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INTRODUCTION

Welcome and congratulations on continuing your machine
learning and data science journey! World of machine
learning is constantly evolving but beauty of it all is that
there are some very common ways in which it is being
applied in everyday life. We see these use cases and patterns
emerge over and over — from intelligent web scrapping and
automation to advanced time series analysis and fraud
detection.

The first best selling book in this series, Ultimate Step by
Step Guide to Machine Learning_using_ Python, gets you
started on your journey by including step by step
instructions to set up Python, introduces you to basic syntax,
data structures and data cleaning. It then takes you through
a real-life use case where you create a machine learning
predictive model from scratch! As an added benefit, it comes
with code samples that you can run and experiment with on
your own! If you are not familiar with basic concepts of
Python, how to get it set up and would like to be introduced
to foundational Python libraries like Numpy, Seaborn and
Scikit-learn, this is the book for you! To purchase this book,
follow this link to get redirected to your local Amazon site:
http://mybook.to/MachineLearningPython.

The second best selling book in this series, Ultimate Step
by_Step Guide to Deep Learning using Python gets into deep
learning and neural networks concepts. It further
differentiates machine learning models from deep learning
models and as a bonus, shows you how you can deploy and
optimize your models at scale in the cloud. It delves deep


http://mybook.to/MachineLearningPython
http://mybook.to/MachineLearningPython
http://mybook.to/DeepLearningPython

into concepts such as linear and logistical regression
analysis and visually shows how decision tree, support
vector machine (SVM) and other model optimization
algorithms work. It demystifies neural network concepts
including Convolutional and Recurrent Neural Networks
(CNN and RNN) plus popular advanced Python libraries like
TensorFlow, Keras, PyTorch and much more! To purchase
this book, follow this link to get redirected to your local
Amazon site: http://mybook.to/DeepLearningPython.
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a arms (Ultimate Step by Step Guide to Machine Learning Book 2) jul 18, 2020

=
*Start your Data Science career using Python today!*

If you haven’t already, I highly encourage you to pick up
both previous books in this series, as they take you from
basic to advanced concepts with hands on exercises. Since
the introductory set up and foundational concepts have
already been covered in the previous books in this series, we
will not spend time on them in this book.

The goal of this book is to cover the most common
machine learning and data science use cases with code
examples you can execute on your own. After completing this
book and the exercises included within, you will be ready to


http://mybook.to/DeepLearningPython

solve real world problems with the power of artificial
intelligence.
Ready to get started? Let’s jump right in!






GETTING STARTED

website on how to install Python on your machine —
whether it is Windows, Mac OS, or Linux under
Python website in the Getting Started section.

I recommend you read through it as there is a lot of good
information and helpful links for beginners. However,
installing Python by itself is not very helpful or user friendly.
You are better off installing Python alongside an IDE
(Integrated Development Environment) — as that comes
with tools and development environment to execute and
debug your code.

For that I recommend starting with Anaconda
Distribution. It is an open-source tool that installs industry
standard IDEs and foundational Python libraries that we will
be describing in this book in more detail. When you click on
the above link, it will take you to a page to download and
install package for your operating system e.g., Windows,
macOS or Linux.

We will be using Jupyter Notebook as our development
environment for this book — Jupyter is part of the Anaconda
distribution package and will be installed on your machine
along with Python.

Jupyter is a powerful web-based development
environment that we will be using in this book to execute our
code and I have made all the source code used in this book
available on my website as a ‘.ipnyb’ Jupyter file.

Once Anaconda is installed on your machine, launch
Anaconda Navigator from your menu. Screenshot below for

T here are detailed instructions available via the Python



https://www.python.org/about/gettingstarted/
https://www.anaconda.com/distribution/
https://jupyter.org/

reference:

Recently added

Anaconda Prompt (Anaconda3)
. Reset Spyder Settings (Anaconda3)

Jupyter Notebook (Anaconda3)

'@' Spyder (Anaconda3)

Anaconda Navigator (Anaconda3)

OncE opeN, you should see the following Anaconda Navigator
dashboard with all the tools available to you:



{0 ANACONDA NAVIGATOR
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Applications on base (raot) - Channels

. Environments
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N Learning Jupyter
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Motebook

amn Community

Launch Jupyter Notebook by clicking on the ‘Launch’
button under that application icon. Once you do that, the
following web browser window will open:

..-. Jupyter Quit Logaut

Select items to perform actions on them Upload | |New~| &

0 - W/ Name &

Click on ‘New’ and the ‘Python 3’ in the top right. Once
you do that, a new browser window will open with your new
project and Python environment ready to execute. You can
rename your project as ‘My First Python Project’ by clicking
on ‘Untitled’ at the top of the screen (highlighted below for
reference).

Done? Alright, you are ready to go!



: Jupyter Untitled | ast Checkpoint: 2 minutes ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help

B + | @ B |4 % MWRin B C » | Code

In[]: M







USE CASE 1 - WEB SCRAPPING

make this data easily accessible via API calls or

downloadable as .csv files. To be able to access and
process this data, you need a way to be able to ‘scrape’ the
data off the website. That’s where the power of Python
comes in.

It comes with a powerful library called BeautifulSoup that
allows you to parse and extract data from any web page for
your use. Let’s cover an example end to end.

The main steps involved in extracting data from a web
page end to end include:

I nternet is a massive source of data but not all websites

1. Make a http or https call to the website by using the
url, like you would in a browser

2. The website returns the page as html

3. Since html code is typically nested in starting and
ending tags: <html> </html>, you use a parser like
the BeautifulSoup Python library that lets you
organize this information into a tree, that you can
easily traverse and access the pertinent details you
are interested in. You can use this approach to parse
xml data as well

First step is to install the Python libraries we will need.
Fire up your Anaconda prompt and run the following
commands to install the libraries you will need:

pip install requests

pip install htmlslib



pip install bs4

I will explain each of the above libraries as we use them in
the Python code below (NOTE: All the Python code and data
used in this, and subsequent chapters is available for
download via my website — instructions are at the end of the
book).

In the meanwhile, once you are done installing these
libraries, you should get a confirmation like this below in
your Anaconda prompt:

Successfully installed bs-4

Now we are ready to execute the Python code, let the fun
begin!

Python library 'requests' downloads the web page as
HTML, that we want to parse by making a GET request.

import requests

For this example, we will use the
https://daneyalauthor.com/ web page

page = requests.get('"https://daneyalauthor.com'')

For reference, the page looks like this:

I Ultimate Step by Step Guide To
Python Python Programming

Predictive modeling concepts explained in simple terms for beginners

_?- Join & Get the Bonus Code Samples

o




We first check whether the data was successfully received.
A status__code of 200 means the get call was successful.

page.status_ code

We get output as ‘200’ when we run the above line of
code, so it was successful as shown in the snapshot below:

In [1]: M #Python library ‘requests’' downloods the web poge as HTML, that we want to parse by maoking o GET request
import requests

In [2]: M #For the purpose of this exomple, we will use the https://daneyalouthor.com/ web page

page = requests.get({"https://daneyalauthor.com”
pag q g I )

In [3]: M #wWe first check whether the data was successfully received. A status_code of 20¢ means the get caoll was successful

page.status_code

]: 280

Now let's see what HTML code content we got from the
get call code we made.

page.content

Below is the output we get:

In [4]: M #Now Let’'s zee what HTML code content we got from the get coll code we made
page.content
(= Ty T TP T T eI T
k rels d;ternd te” type="appli {a'lun#rss+rm4 title="Daneyal Author che Page &raquo; Feed" href="htt ps fidaneyalauthor.co
m/feed/" /»\n<link rel="alternate” type="application/rss+xml™ title="Daneyal futhor Home Page Eragquo; Comments Feed” href
="https://daneyalauthor. com/conments/feed/” /»\n<link rel="alternate” type="application/rss+xml” title="Dameyal Author Ho
me Page &raque; Landing Page Comments Feed™ href="https://daneyalauthor.com/sample-page/feed/" /»\nh\t\t<scrdpt>imieiciowd
ndow._wpemojiSettings = {"baseUrl”:"https:\\/ \\/s.w.orghh/images\\foore\\JemoJi\\/12.8.6-1\\/72x720\/", "ext™: " . png", "svgll
rl™ i Theeps NN s W orgh W images S core\ Weso i\ 12,8, 8- 100\ svgh 7L T SVEERT ™ "L svg ", T source” : {"concatemoiiT i "htps: W\
‘\fdaneyalauthor . com\\fwp- includes\\/is\\/up-emoji-release.min, jstver=5.3.8"}}; wniehe\t! function(e,a,t){var n,r,0,i-a.cre
ateEienent{"Lanvas").pri.get{entext&&i.ge:ton:ext{'Ed"};fanctiuﬂ s{e,t}{var a=5tring.fromCharlode;p.clearRect{8,8,i.widt
h,i.height}),p.fillText(a.apply(this,e),8,8);e=1.toDatalRL(};return p. claarﬂec (8,8,i.width,i.hei ghtJ p.fillText({a. apply{t
his,t}),8,8),e==ai. 'cjataU{L(]}F;nf‘lnr c{e)}{var t=a.createElement(” SCIth stosrc=e, t.deferst. type="text/javascript™,a.ge
tElementsByTaghame("head")[@].appendChild({t) }for{o=Array("flag™,"emoji™),t.supports={everything: !8,everythingExceptFlag:
a],*-ﬁ;r<n_1o*grh;rc.;t.aunpnrrc[o[ﬂ]:-{uﬁrtion(ﬂ)fti:p |:p.{11]Tnxr|ror1rn 1:switch{p.textBaseline="top",p.font="608 32
ase"flag”:return s([127987,65@39,8205,9895,65039], [127987,65039,8203,9595,65839]) *!11: ! s([55356, 56826, 55356,
825 8203, :5355 30819] && s [553:5 57 3‘2 :6128 56423,56128,56418,56128,56421,56128,56430,56128,56423,5612
3,56128,56421, 8203 ,561248,56430,8203, 56128, 56423, 8203 ,56128, 564
»26685 ; B285,55 , 56424 ,55356,57348],[55357,56424,55356,5734
o[r]),t. suppc:ts everything=t.supports. P\pr}thlnp%&t supports
FlaglSt. supports[o[r]]) t.supports. ever
1,t.readyCallback= FJntllUﬂ[ {t.DOMReady=" -

px Arial®
56819] [5

2,8263, 55358, 56685, 8203, 55357, 5 6-1?-‘- 55356 ':‘J"'sdnj'l}r‘enr‘n 1}
[o[r]]. " flag"™ == n[r Lﬂ[r SUPPOrTS . ﬂ»ﬂ“j'n1nng(&p"]ﬁg-' SUPPOPTS . BVEry 'n*ﬂEFx(ﬂ
thingExt=ulF1ag- .supports.everythingExceptFlaghl!t. SUPPOrts. flag,t -DOMReady -

That's a lot of content! We will need to parse it in a
structured fashion. That's where BeautifulSoup library
comes in that has a built-in HTML parser! Isn't Python
awesome?

from bs/ import BeautifulSoup



soup = BeautifulSoup(page.content, 'html.parser')

Now let's see how BeautifulSoup can 'prettify' the output
and formats it nicely.

print(soup.prettify())

We get the following output when we run the above line
of code:

Much better! Now on to the parsing. We can now traverse
the HTML code by going through the nest tags in the HTML
code.

That's accomplished by using the 'children' feature as all
nested HTML tags are children of the parent tag. We can
organize the data as a Python list data structure, this is
explained in first best-selling book in this series, Ultimate
Step by Step Guide to Machine Learning using Python.

list(soup.children)

We get the following output when we run the above line
of code:



http://mybook.to/MachineLearningPython

]: M list{soup.children

t [Cheml®,

'y,
“[iF IE 7]2\nchtml class="ie ie7" lang="en-US">\n<![endif]’,
“nt,

“[if IE 8)»\nchtm]l classs"le 1e8” langs="en-Us"»\n<![endif]’,
"\,

“[if I{IE 7) I(IE 8) J»<!’

“\n*

<html class="tch™ lang="en-Us"»

el--¢l[endif]--»

<head>

<meta charset="utf-§"/>

<meta content="width-device-width, initial-scale=1.8" name="viewport™/>

<seripta(functionfhtml){htal className = html.classMame.replace(/ \bno-Js\b/, 2" )})(document . documentElement) ;< /script>
«titlesxDa uthor Home Page</titles

<link hre nts.googleapis . com™ rel="dns-prefetch” />

w.org™ rel="dns-prefetch"/»

«link crossorigin="" href="https://fonts.gstatic.com™ rel="preconnect™/>

<link href="https://daneyalauthor.com/feed/" rel="alternate” title="Daneyal Author Home Page » Feed™ type="application/r

Now let's find out what different type of HTML elements

we have in our list by running the following line of code:

[type(item) for item in list(soup.children)]

[9]: M| #Now let’s find out what different type o
type{item) for item in list(soup.children)
£[2]: [bsé.element.Doctype,
bsd.element.NavigableString,
bs4.element . Comment,
bs4.element .NavigableString,
bs4.element . Comment,

bs4.element.Tag,
b4, element Navigablestring]

Nice! We have the following HTML object types:

1. Doctype object, which as the name implies,
contains information about the type of HTML
document this is

2. NavigableString, which is the text in the HTML
document

3. Tag, which represents the nested tags in the
document



4. Comment, which represents the comments on the
web page

For this example, we will focus on the Tag object - that is
item 8 in the above list, if we count from 0 for the first item.

html = list(soup.children)[8]

Let's see what nested tags are included in the Tag object
by using the 'children' feature in BeautifulSoup library.

list(html.children)

H
html 1ist{soup.children)[8
[*4n . cheads
imet 3%/
<t F initial-scale=-1.0" name="viewport™/>
114, htal.className, replace(/\bno-jshb/, " §5' )} ) (document . documentElement ) ;</seripts
<tit
<1in| dns - prefete
<link h
<link ¢ h s:/f/fonts.gstatic.com” rel="preconnect"/»
link h aneyalauthor.com/feed/” rel="alternate” title="Daneyal Author Home Page » Feed” type="application/r
55 "i'll"'

¢link href="https://daneyalauthor. com/comments/feed/” rel="alternate” title="Daneyal Awthor Home Page » Comments Feed™ t
ype="application/rss+aml™/>

¢«link href="https://daneyalauthor.com/sample-page/feed/” rel="alternate” title="Daneyal Author Home Page » Landing Page
Comments Feed” type="applicationf/rss+xml”/>
¢scripts

winda
W7, Text T png”, TsvglrlT: “ht
i":"https:\J/\J/daneyalauthor.c
Ifunctionfe,a,t)

= {"baselrl™:"ht
mages\/corel fem
oji-release.min, j
i Ji=a.createElement("ca

jisetti

Now suppose we are interested in finding what is in the
<title> tag of the HTML code. For that we use the find_ all
function which will find all instances of a specific HTML tag.

soup.find__all('title')

And it looks like there is only one instance of the ‘title’
tag in the HTML, when we run this line of code:



Let's also look for Cascading Style Sheets (CSS) use in this
web page as that helps with the page layout, colors, and
fonts. Typically, we will see CSS embedded in the p tags in
HTML. So, let's use the select method that returns a list data
structure

soup.SELECT("'pIv P"')

r-basic” data-css="tve-u-1785659c9937 href="https:/ www.daneyalautho

The above code returned all instances where CSS style
sheets were used, embedded in the p tags — as shown in the
‘data-css’ part of the HTML code snippet above.

If you recall from the https://daneyalauthor.com web
page image earlier in the chapter, there is also a button on
the page with a label “Join & Get the Bonus Code Samples”.
If you were curious about what action that button triggers,
you can run the following line of code:

soup.find__all('button')


https://daneyalauthor.com/

As you can see from the snapshot above, the button
triggers a subscription action, allowing users to sign up for
my mailing list while getting the bonus code samples that
are shared in the book! Isn’t that fantastic?

Now let's use a different example where we extract a table
from HTML and organize as a Panda data frame in Python.
These data structures are explained in detail in the first
best-selling book in this series, Ultimate Step by Step Guide
to _Machine Learning using_ Python, so I would highly
recommend reviewing that if you haven’t already.

