

ULTIMATE STEP BY STEP GUIDE
TO DATA SCIENCE USING PYTHON

REAL WORLD USE CASES WITH DOWNLOADABLE
CODE EXAMPLES

DANEYAL ANIS

CONTENTS

Introduction

1. Getting Started
2. Use Case 1 – Web Scrapping
3. Use Case 2 – Image Processing
4. Use Case 3 - Di�erent File Type Processing
5. Use Case 4 – Sending and Receiving Emails
6. Use Case 5 – Dynamic Time Warping for Speech Analytics
7. Use Case 6 – Time Series Analysis and Forecasting
8. Use Case 7 – Fraud Analysis
9. Use Case 8 – Processing Geospatial Data
10. Use Case 9 – Creating Recommender Systems
Afterword
11. Post your Review
12. Website and Free Gift (Code to Download)!
13. References

Text and code copyright 2021 Daneyal Anis

All rights reserved.

No part of this book may be reproduced, or transmitted in any form or by any
means, electronic, mechanical, magnetic, or photographic, including
photocopying, recording, or by any information storage or retrieval system or
otherwise, without express written permission of the publisher. No warranty
liability whatsoever is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or
omissions.

Published by: Daneyal Anis

Date of Publication: November 2021

Language: English

This book is dedicated to everyone who persevered through these
tough times and kept an eye on their dreams

INTRODUCTION

Welcome and congratulations on continuing your machine
learning and data science journey! World of machine
learning is constantly evolving but beauty of it all is that
there are some very common ways in which it is being
applied in everyday life. We see these use cases and patterns
emerge over and over – from intelligent web scrapping and
automation to advanced time series analysis and fraud
detection.

The first best selling book in this series, Ultimate Step by
Step Guide to Machine Learning using Python, gets you
started on your journey by including step by step
instructions to set up Python, introduces you to basic syntax,
data structures and data cleaning. It then takes you through
a real-life use case where you create a machine learning
predictive model from scratch! As an added benefit, it comes
with code samples that you can run and experiment with on
your own! If you are not familiar with basic concepts of
Python, how to get it set up and would like to be introduced
to foundational Python libraries like Numpy, Seaborn and
Scikit-learn, this is the book for you! To purchase this book,
follow this link to get redirected to your local Amazon site:
http://mybook.to/MachineLearningPython.

The second best selling book in this series, Ultimate Step
by Step Guide to Deep Learning using Python gets into deep
learning and neural networks concepts. It further
di�erentiates machine learning models from deep learning
models and as a bonus, shows you how you can deploy and
optimize your models at scale in the cloud. It delves deep

http://mybook.to/MachineLearningPython
http://mybook.to/MachineLearningPython
http://mybook.to/DeepLearningPython

into concepts such as linear and logistical regression
analysis and visually shows how decision tree, support
vector machine (SVM) and other model optimization
algorithms work. It demystifies neural network concepts
including Convolutional and Recurrent Neural Networks
(CNN and RNN) plus popular advanced Python libraries like
TensorFlow, Keras, PyTorch and much more! To purchase
this book, follow this link to get redirected to your local
Amazon site: http://mybook.to/DeepLearningPython.

If you haven’t already, I highly encourage you to pick up
both previous books in this series, as they take you from
basic to advanced concepts with hands on exercises. Since
the introductory set up and foundational concepts have
already been covered in the previous books in this series, we
will not spend time on them in this book.

The goal of this book is to cover the most common
machine learning and data science use cases with code
examples you can execute on your own. After completing this
book and the exercises included within, you will be ready to

http://mybook.to/DeepLearningPython

solve real world problems with the power of artificial
intelligence.

Ready to get started? Let’s jump right in!

1

T
GETTING STARTED

here are detailed instructions available via the Python
website on how to install Python on your machine –
whether it is Windows, Mac OS, or Linux under

Python website in the Getting Started section.
I recommend you read through it as there is a lot of good

information and helpful links for beginners. However,
installing Python by itself is not very helpful or user friendly.
You are better o� installing Python alongside an IDE
(Integrated Development Environment) – as that comes
with tools and development environment to execute and
debug your code.

For that I recommend starting with Anaconda
Distribution. It is an open-source tool that installs industry
standard IDEs and foundational Python libraries that we will
be describing in this book in more detail. When you click on
the above link, it will take you to a page to download and
install package for your operating system e.g., Windows,
macOS or Linux.

We will be using Jupyter Notebook as our development
environment for this book – Jupyter is part of the Anaconda
distribution package and will be installed on your machine
along with Python.

Jupyter is a powerful web-based development
environment that we will be using in this book to execute our
code and I have made all the source code used in this book
available on my website as a ‘.ipnyb’ Jupyter file.

Once Anaconda is installed on your machine, launch
Anaconda Navigator from your menu. Screenshot below for

https://www.python.org/about/gettingstarted/
https://www.anaconda.com/distribution/
https://jupyter.org/

reference:

ONCE OPEN, you should see the following Anaconda Navigator
dashboard with all the tools available to you:

Launch Jupyter Notebook by clicking on the ‘Launch’
button under that application icon. Once you do that, the
following web browser window will open:

Click on ‘New’ and the ‘Python 3’ in the top right. Once
you do that, a new browser window will open with your new
project and Python environment ready to execute. You can
rename your project as ‘My First Python Project’ by clicking
on ‘Untitled’ at the top of the screen (highlighted below for
reference).

Done? Alright, you are ready to go!

2

I
USE CASE 1 – WEB SCRAPPING

nternet is a massive source of data but not all websites
make this data easily accessible via API calls or
downloadable as .csv files. To be able to access and

process this data, you need a way to be able to ‘scrape’ the
data o� the website. That’s where the power of Python
comes in.

It comes with a powerful library called BeautifulSoup that
allows you to parse and extract data from any web page for
your use. Let’s cover an example end to end.

The main steps involved in extracting data from a web
page end to end include:

1. Make a http or https call to the website by using the
url, like you would in a browser

2. The website returns the page as html
3. Since html code is typically nested in starting and

ending tags: <html> </html>, you use a parser like
the BeautifulSoup Python library that lets you
organize this information into a tree, that you can
easily traverse and access the pertinent details you
are interested in. You can use this approach to parse
xml data as well

First step is to install the Python libraries we will need.
Fire up your Anaconda prompt and run the following
commands to install the libraries you will need:

pip install requests
pip install html5lib

pip install bs4
I will explain each of the above libraries as we use them in

the Python code below (NOTE: All the Python code and data
used in this, and subsequent chapters is available for
download via my website – instructions are at the end of the
book).

In the meanwhile, once you are done installing these
libraries, you should get a confirmation like this below in
your Anaconda prompt:

Successfully installed bs-4
Now we are ready to execute the Python code, let the fun

begin!
Python library 'requests' downloads the web page as

HTML, that we want to parse by making a GET request.
import requests
For this example, we will use the

https://daneyalauthor.com/ web page
page = requests.get("https://daneyalauthor.com")
For reference, the page looks like this:

We first check whether the data was successfully received.
A status_code of 200 means the get call was successful.

page.status_code
We get output as ‘200’ when we run the above line of

code, so it was successful as shown in the snapshot below:

Now let's see what HTML code content we got from the
get call code we made.

page.content
Below is the output we get:

That's a lot of content! We will need to parse it in a
structured fashion. That's where BeautifulSoup library
comes in that has a built-in HTML parser! Isn't Python
awesome?

from bs4 import BeautifulSoup

soup = BeautifulSoup(page.content, 'html.parser')
Now let's see how BeautifulSoup can 'prettify' the output

and formats it nicely.
print(soup.prettify())
We get the following output when we run the above line

of code:

Much better! Now on to the parsing. We can now traverse
the HTML code by going through the nest tags in the HTML
code.

That's accomplished by using the 'children' feature as all
nested HTML tags are children of the parent tag. We can
organize the data as a Python list data structure, this is
explained in first best-selling book in this series, Ultimate
Step by Step Guide to Machine Learning using Python.

list(soup.children)
We get the following output when we run the above line

of code:

http://mybook.to/MachineLearningPython

Now let's find out what di�erent type of HTML elements
we have in our list by running the following line of code:

[type(item) for item in list(soup.children)]

Nice! We have the following HTML object types:

1. Doctype object, which as the name implies,
contains information about the type of HTML
document this is

2. NavigableString, which is the text in the HTML
document

3. Tag, which represents the nested tags in the
document

4. Comment, which represents the comments on the
web page

For this example, we will focus on the Tag object - that is
item 8 in the above list, if we count from 0 for the first item.

html = list(soup.children)[8]
Let's see what nested tags are included in the Tag object

by using the 'children' feature in BeautifulSoup library.
list(html.children)

Now suppose we are interested in finding what is in the
<title> tag of the HTML code. For that we use the find_all
function which will find all instances of a specific HTML tag.

soup.find_all('title')
And it looks like there is only one instance of the ‘title’

tag in the HTML, when we run this line of code:

Let's also look for Cascading Style Sheets (CSS) use in this
web page as that helps with the page layout, colors, and
fonts. Typically, we will see CSS embedded in the p tags in
HTML. So, let's use the select method that returns a list data
structure

SOUP.SELECT("DIV P")

The above code returned all instances where CSS style
sheets were used, embedded in the p tags – as shown in the
‘data-css’ part of the HTML code snippet above.

If you recall from the https://daneyalauthor.com web
page image earlier in the chapter, there is also a button on
the page with a label “Join & Get the Bonus Code Samples”.
If you were curious about what action that button triggers,
you can run the following line of code:

soup.find_all('button')

https://daneyalauthor.com/

As you can see from the snapshot above, the button
triggers a subscription action, allowing users to sign up for
my mailing list while getting the bonus code samples that
are shared in the book! Isn’t that fantastic?

Now let's use a di�erent example where we extract a table
from HTML and organize as a Panda data frame in Python.
These data structures are explained in detail in the first
best-selling book in this series, Ultimate Step by Step Guide
to Machine Learning using Python, so I would highly
recommend reviewing that if you haven’t already.

