

ULTIMATE

TYPESCRIPT HANDBOOK

Build, scale and maintain Modern

Web

Applications with TypeScript

by

DAN WELLMAN

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable

for any damages caused or alleged to have been caused directly or indirectly by

this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee

the accuracy of this information.

First published: July 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-78-5

www.orangeava.com

http://www.orangeava.com/

Dedicated to

My beloved wife Tammy

And my children - Bethany, Matthew, James, and Jessica

About the Author

Dan Wellman is an author and a proficient web developer

from the United Kingdom, with over 15 years of experience

in the front-end realm. He has written extensively on

JavaScript both online and offline and has created numerous

videos for prominent organizations in the digital education

sector, such as Envato and PluralSight. He is currently

working as a senior developer for a global financial services

company.

Technical Reviewers

Deeksha Kusuma has a remarkable blend of expertise

and practical experience, managing multiple teams and

researching technical work. Deeksha has established

herself as a trusted figure in leading teams and marking

technical work. Her meticulous attention to detail,

analytical prowess, and dedication to advancing

knowledge make her an invaluable asset to any author

seeking to refine their work. Her commitment to raising

the bar in technical writing sets a standard that inspires

both seasoned and aspiring authors alike.

Along with technical research in her spare time, she

loves travelling, cooking, spending time with her 11-

year-old and having a steaming hot cup of coffee. Yes,

she is an ardent lover of coffee. She is determined to

travel to every country in the world!

Chris is a Senior Software Engineer and qualified

teacher of Mathematics who lives on the South coast of

the UK with his wife, two sons, a cat and a dog. While

he has experience with a variety of technologies across

the stack, in recent years he has focused his attention

specialising in the frontend. He’s been an avid user of

TypeScript since it was introduced to him via Angular,

which he has been using since it was in beta.

He is particularly passionate about unit testing and

often takes time to mentor junior engineers in how to

approach testing with best practices that can yield a

robust suite of tests.

In his spare time, Chris enjoys walking the dog, sipping

South American Malbec and playing World of Warcraft.

He loves to read, preferring anything either with

dragons in it, or modern horror inspired by the works of

H.P. Lovecraft.

Acknowledgements

First and foremost, I would like to express my gratitude to

the editorial team at Orange AVA for their continued

assistance and guidance throughout the process of writing

this book. Without their support, this book would not have

been possible.

I would also like to extend my special thanks to the

technical reviewers, Chris Ford and Deeksha Prakash, and

my esteemed colleague, Oleg Bevz, for their thorough

review of the initial drafts of this book. It would not be the

same without their insight and technical mastery in

TypeScript. I am indebted to each of them.

Lastly, while too numerous to name individually, I want to

thank the giants on whose shoulders I stand, the countless

authors of the many TypeScript and front-end development

blogs and tutorials I’ve read, and the inestimable number of

articles and videos from which I have learned, throughout

my development career. Thank you to the community I am

proud to be a part of.

Preface

Welcome to Ultimate Typescript Handbook. Over the course

of this book, I hope to share with you my passion and

excitement for using TypeScript to produce maintainable

and functional web applications.

Don’t worry if you don’t yet have this burning desire to use

TypeScript, although I would expect some degree of

curiosity at least given that you have chosen this book. I too

was initially skeptical about the benefits that TypeScript

would bring, the cost of switching development, and

whether it would even last or fade into obscurity following

an initial but waning popularity like CoffeeScript did in years

gone by.

After discovering the safety that TypeScript brings to any

JavaScript project and the ease with which it can be

adopted, my fears were soon alleviated, and I started on the

path that I continue to follow to this day. Once I made the

switch, I never looked back, and I am confident that you too

will feel the same. After writing TypeScript for just a short

amount of time, you’ll shudder at the thought an old piece

of code you need to work on which is written in JavaScript

and not TypeScript.

Over the course of this book, I will take you on a guided tour

of all TypeScript’s major aspects. You may be starting this

journey with absolutely no prior experience with TypeScript,

or you may have some level of knowledge already; it

doesn’t matter. Having some knowledge and experience of

working with JavaScript would be beneficial, as this will

allow a deeper appreciation of the benefits that TypeScript

brings.

Regardless of where you start, by the end of the book, you

will have mastered the fundamentals of the language and

be ready and confident to begin using it on a day-to-day

basis. If you’re an existing JavaScript developer on the fence

about whether to make the jump to TypeScript, then this is

the book for you.

Chapter 1 will provide a gentle introduction to the world of

TypeScript and provide some information on the type

system it uses, some advantages and disadvantages to

using the language, and how it works to prevent bugs and

help you to write better applications.

Chapter 2 will show you how to set up a development

environment so that you can begin using TypeScript. You’ll

see how to download and install it, how to create a new

TypeScript project, and how to configure TypeScript using its

main configuration file to best cater to the requirements of

your project.

Chapter 3 will start to look at some of the most

fundamental aspects of developing with TypeScript including

primitive types, union types, and literal types. Among other

things, you’ll learn about type aliases, which are the bread-

and-butter of TypeScript development, and the special any,

unknown, and never types.

Chapter 4 will focus on using the TypeScript compiler and

show how TypeScript is compiled, what the compiled files

look like, and some of the CLI flags that we can pass to the

compiler to control its behavior. You’ll see how to use 3rd

party libraries with TypeScript, and how to generate

declaration files.

Chapter 5 is a deep dive into enums, interfaces, and

namespaces in TypeScript, which focuses on how to work

with these very common entities. The knowledge you’ll gain

here will include merging and extending interfaces and

namespaces, and how to use the varied types of enums

available in TypeScript.

Chapter 6 shows how to work with some of the different

data structures that you’ll use most often – objects, arrays,

and tuples. You’ll learn about read-only arrays, optional and

rest elements in tuples, and index signatures and property

modifiers in objects. You’ll also be introduced to the topic of

generics in the context of objects, and see one of

TypeScript’s utility types in action.

Chapter 7 is dedicated to the all-important function in

TypeScript and will cover a range of topics including basic

function type annotations, optional and rest parameters,

generator functions, and generic functions. You’ll also see

how to make function overloads, how to work with this

parameters, and how type inference works with functions.

Chapter 8 will focus entirely on classes in TypeScript,

covering topics including class declarations and expressions,

constructors and access modifiers, and generic classes.

You’ll see how to add getters and setters, how to deal with

inheritance, and look at a classic design pattern

implemented with TypeScript.

Chapter 9 will look at how we can use narrowing and type

guards to safely work with values that may be one of

several different types, as well as show how to use the in

and satisfies operators.

Chapter 10 will show you how to work with and manipulate

types. You’ll learn how to use conditional types, indexed

access types, and mapped types, as well as look at

TypeScript’s wide variety of built-in utility types.

Chapter 11 is all about modules in TypeScript and will show

you how to create modular code which imports and exports

code as needed by your application. You’ll see some of the

TypeScript configuration options related to modules, how

modules are resolved by the compiler, and how existing

modules can be augmented.

Chapter 12 will focus solely on creating declaration files in

TypeScript, which may be necessary for working with older

JavaScript libraries that do not already have existing

declarations. You’ll see how to create declarations for global

libraries and modular libraries, how to add living

documentation with JSDoc, and how to publish your

declarations so that other developers can use them too.

Chapter 13 is a final practical chapter which will see you

build your first complete TypeScript application using the

Angular framework, to help cement the knowledge you’ve

gained throughout the book into a firm foundation for

building upon in future.

Downloading the code

bundles and colored images

Please follow the link to download the

Code Bundles of the book:

https://github.com/OrangeAVA/

Ultimate-Typescript-Handbook

The code bundles and images of the book are also hosted

on

https://rebrand.ly/5caab9

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt

Ltd and follow best practices to ensure the accuracy of our

content to provide an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

https://github.com/OrangeAVA/Ultimate-Typescript-Handbook
https://rebrand.ly/5caab9
mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

Piracy

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

Are you interested in Authoring with us?

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

from tech experts and help them build learning and

development content for their domains.

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

Reviews

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to TypeScript and its Benefits

Introduction

Structure

Introduction to TypeScript

A short history of TypeScript

Main components of TypeScript

TypeScript’s type system

Advantages of using TypeScript

Catching bugs

Readability

Refactoring

Future language features

Disadvantages of TypeScript

The ways in which TypeScript prevents bugs

Steps to begin using TypeScript

Type-driven development

Conclusion

References

2. Setting up a Development Environment

Introduction

Structure

Installing dependencies

Version numbers

Installing Node.js On Windows

Installing Node.js on Mac

Installing a code editor

Installing TypeScript globally

Creating a new TypeScript project

The tsconfig.json file

Installing TypeScript locally to a project

Configuring TypeScript with tsconfig.json

Default enabled configuration options

target

module

esModuleInterop

forceConsistentCasingInFileNames

strict

skipLibCheck

Commonly used configuration options

files

include

exclude

baseUrl

rootDir

paths

outDir

resolveJsonModule

Top-level configuration options

Updating the project configuration

Enabling TypeScript checking in JavaScript

Default behavior

Enabling type checking

Adding JSDoc annotations

Example project structure and use

Conclusion

References

3. Basic Type Annotations

Introduction

Structure

Primitive types

BigInt

Boolean

Number

Null

String

Symbol

Undefined

The any type

The unknown type

The never type

The as operator

Down-casting

Compound casting

Older type-casting syntax

Union types

Literal types

Literal union types

Type aliases

Type assertion

Non-null assertion operator

Conclusion

References

4. Using the TypeScript Compiler

Introduction

Structure

Compiling our TypeScript files

Inspecting compiled files

CLI flags

--version

--listFilesOnly

--showConfig

--help

Using watch mode

watchFile

watchDirectory

fallbackPolling

synchronousWatchDirectory

excludeDirectories

excludeFiles

assumeChangesOnlyAffectDirectDependencies

Environment variables

Building projects

Build-specific flags

Integrating with other build tools

Integrating with webpack

TypeScript webpack configuration

Using third-party libraries

Generating .d.ts files

Generating d.ts files from .js files

Conclusion

References

5. Enums, Interfaces, and Namespaces

Introduction

Structure

Interfaces

Interface merging

Extending interfaces

Namespaces

Namespace merging

Enums

Numeric enums

Reverse mapping

Exhaustiveness and the never type

String enums

Heterogeneous enums

Computed and constant enums

Literal enums

Inlining enums

Using the keyof operator

Conclusion

References

6. Objects, Arrays, and Tuples in TypeScript

Introduction

Structure

Arrays

Array type inference

Read-only arrays

Tuples

Optional elements in tuples

Rest elements in tuples

Read-only tuples

Object types

Property modifiers

Index signatures

Intersections

Generic object types

Readonly utility type

Conclusion

References

7. Functions in TypeScript

Introduction

Structure

Parameter Type and Return Type Annotations

Type Inference for Functions

Arrow Functions

Type Inference for Arrow Functions

Optional Parameters

Rest Parameters

Rest Arguments

Destructured Parameters

Void return type

Function Type Expressions

Call signatures

Function Type Interfaces

This Parameter

Function overloads

Overloading Arrow Functions

Generator functions

Generic functions

Generic Function Constraints

Conclusion

References

8. Classes in TypeScript

Introduction

Structure

Class Declarations

Class Expressions

Constructors

Constructor Overloading

Parameter Properties

Access Modifiers

Private Members in JavaScript

Getters and Setters

This Parameter

Index Signatures

Implementing an Interface

Static Class Members

Static Blocks

Inheritance

Abstract Classes

Abstract Properties

Abstract Methods

Generic Classes

Decorators

TypeScript Design Patterns

Conclusion

References

9. Control Flow Analysis

Introduction

Structure

Narrowing

Widening

Type Guards

Truthiness Type Guards

Narrowing with Typeof

Handling null Values

Narrowing with Instanceof

Narrowing with the in Operator

Narrowing with Type Predicates

Discriminated Unions

Assertion Functions

Using as const

Conclusion

References

10. Manipulating Types

Introduction

Structure

Generics

Generic Interfaces

Generic Types

Generic Classes

Generic Functions

Conditional Types

Indexed Access Types

Mapped Types

Adding and Removing Property Modifiers

Remapping Property Keys

Template Literal Types

Capitalize

Uncapitalize

Uppercase

Utility Types

Awaited

ConstructorParameters

Exclude

Extract

InstanceType

NonNullable

Omit

OmitThisParameter

Partial

Parameters

Pick

Readonly

Record

Required

ReturnType

ThisParameterType

ThisType

Conclusion

References

11. TypeScript Modules

Introduction

Structure

Modules in TypeScript

Importing and exporting modules

Type-only imports and exports

Compiled modules

Module-related configuration options

Module

Module resolution

Base URL

Paths

Rootdirs

Type roots

Module suffixes

Resolve JSON module

Module resolution

Compiler directives

Reference path

Reference types

Reference lib

No default lib

AMD module

AMD dependency

Barrel files

Nested barrels

Augmenting modules

Conclusion

References

12. Creating Declaration Files

Introduction

Structure

Creating declaration files

Declaring global libraries

Enhancing Intellisense with JSDoc

Declaring global functions and variables

Augmenting built-ins

Declaring modular libraries

Declaring default exports

Declaring classes

Declaring CommonJS modules

Declaring UMD modules

Publishing declarations

Publishing with the library

Publishing to Definitely Typed

Testing types

Conclusion

References

13. Building a Conference App with Angular and

TypeScript

Introduction

Structure

Getting started

Running build tasks

Unit tests

Linting

Serving the application

Creating the application shell

Creating a data model

Adding views

Home view

Adding routing

Building the add-conference view

Adding the conferences view

Changing the default locale

Adding a page not found component

Handling data

Unit testing

Continuing with the example application

Conclusion

References

Index

CHAPTER 1

Introduction to TypeScript

and its Benefits

Introduction

In this first chapter of the book, we will focus on the reasons

why one should consider using TypeScript, the benefits it can

offer to developers, and how it can reduce the number of

bugs in an application. We will also delve into the type

system used by TypeScript, its various aspects, and how

designing applications while considering the different types

in use in our program can lead to a better application. Let’s

get started!

Structure

In this chapter, we will cover the following subjects:

Introduction to TypeScript

TypeScript’s type system

Advantages of using TypeScript

The ways in which TypeScript prevents bugs

Steps to begin using TypeScript

Type-driven development

Introduction to TypeScript

TypeScript is one of the most popular programming

languages on the planet, as well as one of the fastest-

growing languages. It was originally released by Microsoft in

2012, and although it took some time to build momentum,

by 2017 it had exploded in popularity. It spawned a whole

ecosystem of tooling and frameworks, and some say it was

instrumental in causing the full-stack revolution currently in

full swing.

A short history of TypeScript

TypeScript was created by Microsoft as an internal project at

some point in 2010, and was in development until its public

release in 2012, when it was at version 0.8. Development

has continued at a rapid pace since its public release, and

the version 5 milestone was reached shortly before this book

was published.

TypeScript was initially created in response to the demands

of both internal developers and external clients who wished

for a front-end language that was safer to use than existing

JavaScript, and just as easy to implement and start using-

TypeScript was Microsoft’s response to these demands.

By the post-millennial era of web development, JavaScript

had already earned itself a reputation as a buggy and

difficult language to work with. Back-end developers were

happy to stay away from it, allowing the rise of front-end

development as a distinct career choice in its own right. But

TypeScript offered the promise of a safer, more familiar, and

less buggy language to work with on the front-end, which

enticed back-end developers to again take an interest in the

front-end, allowing the concept of full-stack development to

blossom.

As of 2022, TypeScript enjoys the position of fourth most

popular programming language in use according to Stack

Overflow, behind only Java, Python, and the king of

programming languages itself of course - JavaScript and

looks set to continue its meteoric rise in the coming years.

TypeScript is a superset of JavaScript; it contains everything

that JavaScript contains, and then a little more on top.

TypeScript isn’t just a static type system. It isn’t just a

library, a framework, or a set of utilities. It is a programming

language in its own right. Everything that can be done in

JavaScript can also be done in TypeScript.

Main components of TypeScript

TypeScript consists of three main parts; first, there is the

syntax and if you already know JavaScript to a relatively

good level, you already know most of TypeScript, because as

I just mentioned, TypeScript contains all of JavaScript. On top

of this, TypeScript adds some new syntax to express types

and some new keywords. We’ll cover all of this in more detail

as we progress through the book.

The second component is the compiler. TypeScript itself isn’t

supported by any browser; it can’t be run natively on the

internet. Instead, it is one of a number of different languages

that are compiled into JavaScript so that it can be run by any

regular browser. The TypeScript compiler is known as TSC

and is included when TypeScript is installed. It is run from the

command line and can be configured to be run as a build

step in a CI/CD pipeline. We’ll learn more about the compiler

and how to use it later in the book.

The final aspect is that of editor integration. TypeScript was

created by Microsoft and is fully integrated with the popular

Microsoft suite of IDEs Visual Studio by default, without any

additional configuration. It can also be installed in many of

today’s most popular development tools and editors. This

component of TypeScript turbo-charges local development,

giving you type information and code completion right there

as you’re developing.

In case you’re wondering exactly how capable TypeScript is,

and exactly what kinds of application can be created using

TypeScript, take a moment to appreciate that Visual Studio

Code itself is written in TypeScript. Visual Studio Code is one

of today’s most popular and capable IDEs and is used daily

by millions of developers globally. In light of this, I believe

that there is no application too big or too complex to create

using TypeScript.

TypeScript’s type system

There are many different kinds of type systems that are used

to enforce the types of values, and the operations that may

be performed on them, used by different programming

languages. One common category of the type system is

called a nominal type system, where it is the name of a

value, or the place in which it is used, which determines its

type.

Conversely, TypeScript uses what’s known as a structural

type system to enforce types – it is the structure of a value

that determines the value’s type. This kind of type system is

colloquially known as duck typing–if it looks like a duck,

walks like a duck, and quacks like a duck, it’s a duck!

TypeScript is able to infer the types of some values based on

how we use them. For example, if we assign a string to a

variable without explicitly stating that the variable has the

type string, TypeScript will go ahead and assign the type

string to that value and warn us if we later try to store a

number in that variable or try to perform an operation on the

value that doesn’t make sense for strings.

TypeScript can also infer the types of values based on the

construct they are used in. When using an array with a for

loop for example, TypeScript knows that the type of the first

parameter passed to the callback function will be the same

type as the original value in the array on which the loop is

used because that’s how for loops work in JavaScript and

TypeScript fully understands how JavaScript works.

TypeScript’s type system is also a static type system, which

means that the types are checked statically during compile

time by TypeScript’s compiler. This is opposed to a dynamic

type system, which checks types at runtime. This would not

be possible for TypeScript given that TypeScript is never run

directly, it is the resulting JavaScript that the compiler emits

which is ultimately run.

JavaScript itself uses a dynamic type system and infers types

during program execution depending on the type of value

that is in use. This is why JavaScript performs its infamous

type coercion; in JavaScript, if one variable contains an

integer, and another variable contains a string, if you try to

add these two variables together, JavaScript will coerce the

numeric value silently to a string and concatenate the two

values instead of adding them, which often leads to

unexpected results.

This kind of silent bug is exactly the motivation for using a

safer type-system, where bugs and incorrect usage of the

language can be caught and addressed during compilation,

before making it into production and potentially crippling

your application.

Advantages of using TypeScript

Using TypeScript as the development language of choice in

place of JavaScript comes with a number of benefits, hence

the popularity of the language. Let’s take a moment to look

at some of these advantages.

Catching bugs

One of the main advantages of TypeScript is its ability to

catch bugs before they reach production, which ultimately

saves time and money. The actual number of bugs that can

be prevented by TypeScript is the subject of some debate,

but I’ve seen estimates that range from 10% all the way up

to 38%.

Of course, these figures only capture what is known as public

bugs; bugs that have been committed to source control and,

in some cases, actually deployed to a production

environment.

This kind of bug represents only the tip of the iceberg in that

most of the bugs that TypeScript will catch will never be

committed to source control or publicly deployed because

the developer will have been alerted to them by TypeScript

and will have fixed them before they ever make it into source

control. This kind of bug is sometimes called a private bug

because it remains private to the individual developer that

caused it.

Even the lower estimate of 10% of public bugs, when

combined with the incalculable number of private bugs,

alone makes a compelling case for the adoption of TypeScript

over raw JavaScript. Fixing bugs in development as opposed

to production is both quicker and cheaper by a considerable

margin. But TypeScript offers more than just early bug

discovery and resolution.

TypeScript considerably enhances the development

experience by bringing advanced features like code

completion or Intellisense, and a living, inline form of

documentation that guides the developer as they are literally

writing their code. With TypeScript, as soon as you type the

name of an object, it pops up a menu that shows all the

properties and methods that are available from that object:

Figure 1.1: Code-completion menu for an array literal in Visual Studio Code

Readability

So, TypeScript makes writing functional and correct code

easier, but I find that it also makes reading code easier as

well, and reading code written by other developers, or even

by ourselves many weeks or months earlier, is a significant

part of any developer’s workload.

Some developers I’ve spoken to in the past insist that

developers spend more time reading code than they do

writing it, especially for more senior developers, or those

involved with the maintenance of a more mature piece of

software. This is especially true when considering the often-

mandatory code review, or pull request, stage of professional

or open-source software development.

It is important that developers reviewing code before it is

checked-in can get a good idea of how the code works and

what it is supposed to do in as quick a time as possible, and

the additional information and intent that can be expressed

with TypeScript goes a long way in making code self-

documented and vastly more readable.

Refactoring

Refactoring code, or taking old code and improving it, while

retaining broadly the same functionality as before, perhaps

with some additional, new functionality, is another task that

is made easier with TypeScript.

A comprehensive suite of unit tests will also help in this

regard, but the additional safety that TypeScript brings can

help to increase developer confidence when changing the

existing code, and the two paradigms of test-first and

TypeScript development complement each other perfectly

TypeScript takes the mystery out of unfamiliar code and

signposts the types of values that a given piece of code is

using and provides things like function parameter and return

types. This makes it a lot easier to not only use the code as a

consumer, but to infer what the code is doing and how it is

supposed to function.

This allows us to update the code with less chance of

fundamentally breaking it, and of using it in the way it was

intended by the original developer.

Future language features

TypeScript has traditionally had faster release cycles than

JavaScript itself, and so has tended to implement new

features in TypeScript before they appear in JavaScript, so

using TypeScript gives us a heads-up on new features

coming into our development toolbox and allows us to start

working with future features sooner. This may seem like a

small benefit, but you show me a developer that doesn’t like

working with shiny new features of their language of choice!

A classic example is classes, which could be used in

TypeScript for a long time before they were fully supported in

JavaScript, making TypeScript the obvious choice for heavily

object-oriented projects.

Disadvantages of TypeScript

TypeScript isn’t all sunshine and rainbows, it does have some

drawbacks of its own, however small and overstated those

may be. Let’s take a moment to explore these too, for

balance.

One of the biggest criticisms of TypeScript is that it leads to

more code being written for a given piece of functionality

when compared to JavaScript, and this is no doubt true. But

the additional code that is written with TypeScript I feel is

minimal, and the benefits that this small amount of code

brings far outweigh the cost of some additional keystrokes.

Of course, this scales with the size of the project, so

applications with hundreds of thousands of lines of code are

going to contain far more additional TypeScript than smaller

projects containing merely hundreds or thousands of lines.

But larger applications will likely be developed by many,

many developers, so the additional load for an individual

developer tends to even out.

Another disadvantage is that it introduces an additional

compilation step that JavaScript itself does not have. This

can increase build times and add additional complexity to

any build pipeline, although these issues are generally easily

managed.

The TypeScript compiler itself is pretty fast, so compilation

times are minimal for everything but the largest of projects,

and most professionally produced web applications are

almost certainly using a build pipeline already to produce the

artefacts needed to deploy the application, so TypeScript will

likely be a small addition to an existing process, rather than

an entirely new process in its own right, and many modern

frameworks already come with built-in TypeScript out of the

box.

Lastly, TypeScript requires additional learning to master, on

top of any knowledge one might already have of JavaScript,

and new skills to work with the tooling are also required. This

new knowledge takes time to acquire, but this really is no

different from learning any new programming language, and

the fact that it builds on top of an already known language

(for developers that already know JavaScript) helps to flatten

the learning curve.

The ways in which TypeScript

prevents bugs

TypeScript adds a static type system to JavaScript, enforcing

a much higher level of security that the values we are

working with or operating on are of the correct, or expected,

types. Calling a string method on a number, such a trivial but

all too easy to make mistake, will crash your application,

stopping a user from doing whatever it is they were trying to

do.

TypeScript makes this kind of error almost impossible

because it forces you to check that the value you are

working with really is a string before allowing you to call

string methods on it. You can avoid this whole class of errors

caused by trying to access properties or methods that don’t

exist on the current value, and due to the tight integration

between the editor and the code, the editor will warn you if

you make this mistake, long before your code ever reaches

production.

For example, consider the case where you have a value

which you expect to be a number, but for some reason is a

string. The editor will warn you as soon as you try to work

with the value as if it were a number:

Figure 1.2: Method does not exist on type error in Visual Studio Code

Another place where bugs may be found before they can

cause carnage is in the compiler when compiling TypeScript

into JavaScript, which is a necessary step that must be

completed before your code will run in a browser. Consider a

small utility function that counts the number of properties an

object has:

function countProps(obj) {

return Object.keys(obj).length;

}

If we try to compile code that contains a call to this function

without passing the required object as a parameter, the

compiler will spot the error and warn us, and we can even

instruct the compiler not to generate any output if the input

contains errors such as this:

Figure 1.3: TypeScript compiler error in a Windows terminal application

Steps to begin using TypeScript

TypeScript is entirely optional, and we can opt into it as

slowly as we want. Migrating an existing JavaScript project to

TypeScript is extremely easy. Consider a small JavaScript file

that handles creating Person objects:

Figure 1.4: A small example of a JavaScript file

To convert this file to valid TypeScript, simply change the file

extension from .js to .ts:

Figure 1.5: JavaScript converted to a TypeScript file with no additional changes

Now that we have a TypeScript file, we can begin to add

types to it at the speed which is comfortable for us; for

example, rather than allowing any named properties and

values in the attrs object passed to the Person constructor,

we can specify an interface which details exactly which

properties can be used and what their value types should be,

for example:

interface PersonAttrs {

name: string;

age: number;

}

class Person {

constructor(attrs: PersonAttrs) {

for (let prop in attrs) {

this[prop] = attrs[prop];

}

}

}

Don’t worry too much about the exact syntax used in the

above code snippet. We’ll cover what all of it means later in

the book. The point is that we can begin to add type

information as slowly as we want to, a single type at a time if

necessary, and perhaps days, weeks or at any point after

converting the original JavaScript file to TypeScript. We can

add each new piece of type information by itself if we want

to, and slowly migrate the original code to fully-fledged

TypeScript.

NOTE: Not all JavaScript can be converted to

TypeScript without making any additional changes–

sometimes small issues will need to be fixed, but

these are often as simple as declaring the type of

particular value.

Using TypeScript in a brand-new project is even easier as we

can build in support from the very beginning by designing a

build process that includes the TypeScript compilation step,

and we can even initialize a new TypeScript configuration file

with sensible defaults using the TypeScript compiler itself.

Type-driven development

There have been numerous popular development paradigms

that are intended to make the software development process

more straightforward, such as test-driven development,

where the unit tests are written before the actual functional

code and can guide the development of the application so

that all use cases are accounted for up-front.

Type-driven development is a paradigm where the types are

created first; we can design our application by considering

the types that will be needed to represent the different

elements of our system and the attributes that those

elements will have.

We can also design the signatures of the methods or

functions that will be used to operate on the values in our

system, what the types of the parameters will be, and what

type of data the functions or methods will return.

For example, instead of writing a full function declaration

initially, we can instead use TypeScript’s declare keyword and

just specify the function signature, without the full

implementation. For example, imagine we are creating a

small helper function that can create HTML elements:

declare function createHtmlElement(tagName: string):

HTMLElement;

The declare keyword tells the TypeScript compiler that at

runtime, there will be a function called createHtmlElement,

which will accept a single string parameter, and return an

object of the type HtmlElement. Consider this the contract of

the function, a clear specification of the type of input it

receives, and the type of value it should return.

The function in the previous code snippet has no

implementation, and the declare keyword basically disallows

the actual function declaration to exist at this point. For this

to be a true TypeScript declaration, it would need to be in a

special TypeScript declaration file, with the extension d.ts

instead of just .ts. We’ll look at the different ways to create

these files later in the book.

In order to define the actual implementation of the function,

we can remove the declare keyword and add the function

declaration after the return type. Working in this way forces

us to think about our code, the inputs and outputs that it will

be working with, and how it should behave up-front before

we even write a single line of production code.

Starting with a declaration like this, even if it is later

removed, is useful because the editor will guide us as we are

writing the code. In this case, until the createHtmlElement

function actually returns an object of the type HtmlElement,

the editor will warn us that the function is not behaving in

the way that it should–it’s breaking the contract:

Figure 1.6: Function must return a value error in Visual Studio Code

The idea behind type-driven development is similar to that of

test-driven development, where the tests are written before

the actual code, which again forces the developer to fully

consider the code before actually writing it.

Type-driven development and test-driven development are

not mutually exclusive, they can and should be used

together for maximum benefit to the design of your code.

Conclusion

This chapter has served as a gentle introduction to the world

of TypeScript and hopefully has motivated you to read on

and continue your journey into the language and its uses. We

looked at where TypeScript came from and how it can help

you to write more scalable, maintainable, and safer-to-

refactor applications.

In the next chapter, let’s move on and set up a development

environment ready to start writing TypeScript.

References

https://css-tricks.com/the-relevance-of-typescript-

in-2022/

https://blog.acolyer.org/2017/09/19/to-type-or-not-

to-type-quantifying-detectable-bugs-in-javascript/

https://www.securityjourney.com/post/typescript-

doesnt-suck-you-just-dont-care-about-security

https://css-tricks.com/the-relevance-of-typescript-in-2022/
https://blog.acolyer.org/2017/09/19/to-type-or-not-to-type-quantifying-detectable-bugs-in-javascript/
https://www.securityjourney.com/post/typescript-doesnt-suck-you-just-dont-care-about-security

CHAPTER 2

Setting up a Development

Environment

Introduction

In this chapter, we will learn how to get started with

developing in TypeScript and take that first step into building

commercial-grade, maintainable and bug-minimal web

applications. To do that, we’ll need to learn how to set up a

development environment suited to writing TypeScript, and

that’s what we’ll be learning here.

In order to use TypeScript, we will need to install a few things

including TypeScript itself, and a compatible IDE (Integrated

Development Environment) which understands TypeScript

and can provide us with the great tooling which makes

working with TypeScript both productive and pleasurable.

We’ll also learn a little about the things we’ll be installing,

how to install TypeScript both globally to our system, and

locally within a project, and how to generate a brand-new

TypeScript project using the TypeScript compiler, as well as

learn how TypeScript can be configured once it has been

installed.

Structure

In this chapter, we will cover the following topics:

Installing dependencies

Installing TypeScript globally

Creating a new TypeScript project

Installing TypeScript locally in a project

Configuring TypeScript using tsconfig.json

Enabling TypeScript checking in JavaScript files

Installing dependencies

There are a couple of different things that as a bare

minimum should be installed if we wish to write TypeScript.

The first is the popular JavaScript runtime Node.js, which we

will use to install and compile TypeScript itself.

The second thing that we need to install is an IDE that we

can use to develop TypeScript applications, and which is able

to understand and make use of the language to provide the

development tooling for which TypeScript is so renowned.

Windows users may also benefit from installing a 3rd party

terminal application in order to enhance the development

experience. The default terminal application on Windows is

called Command Prompt and supports only very basic

commands. Fortunately, there are many more powerful

alternatives available, including Bash (installed by default

with Git), or PowerShell (included with Windows by default).

Here, I have used a third party wrapper for the command line

on Windows called Cmder (available at

https://cmder.app/); it is this application you will see in all

subsequent figures showing a terminal application for the

remainder of this book.

Version numbers

The world of software development is constantly evolving,

with new tools, frameworks, and versions of existing tools

and frameworks appearing on a near-constant basis. While

exciting, this does mean that recommendations for which

version of any particular piece of software to use quickly go

out of date.

https://cmder.app/

Any version numbers of any software, tools, or frameworks

recommended or discussed in this book should be taken as

correct at the time of writing, but subject to change as time

passes.

Installing Node.js On Windows

Node.js has many different installation options and different

versions that you may install, a detailed explanation of which

is beyond the scope of this book. It is generally

recommended to be using Node.js version 12 or above for

modern TypeScript development.

The current LTS (Long Term Support) version of Node.js is

version 16, so my recommendation would be to simply install

the current LTS version of Node.js, which should be

compatible with the latest version of TypeScript.

You can find full information on installation, and download

the recommended package for your operating system, on

the Node.js website by visiting the URL https://node.js/org.

Once downloaded, run the executable installer, to install it

(Refer Figure 2.1):

https://node.js/org

Figure 2.1: The Windows Node.js installer

Once Node.js is installed, you will be able to use it from the

command-line or terminal application (hereafter referred to

simply as terminal) of your computer. To test that Node has

been installed correctly, you can try running the following

command in your terminal:

node --version

The output of this command, if Node.js has been installed

correctly, should be a version string, such as v16.16.0.

The Node.js installation also installs Node’s package

manager NPM, which we can use to install TypeScript, and

many other JavaScript and TypeScript-related packages from

the online NPM repository.

Installing Node.js on Mac

The best way to install Node.js on a Mac is to use Homebrew,

which will handle downloading, unpackaging and installing

the application. It is recommended to update Homebrew

before installing Node.js, so the first step is to run the

following command in the Terminal:

brew update

Then you can install the latest stable version of Node.js with

this command:

brew install node

Once the installation has completed, it can be tested using

the --version flag in the same way as on Windows.

In case Homebrew is not installed, you can visit

https://mac.install.guide/homebrew/3.html to find out

how to install it.

Installing a code editor

https://mac.install.guide/homebrew/3.html

Both Visual Studio and Visual Studio Code come with full

TypeScript support installed and enabled by default.

Throughout this book, we will be using Visual Studio Code,

because it’s a free, cross-platform application with full

TypeScript support included by default.

To install Visual Studio Code, visit

https://code.visualstudio.com/ and download the

applicable standard version for your operating system.

Follow the installation instructions and, once complete, you

should have the latest version installed and ready for use.

As well as TypeScript itself, Visual Studio Code has a

rich ecosystem of TypeScript-related extensions that

can be installed for free to further enhance your

development experience.

Visual Studio comes with a “recent” stable version of

TypeScript pre-installed, which the application uses to

provide code-highlighting and other development tooling. We

cannot use this version ourselves directly, we will still need

to install it on our system to compile our TypeScript.

From this point forward, whenever I mention the editor, I will

be referring specifically to Visual Studio Code. Any time I

refer to an editor that is not Visual Studio Code, I will

reference that editor by name.

Installing TypeScript globally

TypeScript may be installed as an NPM module globally on

our system. This is advised because it will allow us to use the

TypeScript compiler in our terminal application from any

directory on our system, which is useful for generating new

TypeScript projects. We’ll see how to do this in just a

moment.

First, we will need to install TypeScript, we can do that via

NPM using the following command in our terminal

https://code.visualstudio.com/

application:

npm install -g typescript

This will install the current release version of TypeScript. The

presence of the -g flag is what causes TypeScript to be

installed globally. Once the package has been installed, you

can test that it has been installed correctly by running the

following command in your terminal:

tsc --v

The TypeScript compiler is called tsc, and this command will

output a version string such as Version 4.7.4 if TypeScript

has been installed correctly. We’ll be looking at the compiler

in much more detail later in the book. If for some reason the

version number is not displayed, you may need to restart

your terminal or computer.

Creating a new TypeScript project

Now that TypeScript is installed globally, we can use the

compiler to create a brand-new TypeScript project. First, we

should create a new directory for our project, let’s call it ts-

examples. Once this is created, we should change our terminal

application to this new folder, then we can run the following

command:

tsc --init

Invoking the compiler with the --init flag will generate a new

tsconfig.json file in the directory within which the command

is run. Once the project has been generated, the compiler

will output a list of the configuration options that it has

enabled to the terminal window (Refer Figure 2.2).

Figure 2.2: Output from the compiler when using --init

For the remainder of this book, this folder will be our

TypeScript project directory and is where all of our TypeScript

files and any related assets will be stored.

The tsconfig.json file

The tsconfig.json file is the main configuration file for

TypeScript which controls how the compiler behaves when it

compiles our TypeScript files into JavaScript, and to a limited

degree, how our IDE provides tooling while we are

developing. A directory that contains a tsconfig.json file is

considered the root of a TypeScript project.

If you open up this new file in your text editor or IDE, you will

see a selection of some of the more common configuration

options that TypeScript supports.

By default, most of these options are commented out, but

they also contain documenting comments that describe the

effect that setting the configuration options will have, which

makes this file a valuable built-in resource for learning a little

bit about how to use TypeScript effectively. It also makes it

easy to quickly enable common options by removing the

comment at the start of the relevant line.

The options that are not commented out are the ones that

are enabled, and these should match the list of options that

were output to the terminal window after running the --init

command with the compiler.

The configuration options that we set will usually be very

project-specific and will vary even depending on whether we

are compiling for development or production environments,

as well as the exact nature of the application we are

building. For now, we can go with the defaults enabled by

the compiler.

Installing TypeScript locally to a

project

Now that we have created a TypeScript project, we can

install a local copy of TypeScript into the project itself. You

may wonder why this is necessary given that we have

already installed TypeScript globally on our system.

Generally, when we are building an application, we need to

control the versions of any dependencies we use, even if

those dependencies are used only for development purposes

like TypeScript is.

While TypeScript tries to avoid making breaking changes, it is

unavoidable that these may occur from time to time, so it is

important that developers are using the same version of

TypeScript denoted by the project whilst developing.

Installing the package directly in the project gives us full

control over exactly which version of TypeScript is used for

the project, regardless of which version developers may

have installed locally.

One way to think of it is that the global version is for us

individually to use on our own system, but the local version

belongs to the project itself and is for a larger number of

developers to all use.

To install the latest release version of TypeScript into a

project, we can use the following command in our terminal

application, making sure the terminal is focused on the

directory in which TypeScript is to be installed:

npm install typescript

Without the -g flag, the TypeScript package will be installed

locally in the current directory. This will result in a new

directory called node_modules being created in the current

directory; this directory is where all of the NPM packages we

install locally to this project will reside.

A package.json file and package-lock.json file will also be

created as by-products of running the installation command.

These two files are used to specify all of the NPM packages

that the project requires in order to function in both

development and production.

These two files are unrelated to TypeScript and can safely be

ignored in the context of this book from this point on.

Another difference between installing TypeScript globally

versus locally is that we will only install the global version

once. Now that it’s installed, we can run tsc commands from

any directory on our system, but barring the occasional

update, we can largely forget about this version. Conversely,

we will be installing the local version much more often,

depending on how frequently we create new TypeScript

projects.

Configuring TypeScript with

tsconfig.json

The tsconfig.json file is where we can set any of TypeScript’s

different configuration options. By default, inside this

generated file they are broadly separated into groups of

different categories of related options, which control how

different aspects of TypeScript work. These categories are:

Project-level options

Language and environmental options

Options related to modules

Options related to JavaScript and code editor support

Options to control what is emitted by the compiler

Constraints on interoperability

Type-checking options

Completeness and output formatting options

Backwards-compatibility options

Options controlling how types are acquired

Options related to watch mode

The generated tsconfig.json file does not contain the

complete set of supported configuration options. For a

complete list of all the configuration options that TypeScript

supports, see the documentation at

https://www.typescriptlang.org/tsconfig. It also does not

contain all of the above groups of options.

All in all, there are a huge number of different configuration

options that we can specify, and the exact configuration we

use is likely to vary considerably between projects,

depending on the specific nature of each project.

The frameworks we use for building applications will also

have a bearing on the configuration that we use. React

developers, for example, are likely to make more use of the

JSX-related configuration options than Angular developers.

Frameworks that use TypeScript are also likely to include a

https://www.typescriptlang.org/tsconfig

preconfigured tsconfig.json file that sets any options required

by the framework.

Additionally, some of the configuration options are there to

help transition older JavaScript projects to TypeScript, and as

such, would not be required in brand-new projects created

today.

There are however some common options that we will find

we frequently configure in our projects. We’ll take a quick

look at some of these more common configurations in just a

moment, but before we do that, let’s just look at the

configuration options that are enabled by default when we

create a brand new TypeScript project using the compiler as

we have done here.

Default enabled configuration options

The following options are configured by default when

generating a new TypeScript project without passing any

options on the command line.

target

This option specifies the ECMAScript version of JavaScript

that is emitted when the project is compiled. By default, this

option is set to es2016. This version is safe to use with modern

browsers, but it may be necessary for you to lower the target

version if legacy browser support is required.

This option also impacts the JavaScript that is emitted;

setting this option to a value lower than es2015/es6 for

example, will result in things like arrow functions being

converted to regular functions, and other syntactical

changes to make sure the code can run in the target

environment.

The minimum version of JavaScript that we can target with

TypeScript is ES3, and the highest version is es2023. This latter

value will certainly change in the future as ECMAScript

continues to evolve.

There is one more value that we can specify for this option,

and that is esnext. This value just tells the compiler to target

whatever is the upcoming ECMAScript release, but the actual

value that this option will match depends upon which version

of TypeScript you have installed, which makes this option

unpredictable and so you should avoid it where possible.

module

This configuration option allows us to specify the module

format that is used when our project is compiled to

JavaScript. By default, the value of this option is commonjs,

which is the module format supported by Node.js.

Other values that we can specify for this configuration option

include:

none

amd

umd

system

es2015/es2020/es2022/es2023/esnext

node16/nodenext

The umd option refers to Universal Module Definition, named

as such because it works in both browsers and Node.js. It

makes use of IIFEs (Immediately Invoked Function

Expressions) and was often produced as a fallback by the

popular resource-bundler Webpack.

The amd option refers to Asynchronous Module Definition,

which was implemented in browsers by the once very

popular Require.js library. This format is no longer used as

commonly as it once was but may still be required for very

old framework-less JavaScript projects.

The system option refers to System.js, a module loader that

fully supported ES Modules before native support became

widespread, and which is still commonly used.

The es* options refer to different versions of the official ES

Modules specification. For example, the es2015 option gives

basic ES Module support, while the es2020 option adds

support for dynamic modules, and es2022 includes top-level

use of the await operator.

Traditionally Node.js supported only CommonJS, but

beginning with Node.js version 16, ES Module support was

added, which we can target with the node16 option.

esModuleInterop

By default, this option is given the value true and is enabled

to fix issues caused by early versions of TypeScript making

what turned out to be false assumptions about how ES

modules would work.

This option may need to be disabled (by setting it to false,

commenting it out, or removing it from the tsconfig.json

altogether) if your project uses libraries that define their API

using inherited properties.

forceConsistentCasingInFileNames

This option is also given the default value of true. ES Modules

rely on being able to locate modules using file names and

paths to physical files on the file system. Some operating

systems are case-sensitive, and others case-insensitive, so it

is important that all developers on the project use the

correct casing. This option will cause an error if a module file

path is specified using the wrong casing.

strict

Strict mode is also set to true by default to enable thorough

type-checking in our editor and when compiling TypeScript. It

is a short-hand property that enables numerous individual

strict checks for various options.

This configuration gives us the most strict type-checking,

without the burden of a complex and repetitious

configuration that needs to be enabled each time we begin a

new TypeScript project.

It can be useful to disable or remove this option and instead

enable each of the strictness options that it encompasses

individually. This makes it easier to fine-tune our strictness

configuration based on the needs of the current project, or to

focus on fixing one category of strictness issues at a time

when converting JavaScript to TypeScript.

The most commonly-used individual options that fall under

the strict umbrella are as follows:

strictBindCallApply

strictFunctionTypes

strictNullChecks

strictPropertyInitialization

useUnknownInCatchVariables

noImplicitAny

noImplicitThis

Let’s take a quick look at each of these in turn as they are all

enabled by default (under the umbrella option strict) when

initializing a new TypeScript project from the terminal.

The strictBindCallApply option enforces that when any of bind,

call or apply are used, they are invoked with the correct

argument types for the underlying function they are called

on.

The strictFunctionTypes option ensures that when a function is

invoked, the parameters passed to it exactly match the type

that the function expects. Without this, TypeScript is

somewhat lenient in this area.

The strictNullChecks option strictly enforces null and undefined

as distinct types. If this option is disabled, TypeScript is much

more lenient with values that might possibly be null or

undefined.

The strictPropertyInitialization option ensures that any

properties of a class that are defined are initialized with

values in the class’s constructor.

The useUnknownInCatchVariables option, automatically sets the

type of parameters passed to the catch clause in a try/catch

statement as unknown, which leads to more expressive error

handling as the type of the parameter must be manually

checked before it is used.

In situations where a type is not provided for a value, and

the type for a value cannot be inferred from the value’s

usage, TypeScript will implicitly set the type to any. This

effectively disables type checking for that value so may

allow the value to be used in such a way that will cause

errors at runtime. The noImplicitAny option causes an error to

be shown whenever TypeScript would implicitly treat a value

as any, allowing us to provide the correct type information for

the value.

The noImplicitThis option is similar to noImplicitAny, but only

shows an error when the value of this is implicitly any.

NOTE: For a complete list of all strictness-related

configuration options, see the documentation at

https://www.typescriptlang.org/tsconfig#strict.

skipLibCheck

This option is set to true by default and is used to avoid type-

checking declaration files (files with the file extension .d.ts)

in the application. This is a performance-related issue that

https://www.typescriptlang.org/tsconfig#strict

speeds up compilation time as it reduces the number of files

that are checked by the compiler.

Commonly used configuration options

As I mentioned earlier, exactly which configuration options

you enable is likely to vary between projects, there are

however numerous additional options that we will use often.

We will look at a selection of these common options below.

Note that none of the following options are configured or

enabled by default. Some of them, but not all, are included

in the generated tsconfig.json file but are commented out.

files

It is common to tell TypeScript the main files of your

application using a glob pattern (see the include section

below), which is a way to match files using a special path

such as app/**/*.ts - this path would match any file with a

.ts extension inside any sub-directory inside a directory

called app.

Nevertheless, there may still be a small selection of files that

are important to your application, but which do not reside in

the same directory structure as the main files that you want

to compile. In this scenario, we can use the files option,

which takes an array of specific file paths that should be

included in the compilation process.

Smaller applications may not need to use glob patterns at all

and can rely solely on specific file references passed to the

files configuration option. Larger applications may rely only

on file globs, or some combination of both specific files and

files matched by a glob.

include

Leading on from the files option above is the include

configuration, the option which allows us to specify the glob

patterns that TypeScript should use to find all of the

necessary files for our application during compilation.

This configuration option also takes an array, so multiple

glob patterns can be provided, if necessary, to match groups

of files held in different locations. As specified above, our

application configuration may contain either include, files, or

both depending on its complexity and size.

exclude

While the include option allows us to specifically mention files

that should always be included in the compilation of

TypeScript to JavaScript, the exclude option allows us to

specify any files that should never be compiled.

baseUrl

The baseUrl option is used to specify the root directory that

non-absolute file paths are resolved relative to. It is usually

configured to ./ which matches the same directory in which

the tsconfig.json file itself is within.

rootDir

The rootDir option allows us to specify the root directory for

the files in the compiled output. By default, TypeScript will

automatically match the directory structure of the input files

in the emitted JavaScript, but depending on the complexity

of the input structure, or on other configurations you may

have set, this inferred output structure may not be exactly

what you require.

The rootDir option allows us to specifically dictate what the

top-level directory of the files inside the root of the compiled

output should be.

paths

The paths configuration allows us to remap imports inside

TypeScript files to locations relative to the baseUrl. This allows

us to create short alias paths for importing third party

libraries from deep within the node_modules directory, for

example, to make importing these libraries less verbose

inside the TypeScript files in which they are used.

This means that instead of having to type something like

node_modules/some-library/app/dist/some-lib in every file that

we want to import some-lib into, we could create a simpler

import by adding a configuration like this:

'path': {

‘some-lib’: [‘node_modules/some-library/app/dist/some-lib’],

}

In this case, we would then be able to import the file from

the full path specified inside the array, using the short path

specified by the property name.

The paths option takes an object, where each key in the

object is an alias, and each value is the corresponding path

for that alias. We can provide as many of these as we wish,

and each value takes an array in order to map multiple

locations to a single alias if necessary. It also supports the

use of wild cards within alias names, for example, the

following configuration

‘some-lib/*’: [‘app/some-lib/*’],

Means any import for a path in a folder under some-lib

should be sourced from app/some-lib.

outDir

By default, the compiler emits JavaScript files to the same

directory that the original TypeScript file was contained in.

This may be acceptable for smaller applications, or those

with a simplified directory structure, but for larger

applications, or those containing a more complex internal file

structure, it may be necessary to specify an alternative

directory into which all emitted JavaScript files should be

output.

We use the outDir configuration option to specify where the

compiled files should be emitted. This option is often used in

conjunction with the rootDir option described above.

resolveJsonModule

By default, TypeScript does not allow JSON files to be loaded

and imported into TypeScript files as if they were TypeScript.

This is a very useful feature because we can use simple JSON

files to hold local data used for developing the application

without the need for a local database.

It’s also very useful for storing mock data that can be used

for unit testing to make tests more isolated, and so

resolveJsonModule is a very commonly used configuration

option.

To enable it, we just need to uncomment it in the

tsconfig.json file as it is one of the ones that is included in

the generated file but commented out.

While this is far from a comprehensive list of all the available

configurations, this list contains a sensible foundation on

which you can build your knowledge of TypeScript

configuration. Other configuration options not covered here

will be discussed in this book as and when they become

relevant.

Top-level configuration options

Many of the configuration options that we’ve looked at are

compiler options, and therefore reside within the

compilerOptions object in the tsconfig.json file. There are some

configuration options however that are known as top-level

options which are used outside of the compilerOptions object.

The compilerOptions option itself is a top-level option, as are

the include, exclude and files options that we looked at earlier

in this section.

Take care when adding configuration options that do not

appear in the file generated by the compiler that you are

adding them inside or outside of the compilerOptions object as

appropriate.

Updating the project configuration

As we progress through this book, we will use certain

features of TypeScript that will rely on a certain

configuration. Some configuration options will be discussed

as they become relevant, but there are also some additional

configuration changes that we want to make now.

We should make the following configuration changes to the

tsconfig.json file; uncomment or add them as applicable:

“module”: “es2022”,

“outDir”: “./dist”,

We set the module option to es2022 to enable the latest support

for ES Modules. We can also configure an outDir to avoid

warnings about not being able to overwrite the plain

JavaScript file that we are just about to create in the

following section. We will also need to exclude the Chapter 1

directory from our compilation as the example project will

not compile correctly if it is included due to the files it

contains. We should add a new top-level option called exclude

to the tsconfig.json file and specify chapter 1 as an ignored

directory:

“exclude”: [“chapter 1”]

This option should be added outside of the compilerOptions

section of the file because it is a top-level configuration

option.

Enabling TypeScript checking in

JavaScript

Before we dive fully into the nuts and bolts of using

TypeScript, I just want to mention the fact that we can still

leverage the benefits of TypeScript, even if we aren’t using

TypeScript at all. If we have a project that for whatever

reason can’t be converted to TypeScript, we can still enable a

basic level of type-checking even in regular JavaScript files.

To do this, we need to use a third party tool called JSDoc.

JSDoc defines a micro-syntax that uses a special format of

regular JavaScript comments which can be used to add

documentation to JavaScript files. This can then be used to

provide tooling in supporting editors or to generate rich API

documentation that describes how your application should

be used by other developers.

