021). 
The tropopause characteristics are critical for understanding the troposphere-stratosphere exchange 
(Holton et al., 1995). In addition, the chemical, dynamical, and radiative connections between the 
troposphere and stratosphere are crucial to understanding and predicting climate change worldwide. 
Exchanges of water, mass, and gases between the troposphere and stratosphere occur through the 
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tropopause. Several studies have investigated the tropopause over the tropics using different data 
types and have revealed the problem of the TEL shift (Ao and Hajj, 2013; Tegtmeier et al., 2020; 
Kedzierski et al., 2020). Global navigation satellite system radio occultation (GNSS-RO) provided 
high-accuracy remote sensing observations of the thermal structure of the tropopause and was used 
to investigate the trend and variability of the tropopause (Son et al., 2011). Among the most out-
standing advantages of GNSS-RO are its high accuracy of 0.2–0.5 K in estimating temperature in 
the upper-troposphere lower-stratosphere (UTLS) region and its 200 m vertical resolution. These 
advantages make GNSS-RO especially appropriate to detect the possible widening of the tropical 
belt based on the height metrics of the tropopause (Kursinski et al., 1997; Ho et al., 2012). Using tro-
popause metrics for TEL determination has many advantages because it can be accurately estimated 
from remotely sensed temperature profles with suffcient vertical resolution, such as GNSS-RO 
profles (Davis and Birner, 2013; Seidel and Randel, 2006). 

Some of the earliest, unequivocal signs of climate change have been air and ocean warming, land 
thawing, and ice melting. In addition, recent studies are showing that the tropics are also chang-
ing. Several pieces of evidence show that over the past few decades, the tropical belt has expanded. 
This expansion may lead to profound changes in the global climate system (Seidel et al., 2007). 
According to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 
(AR4) (Meehl et al., 2007), increases in GHGs and other human-induced climate forcing would lead 
to warming of the troposphere, cooling of the stratosphere, a rise of the tropopause, weakening of 
tropical circulation patterns, poleward migration of midlatitude storm tracks, an increase in tropical 
precipitation, and other climatic changes. It is not obvious how these changes might relate to varia-
tions in the width of the tropical belt, and this question has received much attention. Several recent 
studies suggest that the tropics have been expanding over the past few decades, and this widening 
may continue into the future in association with anthropogenic climate change. The widening of the 
tropics could have far-reaching scientifc and societal consequences. The expansion of the tropical 
belt towards the poles is likely to bring even drier conditions to these densely populated areas, but it 
may also bring more moisture to other areas, resulting in shifts in precipitation patterns that affect 
natural ecosystems, agriculture, and water resources. 

The study of tropical belt widening is a challenging task due to the complexity and dynamics of 
the earth’s atmospheric system and the data limitations. These limitations are due to the low spatial 
resolution of radiosonde (RS) data, since it only covers land and its distribution is not symmetrical 
in both hemispheres. Low vertical resolution plagues both satellite remote sensing technologies and 
model analyses. Furthermore, reanalysis trends can be biased to refect changes in both the quality 
and quantity of the underlying data, and the expansion rates computed from different reanalyses 
were considerably different (Schmidt et al., 2004; Ao and Hajj, 2013). Nowadays, global navigation 
satellite systems (GNSS) have provided an exceptional opportunity to retrieve land surface and 
atmospheric parameters globally (e.g., Jin and Park, 2006; Jin and Zhang, 2016; Wu and Jin, 2014; 
Jin et al., 2011, 2017), particularly through space-borne GNSS-RO because it has long-term stability 
and works in all weather conditions, which make it a powerful tool for studying climate variability. 
The GNSS-RO technique has many advantages, such as uniform global coverage, a higher vertical 
resolution than any of the existing satellite temperature measurements available for the UTLS, long-
term stability, and the ability to work in all weather conditions unaffected by clouds, precipitation, 
or aerosols. In addition, it is vertically more fnely resolved than any of the existing satellite tem-
perature measurements available for the UTLS and now provides a unique data set, so GNSS-RO 
is well suited for this challenge. Moreover, it is a key component for a broad range of other studies, 
including equatorial waves, Kelvin waves, gravity waves, Rossby and mixed Rossby–gravity waves, 
and thermal tides (Bai et al., 2020; Scherllin-Pirscher et al., 2021). A number of studies confrmed 
the feasibility and excellent eligibility of GNSS-RO measurements for monitoring the atmosphere 
and for climate change detection (Foelsche et al., 2009; Steiner et al., 2011). 

In the previous studies, the problem of the tropical belt expansion was that the rates of expansion 
were different from one data type to another and from one calculation method to another. The rates 
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range from high to low, raising concerns about the accuracy and reliability of the various data sets 
and TEL computation methods. Hudson et al. (2006), based on atmospheric ozone concentrations, 
reported that the tropical region occupying the northern hemisphere (NH) grew at a rate of 1°/ 
decade. Using atmospheric temperature satellite-based microwave observations, Fu et al. (2006) 
reported tropical belt widening for the period 1979–2005. They estimated a net widening of about 
2° latitude. Based on RS and reanalysis data, Seidel and Randel (2007) reported an expansion of 
5° to 8° latitude during the period from 1979 to 2005. In addition, Hu and Fu (2007) found a wid-
ening of the tropical Hadley circulation system, and estimated its magnitude as 2° to 4.5° latitude 
during the period from 1979 to 2005. Ao and Hajj (2013) examined the possible expansion of the 
tropical belt due to climate change using GPS-RO data from 2002 to 2011. Their analysis revealed 
a statistically signifcant expansion trend of 1°/decade in the northern hemisphere (NH), but no 
signifcant trend in the southern hemisphere (SH). According to the review by Lucas et al. (2014), 
an assent of the observations suggests that the rate of this expansion since 1979 ranges between 0.5° 
and 1.0° latitude/decade in both hemispheres. The precise rates of tropical belt expansion and their 
hemispheric partitions remain signifcant unknowns. In research from Staten et al. (2018), research-
ers reviewed the possible causes and rates of observed and projected tropical belt expansion. After 
accounting for methodological differences, the tropical belt has expanded at a rate of about 0.5°/ 
decade since 1979. However, they reported that it is too early to detect robust anthropogenically 
induced widening imprints because of large internal variability. Allen and Kovilakam (2017) and 
Grise et al. (2019) stated that the spatial and temporal patterns of SST play a crucial role in driving 
the recent tropical belt expansion. Based on observations, numerical experiments, and multi-model 
simulations, Yang et al. (2020b) fnd that the tropical belt width closely follows the shift of oceanic 
midlatitude meridional temperature gradients (MMTG). According to Yang et al. (2020a, 2020b), 
the entire oceanic and atmospheric circulation is moving poleward. Yang et al. (2022) used an ide-
alized coupled aqua-planet model to explore the mechanism of the circulation shift. They fnd that 
ocean surface warming plays a signifcant role in driving the circulation shift. The expanding tropi-
cal warm water causes a poleward shift of the mid-latitude temperature gradient. 

The study of tropical belt widening is critical for understanding atmospheric variability, climate 
dynamics, and change. In this study, we used a group of methods to track atmospheric variability 
and TEL based on GNSS-RO data since 2001, attempting to provide solutions and accurate results 
for the studied atmospheric parameters worldwide, with a particular focus on the tropics. Within 
this study, we worked on flling the gaps and solving problems in the previous studies and also 
performed a long-term study of the tropics’ variability over time as indicators for global climate 
change. 

The main aims of this study are to monitor and investigate the tropics’ width and its implication 
for global climate change. Determination of the tropical belt widening and estimation of its trends 
and rates include the following parameters: 

a. Determination of global tropopause height and temperature Furthermore, determination of 
their spatial and temporal variations globally and across the study period 

b. Establishment of long-term time series for both lapse-rate tropopause (LRT) and cold-
point tropopause (CPT) 

c. Estimation of the TELs’ locations and estimation of the tropical belt widening rates 
d. Investigation of the behavior of tropical expansion spatially and temporally 
e. Study of the differences in the rate and behavior of the tropical belt widening between the 

northern and southern hemispheres 
f. Study of the trend and spatial-temporal variability of many meteorological parameters, which 

include carbon dioxide (CO2) and methane (CH4), as important drivers of global warming 
and tropical belt variation. In addition, total column ozone (TCO) can provide information 
about the tropopause and UTLS status. The changes in surface temperature, precipitation, 
and drought that may occur as a response to tropical expansion are broadly examined. 
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7.2  GNSS-RO THEORY AND TROPOPAUSE 

7.2.1 gnss-ro theory 

A GNSS-RO event happens when a GNSS satellite sets behind or goes up from behind the horizon. 
Its signals are obscured by the earth from the point of view of the low earth orbiting (LEO) satellite 
receiver. During an RO event, radio signals transmitted from GNSS satellites and received onboard 
a LEO satellite are infuenced by the refractivity of the atmosphere, resulting in excess propagation 
and bending of the signals (Figure 7.1). The atmosphere excess phase (AEP) is the main observable 
which can be calculated with millimeters accuracy (Wickert et al., 2001a). For instance, the AEP 
estimate is the base to retrieve the bending angle, refractivity, and temperature profles (Wickert 
et al., 2004; Xia et al., 2017). The RO technique provides high-quality global observations for the 
ionosphere, stratosphere, and troposphere. These observations have a high impact on weather fore-
casting and climate monitoring research.         

The GNSS-RO technique was frst performed within the US GPS/METeorology experiment 
for the period from 1995 to 1997 (Kursinski et al., 1997). Also, it has been continuously applied 
aboard various LEO satellite missions since 2001. These missions are Challenging Mini-satellite 
Payload (CHAMP) (Wickert et  al., 2004;  Wickert et  al., 2001b); Gravity Recovery and Climate 
Experiment (GRACE) and Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) 
(Wickert et  al., 2009); Scientifc Application Satellite-C/D (SAC-C/D) (Hajj et  al., 2004); 
TerraSAR-X; TanDEM-X; Constellation Observing System for Meteorology, Ionosphere, and 
Climate (COSMIC/COSMIC-2, also known as FORMOSAT-3/FORMOSAT-7); the Meteorological 
Operational Satellite Programme-A/B/C (MetOp-A/B/C); FengYun-3C/D (FY-3C/D) (Sun, 
2019); Communications/Navigation Outage Forecasting System (C/NOFS); Korea Multi-Purpose 
Satellite-5 (KOMPSAT-5); the Indian Space Research Organization Spacecraft Ocean Satellite-2 
(OceanSat-2); and Spanish PAZ (peace in Spanish). A few missions were retired, such as COSMIC-1, 
GRACE, CHAMP, and SAC-C/D, and some missions were completed by the end of 2020, such 
as FY-3C, TanDEM-X/TerraSAR-X, KOMPSAT-5, OceanSat-2, and C/NOFS. More missions like 
MetOp Second Generation (MetOp-SG), FengYun-3E/F/G/H (FY-3E/F/G/H), TerraSAR-X Next 
Generation (TSX-NG), Jason Continuity of Service-A/B (JASON-CS-A/B, also known as Sentinel 
6A/6B), and Meteor-MP N1/N2 are planned for the future. The future missions will provide around 
14,700 RO profles daily by 2025 (Jin et al., 2013; Oscar, 2020). 

The processing of GNSS RO observations can be illustrated by the following chart (Figure 7.2). 
Where GNSS satellites transmit dual frequency signals at two wavelengths (L1 and L2), these 
signals are received onboard the LEO satellites. Since the main observable for GNSS-RO cal-
culations is the AEP, it should be calculated accurately by using precise orbit information for 

FIGURE 7.1 GNSS-RO principle. 
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FIGURE 7.2 Flow chart for GNSS-RO data processing steps. 

GNSS and LEO satellites. Also, the clock errors of the GNSS and LEO satellites should be 
removed by the double differencing method using an additional non-occulted GNSS satellite as 
a reference (Hajj et al., 2002). Then, to get the vertical atmosphere profles, the frst step is the 
derivation of atmospheric bending angles that are obtained from the AEP time derivation using 
the Doppler shift equation (Gorbunov et al., 1996). Ionospheric effects are eliminated by a linear 
combination of bending angles derived from GNSS frequencies, assuming spherical symmetry 
of the atmosphere (Steiner et al., 1999). The next step is retrieving the atmospheric refraction 
index (n) from bending angle profles by the inverse Able transform, as shown in equation (1) 
( Fjeldbo et al., 1971 ). 

æ 1 ¥ a ( )x ö 
n r( ) =expç dx ÷ ( 7.1 ) 0 ç p òa 2 2 ÷

è x - a ø

 Where: 
• α (bending angle) 
• r0 (for the given point of the closest approach of the signal path to the earth’s surface) 
• a (impact parameter) 
• x (convenient variable [x=nr] [refractive index * radius]) 

The atmospheric refractivity (N = (n−1) ∙ 106) is related to pressure, temperature, and water vapor 
pressure using equation (2) ( Smith and Weintraub, 1953 ) 

p PwN = 77 6. + . * ( 7.2 ) 3  73 105 

T T2 

Where: P (air pressure in mbar), T (temperature in K), and pw (water vapor pressure in mbar). 
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As known, air refractivity (N) is divided into dry refractivity (Nd) caused by dry air and wet 
refractivity (Nw) caused by wet air. Using dry refractivity, the dry temperature and pressure profles 
are given from the hydrostatic equation and the equation of state for an ideal gas (Kursinski et al., 
1997). Moreover, the water vapor profles are derived from the wet refractivity profles using tem-
perature profles from meteorological analyses, like those of the ECMWF (European Centre for 
Medium-Range Weather Forecasts), in an iterative way (Gorbunov et al., 1993). To summarize, the 
products of RO data processing are atmospheric profles (temperature and water vapor) with a height 
resolution of 200 to 1,000 m, a wide height coverage from the earth’s surface to 60 km, a nearly 
uniform geographical distribution, and a high data rate (150–200/day/satellite). 

The GNSS-RO technique is critical for climate research because it allows for the generation 
of climate benchmark data that can be used as a reference data set for other climate observa-
tions (Leroy et al., 2006). RO observations are convenient for establishing the stable, long-term 
record needed for climate monitoring (Scherllin-Pirscher et  al., 2012). In addition, GNSS-RO 
provides accurate input for numerical weather prediction and is a source of data for climate 
related research (Zus et al., 2014). Many studies comparing the RO analysis results of different 
processing centers (DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR 
Boulder, and WEGC Graz) show excellent agreement in general, independent of processing algo-
rithms for temperature data derivation and included satellite missions (Steiner et al., 2013). The 
RO technique is also capable of detecting irregularities in electron density in the ionospheric E 
region (Hocke and Tsuda, 2004). Furthermore, it enables global investigation of sporadic E layer 
occurrence and intensity (Arras and Wickert, 2018). Moreover, RO temperature profles are used 
to derive horizontal and vertical GW parameters in the atmosphere (Schmidt et  al., 2016), as 
small-scale fuctuations of dry temperature profles can be interpreted as GWs (Marquardt and 
Healy, 2005). 

7.2.2 tropopause deFinitions 

The tropopause signifes the transition between the troposphere and the stratosphere. which are 
chemically and dynamically distinct regions (Marshall and Plumb 2008). There are several dif-
ferent defnitions of the tropopause, depending on which atmospheric parameters are investigated. 
This allows for the selection of the defnition that is best suited for the area, problem, or situation 
being analyzed. The most common defnitions are the thermal tropopause, dynamical tropopause, 
and chemical tropopause. 

7.2.2.1 The Thermal Tropopause 
To defne the thermal tropopause, either the lapse rate of the temperature profle or its minimum 
temperature is used, yielding the LRT or the CPT, respectively. The lapse rate defnition is the old-
est and most commonly used one. It is defned by the World Meteorological Organization (WMO) 
(WMO, 1957) as follows: 

a) “The frst tropopause is defned as the lowest level at which the lapse rate decreases to 
2 °C km-1 or less, provided also the average lapse rate between this level and all higher 
levels within 2 km does not exceed 2 °C km-1.” 

b) “If above the frst tropopause the average lapse rate between any level and all higher levels 
within 1 km exceeds 3 °C km−1, then a second tropopause is defned by the same criterion 
as under (a). This tropopause may be either within or above the 1 km layer.” 

dT T -Ti+1 iG ( ) = - = (7.3) zi d z z - zi+1 i 

where: G is the lapse rate, T and z are the temperatures and heights above mean sea level, respectively. 
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FIGURE 7.3 KOMPSAT5 profle on January 1, 2021 at 00:33; horizontal bars signify LRT (red) and 
CPT (blue). 

The lapse rate defnition is very suitable for atmospheric profles with a high vertical resolution, 
such as RS or RO data (Figure 7.3). In fact, the vertical resolution of the levels mentioned in the 
WMO defnition is of the order of 1 km (Birner, 2003), so when using this defnition, oversampling 
may slightly infuence the result. Because implementation of this defnition is rather easy, it is 
widely used. Anyway, its physical relevance may be limited. For the tropics, Highwood and Hoskins 
(1998) suggest a defnition that refects the strength of convective processes, which infuence tropo-
sphere-stratosphere exchange. Hence, the cold point defnition is popular in the tropics. It is defned 
as the frst local minimum of the temperature profle above the LRT. Outside the tropics, the CPT 
can be excessively high, particularly in the winter hemispheric high latitudes. 

7.2.2.2 The Dynamical Tropopause 
The dynamical tropopause was introduced by Reed (1955). It can separate the air masses based on 
different compositions or features. So, it effectively divides tropospheric air from stratospheric air. 
The potential vorticity (PV) dynamical tropopause defnition, a common defnition for synoptic 
scale events or climatological studies in the extratropics, uses a subjectively chosen threshold value 
to determine the tropopause height (Gettelman et al., 2011). The defnition requires three-dimen-
sional temperature and wind data, making it effective at determining the tropopause height in global 
models. The defnition uses both static stability and vorticity (Gettelman et al., 2011; Kunz et al., 
2011). PV is a conserved quantity for adiabatically frictionless fow (Holton, 2013). Similarly to the 
Brunt-Väisälä frequency, PV has an abrupt jump in values at the tropopause. This sharp change pro-
vides a useful dynamical defnition for areas or model runs dominated by environmental vorticity. 
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7.2.2.3 The Chemical Tropopause 
The chemical tropopause uses different concentrations of trace gases for different altitudes to locate 
the chemical transition layer between the troposphere and the stratosphere, also known as strato-
spheric tracer tropopause. It is defned using a trace gas in the stratosphere (Pan et al., 2004; Zahn 
et al., 2004). The ozone mixing ratio is commonly used for the chemical tropopause, but determin-
ing the proper threshold value to use can be challenging. Various studies like Zahn et al. (2004) 
utilize multiple trace gases with sources in both the troposphere and stratosphere for the tropopause 
determination. In their study, ozone, which has higher concentrations in the stratosphere, and car-
bon monoxide, which has higher concentrations in the troposphere, were used to determine the 
tropopause height from in situ measurements. In the vicinity of the chemical tropopause, sharp 
changes in concentrations of trace gases occur. 

7.2.3 tel deterMination Metrics 

There are several metrics that are used for the determination of the TEL. Defning the TEL is a 
matter of choosing a point within the transition zone from the tropics to the extra tropics that is 
representative for the whole. The methods for TEL determination can be subjective or objective. In 
addition, there is no defnition for the TEL that can be universally applicable across all data sets; 
each of them sees the transition zone in a different way because the responses of different metrics 
show different sensitivities. In this section, most of the commonly used TEL metrics are presented 
(Lucas et al., 2014). 

7.2.3.1 Tropopause Based Metrics 
In this section, four LRT height metrics used for identifying the TEL are described. 

a) The frst diagnosing metric based on the LRT height describe the TEL as the latitude at 
which the tropopause height falls 1.5 km under the average tropopause height between 
15°S and 15°N (Davis and Rosenlof, 2012). 

b) The second metric signifes the TEL as the latitude at which tropopause height is greater 
than 15 km for x days per year (where x = 100, 200, or 300). The 15-km tropopause height 
threshold is equivalent to a pressure threshold of ~120 hPa. According to Lu et al. (2009) 
x = 200 days/year. This TEL defnition is sensitive to the threshold of LRT height and num-
ber of days per year. Although some studies use this method to defne annual tropopause, 
this metric can also be applied for a shorter time average like a season (Seidel and Randel, 
2007; Davis and Rosenlof, 2012). 

c) The third metric defnes the TEL as the latitude of the maximum value of the tropo-
pause meridional gradient. The meridional drop in tropopause height from its tropi-
cal to extratropical value undergoes a maximum rate of change in the vicinity of the 
subtropical jet; this region is often referred to as the tropopause break (Davis and 
Rosenlof, 2012). 

d) The fourth TEL defning metric is the latitude of the maximum dry bulk static stability 
(Davis and Birner, 2013), which represents the potential temperature difference between 
the tropopause and the surface. 

7.2.3.2 Stream Function-Based Metric 
The mean-meridional stream function measures the meridional overturning circulation at a par-
ticular latitude and represents the most natural framework through which to study the Hadley cell 
and the width of the tropical belt. It is calculated as the vertical integral of the mass weighted 
zonal mean meridional wind between the top of the atmosphere and each pressure level. The 
edge of the tropics is generally taken as the latitude of the subtropical zero isopleth in the mid-
troposphere (Holton, 1994). Based on the mean stream function the TEL has been defned as the 
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latitude at which the mean stream function is 500 hPa (Lu et al., 2007; Frierson et al., 2007), 600 
hPa to 400 hPa (Hu and Fu, 2007; Johanson and Fu, 2009), and 700 hPa to 400 hPa (Stachnik and 
Schumacher, 2011). 

2p a cos f p
y f( , p) = 

( ) [ ]v p¶ (7.4) 
g ò0 

where: Y (ϕ, p) is the mean-meridional stream function at pressure level p and latitude ϕ, g = 9.81 m/s 
is the acceleration due to gravity, a = 6371 km is the earth’s mean radius, and [v] is the monthly-
mean, zonal-mean meridional wind. 

7.2.3.3 Jet Stream Based Metric 
The jet stream position is another metric that is used to examine tropical belt expansion. The sub-
tropical jet is strongly linked to the Hadley circulation in the infrared (Held and Hou, 1980). Based 
on the subtropical jet, the TEL is defned as the latitude of the most equatorward local maximum 
in the zonal-mean zonal wind feld in UTLS in each hemisphere, capturing the meridional position 
of the subtropical jet core (Strong and Davis, 2006). According to Fu et al. (2006), the subtropical 
jet stream can be inferred from the latitudinal tropospheric temperature gradient and thermal wind 
balance or from the lower stratospheric temperature change with latitude. In addition, following 
Archer and Caldeira (2008), the subtropical jet stream is calculated from the location of maximum 
winds aloft. Alternatively, the surface wind can be subtracted from the winds aloft to separate the 
subtropical jet stream from the eddy-driven jet. 

7.2.3.4 Surface Based Metric 
There are many surface-based metrics that used to defne the TEL such as the following: 

a) Precipitation can be used as an independent metric to represent TEL locations. Many 
studies, which rely upon surface-based variables to investigate tropical widening, used 
the Global Precipitation Climatology Project (GPCP) monthly data set to examine 
shifts in the positions and boundaries of the subtropical dry zones (Hu et al., 2010; 
Zhou et  al., 2011; Allen et  al., 2012b). Based on the GPCP, the TEL is defned as 
the latitude of the precipitation minimum, or 2.4 mm/day. Moreover, the TEL can be 
defned as the latitude of the zero-crossing of precipitation minus evaporation (Zhou 
et al., 2011). 

b) The global position of the subtropical ridge derived from sea level pressure data has also 
been used to signify the TEL (Hu et al., 2010) 

7.2.3.5 Other Metrics 
a) The outgoing longwave radiation (OLR) can be used to defne the TEL. According to Davis 

and Rosenlof (2012), the TEL is the latitude at which the OLR is 20 Wm-2 below the sub-
tropical maximum. In addition, based on the OLR, the TEL can be defned as the location 
at which the OLR drops to a threshold of 250 Wm-2 on the poleward side of the subtropical 
maximum in each hemisphere (Hu and Fu, 2007). 

b) The total column ozone (TCO) pattern, which is inversely proportional to tropopause 
height, can give an indication of the tropical belt width. The TCO amount varies with 
latitude, in part due to the difference in tropopause height between the tropics and midlati-
tudes. This dependency of TCO on latitude has been used to identify the TEL and to com-
pute their variations over time. The TCO is used to determine the geographic coordinates 
of the fronts by locating the position of the sharp increase in the total ozone amount due 
to the decrease in the tropopause height associated with the fronts (Hudson et al., 2003; 
Hudson et al., 2006; Hudson, 2012; Davis et al., 2018). 
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7.3 DATA AND METHODOLOGY 

7.3.1 data sets 

In this study we employed the following data sets. 

7.3.1.1 GNSS RO 
The main data used in this study is GNSS-RO atmospheric profle data from 12 LEO missions from 
June 2001–November 2020. The data (CDAAC, 2021) is available at the COSMIC Data Analysis 
and Archive Center (CDAAC). The GNSS-RO data availability and its time span are shown in 
Figure 7.4. 

7.3.1.2 ERA5 Temperature Data on Pressure Levels 
ERA5 is the ffth generation of the ECMWF reanalysis of the global climate and weather. 
Monthly averaged temperature data on pressure levels from ERA5, which provides global cover-
age for the period from June 2001–November 2020, are used to calculate the LRT tropopause 
height and temperature. The horizontal resolution of the ERA5 data is 0.25° ´ 0.25°, while the 
vertical coverage ranges from 1,000 hPa to 1 hPa, with a vertical resolution of 37 pressure levels 
(Hersbach et al., 2019a). 

7.3.1.3 AIRS LRT Height and Temperature 
The Atmospheric Infrared Sounder (AIRS) is the spectrometer onboard the second Earth Observing 
System (EOS) polar-orbiting platform, Aqua. In combination with the Advanced Microwave 
Sounding Unit (AMSU), AIRS constitutes an innovative atmospheric sounding instrument with 
infrared and microwave sensors. LRT height and temperature data provided by AIRS (AIRX3STM 
v7.0) are provided monthly and have global coverage, with a horizontal resolution of 1° ´ 1° 
(Aumann et al., 2003; AIRS, 2019a). In this study, we use data for the period from September 2002 
to November 2020. The data is available at (AIRS, 2019a). 

7.3.1.4 Total Column Ozone (TCO) 
The Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) pro-
vides TCO at a global scale, monthly, and has a spatial resolution of 0.5° ´ 0.625°. In this work, we 
use data from June 2001 to November 2020. The data is to be compared with the LRT height from 
GNSS-RO. In addition, TCO can provide information about the tropics behavior and can help in 
emphasizing the GNSS-RO outputs (GMAO, 2015). 

FIGURE 7.4 GNSS-RO data used in this study. 
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7.3.1.5 Carbon Dioxide (CO2) 
CarbonTracker is a CO2 measurement and modeling system developed by NOAA Earth System 
Research Laboratories (ESRL) to keep track of CO2 sources and sinks throughout the world. 
Monthly column average CO2 data with global coverage from June 2001 to March 2019 is used in 
this study (Jacobson et al., 2020). The data has a spatial resolution of 2° x 3°. Here we use this data 
to study the behavior and trend of CO2. This is the most important GHG and the largest forcing 
component of climate change. 

7.3.1.6 Methane (CH4) 
AIRS provides monthly measurements of CH4 at 24 pressure levels with a spatial resolution of 1° 
x 1°. (AIRS, 2019b). We use data from September 2002 to November 2020. As one of the primary 
GHGs driving long-term climate change, CH4 plays a critical role in global warming. 

7.3.1.7 Surface Temperature 
Global monthly average surface temperature data from ERA5 reanalysis has a horizontal reso-
lution of 0.25° x 0.25° (Hersbach et al., 2019b). In this study, we utilize data from June 2001 to 
November 2020. The purpose of using this data is to study the impacts of the variability in the trop-
ics on global climatological parameters. 

7.3.1.8 Global Precipitation Climatology Project (GPCP) 
Monthly average precipitation data is available from the Global Precipitation Climatology Project 
(GPCP) at a horizontal resolution of 2.5° x 2.5° (Adler et al., 2016). We use data from June 2001 
to November 2020. The purpose of this data is to investigate the relation between the tropical belt 
width and the corresponding precipitation pattern. 

7.3.1.9 Precipitation and Potential Evapotranspiration (PET) 
Global monthly average precipitation and PET at a horizontal resolution of 0.5° x 0.5° are avail-
able from the Climatic Research Unit (CRU) Time-Series (TS). This data is employed to compute 
the  Standardized Precipitation Evapotranspiration Index (SPEI), meteorological drought index. 
We use data ranging from June 2001–November 2020. The data is available at Harris et al. (2020). 
The SPEI drought index was calculated following the indications of Vicente-Serrano et al. (2010) 
and Beguería et al. (2013). 

7.3.2 Methodology 

In this study, atmospheric profles from 12 GNSS-RO missions are used for the frst time together. 
Before the analysis, we compared the different missions’ profles to investigate the consistency 
between data from different sources at CDAAC web. The profle pairs are spaced 3 hours apart 
and separated by 230 kilometers. After that, the GNSS-RO temperature profles with uniform cov-
erage worldwide were used to calculate the tropopause height and the tropopause temperature, 
applying both tropopause defnitions (LRT and CPT). According to the defnition of the World 
Meteorological Organization (WMO), “The thermal LRT is defned as the lowest level at which the 
lapse rate decreases to 2°C/km or less, provided also that the average lapse rate between this level 
and all higher levels within 2 km does not exceed 2°C/km” (WMO, 1957). While the CPT is indi-
cated by the minimum temperature in a vertical profle of temperature (Holton et al., 1995), Here, 
in order to avoid outliers, the tropopause height values of both defnitions are limited to 6–20 km. 
The results of both the LRT and CPT defnitions are then gridded into 5° x 5° grids. In addition, 
the spatial and temporal variability of the studied parameters are widely investigated using empiri-
cal orthogonal function (EOF) technique, also known as the principal component analysis (PCA) 
(Calabia and Jin, 2016; Calabia and Jin, 2020). This technique is commonly applied for climate 
variables’ spatial and temporal analysis. It provides the spatial patterns of variability and expansion 
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coeffcient time series for a single geophysical variable in addition to the contribution of each mode 
of variability to the total variance. Because the variability of the studied parameters is mostly driven 
by the annual variation, the frst PCA component is the only one considered for each variable. In 
addition, the seasonal variation of tropopause parameters is widely examined. 

The locations of TEL are estimated from the monthly zonal average of LRT height derived from 
GNSS-RO, ERA5, and AIRS data. The ERA5 and AIRS tropopause parameters are resampled at 
the same resolution as GNSS-RO to avoid uncertainty caused by different resolution data. The zonal 
average LRT height is spline interpolated as a function of latitude (Ao and Hajj, 2013), and the TEL is 
determined at each hemisphere independently using two tropopause height metrics. The frst method 
relies on a subjective criterion; according to the frst method, TEL is defned as the latitude at which 
the LRT height falls 1.5 km below the tropical average (15°S–15°N) LRT height (Davis and Rosenlof, 
2012). The second method is an objective criterion in which the TEL is defned as the latitude of the 
maximum LRT height meridional poleward gradient (Davis and Rosenlof, 2012). Furthermore, the 
decadal rate of expansion and/or contraction of the tropical belt is estimated independently for each 
hemisphere using both calculation methods. In addition, the trend and spatial-temporal variabil-
ity of CO2 and CH4, as important drivers of global warming and TEL variability, are investigated. 
Furthermore, the trend and spatial-temporal pattern of TCO that give information about the tropical 
belt width are investigated. TCO has a high negative correlation with LRT height, and it is highly 
indicative of the positions of the TELs. Finally, we broadly examine the surface temperature, which 
is a proposed driver for the tropical belt expansion. Moreover, we deeply investigated the trends and 
spatial-temporal pattern of precipitation and the meteorological SPEI drought index as meteorologi-
cal parameters that may have changed behavior as a response to tropical expansion. 

7.4 RESULTS AND DISCUSSION 

7.4.1 assessMent oF gnss-ro teMperature proFiles 

In several previous studies, multiple GNSS-RO missions were utilized together for the purpose of 
obtaining high spatial resolution. In addition, the assessment of using different GNSS-RO missions 
together showed a high level of consistency (Hajj et al., 2004; Li et al., 2017; Tegtmeier et al., 2020; 
Xian et  al., 2021). In our study, the atmospheric profles from all used GNSS-RO missions are 
compared together to signify the high level of consistency and compatibility between RO missions 
available on the CDAAC web, as well as the ability to merge them together in our study as a single 
data set. COSMIC mission profles are used as a fxed member in the intercomparison of all utilized 
RO missions since it is the most abundant in terms of profle density and its time span overlaps with 
all other missions. The results of the conducted intercomparison show high agreement and consis-
tency between the profles of the collocated pairs (Figure 7.5). Table 7.1 demonstrates the results of 
the collocated GNSS profle pairs. The correlation coeffcient between the collocated profle pairs 
ranges from 0.97 to 0.99, and the temperature mean difference ranges from 0.1 to 0.5 K. 

7.4.2 tropopause characteristics FroM gnss-ro 

Figure 7.6 depicts the global GNSS LRT and CPT parameters from June 2001 to November 2020. 
As shown in Figure 7.6, the CPT height is always greater than the LRT height. The average distance 
between them is approximately 2.62 km, and there is a correlation of approximately 0.66 between 
LRT and CPT height. Previous studies have reported that the average CPT height is between 0.5 
and 1 km higher than the LRT average (Munchak and Pan, 2014). The LRT temperature is higher 
than the CPT temperature. The mean difference between them is 4.02 K, and the correlation coef-
fcient between them is 0.61. Our results are consistent with previous studies that displayed a global 
increase in the tropopause height from radiosonde observations (Seidel and Randel, 2006) and 
reanalysis (Santer et al., 2004). 
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FIGURE 7.5 Intercomparison of collocated GNSS profle pairs. 

TABLE 7.1 
Intercomparison of Collocated GNSS Profle Pairs 
Mission Correlation Coeffcient Mean Difference (K) 

(a) COSMIC—CHAMP 0.99 0.5 

(b) COSMIC—SAC-C 0.99 0.2 

(c) COSMIC—C/NOFS 0.99 0.32 

(d) COSMIC—GRACE 0.99 0.1 

(e) COSMIC—MetOp-A 0.99 0.28 

(f) COSMIC—TerraSAR-X 0.98 0.22 

(g) COSMIC—KOMPSAT5 0.97 0.13 

(h) COSMIC—MetOp-B 0.99 0.14 

(i) COSMIC—MetOp-C 0.99 0.47 

(j) COSMIC—PAZ 0.98 0.33 

(k) COSMIC—TanDem-X 0.99 0.47 
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FIGURE 7.6 The LRT and CPT (a) height and (b) temperature is shown from 2001 to 2020. 

Our analysis shows a global increasing trend of LRT height of 36 m/decade since 2001, and this 
is in good agreement with that of Schmidt et al. (2008) which showed an upward trend of global 
LRT height of 39–66 m/decade. The LRT temperature shows an increase of 0.09 K/decade. For the 
LRT defnition, the correlation coeffcient between the LRT height and temperature is -0.78. In the 
case of the CPT defnition, the global trend of CPT height has increased by 60 m/decade since 2001, 
but that of CPT temperature has decreased by 0.09 K/decade. The correlation coeffcient between 
the CPT height and temperature is -0.82. 

7.4.3 coMparison Between gnss, era5, and airs 

In this study, TEL in each hemisphere is estimated from the monthly zonal average tropopause 
height retrieved from the LRT defnition. This is done because the LRT represents the location of 
the point of thermal transition between the troposphere and the stratosphere. Furthermore, it reacts 
to both tropospheric and stratospheric temperature changes. Many studies (Seidel and Randel, 
2006; Santer et al., 2004) have shown that LRT height is a good climate change indicator. Figure 7.7 
shows the LRT height and temperature values derived from GNSS, ERA5, and AIRS. In general, 
AIRS shows the highest values of LRT height, while GNSS shows the lowest values. The trends 
show that ERA5 data has the highest increasing rate of LRT height, at 48 m/decade since June 2001. 
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FIGURE 7.7 GNSS, ERA5, and AIRS (a) LRT height and (b) LRT temperature. 

In contrast, AIRS has the lowest rates for LRT height, showing an increase of 12 m/decade since 
September 2002. For the LRT temperature, ERA5 shows the highest values, while AIRS shows the 
lowest values. ERA5 has the highest increasing rate of the LRT temperature of about 0.18°C/decade. 
In contrast, AIRS has the lowest upward trend of the LRT temperature of about 0.072°C/decade. 

The zonal mean of LRT height for the 3 data sets during January, April, July, and October of 
2008 is shown in Figure 7.8. In January 2008, the high LRT covered higher latitudes in the SH than 
in the NH. The opposite occurs in July. In April 2008, the high LRT covered roughly the same area 
in both hemispheres. In October, the area covered with high tropopause in NH is larger than that 
of the SH, but not as wide as the coverage in July. This suggests that the warmer the air, the wider 
the area covered by the high tropopause. As stated in Section 3, the TEL at NH and SH have been 
estimated using two tropopause height metrics. The results are discussed in detail in the following. 

7.4.3.1 Subjective Criterion for TEL 
According to the subjective criterion (Davis and Rosenlof, 2012), the TEL in each hemisphere is 
the latitude at which the tropopause height is 1.5 km below the tropical average tropopause height 
(15°S–15°N). As shown in Figure  7.9 and Table  7.2, based on GNSS data, the tropical belt has 
expanded 0.41°/decade in the NH and 0.08°/decade in the SH since 2001. Using GNSS-RO data, the 
tropical belt expansion trends in NH and SH agree with the results of Ao and Hajj (2013). According 
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FIGURE 7.8 Monthly zonal average LRT height from GNSS, ERA5, and AIRS. 

FIGURE 7.9 TEL using the subjective criterion, (a) NH and (b) SH. 
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TABLE 7.2 
Tropical Belt Expansion and Contraction Rates Based on the Subjective Criterion 
Source Duration NH SH 

GNSS June 2001–November 2020 0.41 ± 0.09 0.08 ± 0.04 

ERA5 June 2001–November 2020 –0.01 ± 0.1 –0.04 ± 0.05 

AIRS September 2002–November 2020 0.34 ± 0.11 –0.48 ± 0.05 

to Meng et al. (2021), the highest trend of LRT height is covering the latitudinal band 30°N to 40°N 
and this is possibly caused by the tropical widening and subtropical jet poleward shift over the past 
four decades (Staten et al., 2018), and this corresponds with our study fndings. In the case of ERA5, 
there is no signifcant expansion or contraction in both hemispheres, while AIRS expands by about 
0.34°/decade at the NH and contracts by about -0.48°/decade at the SH. 

7.4.3.2 Objective Criterion for TEL 
According to the objective criterion (Davis and Rosenlof, 2012), TEL in each hemisphere is the 
latitude of the maximum poleward gradient of tropopause height. As shown in Figure  7.10 and 
Table 7.3, the tropical belt based on GNSS has expanded about 0.13°/decade in the NH since 2001, 
but there has been no signifcant expansion or contraction in the SH. In the case of ERA5, there is 
no signifcant trend in NH, while SH has a minor contraction of approximately -0.08°/decade. AIRS 

FIGURE 7.10 TEL using the objective criterion, (a) NH and (b) SH. 
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TABLE 7.3 
Tropical Belt Expansion and Contraction Rates Based on the Objective Criterion 
Source Duration NH SH 

GNSS June 2001–November 2020 0.13 ± 0.1 –0.03 

ERA5 June 2001–November 2020 –0.06 ± 0.1 –0.08 

AIRS September 2002–November 2020 0.13 ± 0.04 –0.37 

± 0.06 

± 0.06 

± 0.06 

has an expansion of 0.13°/decade in NH and a strong contraction in SH of -0.37°/decade. It is clear 
from these results that the rates of expansion and contraction using the objective criterion are less 
than those using the subjective criterion. In the case of the objective method, TEL are more pole-
ward than in the case of the subjective method. 

7.4.4 spatial and teMporal VariaBility oF lrt 

In this section, the GNSS LRT height and temperature between 50°N and 50°S are investigated 
(Figure 7.11). In the NH, the LRT height has increased by about 48 m/decade since 2001, and this 
is consistent with the results of Meng et al. (2021), which show an increase in LRT height of around 
44.4 m/decade over 20°N to 80°N for the period from 2001 to 2020. In contrast, LRT height in the 
SH shows a slight decrease of -2.4 m/decade. Regarding LRT temperature, it has increased about 
0.21 K/decade in NH and 0.34 K/decade in SH. Both hemispheres’ LRT temperature time series 
show increasing rates higher than the global one (0.09 K/decade). Figure 7.11 also shows the temporal 

FIGURE 7.11 GNSS-RO based LRT height (left) and temperature (right). In (a) temporal time series (b) 
temporal variability given by PCA1, and (c) spatial variability map given by PCA1. 
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and spatial variability given by the frst PCA. The temporal variability for LRT height explains 
22.79% of the total variance. For the LRT temperature, PCA1 describes 13.47% of the total variabil-
ity. These values are relatively small, showing that the variability spreads along lower degree PCA 
modes. We can clearly see the annual force. The spatial variability shows similar patterns for LRT 
height and temperature. The signal at the NH is stronger and wider than that at the SH. 

7.4.5 seasonal Variation oF lrt height and teMperature 

Tropopause height and temperature, calculated based on multi-mission GNSS data, have a clear 
seasonal variation. Figure  7.12 depicts the LRT height monthly averaged over the period from 
June 2001–November 2020 in both hemispheres. As can be seen, the LRT height median in NH 
gradually increases from January to August, then decreases. In SH, the median LRT height is 
maximum in January, then falls until June, after that rises until August, then falls again. Figure 7.12 
depicts the minimum range of LRT height in both hemispheres in July and August. In the NH, it 
ranges from 8.48 to 17 km in July and from 8.28 to 16.82 km in August. In the case of the SH, LRT 
height ranges from 8.58 to 16.08 km in July and from 8.56 to 16.1 km in August. The distribution 
of the LRT height values shows three main modalities: the frst is the high values that represent the 
tropics; the second is the intermediate values that represent the transitional zone from the tropics, 
where tropopause is high, to midlatitudes and poles, where tropopause is low; and the third is the 
low values that mainly represent the high latitudes. 

Figure 7.13 depicts the LRT temperature averaged over the period from June 2001–November 2020 
in both hemispheres. As shown, in the NH the LRT temperature, like the LRT height, increases 
gradually from January to August, then decreases. In contrast, in the SH, the median LRT tempera-
ture peaks in January and then falls until August, then it rises again. In the NH, the distribution of 
the LRT temperature values shows three main modalities: the frst are the high values that represent 
the low latitudes; the second are the intermediate values that represent the transitional zone from 
the tropics, where the tropopause temperature is low, to the midlatitudes and poles, where the tropo-
pause temperature is high; and the third are the low LRT temperature values that mainly represent 

FIGURE 7.12 Monthly GNSS LRT height in NH and SH averaged over the period from 2001 to 2020. 
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FIGURE 7.13 Monthly GNSS LRT temperature in the NH and the SH averaged over the period from 2001 
to 2020. 

FIGURE 7.14 Seasonal GNSS LRT height in the NH and the SH averaged over the period from 2001 to 2020. 

the tropics. In the case of the SH, LRT temperature values show three main modalities for most of 
the year, but there are more modalities in June, October, and November. In both hemispheres, the 
LRT temperature value distribution is inversely proportional to the LRT height value distribution. 

Figures 7.14 and 7.15 signify the seasonal variation of both LRT height and temperature, respec-
tively. In the NH, the LRT height median is maximum in JJA about 11.77 km and minimum in 
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FIGURE 7.15 Seasonally GNSS LRT temperature in the NH and the SH averaged over the period from 2001 
to 2020. 

DJF about 9.78 km, while in the SH, the LRT height median is maximum in DJF about 11 km and 
minimum in SON about 10.22 km. As is clear in Figure 7.14, in both hemispheres the density of 
high LRT height values is less than that of low LRT height, and that is because the high tropopause 
only covers the tropical zone. The intermediate zone in JJA of the NH is wide, and this indicates a 
high tropopause in the transitional zone between the tropics and extratropics that is caused by the 
high surface and air temperatures caused by warming in JJA. While the NH intermediate zone in 
DJF appears to be so narrow, this is due to a cold atmosphere and a steep transition from the tropics 
to the extratropics. In contrast, in the SH, the intermediate zone between high and low LRT height 
modals is wide in DJF and very narrow in JJA. 

As shown in Figure 7.15, the median LRT temperature in the NH is highest in JJA at around 
219 K and lowest in DJF at around 212.8 K. In the SH, DJF has the highest LRT temperature median 
at about 218.21 K and JJA has the lowest LRT temperature median at about 203.81 K. In general, 
the NH LRT temperature values show 3 main modals: high, intermediate, and low; but the SH LRT 
temperature shows many modals except in DJF, which has 3 main modals like those of NH. In con-
trast to the LRT height in Figure 7.14, the density of values that represent high LRT temperatures is 
higher than that of values that represent low LRT temperatures in both hemispheres. 

The global distribution of LRT height demonstrates geographic changes with latitude from month 
to month over the course of the year. Figure 7.16 shows the variation in monthly LRT height that 
averaged for the period from June 2001–November 2020. The LRT height is greatest in the tropical 
region, which extends between 30°N and 30°S. In both hemispheres, the LRT height in the transi-
tional zone from the tropics to the extratropics is less than that of the tropical zone. Moreover, the 
high latitudes of the NH and SH have the lowest LRT height values. Except for January, February, 
and March, the tropical tropopause cover area in the NH is larger than that in the SH throughout 
the year. 

In contrast to LRT height, the LRT temperature has minimum values in the tropical zone and 
maximum values in the polar zones (Figure 7.17). The spatial structure of the tropopause pattern 
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FIGURE 7.16 Global spatial distribution of monthly GNSS LRT height averaged over the period from 2001 
to 2020. 

revealed that the tropical tropopause covers a larger area in the NH than in the SH. The tropopause 
temperature in the NH has a single modality from the TEL to the pole. On the other hand, in the 
SH from the TEL towards the pole, there is bimodality, with a band of high tropopause temperature 
mainly in the mid-latitude followed by a band of lower tropopause temperature in the high latitudes. 
The bimodality of the tropopause in the SH is so signifcant from June to October (Figure 7.17). 

Figures 7.18  and  7.19  depict the seasonally averaged LRT height and temperature, respectively, 
over the period from 2001 to 2020. The tropopause height is maximum over the tropics at 17 km 
and minimum at the poles at 7 km. In all seasons, the transitional zone from the tropics to the 
extratropics covers a wider area in the NH than that covered in the SH. In the SH, the tropopause 
height is bimodally distributed spatially in mid- and high-latitude regions, as seen in JJA and SON 
(Figure  7.18). The tropopause temperature (Figure  7.19) is minimum at the tropics (188 K) and 
maximum at mid- and high latitudes (226 K). Furthermore, the tropical tropopause layer covers a 
larger geographic area in the NH than it does in the SH. In all seasons, there is a clear bimodal pat-
tern in the SH at mid- and high latitudes. The LRT temperature values are low in the tropics, then 
they become high in the mid-latitudes, and after that, a lower tropopause temperature spatial pattern 
appears in the high latitudes.                 

As shown in  Figure 7.20, there is a clear difference between the LRT height seasonal variability 
in the NH and that in the SH. In the NH, all seasons have observed upward trends and all seasons 
show signifcant variability. JJA has the highest LRT height increasing trend of about 75 m/dec., and 
DJF has the lowest increasing rate of about 27 m/dec. The tropopause height values in NH cover a 
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FIGURE 7.17 Global spatial distribution of monthly GNSS LRT temperature averaged over the period from 
2001 to 2020. 

FIGURE 7.18 Global spatial distribution of seasonal GNSS LRT height averaged over the period from 2001 
to 2020. 
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FIGURE 7.19 Global spatial distribution of seasonal GNSS LRT temperature averaged over the period from 
2001 to 2020. 

FIGURE 7.20 Time series for LRT height seasons months in the NH and SH for the period from 2001 to 2020. 

range from 11.05 km to 12.66 km, which is higher than that of the SH, which is from 11.35 km to 
12.38 km. In the SH, LRT height values show a signifcant increasing trend only in JJA of about 
105 m/dec. In contrast, SON has a decreasing trend of about -6 m/dec. 
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FIGURE 7.21 Time series for LRT temperature seasons months in the NH and SH for the period from 2001 
to 2020. 

Figure 7.21 illustrates that there is a clear difference between the LRT temperature seasonal 
pattern in the NH and that in the SH. In the NH, all seasons have increasing trends. JJA has the 
highest LRT temperature upward trend of about 0.15 K/dec, and SON has the lowest increasing rate 
of about 0.02 K/dec. The tropopause temperature values in the NH cover a range from 207.32 K to 
213.84 K, which is lower than that of the SH, which is from 203.83 K to 212.55 K. In the SH, LRT 
temperature values show a signifcant increasing trend in DJF of about 0.44 K/dec. In contrast, JJA 
has a decreasing trend of about -0.3 K/dec. 

7.4.6 total coluMn oZone (tco), carBon dioxide (co2), and Methane (ch4) 

Figure 7.22 shows that since 2001, TCO has had a global increase of 0.7 DU/decade. TCO has a 
strong negative correlation of -0.64 with the LRT height. This corresponds with the results of previ-
ous work, which clarifed that the TCO pattern is inversely proportional to tropopause height and 
can give an indication of the tropical belt width (Hudson et al., 2003; Hudson et al., 2006; Hudson, 
2012; Davis et al., 2018). TCO has increased by 0.06 DU/decade and 1.05 DU/decade in the NH and 
SH, respectively. Shangguan et al. (2019) reported asymmetric ozone trends in the middle strato-
sphere of both hemispheres, with signifcant ozone decrease in the NH and ozone increase in the 
SH. In our results, the PCA1 of TCO represents 66.68% of the total variability. The spatial map of 
PCA1 shows a stronger signal in the NH than in the SH. The NH signal is located more poleward 
than that of the SH. Comparisons with the GNSS-RO LRT height spatial and temporal pattern sug-
gest the TCO expansion in the NH and a weak expansion or non-signifcant contraction in the SH. 

Several studies have indicated to an increase in the tropopause height as a result of the tropo-
sphere warming caused by the rise of the GHGs concentrations in the atmosphere (Meng et al., 
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FIGURE 7.22 TCO: (a) global time series against GNSS LRT height, (b) temporal time series in NH and SH, 
(c) temporal variability given by PCA1, and (d) spatial variability map given by PCA1. 

FIGURE 7.23 CO2: (a) global time series against GNSS LRT height, (b) temporal time series in NH and SH, 
(c) temporal variability given by PCA1, and (d) spatial variability map given by PCA1. 

2021; Pisoft et al., 2021). CO2 is the most important GHG, and it is considered the main driver of 
global warming. Figure 7.23 depicts a time series of CO2 levels. Since 2001, CO2 levels have risen 
at a rate of 21.38 ppm per decade. It has a correlation of -0.05 with GNSS LRT height. The CO2 

column average in both the NH and SH has the same increasing rate of 21.6 ppm/decade. This is 
higher than the global rate. The NH has a higher CO2 standard deviation (STD) of 11.38 than the SH, 
which is 10.90. The temporal variability given by the PCA1 represents 77.64% of the total variabil-
ity. PCA1 shows an increasing trend and large variability with time. The map of PCA1 variability 
shows a shift towards the north pole. This seems to be related to the coverage of the tropical belt, 
i.e., the TEL occurrence at the NH is more poleward than that of the SH. 
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FIGURE 7.24 CH4: (a) global time series against GNSS LRT height, (b) temporal time series in NH and SH, 
(c) temporal variability given by PCA1, and (d) spatial variability map given by PCA1. 

CH4 is one of the main GHGs, which is considered a long-term driver of climate change. The 
global time series of CH4 column average (Figure 7.24a) shows an increasing trend of 39 ppb/decade 
since 2001. This variable has a correlation of 0.23 with GNSS-RO LRT height. The CH4 column 
average in both the NH and the SH shows equal increasing trends of 46.8 ppb/decade. This is higher 
than the global rate. The CH4 STD in the NH is similar to that in the SH (25.91). The temporal vari-
ability of PCA1 explains 40.65% of the total variance. It shows a non-signifcant trend, but its range 
increases with time. The map of PCA1 shows a more poleward signal in the NH than its equivalent 
in the SH. The NH variability pattern reaches 30°N, while that of the SH does not reach the limit of 
30°S. This is clearly in line with the GNSS TEL results, showing that the tropical condition in the 
NH covers a wider area than that in the SH. 

7.4.7 surFace teMperature and gpcp precipitation 

Many studies have revealed a link between surface temperature, tropopause height, and tropi-
cal belt expansion. Thuburn and Craig (1997, 2000) found the simulated tropopause height to 
be sensitive to the surface temperature. Figure 7.25 shows that the global surface temperature 
has increased by 0.3 K/decade since 2001. A clear correlation between the surface temperature 
and the GNSS-RO LRT height is seen, with a value of 0.81. The surface temperature in both 
the NH and the SH shows increasing trends of 0.23 K/decade and 0.18 K/decade, respectively. 
The surface temperature in the NH has a STD of 3.5, while that of the SH has a STD of 1.5. 
The PCA1 accounts for 84.41% of the total variance. The PCA1 shows an increasing trend and 
amplitude with time. The PCA1 map has a signal in the SH weaker than that in the NH. The 
results of surface temperature agree with those of GNSS-RO TEL. For instance, the NH shows 
more expansive behavior than the SH, which shows a minor expansion using the subjective cri-
terion and a non-signifcant contraction using the objective criterion. Gao et al. (2015) indicated 
that the correlation coeffcient between global tropopause height anomalies and the El Niño 3.4 
sea surface temperature index is 0.53, with a maximum correlation coeffcient of 0.8 at a lag 
of three months. Fomichev et al. (2007) also found that an increase in sea surface temperature 
resulted in a tropopause height increase in a coupled chemistry climate model simulation. Hu 
and Fu (2007) suggested that an increase in sea surface temperatures in the tropics could result 
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FIGURE 7.25 Surface temperature: (a) global time series against GNSS LRT height, (b) temporal time series 
in NH and SH, (c) temporal variability given by PCA1, and (d) spatial variability map given by PCA1. 

FIGURE 7.26 GPCP precipitation: (a) global time series against GNSS LRT height, (b) temporal time series 
in NH and SH, (c) temporal variability given by PCA1, and (d) spatial variability map given by PCA1. 

in an increase in the tropopause height and a wider Hadley circulation (tropics width). In addi-
tion, our results support surface temperature as a proposed driver for tropical expansion (Allen 
et al., 2012a; Adam et al., 2014). 

The spatial and temporal variability of precipitation are investigated to determine the effects 
of TEL variability on precipitation behavior (Figure 7.26). Since 2001, global GPCP precipitation 
has decreased by -0.04 mm per decade. The precipitation behavior has a strong correlation of 0.61 
with the GNSS LRT height. The GPCP precipitation in the NH shows a minor decreasing trend of 
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-0.02 mm/decade whereas the SH shows a signifcant decreasing trend of -1.3 mm/decade. The pre-
cipitation in the NH has a STD of 15.84, and the SH has a STD of 16.47. The PCA1 explains 29.30% 
of the total variability. PCA1 has an upward trend and increases in amplitude with time. The PCA1 
map shows a pattern in the NH that is stronger and more poleward than that in the SH. The pre-
cipitation can be used as an independent metric in identifying the TELs’ locations. Many studies, 
relying on surface-based variables to investigate tropical widening, used the GPCP monthly data 
set to examine shifts in the positions and boundaries of the subtropical dry zones (Hu et al., 2010; 
Zhou et al., 2011; Allen et al., 2012b). 

7.4.8 standardiZed precipitation eVapotranspiration index (spei) 

The tropical belt widening would contribute to increasing the mid-latitude drought frequency 
in both hemispheres (Hu and Fu, 2007; Fu et al., 2006; Seidel et al., 2007). The SPEI is usu-
ally employed to monitor the meteorological drought status. As is clear in Figure  7.27, the 
SPEI has had a global increase of 0.056 per decade since 2001. The NH shows an increase of 
0.035 per decade, and the SH has a decrease of -0.005 per decade. The SPEI has no correlation 
with GNSS LRT height (-0.002). Because the study area is wide and extends through many 
continents, the SPEI in our study only provides information about the dry and wet conditions. 
Figure 7.27 shows the spatial pattern of SPEI in September 2019 and the areas by category of 
no drought, moderate drought, severe drought, and extreme drought. Figure  7.28 shows the 
number of cells covered with drought and its corresponding classifcation from Figure 7.27. The 
total number of cells covered by drought in the NH nearly doubles its value in the SH. Both 
hemispheres have a decreasing trend in the number of cells covered by drought. The decrease 
rate is 510 cell/decade in the NH and 373 cell/decade in the SH. The drought does not show any 
spatial pattern associated with the locations of TELs. 

7.5 CONCLUSIONS 

The GNSS-RO is a well-established technique to derive atmospheric temperature structure in 
the UTLS region. In this study, GNSS-RO data from 12 RO missions is combined to examine 
the possible expansion of the tropical belt. When used together in our analysis, the intercom-
parison of GNSS-RO profles from the various RO missions demonstrates a high level of con-
sistency. GNSS-RO profles are employed to derive tropopause height and temperature based on 
LRT and CPT defnitions. The tropopause height becomes crucial in climate change research 
because its pattern of variability has good accordance with the global warming phenome-
non (Santer et  al., 2003; Sausen and Santer, 2003; Seidel and Randel, 2006; Mohd Zali and 
Mandeep, 2019). Our analyses show that GNSS LRT and CPT height have increased by 36 m/ 
decade and 60 m/decade, respectively, since June 2001. There is a high correlation between the 
tropopause height and temperature, being -0.78 and -0.82 for LRT and CPT, respectively. The 
LRT height from ERA5 shows an increase of 48 m/decade since June 2001, and that derived 
from AIRS has a smaller increasing rate of 12 m/decade since September 2002. Both GNSS 
LRT height and temperature show clear seasonal variations. The NH shows variation through-
out all four seasons. The variability is high in JJA and low in DJF. In contrast, the SH shows 
signifcant LRT height variation only in the summer, but it has variation in LRT temperature 
in all seasons. The LRT height range in the NH is wider than in the SH. On the other hand, the 
SH has a wider range of LRT temperature values than the NH. 

The reported tropics widening rates in most previous studies range from 0.25° to 3.0° lat-
itude per decade, and their statistical signifcance varies greatly depending on the metrics 
used to estimate the TEL as well as the data sets used for its derivation (Davis and Rosenlof, 
2012). In our study, TEL in each hemisphere is estimated using two tropopause height metrics. 
Applying the frst method, subjective criterion, there are higher expansion and contraction rates 
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FIGURE 7.27 On the left, SPEI drought index: (a) global SPEI time series in comparison with LRT 
height and (b) SPEI for two latitudinal bands 0°–50°N and 0°–50°S. On the right: (a) SPEI drought index in 
September 2019 and (b) SPEI drought categories in September 2019. 