For that, let's use list of academy award winning movies
from wiki.

import pandas as pd

url =
'https://en.wikipedia.org/wiki/List_of Academy_Award-
winning_ films'

dfs = pd.read__html(url)

print(len(dfs))

In the above code snippet, we imported the ‘pandas’
library that allows us to create the Panda data frame. We
then read the url of the wiki page by using the ‘read_ htm!’
function and then print out the results. For reference, if you
go to the above referenced wiki page url, you will see an
HTML table of academy award winning movies as follows:



http://mybook.to/MachineLearningPython

Film ¢  Year ¢ Awards ¢+ Nominations 4

Nomadland 2020/21 | 3 &
The Father 2020021 | 2 G
Judas and the Black Messiah 2020/21 | 2 &
Minari 2020/21 |1 G
Mank 2020021 | 2 10
Sound of Metal 2020021 | 2 G
Ma Rainey's Black Bottom 2020021 | 2 5
Promising Young Woman 202021 |1 5
Tenet 202021 |1 2
Soul 2020121 | 2 3
Another Round 2020/21 |1 2
My QOctopus Teacher 2020021 |1 1
Colette 2020/21 |1 1
If Anything Happens | Love You 2020021 |1 1
Two Distant Strangers 2020121 |1 1

Here are the results we get when we execute the above
lines of code:

import pandas as pd
url ‘https://en.wikipedia.org/wikisList_of Academy Award-winning_films®
dfs pd.read html(url)

{len{dfs))

This means there are two tables on the wiki page. Let's
look at the table output for first table

df = dfs[o]

print(df)

Note that we used [0] in the data frame array to grab the
first table. Here are the results we get when we execute the
above line of code:



d dfs[a]
t(df
Film Year Awards

a Nomadland 2828/21 3
1 The Father 2828/21 2

Judas and the Black Messiah 2828/21 2
] Minari 2828/21 1
4 Mank 2828/21 2
1327 The Yankee Doodle Mouse 1943 1
1328 The Yearling 1946 2
1322 vYesterday, Teday and Temorrew (Ieri, oggl, dom... 1964 1
1328 You Can't Take It with You 1938 2
1331 Zorba the Greek (Alexis Zorbas) 1964 3

a 6
1 6
2 6
3 L]
4 18
1327 1
1328 7
1329 1
338 r
331 7
1332 rows x 4 columns)

We can also access individual columns by using column
names in the table:

print(df['Film'])

print(df['Year'])

print(df['Awards'])

Here are the results we get when we execute the above
lines of code:



In [22]: M | #we ¢ 1lzo access individval columns this way:

@ Nomadland
1 The Father
2 Judas and the Black Messiah
3 Minari
4 Mank
1327 The Yankee Doodle Mouse
1328 The Yearling
1329 Yesterday, Today and Tomorrow (Ieri, oggi, dom...
1338 You Can't Take It with You
1331 Zorba the Greek {Alexis Zorbas)
Name: Film, Length: 1332, dtype: object

8 2820/21

i 2820/21

2 2828/21

3 2828/21

4 282e/21

1327 1943

1328 1946

1329 1964

1338 1938

1331 1964

Name: Year, Length: 1332, dtype: object

8 3

1 2

2 2

3 1

4 2

1327 1

1328 2

1329 1

1338 2

1331 3

Name: Awards, Length: 1232, dtype: object

Now, assume we are only interested in movie name and
year and don’t want the rest of the table. We can create a
subset of the data frame, only containing these two columns:

df2 = df{['Film','Year']]

print(df2)



In [28]: M| #Assume we are only interested in movie name and year
df2 = df[['Film', 'Year']]

print{df2)

Film Year
a Homadland 2828/21
1 The Father 2828/21
2 Judas and the Black Messiah 2828/21
3 Minari 2028/21
4 Mank 2@28/21
1327 The Yankee Doodle Mouse 1943
1328 The Yearling 1946
1329 Yesterday, Today and Tomorrow (Ieri, oggi, dom... 1964
1338 You Can't Take It with You 1938
1331 Zorba the Greek (Alexis Zorbas) 1984

[1332 rows x 2 columns]

Now that the data is nicely organized in a Panda data
frame, let's export to excel for additional analysis by using
'to__excel' function.

df2.to _excel('movies.xlsx')

You should now see the excel file called ‘movies.xlsx’
created in the folder where your Python code resides.



: jupyter

Files Running Clusters
Select items to perform actions on them.
(10 ~ W/ webscrape
i 89

(J & Webscrape.ipynb

) [ LICENSE

O O movies.xlsx _

() [3 README.md

There you have it! That's how you scrape and access data
from an HTML web page into Python.






USE CASE 2 - IMAGE PROCESSING

science — from simple usage like applying image filters

to your Instagram photos to more complex use cases
like cancer cell analysis by applying pattern recognition.

As described in detail in the second best-selling book in

I mage processing is a very popular use case for data

using_Python, Convolutional Neural Networks (CNN) are
widely used with image data. The name derives from the
Convolutions that are realized between matrices in each
layer. It essentially is a mathematical operation that
translates each image into a matrix, so it can be processed
and manipulated as required for the purpose at hand.

Luckily, Python comes with several built-in powerful
libraries for image processing that we will use to illustrate
this concept in more detail below.

We will start with pyplot and scikit-image libraries which
is an open-source Python library and works well with
Numpy arrays.

import matplotlib.pyplot as plt

%matplotlib inline

We import sample images and filters from scikit-image
library. Full list of test images available can be seen at this
URL:

https://scikit-image.org/docs/dev/api/skimage.data.html

from skimage import data,filters

We use the checkerboard test image from the library and
print it in grayscale

image = data.checkerboard()


http://mybook.to/DeepLearningPython
https://scikit-image.org/docs/dev/api/skimage.data.html

plt.imshow(image, cmap='gray')

import matpletlib.pyplet as plt
Ematplotlib inline

t-image. of
from skimage import data,filters|
#ie use e checkerbogrd test imoge from the librory and print it in grayscale
image = data.checkerbeoard()

plt.imshow(image, cmap='gray")

Out{1l]: <matplotlib.image.AxesImage at @x288a88bab8&>

Now let’s apply some filters on this image. Full list of
filters is available at this URL:

https://scikit-
image.org/docs/stable/api/skimage.filters.html

We will first use the 'Sato' image filter which applies a
blurry look to the image.

edges = filters.sato(image)

plt.imshow(edges, cmap="'gray')



https://scikit-image.org/docs/stable/api/skimage.filters.html

edges = filters.sato(image)
plt.imshow(edges, cmap='gray')

Out[15]: <matplotlib.image.AxesImage at ©x288a89e4b88>

We will then use the 'Scharr' image filter which finds the

edge magnitude of the image.
edges = filters.scharr(image)
plt.imshow(edges, cmap="'gray')

In [16]: M #we will then use the 'Scharr' image filter which finds the edge magnitude o
edges = filters.scharr(image)
plt.imshow(edges, cmap='gray’

Out[l6]: «<matplotlib.image.AxesImage at @x288aBad496c8>
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Let's now use Numpy, which as introduced in the first
book in this series, is one of the foundational Python



libraries. Numpy converts the image into an array data
structure for each manipulation. We will still use scikit-
image library for loading and displaying the image.

import numpy as np

image = data.coffee()

plt.imshow(image, cmap="'gray')

import numpy as np

image = data.coffee()
plt.imshow(image, cmap="gray'

Out[22]: <matplotlib.image.AxesImage at @xZBBaBdf59@8»

type(image)

Let’s convert this image into a Numpy array:
np.ndarray

Now let’s mask this image:

mask = image < 85

image[mask]=256

plt.imshow(image, cmap='gray')



In [24]: MW type(image)
np.ndarray
mask = image « &5
image[mask ]=2¢
plt.imshow(image, cmap='gray’ |

24]: «¢matplotlib.image.AxesImage at Bx2B8a%e9a308>
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As introduced in the first book in the series, Scipy is a
foundational Python library used for mathematical and
scientific calculations. It works well with Numpy data
structures and comes with built-in libraries for image
processing, as part of scipy.ndimage sub-module.

Detailed documentation available via this URL:

https://docs.scipy.org/doc/scipy/reference/tutorial/ndima
ge.html#correlation-and-convolution

Let’s see it in action:

from scipy import ndimage

image = data.chelsea()

Original Image:

plt.imshow(image)


https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html%23correlation-and-convolution

from scipy import ndimagq
image = data.chelsea()

#0riginol Image

plt_imshnw(image)

Out[31]: <matplotlib.image.AxesIsage at @x2882a24d7cE>

a 100 00 00 400

Now let's apply a light Gaussian filter to this cat image to
make it blurry. Details of the Gaussian filter and how it
works are included in the second book in the series and you
can also refer to additional documentation on types of filters
available by following this URL:

https://docs.scipy.org/doc/scipy/reference/generated/scip
y.ndimage.gaussian_ filter.html

blurred_image =  ndimage.gaussian_ filter(image,
sigma=3)

plt.imshow(blurred_ image)


https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html

In [34]: M #Now let's opply o Light Goussion filter to this cat imoge to make it blurry
#Details of the Goussien filter and how it works are included in the second book in the series ond you con olso refer to
#odditional documentation on types of filters auvailoble by following this URL:
#https://docs. scipy.org/doc/scipy/reference/generated/scipy. ndimage. gaussion_filter.htmi

blurred_image = ndimage.gaussian_filter(image, sigma=3)
plt.imshow(blurred_image )|

Out[34]: <matplotlib.image.AxesImage at Gx2B8aa368788>
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And now, let's make it blurry by increasing the sigma
value for the Gaussian filter:

very_blurred_image = ndimage.gaussian_ filter(image,
sigma=5)

plt.imshow(very_ blurred_image)

In [35]: M wmand now, Let’s make it really blurry by increasing the sigma value for the Goussian filter
wery_blurred_image = ndimage.gaussian_filter(image, sigma=5)
plt.imshow(very_blurred_image)|

Out[35]: cmatplotlib.image.AxesImage at 9x288aaBbG6ES:

There are more advanced libraries for image processing in
Python which require additional set up and install steps.
Discussion of these libraries is outside the scope of this
book, but you are welcome to reference the links below for
more details and if you would like to try them out:



1) PIL (Python Imaging Library) - this library is good for
additional convolution functions, color formatting and
filters:

https://pillow.readthedocs.io/en/stable/

2) OpenCV (Open-Source Computer Vision Library) - this
library is used for computer vision applications that require a
lot of computation firepower. This library is use for faster
processing because it is built using C/C++ with a Python
wrapper:

https://github.com/abidrahmank/OpenCV2-Python-
Tutorials

There you go! Now you know enough to process images
and apply filters in Python!



https://pillow.readthedocs.io/en/stable/
https://github.com/abidrahmank/OpenCV2-Python-Tutorials




USE CASE 3 - DIFFERENT FILE TYPE PROCESSING

extract and process data before it is ready for
analysis. Knowing how to work with different file
types is an important skill to have in your toolkit. In this
chapter, we will go over Python processing modes for
different file types and how to organize this data into built-
in Python data structure. Let’s get started!
Python can work with the following file types:

D ata scientists often work with different file types to

e Comma-separated values (CSV)
e XLSX (Excel)

e Plain Text (txt)

e JSON

o XML

o HTML

e PDF (Adobe)

e DOCX (Microsoft Word)
e Images

o MP3

o MP4

o ZIP

Python also has different file processing modes:
Mode

Description

|r|

This is the default read mode.

|WI



This is the writing mode. If a file already exists, it will
write to it and if not, it will create a new one with the name
provided.

|Xl

This is to create a new file and if the file already exists, it
will give a failure message.

|al

This is the mode to add / append to an existing file. If the
file does not exist, it will create a new one.

|t|

By default, Python assumes it is a text file.

|bl

Switch to this mode for processing the file in binary
mode.

|+l

This is the update mode — so the file is opened in reading
and writing mode.

Ler’s first start with reading from CSV file and storing its
information in a Panda data frame. For this example, we will
create a .csv file in the same folder where the Python code
resides for easy processing.

Let’s first read a CSV file containing comma separated
values for Oscar winning movies. The file looks like this:



_ | csvtest.csv - Notepad

File Edit Format View Help

Film,Year,Awards,Nominations

7 Faces of Dr. Lao,1964,0 (1),1

7th Heaven,1927/28,3,5

8 Mile,2002,1,1

12 Years a Slave,2013,3,9

20 Feet from Stardom,2013,1,1

"20,000 Leagues Under the Sea",1954,2,3

1917,2019,3,10

2001: A Space Odyssey,1968,1,4

A Fantastic Woman,2017,1,1

A Force in Readiness,1961,0 (1),0

A Girl in the River: The Price of Forgiveness,2615,1,1
A Herb Alpert and the Tijuana Brass Double Feature,1966,1,1

We will import contents of the csv file into a Pandas data
frame:

import pandas as pd

df csv = pd.read__csv('csvtest.csv')

Now let’s display the contents of this file in a data frame:

display(df_csv)

In [8]: M #hWe will import conte

impert pandas as pd

df_csv = pd.read_csw( ' 'csvtest.csv')
INO t 1isplay the content £ th

oW LeTs arspLay ThRe
display(df_cswv |

Film Year Awards MNeminations

7 Facas of Dr. Lao 1864 o (1) 1

Tth Heaven 1927728 3 5

2 & Mile 2002 1 1

3 12 Years a Slave 2013 3 ]

4 20 Feat from S1andam 2013 1 1

20,000 Leagues Under the Sea 1954 2 3

& 1mi 20§89 3 10

7 2001: A Space Odyssay 1968 4

B A Fantastic Womarn 207 1 1

A Force in Readiness 1961 O 1]

10 AGIr in the River: The Prica of Forgivanass 2015 1
11 AHerb Alpert and the Tijuana Brass Double Fea 1966 1



We can do the same with an excel file. Our sample excel
file looks like this:

File M Insert Draw Page Layout Formulas Data Review View
[] lfgcm Calibri 11 vAA = EE v 2B Wrap Text
Copy ~
Pafte ?5 FornatPainter B I U~ ; v h ﬁ i = = =|¢e= = Merge & C
Clipboard N Font N Alignment
F8 v fx
A B C D E
. Film Year Awards Nominations
2 7 Faces of Dr. Lao 1964 0 (1) 1
3 7th Heaven 1927/28 3 5
4 8 Mile 2002 il 1
5 12 Years a Slave 2013 3 9
6 20 Feet from Stardom 2013 1 al
7 20,000 Leagues Under the Sea 1954 2 3
8 1917 2019 3 10
9 2001: A Space Odyssey 1968 1 4
10 A Fantastic Woman 2017 X 1
11 A Force in Readiness 1961 0(1) 0
A Girl in the River: The Price of
- 2015 1 1
12 Forgiveness I
A Herb Alpert and the Tijuana Brass 1966 1 1
13 Double Feature .
14
15
16
17
18
19
20
21
22
23
24
25

xlstest @

However, since excel can have multiple tabs, we must
specify the sheet name:



df xls = pd.read__excel('exceltest.xlsx’',
sheet name="xlstest')

Display contents of excel file:

display(df_xIs)

11: M e

df_xls = pd.read_excel('exceltest.xlsx', sheet_name="xlstest’)

display(df_x1s)|

Fiim Year Awards Meminations
7 Facas of Dr, Lad 1964
1 Tth Heaven 1827/28
2 B Wil 2002

12 Years a Slave

4 20 Feet from Stardom 2013
20,000 Leagues Under the Sea 1654 2
B 117 2019 3 10
T 2001 A Spaca Odyssay 1968 1 4
B A Fanta: W 2017
A Force in Readiness

10 A Girl in the River: The Price of Forgiveness 2015

11 AHerb Alpert and the Tijuana Brass Double Fea, 1966

Now that we have the data nicely organized in a Pandas
dataframe, we can process it like a data structure. We can
access the columns:

print(df_ xls.columns.ravel())

print{df_xls.columns,.ravel())

['Film' 'Year' ‘Awards’ 'Nosinations’]

And we can access contents of a specific column, by using
the .tolist() function. In the below example, we list all movie
names in our excel file:

print(df_ xIs['Film'].tolist())



wie r tn Fi
print(df_x1s['Film'].telist(})|

['? Faces of Dr. Lao', '7th Heaven', '8 Mile', ‘12 Years a Slave’', "28 Feet from Stardom®, °"20,080 Leagues Under the Sea”, 1
917, "26@1: A Space Odyssey', 'A Fantastic Woman®, 'A Force in Readiness';, 'A Girl in the River: The Price of Forgiveness',
‘A Herb Alpert and the Tijuana Brass Double Feature']

You can even convert the excel file content into other
formats like csv and json. First, we show results as JSON:

print('Print Excel as JSON:',
df xls.to_json(orient="records'))

[12]: M #You con even convert the excel file content into other formots Like csv and json. First we sh
print('Print Excel as J50N:', df xls.to_json({orient='records’))

Print Excel as J50N: [{"Film":"7 Faces of Dr. Lao","¥Year”:1964 “Awards™:™@ (1}","Nomimatiomns”:1},{"Film":"7th Heaven™,6"Yea

r 1927 /28", "Awards" : 3, "Nominations" 5}, {"Film": "8 Mile","Year":2@82,"Awards":1, "Nominations":1},{"Film":"12 Years a Slav
e”,"Year” 12813, "Awards™: 3, "Nominations™:9},{"Film":"2@ Feet from Stardom”,"Year":2813, “Awards™:1,"Nominations”:1},{"Film":"2
9,088 Leagues Under the Sea”,"Year™:1954,"Awards":2,"Hominations":3},{"Film~:1917,%Year":2019, "Awards":3, "Nominations":10},
{"Film":"2881: A Space Odyssey","Year":1968,"Awards":1,"Nominations":4},{"Film":"A Fantastic Woman®,"Year™:2817,"Awards":
1,"Nominations”:1},{"Film":"A Force in Readiness”,"Year":1961,"Awards":"@ (1)7,"Nominations™:@},{"Film":"A Girl in the Rive
r: The Price of Forgiveness®,“Year":2815,"Awards":1, “Nominations":1},{"“Film=:"4 Herb Alpert and the Tijuana Brass Double Fea
ture”, “Year™:1966, "Awards":1, "Nominations":1}]