For that, let's use list of academy award winning movies
from wiki.

import pandas as pd
url =

'https://en.wikipedia.org/wiki/List_of_Academy_Award-
winning_films'

dfs = pd.read_html(url)
print(len(dfs))
In the above code snippet, we imported the ‘pandas’

library that allows us to create the Panda data frame. We
then read the url of the wiki page by using the ‘read_html’
function and then print out the results. For reference, if you
go to the above referenced wiki page url, you will see an
HTML table of academy award winning movies as follows:

http://mybook.to/MachineLearningPython

Here are the results we get when we execute the above
lines of code:

This means there are two tables on the wiki page. Let's
look at the table output for first table

df = dfs[0]
print(df)
Note that we used [0] in the data frame array to grab the

first table. Here are the results we get when we execute the
above line of code:

We can also access individual columns by using column
names in the table:

print(df['Film'])
print(df['Year'])
print(df['Awards'])
Here are the results we get when we execute the above

lines of code:

Now, assume we are only interested in movie name and
year and don’t want the rest of the table. We can create a
subset of the data frame, only containing these two columns:

df2 = df[['Film','Year']]
print(df2)

Now that the data is nicely organized in a Panda data
frame, let's export to excel for additional analysis by using
'to_excel' function.

df2.to_excel('movies.xlsx')

You should now see the excel file called ‘movies.xlsx’
created in the folder where your Python code resides.

There you have it! That's how you scrape and access data
from an HTML web page into Python.

3

I
USE CASE 2 – IMAGE PROCESSING

mage processing is a very popular use case for data
science – from simple usage like applying image filters
to your Instagram photos to more complex use cases

like cancer cell analysis by applying pattern recognition.
As described in detail in the second best-selling book in

this series, Ultimate Step by Step Guide to Deep Learning
using Python, Convolutional Neural Networks (CNN) are
widely used with image data. The name derives from the
Convolutions that are realized between matrices in each
layer. It essentially is a mathematical operation that
translates each image into a matrix, so it can be processed
and manipulated as required for the purpose at hand.

Luckily, Python comes with several built-in powerful
libraries for image processing that we will use to illustrate
this concept in more detail below.

We will start with pyplot and scikit-image libraries which
is an open-source Python library and works well with
Numpy arrays.

import matplotlib.pyplot as plt
%matplotlib inline
We import sample images and filters from scikit-image

library. Full list of test images available can be seen at this
URL:

https://scikit-image.org/docs/dev/api/skimage.data.html
from skimage import data,filters
We use the checkerboard test image from the library and

print it in grayscale
image = data.checkerboard()

http://mybook.to/DeepLearningPython
https://scikit-image.org/docs/dev/api/skimage.data.html

plt.imshow(image, cmap='gray')

Now let’s apply some filters on this image. Full list of
filters is available at this URL:

https://scikit-
image.org/docs/stable/api/skimage.filters.html

We will first use the 'Sato' image filter which applies a
blurry look to the image.

edges = filters.sato(image)
plt.imshow(edges, cmap='gray')

https://scikit-image.org/docs/stable/api/skimage.filters.html

We will then use the 'Scharr' image filter which finds the
edge magnitude of the image.

edges = filters.scharr(image)
plt.imshow(edges, cmap='gray')

Let's now use Numpy, which as introduced in the first
book in this series, is one of the foundational Python

libraries. Numpy converts the image into an array data
structure for each manipulation. We will still use scikit-
image library for loading and displaying the image.

import numpy as np
image = data.co�ee()
plt.imshow(image, cmap='gray')

type(image)
Let’s convert this image into a Numpy array:
np.ndarray
Now let’s mask this image:
mask = image < 85
image[mask]=256
plt.imshow(image, cmap='gray')

As introduced in the first book in the series, Scipy is a
foundational Python library used for mathematical and
scientific calculations. It works well with Numpy data
structures and comes with built-in libraries for image
processing, as part of scipy.ndimage sub-module.

Detailed documentation available via this URL:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndima

ge.html#correlation-and-convolution
Let’s see it in action:
from scipy import ndimage
image = data.chelsea()
Original Image:
plt.imshow(image)

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html%23correlation-and-convolution

Now let's apply a light Gaussian filter to this cat image to
make it blurry. Details of the Gaussian filter and how it
works are included in the second book in the series and you
can also refer to additional documentation on types of filters
available by following this URL:

https://docs.scipy.org/doc/scipy/reference/generated/scip
y.ndimage.gaussian_filter.html

blurred_image = ndimage.gaussian_filter(image,
sigma=3)

plt.imshow(blurred_image)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html

And now, let's make it blurry by increasing the sigma
value for the Gaussian filter:

very_blurred_image = ndimage.gaussian_filter(image,
sigma=5)

plt.imshow(very_blurred_image)

There are more advanced libraries for image processing in
Python which require additional set up and install steps.
Discussion of these libraries is outside the scope of this
book, but you are welcome to reference the links below for
more details and if you would like to try them out:

1) PIL (Python Imaging Library) - this library is good for
additional convolution functions, color formatting and
filters:

https://pillow.readthedocs.io/en/stable/
2) OpenCV (Open-Source Computer Vision Library) - this

library is used for computer vision applications that require a
lot of computation firepower. This library is use for faster
processing because it is built using C/C++ with a Python
wrapper:

https://github.com/abidrahmank/OpenCV2-Python-
Tutorials

There you go! Now you know enough to process images
and apply filters in Python!

https://pillow.readthedocs.io/en/stable/
https://github.com/abidrahmank/OpenCV2-Python-Tutorials

4

D
USE CASE 3 - DIFFERENT FILE TYPE PROCESSING

ata scientists often work with di�erent file types to
extract and process data before it is ready for
analysis. Knowing how to work with di�erent file

types is an important skill to have in your toolkit. In this
chapter, we will go over Python processing modes for
di�erent file types and how to organize this data into built-
in Python data structure. Let’s get started!

Python can work with the following file types:

Comma-separated values (CSV)
XLSX (Excel)
Plain Text (txt)
JSON
XML
HTML
PDF (Adobe)
DOCX (Microsoft Word)
Images
MP3
MP4
ZIP

Python also has di�erent file processing modes:
Mode
Description
'r'
This is the default read mode.
'w'

This is the writing mode. If a file already exists, it will
write to it and if not, it will create a new one with the name
provided.

'x'
This is to create a new file and if the file already exists, it

will give a failure message.
'a'
This is the mode to add / append to an existing file. If the

file does not exist, it will create a new one.
't'
By default, Python assumes it is a text file.
'b'
Switch to this mode for processing the file in binary

mode.
'+'
This is the update mode – so the file is opened in reading

and writing mode.

LET’S first start with reading from CSV file and storing its
information in a Panda data frame. For this example, we will
create a .csv file in the same folder where the Python code
resides for easy processing.

Let’s first read a CSV file containing comma separated
values for Oscar winning movies. The file looks like this:

We will import contents of the csv file into a Pandas data
frame:

import pandas as pd
df_csv = pd.read_csv('csvtest.csv')
Now let’s display the contents of this file in a data frame:
display(df_csv)

We can do the same with an excel file. Our sample excel
file looks like this:

However, since excel can have multiple tabs, we must
specify the sheet name:

df_xls = pd.read_excel('exceltest.xlsx',
sheet_name='xlstest')

Display contents of excel file:
display(df_xls)

Now that we have the data nicely organized in a Pandas
dataframe, we can process it like a data structure. We can
access the columns:

print(df_xls.columns.ravel())

And we can access contents of a specific column, by using
the .tolist() function. In the below example, we list all movie
names in our excel file:

print(df_xls['Film'].tolist())

You can even convert the excel file content into other
formats like csv and json. First, we show results as JSON:

print('Print Excel as JSON:',
df_xls.to_json(orient='records'))

And then we show the results as a CSV:
print('Print Excel as CSV', df_xls.to_csv(index=False))

To read a json file, like excel and csv files, you can use the
Pandas read_json function. For this purpose, we use JSON
file sample from:

https://json.org/example.html
Our JSON file sample looks like this:

https://json.org/example.html

df_json = pd.read_json('jsontest.json')

DISPLAY CONTENTS OF JSON FILE:
display(df_json)

To process an XML file, we use ElementTree library. We
will use the parse function to process the xmltest sample
that we got from:

https://docs.python.org/3/library/xml.etree.elementtree.h
tml

It contains sample data for countries and their neighbors:

https://docs.python.org/3/library/xml.etree.elementtree.html

import xml.etree.ElementTree as ET
tree = ET.parse('countries.xml')
Now that we have parsed the country data as a tree

structure, let’s get the root of the tree:
root = tree.getroot()

Let’s see what the root of the tree contains. Each element
of the tree, including the root, has tags that describe it:

root.tag
root.attrib

Now print all children of the root of the tree, and their
corresponding tags and attributes

for child in root:
... print(child.tag, child.attrib)

NOTE: We will not cover parsing HTML files in this
chapter as that was covered in detail in previous web
scraping chapter and we used BeautifulSoup library for that.
Similarly for processing image files please check out the
chapter on image processing in this book.

For processing PDF files, you will have to first install PDF
mining library from this link:

https://euske.github.io/pdfminer/

https://euske.github.io/pdfminer/

You can then run the following line of code to extract the
PDF file as txt

pdf2txt.py pdftest.pdf
For processing Word (.docx) files, you will have to first

install doc2txt library by using this command:
pip install docx2txt
Once installed, you can run the following code to extract

the DOCX file as txt:
import docx2txt
text = docx2txt.process("doctest.docx")
Print the contents of the word file:
print (text)

Sometimes data scientists can also receive an archived
ZIP file to process in Python. You must first import zipfile
library and then read the results into a data frame.

import zipfile
archive = zipfile.ZipFile('data.zip', 'r')
Let’s look at the content of this zip file:

Once we have the entire archive read in, we can read one
of the files in the archive into a data frame:

df_archive = archive.read('csvtest.csv')
display (df_archive)

Finally, if you ever want to process multimedia files in
Python, you can do that by installing the PyMedia library by
following this link: http://pymedia.org/tut/index.html

Well, there you go. Now you can process di�erent types of
files in Python and prepare the data for additional analysis.

http://pymedia.org/tut/index.html

5

P
USE CASE 4 – SENDING AND RECEIVING EMAILS

ython makes it easy to send and receive emails. For
that all you need is powerful libraries called smtplib
and imap. Now why would you want to send and

receive emails using a programming language you ask? It is
to automate the mundane activity of sending mass emails to
an email list while using a custom template. It is also to
allow you to parse through your di�erent inboxes and look
for key information. Python makes it all possible!