JSDoc uses special tags inside comments to document

specific features of JavaScript, and some of those tags can

be used to document types. In turn, Visual Studio Code can

understand these tags and use them to enforce types in

plain JavaScript.

Find out more information about all of the tags supported by

JSDoc at https://jsdoc.app.

Default behavior

To test the examples in this section, you can create a

JavaScript file (not a TypeScript file yet) and see how the

editor behaves as code is added to the file. For reference,

the file can be found in the code archive accompanying this

book; it is located in the chapter 2 folder and is called

javascript-typing.js. I’d recommend creating a blank

JavaScript file and opening it in Visual Studio Code to get the

most from this section.

https://jsdoc.app/

By default, Visual Studio Code provides a very low-level of

type-related information. For example, if we declare and

initialize a variable with a value, the editor will infer that the

type of that variable is the type of the value we have

assigned it:

let a = 1;

In this case, wherever we use the value a the editor will tell

us that this variable is a number if we hover the mouse

pointer over it:

Figure 2.3: Variable description tooltip in Visual Studio Code

However, it will not warn us if we reassign the variable to

another type of value, or try to do something illegal, like

trying to access a property of it if for some reason it

happened to be null.

We would see this error manifest in a browser as an Uncaught

TypeError of course, but we don’t get a warning in our tooling,

and that is where it gives us the most benefit. The

development phase is the easiest and cheapest place to fix

bugs.

Enabling type checking

To enable a more useful level of type-checking, we can set

the checkJs configuration option to true. This is one of the

properties added to the generated tsconfig.json file but

commented out, so all we have to do is uncomment it and

the option will be enabled.

Once we have enabled this option, the editor should be

ready to begin type-checking in any JavaScript file inside the

project. Let’s try to reassign a to a different type, say a

string:

a = ‘oops’;

Immediately, the editor should add a red, wavy underline to

the variable a to let us know there is a potential problem

here. If we hover the mouse pointer over the variable, we

should see a warning:

Figure 2.4: String not assignable to number error in Visual Studio Code

This is TypeScript’s way of reminding us that the variable

was initialized as a number, and therefore probably should

not be reassigned to a string value. We should also see a

reference number for the error, which we can use to find out

more about what the error means if we need help

understanding it.

This type-checking will work across files or modules, so if we

initialize a value as a particular type in one file, and then

reassign it to a different type in another file, the editor will

still helpfully show this as an error.

But what if this variable actually should be a string, because

later on in our program we try to manipulate it as a string,

and it was the initialization that was wrong? This is where we

can use JS Doc to specifically tell TypeScript the type that the

variable should be.

Adding JSDoc annotations

JSDoc supports many tags that we can use to describe and

document our code, but one of the primary JSDoc tags that

we’ll want to use when we specifically want to make use of

Visual Studio Code’s type tooling is the @type tag.

We can add the following JSDoc immediately above the

initialization of the a variable:

/**

* @type {string} An optional description

*/

A regular JavaScript block comment begins with a forward

slash and is followed by a single asterisk. The JSDoc micro-

syntax uses a forward slash followed by two asterisks,

making all valid JSDocs also valid JavaScript comments.

JSDocs should always immediately precede the line they are

referring to.

So, we begin with the JSDoc opening, and then each line

inside the block begins with an asterisk. We use one line

here but could use as many as necessary to adequately

convey the intent of our code. We use the @type tag followed

by the type we want to set in curly brackets.

Following the type, we can optionally provide a description of

what the variable is for or how it should be used - anything

that will help other developers, and even ourselves,

understand the code better.

Now, the red line should move from the reassignment of the

variable to its initialization, although the error message

presented when we hover the mouse pointer over it should

largely be the same, except that the terms ‘string’ and

‘number’ should be reversed now (Refer Figure 2.5):

Figure 2.5: VSCode warning in a JavaScript file

This is how we can annotate any variable declaration in a

plain JavaScript file to give the editor information about the

type of value that the variable may contain, and as well as

annotating variable declarations, we can also annotate

things like functions and classes.

For example, let’s imagine we have the following simple

function declaration:

function addNums(num1, num2) {

return num1 + num2;

}

We have a simple function that accepts two arguments and

returns the sum of them. Now let’s say that we call this

function at some later point in our code, but forget to pass

the second argument:

exampleFn(1);

At this point, we do have some error lines under the two

parameters in the function declaration. If we hover over the

first one with the mouse pointer, we should see the following

warning:

Parameter ‘arg1’ implicitly has ‘any’ type.

We’ll be looking at the any type in much more detail later in

the book. The point here is that the warning we are being

given doesn’t correspond particularly well to the actual

problem in our code.

We can use JSDoc to clarify exactly what the function does,

what type the arguments passed to it should be, and the

type of the return value to expect when invoking it by using

the following:

/**

* sum two numbers

* @param {number} num1

* @param {number} num2

* @returns {number} The sum of the parameters

*/

This time after the JSDoc opening line, we have a simple

description of the function, again this is optional but is good

practice to include. We then have an individual line for each

parameter the function accepts; in this case, we have two

parameters so have two lines utilizing the @param tag, which is

used to describe the function parameters.

This uses the same format as the @type tag that we used

earlier; the tag we want to use, followed by the type the

parameter should be within curly brackets, followed by an

optional description - in this case, that is just the name of the

parameter.

The last line before the JSDoc closing line uses the @returns

tag to specify that the function will return a number and that

number is the sum of the parameters. Now we should find

that the red underline has moved under the expression

invoking the function, which is better because that is where

the actual problem is.

If we hover on this with the mouse pointer now, we should

see a pop-up containing quite a lot of information about the

function including the description of the function we set on

the first line of the JSDoc, the types of all the parameters,

and its return type and description. This kind of information

is very useful when we are working in a completely different

file than the one the function is declared in.

Below the information from the JSDoc, we should also see

this warning message:

Expected 2 arguments, but got 1.

This is much more useful than the default message that the

parameters could be any type, but we should remember that

this level of type-checking is still fairly rudimentary; if we

add a second argument to the invocation of the exampleFn

function, but use a string, say, instead of a number, then we

get no warning at all, as the expression inside the function

where the parameters are added together will succeed for

numbers and strings, it will just concatenate them instead of

performing addition.

If we do try to pass an argument of a type other than a

number or a string, however, such as passing null as the

second argument, then we will see a warning that the

argument is not of the expected type:

The argument of type ‘null’ is not assignable to the

parameter of type ‘number’.

Example project structure and use

All of the code featured in this book is available in the

accompanying code download for the book and is contained

within a directory called ts-examples. Within this folder is a

series of sub-directories, one for each chapter in the book.

Within each subdirectory are one or more mostly TypeScript

files, which show the corresponding code examples for each

chapter respectively.

Where logical, each file may be further broken down into

commented sections that align with sub-headings within

each chapter, to make it clear which examples to consult

when reading any part of the book.

These files are provided as a point of reference, and I would

urge you to create your own files when working through the

examples in this book to maximise your understanding of

each of the topics we will cover. If you find that an example

is not working as described in the book, the example files

may help to pinpoint what the issue is.

As you work through the examples in the book, it may be

helpful to segregate your own working files into a directory

structure similar to the accompanying files, and to name

each file you create after the concept being described, for

example, when we are looking at primitive types in the next

chapter, calling your own working file primitives.ts may

help you to locate particular examples in the future.

Of course, this is not strictly necessary; TypeScript will

happily compile any TypeScript files in your project into

JavaScript files that can be run in a browser whatever the

original TypeScript files are called, and whatever

subdirectories they may be contained within, but for the

book to be most effective, being able to come back and find

a particular code example weeks or months after it is written

will help.

Conclusion

In this chapter, we have seen how we can set up a basic

development environment that will allow us to write

TypeScript applications. We first saw that we should install

some dependencies, namely Node.js and a TypeScript-

enabled editor, such as VSCode (although there are other

IDEs that support it natively or via user-installed extensions).

We then moved on to see how to use NPM to install

TypeScript both globally on our system so that we can run

TypeScript compiler commands from any directory on our

system, as well as how to install it locally inside a TypeScript

project.

Once TypeScript was installed, we saw how to use the

compiler to create a new TypeScript project, which basically

creates a copy of TypeScript’s configuration file

tsconfig.json and enables a selection of basic configuration

options.

We spent some time examining the configuration options

that the compiler enables by default when we create a new

TypeScript project, as well as looking at some of the more

commonly used configurations that we will often need to use

in our projects.

Next, we saw how to configure our TypeScript project to

enable type-checking inside JavaScript files, and saw that by

default, variable types are inferred by the editor from the

type that they are initialized with, which may or may not be

acceptable depending on how we intend to use the variable

in our code.

Lastly, we saw how to use the popular third party tool JSDoc

to add annotations to things like variable and function

declarations to describe exactly what the types of variables

or function parameters are, which allows us to document the

expected behavior of our code and provide information to

the editor on how we intend to use it.

Now that we have an environment ready to develop

TypeScript, and an editor that understands it, let’s move on

to look at the basic types that we can add using TypeScript.

References

https://node.js/org

https://node.js/org

https://code.visualstudio.com/

https://jsdoc.app

https://www.typescriptlang.org/tsconfig

https://code.visualstudio.com/
https://jsdoc.app/
https://www.typescriptlang.org/tsconfig

CHAPTER 3

Basic Type Annotations

Introduction

In this chapter, we are going to dive straight in and start

looking at the basic types that TypeScript supports. We

looked at some basic JavaScript examples in the last chapter,

but from this point on, we’ll be working solely with TypeScript

files.

The aim of this chapter is to give a thorough introduction to

the use of some of the most fundamental aspects of

TypeScript. This will give you a solid foundation for moving

forward in your learning and which subsequent chapters will

build upon.

Structure

In this chapter, we will discuss the following topics:

Primitive types

The any type

The unknown type

The never type

The as operator

Union types

Literal types

Type aliases

The non-null assertion operator

All the code examples in this chapter have corresponding

TypeScript files in the downloadable companion content for

this book. For example, any example code shown in the

BigInt section can be found in a folder called Chapter 3 at

the root of the project, in a file called bigint.ts, while

examples in the Union Types section will be found in the

Chapter 3 folder in a file called union.ts.

These files are provided as a reference aid, and I would

encourage you to actively try out all of the examples in an

editor in order to get a good feel for TypeScript development.

Primitive types

TypeScript supports all of the same primitives that JavaScript

itself supports, so variables, function parameters, and class

members can be described as being of one of these

fundamental types:

bigint

boolean

number

null

string

symbol

undefined

Unlike JavaScript, TypeScript has primitive types as well as

primitive values. Primitive values behave the same way in

TypeScript as they do in JavaScript, but for each primitive

value in TypeScript, there is a corresponding primitive type.

Let’s take a quick look at each of these different types in

turn.

BigInt

The bigint type is used to create and work with very large or

very small numbers that are considered unsafe to use as

regular integers in JavaScript due to the limitations of

JavaScript’s numerical support.

To specify that a variable is of the type bigint, we add a colon

after the variable’s identifier on the left-hand side of the

declaration followed by the type bigint:

let bignum: bigint = BigInt(0);

The variable bignum will now have the type bigint associated

with it. Note that we use the lowercase type bigint as

opposed to the Camel Cased BigInt. We should always

ensure that we use the lowercase versions of all of the

primitive types when adding type annotations because the

Camel Cased versions are the constructors.

Note that the bigint type is only available in environments

supporting ECMAScript 2020 or later and will produce errors

in TypeScript files when the target option in the tsconfig.json

file is set to a lower version than es2020.

NOTE: Usually, it is not necessary to explicitly

specify the type of a variable when we are assigning

it a primitive value as TypeScript will be able to infer

the correct type from the assignment itself. It is

common for commercial projects to mandate that

specifying types for simple assignments is

forbidden.

If we now try to do something illegal with the bignum variable,

something prohibited by JavaScript itself, like multiplying it

with a number, we’ll see an error for it right there in the

editor, before we even try to compile the file:

const result = bignum * 1;

If we hover the mouse pointer over the left-hand part of the

above expression, we’ll see a warning that:

Operator * cannot be applied to types ‘bigint’ and

‘number’.

If we do try to compile the file, we’ll see the same errors in

the terminal output, but note that the compiler will still

compile the file into JavaScript and emit it to the output

directory by default.

It’s very common for projects to disable this default behavior

of still compiling invalid TypeScript into JavaScript - failing

the compilation when the TypeScript is invalid is one of the

best tools we have for creating bug-free applications. So, for

production applications, it is almost always recommended to

configure this behavior.

To fail the compiler when the TypeScript contains errors, we

can enable the noEmitOnError option in the tsconfig.json file.

Once this option has been enabled, output files will no longer

be emitted if any TypeScript file inside the project contains

errors, although we can still compile individual files that do

not contain errors.

We’ll be looking at the compiler and how to use it in much

more detail later in the book; so, don’t worry too much about

it at this point.

Boolean

As in JavaScript, the boolean type in TypeScript is a primitive

that may have only one of the two values true or false. We

use the same colon followed by type syntax when declaring

any of the primitive types including Booleans:

let isEnabled: boolean = true;

In this format, we are free to change the value to false at

some point later in our program, and even back again to true

later on if we choose. Note that as well as supplying the type

boolean, we can also specify that the type should be one of

the literal values true or false:

let legacySupport: false = false;

The variable legacySupport now has the immutable value of

false, and this value cannot be changed to true later on in

the application, even though we declared the variable using

let as opposed to const.

Aside from the explicit literal true and false types described

above, Booleans in TypeScript work exactly the same way as

they do in regular JavaScript, and there should be no

surprises for anyone with anything but the most basic of

JavaScript experience.

Number

In TypeScript - exactly as in JavaScript - numbers may be

either integer or floating-point values and have a “safe”

range of -253 to +235 – anything outside of this range needs

to be used with bigint instead. Although in fairness, it does

represent quite a wide range of values and bigint is a

relatively recent addition to the ECMAScipt specification.

To specify a value of the type number, we use the same format

as with other primitive types – a colon, followed by the type

in lowercase:

let num: number;

In this case, the variable num is declared but not initialized

with the type number. The usual JavaScript variable

declaration rules apply when using TypeScript, so only const

values must be initialized with a value at declaration time.

This is true for all variable declarations in TypeScript.

One common problem in JavaScript is the misuse of NaN in

comparisons. NaN is a special numerical value that can be the

result of performing impossible numerical operations, like

dividing by zero, or trying to multiply a string.

Because nothing is equal to NaN, not even NaN itself,

comparing a value to NaN directly will always return false. As

this is such a common mistake, TypeScript will automatically

warn against direct comparisons to NaN with an error and

advise to use the Number.isNaN method instead:

Figure 3.1: Condition will always return false error in Visual Studio Code

Null

In JavaScript, everything is either a primitive, or an object,

and just like in JavaScript, in TypeScript the value null is used

to signify that an object explicitly does not exist, or

intentionally has no value.

For example, imagine that a user logged into our application

is represented using an object. If the user logs out, we can

set their user object to null to signify that it intentionally no

longer exists.

How null is treated in TypeScript depends on the

configuration in use, although by default the strictest level of

type-checking for null (and undefined) is enabled when

creating a new project using the TypeScript compiler; so,

both null (and undefined) are fully type-checked by default

when generating a tsconfig.json file with the compiler.

Syntactically, we can specify that a value has the type null in

exactly the same format as we have with other primitives:

let nothing: null = null;

This is perfectly valid TypeScript, however, doing this is

incredibly unhelpful in almost all situations because, with the

strictNullChecks configuration enabled, we will not be able to

change the value of the variable to anything else later on, so

the value is effectively locked to null forever. For example:

let nothing: null = null;

// later…

nothing = 1; // Type ‘1’ is not assignable to type ‘null’

We will see an error in our editor here that ‘1’ cannot be

assigned to ‘null’. Due to this, we will almost never see the

null type used in this way in a variable declaration.

Similarly, if we specify a variable is of one particular type,

say a string, we cannot then set this value to null later on –

in that case, we will see a similar message that null cannot

be assigned to a string.

In light of these facts, the null type is much more commonly

used as part of a union type to say that a value may be, for

example, a number or the value null. We’ll be looking at

union types in much more detail later in this chapter.

String

Strings in TypeScript have no special meaning or

functionality beyond that found in JavaScript. We can denote

that a value is of the type string in the same way as we can

with other primitive types:

let greeting: string = ‘Hello’;

The same guideline of avoiding such overly-verbose

declarations apply also to strings; commonly we would

denote the types of class members or parameters using this

format, but rarely simple variable declarations like this.

It is common in ESLint to have a lint rule that forbids

unnecessary type declarations such as in the above

example.

Symbol

The symbol primitive was added to JavaScript in the

ES2015/ES6 release, and as such, must be used with the

target option of the tsconfig.json file set to es2015 or

above.

TypeScript gives us both a primitive type of symbol, and a sub-

type of this type called unique symbol. Both can be used in an

expected way:

let aSym: symbol = Symbol();

const otherSym: unique symbol = Symbol();

The difference between them is that unique symbol may only

be used with const declarations as opposed to var or let,

while symbol can be used with const, var or let declarations.

A symbol is a globally unique primitive value, so strict

comparisons between them will always return false, and if

we try to compare two values annotated with unique symbol,

then we will see an error that there is no overlap between

the two values.

Symbols are often used to create unique keys for objects,

like this:

const unique = Symbol();

const obj = { [unique]: ‘unique value’ };

This offers a form of weak information hiding, as the unique

value string is only accessible using the reference to the

symbol, stored in the unique variable. Symbol-keyed

properties are not revealed in for loops so without a

reference to the symbol, the value of the property cannot be

read.

Undefined

Similar to null, undefined is a special primitive in JavaScript for

a variable that exists but has not been assigned a value, or

for the value of an object property that has not been defined.

Of course, undefined is also a value itself and can be directly

set as the value of a variable, object property, or class

member.

TypeScript has a corresponding undefined type that

technically could be used as a type annotation for a variable

declaration:

let notYet: undefined = undefined;

Although legal code, we would probably not want to do this

for the simple fact that now the notYet variable can only ever

contain the value undefined. Like the null type, this is a

primitive type that we will rarely use ourselves directly

outside of union types.

Also like the null type, how undefined is treated in TypeScript

is also determined by whether either the strict or

strictNullChecks configuration options are enabled, these are

often handled in the same way by TypeScript.

With either of these configuration options enabled,

TypeScript will strictly require us to check whether something

is undefined before we attempt to access any of its properties

or methods.

We’ll look at this topic in more detail later in this chapter

when we discuss type assertions.

The any type

TypeScript adds a special type, that is not a part of JavaScript

at all, called any; this type means that the value in question

could literally be of any supported type, with the implication

that the value may be called like a function, or have its

properties read like an object, or treated like any primitive.

Values of this type may be used in TypeScript in any way that

is legal in JavaScript.

We can set values to this type ourselves manually, just like

any of the primitive types we have already looked at:

let anything: any = ‘still any’;

Our type annotation will override TypeScript’s inference

mechanism. So, in this case, the variable anything will be of

type any, and we will have no restrictions on the types of

values that may be assigned to the variable at any future

point, or how the value is used later in the code.

When we use the any type, we basically tell the compiler not

to do any further type-checking on this value at all. We will

use the any type in our applications from time to time. There

are some valid use cases for it, including simply wishing to

disable type-checking on a particularly complex object in

order to avoid having to write an overly descriptive type for

it.

The any type is also used by TypeScript itself, and values may

be marked as any when TypeScript is unable to infer what

their type should be.

Consider the following code:

function len(a) {

return a.length;

}

let test = ‘a’;

len(test);

We declare a simple function called len, which accepts a

single argument called a and returns the length property of

this argument. Immediately we should see some error

underlining in the editor, and when we hover the mouse

pointer over it, we should see the following error description:

Parameter ‘a’ implicitly has an ‘any’ type.

This is an error because there is no way for TypeScript to

correctly infer what the parameter’s type is and so it can’t

check that the value is being used correctly – the value may

not even have a length property. When we use any explicitly,

we should know exactly which type a value is and are

hopefully using it in a limited and controlled way, the

implications of which we fully understand.

But when TypeScript implicitly treats a value as any, it needs

to warn us that no type-checking will occur on this value at

all from this point on because we haven’t explicitly told it not

to check this value’s type by intentionally setting it to the any

type. We may therefore use the value incorrectly and

TypeScript wouldn’t be able to warn us, which is sort of the

whole point of TypeScript.

Even though we call the function with a string immediately

after declaring it, TypeScript still cannot infer that the

parameter’s type will always be string, even though we pass

it a string on the next line, so we may not be able to return

its length property. As the function may not be able to return

the object’s length property, it will also have its return type

set to any.

We’ll be looking at functions in much more detail later in the

book, including how to annotate them to let TypeScript know

what types the function should accept as arguments and

return.

NOTE: We are able to switch off the error for the

implicit any in our code if we wish to use the

tsconfig.json configuration file by disabling either

the strict or noImplicitAny options, depending on

which of them is enabled.

You should also note that if we declare a variable without

initializing it, TypeScript will infer the type any for that

variable too, which effectively turns off type-checking in the

editor for the variable anywhere:

let later;

Even if we set the value of the later variable to, say, a string

value, the editor will continue to see the variable as having

the type any:

Figure 3.2: Inferred any type

In this case, we should specifically add the type of the later

variable with a type annotation, as a string in this example,

to avoid this.

The any type can be useful if we are converting JavaScript to

TypeScript and can’t, or don’t want to, specify all of the type

information immediately – setting types to any can be a

useful interim measure in this case, but usages of it should

be temporary and be replaced with proper types as soon as

possible to gain the maximum benefit from using TypeScript.

The unknown type

Another special TypeScript type that is not familiar to us

already from JavaScript is the unknown type. This can be

thought of as a kind of polar opposite to any; whereas the any

type allows us to do anything at all with a value, such as

assign to it, invoke methods on it, or read its properties, the

unknown type restricts the operations we can do on it.

We can specify a value that has an unknown type using a colon

as expected:

let notKnown: unknown;

At this point, the only thing we can do is assign a primitive

value to the notKnown variable. Even if we assign an object to

the variable and give it a property and corresponding value,

like this:

notKnown = { test: ‘test’ };

Typescript still won’t let us access the test property due to it

being of the type unknown. Similarly, if we assign a function as

the value of the notKnown variable, like this:

notKnown = () => ‘test’;

Then, TypeScript will not let us invoke the variable as a

function. Additionally, we may assign an array to a variable

with the type unknown:

notKnown = [1, 2, 3];

But in this case, we won’t be able to access any of the

elements inside it.

We are able to assign any type of primitive value to it,

however, and simple equality comparisons will work as

expected:

notKnown = ‘test’;

if (notKnown === ‘test’) {

console.log(‘we will see this log message’);

}

The unknown type is considered safer to use than the any type

because it prevents us from using values in ways that were

not intended for them to be used. Conversely, the any type

does nothing to prevent us from using a value entirely

incorrectly, which could cause our application to fail.

The never type

One more TypeScript type without a corresponding JavaScript

equivalent is the never type. This type represents a state that

should never exist and may be inferred by TypeScript in

certain situations, such as for the return value of a function

that never stops executing, in the case that the function

throws an error, for example.

It is also commonly used with switch statements to ensure

that the case checking carried out by the switch is

exhaustive. A switch statement is exhaustive if it covers all

possible cases.

We can use the never type to make sure that a switch

expression handles all of the types in a union type with case

statements, and it is commonly used as the return type of a

function invoked in the switch statement’s default clause.

We’ll see a full example of this later in the book once we

have finished covering the basics of TypeScript.

The as operator

So far, we have added all of our type information using a

colon followed by the type that we want to use, like this:

let myVar: string;

This is the most common way of specifying type information

when using TypeScript, but it’s not the only way; we can also

use the as operator as a form of type-casting to specify that

a value is of a particular type:

let anotherVar = ‘another’ as string;

This time, the annotation appears on the right-hand side of

the expression, following the value rather than the variable

declaration. We use the as keyword followed by the type that

we want to cast the value to. This is known as a type-

assertion – we are specifically asserting to TypeScript what

the type of this value is.

Although valid, the previous example is something we would

almost never see in actual day-to-day TypeScript. Instead,

we would most likely use the as operator to down-cast from a

less-specific to a more-specific type, or as a compound cast

where we cast a value from one type immediately to another

type. Let’s see what both of these techniques look like in real

code.

Down-casting

Down-casting is a useful technique where we have an object

of a general type, and we want to cast it down to a more

specific type in order to use a property that only specific sub-

classes of that object have.

A good example is when working with an event object inside

a handler method attached to a DOM element. Consider the

following code:

function clickHandler(event: Event) {

const childElement = event.target.querySelector(‘#child’);

}

The event parameter of the clickHandler function above will

be of the built-in type Event.

The Event object passed to handler functions by browsers will

have a target property, and this property will be a reference

to the HTML element that the handler is attached to, and as

it is an element, it will have a querySelector method.

However, the event.target has its own special type, which is

EventTarget, and the declaration of this type does not include

a querySelector method - this method is found on the

HTMLElement type instead. The preceding code will produce the

following TypeScript error:

Property ‘querySelector’ does not exist on type

‘EventTarget’.

To tell TypeScript that the event.target will actually be a HTML

element, and therefore will have a querySelector method, we

can down-cast the property to the desired sub-type:

const childElement = (event.target as

HTMLElement).querySelector(‘#child’);

This is allowed because in JavaScript HTMLElement is a subclass

of EventTarget, and correspondingly, in TypeScript the

HTMLElement type is a sub-type of the EventTarget type.

In this case, we also need to wrap the part of the expression

where we use the as operator in parentheses. Now, the

TypeScript compiler will know our intentions and the error

will disappear.

As well as down-casting, the opposite of this is up-casting,

where a type is broadened from a more specific type to a

less specific type. Up-casting is less commonly used than

down-casting, but may still be required occasionally.

Compound casting

Another type-casting technique using the as operator is

called compound casting, or double assertion; this is where

we use multiple as operators in a single statement and is

usually used in conjunction with the unknown type to create

objects that have some but not all of the required properties

of another type.

As an example, imagine that we want to use a fake Event

object in a unit test to test the clickHandler function from the

previous example. We will have to pass this function a

parameter of the type Event when we call it. Let’s try to

create one with a target property, (otherwise, the function

will simply return immediately, and we won’t be able to test

it):

const testEvent: Event = { target:

document.createElement(‘div’) };

Immediately, we should see an error in the editor, with

TypeScript complaining that the testEvent object is missing

many properties that belong to objects of the type Event.

There are 21 properties in total missing from our fake event

object, it would be extremely arduous to create them all

manually, especially when we are really only interested in

testing the target property anyway.

To fix this situation, we can use a compound cast that first

casts our object to the special unknown type, and then to the

desired type, Event in this case:

const testEvent = { target: document.createElement(‘div’) } as

unknown as Event;

Now, the error should be gone. In this case, TypeScript will

treat the testEvent object as if it really were an object of the

Event type and simply ignores the missing properties.

This is safer than simply casting our testEvent object to the

any type, which would also solve our problem, but would

leave us open to, for example, trying to invoke methods that

real Event objects don’t have. In our case, if we try to call a

method that Event objects don’t have, TypeScript will produce

an error:

testEvent.banana(); // Property ‘banana’ does not exist on

‘Event’

If we had used the any type instead, that error would not

appear and TypeScript would allow the code to run and crash

our application.

Note that TypeScript will prevent us from making an

impossible assertion:

let boolean = 1 as boolean;

In this case, TypeScript will show the following error message

in the editor:

Figure 3.3: Type conversion error on Visual Studio Code

Helpfully, TypeScript hints at the end of the error message to

use compound casting to first cast the value to the unknown

type, before casting it to the desired type.

Older type-casting syntax

There is also an older form of type-casting in TypeScript

which uses a different syntax entirely from the as operator.

This form uses angle brackets to surround the type, and like

the as operator, appears on the right-hand side of

assignment expressions, although in this format, it precedes

the value being cast:

let myNum = <number>1;

This expression will set the type of the myNum variable to the

type number in exactly the same way that using the as

operator would. This syntax is now deprecated since

TypeScript added support for TSX files. TSX is TypeScript for

JSX, and JSX is an embeddable XML syntax that compiles to

JavaScript, and which is commonly used with the popular

React framework. JSX syntax looks like a combination of

JavaScript and HTML and this is the reason that the older

angle-bracket syntax for type-casting cannot be used – TSX

would interpret it as an HTML element instead of a type

assertion.

This older type-casting could be used in plain TypeScript

files, or when using frameworks that don’t use JSX, such as

Angular, but as this syntax is now deprecated, it is

recommended to use the as operator always instead,

regardless of whether JSX/TSX is actually in use.

Union types

A union type in TypeScript is where a value may be one of a

predefined set of distinct types – we use it to tell the

compiler that a value might be this type or it might be that

type. The syntax is straight-forward – we separate each of

the types in our union with the pipe character:

let either: string | number = 1;

Here, we’re saying that the either variable may be of the

type string or the type number, and then initializing it with the

numerical value 1.

Note that we could also initialize it with a string, but if we try

to set it to any other type, either now during initialization, or

later in our application, TypeScript will show us an error, like

this:

Figure 3.4: Type not assignable to type error in Visual Studio Code

When working with the either variable, or any other union

type, we will only be able to call methods or access

properties that are available to all members of the union – so

strings or numbers in this case. There is very little overlap

between these two types, so we will need to know more

about which type it actually is in order to do something

useful with it.

Using the example above, we could have a value that might

be of the type string if it’s coming from the value of an HTML

input element, or it could be of the type number if it’s coming

from somewhere else in our application.

Let’s say we have a function that is passed a value as either

a string or a number:

function getRefNumber(refNumber: string | number) {

if (typeof refNumber === ‘string’) {

refNumber = parseInt(refNumber, 10);

}

return refNumber;

}

We declare a function called getRefNumber that is passed a

parameter called refNumber, and this parameter is a union of

the types string and number. Inside the function, we need to

check what the typeof operator reports the type of the

parameter to be, so we check to see if it’s string. If it is, we

can safely work with it as if the parameter had been defined

with only the string type. This is known as a type guard –

we’ll be looking at these in more detail later in the book.

In this example, we just convert the value to a number using

the parseInt method, and from this point on inside the

function, we know that refNumber will always be of the type

number. Here, we just return the number, but we could do any

other numerical operations on that value that we wanted to

in a real-world application.

This process of determining the actual type from a union of

types is known as narrowing, and this is another topic we’ll

be looking at in much greater detail later in the book.

There are no restrictions on the number of types that we can

include in a union type, we just need to separate each type

in the union with the pipe symbol.

Union types are flexible and allow us to work with values that

could logically be one of several different types, possibly

depending on the context in which the value is used. But

using them also means that we ourselves need to be sure of

exactly which type it actually is when we want to work with

it.

Literal types

A literal type is a primitive sub-type that takes a specific

value; we saw this briefly earlier when we looked at the

Boolean type, and in that case, the literal sub-type of a

Boolean type is when the specific values true or false are

specified as the type.

Just like Booleans, the primitive types of number, bigint, and

string also support literal sub-types, in these cases to

specifically set a value to a particular number or string

respectively.

When we looked at the literal Boolean sub-type earlier, we

told the compiler that we were using a literal type by

specifically supplying the value in the type position (after the

colon), like this:

let isEnabled: true = true;

Strictly speaking, we can do the same with numbers and

strings, like:

let literalNum: 1 = 1;

Or:

let literalString: ‘literal’;

Or:

let literalBigInt: 1n = 1n;

The variable literalNum is locked to the literal sub-type and

value 1, literalBigInt is locked to the literal sub-type 1n, and

literalString is locked to the literal sub-type ‘literal’.

As well as explicitly typed variable declaration/initialization,

TypeScript can also infer literal sub-types if we use const to

declare a variable as opposed to let or var. For example, with

the following code:

const inferredLiteral = 1;

In this case, because we specifically used const to declare the

variable, TypeScript will set the type of inferredLiteral to the

literal numerical sub-type 1. The same behavior is seen with

strings as well, as long as we use const in the declaration.

Literal union types

Literal types are most commonly seen when working with

type unions. As we’ve seen, using literal types alone do not

provide much value, and are rarely seen in day-to-day code.

But using them in union types is a great way of restricting

values to one of a predefined range of different literals. Let’s

see how with a quick example.

Imagine that we have a function for moving an element on a

web page in one dimension:

function move1D(direction: ‘left’ | ‘right’) {

// move the element

}

This function takes a single parameter called direction, which

we have specified is a union type of the literal string values

left or right. The benefit of this is that when we come to

invoke this function at a later time, we will get code

completion for all of the different types in the union, making

it clear exactly which values the function expects to be

passed when it is invoked:

Figure 3.5: Literal union function signature tooltip and type code-completion in

Visual Studio Code

This makes it almost impossible to use the function

incorrectly and inadvertently introduce bugs into our

application and is especially useful when working in larger

teams of developers where the person invoking or using the

function may not be the person who wrote it originally. It

becomes a form of living inline documentation for using the

function correctly.

We also get feedback in the editor or terminal when

compiling if we supply a value that isn’t one of the types in

the union. For example, if we pass the string up, we’ll see the

error message:

Argument of the type ‘up’ is not assignable to

parameter of type ‘”left” | “right”’.

Literal union types therefore represent an excellent way of

leveraging TypeScript to guide others on how to use specific

bits of code, for example, to ensure that a function is called

with the correct arguments.

Type aliases

Type aliases are a way of declaring types in a reusable way

using an identifier – like a variable declaration but for types.

So far, we’ve added all of our example types as annotations

directly after the thing they are used to describe. In the

previous section, for example, we had a function that

accepted a parameter with a union type:

function move1D(direction: ‘left’ | ‘right’) {

// move the element

}

Here, the type annotation appears in line with the parameter

declaration. Instead, we could add a type alias for it, like this:

type directions = ‘left’ | ‘right’;

To declare a type alias, we use the type keyword followed by

a name for the alias, and its type as a value, very similar to a

regular variable declaration but using type instead of var, let

or const.

Now, we can use this type alias anywhere that we want to

make use of this literal union type, like in the move1D function,

for example:

function move1D(direction: directions) {

// move the element

}

In this case, we get exactly the same code completion in the

editor, exactly as if we had used an inline type annotation

instead of the alias. We can of course reuse this type in other

places too now that we have an identifier for it.

Note however that once the type is declared, we cannot

modify it later on. If we try to extend it by adding some more

types to the union for example:

directions = ‘left’ | ‘right’ | ‘up’ | ‘down’;

Then, we will see an error:

Figure 3.6: Type used as a value error in Visual Studio Code

If we want to extend a type alias, we basically need to create

a new one with a different identifier, and then include the

type that we want to extend, like this:

type directions2D = directions | ‘up’ | ‘down’;

The new type, directions2D, will include all of the members

from both the directions union and the new union members

explicitly specified in the expression, the literal strings up and

down in this case.

We could then set it as the type for a parameter in a move2D

function, for example:

function move2D(direction: directions2D) {

// move the element

}

Type aliases are a simple way to reuse a type declaration in

multiple places, but they have no other special behavior;

they are merely a way to refer to a type using an identifier.

They also don’t have to be union types – any type can be

used with an alias.

Type assertion

We’ve looked briefly at the null and undefined primitive types,

as well as union types, and we’ve also seen how to use the

as operator to make type assertions. Let’s take a moment to

look at these topics together.

Consider the following function:

function splitString(str: string | null) {

return str.split(‘’);

}

We have a function called splitString which accepts a single

parameter called str and this parameter is the union type

string | null. The function simply returns the result of calling

the split method on the str parameter.

The editor will immediately highlight an error on the line

where we call the split method on str inside the function:

Figure 3.7: Object is possibly ‘null’ warning in Visual Studio Code

The correct way to fix this issue is to check that str is

actually of the type string before trying to call string

methods on it, for example, we could return earlier from the

function if we detect that str is null:

function splitString(str: string | null) {

if (str == null) return;

return str.split(‘’);

}

We can use a simple if statement to check str isn’t equal to

null and returns from the function if it is. Note that we can

use the non-strict equality operator as a short hand to check

for both null and undefined at the same time. This will remove

the error in the editor.

We can also use a type assertion to fix the error in a different

way:

function splitString(str: string | null) {

return (str as string).split(‘’);

}

This time instead of explicitly checking if str is null, we can

use the as operator to assert that str definitely is a string.

However, we should use this only where we are sure that the

argument being passed when this function is invoked is

definitely the expected type – if it is actually null, the code

will happily compile without errors, but we definitely would

see an error in the actual browser.

For example, this code will not produce any warnings in the

editor or in the terminal when compiling the TypeScript into

JavaScript:

splitString(null);

But it will cause an error in the browser when the JavaScript

is executed. It is safer to avoid using type assertion in this

way for this reason. With the explicit check that str is not

null, if we do for some reason invoke the splitString method

with a null value, the resulting compiled JavaScript will not

cause our program to crash in the browser.

We’ll be looking at compiling TypeScript using a terminal

application or Visual Studio Code, in much more detail in the

next chapter.

Non-null assertion operator

The non-null assertion operator is another way to specify

that a value definitely isn’t null. This will disable both null

and undefined checks made by TypeScript for the value it is

used on and prevent the editor displaying errors.

For example, instead of specifically casting the str

parameter to a string using the as operator, we could instead

use the non-null assertion operator to achieve the same

outcome:

function splitString(str: string | null) {

return str!.split(‘’);

}

The non-null assertion operator is a postfix exclamation point

– we use it directly after the value that we want to assert is

not null.

This will disable any further null or undefined checking carried

out by TypeScript. With the use of the as operator that we

saw previously, if the value that we are asserting is not null

does happen to actually be null, we will end up with errors in

the compiled JavaScript, so take care when using it.

Conclusion

In this chapter, we’ve looked at some of the most

fundamental aspects of TypeScript annotations – the kind of

things that we’ll be writing every time we code.

We’ve seen that for all of JavaScript’s primitive values,

TypeScript has a corresponding type that can be used to

describe what different values in your program represent.

This is true for JavaScript’s commonly used primitives like

string and number, and for lesser used ones like bigint or

symbol.

We took a quick look at each of these primitives in turn and

saw how to annotate values using a colon followed by the

type we want to specify, like this:

let str: string = ‘’;

We also looked at some special types that are found only in

TypeScript and do not have corresponding JavaScript

counterparts. These types are:

The any type

The unknown type

The never type

We saw that the any type effectively disables any further

type-checking on the value which is declared with it as its

type. It can be useful in some situations to avoid having to

add a very complex type description, but we should probably

try to use it as sparingly as possible as it negates most of the

benefits of using TypeScript in the first place.

We also learned about an implicit any, which is when we

haven’t specifically set a value to the any type, but

TypeScript is unable to reliably determine what type the

value is. We saw that this causes an error (when the

configuration has either the strict or noImplicitAny options

enabled) which we will need to fix by supplying the relevant

type information.

We also covered TypeScript’s unknown type, which can be

considered as kind of the opposite of the any type. With the

unknown type, we can’t assume the value is an object and try

to access its properties or assume it’s an array and try to

access its members, and we also can’t treat it like a function

and try to invoke it. The only thing we can do is assign a

primitive value to it.

We also took a look at the never type, which is a special type

used to describe a value that should never be set. TypeScript

will sometimes set the return value of a function that never

actually returns to this type.

Next, we looked at the as operator, which we can use to

make type assertions and cast a value to a particular type.

We looked at two techniques commonly used with type

assertions – down-casting and compound casting.

Then we moved on to look at union types. We learned that

these are types consisting of multiple types and are used to

specify that a value may be one of several different types.

The syntax for union types is to separate each type with the

pipe character.

We also looked at literal types, which are sub-types of some

primitive types like boolean, number, bigint, and string.

We then moved on to see that literal subtypes can also be

used with union types, which is useful when we want a value

to one of a predefined set of values.

Following this, we looked at type aliases and saw that these

are ways to store a type using an identifier, which we can

then later use where we wish to specify the type.

After this, we took a look at type assertions again in more

detail, this time looking specifically at the different ways that

we can handle null and undefined in union types.

We learned that we can use a type guard to avoid using the

value if it is null (or undefined), or that we could do the same

using the as operator to assert that the value is of the type

that we expect it to be, but that using type guards is the

safer choice unless we explicitly know that the value is

definitely of the expected type.

Finally, we looked at the non-null assertion operator, which is

used to tell TypeScript that a value is specifically not null or

undefined.

In the next chapter, we will take an in-depth look at

compiling our TypeScript into JavaScript using both the

terminal application, and Visual Studio Code.

References

https://www.typescriptlang.org/docs/handbook/2/e

veryday-types.html

https://www.typescripttutorial.net/typescript-

tutorial/type-casting/

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html
https://www.typescripttutorial.net/typescript-tutorial/type-casting/

CHAPTER 4

Using the TypeScript

Compiler

Introduction

As well as creating a brand-new project, there are a number

of other things that the TypeScript compiler can do, which we

can enable using various flags; things such as setting the

language used for TypeScript’s errors and warnings, and

listing all of the files included in the current compilation

among others.

There is also a wide range of build-related options that we

can enable to run different kinds of compilations, and we can

also set any of typeScript’s configuration options manually

when invoking the compiler from a terminal application.

In this chapter, we’ll explore some of the things we can do

from a terminal using the many flags supported by the

compiler, as well as cover related concepts like installing

third-party types for third-party JavaScript libraries that we

might want to use in our projects, or how we can generate

our own definition files so that other developers may use our

code.

Structure

In this chapter, we will cover the following topics:

Compiling our TypeScript files

Inspecting compiled files

CLI flags

Using watch mode

Building projects

Integrating with other build tools

Using third-party libraries

Generating .d.ts files

Compiling our TypeScript files

The main purpose of the TypeScript compiler is of course to

compile our TypeScript files into JavaScript files ready to be

run in a browser. Let’s first look at the different ways that we

can do that using a terminal.

By default, if we run the tsc command in a terminal by itself,

the compiler will attempt to compile all of the TypeScript files

that it can find in any sub-directory of the working directory,

using the closest tsconfig.json file that it can find,

recursively looking upwards in the directory tree. Any

directory that contains a tsconfig.json file is considered the

root of a TypeScript project.

The example project accompanying this book has a root

directory called ts-examples, which contains the

tsconfig.json configuration file, along with sub-directories

for each chapter containing individual .ts files.

If we change the working directory in our terminal to one of

these sub-directories and run the tsc command there, the

compiler will not find a tsconfig.json file in the current

directory, but it will then navigate up to the root directory

and find the configuration file to use there instead.

If there are no errors in the code the compiler will compile all

of the TypeScript files it finds, and for each one, it generates

a .js file containing the compiled code alongside the .ts file.

When the compilation succeeds, there is no output to the

Terminal at all – the only output is the generated files in the

file system.

If the compiler encounters any errors in any of the files

included in the compilation, and if the noEmitOnError

configuration is enabled, the compiler may fail to compile

the project and instead output errors to the Terminal

detailing any problem(s):

Figure 4.1: Error output when running tsc in the example project

In this case, TypeScript is warning us that there is a duplicate

function implementation and shows us which two files

contain the duplication, which line it occurs on, and what the

code on that line looks like.

Having the compiler output the compiled files alongside the

original source files is less than optimal, however – when we

want to deploy our application, we don’t want to distribute

the TypeScript files along with the JavaScript files, so any

build process would need to discard, or otherwise exclude,

the original TypeScript files when copying the application

files to deploy, and there is no real reason to make a build

process more complicated than it needs to be.

Instead, we can have the compiler emit all of the compiled

files into a sub-directory of the project. We can do this for a

single compilation by passing the --outDir option in the

terminal, or we can do it permanently by updating the

tsconfig.json configuration file. Let’s do it from the terminal

first:

tsc --outDir ./dist

Once again, if the command is successful, there will be no

output in the terminal application – output there indicates an

error has occurred.

The successful output will be the batch of generated

JavaScript files, but this time, instead of being placed

alongside the original source files, they will all be contained

in a directory at the root of the project called dist:

Figure 4.2: The emitted dist folder in Windows Explorer

If you’ve been creating directories as recommended earlier

in the book, your project directory should look similar to that

shown in Figure 4.2.

Note that the dist folder will mirror the structure of the

project being compiled, so in this case, the dist directory will

contain a subdirectory called chapter 3, and the compiled

JavaScript files will be inside that folder. For example, the

structure of compiled files in the ts-examples project will

appear like this:

dist

|_ chapter 3

|_ aliases.js

Having the output generated in a separate folder is a much

better choice for a typical web application, so we can go

ahead and make this configuration change permanent by

enabling the option in the tsconfig.json file:

“outDir”: “./dist”,

We can pass any TypeScript configuration option in the

terminal in the same way, by prefixing the name of the

option in the configuration file with a double hyphen --.

Doing this will have the same effect as it would in the

configuration file, except that it will only apply to the current

compilation.

In addition to compiling all of the TypeScript files in the

project, we can direct the compiler to compile a single file,

by passing the path to the file after the tsc command, for

example:

tsc “chapter 3/aliases.ts”

In this case, we can compile a file called aliases.ts in a

directory called chapter 3, and we have to quote the path

because it contains a space. One thing you should notice is

that the compiler reverts to placing the compiled file

alongside the source file when the file is emitted when

running the command in the terminal.

The reason for this is that when we compile a single file, the

compiler ignores any tsconfig.json configuration file that is

present in the working directory. The compiler has no

configuration options enabled by default in the terminal; it

just does a basic compilation when used like this.

By default, the compiler will use the closest tsconfig.json

file it can find navigating up through the file system, but we

can also specify the path to the tsconfig.json file we wish to

use in the terminal instead. We would use the --project flag

to do that.

A tsconfig.json file placed in a subdirectory can extend

another tsconfig.json file found higher up in the project

directory structure. Let’s create another tsconfig.json file to

see this in action. You should create it inside the directory

chapter 4 in your project directory.

For reference, this file can also be found inside the chapter

4 directory in the accompanying example project.

The new tsconfig.json file should contain the following

configuration.

{

“extends”: “../tsconfig.json”,

“include”: [“../**/*.ts”],

“exclude”: [“./webpack-integration”, “my-lib”]

}

We also need to tell the compiler which files we would like to

compile, which we do using the include option, because it will

treat the chapter 4 folder containing the tsconfig.json file

we specify with --project as the root of the project. In this

case, we tell the compiler to include all files in the parent of

the current directory.

We can also make use of the exclude top-level option to

exclude some of the files from later examples in this chapter

– if we don’t do this, we’ll see errors in the terminal and we

won’t be able to compile using the tsconfig.json file in the

root of the chapter 4 directory.

The default value for the include configuration option is

**/*.ts which is a special path known as a file glob pattern.

This special path means find any file with a .ts extension in

the current directory and all subdirectories of the current

directory.

The chapter 4 folder doesn’t contain any TypeScript files,

however, so without providing the include configuration, the

compilation will fail with an error that there are no input files

– the compiler can’t compile if there are no files to compile.

We could also add any additional configuration options in this

additional configuration file, and they would override the

same configuration options in the base file that is being

extended.

To use this tsconfig.json file instead of the top-level one in

the root of the ts-examples project, we would use this

command in the terminal:

tsc --project “chapter 4/tsconfig.json”

We use the --project flag to provide the path to the

configuration file we wish to use. Again, the path is quoted in

this example due to the space character in the directory

name.

In this case, the project should compile as expected and emit

a dist folder containing all of the compiled files. One thing

you’ll notice if you open up this directory in a file browser, or

in Visual Studio Code, is that all of the files are placed into

the dist folder directly with no deeper file tree within the

folder. Sometimes it is preferable to have the dist folder

match the internal folder structure of the project.

To do this, we can set the rootDir configuration option in the

tsconfig.json file at the root of the project. We can use the

commented-out default value in the configuration file, so all

we need to do is uncomment it:

“rootDir”: “./”,

Now when we compile the project, inside the dist folder will

be sub-directories mirroring the directory structure within the

project. Remember, a TypeScript project is defined as the

directory containing the tsconfig.json file in use.

Inspecting compiled files

Now that we’ve compiled some files, let’s take a moment to

open some up and take a look at the JavaScript emitted by

the compiler.

The first file inside the dist folder (if there isn’t a dist folder

in your local copy of the example project, try running the tsc

command from a terminal as described earlier) should be

aliases.js – compare the contents of this emitted file with

the original aliases.ts file:

Figure 4.3: The original TypeScript file (top) and emitted JavaScript file (bottom)

in Visual Studio Code

When the compiler processes a file, it will strip out all of the

type annotations, and any type declarations; as you can see

here, both the type declarations and the type annotations for

the parameter accepted by the move2D function, are indeed

removed in the resulting JavaScript file.

Additionally, the compiler has removed the first comment

from the file, but not the comment inside the function. The

reason for this is simple – the first comment does not have a

space between the comment start delimiter and the text,

whereas the second comment does. TypeScript distinguishes

between these and by default, does not strip the second

form out in the compiled code.

There is a compiler option we can use to strip out all

comments, regardless of whether they have a space after

the start delimiter or not. This is the removeComments option,

and we can use it either in the main configuration file or by

passing it as a flag in the terminal, for example:

tsc --removeComments

It’s worth noting that the compiler also removes empty lines

from the input file, even those inside functions.

Lastly, the compiler has inserted a “use strict”; directive at

the top of each file. This is because none of our files are

modules and could therefore be run accidentally in non-strict

mode, which would be bad news for our application, so to

play it safe, TypeScript ensures that each file will be run in

strict mode.

If we make one of our TypeScript files a module, by exporting

something from it using the export keyword, then the “use

strict” directive will not be inserted at the top of the file,

because in JavaScript, modules are always evaluated in strict

mode.

At this point, the example files are all quite basic, so there

shouldn’t be any surprises in any of the compiled files. The

main points to take away are that all type annotations and

type declarations are removed by the compiler in order to

generate valid JavaScript.

CLI flags

We saw earlier in the book that we can create a new

TypeScript project using the tsc command in conjunction with

the --init flag.

There are a number of other general flags that we can use in

conjunction with the standard tsc command. Let’s take a

quick look at each of them now. Make sure you have your

terminal application at the ready and a copy of the example

files if you want to follow along with the examples in this

section.

--version

If we want to know the exact version of TypeScript we are

using, we can use the --version flag:

Figure 4.4: The output of the --version flag in a terminal application

Note that this will output your global version of TypeScript,

not the local version of TypeScript if you happen to be

running the terminal application from within a TypeScript

project (which in this case we are). We can also use a

shortened variation of this flag -v.

There are several different ways to determine the local

version of TypeScript that is installed within a particular

project, depending on your package.json configuration. If

you use a specific version of TypeScript in your project, like

this:

“typescript”: “4.8.2”

Then the specific version denoted in the package.json file

will be the actual version in use in the project. However, if

the project uses the hat (^) or tilde (~) symbol in the version

number, like this:

“typescript”: “^4.7.4”

Or this:

“typescript”: “~4.7.4”

Then that will instead be the minimum version of TypeScript

in use, but it may actually be using a higher version if there

is a higher minor or patch version available in the NPM

repository; in this case, to see which actual version is in use

locally in the project, you can use NPM’s ls command:

Figure 4.5: Output from ls command in Visual Studio Code’s integrated terminal

The ls command is used to list information about packages

in an NPM project. We specify the name of the package that

we want to list, in this case, typescript, after the ls

command. This will return the specific version of the

specified package in use.

In the preceding figure, the actual version of the typescript

package installed locally in the project is output on the third

line and is version 4.8.2.

For reference, the ~ symbol before a version number in the

package.json file means that any higher patch version may be

installed, for the version ~1.0.0, this means that any version

to 1.0.n may be installed. On the other hand, for the version

number ^1.0.0, it means that any version to 1.n.n may be

installed.