And then we show the results as a CSV:
print('Print Excel as CSV', df _xls.to__csv(index=False))

In [14]: M wand then we show the results as a C5V
print('Print Excel as C5V', df_xls.to_csv(index=False))|

Print Excel as C3V Film,Year,fwards,Nominations

7 Faces of Dr. Lao,1964,8 (1),1

7th Heaven,1927/28,3,5

g Mile,28032,1,1

12 Years & Slave,2813,3,9

28 Feet from Stardom,2813,1,1

"28,0088 Leagues Under the Sea™,1954,2,3

1917,2819,3,18

28@1: A Space Odyssey,1968,1,4

A Fantastic Woman,2817,1,1

A Force im Readiness,1961,8 (1),8

A Girl in the River: The Price of Forgiveness,2815,1,1
A Herk Alpert and the Tijuana Brass Double Feature,1966,1,1

To read a json file, like excel and csv files, you can use the
Pandas read_json function. For this purpose, we use JSON
file sample from:

https://json.org/example.html
Our JSON file sample looks like this:


https://json.org/example.html

{
"glossary": {
"title": "example glossary",
"GlossDiv™: {
“title": "S",
“GlossList": {
"GlossEntry”: {
"ID": "SGML",
"SortaAs": "SGML",
"GlossTerm": "Standard Generalized Markup Language”,
"Acronym™: "SGML",
"Abbrev": "ISD BB79:1986",
"GlossDef": {
"para": "A meta-markup language, used to create markup languages such as DocBook.",
“GlossSeeAlso": ["GMLY, "XML"]

"GlossSee™: "markup”

df json = pd.read_json('jsontest.json')

DISPLAY CONTENTS OF JSON FILE:
display(df json)

In [15]: M #To read a json file, similer to excel and csv files
#we use JEON File sample from hitg 544 )
df_json = pd.read_json{ jsontest.json")
display(df_jsen)

glossary

GlossDiv  [title’: 'S, 'GlossList” {'GlossEntry”: {1.

tille example glossiry

To process an XML file, we use ElementTree library. We
will use the parse function to process the xmltest sample
that we got from:

https://docs.python.org/3/library/xml.etree.elementtree.h
tml

It contains sample data for countries and their neighbors:


https://docs.python.org/3/library/xml.etree.elementtree.html

<?xml version="1.0"?>
<data>
<country name="Liechtenstein">
<rank>1</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>
</country>
<country name="Singapore">
<rank>4</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>
</country>
<country name="Panama">
<rank>68</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>
</country>
</data>

import xml.etree.ElementTree as ET

tree = ET.parse('countries.xml')

Now that we have parsed the country data as a tree
structure, let’s get the root of the tree:

root = tree.getroot()



Let’s see what the root of the tree contains. Each element
of the tree, including the root, has tags that describe it:

root.tag

root.attrib

root.tag

Now print all children of the root of the tree, and their
corresponding tags and attributes

for child in root:

... print(child.tag, child.attrib)

for child in roo

T
rint{child.tag, child.attrib

d
p
{"name': 'Liechtenstein’}
{
1

ountry
country {'name’': ‘Singapore’}
untry P

NOTE: We will not cover parsing HTML files in this
chapter as that was covered in detail in previous web
scraping chapter and we used BeautifulSoup library for that.
Similarly for processing image files please check out the
chapter on image processing in this book.

For processing PDF files, you will have to first install PDF
mining library from this link:

https://euske.github.io/pdfminer/



https://euske.github.io/pdfminer/

You can then run the following line of code to extract the
PDF file as txt

pdf2txt.py pdftest.pdf

For processing Word (.docx) files, you will have to first
install doc2txt library by using this command:

pip install docx2txt

Once installed, you can run the following code to extract
the DOCX file as txt:

import docx2txt

text = docx2txt.process(''doctest.docx'")

Print the contents of the word file:

print (text)

import docx2txt
text docxZtxt.process( "doctest.docx

Sometimes data scientists can also receive an archived
ZIP file to process in Python. You must first import zipfile
library and then read the results into a data frame.

import zipfile

archive = zipfile.ZipFile('data.zip', 'r')

Let’s look at the content of this zip file:



» data.zip

D Name . Type
= countries.xml XML Document
B csvtest.csv Microsoft Excel Comma S...
@ doctest.docx Microsoft Word Document
B exceltest.xlsx Microsoft Excel Worksheet
Jjsontest.json JSON File
@ pdftest.pdf Adobe Acrobat Document

Once we have the entire archive read in, we can read one
of the files in the archive into a data frame:

df archive = archive.read('csvtest.csv')

display (df__archive)

p
archive = zipfile.ZipFile( 'data.zip", "r'")
df_archive = archive.read('csvtest.csv
[35]: M display {df_archive)|
b'yxef\xbbyxbfFilm, Year, Awards ,Mominations'\rin? Faces of Dr. Lac,1964,8 (1),1%r\n7th Heaven,1927,/28,3,5\r\nE Mile, K 2882,1,1\r
Wl Years a Slave,2013,3,9\r\nl@ Feet from Stardom,2013,1,1\r\n"28,008 Leagues Under the S5Sea”,1954,2,3\r\nl917,2819,3,18\r

\n2881: A Space Ddyssey,1968,1,4\r\nA Fantastic Weman,2017,1,1%r\nA Force in Readiness,1961,8 (1),@\F\mA Girl in the River:
The Price of Forgiveness,2815,1,1\r\ni Herb Alpert and the Tijuana Brass Double Feature,1966,1,1%r%n’

Finally, if you ever want to process multimedia files in
Python, you can do that by installing the PyMedia library by
following this link: http://pyvmedia.org/tut/index.html

Well, there you go. Now you can process different types of
files in Python and prepare the data for additional analysis.


http://pymedia.org/tut/index.html




USE CASE 4 - SENDING AND RECEIVING EMAILS

that all you need is powerful libraries called smtplib

and imap. Now why would you want to send and
receive emails using a programming language you ask? It is
to automate the mundane activity of sending mass emails to
an email list while using a custom template. It is also to
allow you to parse through your different inboxes and look
for key information. Python makes it all possible!

Before we get into Python code, let’s first explain what
SMTP is. It stands for Simple Mail Transfer Protocol. It was
created in 1982 and is still in use by big email providers of
the world like Gmail, Yahoo Mail, and others. In simplest
terms, it is the language used by mail servers to
communicate with each other to send and receive emails. Got
it? Let’s move on.

Python library smtplib uses the SMTP protocol and has
built-in functions to send emails.

Let's first import the libraries we are going to use. Notice
that we imported BeutifulSoup library too as we will be using
it later to parse HTML content for our emails. You will also
notice that we imported the MIME standards - that's what
will allow us to email messages in different formats like
binary, ASCII, HTML, and others.

import smtplib

from email import encoders

from email.mime.text import MIMEText

from email.mime.multipart import MIMEMultipart

from email.mime.base import MIMEBase

P ython makes it easy to send and receive emails. For



from bs/ import BeautifulSoup as bs

mport smtplib
m gmail import encoders

m email.mime.text import MIMEText

om email.mime.multipart impert MIMEMultipart
m email.mime.base import MIMEBase

rom bsd4 import BeautifulSoup as bs

Hhchhhhp B
I | E
o -] +

Now let's define our parameters like email address,
password, email subject, sending and receiving email
addresses - so we can input the required values as needed.
Remember, these values are placeholders only and you can
plug in your own credentials for sending your emails. Note
that though, I would not recommend hard coding your
credentials because if you share your code, your account can
be compromised. Also, when providing receiving email,
instead of putting in one email, you can put in multiple email
addresses or even an email list that can be read in from a file
(refer to the earlier chapter on how to read in excel or csv
files as a Python data structure).

Let’s first set the credentials — as in our email and
password:

EMAIL = "myemail @test.com"

PASSWORD = "mypassword"

We then also specify the sender and receiver email
addresses:

FROM = "sender@test.com"

TO = "receiver@test.com"

Lastly, we set the subject of the email:

SUBJECT = "Subject of my email"



EMAIL = “myemail@test.co
PASSWORD = "my sword”

SUBJECT = “Subje

Now we are going to initialize our message object, so it is
ready to send:

msg = MIMEMultipart('alternative')

Setting the ‘from’ property in the message to the FROM
email address value we provided earlier:

msg["From'] = FROM

Setting the ‘to’ property in the message to the TO email
address value we provided earlier:

msg['"To"] = TO

Setting the ‘subject’ of the message to the SUBJECT value
we provided earlier:

msg[" Subject''] = SUBJECT

In [17]: MW an

msg = MIMEMultipart(“alternative")
msg[“From®] = FROM
msg[~Tae"] T

msg[ “Subject”] = SUBJECT

Now let's create HTML and text versions of the email
message. This is the HTML version of the message:

html - min

I love <b>Python </b>!



Now let's convert this HTML version to text using HTML
parser object:
text = bs(html, "html.parser').text

Alternatively, you can also read the HTML and text
versions of your message from the corresponding files in
your folder. Setting the body of the email as HTML by
reading from an HTML file. In this case the file is in the
same folder as the Python code. If it is in a different folder,
you must provide a fully qualified path:

html = open("message.html'").read()

And then convert to text the same way as before using
html parser:

text = bs(html, "html.parser').text

Now let's finish building the message, by setting the text
and HTML values:

text part = MIMEText(text, ""plain"')

html_part = MIMEText(html, "html")

Finally, we attach the email body to the mail message -
both text and HTML versions:

msg.attach(text_ part)

msg.attach(html_ part)



L : mish building
text_part = MIMEText(text, “plain")
= MIMEText({htsl, “html™)

html_part

sch( taxt_part)

msg. attach(html_part

M. At

After constructing the HTML and text version of the
message and attaching it to the mail, let's see what it looks
like:

print(msg.as_ string())

You will notice that the output is broken out in sections,
separated by characters.

1) First part is message header including sender, receiver,
and email subject

2) Second part is the message in text format

3) Third part is the message in HTML format

In [12)]: M #After constructing the HTM

print(msg.as_string())

Content-Type: multipart/alternative; boundary="==ssssss=c=====Q507587 70448338757 5=="
MIME-Version: 1.9

From: sender@test.com

To: receiver@test.com

Subject: Subject of my email

- -z==============@587587 7044833875 75 ==
T in; charset="us-ascii®

I love Python
- cassmsssessssss=dS@7507 794483387575
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.8
Content-Transfer-Encoding: 7bit

¢HTML3><B3I love Python</B>e/HTML:
- BEATSETTI448338T575s==

To make this process repeatable, let's create a function
that takes From, To, Subject and Message as arguments, so it
can send the message for us, and we can call this function
whenever we need to send a message again with a different
set of email recipients and message content:



def send_message (EMAIL, PASSWORD, FROM, TO,
msg):

Here we are using the gmail SMTP, but you can use any
others of your choosing like Yahoo, Outlook etc. Full list of
SMTP protocols and corresponding ports to use can be found
here:

https://www.arclab.com/en/kb/email/list-of-smtp-and-
pop3-servers-mailserver-list.html

NOTE: If you are using gmail email for this purpose, you
will need to set the "Allow less secure apps" option in your
gmail settings. This will indeed make your gmail account
less secure, so we recommend using a separate account for
this purpose for sending and receiving mass emails as
opposed to your personal account.

Initializing the SMTP server connection:

server = smtplib.SMTP("smtp.gmail.com', 587)

Connecting to the SMTP server as secure TLS (Transport
Layer Security) mode:

server.starttls()

Logging in with your credentials that are passed to the
function:

server.login(email, password)

Sending the email:

server.sendmail(FROM, TO, msg.as_ string())

Terminating SMTP session:

server.quit()



https://www.arclab.com/en/kb/email/list-of-smtp-and-pop3-servers-mailserver-list.html

def send_message (EMAIL, PASSWORD, FROM, TO, msg):

ser\'e-’. IS't:;l in-. S-‘:\TF‘I{" smtp ;'_":-il f ,» 387)
ser"lelr.st:ar.‘ttls\'}.. .

se:.-e-' l.o;-',.’_.rl:e"-aii, .Eass;\nc;n‘-d] E

fnw f:u-r:ima;-]. -:rlm\l, TO, msg.as_streing())

server.quit()

Finally, we send the message by calling the function we
defined above. Now in this case we will get an SMTP
authentication error as per below because we are using
placeholder credentials but if you use your real credentials,
you should receive an email in the corresponding email
inbox application:

send__message(EMAIL, PASSWORD, FROM, TO, msg)

send_message(EMAIL, PASSWORD, FROM, TD, msg

You can also add attachments to your message by adding
list of files to be included in the email. Below is a sample list
of files as an example:

files to send =[

"test.txt",

"test.pdf",

]

Initializing the message as before:

msg = MIMEMultipart("alternative"')

Setting the sender's email:

msg["From'] = FROM



Setting the recipient's email:

msg['"To"] = TO

Setting the subject of the email:

msg[''Subject'] = SUBJECT

Setting the body of the message:

html = open("message.html").read()

Converting the message from HTML to text as before:

text = bs(html, "html.parser').text

text_part = MIMEText(text, ""plain"')

html_part = MIMEText(html, "html")

Attaching the email body to the mail message. First
adding text and then HTML to the body:

msg.attach(text_ part)

msg.attach(html_ part)

for file in files_ to_send:

Creating this loop to read the file list created earlier and
going through them one at a time:

with open(file, "rb") as f:

Read each file in the list:

data = f.read()

Add as attachment to the file:

attach_part =  MIMEBase("application", "octet-
stream"')

attach_ part.set_ payload(data)

Add 64 bit encoding

encoders.encode__base64(attach__part)

Including message header

attach__part.add__header('' Content-Disposition',
f"attachment; filename= {file}")

msg.attach(attach_ part)



Finally sending the message
send__mail(email, password, FROM, TO, msg)

files_to_send =

“tast, pdf

msg = MIMEMultipart(“alternative™)

text = bs(html, "html.p :
text_part = MIMEText(text, “plain”)
html_part = MIMEText(html, “html™)

msg.attach(text_part)
msg.attach{html_part)

for file in files_to_send:
with open(file, "rb“) as f:

read( )

data =

attach_part MIMEBase("application”, "octet-stream")
attach_part.set_payload{data)

encoders.encode_basebd(attach_part)

attach_part.add_header("Content-Disposition”™, f attachment; filemame= {file}")
msg.attach{attach_part}

send_mail({email, password, FROM, TO, msg)

There you have it! A handy way to send multiple emails
with different attachments and email templates - a very
good use case for automation via Python. But why stop
there? Now to take it one step further, let's look at how we
can automate reading emails via Python as well. We will also
look at how to automate downloading of email attachments.
For that we will use the IMAP protocol that comes built-in as
a handy library in Python called imaplib. IMAP is different
from POP3 protocol we used earlier in this chapter because
POP3 protocol reads and downloads the email from the
server to read it offline, while IMAP protocol leaves the email



message on the server while reading it. Let's import the
necessary libraries we need to read emails:

import imaplib

import email

from email.header import decode__header

import webbrowser

import os

import imaplib

import email

from email.header import decode_header
import webbrowser

import os

Let's specify our placeholder account credentials (NOTE:
You will need to use your own real credentials for the code to
work) and a function to create folders in your email program
of choice, without special characters.

First, we set the credentials, just like we did earlier when
we were sending the email:

EMAIL = “myemail@test.com”
PASSWORD = "mypassword")

def clean(text):

return "".join(c if c.isalnum() else for ¢ in text)

Next, we will connect to IMAP, in this case assuming a
Gmail account:
imap = imaplib.IMAP/_ SSL("imap.gmail.com"')



Authentication step will fail in this case because we are
using placeholder credentials, but should work if you use
your real credentials. See instructions earlier in the chapter
on how to change Gmail settings for access from non-secure
apps. Even if you use the correct credentials, Gmail and other
apps may still block access if they don't recognize access by
an external application like Python - so you will need to
enable access by third party apps if you want to use this
feature:

imap.login(EMAIL, PASSWORD)

imap = imaplib.IMAP4_SSL("imap.gmail.com™)

imap.login{EMAIL, PASSWORD

Once you successfully login, you can access emails by
specifying the folder you want to retrieve the messages from
and specifying how many messages you want to retrieve. In
the example below, we use the select method to retrieve 5
messages from our INBOX folder:

status, messages = imap.select("INBOX")

Indicating number of top emails to fetch:

N=5

Converting total number of emails in the inbox to integer
value:

messages = int(messages[0])



In this case messages variable now contains total number
of messages in our inbox as an integer type so we can create
a loop and status variable contains whether the message was
retrieved successfully - we are looking for the status 'OK'.