Before we get into Python code, let’s first explain what
SMTP is. It stands for Simple Mail Transfer Protocol. It was
created in 1982 and is still in use by big email providers of
the world like Gmail, Yahoo Mail, and others. In simplest
terms, it is the language used by mail servers to
communicate with each other to send and receive emails. Got
it? Let’s move on.

Python library smtplib uses the SMTP protocol and has
built-in functions to send emails.

Let's first import the libraries we are going to use. Notice
that we imported BeutifulSoup library too as we will be using
it later to parse HTML content for our emails. You will also
notice that we imported the MIME standards - that's what
will allow us to email messages in di�erent formats like
binary, ASCII, HTML, and others.

import smtplib
from email import encoders
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase

from bs4 import BeautifulSoup as bs

Now let's define our parameters like email address,
password, email subject, sending and receiving email
addresses - so we can input the required values as needed.
Remember, these values are placeholders only and you can
plug in your own credentials for sending your emails. Note
that though, I would not recommend hard coding your
credentials because if you share your code, your account can
be compromised. Also, when providing receiving email,
instead of putting in one email, you can put in multiple email
addresses or even an email list that can be read in from a file
(refer to the earlier chapter on how to read in excel or csv
files as a Python data structure).

Let’s first set the credentials – as in our email and
password:

EMAIL = "myemail@test.com"
PASSWORD = "mypassword"
We then also specify the sender and receiver email

addresses:
FROM = "sender@test.com"
TO = "receiver@test.com"
Lastly, we set the subject of the email:
SUBJECT = "Subject of my email"

Now we are going to initialize our message object, so it is
ready to send:

msg = MIMEMultipart("alternative")
Setting the ‘from’ property in the message to the FROM

email address value we provided earlier:
msg["From"] = FROM
Setting the ‘to’ property in the message to the TO email

address value we provided earlier:
msg["To"] = TO
Setting the ‘subject’ of the message to the SUBJECT value

we provided earlier:
msg["Subject"] = SUBJECT

Now let's create HTML and text versions of the email
message. This is the HTML version of the message:

html = """
I love Python !
"""

Now let's convert this HTML version to text using HTML
parser object:

text = bs(html, "html.parser").text

Alternatively, you can also read the HTML and text
versions of your message from the corresponding files in
your folder. Setting the body of the email as HTML by
reading from an HTML file. In this case the file is in the
same folder as the Python code. If it is in a di�erent folder,
you must provide a fully qualified path:

html = open("message.html").read()
And then convert to text the same way as before using

html parser:
text = bs(html, "html.parser").text

Now let's finish building the message, by setting the text
and HTML values:

text_part = MIMEText(text, "plain")
html_part = MIMEText(html, "html")
Finally, we attach the email body to the mail message -

both text and HTML versions:
msg.attach(text_part)
msg.attach(html_part)

After constructing the HTML and text version of the
message and attaching it to the mail, let's see what it looks
like:

print(msg.as_string())
You will notice that the output is broken out in sections,

separated by characters.
1) First part is message header including sender, receiver,

and email subject
2) Second part is the message in text format
3) Third part is the message in HTML format

To make this process repeatable, let's create a function
that takes From, To, Subject and Message as arguments, so it
can send the message for us, and we can call this function
whenever we need to send a message again with a di�erent
set of email recipients and message content:

def send_message (EMAIL, PASSWORD, FROM, TO,
msg):

Here we are using the gmail SMTP, but you can use any
others of your choosing like Yahoo, Outlook etc. Full list of
SMTP protocols and corresponding ports to use can be found
here:

https://www.arclab.com/en/kb/email/list-of-smtp-and-
pop3-servers-mailserver-list.html

NOTE: If you are using gmail email for this purpose, you
will need to set the "Allow less secure apps" option in your
gmail settings. This will indeed make your gmail account
less secure, so we recommend using a separate account for
this purpose for sending and receiving mass emails as
opposed to your personal account.

Initializing the SMTP server connection:
server = smtplib.SMTP("smtp.gmail.com", 587)
Connecting to the SMTP server as secure TLS (Transport

Layer Security) mode:
server.starttls()
Logging in with your credentials that are passed to the

function:
server.login(email, password)
Sending the email:
server.sendmail(FROM, TO, msg.as_string())
Terminating SMTP session:
server.quit()

https://www.arclab.com/en/kb/email/list-of-smtp-and-pop3-servers-mailserver-list.html

Finally, we send the message by calling the function we
defined above. Now in this case we will get an SMTP
authentication error as per below because we are using
placeholder credentials but if you use your real credentials,
you should receive an email in the corresponding email
inbox application:

send_message(EMAIL, PASSWORD, FROM, TO, msg)

You can also add attachments to your message by adding
list of files to be included in the email. Below is a sample list
of files as an example:

files_to_send = [
"test.txt",
"test.pdf",
]
Initializing the message as before:
msg = MIMEMultipart("alternative")
Setting the sender's email:
msg["From"] = FROM

Setting the recipient's email:
msg["To"] = TO
Setting the subject of the email:
msg["Subject"] = SUBJECT
Setting the body of the message:
html = open("message.html").read()
Converting the message from HTML to text as before:
text = bs(html, "html.parser").text
text_part = MIMEText(text, "plain")
html_part = MIMEText(html, "html")
Attaching the email body to the mail message. First

adding text and then HTML to the body:
msg.attach(text_part)
msg.attach(html_part)
for file in files_to_send:
Creating this loop to read the file list created earlier and

going through them one at a time:
with open(file, "rb") as f:
Read each file in the list:
data = f.read()
Add as attachment to the file:
attach_part = MIMEBase("application", "octet-

stream")
attach_part.set_payload(data)
Add 64 bit encoding
encoders.encode_base64(attach_part)
Including message header
attach_part.add_header("Content-Disposition",

f"attachment; filename= {file}")
msg.attach(attach_part)

Finally sending the message
send_mail(email, password, FROM, TO, msg)

There you have it! A handy way to send multiple emails
with di�erent attachments and email templates - a very
good use case for automation via Python. But why stop
there? Now to take it one step further, let's look at how we
can automate reading emails via Python as well. We will also
look at how to automate downloading of email attachments.
For that we will use the IMAP protocol that comes built-in as
a handy library in Python called imaplib. IMAP is di�erent
from POP3 protocol we used earlier in this chapter because
POP3 protocol reads and downloads the email from the
server to read it o�ine, while IMAP protocol leaves the email

message on the server while reading it. Let's import the
necessary libraries we need to read emails:

import imaplib
import email
from email.header import decode_header
import webbrowser
import os

Let's specify our placeholder account credentials (NOTE:
You will need to use your own real credentials for the code to
work) and a function to create folders in your email program
of choice, without special characters.

First, we set the credentials, just like we did earlier when
we were sending the email:

Next, we will connect to IMAP, in this case assuming a
Gmail account:

imap = imaplib.IMAP4_SSL("imap.gmail.com")

Authentication step will fail in this case because we are
using placeholder credentials, but should work if you use
your real credentials. See instructions earlier in the chapter
on how to change Gmail settings for access from non-secure
apps. Even if you use the correct credentials, Gmail and other
apps may still block access if they don't recognize access by
an external application like Python - so you will need to
enable access by third party apps if you want to use this
feature:

imap.login(EMAIL, PASSWORD)

Once you successfully login, you can access emails by
specifying the folder you want to retrieve the messages from
and specifying how many messages you want to retrieve. In
the example below, we use the select method to retrieve 5
messages from our INBOX folder:

status, messages = imap.select("INBOX")
Indicating number of top emails to fetch:
N = 5
Converting total number of emails in the inbox to integer

value:
messages = int(messages[0])

In this case messages variable now contains total number
of messages in our inbox as an integer type so we can create
a loop and status variable contains whether the message was
retrieved successfully - we are looking for the status 'OK'.

Now let's create a loop and use the IMAP fetch function to
retrieve the body of the message for the first 5 messages we
want to retrieve. We will use the 'RFC822' standard email
format to retrieve each message:

for i in range(messages, messages-N, -1):
First, we use the fetch method and RFC822 format as

mentioned earlier:
res, msg = imap.fetch(str(i), "(RFC822)")
for response in msg:
if isinstance(response, tuple):
We then parse email in bytes format into a message object

in Python:
msg = email.message_from_bytes(response[1])
We then decode the email subject:
subject, encoding = decode_header(msg["Subject"])[0]
if isinstance(subject, bytes):
If the subject is in bytes format, we convert to string:
subject = subject.decode(encoding)
After that, we decode email sender:
From, encoding = decode_header(msg.get("From"))[0]
if isinstance(From, bytes):
From = From.decode(encoding)
print("Subject:", subject)
print("From:", From)
If the email message is multipart, we convert each of the

parts and process separately:

if msg.is_multipart():
Iterating over multi-part message:
for part in msg.walk():
Extract the content type of the email part:
content_type = part.get_content_type()
content_disposition = str(part.get("Content-

Disposition"))
try:
We then get the email body:
body = part.get_payload(decode=True).decode()
except:
pass
if content_type == "text/plain" and "attachment" not in

content_disposition:
We print text part of the message and see the content:
print(body)
elif "attachment" in content_disposition:
We then download the attachment:
filename = part.get_filename()
if filename:
folder_name = clean(subject)
if not os.path.isdir(folder_name):
We create a folder for this downloaded email (using the

subject as the label):
os.mkdir(folder_name)
filepath = os.path.join(folder_name, filename)
and then download attachment and save it:
open(filepath,

"wb").write(part.get_payload(decode=True))
else:

We extract content type of email:
content_type = msg.get_content_type()
and get the email body:
body = msg.get_payload(decode=True).decode()
if content_type == "text/plain":
print only text part of the email:
print(body)
if content_type == "text/html":
If the content type is HTML, create a new HTML file and

open it in browser:
folder_name = clean(subject)
if not os.path.isdir(folder_name):
make a folder for this email named after the subject of the

email:
os.mkdir(folder_name)
filename = "index.html"
filepath = os.path.join(folder_name, filename)
write the file to the folder:
open(filepath, "w").write(body)
and then open the HTML file in the default browser:
webbrowser.open(filepath)
print("="*100)
Once done, we close the IMAP connection and logout.
imap.close()
imap.logout()

If the access is all successful, I get confirmation email in
my Python output as follows:

Subject: Congrats Email Test worked!