One additional place that we can see the exact installed

version of a particular package is in the package-lock.json

file, which NPM creates automatically alongside the

package.json file whenever we run the npm install

command. We can open this up in Visual Studio Code or

another editor and search for the name of the package to

see the exact version in use and some other meta-

information about the package like the SHA hash for that

version, which is sometimes used to verify the authenticity

of NPM packages.

--listFilesOnly

It may not always be clear whether a particular file is being

included in the compiled output of our program, especially

when working with very large applications that may include

thousands of individual source files.

For a complete list of every single source file, and the path it

is located at, which is included in the compiled output, we

can use the –listFilesOnly flag:

tsc –listFilesOnly

This flag can be very useful, as not only does the output of

this flag show our own working TypeScript files that we have

created and written ourselves, but it also includes all of

TypeScript’s own definition files, which give us types for

things inherently part of JavaScript, like DOM access

methods:

Figure 4.6: Listing all TypeScript files in an application

In the preceding example output, we can see all of the files

we have created so far throughout the book at the bottom of

the output, along with the path they were found at. The list

of files at the end of the output is the files within the

example project.

The first two lines in the preceding output shown however

come from the global installation of the typescript NPM

package on my system and represent types that are included

by default with any TypeScript project on my machine and

contain types for default JavaScript functionality.

Files with the extension *.d.ts are TypeScript declaration

files, also known as ambient modules, or declarations, which

are used to provide type information to the TypeScript

compiler for third party code. We’ll look at these in more

detail shortly.

--showConfig

If we want to see the exact TypeScript configuration in use

for the current compilation, we can add the --showConfig flag:

tsc --showConfig

This command is useful because it shows us the config from

the tsconfig.json file merged with any defaults; for

example, in the following output, the config also includes the

list of files, which TypeScript has determined and added to

the configuration automatically under the files configuration

option:

Figure 4.7: Output showing merged config for the current compilation

The configuration for TypeScript can be extended by

additional tsconfig.json files contained within sub-

directories.

In a larger application, we may have a main tsconfig.json

file in the root directory, with additional tsconfig.spec.json,

tsconfig.dev.json, and tsconfig.prod.json files, any one

of which may be in use, depending on whether we are

running the unit tests, using a development build, or running

a production build.

It can be useful to use the --showConfig flag to determine the

exact configuration of the compilation if the project is very

large, or complex, or contains numerous configuration files

for different scenarios.

--help

Another useful command is the --help command:

tsc --help

This command will output a subset of information concerning

the most commonly used command line flags we can pass,

compiler options, and build commands, which can be useful

as a quick reference point.

To see all of the compiler options and build commands, we

can also append the --all flag to the end of the command:

tsc --help --all

This command lists all of the supported configuration flags,

build flags, and compiler options that can be used. Here is an

example of the output from this flag in a terminal application

on Windows:

Figure 4.8: Output from the --help --all flags in a 3rd-party terminal application

As you can see in the preceding screenshot, it lists all of the

various flags we can use and gives a description of each

option, and if it accepts values, the type of value, and the

default value for each option.

Using watch mode

atch mode is a useful development aid where we can have

the compiler continuously watch a group of files, and as soon

as any of those files are saved after being edited, or

changed, the compiler will automatically recompile the

project for us. While developing a TypeScript application, we

will usually have watch mode running most of the time.

Enabling watch mode is extremely straight-forward, we just

add the --watch flag when invoking the compiler in the

terminal:

tsc --watch

This time we will see some output in the terminal:

Figure 4.9: Output of starting watch mode in a terminal application on Windows

While this terminal remains open with the process running,

any time we save a file within the project the compiler will

automatically recompile the project for us.

The terminal output will update once a file change has been

detected and the project has been recompiled:

Figure 4.10: Output to the terminal after a file change detected

WWatch mode uses an incremental compilation mode after

the initial compilation when it starts up, as you can see in

the message shown in the Figure 4.10.

This means that TypeScript will only compile files that have

actually changed, saving on resources, which can be useful if

we are working on a large application with many source files

– it would be a waste of time and resources to recompile files

that have not changes since the last time the project was

compiled.

As well as watching TypeScript files, the compiler also

watches some other types of files, such as JSON files,

meaning that if we change our configuration file to perhaps

exclude some files or folders from the compilation, the watch

process will detect that change as well and recompile the

relevant parts of the project. It is worth noting that the

node_modules folder is also watched by default, and this

folder is usually very, very large and contains many, many

files. This can have a negative impact on the performance of

the compilation.

On Windows or Mac platforms, using the --watch flag will

generally be all you need to do, but on Linux, some extra

configuration is available due to how this operating system

handles watching files and folders, which by all accounts is

not as reliable as on Windows or Mac platforms.

TypeScript provides the top-level option watchOptions to allow

us to provide extra configuration for the watch process on

Linux platforms if necessary. As it’s a top-level option, we

specify it at the same level as compilerOptions, not inside

compilerOptions.

Under watchOptions we have the following options available:

watchFile

watchDirectory

fallbackPolling

synchronousWatchDirectory

excludeDirectories

excludeFiles

assumeChangesOnlyAffectDirectDependencies

The rest of this section is intended mostly for reference

purposes, it will be useful mostly only to developers using

Linux; feel free to skip the rest of this section if you do not

intend to use this platform.

watchFile

The watchFile option controls how the watch process watches

individual files. The default value is useFsEvents, which relies

on events emitted by the file system when watched files

change. Other values accepted by this option are:

fixedPollingInterval: use an interval to poll every file in

the compilation several times a second for changes.

priorityPollingInterval: use an interval to poll every file

in the compilation several times a second for changes

but check some files less often than others depending

on how frequently the compiler thinks they will change.

dynamicPriorityPolling: poll every file in the compilation

several times a second for changes but check some files

less often than others depending on how frequently they

do change.

useFsEventsOnParentDirectory: similar to the default

useFsEvents, but watches parent directories instead of

individual files.

fixedChunkSizePolling: whether the chunk size polling of

watched files should be fixed.

watchDirectory

The watchDirectory option controls how the watch process

watches folders. The default value for this option is also

useFsEvents, which makes this option also rely on operating

system events when watching folders by default. Other

values accepted by this option are:

fixedPollingInterval: use an interval to poll every folder

in the compilation several times a second for changes to

files.

dynamicPriorityPolling: poll every folder in the

compilation several times a second for changes but

check some folders less often than others depending on

how frequently the compiler thinks they will change

using a dynamic queue.

fixedChunkSizePolling: whether the chunk size polling of

watched directories should be fixed.

fallbackPolling

When the watch process is using the default settings for the

watchFile and watchDirectory options, the system may

eventually run out of native file watchers. This could be a

problem for a large application containing many TypeScript

files, so the compiler has a fallback strategy in case this

happens.

We can use the fallbackPolling option to configure that, it

supports the following values:

fixedPollingInterval: Use the fixedPollingInterval strategy

for files (see the watchFile section on the previous page

for a description of this strategy).

priorityPollingInterval: Use the priorityPollingInterval

strategy for files (see the watchFile section on the

previous page for a description of this strategy).

dynamicPriorityPolling: use the dynamicPriorityPolling

strategy for files (see the watchFile section on the

previous page for a description of this strategy).

synchronousWatchDirectory: disable deferred watching on

directories – this option is unlikely to be required unless

using an unconventional application setup.

dynamicPriority: files that are changed more frequently

will have a higher priority than files that are changed

less often.

fixedChunkSize: polled chunk sizes are fixed.

fixedInterval: the time interval between checks is fixed.

priorityInterval: frequently updated files have a higher

polling priority than files updated less often.

synchronousWatchDirectory

By default, the compiler will call callbacks synchronously and

update the state of directory watchers when recursive

watching isn’t natively supported on the platform in use. To

disable this, we can set this option to the value false.

As with the preceding few options, this is likely to be useful

only on platforms that do not support native recursive folder

watching.

excludeDirectories

To reduce the number of files that the compiler is watching,

we can use the excludeDirectories option to specify an array

of folders to exclude from the compilation. Because the

node_modules folder in Node projects tends to be quite

large and contains a significant number of files and folders, it

is common to exclude this directory from the watch process:

“excludeDirectories”: [“**/node_modules”]

Other folders, such as a temp folder, or build output folder,

are also commonly excluded from the watch process to make

it more efficient. This option supports glob patterns, such as

the double star at the beginning of the path in the preceding

example.

excludeFiles

As well as excluding directories from the compilation, we can

also exclude individual files. This option also takes an array,

and like excludeDirectories, it also supports file glob patterns

as well as paths to specific files.

assumeChangesOnlyAffectDirectDepe

ndencies

This option can be enabled to reduce the amount of checking

that is done for deep chains of dependencies – when a

TypeScript file imports another file, which itself imports

another file, and so on and so forth. By default, the compiler

will check the entire chain of these dependencies.

When this option is enabled, however, the compiler will only

check direct dependencies, rather than the whole chain of

dependencies, so this option can be used to speed up the

watch process for large applications with many imports.

Environment variables

TypeScript also provides three environment variables that

can be used on platforms that don’t support watching

directories recursively, or support native file watching using

file system events, such as Linux.

See the guide at

https://www.freecodecamp.org/news/how-to-set-an-

environment-variable-in-linux for more information on

how to set environment variables on Linux platforms.

The available environment variables are:

TSC_WATCHFILE

TSC_WATCHDIRECTORY

TSC_NONPOLLING_WATCHER

The TSC_WATCHFILE environment variable can be set to the

following values:

PriorityPollingInterval

DynamicPriorityPolling

UseFsEvents

UseFsEventWithFallbackDynamicPolling

UseFsEventsOnParentDirectory

https://www.freecodecamp.org/news/how-to-set-an-environment-variable-in-linux

The TSC_WATCHDIRECTORY environment variable can be set to the

following values:

RecursiveDirectoryUsingFsWatchFile

RecursiveDirectoryUsingDynamicPriorityPolling

Note that on platforms that do support file-system events

and recursive directory watching, such as Windows, or Mac

platforms, these environment variables are ignored.

For full information on what these different values mean

when used with the appropriate environment variables, you

should consult the TypeScript handbook, which is available at

https://www.typescriptlang.org/docs/handbook/config

uring-watch.html.

Do also note that incorrectly updating the environment

variables on your system can potentially result in a loss of

data or irrecoverable system failure – take care to consult

the relevant documentation for your platform to ensure that

the process is carried out correctly.

Building projects

Sometimes the application we are building may be more

complex than a directory containing a few sub-directories. In

a mono-repo for example, there may be many projects and

libraries grouped together, with numerous dependencies

between them.

TypeScript supports both simple and complex application

architectures, allows us to use a series of linked

tsconfig.json files to specify the dependencies between

projects, and makes sure that they are built together as

required, depending on whether or not they are up to date.

Sub-projects that extend another project are known as

referenced projects as the root tsconfig.json file uses the

references configuration option to specify them

https://www.typescriptlang.org/docs/handbook/configuring-watch.html

To build our TypeScript files instead of just compiling them,

we just need to use the --build (or -b) flag when we invoke

the compiler:

tsc --build

When we use the --build flag to compile a project, the

compiler will also compile any dependent projects if they

have changed since the last compilation. It keeps track of

the state of each project using a special tsbuildinfo file; we’ll

look at these in more detail shortly.

The --build flag is an alternative way to compile TypeScript

files that can offer faster build times, and which allows us to

break up our application into smaller, more coherent pieces,

which can also be an aid to development.

Let’s look at an example in action. Inside the chapter 4

directory in your own project directory, create a new folder

called projects, and then inside this folder, create three

subfolders, one called main-project, one called sub-project-1,

and one called sub-project-2.

Inside all of these new folders create a subdirectory called

src, and within this new src directory, create a single

TypeScript file containing only a string variable:

const subExample1: string = ‘This is an example!’;

These typescript files should be called main-source-file-

1.ts, sub-source-file-1.ts, and sub-source-file-2.ts

respectively. Note that the name of the variable in each of

these files will need to be unique.

Let’s imagine that the main project is dependent on the two

sub-projects; we can configure this using a new tsconfig.json

file, which we should create in the root of the main-project

directory (not inside the src subdirectory). It is

recommended to use the tsc --init command in the Terminal

to create the new tsconfig.json file so that the default

options are added and enabled. Ensure the terminal is

focused on the main-project directory when running the

command.

In addition to the default options in the new tsconfig.json file,

you will need to add a new top-level option called references

to specify the sub-project-1 and sub-project-2 directories as

dependencies:

“references”: [

{ “path”: “../sub-project-1” },

{ “path”: “../sub-project-2” },

]

Take care to add the references option outside of the

compilerOptions section, not inside it.

We should also set the rootDir option inside the

compilerOptions section, to configure the projects folder, which

contains the main and sub-projects, as the root directory – if

we don’t do this, the compiler won’t include all of the source

files correctly when we build the main project. It should have

the following value:

“rootDir”: “../”,

As well as this main tsconfig.json file, each of the sub-

projects will need to have their own tsconfig.json files in the

root of each folder as well. These are much smaller, and both

of them are identical, although that doesn’t have to be the

case.

They should both contain the following code:

{

“extends”: “../main-project/tsconfig.json”,

“include”: [“**/*.ts”],

“compilerOptions”: {

“composite”: true

}

}

All of these sub-tsconfig.json files need to extend the main

tsconfig.json file – again, if we don’t do this then the projects

will not get built correctly. We also need to specify that this is

a referenced project using the composite compiler option.

A side-effect of using this option is that the rootDir

configuration option of the project will be automatically set

to the directory containing the tsconfig.json file. We should

also ensure that TypeScript source files can be found by

setting the include top-level option.

So, to recap, we have three folders:

main-project

sub-project-1

sub-project-2

Each of these folders contains a folder called src, which itself

contains a TypeScript file, and a tsconfig.json file. The main

tsconfig.json file (the one inside the main-project directory)

uses the references configuration option to specify sub-

project-1 and sub-project-2 as dependencies.

The tsconfig.json files in the sub-projects both need to

extend the main tsconfig.json file, and both specify that

they are composite projects. At this point, everything should

be in place – we can build the application using the --build

flag in the terminal:

tsc --build

Any output in the terminal means an error occurred, but if

everything goes according to plan, the main - project folder

will gain a dist folder containing all of the compiled code

from the main project and the sub-projects. This will be

similar to the dist folder we created earlier using only the

tsc command, with a couple of notable differences, as shown

in the following figure:

Figure 4.11: The compiled output of the build command in Visual Studio Code

Both of the dependent projects will be compiled, but as well

as generating JavaScript files, it will also generate a

declaration file for each TypeScript file within each sub-

project. Declaration files are used with libraries to provide

information to the compiler about the types used. We’ll look

at these files in more detail later in the book.

As well as a declaration file, we’ll also find a single

tsconfig.tsbuildinfo file generated in the root of each sub-

project. These files are used by the compiler to determine

which code needs to be compiled when running a

subsequent build, so that only files which have changed

since the last build are recompiled, and this is what helps

make builds with the --build flag faster than a standard

compile.

One point to note is that the build will fail if any of the

TypeScript files in the compilation contain errors, which is

probably for the best in a larger, more complex application

composed of numerous projects.

Build-specific flags

There are a number of different flags that we can use in

conjunction with the --build flag. These are as follows:

--clean

--dry

--force

--verbose

--watch

The --clean flag is used to delete all of the files in the output

directory, it doesn’t actually build any projects. It only

deletes files, it doesn’t delete folders, so the dist directory

itself, along with any sub-directories, will remain.

The --dry flag also doesn’t actually build any projects or

compile any files. Instead, this flag causes the compiler to

output a report to the terminal which shows what it would

have built had the flag not been used:

Figure 4.12: Output of the --dry flag in a 3rd party terminal on Windows

The --dry flag can also be used in conjunction with the --

clean flag, to show what would be deleted had the flag not

been used.

The --force flag is used to build all referenced projects,

regardless of whether they have been updated or not.

The --verbose flag causes the compiler to emit information to

the terminal regarding the projects that were built. There can

be a lot of output depending on the size of the project; here

is a snippet of the kind of information it outputs:

Figure 4.13: Example output of the --verbose flag

The --watch flag works in the same way as it does with the

regular compiler; it watches files for changes and rebuilds

any affected referenced projects as and when necessary.

Integrating with other build tools

Typescript compilation is very easily integrated with many of

today and yesterday’s most popular JavaScript build tools,

I’m talking about things like Babel, Grunt, Gulp, and

Webpack, as well as tools that may be more closely

associated with back-end build systems like MSBuild and

NuGet.

While some of these tools may spark a moment of fond

remembrance, it would be outside of the scope of this book

to describe each of them in detail.

The TypeScript documentation already does a very good job

of showing how to integrate with the above and many more

build systems, so for further information, do consult the

information that can be found online at

https://www.typescriptlang.org/docs/handbook/integr

ating-with-build-tools.html.

Instead of focusing on all of the different build tools, we will

cover a basic example of integrating with just one of them, a

build system that is very much still in use at the time of

writing and looks set to continue to be a popular tool for

TypeScript developers everywhere – Webpack.

Integrating with webpack

Webpack is a module bundling system that takes JavaScript

modules with dependencies and bundles them into static

assets for use in a browser. It’s been around for a long time

and can bundle a wide range of different types of files

including JavaScript, SCSS or SASS, HTML, images, and fonts.

It also has a vast ecosystem of plugins, and as such the

setup and configuration can be quite extensive. To minimize

any setup and allow us to focus on the TypeScript aspect of

the configuration, we will use a Webpack starter kit, which is

included in the example project accompanying this book.

The starter kit that we will use can be found online at

https://github.com/wbkd/webpack-starter, and is

included in a directory in the chapter 4 folder called

webpack-integration. Although for this example, I would

recommend you create a new folder outside of the example

directory for the examples in this book.

The first thing we need to do is navigate into this directory in

our terminal application and run npm install to install the

https://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
https://github.com/wbkd/webpack-starter

dependencies. Once this is done, the directory will gain a

node_modules folder, as is usual for an NPM project.

By default, the Webpack starter repo is a minimal Webpack

application, which does not include TypeScript integration by

default – this is what we will be adding ourselves. Webpack

itself is like a foundation, upon which we add the plugins

necessary for our project – these plugins are referred to as

loaders as they are intended for loading (and processing)

different types of files during the bundling process.

In order to have Webpack understand what to do with

TypeScript files, we need to install the TypeScript loader for

Webpack – ts-loader. We can do that by running the following

command in the terminal:

npm install --save-dev ts-loader

Once the loader is installed, we can add the required

configuration for it. Webpack is configured using regular

JavaScript files, in the starter project they can be found in a

sub-directory called webpack.

There are three files inside this directory; a base

configuration file called webpack.common.js, and then

webpack.config.dev.js, and webpack.config.prod.js

which both extend the base configuration with settings

suitable for their respective environments.

Each of these files contains varying amounts of

configuration, most of it irrelevant to TypeScript and this

discussion. In essence, these files load a series of plugins

and utilities, provide configuration for Webpack itself, define

the plugins, and then configure the plugins and utilities.

Let’s run through the steps necessary to convert this project

from JavaScript to TypeScript compilation and then bundling.

TypeScript webpack configuration

The example project contains a basic file in the src

subdirectory called index.ts, which is the entry file for the

application – the file that Webpack will load and which

imports everything else necessary for the application to run.

In this example, the entry file is as follows:

import ‘../styles/index.scss’;

import { app } from ‘./app’;

console.log(‘App running: ‘, app.name);

In this case, the file imports the styles and an app object and

logs a message to the console showing the name of the app.

The app object will be imported from another TypeScript file

in the same directory called app.ts, but note that the

extension is not specified in the import.

This app.ts file simply exports a basic app object containing

the name of the app:

export const app = { name: ‘my-app’ };

The first thing we need to do is update the entry point for

our application. In the base configuration file

webpack.common.js, the entry point to the application is

configured using the entry configuration option.

Currently, Webpack will be looking for a file called index.js

in the scripts directory – we should update this to index.ts

instead:

entry: {

app: Path.resolve(__dirname, ‘../src/scripts/index.ts’),

},

Next, we need to tell Webpack how to process TypeScript

files; we can do that by adding a rule which matches files

with a .ts extension and tells Webpack to use ts-loader for

those types of files.

By default, the starter project looks for any .mjs (Module

JavaScript) files in the project. We aren’t using these, so we

can replace the existing rule on lines 36 through 40 in the

webpack.common.js file with this configuration to avoid

looking for files which we know beforehand will not exist in

the current project:

{

test: /\.ts$/,

use: ‘ts-loader’,

exclude: /node_modules/,

},

What this configuration says is to match any file that ends

with a .ts extension, excluding any files in the

node_modules directory, and process them with the ts-

loader plugin.

Also, in the webpack.common.js configuration file, in the

resolve configuration option on line 29, we need to tell

Webpack to allow the importing of TypeScript modules in

files:

extensions: [‘.ts’, ‘.js’],

These are the minimum configuration changes we need to

make in order to convert this project to use TypeScript, but

there is still one more thing we need to do.

Lastly, we need to add a tsconfig.json file to the root of the

starter project. We can extend the main tsconfig.json file at

the root of the ts-examples directory, and then limit the

included files to only those TypeScript files found in the src

sub-directory of the webpack-integration directory:

{

“extends”: “../../tsconfig.json”,

“include”: [“./src/**/*.ts”],

}

At this point, we should have everything in place to be able

to compile the example TypeScript files. We can run a

production build using the following command in our

terminal:

npm run build

This command will build the project and generate compiled

JavaScript, CSS, and HTML static output in a folder in the root

webpack-integration directory called build, which we

could then deploy to some kind of production environment.

We can run also run a development build using the following

command in the terminal instead:

npm start

This will compile and bundle the files and start up a local

development server which we can use to preview the

application in a browser and display the URL that we need to

enter in the browser to view the index.html file, which will

be something along the lines of http://192.168.1.136:8080/.

The resulting application should appear in the browser like

this, and you should see the log message we added showing

the name of the app in the developer tools console:

Figure 4.14: Viewing the example application in Chrome on Windows

The start command also has watch enabled by default, so

any time we make changes to files in the src directory of the

app, the relevant files will be recompiled. If we are viewing

the application in a browser, the browser will be

automatically reloaded.

Using third-party libraries

It’s a very common requirement to use third party libraries

and frameworks in our web applications – many common

software development and application engineering problems

have already been solved and there is often little point in re-

inventing the wheel.

As we know, one of the main benefits of TypeScript is in the

advanced tooling that it provides for us in the editor while we

are developing, things like code completion, and displaying

type information. We can easily provide this same

experience when working with third party libraries and

frameworks, we just need to get information about the types

that are used in these libraries.

Most new front-end libraries and frameworks will now

provide their own type declarations using d.ts files, which

will be installed when the library or framework itself is

installed. And even for older but popular JavaScript libraries

and frameworks that predate the invention of TypeScript,

type declarations have already been retrospectively provided

and made available for public use.

The TypeScript website provides a useful search facility

where we can quickly find out whether a library or

framework has declaration files, and tells us exactly how to

install them. This excellent resource can be found at

https://www.typescriptlang.org/dt/search. This utility

searches a repository called Definitely Typed which contains

the declaration files for many existing JavaScript libraries.

jQuery was a hugely popular front-end library in the not-too-

distant past, and can still be found on many, many websites.

If we wanted to include jQuery in the webpack-starter

application, for example, we just need to install it, along with

its corresponding type declarations:

npm install jquery

npm install @types/jquery --save-dev

https://www.typescriptlang.org/dt/search

These two commands will install jQuery itself as a full

application dependency, because it is required to actually

run the application in a browser, and secondly, install the

type declarations for jQuery as a development dependency

because the types are not required by the browser and are

only used for development purposes.

Third-party types are installed in the node_modules folder

in a sub-directory called @types – any declaration files

inside this folder are automatically visible to the TypeScript

compiler and Visual Studio Code.

Once this has been done, we are free to import it into our

application and use it, while getting the full type-information

provided by the editor. We could change the app.ts file so

that it includes the jQuery version in the app object for

example:

import jquery from ‘jquery’;

export const app = { name: ‘my-app’, jqueryVersion:

jquery.fn.jquery };

TypeScript makes it very easy to work with third party

libraries or frameworks and still get a great tooling and

development experience in the editor, which, after all, is

what TypeScript is all about.

Generating .d.ts files

We saw earlier that d.ts files are generated from referenced

projects when using the compiler with the --build flag, and

that these are often provided by third party libraries in order

to give the compiler information about the types used by the

library and the functionality it exposes through its API.

We can generate d.ts files either from TypeScript files or

even from basic JavaScript files if there is some reason why

the JavaScript project that we’re working with cannot be

upgraded to a TypeScript project.

Let’s see how we can create them for our own TypeScript

libraries. As we learned when we looked at using the

compiler in build mode a little earlier in this chapter, we can

have the compiler generate declaration files (these files are

sometimes also known as ambient modules) for us

automatically when the TypeScript is compiled.

Inside the chapter 4 directory, there is a folder called my-

lib, which contains a simple TypeScript file that exports an

object containing a single property and two methods:

export const myLib = {

_version: ‘0.0.1’,

version: () => myLib._version,

reverseString: (str: string) =>

str.split(‘’).reverse().join(‘’)

}

As this library is a TypeScript project in its own right, it also

has its own tsconfig.json file, although, for simplicity, this

file merely extends the main tsconfig.json file in the root of

the ts-examples folder:

{

“extends”: “../../tsconfig.json”,

}

In order to tell the compiler to emit declaration files

alongside the compiled JavaScript files, we can add the

declaration compiler option to this file also. As this is a

compiler option, it needs to sit within the compilerOptions root

option:

“compilerOptions”: {

“declaration”: true,

“outDir”: “./dist”

}

We can also specify an output directory located inside the

my-lib directory to avoid the output of this folder becoming

mixed up with the output from other examples.

Now, with this simple configuration in place, the compiler will

generate an accompanying my-lib.d.ts declaration file

every time we compile the library.

To run this example, you can either change the working

directory of the terminal application to the my-lib directory

or keep the working directory as the top-level ts-examples

directory and use the --project flag to point the compiler at

the tsconfig.json file shown earlier, for example:

tsc --project “chapter 4/my-lib”

Note that we can use the basic compiler as we have set the

declaration option in our configuration file; we don’t have to

do a full build (which wouldn’t work in this case anyway as

we aren’t using a referenced project in this example) to get

this behavior.

The generated declaration file should look like this:

Figure 4.15: A generated declaration file in Visual Studio Code on Windows

The resulting basic declaration file for this example looks

very similar to the original TypeScript source file in that it

retains all of the type information that we originally

specified, but note that it also contains any type information

that the compiler was able to infer – we do not need to

specify every last type used in our source file manually.

For example, the compiler knows that the _version property is

a string, and that the version method is an arrow function

that returns a string, even though we did not explicitly

specify this in the original my-lib.ts file.

Note that this file only describes the types that are used, it

doesn’t contain any actual runnable code itself – for

example, it tells the compiler that the reverseString method

returns a string, but it doesn’t actually return a string itself,

that, happens in the original TypeScript source file.

Using the declaration compiler option to generate declaration

files is a useful and time-saving feature of the compiler that

can make sharing our own libraries and utilities a much

better experience for other developers consuming our code

and provide a form of living documentation that travels

around with our code.

Don’t forget that the declaration compiler option, as

well as many others, can be specified in the

tsconfig.json configuration file, or passed on the

command line in a Terminal in the format --

declaration for one-off usage.

Generating d.ts files from .js files

As well as generating declaration files when compiling a

TypeScript project, we can also generate declaration files

from JavaScript files, which is useful if we are working with a

very old or uncommon library that doesn’t already have a

declaration file uploaded to the Definitely Typed repository,

or if we’re working with our own custom JavaScript project

that for whatever reason, cannot be updated to TypeScript.

In the chapter 4 directory in the example files

accompanying this book, there is a sub-directory called old-

lib which contains a sub-directory called src, within which a

single JavaScript file resides. You should create this folder

structure in your own example project and add a JavaScript

file in the src directory.

This file contains a JavaScript file called old-lib.js containing

the following code:

var oldLib = {

/**

* Reverse a string

* @param {string} str The string to reverse

* @returns {string} The reversed string

*/

reverse: function(str) {

return str.split(‘’).reverse().join(‘’);

}

}

It simply creates a global object attached to the window which

contains a method called reverse, which can be used to

reverse a string, very similar to the example in the previous

section except that it’s a JavaScript file instead of a

TypeScript file.

Note that for the compiler to be able to generate a d.ts file,

the JavaScript source file needs to have JSDoc comments

describing the types used in the file.

To have the compiler generate a declaration file for this

code, we first need to add a new tsconfig.json file to this

directory. This file should contain the following code:

{

“compilerOptions”: {

“allowJs”: true,

“checkJs”: true,

“declaration”: true,

“emitDeclarationOnly”: true

}

}

This file will show as having an error in it, and theoretically, it

does have an error – there are no TypeScript input files.

However, the preceding configuration will still work when the

input file is one or more JavaScript files.

We set the allowJs option to true because we want to include

JavaScript files in the project. We also add the checkJs option

so that the JavaScript can be checked when the compiler

generates the declaration file. This isn’t strictly necessary

but it is good practice.

We use the declaration option to tell the compiler that we

want to create declaration files, and we also set

emitDeclarationOnly to true because we don’t want to emit any

JavaScript files – we already have those in this case.

We already have the typescript NPM package installed in the

root ts-examples folder, but if we didn’t, we would have to

install that also.

At this point, we should have everything in place, so if we set

the old-lib directory to the working directory in the terminal

and run a standard tsc compile, we should end up with a new

old-lib.d.ts file, which contains the following declaration:

Figure 4.16: A generated declaration file in Visual Studio Code on Windows

We could then go ahead and add this declaration to another

project. To do that, we should make sure the file is within the

project and configured using the typeRoots configuration

option, for example:

“compilerOptions”: {

“typeRoots”: [“./node_modules/**”, “old-lib.d.ts”]

}

We would then be able to get the full development

experience when using this library.

Conclusion

In this chapter, we focused almost entirely on using the

TypeScript compiler from our terminal application.

We first saw how to use the tsc command to perform a basic

one-off compilation of our project and look at some of the

common compiler options that we might want to use to emit

all of our output files to a specific location, or configure

which files are included, for example.

We learned that some options are root options specified at

the top level of the object inside the tsconfig.json file and

that other options are compiler options and thus sit inside

the compilerOptions root option.

Once we had compiled some TypeScript files into JavaScript,

we then took a moment to look at the kind of code that is

emitted by the compiler and learned that it removes all of

the type information in the resulting JavaScript output, and

may or may not remove comments by default depending on

the format of those comments.

We also looked at some of the more common general flags

that we can use when running the tsc command, things like

the --help flag for seeing a list of all of the various flags and

options we can use, or the --version flag for getting the

version of TypeScript in use.

We then moved on to look at watch mode, which is where

the compiler watches files for changes and automatically

recompiles the project when files are changed. We also

looked at the various configuration options there are which

are related to the --watch flag but noted that many of these

are most commonly used on Linux platforms, due to the way

in which it responds to file-system events.

Following this we looked at the --build flag, which is used to

run the compiler in a slightly different way that may improve

build times for larger more complex projects. We saw that

the build flag will not only build our project, but also any

referenced projects that the main project is dependent on.

We also took a look at how we can integrate TypeScript

compilation with other build tools and looked at an example

where we integrated with the popular Webpack bundling

system.

As we will often want to use other libraries and frameworks

in our projects, we also covered including third party libraries

in our applications and saw how to install the declaration

files for these libraries so that we can get the full

development experience of TypeScript when using them.

Finally, we saw how to generate our own declaration files

from either TypeScript or JavaScript projects in order to make

sharing our code easier.

In the next chapter, let’s move on to look at interfaces and

enums in TypeScript.

References

https://www.typescriptlang.org/tsconfig

https://webpack.js.org/guides/typescript/

https://michaelsoolee.com/npm-package-tilde-

caret/

https://www.typescriptlang.org/tsconfig
https://webpack.js.org/guides/typescript/
https://michaelsoolee.com/npm-package-tilde-caret/

CHAPTER 5

Enums, Interfaces, and

Namespaces

Introduction

Earlier in this book, we learned about type aliases and noted

at the time that they are very similar to interfaces. In this

chapter, we are going to come back and look at interfaces in

more detail, as these are a very commonly used part of

TypeScript.

Once we’re done with interfaces, we’ll then move on to look

at namespaces in TypeScript. Namespaces are a great way

to organize related code, and so are a construct that we are

going to want to be familiar with when building commercial

applications, although their use is less common than both

interfaces and enums.

We’ll also take a good look at enums in TypeScript. Enums

are like a value that may contain one of several possible

options. This feature of TypeScript is unusual in that enums

remain in the compiled JavaScript output, albeit in a slightly

different form.

Those developers coming to TypeScript from other

programming languages may already be familiar with these

types of constructs, but for those with a pure JavaScript

experience, they may be somewhat esoteric, as none of

them are found natively in JavaScript at all.

Structure

In this chapter we will cover the following topics:

Interfaces

Interface merging

Extending interfaces

Namespaces

Namespace merging

Enums

Numeric enums

Reverse mapping

Exhaustiveness and the never type

String enums

Heterogenous enums

Computed and constant enums

Literal enums

Inlining enums

Using the keyof operator

Interfaces

In TypeScript, we can use an interface to describe what the

shape of an object should look like – which properties and

methods it has, what types the object’s properties should be,

and which types any methods it has should return.

Interfaces are very commonly used in TypeScript; every

single commercial-grade application that I’ve worked on,

certainly in the last 5 to 6 years or so, has made heavy use

of them, so they are a feature of TypeScript that you’ll likely

encounter and use often.

NOTE: Interfaces are very similar to type aliases,

which we looked at in Chapter 3, and the two can be

used interchangeably in almost all situations.

To declare an interface, we use the interface keyword and

supply a block wrapped in curly braces containing the named

members and their types, like this:

interface Person {

name: string;

age: number;

};

We’ve defined an interface for Person objects and specified

that objects of this type should have two properties, one

called name which should be of the type string, and one called

age which is of the type number. We can now use our interface

as a type when creating variables, or in other places where

type annotations are valid, such as on function parameters

or function returns. For example:

const me: Person = {

name: ‘Dan’,

age: 44,

};

The objects we create must have all of the properties and

methods specified by the interface, and they must have only

those properties and methods specified by the interface.

If we fail to supply one of the required properties, the editor

will tell us which property (or properties) we missed, and the

type of value that it expects. For example, if we remove the

age property from the me object, like this:

const me: Person = {

name: ‘Dan’,

};

We’ll then see the following error:

Figure 5.1: Missing property error in Visual Studio Code

Conversely, if we add a property to our object which isn’t in

the interface, we’ll see a different error in the editor instead.

For example, if we add a property called interests, like this:

const me: Person = {

name: ‘Dan’,

age: 44,

interests: [‘TypeScript’],

};

Then we’ll see this error:

Figure 5.2: Object may only specify named properties error

NOTE: It is possible to force an object to have a

property or method not specified by the interface

using the type-casting. We’ll look at this later in the

book.

Similarly, if we try to set the value of a property to the wrong

type of value, like this:

const me: Person = {

name: ‘Dan’,

age: ‘44’,

};

That will also cause an error in the editor:

Figure 5.3: Unexpected type error

Interfaces are very prescriptive by default – we must specify

all named members, and we can’t specify members that are

not named specifically in the interface definition. We do still

have some flexibility, however.

We can very easily make a property in an interface optional

simply by adding a question mark directly after the property

identifier.

Let’s go ahead and add an interests property to our Person

interface, and mark it as optional:

interface Person {

name: string;

age: number;

interests?: string[];

};

The interests property is an array containing any number of

string elements; we haven’t looked at arrays in TypeScript in

much detail at all yet, but don’t worry, we’ll be covering

them in much more detail a little later in the book. The main

focus here is on making the property optional, not what type

we give it.

Now we can create instances of the Person interface and it

doesn’t matter if those instances have the interests property

or not, they will still be considered valid Person objects –

specifying the interests property is completely optional. If we

do specify it, it must of course be a string array.

As well as optional properties, we can also specify that

properties are read-only, that is, once they are initialized,

they cannot be changed. To do this, we use the readonly

access modifier before the property identifier.

For example, we could make the name property in our Person

interface a read-only property like this:

interface Person {

readonly name: string;

age: number;

interests?: string[];

};

Now, if we try to reassign the value of the name property of

Person instances after they have been created, like this:

const me: Person = {

name: ‘Dan’,

age: 44,

};

me.name = ‘Bill’;

Then we’ll see the following error in the editor:

Figure 5.4: Read-only assignment error

We can create a very permissive interface for objects so that

objects can have any named property using an index

signature:

interface AnyProps {

[key: string]: string;

}

An index signature takes the format of the name key and its

type, in this case string, in square brackets, followed by a

colon and the value type, which in this case is also string.

In this example, we can now create instances of the AnyProps

type, and instances of this object will be able to have literally

any string property identifiers, we just need to make sure

that the value of any properties we do add is of the type

string:

const random: AnyProps = {

literallyAnything: ‘Just has to be a string’,

};

This is an interesting feature of TypeScript and can be useful

in some situations where we don’t know beforehand exactly

which property names an object will have, but it somewhat

negates the benefit of using an interface in the first place to

control which members an object may have, so care should

be taken when using this feature.

We can also use an interface as the type description for the

member of another interface. For example, we might want to

specify that the name property of Person objects, should be of

the type of another interface called PersonName:

interface PersonName {

firstName: string;

familyName: string;

otherNames?: string[];

};

The PersonName interface has mandatory firstName and lastName

properties of the type string and can accept an optional

array of other names, also in a string array. Now we can

update the name property of the Person interface to be of the

type PersonName:

interface Person {

name: PersonName;

age: number;

interests?: string[];

};

Making this change will of course invalidate the me object

instance we added earlier because the name property no

longer conforms to the interface. Let’s update it:

const me: Person = {

name: {

firstName: ‘Dan’,

familyName: ‘Wellman’,

},

age: 44,

interests: [‘Swimming’],

};

Now, the me object conforms to the Person interface once

again, TypeScript is satisfied, and the error in the editor (or

compiler) goes away.

As interfaces are entirely a construct of TypeScript, they will

be completely removed from the emitted JavaScript during

compilation.

Interface merging

TypeScript makes it very easy for us to merge interface

declarations, something that is not possible with type

definitions, hence this is one of the main reasons to use

interfaces as opposed to type definitions.

Merging an interface is exactly as it sounds – two

declarations are merged together and all distinct properties

from the individual interfaces will appear in the resulting

interface after the merge. One point to note however is that

existing members cannot be overwritten in order to change

an existing property’s type.

Interface merging can be useful when we don’t have access

to change the original interface, such as when using an

interface imported from a third party library but wish to

modify it in some way.

Continuing with the previous Person example, later in our

application, we may want to add a new property to the Person

interface in an ad-hoc way, perhaps based on the result of

some other operation.

To do this, we can simply define the interface again using the

interface keyword once again, with the same identifier, and

specifying any new properties and their types that we would

like to add:

interface Person {

readonly name: PersonName;

age: number;

interests?: string[];

};

// later

interface Person {

height?: number;

};

In this case, we redeclare the Person interface and add an

optional property called height. We can redeclare the same

interface multiple times, and TypeScript will merge all of the

declarations together.

So now, when we create new object instances of the type

Person or update existing instances, these may optionally

contain a height property of the type number.

NOTE: Remember, only unique interface properties

can be merged; if an existing property appears in

both declarations, it must have exactly the same

type or an error will occur.

Extending interfaces

As well as interface merging, which happens when interfaces

with the same identifiers are declared multiple times, we can

also extend interfaces using the extends keyword, as if they

were a class.

For example, we may have a more specialized type of Person

called a Developer, which has an additional property called

languages to specify which programming languages the

developer is fluent in:

interface Developer extends Person {

languages: string[];

};

In this case, the Developer interface extends the Person

interface using the extends keyword and all instances of the

Developer interface will need to include the mandatory

properties of both Person and Developer:

const dev: Developer = {

name: {

firstName: ‘Dan’,

familyName: ‘Wellman’,

},

age: 44,

languages: [‘TypeScript’, ‘JavaScript’],

}

There is no limit to the number of interfaces that can be

merged in this way, we just need to separate them with a

comma when declaring the interface.

For example, we may have another interface called

FirstAider:

interface FirstAider {

cprTrained: boolean;

};

As well as an interface called DevManager which extends both

the Developer and FirstAider interfaces, like this:

interface DevManager extends Developer, FirstAider {

// members from all Person, Developer, and FirstAider

interfaces

};

Now the DevManager interface will be a combination of both of

the interfaces being extended, and remember, the Developer

interface already extended the Person interface, so DevManager

will contain the members from all three of these interfaces.

Extending an interface with the extends keyword and

interface merging triggered by redeclaring an interface with

the same identifier both work in almost exactly the same

way and really, we could pick either technique for handling

the simple cases that we’ve looked at so far.

The main difference between the two is that when extending

interfaces, we can still use the original interfaces separately,

as they existed prior to extending. When merging interfaces,

we can no longer use the original interfaces after merging

has occurred.

There is another subtle difference between merging and

extending interfaces, and that is in how methods are

handled. As we saw with declaration merging, when

redeclaring an interface, if we specify the same property in

both interfaces, then the property in both interfaces must

have the same type.

Similarly, if we declare the same method in a merged

interface, then both methods must have the same signature

– they must accept the same parameters, the parameters

must be of the same type, and the methods must have the

same return type.

This is true whether we are extending an interface with the

extends keyword or relying on merging by TypeScript. For

example, consider the following simple interface:

interface MethodTest {

method: (arg0: string) => string;

};

The interface consists of a single method, which accepts one

parameter of the type string, and has a return type also of

string. If we redeclare this interface later, we might want to

change the type of the parameter and the return type:

// later

interface MethodTest {

method: (arg0: number) => number;

};

This is unacceptable, and the editor will show an error:

Figure 5.5: Subsequent property declarations must have the same type error

With declaration merging, we can get around this by creating

a function overload instead, which uses a slightly different

syntax:

interface MethodTest {

method(arg0: string): string;

}

// later

interface MethodTest {

method(arg0: number): number;

}

We move the parentheses directly after the identifier and

remove the => part of the arrow function. This will cause

TypeScript to create an overload for the method, and the

error that we originally saw in the editor will be gone.

This is not possible when using the extends keyword,

however, so this represents really the main practical

difference between merging interfaces and extending

interfaces. We’ll look at function overloading in much more

detail later in this book.

Interfaces are a straightforward and powerful way of making

sure that objects in our application conform to a particular

specification and have the expected properties with the

expected types of values.

Namespaces

In programming terms, a namespace is a container or scope

where similar functionality or logic can be grouped together

and where identifiers have less chance of colliding.

JavaScript has no implicit support for namespaces, in that

the term namespace is not a reserved word and has no inherent

meaning or behavior.

However, creating the equivalent of a namespace in

JavaScript is relatively easy – we simply use objects to

represent namespaces, and store the required data or

functionality inside them as properties or methods.

For example, we may wish to separate some simple utility

methods into different namespaces for string utilities and

number utilities.

We can do that easily using POJOs (Plain Old JavaScript

Objects):

const stringUtils = {

reverse: str => str.split(‘’).reverse().join(‘’),

};

const numberUtils = {

reverse: num =>

parseInt(num.toString().split(‘’).reverse().join(‘’), 10),

};

We create two objects stringUtils and numberUtils and give

each one a method called reverse, which reverses either a

string or a number respectively. To use one of the reverse

methods, we just target whichever container object, or

namespace if you will, that we wish to use, with standard dot

notation, for example:

stringUtils.reverse(‘abc’); // cba

numberUtils.reverse(123); // 321

Using namespaces in this way means that we can use the

same identifier for the reverse method in both utility objects,

which is useful because on the face of it, the methods both

do essentially the same thing, just for a different type of

value.

It may seem like a small thing, but as your application grows,

the number of things that you the programmer have to

personally name grows exponentially, and naming many

things well, with useful names that clearly indicate intent

and purpose, is extremely hard, as any seasoned developer

will assert!

TypeScript does have baked-in support for namespaces,

however, so we don’t even need to use POJOs when using

TypeScript, we can just use namespaces if that is our

intention.

Let’s reformulate the previous code snippet to TypeScript:

namespace StringUtils {

export const reverse = (str: string) =>

str.split(‘’).reverse().join(‘’);

};

namespace NumberUtils {

export const reverse = (num: number) =>

parseInt(num.toString().split(‘’).reverse(). join(‘’), 10);

};

To define a namespace, we use the namespace keyword

followed by the identifier and then a pair of curly brackets.

Anything that we want to be available outside of the

namespace needs to be exported, so in this case, we export

an arrow function with the name reverse from both the

StringUtils and NumberUtils namespaces. Note that again, by

convention in TypeScript we use Pascal Case for namespace

identifiers.

Any functionality that we want to remain private and only

accessible within the namespace can just be defined

normally without being exported. Historically, namespaces in

TypeScript were known as internal modules, but this is a

somewhat archaic term that is no longer used.

Using the export statement inside a namespace doesn’t make

it a true module, not in the sense of an ES Module in any

case. Values that are exported from a namespace don’t need

to be imported, they are merely used via the namespace,

like this:

StringUtils.reverse(‘abc’); // cba

NumberUtils.reverse(123); // 321

We use standard dot notation to invoke the methods, exactly

as if we were interacting with regular objects.

Namespace merging

Just like interfaces, namespaces can also be merged, and

this merging happens in exactly the same way as it does

with interfaces; we simply redeclare the namespace using

the same identifier as before, and add any new properties

that we would like to include in the namespace:

namespace NsTest {

export const str = ‘abc’

};

namespace NsTest {

export const num = 123;

};

NsTest.str; // abc

NsTest.num; // 123

In this case, both of the variables str and num will be available

via the NsTest namespace. The reason for merging

namespaces is similar to merging interfaces – it is useful if

we don’t have access to the original namespace, perhaps if it

comes from a third party library, and wish to modify it in

some way.

When merging namespaces, we cannot declare the same

property twice at all. If we try to do this:

namespace NsTest {

export const str = ‘abc’

};

namespace NsTest {

export const str = 123;

};

Then we’ll see an error that we can’t redeclare the variable

because it’s already scoped to the block:

Figure 5.6: Cannot redeclare variable error in Visual Studio Code

Namespaces in TypeScript are used less frequently than

either interfaces or enums; personally, I’ve yet to work on a

single commercial application that has employed them in

any capacity.

Enums

An enum, or enumerated type, is like a static list of

predefined values, one of which may be selected as the

value of a variable or parameter at any given point in our

application. They can be very useful for restricting the value

that a variable may be to one of the enum’s members.

They are a common feature of many popular programming

languages, except JavaScript, which has no concept of them

natively.

Enums are not removed from the compiled JavaScript

entirely; instead, they become objects and so can be passed

to functions and treated like regular values.

TypeScript supports a number of different types of enum,

including numeric or string, and their values can be either

constant or computed. There are some subtle differences in

how these variations behave, so let’s take a look at each of

them.

Numeric enums

The default type of enum in TypeScript, if we don’t explicitly

specify any values for the members, is a numeric enum:

enum Fruit {

Apple,

Blackberry,

Melon,

};

We use the enum keyword, followed by the identifier of the

enum, in this case, that is Fruit. We then have an object

containing the identifiers for all of the enum members, with

each member separated by a comma; in this case, that’s

Apple, Blackberry, and Melon. It’s a common convention to use

Pascal Case for enum and member identifiers.

In this example, we haven’t explicitly specified values for any

of the enum members, only the identifiers, so TypeScript will

allocate each of them an automatically incrementing

numerical value, beginning with the value zero – like the

indices of an array.

So, in this example, Apple has the value 0, Blackberry has the

value 1, and Melon has the value 2. This is what makes the

enum a numerical enum – its members have numerical

values.

If we were to log out the value of Fruit.Blackberry, for

example, we would see 1 printed to the console:

console.log(Fruit.Blackberry); // 1

We can also use quotes around the member identifiers, it

makes no difference to how they behave, therefore it’s

unusual to do this in practice.

One point to note is that, in this example, Fruit.Apple would

be falsey in comparisons, as it has the value 0. All other

enum members (Fruit.Blackberry and Fruit.Melon in this

example) would be truthy.

We can also explicitly define the numeric values for each

enum member if we wish:

enum Fruit {

Apple = 5,

Blackberry = 6,

Melon = 7,

};

This would make no difference to how the enum would be

used, the members just have different values – Fruit.Apple is

equal to Fruit.Apple, whatever the value of Fruit.Apple

happens to be.

For example, consider the following code:

function determinePortionSize(fruit: Fruit) {

switch (fruit) {

case Fruit.Apple:

return 1;

case Fruit.Blackberry:

return 10;

case Fruit.Melon:

return 0.5;

}

}

Here we define a function called determinePortionSize, which

accepts a parameter called fruit. This parameter is set to

the enum Fruit as the type, which means that the function

must be passed one of the values from the enum when it is

invoked:

determinePortionSize(Fruit.Blackberry); // 10

After the determinePortionSize function declaration, we can

then invoke the function and can pass it Fruit.Blackberry as

an argument.

The editor will warn us if we try to invoke the function with

an argument that does not match one of the members of the

Fruit enum, such as the string ‘oops’. In this case, we’ll see

an error:

Figure 5.7: Wrong parameter type error in Visual Studio Code

Note that we could pass the value of the enum member we

wanted to use directly, so we could have invoked it like this

in the previous example and had the exact same result:

determinePortionSize(6); // 10

But personally, I feel it is far more readable and conveys the

intent of the code much better to use the named enum

member. One benefit of using enums is that the editor

provides code-completion for all members of the enum in the

editor when using them:

Figure 5.8: Code completion for an enum in Visual Studio Code

Note that TypeScript doesn’t prevent us from passing

numbers that do not exist as values of enum members,

however, so we could pass a number that doesn’t

correspond to one of the values in our enum and the

compiler won’t consider this an error, the value would just be

undefined, similar to accessing a property on an object that

doesn’t exist:

determinePortionSize(60); // undefined

Note that we can also specify only the value for the first

enum member if we wish:

enum Fruit {

Apple = 5,

Blackberry,

Melon,

};

Thanks to TypeScript’s auto-incrementing, the value of

Blackberry will still be 6, and the value of Melon will still be 7.

We can also set numeric enum members using unary or

binary operators, so all of the following examples are also

valid constant member values:

enum Fruit {

Apple = -5,

Blackberry = 6 * 2,

Melon = 7 ^ 2,

};

We can also use the value of one enum member as the value

of another enum member in a different enum:

enum TropicalFruit {

Mango,

Papaya,

Melon = Fruit.Melon,

};

The TropicalFruit enum also has a member called Melon

(although it doesn’t have to have the same, identifier) and

the value of this member is set to the value of the Fruit.melon

member. With numeric enums, this is considered a constant

value.

One point to note is that duplicated enum values are allowed

in TypeScript, for example, the following enum is valid:

enum Drupes {

Plum = 5,

Peach = 5,

}

Both members have the numerical value 5.

This models the behavior of some other programming

languages, like C# for example, but it may cause confusion

and provides no real benefit. Personally, I prefer to stay away

from duplicated enum values. Some linters, such as ESLint,

provide rules that disallows duplicates like this.

Reverse mapping

Another feature of numeric enums in TypeScript is that they

get a reverse mapping from the value back to the member

name. This means that we can see the identifier of the

member using the value along with a square-bracket

notation on the enum itself, like this:

console.log(Fruit[5]); // Apple

This can be useful in debugging scenarios to better

determine which enum member was in use at a particular

time.

Exhaustiveness and the never type

Earlier in the book, when we looked at the never type, I

mentioned that the never type is frequently used to make

sure a switch statement is exhaustive, that is, that it checks

all possible cases.