Now let's create a loop and use the IMAP fetch function to
retrieve the body of the message for the first 5 messages we
want to retrieve. We will use the 'RFC822' standard email
format to retrieve each message:

for i in range(messages, messages-N, -1):

First, we use the fetch method and RFC822 format as
mentioned earlier:

res, msg = imap.fetch(str(i), '""(RFC822)")

for response in msg:

if isinstance(response, tuple):

We then parse email in bytes format into a message object
in Python:

msg = email.message_ from_ bytes(response([1])

We then decode the email subject:

subject, encoding = decode__header(msg[''Subject"])[0]

if isinstance(subject, bytes):

If the subject is in bytes format, we convert to string:

subject = subject.decode(encoding)

After that, we decode email sender:

From, encoding = decode__header(msg.get("From'"))[0]

if isinstance(From, bytes):

From = From.decode(encoding)

print("'Subject:", subject)

print(""From:", From)

If the email message is multipart, we convert each of the
parts and process separately:



if msg.is_ multipart():

Iterating over multi-part message:

for part in msg.walk():

Extract the content type of the email part:

content_ type = part.get_content_ type()

content__disposition = str(part.get(" Content-
Disposition''))

try:

We then get the email body:

body = part.get payload(decode=True).decode()

except:

pass

if content__type == "text/plain'" and "attachment" not in
content__disposition:

We print text part of the message and see the content:

print(body)

elif "attachment" in content__disposition:

We then download the attachment:

filename = part.get_ filename()

if filename:

folder__name = clean(subject)

if not os.path.isdir(folder _name):

We create a folder for this downloaded email (using the
subject as the label):

os.mkdir(folder name)

filepath = os.path.join(folder__name, filename)

and then download attachment and save it:

open(filepath,
"wb'').write(part.get_ payload(decode=True))

else:



We extract content type of email:

content_ type = msg.get content_ type()

and get the email body:

body = msg.get_ payload(decode=True).decode()

if content__type == "text/plain"":

print only text part of the email:

print(body)

if content__type == "text/html":

If the content type is HTML, create a new HTML file and
open it in browser:

folder_name = clean(subject)

if not os.path.isdir(folder_name):

make a folder for this email named after the subject of the
email:

os.mkdir(folder name)

filename = "index.html"

filepath = os.path.join(folder _name, filename)

write the file to the folder:

open(filepath, "w'").write(body)

and then open the HTML file in the default browser:

webbrowser.open(filepath)

print(''="*100)

Once done, we close the IMAP connection and logout.

imap.close()

imap.logout()



In [45]: M #In this cose messoges varioble now contains totol number of messages inm our inbox as am integer type so we con credte o
#loop ond status variable contoins whether the message was retrieved successfully. We ore looking for the status "OK'
#Now Let’s create o loop and use the IMAP fetch function to retrieve the body of the messoge for the First 5 messoges
dwe want to retrieve. We will use the 'RFC822' standaord email format to retrieve each message

for i in range(messages, messages-M, -1):
# fetch the emoil message by ID
res, msg = imap.fetch{str(i), "(RFCB2Z)")
for response in msg:
if isinstance(respense, tuple):
& parse o bytes emgil into o message object
msg = email.message_from_bytes(response[1])
# decode the emgil subject
subject, encoding = decode_header(msg["Subject"])[e]
if isinstance(subject, bytes):
# if it's a bytes, decode to str
subject = subject.decode(enceding)
# decode email sender

From, encoding = decode_header(msg.get("From")}[@]
if isinstance(From, bytes):

From = From.decode(encoding)
print("Subject:”, subject)

print("From:", From)
# if the email message is multipart
if msg.is_multipart():
# iterote over émail parts
for part in msg.walk():
# extract content type of émail
content_type = part.get_content_type()
content_disposition = str(part.get("Content-Disposition®))

try:
# get the email body
body = part.get_payload(decodesTrue).decode()
except:
pass
if content_type == “text/plain” and "attachment" mot in content_disposition:
# print text/plain emails and skip ottochments
print{body)

elif "attachment"” in content_disposition:
# download attachment
filename = part.get_filename()
if filename:
folder_name = clean(subject)
if not os.path.isdir({folder_name):
# moke o folder for this emgil (nomed after the subject)
os.mikdir{folder_name)
filepath = os.path.join{folder_name, filemame)
¥ download attachment and save it
open(filepath, “wb™).write(part.get_payload(decode=True))
else:
# extroct content type of email
content_type = msg.get_content_type()
# get the email body
body = msg.get_payload(decodesTrua).decode()
if content_type == "text/plain”:
# print only text email parts
print(body)
if content_type == "text/html®:
# 1f it's HTML, create a new HTML file and open it in browser
folder_name = clean(subject)
if net os.path.isdir(folder_name):
# make a folder for this email (nomed after the subject)
o3 .mkdir(folder_name)

filename = "index.html”
filepath = os.path.join(folder_name, filename)
# write the file
open{filepath, "w").write(body)
# open in the default browser
webbrowser.open({filepath)
print("="*108)
# close the connection and logout
imap.close()
imap. logout()

If the access is all successful, I get confirmation email in
my Python output as follows:
Subject: Congrats Email Test worked!



From: myemail@test.com

Subject: An email with a text file as an attachment

From: Test Account <myemail@test.com>

Get the text attachment!

Subject: A Test message with attachment

From: Test Account <myemail@test.com>

It worked!

Also, I see that the code created folders for downloaded
emails in my local directory where the Python code resides.
There you have it folks! You can now not only send mass
emails using an email list automatically via Python but also
download and store emails and attachments locally - what a
powerful automation feature via Python!

For additional reading on the Python IMAP and email
libraries, please use the links below:

IMAP library:
https://docs.python.org/3/library/imaplib.html
Email library:

https://docs.python.org/3/library/email.html



https://docs.python.org/3/library/imaplib.html
https://docs.python.org/3/library/email.html




USE CASE 5 - DYNAMIC TIME WARPING FOR SPEECH
ANALYTICS

ow that we have covered some basic Python real

world use cases like web scraping, file, and image

processing as well as automating sending and
receiving emalils, it is time to address more advanced use
cases. How about warping time?

Now, now...don’t worry..we are not messing with the
space time continuum and don’t want to start new
multiverses like in the comic books. Instead, in this chapter,
we are going to discuss the concept of time warping using
Python. What is time warping you ask? It is a spin on
traditional time series analysis where you want to compare
two datasets that occurred over the same period — however,
you run into a challenge where the x-axis which represents
time is not in the same scale between the two data sets i.e.,
does not have the same start and end time.

Ever wonder how AI powered home assistants like
Amazon Alexa and Google Home recognize your voice and a
specific phrase like “Stop” no matter how fast or slow you
say it? Or comparing results of financial markets between
months but one month had a smaller number of days in the
previous year because it was a leap year? That’s where time
warping comes in — you basically ‘warp’ your time axis to
make the two data sets comparable.

In the example in this chapter, we will two matching
audio phrases that are said at a different pace and one
completely different audio phrase of the same length and
then use time warping libraries in Python to compare the



results to find the right match. This type of use case is very
common in speech and pattern recognition in the real world.

The phrase we will use is “One Flew Over the Cuckoo’s
Nest” and it will be stored in two different audio files spoken
in different voices and in different inflections. The
contrasting phrase we will use is “I Love Python And I Can’t
Stop”. I will make the audio files along with the Python code
available to you, so you can test it for yourself as well.

Let the fun begin!

First you need to install FastDTW library from Python for
time warping analysis. Run the following the command in
your Python application prompt:

pip install FastDTW

Once installed, you are ready to import the FastDTW
library and use it in your code. While you are at it, you can
also import other libraries you will need for your analysis
including scipy wavfile library to process audio (files,
matplotlib for plotting the results and numpy for advanced
calculations — which we will get into below.

FROM SCIPY.I0 IMPORT Wavfile

from matplotlib import pyplot as plt

import numpy as np

from scipy.spatial.distance import euclidean

from fastdtw import fastdtw

Now let’s read the audio files below in for comparison.
The first two files have the same phrase, and the third file
has a different phrase for comparison purposes.

fs1, data1 = wavfile.read('" oneflewi.wav'')



fs2, data2 = wavfile.read(' oneflew2.wav'"')
fs3, data3 = wavfile.read('"ilovepython.wav"')

Let's visualize the audio files we just imported using
Python's matplotlib library we imported earlier and setting
the plot style to have a white background:

from matplotlib.pyplot import figure

plt.style.use(" seaborn-whitegrid")

The first audio file contains the phrase "One Flew Over
the Cuckoo's Nest" in an American male voice. We set the
formatting and color parameters for the plot in the code
snippet below:

ax = plt.subplot(2, 2, 1)

ax.plot(datai, color=""#67A0DA")

And then we finally visualize the audio file:

fig=plt.show()

display(fig)
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Now let’s display the remaining two audio files as well
using the same code snippets but different color schemes:

In [33]: M # Create subplots for second oudic file for "One Flew Ower the Cuckoo’s Nest™
ax = plt.subplot{2, 2, 1)
ax.plot(data2, color="#dad867™)

# Display creoted figure for second gudio file for "One Flew Over the Cuckoo's Nest”
fig=plt.show()
display(fig)
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-l' Create subplets for third audic File for "I Love Pythen ond I Can't Step™
ax = plt.subplet(2, 2, 1)
ax.plot({data3, color="#da7es67")

In [34): M

# Display created figure for third gudio file for “I Love Pythen and I Can’t Stop™
fig=plt.show()
| display(fig)
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As you can see from the three images above, the first two
audio files have the same shape but with different amplitude
and pacing because it is the same phrase ("One Flew Over
the Cuckoo's Nest"). While the third file has a different
shape as it is a different phrase altogether ("I Love Python
and I Can't Stop'"). This can be seen more easily if we stack
the three images above each other and draw lines to the
similarities:
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First to compare the different audio files above, we will
use the traditional Euclidean distance calculation. How does
the traditional Euclidean distance calculation work you ask?
In the simplest terms, it calculates the distance between any
two points as a numerical difference between their
coordinates.

So as an example, if a and b are two points on a line, then
the distance between them is calculated as: (a-b) - this is
assuming we are in a single dimensional plane. To extend
this example to a two-dimensional space, assuming point a
has coordinates (a1, a2) and point b has coordinates (b1, b2),
your formula will be sqrt ((a1-b1)A2 + (a2-b2)A2). In the
formula by squaring and then taking a square root, it
ensures that you get an absolute value and eliminate any
negative values. You can easily extend this formula to n
dimensions by having n number of coordinates but still
squaring and then taking a square root: sqrt ((a1-b1)A2 +
(a2-b2)A2....+(an-bn)A2).

Python provides a simple function in numpy library called
linalg and it calculates the difference between two vectors if
they are represented as an array. Obviously, the problem
with this approach is that it completely does not consider
any time scale or latency differences. So, if we apply this
formula to compare the first two wav files that both have the
same phrase of "One Flew Over the Cuckoo's Nest".

np.linalg.norm(datai[o]-data2[0])

results in an output of 1.0 and so does comparing the first
and third wav file:

np.linalg.norm(datai1[o]-data3[o0])



We get the same result as the Euclidean vector difference
is not taking the time axis and latency differences into
account and therefore is not able to differentiate between the
wav files. For time warping comparison, we will use the
FastDTW PyPi library we installed and imported earlier.
FastDTW compares the distance between the different sound
files. Expectation is that the files that are a closer match will
have a shorter distance as the FastDTW library will account
for the different pacing and amplitude changes when
calculating the distance.

Distance between audio file 1 and 2:

fastdtw(data1, data2)[0] is 103331114.0

Distance between audio file 1 and 3:
fastdtw(data1, data3)[0] is 110120061.0

As expected, the first two audio files have a shorter
distance because they are the same phrase spoken with a
different voice, amplitude, and latency while the distance
between the first and third file is longer because they are two
completely different phrases.



There you go! A simple example to compare audio files
and their similarities using Time Warping technique.






USE CASE 6 - TIME SERIES ANALYSIS AND
FORECASTING

predictive analytics — specially in an operational and

sales space where line managers or salespeople want
to know based on historical sales patterns and seasonality
how much product and staff, they should have on hand to
meet the incoming demand. This is of course based on the
assumption that past is a predictor of the future — that is not
always the case when you have a crazy year like 2020 where
the pandemic completely threw off several predictive models
that rely on this assumption. Nevertheless, for the purposes
of this chapter and for simplicity, we will stick with the
assumption that past predicts the future.

We will also introduce a more sophisticated time series
forecasting library called Prophet from Facebook that makes
the more advanced calculations and traditional models like
ARIMA and Kalman Filter easy to apply at scale without a
masters in statistical analysis.

Now be warned that the Prophet library is still relatively
new and must be fully tested in the market but does have
promise. I found it slow in practice as we used it on a very
small dataset of e-commerce orders from July 2018 to Dec
2019 from Kaggle public dataset to predict sales for 2020 (it
will be available to you along with the code via a download
link later in the book).

Facebook Prophet also is not the most straightforward
library to install as it has several dependencies and requires

T ime series forecasting is a very common use case in



a C++ compiler before it installs successfully. You can follow
the link below to complete the installation steps:

https://facebook.github.io/prophet/docs/installation.html

Once you have Facebook Prophet fully installed, you are
ready to import the library and predict the future!

import pandas as pd

from fbprophet import Prophet

import warnings

warnings.simplefilter(action="ignore',
category=FutureWarning)

First, we read csv data into panda data frame:
data = pd.read__csv(“ecommerce__data.csv”’)
and preview the first 5 lines of the loaded data
data.head()

ds product_id city_id ¥

2881 26 3500
2081 26 3000
4254 16 2000
5559 16 2400

o R T
w

a3 & a & a

& o & o o

3622 16 3300

Let’s initialize the Prophet model and set the parameters:
model = Prophet(

interval _width=0.95,

growth="linear",

daily_seasonality=False,


https://facebook.github.io/prophet/docs/installation.html

weekly_seasonality=False,

yearly seasonality=True,

seasonality__mode="multiplicative"

)

And fit the model to historical data (NOTE: This step
takes a while to complete as the Python code executes — even

on a relatively small dataset, so be patient).
model.fit(data)

Finally, you will get an output like this to indicate that the
model initialization and fitting is complete:

<fbprophet.forecaster.Prophet at 0x200373d6bc8>

We are now ready to tell the model to predict 365 days (or
1 year) into the future and then plot the results by putting
the date in the x-axis and e-commerce orders on the y-axis:
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In the above visualization, the dots are actual values of e-
commerce order per week and the trend line shows the
future. The bands around the trend line show our
uncertainty levels (in this case we set it to 95%).

We can also look at the forecast more closely by executing
this command:

model.plot__components(forecast_pd)
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The top visual shows our trend — which is increasing
slightly as 2020 progresses and the bottom visual shows the
seasonality with a huge variation between August to
September.

How about that? Predicting the future with just a few
lines of code — using the ever-evolving Facebook Prophet
library to make the time series forecasting simpler to apply!






USE CASE 7 - FRAUD ANALYSIS

use case specially in the financial services industry.

Data Scientists pour over millions of records of
historical financial transaction data to determine rulesets
that define fraudulent transactions and then build
algorithms to detect and stop fraud in its tracks. With the
fraudsters constantly changing their patterns the algorithm
used by data scientists also must be flexible enough to be
able to learn from the history and experience to adjust
accordingly.

In the example in this chapter, we will use a public
dataset for digital financial transactions through Kaggle.
This data will be available to you along with the code in this
chapter via a link later in the book.

Most common algorithms used for fraud analysis are
typically decision trees or some variations there of including
gradient boosting via XGBoost and the like. We will explore 6
million records of this dataset and then recommend an
algorithm that yields the highest level of prediction accuracy.