From: myemail@test.com
Subject: An email with a text file as an attachment
From: Test Account <myemail@test.com>
Get the text attachment!
Subject: A Test message with attachment
From: Test Account <myemail@test.com>
It worked!
Also, I see that the code created folders for downloaded

emails in my local directory where the Python code resides.
There you have it folks! You can now not only send mass
emails using an email list automatically via Python but also
download and store emails and attachments locally - what a
powerful automation feature via Python!

For additional reading on the Python IMAP and email
libraries, please use the links below:

IMAP library:
https://docs.python.org/3/library/imaplib.html

Email library:
https://docs.python.org/3/library/email.html

https://docs.python.org/3/library/imaplib.html
https://docs.python.org/3/library/email.html

6

N
USE CASE 5 – DYNAMIC TIME WARPING FOR SPEECH

ANALYTICS

ow that we have covered some basic Python real
world use cases like web scraping, file, and image
processing as well as automating sending and

receiving emails, it is time to address more advanced use
cases. How about warping time?

Now, now…don’t worry…we are not messing with the
space time continuum and don’t want to start new
multiverses like in the comic books. Instead, in this chapter,
we are going to discuss the concept of time warping using
Python. What is time warping you ask? It is a spin on
traditional time series analysis where you want to compare
two datasets that occurred over the same period – however,
you run into a challenge where the x-axis which represents
time is not in the same scale between the two data sets i.e.,
does not have the same start and end time.

Ever wonder how AI powered home assistants like
Amazon Alexa and Google Home recognize your voice and a
specific phrase like “Stop” no matter how fast or slow you
say it? Or comparing results of financial markets between
months but one month had a smaller number of days in the
previous year because it was a leap year? That’s where time
warping comes in – you basically ‘warp’ your time axis to
make the two data sets comparable.

In the example in this chapter, we will two matching
audio phrases that are said at a di�erent pace and one
completely di�erent audio phrase of the same length and
then use time warping libraries in Python to compare the

results to find the right match. This type of use case is very
common in speech and pattern recognition in the real world.

The phrase we will use is “One Flew Over the Cuckoo’s
Nest” and it will be stored in two di�erent audio files spoken
in di�erent voices and in di�erent inflections. The
contrasting phrase we will use is “I Love Python And I Can’t
Stop”. I will make the audio files along with the Python code
available to you, so you can test it for yourself as well.

Let the fun begin!
First you need to install FastDTW library from Python for

time warping analysis. Run the following the command in
your Python application prompt:

pip install FastDTW
Once installed, you are ready to import the FastDTW

library and use it in your code. While you are at it, you can
also import other libraries you will need for your analysis
including scipy wavfile library to process audio files,
matplotlib for plotting the results and numpy for advanced
calculations – which we will get into below.

FROM SCIPY.IO IMPORT wavfile
from matplotlib import pyplot as plt
import numpy as np
from scipy.spatial.distance import euclidean
from fastdtw import fastdtw
Now let’s read the audio files below in for comparison.

The first two files have the same phrase, and the third file
has a di�erent phrase for comparison purposes.

fs1, data1 = wavfile.read("oneflew1.wav")

fs2, data2 = wavfile.read("oneflew2.wav")
fs3, data3 = wavfile.read("ilovepython.wav")

Let's visualize the audio files we just imported using
Python's matplotlib library we imported earlier and setting
the plot style to have a white background:

from matplotlib.pyplot import figure
plt.style.use("seaborn-whitegrid")
The first audio file contains the phrase "One Flew Over

the Cuckoo's Nest" in an American male voice. We set the
formatting and color parameters for the plot in the code
snippet below:

ax = plt.subplot(2, 2, 1)
ax.plot(data1, color="#67A0DA")
And then we finally visualize the audio file:
fig=plt.show()
display(fig)

Now let’s display the remaining two audio files as well
using the same code snippets but di�erent color schemes:

As you can see from the three images above, the first two
audio files have the same shape but with di�erent amplitude
and pacing because it is the same phrase ("One Flew Over
the Cuckoo's Nest"). While the third file has a di�erent
shape as it is a di�erent phrase altogether ("I Love Python
and I Can't Stop"). This can be seen more easily if we stack
the three images above each other and draw lines to the
similarities:

First to compare the di�erent audio files above, we will
use the traditional Euclidean distance calculation. How does
the traditional Euclidean distance calculation work you ask?
In the simplest terms, it calculates the distance between any
two points as a numerical di�erence between their
coordinates.

So as an example, if a and b are two points on a line, then
the distance between them is calculated as: (a-b) - this is
assuming we are in a single dimensional plane. To extend
this example to a two-dimensional space, assuming point a
has coordinates (a1, a2) and point b has coordinates (b1, b2),
your formula will be sqrt ((a1-b1)^2 + (a2-b2)^2). In the
formula by squaring and then taking a square root, it
ensures that you get an absolute value and eliminate any
negative values. You can easily extend this formula to n
dimensions by having n number of coordinates but still
squaring and then taking a square root: sqrt ((a1-b1)^2 +
(a2-b2)^2....+(an-bn)^2).

Python provides a simple function in numpy library called
linalg and it calculates the di�erence between two vectors if
they are represented as an array. Obviously, the problem
with this approach is that it completely does not consider
any time scale or latency di�erences. So, if we apply this
formula to compare the first two wav files that both have the
same phrase of "One Flew Over the Cuckoo's Nest".

np.linalg.norm(data1[0]-data2[0])
results in an output of 1.0 and so does comparing the first

and third wav file:
np.linalg.norm(data1[0]-data3[0])

We get the same result as the Euclidean vector di�erence
is not taking the time axis and latency di�erences into
account and therefore is not able to di�erentiate between the
wav files. For time warping comparison, we will use the
FastDTW PyPi library we installed and imported earlier.
FastDTW compares the distance between the di�erent sound
files. Expectation is that the files that are a closer match will
have a shorter distance as the FastDTW library will account
for the di�erent pacing and amplitude changes when
calculating the distance.

Distance between audio file 1 and 2:
fastdtw(data1, data2)[0] is 103331114.0

Distance between audio file 1 and 3:
fastdtw(data1, data3)[0] is 110120061.0

As expected, the first two audio files have a shorter
distance because they are the same phrase spoken with a
di�erent voice, amplitude, and latency while the distance
between the first and third file is longer because they are two
completely di�erent phrases.

There you go! A simple example to compare audio files
and their similarities using Time Warping technique.

7

T
USE CASE 6 – TIME SERIES ANALYSIS AND

FORECASTING

ime series forecasting is a very common use case in
predictive analytics – specially in an operational and
sales space where line managers or salespeople want

to know based on historical sales patterns and seasonality
how much product and sta�, they should have on hand to
meet the incoming demand. This is of course based on the
assumption that past is a predictor of the future – that is not
always the case when you have a crazy year like 2020 where
the pandemic completely threw o� several predictive models
that rely on this assumption. Nevertheless, for the purposes
of this chapter and for simplicity, we will stick with the
assumption that past predicts the future.

We will also introduce a more sophisticated time series
forecasting library called Prophet from Facebook that makes
the more advanced calculations and traditional models like
ARIMA and Kalman Filter easy to apply at scale without a
masters in statistical analysis.

Now be warned that the Prophet library is still relatively
new and must be fully tested in the market but does have
promise. I found it slow in practice as we used it on a very
small dataset of e-commerce orders from July 2018 to Dec
2019 from Kaggle public dataset to predict sales for 2020 (it
will be available to you along with the code via a download
link later in the book).

Facebook Prophet also is not the most straightforward
library to install as it has several dependencies and requires

a C++ compiler before it installs successfully. You can follow
the link below to complete the installation steps:

https://facebook.github.io/prophet/docs/installation.html
Once you have Facebook Prophet fully installed, you are

ready to import the library and predict the future!
import pandas as pd
from fbprophet import Prophet
import warnings
warnings.simplefilter(action='ignore',

category=FutureWarning)

First, we read csv data into panda data frame:
data = pd.read_csv(“ecommerce_data.csv”)
and preview the first 5 lines of the loaded data
data.head()

Let’s initialize the Prophet model and set the parameters:
model = Prophet(
interval_width=0.95,
growth="linear",
daily_seasonality=False,

https://facebook.github.io/prophet/docs/installation.html

weekly_seasonality=False,
yearly_seasonality=True,
seasonality_mode="multiplicative"
)
And fit the model to historical data (NOTE: This step

takes a while to complete as the Python code executes – even
on a relatively small dataset, so be patient).

model.fit(data)
Finally, you will get an output like this to indicate that the

model initialization and fitting is complete:
<fbprophet.forecaster.Prophet at 0x200373d6bc8>

We are now ready to tell the model to predict 365 days (or
1 year) into the future and then plot the results by putting
the date in the x-axis and e-commerce orders on the y-axis:

In the above visualization, the dots are actual values of e-
commerce order per week and the trend line shows the
future. The bands around the trend line show our
uncertainty levels (in this case we set it to 95%).

We can also look at the forecast more closely by executing
this command:

model.plot_components(forecast_pd)

The top visual shows our trend – which is increasing
slightly as 2020 progresses and the bottom visual shows the
seasonality with a huge variation between August to
September.

How about that? Predicting the future with just a few
lines of code – using the ever-evolving Facebook Prophet
library to make the time series forecasting simpler to apply!

8

F
USE CASE 7 – FRAUD ANALYSIS

raud analysis is also a very common machine learning
use case specially in the financial services industry.
Data Scientists pour over millions of records of

historical financial transaction data to determine rulesets
that define fraudulent transactions and then build
algorithms to detect and stop fraud in its tracks. With the
fraudsters constantly changing their patterns the algorithm
used by data scientists also must be flexible enough to be
able to learn from the history and experience to adjust
accordingly.

In the example in this chapter, we will use a public
dataset for digital financial transactions through Kaggle.
This data will be available to you along with the code in this
chapter via a link later in the book.

Most common algorithms used for fraud analysis are
typically decision trees or some variations there of including
gradient boosting via XGBoost and the like. We will explore 6
million records of this dataset and then recommend an
algorithm that yields the highest level of prediction accuracy.