I want to just return to this subject briefly in order to show a

concrete example of this technique in practice, and the

determinePortionSize example function that we saw earlier is a

great place to do that.

First of all, let’s add a new function to handle unknown enum

members:

function handleUnknownMember(member: never): never {

throw new Error(‘Unhandled enum member: ‘ + Fruit[member]);

}

We add a new function called handleUnknownMember which

accepts a single parameter called member, which is of the type

never. We can also specify the return type of the function by

adding a colon directly after the closing bracket of the

function’s parameter list, followed by the type the function

will return.

In this case, the function has a return type of never. Only

functions that don’t have a reachable endpoint, that is, they

never return a value, can have a return type of never.

Inside the function, we can throw a new error with a simple

message which shows the unhandled member’s identifier as

part of the error message.

Note that we can use reverse mapping to get the member’s

identifier rather than using the member’s value, which in this

case is just a number.

Now back inside the determinePortionSize function, we can add

a default case to the existing switch statement:

function determinePortionSize(fruit: Fruit) {

switch (fruit) {

case Fruit.Apple:

return 1;

case Fruit.Blackberry:

return 10;

case Fruit.Melon:

return 0.5;

default:

handleUnknownMember(fruit);

}

}

The default case calls the new handleUnknownMember function we

just added, passing it the fruit argument which will be

passed to the determinePortionSize function when it gets

invoked.

So, you may be wondering what the point of this is. What

we’ve done here is implement protection against other

developers (or ourselves at some future point once we’ve

forgotten all about this code) adding new members to the

Fruit enum and not adding cases to handle those members

inside the determinePortionSize function.

Go ahead and try it, update the Fruit enum by adding a new

member, like this for example:

enum Fruit {

Apple = 5,

Blackberry = 6,

Melon = 7,

Banana = 8,

};

Here, we’ve added a new member called Banana with the

value 8.

As soon as we add the new member, we should see an error

in the editor where we invoke the handleUnknownMember

function, like this:

Figure 5.9: Unknown member error in Visual Studio Code

What the error is telling us is that the new member is going

to cause the fruit argument to fall into the default case in

the switch statement, which will cause it to be cast to the

never type when it is passed to the handleUnknownMember

function, and as nothing can be assigned to never, this

causes the error that we see.

This is already low-level protection, as the error will stop us

from compiling the code, however, we can do better. If we

cast the fruit argument to the never type in the function

invocation this will satisfy the compiler and we will be able to

compile the code to JavaScript and see it in a browser:

handleUnknownMember(fruit as never);

So now, we’ll be able to compile the code, and if we run the

compiled JavaScript in a browser, we’ll see a much more

useful error:

Figure 5.10: Unknown enum error in the Chrome developer tools console

This is more useful than TypeScript’s esoteric message,

because we get full information about the error, like the

name of the enum member, and where in the code the error

was thrown, which could be critical for debugging purposes.

To fix the error, we can just add a case for the new enum

member in the determinePortionSize function, perhaps like

this:

case Fruit.Banana:

return 1;

If we recompile the code and try again, the error in the

browser will go away, because we are again handling all of

the enum members. This is a great metaphor for the kinds of

benefits that TypeScript brings – added safety when adding

code to an existing application.

NOTE: Unlike types, enums are not removed in the

compiled JavaScript, they are converted into objects

instead.

String enums

As well as numerical enums, TypeScript also allows us to

define string enums, where the values of each of the

members are set to string literals instead of numeric literals,

like in this example:

enum Vegetables {

Pea = ‘PEA’,

Potato = ‘POTATO’,

Cabbage = ‘CABBAGE’,

};

The main difference between this and the previous example

enum is that the values of the members are string literals as

opposed to numeric literals. As enum member values that are

string literals are constant by default, the convention in

TypeScript is that we specify the values in uppercase.

One subtle difference between string and numeric enums is

that we must specify values for all members in the enum.

For example, this would be illegal in TypeScript:

enum Vegetables {

Pea = ‘PEA’,

Potato = ‘POTATO’,

Cabbage,

};

Indeed, the preceding code generates the following error in

the editor:

Figure 5.11: Enum member must have an initializer error in Visual Studio Code

Another subtle difference between string and numerical

enums is that with string enums if we set the type of a

parameter to an enum when we invoke that function, we

can’t pass a string literal that matches one of the enum

members like we can pass a plain number with numeric

enums.

For example, the following code will generate an error:

function peelVegetable(vegetable: Vegetables) {

// do something

}

peelVegetable(‘Potato’); // Error

Here, instead of passing the enum member in the format

Vegetables.Potato, we instead pass the string literal ‘Potato’.

This code will result in the error:

Figure 5.12: Argument is not an assignable error in Visual Studio Code

To avoid this error, we must use an enum member explicitly

when invoking the function, like this for example:

peelVegetable(Vegetables.Potato); // Fine

You should note that reverse mappings are not supported

with string enums, and also that we cannot use the value of

one string enum member as the value of another string

member, so the following example is invalid TypeScript:

enum Tubers {

Parsnip = ‘Parsnip’,

Potato = Vegetables.Potato,

};

In string enums, this is considered a computed member, and

computed members are not allowed in string enums, so this

will generate the following error:

Figure 5.13: Computed values not permitted error in Visual Studio Code

The main benefit of using string enums as opposed to

numeric enums is mainly in debugging – it’s far easier to

know which enum member is in use when logging string

enums to the console or sending them off to some back-end

monitoring API.

Don’t forget, however, that the reverse mapping feature of

numeric enums can also provide a better debugging

experience if numeric enums are strictly required and for

some reason, we are not able to use a string enum.

Heterogeneous enums

TypeScript also supports heterogeneous enums, that is,

enums where the member values are strings numbers, like

this:

enum Vegetables {

Pea = ‘PEA’,

Potato = ‘POTATO’,

Cabbage = 0,

};

While technically valid, and unlikely to cause any issues,

there is no real benefit to mixing member value types in this

way. Interestingly, if we do use a numeric value for a later

member, TypeScript’s automatic incrementing will kick in

again for any sequential uninitialized members.

So, if we change the Vegetables enum to this:

enum Vegetables {

Pea = ‘PEA’,

Potato = 0,

Cabbage,

};

In this case, the value of the uninitialized member Cabbage will

automatically be set to 1 because we explicitly gave the

preceding member a numeric value, which starts up the

automatic incrementing.

If we revert to another string value for one of the members

later, this will then stop the automatic incrementation for

uninitialized members once again.

Consider the following code for example:

enum Vegetables {

Pea = ‘PEA’,

Potato = 0,

Cabbage,

Corn = ‘CORN’,

Parsnip = 5,

Spinach,

}

In this code snippet, after the member Potato, the automatic

incrementing begins and assigns the value 1 to Cabbage. The

automatic incrementing is then disabled for subsequent

members when we assign a string value to the Corn member.

To restart the incrementing after this, we just need to assign

a numeric value to a member, as we do with the member

Parsnip. As Spinach is then uninitialized, it will then

automatically be given the value 6.

As you can see, the number we use does not need to be

contiguous with the last numeric literal, we just need to

assign any number as the initializer of a member, and it will

be incremented automatically by one for any following

contiguous members that are uninitialized.

As mentioned before, there is no real reason to mix numeric

and string members in the same enum, so this is something

you aren’t likely to encounter when working on commercial

applications. Consider this section a discussion on an

interesting part of the language to be aware of as opposed to

something that you’ll want to use on a regular basis.

One final point to note about heterogenous enums is that

reverse mappings will work for numerical members, but not

for string members.

Computed and constant enums

All of the previous examples that we have looked at so far

have involved enums with constant values – that is, values

that are known at compile time. However, in TypeScript, we

can also make use of computed enums, where the value is

not known at compile time, only at runtime.

A member value that is set to the value returned by a

function will be considered computed:

enum TropicalFruit {

Mango,

Papaya,

Melon = Fruit.Melon,

PassionFruit = returnTen(),

};

function returnTen() { return 10 }

In this case, both Melon and PassionFruit will be considered

computed members.

If we try to use the member of another enum as the value of

another enum member with string enums. TypeScript will see

that member as computed.

For example, if we try to do that by creating a new

Vegetables2 string enum and using one of the members of the

Vegetables string enum, like this:

enum Vegetables2 {

Onion = ‘Onion’,

Kale = Vegetables.Cabbage,

}

In this case, older versions of TypeScript (prior to version 5)

will show an error warning that computed values may not be

used with enums that have string members:

Figure 5.14: Computed values not permitted with string enums error

Any expression that is not considered constant, such as

those cases that we have looked at already, will be

considered computed.

Note that this is no longer an error in TypeScript versions 5

and above.

Literal enums

As well as being constant, if all members in an enum are

numeric (including negative number) or string literals, the

enum is considered a literal enum. With literal enums the

members themselves effectively become types. This means

that we can specify that a value must be a specific enum

member rather than just saying that the value must be one

of the members.

For example, consider the following code:

interface Legume {

vegetable: Vegetables.Pea;

};

interface Tuber {

vegetable: Vegetables.Potato;

};

We can create two interfaces, one called Legume and one

called Tuber, each has a member called vegetable. In the

Legume interface this is specifically set to Vegetables.Pea,

whereas in the Tuber interface, this member is set specifically

to Vegetables.Potato.

This means that when we create objects that conform to one

of these types, the vegetable property of the object must be

the correct specific member of the Vegetable enum.

For example, if we try to set the vegetable property of a Tuber

object to Vegetables.Pea, like this:

const myTuber: Tuber = {

vegetable: Vegetables.Pea,

};

In that case we will see the following error in the editor:

Figure 5.15: Literal member-type enforcement error in Visual Studio Code

Another aspect of literal enums is that they can be

considered as if they were a union of the members within the

enum. For this reason, they are also referred to as union

enums. This is helpful because TypeScript will warn us if we

try to compare members incorrectly.

For example, we may have a function to “grow” a vegetable,

and we may wish to handle Vegetables.Potato differently than

Vegetable.Pea or Vegetable.Cabbage. We may use an if

statement to differentiate between these two groups,

perhaps something like this:

function grow(seed: Vegetables) {

if (seed !== Vegetables.Pea || seed !== Vegetables.Cabbage) {

// plant Potato

}

}

In this case, we’ve used the logical OR operator here when

we should have used the logical AND operator; the

comparison doesn’t make sense. If seed is not equal to

Vegetables.Pea then the if statement will short-circuit and the

OR condition will not be evaluated.

But if seed is equal to Vegetables.Pea the OR condition will be

evaluated and will always return true because if seed is equal

to Vegetables.Pea, it can’t also be equal to Vegetables.Cabbage,

because they are different types.

TypeScript will warn us of this issue with the following error

in the editor:

Figure 5.16: No overlap between different types

When TypeScript says that the two types have no overlap, it

is basically saying that these are distinct types and

something cannot be of both types. Vegetables is effectively

the union type PEA | POTATO | CABBAGE therefore cannot be

both PEA and CABBAGE.

Inlining enums

As we learned earlier in this section, enums exist at runtime,

after compilation, in the form of objects. However, we can

use a slightly different form of enum where the values of

enum members are inlined in the places where the enum is

used. In this case, the enums will not exist at run time.

Using this form of an enum can help to reduce the amount of

compiled code that is output, however, we can only use this

form of enum when all of the enum’s members are constant

values. Let’s look at a basic example. Consider the following

code:

enum Tools {

Hammer,

Drill,

};

function doItYourself(tool: Tools) {

if (tool === Tools.Hammer) {

console.log(‘Hammer time’);

}

}

doItYourself(Tools.Hammer); // Hammer time

We have a simple numeric enum called Tools with two

members, Hammer and Drill, which have the values 0 and 1

respectively. We then define a function called doItYourself

which takes a parameter with the type set to the enum.

Inside the function, we check whether the argument passed

to the function is Tools.Hammer and if it is, we log a simple

message to the console.

Lastly, we invoke the function, passing it Tools.Hammer as an

argument.

This code will be compiled by TypeScript to this:

var Tools;

(function (Tools) {

Tools[Tools[“Hammer”] = 0] = “Hammer”;

Tools[Tools[“Drill”] = 1] = “Drill”;

})(Tools || (Tools = {}));

function doItYourself(tool) {

if (tool === Tools.Hammer) {

console.log(‘Hammer time’);

}

}

doItYourself(Tools.Hammer); // Hammer time

Tools is an object in the resulting code with the properties

Hammer and Drill. These properties will have the values 0 and

1 respectively in the compiled object.

We can therefore use the object in comparisons, as inside

the doItYourself function, and log the values to the console.

To inline the Tools enum, we prefix the declaration with const,

like this:

const enum Tools {

Hammer,

Drill,

}

The rest of the example code remains the same.

Now, the compiled output will look like this:

function doItYourself(tool) {

if (tool === 0 /* Tools.Hammer */) {

console.log(‘Hammer time’);

}

}

doItYourself(0 /* Tools.Hammer */); // Hammer time

This time there is no Tools object – the values of the

members are put in the places where the object references

were previously, that is, in the if comparison and as an

argument to the doItYoutself function invocation. There is

noticeably less code generated in this case.

Note that TypeScript will helpfully put a comment at each

place where an enum member is inlined, showing the

identifier of the member that was inlined.

Note also that we can inline string enums as well. The only

requirement for inlining is that the values of the enum are

constant – we cannot inline computed enum members as the

compiler doesn’t know what the values will be when it

compiles the TypeScript to JavaScript.

Using the keyof operator

The keyof type operator works slightly differently than usual

when it comes to enums. For example, if we want to get the

member names of the Fruit enum, we might think to use the

keyof operator, perhaps like this:

type FruitKeys = keyof Fruit;

const fruits: FruitKeys = ‘Apple’;

In this case, the FruitKeys type will be a union type consisting

of the members of the prototype of the value of the

members of Fruit. These members are numbers, so the

resulting union type consists of the methods from the Number

prototype:

“toString” | “toFixed” | “toExponential” | “toPrecision” |

“valueOf” | “toLocaleString”

This will therefore result in an error on the fruits variable,

because the string Apple, which we are trying to set as the

value of the fruits variable, doesn’t correspond to one of the

union members above.

Instead, the keyof operator should be used in conjunction

with the typeof operator to create a union type of the actual

identifiers for an enum’s members:

type FruitKeys = keyof typeof Fruit;

const fruits: FruitKeys = ‘Apple’;

Now there will be no error because the FruitKeys type will

consist of the union of the enum’s member values:

“Apple” | “Blackberry” | “Melon”

This technique can be useful to avoid having to create the

union type manually and potentially forgetting to add one of

the enum’s members, or failing to update it if the enum is

updated at some future point.

Conclusion

In this chapter, we looked at a couple of very commonly

used TypeScript features, as well as a not-so-commonly used

feature. These were interfaces and enums, and namespaces

respectively.

Interfaces allow us to describe what the shape of an object

should be; the properties and methods it should have, and

the types or return types and parameter types of those

properties and methods. Using them allows us to create a

blueprint for what objects of this type should look like. We

learned how to define interfaces, how to merge them, and

how to extend them.

We learned that namespaces are a simple way to group

related functionality together under a common identifier and

that doing so can help us to avoid naming collisions when we

have many similar things that we need to name. While not

as commonly used as interfaces or enums, they do still have

a place in TypeScript.

We also looked deeply at enums in TypeScript as these are

commonly found in commercial-grade applications. Enums

allow us to define an enumerated list of constant or

computed string or numeric enums. When all members are

constant, we learned that we can also reduce the size of our

compiled files if necessary, by inlining them at usage sites.

We also saw a great example of exhaustiveness in switch

statements to add protection against a developer adding a

new member to an enum, but forgetting to handle it, and

saw how to leverage the never type to produce a useful error

message

In the next chapter, let’s move on to look at objects and

arrays in TypeScript.

References

https://www.typescriptlang.org/docs/handbook

https://en.wikipedia.org/wiki/Enumerated_type

https://2ality.com/2020/01/typescript-enums.html

https://www.typescriptlang.org/docs/handbook
https://en.wikipedia.org/wiki/Enumerated_type
https://2ality.com/2020/01/typescript-enums.html

CHAPTER 6

Objects, Arrays, and Tuples in

TypeScript

Introduction

Objects and arrays are some of the most commonly used

data structures in JavaScript and will therefore be a

significant part of all but the simplest web applications. As

you’ve almost certainly heard before, almost everything in

JavaScript is an object of some type, so we’ll almost always

be using them in one way or another.

We’ll therefore take a good look at object types, building on

what we learned about interfaces and type aliases earlier in

the book in order to define types for custom objects to

specify which properties objects of this type should have,

whether they are read-only or optional, and what types of

their values should have.

TypeScript also has full support for array types and allows us

to declare them in two distinct ways, both of which we’ll look

at in depth. It also supports tuples, which are a special type

of array which have a fixed number of elements of a specific

type, in a specific sequence. We’ll also be covering these.

Structure

In this chapter, we will cover the following topics:

Arrays

Array type inference

Read-only arrays

Tuples

Optional elements

Rest elements

Read-only tuples

Object types

Property modifiers

Index signatures

Intersections

Generic objects

Readonly utility type

Arrays

As we saw briefly in the previous chapter, an array can be

specified as a type using the type of the members that will

be stored in the array, followed by a pair of square brackets,

like this:

const strings: string[] = [];

In this case, the strings variable will be an array containing

elements of the type string. This also works for other

TypeScript entities like enums:

enum Status {

Waiting,

Complete,

}

const statuses: Status[] = [Status.Waiting];

In this case, statuses is an array of values that match one of

the Status enum’s members.

Or interfaces:

interface Process {

name: string,

status: Status,

}

const processes: Process[] = [{ name: ‘Process 1’, status:

Status.Waiting }];

Here, processes is an array of objects that conform to the

Process interface.

This is the literal form for specifying an array type, a sort of

shorthand. As well as this form, there is also an alternative

form known as generic syntax that we can use to provide an

array type, which looks like this:

const strings: Array<string> = [];

This time we use the Array generic type followed by the type

of member the array will contain, in this case, string, inside a

pair of angle brackets.

TypeScript has a feature called generics, which are sort of

like variables for types - we’ll be looking at these in much

more detail later in the book. For now, just remember that

this is the generic form of specifying an array.

The generic syntax is directly equivalent to the literal syntax,

there is almost no difference between the two, except when

using the readonly access modifier to create a read-only

array, which we’ll be looking at shortly.

We can also say that a value will be of a mixed-type array.

For example, to specify an array whose members may be

either strings or numbers, we could do this:

const codes: (string | number)[] = [1, ‘2’];

In this case, we say that the codes variable is an array of the

union type string | number. This has no impact on the number

of elements the array can contain or the order of individual

elements – we could specify any number of strings or

numbers in any order, they just have to be either numbers or

strings.

Note that the parentheses are needed around the union type

in this example, otherwise, the compiler would think we were

specifying a string, or a number array, like this: string |

number[], rather than the intended string[] | number[].

The preceding example was the literal format; we can also

use the generic format to specify a mixed-type array, for

example:

const codes: Array<string|number> = [1, ‘2’];

Again, this is exactly equivalent to the literal form.

Array type inference

If we don’t annotate an array with type information,

TypeScript can infer the array type based on how it is

declared and initialized. For example:

const ids = [‘1A’, ‘1B’]; // string[]

The array ids will be correctly inferred as string[] by

TypeScript. This works for mixed arrays also:

const altIds = [1, ‘1a’]; // (string|number)[]

However, for types we have defined ourselves, it is better to

explicitly declare the type to ensure that the correct type is

used.

For example, using the same Process interface that we saw

previously, consider the following code:

interface Process {

name: string,

status: Status,

}

const processes = [

{ name: ‘Process 1’, status: Status.Waiting }

]; // Process[]??

In this case, we would perhaps expect the compiler to infer

Process[] at the type of the processes variable, but this is not

the case. Instead, the type would be inferred as an array of

object literals containing name and status properties:

Figure 6.1: How TypeScript sees the unannotated variable

In this case, it is better to explicitly type the variable

ourselves to give TypeScript, as well as anyone else reading

our code, a better idea of what’s going on:

const processes: Process[] = [

{ name: ‘Process’, status: Status.Waiting }

]; // Process[]

In this case, there is no ambiguity, the type is explicitly

Process[].

Read-only arrays

TypeScript allows us to define arrays that are read-only and

cannot be modified in any way by using the readonly access

modifier, like this:

const unmodifiable: readonly string[] = [‘cannot be changed’];

Any operations that mutate the array, like push, pop, or splice,

are now prohibited on the array in the unmodifiable variable.

For example, if we try to push a new element to the array,

like this:

unmodifiable.push(‘oops’); // error

Then we’ll see this error:

Figure 6.2: Error in Visual Studio Code when mutating a read-only array

As well as the array being read-only, the elements within the

array also become read-only, so we cannot modify any of the

existing items either:

unmodifiable[0] = ‘cannot do it’; // error

This would incur the following error:

Figure 6.3: Error in Visual Studio Code when trying to change a read-only

element

When using the readonly modifier, we must use the literal

syntax. If we try to use the generic format, like this for

example:

const unmodifiable: readonly Array<string> = [‘cannot be

changed’];

Then we’ll see a different error in the editor:

Figure 6.4: Modifier only permitted on literal types error in Visual Studio Code

However, we can use the ReadonlyArray type instead to use

the generic syntax, like this:

const unmodifiable2: ReadonlyArray<string> = [‘immutable’];

This is exactly equivalent to using the literal syntax.

Aside from these features, arrays are used in the same way

in TypeScript as they are in regular JavaScript, and support

all of the same methods and features that we’ve come to

know and love.

Tuples

In TypeScript, a tuple is a special type of array with a specific

number of elements of a specific type, in a specific order.

The syntax to declare a tuple is similar to that of declaring

an array, except that we don’t specify a type before the set

of square brackets.

Instead, inside the square brackets, we specify the element

types the array should contain, in the order that they should

appear, like this:

const category: [number, string, boolean] = [1, ‘1A’, true];

In this case, category is a tuple – an array with exactly three

elements where the first element is of the type number, the

second element is of the type string, and the third and final

element is of the type boolean.

Note that a tuple can have any number of elements, we are

not restricted to two, three, or any other arbitrary limit.

If we try to update any of the tuple’s existing elements to the

wrong type, like this for example:

category[0] = ‘1’;

Then we will see an error warning us that we are not using

the correct type:

Figure 6.5: Wrong type error in Visual Studio Code

If we try to add a new element to the array using square-

bracket notation, like this for example:

category[3] = false; // error

Then we’ll see this error:

Figure 6.6: Cannot assign to an undefined error in Visual Studio Code

Additionally, tuples are given a numeric literal matching the

number of types we provide as their length property, so we

also cannot modify the length directly:

category.length = 4;

Doing this will cause the editor to show this error:

Figure 6.7: Cannot assign to a literal type error in Visual Studio Code

However, we are not prevented from changing the tuple’s

elements using array methods like push for example:

category.push(1); // works

In this case, the push method will see the tuple as a regular

array in which any of the elements may be of the type number,

string, or boolean, as if we had declared it like this: (number |

string | boolean)[].

You should also note that, unlike regular arrays, there is no

alternative generic syntax for declaring a tuple, we must use

the literal form shown here.

By default, each element in the tuple is given a numerical

index starting at zero, just like an array. When we use the

elements from the tuple, the editor will show this index when

we hover over the value, like this:

Figure 6.8: Tooltip showing tuple index and type in Visual Studio Code

This is useful, but for better clarity, we can also give our

tuple elements identifiers, to better tell them apart when

we’re using them.

To specify identifiers, we add the identifier first, separated

from the type by a colon, like this:

const category2: [id: number, model: string, archived: boolean]

= [1, ‘1A’, true];

Now when we use the elements from the category2 tuple and

hover over them, the editor will show us the full identifier for

the element:

Figure 6.9: Tooltip showing tuple index, type, and identifier in Visual Studio

Code

We still see the index and the type, but we will also see the

identifier in brackets at the end of the tooltip, so this makes

it much easier to ensure we are working with the intended

element.

Optional elements in tuples

We can specify that an element in the tuple is optional by

adding a question mark directly after the element type:

const category3: [number, string, boolean?] = [1, ‘1A’, true];

This time, the element of type boolean at index 2 in the

category3 tuple will be optional.

Because the element is now optional, and may or may not be

present, TypeScript will see the tuple as if we had declared it

like this:

[number, string, boolean|undefined].

The element at index 2 is now the union type boolean |

undefined.

Rest elements in tuples

Rest elements are used to say that a specific type may occur

any number of times, including zero times. We define a rest

element using the spread operator, like this:

let category4: [number, …string[], boolean];

The element at index 2 now has the spread operator in front

of it, and a pair of square brackets following it. We are telling

the compiler that this tuple will contain a number, followed by

zero or more string elements, and end with a boolean.

This means that values of this type could look like this:

category4 = [1, ‘1A’, ‘1B’, ‘1C’, true];

Or equally, like this:

category4 = [1, true];

Both are completely valid.

NOTE: Optional elements cannot follow the rest

elements in tuples.

Read-only tuples

Just like with arrays, we can also mark tuples as read-only

using the readonly modifier. The syntax for this is as follows:

let category5: readonly [number, string, boolean] = [1, ‘1A’,

true];

The readonly access modifier should appear before the tuple’s

opening square bracket. Now, none of the tuple’s elements

may be assigned individually, and we cannot use array

methods like push to add new elements.

For example, if we try to assign to the first element in the

tuple, like this:

category5[0] = 5; // error

Then, we’ll see an error like this in the editor:

Figure 6.10: Cannot assign to read-only property error in Visual Studio Code

Object types

Objects are the beating heart of our front-end applications

and will be commonly used in everything from the simplest

standalone projects to the largest commercial applications.

Objects are represented in TypeScript as object types:

let car: { doors: number, make: string };

In this case, we created a car variable and specified an

anonymous object type with two properties doors, which

should be a number, and make, which should be a string. We are

now free to assign an object to the car variable which

conforms to the object type we specified, like this:

car = { doors: 5, make: ‘Tesla’ };

Objects using this type must specify all the properties of the

type, and only the properties of the type. If we skip a

property that is specified in the type definition, like this:

car = { doors: 5 }; // error

Then, we’ll see this error:

Figure 6.11: Missing property error in Visual Studio Code

In this case, Visual Studio Code will highlight the object as

being the source of the error. On the other hand, if we add a

property that is not specified by the object type, like this:

car = { doors: 5, make: ‘Tesla’, oops: ‘whoops’ }; // error

Then, we’ll see an error like this instead:

Figure 6.12: Unknown property error in Visual Studio Code

This time Visual Studio Code will highlight the extraneous

property inside the object.

If we try to set an allowed property to the wrong type of

value, like this:

car = { doors: 5, make: 2 }; // error

We’ll also see an error, this time as follows:

Figure 6.13: Wrong property type error in Visual Studio Code

Anonymous object types, like the one we just used, are

convenient and flexible in that we can use them anywhere

that it is legal to provide type information – variable

declarations, function parameters, and function return types,

for example, and very often, the type information will be

near the site at which it is used which can be helpful for

readability.

But they cannot be shared or reused anywhere else, limiting

their usefulness in larger applications. For maximum

reusability, instead of using anonymous object types, we can

use an interface or a type alias to describe the object type

instead.

For example, we can convert our previous example to use an

interface instead:

interface Car {

doors: number;

make: string;

};

const car2: Car = { doors: 3, make: ‘Porsche’ };

This is functionally equivalent to the anonymous type

definition but has the added bonus that we can reuse the Car

interface in other places. Don’t forget, a type definition using

the type keyword instead of interface would work equally as

well here.

As well as specifying properties, we can also specify methods

that the object should have. In this case, when adding the

type, we should specify the signature of the method – the

parameters it accepts and its return type:

let car: { drive: (arg0: string) => void };

Here we have specified that the type for this variable is an

object containing a single method called drive. This method

accepts a single parameter which should be of the type

string. I’ve called this parameter arg0 because it’s the first

argument and arguments have zero-based indexes, but this

choice is entirely arbitrary; you can call the parameter(s) in a

type definition whatever you deem appropriate.

The identifier we give in the signature here does not restrict

the name of the parameter in the actual implementation, so

giving the parameter an actual name here might suggest

that the name of the parameter is mandatory. Therefore we

will take this approach and use a general parameter name

instead.

We’ve specified the return type as void here, but this is a bit

of a special case. Usually, void is used to signal that a

function doesn’t return a value, but in JavaScript, a function

without an explicit return statement still returns the value

undefined.

When we specify void as a return type for a method in this

way, we mean that it doesn’t have a useful return, not that

the function literally doesn’t have a return type at all.

When we come to declare the value of the car variable this

time, we must add a method that matches the signature we

specified in the type:

car = {

drive: (direction: string) => {

// drive in the direction

},

};

We assign an object to the car variable, and this object has a

property called drive, the value of which is an arrow function

that takes a single string parameter.

As mentioned earlier, the signature specified arg0 as the first

parameter, but here we are free to call that parameter what

we want, in this case, direction. It’s not important what the

parameter is called, only that the function receives a single

parameter, and that the parameter is of the type string.

If we try to pass the function a parameter of a different type,

or we try to pass a different number of parameters, we’ll see

an error in the editor.

One point to note is that even though we have specified the

return type of the drive method as void, technically we could

still return a value from it if we wanted to. This is allowed

because of the flexibility associated with void as a function

return type – we are free to return any type of value and the

compiler won’t complain about the return statement, but it

will cause an error if we try to use the return value of a

function or method marked as void.

For example, the following code will produce an error:

const result = car.drive(‘forward’);

if (result) {

// error

}

In this case, the editor will highlight the use of result in the if

statement and show the following error:

Figure 6.14: Void cannot be tested for truthiness error in Visual Studio Code

If we do specify a return type in the method signature, then

the method in the implementation has to return that type.

We haven’t covered functions in TypeScript yet so don’t

worry too much about this last example, the takeaway here

is that we can add method signatures to object types.

Property modifiers

Like with arrays and tuples, we can easily make object type

properties optional or read-only.

To specify that an object property is optional, we add a

question mark directly after the property identifier, like this:

interface Car {

doors?: number;

make: string;

}

Now, objects of the type Car may or may not have a doors

property. TypeScript will see the doors property type as if we

had used the union type number | undefined.

Depending on the strictness of our configuration, this will

usually mean that we will need to be thorough and check for

undefined values before attempting to use any optional

properties.

In addition to optional properties, we can also specify that a

property should be read-only. We do this by prefixing the

readonly modifier before the property name, like this:

interface Car {

doors?: number;

readonly make: string;

};

In this case, the make property of objects of the type Car will

be read-only and will not be modifiable after it has been

initialized. This means that we cannot assign a new value to

the property, but it is possible to modify the property in

some ways; if the property type is an array, we can add new

items to that array. This is in contrast to the behavior of

read-only arrays.

You should note that optional properties may also be read-

only.

Index signatures

We saw index signatures briefly in the last chapter when we

looked at interfaces. Let’s just cover them again here.

An index signature is used when we want to specify that a

property in an object type may have any key and a specific

type of value. Like this, for example:

interface Car {

[prop: string]: string | boolean;

};

The index signature is the part in square brackets. It has an

identifier, followed by the familiar colon and type

description. In this case, we need to use a union type if we

want the properties of the object to be one of the multiple

types, which for the purpose of this example we do.

Now we can create objects of the type Car which can have

any named properties, as long as those properties are of the

type string or boolean, like this for example:

const car3: Car = { make: ‘Lotus’, spoiler: true };

We can also provide multiple index signatures, like this:

interface Car {

[prop: string]: string | boolean | number;

[id: number]: number;

};

Now objects of the type Car may specify numerical keys as

well as string keys, but we restrict the type of these

properties to numbers in this example.

Note that we also need to add the type of the new id index

signature to the union of the existing prop index signature to

avoid an error in the editor.

Now we could have a Car object like this:

const car4: Car = { make: ‘Lotus’, 0: 168 };

Accessing the numerical index works as expected:

const topSpeedMph = car4[0]; // 168

Note that we must use square brackets to access or assign

numerical keys, although in the background TypeScript will

convert the numerical indexes to strings anyway, so we

could use strings instead of numbers to access or assign to

these, like car[‘0’] in this case.

We can make an index signature read-only if we wish, again

using the readonly modifier:

interface Car {

[prop: string]: string | boolean | number;

readonly [id: number]: number;

};

Now we will be unable to reassign the value of the property 0

once it has been initialized, so trying to do this will cause an

error in the editor:

car4[0] = 200; // error

In this case, we will see this error:

Figure 6.15: Read-only index signature error in Visual Studio Code

Intersections

Intersections are another way of combining object types

together in order to produce new object types. We can create

intersections of types and interfaces using the & operator.

Consider the following example; imagine we have an

interface for Vinyl objects, and one for Cd objects:

interface Vinyl {

rpm?: number;

title: string;

};

interface Cd {

trackNumber?: number;

title: string;

};

Both interfaces have a title property of the type string,

while Vinyl has an optional rpm property which is a number,

and Cd has an optional trackNumber property, which is also a

number.

If we wanted to combine these interfaces in order to create a

new interface by extending them, we would have to define

an intermediate interface, like this:

interface CircularMedia extends Vinyl, Cd {}

In this case, the new interface doesn’t add any new

properties, so it kind of feels a little overkill, especially if

we’re not interested in reusing this intermediate interface

anywhere else in our code.

Using intersection, we can create a new type of object

without the need for extending:

const album: Vinyl & Cd = {

rpm: 45,

title: ‘Dark Side of the Moon’

};

In this case, we can create the intersection on the fly,

without having to declare an intermediate version of the

interface. Although flexible and convenient, it does mean of

course that this particular intersection isn’t reusable, so if

this is important, we will need to define a type alias for the

intersection, like this:

type CircularMedia = Vinyl & Cd;

Now we can go ahead and reuse this intersection type

wherever else we need to.

As well as interface intersections, we can also create type

intersections, that is, intersections of type aliases created

using the type keyword, like this:

type mp3 = { bitrate?: number }

type mp4 = { encoding?: string }

type digitalMedia = mp3 & mp4;

The digitalMedia type is now a type intersection of the mp3

and mp4 types so values using that intersection will need to

implement the required properties from each of the objects

in the intersection, although that isn’t an issue for this

example as all of the properties involved are optional.

Generic object types

Generic object types are object types that can be used with a

range of different types rather than a declaratively

prescribed type.

TypeScript supports other forms of generics too, and we’ll

cover those in more detail in later chapters, here we’ll just

focus on generic object types.

Think of an array in TypeScript; arrays are generic because

they can contain elements of many other types, like a string

array, a numeric array, an array containing any other type,

or mixed types even.

This is why arrays support both the literal and generic

syntax, with the generic form appearing for a string array,

for example, appearing like this:

Array<string>.

We can create generic object types that can be used in a

similar way. Let’s see how. Imagine we have some interfaces

that represent different types of messages that might be

displayed to a user of your application:

interface Warning {

level: string;

text: string;

};

interface Info {

level: string;

text: string;

};

Now, let’s say that we want to display these different types

of messages in a modal of some kind. We could create a

bunch of different Modal interfaces for displaying the different

types of messages, but if we have a lot of different types of

messages, we could end up with a lot of different but very

similar interfaces.

Or we could use a generic object type instead to work with

any of the different types of messages:

interface Modal<Type> {

message: Type;

}

We use the interface keyword and an identifier, Modal in this

case, and then within angle brackets directly after the

identifier, we supply a type parameter called Type. As this is

an identifier, we don’t strictly have to call it Type, but this is

what is used conventionally, although it’s often shortened to

just T. like this: <T>.

Inside the interface, we add a property called message and say

that its type will be whatever type the type parameter Type

is.

We could then create some Warning and Info objects, like this

perhaps:

const dataLoss: Warning = {

level: ‘error’,

text: ‘Data may be lost, continue?’,

};

const completed: Info = {

level: ‘info’,

text: ‘Process complete’,

};

Each of the two objects we create is of the types Warning and

Info respectively, so each contains the required properties

with values of the correct type as specified by the two

example interfaces.

Finally, we could then create some Modal objects:

const dataLossModal: Modal<Warning> = { message: dataLoss };

const completedModal: Modal<Info> = { message: completed };

When we come to actually use the generic object type we

defined, we need to pass the actual type we want to use as

the type parameter between angle brackets; in the first line,

we pass the Warning interface we created as the type, and in

the second line we pass Info. The objects we create will need

to conform to the Modal interface, so each has a message

property containing the actual message object.

Thanks to generics, Modal is a flexible object type that can

work with many other types without having to be modified

each time we add a new type of message object to display in

a modal, and we don’t have a proliferation of very similar

interfaces.

We’ll come back and look at how to create generic functions

that work with generic object types in the next chapter.

Note that while we have used interfaces in this example,

type aliases also support generics, so the following code

would also work in the same way:

type Modal<Type> = {

message: Type;

};

type Warning = {

level: string;

text: string;

};

type Info = {

level: string;

text: string;

};

The rest of the previous example code would remain the

same and the dataLossModal and completedModal objects would

be declared in exactly the same way.

Readonly utility type

TypeScript provides a range of utility types to make it easier

to perform some common type transformations – that is,

transforming one type into another type. We’ll be looking at

these as a collection in more detail later in the book, but for

now, we’ll learn about the Readonly utility type, given that

we’ve looked at read-only arrays and tuples, and read-only

object properties.

We can use the Readonly utility type to create a type where all

of the properties are automatically set to readonly. Let’s say

we have a simple interface called ReadWrite:

interface ReadWrite { prop: string };

The interface defines a single property called prop, which

should take a string value. We can now initialize objects

using this interface, set the prop property, and then later

overwrite the property with a different value:

let writable: ReadWrite = { prop: ‘init’};

writable.prop = ‘can overwrite’;

We won’t see any errors in the editor here. But if we define a

new type using the Readonly utility, we can easily make the

prop property read-only:

let notWritable: Readonly<ReadWrite>;

We use angle brackets to pass the Readonly type the interface

that we wish to make read-only, in this case the ReadWrite

interface that we defined first. We’ll now be able to initialize

the prop property:

notWritable = { prop: ‘init’ };

But we won’t be able to overwrite it later; if we try to do this

for example:

notWritable.prop = ‘nope’; // error

Then we’ll see an error in the editor or compiler informing us

that the property is read-only and cannot be modified.

Even though the ReadWrite interface did not specify that the

prop property was read-only, using the Readonly utility type

automatically created a new type in which all of the

properties of the original type are read-only. If we’re working

with a larger interface that contains many properties, this

can save us a significant amount of code that we need to

write ourselves.

Conclusion

Arrays and objects are some of the most commonly used

parts of JavaScript, so correspondingly, array types and

object types will be some of the most common things you’ll

use in TypeScript.

We saw that we can use arrays or readonly array types, and

that arrays have a generic syntax using angle brackets, or a

short-hand literal syntax using square brackets, but that the

two are functionally equivalent.

We also saw that we can use object types to specify exactly

which properties an object should have, whether those

properties are optional or read-only, and how to combine

object types by intersecting them.

We finished by looking at generic object types which allow us

to create custom object types that can work across a range

of types, including those we might create ourselves, and also

covered one of TypeScript’s built-in utility types – the Readonly

type.

In the next chapter, we’re going to take good look at

functions – another very heavily used aspect of JavaScript

and something we’ll want to master in TypeScript.

References

https://www.typescriptlang.org/docs/handbook

https://www.damirscorner.com/blog/posts/201806

01-

ExtendingTypescriptTypeswithIntersection.html

https://www.typescriptlang.org/docs/handbook
https://www.damirscorner.com/blog/posts/20180601-ExtendingTypescriptTypeswithIntersection.html

CHAPTER 7

Functions in TypeScript

Introduction

Functions are the general workhorses of both JavaScript and

TypeScript – many of the expressions we write will be

contained within functions so it’s a good idea to be very

familiar with them and all of their capabilities.

Functions have many features; they are callable of course

but may also support use with the new keyword (although this

is less common since the introduction of classes in ES2015),

and can additionally have their own properties. In this

chapter, we’ll see how to support all of these features and

more when working with function types.

We have used some basic functions in some of the previous

examples in earlier chapters in this book, more so in the last

few chapters, but in this chapter, we are going to focus

exclusively on them and how they can be used in TypeScript.

Structure

In this chapter, we will look at the following topics:

Parameter type and return type annotations

Type Inference for functions

Arrow functions

Type inference for arrow functions

Optional parameters

Rest parameters and rest arguments

Destructured Parameters

Void return type

Function type expressions

Call signatures

Function type interfaces

Construct signatures

This parameter

Function overloads

Generator functions

Generic functions

Generic function constraints

Parameter type and Return type

Annotations

Let’s take a moment to review the basics of the type

annotations we can use with functions – parameter types

and return types:

function sayHello(name: string): string {

return `Hello ${name}`;

}

In this case, we have a function called sayHello which accepts

a parameter called name, and this parameter should be of the

type string. The type information for a parameter is provided

after a colon immediately following the parameter name.

The return type for the function is added after a colon that

follows the closing parenthesis of the parameter list, but

before the opening curly bracket that denotes the function

body. In this example, the function returns a string, but it

could return any valid type.

Adding parameter type and return type annotations to a

function, ensures the correct usage and implementation of

the function. As soon as we’ve typed the function identifier

and parentheses in the editor, a tooltip will appear showing

the function’s type signature – the names and types of the

parameters, and the return type:

Figure 7.1: Function signature tooltip in Visual Studio Code

If we try to pass an argument with the wrong type, like

passing a number to the sayHello function instead of a string,

like this for example:

sayHello(123); // error

We will see this error in the editor:

Figure 7.2: Wrong parameter type error in Visual Studio Code

As we are specifying the return type of the function, if we try

to capture the return type in a variable and give that variable

the wrong type, like this perhaps:

const myNumber: number = sayHello(‘oops’); // error

Then we’ll see an error warning us that we are using the

return type incorrectly – the function returns a string, but

we’re trying to assign the type number:

Figure 7.3: String cannot be assigned to number error in Visual Studio Code

If we don’t pass any arguments at all, or pass too many

arguments, we’ll instead see an error telling us how many

arguments were passed and how many were actually

expected. For example, this function call:

sayHello(); // error

Will result in the following error in the editor:

Figure 7.4: Wrong number of arguments error in Visual Studio Code

This is an important difference with plain JavaScript; in

JavaScript, all function arguments are always optional – if we

don’t pass enough arguments when calling the function, they

will simply have the value undefined inside the function.

Additionally, we can pass extra parameters to a function in

JavaScript, and while these will not be accessible as named

parameters inside the function, they will still show up in the

arguments array-like collection inside the function.

In TypeScript, as we have seen, we cannot call a function and

pass it the wrong number of arguments; either too few or too

many will cause errors in the editor or compiler, which may

result in the TypeScript not being compiled in the strictest

configurations. We can mark parameters as optional,

however, which we’ll look at this shortly.

Type Inference for Functions

One point to note is that if we don’t specify a type for a

function parameter, TypeScript won’t try to infer the type for

the parameter based on how the parameter is used inside

the function.

Instead, it will simply set the parameter type to any. This will

prevent errors in the editor but will disable all type-checking

for that parameter inside the function, which could result in

run-time errors in the browser which aren’t caught by the

compiler or editor.

With strict configuration for TypeScript enabled, this will

cause TypeScript to display an error for the untyped

parameter. The specific configuration setting related to this

is noImplicitAny, although the same behavior is enforced

when using the catch-all strict setting.

For example, if we remove the string type following the name

parameter in our sayHello function, like this:

function sayHello(name): string {

return `Hello ${name}`;

}

We’ll then see this error:

Figure 7.5: Implicit ‘any’ error in Visual Studio Code

This doesn’t mean that we can’t manually specify that a

parameter has the type any if we truly want, the error is just

caused by TypeScript inferring that the type is any, because

in this situation we could lose typing for the value inside the

function unknowingly.

If we manually set the parameter to any, TypeScript will

conclude that we know what we are doing and simply stop

type-checking the parameter inside the function without

showing an error.

TypeScript will infer the return type of a function based on

what is actually returned from the function, In the case of our

sayHello example function, the function is explicitly returning

a value of the type string, so if we leave off the annotation

for the return type, like this:

function sayHello(name: string) {

return `Hello ${name}`;

}

TypeScript will still correctly infer the return type of the

function to be string and prevent us from using the return

type incorrectly.

Arrow Functions

Let’s also take a moment to look at using the same type

annotations as before but with an arrow function. Arrow

functions are short-hand function syntax that allows us to do

away with some of the boiler-plate code associated with

functions, like the function and return keywords. They also

preserve the value of this inside the function, unlike regular

functions.

A basic arrow function equivalent to the sayHello function

from earlier looks like this:

const sayGoodbye = (name: string): string => `Bye ${name}`;

The syntax for an arrow function is basically the parameter

list followed by what is called a fat arrow – an equals sign

followed by a right-angle bracket, and then the body of the

function. But notice that we do not use the function or return

keywords anywhere, and because the function body is a

single line of code, we don’t need curly braces either.

The parameter type annotations are still specified after the

parameter name and a colon, and the function’s return type

is still specified directly after the parameter list, also

following a colon, but before the fat arrow.

Another small point to note is that, while the function is

stored in a variable called sayGoodbye, the function itself does

not have an identifier, making it an anonymous function.

This makes no difference to how TypeScript sees the

function, or how we can use it in our code, I merely point it

out as an interesting observation.

A single-line arrow function has an implicit return value, so in

the previous example, it will return the displayed string. For

a multi-line arrow function, however, we do still need to

provide an explicit return (if we want the function to return

something), and use curly braces, like this:

const sayGoodbye = (name: string): string => {

// other lines

return `Bye ${name}`;

};

We’ve assigned the arrow function to a variable called

sayGoodbye, so we use this variable to invoke the function in

the same way that we would invoke a regular function:

sayGoodbye(‘Dan’);

We get the exact same parameter type and return type

checking as we do with regular functions, so again, it is

impossible for us to call the function incorrectly.

Type Inference for Arrow Functions

As we saw a little earlier, if we don’t specify the types of

parameters in a function declaration, the compiler will set

their types to any automatically, which is usually a situation

we want to avoid.

When using arrow functions, TypeScript is usually able to

correctly infer parameter types, when it is able to see exactly

how the function is going to be called. For example, consider

the following example code:

const str = ‘string’;

str.split(‘’).forEach((char) => char.padStart(2, ‘X’));

What the code in this example actually does is irrelevant,

which is fortunate as it does nothing useful whatsoever.

What we’re interested in is the fact that we can completely

avoid specifying the type for the char parameter that the

arrow function passed to the forEach method receives, this

part of the code specifically:

(char) => char.padStart(2, ‘X’)

In this case, TypeScript knows that the type of the char

parameter will be string, because the method is being called

on an array containing string values and so the type of char

will be correctly inferred as string and will not be set to any

like it would with a regular function declaration. TypeScript

also knows that the padStart method returns a string value.

This is great because we get full type checking for the

parameter as a string inside the body of the arrow function,

and for the return type of the function, without requiring us

to manually add the type annotations ourselves.

Optional Parameters

As mentioned a little earlier, in TypeScript, declared function

parameters are strictly required. However, it is very easy to

make them optional instead, using the same syntax that we

used earlier in the book to make object properties optional –

by using a question mark character directly after the

parameter name:

function optional(maybe?: string) {}

In this case, the maybe parameter will be optional, but if it is

provided, it will need to be of the type string. This means

that we can call the function like this:

optional(‘anyString’); // fine

Or, like this:

optional(); // also fine

In both cases, the editor or compiler will not display any

errors.

With optional parameters, TypeScript will always see the

parameter as a union of the parameter type, string in this

example, and undefined, so before using it inside the function,

we’ll need to ensure that it is definitely a string and not

undefined, like this for example:

function optional(maybe?: string) {

if (!maybe) return;

// maybe is definitely a string now

}

Inside the function, we check if the maybe parameter is falsey

(meaning undefined, null, or any value that coerces to false),

and if it is, we immediately return from the function.

After the if statement on the first line, if execution has

continued, we know that the maybe parameter is definitely of

the type string and not undefined, so we can use it safely as a

string without generating errors in the editor.

Rest Parameters

Rest parameters are used to pass a variable number of

arguments to a function. They use the spread operator … and

should appear at the end of the parameter list, following any

regular parameters.

Additionally, there can be only one rest parameter per

function:

function variadic(a: string, …extra: string[]) {

// do something with strings

}

In this example, we first declare a single parameter called a

which will be of the type string, and then use a rest

parameter to have the function receive any number of

additional string arguments as an array.

Rest parameters allow us to call the variadic function like

this:

variadic(‘just one string’); // fine

Or even like this:

variadic(‘one string’, ‘and’, ‘any’, ‘others’); // also fine

Without causing any errors, making these types of functions

very flexible indeed.

Rest parameters are always an array type; in this example,

we used the short-hand literal syntax, but we could also

have used the generic syntax if we wanted, which would look

like this:

function variadic(a: string, …extra: Array<string>) {

// do something with strings

}

There is no difference between the two forms.

Rest Arguments

Very similar to rest parameters are rest arguments; the

difference between them is that rest parameters appear in

function parameter lists, whereas rest arguments are passed

to function invocations.

function variadic(a: string, …extra: string[]): string {

return a.concat(…extra);

}

In this evolution of the previous example, we use the concat

method on the first string passed to the function, the named

parameter a, to concatenate all of the additional arguments

collected by the rest parameter to the end of the first

parameter.

We can also specify the return type here, string in this case,

because the example function is now actually returning a

value.

The concat method takes a comma-separated list of strings to

concatenate onto the end of the target string, but in our

case, we don’t know how many extra arguments that will be,

so we can use a rest argument to expand the array of strings

passed as the extra parameters into a comma-separated list,

regardless of how many additional arguments were passed

to the variadic function.

Note that the example function here is using both a rest

parameter, and a rest argument.

Another point to note is that while in JavaScript, the concat

method takes a comma-separated list of strings, when using

TypeScript, the editor will always show this method as

accepting a rest argument, even if we pass a comma-

separated list of strings.

For example, this return statement in the example function:

return a.concat(extra[0], extra[1]);

Will show the following tooltip in Visual Studio Code, which

shows the concat method accepting a rest argument even

though we passed it two individual strings:

Figure 7.6: Rest argument tooltip for concat method in Visual Studio Code

Rest parameters and rest arguments are therefore

conceptually opposite to each other – rest parameters collect

any number of comma-separated values and condense them

into a single array, whereas rest arguments take an array

and expand them into a comma-separated list of values.

Destructured Parameters

Another type of parameter that should be mentioned is the

destructured parameter. In JavaScript, destructuring

assignment expressions are used to store the values

contained within arrays or objects in individual named

variables.

For example, consider the following plain JavaScript:

let [height, weight, age] = [180, 70, 44];

This expression creates three variables called height, weight,

and age, and puts one of each value from the array into each

variable, in the order specified on the left-hand of the

assignment, so the height variable on the left side of the

expression will take the first value in the array on the right

side of the expression, weight the second, and age the third.

In the previous example, we wrap the identifiers on the left

side in square brackets because we are destructuring an

array.

We can also destructure objects, and for this, we wrap the

left side of the assignment in curly braces instead of square

brackets:

let { height, weight, age } = { height: 180, weight: 70, age:

44 };

In this case, we would see the exact same result as before.

This time, the identifiers on the left side of the expression

correspond to property identifiers in the object being

destructured on the right side of the expression, and

TypeScript will infer the types of the variables being assigned

based on the values being destructured, so in this case, the

height, weight, and age variables will all have the inferred type

number.