FIGURE 7.28 Number of cells covered with drought at (a) NH and (b) SH. 
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than those from the second method, objective criterion. While using the objective criterion, the 
locations of TELs in both hemispheres are more poleward than those from the subjective crite-
rion. Based on the subjective method, tropical width results from GNSS-RO have an expansive 
behavior in the NH with about 0.41°/decade, and a minor expansion trend in the SH with 0.08°/ 
decade. ERA5 has non-signifcant contractions in both hemispheres. In the case of the AIRS 
data, there is a clear expansion behavior in the NH with about 0.34°/decade and a strong con-
traction in the SH with about -0.48°/decade. Based on the objective method, GNSS-RO has an 
expansive behavior in the NH with about 0.13°/decade, but there is no signifcant expansion 
or contraction in the SH. For ERA5, there is no signifcant trend for the TEL results in the 
NH, while there is a minor contraction of about -0.08°/decade in the SH. The AIRS data show 
an expansion of 0.13°/decade in the NH and a strong contraction of -0.37°/decade in the SH. 
Results of several studies, based on different data sets and metrics, have shown an expansive 
behavior of the tropical belt in the NH higher than that of the SH, and this broadly agrees with 
our GNSS-RO-based results (Hu and Fu, 2007; Archer and Caldeira, 2008; Hu et  al., 2010; 
Zhou et al., 2011; Allen et al., 2012b). From all data sets, the TEL is located more poleward in 
the NH than in the SH. For both subjective and objective methods, the TELs reach latitudes of 
44.75°N and 46.75°N, respectively, at the NH. Meanwhile, at the SH, the TELs reach latitudes 
of 42°S and 44.75°S for subjective and objective methods, respectively. In both hemispheres, 
the variability of tropopause parameters (temperature and height) is greatest around the TEL 
locations. 

The TCO shows increasing rates globally. The rate in the SH is higher than that in the NH. 
The ozone variability agrees well with the spatial and temporal modes of TEL estimated from 
GNSS-RO LRT height, and this supports GNSS-RO TEL estimates over those of ERA5 and 
AIRS. In addition, CO2 and CH4, as the main GHGs responsible for global warming, cause a rise 
in tropopause height as concentrations increase (Meng et al., 2021; Pisoft et  al., 2021). In our 
analysis, both CO2 and CH4 display an upward global rate. Their trends at the NH and the SH 
are nearly the same. The patterns of TCO and CO2 display good agreement with the TEL loca-
tions at the NH and SH. They show more poleward occurrence with time, and their variability 
in the NH is higher than that in the SH. In addition, CH4 has a signal at the NH that occurs more 
poleward than that at the SH. The surface temperature and precipitation both increase with time 
and have a strong correlation with LRT height. Both variables show an increasing rate at the NH 
that is higher than at the SH. The surface temperature shows a strong spatial variability pattern 
that broadly agrees with the TEL locations from GNSS-RO. The spatial pattern of precipitation 
shows a northward orientation. The SPEI meteorological drought index shows an increasing rate 
globally. It has an upward trend in the NH while having a decreasing trend in the SH. Since SPEI 
is multivariate, it has no direct response to TEL behavior. In both hemispheres, the number of 
cells covered by drought has decreased since 2001. It can be concluded that the rates of tropical 
belt widening differ from one data set to another and from one metric to another. Furthermore, 
TEL behavior in the NH differs from that in the SH. In addition, the variability of meteorological 
parameters agrees with GNSS TEL results more than with other data sets. The study’s fndings 
highlight the importance of monitoring the tropopause and TEL parameters, which can accu-
rately indicate global climate variability and change. 
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8 Upper Atmospheric Mass 
Density Variations and 
Space Weather Responses 
from GNSS Precise Orbits 

Andres Calabia and Shuanggen Jin 

8.1 INTRODUCTION 

Monitoring and understanding geophysical processes in the earth’s thermosphere is primordial 
for applications such as low earth orbit (LEO) satellite tracking and upper-atmosphere research. 
Unfortunately, the existing models are incapable of predicting the variability as required for prac-
tical operations, largely due to the limited quality and quantity of observations, and the lack of 
comprehensive approaches for calibrating the models. Nowadays, accelerometers onboard LEO 
artifcial satellites can measure non-gravitational accelerations and derive thermospheric mass den-
sity and wind velocity estimates with unprecedented detail, but the high costs and technical issues 
of the dedicated space missions have only provided a very limited amount of data. Fortunately, with 
the increasing number of LEO satellites equipped with high-precision Global Navigation Satellite 
System (GNSS) receivers, precise orbit products could be used to obtain comparable data sets. 
These new density estimates from LEO GNSS are a promising data source that can help to better 
characterize the upper atmosphere and to improve the existing models. 

The global nature of satellite measurements can increase the understanding of the whole upper 
atmosphere system, and the combination of physical models can help to identify unknown mecha-
nisms. Unfortunately, the existing quality and quantity of measurement data is limited, and it is 
diffcult to calibrate the models. This results in satellite tracking errors far too great to meet the 
operational requirements (e.g., Anderson et al. [2009]; Calabia et al. [2020]). Therefore, the pres-
ent upper atmosphere models are unable to predict the variability as accurately and effciently as 
required, and the resulting processes from geomagnetic storms, solar fares, and solar wind are 
still not well understood. During the last decade, mass density changes with variable geophysical 
conditions have been investigated with satellite measurements to a great extent (e.g., Müller et al. 
[2009]; Sutton et al. [2009]; Liu et al. [2011, 2010]; Chen et al. [2014]; Cnossen and Förster [2016]; 
Calabia and Jin [2016a]; Calabia and Jin [2019]). These studies have exposed the limitations of 
the existing models to predict neutral density variability. For instance, upper atmosphere empiri-
cal models have been improving with the use of new techniques, algorithms, and proxies (e.g., 
Calabia et al. [2020]; Bowman et al. [2008]; Bruinsma [2015]; Picone et al. [2002]). These empiri-
cal models are simple and suitable for routine applications such as Precise Orbit Determination 
(POD). In many applications, for example remote sensing or satellite altimetry and gravity, a 
dynamic POD scheme estimates the orbital position and velocity of a satellite with an accuracy of 
a few millimeters. This is achieved by propagating the orbital trajectory through a double integra-
tion and linearization of the Newton-Euler’s equation of motion (Montenbruck and Gill [2013]). 
In addition, by combining the dynamic POD with empirical observations, for example, laser-
ranging, Doppler, accelerometer, or GNSS measurements, the position and velocity can be sto-
chastically estimated with high accuracy (Tapley et al., [2004]). The main force-models involved 
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in POD include the variable gravity feld, the atmospheric drag, and the solar and Earth-albedo 
radiation pressures. Among these, the variable atmospheric drag strongly harms the lifetime of 
LEO missions. Atmospheric drag mainly depends on atmospheric expansion/contraction driven 
by the solar and geomagnetic activity. Increases in atmospheric drag reduce the orbital velocity 
of a satellite and its nominal altitude, and shortens its lifetime. For instance, the contribution of 
atmospheric drag pressure to the position of a satellite orbiting at an altitude of around 450 km 
may drag around 3 m per revolution in the along-track axis, limiting the satellite’s lifetime to 
about 5–10 years. 

Atmospheric drag effects in LEO satellites are highly variable and not well modeled, resulting in 
large diffculties for orbital tracking, collision analysis, and re-entry calculations. Accelerometers 
onboard satellites can provide accurate and globally distributed atmospheric drag data, but these 
are exposed to high instrumental costs and other technical issues [Bruinsma et al., 2004; Doornbos 
et al., 2010; Calabia et al., 2015; Siemes et al., 2016; Calabia and Jin, 2017; Jin et al., 2018]. These 
limitations have forced these payloads to be carried by only few satellites, viz. Gravity Recovery 
and Climate Experiment (GRACE), Challenging Mini-Satellite Payload (CHAMP), Gravity Field 
and Steady-State Ocean Circulation Explorer (GOCE), and Swarm. Other techniques also have 
other specifc drawbacks, including problems with accuracy, resolution, coverage, calibration, 
complexity, etc. Besides high-precision accelerometers onboard satellites (Marcos and Forbes, 
1985; Bruinsma et al., 2004), other measurement techniques include the semi-major axis variation 
(Picone et al., 2005), the stochastic mass density estimation within the POD scheme (Ijssel And 
Visser, 2007; McLaughlin et al., 2013; Visser et al., 2013; Kuang et al., 2014), mass spectrometers 
(Tang et al., 2020), incoherent scatter radars (Nicolls et al., 2014), Broglio drag balance instruments 
(Santoni et al., 2010), miniaturized pressure gauge instruments (Clemmons et al., 2008), ultraviolet 
remote sensing (Meier and Picone, 1994), and the techniques of atmospheric occultation (Determan 
et al., 2007; Aikin et al., 1993). 

8.2 UPPER ATMOSPHERE AND OBSERVATIONS 

Earth’s upper atmosphere is highly variable in space and time, and its physical processes and cou-
pled mechanisms are very complex and still not well understood. The upper atmosphere is mainly 
composed of two parts, the thermosphere and the ionosphere. In the thermosphere, photoabsorp-
tion, photoionization, and photodissociation of molecules through extreme ultraviolet radiation 
(EUV) create the ions of the ionosphere, and thermal energy transfer from ions to neutrals drives the 
regular dynamics during solar-fux, diurnal, and annual cycles. In addition, waves from the lower 
atmosphere including atmospheric tides and planetary waves can feed into ionospheric electrody-
namics, and consequently to the magnetosphere-thermosphere-ionosphere system. Figure 8.1 shows 
a schematic representation of the known processes in the coupled magnetosphere-thermosphere-
ionosphere system. 

Solar fares and geomagnetic storms can produce thermospheric Joule heating and particle pre-
cipitation along the earth’s magnetic feld lines, generating short-term and abrupt changes in the 
coupled system, compared to that given by the regular dynamics. Solar fares are ejections of clouds 
of electrons, ions, and atoms through the corona of the sun into space. In the thermosphere, solar 
fares increase the X-ray and EUV irradiance, causing immediate energy absorption, ionization, 
and dissociation of molecules. Some of the effects result in rapid thermospheric Joule heating and 
particle precipitation along the earth’s magnetic feld lines. 

Unfortunately, the existing quality and quantity of mass density observations is still very limited, 
and the exact understanding of solar-terrestrial coupling processes and solar-wind/magnetosphere 
effects that lead to Joule heating enhancement and disturbances to different parameters, including, 
e.g. composition, temperature, ionospheric plasma, mass density, and wind velocity, is a big chal-
lenge (e.g., Heelis and Maute [2020], Maute et al. [2021]). The magnetosphere-ionosphere coupling 
is crucial in modeling the thermosphere-ionosphere response to geomagnetic activity, and advances 
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FIGURE 8.1 Known processes in the coupled magnetosphere-thermosphere-ionosphere system. 

Source: NASA’s Scientifc Visualization Studio, https://svs.gsfc.nasa.gov/4641. 

in observing thermospheric mass density and wind-velocity along with plasma density and electric 
currents is crucial to understanding upper-atmosphere processes. Figure  8.2 shows a simplifed 
description of the complex connection between ionospheric plasma and thermospheric mass density 
and winds. 

The exact connection between mass density, wind velocity, ionospheric plasma, and solar 
and magnetospheric forcing is still unclear, but physics-based models such as Thermosphere-
Ionosphere-Electrodynamics General Circulation Model (TIEGCM) (Richmond et  al., 1992), 
which generally use empirical parameterizations and boundary conditions to solve 3-dimensional 
fuid equations, can provide an approximated solution with clear prognostic variables. Compared 
to empirical models, which are simple and suitable for routine applications such as dynamic POD 
and GNSS positioning, the physics-based models are more complex, but can help to better under-
stand the physical mechanisms responsible for the observed variability, and have a greater poten-
tial for predictions and projections of future states: for instance, processes of energy absorption, 
ionization, and dissociation of molecules due to variable X-ray and EUV solar radiance, as well as 
high-latitude thermospheric Joule heating and precipitation of energetic particles due to solar wind 
and magnetospheric forcing. 

Figure 8.3 shows the satellite missions that have shown capabilities to measure aerodynamic 
accelerations and subsequently estimate mass density at a high resolution. Currently, an emerging 
technique based on GNSS precise orbits of LEO satellites has proven the ability to measure high-
cadence non-gravitational accelerations and to estimate thermospheric mass density at a high reso-
lution (Calabia and Jin, 2017, 2021a, 2021b; Li and Lei, 2020; Yuan et al., 2019; Calabia et al., 2015). 
With the increasing number of LEO satellites being equipped with high-precision GNSS receivers 
and more enhanced data processing and orbit determination strategies, GNSS-based mass density 
may become an essential data source to effectively monitor global thermosphere fuctuations at a 
high resolution. Here, in this paper, a detailed review of the current state of the art on thermosphere 
monitoring with GNSS precise orbits is presented. 

https://svs.gsfc.nasa.gov
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FIGURE 8.2 A simplifed description of the connection between ionosphere and thermosphere. 

Source: Heelis and Maute [2020]. 

FIGURE 8.3 Orbital altitudes (left axis) of the satellites capable of estimating high-resolution thermospheric 
mass densities. CASSIOPE does not contain an accelerometer. The 81-day mean solar fux F10.7 index is 
shown in red (right axis). 
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8.3 THEORY AND METHODOLOGY 

Geodetic grade GNSS position and velocity products from LEO spacecraft can be used to obtain 
high-precision mass density estimates. Firstly, GNSS-based total accelerations are retrieved through 
numerical interpolation of the precise orbit velocity. Subsequently, mass density and wind velocity 
estimates are retrieved from atmospheric drag forces, which are obtained by removing gravitational 
and radiation-pressure force-models from total accelerations. 

8.3.1 atMospheric drag accelerations 

Instantaneous total accelerations (aT) are calculated through numerical differentiation of the GNSS-
based precise orbit velocities. The 8-data point piece-wise Lagrange interpolation and a time interval 
of 0.05 s is recommended for the numerical differentiation (Calabia et al., 2015). At LEO altitudes, 
these settings allow the obtainment of an unbiased accuracy in the arc-to-chord threshold approach 
of approximately 10-9 m/s2. Then, the instantaneous GNSS-based atmospheric drag accelerations 
(aD) are retrieved by removing the gravitational (g) and radiation pressure (aR) accelerations. 

a = a - - (8.1)g aD T R 

The earth’s gravitational acceleration is obtained from the combination of the EGM2008 gravity feld 
model with the underlying background for the secular variations (Petit and Luzum, 2010). The geopoten-
tial feld V in geocentric coordinates (r, ϕ, λ) is expanded in spherical harmonics with up to degree N as: 

N n nGM Earth æ ae öV r( ,j l, )  = åç ÷ åéCnm cos (ml ) + Snm sin (ml )ù Pnm (sinj ) (8.2)ë ûr è r øn=0 m=0 

where GMEarth and ae EGM2008 values (398600.4415 km3/s2 and 6378136.3 m respectively) should 
be used as scaling parameters with its gravitational potential coeffcients. In this equation, Plm are the 

normalized associated Legendre functions of degree l and order m, and Clm and Slm are the normal-
ized Stokes’ coeffcients of degree l and order m for cosinus and sinus, respectively. In order to use the 
conventional static gravitational feld properly and projected it in time, the secular low degree varia-

tions of its C20, C21, S 21, C30, and C40 coeffcients need to be accounted for (Petit and Luzum, 2010). 
The gravitational acceleration of a third body (Montenbruck and Gill, 2013) can be described as 

a difference between the accelerations of the satellite and the earth caused by a third body B: 

æ ör - r rB sat BD˜̃r = GMB 
ç - ÷ (8.3)sat 3 3ç ÷r - r rB sat Bè ø 

where rsat and rB are the geocentric coordinates of the satellite and of a third body of mass MB. Since 
accelerations on near-Earth satellites from other planets’ actions are relatively small (< 0.1 nm/s2), 
only lunisolar accelerations can be calculated. Moon and sun coordinates can be interpolated from 
the solar and planetary ephemerides (DE-421) provided by the Jet Propulsion Laboratory (JPL) 
in the form of Chebyshev approximations. The evaluation of these polynomials yields Cartesian 
coordinates in the ICRS for the earth-moon barycenter bEarth,Moon and the sun bSun with respect to the 
barycenter of the solar system, while moon positions rMoon are given with respect to the center of the 
earth. The geocentric position of the sun can be computed as: 

r 
r = b - b + Moon (8.4)Sun Sun Earth Moon, *1+ m 

where µ* denotes the ratio of the earth’s and the moon’s masses. 
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Since the changes induced by the earth’s solid tides due to its rotation under effects of ellip-
ticity and Coriolis force, can be described in terms of the Love numbers, variations in the 
low-degree Stokes’ coeffcients can be easily computed (Petit and Luzum, 2010). Dependent 
and independent frequency corrections are calculated using lunar and solar ephemerides, the 
Doodson’s fundamental arguments, the nominal values of the earth’s solid tide external poten-
tial Love numbers, and the in-phase and out-of-phase amplitudes of the corrections for fre-
quency-dependent Love values. To account for the dynamical effects of ocean tides, the periodic 
variations in the normalized Stokes’ coeffcients are calculated based on the most recent ocean 
tide model EOT11a (Mayer-Gürr et al., 2012). Mayer-Gürr et al. (2012) also provided the infu-
ences of additional minor tide constituents that are not included in the tide model EOT11a and 
should not be neglected in LEO. Changes in the geopotential value due to the centrifugal effect 
of pole motion, known as the earth’s solid pole tides, can be readily computed in function of 
the wobble variables and calculated under sub-daily polar motion variations (Petit and Luzum, 
2010). The ocean pole tide, generated by the centrifugal effect of pole motion on the oceans, 
is calculated as a function of sub-daily wobble variables from the coeffcients of the self-con-
sistent equilibrium model given by Desai (2002). For the relativistic corrections, only the main 
effects are calculated (described by the Schwarzschild feld of the earth itself, of approximately 
16.5 nm/s2), since the effects of the Lense-Thirring precession (frame-dragging) and the geode-
sic (de Sitter) precession are two orders of magnitude smaller at a near-Earth satellite orbit (Petit 
and Luzum, 2010): 

ìé ù üGMEarth ï GMEarth ïDr̃̃sat = íê4 - ( r̃sat × r̃sat )ú × rsat + 4(rsat × r̃sat ) × r̃sat ý (8.5)2 3c rsat ïîë rsat û ïþ 

For a LEO satellite, time-varying Stokes’ coeffcients up to a degree and order 120 should be computed 
at least, and using an increment of time small enough to desensitize from discontinuities (~400 s). 
Then, the acceleration due to the variable gravity feld can be calculated by using the frst deriva-
tive of the gravitational potential in Cartesian coordinates. With the substitution of P = P (sinj)nm nm 

and P¢ = ¶P (sinj) /  ¶j , the frst derivative of the gravitational potential of the Earth in sphericalnm nm 
coordinates is calculated as: 

nnmax ndU 
=

-GMEarth å(n +1)ç 
æ ae ö

÷ åPnm (Cnm cos ml + Snm sins ml )dr r2 è r øn=0 m=0 

n n ndU max æ ae öGMEarth= P¢ C cos ml + S sin mlåç ÷ å nm ( nm nm )dj r è r øn=0 m=0 

nnmax ndU æ ae ö = 
GMEarth åç ÷ åmPnm (Snm cos ml - Cnm sin ml ) (8.6)

dl r è r øn=0 m=0 

Then, the acceleration due to the variable gravity feld is as follows: 

¶U ¶U ¶r ¶U ¶j ¶U ¶l˜̃x = = + + 
¶x ¶r ¶x ¶j ¶x ¶l ¶x 

¶U ¶U ¶r ¶U ¶j ¶U ¶l˜̃y = = + + 
¶y ¶r ¶y ¶j ¶y ¶l ¶y 
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¶U ¶U ¶r ¶U ¶j˜̃z = = + (8.7)
¶z ¶r ¶z ¶j ¶z 

As for the radiation pressure accelerations acting on the satellite’s surfaces, both direct solar radia-
tion and the earth’s albedo need to be accounted for. The direct solar radiation (asr) was formulated 
by Luthcke et al. [1997]: 

n satp E A  n s× sun rd ,i sat˜ ° é æ c sat ö ù sr i i= - + ° °  ° + -1 ° s (8.8)ê2ç crs,i n ssun ÷ ( sun úasr å i × ni crs,i )mc êë è 3 ø ûúi=1 

In this equation, np is the number of plates, Ai is the plate area, c is the speed of light, crd,i is the coef-
fcient of diffusive refectivity, crs,i is the coeffcient of specular refectivity, m is the satellite mass, 

sat sat 2n̂i is the unit plate normal, s  is the unit sun-satellite vector, and Esr = sh ×1366 (1AU / ssun )  is˜sun 
the fux on the earth’s atmosphere (1366 W/m2), corrected from the yearly period of Earth’s orbit 
eccentricity and from the planetary eclipse ratio (sh) (Montenbruck and Gill, 2013). 

Similarly, the earth albedo acceleration (aea) can be computed as follows: 

np grid sat
A ̃ ˜  sat sat ùEea, j i ni × s j é æ crd ,i s ö 

a = - 2 + c ˜ ˜  ˜ + - c s jea ê ç rs,i ni × s j ÷ ni (1 rs,i )˜ ú (8.9)åå mc 3i=1 j=1 êë è ø ûú 

RIn this equation, the parameter E = E + EIR is the combination of the radiation refected at theea, j  ea ea 
R IR Rearth’s surface Eea  and the earth’s infrared radiation Eea . The earth’s refected solar radiation Eea 

at each satellite position is estimated using the monthly averages of NASA’s Total Ozone Mapping 
Spectrometer (TOMS) refectivity index (s) [Bhanderi, 2005]: 

sun satæ öæ ö˜ ˜  ˜ s̃Aj ç n j × s j ÷ç n j × j ÷s j
R è øè øE = f v Eea, j j j  sr 2 (8.10)sat 

p s̃ j 

In this equation, fj is feld of view of the satellite, vj is the sunlight function, and Aj is the area of each 
sat

cell j of TOMS. The refection angle on each cell is defned by the directions of the satellite s̃ j , 
sun

the sun ̃s j , and the cell normal-vector n̂j. Earth’s infrared radiation Eea
IR can be modeled as a black 

body with a surface temperature of 288 K, whose spectrum is mainly IR with an exitance of about 
IR239 W/m2 (Taylor, 2005). In a similar way, the IR irradiance Eea, j  from each visible cell j of the 

earth’s surface has been computed as follows: 

2 sat 
j ̃ s̃æ 1AU ö A n  j × j

Eea, j 
IR = f j 239 çç j ÷÷ eIR, j 2 (8.11)satsè sun ø p s̃ j 

In this equation, the Earth IR radiation eIR, j  for each cell j was parameterized in terms of latitude and 
season by Knocke and Ries (1987): 

eIR = e  + e P sinj +e  P sinj0 1 1 2 2 

e1 = k  + k  cos éëw( JD - t )ùû + k sin éëw( JD - t  )ùû (8.12)0 1 0 2 0 
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Here, t0 is the epoch of 22 December 1981, w is Earth’s orbit rotation rate around the sun (2π/365.5), 
ϕ is the equatorial geocentric latitude, JD is the Julian date, P1 and P2 are the Legendre polynomials 
of degrees 1 and 2, respectively, and e0 = 0.68; e2 = -0.18; k0 = 0; k1 = -0.07, and k2 = 0. 

8.3.2 therMospheric Mass density estiMation 

GNSS-based density estimates are computed using the drag-force (FD) formula (Newton [1726]): 

F = a m = 1 C A vr 2 (8.13) D D D r2 

In this equation, aD is the acceleration due to atmospheric drag (Equation 1), m is the mass of the 
satellite, CD is the drag coeffcient, ρ is the mass density, and A is the cross-sectional area perpen-
dicular to the relative velocity of the atmosphere with respect to the spacecraft vr, which includes 
the co-rotating atmosphere and the horizontal wind velocity (vwind). Horizontal wind velocity is 
calculated from the horizontal wind model HWM14 (Drob et al., 2015), and the velocity of the co-
rotating atmosphere is computed as the vector product between Earth’s angular rotation (wEarth) and 
the satellite’s position vector (rsat): 

vr = vsat + (wEarth Ù rsat ) + vwind (8.14) 

The most important sources of error in GNSS-based mass density retrieval are caused by the uncer-
tainty in the drag coeffcient and the errors in the horizontal wind velocity model (e.g., HWM14 
[Drob et al., 2015]). Errors due to zonal and meridional wind velocity are estimated at 1%, and 
4% per 100 m/s, respectively (Bruinsma et al., 2006), while drag coeffcients are expected to differ 
by ~15%, during solar minimum conditions, and by ~2–3%, during solar maximum (March et al., 
2019; Mehta et  al., 2014). The uncertainty of the new GNSS-based thermospheric mass density 
estimates can be assessed through statistical comparisons to the existing data and models: 

• The Space Environment Technologies (SET) Air Force High Accuracy Satellite Drag 
Model (HASDM) (Tobiska et al., 2021). 

• Accelerometer data from GRACE, CHAMP, GOCE, or Swarm missions (see Figure 8.4). 
Note that space accelerometers need bias calibration (Calabia et al., 2015). 

• The JB2008 empirical model (Bowman et al., 2008). 
• Drag Temperature Model (DTM) (Bruinsma, 2015). 
• The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar 

(NRLMSISE-00) empirical model (Picone et al., 2002). 

8.3.3 solar cycle and secular Variations 

An empirical modeling based in the principal component analysis (PCA) technique can overcome 
the limitation of the sparse nature of the observations. The aim of a PCA technique (Pearson, 1901) 
is to determine a new set of bases that capture the largest variance in the data, based on eigen value 
decomposition of the covariance matrix. The starting data sets are provided at different temporal 
and a spatial resolution; thus, to extract the maximum detail of the initial data sets, the covariance 
matrix R = F t F for the eigen value problem is represented as a matrix (F) that represents each loca-
tion (x) by columns, and each epoch (t) by rows. In this step, the spatial patterns of each variable c , 
their changes on time, and the measure of their importance, are presented as a low-dimensional 
space spanned by a set of modes, each of one represented by a pair of time (Gi,) and space (Wi,) 
expansion components, from n locations (x) at m epochs (t). 
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i n= 

c ( x t, ) = éG ( )t ×W (x )ù (8.15)n m  åë i m i n û 
i=1 

Then, it is possible to solve and estimate the best ft in terms of the most representative proxies 
and secular variations, including solar and magnetospheric indices, and local solar time (LST) 
and seasonal cycles. In this scheme, a time-domain spectrum analysis can unveil the characteris-
tic periods of secular variations, and a correlation-delay study can reveal the best possible ft. The 
power spectral density (PSD) estimate (Fourier transform of the biased estimate of the autocor-
relation sequence) can be employed to determine the main periodicities in the time series, and 
the Pearson’s linear correlation coeffcient will be estimated sequentially to obtain the time delay 
between two sequences at maximum correlation. In order to better characterize singular events, 
the least squares ftting of polynomial and Fourier functions to each time-expansion PCA mode 
(Gi) is preferred. This method minimizes the absolute difference of the residuals (least abso-
lute residuals) in a multi-variable parameterization (solar cycle, LST, seasonal, and geomagnetic 
index). Firstly, the following 2-variable polynomial expression can be employed to ft the frst 
time-expansion PCA component (G1) as follows: 

G1( )t 
» Y1( )t = p00 + p10 × FLUX t( +t FLUX ) + p01 × MAG t( +t MAG ) + 

¡ ( )1 t (8.16) 
2

 +p20 × éëFLUX (t +t FLUX )ùû + p11 × FLUX (t +t FLLUX ) × MAG t( +t MAG ) 

In this equation, pjk, with j={0,1,2} and k={0,1}, are the ftting coeffcients, t is a given epoch to esti-
mate the model, and FLUX(t + tFLUX) and MAG(t + tMAG) are the solar and magnetospheric indices 
evaluated at a given time t, which need to account for a time-delay for each index, tFLUX and tMAG 

respectively (provided in the correlation-delay analysis). In the frst iteration, ¡1 is approximated to 
1, and then it is updated with a 2-variable Fourier expression that fts the annual and LST cycles as 
follows: 

G ( )ti » ¡ ( )t = a + a × cos(Sa t( )) + b ×sin(Sa( )t ) + a ×cos(S1( )t ) + b ×sin(S1( )t ) +i 0 11 11 12 12Yi ( )t (8.17)

 + ...+ a jk ×cos(c j × Sa t ) + b jk ×sin(j × Sa t  ) + a jk × cos(j S1 t( )) + b jk ×sin(j S1× ( )t )( )  ( )  × s 

In this equation, ajk and bjk are the ftting coeffcients, and Sa and S1 are the tidal constituents derived 
from Doodson’s fundamental arguments and corresponding multipliers for the solar annual and 
the diurnal cycles (Petit and Luzum, 2010). The fnal expression for each time-expansion mode i is 
given as Gi = Yi·¡i+ ei, where ei is the residual disturbance from each PCAi mode. 

8.4 RESULTS AND ANALYSIS 

The foregoing methodology to estimate non-gravitational accelerations serves as a reliable reference 
with unbiased solution for accelerometer calibration and thermospheric mass density retrieval. This 
section provides a summary of the most important results on thermosphere monitoring and model-
ing with GNSS precise orbits. 

8.4.1 therMospheric density estiMation with gnss precise orBits 

Satellite accelerometers can be calibrated using GNSS-based non-gravitational accelerations 
as a true reference value. The GRACE satellites were launched into a nearly circular orbit on 
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FIGURE 8.4 Non-gravitational accelerations and thermospheric mass densities normalized to 475 km along 
GRACE orbital path on 14 February 2011 (left) and 13 April 2012 (right). Calibrated accelerometer measure-
ments are in black, and the estimations from GNSS precise orbits are in green. In the bottom panel, the estima-
tions from NRLMSISE-00 are shown in blue. 

Source: Calabia and Jin (2017). 

FIGURE 8.5 GRACE-derived thermospheric mass densities from 2011–2016. Global daily averaged densi-
ties from GNSS are in green, and the calibrated accelerometer densities are in black, separated in ascending 
orbits and descending orbits. Bottom timeline shows the days when accelerometer measurements were turned 
off due to power requirements. 

Source: Calabia and Jin (2017). 
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17 March 2002 with a mean altitude of 475 km. Calabia et al. (2015) estimated the GRACE non-
gravitational accelerations from GNSS precise orbits and calibrated the onboard accelerometers. 
Figure 8.4 shows the density estimates from GRACE GNSS precise orbits and the calibrated accel-
erometer measurements on 14 February 2011 (low solar activity; right panels) and 13 April 2012 
(low solar activity; left panels). 

In Figure  8.4, the GNSS-based accelerations in the X-satellite-body-system (XSBS) axis are 
the main component for density retrieval, showing a little noise when the accelerations are below 
~10–7 m/s2 (left panel). In the right panels, the accelerations in the XSBS are approximately 5 times 
larger, and the noise effects have lower impact. In this fgure, we also include the density estimates 
from NRLMSISE-00. In comparison to the NRLMSISE-00 densities, we can observe that GNSS-
based densities have an excellent agreement with accelerometer-based densities, mostly for density 
values above ~10–12 kg/m3. In Figure 8.5, the GRACE GNSS-based densities cover the data gaps 
when the GRACE accelerometers were turned off on several occasions due to power requirements. 
Section  3.3 provides a clear example of thermospheric density variations during a geomagnetic 
storm that occurred during a period without GRACE accelerometer data. 

8.4.2 therMospheric sensing with coMMercial-oFF-the-shelF gnss 

The CAscade SmallSat and IOnospheric Polar Explorer (CASSIOPE) satellite was launched on 
September 29, 2013 into an orbit slightly eccentric polar (81° inclination), with a perigee of approxi-
mately 325  km altitude and an apogee near 1500  km altitude. The CASSIOPE satellite uses 5 
commercial-off-the-shelf, geodetic-grade, dual-frequency GPS receivers L1 C/A and L2 P(Y) 
tracking up to 12 satellites, to be used for high-precision navigation, attitude determination, time 
synchronization, and radio occultation measurements. The CASSIOPE satellite does not contain 
an accelerometer, but the accurate GNSS precise orbits (Montenbruck et al., 2019) can be used to 
estimate thermospheric mass density. In Figure 8.6, the GNSS-based thermospheric mass density 
estimates from the CASSIOPE GNSS precise orbits are compared to the existing data and models 
(Calabia and Jin, 2021b). In this work, Calabia and Jin (2021b) validated 6 years of CASSIOPE 
density estimates by comparing the High Accuracy Satellite Drag Model (HASDM) density data-
base at altitudes from 325 to 425 km at intervals of 25 km. For density values above ~10-12 kg/m3, 
the CASSIOPE estimates provided standard deviations below 10% of the HASDM background 
density. Figure 8.7 shows the CASSIOPE densities and those from the NRLMSISE-00 and JB2008 
models, relative to the HASDM densities, for the samples at 350 km altitude. During low solar-fux 
conditions (2017–2020), NRLMSISE-00 largely overestimates both the CASSIOPE and the JB2008 
densities by approximately 150%. 

8.4.3 storM-tiMe therMospheric Variations 

Solar fares and geomagnetic storms can produce thermospheric Joule heating and particle 
precipitation along the earth’s magnetic feld lines, generating short-term and abrupt ther-
mospheric mass density variations. Calabia and Jin (2017, 2016b, 2019) showed these events 
produce a global thermospheric mass density increase during from several hours to several 
days, and that the magnitude of the disturbances depends on solar cycle and annual season. 
In Figure 8.8, GNSS-based thermospheric mass densities from GRACE can characterize the 
anomalous behavior during the geomagnetic storm of 28–29 March 2013. Accelerometer mea-
surements during this storm were unavailable for both GRACE A and B satellites due to instru-
ment power-off. 

Calabia and Jin (2021a, 2021b) showed the capability of the CASSIOPE GNSS receivers to 
retrieve aerodynamic accelerations at high resolution and presented the mass density responses 
to the February  2014 geomagnetic storm. In Figure  8.9, the CASSIOPE mass density esti-
mates from samples below 400 km altitude are shown for a case study of February 2014. Clear 
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FIGURE 8.6 Thermospheric information with (a) density estimates from CASSIOPE GNSS and models, (b) 
altitudes, (c) LST, (d) longitude, and (e) latitude along the CASSIOPE orbit on 20 February 2014. 

Source: Calabia and Jin (2021b). 

FIGURE 8.7 The (a) NRLMSISE-00, (b) JB2008, and (c) CASSIOPE densities relative to the HASDM den-
sities at 350 km altitude. Panels (a-c) include the 30-day running window median averages (μ) and standard 
deviations (μ ± s) of the ratios. Panel (d) shows the standard deviations (i = M, J, C) for comparison. The 
background density is shown in (e). 

Source: Calabia and Jin (2021b). 
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FIGURE 8.8 GRACE GNSS-based thermospheric mass density disturbances during the geomagnetic storm 
of 28–29 March 2013. Accelerometer-based densities are not available due to instrument power-off during this 
month. Bottom panels show its profles at equator (dEq) and poles (dN, dS), plotted along with Em, AE, Ap, 
An, and As indices. 

Source: Calabia and Jin (2017). 

differences between the GNSS-based mass density estimates and that from the NRLMSISE-00 
can be seen. These differences are mostly caused by inaccuracies in NRLMSISE-00 during the 
geomagnetic storms. The bottom panels show the agreement between densities at the perigee 
and the Em and Dst indices. A deeper analysis for this particular storm can be found in Calabia 
and Jin [2021a]. 

8.4.4 solar cycle and secular therMospheric Variations 

Long-term variations in thermospheric mass density mainly include solar cycle, LST, and annual 
fuctuations. Calabia and Jin (2016a) investigated and created an empirical model with a 13-year 
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FIGURE 8.9 GNSS-based thermospheric mass density estimates below 400 km altitude from (a) CASSIOPE’s 
precise orbits and from (b) NRLMSISE-00 during the second half of February 2014. The differences are 
shown in (c). The density estimates at the perigee are plotted with dashed lines in (d). In (e) we show the merg-
ing electric feld Em and the disturbance storm time Dst index. 

Source: Calabia and Jin (2021a). 

time series of thermospheric density estimates from GRACE GNSS precise orbits. Figure 8.10 
shows the frst PCA mode of thermospheric mass densities at 475 km altitude. The frst PCA 
mode represented 90% of the total variability, and the second and third modes provided 4% 
and 3% of the total variability. New periodic contributions were found at the frequencies of the 
radiation tides (Munk and Cartwright, 1966), revealing the strong tidal coupling driven by solar 
radiation. The resulting PCA modes were parameterized in terms of solar cycle, LST, and annual 
fuctuations to provide an empirical model capable of providing thermospheric mass densities 
in space and time. The additional fuctuations at the frequencies of the radiation tides were also 
included in the model. 

In Calabia et al. (2020), the authors tested the new thermospheric mass density model (TMDM) 
of Calabia and Jin (2016a) with 2-year data of APOD and Swarm-C estimates and studied the 
dynamic orbit propagation of the missions under different mass density input schemes and differ-
ent magnetospheric activity conditions. The results with TMDM showed similar differences in the 
dynamically propagated orbits from NRLMSISE-00 and in situ observations. Figure 8.11 shows the 
densities estimated by Swarm and GRACE accelerometers and that estimated by the new TMDM. 
In this fgure, the NRLMSISE-00 model overestimates the actual densities, while the new TMDM 
provides an unbiased solution. 
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FIGURE 8.10 Solar cycle and secular variations from the frst PCA mode of thermospheric mass density 
from GRACE GNSS precise orbits. This mode corresponds to 90% of the total variability. 

Source: Calabia and Jin (2016a). 

FIGURE 8.11 Thermospheric mass density estimates from Swarm-C and GRACE satellites (normalized to 
475 km altitude). NRLMSISE-00 and TMDM are estimated at the same locations and times along the satellite 
orbits. During this period (28 December 2015) low magnetospheric activity was recorded (Ap = 4). 

Source: Calabia et al. (2020). 

8.5 CONCLUSIONS 

The GRACE and CASSIOPE missions have shown the capability to provide high resolution non-
gravitational accelerations from GNSS precise orbits. These accelerations are very valuable for 
thermospheric mass density estimation, which is a key parameter for accurate satellite tracking and 
upper atmosphere research. The new GNSS-based density estimates are suitable to study long-term 
trends and high-frequency disturbances caused by, e.g., geomagnetic storms. 
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For the GRACE mission, the GNSS-based non-gravitational accelerations have been used to 
calibrate the accelerometers onboard GRACE and to cover accelerometers data gaps (GRACE 
accelerometers were turned off on several occasions due to power requirements). The combination 
of GNSS with accelerometer data is currently the most accurate scheme for thermospheric mass 
density estimation. GRACE GNSS precise orbits were used to calculate 13 years of mass density 
estimates, and used as input to generate an empirical model that provides better performance than 
the existing models. The residual disturbances were employed to investigate short-term variations 
in detail, globally, and at high temporal and spatial resolution. 

For the CASSIOPE mission, the onboard commercial-off-the-shelf, geodetic-grade, dual-
frequency GNSS receivers have demonstrated their full capability for thermospheric mass density 
estimation at affordable cost in a low-budget space mission. The new thermospheric mass density 
estimates from CASSIOPE GNSS receivers can describe in detail the short-term variations caused 
by geomagnetic storms. Moreover, 6 years of CASSIOPE density estimates were validated by com-
parison to the HASDM density database. The validation tests were performed at altitudes from 325 
to 425 km at intervals of 25 km. For densities above 10-12 kg/m3, the similarity of the CASSIOPE 
densities to the HASDM data set were highly signifcant, with unbiased trends, and smaller devia-
tions than that provided by the present models (e.g., NRLMSISE-00, JB2008). These results repre-
sent the validation of the frst high-resolution thermospheric mass density estimates inferred from 
commercial-off-the-shelf GNSS receivers. 

Short-term density variations caused by geomagnetic storms have shown irregular and com-
plex patterns, which vary from storm to storm. The irregular patterns seem to depend on space 
weather and several other factors, and the present models are unable to accurately represent the 
actual variability. However, we have shown that high-precision GNSS receivers can be used to 
retrieve thermospheric mass density estimates. These new data and methods are highly important 
for upper atmosphere research and applications, and for the improvement of the existing models. 
Upper atmosphere models are very important for numerous applications, including satellite track-
ing and space weather research. In the near future, GNSS-based densities may overcome the cur-
rent limitation of lack of data, and the existing upper atmosphere models will be improved with 
unprecedented details. 
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9 Estimation and Variations 
of Surface Energy Balance 
from Ground, Satellite, 
and Reanalysis Data 

Usman Mazhar and Shuanggen Jin 

9.1 INTRODUCTION 

The climate cycle is governed by the energy that the earth receives from the sun and, in response, 
sends it back in other forms of energy. This energy cycle triggered the general atmospheric circula-
tions, e.g., upper air cold fronts and jet air. Top-of-atmosphere (TOA) energy balance accounts only 
for the shortwave and longwave radiations. On the other hand, the earth’s surface energy balance 
(SEB) is the balance between the total energy coming into the earth’s surface and the energy going 
out of the surface. SEB is the principle deriving force of the earth’s climate. Global warming or 
cooling trends are observed as the response to SEB variations [1]. The impact of SEB is not only 
retained in the temperature because it is observed that global heat and hydrological cycles vary with 
the varying SEB patterns [2, 3]. 

SEB comprises radiative and non-radiative energy fuxes. The radiation balance is the prime fac-
tor in the determination of SEB. Other factors, such as biophysical and biogeochemical processes, 
play an important role in characterizing SEB. The change in biophysical parameters, e.g., clearing 
forests or changing one land cover into another, causes energy fuxes to exhibit varying patterns 
[4]. These patterns also determine the local heat and water cycle. The impact of forest and crop-
land changes has been widely studied in recent years [5–8]. The geographical distribution plays a 
signifcant role in SEB variations as varying responses of energy fuxes are observed over different 
latitudinal levels [9]. 

SEB is not only affected or controlled by the surface parameters, but the atmospheric composi-
tion and environmental constituents also infuence various surface energy fuxes. These factors 
primarily affect radiation balance and cause radiative forcing, a term used to describe changes in 
radiation balance due to an external agent such as climatic changes or anthropogenic factors. Air 
pollution is an important atmospheric parameter and an increased risk for human health as well as 
the global climate. Aerosols, fne suspended solid particles or liquid droplets, play a key role in air 
pollution and serve as radiative forcing agents. Changes in atmospheric pollutants resulted in the 
perturbations of radiation balance due to changing proportion of absorbing and scattering particles 
[10, 11]. Anthropogenic activities such as biomass burning, vehicle smoke, industrial combustion, 
and atmospheric pollution caused by power plants largely infuence the atmospheric composition 
and consequently affect radiation balance. Greenhouse gasses, especially carbon dioxide (CO2), 
methane (CH4), and nitrous oxide (N2O), are the other atmospheric constituents that signifcantly 
perturb atmospheric radiation balance [12–15]. Cloud cover is one of the most important parameters 
that defne the amount of shortwave and especially longwave radiation directed to or away from 
the earth’s surface. Longwave radiations on a cloudy day are largely different from those on a clear 
sky day. The cloud radiative effect (CRF) is a greenhouse effect that blocks the outgoing longwave 
radiations from escaping into the upper atmosphere. 

https://doi.org/10.1201/9781003363118-9
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The role of meteorological parameters in defning regional SEB is signifcant and well estab-
lished. Water vapor pressure and relative humidity (a measure of atmospheric moisture) largely 
infuenced shortwave and longwave radiations. These parameters are an integral part of estimating 
various surface energy fuxes [16]. Air temperature is often considered a measure to analyze the 
impacts of SEB variations; however, this important meteorological parameter is a fundamental 
ingredient in defning and estimating SEB [17, 18]. Air temperature also indirectly affects vary-
ing air density, which eventually perturbs regional surface energy fuxes. Another meteorological 
parameter, wind speed (also called wind velocity in literature), affects the surface energy fuxes by 
varying heat energy transportation between the surface and the nearby atmosphere. Higher wind 
speed resulted in rapid energy transformation [19]. Precipitation has two-fold indirect effects on 
SEB over any specifc region. Firstly, it increases the relative humidity, and secondly, it increases 
the soil moisture that varies the ground response to absorb or radiate thermal energy. 

A few studies highlight the interesting relationship between various geological, geophysical, and 
socioeconomic factors and surface energy fuxes. A study established a connection between water 
salinity and the evaporation rate and found its effect on surface energy fux [20]. One study ana-
lyzed the 1991 eruption at Mount Pinatubo (classifed as the second-largest volcanic eruption of the 
twentieth century) and found that it produced a large cloud of sulfur dioxide (SO2) which ultimately 
produced sulfate aerosols. Eventually, it reduced the radiation balance of the northern hemisphere 
by 4 Wm−2 [21]. A study showed that the reduced social and economic activity due to the global 
pandemic Coronavirus Disease 2019 (COVID-19) signifcantly reduced surface radiative forcing 
[10]. Before analyzing SEB’s variations, mechanisms, and impacts on climate, it is necessary to 
observe or compute various surface energy fuxes with acceptable accuracy. 

Efforts have been made for a long time to compute SEB on regional and global scales with 
acceptable accuracy. Multiple technologies and methods have been developed for this purpose. 
Observing SEB from ground-based instruments is a widely used and reliable technique. However, 
observing different surface energy parameters on a uniformly distributed scale is impossible. As 
an alternative, satellite remote sensing and reanalysis data sources are used to estimate global and 
regional SEB. Various mathematical, climatological, and physical methods have also been devel-
oped to estimate SEB. In the following sections, each component of SEB is discussed in detail frst 
and then various observation and estimation methods are described. In the fnal section, the results 
of a recent study are included as a case study of SEB estimation and analysis of variance. 

9.2 FUNDAMENTALS OF SURFACE ENERGY BALANCE 

SEB involves radiative and non-radiative fuxes, at Earth’s surface. Energy is transported between 
the surface and aloft air in radiative energy as well as other forms such as heat and evapotranspira-
tion. The principal SEB equation is written as follows: 

R GN - = SH +LE (9.1) 

where RN is net radiation, G is ground or soil heat fux, SH is sensible heat fux, and LE is latent heat 
fux. The right-hand side of Eq. 9.1 describes the available energy at the surface, while the left-hand 
side corresponds to the turbulent fuxes that involve the escaping of energy from the land surface 
to the aloft air. Eq. 9.1 follows the principle of the law of conservation of energy which is an ideal 
case. However, in real time, this principle does not hold in its absolute state. Thus, the more realistic 
form of Eq. 9.1 is: 

Q RN G SH L-= - - E (9.2) 

where Q is the heat anomaly or canopy heat storage, which is not computed in any of the energy men-
tioned above fux. It is the amount of energy stored in biomass, especially in the vegetation canopy. 
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FIGURE 9.1 Schematic diagram of surface energy balance. 

Uncertainties in the measurements of other energy fuxes also contribute to this heat anomaly and 
enlarge its real-time value. Figure 9.1 shows the schematic diagram of surface energy balance. 

Net radiation (hereafter RN), also known as radiation balance, is the balance between the down-
ward (incoming) and upward (outgoing) radiation in both shortwave and longwave spectra. It is a 
basic quantitative measure to analyze any perturbation in climate [22]. At TOA, it is often referred 
to as radiation imbalance [23]. The radiation balance is obtained between downward solar radiation, 
refected solar radiation, downward atmospherically emitted thermal radiation, and emitted thermal 
radiation from the surface. The sign convention of shortwave and longwave radiations is such that 
downward radiations are considered positive, while upward radiations are considered negative. Eq. 
9.3 describes the RN at the surface. 

d u d uR  R R R R= - + - (9.3) N S S L L 

uwhere RS
d and RS

u are the downward shortwave and longwave radiations, respectively, and Rd
L and RL 

are the upward shortwave and longwave radiations respectively. Downward solar radiation is the pri-
mary energy source for the earth and its climate. It serves as the prime governing factor for Eq. 9.3. The 
earth’s surface absorbs part of the downward solar radiation while refecting almost one third of these 
radiations. These refected shortwave radiations are termed upward shortwave radiation. From here, the 
contribution of albedo starts, which is the ratio of the refected shortwave to incident shortwave radia-
tion. Albedo is a dimensionless quantity and is often denoted by α. Thus, the upward shortwave is the 
function of albedo and downward shortwave radiation. Albedo has a range between 0 and 1. It largely 
depends upon the underlying land cover, e.g., for clear water, the albedo is less than 0.01. For fresh 
snow, it might exceed 0.9 [24]. On average planetary albedo is considered to be around 0.3 [3, 25]. 

The longwave part of Eq. 9.3 comprises thermal radiation emitted from different features of 
Earth’s climate. downward longwave are the radiations absorbed by clouds, atmospheric parti-
cles, and greenhouse gases. These radiations are emitted from the absorbing body following Max 
Planck’s black body radiation law. The clear sky longwave radiation mainly depends on air tem-
perature and atmospheric emissivity. For cloudy skies, cloud cover/fraction of clouds are the major 
contributors to the downward longwave radiation. The upward longwave radiations are the emitted 
radiations that the earth absorbed earlier in the daytime and then radiated back. It depends upon the 
surface emissivity and surface temperature. 

Figure 9.2 shows the contribution of each radiation fux in the composition of RN. Although the 
individual percentages are greater in the case of longwave radiations, the almost equal magnitude of 
downward and upward longwave radiations canceled each other’s effects. Consequently, downward 
shortwave radiations seminally dominate RN. While upward radiations are primarily controlled by 
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FIGURE 9.2 Individual radiation fux contribution in the composition of RN. Percentages are based on 
20 years of global mean data from the Cloud and Earth’s Radiant Energy System (CERES). The negative sign 
indicates the upward direction of the corresponding fux. 

land cover and surface properties, the downward radiations are affected by atmospheric composi-
tions e.g., aerosol optical depth, and concentrations of trace and greenhouse gases [10]. 

Ground heat fux (hereafter G), also referred to as soil heat fux is an ignored yet important 
parameter of the SEB equation. It is the amount of thermal energy transported within a certain soil 
area [26]. When gained, incident solar energy on the surface is stored in the underlying layers of 
soil, which is eventually released during the night or in the absence of solar energy [27]. After the 
RN, G is the available energy source for plants’ metabolism and other biogeochemical processes. It 
affects the micrometeorology of a particular region since G is responsible for the energy transfer 
process between soil and aloft air. 

Heat transforms between the layers of the surfaces through thermal conductance. The thermal 
conductivity of soils largely depends upon soil type, soil temperature, wetness or dryness of the soil, 
land cover of that particular area, and downward solar radiation. Although the surface absorbs solar 
radiation during the daytime and radiates through the night, enabling G to be near zero on a diurnal 
cycle [28], the equilibrium is disturbed seasonally. Depending upon the certain surface and solar con-
ditions, G can be comparable to or even exceeds the sensible heat fux over dry soils in the day hours 
of the summer [29]. Soils stored the least thermal energy over wet lands, moist soils, and snow cover, 
and under the canopy of the dense plants. G represents 1 to 10% of RN in the growing season. This 
percentage can be exceeded by up to 50% over barren land with almost zero canopy cover [30–32]. 

The fuxes on the right-hand side of Eq. 9.1 are often termed turbulent fuxes. The concept of sen-
sible heat fux (hereafter SH) can be understood from the isobaric process of a thermo-dynamical 
system. There is a change in the system’s temperature without changing any other parameter, e.g., 
volume, pressure, and state of matter (e.g., liquid to water). On the surface, when available energy 
from RN or G is converted into thermal or heat energy, energy transportation is termed SH. This 
transportation of energy raises the near-surface temperature. It often serves as a climate warming 
measure. The temperature difference between surface and aloft air is the transporting force that 
makes the heat travel between these layers [33]. Other factors that signifcantly infuence SH are 
wind speed and canopy height. These factors infuence aerodynamic resistance and hence alter heat 
transportation between surface and nearby air. The signifcance of SH is not only restricted to ther-
mal studies, but the global precipitation cycle and the hydrological cycle are also largely affected by 
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SH [2]. The magnitude of SH varies seasonally as well as over various land covers. For dry areas, 
it reaches the maximum and is nearly equal to the left-hand side of Eq. 9.1. For wet areas and water 
bodies, SH approaches zero. For all other land covers, SH remains between the two extreme cases 
[17]. Varying land covers resulted in the different responses of SH. Change of land cover, e.g., con-
verting the forest into crops, introduces the changes in SH. Multiple studies have been carried out 
to analyze these responses. The changes in land cover induced changes in land surface temperature 
(LST), which eventually resulted in SH variation [4, 8, 9, 34]. 

The turbulent fux other than SH is the latent heat of evaporation or latent heat fux (hereafter 
LE). LE corresponds to the transfer of energy when there is a change in the state of matter [33]. 
Evapotranspiration consists of two processes: evaporation and transpiration. Evaporation is the pro-
cess whereby liquid water changes into vapors in the presence of some external energy. Transpiration 
is restricted to plants when water in the leaves gets removed in the form of vapor through stomata. 
Evaporation and transpiration combined form evapotranspiration, occurring simultaneously [35]. 
LE is an important parameter in crop management studies and governs the micrometeorology of 
crops throughout the growing season. LE is also important for agricultural studies, such as analyz-
ing the crop cycle, crop yield, and crop water requirement. LE depends on many factors, including 
wetness and dryness of the soil, canopy cover, leaf area index, wind speed, water vapor pressure, 
and relative humidity. The magnitude of LE is higher over wetlands and fully grown canopies, and 
in contrast, approaches zero over dry, barren regions. Like SH, LE is equally responsible for the 
precipitation and humidity of the atmosphere. Higher evaporation through crop leaves increases the 
evaporative cooling and vice versa. Figure 9.3 shows the mean annual spatial distribution of surface 
energy fuxes for the year 2020. 

FIGURE 9.3 Spatial distribution of surface energy fuxes. This map shows the annual mean fuxes of 2020 
obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation 
(ERA-5) data set. 
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Climate scientists have agreed on the seminal importance of SEB for a long time and put a lot 
of effort into accurately estimating/observing various parameters of SEB. This chapter discussed 
some of the signifcant progress made in the estimation and observation of SEB including ground 
observing SEB, as well estimations from satellite remote sensing and reanalysis data. For reference, 
long-term global means that values of various surface energy fuxes are also included here from 
different data sources. 

9.3 OBSERVATION AND ESTIMATIONS OF SEB 

9.3.1 ground oBserVations oF seB 

The computation of SEB is the prime interest to climate scientists and has seminal importance for 
climate and meteorological studies. Efforts have been made for a long time in this regard. There are 
many in situ ground observational sites dedicated to observing SEB globally. The method used in 
the majority of these ground observing towers is eddy covariance [36]. It is a standardized method 
worldwide to estimate atmospheric and surface parameters. The method observes through vertical 
turbulent fuxes and target mixing ratios over each site/node. Each node represents a micrometeoro-
logical tower equipped with sensors and located over various land covers worldwide [37]. 

One of the largest ground-observing tower networks is the FLUXNET tower network, started in 
1991 and still functioning worldwide. FLUXNET observes many parameters such as air tempera-
ture, wind speed, solar and thermal radiation, LE, SH, G, atmospheric pressure, and carbon dioxide. 
FLUXNET is a network of various regional networks including, Integrated Carbon Observation 
System (ICOS), OxFLUX, AmeriFLUX, and AsiaFLUX. Each regional network is dedicated to a 
certain geographical region. ICOS primarily covers Europe, OxFLUX covers Australia and New 
Zealand, AmeriFLUX covers North and South America, and AsiaFLUX covers Asia. Each site 
or node has a specifc observational life depending upon many factors [38]. FLUXNET has two 
modes of data availability: the frst is free available data under the CC-BY-4.0 license; the other 
is the FLUXNET-CH4 community product, which is restricted to license availability. By now, 
the FLUXNET2015 database is available under the aforementioned data policy. The open-access 
data set FLUXNET2015 is a useful source of information that provides in situ SEB observations 
at hourly, daily, weekly, monthly, and annual temporal resolutions, covering 206 sites globally. 
Figure 9.4 shows the locations of available sites of the FLUXNET2015 data set. 

Another global network of ground observing stations for surface energy fuxes is the European 
Fluxes Database Cluster. The network primarily uses the eddy covariance method for fux observa-
tions. Like FLUXNET, the European Fluxes Database Cluster also provides data under restricted 
as well as public data distribution policies. 

Another ground-based wide-range network is the Solar Radiation Network (SolRad-Net), a com-
panion network of the Aerosol Robotic Network (AERONET). The network is a collaborative pro-
gram of the National Aeronautics and Space Administration (NASA) and PHOtométrie pour le 
Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU 
(PHOTONS). AERONET is intended to observe aerosol (suspended fne solid particles or liquid 
droplets) in the atmosphere but its companion network SolRad-Net is used to observe downward 
solar radiation through a pyranometer; an instrument that observes downward shortwave radiations. 
SolRad-Net is a useful ground observing network which provides ground-based quasi-real-time 
solar radiation and is widely used by the scientifc community. The solar radiation data is limited to 
specifc AERONET sites and is free to use. Table 9.1 summarizes those ground-observing networks 
that are still operational. 

Along with a wide range of continuous data-providing ground-based networks, many project-
specifc programs have been launched to understand the global and regional SEB. The observa-
tions of such programs are available for a limited time span. The Coordinated and Enhanced 
Observation Period (CEOP) was intended to understand the global hydrological and energy cycle. 
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FIGURE 9.4 Location map of FLUXNET towers included in FLUXNET2015 data. 

TABLE 9.1 
Summary of Ground Observing Networks 
Flux Observing Network Spatial Coverage Temporal Coverage Offcial Weblink 

FLUXNET Global 1991-present https://fuxnet.org/ 

AmeriFLUX North and South America 1996-present https://amerifux.lbl.gov/ 

AsiaFLUC Asia 1999-present https://www.asiafux.net/ 

OxFLUX Australia and New Zealand 2001-present https://www.ozfux.org.au/ 

ICOS Europe 2008-present https://www.icos-cp.eu/ 

European Fluxes Database Cluster Global http://www.europe-fuxdata.eu/ 

SolRad-Net Global 1992-present https://solrad-net.gsfc.nasa.gov/ 

The project was initiated under the World Climate Research Program (WCRP) in cooperation with 
the World Meteorological Organization (WMO) and Committee on Earth Observation Satellites 
(CEOS) under the framework of the Integrated Global Observing Strategy Partnership (IGOS-P). 
CEOP’s objectives include understanding monsoons, global and regional water and energy cycles, 
establishing an extensive ground observation system, and validating energy fuxes observed 
through satellite data. 

CEOP Asia-Australia Monsoon Project (CAMP) is a part of the vast CEOP project which was 
initiated to i) monitor and analyze the hydro-meteorological cycle triggered by the Asian mon-
soon, ii) monitor and analyze the observed regional energy cycle, and iii) establish an observational 
mechanism for water and energy cycles through satellites [39]. CAMP provides valuable ground 
observations for the regional energy fuxes. Another such program is Global Energy and Water 
Exchanges (GEWEX), a component of the WCRP. GEWEX was mainly initiated to model the 

https://fluxnet.org/
https://ameriflux.lbl.gov/
https://www.asiaflux.net/
https://www.ozflux.org.au/
https://www.icos-cp.eu/
http://www.europe-fluxdata.eu/
https://solrad-net.gsfc.nasa.gov/
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global hydrological cycle and analyze the energy that the earth receives. Initially, observations from 
Special Sensor Microwave/Imager (SSM/I) on board the Defense Meteorological Satellite Program 
(DMSP) were used as the base input [37–39]. 