We will start with importing libraries we will need for
fraud analysis

import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

from sklearn.model_selection import train_test_split,
learning_curve

from sklearn.metrics import average_precision_score
from xgboost.sklearn import XGBClassifier
from xgboost import plot_importance, plot_tree
import warnings
warnings.simplefilter(action='ignore',

category=FutureWarning)
warnings.simplefilter(action='ignore',

category=DeprecationWarning)
warnings.simplefilter(action='ignore',

category=UserWarning)

We will now import the public fraud dataset I referenced
earlier into a panda data-frame and rename mismatched
column names in the data for consistency:

df = pd.read_csv('fraud_data.csv')
df = df.rename(columns=

{'oldbalanceOrg':'oldBalanceOrig',
'newbalanceOrig':'newBalanceOrig',

'oldbalanceDest':'oldBalanceDest',
'newbalanceDest':'newBalanceDest'})

print(df.head())

We now do some data cleaning to check if the data has
any null values:

df.isnull().values.any()

The dataset does have a flag indicating whether a
transaction was fraudulent or not and it correlates very well
with the number of cash out transactions - basically
implying that quick transfer ins and cash outs are a good
early indicator of potential fraudulent transactions.

print('The types of fraudulent transactions are
{}'.format(list(df.loc[df.isFraud ==
1].type.drop_duplicates().values)))

dfFraudTransfer = df.loc[(df.isFraud == 1) & (df.type ==
'TRANSFER')]

dfFraudCashout = df.loc[(df.isFraud == 1) & (df.type ==
'CASH_OUT')]

print ('The number of fraudulent TRANSFERs =
{}'.format(len(dfFraudTransfer)))

print ('The number of fraudulent CASH_OUTs =
{}'.format(len(dfFraudCashout)))

Now let's clean our data further to narrow it down to the
Transfer and Cash out type of transactions and discard
meaningless or inconsistently populated columns like
nameOrig, nameDest and isFlaggedFraud:

X = df.loc[(df.type == 'TRANSFER') | (df.type ==
'CASH_OUT')]

randomState = 5
np.random.seed(randomState)
Y = X['isFraud']
del X['isFraud']
and eliminate columns shown to be irrelevant for

analysis:
X = X.drop(['nameOrig', 'nameDest', 'isFlaggedFraud'],

axis = 1)
Since most machine learning algorithms use numeric

values for processing, we will binary-encode labelled data in
transaction type column:

X.loc[X.type == 'TRANSFER', 'type'] = 0
X.loc[X.type == 'CASH_OUT', 'type'] = 1

X.type = X.type.astype(int)

Since the destination account having zero balance after
the transfer in and cash out is an indicator of potential fraud,
let's mark it more prominently so it is easier for our machine
learning model to detect this type of final balance and we
will create a specific feature around this point for model
training - this will come into play later in this chapter:

X.loc[(X.oldBalanceDest == 0) & (X.newBalanceDest ==
0) & (X.amount != 0), ['oldBalanceDest', 'newBalanceDest']]
= - 1

X.loc[(X.oldBalanceOrig == 0) & (X.newBalanceOrig == 0)
& (X.amount != 0), ['oldBalanceOrig', 'newBalanceOrig']] =
np.nan

X['errorBalanceOrig'] = X.newBalanceOrig + X.amount -
X.oldBalanceOrig

X['errorBalanceDest'] = X.oldBalanceDest + X.amount -
X.newBalanceDest

Now that we have cleaned the data and engineered the
features that we think will result in actual fraud output, let's
visualize our data to see if we can see fraudulent transactions
more clearly:

Let's visualize our data to see if we can see fraudulent
transactions more clearly:

limit = len(X)
def plotStrip(x, y, hue, figsize = (15, 10)):

FIG = PLT.FIGURE(FIGSIZE = figsize)
colours = plt.cm.tab10(np.linspace(1, 2, 8))
with sns.axes_style('whitegrid'):
ax = sns.stripplot(x, y, \
hue = hue, jitter = 0.5, marker = '.', \
size = 4, palette = 'colorblind')
ax.set_xlabel('')
ax.set_xticklabels(['regular tx', 'fraudulent tx'], size =

18)
for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(2)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles, ['Transfer', 'Cash out'],

bbox_to_anchor=(1, 1), loc=2, borderaxespad=0, fontsize =
15);

return ax
ax = plotStrip(Y[:limit], X.step[:limit], X.type[:limit])
ax.set_ylabel('hours', size = 16)
ax.set_title('Visualizing fraudulent transactions hidden

in a sea of regular transactions', size = 25);

As can be seen from the above visualization, while we can
di�erentiate the fraudulent from regular transactions, it is
not as obvious. Let's use the feature we engineered based on
final balance of the account being zero to make the
fraudulent transactions more obvious:

limit = len(X)

ax = plotStrip(Y[:limit], X.amount[:limit], X.type[:limit],
figsize = (15, 10))

ax.set_ylabel('Tx Amount', size = 18)
ax.set_title('Visualizing fraudulent transactions based

on final amount in the account', size = 20);

As mentioned earlier in the chapter, let's use a variation
of traditional decision tree algorithm called XGBoost which
uses gradient boosting techniques to generally outperform
other machine learning algorithms like random forest for
fraud analysis by reducing model bias and providing better

accuracy. Let's split our dataset into 20% test and 80%
training.

trainX, testX, trainY, testY = train_test_split(X, Y,
test_size = 0.2, random_state = randomState)

Now we run the XGBoost Classifier algorithm on this
dataset and test the accuracy of the model:

weights = (Y == 0).sum() / (1.0 * (Y == 1).sum())
xgclf = XGBClassifier(max_depth = 3, scale_pos_weight

= weights, n_jobs = 4)
probabilities = xgclf.fit(trainX,

trainY).predict_proba(testX)
print('Average precision score =

{}'.format(average_precision_score(testY, probabilities[:,
1])))

The average prediction score in the output above was
99.8%, which is very great! Now that we have confirmed that
the XGBoost machine learning algorithm produces the most
accurate fraud prediction, let's find out which feature in the
dataset was the most important for the classification and
splitting the tree:

fig = plt.figure(figsize = (15, 10))
ax = fig.add_subplot(111)
colours = plt.cm.Set2(np.linspace(1, 2, 8))
ax = plot_importance(xgclf, height = 1, color = colours,

grid = True, \

show_values = False, importance_type = 'cover', ax =
ax);

for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(2)

ax.set_xlabel('Importance Value', size = 18);
ax.set_ylabel('Features', size = 18);
ax.set_yticklabels(ax.get_yticklabels(), size = 15);
ax.set_title('Ranking features in order of importance',

size = 18);

Not surprisingly our engineered feature based on final
zero balance because of fraudulent cash outs is the most
important feature for the fraud model. There you have it
folks - a high level overview of how to analyze fraud in a
dataset. Typically, the datasets don't come with fraud flags,
and you have a lot more history to work with to determine
rules to detect fraud patterns - but the steps we used in this
example to narrow down list of features, visualize their
impact and then train the model to generate a precise
decision tree-based algorithm are all very much applicable
in the real world!

9

P
USE CASE 8 – PROCESSING GEOSPATIAL DATA

rocessing geographical and geospatial data for
intelligent automation is becoming more and more
mainstream with the advent of intelligent drones and

autonomous vehicles capable of detecting and moving
around obstacles. In addition, geographical and demographic
analysis is also becoming quite common when you are
looking at opportunity assessment for new businesses.

Rome is the eternal city and my favorite city in Europe. I
have a lot of fond memories from it when I went back
packing through it with my university friends back in the
day. Given that it has been so hard hit in recent times
economically, I want to pay tribute to it by using it as part of
this book.

Given that Rome is such a popular tourist destination and
has so much history, it has expensive real estate as well as
population density. With the impacts to its economy,
investors can be looking at boroughs of Rome that have a
high population and relatively lower real estate prices. In
addition, using FourSquare data, I will also look at type of
businesses in each borough to be able to recommend the best
Rome neighborhood to start a business in and type of
business to start based on the real estate prices and
population density.

For this analysis, I used the following data sources:

I obtained the real estate prices by di�erent
neighborhoods of Rome using the statista.com site
that contains data as of December, 2019

https://foursquare.com/

[https://www.statista.com/statistics/670698/askin
g-price-for-properties-for-sale-in-rome-by-
area-italy/].
I obtained the .json file for Rome from carto.com
site that will help us create the choropleth map of
its neighborhoods
[https://maurizioman.carto.com/tables/rome_admi
n/public/map].
I used Foursquare API to get the most common
venues of given Borough of Rome
[https://foursquare.com/].

As a database, I created the dataset of Rome boroughs by
populating the neighborhood names, real estate prices and
geographic coordinates. I then saved it in the pandas’ data-
frame which has the following columns Borough, Average
House Price, Latitude and Longitude.

import pandas as pd
import numpy as np
import requests

URL = 'ROME_GEO.CSV'
df = pd.read_csv(url)
df.head()

https://www.statista.com/statistics/670698/asking-price-for-properties-for-sale-in-rome-by-area-italy/%5D
https://maurizioman.carto.com/tables/rome_admin/public/map%5D
https://foursquare.com/%5D

Since our geospatial data is going to be in the form of
JSON files, we will import the json library to read the file and
matplotlib library to visualize the data:

pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
We first import and transform JSON file into a pandas

dataframe:
import json
from pandas.io.json import json_normalize
We then import Matplotlib and associated plotting

modules:
import matplotlib.cm as cm
import matplotlib.colors as colors
We will also import k-means machine learning algorithm

library for clustering analysis:
from sklearn.cluster import KMeans
print('Libraries imported.')