We can use a very similar approach for function parameters,

a technique commonly used with configuration objects

passed to a function, like this:

function showlocation({ lat, lng }): void {

window.open(`https://www.openstreetmap.org/#map=16/${lat}/${ln

g}`);

}

In this case, the function will be passed an object containing

properties called lat and lng, but we can destructure them

into individual named parameters right there in the

parameter list. The function would be invoked like this:

showlocation({ lat: ‘50.9272’, lng: ‘-1.4015’ });

The only problem we have at this point is that lat and lng

currently have the inferred type any and so the function

declaration will show errors in the editor with the strict

configuration enabled.

We can fix this by adding a type annotation to them, for

example:

function showlocation({ lat, lng }: { lat: string, lng: string

}): void {

window.open(`https://www.openstreetmap.org/#map=16/${lat}/${ln

g}`)

}

The literal object type shows an object with properties lat

and lng, both of which are of the type string.

It is important to note that the type information for

destructured parameters must come after the entire

destructuring assignment, not after the individual identifiers

inside the assignment, and we must specify the individual

names of the object properties being destructured.

This results in some duplication, but in this case, it is

unavoidable. For objects containing many properties to

destructure, it makes sense to use a type alias rather than

specifying the full type inline, like this:

type location = {

zoom: string;

lat: string;

lng: string

}

function showLocation2({ zoom, lat, lng }: location): void {

window.open(`https://www.openstreetmap.org/#map=${zoom}/${lat}

/${lng}`)

}

This format is much more readable, and code that is

readable is also maintainable, which is something we should

always strive for when developing. You should note that

although these examples focus on object destructuring with

function parameters, we can also use array destructuring

here too.

I’d also like to point out that window.open was used purely to

keep things as terse as possible while still conveying a

functioning example – this should of course be avoided in

production code.

One more thing to be aware of with destructuring in

TypeScript is that by default, TypeScript doesn’t like values to

be unused in the value being destructured, for example,

consider the following code:

let [height, weight, age] = [180, 70];

In this case, TypeScript will complain that the age variable

has no matching element in the target array:

Figure 7.7: No element at index ‘2’ error in Visual Studio Code

We can fix this common error by simply adding an additional

comma after the final value in the target array, like this:

let [height, weight, age] = [180, 70,,];

This will remove the error in the editor, and the age variable

will have the value undefined.

Void return type

We can use the void type as a return type for a function. In

fact, that’s what TypeScript sees as the return value for the

optional function from an earlier example, since we used the

return keyword by itself, without returning an actual value:

Figure 7.8: Inferred void return type in Visual Studio Code

In this example, however, the optional function might want to

return something else if it is passed an argument when

invoked, like the length of the parameter perhaps:

function optional(maybe?: string) {

if (!maybe) return;

// maybe is definitely a string now

return maybe.length;

}

In this case, TypeScript will infer that the return type of the

function is now a union of the types number and undefined:

Figure 7.9: Union type return tooltip in Visual Studio Code

The void type as a return value from a function implies that

the return value of the function should not be used. It does

not mean that the return value of the function is undefined,

even though technically, once compiled down to JavaScript,

a function that doesn’t return anything will have a return

value of undefined. Undefined values can still be useful,

whereas void explicitly means that the value should be

ignored.

After we add the explicit return of the length property at the

end of the function, TypeScript knows that this is a function

whose return value we might want to use sometimes, which

is different from the clear meaning of void that the return

value should be ignored or disregarded - this is why it

doesn’t infer the value as a union of string | void.

If we try to return something from a function marked as

having a void return type, like this for example:

function sideEffect(): void {

// do something

return ‘oops’;

}

TypeScript will warn us with the following error:

Figure 7.10: String is not assignable to a void error in Visual Studio Code

It is a useful practice to always specify the return type of a

function directly rather than letting TypeScript infer the

return type, including with functions that don’t return a

useful value, in which case we should take care to mark

them as void.

Function Type Expressions

As well as parameter types and return types, functions

themselves can also have types. A function type expression

is a type that describes an entire function. For example, let’s

imagine that we want to declare a variable that will be used

to store a function in; we would give it a type like this:

let numberFn: (…nums: number[]) => number;

Here, we declare a variable called numberFn and specify that it

will contain a function that can receive any number of

arguments that are of the type number, in an array, and which

itself returns a value of the type number. The function type

expression is just the type for the function, which appears

after the colon following the variable identifier, it’s not the

implementation.

Notice that we use a fat arrow to denote the return type of

the function and not a colon. This makes function-type

expressions look very similar to arrow functions, so be

careful not to confuse them with actual arrow functions.

The numberFn variable can now contain any function that

receives zero or more numeric arguments and also returns a

number, a function like this for example:

numberFn = (…nums: number[]): number => {

return nums.reduce((prev: number, curr: number) => prev +

curr, 0);

}

numberFn(1, 2, 3); // 6

In this example, we define a function that uses the reduce

method to sum up all the numbers passed to the function

when it is invoked. Notice how similar the actual function is

to the function type expression - the only difference is that

the actual function specifies the return type in between the

parameter list and fat arrow.

As mentioned earlier, any function that meets the

specification laid out by the function type expression may be

stored in the numberFn variable, so a function like this would

also work:

numberFn = (…nums: number[]): number => {

return nums.reduce((prev: number, curr: number) => {

if (!prev) return curr;

return prev * curr;

});

}

numberFn(4, 5, 6); // 120

The function is very similar to the previous example except

that it multiplies all of the numbers passed to the function

instead of summing them.

The variable we’ve created is reusable, and we can store any

function inside it that conforms to the function type

expression, but the function type expression itself can’t be

reused. For that we need to use a type alias, like this:

type numberFn2 = (…nums: number[]) => number;

Now we can use numberFn2 type anywhere that type

annotations can be provided, like as a variable type for

example:

const addAllTheNums: numberFn2 = (…numbers: number[]) => {

return numbers.reduce((prev, next) => prev + next, 0);

}

As long as the provided function matches the function type

expression, we can store it in the variable that has the

corresponding type.

Call signatures

In JavaScript, functions are objects and in addition to being

callable, they may also have properties – in fact, all functions

have a length property, which corresponds to the number of

named parameters the function may receive.

A function type expression doesn’t allow us to specify

properties that a function may have in addition to the

parameter and types. If we need to do this, we need to use

an object type and specify the function’s call signature in

addition to the properties we want to add, for example:

type numberFn3 = {

operation: string;

(…nums: number[]): number;

}

The type numberFn3 will require that functions of this type will

need to have a property of the type string called operation.

After the property, we specify the call signature for the

function, that is, the parameter names and types, and the

return type of the function. Notice that we use a colon here

to specify the return type and not a fat arrow as we do with a

function type expression.

Now we can create a function that satisfies this type:

let myNumberFn3 = ((…nums: number[]): number => {

return nums.reduce((prev: number, curr: number) => prev +

curr, 0);

}) as numberFn3;

myNumberFn3.operation = ‘Sum’;

The actual function declaration itself is very similar to the

previous example, so we won’t go over it in much detail

again. The only real difference is that this time we need to

wrap the whole arrow function in another set of parentheses,

and then add the type assertion as numberFn3 after the

parentheses.

If we don’t do this, we won’t be able to then add the

operation property to the function on the last line without

seeing an error in the editor.

Note that as well as using the as operator, we could also use

the older type-casting syntax, like this:

let myNumberFn3 = <numberFn3>((…nums: number[]): number => {

return nums.reduce((prev: number, curr: number) => prev +

curr, 0);

});

We should also note that the editor won’t show any errors if

we don’t set the operation property on the function after

declaring it. But it will show errors if we try to add a different

property that isn’t specified in the call signature, like this

perhaps:

myNumberFn3.oops = ‘error!’;

In this case, we would see the following error in the editor:

Figure 7.11: Illegal property addition error in Visual Studio Code

This is also the error that we would see when trying to add a

property to any function that does not have the required

object type call signature.

Function Type Interfaces

We looked at interfaces containing method definitions earlier

in the book, but we shall revisit them here for clarity. A

function-type interface is an interface that describes a

function, for example:

interface logFn {

(arg0: string): void;

}

As with a regular interface, we begin with the interface

keyword, followed by the identifier and a pair of curly braces.

Inside the braces, we define the function call signature

specifying only the parameter list, which must have a type

for each parameter, and the return type, which is separated

from the parameter list by a colon.

Note that if we don’t specify a type for each parameter, the

parameter type will be inferred as any, which will cause an

error with TypeScript’s strict configuration enabled.

Now we can use the logFn interface when creating an actual

function declaration, like this for example:

let myLogFn: logFn = (str: string) => console.log(str);

The syntax for a function type interface is very

similar to the syntax for declaring an object which

contains a method, be sure not to get them

confused.

This Parameter

Another type of parameter that TypeScript supports is this

parameter. This is a special kind of function parameter that

allows us to set the type for the value this inside a function.

In JavaScript, this is a special value that can be different

things in different situations and remains a frequent source

of bugs and confusion.

For the next example, let’s imagine we have an interface

that describes user objects:

interface user {

name: string;

}

These objects will have just a single property called name

which will be of the type string.

Now let’s say we have a constructor function, that is, a

function that should be used with the new keyword and which

creates new user objects:

function User(this: user, name: string): user {

this.name = name;

return this;

}

Notice that we can call the first parameter this and specify a

type. Then inside the function, the this value will be set to

the type that we specified. We also set user as the return

type of the function, as the function will return user instance

objects. Inside the function, we can set the name property of

the user object, which is available as the this value, and then

also return the this value.

Using this inside the function with the strict configuration

enabled is only possible because we are using the this

parameter to specify the type of the this value – without the

parameter TypeScript will infer the type any for it instead, and

this will result in errors in the editor and compiler.

Although the previous code is valid TypeScript, we need to

make a small modification before we can actually create new

user objects using the User constructor function.

To create a new user object, we need to use a double type-

assertion, for example:

const user1 = new (User as unknown as user)(‘Dan’);

We need to wrap the constructor name in parentheses and

cast it to unknown and then to our user interface. The name

argument that needs to be passed to the constructor can

then be provided in another set of parentheses after the

double assertion in the first set of parentheses.

This works because anything can be cast to the unknown type.

This is also safer than just casting the constructor to any, as

this would disable further type-checking of the user1 variable

in any following code.

Note that this is not the only way that we could fix this error.

An alternative to casting first to unknown and then to our

desired type would be to convert the function to a function

expression and cast the return type first to unknown and

then to the desired type, for example:

const User = function(this: user, name: string) {

this.name = name

} as unknown as { new (name: string): user };

We could then use the constructor without any special

casting:

const user1 = new User(‘Dan’);

Which variation you use to overcome this error will depend

on where the constructor comes from; if the constructor is

from a third party library, we will not be able to change the

original function declaration and so the first example will be

more beneficial to us.

If we do have full control over the constructor function, we

may wish to use the second format. As always, the solution

you use going forward will depend on multiple factors

including your own preference.

We’re almost done, but at this point, the editor will show the

following error:

Figure 7.12: Expression is not constructable error in Visual Studio Code

To fix this error, we need to add a construct signature to our

user interface, like this:

interface user {

name: string;

new (name: string): user;

}

A construct signature is almost identical to a call signature,

the only difference being that a construct signature starts

with the new keyword. Construct signatures are just call

signatures for constructor functions!

Since JavaScript now natively supports classes, we probably

won’t see too many old-style constructor functions like in the

previous example, but it’s worth being aware of how they

can be used in TypeScript just in case we come across one in

the wild if we ever need to support a legacy application.

Function overloads

In many object-oriented programming languages, function

overloading is the practice of having multiple functions with

the same name, but different signatures. JavaScript does not

support function overloading at all, but luckily for us,

TypeScript does.

Function overloading in TypeScript is a way to declare

functions that receive different numbers of parameters, or

different types of parameters, and return different values.

We could handle the different types of parameters using a

parameter with a union type encompassing all of the types

we want to use inside the function, and we could also use a

union of types for the return type of the function.

However, if there are many variations in the parameters

received or the types of the value returned by the function,

we may find it more readable to use function overloading

instead. Let’s look at a basic example.

Imagine that we want to declare a function that can accept

either a string, a number, or a string array and that it may

return either a string array or a single string:

function fn(item: string): string[];

function fn(item: number): string[];

function fn(item: string[], separator?: string): string;

We overload a function in TypeScript by declaring multiple

function signatures, followed at the end by the actual

function implementation, although the previous code snippet

shows only the signatures - we’ll add the implementation in

just a moment. All of the signatures should use the same

function name, fn in this example.

Each of the first three lines in the previous code example is a

function signature; the first specifies that the function may

receive a parameter of the type string and return a string

array, the second that the function may receive a number and

return a string array, and the third line specifies that the

function may receive a string array, and optionally a second

parameter, also of the type string, and that this time it will

return a single string.

A function overload should always have two or more

function signatures.

Following the function signatures, we then need to declare

the function implementation:

function fn(a: string | number | string[], sep?: string):

string | string[] {

if (typeof a === ‘string’) {

return a.split(‘’);

} else if (typeof a === ‘number’) {

return a.toString().split(‘’);

} else {

return a.join(sep ?? ‘’);

}

}

This time the function must declare all possible parameters

and return types, so we can use a union type of string |

number | string[] to cover the different argument types of the

first parameter the function may receive. We should also

mark the second parameter, sep (short for separator), as

optional since only one overload specifies it.

Lastly, we can also use a union type of string | string[] for

the return type, which covers all of the different possibilities

of the return types specified by the different overloads.

Inside the function, we can use a typeof type guard to handle

each of the different types that the first parameter, a,

maybe. We’ll look at type guards in more detail later in the

book, the takeaway here is that they are used to differentiate

between different types that a value may be.

In the last branch of the if statement, we don’t explicitly

need to check for the array type as we already handled the

only other possible variations. We’ll be looking at type

guards in more detail later in the book.

Now we can use the function, and pass it any of the

supported arguments, for example:

fn(‘test’); // [‘t’, ‘e’, ‘s’, ‘t’]

fn(1234); // [‘1’, ‘2’, ‘3’, ‘4’]

fn([‘a’, ‘b’, ‘c’], ‘|’); // ‘a|b|c’

If we try to pass an unsupported argument type when

invoking the function, like this for example:

fn(true); // error

Then we will see a detailed error the in the editor listing all of

the different overloads the function supports:

Figure 7.13: No matching overload error in Visual Studio Code

This time the error message is extremely verbose and lists

all of the variations of the overloaded function.

Overloading Arrow Functions

Arrow functions can’t be overloaded in the same way as

regular function declarations, but they can still be

overloaded. To overload an arrow function, we need to use a

type alias or an interface, for example:

type fn2 = {

(a: string): string[];

(a: number): string[];

(a: string | number | string[], sep?: string): string |

string[];

}

In this case, we add a type alias called fn2 and inside list all

of the overload call signatures for the function. Note that

we’re reusing the exact same overload signatures as we

used in the previous section.

Next, we can add the actual implementation for the arrow

function:

const ol = ((a: string | number | string[], sep?: string):

string | string[] => {

if (typeof a === ‘string’) {

return a.split(‘’);

} else if (typeof a === ‘number’) {

return a.toString().split(‘’);

} else {

return a.join(sep ?? ‘’);

}

}) as fn2;

Again, this snippet is almost identical to the implementation

in the previous section, just in arrow function format. Note

that we wrap the whole arrow function in parentheses and

follow it with an assertion, using the as operator, to the

desired type.

Now we can use the arrow function in the expected way:

ol(‘test’); // [‘t’, ‘e’, ‘s’, ‘t’]

ol(1234); // [‘1’, ‘2’, ‘3’, ‘4’]

ol([‘a’, ‘b’, ‘c’], ‘|’); // ‘a|b|c’

Being an arrow function, it is likely that we will want to pass

this function to other functions as an argument, for example:

function fn3(callback: fn2): void {

// do something, then invoke the callback

}

We simply use the type alias to annotate the parameter

representing the arrow function we wish to use.

Inside the function when we go to use the overloaded arrow

function passed in as a parameter, we then get a nice code-

completion popup allowing us to see all of the different

overloads supported by the function:

Figure 7.14: Overloaded parameter types dialog in Visual Studio Code

Function overloading gives us a clean and readable syntax

for describing complex functions with many different

parameters and return types.

Generator functions

Generator functions are a special type of function in

JavaScript that can yield multiple values, and have their

execution paused and resumed at will. Generator functions

work in a slightly different way than regular functions.

Regular functions follow a model called run to completion –

once the function is invoked, it runs all of the code inside its

body, returns a value (which may be undefined if no explicit

return is used), and then stops executing. The function will

do nothing further unless it is invoked again.

Generator functions use a different model, called pause and

resume. In this model, the statements inside the function do

not all execute at once – the function can be paused, and

later, can be resumed to continue executing statements

inside its body.

When we invoke a generator function, it doesn’t actually

invoke the function, instead, it returns an iterator. This

iterator is an object that has a next method, and it is this

method that actually invokes the function in the way that a

traditional function is invoked.

Each time the next method is called, it returns an object; this

object contains two properties, value which contains the value

yielded by the function, and done which is a Boolean that tells

us whether the function can be invoked again or not.

We can also pass values to the next method, and these

values will be injected into the function for that call of the

method. Generators can also return a final value when they

have finished executing and cannot be invoked anymore.

TypeScript doesn’t add functionality or enhance the behavior

of generators in any way, but we can assign types for all of

these values that generators can yield, receive via the next

method, and return once they are finished executing.

When the generator does return, the returned value will be

set as the value of the object returned by the next method,

and this time the done property of the object will be set to

true. Further calls to the next method will return an object

with undefined as the value of the value property, and the done

property set to true.

Let’s take a quick look at a basic example to see what level

of typing we can expect when using them. Imagine that we

want to create a generator function that returns a random

integer between 0 and 10 each time the next method of its

iterator is invoked:

function* randomInt() {

while (true) {

yield Math.round(Math.random() * 10);

}

}

Generator functions are declared by adding an asterisk

directly after the function keyword. Inside the function, we

use a while loop locked to the value true, and inside the loop,

we use the yield keyword to output a single-digit random

number.

We can now invoke the function to get the iterator, and then

call the iterator’s next method to get a random number:

const randomIterator = randomInt();

console.log(randomIterator.next());

Each time the next method is called, the loop inside the

generator will execute a single time, so we can keep on

calling the next method if we wish, and we will keep getting

random numbers.

We haven’t added any type annotations to this example

code yet, but TypeScript can infer some information about

the function:

Figure 7.15: Generator function tooltip in Visual Studio Code

TypeScript knows that it’s a generator function and that it

yields values of the type number, which is the first type

parameter in the built-in generic Generator type.

The second type parameter is set to void by TypeScript

because the function doesn’t explicitly return a value. The

last type parameter is the type for a value passed to the

iterator’s next method, which TypeScript sets to the unknown

type, which as we know, is safer than using any.

One point to note is that even though TypeScript has

correctly inferred that the function will yield values of the

type number, we’ll find that if we try to use the value returned

by the next method as if it were a number, by calling its

toString method for example:

console.log(randomIterator.next().value.toString());

Then we’ll see an error:

Figure 7.16: Error when using unguarded union in Visual Studio Code

The reason the type is a union of number | void is due to the

fact that the value property of the next method can be

undefined when the function returns, even though that

doesn’t happen with the example generator because it

doesn’t use the return keyword and will just infinitely loop.

Additionally, the value property of the object returned by the

next method is currently set to any, which we can also see

from the header of the error popup shown in Figure 7.16.

Generally, we want to avoid values being inferred as any,

although in this case there will not be an error, the value just

won’t be type checked.

To fix both of these issues, we can add a type annotation to

the generator function:

function* randomInt(): Generator<number, number> {

…

}

We can add the built-in Generator type and use angle brackets

to specify the first and second type parameters that

generators can have. Even though the function isn’t

explicitly returning a number, we need to add both the first

and second type parameters in the type annotation to both

remove the error from the toString method and ensure the

value is not any.

Now the error under the toString method has gone, as we’ve

signaled to TypeScript that the yielded value will always be

of the type number:

Figure 7.17: Generator type tooltip in Visual Studio Code

The value property of the object returned by the next method

will also be correctly typed as a number:

Figure 7.18: Type popup in Visual Studio Code

As the value property is correctly typed, the editor will of

course warn us if we try to call a method on it that numbers

don’t have, ensuring we work with the values yielded by the

generator in the expected way.

Like regular functions, generator functions can also have

named parameters, and we add types for them in the same

way as we do for regular functions. Let’s update the example

so that the generator can receive a limit of the maximum

times random numbers can be generated:

function* randomInt2(limit: number): Generator<number, number>

{

let currentLimit = limit;

while (true) {

if (--currentLimit >= 0) {

yield Math.round(Math.random() * 10);

} else {

return ‘Random numbers exhausted!’;

}

}

}

In this case, we added a parameter called limit, which is of

the type number, that the generator function receives when it

is initially invoked. Inside the function, we initialize a counter

variable called currentLimit to the limit parameter’s value.

Inside the while loop, we can then decrement the currentLimit

variable and check that it’s greater than or equal to 0. If it is,

we can yield a number as before, but if not, we can instead

use a regular return statement to return a string.

At this point, the editor will show an error on the return

statement because of the function’s type. Now that the

function is returning a string value, we need to update the

second type parameter:

function* randomInt2(limit: number): Generator<number, string>

{

…

}

Now we can create an iterator, this time passing a number

for the limit parameter:

const randomIterator2 = randomInt2(1);

In this case, the function will return only a single random

number when the next method is called:

console.log(randomIterator2.next().value);

The second time the next method is called, the value property

of the object it returns will contain the string that we

returned from the generator. This will occur only once; on

subsequent calls to the next method, the value property will

be undefined.

One point to note here is that the value property of the object

returned by the next method will now be a union type of

number | string, so we may need to use type-guards to work

with the value successfully.

The last type parameter that we can specify is for the type of

value that may be passed to the next method of the iterator.

Let’s update the generator one more time to see the

implications of using the third type parameter:

function* randomInt3(limit: number): Generator<number, string,

boolean> {

let currentLimit = limit;

const message = ‘Random numbers exhausted!’;

while (true) {

if (--currentLimit >= 0) {

if (yield Math.round(Math.random() * 10)) {

break;

}

} else {

return message;

}

}

return message;

}

We have updated the type for the generator function to

Generator<number, string, boolean>, adding a third type

parameter to the annotation.

Inside the function, we tidy the string returned from the

function in some cases to a variable called message as we are

now going to return the message at two different points in

the function.

Next, we added an if statement around the original yield

statement, and when the condition is true, we use the break

expression to exit from the while loop. This means that the

function may cause a full return if the limit of the loop is

reached, or if the value true is passed to the next method.

The way that this will work is that if the next method of the

iterator is called without a parameter, the loop will continue

and yield will return a value. But if we pass true to the next

method, inside the function, the keyword yield will be

replaced with the value true, which in turn will cause the if

expression to exit from the loop immediately with the break

keyword.

We can now use the generator in a similar way that we did

before:

const randomIterator3 = randomInt3(10);

console.log(randomIterator3.next().value);

console.log(randomIterator3.next().value);

console.log(randomIterator3.next(true).value); // Random

numbers exhausted!

console.log(randomIterator3.next().value); // undefined

The only difference is that passing true to the next method

will cause the function to immediately return, and from that

point on, further calls of the iterator will result in a value of

undefined being returned.

You should also note that in this example, before we pass

true to the next method, the done property of the returned

object will be false, but after we pass true, the done property

will be true, as the function has no more values to return.

Generic functions

Generic functions are another aspect of generics, similar to

the generic objects that we looked at in the previous chapter.

Generic functions are functions that can work with any

different types, which can be useful when building a library,

or some other code, that will be used by other developers,

who may wish to use our functions with their own types.

Let’s take a look at a basic example:

function echo<T>(input: T): T {

return input;

}

The function identifier, echo, is immediately followed by a

type parameter inside angle brackets, which by convention is

called T. As with generic objects, the parameter T acts like a

variable for a type, so we can also say that the parameter

the function receives is of the type T, and the return type of

the function will also be of the type T.

Inside the function, we merely return the input parameter.

The function will simply return whatever is passed to it, but

we now get full type-safety when using the function:

let oops: string = echo(123);

In this case, TypeScript will not let us specify the variable

type to be of a different type than the value of the argument

we pass to the function when invoking it. The previous line of

code will cause the following error in the editor:

Figure 7.19: Type not assignable error in Visual Studio Code

In most cases, the editor’s type inference will be sufficient to

use the function with confidence, but we can of course

specify the type decisively using either the literal:

let strTest: string = echo(‘Test’); // Test

Or generic syntax:

let numTest = echo<number>(123); // 123

We can now use function with any types as long as the type

of the variable matches the type of the argument we pass

the function. In this basic example, explicitly typing the

variable is unnecessary, but is required when using our own

custom types.

Generic Function Constraints

Generic functions are useful because we can make them

generic so that they work across any type the consumer of

the function wishes to use. We can also constrain the types

that may be used with generic functions so that they don’t

operate over any type, but only types that meet some

condition.

The concept is best explained with code, so let’s look at

another basic example. First, we’ll need a type with which to

make the constraint:

interface Item {

save: (arg0: any[]) => void;

contents: any[];

[key: string]: any;

}

In this case, we define an interface called Item, objects of

which should have a property called save which contains a

function that accepts an array of any type of values, and a

property called contents, which can be an array of any types of

value. To make the interface more flexible, we can also add

an index signature to say that objects of this type may

specify any other additional properties.

Now we can add a generic function that is constrained to

work only with objects that match the Item interface:

function save<T extends Item>(item: T): boolean | unknown {

try {

item.save(item.contents);

return true;

} catch(err) {

throw new Error(‘Save failed’, err);

}

}

We use the extends keyword to add a constraint to the

function. It basically says that the function will accept any

type of value for the argument, as long as the value meets

the Item interface, so it must at least contain a property

called save which is a function, and a property called contents

which is an array.

What the function does internally is not too important in the

context of this example, what we’re focused on here is the

constraint on the types that may be used with the function,

rather than what the function actually does.

In this case, the function can just call the save method of the

item that was passed to it, passing in the contents array, and

then return true. This logic is wrapped in a try catch in case

the save fails, in which case we can throw an error. This is

why the return type of the function is a union of Boolean and

unknown.

When we come to use the save function, we will not have any

problems as long as the argument we pass to it has at least

save and contents properties of the expected types, for

example:

const basket: Item = {

save: () => {

// save wherever…

},

contents: [],

}

save(basket); // fine

In this case, the basket object does have save and contents

properties, so we can use it with the save function without

any errors in the editor.

If we try to use the save function and pass an argument that

does not match the Item interface, like this perhaps:

save(‘oops’);

Then we will see an error that the argument is not of the

expected type.

Constraints are useful to restrict the types that may be used

with a generic function, and still give us all the benefits of

type safety when using the constrained function.

Conclusion

In this chapter we have covered functions in TypeScript;

functions will make up the bulk of the TypeScript code we

write, so it’s good to have a solid foundation of the benefits

that TypeScript adds when using them.

We’ve seen how to add types that describe functions and all

of the different types of parameters they can accept, from

optional parameters and this parameters, to rest parameters

and destructured parameters, as well as covering some more

advanced topics like generator functions, and generic

functions with constraints.

In the next chapter, we can move on to looking at classes

through the lens of TypeScript.

References

https://www.typescriptlang.org/docs/handbook

https://mariusschulz.com/blog/typing-

destructured-object-parameters-in-typescript

https://melvingeorge.me/blog/add-properties-to-

functions-typescript

https://www.typescriptlang.org/docs/handbook
https://mariusschulz.com/blog/typing-destructured-object-parameters-in-typescript
https://melvingeorge.me/blog/add-properties-to-functions-typescript

CHAPTER 8

Classes in TypeScript

Introduction

TypeScript has full support for JavaScript’s class system,

which itself is largely a syntactic sugar on top of JavaScript’s

prototypical inheritance model. TypeScript also extends

JavaScript classes by adding additional features like member

visibility, abstract and generic classes, and more.

We will explore all of these TypeScript features in detail over

the course of this chapter; all class features of both

JavaScript and TypeScript will be discussed in full, but I will

draw your attention to particular features where these are

TypeScript-only enhancements added on top of JavaScript’s

existing functionality.

Some popular front-end development frameworks, including

Google’s Angular (2+), make heavy use of TypeScript

classes, so it is a good idea to become very familiar with

them and how they work if you plan to use Angular or

another TypeScript-based framework. By the end of this

chapter, your knowledge of TypeScript classes will be in a

class of its own.

Structure

In this chapter we will cover the following topics:

Class declarations

Class expressions

Constructors

Access modifiers

Parameter properties

Getters and setters

this parameter

Index signatures

Implementing an interface

Static class members

Inheritance

Abstract classes and members

Generic classes

TypeScript Design Patterns

Class Declarations

Classes in JavaScript/TypeScript are a special kind of

construct for creating objects. Classes have a constructor

function which is called when objects are constructed via

invoking the class using the new keyword.

Classes are a simple wrapper for working with object

prototypes without having to work with them directly, and do

not constitute a new way of working with inheritance or

object-oriented development.

Let’s start by looking at the anatomy of a basic class in

TypeScript. We can then build on this in successive examples

as we explore the features of classes:

class Shape {

kind: string;

constructor(kind: string) {

this.kind = kind;

}

}

The class keyword is used to declare the class, and this is

immediately followed by the identifier for the class, Shape in

this case. In this example, the class has a single property

called kind which should be of the type string.

In this case, the type is explicitly declared, but we could

avoid this, especially in the case of simple primitive types

like strings. If we don’t specify the type explicitly, the type of

the property will be inferred based on the value assigned to

the property in the constructor.

Following the property, there is a constructor function for the

class, which looks like a standard class method except that it

is called constructor. We’ll look at constructors in a little more

detail in just a moment.

While the previous code snippet looks very similar to a class

in regular JavaScript, TypeScript already diverges subtly.

Aside from the obvious type annotations on the kind class

property and constructor parameter, the fact that we are

specifying the property explicitly at all is something we

would only do in TypeScript.

In pure JavaScript, the class definition for an equivalent class

to Shape would look like this instead:

class Shape {

constructor(kind) {

this.kind = kind;

}

}

One small point to note here is that the Shape class in the

both the original code snippet, as well as the JavaScript

version, is a class declaration.

Class Expressions

As well as class declarations, we can also use class

expressions; this is where the statement that defines the

class begins with anything other than the class keyword, for

example:

const Shape = class {

… // identical to previous example

}

This time the class definition is stored in a variable called

Shape instead of the class identifier being Shape, although this

makes no practical difference.

As the statement begins with the const keyword and not the

class keyword, it is a class expression as opposed to a class

declaration. Aside from this, everything about the class

expression is identical to the class declaration.

Constructors

The TypeScript class example in the previous section

contained a constructor, which looked like this:

constructor(kind: string) {

this.kind = kind;

}

The constructor receives a single parameter called kind,

which is of the type string. With the strict configuration

setting enabled, we must specify a type for each parameter

passed to the constructor. If we do not do this, the

parameter will be inferred as the any type, which will produce

errors in the editor.

To create a new instance of the Shape class, we use the

constructor with the new keyword, passing any required

parameters, like this:

const myShape = new Shape(‘square’);

myShape.kind; // square

Inside the constructor, the value of the kind parameter

passed to the constructor is assigned to the class property

called kind. This is known as property initialization, and it is a

necessary step to avoid another error in the editor when the

strict configuration is enabled.

If we do not assign a value to all class properties that are not

initialized inside the constructor, we will see an error like this

instead:

Figure 8.1: No property initializer error in Visual Studio Code

The configuration setting that controls whether this causes

an error or not is strictPropertyInitialization.

NOTE: Class properties are sometimes referred to as

fields.

As well as assigning values to class properties inside the

constructor, we can also initialize properties inline, to give

them a default value, for example:

class Shape {

kind = ‘square’;

constructor(kind: string) {

}

}

In this case, the previous error will now be gone as the

property is definitely initialized.

Even if we assign a value to the property directly, as we

have here, we will still need to pass a parameter to the

constructor for the kind property., if we don’t do this, we’ll

see an error, for example:

const myShape = new Shape(); // error

Technically, we can also provide default values for the

parameters passed to the constructor, like this for example:

class Shape {

kind: string;

constructor(kind = ‘square’) {

this.kind = kind;

}

}

But in this case, we should still ensure the class property is

initialized inside the constructor when using default

parameter values. This approach will not cause errors in the

editor if we don’t pass the parameter to the constructor

when creating new instances of the class:

const myShape = new Shape(); // fine

But we can specify this if we wish:

const otherShape = new Shape(‘hexagon’); // also fine

Lastly, constructor parameters may also be explicitly marked

as optional, for example:

class Shape {

kind: string;

isEuclidian: boolean | undefined;

constructor(kind: string, isEuclidian?: boolean) {

this.kind = kind;

this.isEuclidian = isEuclidian;

}

}

This time the constructor receives a second parameter which

is made optional with the question mark immediately

following the identifier.

The type of the optional parameter can be set to just boolean,

but TypeScript will see it as the union boolean | undefined.

anyway, so we may as well specify the full union when

adding the type for the isEuclidian class property, to which

the constructor assigns the parameter.

We can use the constructor of the class to create instances

of the class, for example:

const ball = new Shape(‘sphere’, false);

If we try to use the constructor incorrectly, the editor will

warn us. If we passed a number as the first argument to the

constructor, for example:

const wrong = new Shape(123);

Then we will see this error in the editor:

Figure 8.2: Argument of wrong type error in Visual Studio Code

As with regular functions, TypeScript makes it impossible to

use a constructor function incorrectly.

Constructor Overloading

Another similarity between constructor functions and regular

functions in TypeScript is that constructor functions can be

overloaded, just like regular functions. This is another place

where TypeScript diverges from plain JavaScript.

To overload a constructor, we provide multiple variations of

the constructor, like this for example:

constructor(kind: string);

constructor(kind: string, isEuclidian: boolean);

constructor(kind: string, isEuclidian?: boolean) {

this.kind = kind;

this.isEuclidian = isEuclidian;

}

In this case, we provide a variation of the constructor that

receives only a single string parameter and a variation where

the constructor must receive both string and boolean

parameters.

The last constructor is the actual implementation and

contains the function body of the constructor. This

constructor must be able to represent all of the variations of

the overloads the constructor supports and is unchanged

from prior examples in this section.

The syntax is very similar to regular function overloading,

except that return types are not specified for each

constructor. This is due to the fact that constructors always

return instances of the class and never another value.

We can now use the constructor in all of the different ways

supported by the overloads, for example:

const tile = new Shape(‘square’, true);

const ball = new Shape(‘sphere’);

As before, TypeScript will warn us if we try to use the

constructor in a way that does not meet any of the overloads

and will display errors that should by now be familiar.

Parameter Properties

One more constructor feature of TypeScript is that we can

add access modifiers to parameters passed to the

constructor, and via this feature, TypeScript gives us an

incredibly useful short-cut to avoid having to manually set

the value of class properties to the values passed to the

constructor. The way that we use this feature is like this, for

example:

class Shape {

constructor(public kind: string, public isEuclidian?: boolean)

{}

}

This time we prefix both of the constructor parameters with

the public modifier in the parameter list. Notice that we don’t

have to list properties manually, and we don’t have to

explicitly set them in the constructor body – TypeScript does

this for us automatically.

This technique also works with the private, protected, and

readonly modifiers too. When used inside the parameter list,

the access modifiers are known as parameter properties. We

can still use the class in exactly the same way:

const block = new Shape(‘cube’);

console.log(block.kind); // cube

This can save time and a lot of repetitive, boiler-plate code

when using classes in TypeScript.

Access Modifiers

TypeScript supports a number of different access modifiers

that can be applied to class members; access modifiers are

used to control whether or not a class member is accessible

from outside of the class itself.

There are several different access modifiers that we can use:

public

private

protected

readonly

The first three, public, private, and protected are used to

control whether the member is visible outside of the class,

whereas the last, readonly, controls whether the member can

be assigned outside of the class constructor.

The public modifier means that the member can be accessed

outside of the class, as well as in sub-classes. The private

modifier means the member can only be accessed within the

class, not even by subclasses. The protected modifier means

that the member can be accessed within the class, or in any

subclasses, but not by code outside of the class.

It is possible to make the constructor function, as well as

methods of the class, protected, although this type of usage

is for advanced use-cases where we may wish to have a

constructor that is only visible to classes which extend it. We

will look at extending classes later in this chapter.

By default, all class members are public – members are

visible everywhere. The properties in all of the prior

examples are all public by default, even though we didn’t

explicitly specify this. We can also explicitly mark a class

member as public if we wish:

class Shape {

public kind: string;

public isEuclidian: boolean | undefined;

constructor(kind: string, isEuclidian?: boolean) {

this.kind = kind;

this.isEuclidian = isEuclidian;

}

}

In this case, both the kind and isEuclidian properties are

marked as public. Some people consider this explicit form to

be more readable, while others may consider it overly

verbose.

It is legal to add the private access modifier to a constructor,

but in this case, it will not be possible to create instance

objects, for example:

private constructor(kind: string, isEuclidian?: boolean) {

this.kind = kind;

this.isEuclidian = isEuclidian;

}

const hole = new Shape(‘circle’); // error

In this case, we will see the following error in the editor:

Figure 8.3: Private constructor error in Visual Studio Code

This may be the desired behavior if you are implementing

the Singleton design pattern, but outside of this, it is fairly

unusual to see. We’ll look at design patterns in more detail

towards the end of this chapter.

One point to note is that properties marked with the private

access modifier aren’t private once they become compiled

down to JavaScript. TypeScript will prevent us from accessing

it, but only in the development stage.

Even in TypeScript, we can still access private class members

from outside of the class – we just need to use square

bracket notation. Let’s take a look at a quick example:

class Shape {

private kind = ‘private’;

}

In this case, we have a version of the Shape class with only a

single property, kind, which is prefixed with the private

access modifier. If we create a new instance of this class and

try to access the kind property using standard dot notation:

const myShape = new Shape();

console.log(myShape.kind); // error

Then we’ll see an error in the editor similar to the one above.

However, we can easily access the private property using

square-bracket notation instead:

console.log(myShape[‘kind’]); // private

In this case, there will be no error in the editor, and if we

compile it into JavaScript and run it in a browser, we’ll see

the private member printed to the console.

Private Members in JavaScript

JavaScript lacked any concept of private members on classes

until ECMAScript 2022 when it introduced a new syntax to

mark class members as private. In pure JavaScript, the

syntax for this is the hash sign #.

For reference, we would use the modifier in regular

JavaScript like this:

class Shape {

#kind = ‘private’;

}

The symbol is prefixed to the beginning of the property that

is to be made private. JavaScript then enforces the same

checks as we see when using the private modifier in

TypeScript – if we try to use it outside of the class itself, we

see an error in the browser’s console warning us that the

member is not accessible.

Interestingly, if we use this syntax in TypeScript, then we will

still see appropriate errors in the editor if we try to access

the member outside of the class, just like if we had used the

private keyword.

Additionally, the syntax will be retained after the TypeScript

has been compiled down to JavaScript as long as we are

targeting es2022 or above in the tsconfig.json configuration

file, so using this now should be quite future-proof for some

time to come.

If we are targeting a version lower than es2022, then

TypeScript will emulate privacy using a Set, and if we try to

access it outside of the class, we’ll just see undefined.

This is very different from using the private modifier in

TypeScript; even when using the latest (at the time of

writing) es2022 target, the private modifier is simply removed,

and the “private” member becomes public and accessible,

which could expose data that we did not mean to expose.

In order to fully retain the # symbol after compilation, right

now we need to target ESNEXT, but going forward, I expect this

to fall into the es2022 target in some not-too-distant future

version of TypeScript, and I would hope that the private

keyword would also start to be compiled down to # rather

than using Set emulation or losing privacy altogether.

Getters and Setters

Two more access modifiers worth mentioning, and which are

supported by both JavaScript and TypeScript in classes, are

the get and set modifiers. These can be applied either singly,

or both together, on properties of the class to control how

access to those properties works.

These modifiers are used to perform custom operations, like

validation for example, when retrieving or assigning to a

class property that has them, and are often used to provide

limited access to private or protected properties of the class

without exposing those directly to code external to the class.

Let’s take a look at a basic example:

class Shape {

private _kind = ‘shape’;

private allowed = [‘square’, ‘rectangle’];

get kind(): string {

return this._kind;

}

set kind(value: string) {

if (this.allowed.includes(value)) {

this._kind = value;

} else {

console.error(‘Kind not allowed’);

}

}

}

In this example, the Shape class has a private _kind property

and a public kind property with both get and set modifiers.

The getter simply returns the value of the private _kind

property, providing proxy access to the private property

outside of the class.

We can also provide a return type annotation for the getter

property, string in this case. It has a second private property

called allowed, which is an array of strings.

The setter receives a value parameter which will be of the

type string – this will be the value that the consumer is

trying to set as the value of the property. We can provide the

annotation for the parameter here, but we cannot provide a

return type annotation for a setter – setters are not allowed

to return a value.

Inside the setter for the kind property, we first check whether

the value being set is one of the allowed kinds – if it is, we

set it as the value of the private _kind property. If it isn’t, we

instead log an error to the console.

We can initialize an instance of this class in the same way as

other class examples we’ve looked at:

const shape = new Shape();

If we try to set the kind property to a value not listed in the

allowed array, compile the code and run it in a browser, we’ll

see the error in the browser’s console, and the _kind property

will retain its original value:

shape.kind = ‘circle’; // error

console.log(shape.kind); // shape

When we provide a value that is listed in the allowed array,

then there will be no error, and the private _kind property will

be updated as expected:

shape.kind = ‘square’; // allowed

console.log(shape.kind); // square

This allows us to use getters and setters to provide validation

logic on properties before they are set or perform any other

custom behavior we wish to implement.

This Parameter

In the last chapter, we learned that functions can receive a

this parameter, which sets the value of the this object inside

the function. Methods inside classes may also make use of a

this parameter to set the value of this inside the method,

which is useful to ensure that the value of this inside the

function is what we expect it to be.

Consider the following code:

class Shape {

private _kind = ‘shape’;

getKind(): string {

return this._kind;

}

}

This variant of the Shape class has a private property called

_kind which is set to the string shape. It also has a method

called getKind which returns the value of the private property.

This is basically an alternative to the getter from the

example code in the last section.

If someone is using the class in the expected way, for

example:

const myShape = new Shape();

console.log(myShape.getKind()); // shape

Then, there will be no problems. But if the method is used in

a different calling context, then the value of this may not be

the containing class. For example:

const myObj = {

getKind: myShape.getKind

};

console.log(myObj.getKind()); // undefined

In this case, we create a new object called myObj and add a

getKind property, the value of which is the getKind method of

the myShape instance. When we invoke the getKind method of

myObj, the calling context will be myObj instead of the myShape

instance of the class, which will result in undefined being

returned.

Note also that we see no warnings in the editor for this issue,

which could lead to actual errors in the browser at runtime.

We can fix this issue using a this parameter in the definition

of the method in the class:

getKind(this: Shape): string {

return this._kind;

}

We set the this parameter to the containing class, which will

enforce the value of this inside the method, whichever way

the method is called. Immediately, we should see an error in

the editor warning us that there is an issue with the myObj

usage of the method:

Figure 8.4: Wrong this context error in Visual Studio Code

Using a this parameter to set the value of this to the

containing class has a similar effect to using an arrow

function for the method implementation, but this technique

works in a different way and has different pros and cons.

For example, using a this parameter is more efficient in

terms of memory usage because there will be only one

instance of the method that exists – the one in the class

definition. Using an arrow function means that a copy of the

method will exist in each instance of the class that gets

initialized, which could consume a lot of resource if there are

a great number of instances.

NOTE: Getters and Setters cannot use a this

parameter.

Index Signatures

Classes in TypeScript can also make use of index signatures,

just like object types, which we looked at earlier in the book.

Let’s look at a basic example:

class Shape {

[index: number]: string;

constructor(public kind: string, public isEuclidian?: boolean)

{

this[0] = crypto.randomUUID();

}

}

The index signature appears in square brackets; it is given

the identifier index in this example, but this can be anything

at all. It is of the type number for the index, and the type string

for the value.

Inside the body of the constructor in this example, we create

a random UUID (universally unique identifier) using the

randomUUID method of the global crypto object and assign it to

the zeroth index of the class.

NOTE: The global crypto object is a web API built into

modern browsers that give access to cryptographic

functionality.

Now when we create a new instance of the class, we will be

able to access this UUID via its zeroth index:

const plate = new Shape(‘circle’);

console.log(plate[0]); // a guid

Index signatures aren’t commonly used like this with classes,

and it can be awkward to add index signatures that are for

methods rather than simple properties like in this example.

Implementing an Interface

In TypeScript, we can say that a class should implement a

particular interface. Let’s say that we want to allow shapes

to be placed on a two-dimensional grid. First, let’s create a

simple interface called placeable:

interface Placeable {

left: number;

top: number;

};

We can now define a class that implements this interface, for

example:

class Shape implements Placeable {

left: number;

top: number;

constructor(public kind: string, coords: placeable) {

this.left = coords.left;

this.top = coords.top;

}

}

We use the implements keyword to state that the Shape class

should include all of the properties specified by the Placeable

interface. It can also define other members, and indeed, the

constructor specifies the kind property as a public property

with a type of string.

In order to meet the requirement of the interface, this

version of the constructor for the Shape class can also accept

an object called coords which also meets the Placeable

interface, that is, it should be an object with left and top

properties of the type number. These properties are then

initialized in the constructor body.

We can now create Shape instances and specify placement for

them:

const tile = new Shape(‘square’, { left: 0, top: 0 });

Implementing an interface is a useful way to enforce that

classes have particular members.

Note that we can specify both properties and methods of the

interface that are optional, for example:

interface Placeable {

left: number;

top: number;

zIndex?: number;

changeZIndex?: (newIndex: number) => void;

}

This interface has an optional zIndex property which has a

type of number, and an optional method called changeZIndex

which accepts a parameter with the type number and returns

void.

Static Class Members

One more class feature that we have not yet looked at, and

which is supported by both JavaScript and TypeScript, is the

static modifier. The static modifier is used to make a

property or method existing only on the class itself rather

than on object instances of the class.

Let’s see how to use them in practice in a basic example;

first, we can add a new variation of the Shape class:

class Shape {

private static shapeInstances: Shape[] = [];

constructor() {

Shape.shapeInstances.push(this);

}

static getShapes() {

return Shape.shapeInstances;

}

}

The first member uses both the private and static modifiers

for a property called shapeInstances, which will be an array of

Shape objects. This will be used by the base Shape class in this

example to keep track of all instances of the class and is

initialized to an empty array.

The constructor for this class adds the new instance of the

class (this) to the shapeInstances array. It is important to note

that in order to refer correctly to the shapeInstances property,

we must access it from the Shape class directly and not from

this.

Lastly, the class has a static method called getShapes which is

used to return the private static member shapeInstances.

Now, whenever we create new instances of the Shape class,

these instances will be added to the static property

shapeInstances. We can access these instances if we need to

via the static getShapes method, which is invoked on the Shape

class directly rather than on instances of the class, for

example:

const myShape = new Shape();

const myOtherShape = new Shape();

console.log(Shape.getShapes().length); // 2

Note that we call the getShapes method directly on the Shape

class, rather than on one of the instances like myShape or

myOtherShape.

Static properties and methods are useful when the

information or behavior we wish to use applies to the class

itself rather than to individual instances of the class. One

point to note is that we would probably only want to collect

all instances of a class if we knew in advance that there

would be a relatively small number of instances of the class.

Static Blocks

As well as static members, JavaScript and TypeScript also let

us define static blocks in classes. These can be used to

perform complex initialization of any static properties the

class has. Let’s see how they are used.

We can start out with a basic class that has a single static

property:

class Shape {

static allowedKinds: string[];

}

The class has a static property called allowedKinds which is an

array of strings. Let’s change the example to use a static

block to initialize this property:

class Shape {

static {

Shape.allowedKinds = [‘square’];

}

}

A static block is created with the static keyword followed by

a block of statements within curly brackets. In this case, we

just hardcode an array with a single string value, but in

reality, this could be the result of a function call or anything

more complex that we need to do.

Finally, we can add a constructor to the class that checks

that the instance being created has an allowed kind:

constructor(public kind: string) {

if (!Shape.allowedKinds.includes(kind)) {

throw new Error(`’${kind}’ not allowed`);

}

this.kind = kind;

}

The constructor accepts a parameter called kind, which is of

the type string, and inside the constructor it checks whether

the kind is included in the static allowedKinds array. If it isn’t,

we can throw an error in this example.

Now, we can create instances that do have an allowed kind,

for example:

const shape1 = new Shape(‘square’); // fine

But we’ll see an error if we try to use a kind that isn’t

allowed:

const shape2 = new Shape(‘circle’); // Error: ‘circle’ not

allowed

For reference, the complete definition of the class should

look like this:

class Shape {

static allowedKinds: string[];

static {

Shape.allowedKinds = [‘square’];

}

constructor(public kind: string) {

if (!Shape.allowedKinds.includes(kind)) {

throw new Error(`’${kind}’ not allowed`);

}

this.kind = kind;

}

}

While the example here is not particularly useful unless the

consumer of the class knows in advance which kinds of

shapes are actually allowed, the takeaway is that static

blocks can be used to initialize static properties where the

initialization may be more complex than a simple

assignment.

Multiple static blocks can be used in a single class, and

where more than one static block is provided, they will be

executed sequentially in the order in which they are

declared.

Inheritance

In JavaScript, subclasses of a class are created using the

extends keyword, and in TypeScript, it is no different.

Inheritance is a powerful feature of JavaScript that can allow

us to create hierarchies of related objects with shared

functionality, and this can help us to keep our code modular

and organized.

Let’s start with a version of the Shape class from prior

examples:

class Shape {

constructor(public kind: string, public isEuclidian?: boolean)

{ }

}

We can create a more specific subclass of this to represent

actual concrete shapes:

class Square extends Shape {

constructor(public sidesLength: number) {

super(‘square’, true);

}

getArea(): number {

return this.sidesLength ** 2;

}

}

In this case, we define a new class called Square and use the

extends keyword to specify Shape as the base class. In the

constructor of the subclass, we can receive a new parameter

called sidesLength, which should be of the type number, and

we use a constructor property to avoid having to explicitly

initialize the new property.

Inside the constructor, we can call the constructor of the

base class using the super keyword, and here we pass in the

appropriate arguments to set the kind and isEuclidian

properties required by the base class.

NOTE: Subclasses are sometimes referred to as

derived classes.

As well as adding new properties, subclasses can also add

methods, and in the previous example, we add a method

called getArea, which returns a value of the type number. Inside

the method, we return the result of using the exponentiation

operator ** to raise the sidesLength property to the power of

two.

Any instances of the Square class we create will have all of

the properties and methods of both the base and derived

class, for example:

const myShape = new Square(3);

console.log(myShape.getArea()); // 9

console.log(myShape.kind); // square

Additionally, the subclass may override methods on the base

class, changing their behavior. Let’s add a new method to

the base class to illustrate this:

class Shape {

constructor(public kind: string, public isEuclidian?: boolean)

{ }

logKind(): void {

console.log(‘Base kind: ‘, this.kind);

}

}

This time we add a method to the base class called logKind,

which simply logs a brief message to the console and

references this.kind. Now let’s extend that with a simple

subclass:

class Square extends Shape {

logKind(): void {

console.log(‘Derived kind: ‘, this.kind);

}

}

In the derived class, we don’t need to specifically add a

constructor unless we want to accept different parameters.

We do add a method to this class with the same name as the

method we want to override on the base class – logKind.

Now let’s create some new instances:

const generic = new Shape(‘shape’);

const box = new Shape(‘cuboid’);

Even though the derived class doesn’t even have a

constructor, we can still pass it an argument for kind and that

argument will still be set as the kind property on the class,

just as it is with the base class.