GEWEX Asian Monsoon Experiment (GAME) is a regional program that aims to understand 
the role and signifcance of the Asian monsoon in the global hydrological and energy cycle [40–43]. 
The program consists of two phases. The frst phase was launched in 1996 and ended in 2001. This 
phase covers the Siberian, Huaihe Basin Experiment (Hubex), Tibet, and tropics regions. Phase 2 
expanded globally and studied many aspects of climate, such as land surface process, precipitation, 
and monsoon system modeling. 

9.3.2 estiMations FroM satellite reMote sensing 

Ground observations have time and space limitations despite the accurately observed surface energy 
fuxes. The ground observing stations are sparse and not linearly distributed, and cover small foot-
print areas. Also, many regions of the world have no ground observing stations. The best and most 
effective alternative to this problem is the use of satellite remote sensing data [44]. The scientifc 
community has tried to observe the earth’s energy balance through satellite remote sensing data 
since its evolution in the 1960s [3]. These efforts are ever increasing with the advent of modern tech-
nology, since with the advancement of technology, many ground observing satellites are providing 
valuable data sets related to energy fuxes. 

Multiple satellite-based sensors have been launched to monitor several parameters of the global 
energy balance. NASA’s Surface Radiation Budget (SRB) contributes to the GEWEX experi-
ment. The sensor provides 3-hourly, daily, and monthly shortwave and longwave fuxes at TOA 
and surface levels. Its operation time spans from 1983 to 2007. SRB uses International Satellite 
Cloud Climatology Project (ISCCP) data for input. A subproject of the GEWEX Baseline Surface 
Radiation Network (BSRN) is used to validate SRB data. 

In 1984, NASA started an Earth Radiation Budget Experiment (ERBE) project and launched 
three satellites, Earth Radiation Budget Satellite (ERBS), National Oceanic and Atmospheric 
Administration NOAA-9, and NOAA-10. This multi-satellite experiment was aimed to estimate the 
earth’s radiation balance [45]. ERBS provides monthly solar irradiance data at 2.5° resolution. The 
satellite provided continuous data from 1984 to almost 1990 [46]. 

After the discontinuity of ERBS, NASA initiated another project and launched Clouds and the 
Earth’s Radiant Energy System (CERES), which started observing data in March 2000. CERES’s 
sensor is mounted on Terra, Aqua, Suomi National Polar-Orbiting Partnership (S-NPP), and NOAA-
20 satellites [47]. Each CERES product measures fltered radiances in shortwave from 0.3 to 5.0 
µm, a window from 8 to 12 µm, and a total from 0.3 to 200 µm wavelengths [48]. Radiance-to-
fux conversion uses empirical distribution models [49]. CERES provides accurate and continuous 
instantaneous, daily, and monthly data at TOA and surface level at 1° resolution. CERES global 
coverage and accurate observations of shortwave and longwave radiation enable this satellite to be 
widely used in the scientifc community [47, 48]. 

CERES Energy Balance and Filled (EBAF) is a level 3b product that provides monthly TOA and 
surface radiation fuxes. EBAF provides continuous data, since March 2000 to date. Apart from 
downward/upward shortwave and longwave fuxes, this product also provides cloud radiative effects 
and other cloud parameters such as cloud area fraction, cloud visible optical depth, cloud effective 
pressure, and cloud effective temperature. The radiation fuxes from EBAF are available for all sky, 
clear sky for cloud-free areas, and clear sky for total regions. downward shortwave and longwave 
radiation fuxes are accurate up to 4 Wm−2 and 6 Wm−2 respectively [47, 50]. Figure 9.5 shows the 
two decadal (2001–2020) global mean values of downward/upward shortwave and longwave radia-
tion fuxes computed from CERES EBAF data. 

CERES synoptic TOA and surface fuxes and clouds (SYN1deg) level 3 product provides data 
at hourly, 3-hourly, daily, and monthly temporal resolution. SYN1deg product provides TOA and 
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FIGURE 9.5 Mean global surface downward/upward shortwave and longwave fux. These values are com-
puted from 20 years (2001 to 2020) of CERES EBAF data. Values are shown in Wm−2. Negative values cor-
respond to the upward radiation fuxes. 

surface initial and computed fuxes along with various surface parameters including solar zenith 
angle, elevation above sea level, ocean fraction coverage, and snow/ice percent coverage. Both EBAF 
and SYN1deg are widely used reliable sources for shortwave and longwave radiation fuxes. Another 
level 3 product, cloud type histogram (CldTypHist) is a monthly CERES product that provides 
various cloud and meteorological parameters at 1° spatial resolution. CldTypHist replaces CERES’s 
International Satellite Cloud Climatology Project (ISCCP) product. Other CERES products are the 
single scanner footprint (SSF) level 2, SSF1deg level 3, fux by cloud type (FluxByCldTyp) level 3, 
fast longwave and shortwave fux (FLASHFlux), etc. 

Next on the list is the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a 
multispectral sensor aboard Terra (EOS AM-1) and Aqua (EOS PM-1). Southward Terra orbit is 
designed to pass zenith at 10:30 AM and Northward Aqua orbit passes zenith at 01:30 PM local 
time. MODIS acquires data in 36 spectral bands with spatial resolution ranging from 250 m to 
1 Km. MODIS is not a SEB-centric sensor, but it observes through multiple wavelengths ranging 
from shortwave to longwave, including window regions. Various scientifc teams have developed 
multiple products of MODIS such as albedo, LST, surface emissivity, and evapotranspiration, which 
are widely used to estimate surface fuxes [51–54]. MODIS products are a reliable source of infor-
mation and are widely used in recent literature [51]. 

Surface albedo is the ratio between incidents and the refected SW radiation. MODIS’s albedo 
product series MCD43 provides reliable albedo data. These product series compute albedo from 
MODIS bands 1 to 7, including three broad bands, visible (0.3 to 0.7 µm), near-infrared (0.7 to 
5.0 µm), and SW (0.3 to 5.0 µm). It contains directional hemispherical refectance (direct or black 
sky albedo) and bi-hemispherical refectance (diffuse or white sky albedo). Blue sky albedo is the 
overall refectance effect of SW radiation and can be computed as a function of white sky and black 
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sky albedo [55, 56]. Blue sky albedo corresponds to the ratio of black sky and white sky albedo, as 
the actual albedo range lies between these two extreme cases. The use of both black and white sky 
albedo for the computation of shortwave radiation fux is evident in recent literature [9]. The high-
quality MODIS albedo product is accurate within 5% at local solar noon [57]. 

LST and surface emissivity are two essential parameters for computing upward longwave radiation. 
In this study, MODIS provides MCD11 product series for LST and emissivity data on the instanta-
neous, daily, 8-day, and monthly time scale. MODIS LST and emissivity products used a generalized 
split-window algorithm to obtain LST values. Collection 6 LST product is validated against various 
land cover sites and reported an average standard deviation error of 0.5 K [58]. A study conducted 
over Tibet validated MODIS LST and emissivity products using ground-based measurements at a 
semi-desert site in western Tibet [59]. Emissivity is a dimensionless quantity representing the ratio of 
thermal energy radiating from a surface to that radiating from a black body. MODIS LST and emis-
sivity products provide emissivity from various narrow bands in the middle and thermal infrared 
spectrum from MODIS bands 29 (8.4 to 8.7 µm), 31 (10.78 to 11.28 µm), and 32 (11.77 to 12.22 µm) 
[52, 58]. The classifcation-based emissivity method is used to obtain emissivity [60, 61]. 

Combined MODIS product MCD18 is a set of data products that provide 3-hourly and daily 
downward shortwave radiation and photosynthetically active radiation (PAR) at 5 km and 0.05° spa-
tial resolution [62]. Basic input parameters are TOA refectance, surface refectance, geo-location 
data, surface albedo, total column water vapor, and surface elevation [63]. Refectance parameters 
are obtained from various MODIS products, Modern-Era Retrospective Analysis for Research and 
Applications (MERRA), and GTOPO30 DEM. 

For the LE estimation, a widely used satellite product is the MODIS 8-day evapotranspiration 
and LE product (MOD16A2) at 500 m resolution. The product is based on a modifed Penman-
Monteith method; the modifed version of the method involves several parameters, including 
saturated water vapor pressure, available energy in the form of RN, air density, the specifc heat 
capacity of air, aerodynamic resistance, and surface resistance. Saturated water vapor pressure can 
be obtained from air temperature [64]. Mu et al. [65, 66] used the MODIS remote sensing products 
of Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), land cover, 
albedo, and NDVI, with tower observations for meteorological data inputs. Obtained results were 
tested against eddy covariance fux towers from the AmeriFLUX network. The mean absolute error 
of daily MODIS ET was observed as 0.33 mm day−1. This product has a limitation that it does not 
provide LE values over barren lands. 

Global Land Surface Satellite (GLASS) is a product suite that provides various parameters 
including broadband albedo, broadband emissivity, downward solar radiation, RN, and evapotrans-
piration based on multiple satellite data sets and look-up table methods. GLASS provides long-term 
(1982–2018) data on spatial resolutions of 250 m, 500 m, 1 km, 0.1°, 0.25°, and 0.05° [23, 67, 68]. 
Another algorithm suite, the Global Land Evaporation Amsterdam Model (GLEAM), is dedicated 
to providing global evapotranspiration and soil moisture data [69, 70]. Table 9.2 summarizes the 
remote sensing data sources that are mentioned in this section. 

TABLE 9.2 
Summary of Satellites That Provide SEB Parameters 
Sensor Parameters Spatial Resolution Temporal Resolution Temporal Coverage 

SRB Radiation 1° 3 hourly, daily 1983–2007 

ERBS Radiation 2.5° monthly 1984–1990 

CERES Radiation 1° Hourly, daily, monthly 2003–present 

MODIS Radiation, LE, albedo, LST, 250 m, 500 m, 1 km, Instantaneous, daily, 8-day, 2000–present 
emissivity, LE 5 km, 0.05° monthly, annual 
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9.3.3 estiMations FroM reanalysis data 

Apart from ground observations and satellite remote sensing data, another option for the SEB 
observations/estimations is reanalysis data. Reanalysis data is the combination of observations and 
numerical models that simulate any particular parameter. Reanalysis data sets provide long-term, 
continuous climatic parameters on a global scale. Various reanalysis data sources provide reli-
able and widely used products of surface energy fuxes. Japanese 55-Year Reanalysis (JRA-55) is 
a project conducted by the Japanese Meteorological Agency (JMA) that provides a wide range of 
atmospheric parameters. The 55-year project was completed from 1958 to 2013, and since then it 
provides data on a continuing real-time basis to date. 

The European Centre for Medium-Range Weather Forecasts (ECMWF) under the Copernicus 
Climate Change Service (C3S) provides a long-term reanalysis data set ECMWF Reanalysis 5th 
Generation (ERA5). ERA5 provides highly accurate hourly data at a spatial resolution of 31 km 
compared to the other reanalysis sources [69, 71]. Along with many other meteorological, atmo-
spheric, and surface parameters, ERA5 provides hourly and monthly surface radiation fux, SH, and 
LE data at 0.1° spatial resolution from 1950 to date which is available online at https://cds.climate. 
copernicus.eu/#!/home. ERA5 replaces another ECMWF product ERA-Interim whose temporal 
coverage is from January 1979 to August 2019. ERA-Interim provides monthly data four times a day 
at a spatial resolution of almost 80 km. 

A reanalysis data set was developed by the National Centers for Environmental Prediction (NCEP) 
and the National Center for Atmospheric Research (NCAR), known as NCEP/NCAR reanalysis, one of 
the longest reanalysis records from 1948 to the present. The data is available online through the National 
Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory (PSL) (https://psl. 
noaa.gov/data/gridded/data.ncep.reanalysis.html). The data is available on multiple pressure levels, at 
4 times daily, daily, and monthly temporal resolutions. The products are also available after various 
statistical operations e.g., anomalies, monthly mean, long-term mean, and standard deviation. Figure 9.6 

FIGURE 9.6 Thirty years (1991–2020) global mean energy fuxes. All values are in Wm−2 and computed 
directly from the NCEP/NCAR long-term mean product of the corresponding energy fux. Energy fuxes pro-
vided in this product cover the whole earth including ocean and land surface. 

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://psl.noaa.gov
https://psl.noaa.gov
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TABLE 9.3 
Summary of Available Reanalysis Data for Surface Energy Fluxes 
Product Provided By Spatial Resolution Temporal Resolution Temporal Range 

JRA-55 JPA 1.25°´1.25° Monthly 1958–present 

ERA-5 ECMWF 0.1°o´0.1°o Hourly, monthly 1950–present 

ERA-Interim ECMWF 80 km 4 times a day, monthly 1979–2019 

MERRA-2 GMAO 0.625°´0.5° 1980–present 

NCEP/NCAR NCEP, NCAP 2.5°´2.5° 4 times a day, daily, monthly 1948 

shows the long-term (1991–2020) global mean of RN, G, SH, and LE obtained from NCEP/NCAR data. 
Table 9.3 summarizes the reanalysis data sources that are mentioned in this section. 

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) 
is a project by the Global Modeling and Assimilation Offce (GMAO), NASA. MERRA-2 provides 
various climatic parameters on 0.625°´0.5° (longitude by latitude) spatial resolution. The temporal 
range of MERRA-2 is from 1980 to the present on a global scale. MERRA-2 assimilation scheme 
includes the Goddard Earth Observing System (GEOS) model and analysis scheme to provide long-
term, wide-range, and accurate data [72]. The MERRA-2 data are available online through the 
Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (http://disc.sci.gsfc. 
nasa.gov/mdisc/). 

9.3.4 estiMations FroM seB algorithMs 

Apart from remote sensing and reanalysis products of surface energy fuxes, many estimation meth-
ods and algorithms have been developed to estimate these fuxes. A few signifcant and widely used 
studies are discussed in this section. Bastiaanssen et al. [17] developed the widely used Surface 
Energy Balance Algorithm for Land (SEBAL). SEBAL uses remote sensing data from visible and 
thermal infrared radiations, along with a few meteorological parameters such as wind speed, humid-
ity, and air temperature. The algorithm was developed for clear sky conditions only and deals with 
a variety of land covers from barren land to wetlands even with no vegetation cover. In the SEBAL, 
LE is estimated as the residual of the SEB as:; 

d -1LE = , ,e s e S d )f(a ,RS ,T ,G,z0m ,KB ,n ,L, T  (9.4) a 

where α is albedo, RS
d  is the downward shortwave radiation, es is surface emissivity, ea is atmospheric 

emissivity, Ts is LST, G is ground heat fux, z0m is surface roughness length for momentum transfer, 

KB-1 is the relation between surface length for momentum transfer with that of heat transfer, u is 
friction velocity, L is the Monin-Obukhov length, and δ T is the near-surface vertical air temperature 
difference. SEBAL also proposed a novel empirical parameterization for estimating G that is widely 
used in the later literature. SEBAL was tested and validated using the Landsat thematic mapper over 
various locations and ground observations such as the large-scale feld experiments EFEDA (Spain), 
HAPEX-Sahel (Niger), and HEIFE (China) [73]. The evaporative fraction produced by SEBAL was 
compared with the ground-observed evaporative fraction. The results show an RMSE of 0.1 to 0.2 
only. SEBAL was also used for vast evapotranspiration mapping using MODIS data [74]. 

Roerink et  al. [75] proposed an algorithm called Simplifed Surface Energy Balance Index 
(S-SEBI). The model was developed using LANDSAT-TM data and verifed against the ground 
observations of a feld experiment over Piano de Rosia in Tuscany (Italy) in August 1997. They 
estimate surface downward longwave radiation using an empirical relation based on downward 
longwave radiations at TOA. The main feature of the algorithm is that it estimates surface turbulent 

https://disc.sci.gsfc.nasa.gov
https://disc.sci.gsfc.nasa.gov
https://1.25��1.25
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fuxes using evaporative fraction, which was computed using the extremes temperature. The two 
extremes were classifed as TλE for wet pixels (H = 0) and TH for dry pixels (LE = 0). The word 
“simplifed” in the name of the algorithm S-SEBI specifes that TλE and TH can be measured from 
the remote sensing image itself, and this would be possible when the whole scene has uniform 
atmospheric conditions and wet and dry pixels are available in the suffcient quantity. The validation 
process showed the accuracy of estimated evaporative fractions within 8% [75]. 

Su [18] developed the Surface Energy Balance System (SEBS) algorithm. SEBS proposed a new 
parameterization for estimating evaporative fractions. This study also discriminates between the 
atmospheric boundary layer (ABL) and the atmospheric surface layer (ASL). The latter was defned 
as the bottom 10% of the former. The algorithm was tested using the data collected from the cotton 
felds, shrubs, and grasslands and one remote sensing data from the EFEDA experiment that uses 
the thematic mapper simulator (TMS-NS001) [76]. 

Allen et  al. [77] proposed an algorithm for evaporation mapping based on the energy bal-
ance method. The algorithm was named Mapping Evapotranspiration at High Resolution with 
Internalized Calibration (METRIC). The method used satellite remote sensing images as the input 
data. This method inherited the basic concept of the near-surface temperature gradient as the func-
tion of radiometric surface temperature from SEBAL developed by Bastiaanssen et al. [17]. The 
internal calibration enhanced the applicability of this method by eliminating the need for an esti-
mated surface temperature; air temperature also reduces the impacts of surface roughness. A sig-
nifcant feature of this study is that they consider the special case of the hilly/mountainous regions 
and developed elevation-specifc methods for some of the parameters. 

The method was verifed using MODIS and LANDSAT images, a digital elevation model, and 
feld observations of meteorological parameters. The method was primarily developed and vali-
dated to generate evapotranspiration maps on various temporal scales. A few disadvantages were 
reported by the authors: the requirement of high-quality and fne temporal data (hourly data), and 
of a trained operator that can handle the spatial images and correctly select the appropriate wet 
and dry pixels. A dedicated toolbox named METRIC-GIS for the ArcGIS software was developed 
and deployed by Ramírez-Cuesta et al. [78]. The tool was tested against the semi-arid environmen-
tal conditions of a region in southern Spain. The tool gives 100% accurate results (R2 = 1) when 
compared to METRIC results. 

The Penman-Monteith evapotranspiration equation is a method evolved from two studies by Penman 
[79] and Monteith [80]. Eq. 9.5 presents the mathematical form of the Penman-Monteith method. 

D(R - G +  C (r e - e ) / r  N ) P s a aET = (9.5) 
rs( + (1D g + ))
ra 

where D is the slope of the saturation vapor pressure vs. temperature curve; ρ is air density; CP is the 
specifc heat of dry air; es is the saturation vapor pressure of the air; ea is the actual vapor pressure 
of the air; ra is aerodynamic resistance; rs is a bulk surface resistance; and G is the psychrometric 
constant. The equation is used and modifed by United Nations (UN) Food and Agriculture Organi-
zation (FAO) [81]. The modifed Penman-Monteith equation for reference evapotranspiration (ETo) 
is presented in Eq. 9.6 in which all other parameters are the same as defned for Eq. 9.5 and u2 is the 
wind speed at a 2-meter height [35]. 

0.408D( R - G +g 900 u (e - e )N ) 2 s aT +  273 ET = (9.6) o D+ (1+0.34u )g 2 

Priestley-Taylor evapotranspiration is a modifed version of the Penman-Monteith equation. In 
the Priestley-Taylor equation, they eliminated the feld requirement (e.g., surface roughness) and 
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introduced a new constant α [82]. The equation is a simpler version of the Penman-Monteith equa-
tion. Eq. 9.7 presents the actual Priestley-Taylor equation. 

sPE=a (R-G) (9.7) 
s+g 

where PE is potential evapotranspiration; s is the slope of the saturation vapor density curve, and α is 
the model coeffcient. In the original study, α was assigned the value of 1.26 [83]; however, the origi-
nal study mentioned that the value of the coeffcient α may vary according to the moisture conditions. 

9.4 SURFACE ENERGY FLUXES AND VARIATIONS 

In the previous sections, we discussed various data sources for the observations/estimations of sur-
face energy fuxes. Then, a few SEB estimating algorithms were described that were developed and 
applied in the recent literature. In this section, we present the summary of a recently published study 
that estimated SEB and analyzed its long-term variations over the Tibetan Plateau or simply Tibet 
(hereafter TP). This study was recently published [51] by the authors of this chapter. This study 
analyzed variations of SEB from 2001 to 2019, while input parameters were obtained from various 
data sources including CERES, MODIS, and ERA5. CERES’s downward shortwave and longwave 
products were used along with the albedo, emissivity, LST, and LE products obtained from MODIS 
to estimate surface energy fuxes. For reanalysis data, the ERA5 product generated by ECMWF was 
used. Selective and most related results of the published article are added here. 

TP is one of the largest ice reservoirs and is referred to as the third pole of the world [1]. Due to 
its vast area and exceptional height (>4000 m above mean sea level), it plays a major role in shaping 
the regional climate especially for the east and south Asian monsoon [2, 3]. TP is a climate-sensitive 
region with different climate change behavior from the surrounding regions [4, 5]. According to 
some studies, the warming rate of TP is 0.3°C per decade, which is more than any other part of the 

FIGURE 9.7 Administrative and land cover map of the Tibetan Plateau (TP). The land cover map is pre-
pared from MODIS MCD12C1 data; 17 IGBP land cover classes are reclassifed and merged into 7 major land 
covers in TP; insight shows the elevation map of TP using SRTM30 data set (download from https://earthex-
plorer.usgs.gov/) and locations of FluxNet tower sites. 

Source: Figure courtesy of Mazhar et al. [51]. 

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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world. This affects permafrost and snow melting in TP. Eventually, freshwater reservoirs deplete at 
an alarming rate. Moreover, any change in the uplifted land affects the Asian monsoon upon which 
millions of people and thousands of hectares of crops depend [1, 2, 4, 6–8]. The major land cover of 
TP is grasslands that cover approximately two thirds of the total TP followed by deserted barren lands 
which cover approximately 14% of TP [84]. As an enormous uplifted land parcel, TP hugely impacts 
Asian monsoon and local climatic conditions. The area is highly affected by climate change and high 
solar radiation activity [85, 86]. Thus, the SEB analysis is important to understand its regional cli-
matic phenomena. Figure 9.7 shows the elevation, land cover, and administrative map of TP. 

9.4.1 estiMation oF surFace energy Fluxes 

The frst step is the estimation of various surface energy fuxes. The downward shortwave and long-
wave radiations were obtained from the CERES EBAF monthly product. For upward shortwave 
radiation Eq. 9.8 was used in which α is the albedo obtained from the MODIS MCD43C3 product, 
while for upward longwave radiation, Eq. 9.9 is used in which emissivity (e) and LST (T) were 
obtained from the MODIS MOD11C3 product, and s is the Stephan Boltzmann’s constant (5.67 ´ 
10−8 Wm−2. K−4). Also, by replacing upward shortwave and longwave radiations values in Eq. 9.3, 
RN was computed as through Eq. 9.10. 

d
S 

d
S 

u
SR R 

Ru =seT 4 (9.9) L 

R ) 

(9.8) =a 

NR = ( d
SR d

LR seT 4 )+ ( (9.10) -a -

LE was obtained from the MODIS MOD16A2 product. G can be ignored over large temporal 
durations since it has a very small amplitude compared to other energy fuxes. Moreover, it is bal-
anced to zero over the annual cycle [28]. Thus, the remaining energy fux SH was computed as the 
residual of energy balance. By replacing all the corresponding values and rearranging Eq. 9.1, SH 
was computed as: 

d d dSH = {(R -a R )+(R -seT 4 )}- LE (9.11) S S L 

Along with the estimated energy fuxes using remote sensing data, the study also used the same 
fuxes, i.e., RN, SH, and LE obtained from ECMWF ERA-5 data, and then compared the validation 
results and variation outputs from the data sources. 

9.4.2 Validation oF surFace energy Fluxes 

Before the analysis of SEB, frst the accuracy of data as well as method shall be verifed. For this 
purpose, FluxNet tower observations were used. Figure 9.8 describes the relationship between satel-
lite, ERA5, and in situ ground observations. Linear regression slope (LRS), Pearson’s correlation 
coeffcient (r-value), mean bias error (MBE), and mean absolute error (MAE) were used to check 
the accuracy of satellite and ERA5 data. Table 9.4 provides a summary of statistical analyses for the 
validation of SEB parameters. It is noteworthy that the signifcance of the correlation values (r-value 
and LRS) was obtained at a 95% confdence level. Any value which did not satisfy this condition is 
mentioned as insignifcant. 

RN observations from satellite and ERA5 data sets are 99% signifcant with r-values of 0.87 and 
0.88, respectively. All four statistical indicators validate the accuracy of the RN from both data sets. 
LE values are 99% signifcant and show very less MBE −0.03 and 5.55 Wm−2 and MAE 18.98 and 
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FIGURE 9.8 Correlation of satellite and ERA5 data with FluxNet observations. Red line describes the 
linear regression (LR) slope. Each black dot corresponds to a mean monthly value of surface energy budget 
(SEB) parameters measured in Wm−2. 

Source: Figure courtesy of Mazhar et al. [51]. 

TABLE 9.4 
Validation Statistics of Satellite and ERA5 Data with Respect to FluxNet Observations 
Statistical Analysis RN (Wm−2) LE (Wm−2) SH (Wm−2) 

ERA5 satellite ERA5 satellite ERA5 satellite 

LR Slope 0.91** 1.19** 0.75** 0.35** 0.75* 1.49 

Pearson’s r 0.88** 0.87** 0.86** 0.79** 0.81* 0.63 

MBE (Wm−2) 20.53 0.33 5.55 −0.37 13.19 −21.8 

MAE (Wm−2) 26.39 30.03 11.59 18.98 18.93 62.85 

Note: For LR slope and Pearson’s r, ** describes 99% signifcance while * describes 95% signifcance. Without * values are 
insignifcant. 

Source: Table courtesy of Mazhar et al. [51]. 

11.59 Wm−2 for satellite and ERA5 data, respectively. The LR slope value of satellite LE is the only 
indicator showing a weak relationship with FluxNet observed LE. However, based on the other 
three statistical parameters, the accuracy of satellite LE is established. For SH, ERA5 observations 
are validated from 95% signifcance with 0.81 r-value and 13.19 and 18.92 Wm−2 MBE and MAE, 
respectively. Satellite observed SH is insignifcant (less than 95% signifcance level). Although the 
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slope value is very high (1.49), yet the low r-value 0.63, and very high MAE 62.85 Wm−2, make this 
parameter less accurate. 

9.5 VARIATIONS OF SEB 

9.5.1 spatio-teMporal analysis 

For spatio-temporal trends of SEB over TP, the Mann-Kendall (MK) trend test was performed on 
mean annual raster images of RN, LE, and SH obtained from satellite and ERA5 data. The results of 
MK tau (t) values are shown in Figure 9.9. Positive values (in green and blue) represent increasing 
trends while negative values (in red and yellow) represent a decreasing trend. RN shows a positive 
trend in east and southeast TP in satellite and ERA5 data. Major land covers in these regions are 
forest and shrub lands as shown in Figure 9.7. A few pixels in southeast TP show more increasing 
trends (trend values between 0.5 and 1) in ERA5 data while such an increasing trend is not observ-
able in satellite data. The central regions of TP exhibit a decreasing trend in both data sets. For 
spatio-temporal trends in the east, southeast, and central TP, satellite and ERA5 data are approxi-
mately in agreement, but the upper region, the northern part of TP, shows an opposite trend from 
both data sets. In ERA5 data, these regions show an increasing RN trend, with positive MK t values, 
but satellite RN exhibits a decreasing trend (<0 trend values). The major land cover in northern TP is 
barren land. An overall net positive spatio-temporal trend is dominant in the entire TP. 

LE shows an increasing trend in both data sets, especially satellite LE exhibits a highly increas-
ing trend (MK t values approaching 1) in northeast TP. From satellite LE the only decreasing trend 
is observed in the central region of TP. One limitation of the MODIS LE product is that the product 
does not produce any values for barren lands; thus, the northern part of TP cannot be observed from 
satellite LE data, while ERA5 data covers the whole region. In ERA5 LE, a few regions from the 
northeast and southwest exhibit decreasing trends. The main contradiction is observed in the north-
east where satellite LE shows a prominent increasing trend (0.5 to 1 trend value). In contrast, ERA5 
LE shows a decreasing trend (−0.5 to 0 trend values). Overall, both data sets observe a signifcant 
increasing trend for LE. The limitation of LE data from the MODIS product prolongs SH since Eq. 
9.11 was used to calculate SH. SH shows the only visibly negative trend amongst all SEB param-
eters. From satellite SH a minor increasing trend in east and central regions of TP is observed, while 
from ERA5, east, northwest, and a few central regions of TP show increasing trends. In satellite SH 

FIGURE 9.9 Spatio-temporal trends of RN, LE, and SH from ERA5 and satellite data using MK τ value. 
Negative values (red and yellow) correspond to the decreasing trend while positive values (green and blue) 
correspond to the increasing trend; white regions in satellite LE and SH are the missing values. 

Source: Figure courtesy of Mazhar et al. [51]. 
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some regions from the northeast and southwest show a signifcant decreasing trend (−1 to −0.5 trend 
values). In ERA5 SH, such low trend values are not observed. 

9.5.2 teMporal analysis 

For temporal analysis, mean annual aerial averages of RN, LE, and SH were computed over TP. 
On these aerial averages, LRS and Sen’s slope (SS) were computed on a decadal scale and for the 
whole study duration (2001–2019). These slope values were calculated at a 95% confdence level. 
Figure 9.10a, c and e show the ERA5 RN, LE, and SH trends, while Figure 9.10b, d, and f show the 
satellite RN, LE, and SH temporal trends. LRS lines for decadal trends (2001–2010 and 2011–2019) 
are shown in blue while temporal trends from 2001–2019 are shown in the red line. Table 9.5 sum-
marizes the temporal trend values of the LRS and SS. Decadal trends of ERA5 RN show negative 
trends in both LRS and SS for both decades. However, when the temporal trend is computed for 
complete study duration (2001–2019) LRS and SS show increasing trends with the value of 0.01 and 
0.02, respectively. For satellite RN, temporal trends for each decade as well as for total study dura-
tion show an increasing trend. The overall temporal trend for satellite RN from LRS and SS is 0.01 
and 0.03, respectively. Temporal trends of RN from satellite and ERA5 data are in agreement for 
total study duration and show a nominal increasing trend. 

For LE, all trends, including the decadal scale and for the total study duration from both 
data sets, show increasing trends in both statistical slopes. However, ERA5 LE shows an overall 
minor increasing trend with the LRS and SS value of 0.03, but for the same duration, satellite LE 
exhibits 0.25 LRS and SS values which exhibit the prominent increasing trends. For the decadal 
scale, satellite LE shows the more increasing temporal trend for the second decade (2011–2019). 
This effect is more pronounced in ERA5 LE in which the second decade shows a prominently 

FIGURE 9.10 Temporal variation of RN, LE, and SH based on aerial average over TP. (a), (c), and (e) rep-
resent trends observed from satellite data while (b), (d), and (f) represent trends observed from ERA5 data. 
Decadal trends are shown in blue and the overall temporal trend from 2001–2019 is shown in red. 

Source: Figure courtesy of Mazhar et al. [51]. 
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TABLE 9.5 
Decadal and Total Temporal Trends of RN, LE, and SH from ERA5 and Satellite Data Sets 

ERA5 Satellite 

LRS SS LRS SS 

RN 2001–10 −0.06 ±0.1 −0.04 0.15 ±0.2 0.007 

2011–19 −0.005 ±0.2 −0.03 0.08 ±0.2 0.18 

2001–19 0.01 ±0.05 0.02 0.01 ±0.08 0.03 

LE 2001–10 0.02 ±0.7 0.02 0.24 ±0.1 0.19 

2011–19 0.15 ±0.08 0.15 0.29 ±0.1 0.25** 

2001–19 0.03 ±0.02 0.03 0.25 ±0.05 ** 0.25** 

SH 2001–10 −0.09 ±0.9 −0.05 0.04 ±0.2 0.11 

2011–19 −0.16 ±0.2 0.006 0.02 ±0.2 0.15 

2001–19 −0.02 ±0.05 0.005 −0.18 ±0.08 * −0.18* 

Note: LRS and SS are used for temporal trend analysis. ** describes p-value <0.01 while * describes p-value <0.05 at a 95% 
confdence level. The values after ± are standard errors in LRS. 

Source: Table courtesy of Mazhar et al. [51]. 

increasing temporal trend (LRS and SS value 0.15) with respect to the frst decade (LRS and SS 
value 0.02). 

SH shows the mixed decadal and overall temporal trends from both data sets. In the LRS, ERA5 
SH shows a continuously decreasing trend for all the temporal durations. Overall, the ERA5 LRS 
value is −0.016, which exhibits a weak decreasing trend. In the SS, the frst decade of ERA5 SH 
shows a decreasing trend. In contrast, the second decade shows a very weak increasing trend. For 
the total duration, the SS value for ERA5 SH is 0.005, exhibiting a weak increasing trend. For satel-
lite SH, LRS values for the frst and second decade are 0.04 and 0.02, respectively, and for SS, these 
values are 0.1 and 0.14, respectively. All these four values exhibit a weak but increasing trend. For 
the total study duration, both LRS and SS values are −0.18, which exhibits a weak negative trend. 
Increasing decadal temporal trends but decreasing trends over a longer duration signify the impor-
tance of SEB analysis over a longer duration. 

9.6 SUMMARY AND PERSPECTIVE 

The earth’s energy balance controls global atmospheric circulation and the climatological cycle. 
While in its simplistic form at TOA where only shortwave and longwave radiations are involved, 
energy balance is a complex phenomenon at the earth’s surface. SEB comprises radiative and 
non-radiative energy fuxes. The radiative part of SEB includes downward and upward shortwave 
and longwave radiation, while the non-radiative part includes other energy fuxes viz. G, SH, 
and LE. At the surface, several factors are involved in determining SEB, including atmospheric, 
meteorological, biophysical, and biogeochemical factors. Also, anthropogenic activities effects 
largely on SEB. Land cover change, deforestation, thawing of permafrost, melting of glaciers, 
greenhouse gas emissions, and rapid urbanization are the signifcant factors responsible for SEB 
variations. It was also observed that the response to these changes on SEB is different on various 
latitudinal levels. 

The accurate estimation and observation of SEB is an integral requirement to understand global 
and regional climate. This chapter summarizes various progress made in the observations/estima-
tions of SEB. Various global ground observing networks, e.g., FLUXNET provide accurate and 
valuable SEB data using the eddy covariance method. FLUXNET is also referred to as the network 
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of networks because it includes many regional networks such as AmeriFLUX, AsiaFLUX, ICOS, 
and OxFLUX. Since the ground observing stations have the limitation that they cannot evenly cover 
the whole earth, an effective alternative is satellite remote sensing data. Since the evolution of space 
technology, climate scientists have initiated many projects/missions to observe SEB from space. 
This chapter discussed SRB, ERBS, CERES, and MODIS as signifcant data-providing sources 
for SEB. Whereas CERES provides large-scale radiation data at TOA and surface level, MODIS 
provides many parameters that help estimate SEB with acceptable accuracy. A few satellite-based 
data suites are also available to provide global long-term radiation and LE data, e.g., GLASS and 
GLEAM. While the ground observing stations are limited to certain point locations, satellite data 
sources are limited to the satellite technology that has evolved a few decades ago. Reanalysis data 
is another suitable option to estimate/compute long-range SEB data. Various well-established and 
widely used reanalysis data products such as ERA-5, MERRA-2, JRA-55, and NCEP/NCAR are 
valuable SEB data. Each reanalysis data product uses a different algorithm for the SEB estimation 
and hence differs in the outputs. 

With the advent of complex fux observing instruments, modern space technology, and more 
sophisticated computing algorithms, today we have fairly clear knowledge about Earth’s energy 
balance. However, the complex and multi-dimensional climatic processes are yet to be explored 
in deeper detail. As discussed, each observing/estimating method/technology has its own limita-
tion. Also, it is observed that no two data sources provide the same fux values due to the different 
sources of input parameters and used algorithms. Consequently, defnite energy fux values are 
not available. Also, the effects of abrupt anthropogenic activities on energy fuxes are complex in 
nature and need detailed research. Thus, with the evolution of human knowledge, new aspects of 
energy fuxes and their infuencing factors are analyzed every day. While scientists have covered a 
long distance, there is still a long way to go to understand the earth’s climate for which cutting-edge 
technology and mathematical sophistication are required. 
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10 Aboveground Carbon 
Dynamics from SMOS L-Band 
Vegetation Optical Depth 

Lei Fan and Jean-Pierre Wigneron 

Aboveground biomass (AGB) is an important proxy for productivity, carbon sequestration and car-
bon balance capacity in terrestrial ecosystems. Accurate estimation of AGB in terrestrial ecosys-
tems is fundamental for quantifying carbon emissions and removals due to land use and climate 
change. Remote sensing is poised to advance the mapping of vegetation structure and quantify the 
stocks and changes of aboveground carbon (AGC) in vegetation. Vegetation optical depth (VOD), 
retrieved from passive microwave satellite observations and related to the water content of vegeta-
tion mass, offers opportunities for monitoring the AGC dynamics due to its key features. In this 
chapter, the new VOD product, hereafter L-VOD, has been produced using low-frequency (L-band, 
1.4 GHz) microwave observations from the Soil Moisture and Ocean Salinity (SMOS) satellite. 
Spatial changes in AGC are derived from the L-VOD product over 2010–2017 across the pantrop-
ics. The L-VOD data set allowed us to gain new insights into the dynamics of tropical AGC and 
the co-variation with climate, anthropogenic forest cover disturbances and changes in the global 
atmospheric CO2 concentration. 

10.1 INTRODUCTION 

Aboveground biomass (AGB), defned as the total amount of aboveground living organic matter in 
vegetation, is an important proxy for productivity, carbon sequestration and carbon balance capacity 
in terrestrial ecosystems [1, 2]. Accurate estimation of AGB in terrestrial ecosystems is fundamen-
tal for quantifying carbon emissions and removals due to land use and climate change [3–5]. It is 
therefore critical to monitor the AGB stocks and its dynamics to mitigate climate change. 

Tropical terrestrial biomes contribute to the interannual variability of the global terrestrial car-
bon balance which in turn is essential to changes in the global atmospheric CO2 concentration [6]. 
Thus, accurate monitoring of temporal and spatial changes in carbon stocks over the tropics is 
key for better predicting the evolution of the atmospheric CO2 over the coming century. However, 
at present no method exists for spatially explicit quantifcation of the tropical land sink/source. 
Current observational tools are impeded by signal saturation in dense forests [7] and sparse spatial 
or temporal sampling [8] so that the spatial distribution and the trends of carbon sources and sinks 
across the tropics remains poorly resolved [6]. 

Results from top-down atmospheric inversions that are consistent with vertical CO2 profles [9] 
indicate that the long term tropical net CO2 fux is close to zero, but in situ surface CO2 stations are 
too scarce to separate carbon sinks from tropical forest regrowth and carbon sources from defores-
tation. Bottom-up approaches using ground forest inventory and satellite data suggest that tropical 
deforestation represents large emissions 0.57–1.3 Pg C yr–1 [10–12]. A more diffuse carbon sink is 
observed in undisturbed and re-growing forests [13], but also a decline of the forest carbon sink 
in the Amazon [14] and a strong reduction of this sink during extreme EI Niño events have been 
reported [15]. However, forest inventory data are also scarce in the tropics [6] and semi-arid woody 
biomes are critically under-sampled, although they cover 40% of the tropical land area [16]. 
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273 Aboveground Carbon Dynamics 

The interannual variability of carbon fuxes from tropical land to the atmosphere is also coupled 
with climatic conditions, and the increased frequency of drought events is a threat to tropical forest 
biomes [17]. Major droughts in 2005, 2010 and 2015–2016 represent a testing ground for under-
standing how the frequency of extreme climatic events may affect the carbon balance in the future. 
Recent studies suggest that the tropics switched to a net source during the 2015–2016 EI Niño [18– 
20], which is supported by model simulations [21]. However, observations of the spatial distribution 
of this major fux anomaly are still unavailable, limiting the attribution of the EI Niño anomaly to 
specifc tropical continents and biomes [6]. 

Remote sensing is poised to advance the mapping of vegetation structure and quantify the stocks 
and changes of aboveground carbon (AGC) in vegetation [8, 10, 22]. Although static maps of AGC 
have been produced from remote sensing [8, 10, 23, 24], these maps generally differ both in terms 
of magnitude and spatial patterns and are available only for a single epoch, and therefore cannot be 
used to assess interannual variations in carbon stocks [22]. 

Vegetation optical depth (VOD), retrieved from passive microwave satellite observations and 
related to the water content of vegetation mass [25–27], offers opportunities for monitoring the 
AGC dynamics [20, 28, 29] due to its key features: frequent observations providing daily tropi-
cal coverage and independence of the effects of atmospheric and cloud contamination [28]. The 
new VOD product used in this study, hereafter L-VOD, has recently been produced using low-
frequency (L-band, 1.4 GHz) microwave observations from the Soil Moisture and Ocean Salinity 
(SMOS) satellite [30, 31]. The radiometer onboard the SMOS satellite has superior sensitivity to 
carbon density than previous higher-frequency passive microwave VOD products, and is able to 
retrieve the overall aboveground carbon stocks even in dense tropical ecosystems [20, 32, 33]. 
In contrast, high-frequency VOD products [34] saturate in vegetation with carbon stocks higher 
than 100 Mg C ha−1 [28]. 

Here, we used the L-VOD product to derive spatially explicit representations of changes in AGC 
(methods) over 2010–2017 across the pantropics (consisting of tropical America, Africa and Asia 
between 23.45°N and 23.45°S, excluding Australia), known to play a pivotal role in the global ter-
restrial carbon sink [6]. The L-VOD data set allowed us to gain new insights into the dynamics 
of tropical AGC and the co-variation with climate, anthropogenic forest cover disturbances and 
changes in the global atmospheric CO2 concentration. 

10.2 DATA SETS AND METHODS 

The L-VOD index used in this study is sensitive to the total vegetation water content (VWC, Mg 
ha–1) [33]. The relationship between L-VOD and VWC is nearly linear [30, 35]. L-VOD for woody 
vegetation is mainly sensitive to the water content of stems and branches, so the effects of leaves 
can be neglected to a frst order [33]. Moreover, a specifcity of SMOS is its multi-angular capability 
which allows a robust decoupling of the effects of soil moisture and vegetation opacity (param-
eterized by L-VOD) [33]. This capability arises from the design of the synthetic aperture imaging 
antenna of the SMOS L-band microwave radiometer and is exploited in the SMOS-IC algorithm, 
which is based on the original SMOS algorithm [36] as defned for the ESA Earth Explorer mis-
sion call. The principle of the algorithm is to retrieve simultaneously both SM and L-VOD for 
“rich” SMOS observational confgurations (e.g., when a large range of multi-angular observations 
are available) and to beneft from the slow time variations of L-VOD for “poor” SMOS observa-
tional confgurations (e.g., when a narrow range of multi-angular observations are available). The 
high accuracy of both the SMOS-IC SM and L-VOD products have been evaluated in several recent 
studies [20, 21, 32, 33, 37]. 

We assumed that the yearly average of the moisture content (%) of stems/branches for woody 
vegetation at the spatial scale of the SMOS grid (25 km ´ 25 km) was relatively constant between 
years, so that the yearly average of vegetation water content and dry biomass would be strongly cor-
related over time. This assumption is supported by several studies reporting the strong relationship 
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FIGURE 10.1 Scatterplots between benchmark AGC density (Mg C ha-1) maps and yearly mean L-VOD 
values (a, d, g and j), C/X/K-VOD (b, e, h and k) (from Liu et al., 2015) and EVI (c, f, i and l) in 2011 for the 
tropics based on the Saatchi, Baccini, Avitabile and Bouvet-Mermoz reference data sets. Fitted relationships 
of the scatterplots (using Eq. 10.1 in main text) are indicated in red. 

between L-VOD and biomass for woody vegetation being almost linear and independent of the year 
of calculation [20, 32]. The yearly average of L-VOD, by its strong link to vegetation water con-
tent, can thus be considered as a robust proxy of biomass. Other remotely sensed estimates/proxies 
of biomass have been used to estimate the annual changes in AGC at continental scales, such as 
LIDAR estimates of canopy height [8, 10], high-frequency VOD [28] or radar backscattering [8]. 
Radar backscattering was strongly sensitive to forest structure, but its relationship to biomass is 
highly nonlinear at L-band [24]. The computation of L-VOD in the SMOS-IC version is independent 
of the use of these indexes, making it a new and complementary tool for monitoring AGC. 

L-VOD is more closely related to AGC density (r2 = 0.81–0.86), as compared to C/X/K-VOD 
(r2 = 0.53–0.63) and EVI (r2 = 0.42–0.65) over the tropics (Figure 10.1), which is in line with previ-
ous fndings over Africa [20, 32]. The relationship between AGC and C/X/K-VOD (Figure 10.1b, e, 
h and k) has a similar shape to that of AGC versus L-VOD Figure 10.1a, d, g and j) but C/X/K-VOD 
shows a stronger saturation at high AGC values relatively to L-VOD. EVI shows some sensitivity 
to AGC for low AGC values (with a low slope) but clear saturation effects are found for medium or 
high AGC values (Figure 10.1c, f, i and l). 

AGC was frstly retrieved from the L-VOD product based on an empirical calibration of the 
spatial relationships linking L-VOD to reference AGC gridded data sets, as in Brandt et al. [20]. 
The reference AGC data sets were obtained from static benchmark maps (corresponding to aver-
age values over a few years). Assuming that a good calibration can be achieved, the SMOS L-VOD 
product adds a temporal dimension to static maps provided that a “space for time” substitution holds 

https://0.42�0.65
https://0.53�0.63
https://0.81�0.86
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FIGURE 10.2 Comparison of time series of MOD100 annual forest area (%) and AGC density over (a-c) 
a forest-dominated SMOS-gridcell (25 km2) in Peru (12.875°S, 70.125°W), corresponding to area and AGC 
losses and (d-f) a forest and other vegetation mixed SMOS-gridcell (25 km2) in southern Brazil (19.625°S, 
52.625°W), corresponding to area and AGC gain, during 2010–2017. (a-b) Landsat images within the Peruvian 
SMOS-gridcell acquired in December 2009 and December 2016 showing forest area loss caused by mining. 
(c) Z-score analysis between annual forest area and AGC over the Peruvian site with forest area loss (r = 0.94 
between annual AGC density and forest area). (d-e) Landsat images within the Brazilian SMOS-gridcell 
acquired in December 2009 and December 2016 showing reforestation/afforestation. (f) Z-score analysis of 
annual forest area and AGC over the Brazilian site with forest area gain (r = 0.94 between annual AGC density 
and forest area). MOD100 annual forest maps are generated based on time series of MOD09A1 images [38]. (a, 
b, d, e) Landsat images were provided from the Map data: Google, Image Landsat/Copernicus. 

true [20]. Annual changes in AGC are quantifed as explained in the following and compared with 
several vegetation and climatic variables to analyze the response of AGC to deforestation and recent 
climatic events. 

As an illustration of the ability of L-VOD to capture deforestation/degradation/forest regrowth 
events, comparisons with forest dynamics information resolved with higher spatial resolution 
(Landsat- and MODIS-based information) have been conducted. Large forest area losses caused 
by mining can be observed between December 2009 and December 2016 by Landsat imagery 
(Figure 10.2a-b) as well as from the MOD100 forest area data set (Figure 10.2c). The estimates 
of the AGC changes retrieved from L-VOD (Figure 10.2c) are strongly correlated with MODIS 
derived forest area (r = 0.94, P < 0.01, n = 8). Similarly, the high sensitivity of AGC to changes 
in forest area was also found in a region with afforestation and forest regrowth (Figure 10.2d-f, 
r = 0.94, P < 0.01, n = 8). 

10.2.1 BenchMark Maps oF agc density 

Brandt et al. [20] have used the maps produced by Baccini et al. [10] for calibrating the L-VOD/AGC 
relationship for Africa. We used here four static AGC benchmark maps (Figure 10.3a-d) to calibrate 
L-VOD and retrieve AGC in order to decrease the dependence of our results on the accuracy of a 
single biomass map. These maps include three pantropical maps published by Saatchi et al. [8], 
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Avitabile et al. [23] and Baccini et al. [10], hereafter referred to as the “Saatchi”, “Avitabile” and 
“Baccini” maps, respectively. The Saatchi map used in the present study is an updated version 
which represents AGC circa 2015 [8, 39]. A  fourth map covering only Africa was produced by 
extending the data set by Bouvet et al. [24] to higher AGC values using the data set by Mermoz et al. 
[40], described by Rodriguez-Fernandez et al. [32], hereinafter referred to as the “Bouvet-Mermoz” 
map. The original units of aboveground biomass density (Mg ha-1) were converted to AGC density 
(Mg C ha-1) by multiplying the original values by a factor of 0.5 [10]. All AGC maps were aggre-
gated to 25 km spatial resolution to match the spatial resolution of the SMOS data by averaging 
AGC pixels within the SMOS grid cells. 

FIGURE 10.3 Maps of the reference AGC data sets, the AGC estimates and L-VOD in the tropics. Four ref-
erence AGC density maps are illustrated at a spatial resolution of 25 km: (a) Saatchi (circa 2015), (b) Baccini 
(circa 2007–2008), (c) Avitabile (circa 2000), and (d) Bouvet-Mermoz (circa 2010). (e) AGC in 2011 estimated 
by L-VOD in 2011 (f) using ten sets of calibrated parameters (method). 
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10.2.2 sMos-ic soil Moisture, l-Vod and the retrieVed agc products 

Changes in AGC were estimated from the L-VOD product using SMOS data sets in the SMOS-IC 
version. The SMOS-IC product provides data for global daily L-VOD and soil moisture (SM) 
data from the descending and ascending orbits covering the period from January  12, 2010 to 
December 31, 2017 at a spatial resolution of 25 km (Table 10.1 and Figure 10.3f) [31]. The SMOS-IC 
L-VOD and SM data were retrieved simultaneously from a two-parameter inversion of the L-band 
Microwave Emission of the Biosphere (L-MEB) model from the multi-angular and dual-polarized 
SMOS observations [41]. In the newly developed SMOS-IC algorithm, L-VOD and SM are retrieved 
without external vegetation or hydrologic products as inputs in the L-MEB inversion model. L-VOD 
retrievals thus depend only on temperature felds from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) for calculating the effective surface temperature, and are indepen-
dent of any vegetation index, contrary to previous VOD products from SMOS [42]. 

The root mean square error (RMSE) between the measured and simulated brightness tem-
perature (referred to as RMSE-TB) associated with the SMOS-IC product was used to flter out 
observations affected by radio frequency interference (RFI), which perturbs the natural microwave 
emission from the earth’s surface measured by passive microwave systems [45, 46]. We excluded 
daily observations, infuenced by RFI effects, for which RMSE-TB was larger than 8 K [20]. Robust 
estimates of annual L-VOD and SM were then obtained as the medians of all high-quality ascend-
ing and descending retrievals with more than 30 valid observations per year. This fltering left a 
large fraction of the original SMOS pixels available for the analysis in tropical America (85.2%), 
Africa (86.6%) and Asia (68.5%). Relatively to tropical America and Africa, many regions in tropi-
cal Asia were much more affected by RFI effects, especially for ascending orbits. After fltering 
RFI effects using a RMSE-TB threshold of 8 K, many SMOS observations for ascending orbits were 
fltered out so that a lower percentage of pixels was available over Asia in this study (pixels with 
N < 30 for at least one year were fltered out). 

The yearly L-VOD data were ranked from low to high VOD values and were pooled into bins of 
250 grid cells. The mean of the corresponding AGC distribution in the reference map was calculated 

TABLE 10.1 
Main Features of the AGC Maps and Auxiliary Data Sets Used in This Study 
Data Sets Spatial Cover Available Period Original Spatial Resolution 

AGC maps 

Saatchi [8, 39] Tropics Circa 2015 1 km 

Baccini [10] Tropics Circa 2007–2008 500 m 

Avitabile [43] Tropics Circa 2000 1 km 

Bouvet-Mermoz [24, 32] Africa Circa 2010 25 m for savanna and woodlands and 
500 m for forests 

Forest loss map 

the “lossyear” map (v1.5) [44] Tropics 2000–2017 30 m (yearly) 

Vegetation and climatic variables 

VOD and SM (SMOS-IC, v105) Tropics 2010–2017 25 km (daily) 

MEI Tropics 2010–2017 Monthly 

EVI (MODIS, MOD13C2) Tropics 2010–2017 0.05° (monthly) 

Skin temperature (ECWMF) Tropics 1979–2017 0.25° (monthly) 

TRMM Precipitation (3B43, v7) Tropics 1998–2017 0.25° (monthly) 

Terrestrial water storage (GRACE) Tropics 2003–2017 1° (monthly) 
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for each L-VOD bin, obtaining an AGC curve as a function of L-VOD [20]. The curve was ftted 
using the four-parameter function [28]: 

arctan (b VOD( - c) - (- ´ c)´ ) arctan b  
AGC a  + (10.1) = ´  

arctan (b ́ ( Inf - c ) - a - ´ ) 
d

) arctan ( b c  

where a , b , c and d  are four best-ft parameters and VOD  is the yearly L-VOD data. The 
yearly L-VOD data calculated for 2011 (Figure 10.3f) was used in Eq. 10.1, as described by 
Rodríguez-Fernández et al. [32], because 2011 was the frst complete year after the SMOS com-
missioning phase. 

We converted the yearly L-VOD map into maps of yearly AGC density (Mg C ha-1) for 2010– 
2017 using Eq. 10.1. Regional AGC stocks were obtained by multiplying the AGC density by the 
area of the corresponding L-VOD pixels. 

AGC benchmark maps contain uncertainties and bias, and none can be considered reliable, as 
outlined previously. We used all the different maps to ft Eq. 10.1 for tropical America, tropical 
Africa and the entire tropical region separately. Benchmark maps in tropical Asia were not used in 
this calibration process due to the limited number of SMOS observations in the region. Ten cali-
brations of Eq. 10.1 were thereby obtained (Table 10.2). We used all ten calibrations to create ten 
maps of AGC stocks. We used the median of these ten maps to calculate yearly tropical AGC maps 
during 2010–2017. The minima and maxima were also reported, because they provide estimates in 
the uncertainty of retrieved AGC estimates used in this study that relates to systematic errors in the 
reference biomass maps. A description of the computation of the uncertainties associated with the 
AGC estimates is given in the following section. 

TABLE 10.2 
Fitted Parameters in Eq. 10.1 from Four Benchmark Maps 
Abbreviation AGC Region A B C D r2 

PAfrican Saatchi Saatchi Tropical 158.858 4.228 0.673 0.912 0.999** 

Africa 

PAmerican Saatchi Saatchi Tropical 215.548 2.090 0.738 –7.390 0.997** 

America 

Ptropical Saatchi Saatchi Tropics 183.635 2.822 0.718 –1.117 0.997** 

PAfrican Baccini Baccini Tropical 251.969 1.661 0.760 4.838 0.998** 

Africa 

PAmerican Baccini Baccini Tropical 162.904 2.812 0.614 20.800 0.997** 

America 

Ptropical Baccini Baccini Tropics 203.168 1.964 0.586 6.458 0.997** 

PAfrican Avitabile Avitabile Tropical 204.163 7.173 0.720 0.962 0.998** 

Africa 

PAmerican Avitabile Avitabile Tropical 200.663 2.709 0.666 –4.644 0.999** 

America 

Ptropical Avitabile Avitabile Tropics 195.103 3.965 0.685 –0.990 0.999** 

PAfrican Bouvet Bouvet-Mermoz Tropical 185.119 2.707 0.823 5.600 0.990** 

Africa 

*/**Notes:  indicate signifcant correlations at P < 0.05/0.01. Fitted parameters (a, b, c, d) in Eq. 10.1 in main text for the 
relationship between L-VOD in 2011 and AGC from the four benchmark maps for the various tropical areas (Africa, 
America and the entire tropical region). 



       

       

     

279 Aboveground Carbon Dynamics 

10.2.3 uncertainties associated with the agc product 

It is diffcult to use independent data sets for validating the L-VOD derived AGC estimates because 
most reference biomass data sets are based on the same LIDAR (ICESat GLAS) data set for areas 
of relatively high vegetation biomass. 

We used a bootstrap and cross validation approach to evaluate the “internal” uncertainties (cor-
responding to sampling and calibration errors) associated with the L-VOD derived AGC estimates. 
To account for “external” uncertainties (uncertainties associated with the “reference” biomass 
maps) we used a very conservative approach in which the AGC estimates were derived as the 
median values of ten L-VOD derived AGC estimates. The ten estimates were computed from four 
reference biomass data sets (Baccini, Saatchi, Avitabile and Bouvet) calibrated against L-VOD over 
three different areas (the whole tropics, tropical Africa and tropical America). We used this subset 
of the Saatchi, Baccini and Avitabile data sets calibrated over three different areas and applied over 
the whole tropics, in an attempt to account in a realistic way for the uncertainties associated with 
the parameters in Eq. 10.1. Then the range (or spread) in the ten L-VOD derived AGC estimates is 
used as an indicator of the “external” uncertainties associated with the AGC estimates. In a fnal 
step, we combined both external and internal uncertainties, to get a more realistic estimate of the 
uncertainties associated with our calculation of AGC and AGC changes. A summary of the main 
conclusions of the analysis is given next. 

Based on a bootstrap cross-validation method, we found that internal errors (due to errors associ-
ated with sampling strategies and calibration errors) are almost negligible in comparison to external 
errors (due to uncertainties associated with the reference maps, and estimated here using a set of ten 
calibration functions). There is an order of magnitude between uncertainties coming from internal 
and external errors. 

Considering combined internal and external errors, the relative uncertainties associated with the 
AGC stocks and changes in the AGC stocks over the tropics are on the order of 20–30%. Similar 
orders of magnitude were found at continental scales. We consider that this relative value is realistic, 
since it is based on a cross-validation approach considering sampling errors and a large set of ten 
different calibration functions. 

Because internal errors are almost an order of magnitude lower than external errors, and to sim-
plify the computations of uncertainties, only external errors are considered in this study to compute 
uncertainties associated with the AGC stocks and AGC changes herein. 

10.2.4 additional uncertainties in the agc product 

The coarse spatial resolution of the AGC product failed to separate pixel-scale carbon gains and 
losses due to deforestation, regeneration, livestock pressure, conservation, fres and other events 
[20]. Moreover, the period of analysis covering two extreme climatic events (the 2011 La Niña 
and the 2010 and 2015/16 El Niños) corresponding to strong carbon sinks and losses increased the 
uncertainty in the trend analysis of the carbon changes in Figure 10.4b. The main results of this 
study, however, do not rely on trend analysis but on spatial and temporal changes in carbon stocks. 
Open water bodies can affect the retrievals of L-VOD and SM data [34, 47], although SMOS-IC 
pixels where the sum of the water fractions are > 10% have been fltered out using quality control 
fags provided by the SMOS-IC products [32]. 