In addition, we will install and import external libraries
for mapping and clustering including GeoPy Nominatum,
Folium and FourSquare:

!conda install -c conda-forge geopy --yes
from geopy.geocoders import Nominatim
!conda install -c conda-forge folium=0.7.0 --yes
import folium

You can read more about GeoPy Nominatum library here:
https://geopy.readthedocs.io/en/stable/
I also encourage you to read more about Folium library

here. It is a powerful map rendering library:
http://python-visualization.github.io/folium/
We will now use geolocator library to get the latitude and

longitude values of Rome:
address = 'Rome, IT'
geolocator = Nominatim()
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude

https://geopy.readthedocs.io/en/stable/
http://python-visualization.github.io/folium/

print('The geographical coordinate of Rome are {},
{}.'.format(latitude, longitude))

Now we will create a map of Rome with its boroughs
using these latitude and longitude values:

map_rome = folium.Map(location=[latitude, longitude],
zoom_start=9.5)

Code below adds markers to the map:
for lat, lng, borough in zip(df['Latitude'],

df['Longitude'], df['Borough']):
label = '{}'.format(borough)
label = folium.Popup(label, parse_html=True)
folium.CircleMarker(
[lat, lng],
radius=5,
popup=label,
color='blue',
fill=True,
fill_color='#3186cc',
fill_opacity=0.7).add_to(map_rome)
map_rome

We will now use the FourSquare API to explore the
boroughs further. FourSquare collects and presents
information about neighborhoods and businesses in the area
and conveniently makes it available via an API. For more
details, I encourage you to visit:

https://developer.foursquare.com/
rome_data = df
borough_latitude = rome_data.loc[0, 'Latitude']
borough_longitude = rome_data.loc[0, 'Longitude']
borough_name = rome_data.loc[0, 'Borough']

https://developer.foursquare.com/

print('Latitude and longitude values of {} are {},
{}.'.format(borough_name,

borough_latitude,
borough_longitude))

Now let’s delve deeper and look at 100 businesses in the
750-meter radius around the boroughs:

LIMIT = 100
radius = 750
url = 'https://api.foursquare.com/v2/venues/explore?

&client_id={}&client_secret={}&v={}&ll={},{}&radius=
{}&limit={}'.format(

CLIENT_ID,
CLIENT_SECRET,
VERSION,
borough_latitude,
borough_longitude,
radius,
LIMIT)
url

We will also define a function that makes it easy to
extract the category details of each venue in the surrounding
neighborhoods:

def get_category_type(row):
try:
categories_list = row['categories']
except:
categories_list = row['venue.categories']

IF LEN(CATEGORIES_LIST) == 0:
return None
else:
return categories_list[0]['name']

Now we are ready to clean the json and structure into a
pandas data-frame:

venues = results['response']['groups'][0]['items']
First, we flatten the json file and normalize its contents:
nearby_venues = json_normalize(venues)
We then filter the columns in the file:
filtered_columns = ['venue.name', 'venue.categories',

'venue.location.lat', 'venue.location.lng']
nearby_venues =nearby_venues.loc[:,

filtered_columns]

We then filter by category in each row:
nearby_venues['venue.categories'] =

nearby_venues.apply(get_category_type, axis=1)
Finally, we clean the columns to present them on the

screen:
nearby_venues.columns = [col.split(".")[-1] for col in

nearby_venues.columns]
nearby_venues.head(20)

Let’s expand our search and create a function to get all
the boroughs in Rome:

def getNearbyVenues(names, latitudes, longitudes,
radius=500, LIMIT=100):

venues_list=[]
for name, lat, lng in zip(names, latitudes, longitudes):

print(name)
First, we create the API request URL:
url = 'https://api.foursquare.com/v2/venues/explore?

&client_id={}&client_secret={}&v={}&ll={},{}&radius=
{}&limit={}'.format(

CLIENT_ID,
CLIENT_SECRET,
VERSION,
lat,
lng,
radius,
LIMIT)
We then make the GET request:
results = requests.get(url).json()["response"]['groups']

[0]['items']
Finally, we return only relevant information for each

nearby venue:
venues_list.append([(
name,
lat,
lng,
v['venue']['name'],
v['venue']['location']['lat'],
v['venue']['location']['lng'],
v['venue']['categories'][0]['name']) for v in results])
nearby_venues = pd.DataFrame([item for venue_list in

venues_list for item in venue_list])
nearby_venues.columns = ['Borough',
'Borough Latitude',
'Borough Longitude',

'Venue',
'Venue Latitude',
'Venue Longitude',
'Venue Category']
return(nearby_venues)

Running the above function on each borough and creating
a new dataframe called rome_venues:

rome_venues =
getNearbyVenues(names=rome_data['Borough'],

latitudes=rome_data['Latitude'],
longitudes=rome_data['Longitude']
)

Checking the size of the resulting data-frame:
print(rome_venues.shape)
rome_venues.head()

Checking how many venues were returned for each
borough:

summary =
rome_venues.groupby('Borough').count().reset_index()

summary['Count'] = summary['Venue']
summary = summary.drop(['Borough Latitude',

'Borough Longitude', 'Venue', 'Venue Latitude', 'Venue
Longitude','Venue Category'], axis=1)

summary =
summary.sort_values('Count').reset_index(drop=True)

summary.head(12)

Creating a bar chart and analyzing the results:
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt

OBJECTS = summary.Borough
y_pos = np.arange(len(objects))
performance = summary.Count
plt.bar(y_pos, performance, align='center', alpha=0.4)
plt.xticks(y_pos, objects)
plt.ylabel('Venue')
plt.title('Total Number of Venue in Borough')
plt.xticks(rotation=90)
plt.show()

The above bar chart shows us that Centro Storico and
Trieste have close to 100 venues, followed by Tremini,
Trastavere, Corso Francia, Della Vittoria and Bologna that

have venues in 40-60 range. Remaining boroughs are less
venue rich like Georgio VII, Balduina, Caracalla and
Camillucia. Camillucia specially seems low in venues and
potentially ripe for further investment.

Let's find out how many unique categories can be curated
from all the returned venues:

print('There are {} uniques
categories.'.format(len(rome_venues['Venue
Category'].unique())))

We will now analyze each borough along with the venues
that exist there and do some data cleaning in the process by
using one hot encoding to show a 1 where a venue category
exists in a neighborhood and 0 where it does not exist:

We first apply one hot encoding for venue categorization:
rome_onehot = pd.get_dummies(rome_venues[['Venue

Category']], prefix="", prefix_sep="")
We then add neighborhood column back to dataframe:
rome_onehot['Borough'] = rome_venues['Borough']
We also move neighborhood column to the first column:
list_column = rome_onehot.columns.tolist()
number_column = int(list_column.index('Borough'))
list_column = [list_column[number_column]] +

list_column[:number_column] +
list_column[number_column+1:]

rome_onehot = rome_onehot[list_column]
rome_onehot.head(20)

Let’s determine the frequency of occurrence of each
venue category in the di�erent boroughs:

rome_grouped =
rome_onehot.groupby('Borough').mean().reset_index()

rome_grouped.head()

Creating a function to sort the venues in descending
order:

def return_most_common_venues(row,
num_top_venues):

row_categories = row.iloc[1:]
row_categories_sorted =

row_categories.sort_values(ascending=False)
return

row_categories_sorted.index.values[0:num_top_venues]

Now let's create the new data-frame and display the top
10 venues for each neighborhood:

num_top_venues = 10
indicators = ['st', 'nd', 'rd']
We also create columns according to number of top

venues:
columns = ['Borough']
for ind in np.arange(num_top_venues):
try:
columns.append('{}{} Most Common

Venue'.format(ind+1, indicators[ind]))
except:
columns.append('{}th Most Common

Venue'.format(ind+1))
We create a new dataframe with venues and boroughs

sorted:

boroughs_venues_sorted =
pd.DataFrame(columns=columns)

boroughs_venues_sorted['Borough'] =
rome_grouped['Borough']

for ind in np.arange(rome_grouped.shape[0]):
boroughs_venues_sorted.iloc[ind, 1:] =

return_most_common_venues(rome_grouped.iloc[ind, :],
num_top_venues)

boroughs_venues_sorted.head(12)

As you can see from above analysis, using one hot
encoding, we categorized the venue types further and sorted
them based on occurrence by each borough. That gave us the
following results showing the top 3 most common venues by
each borough. This will help us further determine the best
investment opportunity in each borough depending on the
types of venues that exist currently.

We will now use the previously imported K-means
algorithm to find out which types of venues fall in the same
category and their corresponding spatial distance:

We first set number of clusters to 2 as that will give us the
optimal results, using the ‘Elbow’ method, explained in
more detail below:

kclusters = 2
When run the k-means clustering algorithm:
kmeans = KMeans(n_clusters=kclusters,

random_state=0).fit(rome_grouped_clustering)
We then check cluster labels generated for each row in the

data frame:
labels = kmeans.labels_[0:11]
labels

We finally visualize the results and find the optimal K-
means value:

from scipy.spatial.distance import cdist
distortions = []
K = range(1,10)
for k in K:
kmeanModel = KMeans(n_clusters=k,

random_state=0).fit(rome_grouped_clustering)
distortions.append(sum(np.min(cdist(rome_grouped_c

lustering, kmeanModel.cluster_centers_, 'canberra'),
axis=1)) / rome_grouped_clustering.shape[0])

There are di�erent metric distance functions for spatial
distance. We chose Correlation instead of Euclidean method
in this case because the Canberra function gives us a better
view of elbow break point. This can be seen when we plot the
K-distortion on a plot:

plt.plot(K, distortions, 'bx-')
plt.xlabel('k')
plt.ylabel('Distortion')
plt.title('The Elbow Method showing the optimal k')
plt.show()

Based on the above analysis, Optimal K value is 2 – which
means we should group the venues into two clusters overall:
0 and 1. We will now create a new data-frame that includes
the clusters as well as the top 10 venues for each
neighborhood.

rome_merged = rome_data
We then add clustering labels:
boroughs_venues_sorted.insert(0, 'Cluster Labels',

kmeans.labels_)
and merge rome_grouped with rome_data to add

latitude/longitude for each neighborhood:

rome_merged =
rome_merged.join(boroughs_venues_sorted.set_index('B
orough'), on='Borough')

rome_merged.head(20)

We estimate the number of 1st Most Common Venue in
each cluster. Then, we can create a bar chart which may help
us to find proper label names for each cluster.

count_venue = rome_merged
count_venue = count_venue.drop(['Borough','Avg-

HousePrice', 'Latitude', 'Longitude'], axis=1)
count_venue = count_venue.groupby(['Cluster

Labels','1st Most Common

Venue']).size().reset_index(name='Counts')
cv_cluster = count_venue.pivot(index='Cluster Labels',

columns='1st Most Common Venue', values='Counts')
cv_cluster =

cv_cluster.fillna(0).astype(int).reset_index(drop=True)
cv_cluster

Creating a bar chart of "Number of Venues in Each
Cluster":

frame=cv_cluster.plot(kind='bar',figsize=(20,8),width =
0.8)

plt.legend(labels=cv_cluster.columns,fontsize= 14)
plt.title("Number of Venues in Each Cluster",fontsize=

16)
plt.xticks(fontsize=14)
plt.xticks(rotation=0)
plt.xlabel('Number of Venue', fontsize=14)
plt.ylabel('Clusters', fontsize=14)

When we examine above graph, we can label each cluster
as follows:

Cluster 0: "Night Club"
Cluster 1: "Multiple Social Venues"
We can now assign those new labels to existing label of

clusters:
Cluster_labels = {'Clusters': [0,1], 'Labels': ["Night

Club","Multiple Social Venues"]}
Cluster_labels = pd.DataFrame(data=Cluster_labels)
Cluster_labels

We can also present top 3 counts of di�erent venue types
in each neighborhood as follows:

top3 = rome_venues.groupby(['Borough','Venue
Category']).size().reset_index(name='Counts')

top3 =
top3.sort_values(['Borough','Counts'],ascending=False).gr
oupby('Borough').head(3).reset_index(drop=True)

top3['Join'] = top3['Counts'].map(str) + " " +
top3['Venue Category']

top3 = top3.groupby(['Borough'])['Join'].apply(",
".join).reset_index()

top3.head(12)

Since we have analyzed the venue groupings and most
common occurrences by neighborhoods, we can now switch
our attention to house prices – as that will help us narrow
down the best investment opportunities among the di�erent
boroughs.