We will start with importing libraries we will need for
fraud analysis

import pandas as pd

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

import matplotlib.lines as mlines

import seaborn as sns

l ‘1 raud analysis is also a very common machine learning



from sklearn.model_selection import train_test_split,
learning curve

from sklearn.metrics import average_ precision_score

from xgboost.sklearn import XGBClassifier

from xgboost import plot__importance, plot_ tree

import warnings

warnings.simplefilter(action="ignore',
category=FutureWarning)

warnings.simplefilter(action="ignore',
category=DeprecationWarning)

warnings.simplefilter(action="ignore',
category=UserWarning)

import pandas as pd :
import numpy as np

matplotlib inline

import matplotlib.pyplot as plt
import matplotlib.lines as mlines

import warnings
warnings.simplefilter{actio
warnings.simplefilter{actior
warnings.simplafilter{actior

re', category=FutureWarning)
re', category=DeprecationWarning}
ra', category=UserWarning)

We will now import the public fraud dataset I referenced
earlier into a panda data-frame and rename mismatched
column names in the data for consistency:

df = pd.read__csv('fraud__data.csv')

df = df.rename(columns=
{'oldbalanceOrg':'oldBalanceOrig’',
'newbalanceOrig':'newBalanceOrig',

'oldbalanceDest':'oldBalanceDest',
'newbalanceDest':'newBalanceDest'})

print(df.head())



int(df.head())|

step type amount nameOrig oldBalancedrig newBalanceOrig
[ 1 PARYMENT 9839.64 (1231296815 178l136.8 168296 . 36
1 1 PARYMENT 1864.28 C1666544295 241249.9 19384.72
2 1 TRANSFER 1Bl1.88 (C13854B6145 1Bl1.8 B.28
3 1 CASH_OUT 181.28 CE4BBEI6T1 1B1.8 8.e8
4 1 FAYMENT 11668.14 C284B537728 41554.8 29885 .80

nameDest oldBalanceDest newBalanceDest isFrawd isFlaggedFraud

@ M1979787155 a.9 a.e a -]
1 M2844283225 @.8 e.e a8 -]
2 C553264865 a.9 8.8 1 -]

C3ggo7ale 21182.9 e.e 1 =]
4 M12387817@3 a.8 8.8 a 2]

We now do some data cleaning to check if the data has
any null values:
df.isnull().values.any()

. M| #Check f

df. isnull().values.any()

i False

The dataset does have a flag indicating whether a
transaction was fraudulent or not and it correlates very well
with the number of cash out transactions - basically
implying that quick transfer ins and cash outs are a good
early indicator of potential fraudulent transactions.

print('The types of fraudulent transactions are
{3} .format(list(df.loc[df.isFraud ==
1].type.drop__duplicates().values)))

dfFraudTransfer = df.loc[(df.isFraud == 1) & (df.type ==
'"TRANSFER')]

dfFraudCashout = df.loc[(df.isFraud == 1) & (df.type ==
'CASH__ OUT")]

print ('"The number of fraudulent TRANSFERs =
{}'.format(len(dfFraudTransfer)))



print ('The number of fraudulent CASH_OUTs =
{}'.format(len(dfFraudCashout)))

= {}'.format(list({df.loc[df.isFraud 1].type.drop_duplicates(}.values)))

dfFraudTransfer - df.loc[(df.1sFraud 1) & (df.type 'TRANSFER'}]
dfFraudCashout df . loc[ (df.isFraud 1) & (df.type CASH_OUT

The types of fraudulent transactiens are ['TRANSFER®, ‘"CASH_OUT'

Now let's clean our data further to narrow it down to the
Transfer and Cash out type of transactions and discard
meaningless or inconsistently populated columns like
nameOrig, nameDest and isFlaggedFraud:

X = dfloc[(df.type == 'TRANSFER') | (df.type ==
'CASH_ OUT")]

randomState = 5

np.random.seed(randomState)

Y = X['isFraud']

del X['isFraud']

and eliminate columns shown to be irrelevant for
analysis:

X = X.drop(['nameOrig', 'nameDest', 'isFlaggedFraud'],
axis = 1)

Since most machine learning algorithms use numeric
values for processing, we will binary-encode labelled data in
transaction type column:

X.loc[X.type == '"TRANSFER/', 'type'] = 0

X.loc[X.type == 'CASH_ OUT', 'type'] =1



X.type = X.type.astype(int)

Since the destination account having zero balance after
the transfer in and cash out is an indicator of potential fraud,
let's mark it more prominently so it is easier for our machine
learning model to detect this type of final balance and we
will create a specific feature around this point for model
training - this will come into play later in this chapter:

X.loc[(X.oldBalanceDest == 0) & (X.newBalanceDest ==
0) & (X.amount != 0), ['oldBalanceDest', 'newBalanceDest']]
=-1

X.loc[(X.oldBalanceOrig == 0) & (X.newBalanceOrig == 0)
& (X.amount != 0), ['oldBalanceOrig', 'newBalanceOrig']] =
np.nan

X['errorBalanceOrig'] = X.newBalanceOrig + X.amount -
X.oldBalanceOrig

X['errorBalanceDest'] = X.oldBalanceDest + X.amount -
X.newBalanceDest




Now that we have cleaned the data and engineered the
features that we think will result in actual fraud output, let's
visualize our data to see if we can see fraudulent transactions
more clearly:

Let's visualize our data to see if we can see fraudulent
transactions more clearly:

limit = len(X)

def plotStrip(x, v, hue, figsize = (15, 10)):

FIG = PLT.FIGURE(FIGSIZE = figsize)

colours = plt.cm.tab1o(np.linspace(1, 2, 8))

with sns.axes_ style('whitegrid'):

ax = sns.stripplot(x, y, \

hue = hue, jitter = 0.5, marker = '.", \

size = 4, palette = 'colorblind')

ax.set_ xlabel('")

ax.set_ xticklabels(['regular tx', 'fraudulent tx'], size =
18)

for axis in ['top','bottom’,'left','right']:

ax.spines[axis].set_ linewidth(2)

handles, labels = ax.get_ legend__handles_ labels()

plt.legend(handles, ['"Transfer’, 'Cash out'],
bbox_to_anchor=(1, 1), loc=2, borderaxespad=0, fontsize =
15);

return ax

ax = plotStrip(Y[:limit], X.step[:limit], X.type[:limit])

ax.set_ylabel('hours', size = 16)

ax.set_title('Visualizing fraudulent transactions hidden
in a sea of regular transactions', size = 25);



In [7]: M #Now that we have cleaned the data and engineered the features thot we think will result in actual firaud output,
wlet's visualize our doto to see {f we can see fraudulent transoctions more clearly
1imit = len(X)

def rlutstnip(x, ¥, hue, flgsize - (15, 18))

fig = plt.figure(figsize - figsize)
colours = plt.cs.tablainp.linspace(1, 2, 8))
with sns.axes_style('whitegrid®):
ax = sns.stripplot(x. ¥, \
hue = hue, jitter = 2.5, marker = °.", \
size = 4, palette = 'colorblind’)
ax.set_xlabel{'")
ax.set_xticklabels(['regular tx', 'fraudulent tx"], size = 1E)
for axis in ["top’, 'bottom®, "left’,"right']:
ax.spines[axis].set_linewidth{2)

handles, labels = ax.get_legend_handles_labels()
plt.legend{handles, ['Transfer', "Cash out’], bbox_to_anchor=(1, 1), loc=2, borderaxespad=8, fontsize = 15});
return ax

In [8]: M ax = plotStrip(¥[:1limit], X.step[:limit], X.type[:limit])
ax.set_ylabel('hours’, size = 16)
ax.set_title( Visualizing frawdulent transactions hidden in 3 sea of regular transactions’, size = 25);

Visualizing fraudulent transactions hidden in a sea of regular transactions
& Transfer
# e Cashout

regular tx fraudulent tx

As can be seen from the above visualization, while we can
differentiate the fraudulent from regular transactions, it is
not as obvious. Let's use the feature we engineered based on
final balance of the account being zero to make the
fraudulent transactions more obvious:

limit = len(X)



ax = plotStrip(Y[:limit], X.amount[:limit], X.type[:limit],
figsize = (15, 10))

ax.set_ylabel('"Tx Amount', size = 18)

ax.set_ title('Visualizing fraudulent transactions based
on final amount in the account', size = 20);

9]: MW #45 ¢ the @ he frau
#not 5 LIS ce off the
Ftran ac iou
limit - (X)
ax = plo rip(Y[:limit], X.amount[:limit], X.type[:limit], figsize (15, 1@))
ax.set_ylabel('Tx amount®, size 1B8)
ax.set_title('visualizing fraudulent transactions based on final amount im the account', size 8);

1e7 Visualizing fraudulent transactions based on final amount in the account

& Transfer
e Cash out

Tx Amount

regular tx fraudulent tx

As mentioned earlier in the chapter, let's use a variation
of traditional decision tree algorithm called XGBoost which
uses gradient boosting techniques to generally outperform
other machine learning algorithms like random forest for
fraud analysis by reducing model bias and providing better



accuracy. Let's split our dataset into 20% test and 80%
training.

trainX, testX, trainY, testY = train_ test_split(X, Y,
test_size = 0.2, random__state = randomState)

Now we run the XGBoost Classifier algorithm on this
dataset and test the accuracy of the model:

weights = (Y == 0).sum() / (1.0 * (Y == 1).sum())

xgclf = XGBClassifier(max_depth = 3, scale_pos_ weight
= weights, n_ jobs = 4)

probabilities = xgclf.fit(trainX,
trainY).predict__ proba(testX)
print('Average precision score =

{}'.format(average_ precision_ score(testY, probabilitiesl:,

1])))

eights = (¥ um{

The average prediction score in the output above was
99.8%, which is very great! Now that we have confirmed that
the XGBoost machine learning algorithm produces the most
accurate fraud prediction, let's find out which feature in the
dataset was the most important for the classification and
splitting the tree:

fig = plt.figure(figsize = (15, 10))

ax = fig.add__subplot(111)

colours = plt.cm.Set2(np.linspace(1, 2, 8))

ax = plot_importance(xgclf, height = 1, color = colours,
grid = True, \



show_values = False, importance_type = 'cover', ax =

ax);
for

axis

in ['top','bottom’,'left','right']:

ax.spines[axis].set_ linewidth(2)
ax.set_ xlabel('Importance Value', size = 18);
ax.set_ylabel('Features', size = 18);
ax.set_ yticklabels(ax.get_ yticklabels(), size = 15);,
ax.set_ title('Ranking features in order of importance',

size = 18);

fig :1t.5;gu"e{F
ax fig.add_subplc

colours = plt.cm.Set2(np.linspace(l, 2, 8))
ax plot_importance(xgclf, height 1, color = colours, grid True, \

show_values False, importance_type cover', ax ax);
for axis in [ top’, 'bottom’, "left’, rig ?']: JI.ipi”Di[Ex{ﬁ].i?f_linﬂuiﬂthfij

ax.set_xlabel('Importance Value', size

ax.set_ylabel('Feature size 18);
ax.set_yticklabels(ax.get_yticklabels(), size 15);

ax.set_title( Ranking features in order of importance’, size )}

Features

errorBalanceOrig

newBalanceOrig

step

oldBalanceDest

amount

oldBalanceOrig

errorBalanceDest

newBalanceDest

type

Ranking features in order of importance

20000 0000
Importance Value



Not surprisingly our engineered feature based on final
zero balance because of fraudulent cash outs is the most
important feature for the fraud model. There you have it
folks - a high level overview of how to analyze fraud in a
dataset. Typically, the datasets don't come with fraud flags,
and you have a lot more history to work with to determine
rules to detect fraud patterns - but the steps we used in this
example to narrow down list of features, visualize their
impact and then train the model to generate a precise
decision tree-based algorithm are all very much applicable
in the real world!






USE CASE 8 - PROCESSING GEOSPATIAL DATA

intelligent automation is becoming more and more

mainstream with the advent of intelligent drones and
autonomous vehicles capable of detecting and moving
around obstacles. In addition, geographical and demographic
analysis is also becoming quite common when you are
looking at opportunity assessment for new businesses.

Rome is the eternal city and my favorite city in Europe. I
have a lot of fond memories from it when I went back
packing through it with my university friends back in the
day. Given that it has been so hard hit in recent times
economically, I want to pay tribute to it by using it as part of
this book.

Given that Rome is such a popular tourist destination and
has so much history, it has expensive real estate as well as
population density. With the impacts to its economy,
investors can be looking at boroughs of Rome that have a
high population and relatively lower real estate prices. In
addition, using FourSquare data, I will also look at type of
businesses in each borough to be able to recommend the best
Rome neighborhood to start a business in and type of
business to start based on the real estate prices and
population density.

For this analysis, I used the following data sources:

P rocessing geographical and geospatial data for

I obtained the real estate prices by different
neighborhoods of Rome using the statista.com site
that contains data as of December, 2019


https://foursquare.com/

[https://www.statista.com/statistics/670698/askin
g-price-for-properties-for-sale-in-rome-by-
area-italy/].

I obtained the .json file for Rome from carto.com
site that will help us create the choropleth map of
its neighborhoods
[https://maurizioman.carto.com/tables/rome_admi
n/public/map].

e I used Foursquare API to get the most common
venues of given Borough of Rome

[https://foursquare.com/].

As a database, I created the dataset of Rome boroughs by
populating the neighborhood names, real estate prices and
geographic coordinates. I then saved it in the pandas’ data-
frame which has the following columns Borough, Average
House Price, Latitude and Longitude.

import pandas as pd

import numpy as np

import requests

URL = 'ROME__GEO.CSV'
df = pd.read__csv(url)
df.head()


https://www.statista.com/statistics/670698/asking-price-for-properties-for-sale-in-rome-by-area-italy/%5D
https://maurizioman.carto.com/tables/rome_admin/public/map%5D
https://foursquare.com/%5D

Borough Avg-HousePrice Latitude Longituede

0 CentroStorico 7817 418082 12.4773
GH10 4138754 124931

Flaminio 5622 421913 12,4725

3 Trastavers 5435 415848 124704

5137 419182 12.4639

Since our geospatial data is going to be in the form of
JSON files, we will import the json library to read the file and
matplotlib library to visualize the data:

pd.set_option('display.max_ columns', None)

pd.set_option('display.max_ rows', None)

We first import and transform JSON file into a pandas
dataframe:

import json

from pandas.io.json import json__normalize

We then import Matplotlib and associated plotting
modules:

import matplotlib.cm as cm

import matplotlib.colors as colors

We will also import k-means machine learning algorithm
library for clustering analysis:

from sklearn.cluster import KMeans

print('Libraries imported.')



In addition, we will install and import external libraries
for mapping and clustering including GeoPy Nominatum,
Folium and FourSquare:

Iconda install -c conda-forge geopy - -yes

from geopy.geocoders import Nominatim

Iconda install -c conda-forge folium=0.7.0 --yes

import folium

You can read more about GeoPy Nominatum library here:

https://geopy.readthedocs.io/en/stable/

I also encourage you to read more about Folium library
here. It is a powerful map rendering library:

http://python-visualization.github.io/folium/

We will now use geolocator library to get the latitude and
longitude values of Rome:

address = 'Rome, IT"'

geolocator = Nominatim()

location = geolocator.geocode(address)

latitude = location.latitude

longitude = location.longitude


https://geopy.readthedocs.io/en/stable/
http://python-visualization.github.io/folium/

print('The geographical coordinate of Rome are {},
{}.'.format(latitude, longitude))

The geograpical coordinate of Rome are 41,8933203, 12.4829321.

Now we will create a map of Rome with its boroughs
using these latitude and longitude values:

map_ rome = folium.Map(location=[latitude, longitude],
zoom__ start=9.5)

Code below adds markers to the map:

for lat, Ing, Dborough in zip(df['Latitude'],
df['Longitude'], df['Borough']):

label = '{}'.format(borough)

label = folium.Popup(label, parse__html=True)

folium.CircleMarker(

[1at, Ing],

radius=5,

popup=label,

color="blue',

fill=True,

fill color="#3186c¢cc',

fill _opacity=0.7).add__to(map__rome)

map__rome



[8]: M map_rome = folium.Map(location=[latitude, longitude], zoom_start-9.5)

for lat, lng, borough in zip(df['Latitude'], df['Longitude’], df[ Borough®]):
label o 'mat {borough)

opup(label, parse_html=True)

1 eMarker(

city=0.7).add_to(map_rome)

map_rome
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We will now use the FourSquare API to explore the
boroughs further. FourSquare collects and presents
information about neighborhoods and businesses in the area
and conveniently makes it available via an API. For more
details, I encourage you to visit:

https://developer.foursquare.com/

rome_data = df

borough_ latitude = rome_ data.loc[0, 'Latitude']

borough_ longitude = rome_ data.loc[0, 'Longitude’]

borough_name = rome__data.loc[0, 'Borough']



https://developer.foursquare.com/

print('Latitude and longitude
{}.".format(borough_name,

borough_ latitude,

borough_ longitude))

values of {} are {3},

Now let’s delve deeper and look at 100 businesses in the
750-meter radius around the boroughs:

LIMIT =100
radius = 750

url = 'https://api.foursquare.com/v2/venues/explore?
&client _id={}&client_secret={}&v={}&ll={},{}&radius=

f1&limit={}'.format(
CLIENT _ID,
CLIENT_SECRET,
VERSION,
borough_ latitude,
borough_ longitude,
radius,
LIMIT)
url



We will also define a function that makes it easy to
extract the category details of each venue in the surrounding
neighborhoods:

def get_ category_ type(row):

try:

categories_ list = row['categories']

except:

categories_ list = row['venue.categories']

IF LEN(CATEGORIES__LIST) ==
return None
else:
return categories_ list[0]['name']

Now we are ready to clean the json and structure into a
pandas data-frame:

venues = results['response’']['groups'][0]['items']

First, we flatten the json file and normalize its contents:

nearby venues = json__normalize(venues)

We then filter the columns in the file:

filtered_columns = ['venue.name', 'venue.categories',
'venue.location.lat', 'venue.location.lng']

nearby_ venues =nearby_venues.loc[:,
filtered_columns]



We then filter by category in each row:

nearby_ venues['venue.categories'] =
nearby_ venues.apply(get_ category_ type, axis=1)

Finally, we clean the columns to present them on the
screen:

nearby_venues.columns = [col.split(".")[-1] for col in
nearby_ venues.columns]

nearby venues.head(20)