When we call the logKind method of the base and derived

class, we should see each message respectively:

generic.logKind(); // Base kind: shape

box.logKind(); // Derived kind: cuboid

Once the TypeScript for this example has been compiled,

when we view it in a browser, we should see the log

messages as expected:

Figure 8.5: Compiled output in the Chrome browser on Windows

In this example, all we did was override the message that

gets logged to the console, but in reality, we can do anything

that we need to. Classes in TypeScript can both implement

an interface and extend a base class simultaneously as well.

Subclasses are inherently polymorphic in TypeScript, as

derived classes may each perform their own specialized

versions of methods inherited from the parent class.

Polymorphism is a feature of many object-oriented

languages, and TypeScript is no exception.

Abstract Classes

An abstract class is a class that should not be instantiated

directly, instead only instances of derived classes that

extend the abstract class should be created.

While JavaScript indirectly supports abstract classes via

functions and prototype checking during initialization,

JavaScript itself does not implement the abstract keyword –

this is purely a TypeScript device at this, and for the

foreseeable, time.

Abstract classes are useful when we wish to define a

common base class with default behavior for a range of

classes that extend the base class. Think of an abstract class

as a template for other classes to extend and build upon.

In the previous section, we created a subclass of the Shape

class called Square and because the Shape class was a regular

class, we could create instances of either the Shape class or

the Square class.

We can change this so that instances of the Shape class

cannot be directly instantiated by making the class an

abstract class:

abstract class Shape {

constructor(public kind: string, public isEuclidian?: boolean)

{ }

}

We use the abstract keyword to make the class abstract. We

can still extend it with another class as we did before:

class Square extends Shape {

constructor(public sidesLength: number) {

super(‘square’, true);

}

}

Now, we can only create instances of the Square class, and

not the base Shape class. If we try to create a new instance of

the Shape class, for example:

const badShape = new Shape(‘triangle’);

Then, we’ll see this error in the editor:

Figure 8.6: Abstract class instance error in Visual Studio Code

Abstract classes are useful when the base class lacks

functionality that is only implemented in extending classes.

Abstract Properties

Abstract classes may also contain abstract properties and

abstract methods. These are properties and methods that do

not contain a value or implementation themselves, but

classes that extend them must initialize them if they are

properties, or implement them if they are methods. You

cannot use the abstract modifier on a parameter property.

Consider the following code:

abstract class Shape {

abstract kind: string;

constructor(public isEuclidian?: boolean) { }

}

This time we have pulled the kind property out of the

constructor function and made it an abstract property of the

class instead of using the abstract keyword.

Now, classes that extend the Shape class must initialize a

property called kind with a string value:

class Square extends Shape {

constructor(public kind: string, public sidesLength: number) {

super(true);

}

}

In this case, we can use a parameter property to initialize the

kind property for convenience, but we could also initialize it

inside the constructor manually if we wished.

One point to note is that only abstract classes may contain

abstract properties (or abstract methods).

You should also note that we can use the abstract modifier in

conjunction with other modifiers like public or private. In this

case, the abstract keyword should come after the

public/private modifier, for example:

abstract class Shape {

public abstract kind: string;

constructor(public isEuclidian?: boolean) { }

}

Note that the same applies when using private or protected.

Abstract Methods

In addition to abstract properties, we can also apply the

abstract modifier to methods. For these, we provide only the

signature of the method, not the implementation – this is left

for subclasses to implement, for example:

abstract class Shape {

constructor(public kind: string, public isEuclidian?: boolean)

{ }

abstract getKind(): string;

}

In this variation of the Shape class, we revert to specifying

kind as a parameter property rather than defining it as an

abstract property. We added a single abstract method called

getKind and specified that it should return a value of the type

string.

We can now extend this class with a new subclass – let’s go

with a simple Square class as in previous examples:

class Square extends Shape {

constructor(public kind: string, public sidesLength: number) {

super(‘square’, true);

}

getKind(): string {

return this.kind;

}

}

This class successfully extends the base class because it

implements a getKind method which returns a string value. If

we extend a class and fail to implement any of the base

class’s abstract methods, we’ll see the following error in the

editor:

Figure 8.7: Abstract method does not implement error in Visual Studio Code

Generic Classes

Like objects and functions, classes in TypeScript can also be

generic, allowing them to work over a range of different

types. The syntax of generic classes is similar to that of

other generics, for example:

class Shape<T> {

constructor(public kind: T) {}

}

We specify that the class is generic by providing a type

parameter in angle brackets after the class identifier. As

before, the convention here is to use T, but you can use

whatever you prefer. We can use this parameter elsewhere

inside the class; here a parameter property is used to

initialize the kind property, which will be the type of the type

parameter.

We could then have some other classes which corresponded

to actual shapes:

class Square {

constructor(public sidesLength: number) {}

}

class Triangle {

constructor(

public sidesLength: [number, number, number],

public angles: [number, number, number]

) {}

}

In this example, we have a simple Square class that has a

sidesLength property, and a Triangle class that has properties

for the sidesLength and also angles. Both of these are tuple

types of three numbers.

At this point, we can create concrete shapes like squares and

triangles:

const mySquare = new Square(3);

const myTriangle = new Triangle([2, 2, 2], [60, 60, 60]);

And we can also create new Shapes instances which use the

actual shapes as types:

const myShape = new Shape(mySquare);

const otherShape = new Shape(myTriangle);

console.log(myShape.kind); // Square

console.log(otherShape.kind); // Triangle

In this case, the whole kind object will be displayed in the

console log messages in the browser’s console once the

code has been compiled:

Figure 8.8: Kind objects logged to console in the Chrome browser on Windows

We can also use the Shape class for other types, such as

arrays containing shapes of any type, or arrays containing

only specific types of shapes:

const allShapes: Shape<any>[] = [myShape, otherShape];

const allSquares: Shape<Square>[] = [myShape];

We can also use generic constraints as we did with generic

functions, and the syntax here would be the same.

Decorators

The latest versions of TypeScript (5.0.0 and above) provide

support for the upcoming JavaScript decorators syntax.

Decorators provide a way of modifying a class, or members

of the class, with extra functionality whenever the class is

used with the decorator.

For example, we can add a decorator to a class that

automatically adds a new property to the class whenever a

new instance of the class is created.

A decorator is essentially just a function:

function Decorated(target: typeof Shape) {

return class extends target {

kind = ‘decorated-shape’

}

}

The function will automatically be passed a target as a

parameter, which in this case is the type of the Shape class.

Inside the function we return a class which extends the

target class and assigns a property called kind to the class

instance with the string value decorated-shape.

When we define a new class, we can use our decorator to

decorate the class with the new property:

@Decorated

class Shape {}

The decorator we use is specified before the class keyword

and must begin with the @ character. Note that the Shape class

in this example is completely empty, but as we have

decorated it with the Decorated decorator, instances of this

class will contain a property called kind with the value

decorated-shape:

const myShape = new Shape();

(myShape as any).kind; // decorated-shape

Note that we must cast the type of our instance to any in

order to access the kind property.

Stylistically, the decorator may appear on the same line as

the class keyword if we prefer, and we can use multiple

decorators for the same class, so we could do something like

this if we wished:

function Decorated(target: typeof Shape) {

return class extends target {

kind = ‘decorated-shape’

}

}

function DecoratedAgain(target: typeof Shape) {

return class extends target {

special = ‘decorated again!’

}

}

@Decorated

@DecoratedAgain

class Shape {}

const myShape = new Shape();

(myShape as any).special; // decorated again!

Note that when using multiple decorators, the decorators are

applied in reverse order, so in this case, the DecoratedAgain

decorator is applied to the class first, followed by the original

Decorated decorator, and inside the Decorated decorator, we

would be able to see and operate on the special property

added by the DecoratedAgain decorator. The order of

decorators thus becomes important if one of the decorators

relies on functionality added by another decorator.

NOTE: At the time of writing, in the tsconfig.json file,

the target property must not be set to CommonJS

and experimentalDecorators must be set to true for

decorators to be used.

TypeScript Design Patterns

Design patterns are a recognized optimal solution to a

common problem in software development. They exist for all

common programming languages and both JavaScript and

TypeScript are no exception.

There are many commonly used design patterns, and they

can be the subject of entire books, so we will cover only a

single one here as an example of a very commonly used

design pattern in TypeScript – the Observer pattern.

The Observer pattern is a design pattern that allows objects

to have observers added to them that are notified when the

value being observed changes.

This can be a very complex solution indeed – the popular

RXJS framework is dedicated to providing observable objects

with huge amounts of functionality and specialized behavior.

We will look at a much-simplified example here that has only

extremely limited functionality in comparison.

The common problem that we would like to solve with the

Observer pattern is to be able to respond to changes in a

particular object’s value. Typically, this is done by allowing

observers or subscribers to be added to an object. These

observers are functions that will be invoked whenever the

value of the object being observed changes.

Let’s start by adding an Observable class:

abstract class Observable<T> {

private observers: ((update: T) => void)[] = [];

constructor(public value: T) {}

observe(observer: (update: T) => void) {

this.observers.push(observer);

}

notify() {

this.observers.forEach((observer) => observer(this.value));

}

}

We use the abstract keyword to prevent this class from being

initialized directly, and we make it generic by adding a T type

parameter so that it can work on different types. The class

has a parameter property that initializes a property called

value, which will be of the T type parameter.

The class has a private observers property which will contain

all of the functions that are registered as observers. These

functions will receive a parameter called update, which will

also be of the generic T type and won’t return a useful value,

so is marked as void. This property is initialized to an empty

array.

The observe method is used to add an observer to the private

array of observers. This method receives the function to add

to the array of observers, so this has the same type as the

observers inside the observers array. Inside the method, the

observer is pushed into the array.

Lastly, the class has a method called notify. This method is

used to broadcast to the observers that the value has

changed. It uses forEach to visit each observer in the array

and invokes each of them, passing them the updated value.

We can now create other classes that are observable by

extending the Observable class, for example, we could create

an ObservableString class:

class ObservableString extends Observable<string> {

updateValue(value: string) {

this.value = value;

this.notify();

}

}

This class has a method called updateValue, which is used to

set the object’s value property and call the object’s notify

method, which will trigger the broadcast to any observers.

We can now create instances of ObservableString and observe

their values:

const myObservableString = new ObservableString(‘test’);

myObservableString.observe((update: string) => {

console.log(`The value was updated to ${update}`);

});

In this case, we create a new ObservableString with the value

test. We then observe the value by adding an observer using

the observe method. The function that we pass to this method

simply logs the new value that was updated to the console.

Now, whenever we update the value of the object using the

updateValue method, we will see the message from the

observer logged into the console:

myObservableString.updateValue(‘new!’); // The value was

updated to new!

There are many, many design patterns for TypeScript and

becoming familiar with them enables you to talk about

software development in a common language that many

other developers will be able to understand. They can teach

you a lot about both TypeScript and application

development, so I would urge you to continue learning about

them.

Conclusion

In this chapter, we’ve taken a good look at classes in

TypeScript and seen how to use all of their core functionality

and leverage TypeScript to make using them as intuitive and

safe as possible.

In the next chapter, we’ll move on to look to start looking at

some of the more advanced aspects of TypeScript, starting

with control flow analysis, which is the practice of narrowing

types from a wide range of different possible types down to a

specific type.

References

https://www.typescriptlang.org/docs/handbook

https://blog.jetbrains.com/webstorm/2019/03/writ

e-object-oriented-typescript-polymorphism

https://2ality.com/2021/09/class-static-block.html

https://refactoring.guru/design-

patterns/observer/typescript/example

https://compiletab.com/private-constructor-

typescript

https://www.typescriptlang.org/docs/handbook
https://blog.jetbrains.com/webstorm/2019/03/write-object-oriented-typescript-polymorphism
https://2ality.com/2021/09/class-static-block.html
https://refactoring.guru/design-patterns/observer/typescript/example
https://compiletab.com/private-constructor-typescript

CHAPTER 9

Control Flow Analysis

Introduction

In this chapter, we are going to look at some of TypeScript’s

more advanced concepts and features, things that so far, I

may have hinted at when looking at other aspects of

TypeScript, but not really covered in full, to avoid detracting

from the topic we were covering at the time.

Now that we’ve covered the basics of TypeScript, it’s time to

take a deep dive into some additional aspects of how it

works to really build that solid foundation of understanding

TypeScript. The first of these aspects is something called

Control Flow Analysis, which is what the TypeScript compiler

uses in order to infer the types that we’re using if they aren’t

explicitly annotated.

Control Flow Analysis uses the process of narrowing to

determine the most specific type a value may be, and there

are times that we will also need to use narrowing manually

with type-guards in our own code in order to satisfy the

compiler that we are fully accounting for any of the possible

types that a value might have. This occurs mostly when

using union types or dealing with optional parameters.

Structure

In this chapter, we will cover the following topics:

Narrowing

Widening

Type guards

Type predicates

Discriminated unions

Assertion functions

Using as const

Narrowing

Narrowing is the process of removing possible types that a

value may have until there is (usually) only a single type left,

which should be the most specific type possible. This is most

keenly demonstrated with union types; for example, consider

the following code:

const which: string | number = ‘str’;

which.concat(‘a’);

On the first line, ignore momentarily that we’ve assigned a

string literal value to the which variable, the type is set to the

union type string | number, and if we hover over the identifier

on that line, we’ll see the type is definitely the full union

type:

Figure 9.1: Union type tooltip in Visual Studio Code

On the second line, because we explicitly set the value of the

which variable to an actual string literal on the first line, the

compiler can narrow the type down from either string or

number to just string. If we hover over the identifier on the

second line, we do indeed see that the type is no longer the

union type, but a single specific type - string:

Figure 9.2: Narrowed type tooltip in Visual Studio Code

This is an example of how the compiler narrows types and is

the reason we are able to safely call the concat string method

on the which variable without causing the editor to display

any errors.

Narrowing is also something we’ll need to do ourselves from

time to time as well, and we’ll look at that in just a moment.

Widening

Widening is the opposite of narrowing – taking a more-

specific type and making it less specific. Unlike narrowing,

widening is not something we do ourselves in our own code

very often at all, and not generally something that we have

to worry about or consider, but let’s see a very basic

example of a kind of widening – literal widening – for

completeness’ sake.

Let’s again consider some very basic code:

const num1 = 1;

let num2 = 2;

The previous code snippet is just two very simple variable

declarations with assignments, we haven’t even added any

actual type annotations. The key point here is that one of the

variables is declared with const, and the other with let, and it

is this which triggers the different treatment of these two

variables in TypeScript.

If we hover the mouse on the first line, we’ll see that the num1

variable has been given the literal type 1:

Figure 9.3: Literal type tooltip in Visual Studio Code

The second line looks almost identical, the only differences

are that the variable is declared using let this time, and the

value assigned is the literal value 2. The literal value 2 is still

the literal type 2, just like the literal value 1 is the literal type

1, but if we hover the pointer on the second variable, we’ll

see that this variable has a different type:

Figure 9.4: Widened type tooltip in Visual Studio Code

This time, the compiler has widened the type from the

entirely specific literal type 2 to the less specific type number.

The reason the second variable is widened is because it’s not

a constant value, it could change while the program is

running and so may no longer be the literal type 2, it could

be any other literal number type, so it has to be widened to

number to account for that.

In addition to numbers, the other primitive types string and

boolean may also be widened by the compiler, and enum

members are widened to the type of the enum itself.

This is really all that we need to know about widening – the

compiler does it in certain limited situations, but it shouldn’t

make any difference to how we write our own code unless we

take it as a possible sign that variables declared with const

are preferred over those declared with let as they give the

compiler slightly less work to do. I’ll leave it up to you to

decide.

Historically, the types null and undefined were widened to the

type any, but in current versions of TypeScript, as long as the

configuration is strict, or the strictNullChecks option is

enabled, this no longer happens.

Type Guards

A type-guard is a way for us to manually perform narrowing

in our own code, which we’ll need to do when working with

union types or optional parameters for example.

There are several different kinds of type guards that we can

use, depending on the situation, and all of them are based

on using conditional logic, and one of several different

operators, to determine and handle the precise type that a

value has.

Truthiness Type Guards

Perhaps the simplest type guard we can write is a type guard

that uses truthiness to narrow a type. Consider the following

example; imagine we have a simple type to represent a

wrapper for strings:

type Wrapper = {

contents?: string;

}

The string property contents is optional, therefore its type is

actually not just string but the union string | undefined

(another example of the compiler widening a type behind the

scenes). This means that if we create an object and set its

type to Wrapper, if we want to use the contents property in

some way as if it is a string, like this for example:

const myWrapper: Wrapper = {};

‘’.concat(myWrapper.contents);

We will need to narrow the type down from string | undefined

to just string. If we don’t do this, we’ll see an error in the

editor like in the following figure:

Figure 9.5: Undefined is unassignable to string error in Visual Studio Code

To narrow the type in this example, we can use a simple

truthiness type-guard to ensure that the property exists, and

is therefore a string:

if (myWrapper.contents) {

‘’.concat(myWrapper.contents);

}

The contents property will have a truthy value as long as it is

not an empty string. An empty string, or an undefined value if

the property doesn’t exist, is coerced to the value false and

is therefore not truthy. We don’t even need to use an

operator in simple cases such as this.

Now the error shown in Figure 9.5 will disappear as we only

use the property in a string context when we know that the

property exists. If we hover the mouse over the contents

property inside the body of the if statement, we see that it

is successfully narrowed down to the type string:

Figure 9.6: Narrowed string type tooltip in Visual Studio Code

Now let’s move on to look at some additional types of

narrowing.

Narrowing with Typeof

Another very common form of type guard uses the typeof

operator to check what type a value has. We looked at a

basic example of using this operator earlier in the book, but

let’s look at another quick example.

Let’s consider an example where we have a function that

may receive either a string or a number, and then needs to

return the first three digits of whatever it was passed:

function getIdPrefix(id: string | number) {

if (typeof id === ‘string’) {

return id.slice(0, 3);

} else {

return id.toString().slice(0, 3);

}

}

The id parameter is a union type of string | number, so before

we can do anything with it inside the getIdPrefix function, we

need to manually narrow the type down to either string or

number. The typeof operator returns a string that tells us what

is the type of the value that follows the operator.

In this example, we can first check whether typeof returns

the value string, and if it does, we have narrowed the type

down to string, and we can safely call string methods like

slice on it.

As the union contains only two types, we don’t even need to

check the return value of typeof in the else branch – if the

value returned by typeof is not string, then it must logically

be number, as these are the only members in the union, so in

the else branch, we can safely call number methods, like

toString, on the value without seeing any errors.

We aren’t restricted to using an if statement for a type

guard, we could equally use a switch statement instead for

the same effect:

switch (typeof id) {

case ‘string’:

return id.slice(0, 3);

case ‘number’:

return id.toString().slice(0, 3);

}

While entirely valid, it does seem overkill to use a switch

statement when working with a union of only two types, so

the recommendation would be to only use it in cases where

there are three or more members in the union.

Handling null Values

One thing to be aware of with regard to the typeof operator is

how it treats null values. The string ‘null’ is the only

primitive representation that the typeof operator doesn’t

return, instead, it returns the string ‘object’ when it

encounters null. This is because JavaScript also exhibits the

same behavior since it was initially created so TypeScript

mirrors this behavior to avoid confusion.

TypeScript will warn us if we are working with an object that

might be null. For example, consider the following code:

type Rocket = { launch: () => void };

function attemptLaunch(rocket: Rocket | null) {

rocket.launch();

}

In this case, we specify a type called Rocket, which is for

objects that have a launch method. We then have a function

called attemptLaunch which receives a single parameter that

might be a Rocket object, or it might be null.

Immediately, inside the attemptLaunch function, TypeScript will

highlight the use of the rocket parameter as an error, and

display a message that the object might be null, like in the

following figure:

Figure 9.7: Object is possibly a null error in Visual Studio Code

The solution is to narrow the value down to the type that we

think it is when trying to use the launch method, like this:

if (rocket !== null) {

rocket.launch();

}

We just need to check that the parameter is not equal to

null. Now the error will go away as we have satisfied the

compiler that the object has the expected type before trying

to call methods on it.

Note that we could also use a truthiness check here instead:

if (rocket) {

rocket.launch();

}

The behavior here would be the same.

Narrowing with Instanceof

As well as using the typeof operator to narrow types, we can

also use the instanceof operator to check that an object is of

the expected type. This time, imagine we have a couple of

classes:

class Employee {

work = () => console.log(‘Working’);

}

class Manager {

manage = () => console.log(‘Managing’);

}

Each class has a single method, either work for the Employee

class or manage for the Manager class. Now consider a function

that receives an object which may be an instance of either of

these two classes:

function work(emp: Employee | Manager) {

// do something with emp

}

TypeScript won’t let us call any of the emp parameter’s

methods until we narrow the type down to one of the two

union members, if we try to call the work method, for

example, we’ll see a familiar error that the property does not

exist on the union type of Employee | Manager because it

doesn’t exist on Manager:

Figure 9.8: Property does not exist on type error in Visual Studio Code

We can’t use the typeof operator here because we are

working with custom classes which the typeof operator will

not return strings for. Instead, we can use the instanceof

operator, like this:

if (emp instanceof Employee) {

emp.work();

} else {

emp.manage();

}

We can use the instanceof operator to check whether the emp

object is an instance of the Employee class, and if it is, we can

safely call the work method. If it isn’t the Employee class, it

must be an instance of the Manager class, and we can instead

call the manage method.

If we hover over the object in each branch, we can see that

the union type is successfully narrowed down to a single

type:

Figure 9.9: Narrowed instance tooltip in Visual Studio Code

One point to note is that the instanceof operator only works

with classes, it doesn’t work with type aliases or interfaces.

In the next section, we’ll see a different operator that we can

use for types and interfaces if this is required.

Narrowing with the in Operator

In JavaScript, the in operator tells us whether the property

exists in an object or its prototype chain. In TypeScript, we

can use it to tell whether an object confirms to a specific

type or interface. Consider the following example code:

type SaveLocally = {

saveInLocalStorage: () => boolean;

};

type SaveRemotely = {

sendToApi: () => boolean;

};

We define two type aliases, one called SaveLocally, which has

a method called saveInLocalStroage, and another called

SaveRemotely, which has a method called sendToApi.

For a function that receives an object which may be one of

the previous two types, we can use the in operator to narrow

the type down to a specific member of the union:

function save(item: SaveLocally | SaveRemotely): boolean {

if (‘saveInLocalStorage’ in item) {

return item.saveInLocalStorage();

} else {

return item.sendToApi();

}

}

In the first branch of the if statement, we check whether the

method saveInLocalStorage exists in the item object using the

in operator. If it does, we can call the method safely. As the

union has only two types, we can use the else block to call

the sendToApi method if the in operator in the first branch

returns false.

You should note that we can also use the in operator with

interfaces and classes, not just types as we did in this

example.

Narrowing with Type Predicates

A type predicate is a special kind of return type that makes

use of the TypeScript-only is operator. We can use a type

predicate to create a custom type guard that can test that an

object is of the expected type so that we can call the

methods on it that we expect it to expose.

For this example, imagine we are writing software for a

factory that can produce different types of machines, and

that we have a union type that represents the different types

of machines the factory can produce:

type MachineKind = ‘robot’ | ‘drone’;

We might also have an interface that represents generic

machines:

interface Machine { kind: MachineKind; }

Then we might have a series of different classes for the

specific kinds of machines that may be produced:

class Humanoid implements Machine {

kind: MachineKind = ‘robot’;

walk() { /* do walking */ }

}

This class is for Humanoid machines, which implement the

Machine interface and has a kind property of the MachineKind

type that was defined first, the value of which is set to the

string robot. Now we can create instances of the Humanoid

class:

const terminator: Machine = new Humanoid();

This instance will be of the type Machine. We would expect

this instance to have a walk method given that we know the

Humanoid class defines one, however, if we try to call the

method, like this:

terminator.walk();

TypeScript won’t let us, and will display an error in the editor

instead:

Figure 9.10: Property does not exist error in Visual Studio Code

In this case, because the Humanoid class implements the

Machine interface, but this interface doesn’t specify the walk

method, TypeScript can’t be certain that the object will

contain a method called walk.

We can create a custom type guard which uses a type

predicate to convince TypeScript that the walk method can

safely be invoked:

function machineIsHumanoid(machine: Machine): machine is

Humanoid {

return machine.kind === ‘robot’;

}

We know that Humanoid instances have a kind property, which

comes from the Machine interface, and that this will be set to

the literal type robot for machines that have a walk method,

so the type guard can simply return true if the kind property

of the machine it is passed is equal to the string robot.

The type predicate is the return type of machine is Humanoid. –

an assertion of the type the parameter is. On the left of the

is operator is the parameter passed to the function, and on

the right side is the thing we want to match, the Humanoid

class in this example. The left side must match an argument

passed to the function.

Note that we don’t have to verify the object is of the

expected type by checking an internal property matches a

particular union member, we can perform any kind of check

that we like.

For example, inside the machineIsHumanoid function, we could

check for the existence of the walk method instead of

comparing the kind property with the MachineKind type:

function machineIsHumanoid(machine: Machine): machine is

Humanoid {

return ‘walk’ in machine;

}

This would make no difference to the overall example or how

it works. Now, we can wrap the usage of the walk method in a

simple conditional that uses the machineIsHumanoid function to

determine the type of object we are working with:

if (machineIsHumanoid(terminator)) {

terminator.walk();

}

This will satisfy TypeScript that the object is of the expected

type. Outside of the if statement, the terminator variable has

the type Machine, but inside of it, the type is narrowed to

Humanoid.

You should also note that the example in this section would

work equally as well using instanceof narrowing instead of a

type-predicate, and lead to exactly the same type being

narrowed, but the thing to remember is that type predicates

give us much more control over how the type is narrowed,

and so become more useful in more advanced scenarios.

Discriminated Unions

A discriminated union is a special type of union where each

member of the union has a unique value for a property that

is shared by all members of the union. The unique property

is known as the discriminator. We can use these to make

checking for a particular type within the union easier.

Consider an application that deals with vehicle rentals for

different types of vehicles. We may have interfaces

representing each type of vehicle:

interface Car {

drive: () => void;

}

interface Truck {

haul: () => void;

}

interface Plane {

fly: () => void;

}

Each interface specifies a different method. We may also

have a general type that is a union of all of the interfaces:

type Vehicle = Car | Truck | Plane;

In an all too familiar scenario, we might have an object of the

type Vehicle, but then try to interact with that object as if it

were a narrowed type rather than a union type:

const myJet: Vehicle = {} as any;

myJet.fly();

In this case, TypeScript will complain about the use of the fly

method on the myJet variable because some members in the

Vehicle union don’t have a fly method and will show the

same ‘property … does not exist on type …’ error that we

saw in Figure 9.10 in the last section.

In this example, the object literal assigned to the myJet

variable uses as any to avoid having to define the fly method

– if we do add a fly method, then TypeScript will narrow the

type of myJet to Plane based on the fact that the object has a

fly method and so must be of the type Plane. As previously

mentioned, in production code, we should avoid using the any

type wherever possible to avoid bugs creeping into our code.

We can improve the union by making it a discriminated

union. To do this, we need to add a discriminator – the

shared property that each interface in the union contains,

but each with its own unique value:

interface Car {

drive: () => void;

kind: ‘car’;

}

interface Truck {

haul: () => void;

kind: ‘truck’;

}

interface Plane {

fly: () => void;

kind: ‘plane’;

}

Now, each member of the union has a kind property that

contains a unique literal type. When we create an object and

use the Vehicle type, we are now forced to add a kind

property matching one of the literal types of the union

members:

const myJet: Vehicle = {

kind: ‘plane’,

fly: () => { /* do flying */ }

};

myJet.fly();

TypeScript can now discriminate between the different

members of the union based on the kind property that we

assign to our object – we don’t have to use conditional logic

here to check the type of object before calling its methods –

TypeScript will already know.

Note that we can no longer get away with giving the object

the type any – if we want to call the fly method, not only

does the object have to be discriminated to the type Plane,

but it also must have a fly method to call.

NOTE: The MachineKind example from the previous

section is also a type of discriminated union.

Assertion Functions

Assertion functions are very similar to custom-type guards

and are equally as powerful and expressive. One of the main

differences between type guards and assertion functions is

their return values or lack thereof.

As we learned earlier, a custom type guard returns true if the

value being checked is of the expected type, or false if it is

not. Assertion functions on the other hand, only return if the

value being checked is of the expected type. If the value is

not of the expected type, they should instead throw an error.

There are two different variations of assertion function in

TypeScript; the first kind is a simple condition-assert, let’s

take a look at this kind first.

Imagine we have some similar but fundamentally different

types:

type User = { name: string; getName?: () => string; }

type Artifact = { id: string, getId?: () => string; }

Both of the types have a string property, and both have a

method that takes no parameters and returns a string. This

is where the similarities end however as the property and

method in each type have different identifiers.

Now consider creating an object that may be one of either of

these two types:

const mightBeUser: User | Artifact = {

name: ‘test’,

getName: () => ‘test’,

};

Although the object is of the type User | Artifact, it certainly

looks like it’s a User object – it has a name property which is a

string, and it has a getName property which returns a string.

However, if we try to call the getName method of the

mightBeUser object, we’ll see an error in the editor informing

us that the method may be undefined (the method is

optional after all).

Figure 9.11: Object is possibly an undefined error in Visual Studio Code

We can use a condition-assert assertion function to

overcome this issue:

function assertIsUser(test: any): asserts test {

if (!test) throw new Error(‘Not a valid user’);

}

The assertIsUser function receives a test condition that it

should assert and has the special return type asserts test –

the part after the asserts keyword is the thing being

asserted, the test or condition to evaluate. This return type is

known as an assertion signature, and in this example, is

asserting that the test argument is not null or undefined –

it’s not asserting that the argument is specifically of the type

User.

Inside the function, if the test fails, we simply throw an error;

we don’t need to add a return statement if the test being

asserted does pass, we just need to throw an error if it

doesn’t.

Now, before trying to call the getName method, we just need to

assert that the method exists, for example:

assertIsUser(mightBeUser.getName !== undefined);

The test we want the function to perform is a simple check

that the getName method does not equal undefined.

Now, as long as we only try to call the getName method after

the line where we call the assertion function, we can avoid

errors in the editor, and if we pay attention to the type of the

mightBeUser object at different points in the code, we can see

that prior to the assertion, the type is the union type:

Figure 9.12: Union type tooltip in Visual Studio Code

But after the assertion is made, the type is successfully

narrowed to User:

Figure 9.13: Narrowed type tooltip in Visual Studio Code

In the preceding example, we weren’t explicitly confirming

the type of anything, only that some condition, that the

object had a method called getName, evaluated to true.

The other form of assertion function uses a slightly different

form of assertion signature to confirm the actual type of

something, let’s see it in action.

We can stick with the same types we used in the previous

example, but this time, let’s make the getName and getId

methods mandatory in both of the types:

type User = { name: string; getName: () => string; }

type Artifact = { id: string, getId: () => string; }

Now, this time imagine we have a function that receives an

object which may be one or the other of the two types:

function getName(obj: User | Artifact) {

return obj.getName();

}

As you might have expected, TypeScript won’t let us call the

getName method at this point, because it can’t guarantee that

the object has this method. We can use an assertion function

to check:

function assertIsUser(maybeUser: any): asserts maybeUser is

User {

if (maybeUser.name === undefined || maybeUser.getName ===

undefined) {

throw new Error(‘Not a valid user’);

}

}

This time, the assertion signature uses the is operator to

assert that the parameter maybeUser is of the type User.

Inside the function, we can perform a test that the object

passed to the function has all of the expected properties and

that they are not undefined, and if either of them is undefined,

then it throws an error. Again, we don’t need to use a return

statement, we simply throw an error if either of the

properties is equal to undefined.

Now inside the function, as long as the assertIsUser function

doesn’t throw, we can safely use methods from the User

type:

function getName(obj: User | Artifact) {

assertIsUser(obj);

return obj.getName();

}

We should now see no errors in the editor after the line that

invokes the assertIsUser assertion function, and that will be

the same throughout the current scope, which in this

example is inside the getName function.

Using as const

Earlier in this chapter, we looked at widening and saw that

this is something that TypeScript does in some situations

when inferring types, and means that a type is changed from

a more specific type to a less specific type.

One of the things that we can do with as const is to prevent

this widening from happening, for example:

let num2 = 2 as const;

This line of code is identical to the line of code that we

looked at earlier, except that we add as const to the end of

the statement. Now, even though we used let instead of

const to declare the variable, the type will remain the literal

type 2:

Figure 9.14: Un-widened value tooltip in Visual Studio Code

Now TypeScript will treat the variable as if it had been

declared using the const keyword, and we will be unable to

assign a new value to it. If we try to do this, like this for

example:

num2 = 3; // error

Then we’ll see any error like in the following figure:

Figure 9.15: Literal type is not assignable to a different literal type error in

Visual Studio Code

This leads nicely on to the other usage for as const – making

objects and their members, completely immutable.

In JavaScript, and indeed TypeScript, even if we declare an

object using const, we can still make changes to the

properties inside that object, and this includes arrays, for

example:

const mutable = [];

mutable.push(‘yay’); // Fine

Even though the mutable variable was declared with const, we

can still push new elements into it or call any other methods

that might mutate the array in some way.

We can change that behavior using as const:

const immutable = [‘constant’] as const;

Now the array contained in the immutable variable is

completely immutable, and we cannot change it, or the

elements inside of it at all. As you can see in the following

figure, the type gains the readonly modifier:

Figure 9.16: Read-only array type tooltip in Visual Studio Code

Additionally, if we read the first and only item in the immutable

array and inspect its type, in this example it will be the literal

string type ‘constant’:

Figure 9.17: Literal string type tooltip in Visual Studio Code

From this point on in the code, we cannot push new items into

the array, or pop items from it, if we try, we’ll see an error

that the method doesn’t even exist:

Figure 9.18: Property push does not exist on read-only array error in Visual

Studio Code

We are also prevented from changing any of the existing

elements inside the array in any way:

Figure 9.19: Cannot assign to read-only element error in Visual Studio Code

These concepts apply to all objects, not just arrays, and this

is really the main use of as const; to make objects truly

immutable. For example, a regular object, even when

declared as a const variable, allows the values of any

properties to be changed:

const mutableObj = { test: ‘anything’ };

mutableObj.test = ‘something else’; // fine

Using as const after the declaration prevents this occurring:

const immutableObj = { test: ‘anything’ } as const;

immutableObj.test = ‘something else’; // error

Now we cannot modify the value of the test property, and

the error message we see is the same as that for arrays,

except that the name of the property will be referenced in

the error message instead of the index as it was for the array

example:

Figure 9.20: Cannot assign to read-only property error in Visual Studio Code

Conclusion

In this chapter, we have learned about control flow analysis

and narrowing, specifically that it is something the compiler

itself does when inferring types, and something that we will

often need to do ourselves to help TypeScript understand the

intentions of our code.

We saw that we can create type guards which make use of

the typeof, instanceof, or in operators, or that we can create

more sophisticated type predicates or assertion functions in

order to ensure that the objects we are working with are of

the correct type.

Let’s not forget that we can also use discriminated unions to

help TypeScript differentiate easily between union members,

or that we can create truly immutable read-only objects and

arrays using as const.

In the next chapter, we are going to move on to take a more

detailed look at how we can manipulate types.

References

https://www.typescriptlang.org/docs/handbook

https://sandersn.github.io/manual/Widening-and-

Narrowing-in-Typescript.html

https://css-tricks.com/typescript-discriminated-

unions/

https://blog.logrocket.com/assertion-functions-

typescript

https://www.typescriptlang.org/docs/handbook
https://sandersn.github.io/manual/Widening-and-Narrowing-in-Typescript.html
https://css-tricks.com/typescript-discriminated-unions/
https://blog.logrocket.com/assertion-functions-typescript

CHAPTER 10

Manipulating Types

Introduction

In this chapter, we are going to focus on the different ways

that we can manipulate types to get the maximum benefit

from using them.

Some of the concepts discussed in this chapter rely on

generics, so we’ll start by refamiliarizing ourselves with what

generics are and see some basic examples of how they can

be used.

Many of the techniques discussed in this chapter can be

used together to create powerful ways of expressing new

types; we can use template literal types, conditional types,

or one of TypeScript’s built-in utility types when writing

mapped types for example.

We’ll finish off with a good look at all of TypeScript’s

aforementioned built-in utility types, which we can use to

transform one type into another type. Let’s get started.

Structure

Over the course of this chapter, we will cover the following

topics:

Generics

Conditional types

Indexed access types

Mapped types

Template literal types

Utility types

Generics

We’ve already looked at different kinds of generics in

different chapters throughout this book, but the topics that

we are going to look at throughout this chapter make heavy

use of generics, so let’s pull what we’ve looked at so far

together and have a quick refresher on them as a single

topic as a foundation for the rest of the chapter.

Generics are a way of creating structures that work over a

range of different types, rather than being constrained to a

single type, which allows us to write code that is more

reusable and more future-proof to the range of types the

structures our applications can use.

We can create generic functions, generic interfaces, generic

types, and generic classes. Generics use type variables (also

referred to as type parameters) as placeholders in our code

and are treated like variables but for types, as opposed to

the more familiar variables for values that we are used to

working with.

Generic Interfaces

Generic interfaces are possibly the most basic kind of

generic in TypeScript, for example:

interface Identifier<Id> {

value: Id;

}

In this example, the Identifier interface accepts a type

parameter called Id, and specifies a single property called

value, the type of which will also be the generic type Id,

whatever type that happens to be. This means that we can

create objects of the type Identifier with any type of value –

a string, a number, or even a symbol:

const stringId: Identifier<string> = { value: ‘abc123’ };

const numberId: Identifier<number> = { value: 123 };

const symbolId: Identifier<symbol> = { value: Symbol() };

When we set the type to Identifier, we also need to set the

type parameter to a concrete type, such as string, number, or

symbol, using angle brackets.

NOTE: Generic interfaces are sometimes referred to

as generic object types.

Generic Types

As well as generic interfaces, we can also create generic

type aliases, and the principle is really the same as with

interfaces, in fact, the previous example could be easily

rewritten to use a type alias instead:

type Identifier<Id> = { value: Id };

const stringId: Identifier<string> = { value: ‘abc123’ };

const numberId: Identifier<number> = { value: 123 };

const symbolId: Identifier<symbol> = { value: Symbol() };

This example is exactly equivalent to the generic interface

example except that it uses a type alias.

Generic Classes

As well as generic type aliases and generic interfaces, we

can also create generic classes using the same angle-bracket

syntax as before:

class Shape<Kind> {

constructor(public kind: Kind) {}

}

Here we declare a Shape class with a type parameter called

Kind. Inside the constructor, we can initialize and assign a

property called kind which is of the type passed in as the

type parameter.

We could then declare other shape classes and use these as

the Kind parameter passed to the Shape constructor, for

example:

class Square {

constructor(public sidesLength: number) {}

}

const myShape: Shape<Square> = new Shape(new Square(5));

console.log(myShape.kind); // Square: { “sidesLength”: 5 }

console.log(myShape.kind.sidesLength); // 5

Using generics makes the class easier to use with a range of

different types, minimizing any changes that are required if

more types are added to your application in the future.

Generic Functions

Generic functions can both receive generic argument types,

as well as return generic types. Consider the following

example; first, let’s define some similar but subtly different

types:

type Email = {

to: string;

};

type Sms = {

to: number;

};

Here we have two types, both with a to property, but in the

first type, Email, this to property is a string, and in the

second, Sms, the property is a number. Now we can define a

generic function that can handle both of these types:

function send<T extends object>(item: T): T {

if (‘to’ in item && typeof item.to === ‘string’) {

// send email

} else if (‘to’ in item && typeof item.to === ‘number’) {

// send sms

}

return item;

}

The send function is made generic by virtue of the type

parameter specified within angle brackets directly after the

function identifier. In this case, the type parameter T also

uses a constraint to tell TypeScript that although this

function can receive almost any type, the type that it

receives must extend the object type.

Note also that the item parameter the function receives is

also of the type parameter T and that the function will return

a value of this same type T. We don’t have to call the type

parameter T, but conventionally T is used as shorthand for

Type.

The actual inner workings of the function are not too

important in the context of this example but note that as the

parameter the function receives is generic, and could be any

type that extends object, we need to do some checks inside

the function to determine what type the parameter actually

is before we can use the item object safely.

In this example, in the first branch of the if statement, we

use the in operator to check that the item has a property

called to, and then that the type of this to property is a string

– if it is, we know we’re working with a value of the Email type

and can send the item accordingly. The second branch of the

if statement also needs to check that the object has a to

property, but this time, checks that the property type is

number.

Conditional Types

Conditional types are a way of assigning a type based on

whether a type or interface extends another type/interface

or not. They are the TypeScript version of a JavaScript

ternary expression and use a very similar syntax. Let’s look

at a basic example.

Let’s say that we have some interfaces, one of which

extends to one of the others:

interface BaseType { a: string }

interface SubType extends BaseType { b: number }

interface OtherType { c: boolean }

Later on, we might want to create a new type based on

whether the type we are working with extends the BaseType

interface:

type conditionalType = SubType extends BaseType

? string

: number;

In this case, conditionalType will end up being of the type

string because SubType does indeed extend BaseType:

Figure 10.1: Condition is true, the resulting type is string tooltip in Visual Studio

Code

Conversely, if we were working with the OtherType, the second

clause of the conditional would be used and the

conditionalType would end up being the type number:

Figure 10.2: Condition is false, resulting type is number tooltip in Visual Studio

Code

If the type on the left side of the extends keyword is

assignable to the type on the right side, the expression will

be true and the type following the question mark will be

used. If not, the expression will be false and the type

following the colon will be used instead.

Indexed Access Types

An indexed access type is a way that we can look up a type

property, in a similar way to how we can use square-bracket

notation in JavaScript to read the value of an object literal

property.

Let’s say that we have an object type with several property

types inside it:

type User = {

id: string | number;

email: string;

};

To pull out the type of one of the User type’s properties, we

can use an indexed access type, like this for example:

type Id = User[‘id’]

In this case, the Id type will be the union type string | number,

as this is the type of the id property within the User type.

The part within square brackets is known as the indexing

type; in this example, the indexing type is a string literal

type matching one of the properties in the User type, but we

can use other types here as well, such as union types, like

this for example:

type IdOrEmail = User[‘id’|’email’];

In this case, the IdOrEmail type would be the union type string

| number as these are the types found in both the id and email

types inside the User type. The end result is that the IdOrEmail

type is a union of all matching types inside the type whose

properties are being indexed.

We can also use multiple indexing types for nested types, for

example, imagine we have an Email type that has a subject

and an attachment, and attachment is itself an object type with

sub-types:

type Email = {

subject: string;

attachment: {

filename: string;

size: number;

};

};

We can then look up one of the attachment type’s properties

like this:

type AttachmentSize = Email[‘attachment’][‘size’];

In this case, the AttachmentSize type will be of the type number:

Figure 10.3: Type tooltip in Visual Studio Code

Mapped Types

Mapped types are a powerful way to create new types based

on other types by transforming individual type properties

within the target type.

Let’s look at a basic example; imagine we have a type where

all of the properties of that type are the literal Boolean type

false:

type FalseType = {

a: false;

b: false;

}

We can easily create a mapped type where all of the

properties are of the literal type true instead:

type TrueType<T> = {

[P in keyof T]: true;

}

Mapped types are generic; in this case, the TrueType type

takes a single type parameter, which conventionally is called

T.

Inside the type, we use square brackets for the property

name, just like with indexed access types, and inside these,

we iterate each property inside the input type using the in

and keyof operators. By convention, we use P for property,

and T is the input type whose properties will be iterated.

We also specify that each property in the resulting type will

be set to the literal type true. We don’t have to set this to be

a Boolean, by the way, we could map each property in the

input type to any other valid type.

Now we can create a completely new type using nothing but

the TrueType mapped type that we just created:

type NewType = TrueType<FalseType>;

All of the inner property types inside the new type will be the

literal type true even though they originally started out as

false in the original type:

Figure 10.4: Mapped type output tooltip in Visual Studio Code

Adding and Removing Property

Modifiers

Type object properties can use read-only or optional

modifiers to control whether the property can be written to,

or whether it can be substituted with undefined in the

resulting type.

When mapping property types to other types, we can also

add or remove these modifiers as required. For example,

imagine we wanted to create a mapped type that takes an

input type and makes all of the inner properties read-only:

type MakeReadonly<T> = {

+readonly [P in keyof T]: T[P];

}

In this case, the MakeReadonly type takes a single type

parameter T, and adds the readonly modifier to all properties

within the type using the + character before the modifier, but

note that when adding modifiers, this plus symbol is

optional. The type for each property is the existing type of

each property in the input type, which we access using an

indexed access type of T[P].

At this point, we can start with a completely writable type:

type WritableType = {

[key: string]: string;

}

And end up with a type containing only read-only types using

our mapped type:

type NonWritableType = MakeReadonly<WritableType>;

As well as adding modifiers with the + character, we can also

remove them with the – character. For example, let’s say we

have a type where all of the properties are optional:

type CompletelyOptional = {

a?: string;

b?: number;

}

We can create a mapped type that removes the ? modifiers

like this:

type NotOptional<T> = {

[P in keyof T]-?: T[P];

}

Inside the NotOptional type we again use the [P in keyof T]

expression but this time append -? immediately after it. This

will serve to remove any optional modifiers that the property

being mapped may have.

Now, we can create a brand new type using the NotOptional

mapped type:

type Mandatory = NotOptional<CompletelyOptional>;

Now, when using the Mandatory type, all of the optional

properties in the original CompletelyOptional type are made

mandatory and are no longer optional, as shown in the

following figure:

Figure 10.5: Optional modifier removed in type tooltip in Visual Studio Code

You should note that this example was purely for illustrative

purposes. TypeScript already includes the Required utility

type, which functions in the exact same way – you should

use the built-in utility instead. We’ll be looking at this utility

later in this chapter.

Remapping Property Keys

We can use the as operator to remap the names of keys in

mapped types. For example, consider a type with several

named properties:

type NamedProps = {

a: string;

b: number;

}

When creating objects with the NamedProps type, we would

have to add properties called a and b, but not any other

properties:

const rigid: NamedProps = { a: ‘’, b: 1, c: ‘oops’ };

In this case, the editor will highlight the property with the

identifier c as an error.

We can remap the key names a and b so that any string

names can be used instead:

type AnyProps<T> = {

[P in keyof T as string]: T[P];

}

Inside the AnyProps type, we use the same [P in keyof T]

syntax as before, but this time we also use the as operator

followed by the string type. The result of this is that we can

take a type that mandates the use of specific named

properties, and convert it to a type that allows for any

property names to be used:

type Flexible = AnyProps<NamedProps>;

With the Flexible type, we can create objects with any

property names instead of having to use only a and b, like

this for example:

const flexible: Flexible = { a: ‘’, b: 1, c: ‘works’ };

We can see in the tooltip in the editor when we hover over

the Flexible type that the type will accept any string property

names and that the value types will be a union of string |

number because the original a and b properties in the input

type were string and number respectively:

Figure 10.6: Remapped property keys tooltip in Visual Studio Code

Template Literal Types

Template literal types are similar conceptually to template

literal strings in JavaScript, and use the same familiar syntax,

making them a powerful, but relatively straightforward

technique to pick up for anyone who has worked with

template literals in JavaScript, although in TypeScript they

work with types instead of values.

Template literal types are used to create literal string types,

and can concatenate them together to produce new literal

string types, for example:

type Template = ‘template’;

type Literal = `${Template} literal`;

Here we have a type alias called template, which is the literal

string type literal. In the next line, we have another type

alias, this time called literal. Note the use of back-ticks in

the second expression, and that we use the exact same

template syntax (${}) as we do in regular JavaScript.

The result is that value of the second type is the literal value

of the first type alias and the literal string literal

concatenated together, as we can see if we hover the mouse

pointer on the second type alias:

Figure 10.7: Template literal type tooltip in Visual Studio Code

As well as literal string types, we can also use unions of

literal string types. In this case, the resulting type will consist

of all of the types in all of the unions combined, in all

possible combinations, for example:

type versions = ‘1.0’ | ‘1.1’ | ‘1.2’;

type names = ‘alpha’ | ‘beta’ | ‘gold’;

type releases = `${versions}-${names}`;

This time there are two type aliases which are both unions of

literal string types, one called versions and one called names.

The third type, releases, is a union type consisting of all nine

variations of the combinations of the first two types:

Figure 10.8: Combinations of literal string types in Visual Studio Code

TypeScript also provides a number of string literal utilities

that we can use to automatically perform certain

transformations of literal string types, let’s look at these now.

Capitalize

The Capitalize template utility takes a literal string type as

input and returns the same literal string but capitalized, for

example:

type input = ‘input’;

type result = Capitalize<input>;

The type parameter, input in this case, passed in angle

brackets after the Capitalize identifier, is the input string that

the utility will operate on. We can see from the result that

the output is the same string in the capitalized format:

Figure 10.9: Output of the Capitalized utility in Visual Studio Code Lowercase

The Lowercase utility takes an input type in literal string

format, and returns the same string with all characters

converted to lowercase. It is basically the inverse of the

Capitalize utility. The usage is very similar to the previous

example:

type input = ‘INPUT’;

type result = Lowercase<input>;

This utility again takes an input string as a type parameter

and returns a type consisting of the same literal string but

with all of the characters in lowercase:

Figure 10.10: Output of the Lowercase utility in Visual Studio Code

Any uppercase character anywhere in the string will be

affected.

Uncapitalize

The Uncapitalize utility takes a literal string type as input and

returns the same string with the very first letter in lowercase,

for example:

type input = ‘Input’;

type result = Uncapitalize<input>;

We can see that the output type consists of the same input

string, but with a lowercase first character:

Figure 10.11: Output of the Uncapitalize utility in Visual Studio Code

The difference between this utility and the Lowercase utility is

that with this utility, only the very first character in the string

will be converted to lowercase – uppercase characters that

appear later in the string will remain unchanged. The utility

will do nothing if the first character of the string is already

lowercase.

Uppercase

The last string literal utility is the Uppercase utility, which is

used to convert an input string literal type from lowercase to

uppercase:

type input = ‘input’;

type result = Uppercase<input>;

The result in this case is the input string in capitals:

Figure 10.12: Output of the Uppercase utility in Visual Studio Code

Utility Types

In addition to the literal string type utilities that we’ve

already covered in the last section, TypeScript also provides

a wide range of built-in general utility types that we can use

to create new types using existing types. Think of them as

predefined mapped types that we can use as coding

shortcuts.

Awaited

The Awaited utility is used to get the unwrapped type from

inside a promise, for example, imagine we have a type that

represents a simple response from an API:

type ApiResponse = {

data: string;

}

In its most basic usage, the Await utility will unwrap a

promise that contains ApiResponse objects:

type unwrappedApiResponse = Awaited<Promise<ApiResponse>>;

In this case, the actual type of the unwrappedApiResponse type

will be the same as the ApiResponse type – an object that has

a property called data, as you can see in the following figure:

Figure 10.13: Output of the Awaited utility in Visual Studio Code

We can also use it to get the unwrapped return type of a

function that returns a promise. Consider the following

function:

async function getApiResponse(): Promise<ApiResponse> {

return { data: ‘test’};

}

The getApiResponse function uses the async keyword, so this

function will automatically return a promise as per the

ECMAScript specification. We specify a promise containing

the ApiResponse type as the return type of the function, and

inside the function, we can just return an object containing a

data property with a string value as an example. In real code,

this is where we would likely make an HTTP request to get

the required data from the server.