We will analyze the housing sales prices for per square
meter in specific ranges. Then we can create new labels
which involve pricing features, as well.

data_process = df.sort_values('Avg-
HousePrice').reset_index(drop=True)

data_process = data_process.drop(['Latitude',
'Longitude'], axis=1)

data_process.head(12)

We will now examine the frequency of housing sales
prices in di�erent ranges using a histogram and for that we
have to put them in ‘bins’. Rest of the code below is to
format the histogram, so you can adjust the color, font, and
size to your liking.

num_bins = 5
n, bins, patches = plt.hist(data_process['Avg-

HousePrice'], num_bins, facecolor='blue', alpha=0.5)
plt.title("Average Housing Sales Prices in

Range",fontsize= 16)
plt.xticks(fontsize=14)
plt.xticks(rotation=0)
plt.xlabel('Average Housing Prices (m2/sq.)',

fontsize=14)
plt.ylabel('Counts', fontsize=14)
plt.show()

Based on the above histogram, house sales price (HSP)
ranges can be defined as follows:

4000 AHP : "Low Level HSP"
4000-6000 AHP : "Mid Level HSP"
6000-8000 AHP : "High Level HSP"
In this case, we can create "Level_labels" with those

levels. Mid to High sale prices indicate good income for
people residing in the area, and therefore, a good investment

opportunity if we are opening a new venue in the
neighborhood.

level = []
for i in range(0,len(data_process)):
if (data_process['Avg-HousePrice'][i] < 4000):
level.append("Low Level HSP")
elif (data_process['Avg-HousePrice'][i] >= 4000 and

data_process['Avg-HousePrice'][i] < 6000):
level.append("Mid Level HSP")
elif (data_process['Avg-HousePrice'][i] >= 6000 and

data_process['Avg-HousePrice'][i] < 8000):
level.append("High Level HSP")
data_process['Level_labels'] = level
data_process.head(12)

We can now add house sales price details to the cluster
table that also include the top venue list by neighborhood:

import numpy as np

result = pd.merge(rome_merged,
top3[['Borough', 'Join']],
left_on = 'Borough',
right_on = 'Borough',
how = 'left')
result= pd.merge(result,
Cluster_labels[['Clusters', 'Labels']],
left_on = 'Cluster Labels',
right_on = 'Clusters',
how = 'left')
result = pd.merge(result,
data_process[['Borough', 'Level_labels']],
left_on = 'Borough',
right_on = 'Borough',
how = 'left')
result = result.drop(['Clusters'], axis=1)
result.head(12)

Looks like Cluster 0, Camilluccia, is still looking very
attractive since the house prices are in the medium range

and there is very little competition from other restaurant
type venues in the neighborhood!

Finally, let's visualize the resulting clusters using the
Folium library which is very good for visualizing geospatial
maps – as mentioned earlier in this chapter.

import math
map_clusters = folium.Map(location=[latitude,

longitude], zoom_start=9.5)
We set the color scheme for the maps in the code below.

You can adjust the colors and format to your liking – as
mentioned previously when plotting other visualizations
using Python.

x = np.arange(kclusters)
ys = [i+x+(i*x)**2 for i in range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
You can also add markers to the map to mark each

borough:
markers_colors = []
for lat, lon, poi, cluster, join, cluster_number, label in

zip(result['Latitude'], result['Longitude'],
result['Borough'], result['Labels'], result['Join'],
result['Cluster Labels'], result['Level_labels']):

label = folium.Popup(str(poi) + " / " + str(cluster) + "-"
+ str(label) + " / " + str(join), parse_html=True)

if (math.isnan(cluster_number)== False):
folium.CircleMarker(
[lat, lon],
radius=5,
color= rainbow[int(cluster_number-1)],

popup=label,
fill_color = rainbow[int(cluster_number-1)],
fill_opacity=1).add_to(map_clusters)
map_clusters

As a summary of this analysis, we used a dataset
containing the names of di�erent neighborhoods for Rome
as well as the average house price and longitude and latitude
coordinates of those neighborhoods. We further augmented
this dataset by using Foursquare API, to bring in details of
the most common venues in each neighborhood.

We then used K-mean algorithm and elbow method that
recommended segmenting the data into 2 clusters overall

where Camillucia neighborhood ended up in Cluster 0 and
remaining neighborhoods ended up in Cluster 1. When we
analyzed the most common venues in each neighborhood, it
also became quite apparent that while in Cluster 1, there are
several Italian restaurants and other socialization venues
like cafes and hotels, Cluster 0 mainly had night clubs and
wine bars.

When we further visualized the data by overlaying the
real estate prices, Cluster 0 looks even more attractive from
a business investment perspective as the real estate prices
fall in the mid-level sales price range.

Based on the above analysis, we reach the
recommendation that Cluster 0 (Camillucia neighborhood)
as a good option for business investment and more
specifically opening an Italian restaurant or Pizza joint as
there is minimum to no competition for food locations for
night club goers and the real estate price is in the mid-range.

10

R
USE CASE 9 – CREATING RECOMMENDER SYSTEMS

ecommender systems is one of the most widely used
applications of Machine Learning in today’s world.
Here, technology meets marketing and psychology

to find the best matches between consumers and products.
All of us have experience with recommender systems:

YouTube proposes videos that we like
Spotify makes lists with songs based on what songs
we have listened to before
Netflix recommends movies based on what we have
watched before or what other similar users like
Facebook displays advertisements based on our
previous search history
Amazon displays products that we would probably
buy based on previous purchases, or products that
other users frequently buy together with our
current purchase
Instagram chooses to show us popular photos
based on our interests (monitored by likes and
search history)

Each application that utilizes recommender systems uses
a di�erent approach to form the recommendations.

A recommender system needs the following:
1. Users
2. Items (videos on YouTube, songs on Spotify, photos on

Instagram etc.)
3. Users’ activities (likes, purchases etc.)

In this chapter, we will use a Kaggle public dataset from
Netflix 2019 line up to determine how we can recommend
movies based on user viewing patterns and available content
on their platform.

As in previous chapters, this dataset along with the code
used in this chapter will be available to you via a download
link later in this book.

We will start with importing the necessary libraries:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
We will then load the dataset:
netflix_overall=pd.read_csv("netflix_titles.csv")
netflix_overall.head()

Let’s do a count of the overall variables in the Netflix
dataset:

netflix_overall.count()

Let's create specific variables for tv shows and movies for
further exploration

netflix_shows=netflix_overall[netflix_overall['type']==
'TV Show']

netflix_movies=netflix_overall[netflix_overall['type']=
='Movie']

We can now do a visual comparison by plotting tv shows
vs movies as a bar chart using seaborn library:

sns.set(style="darkgrid")
ax = sns.countplot(x="type", data=netflix_overall,

palette="Set1")

It is obvious from above analysis that there are more
movies than tv shows on the Netflix platform.

Now suppose we wanted to know when the best time is to
release new content on the Netflix platform. To determine
that, we will create a heatmap that shows releases of shows
by year on x-axis and month of release on y-axis to
determine the busiest and lightest months for new content.
NOTE: Most of the code below is to format the charts and to
set the color, font, and size of the plot. You can adjust to
your liking by changing the parameters in the code.

netflix_date = netflix_shows[['date_added']].dropna()
netflix_date['year'] =

netflix_date['date_added'].apply(lambda x : x.split(', ')
[-1])

netflix_date['month'] =
netflix_date['date_added'].apply(lambda x :
x.lstrip().split(' ')[0])

month_order = ['January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December'][::-1]

df = netflix_date.groupby('year')
['month'].value_counts().unstack().fillna(0)
[month_order].T

plt.figure(figsize=(9, 8), dpi=250)
plt.pcolor(df, cmap='YlGnBu_r', edgecolors='white',

linewidths=2)
plt.xticks(np.arange(0.5, len(df.columns), 1),

df.columns, fontsize=7, fontfamily='serif')
plt.yticks(np.arange(0.5, len(df.index), 1), df.index,

fontsize=7, fontfamily='serif')
plt.title('Netflix Launching New Content', fontsize=12,

fontfamily='calibri', fontweight='bold', position=(0.20,
1.0+0.02))

cbar = plt.colorbar()
cbar.ax.tick_params(labelsize=8)
cbar.ax.minorticks_on()
plt.show()

From the looks of the heatmap above, 2019 January, April
to June and December were relatively lighter months for
content and therefore likely good timing to release new
content on the Netflix platform. Now let's analyze the movie
ratings and their relative distribution.

plt.figure(figsize=(12,10))
sns.set(style="whitegrid")
ax = sns.countplot(x="rating", data=netflix_movies,

palette="Set1", \

order=netflix_movies['rating'].value_counts().index[0:
15])

Based on above comparison, mature content that is rated
MA, 14+ or R-rated outpaces more family friendly and PG
content. Now let's look at which years the most content was
released.

plt.figure(figsize=(11,9))
sns.set(style="whitegrid")
ax = sns.countplot(y="release_year",

data=netflix_movies, palette="Set1", \
order=netflix_movies['release_year'].value_counts().in

dex[0:15])