In [111]: M wvenues = results[’'response’]['groups'][@][ itens"]
nearby_venues = json_normalize(venues) & flotten JSON
filtered_columns [ 'venue.name’, ‘wenue.categories’ venue. location.lat’, “venue.location.lng®]

nearby_venues =nearby_wvenues.loc[:, filtered_columns]
nearby_venues[ 'venue.categories’'] nearby_venues.apply(get_category_type, axis=1)

nearby_venues.colusns = [col.split(™.")[-1] for col in nearby_venues.columns]

nearby_venues.head(28)

narme categories lat ng

0 Fantheon Monument/Landmark 41800133 12476205

Pizza ¢ Mozzarella Pizza Place 41897598 12479087

2 Piazza della Rotonda Plaza 41899253 12476779

3 Antica Salumearia Sandwich Place 41800209 12.476511

Tazza dOro Coffee Shop  41.899435 12477350

Capranica Endteca & Taverna Itgkan Restaurant 41899389 12 477762

Bartoluco Toy { Game Store 41 896820 12478812

Fiacco Di Nave al the Pantheon ce Cream Shop  41.800885 12.476702

£ Basikca di Santa Maria sopra Minerva Church 41897892 12477572

b Albergo Del Senaln Holel 41890185 12478048

10 Panino Ingegnoso Sandwich Place 41800082 12479105
" La Ciambella Restaurant 418968567 12476912
12 Fiazza della Minenva Flaza 41897913 12477421
13 Vini & Cucina Pizza Place 41506840 12476400
Armando al Pantheon Itakan Restaurant 41898995 12476243

Let’s expand our search and create a function to get all
the boroughs in Rome:

def getNearbyVenues(names, latitudes, longitudes,
radius=500, LIMIT=100):

venues_ list=[]

for name, lat, Ing in zip(names, latitudes, longitudes):



print(name)

First, we create the API request URL:

url = 'https://api.foursquare.com/v2/venues/explore?
&client _id={}&client_secret={}&v={}&ll={},{}&radius=
f1&limit={}'.format(

CLIENT _ID,

CLIENT _SECRET,

VERSION,

lat,

Ing,

radius,

LIMIT)

We then make the GET request:

results = requests.get(url).json()["response"]['groups']
[o]['items']

Finally, we return only relevant information for each
nearby venue:

venues__list.append([(

name,

lat,

Ing,

v['venue']['name’],

v['venue']['location']['lat'],

v['venue']['location']['Ing'],

v['venue']['categories'][0]['name']) for v in results])

nearby venues = pd.DataFrame([item for venue_ list in
venues_ list for item in venue_ list])

nearby_ venues.columns = ['Borough’',

'Borough Latitude',

'Borough Longitude',



'Venue',

'Venue Latitude’,
'Venue Longitude',
'Venue Category']
return(nearby_ venues)

M def getMearbyvenues({names, latitudes, longitudes, radius=588, LIMIT=18@)
L3 L3
lat, Ing in zip(names, latitudes, longitudes}:

url https://api.fou xplor i

CLIENT_ID,

CLIENT_SECRET,

VERSION,

lat,

Ing,

radius,

IMIT

results = requests.get{url).json()["response”][ groups’J[@]['items’]
venues_list.append([(

name

lat,

1ng,

v “venue' ][ '

enue’ ][ "1
101 I
o | - ame " ]) for v in results])

nearby_venues = pd.DataFrame([item for venue_list in wenues_list for item in venue_list]
nearby_venues.columns gh'

return{nearby_venues)

Running the above function on each borough and creating
a new dataframe called rome_ venues:

rome_ venues =
getNearbyVenues(names=rome__data['Borough'],

latitudes=rome__data['Latitude’],

longitudes=rome_ data['Longitude']

)



17]: M rome_Venues gntll«'—n-‘h.-, Venues (names ’n'.’n_dnrn[ 'Borough 'J‘,
latitudes-rome_data[’Latitude'],
longitudes=rome_data[ "Longitude’]

CentroStorico
Caracalla
Flaminio
Trastevere
Della vittoria
Trieste
Bologna
Corsofrancia
Termini
Camilluccia
Balduina
Gregoriovil

Checking the size of the resulting data-frame:
print(rome_ venues.shape)
rome_ venues.head()

LN (rome_venues . shape

ome_venues. head( )
488, 7)

Borough  Borough Latitude Borough Longitude Venue Venue Latitude WVenue Longitede Venue Category
0 CanfroStorico 41.3982 12,4773 Panthaon 41800133 12 4TGB0S  Monument / Landmark
1 CenroStonico 4189832 124773 Pizza e Mozzarella 41897598 12 472097 Pizza Place
2 CentroStorico 418082 12,4773 Piazza della Rotonda 41809253 12.4T6TT9 Plaza
3 CenfroStorico 41.30982 124773 Anlica Salumeria 415560208 12478511 Sandwich Place
4 CantroStorico 41,8982 1 Tazza oo 41 209435 12 477359 Coffag Shop

Checking how many venues were returned for each
borough:

summary =
rome__venues.groupby('Borough').count().reset_index()

summary['Count'] = summary{'Venue']

summary = summary.drop(['Borough Latitude',
'Borough Longitude', 'Venue', 'Venue Latitude', 'Venue
Longitude','Venue Category'], axis=1)

summary =
summary.sort_values('Count').reset_index(drop=True)

summary.head(12)



Creating a bar chart and analyzing the results:
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np

import matplotlib.pyplot as plt

oBJECTS = summary.Borough
y_ pos = np.arange(len(objects))
performance = summary.Count
plt.bar(y_ pos, performance, align="'center’', alpha=0.4)
plt.xticks(y__pos, objects)
plt.ylabel('Venue')
plt.title('Total Number of Venue in Borough')
plt.xticks(rotation=90)
plt.show()



In [112]: M import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt

objects summary . Borough
y_pos = np.arange(len(objects))
performance = summary.Count

plt.bar{y_pos, performance, align='center', alpha=8.4)
plt.xticks(y 5, objects)

plt.ylab }

plt.title( Total Mumber of Venue in Borough')

plt.xticks(rotation=08

plt.show()
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The above bar chart shows us that Centro Storico and
Trieste have close to 100 venues, followed by Tremini,
Trastavere, Corso Francia, Della Vittoria and Bologna that



have venues in 40-60 range. Remaining boroughs are less
venue rich like Georgio VII, Balduina, Caracalla and
Camillucia. Camillucia specially seems low in venues and
potentially ripe for further investment.

Let's find out how many unique categories can be curated
from all the returned venues:

print('There are i} uniques
categories.'.format(len(rome_ venues['Venue

Category'].unique())))

We will now analyze each borough along with the venues
that exist there and do some data cleaning in the process by
using one hot encoding to show a 1 where a venue category
exists in a neighborhood and 0 where it does not exist:

We first apply one hot encoding for venue categorization:

rome_ onehot = pd.get_ dummies(rome_ venues[['Venue
Category']], prefix="", prefix sep="")

We then add neighborhood column back to dataframe:

rome_ onehot['Borough'] = rome_ venues['Borough']

We also move neighborhood column to the first column:

list column = rome__onehot.columns.tolist()

number_column = int(list_ column.index('Borough'))

list column = [list column[number column]] +
list column[:number column]
list column[number column+1:]

rome_ onehot = rome_onehot[list column]

rome__onehot.head(20)



In [25]: M # one hot encoding

rome_onehot = pd.get dummies(rome_venues[['Venue Category']], prefix="", prefix_sep-"")

# add neighbortood column bock to dotafrome

rome_onehot{ 'I?r:l‘cugn' ] - r‘ome_\.'enues['l‘l:)r'r:ugn' ]

# move neighborhood column to the first column

list_column = rome_onehot.columns.tolist()

number_column = int{list_column.index( Borough'))

list_column = [list_column[number_column]] + list_column[:number_column] + list_column[number_column+l:]

rome_onehot = rome_onehot[list_column]

rome_onehot . head (20|

A H
Boroush /Siaurant Gy Museum Restaurant shop Boke Bar ST o St oar Bisto Bookstore Boutque gl

0 CenfroStorico L] ] i} V] o (1] ] o 1] 1] o 0 o 1]
1 CentroStoncg 0 o o o o U] o o o L] i} 0 o 0
2 CenfroSiodico 0 /] o o /] o 1] o 1} 1] o 0 o 1]
3 CenfroStonca L} o o o o ] o o o o o L o 0
4 CenfroStodico ] o o 0 o o [} o 0 1] o 0 o 1]
5 CenfroStoncg L} o o 0 o o o o o o 1] L o o
6 CenfroStodico ] '] o 0 ] o 1] o a 1] o L] o 1]
T CentroStorico L} o 1] o o o0 o a o ] L 1] 1]
8 CentroStodico ] 1] '] '] 1] ] a o 0 o 0 L] '] 1]
§ CenfroStonco 0 o 1] 1} o o0 o a o ] L] 1] 0
10 CenfroSiedca ] 1] '] 0 1] o o o 0 o '] L] '] Q
11 CenfroStonco L} o 1] o o 00 o 1] o ] L] 1] 0
12 CenfroSiedico 0 '] 1] 0 1] o [ o o 1] o L] 1] 1]
13 CentroStosico 0 ] ] 1] ] 0 0 1] 0 (] ] L] ] 1]
14 CeniroStonca 0 /] o 1] /] ] L] o Q 1] o 1] o [
15 CenfroStorico 0 ] ] 0 ] 0 0 ] 0 ] ] L] ] 1]
16 CeniroStonico a /] o 1] /] ] [ o Q 1] o ] o 0
17 CentroStorico L] 0 ] ] 0 0 0 ] 0 L] ] L] ] 1]
18 CeniroSionico 0 /] 1] 1] o /] [1] o Q (1] o 0 1] [
19 CentroStosico 0 ] 0 ] ] 0 0 ] 0 L] ] L] ] 1]

1 3

Let’s determine the frequency of occurrence of each
venue category in the different boroughs:

rome__grouped =
rome_ onehot.groupby('Borough').mean().reset_ index()

rome_ grouped.head()

In [26]: M rome_grouped = rome_onehot.groupby( Borough').mean().reset_index()
rome_grouped. head( )

6]:

Borough !lag;[l:.llj;;r{ Gnll:rl; Muu:'rnl Rasl::.:::ll'lnl E;:]H:I: oty Bar ankgl;:rll Bram;‘l HearBar Bhsltro Bookaione . Boutiqua Rsﬂ;t:
1] Ealduing 0.00 oo a0 0.045455 0.0 0000000 0000000  D.ODOOOO 00 0.000000 .00 0.00 00
1 Bodogna 0.00 000 0.00 0.022322 0.0 D.044444 0025839 o.ozaazz 00 D044444 0.00 0.00 00
2 Camilluccia 0.00 0.00 0.00  0.000000 0.0 0.000000 0.000000  0.000000 0.0 0.000000 0.00 0.00 00
3 Caracally 0.00 0.00 000 0000000 0.0 0000000 0.000000  0.0DD000 00 0000000 000 0.00 00
4 CeniroStonco 0.01 0o 001 0.000000 00 0010000 0000000  0.0DD000 00 000DOOD 001 om oo




Creating a function to sort the venues in descending
order:

def return__most_common_ venues(row,
num__top_ venues):

row__categories = row.iloc[1:]

row__categories_ sorted =
row__categories.sort_ values(ascending=False)

return
row__categories_ sorted.index.values[0:num__top_ venues]

Now let's create the new data-frame and display the top
10 venues for each neighborhood:

num__top_venues = 10

indicators = ['st', 'nd', 'rd']

We also create columns according to number of top
venues:

columns = ['Borough']

for ind in np.arange(num__top_ venues):

try:

columns.append('{}{} Most Common
Venue'.format(ind+1, indicators[ind]))

except:

columns.append('{}th Most Common

Venue'.format(ind+1))
We create a new dataframe with venues and boroughs
sorted:



boroughs_ venues_ sorted =
pd.DataFrame(columns=columns)

boroughs_ venues_ sorted['Borough'] =
rome_ grouped['Borough']

for ind in np.arange(rome__grouped.shape[0]):

boroughs_ venues_ sorted.iloc[ind, 1:] =

return__most__common_ venues(rome_ grouped.iloc[ind, :],
num__top_ venues)
boroughs_ venues_ sorted.head(12)

except:
columns. append( " {}th

# create a new datafi
boroughs_venues_sorted
barough

e
- pd.DataFrase(columns=columns)

for ind in np.arange{rome_grouped.shape[a]
boroughs_venues_sorted.iloc[ind, 1:]

baraughs_venues_sorted.head(12 |

Most Common Venue®.format

(ind+1))

venues_sorted[ 'Borough'] - rome_grouped[’Borough']

In [112]: M| num_top venues = 1@
indicators = ['st", "md’, “rd’]
# create co toe number of top venues
columns =
for ind in np.arange(num_top_venues):
try:
columns. append ( Most Common Venue®,format(ind+1l, indicators[ind]))

= return_most_common_venues(rome_grouped.iloc[ind, :], num_top_venues)

151 Most 2nd Most  Jrd Most 41 Most 5th Most Gth Most Tth Most Bth Most 9th Mast 10th Most
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Market Shop Store Store
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As you can see from above analysis, using one hot
encoding, we categorized the venue types further and sorted
them based on occurrence by each borough. That gave us the
following results showing the top 3 most common venues by
each borough. This will help us further determine the best
investment opportunity in each borough depending on the
types of venues that exist currently.

1st Most Common Znd Most Common 3rd Most Common

Borough

g Venue Venue Venue
0 Balduina [talian Restaurant Hote Spa
Bologna ltalian Restaurant Bar Pizza Place
2 Camilluccia Nightclub Wine Shop Flea Market

| i e Ik e e - i " Nk —
3 Caracalla Park Performing Arts Venue Plaza
4 CentroStorico [talizan Restaurant Plaza ce Cream Shop
5 CorsoFrancia [talian Restaurant Cafe Pizza Place
6 Della Vittora [talizn Restaurant Cafe Pizza Place
[ GregorioVl Pizza Place Hote Cafe
8 Termini Hote ltzlian Restaurant Plaza
g Trastevere [talian Restaurant Pizza Place Café
10 Trieste Cafe ltalian Restaurant Flaza

We will now use the previously imported K-means
algorithm to find out which types of venues fall in the same
category and their corresponding spatial distance:



We first set number of clusters to 2 as that will give us the
optimal results, using the ‘Elbow’ method, explained in
more detail below:

kclusters = 2

When run the k-means clustering algorithm:

kmeans = KMeans(n__clusters=kclusters,
random_ state=0).fit(rome_ grouped__clustering)

We then check cluster labels generated for each row in the
data frame:

labels = kmeans.labels [0:11]

labels

We finally visualize the results and find the optimal K-
means value:

from scipy.spatial.distance import cdist

distortions =[]

K = range(1,10)

for kin K:

kmeanModel = KMeans(n__clusters=Kk,
random_ state=0).fit(rome_ grouped_ clustering)

distortions.append(sum(np.min(cdist(rome_ grouped_ c
lustering, kmeanModel.cluster_centers_, 'canberra'),
axis=1)) [ rome_ grouped_ clustering.shape[0])



There are different metric distance functions for spatial
distance. We chose Correlation instead of Euclidean method
in this case because the Canberra function gives us a better
view of elbow break point. This can be seen when we plot the
K-distortion on a plot:

plt.plot(K, distortions, 'bx-")

plt.xlabel('k")

plt.ylabel('Distortion')

plt.title('The Elbow Method showing the optimal k')
plt.show()
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Based on the above analysis, Optimal K value is 2 — which
means we should group the venues into two clusters overall:
0 and 1. We will now create a new data-frame that includes
the clusters as well as the top 10 venues for each
neighborhood.

rome_merged = rome__data

We then add clustering labels:

boroughs_venues_sorted.insert(o, 'Cluster Labels',
kmeans.labels )

and merge rome_grouped with rome_data to add
latitude/longitude for each neighborhood:



rome__merged =
rome__merged.join(boroughs_ venues_ sorted.set_index('B
orough'), on="Borough')

rome__merged.head(20)

H rome_merged rome_gata

Clus

boroughs_wvenues_sorted.insert(®, "Clust La *, kmeans.labels_)

prouped with rome data to odd La e/ Longitud
rome_marged. join({boroughs_venues sorted.set index( "B

rome_merged.head(2@) # check the last columns!
Av Cluster 1st Most  Znd Most  Jrd Most  4th Most 5th Most Bth Most th Most
Borough Ho"qepnfe' Latitude Longitude | /000 Cluster Common  Common Common  Common Common Common  Common
i Venue venue Venue Venue Venue Venue Venue
« = = Italkan Ice Sandwich i
0 CenlroSiodico TET 41.888200 12477300 10 1.0 Restaurant Flaza Cream Haotal Plac Fourtain  Restauranl
estauran Shop lace
P 1 BTG o et P ¢ P PEMOMIngG 2 e Itakan 3 2 L
Caracala 6910 41 E7T9400 12493100 10 1.0 ark Arts Venue Fiaza Gargan Restauran Festival Nightoiul
2 Flaminio GEXZ 42181900 12472500 NaN MNaN NaN hal MaM MaM Nah Mah MHaM
3 Traglevere 5435 41884300 12470400 1.0 1.0 takan Fizza capp 'CRCIEAM  oairant  Cocktail Bar Fraza
L ke = - Restaurant Flace = Shap o s =
Itakan - Pizza Breaktast Brazilian :
| i 7 1918 2 4639¢ K ( L faz Haote
4 Della Vittoria 5137 41918200 12463900 10 1.0 Restauran Caté Flace Flaza Spot Restaurant Hotel
T g oty italian = 5 A e Clothing
5 Trieste 4584 45649500 13776800 140 1.0 Cafa Rectyurant Plaza Hotal  Pizza Placa Bar Sore
- 1 GROsE 11 33TEC - Itakan i Pizza ST S arane 08 Cream
6 Eplogna 4531 44 4058955 11.327500 10 1.0 Restaurani Bar Place Ristaurant Beer Bar Bakiry Shop  ©
7 CorsoFrancia 4280 45076734 7667100 10 10 e cals P8 Flaza Suenl, ER Ao Hatal
i Rt Y Restaurant i Flace : Restauram  Restaurant i
T o &y ttalian ca Cream History Roman .
Tarm 4107 41901 [ - Pi
8 farmin 07 41901100 12501200 10 1.0 Hotel o imurant Flaza Shop Museum  Restaurant Fiz2a Place
o GER1Y 5 BRIIE . Flia ¢ Comvenience Deli ! Depariment
P Camilluccis 00 R ) g Jii 1 Wine Sh
9  Camiluccia 4099 43568130 12662350 0.0 0.0 Nighlclub e ShoD et Shate Bodega Store
Balduina 2000 41520000 12442100 10 10 onds Hotel Sps Colles Chinese  Department o oy,
i ‘ Restaurant - Shop  Restaurant Store i
" A 5 §3608 Pizza L pan,  Dreakiast Itakan Seafood Flower
GregarioWil 072 41863348 12 4359¢ [ (i olel #
b el 872 41800348 12435962 10 1.0 Placa ke s Spot  Restaurant  Restaurant Shop
1]