10.2.5 Vegetation and cliMatic products 

The types of vegetation cover in the present study included forest, shrubland, savanna, grass-
land, cropland and a mosaic of cropland/natural vegetation, which were identifed using a 25-km 
International Geosphere–Biosphere Programme (IGBP) land-cover classifcation map [48] 
(Figure 10.5). The 25-km IGBP map was produced by aggregating the 500-m Moderate-Resolution 
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FIGURE 10.4 Yearly net changes (a), trends (b), gross gains (c) and gross losses (d) in AGC and yearly net 
changes in forest-loss rates [44] (e) for 2010–2017. Yearly net changes, trends and gross gains/losses in AGC 
were estimated based on the medians of the changes in AGC estimated by ten sets of the ftted relationships 
between L-VOD and AGC (n = 51,395, 11,992, 51,361 and 47,199 for [a–d0, respectively). Yearly trends in 
AGC are represented by signifcantly positive and negative trends (linear trend; P < 0.05). Gross losses in AGC 
are calculated by cumulating negative changes in AGC for consecutive years from 2010 to 2017. 

FIGURE 10.5 Biome classes for 2001–2010 based on the MODIS IGBP products over tropics, aggregated 
to 25 km by dominant class. 
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Imaging Spectroradiometer (MODIS) IGBP product into a 25-km resolution by dominant class 
within each SMOS L-VOD grid resolution cell. Tropical semi-arid biomes include shrubland, wood-
land and savanna regions based on the 25-km IGBP map [49]. 

We used the “yearloss” forest area loss map produced by Hansen et al. (2013) to calculate 
forest loss rates. Forest loss was defned as a stand-replacement disturbance, or a change from 
a forest to a non-forest state [44, 50]. Each 30-m pixel in the “yearloss” Landsat data was 
labeled with a loss year representing the loss of forest (defned as tree higher than 5 m) cover 
detected primarily during 2000–2017. Here, forest percentage loss rates during the study period 
of 2010–2017 were calculated at the resolution of SMOS as the proportion of the summed areas 
of forest loss (detected by the “yearloss” map) within each SMOS grid cell (~25 km) during 
2010–2017. 

The data used to compute trends in the annual average MODIS LAI (2010 to 2017) at a spatial 
resolution of 0.05° are provided by Chen et al., 2019, who used the Mann–Kendall test to calculate 
the LAI trends based on the MODIS LAI product (MOD15A2H and MYD15A2H). Greening and 
browning are defned as statistically signifcant increases and decreases, respectively, in the annual 
average green leaf area for a given pixel over 2010–2017 [51]. 

The MOD100 annual forest area product used in this study (spatial resolution of 500 m) was 
produced from information on canopy phenology from the analyses of EVI and a land surface water 
index derived from the MOD09A1 product [52]. The MOD100 product is a recent product using 
all the observations in a year (dense time series) from MOD09A1, and has shown excellent perfor-
mance when compared against the offcial Brazilian deforestation data set (PRODES) and Global 
Forest Watch (GFW) [38]. 

We used data for the annual mean global CO2 growth rate data for 2010–2017, based on globally 
averaged marine surface data, compiled and published by the National Oceanic and Atmospheric 
Administration (NOAA) Earth System Research Laboratory (ESRL) in Colorado. 

Several vegetation and climate variables (Table  10.1) were used for further investigating 
the response of AGC to climate events. These variables include (1) the multivariate El Niño/ 
Southern Oscillation (ENSO) Index (MEI) [53]; (2) enhanced vegetation index (EVI) from 
the MODIS Vegetation Index product (MOD13C2 Climate Modeling Grid) [54]; (3) land sur-
face temperature from skin temperature data produced by ECMWF atmospheric reanalysis 
ERA-Interim [55]; (4) precipitation from data sets of the Tropical Rainfall Measuring Mission 
(TRMM 3B43 v7) [56]; and (5) terrestrial water storage (TWS) measured by the twin satellites 
of the Gravity Recovery and Climate Experiment (GRACE) providing the total relative water 
storage, including groundwater, SM, surface water, snow and water stored in the biosphere 
[57,  58]. Monthly TWS was calculated as a simple arithmetic mean of three data sets, the 
monthly 1-degree GRACE TWS products released by JPL, CSR and GFZ, and was then aggre-
gated to yearly TWS [59]. 

EVI, precipitation and land surface temperature were aggregated to an annual composite at 
25-km spatial resolution by averaging or bilinear interpolation from their original resolution to 
match the L-VOD grid. 

10.2.6 statistical Metrics 

We calculated two goodness-of-ft metrics between pairs of reference benchmark map and AGC 
map: the coeffcient of determination (r2) and the root-mean-squared error (RMSE, Mg C ha-1). 
Trend estimates were calculated using linear regression slope. Linear correlation coeffcients 
(Pearson’s r) were calculated to quantify the concurrent association between time series. The 
levels of statistical signifcance (P values) were estimated throughout this analysis, and the 
correlation coeffcients r were considered to be statistically signifcant if the P values were less 
than 0.05. 
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10.3 RESULTS AND ANALYSIS 

10.3.1 neutral carBon Balance and highly dynaMic agc stocks in 

tropical BioMes 

During 2010–2017, tropical AGC change represents a small net increase of +0.11 [+0.08, +0.13] 
Pg C yr–1 (the range represents the minimum and maximum of AGC changes estimated by ten 
calibrations; a positive value indicates net accumulation (sink) of carbon in aboveground biomes; 
Figure 10.6a). This net carbon budget is composed of gross losses of -2.86 [-2.31, -3.05] PgC yr–1 

FIGURE 10.6 Temporal variations in annual AGC in the tropics (continents and biomes), expressed as the 
difference from 2010 values. Annual variations in AGC in (a) the tropics (n = 51,395), and in the tropical 
regions of (c) Africa (n = 25,058), (e) America (n = 19,777) and (g) Asia (n = 6,560), respectively. Corresponding 
changes in AGC (b, d, f, h) are shown for three biomes (forest; shrubland, woodland and savanna; grassland 
and cropland). The ranges represent the minimum and maximum of AGC changes estimated by ten calibra-
tions (Table 10.2). The background shading shows the intensity of La Niña (blue) and El Niño (red) events 
defned by Multivariate ENSO Index (MEI). 
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offset by gross gains of +2.97 [+2.41, +3.15] Pg C yr–1 estimated at the spatial resolution of the 
SMOS-grid (25 ´ 25 km). Tropical Asia was a net mean sink of +0.12 [+0.09, +0.13] Pg C yr–1 

(Figure 10.6g), and tropical Africa and South America were almost neutral with a fux of -0.03 
[–0.04, –0.02] Pg C yr–1 (Figure 10.6c) and +0.02 [–0.02, +0.05] Pg C yr–1 (Figure 10.6e) respec-
tively. Carbon stocks increased slightly in woodland, shrubland and savanna regions, particu-
larly in tropical Africa, whereas changes in forest, grassland and cropland were close to zero 
(Figure 10.6b). 

Over the study period, AGC peaked in 2011 in response to the strong La Niña event and 
decreased subsequently over the tropics (Figure 10.6a). Strong La Niña conditions prevailed 
from late 2010 to early 2012 [60] (Figure 10.6a) resulting in a transient increase of tropical 
AGC of +2.36 [+1.97, +2.57] Pg C, mainly from tropical America: +1.34 [+1.13, +1.61] Pg C 
(Figure 10.6e) and Asia: +0.75 [+0.61, +0.84] Pg C Figure 10.6g). In tropical America, the peak 
of AGC in 2011 is mainly observed in forests and shrublands/savannas and suggests recovery of 
vegetation following the 2010 drought (Figure 10.6a), mainly driven by a wet climatic anomaly 
(Figure 10.7a). 

A strong El Niño event developed in mid-2015 and persisted until mid-2016 (Figure 10.6a) [18]. 
This event caused a drop of tropical AGC of –0.95 [–1.00, –0.76] Pg C in 2015, including -0.74 
[-0.86, -0.62] Pg C in Africa (Figure 10.6c) and –0.20 [–0.26, –0.1] Pg C in America (Figure 10.6e), 
mainly attributed to extremely dry and warm climatic conditions (Figure 10.7a). The 2015 loss in 
Africa occurred in all biomes, with the largest losses in woodland, shrubland and savanna regions. 
By contrast, carbon losses and gains were evenly balanced in tropical Asia in 2015. Interestingly, 
AGC losses continued in 2016, with a biomass loss of –0.65 [–0.82, –0.38] Pg C, mostly in Asia 
(–0.35 [–0.50, –0.26] Pg C) followed by Africa and America (–0.19 [–0.22, –0.15] Pg C and –0.12 
[–0.3, +0.11] Pg C, respectively), in response to more severe anomalies in both surface soil mois-
ture and land surface temperature in 2016 as compared to 2015 (Figure 10.7a). Lumping the two 
years 2015–2016 together, the average AGC carbon losses (–0.80 [–0.59, –0.96] Pg C yr–1) are 
in the range of the net land-atmosphere abnormal CO2 source simulated by land surface models 
(–1.1 [–2.5, +0.1] Pg C yr–1) [21]. 

10.3.2 carBon uptake in non-deForested regions oFFsets deForestation 

carBon losses 

Pixels with more than 5% forest losses (covering 16% of the tropics) as identifed by Hansen 
et al. [44] (methods), displayed a net carbon loss of –0.09 [–0.14, −0.07] Pg C yr-1 in the aboveg-
round vegetation compartment for the period 2010–2017 (Table 10.3). Net carbon losses due to 
deforestation were offset by a net carbon uptake of +0.20 [+0.14, +0.24] Pg C yr−1 across pix-
els with less than 5% deforestation. This sink was found mainly in tropical Asia (+0.10 [+0.06, 
+0.13] Pg C yr-1) and America (+0.09 [+0.06, +0.12] Pg C yr-1). Trends for the period 2010–2017 
displayed carbon losses in the Arc of Deforestation of southern Amazonia, in the Democratic 
Republic of Congo and in Indonesia (Figure 10.4a and 4b). The carbon uptake was found in the 
Central African Republic and in the northernmost regions of tropical Asia and Central America 
(Figure 10.4a and 4b). 

We defned gross carbon losses as cumulated yearly losses, excluding regrowth years. Overall, 
gross carbon loss from areas of deforestation (forest losses >5%) was -0.78 [-0.61, -1.04] Pg C yr-1 

(Table 10.3 and Figure 10.8b). Areas with high gross carbon loss (Figure 10.4d) matched well areas 
where tropical forest cover decreased (Figure 10.4e) in the data set of Hansen et al. [44] (meth-
ods) (as an illustration, results obtained over a deforestation and an afforestation site are shown in 
Figure 10.2). Carbon gains in Central America, southern and northern regions of tropical America, 
Central African Republic and in the northernmost regions of tropical Asia and India refect high 
recovery rates Figure 10.4c) offsetting carbon losses (Figure 10.4d) leading to an overall net carbon 



 

284 3S Technology Applications in Meteorology 

FIGURE 10.7 Interannual variations in tropical aboveground carbon. Non-forested areas include shrubland, 
savanna, grassland, cropland and cropland/natural vegetation mosaic based on the MODIS IGBP land-cover 
map. Annual net changes for individual years (compared to the previous year) in forest and non-forest AGC 
are displayed together with, anomalies (z-score) in surface soil moisture, precipitation and land surface tem-
perature for the tropics (a), and tropical regions of Africa (b), America (c) and Asia (d). Yearly anomalies were 
calculated using the z score: (value − mean)/standard deviation. 

storage in these regions (Figure 10.4a). The spatial patterns of the areas showing carbon sinks agree 
well with greening regions as evaluated by Chen et al., 2019 [51]. In parallel, a spatial agreement 
between regions showing browning trends and carbon losses was found in eastern tropical Africa 
and Madagascar’s tropical rainforests. 
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TABLE 10.3 
Changes in Tropical AGC over Deforestation and Non-Deforested Regions 

Net Changes Gross Loss Gross Gain 
(Pg C yr-1) (Pg C yr-1) (Pg C yr-1) 

Tropics Total +0.11 -2.86 +2.97 

Deforestation -0.09 -0.78 +0.69 

Non-deforestation +0.20 -2.08 +2.28 

Tropical Africa Total -0.03 -1.09 +1.06 

Deforestation -0.05 -0.22 +0.18 

Non-deforestation +0.01 -0.87 +0.88 

Tropical America Total +0.02 -1.29 +1.31 

Deforestation -0.07 -0.35 +0.29 

Non-deforestation +0.09 -0.94 +1.03 

Tropical Asia Total +0.12 -0.47 +0.60 

Deforestation +0.03 -0.20 +0.23 

Non-deforestation +0.10 -0.27 +0.37 

Note: Net and gross (cumulative gain or loss of the consecutive years) changes in the three continents of tropics and defor-
estation zones (forest loss rates >5%). 

FIGURE 10.8 Yearly gross gains and losses in AGC in deforestation (forest losses >5%, estimated by Hansen 
et al. [44]) and non-deforestation (forest losses ≤5%) regions for 2010–2017. 
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10.3.3 piVotal role oF tropical agc stocks in the gloBal carBon Budget 

There is an ongoing debate about the role of humid versus semi-arid tropical biomes in controlling 
the global atmospheric CO2 growth rate (CGR) [61, 62]. A strong association was found between 
yearly de-trended global atmospheric CGR measured from the National Oceanic and Atmospheric 
Administration (NOAA/ESRL) [63] and annual tropical AGC fuxes as inferred earlier (r = 0.86, 
P = 0.03, n = 7, Figure 10.3a), supporting previous fndings [64–66] that tropical biomes dominate 
the interannual variability in atmospheric CGR. Carbon losses of biomass (-1.6 [-1.82, -1.14] Pg C) 
during the severe 2015–2016 El Niño accounted for 90% of the anomaly in atmospheric CGR 
(1.7 Pg C). 

We evaluated the contribution of different biomes to the inter-annual variability of aboveground 
carbon by separating tropical forests [49], semi-arid biomes (shrubland, woodland and savanna), 
cropland and grasslands. The contribution of semi-arid biomes accounts for the largest fraction of 
the interannual variability of tropical AGC fuxes (55.5%), with a smaller contribution of forests 

FIGURE 10.9 Interannual variability of global atmospheric CO2 growth rate and tropical AGC fuxes. (a) 
The interannual variability in the atmospheric CGR and AGC fuxes was calculated by removing trends from 
annual atmospheric CGR and AGC fuxes over 2011–2017, respectively. The tropical annual AGC fuxes were 
calculated using net AGC changes for individual years (compared to the previous year; n = 7). The vertical 
axis is inverted for the de-trended CGR so that positive (downwards) anomalies indicate a weaker land carbon 
sink. (b) Contribution (%) of land cover classes and continent to the interannual variability in tropical AGC 
fuxes. Tropical semi-arid biomes consist of shrubland, woodland and savanna [49]. The contributions (%) of 
the different biomes and regions to the tropical AGC fuxes were estimated using the method described in 
Ahlström et al. [49]. 

TABLE 10.4 
Variation and Covariation of AGC Fluxes in Tropical Forest and Semi-Arid Biomes 

Tropics Tropical Africa Tropical America Tropical Asia 
(Pg C yr–1)2 (Pg C yr–1)2 (Pg C yr–1)2 (Pg C yr–1)2 

Variation in AGC fuxes of both 0.94 0.32 0.15 0.07 
forest and semi-arid biomes 

Variation in AGC fuxes of forests 0.35 0.12 0.04 0.05 

Variation in AGC fuxes of 0.22 0.09 0.05 0.00 
semi-arid biomes 

Covariation in AGC of forest and 0.19 0.05 0.03 0.01 
semi-arid biomes 
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(36.6%), and croplands and grasslands (7.9%) (Figure 10.9b), suggesting that semi-arid ecosystems 
are one of the most important components of the interannual variability in the tropical AGC [60]. 
Interannual variability in the tropical AGC fuxes is controlled predominantly by semi-arid biomes 
from tropical America and Africa and by forests from tropical Africa and Asia. Likewise, the posi-
tive covariation (+0.19 [Pg C yr-1]; Table 10.4) of AGC fuxes from tropical forests and semi-arid 
biomes suggests that both biomes act in phase to control interannual variability in AGC. 

10.4 DISCUSSION 

The L-VOD satellite data set provided insights into recent spatial changes of the carbon cycle in 
the tropics in relation to deforestation and tropical extreme climatic events. The data set was used 
to quantify both AGC losses in the tropics during the 2010 and 2015/16 El Niño events, and the 
subsequent recoveries in 2011 and 2017. Altogether, the results show a neutral contribution of the 
tropics to the global carbon budget between 2010 and 2017. Yet, L-VOD revealed that the recovery 
in 2017 was weaker than in 2011, which could be partly attributed to the warm climatic conditions in 
2017 (Figure 10.7), which negatively impacted the terrestrial carbon uptake [66, 67]. Using the year 
of 2011 as a reference for comparison [18], our estimations of AGC losses caused by the 2015/16 
El Niño were generally lower than estimates from OCO-2 [18] (which include soil carbon, aboveg-
round biomass and river CO2 fuxes) over tropical America (-1.41 versus -1.60 Pg C for OCO-2), 
Africa (-0.40 versus -0.70 Pg C for OCO-2) and Asia (-0.13 versus -1.00 Pg C for OCO-2). This 
difference could be partly attributed to the fact that our estimations of AGC do not account for eco-
system respiration rate [21] and peat fres [68], especially in tropical Asia, associated to large carbon 
losses from soils [69, 70]. 

Furthermore, we were able to quantify AGC losses from areas of deforestation, which were fully 
compensated by carbon uptakes over undisturbed forests over the whole tropics. The L-VOD based 
estimation of emissions from deforestation (0.78 Pg C y-1) match very well with previous one 
(e.g., 0.81 Pg C y-1 obtained by Harris et  al. [11] between 2000 and 2005), suggesting that the 
fux from gross tropical deforestation is within 0.6–0.8 Pg C yr−1 since the early 2000s [71, 72]. 
Moreover, we estimated AGC losses from other processes than deforestation to be 2.08 Pg C y-1, 
caused by natural disturbances, climate-induced mortality and forest degradation, including selective 
removals from within forested stands (not currently included in deforestation estimates based on 
optical satellite data [71]). This suggests that other processes than deforestation is responsible for 
about twice the amount of carbon release as compared to deforestation, however with large regional 
variations [22, 73]. In addition, parts of the losses in carbon may be caused by the reduction of AGC 
following the extreme La Niña (return to normal conditions) [74] and subsequent El Niño. 

We further showed that non-deforested regions act as a carbon sink, which is supported by mea-
surements from forest inventory plots [75–77]. The increasing AGC trend over intact, non-disturbed 
forests may be attributed to CO2 fertilization effect on tree growth, consistent with no strong signal 
from widespread disturbance recovery [78] in forest plots and with model-based attribution of the 
recent greening trend over the tropics [79]. The carbon sink of the Sahel and South Africa are primarily 
driven by increasing precipitation [79, 80], whereas human land-use management may be a dominant 
driver of carbon sink in India and northern tropical Asia [51]. Here, L-VOD data resolves the spatial 
distribution of this uptake over the whole tropics showing that the net sink density in non-deforested 
regions was rather low between 2010 and 2017 (+0.05 Mg C ha-1 yr-1). This low carbon accumulation 
rate could be partly explained by a long-term increase in mortality rates [15] and the recent El Niño 
events [81]. This result is in contrast to the high carbon accumulation ([+1.33, +3.05] Mg C ha-1 yr -1) 
that was estimated from individual feld plots across Amazonian secondary and managed forests 
[75, 82]. The disagreement could also stem from the fact that the coarse spatial resolution of L-VOD 
(25 km ´ 25 km) merges all aboveground biomes including disturbed forests and non-forest ecosys-
tems, which have lower rates of gain than secondary and managed forests [22]. While carbon changes 
in both deforested and non-deforested areas are expected, our estimates are admittedly conservative as 
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a result of the coarse spatial resolution of the L-VOD data, which averages gross C sources and sinks at 
scales smaller than 25 km. Gross gain and loss could thus be larger at higher spatial resolution. 

AGC fuxes estimated from L-VOD, which are independent from process-based models, are con-
sistent with the phase and amplitude of global CO2 growth rates anomalies. This suggests that litter 
and soil carbon fuxes have a smaller variability than AGC fuxes, and highlights that changes in the 
tropical AGC balance dominate changes in the global carbon balance. The observed spatial patterns 
of the contribution of terrestrial ecosystems to the total tropical inter-annual variability in AGC 
fuxes agreed with model results [49]. This supports the model-based fndings that semi-arid biomes 
can have profound impacts on the inter-annual variability of the global carbon cycle [60]. From 
observational data we revealed spatial patterns over recent years showing (i) the main positive con-
tributions are found in the eastern and northern regions of the Amazon basin, south-eastern regions 
of Africa, and Asia; (ii) the main regions with negative contributions are found in forested regions 
in tropical America (for instance in the arc of deforestation in the Amazon basin), and non-forested 
regions (e.g. semi-arid biomes and croplands and grasslands) in tropical Africa. These negative con-
tributions could be mainly attributed to both human activities (e.g., deforestation and high population 
growth) [83] and the different sensitivity of biomes to climate variations among regions [49]. 

The L-VOD data provide direct and spatially explicit remote sensing information that scales up 
to annual tropical AGC anomalies. This product overcomes several of the limitations of current 
tools used to estimate the tropical land sink. The coarse resolution (25 km ́  25 km) of L-VOD limits 
its applicability for detailed regional analysis, but is however not a limitation to address the critical 
role of the terrestrial land sink on the changing atmospheric characteristics. Based on L-VOD, a 
frst direct observational estimate of the pantropical carbon sink could be clearly related, in terms 
of correlation and magnitude, to the observed CO2 growth rate in the recent years. The results show 
the applicability of L-VOD to monitor, in near-real time, spatio-temporal changes in AGC to reveal 
hotspot areas of changes due to human activity (deforestation) and climate variability (such as El 
Niño–Southern Oscillation) at large scale. The data and results shown here hold promises for data-
informed process-based Earth system models to better predict the future of land carbon sinks, and 
to further reconcile divergent estimates of carbon sources/sinks derived from modeling approaches 
(bottom-up [10–12] as well as top-down [81]) and observational systems [22]. 

10.5 CONCLUSIONS 

Changes in terrestrial tropical carbon stocks play an important role in the global carbon budget. 
However, current observational tools do not allow accurate and large-scale monitoring of the spatial 
distribution and dynamics of carbon stocks. Here, we used low frequency L-band passive micro-
wave observations to compute a direct and spatially explicit quantifcation of annual aboveground 
carbon (AGC) fuxes and show that the tropical net AGC budget was approximately in balance 
during 2010 to 2017, the net budget being composed of gross losses offset by gross gains between 
continents. Large interannual and spatial fuctuations of tropical AGC were quantifed during the 
wet 2011 La Niña year and throughout the extreme dry and warm 2015–2016 El Niño episode. 
These interannual fuctuations, controlled predominantly by semi-arid biomes, were shown to be 
closely related to independent global atmospheric CO2 growth-rate anomalies (Pearson’s r = 0.86), 
highlighting the pivotal role of tropical AGC in the global carbon budget. 

REFERENCES 

[1] R. A. Houghton, “Aboveground forest biomass and the global carbon balance,” Global Change Biology. 
vol. 11, no. 6, pp. 945–958, Jun, 2005. 

[2] A. Tyukavina, A. Baccini, M. C. Hansen, P. V. Potapov, S. V. Stehman, R. A. Houghton, A. M. Krylov, 
S. Turubanova, and S. J. Goetz, “Aboveground carbon loss in natural and managed tropical forests from 
2000 to 2012,” Environmental Research Letters. vol. 10, no. 7, Jul, 2015. 



  

  

  

  

   
 

  

  

 

 

 

  
 
 

 

 

 

 

 

 

 

289 Aboveground Carbon Dynamics 

[3] W. Li, P. Ciais, S. S. Peng, C. Yue, Y. L. Wang, M. Thurner, S. S. Saatchi, A. Arneth, V. Avitabile, N. 
Carvalhais, A. B. Harper, E. Kato, C. Koven, Y. Y. Liu, J. Nabel, Y. D. Pan, J. Pongratz, B. Poulter, T. 
A. M. Pugh, M. Santoro, S. Sitch, B. D. Stocker, N. Viovy, A. Wiltshire, R. Yousefpour, and S. Zaehle, 
“Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass 
observations,” Biogeosciences. vol. 14, no. 22, pp. 5053–5067, Nov, 2017. 

[4] S. Besnard, S. Koirala, M. Santoro, S. Bao, O. Cartus, F. Gans, M. Jung, T. Trautmann, and N. Carvalhais, 
“Constraining carbon allocation in a terrestrial ecosystem model using long-term forest biomass time 
series.” p. 10523. 

[5] A. Baccini, W. Walker, L. Carvalho, M. Farina, D. Sulla-Menashe, and R. A. Houghton, “Tropical for-
ests are a net carbon source based on aboveground measurements of gain and loss,” Science. vol. 358, 
no. 6360, pp. 230–234, Oct 13, 2017. 

[6] E. T. A. Mitchard, “The tropical forest carbon cycle and climate change,” Nature. vol. 559, no. 7715, 
pp. 527–534, 2018/07/01, 2018. 

[7] M. C. Hansen, P. Potapov, and A. Tyukavina, “Comment on “Tropical forests are a net carbon 
source based on aboveground measurements of gain and loss”,” Science. vol. 363, no. 6423, pp. 
eaar3629, 2019. 

[8] S. S. Saatchi, N. L. Harris, S. Brown, M. Lefsky, E. T. Mitchard, W. Salas, B. R. Zutta, W. Buermann, 
S. L. Lewis, and S. Hagen, “Benchmark map of forest carbon stocks in tropical regions across three 
continents,” Proceedings of the National Academy of Sciences. vol. 108, no. 24, pp. 9899–9904, 2011. 

[9] B. Gaubert, B. B. Stephens, S. Basu, F. Chevallier, F. Deng, E. A. Kort, P. K. Patra, W. Peters, C. 
Rödenbeck, T. Saeki, D. Schimel, I. Van der Laan-Luijkx, S. Wofsy, and Y. Yin, “Global atmospheric 
CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and 
atmospheric growth rate,” Biogeosciences. vol. 16, no. 1, pp. 117–134, 2019. 

[10] A. Baccini, S. Goetz, W. Walker, N. Laporte, M. Sun, D. Sulla-Menashe, J. Hackler, P. Beck, R. 
Dubayah, and M. Friedl, “Estimated carbon dioxide emissions from tropical deforestation improved by 
carbon-density maps,” Nature Climate Change. vol. 2, no. 3, pp. 182, 2012. 

[11] N. L. Harris, S. Brown, S. C. Hagen, S. S. Saatchi, S. Petrova, W. Salas, M. C. Hansen, P. V. Potapov, 
and A. Lotsch, “Baseline map of carbon emissions from deforestation in tropical regions,” Science. vol. 
336, no. 6088, pp. 1573–1576, 2012. 

[12] F. Achard, R. Beuchle, P. Mayaux, H. J. Stibig, C. Bodart, A. Brink, S. Carboni, B. Desclée, F. Donnay, 
and H. D. Eva, “Determination of tropical deforestation rates and related carbon losses from 1990 to 
2010,” Global Change Biology. vol. 20, no. 8, pp. 2540–2554, 2014. 

[13] R. L. Chazdon, E. N. Broadbent, D. M. Rozendaal, F. Bongers, A. M. A. Zambrano, T. M. Aide, 
P. Balvanera, J. M. Becknell, V. Boukili, and P. H. Brancalion, “Carbon sequestration potential of 
second-growth forest regeneration in the Latin American tropics,” Science Advances. vol. 2, no. 5, pp. 
e1501639, 2016. 

[14] Y. Yang, S. S. Saatchi, L. Xu, Y. Yu, S. Choi, N. Phillips, R. Kennedy, M. Keller, Y. Knyazikhin, and R. 
B. Myneni, “Post-drought decline of the Amazon carbon sink,” Nature Communications. vol. 9, no. 1, 
pp. 3172, 2018. 

[15] R. J. Brienen, O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, A. 
Monteagudo-Mendoza, Y. Malhi, and S. L. Lewis, “Long-term decline of the Amazon carbon sink,” 
Nature. vol. 519, no. 7543, pp. 344, 2015. 

[16] Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, 
S. L. Lewis, and J. G. Canadell, “A large and persistent carbon sink in the world’s forests,” Science, 
pp. 1201609, 2011. 

[17] Y. Malhi, “The productivity, metabolism and carbon cycle of tropical forest vegetation,” Journal of 
Ecology. vol. 100, no. 1, pp. 65–75, 2012. 

[18] J. Liu, K. W. Bowman, D. S. Schimel, N. C. Parazoo, Z. Jiang, M. Lee, A. A. Bloom, D. Wunch, C. 
Frankenberg, and Y. Sun, “Contrasting carbon cycle responses of the tropical continents to the 2015– 
2016 El Niño,” Science. vol. 358, no. 6360, pp. eaam5690, 2017. 

[19] C. Yue, P. Ciais, A. Bastos, F. Chevallier, Y. Yin, C. Rödenbeck, and T. Park, “Vegetation greenness and 
land carbon-fux anomalies associated with climate variations: a focus on the year 2015,” Atmospheric 
Chemistry and Physics. vol. 17, no. 22, pp. 13903–13919, 2017. 

[20] M. Brandt, J.-P. Wigneron, J. Chave, T. Tagesson, J. Penuelas, P. Ciais, K. Rasmussen, F. Tian, C. Mbow, 
and A. Al-Yaari, “Satellite passive microwaves reveal recent climate-induced carbon losses in African 
drylands,” Nature Ecology & Evolution. vol. 2, no. 5, pp. 827, 2018. 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

290 3S Technology Applications in Meteorology 

[21] A. Bastos, P. Friedlingstein, S. Sitch, C. Chen, A. Mialon, J.-P. Wigneron, V. K. Arora, P. R. Briggs, J. G. 
Canadell, P. Ciais, F. Chevallier, L. Cheng, C. Delire, V. Haverd, A. K. Jain, F. Joos, E. Kato, S. Lienert, 
D. Lombardozzi, J. R. Melton, R. Myneni, J. E. M. S. Nabel, J. Pongratz, B. Poulter, C. Rödenbeck, R. 
Séférian, H. Tian, C. van Eck, N. Viovy, N. Vuichard, A. P. Walker, A. Wiltshire, J. Yang, S. Zaehle, 
N. Zeng, and D. Zhu, “Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by 
bottom-up and top-down approaches,” Philosophical Transactions of the Royal Society B: Biological 
Sciences. vol. 373, no. 1760, 2018. 

[22] A. Baccini, W. Walker, L. Carvalho, M. Farina, D. Sulla-Menashe, and R. Houghton, “Tropical forests 
are a net carbon source based on aboveground measurements of gain and loss,” Science. vol. 358, no. 
6360, pp. 230–234, 2017. 

[23] V. Avitabile, M. Herold, G. B. Heuvelink, S. L. Lewis, O. L. Phillips, G. P. Asner, J. Armston, P. S. 
Ashton, L. Banin, and N. Bayol, “An integrated pan-tropical biomass map using multiple reference 
datasets,” Global Change Biology. vol. 22, no. 4, pp. 1406–1420, 2016. 

[24] A. Bouvet, S. Mermoz, T. Le Toan, L. Villard, R. Mathieu, L. Naidoo, and G. P. Asner, “An above-
ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS 
PALSAR,” Remote Sensing of Environment. vol. 206, pp. 156–173, 2018. 

[25] A. G. Konings, and P. Gentine, “Global variations in ecosystem-scale isohydricity,” Global Change 
Biology. vol. 23, no. 2, pp. 891–905, 2017. 

[26] A. Konings, A. Williams, and P. Gentine, “Sensitivity of grassland productivity to aridity controlled by 
stomatal and xylem regulation,” Nature Geoscience. vol. 10, no. 4, pp. 284, 2017. 

[27] J.-P. Wigneron, Y. Kerr, A. Chanzy, and Y.-Q. Jin, “Inversion of surface parameters from passive micro-
wave measurements over a soybean feld,” Remote Sensing of Environment. vol. 46, no. 1, pp. 61–72, 1993. 

[28] Y. Y. Liu, A. I. Van Dijk, R. A. De Jeu, J. G. Canadell, M. F. McCabe, J. P. Evans, and G. Wang, “Recent 
reversal in loss of global terrestrial biomass,” Nature Climate Change. vol. 5, no. 5, pp. 470, 2015. 

[29] Y. Y. Liu, A. I. van Dijk, M. F. McCabe, J. P. Evans, and R. A. de Jeu, “Global vegetation biomass change 
(1988–2008) and attribution to environmental and human drivers,” Global Ecology and Biogeography. 
vol. 22, no. 6, pp. 692–705, 2013. 

[30] J.-P. Wigneron, T. Jackson, P. O’neill, G. De Lannoy, P. De Rosnay, J. Walker, P. Ferrazzoli, V. Mironov, 
S. Bircher, and J. Grant, “Modelling the passive microwave signature from land surfaces: A  review 
of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms,” 
Remote Sensing of Environment. vol. 192, pp. 238–262, 2017. 

[31] R. Fernandez-Moran, A. Al-Yaari, A. Mialon, A. Mahmoodi, A. Al Bitar, G. De Lannoy, N. Rodriguez-
Fernandez, E. Lopez-Baeza, Y. Kerr, and J.-P. Wigneron, “SMOS-IC: An alternative SMOS soil mois-
ture and vegetation optical depth product,” Remote Sensing. vol. 9, no. 5, pp. 457, 2017. 

[32] N. J. Rodríguez-Fernández, A. Mialon, S. Mermoz, A. Bouvet, P. Richaume, A. Al Bitar, A. Al-Yaari, 
M. Brandt, T. Kaminski, and T. Le Toan, “An evaluation of SMOS L-band vegetation optical depth 
(L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa,” Biogeosciences. vol. 
15, no. 14, 2018. 

[33] F. Tian, J.-P. Wigneron, P. Ciais, J. Chave, J. Ogée, J. Peñuelas, A. Ræbild, J.-C. Domec, X. Tong, and 
M. Brandt, “Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite,” 
Nature Ecology & Evolution, 2018. 

[34] Y. Y. Liu, R. A. de Jeu, M. F. McCabe, J. P. Evans, and A. I. van Dijk, “Global long-term passive microwave 
satellite-based retrievals of vegetation optical depth,” Geophysical Research Letters. vol. 38, no. 18, 2011. 

[35] T. Jackson, and T. Schmugge, “Vegetation effects on the microwave emission of soils,” Remote Sensing 
of Environment. vol. 36, no. 3, pp. 203–212, 1991. 

[36] J.-P. Wigneron, P. Waldteufel, A. Chanzy, J.-C. Calvet, and Y. Kerr, “Two-dimensional microwave inter-
ferometer retrieval capabilities over land surfaces (SMOS mission),” Remote Sensing of Environment. 
vol. 73, no. 3, pp. 270–282, 2000. 

[37] A. Al-Yaari, J.-P. Wigneron, W. Dorigo, A. Colliander, T. Pellarin, S. Hahn, A. Mialon, P. Richaume, 
R. Fernandez-Moran, and L. Fan, “Assessment and inter-comparison of recently developed/reprocessed 
microwave satellite soil moisture products using ISMN ground-based measurements,” Remote Sensing 
of Environment. vol. 224, pp. 289–303, 2019. 

[38] Y. Qin, X. Xiao, J. Dong, Y. Zhang, X. Wu, Y. Shimabukuro, E. Arai, C. Biradar, J. Wang, Z. Zou, F. 
Liu, Z. Shi, R. Doughty, and B. M. III, “Improved estimates of forest cover and loss in the Brazilian 
Amazon in 2000–2017,” Nature Sustainability. vol. 2, no. 8, pp. 764–772, 2019. 

[39] J. M. Carreiras, S. Quegan, T. Le Toan, D. H. T. Minh, S. S. Saatchi, N. Carvalhais, M. Reichstein, and 
K. Scipal, “Coverage of high biomass forests by the ESA BIOMASS mission under defense restric-
tions,” Remote Sensing of Environment. vol. 196, pp. 154–162, 2017. 



 

 

 

 

 

 

  
 
 

  
 
 

 

 

 

 

 

 

 
 

  

 

 

291 Aboveground Carbon Dynamics 

[40] S. Mermoz, T. Le Toan, L. Villard, M. Réjou-Méchain, and J. Seifert-Granzin, “Biomass assessment 
in the Cameroon savanna using ALOS PALSAR data,” Remote Sensing of Environment. vol. 155, 
pp. 109–119, 2014. 

[41] J.-P. Wigneron, Y. Kerr, P. Waldteufel, K. Saleh, M.-J. Escorihuela, P. Richaume, P. Ferrazzoli, P. De 
Rosnay, R. Gurney, and J.-C. Calvet, “L-band microwave emission of the biosphere (L-MEB) model: 
Description and calibration against experimental data sets over crop felds,” Remote Sensing of 
Environment. vol. 107, no. 4, pp. 639–655, 2007. 

[42] Y. H. Kerr, P. Waldteufel, P. Richaume, J. P. Wigneron, P. Ferrazzoli, A. Mahmoodi, A. Al Bitar, F. 
Cabot, C. Gruhier, and S. E. Juglea, “The SMOS soil moisture retrieval algorithm,” IEEE Transactions 
on Geoscience and Remote Sensing. vol. 50, no. 5, pp. 1384–1403, 2012. 

[43] V. Avitabile, M. Herold, G. Heuvelink, S. L. Lewis, O. L. Phillips, G. P. Asner, J. Armston, P. S. Ashton, 
L. Banin, and N. Bayol, “An integrated pan-tropical biomass map using multiple reference datasets,” 
Global Change Biology. vol. 22, no. 4, pp. 1406–1420, 2016. 

[44] M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, 
S. Goetz, and T. Loveland, “High-resolution global maps of 21st-century forest cover change,” Science. 
vol. 342, no. 6160, pp. 850–853, 2013. 

[45] R. Oliva, E. Daganzo, Y. H. Kerr, S. Mecklenburg, S. Nieto, P. Richaume, and C. Gruhier, “SMOS 
radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 
1400–1427-MHz passive band,” IEEE Transactions on Geoscience and Remote Sensing. vol. 50, no. 5, 
pp. 1427–1439, 2012. 

[46] Y. H. Kerr, A. Al-Yaari, N. Rodriguez-Fernandez, M. Parrens, B. Molero, D. Leroux, S. Bircher, 
A. Mahmoodi, A. Mialon, and P. Richaume, “Overview of SMOS performance in terms of global 
soil moisture monitoring after six years in operation,” Remote Sensing of Environment. vol. 180, 
pp. 40–63, 2016. 

[47] L. Fan, J.-P. Wigneron, Q. Xiao, A. Al-Yaari, J. Wen, N. Martin-StPaul, J.-L. Dupuy, F. Pimont, 
A. Al Bitar, and R. Fernandez-Moran, “Evaluation of microwave remote sensing for monitoring 
live fuel moisture content in the Mediterranean region,” Remote Sensing of Environment. vol. 205, 
pp. 210–223, 2018. 

[48] P. D. Broxton, X. Zeng, D. Sulla-Menashe, and P. A. Troch, “A global land cover climatology using 
MODIS data,” Journal of Applied Meteorology and Climatology. vol. 53, no. 6, pp. 1593–1605, 2014. 

[49] A. Ahlström, M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, J. G. Canadell, 
P. Friedlingstein, A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. D. Stocker, N. Viovy, Y. P. Wang, A. 
Wiltshire, S. Zaehle, and N. Zeng, “The dominant role of semi-arid ecosystems in the trend and vari-
ability of the land CO2 sink,” Science. vol. 348, no. 6237, pp. 895–899, 2015. 

[50] M. C. Hansen, S. V. Stehman, and P. V. Potapov, “Quantifcation of global gross forest cover loss,” 
Proceedings of the National Academy of Sciences. vol. 107, no. 19, pp. 8650–8655, 2010. 

[51] C. Chen, T. Park, X. Wang, S. Piao, B. Xu, R. K. Chaturvedi, R. Fuchs, V. Brovkin, P. Ciais, and 
R. Fensholt, “China and India lead in greening of the world through land-use management,” Nature 
Sustainability. vol. 2, no. 2, pp. 122, 2019. 

[52] Y. Qin, X. Xiao, J. Dong, Y. Zhou, J. Wang, R. B. Doughty, Y. Chen, Z. Zou, and B. Moore III, “Annual 
dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution,” Remote 
Sensing of Environment. vol. 201, pp. 73–87, 2017. 

[53] K. Wolter, and M. S. Timlin, “El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an 
extended multivariate ENSO index (MEI. ext),” International Journal of Climatology. vol. 31, no. 7, 
pp. 1074–1087, 2011. 

[54] A. Huete, C. Justice, and W. Van Leeuwen, “MODIS vegetation index (MOD13),” Algorithm Theoretical 
Basis Document. vol. 3, pp. 213, 1999. 

[55] D. P. Dee, S. M. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. Balmaseda, G. 
Balsamo, and d. P. Bauer, “The ERA-Interim reanalysis: Confguration and performance of the data assimi-
lation system,” Quarterly Journal of the Royal Meteorological Society. vol. 137, no. 656, pp. 553–597, 2011. 

[56] G. J. Huffman, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, 
and E. F. Stocker, “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, 
combined-sensor precipitation estimates at fne scales,” Journal of Hydrometeorology. vol. 8, no. 1, 
pp. 38–55, 2007. 

[57] J. Wahr, M. Molenaar, and F. Bryan, “Time variability of the Earth’s gravity feld: Hydrological and 
oceanic effects and their possible detection using GRACE,” Journal of Geophysical Research: Solid 
Earth. vol. 103, no. B12, pp. 30205–30229, 1998. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

292 3S Technology Applications in Meteorology 

[58] S. Swenson, D. Chambers, and J. Wahr, “Estimating geocenter variations from a combination of GRACE 
and ocean model output,” Journal of Geophysical Research: Solid Earth. vol. 113, no. B8, 2008. 

[59] Y. Y. Liu, A. I. van Dijk, D. G. Miralles, M. F. McCabe, J. P. Evans, R. A. de Jeu, P. Gentine, A. 
Huete, R. M. Parinussa, and L. Wang, “Enhanced canopy growth precedes senescence in 2005 and 2010 
Amazonian droughts,” Remote Sensing of Environment. vol. 211, pp. 26–37, 2018. 

[60] B. Poulter, D. Frank, P. Ciais, R. B. Myneni, N. Andela, J. Bi, G. Broquet, J. G. Canadell, F. Chevallier, 
and Y. Y. Liu, “Contribution of semi-arid ecosystems to interannual variability of the global carbon 
cycle,” Nature. vol. 509, no. 7502, pp. 600, 2014. 

[61] V. Humphrey, J. Zscheischler, P. Ciais, L. Gudmundsson, S. Sitch, and S. I. Seneviratne, “Sensitivity of 
atmospheric CO 2 growth rate to observed changes in terrestrial water storage,” Nature. vol. 560, no. 
7720, pp. 628, 2018. 

[62] M. Jung, M. Reichstein, C. R. Schwalm, C. Huntingford, S. Sitch, A. Ahlström, A. Arneth, G. Camps-
Valls, P. Ciais, and P. Friedlingstein, “Compensatory water effects link yearly global land CO 2 sink 
changes to temperature,” Nature. vol. 541, no. 7638, pp. 516, 2017. 

[63] K. A. Masarie, and P. P. Tans, “Extension and integration of atmospheric carbon dioxide data into a 
globally consistent measurement record,” Journal of Geophysical Research: Atmospheres. vol. 100, no. 
D6, pp. 11593–11610, 1995. 

[64] J. Wang, N. Zeng, and M. Wang, “Interannual variability of the atmospheric CO 2 growth rate: roles of 
precipitation and temperature,” Biogeosciences. vol. 13, no. 8, pp. 2339–2352, 2016. 

[65] N. Zeng, A. Mariotti, and P. Wetzel, “Terrestrial mechanisms of interannual CO2 variability,” Global 
Biogeochemical Cycles. vol. 19, no. 1, 2005. 

[66] W. R. Anderegg, A. P. Ballantyne, W. K. Smith, J. Majkut, S. Rabin, C. Beaulieu, R. Birdsey, J. P. 
Dunne, R. A. Houghton, and R. B. Myneni, “Tropical nighttime warming as a dominant driver of vari-
ability in the terrestrial carbon sink,” Proceedings of the National Academy of Sciences. vol. 112, no. 
51, pp. 15591–15596, 2015. 

[67] M. Fernández-Martínez, J. Sardans, F. Chevallier, P. Ciais, M. Obersteiner, S. Vicca, J. Canadell, A. 
Bastos, P. Friedlingstein, and S. Sitch, “Global trends in carbon sinks and their relationships with CO 2 
and temperature,” Nature Climate Change, pp. 1, 2018. 

[68] S. Lohberger, M. Stängel, E. C. Atwood, and F. Siegert, “Spatial evaluation of Indonesia’s 2015 fre-
affected area and estimated carbon emissions using Sentinel-1,” Global Change Biology. vol. 24, no. 2, 
pp. 644–654, 2018. 

[69] V. Huijnen, M. J. Wooster, J. W. Kaiser, D. L. Gaveau, J. Flemming, M. Parrington, A. Inness, D. 
Murdiyarso, B. Main, and M. van Weele, “Fire carbon emissions over maritime southeast Asia in 2015 
largest since 1997,” Scientifc Reports. vol. 6, pp. 26886, 2016. 

[70] Y. Yin, P. Ciais, F. Chevallier, G. R. Werf, T. Fanin, G. Broquet, H. Boesch, A. Cozic, D. Hauglustaine, 
and S. Szopa, “Variability of fre carbon emissions in equatorial Asia and its nonlinear sensitivity to El 
Niño,” Geophysical Research Letters. vol. 43, no. 19, 2016. 

[71] A. Tyukavina, A. Baccini, M. Hansen, P. Potapov, S. Stehman, R. Houghton, A. Krylov, S. Turubanova, 
and S. Goetz, “Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012,” 
Environmental Research Letters. vol. 10, no. 7, pp. 074002, 2015. 

[72] D. J. Zarin, N. L. Harris, A. Baccini, D. Aksenov, M. C. Hansen, C. Azevedo-Ramos, T. Azevedo, B. 
A. Margono, A. C. Alencar, and C. Gabris, “Can carbon emissions from tropical deforestation drop by 
50% in 5 years?,” Global Change Biology. vol. 22, no. 4, pp. 1336–1347, 2016. 

[73] C. M. Ryan, N. J. Berry, and N. Joshi, “Quantifying the causes of deforestation and degradation and 
creating transparent REDD+ baselines: A method and case study from central Mozambique,” Applied 
Geography. vol. 53, pp. 45–54, 2014. 

[74] G. E. Ponce-Campos, M. S. Moran, A. Huete, Y. Zhang, C. Bresloff, T. E. Huxman, D. Eamus, D. D. 
Bosch, A. R. Buda, and S. A. Gunter, “Ecosystem resilience despite large-scale altered hydroclimatic 
conditions,” Nature. vol. 494, no. 7437, pp. 349, 2013. 

[75] L. Poorter, F. Bongers, T. M. Aide, A. M. A. Zambrano, P. Balvanera, J. M. Becknell, V. Boukili, P. H. 
Brancalion, E. N. Broadbent, and R. L. Chazdon, “Biomass resilience of Neotropical secondary for-
ests,” Nature. vol. 530, no. 7589, pp. 211, 2016. 

[76] S. L. Lewis, G. Lopez-Gonzalez, B. Sonké, K. Affum-Baffoe, T. R. Baker, L. O. Ojo, O. L. Phillips, J. 
M. Reitsma, L. White, and J. A. Comiskey, “Increasing carbon storage in intact African tropical for-
ests,” Nature. vol. 457, no. 7232, pp. 1003, 2009. 

[77] O. L. Phillips, Y. Malhi, N. Higuchi, W. F. Laurance, P. V. Núnez, R. M. Vásquez, S. G. Laurance, L. 
V. Ferreira, M. Stern, and S. Brown, “Changes in the carbon balance of tropical forests: evidence from 
long-term plots,” Science. vol. 282, no. 5388, pp. 439–442, 1998. 



 

  
 

 

 

 

 

293 Aboveground Carbon Dynamics 

[78] M. Gloor, O. L. Phillips, J. Lloyd, S. L. Lewis, Y. Malhi, T. R. Baker, G. LÓPEZ-GONZALEZ, J. 
Peacock, S. Almeida, and A. A. de Oliveira, “Does the disturbance hypothesis explain the biomass 
increase in basin-wide Amazon forest plot data?,” Global Change Biology. vol. 15, no. 10, pp. 2418– 
2430, 2009. 

[79] Z. Zhu, S. Piao, R. B. Myneni, M. Huang, Z. Zeng, J. G. Canadell, P. Ciais, S. Sitch, P. Friedlingstein, 
and A. Arneth, “Greening of the Earth and its drivers,” Nature Climate Change. vol. 6, no. 8, 
pp. 791, 2016. 

[80] M. Brandt, P. Hiernaux, K. Rasmussen, C. J. Tucker, J.-P. Wigneron, A. A. Diouf, S. M. Herrmann, W. 
Zhang, L. Kergoat, and C. Mbow, “Changes in rainfall distribution promote woody foliage production 
in the Sahel,” Communications Biology. vol. 2, no. 1, pp. 133, 2019. 

[81] D. Schimel, B. B. Stephens, and J. B. Fisher, “Effect of increasing CO2 on the terrestrial carbon cycle,” 
Proceedings of the National Academy of Sciences. vol. 112, no. 2, pp. 436–441, 2015. 

[82] E. Rutishauser, B. Hérault, C. Baraloto, L. Blanc, L. Descroix, E. D. Sotta, J. Ferreira, M. Kanashiro, 
L. Mazzei, and M. V. d’Oliveira, “Rapid tree carbon stock recovery in managed Amazonian forests,” 
Current Biology. vol. 25, no. 18, pp. R787-R788, 2015. 

[83] M. Brandt, K. Rasmussen, J. Peñuelas, F. Tian, G. Schurgers, A. Verger, O. Mertz, J. R. Palmer, and 
R. Fensholt, “Human population growth offsets climate-driven increase in woody vegetation in sub-
Saharan Africa,” Nature Ecology & Evolution. vol. 1, no. 4, pp. 0081, 2017. 



294 DOI: 10.1201/9781003363118-11  

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

11 Sea Ice Thickness Estimation 
from Spaceborne GNSS-R 

Qingyun Yan, Shuanggen Jin, Yunjian Xie, and Weimin Huang 

11.1 INTRODUCTION 

Obtaining accurate information about the Arctic sea ice thickness (SIT) and its change not only 
helps to conduct research on climate change, environmental change, and ecological security at 
regional and global scales, but also has important practical signifcance for marine resources devel-
opment, maritime transportation, shipping, and polar expeditions [1–3]. However, the in situ SIT 
measuring in the feld is very cumbersome and limited by spatial coverage. Instead, remote sensing 
gives a more effcient and economical option. 

So far, large-scale SIT data that people use extensively are generally from remote sensing satel-
lites. With the help of passive microwave sensors [4, 5], scatterometers [6, 7], radar altimeters [8] 
and synthetic aperture radar (SAR) [9], one can estimate SIT. However, on one hand, the spatial 
of resolution passive microwave sensors and scatterometers is lower (usually 25–50 km). On other 
hand, SAR and radar altimeters can provide better resolution, but they are more costly [10] and 
the revisit time is long. Besides, interpreting SAR images is often time-consuming and subjective, 
and the empirical retracking used for altimeters lacks actual physical models. Since the concept of 
Global Navigation Satellite System Refectometry was proposed, it has been successfully applied 
to various remote sensing missions, such as sea surface wind [11, 12] and roughness monitoring 
[13], sea surface height observation [14], snow depth estimation [15, 16], soil moisture [17, 18] and 
vegetation sensing [19], etc. GNSS-R uses the bistatic scattering mode, in which the transmitter 
and receiver are in different positions. Theoretically, a transmitter can be any GNSS satellite; 
for example, GPS and China’s BeiDou Navigation Satellite System, etc. The transmitted signal 
is refected by the earth’s surface (e.g., ocean, land or ice) and thus carries information about 
the refected surface (e.g., roughness, etc.). The refected signal is then captured by one or more 
GNSS-R receivers. In addition, most GNSS-R receivers can collect multiple refected signals at the 
same time. It is also worth mentioning that as a passive instrument, the GNSS-R receivers usually 
have the characteristics of low cost, low weight and low power consumption, and can be deployed 
fexibly. Depending on the platform on which the receiver is mounted, GNSS-R can be divided into 
three categories: specifcally spaceborne, airborne and ground-based. The frst one is mainly used 
for large-scale or global monitoring, and the latter two are usually used for regional observations. 
Therefore, by deploying multiple GNSS-R receivers on various platforms, one can realize time-
intensive coverage on both global and regional scales. It should be noted that GNSS-R uses the 
L-band with low attenuation by the atmosphere and it is not infuenced by day or night, cloud cover 
and weather conditions, thus is particularly suitable for surface remote sensing [20]. In the part of 
spatio-temporal resolution, taking the CYGNSS system as an example, its global average revisit 
time is 4 hours. The spatial resolution in the case of incoherent scattering is about 10 km, while the 
resolution in the case of coherent scattering is about 500 m [21]. Spatial resolution of spaceborne 
GNSS-R is comparable to or better than radar altimeter (Envisat nominal circular footprint of 
the altimeter is 2–10 km in diameter, while the CryoSat-2 altimeter has a footprint of 1.65 km ´ 
0.30 km along the track [8]). 

Compared to other remote sensing methods, the advantages presented by GNSS-R provide a 
more promising application for sea ice remote sensing. This chapter will develop and establish 

https://doi.org/10.1201/9781003363118-11
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a semi-empirical model to realize the inversion of sea ice thickness based on GNSS-R signals. 
This basis further improves the accuracy of the results. The development of this study will provide 
a theoretical basis for the analysis of GNSS-R signals on sea ice cover, and thus give accurate inver-
sion results of sea ice thickness, develop new applications of GNSS-R signals in sea ice remote 
sensing, and ultimately may provide the theoretical and experimental basis for the promotion and 
development of sea ice related industries and research. 

11.2 CURRENT STATUS AND DEVELOPMENT 

As mentioned already, GNSS-R technologies can be classifed as spaceborne, airborne and 
ground-based according to the platform. Here we discuss the current research status of GNSS-
R-based sea ice remote sensing according to this classifcation. It is worth mentioning that the 
progress of research based on different platforms refects signifcant differences due to much 
more data from spaceborne experiments than the latter two. In addition, we also cover other 
applications of sea ice remote sensing here because the progress of sea ice thickness inversion is 
still relatively limited. 

11.2.1 status oF airBorne MeasureMents 

The frst airborne measurements were made in the Beaufort Sea in 1998 by Komjathy et al. [22]. 
Their results show that the received refection signal is very sensitive to sea ice, and the received 
signal consistently shows a sharp and narrow waveform, but its amplitude varies signifcantly. This 
illustrates that the roughness of the sea ice in this region varied very little during their experiments, 
but its refectivity varied a lot. Subsequently, Rivas et al. proposed a method to invert the dielectric 
constant and roughness of sea ice from the received time-delayed waveforms [23], whereby the 
dielectric constant is estimated based on the maximum value of the waveforms while the inversion 
of the roughness depends on the shape of the delay waveforms. However, available airborne experi-
ments, as well as data, are still limited, so applications based on airborne measurements have not 
been widely developed. 

11.2.2 progress oF ground-Based experiMents 

Remote sensing of sea ice based on ground-based experiments has been carried out more actively 
than airborne measurements. Fabra et  al. validated the altimetric application based on ground-
based tests conducted at Greenland Island in 2008 and performed a correlation analysis between the 
polarization rate (ratio of refected signals from right- and left-handed circular polarization) and sea 
ice density [24]. In addition, Shao et al. explored the feasibility of GNSS-R signal detection of sea 
ice through this experimental project [25]. In 2012, the signal-to-noise ratio of the received signal 
was analyzed at the Onsala Space Laboratory in Switzerland and based on this, a damping factor 
was derived and the magnitude of this variable was found to be directly related to the presence or 
absence of sea ice [26]. 

Based on experiments conducted in Bohai Bay, China, in 2013, Zhang et al. found that the ratio 
of the direct signal to the received signal is sensitive to the sea ice concentration [10]. Later, the 
application of the ratio was further broadened by Gao et al. who achieved thickness inversion for sea 
ice with thicknesses between 10 and 20 cm based on tests in Liaodong Bay in 2016 [27]. In addition, 
Wang et al. verifed the signal simulation capability of the software using the measured refection 
signals [28]. Yang et al. found that the emission signals with different polarizations are effective 
in observing sea ice at different angles [29]. However, it is worth pointing out that ground-based 
experiments are usually restricted to specifc areas. The coverage area is small and the observations 
are generally not globally generalizable. 
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11.2.3 deVelopMent oF spaceBorne applications 

Compared with the aforementioned two platforms, the spaceborne GNSS-R is particularly impor-
tant because it can provide global coverage and enable sea ice monitoring on a large spatial scale. 
In 2003, the UK-DMC satellite acquired GNSS-R signals from space for the frst time and demon-
strated its potential for sea ice remote sensing applications through the literature [30]. The analysis 
shows that compared to sea ice, the rough seawater decreases the overall coherent specular refec-
tion and leads to a larger glistening zone, resulting in a larger distribution in its corresponding 
delay-Doppler map (DDM) along the delay-Doppler axes. Despite the limited GNSS-R data avail-
able at that time (only two sets totaling 16 seconds long), the results demonstrate the feasibility 
of using spaceborne GNSS-R to observe sea ice covered areas. In addition, the variation in signal 
power due to different sea ice concentrations, as well as the variation in time delay and Doppler 
extension, illustrate the potential of GNSS-R for estimating sea ice concentration. It is also men-
tioned in [30] that in the case of coherent refections, one can recover the carrier phase information 
for accurate surface height measurements. Nevertheless, the practical application of satellite-based 
GNSS-R sea ice remote sensing was not effectively developed due to the limited data at that time. 
Subsequently, in 2014, the launch of the TDS-1 satellite raised thousands of DDM data for the 
public, which offered an opportunity for researchers to further advance the preliminary results in 
[30]. Since then, a large number of sea ice remote sensing research topics based on TDS-1 data 
have emerged. 