Based on above comparison, 2017 and 2018 had the most
content released. Let's also analyze average duration of
movies on Netflix.

netflix_movies['duration']=netflix_movies['duration'].
str.replace(' min','')

netflix_movies['duration']=netflix_movies['duration'].
astype(str).astype(int)

netflix_movies['duration']

sns.set(style="whitegrid")
sns.kdeplot(data=netflix_movies['duration'],

shade=False)

Based on the above chart, the average duration of movies
on Netflix is between 80 to 150 minutes. Now let's generate a
word cloud of the most common genres for movies by using
the word cloud library.

from wordcloud import WordCloud, STOPWORDS,
ImageColorGenerator

from PIL import Image
from collections import Counter
genres=list(netflix_movies['listed_in'])
gen=[]
for i in genres:
i=list(i.split(','))
for j in i:
gen.append(j.replace(' ',""))
g=Counter(gen)
text = list(set(gen))
plt.rcParams['figure.figsize'] = (13, 13)
In the code below, we format the word cloud by selecting

the background color and max number of words that show
up in the word cloud:

wordcloud =
WordCloud(max_words=1000000,background_color="whi
te").generate(str(text))

plt.imshow(wordcloud,interpolation="bilinear")
plt.axis("o�")
plt.show()

Based on above word cloud, it appears that dramas, cult
movies and musicals are the most common movie genres on
Netflix. For full coverage, let's generate a similar word cloud
for tv shows.

genres=list(netflix_shows['listed_in'])
gen=[]
for i in genres:
i=list(i.split(','))

for j in i:
gen.append(j.replace(' ',""))
g=Counter(gen)
from wordcloud import WordCloud, STOPWORDS,

ImageColorGenerator
text = list(set(gen))
wordcloud =

WordCloud(max_words=1000000,background_color="whi
te").generate(str(text))

plt.rcParams['figure.figsize'] = (13, 13)
plt.imshow(wordcloud,interpolation="bilinear")
plt.axis("o�")
plt.show()

Based on the above word cloud, Action, Adventure,
International and Mysteries are the most common tv show
genres on the platform. Now that we have analyzed the
Netflix movies and tv show genres, duration, and content
length, let's create our own recommender system to
recommend Netflix content to the users.

For that we will use the TFidVectorizer library from
SKLearn that comes built-in with recommender system
algorithms. The TF-IDF(Term Frequency-Inverse Document
Frequency) score is the frequency of a word occurring in a
document, down-weighted by the number of documents in
which it occurs. This is done to reduce the importance of
words that occur frequently in plot overviews and therefore,
their significance in computing the final similarity score.

from sklearn.feature_extraction.text import
TfidfVectorizer

We apply some data cleaning to the text by removing stop
words and null values. Stop words are generally filtered out

before processing a natural language. These are the most
common words in any language like articles, prepositions,
pronouns, and conjunctions and do not add much
information to the text that is being analyzed.

tfidf = TfidfVectorizer(stop_words='english')
netflix_overall['description'] =

netflix_overall['description'].fillna('')
We then construct the required TF-IDF matrix by fitting

and transforming the data:
tfidf_matrix =

tfidf.fit_transform(netflix_overall['description'])
And finally output the shape of tfidf_matrix:
tfidf_matrix.shape

To generate our recommendations, we will use the cosine
similarity score. Cosine similarity measures the similarity
between two vectors of an inner product space. It is
measured by the cosine of the angle between two vectors and
determines whether two vectors are pointing in roughly the
same direction. It uses the Euclidean dot product formula (as
illustrated below) to find similarities between components of
two vectors A and B. It is often used to measure document
similarity in text analysis and is relatively straightforward
and computationally e�cient to calculate.

Here is the code to compute the cosine similarity matrix
and a function called ‘get_recommendations’ that we can
use to generate recommendations based on the user’s
previous viewing habits.

We first import the linear_kernel to compute the cosine
similarity matrix:

from sklearn.metrics.pairwise import linear_kernel
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
indices = pd.Series(netflix_overall.index,

index=netflix_overall['title']).drop_duplicates()
We then define the function to get recommendations:
def get_recommendations(title,

cosine_sim=cosine_sim):
idx = indices[title]
First, we get the pairwsie similarity scores of all movies

with that movie:
sim_scores = list(enumerate(cosine_sim[idx]))
We then sort the movies based on the similarity scores:
sim_scores = sorted(sim_scores, key=lambda x: x[1],

reverse=True)
We narrow it down to get the scores of the 10 most similar

movies:
sim_scores = sim_scores[1:11]
and get the movie indices:

movie_indices = [i[0] for i in sim_scores]
Finally, we return the top 10 most similar movies:
return netflix_overall['title'].iloc[movie_indices]

Now that we have defined our recommendation
methodology, let's see the type of recommendations we will
get if our favorite movie was 'The Matrix'.

get_recommendations('The Matrix')

Interesting...and now what about if our favorite TV show
was 'Breaking Bad'.

get_recommendations('Breaking Bad')

And there you have it folks! A simple way to create our
very own recommender system that we created from scratch!

Congratulations you have now gone through all common
data science use cases in the real world and should feel
extremely confident tackling this brave new world
empowered with mastering Artificial Intelligence!

AFTERWORD

Wow! What a journey! Thank you for reading through the
data science use cases in this book and how you can apply
them in the real world!

You learned the most common day to day Python and
predictive analytics applications including:

Use Case 1 – Web scrapping to get the data you need
from relevant websites and format it into a data
frame for further analysis
Use Case 2 – Image processing to analyze and
format pictures for pattern recognition
Use Case 3 – Di�erent file type processing to be
able to handle any data wrangling challenges
Use Case 4 – Sending and receiving emails for
campaign automation
Use Case 5 – Time warping to compare data with
di�erent time scale
Use Case 6 – Time series analysis and forecasting to
predict the future based on history!
Use Case 7 – Financial fraud analysis and determine
the features required to identify these type of cases
Use Case 8 – Processing geospatial data for
opportunity analysis
Use Case 9 – Recommender system development to
see how Netflix works

And you did all of that by using hands on code examples
that are readily available to you for download (see the Free

Gift chapter for more details).
Also, if you haven’t already, please make sure to check

out the first two best-selling books in this series:
The first best selling book in this series, Ultimate Step by

Step Guide to Machine Learning using Python, gets you
started on your journey by including step by step
instructions to set up Python, introduces you to basic syntax,
data structures and data cleaning. It then takes you through
a real-life use case where you create a machine learning
predictive model from scratch! To purchase this book, follow
this link to get redirected to your local Amazon site:
http://mybook.to/MachineLearningPython.

The second best selling book in this series, Ultimate Step
by Step Guide to Deep Learning using Python gets into
neural networks concepts. It further di�erentiates machine
learning models from deep learning models and as a bonus,
shows you how you can deploy and optimize your models at
scale in the cloud! To purchase this book, follow this link to
get redirected to your local Amazon site:
http://mybook.to/DeepLearningPython.

If you have gone through all three of these books, there is
no stopping you in mastering the machine learning, deep
learning, and data science world! All the best to you in your
career progression!

http://mybook.to/MachineLearningPython
http://mybook.to/MachineLearningPython
http://mybook.to/DeepLearningPython
http://mybook.to/DeepLearningPython

11

Y
POST YOUR REVIEW

our review will help me improve this book and
future content and will also help other readers find
this book!

Thanks again for purchasing this book and your
continued support!

12

D
WEBSITE AND FREE GIFT (CODE TO DOWNLOAD)!

on’t be a stranger and please check out my website:
https://daneyalauthor.com/datascience
You will be able to download the code and

datasets used in this book by using the above link.

https://daneyalauthor.com/datascience

13

1
REFERENCES

. One of the richest in content websites about machine
learning:

Machine Learning, Medium.
https://medium.com/topic/machine-learning

2. Detailed tutorials and articles:
Learn Machine learning, artificial intelligence, business

analytics, data science, big data, data visualizations tools
and techniques, Analytics Vidhya.
https://www.analyticsvidhya.com/

3. Machine learning blog & code: Machine Learning
Mastery. https://machinelearningmastery.com/

4. Start coding with Jupyter notebook:
Running the Jupyter Notebook, Running the Jupyter

Notebook - Jupyter/IPython Notebook Quick Start Guide 0.1
documentation

https://jupyter-notebook-beginner-
guide.readthedocs.io/en/latest/execute.html

5. Check Python documentation when coding:
Latest Python documentation:

https://www.python.org/doc/
6. When stuck, google your question, and always check

Stack Overflow:
Where Developers Learn, Share, & Build Careers, Stack

overflow.
https://stackoverflow.com/
7. A machine learning community with coding

challenges and public datasets:

https://medium.com/topic/machine-learning
https://www.analyticsvidhya.com/
https://machinelearningmastery.com/
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
https://www.python.org/doc/
https://stackoverflow.com/

Your Machine Learning and Data Science Community,
Kaggle.

https://www.kaggle.com/
Public datasets used in this book under Creative

Commons license:

Time Series Forecasting: Ecommerce Daily Orders
Data
https://www.kaggle.com/jyesawtellrickson/ecomme
rce-bookings-data?select=ecommerce_data.csv
Fraud Analysis: Synthetic Financial Datasets for
Fraud Detection
https://www.kaggle.com/ealaxi/paysim1
Netflix Movies and TV Shows
https://www.kaggle.com/shivamb/netflix-shows?
select=netflix_titles.csv

https://www.kaggle.com/
https://www.kaggle.com/jyesawtellrickson/ecommerce-bookings-data?select=ecommerce_data.csv
https://www.kaggle.com/ealaxi/paysim1
https://www.kaggle.com/shivamb/netflix-shows?select=netflix_titles.csv

	Title Page
	Contents
	Copyright
	Dedication
	Introduction
	1. Getting Started
	2. Use Case 1 – Web Scrapping
	3. Use Case 2 – Image Processing
	4. Use Case 3 - Different File Type Processing
	5. Use Case 4 – Sending and Receiving Emails
	6. Use Case 5 – Dynamic Time Warping for Speech Analytics
	7. Use Case 6 – Time Series Analysis and Forecasting
	8. Use Case 7 – Fraud Analysis
	9. Use Case 8 – Processing Geospatial Data
	10. Use Case 9 – Creating Recommender Systems
	Afterword
	11. Post your Review
	12. Website and Free Gift (Code to Download)!
	13. References