We estimate the number of 1st Most Common Venue in
each cluster. Then, we can create a bar chart which may help
us to find proper label names for each cluster.

count_ venue = rome_ merged

count_venue = count_venue.drop(['Borough','Avg-
HousePrice', 'Latitude', 'Longitude'], axis=1)

count__venue = count_ venue.groupby(['Cluster
Labels','1st Most Common



Venue']).size().reset_index(name="'Counts')
cv__cluster = count_venue.pivot(index='Cluster Labels',
columns="1st Most Common Venue', values='Counts')
cv__cluster =
cv__cluster.fillna(o).astype(int).reset__index(drop=True)
cv__cluster

: M count_venue = rome_merged

count_venue = count_wvenue.drop(['Borough’, 'Avg-HousePric atitude”, ‘Longitude'], axis=1)

count_wvenue = count_wvenue.groupby([ 'Cluster Labels®,'lst Most Common Venue']).size().reset_index(name="Counts’)
ev_cluster = count_venue.pivot{index="Cluster Labels®', columns='lst Most Common Venue®, wvalues='Counts®)
cv_cluster = cv_cluster.fillna(@).astype(int).reset_index(drop=True)
_cluster
151 Most Commen Venue Café Hobtel Italian Restaurant Mighiclub Park Pizza Place
o o o o 1 o
1 1 1 & 4] 1

Creating a bar chart of "Number of Venues in Each
Cluster":

frame=cv__cluster.plot(kind="bar',figsize=(20,8),width =
0.8)

plt.legend(labels=cv__cluster.columns,fontsize= 14)

plt.title("Number of Venues in Each Cluster' fontsize=
16)

plt.xticks(fontsize=14)

plt.xticks(rotation=0)

plt.xlabel('Number of Venue', fontsize=14)

plt.ylabel('Clusters', fontsize=14)

] creating o bar chart of “Number £ Venues inm EFach Cluster"
frame=cv_cluster.plot(kind='bar',figsize=(20,8),width = 8.8)
plt. legend(labels=cv_cluster.columns,fontsize= 14)
plt.title( “Mumber Ea Cluster"” ,fontsi

plt.xticks(fontsize
plt.xticks{rotation=2})

plt.xlabel( 'Number of Venue', fontsize=14)
plt.ylabel( 'Clusters', fomtsize=14

Text(@, 8.5, "Clusters")



Number of Venues in Each Cluster
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N Nightclub
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When we examine above graph, we can label each cluster
as follows:

Cluster o: "Night Club"

Cluster 1: "Multiple Social Venues"

We can now assign those new labels to existing label of
clusters:

Cluster_labels = {'Clusters': [0,1], 'Labels': ["Night
Club"," Multiple Social Venues"]}

Cluster__labels = pd.DataFrame(data=Cluster__labels)

Cluster labels

oL IIIIIII

L]

Number of Venue

In [76]: M Cluster_
Cluster_
Cluster

abels = {"Clusters': [@,1], 'Labels®: ["Might Club","Multiple Social Venues™]}
abels = pd.DataFrame{data=Cluster_labels)
abels|

i i b

Clusters Labels

1] 1] Might Glub

1 1 Mufliple Social Venues

We can also present top 3 counts of different venue types
in each neighborhood as follows:

top3 = rome_ venues.groupby(['Borough','Venue
Category']).size().reset_index(name="'Counts')



top3 =
top3.sort_ values(['Borough','Counts'],ascending=False).gr
oupby('Borough').head(3).reset_index(drop=True)

top3['Join'] = top3['Counts'].map(str) + " " +
top3['Venue Category']

top3 = top3.groupby(['Borough'])['Join'].apply(",
"' join).reset__index()

top3.head(12)

In [B6]: M top3 = rome_venues.groupby([ 'Borough®, 'Venue Category']).size().reset_index{mame='Counts')
top2 = tepd.sort_wvalues([ Borough','Counts'],ascending=False).groupby( Borough').head(3).reset_index(drop=True)
top3[ 'Join'] = top3[ 'Counts®].map(str) + v']
top? = tepl.groupby( [ Borough®])[" ndex( )

top3.head(12
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Borough
Balduina
Bologna

Camilluccia
Caracalla
CentroStorico
CorsoFrancia
Della Vittona
GregorioVll
Termin
Trastevere

Trieste

Join

o ltalian Restaurant, 2 Hotel, 1 Asian Restaurant
T ltalian Restaurant, 4 Bar, 3 Pizza Place

1 Nightclub

2 Park 1 Festival, 1 Garden

16 Italian Restaurant, 14 Plaza, 9 lce Cream Shop
0 ltalian Restaurant, 4 Café 4 Pizza Place

[ ltalian Restaurant, 4 Café, 2 Breakfast Spot

3 Cafe, 3 Hotel, 3 Pizza Place

16 Hotel 12 ltalian Restaurant, 4 Plaza

12 ltalian Restaurant, 5 Pizza Place, 4 Café

11 Cafeé, 8 ltalian Restaurant, 8 Plaza

Since we have analyzed the venue groupings and most

common occurrences by neighborhoods, we can now switch
our attention to house prices — as that will help us narrow
down the best investment opportunities among the different
boroughs.

We will analyze the housing sales prices for per square

meter in specific ranges. Then we can create new labels
which involve pricing features, as well.

data_ process

= df.sort_ values('Avg-

HousePrice').reset__index(drop=True)



data_ process = data_ process.drop(['Latitude’,
'Longitude'], axis=1)
data_ process.head(12)

We will now examine the frequency of housing sales
prices in different ranges using a histogram and for that we
have to put them in ‘bins’. Rest of the code below is to
format the histogram, so you can adjust the color, font, and
size to your liking.

num_ bins = 5

n, bins, patches = plt.hist(data_process['Avg-
HousePrice'], num__bins, facecolor="'blue', alpha=0.5)

plt.title("'Average Housing Sales Prices in
Range" ,fontsize= 16)

plt.xticks(fontsize=14)

plt.xticks(rotation=0)

plt.xlabel('Average Housing Prices (m2/sq.)',
fontsize=14)

plt.ylabel('Counts', fontsize=14)

plt.show()



In [78]: M num bins = 5
n, bins, patches = plt.hist(data_process['Avg-HousePrice'], num_bins, facecolor='blue', alpha=e.s)
plt.title("Average Housing Sales Prices in Range",fontsize= 16)
plt.xticks{fontsize=14)
plt.xticks{rotation=8)
plt.xlabel{ Average Housing Prices (=2/sq.)", fontsize=14)
plt.ylabel( Counts’, fontsizesif)
plt.show()

Average Housing Sales Prices in Range

Counts

4000 4500 5000 5500 6000 6500 7000 7500 8000
Average Housing Prices (m2/sq.)

Based on the above histogram, house sales price (HSP)
ranges can be defined as follows:

4,000 AHP : "Low Level HSP"

4000-6000 AHP : "Mid Level HSP"

6000-8000 AHP : '""High Level HSP"

In this case, we can create "Level labels" with those
levels. Mid to High sale prices indicate good income for
people residing in the area, and therefore, a good investment



opportunity if we are opening a new venue in the
neighborhood.

level =[]

for i in range(0,len(data_ process)):

if (data__process['Avg-HousePrice'][i] < 4000):

level.append(''Low Level HSP')

elif (data_ process['Avg-HousePrice'][i] >= 4000 and
data_ process['Avg-HousePrice'][i] < 6000):

level.append(''Mid Level HSP")

elif (data_process['Avg-HousePrice'][i] >= 6000 and
data_ process['Avg-HousePrice'][i] < 8000):

level.append(''High Level HSP"')

data__process|'Level_labels'] = level

data_ process.head(12)

n [87]: M lewel = []
for i in range(@,len(data_process)):
if (data_process['Avg rice’ J[i] )}

level.append( " Low
ce'][i] »= 4888 and data_process['Avg-HousePrice®][i] <« &@a@):

elif {data_prc

] ice®][1] »= 6820 and data_process['Avg-HousePrice®][i] < £880):
level. append(

data_process['Level_labels'] = level
data_process.head(12)]

Borough Avg-HousePrice  Level_labels

] GregorioVil 3972 Low Level HSP

1 Balduina 4000  Mid Level HSP

2 Camilluccia 4098  Mid Level HSP

Taeriing 4107  Mid Lewel HSP

4 CorsoFrancia 4288  Mid Level HSP

Balogna 4531 MG Level HSP

] Trieste 4884  Mid Level HSP

5137 Med Level HSP

B Trastevera 5435 Mid Lewel HSP

a8 Flamiria 5622  Mad Level HSP

10 Caracalla 6910 High Lavel HSP
11 CentroStedics 7817 High Level HSP

We can now add house sales price details to the cluster
table that also include the top venue list by neighborhood:
import numpy as np



result = pd.merge(rome_ merged,
top3[['Borough’', 'Join']],

left_on = 'Borough’,

right_on = 'Borough’,

how = 'left')

result= pd.merge(result,
Cluster__labels[['Clusters’', 'Labels']],
left on = 'Cluster Labels',

right_on = 'Clusters',

how = "left')

result = pd.merge(result,

data_ process[['Borough’', 'Level_ labels']],
left_on = 'Borough’,

right_on = 'Borough’,

how = 'left')

result = result.drop(['Clusters'], axis=1)
result.head(12)




e Clust 1st Most  Z2nd Most  3rd Most
Borough Vg Latitude Longitude USYT Cluster Common Commen Common
HousePrice Labels
Venue Venue Venue
0 CentraStorico 7317 41.898200 12.477300 10 10 itekian iy MeeEiEam
Restaurant Shop
1 Caracalla 6010 41.879400 12493100 10 1.0 Park, ey Plaza
Arts Venue
b Flaminia 5622 42191900 12472500  NaN  NaN Nal Mah Nal
3 Trastevers 5435 41.884800 12.470400 10 1.0 ln e Dhre Café
Restaurant
4 Della Vittoria 5137 41918200 12.463900 10 1.0 ttalian Cafe foen
Restaurant Place
: e g ltalian
5 Trieste 4884 45649500  13.776800 10 1.0 Café Plaza
Restaurant
8 Bologna 4531 44498955  11.327500 10 10 Halan Bar Hicea
Restaurant Place
7 Corsofrancia 4280 45076734  7.667100 10 1.0 i Cafe i
Restaurant Place
8 Termini 4107 41901100 12.501200 10 1.0 Hotel i Plaza
Restaurant
9 Camilluccia 4090 43968130 12.662350 0.0 00 Nightclub Wine Shop Tk Colfen
Market Shop
i Italian Coffee
10 Balduina 4000 41920000 12.442100 10 1.0 Hotel Spa
Restaurant Shop
: s 5 Ereakfast
11 GregorioVIl 3972 41.893348 12435062 1.0 1.0 Pizza Place Hotel Cafe Spot

Looks like Cluster 0, Camilluccia, is still looking very
attractive since the house prices are in the medium range



and there is very little competition from other restaurant
type venues in the neighborhood!

Finally, let's visualize the resulting clusters using the
Folium library which is very good for visualizing geospatial
maps — as mentioned earlier in this chapter.

import math

map__clusters = folium.Map(location=[latitude,
longitude], zoom_ start=9.5)

We set the color scheme for the maps in the code below.
You can adjust the colors and format to your liking — as
mentioned previously when plotting other visualizations
using Python.

x = np.arange(kclusters)

ys = [i+x+(i*x)**2 for i in range(kclusters)]

colors__array = cm.rainbow(np.linspace(0, 1, len(ys)))

rainbow = [colors.rgb2hex(i) for i in colors_ array]

You can also add markers to the map to mark each
borough:

markers_colors =[]

for lat, lon, poi, cluster, join, cluster number, label in
zip(result['Latitude'], result['Longitude'],
result['Borough'], result['Labels'], result['Join'],
result['Cluster Labels'], result['Level labels']):

label = folium.Popup(str(poi) + " / " + str(cluster) + "-"
+ str(label) + " / "' + str(join), parse__html=True)

if (math.isnan(cluster number)== False):

folium.CircleMarker(

[lat, lon],

radius=5,

color= rainbow[int(cluster _number-1)],



popup=label,

fill color = rainbow[int(cluster _number-1)],
fill_opacity=1).add_ to(map__clusters)
map__clusters

In [182]: M dimport math

W create map

map_clusters = folium.Map{location=[latitude, longitude], zoom_start=9.5)

cole for t

x = np.arange(kclusters
ys = [L#x+(i*x)**2 for i in range(kclusters))
colors_array = ¢m,rainbow{np.linspace(d, 1, len(ys)))
rainbow = [colors.rgbZhex(i) for i in colors_array]

& set ¢ gt scheme the clusters

# add morkers to the map
markers_colors = []
for lat, lon, pei, cluster, join, cluster_number, label in zip({result['Latitude'], result['Lengitude'], result['Borough’], re

label = folium.Popup(stripoi) + " / " + stricluster) + "-" % str{label} + /% str({join), parse_html=True)
if (math.isnan{cluster_number)== False):
folium.CircleMarker(
[lat, lon],
radius=5,

color= rainbow[int(cluster_number-1)],
popup=label,

fill_color = rainbow[int{cluster number-1)],
fill_opacity=1).add_to(map_clusters)
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As a summary of this analysis, we used a dataset
containing the names of different neighborhoods for Rome
as well as the average house price and longitude and latitude
coordinates of those neighborhoods. We further augmented
this dataset by using Foursquare API, to bring in details of
the most common venues in each neighborhood.

We then used K-mean algorithm and elbow method that
recommended segmenting the data into 2 clusters overall



where Camillucia neighborhood ended up in Cluster 0 and
remaining neighborhoods ended up in Cluster 1. When we
analyzed the most common venues in each neighborhood, it
also became quite apparent that while in Cluster 1, there are
several Italian restaurants and other socialization venues
like cafes and hotels, Cluster 0 mainly had night clubs and
wine bars.

When we further visualized the data by overlaying the
real estate prices, Cluster 0 looks even more attractive from
a business investment perspective as the real estate prices
fall in the mid-level sales price range.

Based on the above analysis, we reach the
recommendation that Cluster 0 (Camillucia neighborhood)
as a good option for business investment and more
specifically opening an Italian restaurant or Pizza joint as
there is minimum to no competition for food locations for
night club goers and the real estate price is in the mid-range.
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USE CASE 9 - CREATING RECOMMENDER SYSTEMS

applications of Machine Learning in today’s world.
Here, technology meets marketing and psychology
to find the best matches between consumers and products.
All of us have experience with recommender systems:

R ecommender systems is one of the most widely used

e YouTube proposes videos that we like

» Spotify makes lists with songs based on what songs
we have listened to before

e Netflix recommends movies based on what we have
watched before or what other similar users like

e Facebook displays advertisements based on our
previous search history

e Amazon displays products that we would probably
buy based on previous purchases, or products that
other users frequently buy together with our
current purchase

e Instagram chooses to show us popular photos
based on our interests (monitored by likes and
search history)

Each application that utilizes recommender systems uses
a different approach to form the recommendations.

A recommender system needs the following:

1. Users

2. Items (videos on YouTube, songs on Spotify, photos on
Instagram etc.)

3. Users’ activities (likes, purchases etc.)



In this chapter, we will use a Kaggle public dataset from
Netflix 2019 line up to determine how we can recommend
movies based on user viewing patterns and available content
on their platform.

As in previous chapters, this dataset along with the code
used in this chapter will be available to you via a download
link later in this book.