Yan and Huang realized the frst application of TDS-1 data in sea ice detection [31, 32]. The 
results found that the power distribution of sea ice DDM is more concentrated compared to sea 
water DDM, and thus a sea ice detection method based on DDM data spread evaluation is proposed. 
Adopting the similar idea, many scholars have also achieved sea ice detection by choosing different 
observation variables to describe the DDM data spread [33–36]. The method of sea ice detection 
using observed quantities is simpler and more intuitive to implement, but the accuracy of the method 
depends on the reasonableness of the selected threshold. In addition, Schiavulli et al. proposed a 
method based on a 2D truncated singular value decomposition for the inversion of scattering coef-
fcients to achieve sea ice detection [37]. However, the method cannot effectively solve the ambigu-
ity problem in the inversion process. Consequently, Yan and Huang proposed a scheme based on 
the spatial integration method combined with the dual antenna method to solve the problem of its 
ambiguity [38]. These methods may provide additional information on sea ice distribution within 
the glistening zone, but the accuracy and practicality of these applications have not been thoroughly 
investigated due to limited reference data. The frst application of machine learning in the feld of 
GNSS-R, using neural network techniques to achieve sea ice detection and sea ice concentration 
estimation from DDM data, was introduced in [39]. Subsequently, the use of convolutional neural 
networks to fully utilize 2D DDM data was proposed [40], and the employment of support vector 
machines combined with feature extraction further improved the inversion accuracy and reduced 
the computational complexity [41, 42]. In addition to these two applications, Rodriguez-Alvarez 
et al. proposed a decision tree-based sea ice classifcation method [43], but the accuracy needs to 
be improved. Hu et al. implemented sea ice altimetry based on the study of delayed waveforms [44] 
and Li et al. performed sea ice altimetry based on phase measurements [45]. Notably, it was found 
in [45] that the difference between the ice surface altimetry results obtained in [45] and the mean 
sea surface height correlated well with the local sea ice thickness, refecting the potential of the 
GNSS-R technique for measuring sea ice thickness. However, the sea ice altimetry method in [45] 
requires the use of very scarce raw satellite data and requires special error calibration of the results, 
such that the technique cannot be a general solution for sea ice thickness inversion for the time 
being. To further improve the shortcomings of the GNSS-R sea ice thickness inversion method, 
Yan and Huang proposed a simplifed two-layer model [46] and successfully inverse performed this 
parameter from TDS-1 satellite data. By comparing the reference data, the correlation coeffcient 
and root mean square error obtained were 0.84 and 9.39 cm, respectively. 
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11.2.4 suMMary oF current states 

In summary, the research on GNSS-R-based sea ice remote sensing has entered a boom period, and 
various spaceborne, airborne and ground-based experiments have been carried out continuously. 
However, the current state of research shows that applications based on spaceborne data are more 
widespread, in large part because of the large amount of data available from the TDS-1 satellite. In 
addition, TDS-1 data provide global coverage, including the high polar latitudes, which can ensure 
remote sensing of sea ice on a large scale. This advantage is diffcult to achieve with airborne and 
ground-based experiments. As such, the development of spaceborne applications is particularly 
important. From the perspective of current research topic, the research based on spaceborne data 
mainly focuses on four applications: sea ice detection, density estimation, classifcation and altimetry, 
while the work on sea ice thickness inversion is still relatively limited. Although a method based on a 
simplifed two-layer model for sea ice thickness inversion was proposed in [46], it ignores the refec-
tion at the upper partition interface, which can lead to inversion errors that are more signifcant when 
the sea ice is thicker or the signal propagation loss is larger, thus leading to its limited applicability. 

11.3 THEORY AND METHODS 

In reality, most of the sea ice in the Antarctic and Arctic has a large thickness, so the two-layer 
model cannot realize the large-scale sea ice thickness inversion. Therefore, it is necessary to pro-
pose a new GNSS-R sea ice thickness inversion model which can be applied to different sea ice 
types in a wide range. 

11.3.1 three-layer Model 

Therefore, to obtain a more generalized inversion model, the refection at the upper and lower par-
tition interfaces as well as the signal attenuation of the sea ice layer must be considered, and the 
overall refection coeffcient of the three-layer medium can be obtained by using the following 
expression: 

-2ikd R + R e1 2Â =  (11.1) 
-2ikd 1+ R R e1 2  

where d is the sea ice thickness (Figure 11.1) and k is the vertical component of the signal propaga-
tion vector determined by the signal wavelength λ (known), the satellite incidence angle θ, and the 
sea ice dielectric constant ei 

2 

l 
p ( e i )k = cosq Re - j | Im e i | (11.2) 

The sea ice dielectric constant ei can be obtained from the Vant model [47], i.e. 

= 3 1+ 0 0084V  + j(a  + a V )  (11.3) . .e i b 1 2 b 

where Vb is the volume of brine and the coeffcients a1 and a2 are 0.037 and 0.00445 in the case 
of frst-year ice and 0.003 and 0.00435 in the case of multi-year ice, respectively. Vb can then be 
obtained from the Ulaby model [48]: 

3 49 185.V = 10- S(- + . (11.4) 0 532)b T 
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FIGURE 11.1 Schematic of GNSS-R signal refected from a three-layer model of air, sea ice and seawater. 

where S and T are the salinity and temperature of sea ice. In addition, R1 and R2 are determined by 
the dielectric constant of each layer, which can be found by the following general formula: 

R1 2, = 
1 (Rvv - Rhh ) (11.5) 
2 

where Rvv and Rhh are the vertical polarization and horizontal polarization components, respectively, 
expressed by 

e1 2, cosq - e1 2, - sin2 q
Rvv = 

2 
(11.6) 

e cosq + e - sin q1 2, 1 2, 

cosq - e - sin2 q
Rhh = 

1 2, 
(11.7) 

cosq + e1 2  - sin2 q, 

1 
e = (11.8) 1 e i 

e 
e = i (11.9) 2 ew 

ew is the dielectric constant of seawater, which can be obtained from the Klein-Swift model [49]. 
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In addition, the surface refectance can be given by the following equation: 

4p 2G =| | ex [ (Â ×  p - q sin )q ] (11.10) rms l 

where θrms is the mean squared difference height and the exponential term in the expression repre-
sents the effect of the roughness effect. Since the rms of the sea ice surface is usually at the centi-
meter level, the sea ice surface can be considered a smooth surface in the GNSS-R domain, so the 
value of the roughness term in the expression is approximately equal to 1. Therefore, the refectivity 
can be further approximated as 

G =  Â 2 
(11.11) 

Combining the foregoing expressions for the overall refection coeffcient of the three-layer of the 
medium, we can obtain 

-2ikd R + R e1 2 2G =| | (11.12) 
-2ikd 1+ R R e1 2  

Therefore, by combining the refectance with the overall refectance coeffcient, the expression 
for the relationship between refectance and sea ice thickness can be obtained, and the expression 
can be further derived and rewritten, so that the inversion of sea ice thickness from TDS-1 data 
can be achieved. 

11.3.2 connection Between precise three-layer Model and siMpliFied two-layer Model 

Firstly, the expression for the simplifed two-layer model [46] is listed here: 

- ikd2Â = R e (11.13) 2 

The model ignored refections at the upper air-sea ice interface. This simplifcation makes the model 
simple and easy to calculate, but does not apply to thicker or more signal-attenuating sea ice. Simpli-
fed two-layer model may create some of these problems: 

a) The two-layer model ignores the refection at the upper partition interface, which can lead 
to inversion errors that are more signifcant when the sea ice is thicker or the signal propa-
gation loss is larger. 

b) Some of the parameters used in the inversion of sea ice thickness come from other techni-
cal means, which may introduce some errors into the results. 

c) Simplifying the model will lose some generalizability and will have an impact on the 
actual results. This is not allowed in large-scale applications. 

So the three-layer model provides a more accurate and effective model of the medium, while other 
effects are improved by alternative auxiliary variables and machine learning, respectively. Thus, an 
accurate three-layer model is built. 

11.3.3 alternatiVes to auxiliary VariaBles 

Based on empirical models of sea ice dielectric constants, we need other sea ice parameters, i.e., sea ice 
temperature as well as sea ice salinity, to determine their values. Currently, no work has been done to 
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obtain these two sea ice parameters by GNSS-R technology. To eliminate the dependence on it, there are 
two options: one is to use some fxed sea ice dielectric constant to avoid the use of empirical models and 
the corresponding sea ice parameters (option 1); the second is to fnd empirical relationships between 
these sea ice parameters and sea ice thickness, such as the following Cox-Week model (option 2): 

ì . - . d , d £ 0 414 24 19 39 .
S = í (11.14) 

7 88 1 59- . d , d > 0 4..î 

Application of the model enables the replacement of sea ice salinity. By adopting similar models and 
thus using sea ice thickness as a proxy for other sea ice parameters, the dependence on other sea ice 
parameters is eliminated. Correspondingly, the results of sea ice thickness are obtained during the 
inversion process using, for example, iterative or least squares ftting methods. Although option 1 
is simpler and more intuitive to operate, the use of a fxed sea ice dielectric coeffcient is not suff-
ciently universal and thus leads to a large error because its value varies greatly under different sea ice 
types, temperatures and salinity. Combining the experiments and analyses we’ve discussed, we will 
choose option 2, which combines appropriate mathematical methods with sea ice parameter models 
and fnally derives and establishes a set of GNSS-R based sea ice thickness inversion models, and 
can ensure its universality and high accuracy, and realize independent measurements. 

11.3.4 solutions to iMproVe accuracy using Machine learning Methods 

By using a more rational three-layer model, the errors caused by the previous simplifed model can be 
greatly reduced and its generalizability can be improved. However, the errors introduced by the use of 
empirical models (e.g., sea ice dielectric constant models) can still have a large impact on the actual 
results. For this reason, here we can introduce a machine learning approach to improve it. Machine 
learning can directly establish the relationship between inputs and outputs (e.g., GNSS-R data and sea 
ice thickness) without relying on any empirical formulas or models. Firstly, the modeling results are to 
be analyzed to validate the contribution of the input variables to the inversion results, so that relevant 
variables can be selected as inputs for machine learning. A specifc model is then determined by train-
ing, based on the intrinsic relationship before the data. Validation and performance analysis with test 
results are provided. Two applications of machine learning in sea ice thickness that have been used in 
sea ice concentration estimation are presented here, specifcally, support vector regression (SVR) and 
convolutional neural network (CNN). The input here contains four parameters, i.e., refectivity (G), 
incidence angle (θ), sea ice salinity (S) and sea ice temperature (T), and the output is SIT. 

a) SVR-based approach 

Given a data set (x1, y1), . . ., (xn, yn), it is randomly divided into two roughly equal parts, one as 
the training set and the other as the test set. The data set xj is the four-parameter input vector, and 
for j = 1, . . ., n, yj is the corresponding reference SIT value. the optimization objective of the SVR is 

*min(1 || w ||2 + Cå (z j + z j )) (11.15) 
w b, ,z 2 j 

where w should be subject to 

ì j - f( )i + £ +  jy w x  b e z 
ïï[  ( )f j ] e z * (11.16) í w x + -b  y j £ + j , 
ï * 
ï z z, ³ 0î j j 
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where ϕ is a mapping function, w is the weight of ϕ(xj), and C is the regularization parameter. 
The regularization parameters, xj and xj*, represent the SIT estimation error that exceeds the error 
tolerance and b is the bias term. This problem can be solved by introducing Lagrange multipliers 
α = α1, . . ., αn and α* = α1*, . . ., αn* to solve it. The detailed procedure to obtain the solution can 
be found in [42]. 

With solved α, α* and b, the estimation of SIT can be proceeded through 

*f x( )  a j - ) ( ,j x) + b.= å ( a j K x  (11.17) 
j 

Through experiments, the radial basis function (RBF) demonstrated excellent accuracy, and was 
thus adopted here. The RBF is given by 

j xk ) exp(- j - x 2K x( ,  = g || x k || ), (11.18) 

where g is the kernel width. 

b) CNN-based Approach 

For CNN, the input of four elements is reshaped into a 2 ´ 2 image. Correspondingly, the 
designed CNN framework contains one input layer followed by one convolutional layer, one fully 
connected layer and one output layer. These layers are of size 2 ´ 2, 2 ´ 2 ´ 7, 1 ´ 1, and 1 ´ 1, 
respectively. 

The convolved images resulted from the k th (k = 1, . . ., 7) flter, Wk, can be described by 

k khi j, = f((W * X )ij + b),  i = 1 2, , j = 1 2, , (11.19) 

where X and b are the input image and the bias. The convolution operation is denoted by and the 
activation function by ϕ. The widely adopted ReLU is chosen for ϕ, i.e. 

f( )  = max( , ).z (11.20) z 0 

The elements in adjacent layers are connected by activation functions with weights. The activation 
functions in the fully connected and the output layers were given separately by the widely used 
sigmoid function ϕ(1)(x) = 1/(1 + ex) and the linear function ϕ(2)(x) = x. Weights in the fully con-

1 2 inected layer are denoted by w j1, j Î [1, 28], and w11 for that in the output layers. The weights w jk 
are determined through back-propagation learning [50]. For more details on the implementation of 
CNN, one can refer to [40]. 

11.4 RESULTS AND DISCUSSION 

Further tests were done on the validation set with the trained CNN and SVR. The test set was 
analyzed with R of 0.90 and 0.94, RMSD of 7.97 cm and R values of 6.01 cm obtained by the 
CNN and SVR based methods. The RMSD of 7.97 cm and 6.01 cm, respectively. The decrease 
in test accuracy is minimal relative to the training set demonstrating the generality of these pro-
posed methods. In addition, the overall estimated SIT is generally consistent with the reference SIT. 
Comparison with the model-based results. The improvement using the machine learning approach 
is evident compared to the model-based results (R of 0.90 and RMSD of 8.68 cm). The improve-
ment using the machine learning approach is evident (see Table 11.1). Comparing the overall results 
(including training and test data), R decreased from 0.95 to 0.93 and RMSD increased from 5.49 
to 6.82 cm when TDS-1 data was removed from the inputs. This demonstrates the effect of TDS-1 
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measurements on SIT estimates. Table 11.1 summarizes the accuracy of the proposed CNN- and 

SVR-based methods. 
The training results obtained by CNN- and SVR-based methods are presented in Figure 11.2 and 

Figure 11.3, respectively. With the trained CNN and SVR, further tests were done with the valida-
tion set (see Figures 11.4 and 11.5). These fgures are from [46]. 

TABLE 11.1 
Accuracy of SIT Retrieval 
Index R RMSD (cm) 

Method CNN SVR Model-Based CNN SVR Model-Based 

Training 

Test 

0.89 

0.90 

0.96 

0.94 

7.79 

7.79 

4.96 

6.01 

Overall 0.90 0.95 0.90 7.79 5.49 8.68 

Note: * Three-layer model not included. 

FIGURE 11.2 Density plot comparing SIT from CNN-based training results and SMOS data with the 1:1 
reference line (magenta): (a) All results and (b) SMOS SIT below 0.2 m. 

FIGURE 11.3 Density plot comparing SIT from SVR-based training results and SMOS data with the 1:1 
reference line (magenta): (a) All results and (b) SMOS SIT below 0.2 m. 
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FIGURE 11.4 Density plot comparing SIT from CNN-based test results and SMOS data with the 1:1 refer-
ence line (magenta): (a) All results and (b) SMOS SIT below 0.2 m. 

FIGURE 11.5 Density plot comparing SIT from SVR-based test results and SMOS data with the 1:1 refer-
ence line (magenta): (a) All results and (b) SMOS SIT below 0.2 m. 

It can be expected that the source of sea ice temperature and salinity data as input and its accuracy 
will have some infuence on the SIT estimation, and the use of the auxiliary variable substitution 
method mentioned earlier in subsequent experiments will improve the quality of SIT estimation. 
A large number of test experiments are needed to further improve the accuracy of the inversion 
results, and to achieve a high degree of agreement between the inversion results of sea ice thickness 
and the reference data on a global scale and over an annual span; the correlation coeffcient reaches 
0.9 or more, and the RMSE does not exceed 9 cm, improving the accuracy of the existing results 
in this feld. 

It is important to note that sea ice characteristics vary globally. In addition, empirical models of 
sea ice dielectric constants are more complex and are determined by different sea ice types, tem-
peratures and other factors, and therefore the models involve more multiple sea ice parameter vari-
ables, adding diffculty to the inversion process. Therefore, the empirical model of sea ice dielectric 
constant and the effect of surface roughness need to be analyzed and examined in more depth. 

When calculating the dielectric constant of sea ice, it is often necessary to use a number of 
empirical equations, which depend mainly on sea ice temperature and salt content. This informa-
tion is therefore also necessary in the inversion process. In other words, it may be a new idea to 
further optimize the inversion model and to achieve the elimination of dependencies on other 
auxiliary data. 
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11.5 SUMMARY 

In this chapter, based on an existing simplifed two-layer model, we optimize modeling errors at the 
ice and water interface, focus on the derivation and establishment of a precise three-layer model of 
air-sea ice-seawater which may be more general and universal compared with the previous work. 
This offers a promising alternative to satellite altimetry for monitoring sea ice thickness. 

In addition, a possible scheme to eliminate the dependence on other auxiliary parameters during 
the retrieving process is suggested, making GNSS-R an independent technique for sea ice thickness 
measurement. Also to improve the inversion accuracy, a machine learning-based parameter esti-
mation method was introduced. Furthermore, the use of algorithms in this work are shown where 
applicable. 

Sea ice thickness inversion is a diffcult and hot issue internationally; current laser and radar 
thickness measurement techniques and radiometer inversion techniques all have excessive errors. 
GNSS-R as an emerging alternative remote sensing technology will show its potential in sea ice 
thickness estimation. 
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12 Global Soil Moisture 
Retrieval from Spaceborne 
GNSS-R Based on Machine 
Learning Method 

Yan Jia and Zhiyu Xiao 

12.1 BACKGROUND 

Soil moisture (SM) plays a very important role in the climate system, which has a great infuence 
on the atmospheric conditions, hydrological environment, and vegetation state of the earth [1–5], 
and plays an important role in various hydrological and geophysical changes worldwide. In many 
scientifc felds, soil moisture content (SMC) has been regarded as an important environmental fac-
tor for land surface dynamic monitoring, energy regulation and water exchange between land and 
atmosphere, and other hydrological processes [3, 5]. SM is also a major determinant of surface soil 
permittivity, which affects the scattered signals from the surface. 

Global Navigation Satellite System Refection (GNSS-R) is a microwave remote sensing tech-
nology, which uses a variety of satellite constellation systems to receive GNSS signals refected 
from the earth’s surface based on bistatic geometry for remote sensing monitoring [3–6]. GNSS-R 
signals are usually L-band signals, which provide high spatial resolution and a long revisit time, 
showing great potential in remote sensing monitoring and application. In the past two decades, 
GNSS-R technology has been applied in various geoscience felds, and has attracted great attention 
in the extraction and measurement of geophysical parameters such as the ocean, ice, and land, and 
achieved good research results [3]. 

With the deepening of the research on GNSS-R soil moisture retrieval, the new constella-
tion observation mission with long-time series observation data has become a new approach for 
GNSS-R SM retrieval. NASA launched the Cyclone GNSS (CyGNSS) satellite in December 2016 
to observe tropical cyclones by estimating sea winds between 38°N and 38°S [2, 3–6]. CyGNSS 
contains eight microsatellites that can receive both direct signals from GPS satellites and refected 
signals from the ground. The refected signal is transmitted by a GPS satellite and then scattered 
forward along the earth’s surface in a specular direction. The refected signal contains informa-
tion related to the characteristics of the scattered surface. The GNSS signal refected from the 
scattered surface is used to determine the geophysical information of the refected point surface 
by cross-correlating the refected signal with the received GNSS direct signal or the copy of the 
signal. CyGNSS satellites are being used to complete important scientifc research work such as 
altimetry, sea ice monitoring, biomass estimation, wetland classifcation, and SM estimation [3]. 
Through years of research accumulation, SM retrieval using CyGNSS data has become an impor-
tant method for SM retrieval research. 

Assuming that the time of vegetation and roughness changes is longer than the time of SM 
changes, Al-Khaldi et al. proposed an incoherent CyGNSS measurement method to retrieve soil 
samples of N time at a given location, and using the ratio of n-1, the RMSE of the retrieval results 
reached 0.038  cm3/cm3 [1]. There is a strong positive linear relationship between the change of 
CyGNSS refectivity and the change of SMAP SM observation value. The sensitivity of CyGNSS 
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refectivity to SM changes with space. Chew et al. converted the refectivity of CyGNSS into the 
estimated value of SM. The average daily unbiased root mean square error (ubRMSE) between SM 
derived from CyGNSS and SMAP SM was 0.045 cm3/cm3 [2, 3]. Later, a data set was constructed 
to calibrate the retrieved values of SMAP SM using the refectivity observation value of CyGNSS; 
the ubRMSE of the retrieval result was 0.049 cm3/cm3, and the correlation coeffcient between them 
was 0.4 [3]. In addition, surface refectivity can be predicted by the soil permittivity model, and 
there is a clear linear relationship between the soil permittivity and the Fresnel coeffcient. Calabia 
et al. predicted the estimated value of SM based on the Fresnel coeffcient measured by GNSS-R, 
and the predicted result RMSE is 0.05 cm3/cm3 [4]. Clarizia et  al. retrieved the estimated daily 
SM value of the surface within a 36-km grid with an RMSE of 0.07 cm3/cm3 by combining the 
land signal refectivity observation value of CyGNSS and the auxiliary information such as surface 
vegetation and roughness provided by SMAP [5]. Yan et al. used the three-layer air-vegetation-soil 
model, combined with the surface signal refectivity provided by CyGNSS data and the vegetation 
opacity in SMAP data to retrieve SM by linear regression, and the RMSE was 0.07 cm3/cm3 [6]. In 
addition, Yang et al. proposed a physics-based algorithm coupling surface refectivity and SMAP 
luminance temperature estimates to achieve accurate SM estimation, and the RMSE of the estima-
tion results were 0.051 cm3/cm3 [7]. Kim et al. introduced the relative signal-to-noise ratio (rSNR) 
of the delay-Doppler diagram (DDM) provided by CyGNSS to improve the temporal resolution of 
SMAP SM and used rSNR to estimate SM. The correlation coeffcient R of the estimated results 
was 0.77, indicating that the collaborative use of CyGNSS observations could improve the SM esti-
mate of SMAP [8]. 

Traditional methods mainly estimate SM through the principle of linear regression, which 
believes that there is a linear relationship between the ground features of refection points and SM 
[9]. However, there are many ground features that affect SM, and some of them have a nonlin-
ear relationship with SM. For the combination of linear and nonlinear relations, supervised learn-
ing ML methods [10], such as a fully connected artifcial neural network (ANN), support vector 
machine (SVM), random forest (RF), and many other ML methods can be used to complete non-
linear regression and SM prediction according to certain learning methods and strategies by taking 
ground features and other variables as input parameters. 

Tang et al. used SVM to retrieve SM of the Wuhan Bao Association based on CyGNSS data 
and other auxiliary data, and evaluated the infuence of DDM and the quality of different ground 
topography on the estimation results. The results showed that vegetation was an important fac-
tor affecting SM estimation [11]. Yang et al. used a back propagation artifcial neural network 
(BP-ANN) to construct a model to retrieve the monthly SM estimate of the target location and 
evaluated the estimation performance of CyGNSS and British satellite TDS for SM. The results 
showed that the estimation results of the two were consistent with the actual measured SM and 
had a good correlation [12, 13]. Eroglu et al. used the observation data of the ISMN site com-
bined with the auxiliary data of SMAP, DEM, and GPS signals to extract 8 ground features as 
input variables, and used the fully connected ANN algorithm to invert SM, and the correlation of 
the results was as high as 0.9238 [14], indicating the great potential of ML methods in SM esti-
mation. In the subsequent work, Senyurk et al. extended the research to larger and more diverse 
data sets and used various ML methods such as ANN, SVM, and RF to conduct the research. 
From the experimental results, the RF algorithm was the most satisfactory for SM estimation, 
and the average ubRMSE reached 0.047 cm3/cm3. Other methods are greatly infuenced by data 
quality [9]. Meanwhile, Senyurk et  al. proposed an SM estimation model based on CyGNSS 
machine learning. RF algorithm was used to process CyGNSS data, auxiliary data, and SMAP 
radiometer brightness temperature data to achieve SM estimation at high time resolution. In the 
test area, the ubRMSE of SM estimation results reached 0.041 cm3/cm3 [10]. Lei et al., based on 
the refectivity and other auxiliary data sets provided by CyGNSS data, combined with SMAP 
SM, used a machine learning method to retrieve the global daily SM at the spatial resolution 
of 9 km, and realized the global CyGNSS SM mapping at the spatial resolution of 9 km. The 
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estimation result ubRMSE reaches 0.0543 cm3/cm3 [15]. The results show that it is feasible to 
retrieve SM by machine learning based on a classifcation regression tree. Yan et al. proposed 
the bagging random forest method to retrieve SM, taking the CyGNSS data product type, geo-
graphical location data, and related climate type information as input parameters, and the RMSE 
of the estimation result was 0.05 cm3/cm3 [16]. SM can be effciently estimated in near-real time 
from CyGNSS data with different site locations and climate types. Jia et al. combined an ML 
algorithm and simple land type (LT) digitalization strategy to retrieve global SM, reduced the 
number of model input parameters by the extreme gradient boosting (XGBoost) method, and 
improved the accuracy of SM estimation. The average ubRMSE of the result was 0.041 cm3/cm3 

[17]. In addition, the ML method combined with a pre-classifcation strategy was used to retrieve 
SM, and 10-fold cross-validation technology was used to compare the overall performance dif-
ference of SM estimation with/without pre-classifcation. The results show that different ML 
algorithms have signifcantly improved the accuracy of SM estimation retrieved under the pre-
classifcation strategy [18]. It shows that the pre-classifcation strategy has a positive effect on 
SM estimation. 

12.2 DATA PROCESS AND QUALITY CONTROL 

12.2.1 cygnss data 

The CyGNSS mission consists of eight microsatellites, each carrying a four-channel GNSS-R 
bistatic radar receiver to record refected GPS signals from the surface. Although its constellation 
orbits primarily around the tropics and is limited in latitude to ±38°, it has acquired a large number 
of land observations that provide data support for SM estimation. 

To retrieve SM on land, CyGNSS Level-1 (L1) version 2.1 product was used. The key observa-
tion data in the CyGNSS L1 data is the delay-Doppler map (DDM), which represents the received 
surface power of each observed specular refection point over a range of signals’ time delay and 
Doppler frequencies (bin-by-bin). By inverting the forward scattering model of CyGNSS in L1, 
DDM takes the non-surface correlation term into account to obtain the bistatic radar cross section 
(BRCS) area and the effective scattering area of the surface. The bin-by-bin BRCS is provided in 
the form of 11 ́  17 DDM arrays in L1 data [10]. In addition, the geometric structure and instrumen-
tal variables include factors such as the signal incidence angle and the distance between the GPS 
transmitter and CyGNSS receiver to the specular point, providing detailed acquisition information 
for each specular refection point. 

Using observations provided by the L1 data, surface refectivity can be estimated by several 
methods under coherent and incoherent assumptions. Assuming that the observed GNSS-R signal is 
mainly refected coherently, the refectivity GRL q( ) is calculated by using the variable BRCS (sRL) 
and the distance term in CyGNSS L1. The calculation can be written as follows: 

2 coh 2( +æ 4p ö PRL R̃ r R t )GRL ( )q = ç ÷ # (12.1) 
l P G  G è ø t t r 

where Rt  and Rr  are the distances from specular refection points to the GNSS transmitter (tx_to_sp_ 
range in L1 data) and GNSS-R receiver (tx_to_rc_range in L1 data), respectively. The peak DDM 
value of BRCS should be used together with the coherence assumption. In addition, the refectivity 
delay waveform can be obtained according to the integration of BRCS in the Doppler domain, so as 
to calculate other CyGNSS observations, such as trailing edge slope (TES) and leading-edge slope 
(LES). Next, TES and LES are calculated from the refectivity delay waveform values at delay bin M 
(peak delay bin) to m + 3 and m to m - 3, respectively. TES and LES are indicators related to coher-
ent or incoherent scattering conditions and provide other supplementary information in addition to 
CyGNSS refectivity [9]. 
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12.2.2 sMap data 

SMAP collects bipolar bright temperature observations from the L-band microwave radiometer and 
then converts them to SM estimates. The original resolution of SMAP is about 40 km, and the SM esti-
mation results are published to a 36 km ´ 36 km grid [7–12]. When the proportion of surface water is 
high and vegetation is dense (VWC > 5 kg/m2) and urban and mountainous areas, SM estimation results 
are greatly infuenced by ground feature elements, so it is not reliable to compare SM estimation results 
observed by CyGNSS with SMAP SM in these areas [7, 9–18]. SMAP SM can also be resampled to a 
grid of 9 km ´ 9 km. The daily data provided by SMAP contains SM estimates, data quality markers, 
surface roughness coeffcients, vegetation opacity, and other ancillary information that can be gridded 
on EASE-Grid. To facilitate further comparison and validation, CyGNSS data were also resampled at 
36 km ´ 36 km grid refection points on EASE-Grid based on the longitude and latitude of SMAP data 
and the CyGNSS observables at specular refection points. Therefore, infuenced by the resolution of 
the training data, the spatial resolution of the SM data product is 36 km ´ 36 km [9]. 

SMAP Enhanced Radiometer Level 3 SM data (global daily 9 km EASE-Grid SM, version 4) 
was used as a reference data set for comparison with SM estimated by CyGNSS. In addition, the 
16-bit binary string composed of 1 and 0 in the data is called the SMAP Retrieval Quality Flag 
(RQF), which is an important quality control index in SMAP data [9]. The frst position of the 
string is “recommended quality”, which indicates whether the quality of the SM estimate is reliable. 
The frst position of reliable data is 0. The extracted data is fltered according to the frst position 
of the “recommended quality” string to ensure the quality of the data used in modeling calcula-
tion and reduce the impact of errors [9–11, 15, 17]. Although this process reduces the overall data 
volume, the 9 km high-resolution data set can still provide an effective data set for the learning 
model. Therefore, the data point with the frst position of 1 in RQF is eliminated and not used in 
subsequent calculations. At the same time, to facilitate verifcation and comparison of estimation 
results, CyGNSS data were projected into EASE-Grid used for SMAP data, with a distance of 
9 km ´ 9 km [9–12, 15–18]. Therefore, the spatial resolution estimated by SM is considered to be 
9 km. In addition, for land areas within a global latitude range of ±45°, SMAP provides SM esti-
mates at an average interval of 3 days, which is two days longer than CyGNSS. 

12.2.3 data processing and quality control 

12.2.3.1 Key Data Process Methods 
In the process of SM estimation, the main data used include CyGNSS data and ground auxil-
iary data sets. CyGNSS data mainly include surface refectivity, incident angle, leading edge slope 
(LES) and trailing edge slope (TES), etc. The refectivity obtained after a series of corrections 
can represent surface information such as soil water content, vegetation roughness, and vegetation 
opacity of ground refection points [9, 15]. The calculation of surface refectivity is the top priority 
of SM estimation. The observed values provided in CyGNSS L1 data can be estimated by several 
methods with coherence or incoherence assumptions, or the surface refectivity can be solved by a 
bistatic radar equation [9, 10, 14, 15]. The surface refectivity signal delay of the GNSS-R signal is 
calculated according to the integration of BRCS in DDM of the Doppler delay map, and the index 
of coherent or incoherent scattering is derived, which provides supplementary information for SM 
estimation. Considering the infuence of ground features, various time-varying or static ground 
parameters are also used in SM estimation. The spatial resolution of the CyGNSS observations is 
related to the nature of the scattering surface and, in the case of coherent scattering, it is determined 
by the frst Fresnel region, a few kilometers. When the area is relatively fat and smooth ground, 
or there is no vegetation cover, it can be assumed that the refection occurring is coherent [14]. 
CyGNSS data usually mesh into regular grid cells with fxed resolution under the assumption of 
coherence. Grid cells of about 4 km ´ 4 km centered on specular refection points generate average 
topographic features [9, 10, 12–18]. 
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The auxiliary data sets mainly supplement the ground information and also play an important 
role in the SM estimation process. The 2018 MODIS annual land cover type (MCD12Q1) prod-
uct generated a 500-m resolution map of major land cover types [11, 12], which provides major 
land cover types within each grid cell and includes six classifcation schemes. The International 
Geosphere-Biosphere Program (IGBP) land cover scheme was selected for further analysis. IGBP 
contains 17 land cover categories, including water, forest, bush, grassland, arable land, wetland, 
artifcial surface, permanent snow and ice, and bare land [17]. For each 3-km grid, its land type was 
identifed as the land cover type with the largest area. Soil grids are used to represent soil textures, 
which represent water retention and hydraulic properties such as capillary interactions within the 
soil profle. In soil grids, the soil profle is vertically discretized into 7 layers with a maximum 
depth of 2 m. For each layer, the soil is divided into 12 standard soil texture grades based on the 
ratio of sand, clay, and silt [14, 17, 18]. To be consistent with the L-band signal, the signal penetra-
tion depth using the data is 5 cm. The product is available at 250 m, and each specular refection 
point is located in a spatial grid size of 3 km ´ 3 km. The proportions of sand, clay, and silt were 
spatially averaged, and the major soil texture classes were determined by the percentage of the 
12 soil texture classes. 

12.2.3.2 Data Quality Control 
In order to improve the reliability of SM estimation results, when using CyGNSS data, data should 
be fltered to achieve data quality control. For stations with an altitude higher than 2,000 m, the 
data credibility of specular refection points within the range is low, and the CyGNSS data provided 
will not be used. At the same time, due to the limitation of the observation height of the L1 band 
of CyGNSS, the CyGNSS observation results with an altitude higher than 600 m before 2018 have 
been screened. In order to reduce the infuence of noise, data with CyGNSS refectivity between -5 
dB and -30 dB and incident angle of the specular refection point less than 65° are not used [1–6, 
9–18]. The data with elevation angles less than 30° are excluded, which can effectively remove the 
very weak signal interference from the circularly polarized sidelobe. Because of the very strong 
coherence of the water surface, the power of the forward scattered signal from the water surface is 
typically several orders of magnitude higher than the signal scattered from the soil. If the surface 
water area within the CyGNSS grid is large enough, experimental SM estimation near the water 
body is not feasible. Therefore, if more than 2% of the 3-km grid centered on the specular refection 
point is covered by permanent or seasonal water bodies, the CyGNSS observation data there will 
not be used [9–18]. At the same time, there is a large amount of artifcial ground in urban areas, 
and the CyGNSS refected signals in these areas carry little ground feature information, and there 
is interference in the estimation of SM, so the data in urban areas are not used [9, 10, 16]. When the 
ground is heavily covered with vegetation water content (VWC>5 kg/m2), the CyGNSS data are too 
much affected by vegetation, so the data of these stations are not used [9–11, 15, 16]. 

12.3 SOIL MOISTURE RETRIEVAL APPROACH 

12.3.1 Bistatic radar equation 

An ideal GNSS-R-based SM retrieval method would rely on the calculation of the bistatic radar 
equation to obtain surface refectivity. Fresnel refection coeffcients were obtained by correcting 
surface refectivity for vegetation cover and surface roughness effects. Then the Fresnel refection 
coeffcient can be related to SM by means of the Fresnel refection equation. 

The calculation of the coherence component of the received signal of bistatic radar can be writ-
ten as follows: 

æ l ö
2 P G G coh t t rPRL = ç ÷ 2 GRL ( )q # (12.2) 

è 4p ø (R + R )r t 
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λ is the wavelength, Pt is the peak power of the transmitted GNSS signal, Gt  is the gain of the trans-
mitting antenna, and Gr  is the gain of the receiving antenna. Rr  is the distance between the specular 
refection point and the GNSS-R receiver, Rt  is the distance between the specular refection point 
and the GNSS transmitter, and GRL q( ) is the specular refectivity of SP. 

The calculation of incoherent components can be written as follows: 

l2 PG G inc t t rP = 3 
s (12.3) RL RL

(4p ) (R Rr t )2 

s RL  is the bistatic radar cross section in m2 and RPL  is the Fresnel coeffcient. 
The local surface is relatively fat and smooth, and it is considered that the signal is mainly a 

coh inc coherent component, namely P = P :RL RL 

2sRL (Rr + Rt )G ( )q = # (12.4) 2 2RL 4pR Rt r 

The Fresnel coeffcient RRL ( )q  can be derived from the specular refectivity G q  of the refec-
tion point, and can be written as follows: 

RL ( )  

G q = R̃ q g exp- hcos q # (12.5) RL ( )  RL ( )2 2 2 ( )  

Parameter h can be directly obtained from SMAP data. G is the opacity coeffcient of vegetation, 

g = exp -t sec q , and the optical thickness of vegetation t is calculated by the ratio of vegetation ( ( )) 
water content (VWC) and land cover factor [14]. VWC is obtained from the experience of normal-
ized vegetation index (NDVI) by SMAP task, which can be directly obtained from SMAP data. 

After obtaining the Fresnel coeffcient RRL (θ), the relationship between refectivity and the 
Fresnel coeffcient can be written as follows: 

RRL ( )q = 
1 (RVV ( )q - RHH ( )q )# (12.6) 
2 

where RVV ( )q  is the vertically polarized component and RHH ( ) is the horizontally polarized com-q 
ponent, both of which are functions related to incident angle θ and soil dielectric constant [4]. 

The method of bistatic radar equation retrieving SM mainly uses the model method of refectiv-
ity, dielectric constant, and soil moisture, which is a typical method of retrieving SM from linear 
regression. 

12.3.2 Machine learning Method 

12.3.2.1 Artifcial Neural Network Model 
Fully connected ANNs are also known as multi-layer perceptron (MLP), and the constructed net-
work contains two hidden layers, which can be used to learn complex nonlinear relationships. By 
running a predetermined number of iterations, the ANN generates a loss function on the training set 
as the squared error of the model. The ANN parameters are learned by a stochastic gradient descent 
solver algorithm, whereby the ANN updates the model parameters at each iteration by calculating 
the partial derivative of the loss function with respect to the ANN parameters (back-propagation). 
The specifc structure of ANN is shown in Figure 12.1. 

In a fully connected ANN, neurons in each layer are completely interconnected with other neu-
rons in neighboring layers. Each layer has an array of weights that can be trained by forward and 
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FIGURE 12.1 ANN structure [14]. 

backward propagation mechanisms. This array controls the linear strength of the connections to the 
next layer. Assuming that the number of neurons in layer I is Ni, then the weight array size in layer 
I is (Ni+1)´Ni. The result of matrix multiplication between the weight array and the input array for 
a particular layer is given as the input for the next layer. To account for bias in linear relationships, 
trainable bias values are added to the sum of each neuron. 

To make the model powerful for solving nonlinear regression problems, ANN has an activation 
function in each neuron, such as a linear rectifcation function, logic function, or hyperbolic tangent 
activation function. These functions are responsible for taking the corresponding offset sum as input 
and converting it to the new value with the help of the corresponding nonlinearity. This process is 
repeated on each neuron until the output layer completes the iteration and outputs an estimate of SM. 
The process of computing from input to output is called forward propagation. The network uses the 
training data and backpropagates the error information by updating the weights and biases in each 
layer to minimize the defned loss function with the help of stochastic gradient descent algorithms. 
The process of the ANN model to predict SM includes one iteration of forward and back propaga-
tion until the loss function reaches the minimum threshold or the maximum number of iterations. 

In the process of using ANN to retrieve SM, refectivity, incident angle, and trailing edge slope 
from CyGNSS data, as well as NDVI, VWC, elevation, slope, and surface roughness from MODIS 
are input variables for training SM prediction model. SMAP SM is used as the output and the refer-
enced SM data to evaluate the retrieve accuracy [14]. The 10-fold cross-validation method was used 
to evaluate the accuracy of the SM estimate of the ANN model. Since the quality of the raw data 
provided by the observation station is not guaranteed, it is necessary to flter the input raw data to 
achieve quality control so as to improve the quality of SM estimation results [14]. 

12.3.2.2 Random Forest Model 
Random forest is a widely used machine learning model. The prediction result of an artifcial neural 
network is accurate, but it needs a lot of computation in model training and result prediction, which 
consumes a lot of time. The classifcation tree algorithm achieves classifcation or regression by 
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FIGURE 12.2 Random forest model [9]. 

iteratively dichotomizing the data, making the computational cost of the model greatly reduced. 
The random forest algorithm generates different data sets by repeatedly resampling the data sets, 
and trains a classifcation tree on each data set. The prediction results of all classifcation trees 
are integrated through certain combination strategies, which are used as the prediction results of 
the random forest algorithm. Random forest improves prediction accuracy without a signifcant 
increase in computation, and the results are more reliable for missing and unbalanced data because 
it is insensitive to multicollinearity. The process of RF predicting SM is exhibited in Figure 12.2. 

In the process of retrieving SM through RF, the following should be taken as parameters of the 
RF model: ground refectivity, incident angle, and slope of trailing edge provided by CyGNSS; 
NDVI and VWC provided by MODIS; soil clay ratio and sand ratio in soil grids data; elevation 
and slope in DEM data [9]. The data with poor quality were eliminated by data fltering, and the 
remaining data were used to construct the training data set for SM retrieval. SM observations at 
the site were used as reference data to evaluate the estimation results. At the same time, the SM 
estimates and the SM observations from the site should be averaged to the same spatial resolution 
for comparison [9]. 

FIGURE 12.3 SM retrieval of K-day average [9]. 
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Senyurek et al. take four types of data from 170 sites as input features, implement data quality 
control after some data fltering and masking, conduct RF model training, and compare the SM pre-
dicted value obtained with the SM observed at sites to obtain errors. The constructed random forest 
contains 60 classifcation trees, each of which has no more than 100 nodes. Through the integration 
strategy of least squares promotion, the learning rate is 0.1 [9]. 

The SM outputs of the SMAP and random forest algorithms were time-averaged over K consecu-
tive days (i.e., K = 1, 3, 7, and 30 days), and the SM product of the K-day averages were created for 
both, as shown in Figure 12.3. The daily CyGNSS data set refers to the average data for the same 
calendar day concurrent with SMAP. In addition, to achieve the same spatial resolution, the 3-km 
resolution of SM estimation results from the random forest was spatially averaged to the level of 
SMAP spatial resolution [15]. 

12.3.2.3 XGBoost Integrated Learning 
Extreme gradient boosting (XGBoost) is an optimized distributed gradient boosting library, which 
is an improvement of the gradient boosting algorithm. It implements a machine learning algo-
rithm in the framework of gradient boosting. XGBoost provides serial tree boosting (also known 
as GBDT, GBM) that solves many data science problems quickly and accurately. The principle of 
gradient boosting decision tree (GBDT) is shown in Figure 12.4. XGBoost uses Newton’s method to 
solve the extreme value of the loss function, which expands the loss function Taylor to the second 
order. At the same time, the loss function also adds a regularization term. Because the error function 
will make the model ft the data as much as possible to obtain the minimum residual, the phenom-
enon of overftting will occur when the error function is directly used to monitor the learning of the 
model. Regularization will limit the model from becoming too complex, and the result of simple 
model ftting with limited data will be less random, so as to limit the phenomenon of overftting. 

The essence of XGBoost is an ensemble learning method of classifcation regression trees, and 
there are dependencies among classifcation trees, which is a reverse of boosting. In the learning 
process of the model, the residuals of the previous classifcation regression tree will be transferred 
to the training of the later tree to improve the prediction results of the later tree. 

When using XGBoost, you need to confgure some hyperparameters to moderate and limit the 
complexity of model learning, keeping the amount of computation within limits. The depth of the 
tree and the number of leaf nodes should be set to avoid overftting caused by excessive learning of 
local samples. At the same time, setting the minimum sample weight min_child_weight when the 
tree leaves too few nodes will also lead to an underftting phenomenon [17, 18]. The number of trees 

FIGURE 12.4 GBDT method. 
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to be built should also be limited to between 200 and 500 to ensure that the model will not be too 
large and affect the operation speed while meeting the requirements. In addition, the learning rate 
of the model is set to 0.1 as in most ML methods. 

12.4 GLOBAL SOIL MOISTURE RETRIEVAL 

In their study, Jia et al. used CyGNSS data and a global land cover map combined with SMAP 
data to digitize the soil type LT and divide it into 15 types. When the data belonged to one type, 
the change of SM was always consistent [17]. By inputting digital LT and CyGNSS data into the 
XGBoost model for learning, combined with the idea of classifcation, the model makes it easier to 
identify rules from data and is expected to show better estimation accuracy [17]. When XGBoost 
was used to predict SM estimation, the trailing edge slope TES, refectivity, soil permittivity, inci-
dence angle, and land type label were taken as input variables and a 10-fold cross-test was used 
to verify the estimation accuracy [18]. Too many input variables tend to weaken the essence and 
mechanism of SM estimation, so the input variables are set to different combinations. The accuracy 
of SM estimation among combinations was compared, and the variable with the best performance 
was used as the optimal variable for CyGNSS SM estimation. 

The performance of the proposed method is compared with that of other ML methods. The input 
variables to the model are various combinations of refectivity (B), trailing edge slope (T), land 
types (L), incident angle (A), and dielectric constant (D). Depending on the performance of differ-
ent combinations of variables in the model, the combination of (B+T+L+A) is considered the default 
combination of input variables. The performance comparison results of different ML methods are 
shown in Table 12.1. 

It is worth noting that the traditional ML methods (XGBoost and RF) give better results than 
the DL method (ANN). XGBoost performs better than RF in most situation, while the RF method 
performs comparably to or even slightly better than XGBoost on some specifc land categories, such 
as evergreen needleleaf forests and evergreen broadleaf forests. The small sample size of these two 
types of LTs indicates that the RF model performs better than the XGBoost algorithm when dealing 
with small amounts of product data. The expected accuracy of the ANN reached 0.040 cm3/cm3 in 
LT areas with sparse or barren vegetation and the sample size is more than 9 million. This shows 
that the ANN method is good at handling large data, while the proposed XGBoost method takes the 
best accuracy of 0.037 cm3/cm3. 

As a whole, both XGBoost and RF performed very well. For the whole data set, the emerging 
deep learning networks did not guarantee a decisive advantage over the traditional ML methods. 
This situation may be due to the small number of samples used in the training of the deep neural 
networks leading to a serious overftting phenomenon. In general, the LT labeling strategy based on 

TABLE 12.1 
Performance Comparison of Different Methods with the LT-Digitization Strategy for SM 
Estimation Using 10-Fold 
LT Methods RMSE ubRMSE Bias

 (B+T+L) (cm3/cm3) (cm3/cm3) (cm3/cm3) 

All types XGBoost - LT 0.0630 0.0630 0.0001 

RF - LT 0.0651 0.0651 0.0004 

ANN - LT 0.0690 0.0690 0.0008 

Evergreen needleleaf forest XGBoost - LT 0.0472 0.0431 0.0192 

RF - LT 0.0447 0.0447 0.0015 

ANN - LT 0.0469 0.0469 0.0006 

(Continued) 
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LT Methods RMSE ubRMSE Bias

 (B+T+L) (cm3/cm3) (cm3/cm3) (cm3/cm3) 

Evergreen broadleaf forest XGBoost - LT 0.0865 0.0788 0.0358 

RF - LT 0.0772 0.0772 0.0002 

ANN - LT 0.0857 0.0857 0.0007 

Deciduous broadleaf forest XGBoost - LT 0.0699 0.0661 0.0225 

RF - LT 0.0642 0.0641 0.0029 

ANN - LT 0.0721 0.0721 0.0026 

Mixed forest XGBoost - LT 0.0688 0.066 0.0192 

RF - LT 0.0637 0.0637 0.0007 

ANN - LT 0.0700 0.0700 0.0004 

Closed shrublands XGBoost - LT 0.0578 0.0514 0.0265 

RF - LT 0.0470 0.0470 0.0008 

ANN - LT 0.0507 0.0507 0.0001 

Open shrublands XGBoost - LT 0.0452 0.0452 0.0001 

RF - LT 0.0452 0.0452 0.0004 

ANN - LT 0.0495 0.0495 0.0009 

Woody savannas XGBoost - LT 0.0872 0.0872 0.0001 

RF - LT 0.0873 0.0873 0.0001 

ANN - LT 0.0950 0.0950 0.0005 

Savannas XGBoost - LT 0.0753 0.0753 0.0001 

RF - LT 0.0754 0.0754 0.0010 

ANN - LT 0.0824 0.0824 0.0011 

Grasslands XGBoost - LT 0.0855 0.0855 0.0003 

RF - LT 0.0854 0.0854 0.0007 

ANN - LT 0.0946 0.0946 0.0006 

Permanent wetlands XGBoost - LT 0.0906 0.0906 0.0001 

RF - LT 0.0932 0.0930 0.0058 

ANN - LT 0.1005 0.1004 0.0034 

Croplands XGBoost - LT 0.0797 0.0797 0.0001 

RF - LT 0.0798 0.0798 0.0021 

ANN - LT 0.0873 0.0873 0.0010 

Urban and built-up XGBoost - LT 0.0588 0.0587 0.0033 

RF - LT 0.0639 0.0632 0.0093 

ANN - LT 0.0768 0.0744 0.0193 

Cropland/Natural vegetation XGBoost - LT 0.0971 0.0971 0.0003 
mosaic RF - LT 0.097 0.097 0.0005 

ANN - LT 0.1057 0.1057 0.0013 

Barren or sparsely vegetated XGBoost - LT 0.0373 0.0373 0.0001 

RF - LT 0.0373 0.0373 0.0002 

ANN - LT 0.0405 0.0405 0.0007 

Water bodies XGBoost - LT 0.0954 0.0944 0.0139 

RF - LT 0.0941 0.0941 0.0012 

ANN - LT 0.1020 0.1020 0.0010 
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FIGURE 12.5 The predicted daily (a) average SM using XGBoost with the LT strategy, and (b) average 
SMAP SM for SM estimation using XGBoost with the LT strategy. 

XGBoost has a clear advantage over other methods in all statistical metrics. The accuracy of RMSE 
and ubRMSE of XGBoost over the entire data set improved by 0.002 cm3/cm3 over the RF model. 
In addition, ANN and RF outperformed some LT types for other LT categories, which means that 
different ML methods are suitable for different data sets. This fnding has been noted previously 
[10]. Therefore, different ML models are built for training in different LT regions to obtain special-
ized SM prediction values. 

Figures 12.5(a) and (b) show the daily average SM distribution of CyGNSS and SMAP units, 
respectively. The mean value of SM based on CyGNSS retrieve is 0.1285 cm3/cm3, which is consis-
tent with the reference value of SMAP SM of 0.1281 cm3/cm3. This indicates that the SM retrieve 
results obtained by CyGNSS using XGBoost LT strategy are consistent with the SMAP reference 
data. In addition, the legends are classifed using a natural break model, in which the classifcation 
categories are based on natural groupings inherent in the data. Select the class that best groups simi-
lar values and maximizes the difference between classes to identify the breakpoint. These features 
are divided into classes with boundary sets in which jumps in values are relatively larger. Therefore, 
Figures 12.5(a) and (b) indicate that CyGNSS tends to have lower estimations when the SM levels 
are higher [5]. 

Figure  12.6 shows the density plots of the XGBoost, RF and ANN models, comparing the 
CyGNSS-based SM estimates with the SMAP SM reference on a logarithmic scale. The fgure 
shows the performance of different ML models for the SM test data set (3 million samples) under 
the LT digitization strategy. It can be seen from the density plots that the CyGNSS-based SM esti-
mates and the SMAP SM reference agrees quite well in general, especially in the sample-rich case. 

It is worth noting that the XGBoost model (Figure 12.6(a)) has the highest R of 0.71. In addi-
tion, the data cloud in the density plots looks stacked up by many 1:1 bold horizontal lines. This 
is caused by using the digitized LTs/labeling strategy. The classifcation effect of this strategy 
is remarkable, because it reassigns the samples into groups, which are represented as lines. The 
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FIGURE 12.6 Density plots of 10-fold CV using LT strategy: (a) SM estimation for XGBoost, (b) SM estima-
tion for RF, and (c) SM estimation for ANN. (Continued) 
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FIGURE 12.6 (Continued) 

learning model in this way can better establish the relationship between the input and output vari-
ables, providing more reliable prediction results. A similar phenomenon is seen in Figure 12.6(b). 
This phenomenon in Figure 12.6(c) is more ambiguous. The R in Figure 12.6(c) is also the lowest 
among (a), (b), and (c). It can be seen that the LTs strategy is very effective in improving the cor-
relation of the predicted results. 

When the data distribution is more discrete, there is a tendency for the straight line to devi-
ate. This indicates that the CyGNSS SM estimation products are underestimated to some extent, as 
already shown in the previous results (Figure 12.5) and previously mentioned in [5]. The surfaces 
with high SM usually grow dense vegetation with high water content, which leads to the increase 
in the incoherent component and the drops in the coherent component. Under such situation, the 
change in refectivity is not perfectly consistent with the change in SM, while a positive correlation is 
shown between SM and coherent components. Therefore, the SM predicted by the model tends to be 
underestimated because the ground characteristics of the high SM surface are not extracted correctly. 

A new pre-classifcation strategy to aid global CyGNSS SM estimation was proposed [18]. The 
performance of different ML regression models is also compared in terms of whether to adopt 
this strategy or not. The performance of the proposed ML regression model based on the pre-
classifcation strategy is evaluated for all different LTs using as few auxiliary data as possible, show-
ing the simplicity and effectiveness of the model. 

Table 12.2 shows the SM estimates retrieved by traditional ML methods (RF, SVM, XGBoost) 
and emerging DL algorithms (ANN) with/without pre-classifcation strategies. The most appropri-
ate combination of input variables (G d t ) was used to derive the best modeling approach for brcs + +  
ML. A detailed demonstration of the proposed ML regression method using pre-classifcation strat-
egy aided by constructing samples using the annual data to build the model is presented. The results 
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TABLE 12.2 
The Evaluation Performance (RMSE) for SM Estimation Using 10-Fold CV and Different 
ML with/without Pre-Classifcation Strategy 
Land Type RMSE (cm3/cm3) 

XGBoost RF ANN SVM 

No With No With No With No With 
Pre-cla. Pre-cla. Pre-cla. Pre-cla. Pre-cla. Pre-cla. Pre-cla. Pre-cla. 

Evergreen Broadleaf Forest 0.0884 0.0822 0.0918 0.0869 0.0901 0.0889 0.0925 0.0903 

Deciduous Broadleaf Forest 0.0868 0.0718 0.0881 0.0759 0.0922 0.0798 0.0939 0.0879 

Mixed Forest 0.0730 0.0613 0.0662 0.0653 0.0748 0.0723 0.0788 0.0782 

Open Shrublands 0.0468 0.0423 0.0454 0.0441 0.0493 0.0488 0.0694 0.065 

Woody Savannas 0.0725 0.0657 0.0721 0.0657 0.0745 0.0725 0.0776 0.0757 

Savannas 0.0706 0.0612 0.0712 0.0686 0.0723 0.0673 0.0768 0.0728 

Grasslands 0.0720 0.0603 0.0668 0.0651 0.0778 0.0682 0.0805 0.0746 

Croplands 0.0716 0.0635 0.0721 0.0689 0.0729 0.0717 0.0734 0.0707 

Cropland/Natural Vegetation Mosaic 0.0761 0.0641 0.0731 0.0669 0.0779 0.0742 0.0835 0.0768 

Barren or Sparsely Vegetated 0.0435 0.0370 0.0425 0.0415 0.0460 0.0455 0.0660 0.0700 

Final results 0.0640 0.0520 0.0630 0.0600 0.0700 0.0630 0.0790 0.0680 

of each sub-model are weighted averaged to obtain the fnal results of the strategy, and the perfor-
mance of the global SM estimation performs well overall. In addition, there is a signifcant decrease 
in the RMSE of the prediction results when using this strategy. 

According to the IGBP land classifcation data included in the SMAP release, there are 17 different 
LTs in the CyGNSS data sample. After processing the CyGNSS and SMAP data according to quality 
control requirements, for some land categories, the number of data samples included was not suffcient 
for ML model learning and model building. Therefore, the seven land categories with less than 20,000 
annual data were not modeled. The land categories that were not modeled were water bodies, perma-
nent wetlands, snow, ice, and areas with very dense vegetation. It is diffcult to construct models to 
invert the soil moisture in these areas for the heavy infuence of vegetation and water bodies. 

Among all the traditional ML and DL algorithms, the proposed pre-classifcation strategy 
approach yielded good results with small RMSEs in all LTs. For the different ML algorithms, RF 
performs better than ANN and SVM, which is consistent with the conclusion reached by [10]. In 
addition, XGBoost has the smallest RMSE of 0.052 cm3/cm3 predicted and the best regression per-
formance, which has not been mentioned in SM estimation on a global scale. 

12.5 SUMMARY 

The spaceborne CyGNSS provides a very favorable condition for long-time series monitoring of soil 
moisture on a large scale. It has many advantages, such as real time, wide coverage, low cost, and so 
on. At the same time, the retrieval of soil moisture is a non-linear complex interaction process. The 
subtle change of soil moisture could be affected by many factors, so it is diffcult to estimate soil 
moisture under different environments truly and effectively. Artifcial intelligence (AI) methods can 
better mine, express, and use the implicit rules between data, which is a new way to obtain accurate 
and effective soil moisture values. 

This chapter introduces the data set used by the spaceborne CyGNSS soil moisture, several 
machine learning (ML) methods used in the estimation model, neural network algorithms, and 
data feature extraction processes. The basic parameters of the design and operation of the CyGNSS 
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satellite system and SMAP satellite as the reference value of soil moisture, as well as the time 
resolution and spatial resolution, are detailed. Data acquisition, processing, and quality control 
of CyGNSS data products are reported. The principles, advantages, and disadvantages of artif-
cial intelligence methods such as XGBoost, ANN, and RF are introduced respectively. Finally, 
the signifcance of characteristic parameters and the framework of AI algorithm are depicted, and 
the performance of soil moisture estimation method based on machine learning is evaluated and 
demonstrated with examples. Soil moisture retrieval based on a machine learning algorithm has 
achieved many satisfactory results, and further research can be carried out in terms of precision 
improvement and multiple auxiliary data fusion. 
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13.1 INTRODUCTION 

Droughts have increased in frequency and severity due to climate change throughout the world’s 
river basins in recent decades (Forootan et al., 2019). According to the sixth assessment report of 
the International Panel for Climate Change (IPCC), global temperatures have risen by ~1°C since 
industrialization, which may further amplify by 1.5°C between 2030 and 2050 as a result of human 
activities (IPCC, 2018). As the population grows and water demand increases, droughts are trig-
gered and aggravated by anthropogenic activities such as deforestation and the construction of dams 
(Schlosser et al., 2014; AghaKouchak et al., 2015; Omer et al., 2020; Sarfo et al., 2022). To prioritize 
adaptation actions in global hot spots, it is essential to characterize droughts. 

Although the continent has abundant water resources with meeting its ecological and agricultural 
needs, climate extremes are becoming increasingly dangerous, endangering the continent’s crucial 
water supply and millions of lives (Masih et al., 2014; IPCC, 2022). Two of the biggest drought trag-
edies ever documented in history occurred in the Sahel region in 2007 and the Nile basin in 1984. 
These droughts caused the death of approximately 750,000 people (Vicente-Serrano et al., 2012). 
Future projections indicate that the probability of drought occurrence will increase across the entire 
African continent, leading to signifcant regional implications (Ahmadalipour and Moradkhani, 
2018; IPCC, 2022). Additionally, excessive water demand may lead to the overuse of freshwater 
resources, which might result in disputes among water users during dry spells. This may increase 
the risk of hydro-political tension in Africa, because the transboundary rivers represent 64% of the 
entire region’s landmass (United Nations Environment Programme, 2010). Monitoring the drought 
situation in Africa is crucial for prioritizing adaptations to avert water scarcity and disputes. 