We can then use the Awaited utility to extract the unwrapped

return type of the getApiResponse function:

type RespType = Awaited<ReturnType<typeof getApiResponse>>;

We need to use the typeof operator with getApiResponse here

because getApiResponse is a function, but we want the type

returned by the function, which is Promise<ApiResponse>, rather

than the function itself.

Note that we also need to use the ReturnType utility to get the

return type of the function, which the Awaited utility will then

unwrap. We’ll be looking at the ReturnType utility a little later

in this section.

ConstructorParameters

The ConstructorParameters utility creates a tuple type based on

the parameters accepted by a class’s constructor function

type.

We can pass the utility a constructor function and it will

extract the parameters that the function accepts as a tuple,

for example:

type ConstructorParams =

ConstructorParameters<ObjectConstructor>

In this case, the type parameter passed to the

ConstructorParameters utility is the built-in ObjectConstructor

interface. This means that the tuple produced by this utility

has an optional value parameter of the type any:

Figure 10.14: Tuple type returned by the ConstructorParameters utility in Visual

Studio Code

As well as passing a constructor function type to the utility,

we can also pass it as a reference to a class and use the

typeof operator to get the constructor function’s type, for

example. We can pull out the parameters passed to the class

constructor as a tuple just as if we had passed a literal

function type to the utility:

class Car {

constructor(public model: string) {}

}

type CarConstructorParams = ConstructorParameters<typeof Car>

In this case, we have a very simple Car class with a

constructor that accepts a single parameter called model and

is of the type string. We can see if we hover on the

CarConstructorParams type that it is a tuple containing a single

string:

Figure 10.15: Second tuple type returned by the ConstructorParameters utility

in Visual Studio Code

The internal workings of this type are a little more complex

than some of the other utilities we’ve looked at, so let’s go

through it in detail:

Figure 10.16: ConstructorParameters utility type in Visual Studio Code

The input type is straightforward, it’s just a type (T) that

extends an abstract newable function (a constructor

function) type that takes any number of parameters of the

type any and returns any type of value (extends abstract new (…

args: any) => any).

In terms of output, this utility is using a conditional type to

return either the parameters of the input type if the input

type is a constructor function, or the never type if it is not a

constructor function (T extends (…args: infer P) => any ? P :

never).

Exclude

The Exclude utility creates a new type by excluding certain

types from a specified union of types. This utility is passed

two union types and omits any types from the first type that

also appear in the second type.

Let’s look at a brief example:

type AllMembers = string | number | boolean;

type ExcludeMembers = string | number;

type RemainingMembers = Exclude<AllMembers, ExcludeMembers>;

The first type, AllMembers, is a union of the types string,

number, and boolean. The second type, ExcludeMembers is a union

of the types that we want to exclude from the new type, in

this case, the two types string and number.

The last type, RemainingMembers, is constructed and returned

by the Exclude utility, and consists of the remaining types left

in the AllMembers union after excluding any matching

members from the ExcludeMembers union, which in this case

will be just the single type boolean:

Figure 10.17: Tooltip showing boolean as the only remaining type in Visual

Studio Code

To see how this utility works internally, we can hover on the

Exclude utility itself like with other utilities:

Figure 10.18: Exclude type tooltip in Visual Studio Code

As far as inputs go, Exclude is entirely straightforward; it just

needs to be passed two types (T and U). To construct the new

type the Exclude utility internally uses a conditional type to

either return the never type if the first type extends the

second type or the type itself if it doesn’t (T extends U ? never

: T).

Extract

The Extract utility is basically the inverse of the Exclude utility;

this utility also accepts two types as a type parameter, but

this time it constructs a new type that retains only those

types from the first type parameter which are also specified

in the second type parameter.

Consider the following code for example:

type AllMembers = string | number | boolean

type ExtractMembers = string | number

type RemainingMembers = Extract<AllMembers, ExtractMembers>

As the types string and number appear in both input types,

AllMembers and ExtractMembers, the resulting type,

RemainingMembers, will consist of the union string | number:

Figure 10.19: Tooltip showing string and number in the resulting type in Visual

Studio Code

Again, we can inspect the utility to learn more about it:

Figure 10.20: Extract type tooltip in Visual Studio Code

This utility takes two types as inputs (T and U) and also uses

a conditional type, but this time includes the type in the

output type only if it appears in both input types, otherwise,

it returns the never type (T extends U ? T : never).

InstanceType

The InstanceType utility is used to extract the type returned by

a constructor function. This is very similar to another utility

for regular functions called ReturnType, which we’ll look at in

more detail later in this section.

This utility is often used with classes; let’s see a basic

example. First, we will need some classes:

class Cat {

constructor(public name: string) {}

meow() { console.log(‘Meow’) }

}

class Dog {

constructor(public name: string) {}

bark() { console.log(‘Woof’) }

}

Now let’s add a factory function that can be passed either

one of these classes and construct an instance of them:

function PetFactory<T extends new (…args: any[]) => any>(pet:

T, n: string): T {

return new pet(n);

}

The PetFactory function is a generic function and takes a type

T which should contain a constructor function (remember, new

(…args: any[]) => any is a construct signature as it uses the

new keyword). This constructor function can accept any

arguments and return any type of value.

The factory function also takes two parameters, the first is a

pet, which is of the generic T type, and the second parameter

is called n which is of the type string. We can initially have

the function return the generic type T also, as this is probably

what we would think to do first based on what we know

about generics.

Now let’s try to create an instance of the Cat class using the

factory:

const kitty = PetFactory(Cat, ‘fluffy’);

console.log(kitty.name); // fluffy

So far, so good – we can create a new Cat instance using the

factory function, and we can even log out of the name property

without any issues. However, if we try to call a method

unique to the Cat class, like meow:

kitty.meow(); // error

Then we’ll see an error in the editor:

Figure 10.21: Property does not exist on type error in Visual Studio Code

To fix this, we can change the return type of the PetFactory

function to use the InstanceType utility instead of just

returning the generic type:

function PetFactory<T extends new (…args: any[]) => any>(pet:

T, n: string): InstanceType<T> {

return new pet(n);

}

Now the error will go away because TypeScript will be able to

understand that the kitty object is of the type Cat.

Let’s inspect the utility to understand how it works internally:

Figure 10.22: InstanceType utility tooltip in Visual Studio Code

Here we can see that the input type is a type that contains a

constructor function (a function used with new) that takes an

array of any parameters and returns any value (T extends

abstract new (…args: any[]) => any).

The output type is a conditional type that infers the type

returned by the constructor function. If the input type does

have a constructor function, the utility returns the inferred

return type of the constructor (R). If the input type doesn’t

have a constructor function, then it returns the type any.

NonNullable

The NonNullable utility type can be used to strip out any null

or undefined types from a union type:

type CannotBeNull = NonNullable<string | null | undefined>

In this case, the resulting CannotBeNull type will simply be the

type string, not the original union string | null | undefined.

This works exactly the same if we use the union string | null

or string | undefined.

The definition of this type is very straight-forward, we can

see it by hovering the mouse pointer on the utility itself:

Figure 10.23: NonNullable type tooltip in Visual Studio Code

The utility takes a type (T) and returns a type that is an

intersection of the original type and an empty type (T & {}).

This works because an empty type can be assigned any type

of value, except for null or undefined, for example:

type NotNull= {};

const notNull1: NotNull = 1; // Fine

const notNull2: NotNull = ‘Not empty!’; // Fine

const notNull3: NotNull = true; // Fine

const notNull4: NotNull = [‘anything’]; // Fine

const notNull5: NotNull = { a: null }; // Fine

const notNull6: NotNull = null; // Error

const notNull7: NotNull = undefined; // Error

We could do the same thing as the NonNullable utility does

manually if we wanted to, the original example at the start of

this section could have been written like this instead:

type CannotBeNull2 = (string | null | undefined) & {}

This would work in exactly the same way, with the type

CannotBeNull2 ultimately only being able to accept values of

the type string. However, I find the NonNullable utility to be

more readable as it better signals the intent of the code to

other developers.

One thing to note is that this utility cannot strip null or

undefined from within types, so this code does not cause any

errors in the editor:

type HasNull = { a: string | null }

type CanContainNull = NonNullable<HasNull>

const someObj: CanContainNull = { a: null };

The utility does not remove the null type from the union of

string | null for the a property in the CanContainNull type.

Omit

The Omit utility allows us to specify a source type and a

union of a subset of the property keys from that type, and

create a new type that contains all of the keys of the original

type minus the ones specified in the union.

Let’s see a basic example of how we can use this utility:

interface Operations {

create: () => void;

read: () => void;

update: () => void;

delete: () => void;

}

type WriteOps = ‘create’ | ‘update’ | ‘delete’

type ReadOnlyOps = Omit<Operations, WriteOps>;

First, we define an interface called Operations which defines

some CRUD operations as methods. To keep things simple

these are all just empty methods that don’t receive any

parameters and don’t return any useful values.

Next, we define a union type called WriteOps, which contains

literal strings matching some, but not all, of the methods

specified in the Operations interface.

Last of all, we create a type called ReadOnlyOps which uses the

Omit utility to filter out all of the write operations in the new

type. The original type is passed to the utility as the first

type parameter, and the union of key names that we want to

omit from the new type is specified in the union passed to as

the second type parameter.

When we use the new type constructed by the Omit utility, we

cannot specify any of the property names that were omitted

from the original type, so in this case, that means any

objects using the ReadOnlyOps type can only contain a single

method called read:

const read: ReadOnlyOps = {

read: () => undefined,

}

This utility acts as a filter to remove keys from the original

type that we do not require in the transformed type.

To really get a feel for what this utility is doing under the

hood, we can inspect the type definition for it by hovering

the mouse pointer on it:

Figure 10.24: Omit type tooltip in Visual Studio Code

It looks a little intimidating at first, so let’s break it down into

bite-sized chunks. On the input side, we can see that it takes

a type (T) and a union of key names constrained to the types

string, number, or symbol (K extends string | number | symbol). On

the output side, the constructed type is using the remaining

property names of the input type ([P in) after excluding all of

the key names specified in the input union (Exclude<keyof T,

K>]) using the built-in Exclude utility. The original value types

of the input type are retained in the output type (T[P]).

This utility type is one of the few built-in types that make use

of other built-in types internally.

OmitThisParameter

Earlier in the book, we learned that we can use a special

parameter called this parameter in a function to set the

value of the this object inside the function. The

OmitThisParameter utility can be used to remove a this

parameter from a function type. Consider the following

example:

type User = {

name: string;

};

function getUserName(this: User): string {

return this.name;

}

In this case, we have a small type called User for an object

which contains a name property that has a string value. We

then declare a function and use a this parameter to set the

value of this inside the function to the User type we declared

before. Inside the function, we can return this.name and that

will result in the name property of whatever object is set as

this inside the function being returned.

As a side-note, if we want to call the function at this point,

we will need to use one of JavaScript’s Function methods

which allows the this object to be specified, such bind for

example:

const userName = getUserName.bind({ name: ‘Bill’ });

In any case, if we inspect the getUserName function at this

point, we will see that its type clearly contains the this

parameter:

Figure 10.25: Function type with this parameter tooltip in Visual Studio Code

To create a new type based on the getUserName function type

but without reference to the this parameter, we can use the

OmitThisParameter utility:

const fnWithoutThisParam: OmitThisParameter<typeof getUserName>

=

getUserName.bind({ name: ‘Fred’ });

The OmitThisParameter utility takes a single type parameter

which is the function containing the this parameter we want

to remove. As with some of the other utilities we’ve looked

at, we need to use the typeof operator to extract the type of

the getUserName function.

If we inspect the type of the fnWithoutThisParam function, we

can see that it contains no this parameter:

Figure 10.26: Function type without this parameter tooltip in Visual Studio Code

Let’s look at how this utility transforms the type, as we have

with other utilities that we’ve looked at:

Figure 10.27: OmitThisParameter type tooltip in Visual Studio Code

We can see that the input type is a simple type (T) and that

the output is a complex nested conditional type; the

condition uses another utility, which we’ll look at shortly,

called ThisParameterType to extract the this parameter from

the type (ThisParameterType<T>) – if this has the type unknown it

means there is no this parameter, and the utility returns the

original type.

If the type does have a this parameter, the utility checks

whether the type is a function and if so, infers the arguments

and the return type of the function and returns this return

type (R). If this second nested condition fails, the utility again

just returns the input type (T).

Partial

The Partial utility type transforms a regular type where all

properties are required, to a type where all of the properties

are optional. Consider the following code:

type Mandatory = {

required: string;

}

const mustHaveRequired: Mandatory = {

required: ‘’,

}

In this case, there is a type called Mandatory which defines a

single property called required which should be of the type

string.

Following the type definition, a new const variable called

mustHaveRequired is declared, with the type set to the Mandatory

type. This object therefore must have a required property

with a string value in order to conform to the Mandatory type.

The mandatory type can be transformed using Partial like

this:

type NonMandatory = Partial<Mandatory>;

const mightHaveRequired: NonMandatory = {};

A new type called NonMandatory is declared using the Partial

utility type with the Mandatory type passed as the type

parameter in angle brackets. When we create values that

conform to this type, we do not have to specify a required

property with a string value, although we can if we want to.

If you hover the mouse pointer on the type annotation, you

will see that all of the original properties from the original

type have been made optional:

Figure 10.28: Optional property type tooltip in Visual Studio Code

The way that this utility works can be seen if you hover the

mouse pointer over the Partial keyword itself:

Figure 10.29: Partial type definition tooltip in Visual Studio Code

We can see that this utility is using the keyof operator to map

every property (P) in the original type (T), to a union of T[P] |

undefined.

Parameters

The Parameters utility creates a tuple type based on the

parameters accepted by a function type passed to the utility.

This utility is very similar to the ConstructorParameters utility

that we looked at earlier.

We can pass the utility a function and it will extract the

parameters it accepts as a tuple, for example:

type FnParams = Parameters<(a: string, b: number) => void>

In this case, the type parameter passed to the Parameters

utility is a function type, which describes a function that

accepts two parameters – the first a string, the second a

number.

The return type is void in this example, although that makes

no difference to the example as the Parameters utility

disregards the return type entirely. For a utility dedicated to

return types, see the ReturnType utility a little later in this

section.

We can see in the editor that the type returned by Parameters

will be a tuple consisting of a string followed by a number:

Figure 10.30: Tuple type returned by the Parameters utility in Visual Studio

Code

As well as passing a function type to the utility, we can also

pass a function reference and use the typeof operator to get

the function’s type. Consider the following function:

function myFn(a: boolean, b: string): void {}

We can pull out the parameters passed to this function as a

tuple as if we had passed a function type to the utility:

type FnParams2 = Parameters<typeof myFn>

We can see that in this case, the tuple produced consists of a

boolean followed by a string:

Figure 10.31: Second tuple type returned by the Parameters utility in Visual

Studio Code

This utility works in almost the exact same way internally

that the ConstructorParameters utility works except that it

works with regular functions instead of constructor functions:

Figure 10.32: Parameters utility type in Visual Studio Code

Pick

The Pick utility allows us to pick selected key names and

value types for an object type from another type. The

signature for this utility is Pick<T, K> where T is the type to

pick from, and K is the key from that type to use in the

transformed type. This utility is basically the opposite of the

Omit utility that we looked at a little earlier.

Let’s see an example of this utility in action. We can use the

same example here as we did for the Omit utility so that we

can contrast their output:

interface Operations {

create: () => void;

read: () => void;

update: () => void;

delete: () => void;

}

type WriteOps = ‘create’ | ‘update’ | ‘delete’

type Write = Pick<Operations, WriteOps>;

Again, we first define an interface called Operations which

defines the standard CRUD operations as methods.

Next, we define a union type called WriteOps, which contains

literal strings matching some, but not all, of the methods

specified in the Operations interface.

In the last line of the previous code snippet, we created a

new type called Write which uses the Pick utility to pick only

those properties from the Operations type that are in the

WriteOps union. We can now create an object using the Write

type created by the Pick utility:

const write: Write = {

create: () => undefined,

update: () => { undefined },

delete: () => { undefined },

}

Again, for conciseness, the actual method implementations

are left empty. The key point is that we need to specify only

those properties that are specifically mentioned in the

WriteOps union in the object using the Write type.

We can inspect the Pick utility itself by hovering the mouse

pointer on it to see how it works internally:

Figure 10.33: Pick type tooltip in Visual Studio Code

In terms of input, the utility takes a type (T) as the first type

parameter, and a union that is constrained by the keys

within that type (K extends keyof T) as the second type

parameter. We can also see that the output of this utility is a

type comprised of the original keys that are specified ([P in

K]), using the original value types of the picked keys (T[P]).

Readonly

The Readonly utility type is used to transform a type whose

properties are both readable and writable, to a type whose

properties are read-only and cannot be written to after

initialization.

We did already look at this utility earlier in the book, but let’s

go over it again here so that this section remains a complete

guide to the built-in utility types.

Consider the following code:

type Writable = {

canBeWritten: string;

}

const notReadonly: Writable = { canBeWritten: ‘yes’ };

notReadonly.canBeWritten = ‘new!’;

In this case, a type called Writable is created, which contains

a single property called canBeWritten, which is of the type

string. We can initialize this property when we declare a

variable to be of the Writable type, and we can later reassign

that value to any other string value.

The Readonly partial can transform the Writable type to a type

where all of the properties, the canBeWritten property in this

example, are made readonly:

type NotWritable = Readonly<Writable>;

const readonly: NotWritable = { canBeWritten: ‘no’ };

readonly.canBeWritten = ‘nope’; // Error

We use the Readonly utility and set the type parameter to the

type whose properties we wish to make readonly. We can

initialize the canBeWritten property when declaring a variable

of the NotWritable type, but we cannot then later assign a

new value – if we try, like in the previous code snippet, we’ll

see an error in the editor that the property is read-only.

We can see in the tooltip when we hover on the NotWritable

type, that all of the properties inside the type are prefixed

with the readonly modifier:

Figure 10.34: Readonly property tooltip in Visual Studio Code

If we inspect the Readonly utility itself, we can see that it

works in a similar way to some of the other utilities like

Partial and Required:

Figure 10.35: Readonly utility type tooltip in Visual Studio Code

The utility adds the readonly prefix to all properties (P) in the

type (T) and uses the existing value types (T[P]) for the

transformed values.

Record

A Record is used to declare an object type of key-value pairs.

The signature for this utility is Record<K, T> where K is the

type for the keys in the object type, and T is the type of the

values in the object. Consider the following code:

interface Person { age: number }

type Names = ‘roger’|’dave’

type Guitarists = Record<Names, Person>

We start with a simple interface called Person which specifies

a single property called age that should be of the type number.

Next, we have a simple union type called Names, which

consists of the literal strings roger and dave.

On the last line, we create a type called Guitarists and use

the Record utility, passing in the Names type as the first type

parameter, and the Person interface as the second type

parameter. This means that an object of the type Guitarists

must have the keys roger and dave, and that each of these

properties contains an object that has an age property which

is a number, like the following example:

const pf: Guitarists = {

roger: { age: 79 },

dave: { age: 76 },

};

The Record type gives fine-grained control over the object

type; if we fail to add one of the names from the Names union

as a property of the object, we’ll see an error, and

correspondingly, if we update the union type with a new

name, we’ll also see an error.

If we hover the mouse pointer on the Record utility, we can

see that it uses a constraint on the key value (K) to constrain

the key values of the type passed to the utility as the first

type parameter to either string, number, or symbol types

(extends string | number | symbol). The values are set to the

type (T) passed to the utility as the second type parameter:

Figure 10.36: Record type tooltip in Visual Studio Code

One point to note is that we don’t have to use a union type

as the first type parameter, and we don’t have to use an

interface for the second type parameter – something as

simple as the following code snippet is also perfectly

acceptable:

type Example = Record<string, number>

In this case, the keys in objects of the Example type can be

any string value, and the values may be any number type,

like this:

const ex: Example = { a: 1 };

A follow-up point is that while perfectly acceptable, it would

be more common to use an index type instead of a record in

this case, like this:

type Example2 = { [key: string]: number }

In this case, any string key identifier is acceptable, and any

number is acceptable for a value. Ultimately, using a union of

string literals as the first type parameter passed to the Record

utility allows us to limit the identifiers that can be used as

keys.

Required

The Required utility is essentially the diametric opposite of the

Partial utility that we looked at a little earlier in this section.

This type transforms a type with optional properties into a

type where all of the properties of the type are mandatory.

Consider the following code:

type NonMandatory = {

optional?: string;

}

const mightHaveOptional: NonMandatory = {};

A type called NonMandatory is defined, which contains a single

optional property called optional, which, if specified, should

be of type string. Objects declared with this type may or may

not specify a property called optional.

To transform this type into a type where all properties are

required, the Required utility can be used:

type Mandatory = Required<NonMandatory>;

const mustHaveOptional: Mandatory = {

optional: ‘’,

};

A new type is defined called Mandatory which uses the Required

utility type, with the type parameter set to the NonMandatory

type. Types created with this type must now define all

properties from the original type.

The tooltip shown when we hover over the transformed

Mandatory type shows that there are no optional modifiers

after any of the properties in the type:

Figure 10.37: Required properties tooltip in Visual Studio Code

The definition of the Required utility is the opposite of that of

the Partial utility from earlier:

Figure 10.38: Required type tooltip in Visual Studio Code

This utility type also uses the keyof operator to map any

optional properties (P) in the original type (T) minus the

optional modifier (-?) to the property type (T[P]).

ReturnType

The ReturnType utility is used to create a new type based on

the return type of a function:

type fnReturn = ReturnType<() => boolean>;

In this case, we pass an arrow function type with a return

type of boolean to the ReturnType utility as a type parameter;

the fnReturn type will therefore be boolean:

Figure 10.39: Boolean type tooltip in Visual Studio Code

We can also pass a function reference to the utility by using

the typeof operator to extract the return type of the function,

for example:

function myFn(arg0: string): number { return 1; }

type alsoFnReturn = ReturnType<typeof myFn>;

The myFn function is annotated with a return type of number, so

in this case, the alsoReturnFn type will be number as well:

Figure 10.40: Number type tooltip in Visual Studio Code

Let’s see how this utility works internally by hovering over

the ReturnType utility itself:

Figure 10.41: ReturnType tooltip in Visual Studio Code

We can see that the input type is a function that takes any

number of arguments of the type any and returns any value (T

extends (…args: any) => any), and that the output type is either

the inferred return type of the function or the type any if the

return type could not be inferred (T extends (…args: any) =>

infer R ? R : any).

ThisParameterType

The ThisParameterType utility can be used to extract the this

parameter type from a function type. It was mentioned

briefly when we covered the OmitThisParameter utility, but let’s

take a moment to see its action, we can use the same User

type and getUserName function from earlier in this section:

type User = {

name: string;

};

function getUserName(this: User): string {

return this.name;

}

In order to create a new type consisting of the this type of

the getUserName function, we can use the ThisParameterType

utility:

type fnThisType = ThisParameterType<typeof getUserName>;

The fnThisType type will now be the same type as the User

type used as the this parameter of the function:

Figure 10.42: Output of the ThisParameterType in Visual Studio Code

Let’s see how this utility works by hovering the mouse

pointer on the utility:

Figure 10.43: ThisParameterType utility tooltip in Visual Studio Code

We can see that the utility takes a single input type (T), and

uses a conditional type to check whether the function has a

this type, while ignoring any other parameters (T extends

(this: infer U, …args: never)), if it does, the conditional

returns the this type (U), and if it doesn’t, it returns unknown.

ThisType

Unlike the rest of the utilities that we have looked at, the

ThisType utility is not used to transform one type into another

type or to extract some piece of information from a type.

Instead, it can be used to set the this value inside a function;

it’s essentially an alternative to this parameters, for

situations where it is not possible to use this parameters.

Let’s look at a basic example:

type libCore = {

version: ‘1.2’

};

type lib = {

helperFn: Function

} & ThisType<libCore>

In this example, we have a small type called libCore which

just has a version property with a literal string value of some

version number, 1.2 in this case. Next is a type for a lib

object which contains a property called helperFn, which

should be of the type Function.

The lib type is also an intersection with the ThisType utility,

which we pass the libCore type to. This has the effect of

setting the libCore object as the value of this inside the

helperFn function:

const myLib: lib = {

helperFn: function() { return this.version }

}

Inside the helperFn function, we can safely use the version

property of this thanks to the ThisType utility. TypeScript will

correctly set the value of this inside any objects with the type

lib to the libCore object:

Figure 10.44: libCore type tooltip for lib object in Visual Studio Code

Conclusion

Throughout this chapter, we have looked at a variety of

powerful tools for manipulating or transforming types. We

also learned about the wide range of different built-in utility

types that we can use to perform common type

transformations.

As I mentioned at the start of the chapter, all of these

features can be combined together to create our own custom

utility types that we can use to promote reuse and code-

sharing throughout the applications we create.

We’ll continue on the theme of reuse in the next chapter by

looking at TypeScript’s module system.

References

https://www.typescriptlang.org/docs/handbook

https://fjolt.com/article/typescript-parameters-

utility-type

https://bobbyhadz.com/blog/typescript-get-

constructor-parameters-type

https://www.typescriptlang.org/docs/handbook
https://fjolt.com/article/typescript-parameters-utility-type
https://bobbyhadz.com/blog/typescript-get-constructor-parameters-type

CHAPTER 11

TypeScript Modules

Introduction

Modular JavaScript is an essential component when building

large-scale but maintainable applications. They allow us to

break our applications up into smaller, more manageable

pieces and promote reusability as these pieces can be

shared and reused in many places.

TypeScript has supported modules since very early in its

history and can support a wide variety of different module

formats, depending on whether the application is targeting

browsers or the Node.js platform.

In this chapter, we’ll take a deep dive into modules and look

at the different types of modules we can use and the

differences between them, in order to import and export

code throughout our applications.

Structure

In this chapter, we will cover the following topics:

Modules in TypeScript

Importing and exporting modules

Type-only imports and exports

Module-related configuration options

Module resolution

Compiler directives

Barrel files

Augmenting modules

Modules in TypeScript

A module, as far as JavaScript or TypeScript are concerned, is

a self-contained unit of functionality with its own execution

scope; unlike regular JavaScript or TypeScript files, variables

defined outside of a function don’t become global throughout

the application when declared inside a module.

A module’s internal functionality is exported out of the file,

and this can then be imported into other files in order to be

used. Modules are incredibly useful because they allow us to

structure our applications into smaller, more manageable

pieces that can be reused in order to prevent duplication, but

they haven’t always been a part of the official specification.

Modules in JavaScript have a less than straightforward

history; an official specification was missing from the

language for a long time so numerous 3rd party solutions

were devised, but no single one specification was adopted

everywhere.

Asynchronous Module Definition, or AMD, was the module

format used in browsers and was supported by frameworks

like RequireJS. Node.js on the other hand used a different

format called CommonJS. Another format called Universal

Module Format was able to support both AMD and

CommonJS.

Since ES2015, JavaScript has contained an official

specification for modules, but it still took browsers some

years before a module loader was natively supported.

TypeScript supports all of these different module formats and

can generate code for each of them based on configuration.

Let’s get started with some of the basics, like how to import

and export modules in TypeScript.

Importing and exporting modules

Code can be exported out of a module using an export

declaration. For example, consider that there are two files in

the same directory called module1.ts and module2.ts.

Let’s export some code from module1.ts:

export type Answer = {

score: number;

correct: boolean;

};

We can export simple Answer type-alias for the purposes of

this demonstration, but interfaces can also be exported, like

this for example:

export interface Exam {

questions: string[];

answers: Answer[];

}

We can also export regular values like functions, classes, or

variables, for example,

export class MathExam implements Exam {

questions: string[] = [];

answers: Answer[] = [];

}

export function getScore(exam: MathExam): number {

return exam.answers.reduce((prev, curr) => {

return (curr.correct) ? prev + curr.score : 0;

}, 0);

}

export const stduent1Score = getScore({

questions: [],

answers: [],

});

In order to import code into another module, we use an

import declaration. Add the following code to module2.ts:

import { Exam } from ‘./module1’;

In this case, we import the Exam interface by specifying it

within curly brackets after the import keyword. There are

different types of imports that we can do depending on

whether the module has a default export, but let’s not worry

about that for now.

After the curly brackets, we have the from keyword followed

by the relative path to the file that contains the thing we

want to import. Absolute paths can also be used, although

this is not recommended for portability reasons. This string

containing the path to the module is known as a module

specifier.

Note that we do not need to specify the .ts extension in the

file path, in fact we should not – the compiler assumes we

want to import a TypeScript file.

In TypeScript, any file that contains either an import or an

export declaration is considered to be a module. Modules are

self-contained and values declared inside them are only

accessible to other modules if they are exported.

Type-only imports and exports

TypeScript also supports a special type of import and export

called a type-only import or export. This feature was added

to support the popular transpiler Babel and ensure that

Babel is able to remove all type-only codes correctly, and

other advanced use-cases involving working directly with

TypeScript’s transpileModule API; so, it’s not a feature that

you’ll need to make use of very often, but it’s useful to know

that the feature exists.

In order to declare a type-only import, we add the type

keyword directly after the import keyword. We can add this

code to module2.ts:

import type { Exam } from ‘./module1’;

In this case, the Exam interface will be imported into the

module and be useable in exactly the same way as a regular

import. The purpose is really to signal to the compiler or

Babel, that this imported entity is only used as a type and is

safe to discard during the compilation process.

In most cases, provided we are using the Exam interface

purely as a type, we wouldn’t need to explicitly mark the

import as a type-only import as the compiler would know

from the usage within the module that it was safe to remove,

but this is not always the case when using Babel for

example, as Babel is only a transpiler, it is not a full

TypeScript compiler like TSC is.

We declare a type-only export in the same way as a type-

only import. For example, we could also export the Exam

interface from module2.ts as a type-only export:

export type { Exam }

The time the type keyword comes directly after the export

keyword, and for all intents and purposes, behaves in the

same way as a regular export.

We would only use this syntax if we wanted to re-export the

Exam interface. We can’t export an interface or type alias as a

type-only export directly, but we can re-export them after

importing them into an intermediary module. It is in this

scenario that the type keyword should be used to signal to

the compiler that the exported entity is just a type and can

be safely removed during compilation.

Compiled modules

We can compile the two example modules by running the tsc

command in a command prompt focused on the directory

containing them. The accompanying companion project

already has a tsconfig.json file, so in this case, only the tsc

command is required. In other scenarios, if there is no

tsconfig.json file, the files to compile can be specified after

the command, like this for example:

tsc module1.ts module2.ts

After running the command in the project folder, the result

should be two JavaScript files in the dist/chapter 11

directory called module1.js and module2.js. As the module

configuration option in the tsconfig.json file for the

accompanying project has the setting ES2022, the compiled

modules will be standard ES Modules. The compiled

JavaScript version of module1.ts should look like this:

Figure 11.1: Compiled output of an example module in Visual Studio Code

As one would expect, all of the type information has been

stripped out of the file during the compilation process, so the

type alias and interface are completely gone. The class,

function, and variable all still exist, but these too have had

any references to types removed.

There is nothing particularly special about a module after it

has been compiled, compared to a regular TypeScript file

after it has been compiled. The only difference is for modules

that only export types or interfaces.

The module1.ts file contains a range of exported entities

but consider the situation where a module only exports

interfaces or type aliases. As these are removed during the

compilation process, you may wonder what the contents of

the compiled file would be.

As a quick example, comment out everything except the

exported Answer type alias in module1.ts and compile the

module again.

If the resulting JavaScript file doesn’t contain either an import

or export declaration, it will not be considered a module and

will therefore not be treated as one by the browser, which

would break any other modules that were trying to import

from this module. So, in order to preserve its status as a

module and prevent other code from potentially throwing an

error, TypeScript will insert an export for an empty object:

Figure 11.2: Compiled type-only module

Now let’s move on and look at some of the configuration

options in the tsconfig.json file that are related to modules.

Module-related configuration options

TypeScript has a wide range of different configuration

options that can be used in the compilerOptions section of the

tsconfig.json file, in order to change how modules, work.

Let’s take a look at some of the most commonly used

options.

Module

The companion project for this book has the module

configuration property set to ES2022, so the emitted JavaScript

is compatible with the very latest version of the JavaScript

module specification.

We can also set this option to other notable (in terms of

module support) versions of EcmaScript including ES2020 and

ES2015. To get the very latest version, whatever that happens

to be, we can also use ESNEXT. However, TypeScript supports

more than just ES versions.

If we set the module property to AMD, the output will use a

syntax familiar to users of RequireJS, for example, the

following figure shows the output of module2.ts after being

compiled:

Figure 11.3: AMD-compatible compiler output

For compiled code compatible with Node.js, we can use

either the value Node16 or NodeNext for the module option:

Figure 11.4: Node-compatible compiler output

The only difference here is that the define method, which is

part of the AMD specification, is not used. Another supported

value for the module option is System for SystemJS, another

more recent module loader:

Figure 11.5: SystemJS-compatible compiler output

Additionally, the module option supports the value UMD for

Universal Module Definition, which can support either AMD or

CommonJS at runtime depending on where the code is being

used:

Figure 11.6: UMD-compatible compiler output

TypeScript is able to output all the most common module

formats so TypeScript can be used with many different

module environments.

Module resolution

The moduleResolution property is used to control how the

compiler resolves modules given a module specifier. By

default, the compiler uses the classic setting, although this is

intended for legacy versions of TypeScript prior to 1.6 and is

not recommended for use with more recent versions of

TypeScript.

The preferred setting for this option is node, which means that

the compiler looks up and resolves modules in the same way

that Node.js does with CommonJS modules.

Module support in Node.js changed in Node.js version 16,

and we can use the module resolution strategy from this

version of Node.js by using the value node16 for the

moduleResolution property. To get the latest support, we can

also use nodenext.

As well as the moduleResolution configuration property, we’re

also going to look at module resolution as a process a little

later in this chapter.

Base URL

The baseUrl configuration property is used to set a directory

as the root directory from which the compiler can resolve

modules with non-relative imports. Relative imports are

resolved relative to the file making the import, but we can

also use non-relative imports as well.

In the example project, the two modules we created earlier

are in the chapter 11 directory, and currently, module2.ts

is importing the Exam interface from module1.ts in the same

directory using a relative path:

import { Exam } from ‘./module1’;

The path is relative because it begins with a period.

If we set the baseUrl configuration property to chapter 11,

we can then change the import statement in module2.ts to

a non-relative path:

import { Exam } from ‘module1’;

This time the path does not begin with a period and so is not

relative.

Paths

We can use the paths configuration option to map one path to

another path; think of them as aliases for import paths. This

property takes an object where the keys are the names of

the aliases we wish to use in module specifiers, and the

value is an array of paths to the actual modules the alias is

for.

The paths to the modules are relative to the baseUrl, or if this

is not set in the tsconfig.json file, paths are relative to the

tsconfig.json file itself. Let’s keep that set to chapter 11

for this example as well. We can add the following

configuration for the paths option in the tsconfig.json file:

“paths”: {

“a”: [“module1”]

},

We use a for the alias and map this to path module1. Now in

the module2.ts file, we can import the Exam interface from

the alias:

import { Exam } from ‘a’;

The paths option can be very useful for simplifying imports in

large projects, or projects with lots of third-party

dependencies that need to be imported.

Rootdirs

The rootDirs property is used to configure a series of different

directories that the compiler will treat as if they were a single

directory for the purposes of module resolution. For example,

consider a project that has several different folders where

components are stored (you should recreate this structure

inside the chapter 11 directory if you have been building up

the example project manually throughout the book):

Figure 11.7: Separate directories for different types of modules

We can add entries for the two directories forms and menus

using the rootDir property in the tsconfig.json file like this:

“rootDirs”: [

“components/forms”,

“components/menus”

],

The paths are relative to the directory containing the

tsconfig.json file.

Now, for example, inside the main-menu.ts module, we can

import something from the search-field.ts module as if

they were located in the same directory:

import { SearchField } from ‘./search-field’;

This configuration option can be useful if the directories

specified in rootDirs are combined as a result of a build

process.

Type roots

When using third party TypeScript packages, the declaration

files containing the type information for these packages are

usually installed in your project in the directory

node_modules/@types; all of the files within this directory,

and all of its subdirectories, will be available throughout your

project without requiring any special configuration.

The typeRoots property allows us to specify one or more

alternative directories for these declaration files to be

resolved from. For example, let’s say that we keep all of the

declaration files for our project in a directory called

declarations, which contains two subdirectories called

internal and external.

We can instruct TypeScript to look in these folders for

declaration files instead of the node_modules/@types

folder using this typeRoots configuration:

“typeRoots”:

“declarations/internal”,

“declarations/external”

],

The paths used in the array are relative to the tsconfig.json

file for the project. Note also that with this configuration

enabled, the compiler will not look for types in the

node_modules/@types directory.

Module suffixes

When trying to resolve modules, TypeScript will look for more

than just a matching .ts file – depending on the

configuration, it may look for .ts, .tsx, .d.ts, and perhaps

even .js files. The moduleSuffixes property allows us to add

new suffixes to this list for the compiler to look for when

resolving modules.

For example, if we add this configuration to the

tsconfig.json file:

“moduleSuffixes”: [“.preferred”, “”],

Then in this case, the compiler will look for *.preferred.ts

files before it looks for *.ts, *.d.t.s, and so on. The empty

string at the end is required for TypeScript to fall back to the

default if it cannot find a module with a matching suffix.

Note however that this will not cause TypeScript to rewrite

any module paths in import statements – we cannot use this

as a shortcut to avoid typing common suffixes when adding

import statements to our files.

This option is useful when using third party loaders or

bundlers like Webpack for example and helps TypeScript

understand which files should be type-checked. In some

cross-platform native application frameworks, TypeScript

files have an extension that matches the targeted platform,

like app.android.ts and app.ios.ts.

When building an application for Android for example, we

would not want the *.ios.ts files to be type-checked as this

would waste time and resources. So, the moduleSuffixes

configuration option is used to support that kind of scenario.

It will often be set by the framework in use, so it’s not an

option that you’ll need to manually configure frequently.

Resolve JSON module

By default, TypeScript will not allow you to import directly

from JSON files, but JSON files are very often used to store

configuration for web applications. We can enable importing

from this type of file with the resolveJsonModule option.

For example, imagine we have a simple config.json file that

looks like this:

{

“enableFeature”: true

}

By setting resolveJsonModule to true in the tsconfig.json file,

we can then import the config.json file into TypeScript

modules as if the JSON file was a TypeScript file with a

default import:

import config from ‘./config.json’;

Now, throughout this module, we would get full typing for

the config token, as if it had been declared as a TypeScript

module, for example:

const enable = config.enableFeature; // fine

One thing to note about this option is that it can only be

used when the moduleResolution option in the project’s

tsconfig.json file is enabled (uncommented) and set to node,

and the allowSyntheticDefaultImports option is enabled and set

to true.

Module resolution

Module resolution is the process of the compiler looking up

modules to load when following an import statement. Loading

relative module specifiers is easy for the compiler – the

paths to these modules are always relative to the file making

the import and always point to a single specific location.

Non-relative imports are different however, and the compiler

will look for modules to load in a specific range of different

locations, and this range of locations is different depending

on the value of the moduleResolution configuration option,

which we looked at a little earlier in this chapter.

Remember that this option is not configured by default, so

the compiler will use the classic resolution strategy unless

this setting is uncommented in the tsconfig.json file and

configured to another supported value like node. We’ll look at

the node module resolution strategy in just a moment, but

first, let’s understand the classic strategy.

Imagine that we are trying to load the popular and

ubiquitous jQuery library using an import like this:

import jquery from ‘jquery’;

The specifier here isn’t a relative path, because it doesn’t

start with at least one period, so the module can’t be found

by starting at the current location and following the path.

The process the compiler will use to try to resolve non-

relative imports using the classic strategy is as follows. It will

attempt to resolve the module by looking for a range of

different files from each of these locations in the following

order:

1. Look in the current directory for a module called

jquery.ts.

2. Look in the current directory for a module called

jquery.tsx.

3. Look in the current directory for a module called

jquery.d.ts.

4. Keep looking for the previous three module types

(jquery.ts, jquery.tsx, jquery.d.ts) in all parent

directories until one of the module types can be found,

or the root of the file system is found (note that this

process will continue beyond the root of the project

regardless of the setting of the rootDir or baseUrl

TypeScript configuration options).

5. Look in the current directory for a node_modules folder.

6. Keep navigating up the project file system until it finds a

node_modules folder.

7. Once, and if, the node_modules directory is found, look

for a file called jquery.d.ts in node_modules/@types.

8. Look in the package.json file for a property called

typings, which may contain instructions on how to load

modules.

9. Look in the package.json file for a property called types,

which may contain instructions on where to find type

declaration files.

10. Look in the current directory for a file called jquery.js.

11. Look in the current folder for a file called jquery.jsx.

12. Keep looking for a .js/.jsx module in all parent

directories until one of the modules can be found or the

root of the file system is reached.

If the module is not found at this point, assume it is not

present and stop trying to resolve it.

The process seems quite long and convoluted but the

compiler is basically searching for a range of several

different applicable file types that it could load the module

from in all parent directories, working its way up the file-

system tree until it finds an appropriate module or runs out

of places to search.

The above process will stop as soon as the compiler is able

to locate an appropriate target file, so the full process

described earlier will not happen in all cases.

The preferred moduleResolution strategy is node; with this

setting, look-ups for non-relative modules using the same

import statement as above will be carried out as follows:

1. Look in the current directory for a directory called

node_modules.

2. Look in the parent directory for a directory called

node_modules.

3. Keep looking in parent directories for a node_modules

folder.

4. Once node_modules is located look for a package.json file

inside node_modules and see if it has a typesVersions

property configured.

5. Look for a module called jquery.ts in node_modules.

6. Look for a module called jquery.tsx in node_modules.

7. Look for a module called jquery.d.ts in node_modules.

8. Check if the package.json has a typings property

configured.

9. Check if the package.json has a types property configured.

10. Check if package.json has a main property configured

which points to dist/jquery.js.

11. Look for jquery.ts in node_modules/jquery/dist.

12. Look for jquery.tsx in node_modules/jquery/dist.

13. Look for jquery.d.ts in node_modules/jquery/dist.

14. Look for index.ts in node_modules/jquery.

15. Look for jquery.ts, jquery.tsx, or jquery.d.ts in all parent

directories of nodule_modules/jquery/dist until node_modules

is reached.

16. Look for jquery.d.ts in node_modules/@types.

17. If no .ts, .tsx, or .d.ts files are found at this point, the

compiler will use the jquery.js that it found in Step 10

and use that as the module.

The process for Node.js style look-ups is similar to classic

mode, but it will use the first node_modules directory that

it finds as the root of module look-ups, and it will also look

for index.ts files in directories, which are known as barrel

files (we’ll look at these shortly).

If we want to see the exact process the compiler is

using to try to load a module, we can add the --

traceResolution compiler flag and it will output the

full resolution process that was used.

Compiler directives

Compiler directives, also known as triple-slash directives, are

an older way of telling the TypeScript compiler how to load

dependencies for the current file. They date back to before

the adoption of widespread support for ES Modules, and their

use is now discouraged everywhere except declaration files.

Compiler directives must be used at the very top of any files

they are used in – if they do not appear before any other

statements, the compiler will treat them as regular

comments and ignore them completely. Compiler directives

must point to a file that exists, and cannot point to the same

file they are used in.

There are a number of different compiler directives which

serve different purposes, but all of them begin with a triple

slash ///. You should note also that these triple-slash

compiler directives are completely ignored but the compiler

when the noResolve configuration option is enabled.

Let’s take a quick look at each of the different types of triple-

slash directives.

Reference path

Reference paths are (or were when they were more

commonly used) the most commonly-used compiler directive

and are used to tell the compiler that the file containing the

directive depends upon another file. The syntax is as follows:

/// <reference path=”path/to/file”>

The path/to/file is relative to the file containing the directive,

and the compiler will resolve the module found in the path

and include it in the compilation. But remember, import

statements are the preferred means of including other

modules in your module, and compiler directives cannot

import actual code, only type declarations.

Let’s see a basic example. Imagine we have a folder called

declarations, which contains two subfolders, internal and

external. The internal folder contains a file called

lib1.d.ts, and the external folder contains a file called

lib2.d.ts, like this:

Figure 11.8: Example folder structure in Visual Studio code

In the lib1.d.ts file, we just declare an interface called Test:

declare interface Test {

questions: string[];

}

We can reference this interface in lib2.d.ts using a

reference path directive, like this:

/// <reference path=”../external/lib1”>

Now we can use the Test interface inside this file, perhaps

like this:

const myTest: Test = {

questions: [],

}

Without the compiler directive, the editor would mark Test as

any.

Reference types

Another common compiler directive is reference types, which

is similar to reference paths except that you specify the

name of a set of types as opposed to the path to a specific

file.

For example, if our own declaration file depends on the types

from a package in the node_modules@types directory, we

could use the following directive in our own declaration file

to include them:

/// <reference types=”node”>

You should note that we should not need to do this in

practice, however, as types from the

node_modules@types directory are automatically

included. These directives date back to a time before this

mechanism existed.

Reference lib

The reference lib directive is similar to reference types,

except that it is used to include one of TypeScript’s built-in

library files as opposed to types that we can explicitly install

into the node_modules@types directory.

For example, if we want to use the types for the Reflect API

from ES2015, we can include this with the following

directive:

/// <reference lib=”ES2015.Reflect”>

No default lib

By default, TypeScript contains a declaration file called

lib.d.ts, which is known as the default lib. To exclude

lib.d.ts from the compilation, you can use the no-default-lib

directive in your own *.d.ts file, like this:

/// <reference no-default-lib=”true”/>

This directive has the same effect as setting the noLib

configuration property in the tsconfig.json file.

AMD module

Depending on the module loader in use in your project, for

example, when working with legacy projects that use

RequireJS, it may be necessary to specify names for your

AMD modules. This can be done using the AMD module

directive:

/// <amd-module name=”MyAmdModule”/>

AMD dependency

The last compiler directive is called AMD dependency and

used to be used to tell the compiler about a non-TypeScript

dependency that was needed by an AMD module, however,

this directive is now deprecated and should not be used;

regular import statements should be used instead.

Barrel files

Barrel files are a way that we can simplify imports by

collecting all of the exports from a series of files and making

them available via a single file, the barrel file.

NOTE: In order to use barrel files, the

moduleResolution property in the tsconfig.json file

should be set to node.

For example, imagine a project has a root directory called lib

with sub-directories api and ui, each containing one or more

TypeScript files, like this:

Figure 11.9: A simple project structure with sub-directories

The root lib folder also contains a file called my-lib.ts. Each

of the ui-a.ts and ui-b.ts files export a single and very

simple interface, which is as follows:

ui-a.ts:

export interface UiA {

aProp: string;

}

ui-b.ts:

export interface UiB {

bProp: number;

}

Now let’s imagine that we want to import both of these

interfaces into the api-a.ts file. Without a barrel file, we

would have to import each of them individually:

import { UiA } from ‘../ui/ui-a’;

import { UiB } from ‘../ui/ui-b’;

To simplify these imports and import both interfaces in the

same statement, we could add a file to the ui directory

called index.ts, which simply re-exports the exports from

ui-a.ts and ui.-b.ts respectively:

export * from ‘./ui-a’;

export * from ‘./ui-b’;

The export * from ‘./ui-a syntax basically just says export

everything which is exported from module ui-a.ts. We can

also export specific dependencies if we wish, like this for

example:

export { UiB } from ‘./ui-b’;

Now in api-a.ts, instead of importing both the interfaces

from their individual files, we can import them both at the

same time from the index.ts barrel file, like this:

import { UiA, UiB } from ‘../ui’;

The index.ts file is treated as a default module for the

directory it is inside, so we can import anything this file

exports from the directory itself rather than having to go

down to an individual file.

Nested barrels

We can even nest barrel files in order to create a simplified

import structure for our entire project. This time consider

that the api-a.ts file also exports some kind of interface:

export interface Api {

apiA: string;

}

And that the containing api directory also contains a barrel

file, also called index.ts, which contains the following:

export * from ‘./api-a’;

Now let’s add a new barrel file inside the top-level lib folder:

export * from ‘./api’;

export * from ‘./ui’;

This barrel file simply re-exports everything from the barrel

files inside api and ui folders. Now, for example, we can

import all of the example interfaces in the my-lib.ts file

from this top-level barrel file, like this:

import { UiA, UiB, Api } from ‘./’;

Now we are importing everything from the top-level

index.ts, which itself re-exports everything from the nested

index.ts files inside the api and ui subdirectories

respectively.

Barrel files are useful and can simplify imports when we need

to import many things from the same locations. But they

should be used with caution, especially in larger applications,

for several reasons.

First of all, they can easily lead to circular dependencies in

an application, where two different modules depend on each

other. This is bad because there is no way for the compiler to

know which of these modules needs to be loaded first. Barrel

files make it easy to introduce circular dependencies

unknowingly.

Secondly, with some configurations, unused code cannot be

removed from your application when importing from barrel

files, which can lead to more code being included in your

application than is necessary. This has performance

implications for production applications as your users will

need to download more code and can lead to development

issues like slow-running units and integration tests.

Augmenting modules

Module augmentation is the process of adding new type

information to existing modules. We can declare a module

that contains an interface with the same name as an existing

class, and TypeScript will merge the two together, allowing

us to use properties and methods from both.

This can be especially useful if we are working with third

party code or files that for some reason we cannot change

directly. Let’s look at a quick example; imagine we have the

following basic class in a file called customer.ts:

export class Customer {

constructor(public name: string) {}

public updateName(name: string): void {

this.name = name;

}

}

The class has a single public property called name, which is of

the type string, and we can give it a simple method called

updateName which can update the name property.

Now, in another file called customer-social.ts, we can

import this class and declare a new module with the same

path:

import { Customer } from ‘./customer’;

declare module ‘./customer’ {

interface Customer {

socialMediaName: string;

updateSocialMediaName(name: string): void;

}

}

Inside the module we can add an interface with the same

name as the class from the module being augmented and

can add any new properties or methods that we want, in this

case, we can just add a single new property called

socialMediaName, and a single new method called

updateSocialMediaName.

So now we can create new instances for the Customer class

and we’ll be able to add a socialMediaName property to those

objects as if the property had been added to the original

customer.ts module, like this for example:

const mySocialCustomer: Customer = new Customer(‘Jon Doe’);

mySocialCustomer.socialMediaName = ‘@jondoe’;

Remember, the interface we added in the redeclared Customer

module only contains the type for the updateSocialMediaName

method, not the implementation. If we wanted to add this

method to all instances of the Customer class alongside the

updateName method from the class itself, we would have to add

this via the prototype, like this for example, which we could

add to the customer-social.ts file:

Customer.prototype.updateSocialMediaName = function (name:

string) {

this.socialMediaName = name;

}

Although in this example the module being redeclared is in

the same directory as the file that redeclares it, this doesn’t

have to be the case, as long as the paths match it doesn’t

matter.

NOTE: We can only augment classes with interfaces,

we can’t use other classes or type aliases.

Conclusion

Modules are an essential part of modern front-end

development because they allow us to break an application

up into many small components instead of a single huge

monolith, and also promote code reuse and maintainability.

Modules are very easy to use, as we have seen over the

course of this chapter, and the compiler supports all of the

common module formats in use today, including the very

latest ES2022 specification.

In the next chapter, we are going to focus on creating

declaration files.

References

https://www.typescriptlang.org/docs/handbook/mo

dules.html

https://www.typescriptlang.org/docs/handbook/mo

dule-resolution.html

https://www.typescriptlang.org/tsconfig#module

https://www.typescriptlang.org/docs/handbook/tri

ple-slash-directives.html

https://www.digitalocean.com/community/tutorials

/typescript-module-augmentation

https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/tsconfig#module
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html
https://www.digitalocean.com/community/tutorials/typescript-module-augmentation

CHAPTER 12

Creating Declaration Files

Introduction

In this chapter we will look at how to manually write a

TypeScript declaration file; this isn’t necessarily a task that

you’ll undertake too often, given that almost all popular

JavaScript libraries have publicly available type packages

that provide type information in the editor, and that we can

generate declaration files using the compiler. But for those

rare occasions where it may be necessary, you’ll want at

least a grounding in the basics.