We will start with importing the necessary libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import matplotlib.pyplot as plt

We will then load the dataset:

netflix overall=pd.read__csv('"'netflix__titles.csv'')

netflix overall.head()

plot as plt
import seaborn as sns
impert matplotlib.pyplot as plt

netflix_overall=pd.read_csv({“netflix_titles.csv")
netflix_owerall.head |

show_id  type tille  director cast  country date_added release_year rating duration listed_in description
0 1 ™V o Bia guss 14 o0 TV 4 g land
* show 7 : 2020 iz MA  Sea :
T Dacernber saas B sgyage Dramas,  AMer 2 devasiatin
5 23, 2016 i [ g Intermational Movies g
When an army recruil
December o Homror Movies, i &
2 83 A Z 20, 2018 m R T8 min International Mcviaa s found ﬂé‘-:-.'r‘ hiia.
o tord o oy Actien & Adveniure, In a posiap
3 a4 N #ﬂlt"hk :;I Ii; N1£i-’ 2008 f ‘.’j B0 min Independent  world, rag-d
= £ | Maovies, Sci-Fi
F Jin . Albilliant group of
Rob S G- g
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Let’s do a count of the overall variables in the Netflix
dataset:
netflix overall.count()

Let's create specific variables for tv shows and movies for
further exploration

netflix _shows=netflix overall[netflix overall['type']==
'"TV Show']

netflix _movies=netflix overall[netflix_overall['type']=
='Movie']

We can now do a visual comparison by plotting tv shows
vs movies as a bar chart using seaborn library:

sns.set(style="'darkgrid")

ax = sns.countplot(x="type", data=netflix_overall,
palette="'Set1")



In [4]: M #let's create specific variobles for tv s f 7 exploration
netflix_shows=netflix_overall[netflix 11 typ ] | She
netFliz_novies-netflix_overalllﬂetfl rall[ 'type’ J== £

sns.set(styles"darkgrid”
sns.countplot{x="type"”, data=netflix overall, palette="S5etl™)

4000
T 2000
- -
TV Show
wpe

It is obvious from above analysis that there are more
movies than tv shows on the Netflix platform.

Now suppose we wanted to know when the best time is to
release new content on the Netflix platform. To determine
that, we will create a heatmap that shows releases of shows
by year on x-axis and month of release on y-axis to
determine the busiest and lightest months for new content.
NOTE: Most of the code below is to format the charts and to
set the color, font, and size of the plot. You can adjust to
your liking by changing the parameters in the code.

netflix date = netflix shows[['date added']]. dropna()

netflix_ date['year'] =
netflix date['date_added'].apply(lambda x : x.split(', ')
[-1])

netflix date['month'] =
netflix_date['date__added'].apply(lambda X
x.Istrip().split(' ')[0])

month_ order = ['January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October’,
'"November', 'December'][::-1]



df = netflix_date.groupby('year')
['month'].value counts().unstack().fillna(o)
[month_order].T

plt.figure(figsize=(9, 8), dpi=250)

plt.pcolor(df, cmap='YIGnBu_r', edgecolors='white',
linewidths=2)

plt.xticks(np.arange(0.5, len(df.columns), 1),
df.columns, fontsize=7, fontfamily="serif')

plt.yticks(np.arange(0.5, len(df.index), 1), df.index,
fontsize=7, fontfamily="'serif')

plt.title('Netflix Launching New Content', fontsize=12,
fontfamily="calibri', fontweight="'bold', position=(0.20,
1.0+0.02))

cbar = plt.colorbar()

cbar.ax.tick_params(labelsize=8)

cbar.ax.minorticks on()

plt.show()

M art b
netflix_date = netflix_shows[[ date_added']].drepna()
netflix_date['year'] = netflix_date[ 'date_added'].apply{lambda x : x.split(', "}[-1])
netflix_date[ 'month’] = netflix_date[ "dat “].apply(lambda x : x.lstrip().split(’ ")[e])

month_order [*January”, °
df = netflix_date.groupby(’
plt.figure(figsize=(%, 8),
plt.pcolor(df, cmaps'YlGnBu

, 'March', ‘April’, "May’', “June’, ‘July‘, ‘August’, ‘September’, ‘October’,
‘menth’].value_counts().unstack().fillna(@)[month_order].T

, edgecolors="white', linewidths=2)

plt.xticks(np.arange(@.5, len({df.columns), 1), df.columns, fontsize=7, fontfamily='serif')

plt.yticks(np.arange(g. en({df.index), 1), df.index, fontsize=7, fontfamily='szerif')

plt.title( 'Netflix Launching Mew Content', fontsize=12, fontfamily='calibri', fontweight='bold®, position=(8.28, 1.8+8.82))
char = plt.colorbar()

char, ax.1 ; 5(label )

char, ax.mi o)

plt.shaw()
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From the looks of the heatmap above, 2019 January, April
to June and December were relatively lighter months for
content and therefore likely good timing to release new
content on the Netflix platform. Now let's analyze the movie
ratings and their relative distribution.

plt.figure(figsize=(12,10))

sns.set(style="whitegrid"')

ax = sns.countplot(x="rating", data=netflix movies,
palette="'Set1",\



order=netflix__movies['rating'].value_ counts().index[o:

15])

In [13]):

M #From the Looks of the heatmap above, 2019 January, April to June and December were

relotively Lighter menths for content
#and therefore Likely good timing te releose new content on the Netflix plotform

#Now Let's analyre the movie rat

ings and their relotive distribution

plt.figure(figsize=(12,10))

sns. set(style="whitegrid")

ax = sns.countplot(x="rating”, data=netflix_movies, palette="Setl™, \
order=netflix_movies[ 'rating’].value_counts().index[8:15])]
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Based on above comparison, mature content that is rated
MA, 14+ or R-rated outpaces more family friendly and PG

content. Now let's look at which years the most content was
released.



plt.figure(figsize=(11,9))

sns.set(style="whitegrid"')

ax = sns.countplot(y="release_ year",
data=netflix _movies, palette="Set1", \

order=netflix _movies['release_year'].value__counts().in
dex[0:15])

In [12]: M #Based on obove comparison, mature content thot is rated M4, 14+ or R-roted outpaces more family friendly and PG content
wNow let’'s look at which years the most content was released

plt.figure(figsize=(11,3))

sns.set{style="whitegrid™)

ax = sns.countplot{y="release_year", data=netflix_movies, palette="Setl®, \
order=netflix_movies[ ' release_year'].value_counts().index[e:15])]
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Based on above comparison, 2017 and 2018 had the most
content released. Let's also analyze average duration of
movies on Netflix.

netflix _movies['duration']=netflix movies['duration'].
str.replace(' min',"'")

netflix _movies['duration']=netflix movies['duration'].
astype(str).astype(int)

netflix movies['duration']

7781 BE
7782 a9
7783 111
7784 a4
7786 9@
Name: duration, Length: 5377, dtype: imt32

sns.set(style="whitegrid")
sns.kdeplot(data=netflix movies['duration'],
shade=False)

In [16]: M sns.set{style="whitegrid")
sns.kdeplot(data=netflix_movies['duration'], shadesFalse

¢ «<matplotlib.axes._subplots.AxesSubplot at @x232a78d3l88>



Based on the above chart, the average duration of movies
on Netflix is between 80 to 150 minutes. Now let's generate a
word cloud of the most common genres for movies by using
the word cloud library.

from wordcloud import WordCloud, STOPWORDS,
ImageColorGenerator

from PIL import Image

from collections import Counter

genres=list(netflix_movies['listed_in'])

gen=[]

for iin genres:

i=list(i.split(','))

forjini:

gen.append(j.replace('',""))

g=Counter(gen)

text = list(set(gen))

plt.rcParams|'figure.figsize'] = (13, 13)

In the code below, we format the word cloud by selecting
the background color and max number of words that show
up in the word cloud:

wordcloud =
WordCloud(max_ words=1000000,background_ color="whi
te'').generate(str(text))

plt.imshow(wordcloud,interpolation=""bilinear")

plt.axis(" off")

plt.show()



In [18]: M #Based on the abowe chart, the average duration of movies on Netflix is between 88 to 150 minutes
#Now Let's generate @ word cloud of the most common genres for movies by using the word cloud Library
from wordcloud import WordClowd, STOPWORDS, ImageColorGenerator
from PIL import Image

from collections import Counter

genres=list{metflix_movies['listed_in"])}
gen=[]

for i in genres:
i=list(i.split(',"})
for j in i:
gen.append(j.replace(’ ',""))
=Counter({gen)

text = list(set(gen))
plt.rcParams[ " figure.figsize'] = (13, 13)

#assigning shape to the word cloud
wordcloud = WordCloud(max_words=1886888, background_color="white").generate({str{text))

plt.imshow(wordcloud,interpolation="bilinear"})

plt.axis("off")
plt.show()
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Based on above word cloud, it appears that dramas, cult
movies and musicals are the most common movie genres on
Netflix. For full coverage, let's generate a similar word cloud
for tv shows.

genres=list(netflix_shows|'listed_in'])

gen=[]

for iin genres:

i=list(i.split(','))



forjini:
gen.append(j.replace(' ',""))
g=Counter(gen)

from wordcloud import WordCloud, STOPWORDS,

ImageColorGenerator
text = list(set(gen))
wordcloud

WordCloud(max_ words=1000000,background_ color="whi

te'').generate(str(text))

plt.rcParams( 'figure.figsize'] = (13, 13)

plt.imshow(wordcloud,interpolation="bilinear")

plt.axis(" off")
plt.show()

for 1 in genres:
imlist(i.split(‘,'))
for j din i:
gen.append(j.replace( el B
g=Counter{gen}

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator

text = list(set(gen))

plt.axis(“off")
plt.show()
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Based on the above word cloud, Action, Adventure,
International and Mysteries are the most common tv show
genres on the platform. Now that we have analyzed the
Netflix movies and tv show genres, duration, and content
length, let's create our own recommender system to
recommend Netflix content to the users.

For that we will use the TFidVectorizer library from
SKLearn that comes built-in with recommender system
algorithms. The TF-IDF(Term Frequency-Inverse Document
Frequency) score is the frequency of a word occurring in a
document, down-weighted by the number of documents in
which it occurs. This is done to reduce the importance of
words that occur frequently in plot overviews and therefore,
their significance in computing the final similarity score.

from sklearn.feature__extraction.text import
TfidfVectorizer

We apply some data cleaning to the text by removing stop
words and null values. Stop words are generally filtered out



before processing a natural language. These are the most
common words in any language like articles, prepositions,
pronouns, and conjunctions and do not add much
information to the text that is being analyzed.

tfidf = TfidfVectorizer(stop_ words="english')

netflix_overall['description'] =
netflix overall['description'].fillna('')

We then construct the required TF-IDF matrix by fitting
and transforming the data:

tfidf matrix =
tfidf.fit_transform(netflix_overall['description'])

And finally output the shape of tfidf matrix:

tfidf _matrix.shape

tfidf_matrix = tfidf.fit_transform(netflix_overall['description'])

To generate our recommendations, we will use the cosine
similarity score. Cosine similarity measures the similarity
between two vectors of an inner product space. It is
measured by the cosine of the angle between two vectors and
determines whether two vectors are pointing in roughly the
same direction. It uses the Euclidean dot product formula (as
illustrated below) to find similarities between components of
two vectors A and B. It is often used to measure document
similarity in text analysis and is relatively straightforward
and computationally efficient to calculate.



T

A-B i=
similarity = cos(f) = IA[|B] = ;
[ Em

Here is the code to compute the cosine similarity matrix
and a function called ‘get recommendations’ that we can
use to generate recommendations based on the user’s
previous viewing habits.

We first import the linear_kernel to compute the cosine
similarity matrix:

from sklearn.metrics.pairwise import linear_kernel

cosine_sim = linear_ kernel(tfidf matrix, tfidf _matrix)

indices = pd.Series(netflix_overall.index,
index=netflix overall['title']).drop__duplicates()

We then define the function to get recommendations:

def get recommendations(title,
cosine _sim=cosine_sim):

idx = indices[title]

First, we get the pairwsie similarity scores of all movies
with that movie:

sim__scores = list(enumerate(cosine_sim[idx]))

We then sort the movies based on the similarity scores:

sim_scores = sorted(sim_ scores, key=lambda x: x[1],
reverse=True)

We narrow it down to get the scores of the 10 most similar
movies:

sim__scores = sim__scores[1:11]

and get the movie indices:

Ag' B,,;
1




movie indices = [i[0] for i in sim_ scores]
Finally, we return the top 10 most similar movies:
return netflix overall['title'].iloc[movie__indices]

from sklearn.metrics.pairwise import linear_kernel

Compute t cosine similarity matrix

cosine_sim = linear_kernel{tfidf_matrix, tfidf_matrix)

indices pd.Series(netflix_owerall.index, indexsnetflix_overall['title']).drop_duplicates()
def get_recommendations(title, cosine_sim=cosine_sim}:

idx = indices[title]

sim_scores = list(enumerate(cosine sim[idx]))

sim_scores = sorted(sim_scores, keyslambda x: x[1], reversesTrue)
sim scores = sim_scores[1:11]
movie_indices = [i[@] for i in sim_scores]

return nqlilix_nvqrull['!||In':_i;og[rqyiq_in01<q;]

Now that we have defined our recommendation
methodology, let's see the type of recommendations we will
get if our favorite movie was 'The Matrix'.

get_recommendations('The Matrix')

get_recommendations(’The Matrix'

] 5396 The Girl with the Dragon Tattoo
3 9
4927 Power Rangers Beast Morphers
5537 Shakti: The Power
4651 Haunted
5527 Sextuplets
566 ares
7a34 Time Please
5554 She-Ra and the Princesses of Power

2512 Grand Army
Name: title, dtype: object

Interesting...and now what about if our favorite TV show
was 'Breaking Bad'.

get_recommendations('Breaking Bad')



3oq Alice

nior
178z Dismissed
Rl ] Alexa & Katie
6357 The Five Venoms
GBS0 The School of Mischief
6659 The Mess You Leave Behind
4728 Ouran High School Host Club
5954 Taare Zameen Par

Mame: title, dtype: object

And there you have it folks! A simple way to create our
very own recommender system that we created from scratch!

Congratulations you have now gone through all common
data science use cases in the real world and should feel
extremely confident tackling this brave new world
empowered with mastering Artificial Intelligence!






AFTERWORD

Wow! What a journey! Thank you for reading through the
data science use cases in this book and how you can apply
them in the real world!

You learned the most common day to day Python and
predictive analytics applications including:

o Use Case 1 — Web scrapping to get the data you need
from relevant websites and format it into a data
frame for further analysis

e Use Case 2 — Image processing to analyze and
format pictures for pattern recognition

» Use Case 3 — Different file type processing to be
able to handle any data wrangling challenges

» Use Case 4 — Sending and receiving emails for
campaign automation

e Use Case 5 — Time warping to compare data with
different time scale

e Use Case 6 — Time series analysis and forecasting to
predict the future based on history!

e Use Case 7 — Financial fraud analysis and determine
the features required to identify these type of cases

e Use Case 8 — Processing geospatial data for
opportunity analysis

e Use Case 9 — Recommender system development to
see how Netflix works

And you did all of that by using hands on code examples
that are readily available to you for download (see the Free



Gift chapter for more details).

Also, if you haven’t already, please make sure to check
out the first two best-selling books in this series:

The first best selling book in this series, Ultimate Step by
Step Guide to Machine Learning using_ Python, gets you
started on your journey by including step by step
instructions to set up Python, introduces you to basic syntax,
data structures and data cleaning. It then takes you through
a real-life use case where you create a machine learning
predictive model from scratch! To purchase this book, follow
this link to get redirected to your local Amazon site:
http://mybook.to/MachineLearningPython.

The second best selling book in this series, Ultimate Step
by_Step Guide to Deep Learning_ using_ Python gets into
neural networks concepts. It further differentiates machine
learning models from deep learning models and as a bonus,
shows you how you can deploy and optimize your models at
scale in the cloud! To purchase this book, follow this link to
get redirected to your local Amazon @ site:
http://mybook.to/DeepLearningPython.

If you have gone through all three of these books, there is
no stopping you in mastering the machine learning, deep
learning, and data science world! All the best to you in your
career progression!



http://mybook.to/MachineLearningPython
http://mybook.to/MachineLearningPython
http://mybook.to/DeepLearningPython
http://mybook.to/DeepLearningPython
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POST YOUR REVIEW

our review will help me improve this book and
future content and will also help other readers find
this book!

Thanks again for purchasing this book and your
continued support!
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WEBSITE AND FREE GIFT (CODE TO DOWNLOAD)!

on’t be a stranger and please check out my website:
D https://daneyalauthor.com/datascience
You will be able to download the code and
datasets used in this book by using the above link.


https://daneyalauthor.com/datascience
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Latest Python documentation:
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6. When stuck, google your question, and always check
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Where Developers Learn, Share, & Build Careers, Stack
overflow.
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Your Machine Learning and Data Science Community,
Kaggle.

https://www.kaggle.com/

Public datasets used in this book under Creative
Commons license:

e Time Series Forecasting: Ecommerce Daily Orders
Data

e https://www.kaggle.com/jyesawtellrickson/ecomme
rce-bookings-data?select=ecommerce data.csv

e Fraud Analysis: Synthetic Financial Datasets for
Fraud Detection

e https://www.kaggle.com/ealaxi/paysimi
e Netflix Movies and TV Shows

e https://www.kaggle.com/shivamb/netflix-shows?

select=netflix titles.csv
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