Drought monitoring necessitates prolonged and uninterrupted in situ hydro-climatic measure-
ments. Yet Africa’s land-based observation network has been deteriorating with time, having only 
one eighth of the minimum density required by the World Meteorological Organization and with 
only 22% of stations fully meeting the Global Climate Observing System requirements (Dobardzic 
et  al., 2019). Due to the insuffciency of in situ data records in Africa, monitoring hydrological 
drought in the continent’s basins has been limited (Ferreira et al., 2018). Additionally, a substantial 
fnancial and political commitment is required to record and share in situ observations, both of 
which are frequently missing. 

Remote sensing observations represent an alternative source to counter data defciencies in many 
data-poor regions worldwide. Moreover, satellite-borne sensors have featured as an effective tool for 
tracking droughts, considering their capacity to offer regional-to-global coverage (Jiao et al., 2021). 
Various remote sensing-based systems have been utilized to assess and detect drought conditions 
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around the world. Among these are Moderate Resolution Imaging Spectroradiometer (MODIS)-
based evapotranspiration, soil moisture from Sentinel-1 and the Soil Moisture Active Passive radi-
ometer, and the Normalized Difference Vegetation Index from Landsat (West et al., 2019; Modanesi 
et al., 2020). Although these measurements could deliver valuable information about agricultural 
and meteorological droughts, the task of assessing hydrological drought remains daunting (Papa 
et  al., 2022) since they can capture only surface and shallow subsurface conditions. Also, it is 
problematic to evaluate droughts based only on surface measurements (e.g., precipitation and soil 
moisture), since the reduction of water from the deepest aquifers may continue even after the sur-
face storage has dried up (Leblanc et al., 2009). After launching the Gravity Recovery and Climate 
Experiment (GRACE) satellite mission in 2002, the potential time-variable gravity measurement 
offered an integrated perspective for drought monitoring since it can capture vertically integrated 
terrestrial water storage (TWS) changes (i.e., from the top surface water to the deepest groundwater) 
(Ndehedehe et al., 2018). 

The unique potential of GRACE measurements offered hydrologists a new dimension to develop 
new GRACE-based drought indices (Hassan and Jin, 2016; Jin and Zhang, 2016). Therefore, numer-
ous studies have applied GRACE-based indicators for drought analysis and monitoring. For exam-
ple, Kumar et al. (2021) evaluated the drought severity over the Godavari basin using the GRACE 
Combined Climatologic Deviation Index. Liu et  al. (2020b) proposed a GRACE-based Drought 
Severity Index and assessed the drought variations for China’s large basins. Khorrami and Gunduz 
(2021) proposed an Enhanced Water Storage Defcit Index to observe drought conditions in Turkey. 
Wu et al. (2021) characterized the drought over southwest China using the GRACE-derived Total 
Storage Defcit Index. Cui et al. (2021) developed a multiscale Standardized Terrestrial Index of 
water storage to assess the global hydrological droughts. 

Many studies have investigated drought characteristics throughout Africa utilizing GRACE data. 
For examples, Nigatu et al. (2021) evaluated the drought situation over the Nile basin using GRACE 
Combined Climatologic Deviation Index (CCDI) and GRACE Water Storage Defcit Index (WSDI). 
Ferreira et al. (2018) assessed the drought condition over West Africa’s river basins utilizing de-sea-
soned GRACE-TWS. Hulsman et al. (2021) employed GRACE Total Storage Defcit Index (TSDI) 
to detect drought events over the Zambezi basin. These previous studies, on one side, calculated the 
drought indices based on accounting the total TWS components (including: surface, soil, ground, 
snow, and canopy water), and neglected the infuencing role of the individual water storage com-
ponents in drought index. Each water storage component is an essential hydrological variable to 
comprehend drought occurrences, according to Lopez et al. (2020). Since the TWS-based drought 
indicator considers all components together, the primary problem is abstract. As a result, this may 
overestimate or underestimate drought characteristics. 

On the other side, most of these studies only verifed the capabilities of drought using GRACE 
data but not the associations between GRACE-based droughts and teleconnection factors. It is clear 
from earlier studies that telecommunication factors have a major effect on drought (Dai, 2011; Wang 
et al., 2015). Many worldwide attempts have been made over past years to establish the relationship 
between climate variability and GRACE-TWS changes. Huang et al. (2016) evaluated the associa-
tions between the hydrological drought over the Columbia River and ENSO and Arctic Oscillation 
(AO). Vissa et al. (2019) assessed the relationship between ENSO-induced groundwater changes 
derived from GRACE and GLDAS over India. Liu et al. (2020a) explored the role of teleconnections 
over TWS variations within the Asian and eastern European regions. To the best of our knowledge, 
most previous studies have focused on the relationship of several atmospheric variables such as 
precipitation and temperature with teleconnections in Africa (e.g., Alriah et al., 2021; Nkunzimana 
et al., 2021; Diatta et al., 2020; Bahaga et al., 2019). Limited studies analyzed the relation between 
teleconnections and GRACE-based drought over the continent. 

This present work aims to evaluate the drought condition in major basins in Africa (Figure 13.1) 
during 2003–2016 using the Weighted Water Storage Defcit Index (WWSDI) (Wang et al., 2020), 
which was developed from the GRACE-WSDI but also considered the infuence of the individual 
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FIGURE 13.1 Map showing the location of river basins selected in this article and the elevations along 
the basins. 

TWS components to provide further reliable droughts assessment. This work also reveals the 
relationship between the drought identifed by the WWSDI and climate teleconnections. The pri-
mary objectives of this work are (1) to assess the drought events in major African basins using the 
WWSDI; (2) to examine the time required for drought recovery in different basins; and (3) to ana-
lyze the links between the WWSDI and climate oscillations using the wavelet coherence method. 

13.2 MATERIALS AND METHODS 

13.2.1 data sets 

This study uses monthly precipitation data in gridded form (0.25° ´ 0.25°) from 2003 to 2016, 
acquired from the seventh version of the Tropical Rainfall Measurement Mission (TRMM 3B43) 
(Huffman et al., 2007). The present study also utilizes monthly potential evapotranspiration (PET) 
retrieved from the MOD16A2 sensor, publicly available worldwide at 8-day temporal resolutions 
and 500-m spatial resolution (Running et al., 2017). The 8-day PET data were averagely weighted 
to obtain the monthly PET values for this study. We also utilize monthly self-calibrated Palmer 
Drought Severity Index (scPDSI) (Wells et al., 2004) time-series (v4.04) data sets for the period 
2003–2016, with a spatial resolution of 0.5°. The data sets were collected from the Climate Research 
Unit (CRU) at the University of East Anglia, United Kingdom. We further employ climate indices 



 

  

  

  

  

  

 

 
 
 
 

326 3S Technology Applications in Meteorology 

time series, namely, El Niño Southern Oscillation Index (ENSO) and Indian Ocean Dipole (IOD). 
The data was obtained for the period 2003–2016. 

This study uses the sixth release of GRACE spherical harmonics coeffcient solutions processed 
by the Center for Space Research (CSR) at the University of Texas at Austin (Chen et al., 2022) to 
derive gridded terrestrial water storage anomaly (TWSA) from 2003 to 2016 at a spatial resolution 
of 1°. We also utilize the WaterGAP Global Hydrology Model (WGHM) to separate the compo-
nents of GRACE-TWS data. The recent model version (WaterGAP 2.2d) at a resolution of 0.5° 
is used in this study (Müller Schmied et al., 2021). The data are available from January 2000 to 
December 2016. 

13.2.2 Methodology 

13.2.2.1 Processing GRACE-Derived Water-Storage Anomalies 
The monthly GRACE-derived gravity coeffcients were processed by being truncated at degree 
and order 60. They were then fltered and destriped using a 400-km-radius Gaussian flter. The 
leakage reduction and averaging approach (Khaki et al., 2018) were used in this study to minimize 
the leakage error contributions over the understudied river basins. The missing months in the time 
series were flled using linear interpolation via averaging the prior and subsequent months (Yang 
et al., 2017). A regional average of the TWS was then computed by defning the mask following the 
method described in Swenson and Wahr (2002). 

13.2.2.1 Standardized Drought Indices 
Standardized indices are widely used to quantify droughts worldwide. We employ SPI, SPEI, and 
scPDSI to assess the effectiveness of WWSDI in characterizing drought events over the chosen 
basins for this study. SPI is a meteorological drought index that is based only on precipitation 
(Satish Kumar et al., 2021). To compute SPI, the monthly TRMM precipitation is normalized by 
utilizing an equal probability function. SPEI is an expansion of SPI, since it includes the infuence 
of evapotranspiration on drought under changing environments. SPEI is computed by subtract-
ing precipitation from potential evapotranspiration using climatic water balance. Hence, TRMM 
precipitation and MOD16 PET products were employed to calculate SPEI. Both indicators can be 
obtained at different timescales (1, 3, 6, 9, 12, and 24 months). However, each timescale refects a 
distinct condition. For example, 1 month could indicate meteorological types of droughts, 3 months 
could refect the soil moisture conditions, 6 months may indicate anomalies in land water storage, 
and 9 months could depict the agricultural droughts well. Hence, to provide a solid validation for 
WWSDI performance, the 6-month timescale was employed since it can effectively demonstrate the 
TWS defcit that was monitored by the WWSDI (Sun et al., 2018; Wang et al., 2020). Another widely 
used meteorological drought index is the scPDSI, which is developed based on the Palmer Drought 
Severity Index (PDSI) using a physical water balance model. The scPDSI timescale is fxed unlike 
the two indices previously described. 

13.2.2.2 Water Storage Components Estimation 
TWSA is composed of the following: 

TWSA = GWSA + SMSA + SWEA + SWSA + CWSA˜ (13.1) 

In this study, TWSA is estimated from GRACE, whereas soil moisture storage anomalies (SMSA), snow 
water equivalent anomalies (SWEA), surface water storage anomalies (SWSA), and canopy water stor-
age anomalies (CWSA) are the anomalies of SMS, SWE, SWS, and CWS, deduced from the WGHM. 
Groundwater storage anomalies (GWSA) are estimated via subtracting TWSA from the WGHM-derived 
components in Equation 13.1. Note that the SWEA and CWSA have minimal contribution to TWSA 
over African basins. Thus, they are assumed to be negligible and not considered in groundwater storage 
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anomalies computation, as indicated in Equation 13.1. SMSA and SWSA are expanded into the spherical 
harmonic coeffcients, truncated to 60°, ordered, and fltered by Gaussian flter. 

13.2.2.3 Component Contribution Ratio 
We utilized the component contribution ratio (CCR) to determine the mean percentage contribu-
tion of a single water storage component to the temporal variability of the total TWS (Huang et al., 
2019). CCR is calculated as the ratio of the mean absolute deviation (MAD) of a storage component 
to the total TWS variability (TV), as expressed by (Zhang et al., 2019): 

MAD 
CCR = S (13.2) S TV 

1 N 
Storages 

where MAD = | S - | S |, MAD , S denotes the single storage components, and TVS t SSN å 
t 

å
Storages 

is the total variability, calculated as summation of all components MAD  ( å MADS).s 

S 

13.2.2.4 Evaluation of Hydrological Drought and Its Recovery Time 
In this study, in order to depict drought in the fve large African basins, we adopted the WWSDI 
developed by Wang et al. (2020). WWSD is based on WSD, which represents the difference between 
TWSA time series and the monthly means of TWSA values (Thomas et al., 2014) and is computed as: 

WSDu v, = TWSAu v, - TWSAv (13.3) 

where TWSAu v  is the value of TWSA time series for the vth month of the uth year and TWSAv, 
is the mean value of the vth month of TWSA during the study period. A negative deviation rep-
resents storage defcits. Furthermore, three continuous negative months or longer is considered a 
drought event (Thomas et al., 2014). In order to make comparisons against SPI, SPEI, and scPDSI 
in this study, the WSD is normalized to WSDI by the zero-mean normalization method, based on 
the expression 

WSD - mWSDI = (13.4) 
s 

where s  and m indicate standard deviations and the mean of the WSD time series, respectively. 
In order to construct WWSD, we incorporated different TWS components (i.e., GWS, SWS, and 
SMS) to the drought index by weighting these components through their CCR using Equation 13.2. 
We subsequently calculated the water defcit for each component (i.e., groundwater storage defcit 
[GWSD], surface water storage defcit [SWSD], and soil moisture storage defcit [SMSD]) like the 
WSD. Thereafter, WWSD was generated by combining these water components’ defcits after mul-
tiplying them by their respective weights: 

WWSD  = w ×GWSD  + w ×SWSD  + w ×SMSD (13.5) 1 2 3 

where wi  (= 1, 2, 3) represent the derived weight from Equation  13.2. Finally, the WWSDI is 
achieved by normalizing WWSD, as shown in Equation 13.4. 

The hydrological recovery time is calculated based on a statistical method proposed by (Thomas 
et al., 2014). The rate of change of WWSD during a certain period can be assessed by 

DWWSD 
= WWSD - WWSDI ˜ (13.6) u u-1Dt 
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DWWSD 
where  represents the rate of change of the water storage defcit, and Dt  represents the time

Dt DWWSD 
interval (one month in this study). If  follows a standard normal distribution according to 

Dt 
a one-sample Kolmogorov-Smirnov test, the 68th percentile value C (1 standard deviation) is used 
as the recovery rate of WWSD for any defcit month. Then, the drought recovery time (R) for each 
month can be obtained by (Thomas et al., 2014) 

WWSD R = (13.7) 
C 

where C is the drought recovery rate during the study period, and R (month) is the drought recovery 
time of the water storage defcit. According to this method, a probabilistic recovery time can be 
assessed for each hydrological drought. 

13.2.2.5 Wavelet Coherence 
Within the time-frequency space, wavelet coherence can be used to determine the relationship 
between the two time series data by estimating the correlation between them that varies between 0 
and 1. The coeffcient of wavelet coherence between the two sets of time series data can be denoted 
as follows (Grinsted et al., 2004): 

2
1-S s  W  (s, t)( xy )2R s( ,t) = (13.8) 

2 21- 1-S s( W s( ,t) W s( ,t)x x).S s( ) 
2where R s( ,t) =  coherence coeffcient minimum and maximum coherence at 0 and 1, and 

W (s, t) = cross wavelet transforms between two series. Equation 13.8 resembles the coeffcient of xy 
determination equation, and thus the wavelet coherence varies between 0 and 1. 

S = smoothing operator represented as given here: 

S W  = S S W s, t (13.9) ( )  scale ( time ( (  ))) 
The smoothing along the wavelet axis is represented as Sscale  and Stime. In the present study, the 
wavelet coherence was examined at 5% signifcance level or at the confdence interval > 95%. 

13.3 RESULTS AND DISCUSSION 

13.3.1 wwsd generation and signiFicance 

In order to construct the WWSD (Equation 13.5), we frst calculated the component contribution 
ratio (CCR) and the water component storage defcit (WCSD) time series for all basins (Figure 13.2). 
The obtained result of CCR showed that the highest contribution to total water storage variabil-
ity over the fve river basins was induced mainly by the groundwater storage anomalies (GWSA) 
accounting (56%, 61%, 47%, 64%, and 78%), followed by soil moisture storage anomalies (SMSA) 
(34%, 32%, 25%, 26%, and 18%) and surface water storage anomalies (SWSA) (10%, 21%, 14%, 
10%, and 4%) for the Nile, Congo, Niger, Zambezi, and Orange basins, respectively. Concerning 
WCSD (Figure 13.2), groundwater storage defcit (GWSD) found to be highly consistent with ter-
restrial water storage defcit (WSD), while soil moisture storage defcit (SMSD) and surface water 
storage defcit (SWSD) followed varied patterns compared to GWSD during different periods in the 
time series. For example, in the Congo basin (Figure 13.2b), from January 2009 to January 2013, 
GWSD recorded a declining trend of −1.03 mm, whereas SMSD and SWSD exhibited rising trends 
of 0.3 mm and 0.15 mm, respectively. 
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FIGURE 13.2 Water storage defcit (WSD) and water components storage defcit (WCSD) in the (a) Nile, (b) 
Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. 

However, since these components showed distinguish contribution and variation among them 
relative to TWS changes, it is natural to wonder whether these water components react differently to 
the incidence of drought over those basins. To clarify that, water component storage defcit (WCSD) 
was also utilized as an indicator to identify drought events (Figure 13.3) based on 3 months or more 
of continuous negative defcits. The results in  Figure 13.3  clearly show that different WCSD indica-
tors detected varied onset, duration, and drought occurrences during the study period. For example, 
in the Nile basin (Figure 13.3a), GWSD exhibited six drought events, whereas SMSD and SWSD 
exhibited 12 and 7 events, respectively, between January 2003 and December 2016. 

Additionally, a remarkable prolonged drought state in terms of groundwater storage (GWSD) 
was noticed from January 2003 to February 2007, January 2003 to December 2009, January 2003 
to July 2008, and January 2003 to January 2006 over the Nile (Figure 13.3a), Niger (Figure 13.33c), 
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FIGURE 13.3 Identifed drought events based on water storage defcit (WSD), water components storage def-
cit (WCSD), and weighted water storage defcit (WWSD) in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and 
(e) Orange river basins. The red values denote wet month, while the dark blue values represent drought month. 

Zambezi (Figure 13.3d), and Orange (Figure 13.3e) basins, respectively, separated by nearly one 
wetting month. The late response of GWS to recharge from SWS and/or the increased groundwater 
withdrawal can support this fnding. Furthermore, the Niger basin (Figure 13.3c) had the most pro-
longed GWS drought state among all the basins recording 7 years. Previous work by Ferreira et al. 
(2018) on a water storage (TWS) drought signal over West Africa (including the Niger basin) found 
a long drier period between 2003 and 2008. These fndings are consistent with the results presented 
in this work. According to the analysis of the 2003–2008 period presented in this study, the water 
storage (TWS)-based drought trend is related to groundwater storage, where most of the TWS (i.e., 
61%) in the Niger basin is induced mainly by GWS. Ferreira et al. (2018) reported that the rainfall 
increasing trend between 2003 and 2008 over West Africa is associated with a drought period. 
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They attributed this to the unsustainable infuencing of rainfall recovery to the water-storage 
increase across West Africa, in the early 2000s. Consequently, the occurrence of the long GWS 
drought state in the Niger basin may be attributed to the minimal or late infuences of surface water 
on the groundwater storage in the early 2000s. 

The results also demonstrate that SWSD over the Orange basin (Figure 13.3e) exhibited a long 
drier period from March 2013 to December 2016 except for February and June 2013. This fnd-
ing is in line with an early study conducted over the South African drying signal (Munday and 
Washington, 2019). The latter linked the decline in precipitation with local surface temperature 
change since increased subsidence is linked to clearer skies and higher net solar radiation. Also, 
the reduction in precipitation magnitude is correlated to the changing patterns of tropical sea sur-
face temperatures. Furthermore, the exceeding demand for surface water may cause the surface 
water shortage where the water of the Orange basin is heavily utilized, and most of the riparian 
states rely on the Orange basin’s water resources for commercial crop irrigation; in addition, 
29 dams are operated over the river (Mgquba and Majozi, 2020), which may cause large water 
abstractions. 

However, since WCSD plays different roles in response to drought events, considering these 
differences in calculating drought index can provide more realistic and reliable drought evalua-
tion over the continent’s river basins. To demonstrate that, we further assessed the performance 
of weighted water storage defcit (WWSD) and water storage defcit (WSD) in terms of drought 
events identifcation as shown in Figure 13.3. From the graph, despite both indicators appearing 
to behave similarly, the data show some discrepancies in the observed onset and drought dura-
tion between WWSD and WSD. For example, in the Nile basin (Figure 13.3a), WWSD recorded 
one drought between April 2004 and October 2006, whereas WSD monitored the drought from 
March 2004 to November 2006. In the Congo basin (Figure 13.3b), WSD detected a drought 
event from November  2008 to January  2009; however, WWSD failed to identify this event. 
From the foregoing, WWSD has varied sensitivity to drought events compared to WSD. These 
discrepancies, however, are explained by the weight given to a single TWS component in the 
WWSD. This result further suggests that accounting for the infuencing roles of water storage 
variables in drought index promises to provide more accurate drought estimation over major 
basins in Africa. 

13.3.2 wwsdi Validation and drought detection 

Before using WWSDI for characterize drought condition, we assessed its reliability compared to four 
drought indices including WSDI, SPI, SPEI, and scPDSI as illustrated in Figure 13.4. Graphically, 
WWSDI exhibited a good agreement with the four drought indices in monitoring drought over most 
of the basins. We also ran a numerical comparison analysis using Pearson’s correlation coeffcient 
between the four drought indices and WWSDI (Table 13.1). From Table 13.1, high positive correla-
tion ranges from 0.95–0.98 were observed between WWSDI and WSDI over the fve basins. This 
strong relation between WWSDI and WSDI is due to their high sensitivity to GRACE-derived TWS 
and the inclusion of TWS in their calculation procedures. However, the differences in correlation 
are attributed to the consideration of the weight of a single TWS component in WWSDI. WSDI is 
based on a single variable (GRACE-TWS); on the other hand, WWSDI is based on combining the 
TWS estimation from GRACE and WGHM using the CCR of individual TWS compartments as the 
weight. However, despite the fact that WWSDI and WSDI operate quite similarly, there is a distinc-
tion, as discussed previously. The comparison results between WWSDI and other three drought 
indices showed that WWSDI is signifcantly correlated with SPI in all basins. The highest positive 
correlation (r = 0.69) between the two indices was observed in the Orange basin, while the lowest 
was detected in the Congo basin. 

Moreover, WWSDI was found to exhibit a signifcant correlation with the SPEI and scPDSI in 
the Nile, Congo, Zambezi, and Orange basins, but a weak correlation in the Niger basin. 
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FIGURE 13.4 WWSDI, WSDI, SPI, SPEI, and the scPDSI time series for the (a) Nile, (b) Congo, (c) Niger, 
(d) Zambezi, and (e) Orange river basins. 

TABLE 13.1 
Person’s Correlation Coeffcients between WWSDI and WSDI, SPI, SPEI, and scPDSI over 
the Major African Basins 

 Drought Indices 

Basin WSDI SPI SPEI scPDSI 

Nile 0.98 0.52 0.72 0.78 

Congo 0.95 0.5 0.51 0.53 

Niger 0.98 0.55 0.1* 0.08* 

Zambezi 0.99 0.53 0.73 0.72 

Orange 0.98 0.69 0.73 0.72 

Note: An asterisk indicates that the correlation is not signifcant. 
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To carry out a much more in-depth investigation, we further evaluated the temporal trends of 
these time series in Figure 13.4 in light of the fact that the association between the WWSDI and 
SPI, SPEI, and scPDSI was stronger in some situations while being weaker in others. According 
to Figure 13.4, the performance of WWSDI and its response to climate change correspond to 
the peaks and troughs of SPI, SPEI, and scPDSI over most basins. For example, all indicators 
showed that the biggest troughs occurred in the Orange basin in 2003 and across the Nile and 
Zambezi basins in 2006. However, in several cases, WWSDI was not ftting well with SPI, SPEI, 
and scPDSI; for example, the drought identifed by WWSDI in 2004 over the Niger basin was not 
detected by SPI, SPEI, and scPDSI. The variations in relationships among SPI, SPEI, scPDSI, 
and WWSDI are most likely due to the differences in hydrological components and algorithms. 
For instance, the high correlation between the scPDSI against WWSDI in the Nile basin refects 
the signifcant infuence of soil moisture on the TWS. Some recent studies also reported the 
signifcant correlation between soil moisture and TWS over the Nile basin (e.g., Abd-Elbaky 
and Jin, 2019). In contrast, the weak correlation of SPEI and scPDSI with WWSDI in the Niger 
basin reveals that TWS was not much affected by evapotranspiration and soil moisture. In this 
context, the Niger basin was previously characterized as having a long-term high reduction in 
water storage between 2002 and 2008 (Ferreira et al., 2018), which corroborates our fndings 
(Figure  13.3c). Thus, the availability of the stored water was less in the Niger basin, which 
affects the weak correlation of WWSDI against SPEI and scPDSI. Overall, WWSDI showed a 
good consistency with SPI, SPEI, and scPDSI in drought monitoring over most of the basins, 
which may indicate solid evidence on the applicability and capability of WWSDI over the river 
basins of Africa. 

The WWSDI-obtained droughts events for the considering basins from 2003 to 2016 are 
displayed in Figure 13.5. Table 13.2 represents the magnitude, intensity, and duration character-
istics of WWSDI for all the basins. The magnitude is calculated as accumulated WWSDI, and 
the intensity is calculated as the ratio of magnitude to duration. According to Figure 13.5 and 
Table 13.2, four drought events were detected in the Nile basin during 2003–2016, whereas the 
most severe droughts (intensity of −1.15) occurred during 2004–2006 period. This result agreed 
with the fndings of previous studies (Hasan et al., 2021; Nigatu et al., 2021). In the Congo basin, 
six drought events were observed; more so, the highest frequency of droughts (with an intensity 
of −1.23) was observed during 2010–2012. Within the Niger basin, two prolonged drought epi-
sodes were detected; in addition, the severest drought event (intensity of −1.02) occurred during 
2003–2007. Regarding the Zambezi basin, three drought events were observed. The sever-
est drought event (intensity of −1.02) occurred during the 2003–2004 period. Concerning the 
Orange basin, fve drought events were identifed; further, the severest drought event (intensity 
of −1.08) occurred during 2003–2006. Long-term drought occurrence was observed from 2003 
to 2006 over the Nile basin, from 2003 to 2009 over the Niger basin, and from 2003 to 2008 over 
the Zambezi basin, with the inclusion of few wetting months. A dominant wetting tendency was 
observed for the Nile, Niger, Zambezi, and Orange basins. Also, a mild trend over the Congo 
basin was detected. 

13.3.3 analysis oF drought recoVery tiMes 

The drought recovery time, defned as the time required for drought to recover to normal conditions. 
Herein, the drought recovery time across the fve major basins in Africa is evaluated by a probabi-
listic approach using the rate of change in WWSD (i.e., ΔWWSD/Δt). The Kolmogorov Smirnov test 
(KS-test) was used to examine the normality of change rate of the defcits (ΔWWSD/Δt). Table 13.3 
shows that the statistic Dmax for the fve basins is much smaller than the statistical threshold Da, 
which indicates that ΔWWSD/Δt follows a standard normal distribution at the signifcance level of 
95%. Therefore, it is appropriate to estimate the recovery time of drought in the considered basins 
based on the employed approach in this work. 
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FIGURE 13.5 Statistics of the WWSDI and drought event for the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, 
and (e) Orange river basins from 2003–2006. 

Table 13.3  lists the drought recovery rates (C) and the maximum and average recovery time (R) 
obtained for the fve basins. The R time series are displayed in  Figure 13.6. The drought recovery 
rate (C) varied in the fve basins. The Zambezi basin exhibits the largest drought recovery rate, with 
the value of 4.1 mm/month, whereas the Nile basin reveals the lowest drought recovery rate, with 
the value of 2.06 mm/month. A relatively high value of the drought recovery rate (C) indicates a 
tendency for depleted storage levels to increase rapidly. 

For the fve basins, the average recovery time (R) for drought ranges from 5.1 to 12.3 months, 
and the maximum R ranges between 12.2 and 24.5 months. The Zambezi basin takes slightly longer 
to recover from drought on average, whereas the Niger basin exhibits the longest recovery times. 
In general, long drought duration leads to longer drought recovery time. Therefore, since the Niger 
basin exhibits the longest drought duration (54 months), drought in this basin takes the longest 
recovery time compared to other basins.          
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TABLE 13.2 
Summary Table of Identifed Drought Event by WWSDI in Major Basins of Africa 
River Basin No. Period Magnitude Intensity Duration 

Nile 1 February 2003–June 2003 −2.39 −0.48 5 

2 September 2003–December 2003 −1.45 −0.36 4 

3 April 2004–October 2006 −35.78 −1.15 31 

4 January 2009–September 2011 −22.36 −0.68 33 

Congo 1 January 2004–November 2004 −4.25 −0.39 11 

2 January 2005–November 2006 −24.85 −1.08 23 

3 March 2007–July 2007 −1.55 −0.31 5 

4 December 2010–October 2012 −28.40 −1.23 23 

5 January 2013–January 2014 −8.01 −0.62 13 

6 January 2015–April 2015 −2.38 −0.60 4

 Niger 1 January 2003–May 2007 −54.01 −1.02 54 

2 July 2007–December 2009 −19.64 −0.65 30 

Zambezi 1 January 2003–December 2004 −24.34 −1.02 24 

2 January 2005–December 2007 −28.62 −0.79 36 

3 September 2015–December 2016 −15.7 −0.98 16 

Orange 1 January 2003–January 2006 −40.07 −1.08 37 

2 March 2007–November 2007 −8.50 −0.95 9 

3 April 2009–July 2009 −1.30 −0.32 4 

4 June 2010–January 2011 −5.05 −0.63 8 

5 July 2015–December 2016 −12.89 −0.72 18 

TABLE 13.3 
Statistics of Drought Recovery Times for the Five Major Basins in Africa 
Basin KS-Test Drought Recovery Time 

Dmax Da C (mm/month) Max R (month) Ave R (month) 

Nile 0.09 0.34 2.06 15.8 7.6 

Congo 0.09 0.35 3 16.4 5.5 

Niger 0.09 0.27 2.2 24.5 10.7 

Zambezi 0.08 0.43 4.1 24.2 12.3 

Orange 0.09 0.38 2.2 12.2 5.1 

13.3.4 the correlation Between wwsdi and cliMate Factors 

Previous studies have shown that droughts were closely related to climate variables (Liu et  al., 
2020; Mishra and Singh, 2010; Ferreira et al., 2018). In the present study, ENSO and IOD were 
chosen to describe the infuences of teleconnections over droughts. Moreover, wavelet coherence 
was employed to evaluate the link between WWSDI and climate factors over major basins in Africa 
during 2003–2016. The wavelet coherence between monthly WWSDI and climate factors was pre-
sented in Figure 13.7. 
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FIGURE 13.6 Time series of drought recovery time (R) in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, 
and (e) Orange river basins. 

In the Nile basin (Figure 13.7a, b), the WTC between ENSO and WWSDI shows statistically 
signifcant in-phase relationships at 0.25–1-year band over 2004–2006, and at 1–2-year band over 
2003–2011 and 2013–2016, respectively. On the other hand, the WTC between IOD and WWDI 
shows anti-phase relationships with signifcant coherence at 1–2-year band over 2003–2007, and 
at 4–5-year band over 2003–2014. In comparison to  Figure  13.5a, the strong in-phase relation-
ship between WWSDI and ENSO during 2007–2011 and 2013 to end of the time series was cor-
responded with the induced of wet condition, which is derived by La Niña events. Furthermore, 
the shown anti-phase relationship between WWSDI and IOD during 2003–2016 was found to be 
consistent with the observed recovery tendency, as seen in  Figure 13.5a. 

For the Congo basin (Figure 13.7c, d), signifcant in-phase relationships were observed between 
ENSO and WWSDI over 2004–2007 and 2014–2016 periods at 0.25–1-year band, over 2014 to 
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FIGURE 13.7 The left panel represents the wavelet coherence between monthly WWSDI and El 
Niño Southern  Oscillation Index (ENSO). The right panel represents the wavelet coherence between 
monthly WWSDI and Indian Ocean Dipole (IOD). The 95% confdence level is presented as thick contour 
and the relative phase relationship is represented by arrows with anti-phase pointing left and in-phase 
pointing right. 

2016 at 1–2-year band, and over 2006 to end of time series at 2–4-year band. WTC plot between 
IOD and weighted water storage defcit index (WWSDI) shows that the IOD and WWSDI were in 
anti-relationship at 1–2.5- and 3–4-year band over 2013 to 2016. In comparison to  Figure 13.5b, 
the signifcant in-phase ENSO relationship during 2006 to the end of the time series was found to 
coincide with the induction of the wet condition in the basin, which is forced by La Niña episodes. 
This result suggests that ENSO leads the variability of drought in the Congo basin. It is also noted 
that the anti-phase IOD relationship during 2013 to 2016 was consistent with the decreasing drought 
magnitude as well as increasing wet tendency. 
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In case of the Niger basin (Figure 13.7e, f), in-phase relationships with statistically signifcant 
coherence were observed between ENSO and WWSDI at 0.25–1-year band over 2003–2005 
and 2015–2016, and at 1–4-year band over 2003–2005, over 2012–2013, and over 2014–2016, 
respectively. Additionally, signifcant anti-phase relationship between ENSO and WWSDI was 
observed over 2005–2007 at 1–4-year band. The WTC between IOD and WWSDI shows signif-
cant anti-phase relationship at 2–4-year band over 2013–2016. In comparison to Figure 13.5c, 
it is found that the in-phase ENSO relationship during 2003–2005 coincided partially with the 
decrease of drought; further, the in-phase ENSO relationship during 2012–2013 and 2014–2016 
corresponded to the wet event in the WWSDI time series (Figure 13.5c), which is mainly con-
trolled by induction of the La Niña phase. More so, the anti-phase IOD relationship appearing 
during 2013–2016 was found to agree with the induction of the wet condition, as shown in 
Figure 13.5c. However, the IOD infuences were relatively lower than the impact of the ENSO 
in the basin. 

Regarding the Zambezi basin (Figure 13.7g, h), the ENSO and WWSDI show signifcantly in-
phase relationships at 1–2-year band over 2003–2005, and anti-phase relationship at 2–4-year band 
over 2011–2017. WTC plot between IOD and WWSDI shows that IOD and WWSDI were in in-
phase relationships at 0–2-year band over 2004–2007, over 2010–2012, and over 2013–2017, and at 
2–4-year band over 2013 to 2016. In comparison to Figure 13.5d, it found that the in-phase ENSO 
and IOD relationship agreed partially with the drought condition during the 2003–2005 period; 
more so, the anti-phase of ENSO and in-phase of IOD corresponded to the recovery period from 
2011–2017. Overall, the acquired results indicate that both ENSO and IOD clearly impacted the 
drought fuctuation in the basin. 

Concerning the Orange basin (Figure 13.7 i, j), the WTC between ENSO and WWSDI shows 
statistically in-phase relationships at 1–2-year band over 2010–2012. Additionally, at the 2–4-year 
band the ENSO was signifcantly dominant across all years. The WTC between IOD and WWSDI 
shows in-phase relationships with signifcant coherence at 2–4-year band over the entire time 
series. Moreover, at 3.5–4.5-year band, an in-phase relationship was observed over 2003–2009. The 
obtained results for IOD and ENSO over the Orange basin (Figure 13.7i, j) revealed that both indices 
have signifcant effect on drought variation over the basin. 

Overall, the fndings from wavelet coherence analysis revealed that the climate factors had a 
substantial effect on WWSDI, and the impact of El Niño Southern Oscillation Index (ENSO) was 
signifcantly high over most basins. More so, the Indian Ocean Dipole (IOD) was highly affected in 
the southern river basins. 

13.4 SUMMARY 

GRACE observations are an essential tool in hydro-climatological investigations. In this study, we 
generated the WWSDI based on combined TWS from GRACE and WGHM utilizing the CCR of 
each component as their weight to assess the occurrences of drought throughout the major African 
basins from January 2003 to December 2016. 

Regarding CCR, SMS and SWS rank the second and third, while GWS change ranks the frst and 
accounts for 56%, 61%, 47%, 64%, and 78% of TWS change in the Nile, Congo, Niger, Zambezi, 
and Orange basins, respectively. According to water component storage defcit (WCSD), different 
water components play different roles in response to drought events in the basins. The WSDI, SPI, 
SPEI, and scPDSI are correlated signifcantly against WWSDI over the Nile, Congo, Zambezi, and 
Orange basins. In the Niger basin, SPI is signifcantly correlated with WWSDI. Overall, our fnd-
ings indicate that the WWSDI can successfully detect drought events over major basins in Africa. 
Based on WWSDI, the most severe droughts occurred in 2006, 2012, 2006, 2006, and 2003 in the 
Nile, Congo, Niger, Zambezi, and Orange basins, respectively. A signifcant wetting tendency was 
detected over the Nile, Niger, Zambezi, and Orange basins, while a mild trend was observed in the 
Congo basin. The rate of drought recovery for fve basins was between 2.06 and 4.1 mm month−1, 
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and the average drought recovery time was between 5.1 and 12.3 months, respectively. The wave-
let coherence analysis effectively demonstrated the teleconnections between climate indices and 
WWSDI. The infuence of ENSO on drought was signifcantly high in most of the basins. IOD has 
strong impact on the southern river basins. 
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14 Flood Disaster Monitoring 
and Extraction Based on 
SAR Data and Optical Data 

Minmin Huang and Shuanggen Jin 

Flood  is one of the most frequent natural disasters and normally causes large property damage 
and life losses. Therefore, it is important to monitor the food disaster by remote sensing in time. 
SAR images have very high accuracy in water extraction. The vegetation index difference method 
(MSAVI method) and CDAT method can be used to extract vegetation inundated areas, but these 
two methods have their emphasis and limitations. In this chapter, food disaster is extracted and 
mapped based on SAR data and optical data. The food disaster monitoring method based on image 
classifcation has higher recognition accuracy than other methods in the completely inundated area 
and vegetation inundated area and also identifes a large number of other land types, which is 
greatly improved when compared with the three commonly used methods. 

14.1 INTRODUCTION 

Flood is one of the most frequent natural disasters and normally causes large property damage and 
life losses. Therefore, it is important to monitor the food disaster by remote sensing in time. From 
the perspective of remote sensing data sources, food remote sensing monitoring can be divided into 
food extraction based on optical images, food extraction based on SAR images, and food extrac-
tion based on optical images and SAR images. There are two methods for food extraction based on 
optical and SAR images. One is used after data combination, and the other is used after data fusion. 
The combination uses the bands and products of SAR and optical satellites directly to form a new 
layer group without other fusion processing[1]. After fusion, a set of new information or synthetic 
images are generated by a certain algorithm, and the original data and the fused data are used for 
water or inundated area extraction[2–3]. 

From a methodological point of view, the commonly used methods of food remote sensing 
monitoring are mainly divided into supervised and unsupervised methods. The supervised method 
mainly uses image classifcation and image recognition technology to extract water or inundated 
area[4–6]. Neural network[7], support vector machine[8], and other methods have been applied to food 
disaster extraction. There is no essential difference in image recognition based on the three types 
of data sources. This method relies on the quantity and quality of sample data and is rarely used in 
current research. Moreover, because there are fewer samples in the fooded area, the recognition 
targets of this kind of method are mostly water. 

The commonly used threshold determination methods include the empirical method, the his-
togram bimodal[9] method, and OTSU[10–11]. The threshold method is most widely used because 
of its fast speed and simple principle. Its basic principle is to mark the image into two categories 
of water and non-water by setting a reasonable threshold according to the radiation characteris-
tics of water to form a binary image[12]. Different satellites choose different data products when 
using the threshold method to extract water or inundated area according to their different band 
characteristics. When using optical data and threshold judgment methods to extract water or 
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waterlogging area, the commonly used data products are a single-band or multi-band calculation 
method of the original optical image (spectral index method). Water has high absorptivity and 
low refectivity in the near infrared-short wave infrared band and low brightness in the image. 
According to its radiation characteristics, the near-infrared band is usually selected as the data 
source of the single-band threshold method based on optical data, and the segmentation thresh-
olds of water and non-water are determined by appropriate threshold methods[13]. For optical 
images, the multi-band algorithm is used in more methods. The multi-band algorithm mainly 
constructs spectral index by band operation to extract water. The water index method is used 
more. Water information is highlighted by the band relationship to extract water. In addition to 
the water index, the vegetation index is also applied to the extraction of food disasters. Based 
on the study of the long-term sequence NDWI (Normalized Difference Water Index) index[14], 
the vegetation index time series model is established, and the disaster judgment threshold is 
determined based on the variation law of the vegetation index time series. The mutation detec-
tion of the vegetation growth period is carried out to determine the food range, which is suitable 
for large-scale and long-term agricultural disaster monitoring. In Reference[15], the vegetation 
area inundation extraction model based on vegetation index difference and empirical threshold 
method was proposed. 

Different from the abundant band information of optical satellites, SAR data bands and prod-
ucts are relatively single. Since the water has a very low scattering coeffcient on the SAR image 
and presents a dark tone[16], this feature is an important basis for distinguishing water and other 
ground objects. It has experienced the process from single threshold to multi-thresholds and real-
izes the image recognition from a single water to some specifc types of inundated areas. The inun-
dated detection of the single-threshold method is based on mathematical theory, and appropriate 
thresholds are selected to divide inundated and non-inundated areas. Most studies use appropriate 
methods to extract the open water bodies before and during disasters[17–18], and then change detec-
tion is carried out on the water bodies before and during the disaster. Reference[19] proposed a two-
step automatic change detection method based on Sentinel-1 data, which can effectively mention 
the change of open water in the suburbs. This method only considers the areas completely inun-
dated in as open water bodies and cannot detect areas with slight waterlogging; in Reference[20], an 
adaptive threshold method was proposed to improve the accuracy of real-time detection of water 
in SAR images and was applied in Huainan area. The results show that this method can quickly, 
effectively, and accurately extract water in large-scale SAR images. However, due to the complex-
ity of the surface, there are different changes after inundation, and a single threshold cannot fully 
cover the inundation and non-inundation areas of various types of ground objects. To overcome 
the defects of a single threshold, a multi-threshold extraction model of complex inundated area was 
born: with the threshold method as the core, based on a single open water extraction, the extrac-
tion model of other typical categories was added, or the water extraction was carried out at multi-
level scales[21–22]. In Reference[23], based on Sentinel-1 data, two types of inundated area extraction 
models for open water and vegetation area were constructed and applied to food monitoring in the 
lower reaches of the Ilowadi River in Myanmar, and good results were obtained in the extraction 
of the cultivated land affected area. This method is often used to increase the corresponding land 
cover inundation extraction model for certain areas, which has a good effect on specifc problems, 
but it is still not comprehensive. In Reference[24], the difference value was calculated by using 
the bands before and during the disaster, and then the difference value was determined by using 
the threshold method and the idea of the decision tree to extract the complete fooded area and 
farmland fooded area. In addition, the RGB synthesis method is also one of the commonly used 
methods. Based on the principle of RGB color synthesis, the radar images in pre-disaster are used 
as RGB bands to extract color anomaly areas[25]. The core of this method is the RGB color model, 
so the data processing makes it suitable for the RGB model with high requirements, and the data 
processing is subjective. 
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At present, there are two ways to extract the inundated area based on remote sensing: image rec-
ognition frst and then change detection, andchange detection frst and then image recognition. The 
supervisory method usually frst carries on the image recognition, then carries on the change detec-
tion to the classifed image. The threshold method is widely used in both ideas. In References[17–20], 
the threshold method is widely used in both ideas. In the literature, the image before and during the 
disaster is segmented by a threshold, and then the segmented image is changed. In References[14][24–26], 
the change information is obtained frst, and then the appropriate method is selected to recognize 
the change detection results. 

When the food disaster extraction target based on SAR data is water, it only pays attention to 
the change of water area caused by food and does not pay attention to the land-related informa-
tion transformed into water. It only needs to know the scattering characteristics of water. When the 
extraction target is not limited to a single water extraction, the change of backscattering coeffcient 
caused by inundation is important information to guide the extraction. 

14.2 SATELLITE REMOTE SENSING DATA AND PROCESSING 

14.2.1 sentinel-1 data 

Sentinel-1, the frst satellite in the European Space Agency (ESA)’s Copernicus program for envi-
ronmental monitoring, is composed of A and B satellites. Sentinel-1A was launched on April 3, 
2014 and Sentinel-1B was launched on April 25, 2016. The single-satellite revisit period is 12 days, 
and the double-satellite revisit period is 6 days. It is equipped with a C-band SAR sensor to monitor 
changes in the global ocean environment, surface deformation, and dynamic changes in terrestrial 
forests, surface water, and soil. Its orbit features are divided into ascending and descending orbits, 
distributed through the results in Level 0, Level 1, and Level 2. Level 0 data refers to unprocessed 
compressed data and its related information, which is the basic data for producing other high-level 
data. Level 1 data is a product of Level 0, which can be directly used by most users after inter-
nal calibration and Doppler centroid estimation. According to the processing method, it is divided 
into Single Look Complex (SLC)[27] and Ground Range Detected (GRD)[28]. Level 2 data is a geo-
positioning geophysical product derived from Level 1 data. Sentinel-1 products in four imaging 
modes can provide radar images of different polarization modes, such as single polarization (HH, 
VV, HV, VH), and dual polarization (HH&HV, VV&VH)[29]. 

There are four data acquisition modes for Sentinel-1 data (Table 14.1): stripmap mode (SM), 
interferometric wide swath (IW), extra wide swath (EW), and wave mode (WM)[30]. 

(1) Interferometric wide swath 

IW mode is the default mode for Earth observation, using a 250-km width and 5 m ´ 20 m com-
bination of resolutions. The IW mode uses a progressive terrain scan method (TOPSAR, Terrain 

TABLE 14.1 
Four Imaging Modes and Parameters of Sentinel-1 

Incidence Angle Resolution Width Polarization Mode Parameter 
Operating Mode 

SM 20~45° 5 ́  5 m 80 km H H+HV, VH+VV, HH, VV 

IW 29~46° 5 ́  20 m 250 km H H+HV, VH+VV, HH, VV 

EW 19~47° 20 ́  40 m 400 km H H+HV, VH+VV, HH, VV 

WM 22~38° 5 ́  5 m 400 km HH, VV 
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Observation with Progressive Scans SAR) to acquire three sub-strips. TOPSAR technology can 
ensure uniform image quality across the entire frame[31]. 

(2) Strip mode 

SM mode is mainly used for emergency management in special situations. A strip imaging mode 
is available, which can be used for the continuity of ERS and ENVISAT tasks. The SM mode pro-
vides a resolution of 5 m ´ 5 m on an 80-km swath. The radar antenna can be adjusted to change 
the beam incident angle and elevation beam width. The main features of this mode are selectable 
incident angles and high resolution. 

(3) Extra wide swath 

EW mode is suitable for areas such as oceans and polar regions, where the coverage is wide 
and the revisit period can be low. The technology used in the EW mode is similar to the TOPSAR 
technology used in the IW mode. It uses fve strips instead of three, so the resolution is lower, 
20 m ´ 40 m. EW mode can also be used for interferometry like IW mode. 

(4) Wave mode 

The Wave mode, combined with a global ocean wave model, can help determine the direction, 
wavelength, and height of waves in the ocean. The waveform pattern consists of 20 km ́  20k m strip 
images obtained alternately at two different angles of incidence. The strip patch switches the angle 
of incidence every 100 km. 

The example data used in this book are GRD ground distance products of Level 1 in the IW 
mode from Sentinel-1A and B satellites. The IW mode has a width of 250 km and a spatial resolu-
tion of 5 m ´ 20 m. After processing, it can generate 10 m ´ 10 m products. The data is subjected to 
focus processing and slant distance-to-ground distance conversion, and its pixel value represents the 
amplitude information of the target object while the phase information is lost. 

14.2.2 sentinel-2 data 

The Sentinel-2 satellite is a satellite project jointly managed by the European Commission (EC) 
and ESA and will directly make an important contribution to global land monitoring, emergency 
response, and security services. Sentinel-2 satellite consists of two satellites A and B: Sentinel-2A 
and Sentinel-2B were launched on June 23, 2015, and March 7, 2017, respectively[32]. Sentinel-2 
operates on a sun-synchronous orbit with an on-orbit altitude of 786 km and an orbital inclination of 
98.5°. The local time for satellite imaging is 10:30. The satellite adopts three-axis attitude control, 
which can achieve superior accuracy and stability[33]. 

The revisit period of the Sentinel-2 satellite is 10 days for a single star and 5 days for a 
double star[34]. Sentinel-2 carries a multi-spectral imager instrument, which can provide data 
in 13 bands (Table 14.2), including visible light, near-infrared, and short-wave infrared, with 
ground resolutions of 10 m, 20 m, and 60 m, respectively[35], and the spatial resolution of dif-
ferent bands is different[36–37]. The Sentinel-2 is the only satellite with three bands in the red 
edge range, which can be used for vegetation health detection[38] and can also be used for spatial 
planning, agricultural environment monitoring, water monitoring, forest vegetation monitoring, 
etc. Sentinel-2 provides a total of four types of products: raw data Level 0, geometric rough cor-
rection products containing meta-information Level 1A, embedded GCP-optimized geometric 
models without corresponding geometric corrections radiance products Level 1B, and Level 1C 
of the atmospheric apparent refectance product after orthorectifcation and sub-pixel geometric 
fne-tuning. 
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TABLE 14.2 
Band Parameters of Sentinel-2 Satellite 
Band Center Wavelength (μm) Resolution (m) 

Band1 - Coastal aerosol 0.443 60 

Band2 - Blue 0.490 10 

Band3 - Green 0.560 10 

Band4 - Red 0.665 10 

Band5 - Vegetation red edge 0.705 20 

Band6 - Vegetation red edge 0.740 20 

Band7 - Vegetation red edge 0.783 20 

Band8 - NIR 0.842 10 

Band8A - Vegetation red edge 0.865 20 

Band9 - Water vapor 0.945 60 

Band10 - SWIR-Cirrus 1.375 60 

Band11 - SWIR 1.610 20 

Band12 - SWIR 2.190 20 

14.2.3 data preprocessing 

14.2.3.1 Sentinel-1 Data Preprocessing 
There are two main methods for data preprocessing of Sentinel-1 GRD products. One is to use the 
online data set and online data processing platform of Google Earth Engine platform for process-
ing. This method does not need to download the original product, which is suitable for large-scale 
research. The other is to download Sentinel-1 products to the local area and use professional desk-
top software for processing. In this paper, the second method is used for data processing. The data 
processing software is Sentinel Application Platform (SNAP) provided by ESA, which can be used 
to process Sentinel-1, Sentinel-2, Sentinel-3, and other software. 

The main steps of Sentinel-1 GRD product pretreatment using SNAP software (Figure 14.1) are 
orbit correction, radiometric calibration, speckle fltering, multi-view processing, orthophoto cor-
rection (or terrain correction)[39], and logarithmic processing[40]. 

(1) Orbit correction. Sentinel-1 orbit correction is generally divided into coarse orbit correc-
tion and fne orbit correction. The coarse orbit information is included in the metadata 
of SAR products, and the accuracy is within 10 cm. The precision orbit fle is generally 
released on the offcial orbit network after 21 days of product generation. The precision 
orbit fle provides accurate satellite position and velocity information, and the position 
accuracy is within 5 cm after the correction of the precision orbit. When processing the 
data, the software will automatically retrieve whether there is a required track fle under 

FIGURE 14.1 Sentinel-1 data preprocessing process. 
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the specifed track fle directory. When there is no track fle corresponding to the process-
ing product, SNAP software will automatically download the track fle according to the 
SAR product metadata in the state of networking. It can also download the fle of the cor-
responding date from its offcial track website and put it in. When there is a track fle in the 
corresponding directory, it does not need to download many times. 

(2) Radiation calibration. The radiometric calibration corrects the parameters of the satellite 
sensor and establishes the accurate relationship between the SAR image and the backscat-
tering of the ground objects. Thus, the pixel value of the image represents the backscat-
tering calibration vector of the refector radar, and the digital pixel value is converted to 
the radiometric calibration backscattering, which allows the image intensity value to be 
converted to Sigma or Gamma zero value simply[41]. 

(3) Speckle fltering. Speckle noise is a major feature of SAR imaging, which is manifested as 
small spots on the image, reducing the quality of the image and affecting image segmenta-
tion and information extraction. In order to reduce the impact of speckle noise, a fltering 
algorithm is needed to reduce the impact of speckle noise. The commonly used fltering 
algorithms include the median fltering algorithm, Boxcar fltering algorithm, Lee fltering 
algorithm, refned Lee fltering algorithm, Frost fltering algorithm, and Gamma MAP 
fltering, among which the refned Lee fltering algorithm is used more. 

(4) Orthophoto correction (or terrain correction). Since the imaging mode of SAR is side-
looking imaging, large terrain fuctuation will lead to large geometric distortion of SAR 
image, leading to perspective contraction, overlapping, shadow, and other phenomena. It 
is necessary to carry out orthorectifcation of radar images to compensate for these distor-
tions so that the geometric expression of the image is more likely to be close to the real 
situation. Orthophoto correction uses digital elevation model (DEM) to correct each pixel 
caused by the terrain geometry. SRTM DEM is selected for general DEM data. 

(5) Multi-looking processing. The purpose of averaging the resolutions in the range and azi-
muth directions of the image is to obtain the same ground resolution (ground distance 
resolution) in the range and azimuth directions and improve the quality of the image. The 
determination of the number of views is an important part of multi-view. With the increase 
in the number of views, the speckle noise decreases and the image resolution decreases. 
The number of views is calculated according to the range resolution, azimuth resolution, 
and central incidence angle of oblique distance. Multi-view processing improves radiation 
resolution by reducing spatial resolution. 

(6) Logarithmic transformation. The numerical range of the scattering coeffcient is very dif-
ferent. To make the range controllable, researchers have established a series of data pro-
cessing models. Sonic shell conversion is one of the commonly used methods. In this 
paper, the backward scattering coeffcient is converted by the formula (14.1)[42]. 

0 = ´  10 ss 10 log (14.1) 

Where s is the original backscattering coeffcient, and s0 is the transformed backscatter-
ing coeffcient. 

14.2.3.2 Sentinel-2 Data Preprocessing 
The ESA’s offcial website only provides the download of L1C data, which is the atmospheric 
apparent refectance product after orthophoto correction and geometric precision correction, with-
out atmospheric correction. The ESA defnes the atmospheric bottom refectance data after atmo-
spheric correction as L2A, and the L2A data is produced by users themselves. The ESA provides the 
Sentinel-2 Sen2Cor process plug-in for L1C product preprocessing [43], which can be downloaded 
from the ESA’s offcial website at present. The batch processing of Sentinel-2 can be carried out by 
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using the Windows command line, and the obtained L2A data can be processed in SNAP for subse-
quent processing. The data are imported into SNAP software. In this paper, only bands 2, 3, 4, and 
8 with 10-m resolution are used to export the preprocessed data to ENVI format data. 

14.2.4 reMote sensing data processing 

14.2.4.1 Image Fusion 
Different remote sensing sensors usually use different band intervals to record pixel information, 
and there are differences in spectral, spatial, and temporal resolutions[44]. Due to its wavelength 
characteristics, optical remote sensing is easily affected by cloudy and rainy weather, and the 
image quality is poor during foods, but in good weather conditions, it contains a large amount of 
spectral information, which enables it to classify objects with high accuracy. SAR images have 
the characteristics of all-day and all-weather, but due to their imaging characteristics, they are 
less effective in classifying ground objects. The food disaster monitoring model in this study 
takes image classifcation and change detection as the core and SAR as the main data source. To 
provide the classifcation accuracy of SAR images, a certain algorithm is used to fuse Sentinel-1 
and Sentinel-2 data. 

Image fusion refers to the use of appropriate algorithms to combine the data of different sen-
sors and different bands and combine the features of the original image and the information of 
the ground objects to generate a higher-performance remote sensing image[45–46]. Image fusion is 
divided into three categories: pixel-level fusion, feature-level fusion, and decision-level fusion[47–48]. 
Pixel-level fusion is the fusion of the basic level, which directly acts on the pixel information of the 
image to obtain new image pixels. Feature-level fusion uses the features extracted from the original 
image to perform fusion processing without changing the original image, which loses metaphysical 
meaning, usually for specifc scenes and purposes; decision-level fusion is the highest-level fusion, 
based on the original image. Interpreting the results and synthesizing new results using certain 
decision-making methods can optimize the detection results of a single image to a certain extent. 
According to the results of change detection, the trend of the change of the scattering coeffcient of 
the pixel is judged to infer whether there is water accumulation. Therefore, this study uses pixel-
level fusion. Pixel-level fusion methods are mainly based on component substitution, multi-scale 
variation, model base, and their combinations. 

14.2.4.2 Image Classifcation 
Image classifcation is to divide each pixel in the image into different categories according to certain 
rules or algorithms according to its spectrum, spatial structure characteristics, or other information 
in different bands. Image classifcation can be divided into supervised classifcation and unsuper-
vised classifcation according to whether there are samples in the classifcation process. It involves 
the type, distribution, and amount of change that is necessary to determine the ground type, bound-
ary, and change trend before and after the change and then analyze the characteristics and causes 
of these dynamic changes. 

Supervised classifcation is a commonly used statistical judgment classifcation with high accu-
racy. Various training samples are extracted from training venues of known categories, and each 
pixel point in the image is classifed by selecting characteristic variables and determining discrimi-
nant functions or discriminant rules. A  classifcation method is assigned to each given class[49]. 
Commonly used supervised classifcation methods are K-nearest neighbor, decision tree classifer, 
and Bayesian classifer. The main steps include 1) selecting the characteristic band; 2) selecting the 
training area; 3) selecting or constructing the training classifer; and 4) evaluating the classifcation 
accuracy. There are many defciencies in the supervised classifcation algorithm in solving the clas-
sifcation problem; either it can only solve the linear problem, or it can solve the nonlinear problem, 
but the computational complexity is high, and the effciency cannot meet the requirements. For this 
reason, the research hotspots in recent years—the three basic theories of support vector machines 
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(SVM) (structural risk theory, quadratic optimization theory, and nuclear space theory) are used to 
solve nonlinear problems[50]. 

Unsupervised classifcation is a classifcation process that divides the category of objects accord-
ing to the statistical characteristics of the image itself and the distribution of natural point groups 
without prior category knowledge. Unsupervised classifcation methods are based on the statistical 
features of images and do not require known knowledge of specifc objects. Using unsupervised 
classifcation can also better obtain the inherent distribution law of target data. Unsupervised clas-
sifcation methods include Bayesian learning, maximum likelihood classifcation, and clustering. 
The unsupervised Bayesian method and the maximum likelihood method are basically the same 
as the supervised Bayesian learning and the maximum likelihood method; the only difference is 
that the previous methods do not require training samples, while the subsequent methods require 
training samples. 

14.2.4.3 Change Detection 
Remote sensing change detection uses multi-temporal remote sensing data, uses a variety of image 
processing and pattern recognition methods to extract change information, and quantitatively 
analyzes and determines the characteristics and processes of surface changes. For remote sens-
ing change detection, data selection is performed frst, and then data preprocessing is performed, 
including radiometric correction, geometric correction, and image matching. The key task is to 
select appropriate information extraction and separation methods to detect the changing informa-
tion and fnally, evaluate the accuracy of the results[51]. Change information extraction is the core 
of remote sensing image change detection. The extraction results play a feedback role on the results 
of data preprocessing, and also play a decisive role in the accuracy of change detection results and 
subsequent processing. It can be divided into pixel-based change information extraction, object-
based change information extraction, and fusion change information extraction. The pixel-based 
change detection algorithm uses pixels as the processing unit. This type of algorithm generally 
directly compares the input image with pixel-level spectral features, texture features, and other 
specifc features (water, vegetation index, etc.) The difference image is obtained by processing the 
ratio and so on, and then the change information is extracted by the method of threshold segmen-
tation. Some algorithms use each pixel in the image to compare one by one and then use a classi-
fer or machine learning to detect changes. Among them, judging whether the pixel has changed 
is the key step, and its core is threshold segmentation and classifcation. Object-oriented change 
detection is based on image segmentation and classifcation. It integrates the spatial and spectral 
characteristics around pixels, combines homogeneous pixels to form objects, and then uses the 
object as a unit to perform spectral features, shape features, and texture features, spatial context 
neighborhood relationship and features with practical signifcance (such as vegetation coeffcient, 
etc.) are compared to detect changes. This kind of method is the mainstream method of change 
detection at present and has a wide range of applications in building change detection, urban land 
management, and so on. Object-oriented change detection and pixel-based change detection are 
two different methods, but there are some similarities and intersections in the detection link, seg-
mentation, and classifcation extraction. 

14.3 MAPPING FLOOD DISASTERS FROM REMOTE SENSING 

14.3.1 threshold deterMination Method 

14.3.1.1 Histogram Bimodal Method 
The basic idea of the bimodal histogram method is that when the histogram has typical bimodal 
characteristics (Figure 14.2), the pixel value corresponding to the lowest point between the bimodal 
peaks is the segmentation threshold[52]. This method is simple and convenient, but there are higher 
requirements on the distribution ratio of target pixels and background pixels on the image. 
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FIGURE 14.2 Pixel bimodal distribution histogram. 

14.3.1.2  Maximum Inter-Class Difference Method 
The OTSU method is one of the most commonly used threshold methods, also known as the maxi-
mum inter-class difference method. The OTSU threshold method divides the image into the target 
area and the background area with a single threshold and uses the inter-class variance as the stan-
dard to measure the difference between the two. When the variance is the largest, the difference 
between the two is considered to be the largest, and the threshold at this time is selected as the best 
threshold[53]. The specifc algorithm is: 

Assuming that the grayscale range of the image is [0, T] and the number of pixels  f Ti corresponding ( )  
to the gray level is  Ti, then the total pixel N of the image is 

T 

N f ( )0 + f ( ) +¼+ f ( )T = å ( )= 1 f T  ( 14.2 ) i 
i=0 

f T( )iSuppose Pi  is the probability of gray-level pixels in the image; that is,  P = . The pixels in i N 
the image are divided into two parts, A and B, according to the gray level  t. Then the probability wA ̃  
and wB  of the two parts appearing in the whole image are 

t 

wA = Pi ( 14.3 ) å 
i=0 

T 

w = P =1-w ( 14.4 ) B i Aå 
i t= +1 
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The average gray value mA and mB  of A and B are 

t 

m = ( (14.5) i P / w )A i Aå 
i=0 

T 

mB = åi Pi / wB )( (14.6) 
i t= +1 

The average gray value m of the whole image is 

T 

m =  T P  ´ m + w ´ m (14.7) ´ = wi i A A B B 
i=0 
å

The between-class variance s 2  is 

2 2 2 2 s = w m  - m + w m - m = w w m - m (14.8) A ( A ) B ( B ) A B ( A B ) 

In the range of [0,T], the step length of 1 is used to increase the threshold t in turn, which is the best 

threshold when s 2  reaches the maximum. 

14.3.2 Multi-Band calculation Method 

The multi-band calculation method is also called the spectral index method. The spectral index is 
mainly constructed through the mathematical calculation of the bands. 

14.3.2.1 Water Index Method 
The water index method uses the high absorption rate of the water in the near-infrared band, the 
mid-infrared band, and the high refectivity in the green band to highlight the water information 
through band calculation[54–55]. Commonly used water indices include the Normalized Difference 
Water Index (NDWI)[56] and the Modifed Normalized Water Index (MNDWI)[57]. McFeeters frst 
proposed NDWI in 1996[58], using green wave and near-infrared wavebands to suppress the infu-
ence of vegetation and other backgrounds on water bodies, highlight water information, and calcu-
late the difference between pre-disaster and post-disaster NDWI with a reasonable threshold. The 
improved normalized water index comprehensively considers the infuence of soil, buildings, and 
other ground objects on water extraction, which can better reveal the fne characteristics of water, 
and is more suitable for water extraction in urban areas. 

Green - NIR NDWI = (14.9) 
Green+ NIR 

Green - MIRMNDWI =  (14.10) 
Green+ MIR 

14.3.2.2 Vegetation Index Method 
The vegetation index can refect vegetation cover and growth status[59]. Flood inundation or erosion will 
affect vegetation status. Many scholars also use the vegetation index to study food extraction[14–15]. The 
normalized vegetation index, enhanced vegetation index, green normalized vegetation index, ratio veg-
etation index, and improved soil adjustment vegetation index are commonly used. Detailed information 
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TABLE 14.3 
Detailed Information of Each Vegetation Index 
Name English and Abbreviations 

Normalized Vegetation NDVI (normalized difference 
Index[60–61] vegetation index) 

Enhanced vegetation index[62] EVI (enhanced vegetation index) 

Green Normalized Vegetation G NDVI (green normalized 
Index[63–64] difference vegetation index) 

Ratio Vegetation Index[65] RVI (ratio vegetation index) 

Improvement of Soil to Adjust MSAVI (modifed soil adjusted 
Vegetation Index[66–67] vegetation index) 

Calculation Formula Serial Number 

NIR-Red (14.11) 

NIR+Red 

2.5´ NIR-Red (14.12) 

NIR+6 Red-7.5´ Blue+1 ´ 

NIR-Green (14.13) 

NIR+Green 

NIR Red / (14.14) 

2 NIR-Red (2 ́  NIR+1) -8 ́  
2 

(14.15) 

of each index is shown in Table 14.3. RVI, NDVI, and MSAVI, three vegetation index differences, were 
used to determine the scope of food inundation[15]; the greater the difference in vegetation index shows 
that the greater the change of surface coverage or vegetation growth before and after the food, the more 
likely to experience a food. The difference results are extracted by an empirical method. 

14.3.3 change detection and thresholding Method 

The change detection and thresholding (CDAT) method frst obtains the change information of the 
SAR images before and during the disaster and then analyzes the change results to determine the 
inundation range. References[23][68] use this method to extract the inundated areas in vegetation. 
The detailed processes are as follows: frstly, the absolute values of the SAR image products before 
and during the disaster are calculated, and then the difference between the absolute value products 
is calculated. Then, the idea of a decision tree and histogram method are used to determine several 
segmentation thresholds of difference products. Using the terrain data, according to the slope value, 
to eliminate part of the error caused by the terrain, when the terrain in the study area is fat, this part 
of the error can be ignored. Remove the 0 value; this part of the area did not food. 

Then, according to formula (14.16) and formula (14.17), the segmentation thresholds PD1 and PD2 
for common inundated area and vegetation inundated area are determined respectively: 

P < (mean  - k * dev  ) (14.16) D1 CD f1 CD 

P > (mean + k * dev  ) (14.17) D2 CD f2 CD 

In formulas (14.16) and (14.17), meanCD  is the mean value of difference change results, devCD is 
the standard deviation of the difference change result, kf1 and kf2 are the coeffcients for determining 
the two thresholds, respectively. The experience points in reference[11] are 1.5 and 2.5, respectively. 

Finally, the image is segmented according to the determined threshold, the image is divided into 
inundated area and vegetation inundated area, the inundated area is expanded according to the adja-
cent cluster analysis, and the inundated area is expanded according to the number of adjacent pixels 
(4 or 8) and the minimum pixel of each group. The number of pixels is divided, and the recognition 
rate of the inundated area after the adjacent cluster analysis is improved. 

14.3.4 superVised classiFication oF Flood extraction 

Radar images refect the refection characteristics of ground objects, and optical images refect 
the optical characteristics of ground objects in different wavelength bands. Radar images can 
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sensitively reveal changes in the refection characteristics of ground objects, and optical images can 
be used to classify ground objects with high precision. The supervised classifcation food extraction 
and analysis method[69] uses radar images as the main data and optical images as auxiliary data to 
quickly assess the degree of food inundation. Select the high-quality optical images closest to the 
disaster event, and use the supervised classifcation method to perform optical classifcation of the 
ground objects in the study area. Based on optical classifcation, the radar images before and during 
the disaster were added to supervise the classifcation again, and the classifcation images of the pre-
disaster and during the disaster after adjustment according to the scattering characteristics of the 
ground objects were obtained. Information on changes in the classifcation of ground objects caused 
by foods can be obtained. Taking the backscattering coeffcients change rules of various objects as 
prior knowledge and the average backscattering coeffcients of objects as a reference, all objects’ 
backscattering coeffcients without inundation are regarded as different inundated degrees, and the 
water is completely inundated. The inundated area and degree can be determined by analyzing the 
change process of the classifcation of ground objects. 

The food extraction and analysis method for supervised classifcation include the following 
steps: (1) analyze and determine the basic types of ground objects in the study area; (2) perform 
optical classifcation of pre-disaster ground objects; (3) process the pre-disaster image group 
and the disaster image group; (4) supervise and classify the pre-disaster image group and the 
image group during the disaster; (5) count the average scattering rate of various ground objects 
and arrange them in ascending order; (6) determine the variation law of scattering character-
istics of various ground objects with different inundated degrees; (7) number the objects in 
sequence; (8) detect changes in the classifcation of the objects before and during the disaster; 
(9) determine the inundation range and level according to the categories of the objects before 
and after the change. 

This method transforms the change detection of the refection feature caused by inundation into 
the change detection of the classifcation feature caused by the change of refection feature, which 
avoids the complex threshold determination process of extracting the inundation area. The inunda-
tion extraction model based on the classifcation change of ground object refection characteristics 
is established; it provides a rapid evaluation method for food inundation. 

14.4 FLOOD EXTRACTION IN SHOUGUANG CITY 

Taking Kouzi Village, Shouguang City, Shandong Province as an example, multi-source data are 
used to extract foods, and the advantages and disadvantages of different methods are compared. 

In August 2018, the study area was affected by typhoon ‘Rumbia’. The total rainfall observed 
at Shouguang Station from August 18 to August 20 was 182.6 mm in 3 days, and the maximum 
rainfall in 20 days was 120.1 mm. In addition, the food discharge of the upstream reservoirs in the 
study area intensifed the disaster, and the farmland villages were severely affected. After 25 days, 
the food gradually subsided. Before and after this scene, there were six dates, July 27, August 2, 
August 8, August 14, August 20, and August 26, 2018, in the Sentinel-1 image erosion cover study 
area. August 20 and August 26 were during the disaster, and the other four dates were after the 
disaster. Rainfall occurred on August  14 on July  27, and no rainfall occurred during the past 
72 hours before August 2. There was 13.4 mm of rainfall during the past 24 hours before August 8, 
and no runoff was generated, according to the SCS-CN model. The Sentinel-2 image cloud cover 
was large, and the image quality was poor on August 15 and 20, 2018, and the image quality was 
high on August 10, 2018. 

14.4.1 water extraction Based on threshold Method 

Using the S_Gamma data of Sentinel-1 GRD product VH polarization on August 20, 2018, the 
water area was extracted by the OTSU method and bimodal method. The NDWI products based on 



 

354 3S Technology Applications in Meteorology 

the satellite data of August 21, 2018, and the empirical method are used to determine the thresh-
old to extract water. The pixel distribution histogram of the two products is shown in Figure 14.3 
(a-b). When using SAR data for water extraction, the segmentation threshold of the OTSU method 
is 0.8756, and the segmentation threshold of the bimodal method is 1.4343. The area extracted 
by the bimodal method is larger than that of the OTSU water body, and the effect of the bimodal 
method is better in this case. When the NDWI index method based on the Planet satellite is used to 
extract water bodies, no research has shown that the NDWI index presents a clear feature similar 
to the bimodal distribution, which can guide the extraction of the water body. At frst, many studies 

FIGURE 14.3 Multi-method water extraction results. (Continued) 
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FIGURE 14.3 (Continued) 

directly used 0 as the segmentation value according to the band characteristics. However, with the 
deepening of the research, it is found that this error is large. In this paper, the optimal segmenta-
tion threshold is -0.1869 after many experiments using the empirical method, and the segmentation 
threshold determined by the OTSU method is 0.0784. From the extraction results, the empirical 
method is better than the OTSU method for the extraction of water by the optical index method, 
but the results are still greatly affected by roads, buildings, and other backgrounds. By comparing 
the results of extracting open water from SAR images and optical images based on the threshold 
method, it is found that the overall effect of SAR products is better than that of optical images. 
Therefore, the water results based on VH polarized S_Gamma products on August 20, 2018 and the 
bimodal method are used as the fnal results of open water. 

14.4.2 extraction oF inundated area Based on the diFFerence Between 

Vegetation indexes 

The vegetation inundated area was extracted using the vegetation index difference method to obtain 
the absolute value of the MSAVI vegetation index difference in pre-disaster and post-disaster study 
areas, and the inundated area was extracted by threshold segmentation of the difference results. 
This method is the same as water extraction based on the NDWI index; no research shows that the 
histogram distribution has the signifcance of guiding change extraction, and the threshold is deter-
mined by an empirical method. MSAVI products obtained from Planet images on August 10, 2018 
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were used as pre-disaster reference. Planet images on August 23 and 27, 2018 were used as post-
disaster images, respectively. The image covers the whole area on August 10 and 27, and 68% of the 
left area of the image covers the study area on August 23. The absolute value of vegetation differ-
ence between the two periods after the disaster and that before the disaster is obtained, and the pixel 
distribution histogram of the results is shown in Figure 14.4 (a-b). Although there are obvious peaks 
and troughs in the histogram of these two results, it is found that the frst trough of the two results 
indicates the segmentation value of vegetation area and other land types rather than the segmenta-
tion value of the inundated area and non-inundated area. The segmentation thresholds of these two 
products are calculated by the OTSU method, which are 0.3490 and 0.3451, respectively, which are 

FIGURE 14.4 Extraction results of vegetation inundated area. (Continued) 
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FIGURE 14.4 (Continued) 

close to the frst trough, rather than the threshold of dividing the inundated area and non-inundated 
area. The thresholds of the inundated area and non-inundated area were determined by multiple 
experiments with the empirical method, and the thresholds of two dates were 0.5174 and 0.6029. 
The difference between the results extracted from the two dates is small, and the recognition rate 
is high in the vegetation area. It is impossible to identify in other areas. According to the coverage 
range of the original image, the results of August 27 are selected as the vegetation-fooded area. 

14.4.3 change detection and threshold extraction 

The Sentinel-1 image of August 8, 2018 was used as the reference image before the disaster, and 
the Sentinel-1 image of August  20, 2018 was used as the disaster image. The change detection 
and threshold method (CDAT) was used to extract the inundated area. The S_Gamma products 
of the images before and during the disaster under VH and VV polarization were compared. The 
histogram and spatial distribution of the difference results are shown in Figure 14.5. The results of 
CDAT were segmented by the threshold method. The threshold values of the general inundated area 
and vegetation inundated area under VH polarization were 0.8460 and 0.9706, respectively. The 
threshold values of the general inundated area and vegetation inundated area under VV polarization 
were -1.0844 and 2.2604, respectively. According to Figures 14.5 (e) and (f), the recognition rate of 
vegetation under VH polarization is higher, and the recognition rate of the water body and building 
area under VV polarization is higher. 

14.4.4 superVised classiFication Flood extraction 

There are fve types of land in the study area: water, shedless farmland, shed farmland, road, and 
construction area. The Sentinel-2 image on August 10, 2018 was used for random forest classifca-
tion to obtain the optical classifcation results of pre-disaster ground objects. 

The radar images under different polarization modes in the study area before and during the 
disaster were pre-processed. That is, all the products were processed by radiation correction, geoc-
oding, spatial fltering, and normalization. In order to increase the data difference, the backscatter-
ing coeffcient is changed to power according to formula (14.18): 

S _ Gamma = 100´Gamma (14.18) 
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Gamma is the normalized backscattering coeffcient, and S_Gamma is the changed backscattering 
coeffcient product. 

The radar images before and during the disaster are combined with the optical classifcation 
results of ground objects to form two-layer groups, and the scattering characteristics of ground 
objects before the disaster are taken as samples for random forest classifcation supervision and clas-
sifcation. The sample selection needs to ensure that the ground objects are in the state of no rainfall 
and that the results of Figure 14.6 are obtained respectively. 

FIGURE 14.5 Extraction result of the CDAT method. (Continued) 
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FIGURE 14.5 (Continued) 

After completing the classifcation of ground objects, the average refectance of each ground 
object is counted. Based on the Sentinel-1 image on August 2, 2018, the basic backscattering coef-
fcients of fve land types are calculated. The scattering coeffcients and mean values of each land 
type are shown in Table 14.4. 

In addition to vegetation, when other types of ground objects are fooded, the refectivity 
decreases, and when vegetation is fooded, the refectivity increases; the degree of inundation 
is divided into fve grades: complete inundation, severe inundation, moderate inundation, mild 
inundation, and non-food. When the local level of change is 1, it is considered to be slightly inun-
dated; when the local level of change is 2, it is considered to be moderate inundation; when the 
local level changes to 3, it is considered to be severe inundation; when the local level changes to 
4, it is completely inundated. Except for no-shed farmland, all other types change to the category 
with smaller refectivity, while no-shed farmland changes to the category with larger refectivity. 
When the category in the disaster is water, it is always considered to be completely inundated, 
and other situations are considered not to be inundated. The specifc judgment rules are shown 
in Table 14.5. 

The pixel detection method is used to detect the change in ground object classifcation before and 
during the disaster, and the results are shown in Figure 14.7. 
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FIGURE 14.6 The results of the classifcations of ground objects: (a) 2018–08–10 based on Sentinel-2 RGB 
ground object classifcation results; (b) 2018–08–02 ground object scattering feature classifcation; (c) 2018–07– 
21 ground object scattering feature classifcation; (d) 2018–07–27 ground object scattering feature classifcation; 
(e)2018–08–20 object scattering feature classifcation; (f) 2018–08–26 object scattering feature classifcation. 

TABLE 14.4 
Mean and Standard Deviation of Objects’ Backscattering Coeffcients (S_Gamma) 
Objects  Serial Number VV VH 

Mean  Standard Deviation Mean  Standard Deviation 

 water 1 1.982416 0.863452 1.143954 0.35071 

 shedless farmland 2 3.46729 0.683308 1.876859 0.217285 

 shed farmland 4 3.768043 0.740086 1.909334 0.319949 

road 8 3.863828 0.663861 2.014632 0.295261 

construction area 16 5.151355 2.348478 2.20923 0.623642 
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TABLE 14.5 
Judgment Rules for Flood Degree 
Flood Degree  Difference Value Pre-Disaster Object Number Disaster Object Number 

 complete inundation –15 16 1 

–7 8 1 

–3 4 1 

–1 2 1 

 severe inundation –14 16 2 

14 2 16 

 moderate inundation –12 16 4 

–6 8 2 

6 2 8 

 mild inundation –8 16 8 

–4 8 4 

–2 4 2 

2 2 4 

non-food other values – – 

FIGURE 14.7 Flood extraction results: 

(1) 2018–07–21; (2) 2018–07–27; (3) 2018–08–20; (4) 2018–08–26. 
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14.5 SUMMARY 

SAR images have very high accuracy in water extraction. The vegetation index difference method 
(MSAVI method) and CDAT method can be used to extract vegetation inundated areas, but these 
two methods have their emphasis and limitations. The MSAVI method has a high recognition rate 
of vegetation inundated areas, but it can only identify some completely inundated areas and cannot 
identify the inundated information of other land types. The histogram trough of MSAVI is indica-
tive of identifying vegetation and non-vegetation areas but not for identifying food areas. 

The recognition rate of the complete inundated area of the CDAT method is due to the MSAVI 
difference method, but the effect of the two polarization methods is quite different. The recognition 
area of the VH polarization vegetation inundated area is large, and the recognition area of VV polar-
ization vegetation inundated area is small, but it can identify the inundated area of the building area, 
indicating that VH polarization is more suitable for this method to identify vegetation inundated area. 

The food disaster monitoring method based on image classifcation has higher recognition accu-
racy than other methods in the completely inundated area and vegetation inundated area and also 
identifes a large number of other land types, which is greatly improved when compared with the 
three commonly used methods. 
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15 Flood Hydrological 
Simulation and Risk 
Assessment Based on GIS 

Minmin Huang and Shuanggen Jin 

15.1 INTRODUCTION 

The establishment of an urban waterlogging simulation model based on the principles of hydrology 
and hydrodynamics can make up for the shortcomings of traditional methods such as precipitation 
estimation of waterlogging disasters, realize the accurate simulation of rainfall production and con-
centration process, effectively predict the depth and spatial distribution of urban surface ponding, 
and thus achieve the prediction of direct disaster causing factors. Different production practices have 
different requirements for models, and with the development of disciplines and social technology, 
different hydrological models have emerged. The hydrological model has gone through the black-
box model, conceptual model stage, and distributed hydrological model research stage. The concep-
tual hydrological model refers to the use of abstract and generalized equations to describe the water 
cycle process of a basin. It usually has a certain physical basis and a certain experience. The model 
structure is simple and practical. The advantage of distributed hydrological model that the model 
parameters have clear physical meaning, can be solved by continuous equation and dynamic equa-
tion, can more accurately describe the water cycle process, and has strong adaptability. Surface 
inundation analysis of urban rainstorm refers to the possible water depth and inundation of urban 
surface obtained by reasonably distributing the water into the regional space according to the urban 
terrain after obtaining the total amount of urban rainstorm water. There are two main types of 
fooding algorithms based on DEM: passive fooding and active fooding. Passive inundation means 
that all grids whose elevation value is lower than a given water level will enter the submerged area 
without considering connectivity, while active inundation considers regional connectivity; that is, 
regional foods can only inundate the area that it can fow through. 

For the special terrain like a crater, passive inundation may generate inundation areas inside 
and outside the crater. In the active inundation scenario, if the external food does not reach, the 
inundation area will only be outside the crater in the end. These two cases are of practical sig-
nifcance. The frst case is equivalent to a large area of uniform precipitation in the whole area, 
and ponding may occur in low-lying areas. The second kind is equivalent to the high-risk food 
fowing to the nearby area, which is similar to the food bursting or the surging food caused by 
local rainstorm spreading around. Neither active nor passive diffusion algorithms have solved 
the problem of catchment area boundary, which often leads to unreasonable phenomena at the 
catchment area boundary. In actual diffusion, there is no real limiting boundary, and water may 
spread across the catchment area, which will lead to water redistribution. It shows that water 
distribution is a dynamic process and needs to be constantly adjusted according to the actual 
diffusion situation. 

Scientifc food disaster risk assessment is the premise and demand of food disaster risk man-
agement. Using scientifc risk assessment methods can make wise decisions on the prevention and 
control of rainstorm and food disasters under changing environments, and timely, effectively, and 
continuously increase the comprehensive management of food disasters. As the basis and technical 
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support of disaster prevention and mitigation decision-making, food disaster risk assessment has 
important practical signifcance. 

15.2 HYDROLOGICAL SIMULATION BASED ON GIS TECHNOLOGY 

15.2.1 Flood inundation analysis Based on gis technology 

The food inundation analysis based on GIS technology has three parts: rainfall runoff, surface 
rainwater confux, and numerical simulation of surface inundation depth (Figure  15.1). Rainfall 
runoff refers to the forming net rain after deducting various losses in rainfall, i.e., mainly through 
evaporation, plant interception, surface depression flling, and soil infltration. There is an obvious 
relationship between surface runoff and soil moisture[1]. Light rain can increase soil moisture at 
0~10 cm soil depths, and moderate rain can increase it at 10–20 cm depths[2]. Scholars found that 

FIGURE 15.1 Process diagram of rainfall-producing and confuence process. 
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when the rainfall is greater than 200 mm in three days, fooding disasters generally occur, while 
when the rainfall is less than 30 mm, the probability of food is small[3]. 

Surface rainwater confux refers to the process in which runoff or foodwater fows from the 
surface into a pipeline network or river. In our urban waterlogging simulation, the confuence of 
the pipe network is the link between surface water and drainage, which is the most critical part 
of the inundation analysis. On the other hand, rivers and ditches are the main drainage channels 
for rural or suburban areas without pipelines. 

The numerical simulation of surface inundation depth refers to the possible surface food depth 
according to the terrain after determining the total rainstorm water. The fooding algorithms based 
on DEM mainly include “inundation without a source” and “inundation with a source”. Inundation 
without a source means that the grids with lower elevation values than the given water level are 
inundated areas. When regional connectivity is considered, the food can only inundate areas with 
fowing through. As such, in this study, connectivity is not considered. 

15.2.2 rainFall-runoFF 

Rainfall runoff refers to the process of forming net rain after deducting various losses from rainfall, 
among which losses mainly include evaporation, plant interception, surface flling, soil infltra-
tion, etc. Commonly used runoff calculation methods include the runoff coeffcient method[4], the 
SCS-CN method[5], the full storage runoff method[6], and the infltration curve method. 

Rainfall is a complex process, and its intensity and duration have a great impact on ponding. 
Scholars have studied the critical rainfall of surface runoff and food. 

According to the research on the soil moisture of different soil layers by rainfall, the soil mois-
ture changes under different rainfall intensities show a “rising period” – “plateau period” – “water 
withdrawal period”. There is an obvious threshold relationship between surface runoff and soil 
moisture. Light rain can supplement soil moisture of 10 cm, and moderate rain can supplement soil 
moisture of 10–20 cm. It shows that there is almost no runoff on the surface under moderate and 
light rainfall, and there will be almost no accumulation of water on the surface after the rainfall. 

By analyzing historical disaster data, some scholars found that when the rainfall in 3 days is 
more than 200 mm, food disasters will occur, while when it is less than 30 mm, the possibility of 
food disasters is small. This study gives the critical value of food and non-food under the 72-hour 
duration, but no more studies reveal the impact of the previous rainfall duration and intensity on the 
surface ponding. 

15.2.3 surFace rainwater conFlux 

Surface rainwater confux refers to the process in which runoff or foodwaters fow into the pipeline 
network or river channel from the surface[7–8]. In the analysis of urban waterlogging, the confuence 
of the pipe network is the link for water exchange and drainage and is the most critical part of the 
inundation analysis. For rural or suburban areas without pipes, rivers and ditches were considered 
as the main drainage channel. 

15.2.4 nuMerical siMulation oF surFace inundation depth 

The numerical simulation of surface inundation depth refers to the possible surface food depth 
according to the terrain after determining the total rainstorm water. The fooding algorithms based 
on DEM mainly include “inundation without a source” and “inundation with a source”. Inundation 
without a source means that the grids with lower elevation values than the given water level are 
inundated areas. When regional connectivity is considered, the food can only inundate areas by 
fowing through them[9]. According to the basic principle of inundation analysis, only when the 
study area is similar to a regular cuboid pool, the water depth of any area is the same. However, such 
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an ideal surface usually does not exist in reality. In reality, surface water occurs in local depressions, 
starting from the lowest terrain, and with the increase of rainfall, the area of water accumulation 
increases, forming small ponds. However, the depth of ponding in the same ponding area is incon-
sistent. For the same place, the greater the rainfall, the deeper the water. During the same rainfall, 
the depth of water accumulation depends on the local topography. 

15.3 HYDROLOGICAL MODEL 

15.3.1 scs-cn Model 

The critical aspect of constructing the relationship between rainfall and surface runoff is to estab-
lish a convenient and effective rainfall-runoff model. The Soil Conservation Service Curve Number 
(SCS-CN) model was developed based on climatic characteristics and multi-year hydrological run-
off data from the United States. It has been widely used due to its simple results, few parameters, 
and high accuracy. The SCS-CN model includes a water balance equation and two basic assump-
tions[10]. The balanced equation is as follows (1): 

P I + F Q  (15.1)= a + 

where P is rainfall (mm), Q is runoff depth (mm), F is cumulative infltration (mm), and Ia  is initial 
loss (mm). 

Equation (15.2) is an assumption of equal proportions: 

Q F 
= (15.2)

P I  S- a 

The assumption of a proportional relationship between the initial rainfall loss and the potential stag-
nant storage is described in Equation (15.3): 

Ia =lS (15.3) 

where S is the maximum infltration of the watershed (mm), Ia  is the initial loss (mm), and l  is the 
initial loss rate. 

The runoff depth can be calculated by combining Equations (15.1) and (15.3)[11]: 

2ì (P - lS)
ï 

S )
, P > lS

Q = í 1 (15.4)P + - l( ( )
ï 
ï 0, P £ lSî 

where S is calculated by the CN (Curve Number) coeffcient in Equation (15.5) with the following 
statistical relationship: 

25400S=  - 254 (15.5)
CN 

Runoff CN is the model’s main parameter, which refects the comprehensive characteristics of the 
soil moisture degree (antecedent moisture condition [AMC]), slope, soil type, and land use status in 
the early stage of the basin. Table 15.1 shows the CN value of each category under the average soil 
humidity (AMC II)[12]. The greater the CN value is, the worse the maximum water storage capacity 
of the basin is. 
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TABLE 15.1 
CN Value Lookup Table 
Category Water 

CN 100 

Grassland 

69 

Cultivated Land 

71 

Construction 

98 

Road 

98 

15.3.2 swMM Model 

SWMM is a stormwater management model researched and developed by the Environmental 
Protection Agency of the United States. The model has a high degree of commercialization 
and can be used well even if you do not understand the model principle. The SWMM model is 
widely used in urban drainage design and management, food prevention project planning, and 
so on. The SWMM model has strong applicability and can simulate the generation, accumula-
tion, scouring, and transport processes of non-point source pollution loads in the watershed, 
as well as the runoff and confuence processes on the surface and the transport process in the 
pipeline network under rainfall conditions. The SWMM model has lower data requirements 
and the input data is easy to obtain. The model can customize any input time interval, and can 
also output the results of any integer step size, and there is no limit to the area of the input 
model area. 

The SWMM model contains many modules, which can be divided into calculation modules and 
service modules according to their properties. The calculation models mainly include runoff mod-
ule, transportation module, storage/treatment module, etc. The service modules mainly include the 
rainfall module, statistics module, joint module, etc. 

15.3.2.1 SWMM Model Parameters 
There are two basic parameters needed to simulate the runoff-producing and fow concentration of 
the urban rainfall by using the SWMM model: precipitation data and hydrological data. 

15.3.2.1.1 Precipitation data 
Precipitation data is the specifc rainfall time series of the rainfall events to be simulated. The 
SWMM model can read rainfall time series with various time intervals. As long as the rainfall 
time series used in a simulation process have equal intervals, the corresponding time and rainfall 
values can be directly and manually entered through the rainfall module of the SWMM model. The 
rainfall time series data can also be processed into a. dat fle that can be directly recognized by the 
SWMM model according to the template, and the fle can be directly read. 

15.3.2.1.2 Hydrological data 
The catchment area is the unit for hydrological calculation using the SWMM model, so deter-
mining the catchment area division of the study area is the primary task of applying the SWMM 
model[13]. The catchment area is an important input parameter of the SWMM model, and its attri-
butes can be divided into two parts: deterministic attributes and uncertain attributes. The area 
and feature width can be directly obtained by GIS tools. The area ratio of impervious area, the 
Manning coeffcient of impervious area, and the Manning coeffcient of the permeable area can 
be calculated by GIS under land classifcation. The attribute of the rain gauge in the catchment 
area specifes the rain gauge used in each catchment area. Only one rain gauge can be specifed 
in each catchment area. The rainfall time series corresponding to the rain gauge is the source of 
runoff in each catchment area. There is only one drainage outlet in each catchment area. After 
rainfall-runoff and surface confuence, the remaining water fows directly into the drainage outlet 
to exchange water between drainage networks. The remaining uncertain attributes of the catch-
ment area include the storage capacity of the surface depressions in the impervious area, the 
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storage capacity of the surface depressions in the permeable area, the maximum infltration rate, 
the minimum infltration rate, and the attenuation constant, which need to be determined by the 
method of parameter calibration. 

The inspection well is the transportation hub for surface confuence and pipe network confu-
ence. The water after surface confuence enters the pipeline through the inspection well for water 
exchange between catchment areas. The attributes of the inspection well include geographical 
location, upper bottom elevation, lower bottom elevation, and depth. Nodes and pipes located 
upstream of the drainage outlet and whose bottom elevation is greater than the drainage outlet do 
not necessarily participate in the calculation of water exchange. Therefore, generalizing the drain-
age network with a reasonable standard is benefcial to remove redundancy, reduce complexity, 
and reduce errors. 

Pipes are passages through which water volumes in different catchments are exchanged. The 
main attributes of the pipeline are the name of the starting and ending nodes, the diameter of the 
pipe, the shape of the pipe, the roughness of the pipe wall, and the slope of the pipeline. The slope of 
the pipeline is obtained by dividing the bottom elevation difference between the starting and ending 
nodes by the length of the pipe. The degree of water interaction is determined by these properties 
of the pipe together. 

The water outlet is the outlet that discharges the water volume of the model to the outside, and 
its properties include the bottom elevation and the infow time series. The infow time series can 
set the speed of the external water fowing into the model, which is suitable for the drainage outlet 
located on the edge of the river; when the water level does not exceed the drainage outlet, the water 
in the river will pour into the model. 

15.3.2.2 SWMM Model Functional Modules 
The main modules used when using the SWMM model to simulate urban waterlogging are the 
rainfall module, runoff module, and transport module. 

The SWMM model sets the rainfall time series of each rain gauge through the rainfall module. 
Each rain gauge has a unique time series, but there can be multiple rain gauges and rainfall time 
series in a simulation. Each rain gauge and rainfall time series are independent of each other. 

The runoff module of the SWMM model is the hydrological model. After the rainfall in the 
catchment area is obtained, the nonlinear reservoir slope catchment after the interception of rainfall 
by surface plants and infltration of rainfall by unsaturated soil can be calculated, and various micro 
impacts that reduce and delay rainfall and runoff can be simulated. 

The transport module of the SWMM model is the hydraulic model, which can simulate the fow 
of surface runoff and external water fow in pipes and channels. The simulation results can be used 
to analyze information such as pipe fow, depth, and water accumulation at nodes. 

The specifc processes involved in each module are shown in Figure 15.2. 

15.3.2.3 SWMM Model Production and Convergence Theory 
The core calculation module of the SWMM model is the calculation of runoff and confuence. 
The water accumulation at the nodes is fnally determined through the calculation of runoff and 
confuence. The SWMM model uses the Horton infltration model and the nonlinear reservoir 
model to calculate the runoff[14]. At the initial stage of rainfall, the surface water content is low, 
the infltration rate is high, and there is no surface runoff. At present, it is the interception stage 
of surface plants. With the progress of rainfall, the rainfall intensity increases continuously, 
the rainfall intensity starts to be greater than the infltration rate, and the ground starts to have 
ponding, which starts to enter the fow generation stage. As the rainfall continues, the rainfall 
intensity continues to increase, the depressions are full, and the surface ponding in places with 
low permeability becomes more. The whole region is in the process of runoff generation and 
collection, and the ponding is concentrated at the water outlet of the basin. At present, it is the 
confuence stage. 
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FIGURE 15.2 SWMM model simulation fow chart. 

15.3.2.3.1  Rainfall-Runoff Calculation 
Rainfall-runoff refers to the forming net rain after deducting various losses in rainfall, i.e., mainly 
through evaporation, plant interception, surface depression flling, and soil infltration[15]. It is 
obtained by subtracting rainfall loss from total rainfall: 

W =Q - q - q ( 15.6 ) runoff  sum in ex 

Qsum is the total amount of precipitation, qin ˜ is the amount of infltration rainfall, and qex is the 
amount of rainwater evaporation. In general, the model does not consider evaporation. 

Q is the cumulative precipitation during the rainfall period, and its unit is m3. The rainfall 
depth is obtained according to the cumulative value of the measured precipitation of the rain 
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gauges associated with each catchment area, and its unit is mm, and the product is multi-
plied by the area of the catchment area (unit: m2). That is, the total amount of precipitation 
in each catchment area is obtained. The rainfall data is the time series data of the measured 
precipitation. 

qin is the amount of water infltrated into the surface soil. In the SWMM model, the general rain-
fall loss only considers the infltration loss of the soil. The Horton infltration model is used in the 
infltration part, which describes the various characteristics of the infltration rate with time during 
the rainfall process. The calculation equation of soil infltration reduction is as follows: 

-atq = I Dt S , I = f + f )e* *  ( - f (15.7) in t t 0 i 0 

In Equation (15.7), It is the average infltration rate within the time of Dt  (time interval, in s), in 
mm/s; S is the area of the permeable zone, in m2; fo  is the fnal infltration rate, in mm/s; fi  is the 
initial infltration rate, in mm/s; a  is the infltration lapse rate, in mm/s. 

15.3.2.3.2 Surface Rainwater Confux Calculation 
Urban rainfall confuence refers to the process in which the runoff produced by rainfall converges 
to the outlet of the basin[16]. The confuence process is greatly affected by the underlying surface 
factors. Different underlying surfaces have different confuence and convergence effects. The urban 
underlying surface is complex, and the gap between regions is large. Most of them are impermeable 
ground. The SWMM model generalizes the study area into several sub-basins (catchment areas), 
describes the surface characteristics through attributes such as water permeability and Manning 
coeffcient, and constructs a generalized urban pipe network model without changing the drainage 
capacity of the pipe network, which can effectively simulate the urban surface confuence and pipe 
network confuence. 

Surface confuence is the process of confuence from the surface to the outlet of the water-
shed after runoff in each catchment area[17]. The SWMM model uses a nonlinear reservoir 
model to simulate the surface confuence. The basic idea is that each catchment area is gener-
alized as a nonlinear reservoir, the water depth of the reservoir is very shallow, the rainfall is 
the input, the surface confuence and infltration are the output, and the outfow at the outlet 
of the basin is a nonlinear function of the water depth. The calculation principle of the nonlin-
ear reservoir model is as follows (taking the calculation of runoff in the permeable area as an 
example): 

dV ddContinuity equation = A = A i* - Q (15.8) 
dt dt 

In Equation (15.8), V is the amount of accumulated water in the catchment area, V = ´ d ; d isA 
the water depth; A is the area of the catchment area; i is the net rain; Q is the outfow: 

1 49 5 3  1 2.
= ×Q W  × (  )d d- p ×S (15.9) 

n 

In Equation (15.9), W is the overfow width of the catchment area; n is the surface Manning rough-
ness coeffcient; dp is the surface stagnant water depth; S is the width of the catchment area. Com-
bining Equations (15.8) and (15.9) and simplifying the nonlinear differential equation for solving 
the water depth d produces the following: 

1 2dd 1 4. 9W 5 3  1 2  5 3  1.49WS 
= -i ( - ×Sd d  ) = i +WCON × (d d- p ) WCON = - (15.10) pdt A n× AAn 
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The overfow width W, slope S, and roughness n of the catchment area are calculated to obtain the 
parameter WCON. The equations are solved using the fnite difference method, and the values of net 
infow and net outfow are the average values over the time step. Equation (15.10) is processed and 
the result is as follows: 

d2 - d1 é 1 ù
5 3  

= +i WCON dê 1 + (d2 - d1) - d (15.11) p úDt ë 2 û 

In Equation (15.11), d1 and d2 represent the initial water depth and the water depth of the fnal state, 
respectively. The New-Raphson iteration method is used to solve the problem, and we get: 

F = Dd - Dt WCON b 5 3 + i) (15.12) ( 
In Equation (15.12), F is the Newton function: 

b = +  
1 (d - d - (15.13) d1 2 2 1 ) d p 

Differentiate the Newton function: 

dF 5 2 3  (15.14) = - Dt × K b 
d (  )Dd 

1
6 

Finally, the recursive function of AA is obtained: 

n(Dd ) = (Dd ) -
F 

(15.15) n+1 n dF d (Dd )n 

The method just described can calculate d2, and substitute it into Equation (15.9) to obtain the out-
fow at the end of the time step. 

Pipe network confuence refers to the process of dredging, collecting, and draining the runoff in 
the catchment area through the urban drainage pipe network system, and fnally draining the drain-
age outlet in the basin[18]. 

The calculation method of pipe network drainage is generally based on the Manning equation. 
The pipe network drainage Qp  is determined by the drainage capacity and drainage duration of the 
pipe network. The calculation form is as follows: 

2 11 p d 2 æ d ö3
Q = S 2 Dt (15.16) p ç ÷n 4 è 4 ø 

In Equation (15.16), n is the roughness of the pipe wall; d is the pipe diameter, in m; S is the slope 
of the bottom of the pipe (the ratio of the height difference of the pipe end to the projected length of 
the pipe in the horizontal direction); Dt  is the drainage duration. 

15.4 FLOOD DIFFUSION ALGORITHMS 

15.4.1 surFace Flood diFFusion algorithM with non-source 

In actual scenarios, foods always occur in areas with low local topographies. Floods gradually 
diffuse according to the digital elevation model (DEM) and terrain connectivity. After calculating 
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the basin runoff Q, the food depth and total food water exist in the following relationship in each 
catchment according to the water balance theory: 

n m 

(åQi )* Area  = (åH - H j )* Area (15.17) 
i=0 j=0 

where Area is the area of one grid (m2), Qi is the runoff of the grid i (m), n is the number of grids in 
the current catchment area, H is the food elevation in the catchment (m), H j  is the elevation of the 
grid j (m), and m is the number of fooded grids in the catchment. 

A diffusion algorithm with non-source is used to calculate food depth. Literature[19] assumes that 
the food starts from the grid with the lowest elevation in the catchment and gradually diffuses to 
grids with higher elevations. Flood diffusion ceases when food elevation H is lower than all non-
food grids. 

15.4.2 an algorithM with source inundation and dynaMic water distriBution 

15.4.2.1 Inundation Algorithm Principle 
The basic idea of the algorithm with source inundation and dynamic water distribution is as follows. 
The diffusion sources are nodes. The water spreads around based on terrain with trial method and 
water balance principle. The result of rationality is judged after each round of diffusion. If the cur-
rent food elevation is higher than the elevations of grids neighboring, the diffusion area is expanded 
to a circle bigger than before; otherwise it will diffuse again in the new area, until the food eleva-
tion is lower than elevations of grids neighboring all fooded grids. After all nodes diffusions are 
completed, it judges whether the grids are involved in two or more nodes diffusion process. If there 
are some nodes whose diffusion areas are intersected, the node is made as a new one and the nodes’ 
volume is merged as the new node’s volume, and then it diffuses again with the basic idea. It realizes 
water dynamic allocation and food dynamic diffusion by judging the rationality of food depth and 
area constantly during the diffusion process. The fow direction depends on the difference in grids’ 
elevations without any human intervention, and the food can fow into any grid around it. There is 
no boundary in the algorithm, and the inundation end depends on terrain and food volume, which 
more matches the actual circumstances. 

Specifc steps of the algorithm are given in the following with Figure 15.3 and Figure 15.4: 

(1) Read the DEM to get each grid’s elevations. 
(2) Read all nodes’ information, including nodes’ number, volume, and location. 
(3) Diffuse the food from the frst node, assuming that the food volume of the current node is 

V, the food elevation is H, and A is the area of each grid. 
(4) Diffuse the food from the center (source) grid to outside, write the diffusion area of round 

n as Rn. R1 is the diffusion area in the frst round, just shown as the area masked with r1 
in Figure 15.3; R2 is not area masked with r2 in Figure 15.3 but r1+r2, so Rn should be 
r1+r2+. . .+rn, while the current H is that: 

VH = (15.18) 
A 

where the unit of H is m, the unit of V is m3, and the unit of A is m2. 
The H should be compared with the elevation of grids outside around the diffusion area, 
which is written as compare area. If H is smaller than the minimum of the elevation of 
compared area, the node’s diffusion comes to the end, or else comes to step (5). After all 
nodes diffusion has been done, it comes to step (6). 
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(5) Make the diffusion area a circle larger than the former, and diffuse the food among the 
new area. Assume that n grids are fooded and their elevations are H1, H2, . . ., Hn. H with 
trial method and the principle of water balance can be calculated as: 

næ ö ç i =å H H ÷* = ( 15.19 ) - A Vii=0è ø 

where the unit of H and Hi are m, the unit of V is m3, the unit of A is m2. 
If H is smaller than the minimum of the elevations of all grids surrounding the diffusion 
area, the node’s diffusion comes to the end; otherwise repeat the step. After all nodes dif-
fusion has been done it comes to step (5).         

(6) Judge whether there is any grid involved in two or more nodes’ diffusion process. If there is 
not, the food inundation is fnished and the result is returned. If there is, it makes the nodes 
into a new one and merges the nodes’ volumes as the new node’s volume with repeating 
step (4).         

FIGURE 15.3 Auxiliary graph of the source algorithm. 



 

   
 

  
  

   

  
  

    

376 3S Technology Applications in Meteorology 

FIGURE 15.4 Flow chart of the source algorithm. 

15.4.2.2 Comparison of Passive Algorithm and Active Algorithm 
A comparative analysis of the effects of non-source (Section 4.2.1) and source diffusion algorithms 
(Section 4.2.2) is carried out in the form of graphics and text. 

Now suppose that the study area is shown in  Figure 15.5, the size of each grid is 10 m ́  10 m, and 
the number shown on the fgure is the elevation value of each grid unit (unit is m). The fve-pointed 
star represents the location of the node; that is, the grid where the diffusion source is located. The 
DEM of the study area is used to analyze the surface catchment area with hydrological tools, and 
fnally two catchment areas as shown in the fgure are obtained, and the nodes in the fgure exist in 
the catchment area 1.        

(1) It is assumed that after a rainfall, the accumulation of water in the diffusion source (node) 
is 430 m3 and the diffusion is carried out. 
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FIGURE 15.5 DEM (a) and catchment area information (b) of the example area. 
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FIGURE 15.6 The result of waterlogging in active diffusion scenario 1. 

a. Active Diffusion Algorithm: Diffusion is frst performed only on the diffusion source 
grid. At this time, the water level of the waterlogging is higher than the water level of 
the outer circle, and the diffusion range needs to be expanded to the outside, and the 
situation shown in  Figure 15.6  is obtained. The waterlogging water level is 8.7 meters, 
which is less than the elevation value of all the grids in its outer circle, then the diffu-
sion of the diffusion source ends here, and  Figure 15.4  shows the fnal diffusion of the 
diffusion source. 

b. Passive Diffusion Algorithm: Diffusion starts from the lowest part of the catchment 
area, and then searches for the grid with the lowest elevation with the most fooding in 
turn, and obtains the fnal distribution  Figure 15.7 .          
Comparison of results: the waterlogging level and the waterlogging range are the same. 
Reason analysis: The catchment area presents a depression effect centered on the grid 
where the node is located. In the current situation, the water volume is concentrated in 
the same grid around the node. 

(2) It is assumed that after a rainfall, the accumulated water volume of the diffusion source 
(node) is 730 m3. 
a. Active Diffusion Algorithm: Take the node as the center, and the result after two circles 

of diffusion is performed is shown in  Figure 15.6a. At this time, if the waterlogged water 
level is greater than its adjacent grid, the node needs to be re-diffused, and the diffusion 
range will be increased by one circle. Finally, the situation shown in  Figure 15.8b  is 
obtained. The fnal waterlogged water level is 9.00714, which is approximated to 9.01. 
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FIGURE 15.7 Schematic diagram of waterlogging in passive diffusion scenario 1. 

b. Passive Diffusion Algorithm: Diffusion starts from the lowest point of the catchment 
area, and sequentially fnds the grid with the lowest elevation with the most fooding, 
and obtains the fnal distribution in  Figure 15.9 .          
Comparison of results: The accumulated water level and the accumulated water range 
are inconsistent. The accumulated water range obtained by active diffusion is wider and 
the water level is lower. The active diffusion algorithm forms a continuous distribution 
in the whole world. The passive diffusion algorithm has the accumulated water level 
greater than the elevation value of the adjacent grid at the boundary, which is inconsis-
tent with the actual situation and unreasonable. 
Reason analysis: Due to the existence of the boundary of the catchment area, the passive 
algorithm stops the diffusion when it encounters the boundary, while the active diffu-
sion algorithm proposed in this paper will take the node as the center and diffuse in the 
global area, and there is no boundary limit. 

(3) Assuming that there are two nodes with similar positions in this area, after a rainfall, the 
water accumulation of these two nodes is 730 m3 and 110 m3 respectively. 
a. Active Diffusion Algorithm: The waterlogging accumulation diffusion is performed 

on these two nodes respectively to obtain the waterlogging accumulation situation as 
shown in  Figure  15.10a. The waterlogging accumulation area formed by these two 
nodes intersects, so it is necessary to combine the waterlogging accumulation of these 
two nodes: namely, add the water volume of these two nodes to form a new node. The 
diffusion range of the new node is the outer polygon of the waterlogging accumulation 
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FIGURE 15.8 Simulation of waterlogging in active diffusion scenario 2. 
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FIGURE 15.9 The result of waterlogging in passive diffusion scenario 2. 

area of these two nodes, and fnally obtain the waterlogging accumulation result as 
shown in  Figure 15.10b, The fnal accumulated water level is 9.0533, and the approxi-
mate value is 9.05. 

b. Passive Diffusion Algorithm: Combine the accumulated water volume of the two nodes 
as the fnal accumulated water volume of the catchment area, and diffuse in the catch-
ment area.          

Comparison of results: the waterlogging level and the waterlogging range are inconsistent, the active 
diffusion algorithm obtains a wider waterlogging range, the water level is lower, and the passive dif-
fusion algorithm is unreasonable at the boundary (Figure 15.11). 

Reason analysis: As in scenario 2, the boundary of the catchment area limits the diffusion range 
of accumulated water, but the active diffusion algorithm proposed in this paper does not have 
boundary restrictions. 

Conclusion: Combining these three simulation scenarios, the results of the two algorithms are 
not much different when the amount of water accumulation is small. In the case of large water vol-
ume, the active ponding diffusion algorithm proposed in this paper is more reasonable than the pas-
sive diffusion algorithm, which can fully refect the water fow path according to the terrain height. 
The passive diffusion algorithm is limited by the boundary. There will be unreasonable situations at 
the boundary of the catchment area, and passive diffusion can be used for simple surface inundation 
analysis when rainfall is not large. 
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FIGURE 15.10 Simulation of fooding in active diffusion scenario 3. 
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FIGURE 15.11 The result of waterlogging in passive diffusion scenario 3. 

15.4.3 analysis oF surFace water By coMBining deM and reMote sensing iMages 

For the surface ponding analysis combined with DEM and remote sensing images, the inundation 
range is usually obtained by using remote sensing images, and then the elevation-based hydrologi-
cal analysis is carried out in combination with the inundation range and DEM data to determine 
the ponding depth. Reference[20] used Sentinel-1 images before and after the disaster and the RGB 
composite change detection method to obtain the surface inundation range. For each submerged 
patch, the waterlogging height  DEMmax  was determined according to equation (20). For all the 
grids whose elevations are less than the waterlogging height within the same submerged patch, the 
waterlogging depth  Hi  is determined according to Equation (15.21): 

DEM  = DEM  +2 ( 15.20 ) max  s DEM 

H = max(0, DEM - DEM ) ( 15.21 ) i max i 

In Equations (15.19) and (15.20), sDEM is the elevation standard deviation of all grids in the same 
waterlogging patch, and  DEMi  is the height of the i th grid.  

15.4.4 nuMerical siMulation exaMple oF rainstorM water depth 

15.4.4.1 Numerical Simulation of Standing Water Based on SWMM Model and 
Active Diffusion Algorithm 

Taking Longwen District of Zhangzhou City as an example, the area surrounded by Shuixian 
Avenue in the north, Zhanghua East Road in the south, Jiulong Avenue in the East, and Longwen 
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North Road in the west is selected, with an area of about 6.61 square kilometers. This area is the 
economic activity center of Longwen District, with concentrated population and buildings. In addi-
tion, there are green land, forest land, farmland, water body, roads, and other land use types in the 
demonstration area of the study area. The drainage network in this area is mainly distributed along 
the road, with 4,424 inspection wells, 34 drainage outlets, and 4,331 pipelines. The specifc geo-
graphic location of the sample area is shown in  Figure 15.12 .        

Using GIS and remote sensing technology to process and analyze the data, various parameters 
such as the catchment area and the generalized pipe network data required for building the model 
are obtained ( Figure 15.13 ).                                                                                       

FIGURE 15.12 Basic information of the sample area. 

FIGURE 15.13 Modeling parameters of the SWMM model in the example area. (Continued) 
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FIGURE 15.13 (Continued) 
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FIGURE 15.13 (Continued) 

The rainfall on June 18, 2016 is simulated, and the rainfall data adopt the data of the Changfu 
Village automatic station in the study area. The specifc rainfall time series is shown in Table 15.2. 
Taking 30 minutes as the time interval, the SWMM model is used to simulate the urban rainfall 
process, and the time series of water accumulation at the nodes is obtained. The active water diffu-
sion algorithm is used to distribute the water volume to the surface grid cells, and the water depth 
of each grid is obtained. The rainstorm inundation analysis is carried out at each moment, and the 
simulation results of water accumulation at each moment are output as Figure 15.14. 
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TABLE 15.2 
Rain Gauge Precipitation Time Series on June 18, 2016 
Date (YYMMDD)  Time (hh:mm)  Precipitation (mm) 

20160618 13:00 13.3 

20160618 13:30 33.9 

20160618 14:00 1.2 

20160618 14:30 0.4 

20160618 15:00 0.2 

20160618 15:30 0.1 

FIGURE 15.14 Simulation results of source algorithm on June 18, 2016. 
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15.4.4.2 Numerical Simulation of Stagnant Water Based on SCS-CN Model and 
Passive Algorithm 

Taking a part of Kouzizi Village, Shouguang City, Shandong Province as an example, the SCS-CN 
model and the passive stagnant water diffusion algorithm (section 4.1) are used. The water accu-
mulation depth simulation was performed for two rainfall processes on November 18, 2020 and 
May 16, 2018. The 24-hour rainfall on November 18, 2020 was 37.7 mm, and the 24-hour rainfall on 
May 16, 2018 was 68.9 mm. The example area is divided into fve categories: water body, vegetation, 
greenhouse, building area, and road. According to the distribution of land types, the average CN 
value of the example area is calculated to be about 78.92, and S is 67.84. According to the calcula-
tion of the SCS-CN model, when P > 13.57 mm, the sample area begins to produce surface runoff. 
Figure 15.15 shows basic information such as remote sensing and DEM in the sample area. 

FIGURE 15.15 Basic information of the sample area. (Continued) 
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FIGURE 15.15 (Continued) 
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FIGURE 15.16 Simulation results of water depth. 

Use the SCS-CN model to calculate the runoff of each grid in each rainfall, count the total runoff 
of each catchment, and use the passive diffusion algorithm to calculate the depth of water accumula-
tion in each grid. The result is  Figure 15.16 .        

15.5  FLOOD DISASTER RISK ASSESSMENT 

15.5.1 the connotation oF disaster systeM 

From the perspective of connotation and defnition of food risk, current scholars have not unifed 
understanding of the elements of food disaster system. Some scholars believe that food disaster 
risk is composed of hazard, exposure, and vulnerability. Hazard refers to the intensity and spa-
tial distribution of disasters, such as the depth, duration, and scope of inundation[21]. Exposure 
generally refers to the population and economic distribution that may be affected during the 
food process, and vulnerability generally refers to the damage degree of the bearing body under 
the disaster. Some scholars think that the food risk is composed of hazard and susceptibility. 
Although the vulnerability and susceptibility show the same meaning in some degree, the con-
notation of vulnerability is more abundant, including not only the vulnerability of the carrier[22], 
but also the distribution information of social economy. In recent years, many scholars have 
proposed a food disaster vulnerability or sensitivity assessment different from these two theo-
ries [23]. Vulnerability refers to the degree or possibility of disaster occurrence. Rainfall index is 
the direct disaster-causing factor, the condition of food occurrence, and the disaster result is the 
fnal performance of rainfall after a series of actions on the surface. The rainfall index in the 
traditional risk factors is distinguished from the disaster result, and the method does not consider 
the disaster-bearing body factor. 

15.5.2 risk expression 

The United Nations Department of Humanitarian Affairs published the defnition of natural disaster 
risk in 1992: risk is the expected loss of people’s lives, property, and economic activities caused by 
specifc natural disasters in a certain region and a given period of time. Scholars use “risk degree” 
to express the quantifed disaster risk. 
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TABLE 15.3 
Judgment Scale of Relative Importance of Evaluation Indicators 
Scale Implication 

1 i is as important as j 

3 i is slightly more important than j 

5 i is signifcantly more important than j 

7 i is strongly important compared to j 

9 i is extremely important compared to j 

2, 4, 6, 8 The importance of I compared to j is between adjacent odd numbers 

The connotation of natural disaster system is different, and the corresponding expression of 
disaster risk degree is also different. At present, there are mainly four viewpoints on the expres-
sion of disaster risk degree: risk = hazard, risk = hazard + vulnerability, risk = probability loss, 
risk = hazard result. With the deepening of research, the frst expression given by domestic and 
foreign scholars for the United Nations disaster reduction strategy has the highest recognition[24]. 

15.5.3 analytical hierarchy process Method 

Judgment matrix is the basis of analytical hierarchy process (AHP), and it is a numerical expres-
sion for judging the relative importance of various evaluation indicators. The comparative scale aij 
is used to express the relative importance of the i index and the j index in the object layer, and the 
relative importance measure between the two factors is called the judgment scale. For the weight 
analysis of multiple factors, the pairwise comparison method can be used, and only two factors are 
compared with each other in the importance of n factors at a time (Table 15.3). 

The comparison scale aij  has the characteristics of aij >0, aij =1/ a ji, and aii =1 (i, j=1, 2, 3, . . ., n). 
The formed comparison judgment matrix is a positive and inverse matrix, and the judgment matrix 
P has the following form: 

é 1 a a ù12 1n˜ê ú 
ê 1/ a12 1 a2n ú 

P = ê ° ˛ ° ú (15.21) 
ê ú 
ê1/ a 1/ a ˜ 1 ú1n 2n 
ê úë û 

According to the comparison and judgment matrix P, the eigenvectors corresponding to the largest 
eigenroot and the largest eigenvalue are obtained. 

The importance ranking process of AHP is a subjective process. In order to reduce errors caused 
by one-sidedness, a consistency check is required. A consistency test mainly means that when X1 
is more important than X2 and X2 is more important than X3, then X1 must be more important 
than X3. When the judgments are completely consistent, there should be lmax = n. Defne the con-
sistency index CI as 

-lmax n  CI = (15.22) 
n -1 

lmax  is the largest characteristic root of the comparative judgment matrix P, and n is the number of 
indicators. 



  

 

  

 

  

  

  

  
 

 

     

 

 

      
 

 

 
 

 

    

392 3S Technology Applications in Meteorology 

TABLE 15.4 
Consistency Check RI Lookup Table 
Order 1 2 3 4 5 

RI 0 0 0.52 0.89 1.12 

6 

1.26 

7 

1.36 

8 

1.41 

9 

1.46 

10 

1.49 

11 

1.52 

12 

1.54 

13 

1.56 

CR is the consistency ratio: 

CICR = (15.23) 
RI 

When CR < 0.1, the consistency is considered acceptable and the index assignment is reason-
able. The average random consistency index RI lookup table of the judgment matrix is shown in 
Table 15.4. 

15.5.4 entropy Method 

Both the entropy method and the information gain theory are based on the information entropy 
theory[25]. The information gain theory judges the importance or contribution of features to classif-
cation by analyzing the information gain of features. The entropy method can determine the index 
weight. The entropy method can be used to evaluate the weight results of the analytic hierarchy 
process numerically, so as to fnd less risky solutions that tend to be consistent. 

As a measure of the uncertainty of the system, the larger the information, the smaller the uncer-
tainty, the smaller the entropy, and the lower the risk degree. Conversely, the smaller the informa-
tion, the larger the uncertainty, the larger the entropy, and the higher the risk degree. 

The concept of information quantity is based on the pan-system observation and control the-
ory. By composing the observation and control object array and the risk observation and con-
trol index, the full information content (IT ) measured by the observation and control index is 
obtained[26–28], namely: 

I = log2 n (15-24) T 

In Equation (15.24), IT  is the total amount of information, and n is the total number of risk observa-
tion and control indicators. 

According to the concept of information amount, after a series of control measures, the reduc-
tion of uncertainty before control can be known, that is, the amount of free information (IT ). The 
calculation equation is 

I = - p log2 p (15.25) F i i 
i=1 
å 

n 

In Equation (15.25), pi is the probability value (i = 1, 2, . . ., n) corresponding to the i-th observation 
n 

and control object, and åpi = 1. 
i=1 

Risk is the amount of unknown information that is unavoidable under certain constraints before 
the implementation of control measures or risk management, that is, the amount of constraint infor-
mation IB : 

I = I - I (15.26) B T F 
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which is 

I = log  n + ån
p log p , (i = 1 2, , × ××, )n , i = 1 2 ¼ n (15.27) B 2 i 2 ii=1 

IB  is a decrease in the uncertainty of regulation money or pre-management caused by some intrinsic 
distribution. Its essence is to display and map the intrinsic measure of risk[26]. Under the premise of 
a certain IT , the larger the value of IB , the smaller the value of IF , so that the effect of risk control 
and management measures on the risk itself is smaller, and the risk is larger. 

15.5.5 exaMples oF disaster risk assessMents 

The food disaster risk assessment framework of “risk” + “vulnerability” is selected, and the risk is 
composed of disaster-causing factors and disaster-pregnant environment. Through disaster monitor-
ing and simulation, the rainfall is directly transformed into the distribution of ponding degree to 
realize the assessment of direct disaster-causing factors. The elevation and river distance that have 
a greater impact on the food results are selected as the indicators for disaster-pregnant environment 
assessment. In food and waterlogging disaster risk assessment, land use and population density are 
generally selected as assessment indicators of disaster-bearing bodies, and land use is selected as 
assessment indicators of disaster-bearing bodies. As an important channel for post-disaster rescue, 
the distance between each pixel and the road is used as an evaluation index of disaster prevention 
and mitigation capacity. The food and waterlogging risk assessment system and data sources of 
various indicators in this study are shown in Table 15.5. 

When grading and assigning points to each risk assessment indicator, the higher the inundation, 
the greater the risk. The degree of submergence is graded, and four grades of 1, 2, 3, and 4 are 
assigned to no water accumulation, mild water accumulation, moderate water accumulation, and 
complete submersion. 

The lower the elevation, the more prone to fooding. The elevation of the study area is divided 
into 4 grades (unit is meter) using the natural breakpoint method, and each grade is assigned to 4, 
3, 2, and 1 in turn. 

The closer you are to the river, the more prone to fooding. Use ArcGIS to generate the river buf-
fer to judge the distance from the pixel to the river, divide the river distance into 4 levels, and assign 
the distance to 4, 3, 2, and 1 from near to far. 

TABLE 15.5 
Flood Risk Assessment System 
Target Layer Criterion Layer Indicator Type Number Indicator Layer Data Sources 

Flood disaster risk Dangerous Direct hazard F1 Submerged level FMIFSC remote sensing 
monitoring or disaster 
simulation model 

Disaster-pregnant F2 Ground elevation 1:5000 National Basic 
environment Confdential Surveying 

and Mapping Data 

F3 River distance Remote Sensing Image 

Vulnerability Disaster-bearing F4 Land use Digitization 

body 

Disaster Prevention F5 Road distance 
and Mitigation 
Capability 
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TABLE 15.6 
Weights and Constraints of Each Scheme 
Program Submerged 

Level 
Land Use Road 

Distance 
River 

Distance 
Ground 

Elevation 
CI CR IB 

1 0.468392 0.268058 0.143553 0.075858 0.044138 0.016241 0.014501 0.417328 

2 0.473565 0.282092 0.128735 0.079582 0.036027 0.030954 0.027638 0.452154 

3 0.502474 0.256983 0.12681 0.078294 0.035439 0.043424 0.038771 0.482991 

4 0.449418 0.292022 0.137571 0.084536 0.036453 0.025641 0.022894 0.415601 

When land use is used as a disaster-bearing body indicator in risk assessment, the social attri-
butes of land types are mainly considered, and the degree of infuence of land types on disaster 
formation is not considered. The relative importance of each category is listed as follows: construc-
tion area, road, greenhouse, farmland, water body. The higher the importance, the greater the risk. 
According to its importance, the categories are assigned 4, 3, 2, 1, and 0 in turn. 

As an evaluation index for disaster prevention and mitigation, roads are the main channel for 
escape and post-disaster rescue, so the closer you are to the road, the greater the risk. According 
to the distance from each pixel to the road, it is divided into 1, 2, 3, and 4 in order from near to far. 

The relative importance of food disaster risk assessment indicators is in order: inundation 
degree, land use, road distance, river distance, and ground elevation. According to the relative 
importance, AHP is used to construct several weight schemes, and fnally four schemes satisfying 
the consistency test (CR < 0.1) are determined. The index weight result is taken as the risk observa-
tion and control index, and the entropy method is used to calculate the constraint information of 
each scheme. The detailed indexes, CI, Cr, and values of each scheme are shown in Table 15.6. The 
CI and CR values of scheme 1 are the smallest among the eight schemes, and the value of scheme 4 
is the smallest. According to the pan-system control theory, the smaller the IB , the smaller the risk. 
Finally, scheme 4 is selected as the weight scheme of each indicator, and the weights of each indica-
tor are 0.449418, 0.292022, 0.137571, 0.084536, and 0.036453. 

According to the risk assessment framework, choose the expression “Risk (Risk) = Risk (H) 
Vulnerability (V)” to quantify the risk value. 

The risk score of a single pixel is R, and the total risk score of the on-site rainfall process is 
R_sum, which is calculated as 

R = f H V( , ) = w1 * f1 = w * f2 + w3 * f3 + w * f4 + w5 * f (15.28) 2 4 5 

In Equation (15.28), wi is the weight corresponding to the i evaluation index, and S is the score cor-
responding to the i evaluation index. 

Based on the food disaster risk assessment framework, the disaster risk under four design rain-
fall events (Table 15.7) was assessed. Based on the risk assessment results of Design Scenario 3, the 
natural breakpoint method is used to divide the risk results into four levels, which are divided into 
low-risk areas, medium-risk areas, high-risk areas, and high-risk areas. The spatial distribution of 
risk zoning under the four design rainfall scenarios is shown in Figure 15.17, and the proportion of 
risk levels of each rainfall scenario is calculated. The results are shown in Table 15.7. 

Combined with the analysis in Figure 15.17 and Table 15.8, it can be seen that under each rainfall 
scenario, the medium-risk area is the largest and most widely distributed among all risk levels. It 
is mainly distributed in the two main roads, the construction area and most of the farmland on the 
west side of the main road in the study area. The second lowest proportion is that the low-risk areas 
are mainly distributed in the farmland area on the east side of the main road. The high-risk areas 
accounted for the lowest proportion, and the spatial distribution of higher-risk areas and high-risk 
areas were similar, mainly distributed in farmland along the river and a small part of roads. 
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FIGURE 15.17 Risk zoning for the design rainfall scenario. 

TABLE 15.7 
Design Storm Rainfall Process Table 
Serial Number Rainfall process (mm)  Rain Days  Total Rainfall 

(mm) Day 1  Day 2  Day 3 

1 0 0 140 1 140 

2 0 110 115 2 220 

3 0 85 140 2 

4 60 85 115 3 260 

TABLE 15.8 
Disaster Risk Assessment Results of the Designed Rainstorm Scenario 
Rain Scenario  Rain Days Total Rainfall (mm)  Low Risk  Medium Risk  Higher Risk  High Risk 

Rain Scenario 1 1 140 24.92% 74.05% 1.04% 0.00% 

Rain Scenario 2 2 220 36.91% 53.33% 6.65% 3.11% 

Rain Scenario 3 3 220 37.92% 51.59% 7.43% 3.05% 

Rain Scenario 4 4 260 38.92% 53.34% 5.45% 2.29% 



  

  

  

  

  

  

  

  

  

  

 

 
    

 

 

396 3S Technology Applications in Meteorology 

15.6 CONCLUSION 

The hydrological analysis based on GIS technology, with rainfall and terrain as the basic data, and a 
hydrological model as the core, combined with the surface inundation analysis algorithm, can real-
ize the numerical simulation of surface ponding depth and the conversion from rainfall factor to the 
spatial distribution of ponding, but the data requirements are complex and the simulation accuracy 
is greatly affected by the model and algorithm. The SCS-CN model is widely used because of its 
simple results, few parameters and high accuracy. The SWMM model is one of the most commonly 
used stormwater models. Most of its parameters have physical meanings. Because it is open source 
and free, the secondary development of the SWMM model based on GIS technology is a com-
mon method to study the numerical simulation of urban waterlogging. It can realize the “fne and 
dynamic” simulation of urban rainfall and waterlogging process. Both passive diffusion algorithm 
and active diffusion algorithm have their applicability and can solve specifc problems, but there are 
also some limitations, which need to be optimized according to the research objectives in practical 
applications. 

Flood and waterlogging disaster risk assessment uses numerical values to quantitatively assess 
the probability and distribution of risk occurrence, which can provide the most intuitive decision-
making reference for disaster prevention and reduction. However, the process of disaster risk assess-
ment is usually subjective, and the assessment content is closely related to the research objectives. 
By establishing a food disaster simulation model in the study area, the disaster simulation results 
of specifc scenarios are obtained, and the risk assessment of specifc rainfall scenarios is carried 
out, so as to realize the dynamic assessment of food disaster risk and the direct assessment of disas-
ter causing factors. Through the superposition of disaster data and socio-economic information, a 
dynamic assessment of food risk is achieved[23]. 
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16 Numerical Weather Forecast 
and Multi-Meteorological 
Data Fusion Based on 
Artifcial Intelligence 

Yuanjian Yang, Shuai Wang, Wenjian Zheng, 
Shaohui Zhou, Zexia Duan, and Mengya Wang 

16.1 INTRODUCTION 

Artifcial intelligence (AI) can obtain benefcial insights and improve insuffcient understand-
ing of the physical mechanisms in the weather and climate system, and machine learning mod-
els can naturally handle a variety of different weather and climate observation and simulation 
data sources (Li et al., 2021; Haupt et al., 2021; Wang et al., 2019, 2020; Vannitsem et al., 2021; 
Zeng et al., 2020), such as numerical weather and climate prediction results, radar, satellite, 
site observations, etc., and even decision data (natural language), which is almost impossible 
with existing weather climate models. The machine learning is to fnd an algorithm to ft the 
data with a lot of parameters. Traditional machine learning algorithms can be summarized as 
follows: linear regression, logistic regression, SVM (support vector machine), decision tree and 
random forests, boosting, clustering, dimension reduction, Bayesian learning, graphic models 
and sparse learning. Deep learning algorithms can be summarized as follows: neural network, 
CNN (convolutional neural network), RNN (recurrent neural network), and LSTM (long short-
term memory networks). This chapter will introduce two aspects of artifcial intelligence in 
numerical weather forecast correction and multi-source Met data fusion and reconstruction in 
details. 

16.2 ARTIFICIAL INTELLIGENCE NUMERICAL WEATHER PREDICTION 

A revolutionary change in weather forecasting occurred during the 1950s. Technological advances 
have allowed us to use models to simulate atmospheric motion, a method that is fast and accurate in 
forecasting operations. The numerical model remains at the heart of weather forecasting even now. 
Using basic physics, the numerical model can predict storms before their formation. In recent years, 
previous studies showed that AI technology can provide new opportunities for the development of 
objective weather forecasting methods by using direct physical simulations with AI big data-driven 
approaches (Haupt et al., 2021; Yang et al., 2022; Vannitsem et al., 2021; Zhang et al., 2022). In par-
ticular, more and more researches apply AI technology to all aspects of forecasting business, such as 
1) short-term nowcasting technology such as identifcation and extrapolation of strong convection; 
2) based on numerical weather forecast results; and 3) short-term climate prediction technology 
such as seasonal forecasting, etc. (Geer, 2021; Haupt et al., 2021; Kashinath et al., 2021; Yang et al., 
2022; Zhang et al., 2022). Taking deep learning techniques as an example, the growing studies on 
deep learning techniques have been applied widely to weather forecasting, including statistical post-
processing, ensemble forecasting, analog ensemble, statistical downscaling, data-driven forecasting 
models and extreme weather forecasting. 

https://doi.org/10.1201/9781003363118-16


    

 
 
 
 
 
 
 

 
 
 

399 Forecast and Data Fusion Based on Artifcial Intelligence 

The terrain of southern China is high in the west and low in the east, where plains, hills, basins 
and plateaus intertwine in a complex manner. The complex micro-topography forms the micro-
meteorology. Micro-meteorology refers to the changes of small-scale meteorological elements in 
the near-surface atmosphere and upper soil caused by certain tectonic features (such as micro-
topography, frost, rain, etc.). However, the change of micro-meteorology elements will not change 
the characteristics of weather and climate determined by large-scale processes (advection, frontal) 
greatly. There is a lot of inaccuracy in the temperature forecast under micro-topographic condi-
tions, so the forecast results need to be corrected for accuracy. This chapter focuses on the correc-
tion and accuracy analysis of air temperature forecasts in southern China with the latitude range of 
17.3°N–32.1°N and the longitude range of 89.6°E–119.4°E. 

16.2.1 introduction to wrF Model 

The Weather Research and Forecasting Model (WRF model) is one of the effective means for fore-
casting meteorological elements such as temperature, humidity and wind pressure, and can effec-
tively improve the accuracy of ice forecasting under complex terrain. Although the WRF model has 
updated the high-altitude data information, for the study area of the fve southern China provinces 
under complex terrain conditions, the resolution of the terrain data provided by the WRF model 
still cannot meet the simulation needs of low-level meteorological elements, resulting in a relatively 
large error in the forecast results of meteorological elements, resulting in a large icing prediction 
error. Therefore, it is necessary to introduce the SRTM3DEM terrain data into the WRF model for 
the simulation of meteorological elements, so as to improve the simulation accuracy of icing. In 
addition, the atmospheric boundary layer is greatly affected by the underlying surface, and the tur-
bulence characteristics are more obvious. In the simulation study of meteorological elements using 
the WRF model, special attention should be paid to the selection of the parameterization scheme of 
the boundary layer. In recent years, based on numerical models at home and abroad, it has become a 
hotspot to carry out the meteorological element simulation of different boundary layer parameteriza-
tion schemes and to analyze the difference of the simulation effect of each meteorological element. 

The WRF model is a new generation of mesoscale numerical model. Here we select version 4.2, 
which is a mesoscale weather forecast model developed by scientifc research institutions such as 
the Center for Environmental Prediction (NCEP) in the United States. It is widely used in research 
and forecasting of weather systems, climate change and environmental pollution. It is written in 
F90 language and has the characteristics of portability, scalability and high effciency. ArakawaC 
grid points are used in the horizontal direction, and terrain-following mass coordinates are used 
in the vertical direction. It is mainly divided into ARW (the Advanced Research WRF) and NMM 
(the Nonhydrostatic Mesoscale Model), which are managed and maintained by NCEP and National 
Center for Atmospheric Research (NCAR), respectively. ARW is mainly used in meteorological 
scientifc research, and NMM is mainly used in meteorological business. As the core of the system, 
WRF-NMM is fexible, which is a perfect and effcient atmospheric simulation system, and can be 
operated in parallel. It has the characteristics of multiple nesting and rich parameterization scheme 
design. The parameterization scheme mainly includes the parameterization scheme of microphysi-
cal processes, long-wave radiation, short-wave radiation, boundary layer, near-surface layer, land 
surface process and cumulus convection. 

The calculation process of the WRF model mainly includes four parts: input data, preprocessing 
system WPS of WRF model, main part of model system and model post-processing system. The 
preprocessing system (WPS) of the WRF model is used for real-time data processing. The functions 
include defning the simulation area, interpolating terrain data (such as terrain, soil type, etc.) into 
the simulation area, interpolating other model data into the simulation area and model coordinates. 
The main part of WRF system is a key component of the whole system. For different physical pro-
cesses, appropriate parameterization schemes are selected for forecasting and simulation research. 
The post-processing system re-analyzes, extracts and visualizes the output of the WRF model, 
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including conversion programs such as NCL and Grads, interpolating the forecast grid to the normal 
grid, calculating the diagnostic output, and processing and analyzing the output of the model. 

16.2.2 wrF Model data source 

When forecasting meteorological elements, the WRF model uses the global forecast system (GFS) 
developed by NCEP. The GFS includes data related to the atmosphere and land such as temperature, 
precipitation and wind data. The system is updated every 6 hours, at 0:00, 6:00, 12:00 and 18:00, 
respectively. The data at each time can be used for forecasting the next 8 days. The time scale of 
the measured data in the study area is 1 hour, so the time interval of the forecast data of the WRF 
model is also set to 1 hour. 

16.2.3 Mode scheMe setting 

Using the WRF model, combined with the daily data resolution of 0.25° ´ 0.25°, the starting time of 
forecast is 18:00 UTC, the time resolution of forecast is 3 hours, and the NCEP/GFS forecast feld 
data are used as the initial feld and the forecast feld data and lateral boundary conditions of the 
WRF model; obtaining surface static data with a resolution of 500 m provided by MODIS satellites, 
such as topography, soil data, and vegetation coverage; combined with the two-layer grid nesting 
layer, the forecast area is shown in  Figure 16.1. 

FIGURE 16.1 Schematic diagram of WRF model simulation and domains 2 (d02) area. 
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The grid numbers are 600 ́  500, 967 ́  535; the horizontal grid resolutions are 9 km, 3 km; and 
the grid center points are set at 29°N and 96°E. Combined with the parameter named “CONUS” 
parameterization scheme: the microphysics scheme is the Thompson scheme; the cumulus parame-
terization scheme is the Tiedtke scheme; the long and short wave radiation schemes are the RRTMG 
scheme; the boundary layer and near-ground parameterization schemes are both the MYJ scheme; 
the pavement process scheme is generated by the Noah pavement process scheme. WRFOUT 
numerical weather forecast fle includes temperature, humidity, precipitation and other meteoro-
logical elements. The WPS confguration process is shown in Figure 16.2. 

16.2.4 srtM3deM data 

The SRTM3 data (with a resolution of about 90 m) used in this paper belongs to the fourth version. 
The measurement is jointly completed by NASA and other institutions with high precision, covering 
more than 80% of the land surface, which can be obtained directly and free of charge. It is realistic, 
but its data format cannot be directly applied by the WRF model, which brings inconvenience to 
analysis and research. 

The three main steps for WRF forecasting fow and artifcial intelligence (random forest) correc-
tion fow chart are shown in Figure 16.2, including WRF model forecasting, random forest model 
training and testing, and forecast correction and verifcation. 

FIGURE 16.2 WRF forecasting fow and artifcial intelligence (random forest) correction fow chart. 
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16.2.5 teMperature prediction in south china 

During the period from December 13, 2020 to December 19, 2020, the 2 m temperature, 2 m wet 
bulb temperature, relative humidity, precipitation, altitude, 10 m wind speed and 10 m wind direction 
predicted by the WRF model with a grid resolution of 3 km were selected. By using bilinear inter-
polation method, these forecast meteorological elements were interpolated to 364 towers with known 
longitude and latitude, combined with comprehensive monitoring data of icing on high-voltage trans-
mission lines of 364 base towers at the same time, including temperature, humidity and ice thickness. 
In addition, combining with the known information of these towers, including the operating unit, line 
name, tower number, terminal number, longitude and latitude, altitude, slope, pass orientation, phase 
and geographic information, it will be interpolated to the tower according to the time dimension. The 
WRF forecast data and the actual monitoring data of the tower are combined to form the training set 
and test set of the random forest algorithm, excluding the data whose temperature value is greater than 
40°C or less than -30°C, the matrix size of the total data set is 10,323,421; namely 103,234 rows of 
data, nearly 21 sets of feature columns. The ratio of training set and test set is 4:1, in which the test set 
does not participate in model training. The training set is subjected to 10-fold cross validation, and the 
Bayesian parameter optimization method is used to fnd the parameter settings of the random forest 
algorithm with the highest accuracy in the training set, the specifc parameters including n_estima-
tors, max_features, max_depth and min_samples_split. The detailed steps are given as follows. 

Step A: Using the bilinear interpolation method, the 2 m temperature, 2 m wet bulb tempera-
ture, relative humidity, precipitation, altitude, 10 m wind speed and 10 m wind direction, 
which are forecasted by the WRF model with a grid resolution of 3 km, are interpolated to 
364 towers with known latitude and longitude. 

Step B: Comprehensive monitoring data of icing on high-voltage transmission lines of 364 
towers at the same time, including temperature, humidity and thickness of ice coating; in 
addition, combined with the known information of these towers: operating unit, line name, 
tower number, terminal number, longitude and latitude, altitude, slope, pass orientation, 
phase and geographic information. According to the time dimension, the WRF forecast data 
are interpolated to the tower and the actual monitoring data of the tower, which are com-
bined to form the training set and test set of the random forest algorithm (see Figure 16.3). 

Step C: Using the Bayesian parameter optimization method, it is found that the parameter 
settings of the random forest algorithm with the highest accuracy in the training set. The 
specifc parameters are n_estimators = 197, max_features = 20, max_depth = 30 and min_ 
samples_split = 2. The R2 coeffcients of determination of the temperature training and 
test sets on the prediction tower are 0.999 and 0.997, respectively, as shown in Figure 16.3. 
The residuals of the actual value of the tower temperature and the predicted value of the 
random forest are also shown in Figure 16.4. 

Step D: Selecting the random forest correction, actual and WRF predicted temperature on a 
transmission line in the test set that did not participate in the modeling, and comparing the 
correction and actual residuals, as shown in Figure 16.4. 

The value of the testing set that did not participate in model training is about 0.997. Referring to similar 
work at home and abroad, the error statistic can be used; that is, 1 minus the predicted value or the coin-
cidence index between the predicted value and the observed value. The specifc formula is as follows: 
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FIGURE 16.3 Density chart of the actual value (x-axis) and predicted value (y-axis) of the temperature 
model training set (a) and test set (b) (the larger the color scale, the smaller the distance between the points). 

where fi  is difference between the predicted value pi and the observed value Oi  for sample NO. i, 

N  is total samples, O is mean value of observations. When it is equal to 1, it indicates that the spa-
tiotemporal change trend between the predicted value and the observed value is in good agreement. 

In the previous section, the value in the test set that did not participate in model training in the 
temperature correction was calculated to be about 0.075%, and the value in the test set that did not 
participate in model training in the relative humidity correction was calculated to be about 0.178%. 
Note that in the test set, the predicted temperature is about 0°C, and there is a large deviation, 
about ±4°C. 

Through the machine learning approach, the forecast results of meteorological elements 
under micro-topographic conditions can be effectively corrected. In this way, a more accurate 
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FIGURE 16.4 The WRF 2 m temperature, random forest correction temperature, actual tower temperature 
and correction residual error in three phases (positive, negative, ground) from January 11 to 13, 2021. 

meteorological numerical prediction model can be obtained, and the short-term fxed-point forecast 
of meteorological elements in the southern China region can be realized. 

16.3 MULTI-SOURCE METEOROLOGICAL DATA FUSION AND 
RECONSTRUCTION 

AI can be effectively applied to the development of high-resolution meteorological data sets, such 
as data quality control, homogenization, data interpolation/interpolation, data fusion and inversion, 
and the construction of reanalysis data (Li et al., 2021; Zeng et al., 2020; Wang et al., 2019, 2020). 
This section will take gross primary productivity (GPP) estimating as an example to introduce the 
application of machine learning in GPP inversion, fusion and reconstruction. 
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Accurately quantifying crop GPP can provide valuable information on the ecosystem’s carbon 
cycle, agricultural applications and climate change (Malmström et  al., 1997; Zhu et  al., 2018; 
Wang et al., 2017; Xie et al., 2020). For assessing GPP in crops, eddy covariance (EC) system, 
satellite-driven methods and process-based models are frequently employed. Among them, the 
EC technique allows direct and continuous monitors of land-atmosphere net ecosystem exchange 
(NEE) (Baldocchi, 2003). The gathered NEE data are routinely partitioned into GPP and ecosys-
tem respiration (Lasslop et al., 2010). However, these EC measurements only represent the fuxes 
at the scale of the tower footprint, with an along-wind extent ranging between hundreds of meters 
and several kilometers (John et al., 2013). Although over 600 EC fux towers are operating in 
the world, their point-based measurements are insuffcient to cover continuous regions in space 
(Lee et al., 2020). 

To deal with the problem of spatial discontinuity in EC technique, satellite remote sensing, light-
use effciency models and process-oriented land surface models are adopted (Baldocchi, 2003). 
However, remote sensing-based GPP may not fully guarantee the accuracy of data. For instance, 
Wang et al. (2017) assessed the latest Moderate Resolution Imaging Spectroradiometer (MODIS) 
GPP product (MOD17A2H) at different biome types against global EC fux-estimated GPP and 
found that MOD17A2H GPP performed poorly at both annual (coeffcient of determination: 0.62) 
and 8-day scales (coeffcient of determination: 0.52). Thus, a more advanced calibration model is 
required for large-scale applications (Reeves et al., 2005). Process-based land surface models (e.g., 
Community Land Model [Post et al., 2018] and Simple Biosphere Model 2 [Wang et al., 2007]) have 
been designed for cropland GPP, but are subject to complicated scientifc assumptions and model 
parameters (Ueyama et al., 2013). 

GPP in crops is a complicated non-linear function due to the spatial heterogeneity of vegeta-
tion and soil properties, and the temporal heterogeneity of the environmental factors (meteoro-
logical conditions and agricultural managements) (Lee et al., 2020; Post et al., 2018). Currently, 
data-driven machine learning algorithms are another popular method for predicting GPP because 
they can elucidate precisely nonlinear processes of CO2 exchanges in agroecosystems (Cutler 
et al., 2007). Although in principle they are black-box models, machine learning methods, (e.g., 
model tree ensembles [Jung et al., 2011], support vector machines [Ueyama et al., 2013], neural 
network models [Dou et al., 2018; Tramontana et al., 2020] and random forest models [Zeng et al., 
2020; Reitz et al., 2021; Cai et al., 2020; Chen et al., 2019]) have good performance for multi-
ecosystem GPP estimations. For instance, Tramontana et al. (2015) quantifed the 8-day GPP and 
the mean European annual carbon budget across ecosystems (e.g., forest, grassland, cropland 
and wetland) by using random forest (RF) algorithm, remote sensing and EC data. Recently, 
the RF model was also adopted to upscale the EC-based GPP to regional scales in an arid and 
semi-arid area in northwestern China (Yu et al., 2021). Previous studies have evaluated the latest 
MOD17A2H GPP product across various ecosystems (e.g., forests and grasslands) with global EC 
data (Zhu et al., 2018; Wang et al., 2017). However, the validation has rarely been performed for 
double-cropping agriculture, especially in rice–wheat rotation cropland, which is the most exten-
sive land cover type in the northern Yangtze River Delta (NYRD) region, China (Timsina et al., 
2001). Furthermore, the existing studies on the GPP changes in the NYRD mainly focused on 
the temporal characteristics of carbon exchanges (Chen et al., 2015; Duan & Yang et al., 2021a; 
Ge et al., 2018), leaving a knowledge gap with respect to the upscaling GPP and its calibration to 
the MOD17A2H GPP product. 

Therefore, a random forest (RF) machine learning algorithm for GPP (GPPRF) was developed for 
rice–wheat double-cropping felds by integrating multi-source satellite remote sensing images as 
well as ground measurements. Based on the foregoing data, the main objectives were to (1) assess 
the performance of the MODIS GPP product (GPPMOD) through comparison with EC-estimated 
GPP (GPPEC) and determine the driving factors of GPP; (2) extrapolate the GPP from the single-
site scale to multi-site scales; and (3) calibrate the GPPMOD over the rice–wheat rotation cropland 
in the NYRD. 
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16.3.1 study area and data 

The NYRD is composed of northern Anhui and Jiangsu provinces and Shanghai, ranging between 
114°–122°E and 29°–36°N (Figure 16.5). The NYRD covers an area of 176,960 km2, consisting of 
73% cropland, 16% grassland, 5% built-up land, 4% water bodies and 2% forest (Figure 16.5). Three 
EC fux sites were representative of typical rice–wheat rotation cropland landscapes found over this 
cropland (Figure 16.5, inset map) (Timsina et al., 2001; Chen et al., 2015). The soil pH value (H2O), 
soil organic carbon and soil total nitrogen in topsoil (0–0.3 cm) for our study area mainly ranged 
between 5.5–7.2, 1.2–2% and 0.1–0.15 %, respectively, according to the results of Shangguan et al. 
(2013). Here, the winter wheat grows from November to late May. At the beginning of June, the rice 
paddies were fooded, plowed and harrowed to incorporate the wheat straw residue from the last 
wheat growing season (Duan and Grimmond et al., 2021). Then, one-month-old rice seedlings were 
transplanted to the leveled feld in middle June and harvested in early November (Figure 16.6a), 
which can be indicated by the seasonal dynamics of 8-day leaf area index (LAI) averaged from 
23 weather stations and 3 EC stations during 2014–2018 (Figure 16.6b). The rice/wheat canopy 
height can reach about 1–1.2 m at the peak LAI growing seasons. The local climate is sub-tropical 
monsoon-type, with a mean annual (2014–2018, calculated from the 23 surface meteorological sta-
tions in Figure 16.5) air temperature of 16°C and rainfall of 1,100 mm. 

FIGURE 16.5 MODIS landcover maps (resolution: 500 m) in 2016 and the meteorological stations in the 
North Yangtze River Delta region. The inset map indicates the distribution of rice–wheat rotation cropland 
areas in China. 

https://0.1�0.15
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FIGURE 16.6 (a) Crop calendars for the rice and wheat in the North Yangtze River Delta region. (b) Time 
series of 8-day leaf area index (LAI) for the rice–wheat rotation croplands averaged from 23 weather stations 
and 3 EC stations during 2014–2018 of the North Yangtze River Delta. 

Flux data from three rice–wheat rotation cropland EC stations within the study area—Shouxian 
site in Anhui, Dongtai, and Dafeng sites in Jiangsu—were selected for model training and prediction 
(Figure 16.5). At Shouxian site, the EC sensors were mounted 2.5 m above the ground, consisted of a 
three-dimensional sonic anemometer (CSAT3, Campbell Scientifc Incorporation, USA) along with 
a CO2/H 2O open-path infrared gas analyzer (EC 150, Campbell Scientifc Incorporation, USA). At 
Dongtai and Dafeng sites, virtual temperature and wind velocity components were monitored using 
a three-dimensional sonic anemometer (CSAT3, Campbell Scientifc, Inc., USA). To measure H2O 
and CO2 density, a fast-response open-path gas analyzer (LI-7500, LI-COR Biosciences, Inc., USA) 
was used. The installation height of the sensors for the Dongtai site was 10 m, whereas for the Dafeng 
site it was 6.3 m above the ground. As mentioned in the previous studies (Duan & Yang et al., 2021b; 
Ge et al., 2018; Duan and Grimmond et al., 2021), three EC sites are relatively fat, with more than 
90% of the fux primarily contributed by the cropland. EddyPro 5.2.1 (LI-COR Inc., 2015) software 
was applied to calculate hourly CO2 fuxes and to correct for CO2 canopy storage to gain NEE val-
ues. Data pre-processing in the EddyPro software mainly included averaging and statistical tests 
(Lee et al., 2005), time lag compensation, double coordinate rotation, spectral correction (Moncrieff 
et al., 2005) and the Webb-Pearman-Leuning density correction (Wutzler et al., 2018). The poor 
quality fuxes (EddyPro quality check fag value = 2) were further discarded. The REddyProc R 
package ( https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage ) inputted 
pre-processed half-hourly EC data and supported further processing (Wutzler et al., 2018). Firstly, 
a quality-check and fltering were performed based on the relationship between observed fux and 
friction velocity to discard biased data (Papale et al., 2006). Then, the fux data were gap-flled 
using the marginal distribution sampling approach (Reichstein et al., 2005). NEE was separated 
into GPP and ecosystem respiration based on the nighttime partitioning algorithms (Reichstein 
et al., 2005). The gap-flled hourly GPP data were summed to compute cumulative GPP for daily, 8 
day, seasonal and annual time resolution for further analysis (Wagle et al., 2021). Data from these 
three sites processed using the same methods. Details of the agricultural practices and processing 
methods at these three sites can be obtained from the references in  Table 16.1  (Duan et al., 2021;  Ge 
et al., 2018; Duan and Grimmond et al., 2021). 

https://www.bgc-jena.mpg.de
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TABLE 16.1 
Characteristics of the Three Rice–Wheat Rotation Eddy Covariance Sites 
Station Location Altitude (m) Period Tave (°C) Pave (mm) Reference 

Shouxian (32.44°N, 27 July 15, 2015–April 24, 16 1115 Duan and Yang et al. 
116.79°E) 2019 (2021a) 

Dongtai (32.76°N, 2 December 1, 2014– 13 1484  Duan and Grimmond 
120.47°E) November 30, 2017 et al. (2021) 

Dafeng (33.21°N, 1 November 16, 2015– 15 1060 Ge et al. (2018) 
120.28°E) November 29, 2016 

Note: Tave , annual mean air temperature; Pave , annual cumulative precipitation. 

Hourly air temperature and relative humidity (RH) at 23 automatic stations were obtained from 
the China Meteorological Administration in 2014–2018. The hourly vapor pressure defcit (VPD) 
was estimated with relative humidity and air temperature data following the World Meteorological 
Organization Commission for Instruments and Methods of Observation Guide conversion equation 
(Yang et al., 2021). The hourly surface downward solar radiation (DSR) ERA5 reanalysis data were 
provided by the European Center for Medium-Range Weather Forecasts at a 0.25° spatial resolution. 

Land cover maps were available in a 500-m spatial resolution of the MODIS MCD12Q1 product 
for the year 2016 (Figure 16.5, [Friedl et al., 2019]). The 16-day Normalized Difference Vegetation 
Index (NDVI) data during 2014–2018 were obtained from the MODIS MOD13Q1 product with a 
250-m resolution (Didan, 2015). The 8-day Fraction of Photosynthetically Active Radiation (FPAR) 
and LAI data were derived from the 500-m spatial resolution of MODIS MOD15A2H (Myneni 
et al., 2015). The MODIS GPP product MOD17A2H (version 6) had an 8-day temporal resolution 
and 500-m spatial resolution (Running et al., 2015). All of these data sets were downloaded from 
https://ladsweb.modaps.eosdis.nasa.gov/search/. These MODIS products were quality-controlled to 
exclude anomalous pixel interference. 

16.3.2 rF and upscaling Methods 

RF is a fast and fexible machine learning algorithm, which is often used for analyzing the classifca-
tion and regression tasks (Breiman, 2001). This model can successfully process high dimensional and 
multicolinear data, being insensitive to overftting (Belgiu and Dragut, 2016). The RF model provides 
a feature-selection tool to identify the importance of the predictor. Feature importance is defned as 
the contribution of each variable to the model, with important variables showing a greater impact on 
the model evaluation results (Liu et al., 2021). In this section, a GPP prediction model based on RF 
framework was proposed. The fowchart of estimating, upscaling GPP and calibrating MOD17A2H 
GPP product with the RF model was shown in Figure 16.7, including four steps as follows: 

(1) Variable selection and data matching. Crop photosynthesis is a complicated process affected 
by shortwave radiation, air temperature, vapor pressure defcit, soil edaphoclimatic condi-
tions and fertilization at the canopy scale, etc. At the ecosystem level, GPP is closely related 
to light, water and canopy phenology (Yu et al., 2021; Xiao et al., 2008). Based on the previ-
ous literatures as well as our current available data, nine input explanatory variables: NDVI, 
LAI, FPAR, DSR, daily maximum air temperature (Tmax), daily minimum air temperature 
(Tmin), daily mean air temperature (Tmean), VPD, and RH were chosen for predicting the GPP 
dynamics in the NYRD region. Because RF model training requires a large number of sam-
ples, MODIS data were linearly interpolated from 8-day/16-day to daily values to match the 
input parameters, following a previous study by Reitz et al. (2021). 

https://ladsweb.modaps.eosdis.nasa.gov
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FIGURE 16.7 Flowchart of the random forest model for estimating, validating, upscaling gross primary 
production (GPP), and calibrating MOD17A2H GPP product. 

(2) RF model constructing, training and testing. In this paper, 90% (the rest 10%) of the EC 
data at Shouxian and Dongtai during the entire observation period were employed to train 
(validate) the RF model, and 100% of the EC data at Dafeng were applied to validate. The 
Shouxian and the Dafeng site were independent of each other with a negligible autocor-
relation between them, since these sites are about 300–400 kilometers far away from each 
other (Figure 16.5). Here, 10-fold cross-validation (CV) algorithm was applied to weaken 
the overftting (Cai et al., 2020). In 10-fold CV experiments, all the training data at the 
Shouxian and Dongtai sites during the entire observation period were randomly parti-
tioned into ten equal sized subsamples. Of the ten subsamples, nine subsamples were used 
as the training data and the remaining one was the testing data. This CV process should 
repeat ten times, with all ten subsamples used exactly once as the testing data. The ten 
results from the folds were averaged to produce a single estimation. 
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To select the best model, we adjusted the four hyperparameters of the RF model based on 
Bayesian optimization (Baareh et al., 2021; Frazier, 2018): the number of trees to grow (n_ 
estimators), minimum sample number placed in a node prior to the node being split (msplit), 
maximum number of features considers to split a node (Mfeatures), and maximum levels’ 
number in each decision tree (Mdepth). Three statistical metrics—the index of agreement 
(IA) (Willmott, 1982), the coeffcient of determination (R2), and the root mean square error 
(RMSE)—were used to examine the simulated performance of the 10-fold CV results. The 
range of IA is 0–1, and a better correspondence between the observed and modeled results 
often occurs when it approaches 1 (Zhang et al., 2008). Therefore, n_estimators = 219, 
msplit = 2, Mfeatures = 9 and Mdepth = 32 were set for the fnal RF model. 

(3) GPP upscaling. The general relationships between GPPRF and explanatory data were frst 
trained at site level, and then applied regionally by using regional surface meteorological 
stations of explanatory variables as follows: GPPRF = f (Tmax, Tmin, Tmean, VPD, RH, NDVI, 
LAI, FPAR, DSR). 

(4) MOD17A2H GPP product calibrating. Based on the upscaled results of GPPRF and GPPMOD 

at the station scale, a relationship between GPPRF and GPPMOD was built. The calibration 
function was then applied from the site scale to the regional scale. 

16.4 RESULTS AND ANALYSIS 

16.4.1 intraseasonal Variations oF gpp 

MOD17A2H GPP has been extensively employed to evaluate the terrestrial carbon balance (Zhu 
et al., 2018). However, to have confdence in GPPMOD, it is critical to validate it against in situ 

FIGURE 16.8 (a)–(c) 8-day averaged gross primary production (GPP) measured by EC (GPPEC) and 
MOD17A2H (GPPMOD), and (d)–(f) seasonal cumulative GPP for rice and wheat growth seasons. 
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measurements (Zhang et al., 2008). As shown in Figures 16.5a–c, the 8-day GPPMOD and GPPEC 

exhibit close agreement in their seasonal patterns, with peaks in July (May) for the rice (wheat) 
growing seasons across the three rice–wheat rotation cropland sites. The GPP increases during 
the no-planting period in 2017 (Figure 16.8a), mainly due to the weed photosynthesis. GPPMOD 

underestimated GPPEC during the rice (wheat) active growing periods from July to September 
(from March to May), with IA = 0.56 and RMSE = 47 g C m–2 (IA = 0.61 and RMSE = 29 g C 
m–2) across the three sites. However, GPPMOD performed well during the intercropping periods 
from late May to early June (or late November), with IA = 0.77 and RMSE = 8 g C m–2 across 
the three sites. 

The seasonal cumulative GPPEC at the three cropland sites was larger for the summer rice 
growing seasons (1170, 1066 and 889 g C m–2 for Shouxian, Dongtai and Dafeng, respectively) 
than for wheat (609, 848 and 701 g C m–2, respectively) (Figures 16.8d–f). The seasonal cumula-
tive GPPMOD was signifcantly lower than GPPEC during the wheat growth seasons, with a 32%– 
47% underestimation of the seasonal cumulative GPPEC at the three sites; the seasonal average 
GPPMOD was 27%–47% lower than the seasonal cumulative GPP during the summer rice growth 
seasons (Figures 16.8d–f). 

16.4.2 driVing Factors oF gpp on a seasonal scale 

The possible drivers related to the GPP variations in the NYRD were investigated by the RF model 
in Figure 16.9 to assess their relative contributions. NDVI was the most important factor in modulat-
ing GPP, accounting for 56% of the overall variable importance. As illustrated in Figure 16.10, GPP 
showed the strongest positive correlation with NDVI, with the highest Pearson correlation coeff-
cient (r) of 0.74, which was consistent with the variable importance value in Figure 16.9. In addition 
to NDVI, there were another three dominant variables; namely, LAI, DSR, Tmax and FPAR, with 
importance values of 13%, 10%, 8% and 3%, respectively. NDVI and LAI were important indica-
tors of the phase of terrestrial photosynthesis, which tracked well the crop phenological dynamics 

FIGURE 16.9 Feature importance for the random forest model in the North Yangtze River Delta region. 
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FIGURE 16.10 Correlations among the GPP (gross primary productivity) and input variables. The correla-
tions were calculated by all training data from the Dongtai and Shouxian sites. 

over time (Tramontana et al., 2015; Willmott, 1982; Rahman et al., 2005). DSR and FPAR covar-
ied with light to a large degree—the source of energy for photosynthesis in vegetation (Alberto 
et al., 2009). Tmax played a critical role in the chemical reactions of biological processes (Tramontana 
et al., 2020). In contrast, the impact of Tmean, Tmin, VPD and RH on GPP was not obvious, exhibiting 
the lowest relative importance, with values of 2%, 2%, 2% and 2%, respectively. Although FPAR 
was highly correlated with NDVI (Figure 16.10), the importance of FPAR was so low in the RF 
model. This was because NDVI was directly derived from the satellite spectrum, while FPAR was 
indirectly calculated based on LAI and the physical models. The uncertainties in the MODIS LAI 
product can be attributed to the input data (surface refectance or radiation data), model imperfec-
tions, and the inversion process (Fang et al., 2019). The Pearson correlation coeffcient for Tmean 

(r = 0.64) lay in the range of those for T  (r = 0.65) and Tmin (r = 0.60), because T  incorporated max mean 

both day- and nighttime conditions (Figure 16.10). Generally, all these predictors were involved to 
different degrees in CO2 exchange processes. Vegetation indices (i.e., NDVI and LAI), related to 
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the phenological properties of the plants, had the greatest infuence on GPP variations. In terms of 
meteorological factors, DSR,  Tmax and FPAR carried the information of the light-dependent reac-
tions of photosynthesis, which had a moderate effect on the GPP changes. In particularly,  Tmean, Tmin, 
VPD and RH showed weak infuences on the GPP cycles.                  

16.4.3 randoM Forest Model eValuation 

The RF model performed well for both the training (R2 = 0.99, RMSE = 0.42 g C m–2 d−1) and testing 
(R2 = 0.89, RMSE = 2.8 g C m–2 d−1) data set (Figures 16.11a  and  11b). This indicated that the input 
variables in the RF model were representative and can well capture the temporal characteristics of 
GPP. RF model also proved to be good at the validation site (i.e., Dafeng site), in which the seasonal 
distributions of GPPRF showed high correlation and coherence with GPPEC (IA = 0.94,  Figure 3.8c ). 
All sites exhibited double peaks, with the peaks during the rice growth season being higher than 
those during the wheat growth season (Figure 16.12), which is a common pattern in this double-
cropping feld (Figure 16.11). The R2 and RMSE at the validation site (i.e., Dafeng site) were 0.80 
and 4.39 g C m–2 d−1 (Figure 16.11d)—a result that was similar to that across global FLUXNET sites 
conducted by Tramontana et al. (2016) in which the  R2 ranged from 0.61–0.81. Hence, the RF model 
was deemed suitable for GPP prediction at unknown stations as well as regional GPP upscaling. 

FIGURE 16.11 Scatter density plots results for the random forest model in predicting gross primary produc-
tivity in the (a) 10-fold cross-validation training set, (b) 10-fold cross-validation testing set, (c) validation by 
the rest samples at Shouxian and Dongtai sites, and (c) validation by all samples at Dafeng site. 

https://0.61�0.81
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FIGURE 16.12 Daily gross primary productivity (GPP) measured by EC (GPPEC) and predicted by the 
random forest (RF) model (GPPRF) at (a) Shouxian, (b) Dongtai, and (c) Dafeng during the rice and wheat 
growth seasons. 

According to previous studies, random forests are much less likely to overft than other models 
because they consists of many weak classifers that are trained independently on completely differ-
ent subsets of the training data. In addition, we also employed other machine learning methods to 
build GPP prediction models. Generally, the simulations of the RF-based GPP models show a better 
performance with respect to other machine learning methods (e.g., decision tree regression, support 
vector machine, artifcial neural network, and deep belief network. 

16.4.4 upscaled gpp 

Figures 16.13a–c show that the regional RF-modeled cumulative seasonal GPP (GPPRF) averaged 
from 23 weather stations and 3 EC stations during 2014–2018 was much higher for the rice growth 
seasons (924 g C m–2) than that for the wheat growth seasons (532 g C m–2). This relationship 
(cumulative seasonal GPP in the rice growth season > cumulative seasonal GPP in the wheat growth 
season) was also be confrmed by the GPPMOD in Figures 16.13d–f. For our study sites, the annual 
mean for GPPMOD and GPPRF averaged from 23 weather stations and 3 EC stations were 966 g C m–2 

and 1548 g C m–2, respectively. Figures 16.13g–i show the difference between the two GPP products 
across all sites (relative error at each site as computed by [GPPMOD – GPPRF] 1́00/GPPRF) during 
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FIGURE 16.13 Spatial distributions of gross primary productivity (GPP) (a–c) predicted by the random 
forest (RF) model (GPPRF), (d–f) measured by the MODIS product (MOD17A2H) (GPPMOD), and (g–i) their 
difference ([GPPMOD – GPPRF] ́ 100/GPPRF) at the station scale for wheat growth seasons, rice growth seasons, 
and the whole year during 2014–2018. The dark yellow background represents cropland. 

2014–2018. Relative errors exhibited negative values across all sites, with -18%–-46% for rice grow-
ing seasons, -1%–-50% for wheat growing seasons and -5%–-47% for the whole year, respectively. 
In general, relative errors during the wheat growing seasons were relatively larger than those during 
the rice growing seasons/the whole year at most sites (Figures 16.13g–i). 

To examine the spatial consistency of the GPPRF dynamics among the upscaled sites, Figure 16.14 
shows the seasonal variations in GPPRF among 23 weather stations and 3 EC stations during 2014– 
2018 over the rice–wheat rotation cropland in the North Yangtze River Delta region. The daily mean 
GPPRF averaged from 23 weather stations and 3 EC stations during 2014–2018 for wheat was lower 
than 2 g C m–2 d−1 during the winter extensive bare soil period (December–February). It started to 
increase in the active tillering stage (March) and reached a maximum of about 8–10 g C m–2 d−1 dur-
ing the heading stage (late April), and next decreased to around 4 g C m–2 d−1 at harvest. The largest 
daily GPPRF for rice paddies occurred in late July, with a peak value of about 11 g C m–2 d−1, suggest-
ing that the rice biological activities (e.g., photosynthetic rates) were quite strong at this stage. After 
then, daily GPPRF decreased to approximately 1 g C m–2 d−1 at rice harvest (Figure 16.14). Generally, 
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FIGURE 16.14 Seasonal variations in gross primary productivity (GPP) predicted by the random forest 
(RF) model (GPPRF). The blue line represents the daily GPPRF averaged from 23 weather stations and 3 EC 
stations during 2014–2018 over the rice–wheat rotation cropland in the North Yangtze River Delta region. 

a good consistency was found in the seasonal variation among all upscaled sites, exhibiting simi-
larly temporal characteristics of the real GPP over the rice-wheat rotation system (Figure 16.12). 

16.4.5 caliBration oF the Mod17a2h gpp product 

Based on the upscaled results of GPPRF and GPPMOD at the station scale in the previous section, 
the relationship between GPPRF and GPPMOD is shown in Figure 16.15. Here, the daily GPPRF was 
aggregated to 8-day sums to match the 8-day GPPMOD product. 

Then, the linear relationship between GPPMOD (Figures 16.16a–c) and the calibrated GPPMOD 

(GPPCMOD) (Figures 16.16d–f) at the grid scale was established as follows: 

ì 1 5. ´GPPMOD , for wheat 
ïGPP = 1 7. ´GPP , for rice (16.1)CMOD í MOD 
ï1 6. ´GPP , for annualî MOD 

Both GPPMOD and GPPCMOD exhibited a higher value during the rice growth seasons than that during 
the wheat growth seasons. The annual mean GPP in most parts of the NYRD varied from 2–4 g C 

FIGURE 16.15 Relations between the gross primary productivity (GPP) predicted by the random forest 
(RF) model (GPPRF) and that measured by MODIS (GPPMOD) for the (a) wheat growth seasons, (b) rice growth 
seasons, and (c) the annual mean during 2014–2018. 
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FIGURE 16.16 Spatial patterns of the gross primary productivity (GPP) (a–c) measured by MODIS 
(GPPMOD), (d–f) measured by MODIS and then calibrated (GPPCMOD), and (g–i) their difference (GPPCMOD 

minus GPPMOD) (ΔGPP) at the grid scale for wheat growth seasons, rice growth seasons, and the annual mean 
during 2014–2018. 

m–2 d−1 for GPPMOD and 4–6 g C m–2 d−1 for GPPCMOD, with the higher values in the eastern coastal 
areas of the NYRD (Figures 16.16c and 16.16f). Here, sea–land breezes prevail, carrying rainfall and 
water resources suffcient to favor crop growth. Figures 16.16g–i show the seasonal mean of the error 
ranges of daily GPP (ΔGPP, as computed by subtracting GPPMOD [Figures 16.16a–c] from GPPCMOD 

[Figures 16.16d–f]) during 2014–2018. ΔGPP in most parts of the NYRD ranged between 2 g C m–2 

d−1 and 4 g C m–2 d−1 during the rice growing seasons, while they were smaller (i.e., 0–1.5 g C m–2 d−1) 
for wheat. The probability density function (PDF) of ΔGPP in the NYRD is shown in Figure 16.17. 
The PDF of ΔGPP varies seasonally, which play a pivotal role in regulating the carbon dynamics in the 
NYRD. Rice paddies had a broader distribution in the peak PDF of the mean ΔGPP than that for wheat 
felds, i.e., between 0.75 and 1.25 g C m–2 d−1 during the wheat growth seasons, between 2.5 and 3.25 g 
C m–2 d−1 during the rice growth seasons, and around 1.75 g C m–2 d−1 for the annual mean. 

16.4.6 potential discrepancy Between gpp ec and gppMod 

Figure 16.8 has shown the inconsistency between GPPMOD and GPPEC at the three sites, which can 
be attributed to three aspects: (a) input parameters such as FPAR data and meteorological conditions 



 

418 3S Technology Applications in Meteorology 

FIGURE 16.17 Probability distribution functions of the error ranges of daily GPP at the grid scale (ΔGPP) 
in the NYRD during 2014–2018. 

(Zhang et al., 2008); (b) the uncertainties in the MOD17A2H GPP algorithm (Wang et al., 2017); 
and (c) the spatial mismatch between remotely sensed pixels and EC footprints (Wagle et al., 2020; 
Gelybó et al., 2013). In the past few decades, a wide network of sites has been established across 
various ecosystems and climate regions; for example, AmeriFlux, Integrated Carbon Observation 
System, National Ecological Observatory Network, and FluxNet (Franssen et al., 2010; McGloin 
et al., 2018). These EC sites provide potential opportunities to annually update the cropland sites 
in the land cover maps, redefne the MOD17 cropland parameters and greatly improve GPPMOD at 
regional or even global scales. To our best knowledge, China has the largest area of the rice–wheat 
rotation croplands in the world. In China, they are practiced widely along the Yangtze River Basin 
(Figure 16.5 inset map), covering around 13 Mha in total (Timsina et al., 2001). This rotation crop-
land system is a non-negligible part of the agroecosystem. The MOD17 algorithm defnes only 
11 land cover classes, i.e., one type of cropland, one type of woodland, two types of grasslands, 
two types of shrubland and fve types of forests (Zhang et al., 2008). Therefore, the large discrep-
ancy between GPPMOD and GPPEC over the rice–wheat rotation indicates that the parameters in the 
MOD17 product should be modifed and more types of cropland (e.g., double-cropping or mixed-
cropping systems) should be defned. 

Meanwhile, MOD17 GPP product has fne resolution with 500 m, so high-quality MOD17 GPP 
product can be employed to accurately assess the ecosystem’s carbon cycle and agricultural produc-
tions. Particularly, out-of-academy precision agriculture or commercialized precision agriculture 
put forward higher requirements for the accuracy evaluation of GPP product. Nowadays, EC-based 
calibration to MODIS products is a common practice. In the present work, due to limited three EC 
sites over rotation cropland areas in eastern China, they cannot be used to stand for the whole area. 
Therefore, we proposed the machine learning-based GPP prediction model for 23 meteorological 



 

  

419 Forecast and Data Fusion Based on Artifcial Intelligence 

sites by using multi-source data to derive more virtual EC sites (23 sites) over the whole area, which 
can offer more ground-based GPP samples for calibrating MOD17 GPP. Generally, the simula-
tions of the RF-based GPP models show a better performance with respect to other machine learn-
ing methods (e.g., decision tree regression, support vector machine, artifcial neural network, and 
deep belief network), which is consistent with the results in Yu et al. (2021). In our present work, 
thus, RF-based upscaling and calibrating methods are more suitable over large-scale agroecosystem 
areas if EC measurements, meteorological observations and MODIS data were available. 

The GPP estimated from EC fux measurements over rice–wheat rotation cropland can rep-
resent the amount of carbon uptake by the main land cover type in the NYRD area. To obtain 
multiple samples for calibration of the MOD17A2H GPP product, an RF model for estimating GPP 
was designed by integrating multi-source satellite retrievals and in situ ground observations during 
2014–2018 over the rice–wheat double-cropping felds of eastern China. The RF model showed that 
multiple co-acting factors (NDVI, LAI, DSR, Tmax, and FPAR) modulate GPP dynamics. GPPRF 

performed well when compared with GPPEC, with a R2 of 0.99 and RMSE of 0.42 g C m–2 d−1, 
indicating these explanatory variables are reasonably representative and reliable for regional GPP 
upscaling. The regional upscaled cumulative seasonal GPPRF in rice paddies (924 g C m–2) was 
roughly 2 times higher than that in a wheat feld (532 g C m–2) at the station scale, probably because 
of the much longer growing season and lower LAI of wheat. Compared with GPPEC, this indicates 
that GPPMOD underestimates GPP during the active crop growth stages but performs well during 
the crop rotation periods. Based on the upscaled results of GPPRF at the station scale, the functional 
relationship between GPPMOD and GPPRF at the grid scale was established to calibrate the GPPMOD. 
The error range of ΔGPP (GPPRF minus GPPMOD) was higher for rice paddies than for wheat felds, 
i.e., between 0.75 and 1.25 g C m–2 d−1 during the wheat growth seasons, between 2.5 and 3.25 g C 
m–2 d−1 during the rice growth seasons, along with an annual mean of 1.75–2 g C m–2 d−1. 

To sum up, the GPP in rice–wheat rotation agroecosystem is considerably diverse and varies with 
the seasons. Our fndings are potentially applicable in terms of the climate response of greenhouse 
gases over wide-scale cropland areas. Our research demonstrates that RF machine learning is a 
powerful and expedient modeling tool for estimating and even calibrating the MODIS GPP product. 
In future, it would be worthwhile using global FLUXNET data, multi-source satellite observations 
and machine learning methods to simulate the GPP in more ecosystem types (e.g., grassland and 
forests) and climate zones at large scales to fully understand the nature of global carbon dynamics. 

16.5 CONCLUSIONS 

In general, artifcial intelligence (AI) techniques could bring about great opportunities for the devel-
opment of weather forecasting and meteorological big data. Based on AI techniques, a weather 
forecasting model driven by meteorological big data could be established which will have great 
potential to realize model optimization. Furthermore, benefcial understandings and accurate pre-
dictions could be achieved based on AI techniques even if we lack in suffcient understanding and 
prior knowledge of the physical mechanism of weather and climate system. Therefore, the problem 
of “huge cost” in numerical weather forecasting models could be solved theoretically by using AI 
techniques; meanwhile the accuracy of model prediction could also be improved. Currently, the 
application of AI techniques, particularly deep learning technique, in the feld of weather forecast-
ing is still at an initial stage. Hence, challenges will exist when applying AI techniques into the 
intelligent grid forecasting business system, including algorithm selection, data foundation, multi-
source data fusion, model interpretability, credibility, usability and engineering. For now, hybrid 
forecasting models based on the fusion of numerical models (physical simulations) and machine 
learning (data-driven) are still mainstream. However, the development of multi-source data fusion 
methods based on machine learning and the creation of high-resolution meteorological data sets 
will also have great advantages, including quality control and homogenization; data imputation or 
interpolation; data fusion; inversion; construction of reanalysis data sets. 
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Despite the integration of weather forecasting and meteorological big data, AI techniques 
have also been widely and deeply applied in the other felds of atmospheric science. For exam-
ple, AI techniques have been applied into short-term climate predictions, such as seasonal fore-
casting, etc., based on machine learning in terms of climate prediction. Besides, they have also 
been applied in physical process diagnosis and prediction methods of multi-scale climate events 
(e.g., monsoon, El Niño, North Pacifc Oscillation, etc.), fusion technology and data assimila-
tion by utilizing numerical models (physical simulation) and machine learning (data-driven) 
in the feld of assimilation. In terms of mode simulation, machine learning is used to acceler-
ate some components of numerical models, optimization of physical process parameterization, 
etc. Accounting for weather-climate change impacts and auxiliary decision-making models, the 
advantages of machine learning are to characterize the impacts of weather and climate change 
on nature, society, economy, etc., as well as to build impact assessment and auxiliary decision-
making models in order to provide valuable decision-making support for national and profes-
sional meteorological users. 
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