There are several different general types of JavaScript

libraries that are commonly used, so there are several subtle

variations in how we need to create the declaration file,

depending on what type of library it is for.

As well as looking at the different kinds of JavaScript libraries

that we could be working with, we can also see how to

publish our declaration files to the Definitely Typed

repository so that they can be installed by anyone via NPM.

Structure

In this chapter, we will cover the following subjects:

Creating declaration files

Declaring global libraries

Enhancing Intellisense with JSDoc

Declaring global functions and variables

Augmenting built-ins

Declaring modular libraries

Declaring default exports

Declaring classes

Declaring CommonJS modules

Publishing declarations

Creating declaration files

The type of JavaScript library that we are writing the

declaration file for will determine how we write the

declaration file itself. Generally, there are two main ways

that JavaScript libraries are consumed by other developers in

browsers; either they are manually linked to using a script

element in an HTML page, or they are imported into the

developer’s code as some kind of module. Outside of the

browser, JavaScript libraries may also be used in Node.js

applications.

Generally, in the browser, the script element approach is

used by older libraries, like the popular jQuery library for

example, which adds an object that contains the API of the

library to the global Window object, and developers interact

with this object in order to use the library.

Declaring global libraries

Let’s consider a very small and basic JavaScript library of the

kind that adds an object into the global namespace for this

example. The accompanying project contains this code in a

file called str-global.js in the global folder, which in turn is

in chapter 12 folder:

(function () {

if (window && !window.str) {

window.str = {

version: ‘1.0.0’,

lastChar: function(word) {

return word.slice(-1);

},

ordinalize: function(dayOfMonth) {

const d = ‘’ + dayOfMonth;

if (!d || !parseInt(d, 10)) return ‘’;

return str.lastChar(d) === ‘1’

? `${dayOfMonth}st`

: str.lastChar(d) === ‘2’

? `${dayOfMonth}nd`

: str.lastChar(d) === ‘3’

? `${dayOfMonth}rd`

: `${dayOfMonth}th`;

},

};

}

}());

The whole library is enclosed within an immediately invoked

function expression, and inside this, the library first checks

to see whether the window object exists, just in case the code

is running in an environment outside of the browser, and that

it doesn’t already contain a property called str. As long as

both of these conditions are true, the library proceeds to add

an object called str to the window object.

This object, the API of the library essentially consists of a

property called version which contains a hard-coded string,

and a couple of small utility methods called lastChar and

ordinalize. Both of these methods return string values in all

cases.

The first method accepts a string parameter called word and

returns the last character of this string. The second method

may receive a parameter called dayOfMonth, which may be

either a string or a number, and returns the same string with

an appropriate ordinal suffix, so passing the string or number

2 would result in the string 2nd being returned, for example.

This library could be something that you’ve written yourself,

something created by a co-worker and used in an old project

at work, or anything in between.

It’s clear that this is a global library because it adds to the

global window object, and it’s clear how the method

parameters and return types should work, so writing a

declaration file for this library shouldn’t be too difficult.

The declaration file for this library will be very small because

the file will only provide type information - the

implementation already exists in the form of the library itself,

and the type information should be fairly straightforward.

We can create a basic declaration file for the example library

as follows. In the example project, this file is called str-

global.d.ts and sits alongside the JavaScript file it

describes:

declare namespace str {

const version: ‘1.0.0’;

function lastChar(word: string): string;

function ordinalize(dayOfMonth: number | string): string;

}

We use the declare keyword to tell TypeScript that a

namespace, or object, called str exists. Next, we describe

the version property and assign it the literal string type 1.0.0.

To ensure the property is read-only, we declare it using const.

We could also have used let or even var here instead for a

property that can be written to. As you can see, object

properties are declared just like a regular variable

declaration, but with type information instead of a value.

To describe methods, we use the function keyword, followed

by the method identifier and parameter list. As mentioned

earlier, the first method, lastChar, take a single string

parameter called word. Last of all we provide the return type,

which is string for both of the methods. The parameter for

the second method should be a string or number.

This is all we need for our simple global library, but there’s

one more thing we need to do in order to get Intellisense

when using the library in our own TypeScript files. In the

tsconfig.json file in the root of the project, we should use

the include top-level option to include this declaration file in

the compilation. Nothing imports the file, so if we don’t do

this, the editor won’t recognize the declarations inside it.

In the example project, the declaration file is contained

within the chapter 12 directory, so we can just add the path

to that directory relative to the tsconfig.json file in an array

for the include option:

“include”: [“./chapter 12”]

This configuration will tell the compiler to include any d.ts

files in the listed directories. We should now see that we can

use the str object as a global object in our TypeScript files

and receive full type information as expected:

Figure 12.1: Type tooltip for a global JavaScript library in Visual Studio Code

We will also see a warning if we try to use the library

incorrectly; if we try to assign to the version property for

example, we’ll see a warning that the property is read-only

and cannot be assigned to:

Figure 12.2: Assigning to read-only property error in Visual Studio Code

One point to note in the above figure is that the header of

the tooltip is showing the type any for the version property,

which is probably not what we would expect – we would

perhaps expect it to have the literal string type of 1.0.0.

To fix this, we can use let (or var) to declare the property in

the declaration file. Since we used a literal string for the

property type, the property will still be effectively read-only

because the property can only equal the literal string:

Figure 12.3: Error with the correct property type in Visual Studio Code

This time the property has the correct type information, but

personally I feel the actual error message from the earlier

const version is more explanatory as it better signals the

intent of the original code – the intent was for the property to

be read-only, and the first tooltip in figure 12.2

communicates that intent better than the message shown

above in Figure 12.3.

Nevertheless, in either case, the end result is that the

property can’t be overwritten.

Enhancing Intellisense with JSDoc

In addition to the standard Intellisense that shows how a

given piece of code works, we can also add supplementary

information to the tooltips displayed in the editor using JSDoc

comments.

We can annotate different parts of the declaration files using

JSDoc comments, and the editor will display them in the

tooltip when the mouse pointer is hovered on the

appropriate code. Here is the same declaration file from

before, but this time annotated with JSDoc comments:

/**

* Simple string utils

* @license MIT

*/

declare namespace str {

const version: ‘1.0.0’;

/**

* lastChar

* @param word {string} - The word to get the last character

of

* @returns string

*/

function lastChar(word: string): string;

/**

* ordinalize

* @param {number|string} dayOfMonth - the day of the month

to ordinalize

* @returns {string}

*/

function ordinalize(dayOfMonth: number | string): string;

}

In this case, we’ve added the name and license at the top of

the whole file, and descriptions for both of the methods

exposed by the library. Now in the editor, if we hover over

the global object the library adds to the Window object, we’ll

see the top-level JSDoc:

Figure 12.4: Top-level JSDoc comment in Visual Studio Code

Whereas, if we hover over one of the methods, we’ll see the

JSDoc for that specific method:

Figure 12.5: Method-level documentation in Visual Studio Code

In this example, we used the JSDoc tag @license to briefly

mention the license for the file. JSDoc supports a wide range

of different tags to convey rich information about the code.

You can learn more at http://jsdoc.app.

Declaring global functions and

variables

In the previous section we saw how to describe a JavaScript

library available as a global object containing properties and

methods, not unlike some very popular JavaScript libraries of

the not-too-distant past that are still very widespread out in

the wild.

We can also describe purely global variables and functions if

necessary. Consider an example JavaScript library which

adds a property and a method directly to the global window

object:

(function () {

window.globalMessage = ‘Hello from the global object’;

window.getGlobalMessage = function() {

return window.globalMessage;

}

}());

http://jsdoc.app/

To keep things concise, this small example doesn’t check for

the existence of the window object, or the property or method

before trying to add them. For reference, this code is also in

the str-global.d.ts file in the accompanying project. To

describe them, we just need to use the declare keyword with

a variable or a function declaration:

declare const globalMessage: string;

declare function getGlobalMessage(): string;

They can be declared at the top level of the declaration file

without needing to be wrapped in a namespace.

As before, we will now get type information in the editor for

both the global property and the global function:

Figure 12.6: Global method tooltip in Visual Studio Code

There’s one more global kind of library that we might need

to write a declaration file for – a library that modifies a built-

in global. Let’s take a look at this next.

Augmenting built-ins

Although less common today than at one point, another

global kind of library is one that modifies a built-in object,

like when adding new methods to string objects for example.

This is generally considered a bad practice today, so you

probably won’t see this kind of JavaScript library in practice

very often at all now.

This time let’s consider a small JavaScript library that

augments the prototype of the existing built-in String

constructor with a new method:

(function () {

if (!String.prototype.reverse) {

String.prototype.reverse = function() {

return this.split(‘’).reverse().join(‘’);

}

}

}());

This snippet of code uses this inside the function – the

method will be called on literal string instances, and this

inside the function will refer to the string instance the

method is being called on. It would be used like this:

‘test’.reverse(); // tset

To declare this new method, we use the same approach as

earlier when augmenting modules:

interface String {

reverse(this: string): string;

}

We simply redeclare the object we are augmenting using an

interface and then add the definition for the new method

being added to the object. We use a this parameter to

specify that the type of the this value will be a string.

This is an example of interface merging, which we looked at

earlier in the book.

Declaring modular libraries

The other main kind of library that we might use in

JavaScript is a modular library which exports code to be

imported and used in other modules. A modular version of

the str library that was the basis of earlier examples in this

chapter might look like this:

export const str = {

version: ‘1.0.0’,

lastChar: function(word) {

return word.slice(-1);

},

ordinalize: function(dayOfMonth) {

const d = ‘’ +dayOfMonth;

if (!d || (!parseInt(d, 10)) return ‘’;

return str.lastChar(d) === ‘1’

? `${ dayOfMonth}st`

: str.lastChar(d) === ‘2’

? `${ dayOfMonth}nd`

: str.lastChar(d) === ‘3’

? `${ dayOfMonth}rd`

: `${ dayOfMonth}th`;

},

}

The functionality is identical to earlier examples, it just uses

the export keyword to export the str object rather than

attaching it to the global window object, and additionally, isn’t

wrapped in an immediately invoked function expression

which isn’t needed because modules are always executed.

This code is in the file called str-module.js, in a folder

called module, which in turn is in the chapter 11 directory

in the example project.

To create a declaration file for the above module, we can use

an almost identical declaration file to the one we used for

the global version of the library in the previous section,

except that this time we need to use the export keyword to

mark the declaration file as a module – exactly the same as

using the export keyword in a regular TypeScript (or

JavaScript) file to signify that the file is a module:

/**

* Simple modular string utils

* @license MIT

*/

export declare namespace str {

const version: ‘1.0.0’;

function lastChar(word: string): string;

function ordinalize(dayOfMonth: number | string): string;

}

I’ve added a slightly different JSDoc to the top of this file to

distinguish it from the previous declaration file, but I haven’t

explicitly annotated the methods this time to keep the

example shorter – they would be exactly the same as before.

This code is in a file called str-module.d.ts alongside the

previous JavaScript file.

Aside from the export keyword and lack of JSDoc comments

for the methods, the file is identical to the previous

declaration file.

We can now import our library into another TypeScript file (in

a file called my-module-app.ts in the module folder):

import { str } from ‘./str-module’;

We will then get full type information for the imported library

when we use it:

Figure 12.7: Tooltip for a modular library in Visual Studio Code

NOTE: Since module declaration files are used via

import statements, they do not need to be included

in the compilation using the top-level include

configuration option in the tsconfig.json file.

Declaring default exports

As well as exporting any number of named exports,

JavaScript modules can also export a default export. This is

more common with modern JavaScript libraries that export a

large API for working with the library.

Imagine that the module version of our example str library

also contains a default export to export a function (this code

can also be found in the str-module.js file):

export default reverse = function(word) {

if (!word) return ‘’;

return word.split(‘’).reverse().join(‘’);

}

As well as the export keyword, the default export also uses

the default keyword. Aside from that, the rest is fairly

inconsequential. The import statement for the default export

differs slightly from that of the named export. To use the

reverse function in another module, we would import it like

this:

import reverse from ‘./str-module’;

Note the lack of curly braces around the imported identifier

for the function. However, if we try to use this function

before we have declared it, we will see an error in the editor

complaining that the expression is not callable:

Figure 12.8: Expression not callable error in Visual Studio Code

To fix this, we can declare the function in the declaration file

and also use the default keyword to tell TypeScript that this is

the default export:

export default function reverse(word: string): string;

Now the error will disappear in the editor, and we will get

type information for the method:

Figure 12.9: Full default export type tooltip in Visual Studio Code

This time the method is not called on literal instances of

strings like the previous incarnation of the reverse function.

This time the function itself is imported, so we use it like a

regular function.

Declaring classes

As well as exporting values or functions, JavaScript libraries

may also export whole classes. In this case, the constructor

for the class would be imported, and the functionality of the

library would be exposed through instances of the class

created in the consuming modules.

Consider the example modular str JavaScript library that

we’ve worked with so far also exports a basic class (again,

this code is in the file str-module.js):

export class Word {

count(sentence) {

return sentence.split(‘ ‘).length;

}

}

This simple Word class has no explicit constructor and just a

single method called count, which can be used to count the

words in a sentence. We will use the class in our modules

(for example in the my-module-app.ts file) like this:

import { Word } from ‘./str-module’;

const word = new Word();

const wordcount = word.count(‘Lorem ipsum’); // 2

However, before we are able to use it, we need to tell

TypeScript about it. To do that, we just need to add a

declaration for it to the str-module.d.ts file:

export declare class Word {

count(sentence: string): number;

}

The declaration, like the original class, is incredibly small; we

simply declare the class as an export, and provide identifiers

and type information (parameter and return types) for any

methods the class exposes.

Declaring CommonJS modules

Another popular module format for JavaScript libraries is

CommonJS. For this example, consider that our str library is

in CommonJS format. The code for this example is in the file

called str-common.js in the module folder:

module.exports = {

version: ‘1.0.0’,

lastChar: function(word) {

return word.slice(-1);

},

ordinalize: function(dayOfMonth) {

const d = ‘’ + dayOfMonth;

if (!d) return ‘’;

if (!parseInt(d, 10)) return ‘’;

return str.lastChar(d) === ‘1’

? `${dayOfMonth}st`

: str.lastChar(d) === ‘2’

? `${dayOfMonth}nd`

: str.lastChar(d) === ‘3’

? `${dayOfMonth}rd`

: `${dayOfMonth}th`;

},

};

CommonJS modules use module.exports to export values from

the module. In this case, the value is the object containing

the properties and methods of the library. To declare

CommonJS modules, we just need to export the properties

and methods that the library object exposes:

export const version: ‘1.0.0’;

export function lastChar(word: string): string;

export function ordinalize(dayOfMonth: string | number):

string;

This code is in a file called str-commonjs.d.ts in the

module folder. To consume the library in another module,

we need to import it using the global require function:

import str = require(‘./str-commonjs’);

Now we get full type information in the editor when working

with the imported library:

Figure 12.10: Intellisense for CommonJS module in Visual Studio Code

Note that to avoid errors for the require function, the types

for Node.js should be installed. To install them, run the

following command in a Terminal or command line

application at the root of the project:

npm install @types/node

This will install the types for Node.js into the

node_modules/@types folder. You will also need to remove

the include option that we added earlier from the

tsconfig.json file before this example will work as expected.

Declaring UMD modules

Modules written in UMD are also very common and declaring

types for them is extremely easy. A UMD version of our

example str library, in a file called str-umd.js, looks like

this:

(function (root, factory) {

if (typeof define === ‘function’ && define.amd) {

define([], factory);

} else if (typeof module === ‘object’ && module.exports) {

module.exports = factory();

} else {

root.str = factory();

}

}(typeof self !== ‘undefined’ ? self : this, function () {

return {

version: ‘1.0.0’,

lastChar: function(word) { },

ordinalize: function(dayOfMonth) { },

};

}));

The lastChar and ordinalize methods are exactly as before, so

I have not duplicated them again. This code is almost exactly

the same as the module version of the library, it just has an

extra wrapper around it that checks for the existence of

various module loaders in order to support different

environments.

In this case, code has an outer anonymous function which

accepts two parameters, one called root which will be the

window object in a browser, and one called factory, which is

the factory function that will be invoked when this file is run.

Inside this function is an if statement that first checks for

the existence of a global function called define and that this

function has a property called amd. When a loader that

supports AMD is running the code, these will be true and the

define function will then be invoked, passing an empty array

(or any dependency names) and the factory function.

If define does not exist, the next branch of the if statement

checks to see if there is a global object called module, and if

so whether it has a property called exports. If these are both

true it means the module is in CommonJS format and is being

used in NodeJS, and in this case, the factory function is

invoked, and the result is assigned to module.exports.

The last branch of the if statement is for when neither AMD

or CommonJS are used and in this case, it simply assigns the

return value of the factory function to a property of the root

object (which will be the window object in a browser) called

str, the name of the example library.

The first function is immediately invoked and passed the two

expected parameters. The first parameter is obtained by

checking for a global object called self, which will be present

in NodeJS or Webworker contexts. This object is passed in if it

exists, and if not, this is passed instead, which will refer to

the window object in browsers.

The factory function is the function that is passed into the

first function as the second argument, this function simply

returns the actual str library itself.

The declaration file for this variation of the library, in a file in

the module folder in the example project called str-

umd.d.ts, is like this:

/**

* Simple UMD string utils

* @license MIT

*/

export declare namespace str {

const version: ‘1.0.0’;

function lastChar(word: string): string;

function ordinalize(dayOfMonth: number | string): string;

}

The UMD version of the declaration file is exactly the same

as the regular module version, making it very easy to

support UMD. Using this library in our own TypeScript files is

also incredibly easy.

We can either import the library as a module as we did with

other versions:

import { str } from ‘./str-umd’;

We then use the str object in the normal way, like this for

example:

str.lastChar(‘umd’); // d

Or, we can access the library via the window object, like this:

window.str.lastChar(‘also works!’) // !

Of course, we get full type information in the editor even for

the version of the library accessed via the window object:

Figure 12.11: Tooltip for UMD module in Visual Studio Code

Now that we know how to create declarations for the most

common scenarios, let’s move on to see how we can share

those declarations with others by publishing them.

Publishing declarations

There are two main ways to publish declaration files for a

library; we can include the declaration files with the library

so that when the library is installed, the types are installed

with it. Or alternatively, we can publish the types to the

Definitely Typed public repository.

Publishing with the library

Publishing the declaration with the library is the most

common approach; if you’re creating a JavaScript library

using TypeScript today, there’s no reason not to include the

types with it, which TypeScript can usually generate for us in

any case.

If we were publishing a JavaScript library to NPM, we would

have a package.json file for the library, containing some

basic information about it. If we were publishing the example

simple string utilities library from earlier in this chapter, for

example, we might have a package.json file similar to this:

{

“name”: “str”,

“version”: “1.0.0”,

“description”: “Simple modular string utils”,

“license”: “MIT”,

“main”: “./str.js”,

“types”: “./str.d.ts”

}

We can use the types configuration property to specify the

path to the declaration file. In this example, the library itself

is contained in the file str.js, and the declaration file is

str.d.ts.

When published to NPM and installed by a consumer of the

library, the types are installed within the library and no

further configuration is required.

Publishing to Definitely Typed

Packages installed from the Definitely Typed repository are

installed in a directory inside the node_modules folder

called @types and are picked up by the editor automatically

from this directory.

Publishing to the Definitely Typed repository will require

some knowledge of using Git and GitHub, as you will first

need to clone the Definitely Typed repository to your local

computer and create a new branch in Git for your

development to be done in.

Describing these processes in full is beyond the scope of the

book, but you can find out more about both Git and GitHub

on the Git website at http://git-scm.com.

More information about the Definitely Typed repository can

be found on GitHub at the URL

https://github.com/Definitely Typed/Definitely Typed.

http://git-scm.com/

Once you have a copy of the Definitely Typed repository

locally, the first task is to create a new directory inside the

types directory with the name of the library you are creating

types for, for example:

Figure 12.12: New directory inside Definitely Typed/types in Windows Explorer

Once this new directory is created, you should add at least

the following set of files at a minimum:

index.d.ts

[package-name].tests.ts

tsconfig.json

tslint.json

We can generate this set of files automatically using an

application called dts-gen. Using the npx command here

means that we can use the dts-gen application without

installing it first.

With a Terminal or command line focused on the Definitely

Typed repository, we can run the following command to

generate the files:

Figure 12.13: Command to generate the required files for Definitely Typed in a

Terminal window

It is recommended to use this tool when creating types for

Definitely Typed.

Consider that we want to publish declarations for a library

called str, our directory will initially appear like this when

running the above command, with the str directory being

created for us automatically:

Figure 12.14: Initial directory layout for Definitely Typed package in Windows

Explorer

The index.d.ts file contains the declarations for the library

we are adding types for. If you generated the files using the

dts-gen program, as shown above, this file will contain some

example code to get you started for the type of template

that we specified in the command. We can remove all of this

except for the header, which should remain in place.

In this example, we can use the exact same CommonJS

format declarations from the previous example in the

index.d.ts file:

// Type definitions for str 1.0

// Project: https://github.com/danwellman/str

// Definitions by: Dan Wellman <https://github.com/Definitely

Typed>

// Definitions: https://github.com/Definitely Typed/Definitely

Typed

export const version: ‘1.0.0’;

export function lastChar(word: string): string;

export function ordinalize(dayOfMonth: string | number):

string;

Note that there are four comments at the top of the file and

these should strictly be in the format shown to allow this file

to be correctly tested.

Declarations for Definitely Typed can support any of the

kinds of modules that we’ve looked at over the course of this

chapter, so take care to ensure that the types reflect the

type of library they are written for.

The str.tests.ts file is where we show the types we’ve

added work in the expected way. In this example, the file

would look as follows:

import str = require(‘str’);

str.lastChar(‘test’); // $ExpectType string

str.ordinalize(‘2’); // $ExpectType string

str.ordinalize(3); // $ExpectType string

To test the types, we can import the str module and then call

its methods with the expected parameters. Note that we

import the types using a non-relative import and that we use

a special $ExpectType comment to indicate what we expect

the return type from calling the method to be.

The tsconfig.json file need not be very complex; we should

provide the minimum configuration that would allow the

types to work:

{

“compilerOptions”: {

“module”: “commonjs”,

“strict”: true,

“baseUrl”: “../”,

“typeRoots”: [

“../”

],

“noEmit”: true,

“forceConsistentCasingInFileNames”: true

},

“files”: [

“index.d.ts”,

“str-tests.ts”

]

}

Note that this is slightly trimmed down compared to the

version of the file that is generated but should still be

acceptable.

We are just providing the definitions when using Definitely

Typed, which will ultimately be used by another developer in

another project, which will have its own build process. For

this reason, nothing needs to be compiled in this project, so

we can use the noEmit option to ensure no output is created

by this package.

The forceConsistentCasingInFileNames option is used to make

sure the package is cross-platform in terms of whether the

file system is case-sensitive or not.

In order to tell TypeScript which files to include in this

package, we use the files property and specify both the

index.d.ts declaration file and the test file. Once this file is

saved, the error in the test file should go away. This file is

prepopulated when you use dts-gen.

The last file tslint.json is used to configure Ts Lint, which is

a tool that scans TypeScript files and checks them for

common code style issues and errors. This file should in most

cases simply extend the existing tslint.json configuration

file as follows:

{

“extends”: “@Definitely Typed/dtslint/dt.json”

}

This file is also prepopulated when using the dts-gen

application.

Testing types

To ensure that we have done everything correctly, we can

run the test or lint commands shown in the package.json

file at the root of the Definitely Typed repository like this and

this will run the included type testing and linting program

called dtslint:

Figure 12.15: Output of the test command in the terminal window

Note that we specify the name of the package that we want

to test at the end of the command, str in this case. As long

as there are no errors or lint issues in the declaration file or

tests file, there will be no output from the command after

displaying the name and version of the linter (dtslint@0.0.151

in this example).

If there is an error in the declaration or tests file, it will be

displayed when running the test command; for example, if

we change the $expectType comment after the lastChar

method to say that we expect a boolean, like this:

str.lastChar(‘test’); // $ExpectType boolean

Then the test will fail:

Figure 12.16: A failed type test in the terminal window

Once the tests are passed, it is time to raise a pull request in

the repository on GitHub in order to have your types

published and available for consumers of your library to

install and use.

Conclusion

In this chapter, we’ve covered the basics of writing

declaration files manually to support the most common

types of JavaScript libraries that might be used including

traditional libraries which add objects, properties, or

methods to the global scope, or more modern modular

libraries, including those written to run on Node.js using the

popular CommonJS format.

We also looked at how to publish the type declarations we’ve

written ourselves to the industry standard Definitely Typed

repository and saw how we can test our types for correctness

using the tools included in the Definitely Typed repository.

In the next and final chapter, we will consolidate everything

we’ve learned throughout the book so far and put that

knowledge to use in order to build a real application. We’ll

use the latest version of the popular Angular framework,

which is itself written in TypeScript to build a fully functioning

TypeScript web application. This will provide practical

examples of TypeScript in action that we can use to deepen

our understanding of the language.

References

https://www.typescriptlang.org/docs/handbook/de

claration-files/introduction.html

https://www.typescriptlang.org/docs/handbook/de

claration-files/dts-from-js.html

https://www.skovy.dev/blog/contributing-to-

definitely-typed-for-first-time

https://github.com/umdjs/umd/blob/master/templa

tes/returnExports.js

https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html
https://www.typescriptlang.org/docs/handbook/declaration-files/dts-from-js.html
https://www.skovy.dev/blog/contributing-to-definitely-typed-for-first-time
https://github.com/umdjs/umd/blob/master/templates/returnExports.js

CHAPTER 13

Building a Conference App

with Angular and TypeScript

Introduction

In this final chapter of the book, we will put some of the

knowledge that we’ve acquired throughout the book into

practice and build a small example web application.

The application that we’ll be building will be a small

conference companion app that will let us add conferences

that we are attending and provide some basic information

about the conference.

Production web applications are usually comprised of both

back-end and front-end parts, with the front-end dealing with

the visible UI and some level of application logic, and the

back-end handling things like secure authentication and

access control, data storage and retrieval, and any intensive

business logic that requires more processing power than is

generally available on the client. For this example, we will

focus on the front-end part of the application only.

As well as TypeScript, we’ll be using Angular, the popular

web application framework created by Google, which itself is

written in TypeScript. Let’s get started!

Structure

In this chapter, we will cover the following topics:

Getting started

Running build tasks

Building the application shell

Adding views

Data handling

Unit testing

Getting started

While the companion code for the example application

includes the full source for the application we are about to

build, I would recommend that you follow the steps in

building the application yourself to create the application

manually, as well as get some experience in using the

development tools used in the industry, such as Git and

Node.js.

We can use the Angular CLI tool to create the project and

scaffold a minimal Angular web application. To install the CLI

globally, use the following command in your terminal:

npm install -g @angular/cli

Once the command has finished successfully, you can verify

that the CLI was installed correctly using the version

command:

ng version

You should see some output similar to the following figure:

Figure 13.1: Angular CLI version command output on Windows

As you can see in the Figure 13.1, the current major version

of Angular is 15 at the time of writing, although this is

certain to change in the near future so you may see a

different version when running this command on your own

system. If the application doesn’t work for you, try

specifically installing the version shown in Figure 13.1 after

the package.json file has been created in the next step.

Now we can use the CLI to create a brand-new Angular

application for us. To do that, make sure your terminal

application is focused on the directory you would like the

project to be stored in, and run the following command:

ng new conferences-app

This command will initiate the creation process, and the CLI

will ask a series of questions to gather some information

about the type of project you’d like to create.

Answer the prompts with the following:

Would you like to add Angular Routing? Yes

Which stylesheet format would you like to use? SCSS

The command will take some time to complete, but the end

result will be a new directory in the location the project was

created called conferences-app, which will also be the name of

the application.

Let’s take a moment to review the starter files that the

Angular CLI has generated inside the project:

Figure 13.2: Contents of the generated project directory in Visual Studio Code

Aside from the folders and files are shown in the previous

figure, the project directory will also contain a hidden .git

folder, making the project ready to be used with the most

popular version control system, Git.

The .vscode folder, which will be created automatically as

soon as you open the project in Visual Studio Code, contains

some configuration specific to this editor, and the

node_modules folder contains all of the third-party

packages used by the application.

The src directory contains the source code for the

application and contains generic items like an index.html

page, a favicon, and an SCSS stylesheet; SCSS is a variant os

the SASS CSS preprocessor, which adds many powerful

features to CSS. The entry-point for the application is called

main.ts, which Angular uses to bootstrap the application.

The src folder also contains a directory called app, which

contains the root application module app.module.ts. In

Angular, modules are used as containers for components,

services, and other modules.

These modules are distinct from TypeScript modules in that

they are a feature of the Angular framework but note that

many of the files used throughout the project are also

modules in the TypeScript sense and are used to import and

export our code.

Components in Angular are usually comprised several files;

for example, the logic for the App component is in the

app.component.ts TypeScript file, the HTML template for

this component is in a file called app.component.html, and

the styling for it is in the file called app.component.scss.

There is also a simple unit test for the component in the file

app.component.spec.ts.

There is also a file in this directory called app-

routing.module.ts, which will be used to contain the routing

logic for the application. We will add the routes a little later

as we begin building up the application.

The assets directory is used to store any static assets, like

images, used in the application. This directory contains a file

called .gitkeep, which is used to ensure that Git keeps this

folder in source control, as Git won’t store empty directories.

The loose files at the root of the project folder are mostly

various configuration files; the .editorconfig file is a

configuration file for a range of popular editors that specifies

formatting such as the character set of the files and indent

styles among other things. The .gitignore file is used to tell

Git about files that we don’t wish to track in source control,

generally things like artifacts generated by the build process.

The angular.json file is the Angular project configuration file

and contains metadata for the project, and some

preconfigured build tasks such as running the unit tests,

running development or production builds for the project,

and working with internationalization.

There are also some Node/NPM configuration files - the

package.json and package-lock.json file which both

manage the third-party dependencies and project-level

metadata such as the project name, project website, author,

and so on.

There are three separate configuration files for TypeScript

here too; the base tsconfig.json file sets the general

TypeScript configuration for the project as a whole. We then

have two additional configuration files, one for the

application and one for the unit tests, called

tsconfig.app.json and tsconfig.spec.json respectively.

These both extend the main tsconfig.json file and then set

additional config relevant to either the app or the tests.

Running build tasks

Angular comes pre-configured with a number of build tasks,

including a development build and a production build, and a

task for running the unit tests. Let’s take a quick look at

running the unit test and lint tasks.

Unit tests

By default, there is a configured task for running the unit

tests for the application and we know already that the

default app skeleton includes a unit test for the app

component, which gives us a solid foundation for adding our

own unit tests during development.

To run the default unit test, make sure the terminal is

focused on the root directory of the application, and then use

the following command in the terminal:

ng test

By default, Angular comes preconfigured with Jasmine for

writing the unit tests, and Karma for running them. Once we

run the test command, Angular will build the application and

open up a browser to show the test output.

At this point, the application should contain three individual

unit tests, all of which should pass. The browser output

should appear like this:

Figure 13.3: Successful unit test output in the Chrome browser on Windows

The unit tests will keep running in the background and will

automatically rerun the tests any time we change any of the

application files. To see an example of a failing test, open up

the app.component.ts file and change the title of the

application to a different string such as “oops app is running!”.

As soon as the file is saved, the browser output should

change to show us the failing test:

Figure 13.4: Failing unit test output in the Chrome browser on Windows

Be sure to revert the change to the application title so that

the tests are passing once more. To stop the unit test task,

use Ctrl + C in the terminal.

Linting

Linting is a common task for JavaScript or TypeScript projects

and is an automated process where a special tool scans all of

our script files looking for common issues with our code that

can lead to bugs.

The linting tool will be configured using a wizard process

similar to when we generated the initial application the first

time we use the lint command. To start this configuration

process, we can use the following command in the terminal:

ng lint

The wizard will first prompt us to ask whether we want to

allow usage data to be shared with the Angular team, you

can choose yes or no for this question – it will not impact

your development at all, although it will add a new

configuration section to the angular.json file if you choose

yes.

Next, the wizard will ask us if we want to use a tool called

ESLint, which is the de facto linting application for modern

web-based projects; we should answer yes at this prompt,

and then yes again when the CLI asks if we would like to use

the latest ESLint schematic.

The CLI will now install the required packages and add some

new configurations for the lint task to the angular.json file.

It will also generate a new configuration file at the root of the

project called .eslintrc.json which contains all of the lint

rules that we would like our project to observe.

This configuration file sets some general lint rules and some

Angular-specific rules that are commonly required by Angular

projects. We can also provide our own project-specific lint

rules if we wish and disable or enable any of the supported

rules. We will stick with the defaults for our example

application. You can see all of the rules supported by ESLint

at https://eslint.org/docs/latest/rules/.

To run the linter on the TypeScript files in the application, we

can again use the ng lint command in the terminal. By

default, there should be no lint errors. The successful output

will look like this:

Figure 13.5: Successful linting output in the terminal on Windows

https://eslint.org/docs/latest/rules/

To see an example of a lint error, open up the

app.component.ts file, and on line 4, change the selector

string from app-root to just root. Now run the ng lint

command in the terminal again.

This time you should see output like this in the terminal:

Figure 13.6: Failing linting output in the terminal on Windows

Unlike the unit test command, the lint command does not

continue running in the background. We will need to

manually run it each time we want to check the application

for issues. As before, be sure to revert to the change that

caused the lint task to fail.

As well as manually running the lint command from the

terminal, it is also possible to integrate it directly into the

code editor using a plugin or extension, depending on which

editor you are using. In visual Studio code, you can open up

the extensions tab, search for ESLint, and install the

extension, like this:

Figure 13.7: ESLint extension in Visual Studio Code

Once this is done, the editor will use your project’s

.eslintrc.json configuration file to automatically lint your

code as you write it.

Serving the application

During development, we will frequently want to run our

application in a browser to check that it is functioning in the

way that we expect. Angular comes with a built-in local

server for development so that we can build the front-end

without having a true back-end in place – any data we

require during this phase of application development can be

provided by local mocks.

Note that the server provided by Angular is just intended for

internal development of the application, we should never

rely on it for a production application as it is missing many of

the basic security aspects of a true public-facing web server.

In order to run the application using this development

server, we can use the serve task. To start this task, use the

following command in the terminal:

ng serve

This will run the development build task and start the

development server. To preview the application, we can

enter the following URL in the browser’s address bar:

http://localhost:4200/. We should then see the default

index.html file for the application:

Figure 13.8: The default Angular application landing page in the Chrome

browser on Windows

By default, the serve command will continue to run in the

background and like the unit tests command, will rebuild the

relevant parts of the application any time we make a change

to a file and save it. To stop serving the application, we can

again use Ctrl + C in the terminal.

Creating the application shell

Now that we are familiar with the commands that we will

need to run to build and test the application, we can begin

development.

We can start with the template and styling; the

app.component.html file already contains a lot of styling

and mark-up and while we can reuse some of it to get us up

and running quickly, a lot of it can be deleted. The file

contains a lot of styling, some specific to the app component

directly, and some that is more generic and applies across

the whole application.

Let’s create a new file in the app folder called base.scss –

this file should contain the following code, which can be

copied almost verbatim from the app.component.html file:

html {

font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”,

Roboto, Helvetica, Arial, sans-serif, “Apple Color Emoji”,

“Segoe UI Emoji”, “Segoe UI Symbol”;

font-size: 14px;

color: #333;

box-sizing: border-box;

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

}

h1,

h2,

h3,

h4,

h5,

h6 {

margin: 8px 0;

}

p {

margin: 0;

}

.spacer {

flex: 1;

}

The only change we need to make is to change the :host

selector originally used in the app.component.html file to

html in order to apply to all the text in the application. We

won’t focus on the styling here in detail, and we aren’t using

any SCSS features here, but in the same way that all

JavaScript is also valid TypeScript, all CSS is also valid SCSS.

Next let’s create another new file called layout.scss, also in

the app directory. Again, we can copy all the following

stylings from the app.component.html file. The new file

should contain the following code:

.content {

display: flex;

margin: 82px auto 32px;

padding: 0 16px;

max-width: 960px;

flex-direction: column;

align-items: center;

}

.card-container {

display: flex;

flex-wrap: wrap;

justify-content: center;

margin-top: 16px;

}

.card {

all: unset;

border-radius: 4px;

border: 1px solid #eee;

background-color: #fafafa;

margin: 0 0 16px;

padding: 16px;

display: flex;

flex-direction: row;

justify-content: start;

align-items: center;

transition: all 0.2s ease-in-out;

line-height: 24px;

}

.card-container .card:not(:last-child) {

margin-right: 0;

}

Some of the styles for the .card selector is changed so

ensure the code looks as in the previous snippet. For

example, the height and width styles have been removed, and

the margin and justify-content have been changed.

This will give us a simple layout that we can build on. In

order to include these new files in the application, we just

need to import them into the styles.scss file in the src

directory:

@import ‘app/base.scss’;

@import ‘app/layout.scss’;

There is already an app.component.scss file in the app

directory, but it’s currently empty; we can also move some

of the styles there as well. Copy the following code from the

app.component.html file into it. New styles are shown in

bold:

.toolbar {

position: absolute;

top: 0;

left: 0;

right: 0;

height: 60px;

display: flex;

align-items: center;

background-color: #1976d2;

color: white;

font-weight: 600;

padding-left: 2rem;

}

footer {

margin-top: 8px;

display: flex;

align-items: center;

line-height: 20px;

}

footer a {

display: flex;

align-items: center;

}

After copying the code to the new location, be sure to add

the padding-left to the .toolbar selector – this isn’t part of the

default styling but is needed by our application.

At this point, all the styles we haven’t copied from the

app.component.html file can be deleted. We can also

remove a lot of the existing HTML. Change the file so that it

contains only the following mark-up:

<div class=”toolbar” role=”banner”>

Conferences App

<div class=”spacer”></div>

</div>

<div class=”content” role=”main”>

<div class=”card-container”>

<button class=”card card-small” tabindex=”0”>

Card

</button>

</div>

<router-outlet></router-outlet>

<footer></footer>

</div>

Note that the router-outlet element will need to be moved

into the main content container from the bottom of the file.

This element is where Angular will render other components,

once we have added some more, based on the application’s

routing, which we’ll add shortly.

Creating a data model

The application functionality revolves around the concept of

a conference, so we will need a data model that represents

many aspects of a conference. We would expect a

conference to have many attributes, like a title, a logo, a

start and end date, and start and end times for each of the

days the conference is operating.

Additionally, we would expect a conference to be composed

of a series of talks, and these talks would need to be

represented also and would have attributes such as the

name of the speaker of the talk, its own title, and perhaps a

short description of the talk. Some conferences might have

multiple tracks, with multiple talks occurring at the same

time, but this example application will not consider this.

Even for a very small application such as this, you can see

there are a lot of different objects and attributes that the

data model will need to account for. Before we start building

components of our own, let’s create some interfaces that will

represent the different objects we’ll be working with

throughout the remainder of this chapter.

In the app directory of the project, create a new file called

model.ts. First of all, add the following interface to the new

file:

export interface Talk {

speaker: {

name: string;

avatar?: string;

};

title: string;

duration: string;

description: string;

day: number;

}

We’ve added an exported interface called Talk, which will

represent an individual talk within a conference. The

interface defines some simple string properties like a title,

duration, and description, and a more complex property called

speaker which itself comprises the string properties name and

avatar, the latter of which is optional. Each talk also has a

numerical day property to show on which day of the

conference the talk will occur.

Next, we can add the interface for a conference to the same

file:

export interface Conference {

id: number;

logo?: {

src: string;

title?: string;

},

title: string;

startDateTime: string;

endDateTime: string;

shortDescription?: string;

description: string;

talks?: Talk[];

}

Each conference will have a unique id number, and an

optional logo object containing src and title properties,

which are both string properties. The title property is

optional.

The Conference interface will share some similarities with the

Talk interface such as a string title and description, although

conferences also have an optional shortDescription property

to display a shorter description for when there is a list of

conferences.

A conference also has string properties for the date and time

of the start of the conference, and the date and time of the

end of the conference, as a conference may span multiple

days. In an application that worked heavily with dates, we

would probably want to use actual Date objects, but as we

will mostly just be displaying the dates, we can use strings to

keep things simple.

Lastly, the conference has a talks property, which will be an

array of objects implementing the Talk interface. For this

demo application, we’ll need to mark this property as

optional.

Thinking about the structure of the different objects used by

the application at this stage and designing our types to suit

those objects will help us to build the application in a cleaner

and less error-prone way – as we are building the different

views, we already know which objects and properties each

component will have available to work with and display.

If we build the application organically, without considering

the data structures now, we could end up with a confused

data model where different components all work with slightly

differently named properties or similar, and we would have

to go back and align the views later on in the development

process.

Adding views

The application will have a number of different views, or

screens, which show different parts of the application, or

allow different functionality. We already have the shared app

component, which will serve as a container for the rest of the

application, but we will also need to add the following views:

A home view which will be the landing screen for the

application and display a list of upcoming conferences

An add conference view that will allow users to enter the

details of an upcoming conference they are attending

A conference view which will display all the information

associated with a conference

The individual conference will be the largest and most

complicated view, so we’ll add this one last; for now, let’s

start out by adding the home view.

Home view

The initial screen of the application will list any upcoming

conferences that the user is attending, or if there are none, it

should allow the user to add an upcoming conference. We

can add a new component for the home view using the

following command in the terminal, with the terminal

focused on the root directory of the project:

ng generate component home

This command will invoke an Angular schematic (a kind of

blueprint or template) which automatically creates the

specified component for us. The command tells the CLI to

create a new component called home, which will automatically

put the new component in the app directory. It will create a

new HTML template, a stylesheet, a TypeScript file, and a

test file, as well as update the app module to import and

load the new component. The CLI will show output

confirming the creation of the new files:

Figure 13.9: Generate schematic output in a terminal on Windows

NOTE: The command shown in figure 13.8 can be

shortened to ng g c home for convenience.

The template and the stylesheet are practically empty – the

template just contains a single paragraph that says the

component is working. The TypeScript file contains just the

shell of a component. Let’s open it up and take a quick look

before we add any code.

The home.component.ts file initially contains just the

following code, which is added by the CLI automatically

whenever it generates a new component:

import { Component } from ‘@angular/core’;

@Component({

selector: ‘app-home’,

templateUrl: ‘./home.component.html’,

styleUrls: [‘./home.component.scss’]

})

export class HomeComponent {

}

The file imports a decorator from Angular called Component;

this is used to provide Angular with some metadata about

the component, including the selector for the component,

which we will need to use in order to render it, and the paths

to the HTML template and the SCSS stylesheet. The

decorator will be executed when the file is initially loaded

and is used internally by Angular to create all of the required

components during the initial bootstrapping of the

application.

Lastly, the file exports a class called HomeComponent, which is

initially empty, but is where we will add all the logic required

by the component shortly.

Now let’s add some code, first of all, we can move the

element with the class card-container out of the

app.component.html file into the new template for the

home component in the file home.component.html,

replacing the example p element.

The file should now look like this:

<div class=”card-container”>

<button class=”card card-small” tabindex=”0”>

Card

</button>

</div>

Next, let’s replace the button element with something that

will display a list of upcoming conferences or display a

message if there are no conferences to display. We can

change the button so that it can be used to add a new

conference.

Update the template so that it looks like this:

<div class=”card-container” *ngIf=”confs?.length; else

noConfs”>

<li class=”card” tabindex=”0” *ngFor=”let conf of confs”>

<img *ngIf=”conf.logo” [src]=”conf.logo.src”

[title]=”conf.logo.title” />

<h1>{{ conf.title }}</h1>

<div class=”desc”>

<p>{{ conf.shortDescription }}</p>

<time>{{ conf.startDateTime }} – {{ conf.endDateTime }}

</time>

View

</div>

</div>

<ng-template #noConfs>

<div class=”no-confs”>

<h1>You aren’t attending any upcoming conferences!</h1>

</div>

</ng-template>

<button (click)=”addConference()”>Add conference</button>

We’ve kept the outer container div from the original mark-up

with the card-container class but have also added a *ngIf

directive on it. This is one of many Angular-specific template

features that allow us to control the visibility or state of

HTML elements based on the state of the component.

In this case, the expression is bound to the length property of

an object from the component called confs. We haven’t

added this yet, so the editor will flag it as an error at this

point, you can ignore that for now. We can also use the

optional chaining character (?) here to avoid errors if the

confs object is undefined or null.

The *ngIf also has an else clause that points to the ng-

template element near the end of the previous code snippet,

we’ll look at this in more detail in just a moment, for now just

understand that if there is a confs object in the component

with a positive length property, then Angular will display the

first div element, and if there isn’t a confs object, or its length

property is falsey, it will display the ng-template instead.

Inside the div we’ve added a ul element. There is a li

element which has another Angular directive on it; this time

we use the *ngFor directive in order to repeat the li element

and its contents for each item in the confs object – as you

can probably tell at this point, this object will be an array.

This *ngFor directive is analogous to a for loop in TypeScript

or JavaScript.

In the template, we use the let conf part of the expression to

define a template variable that will be set to the

corresponding object within the confs array and allows us to

refer to the different properties that this object will contain

within the template, and this is what we do for each of the

elements inside the li element. We then use the of confs

part of the expression to link this part of the template to the

confs array in the component.

Inside the li element, we’ve added an img to show a small

image for the conference, an h1 element to display the title

of the conference, a p element that will contain a description

of the conference, a time element to display the start and

end dates and times of the conference, and an a element to

open up another view, which again we haven’t yet added but

will get to soon.

The img element has src and title attributes, but these have

square brackets around them – this is how we make these

attributes dynamic in Angular, and both are linked to

properties of the conf object provided by the *ngFor loop.

Most of the remaining elements use a different syntax for the

template bindings; when a binding forms the content of an

element instead of an attribute of the element, we use

double curly braces instead to reference properties of the

conf object.

The final element in the li, the a element, uses an Angular

directive called routerLink – this directive allows us to work

with Angular’s routing system and provides a hyperlink to

another component and its associated view – this expression

specifies a path of view-conference/ and then curly braces to

add a unique id to the end of the path after the forward-

slash, which will also be obtained from the conf object.

After the first div element, we use a special element called

ng-template. This allows us to add part of the template that

Angular will only display under certain situations, in this

case, when there are no conferences to display.

This element has an identifier of noConfs which must be

preceded by a hash sign (#) for Angular to recognize it. Inside

this part of the template, we just have a simple container

with a message to say that there aren’t any conferences yet.

Last of all is a button element that we can use to add a new

conference. This will be another view that’ll be adding

shortly.

The button has a binding for the click event; to add an event

handler to a template in Angular, we use parentheses around

the event name and set the value of the attribute to the

name of the event handler, addConference in this case.

At this point, we should update the component to account for

the confs property used by the template, and the

addConference event handler used by the button. The button

will be used to change the route to the add conference

component, but instead of using the routerLink directive in

the template as we did previously, we’ll use Angular’s router

programmatically from the class instead to demonstrate

usage from code.

Open up the home.component.ts file and import the

Angular Router at the top of the file:

import { Router } from ‘@angular/router’;

We’ll also need to import the Conference interface from the

model.ts file that we added earlier:

import { Conference } from ‘../model’;

Now update the existing but currently empty HomeComponent

class so that it appears like this instead:

export class HomeComponent {

protected confs: Conference[] = [];

constructor(private router: Router) {}

public addConference(): void {

this.router.navigateByUrl(‘/add’);

}

}

We’ve added a new property to the component called confs

and used the protected access modifier so that it can’t be

changed by any external classes that don’t extend this class.

This still allows us to use the property in the component’s

template, as the template is a conserved part of the class.

We set the type of the array to the Conference interface we

imported from the model – Conference[].

Angular’s router is an injectable class, which means that it is

managed by Angular’s Dependency Injection system. Using

this system we can inject instances of injectable classes into

other classes without having to instantiate and manage

them ourselves.

In this case, we can add it to the constructor for the class

and will be able to use it inside our component; it won’t be

used outside of this file so we can automatically initialize it

by giving it private access modifier and setting it as the type

of property called Router.

Lastly, we define the addConference method that will be

invoked when the add button is clicked. We mark the method

public and specify a void return value. Inside the method, we

can use our reference to the router to change to another

view. The router has a method called navigateByUrl.

This method allows us to pass a string which corresponds to

a route of our application and Angular will load this route in

the browser whenever the method is invoked. Here we pass

the value /add – we don’t yet have a route for this but will

add it shortly when we add the new component that will be

used to add a new conference to the app.

We can also add some basic styling for the home view; open

up home.conference.scss and add the following code:

ul { padding-left: 0; }

img { margin: 0 1rem 1rem 0; }

h1 { align-self: baseline; }

a { display: block; }

This should be all we need.

Adding routing

At this point, we still can’t see the home component in the

browser, because even though the app module is loading the

component, it isn’t actually being used anywhere.

In Angular we can display a component in multiple ways,

using a selector in a template, or by using a component with

a router-outlet. In this example, we’ll be using the Angular

router to load our components based on the address in the

browser’s address bar.

We will use the router-outlet in the app.component.html

template file which we looked at earlier to load most of our

components in the example application.

Open up the file called app-routing.module.ts. which was

one of the files the Angular CLI created for us when we

created the application. It initially contains the following

code:

import { NgModule } from ‘@angular/core’;

import { RouterModule, Routes } from ‘@angular/router’;

const routes: Routes = [];

@NgModule({

imports: [RouterModule.forRoot(routes)],

exports: [RouterModule]

})

export class AppRoutingModule { }

This file is a module, in the Angular sense as well as the

TypeScript sense, so it imports the NgModule decorator. It also

imports the RouterModule, and a type-alias called Routes. The

file then declares a variable called routes which uses the

imported Routes type and initializes it to an empty array – this

is where we will add the routes for the application.

Finally, the file exports a class called AppRoutingModule, which

is decorated with the NgModule decorator. The decorator is

passed an object which is used to provide any imports

required by the module and its exports.

In this case, the module imports the RouterModule and also

exports the RouterModule so that it can be used in other parts

of the application. In the import field, the forRoot method of

the RouterModule is used to load the routes array.

All we need to do at this point is add some basic routes for

the application. Each individual route will correspond to a

path in the browser’s address bar and will map to an

individual component.

First of all, we’ll need to import our home component into the

routing module. We can add the following import after the

existing ones:

import { HomeComponent } from ‘./home/home.component’;

Now we can update the routes array in the preceding code

so that it appears like this:

const routes: Routes = [

{ path: ‘home’, component: HomeComponent },

{ path: ‘’, redirectTo: ‘/home’, pathMatch: ‘full’ },

];

We’ve added two new Route objects; the first is for the path

home and will load the imported HomeComponent. The second

object specifies an empty path and uses the redirectTo

property to redirect an empty path to the /home route.

This means that the home component will be displayed in

both cases where the URL /home is used or if no path is

specified after the host name.

The main app.module.ts file already imports and consumes

the AppRoutingModule that we just updated, so we shouldn’t

need to do anything else at this point in order to see the

home component in the browser (as long as the ng serve

command is running – if it isn’t running, start it up now!):

Figure 13.10: The routed home component

We should find that our routing is working as expected, and

the HomeComponent is displayed in the router-outlet element

inside the AppComponent.

We should also see that even if we enter the URL

http://localhost:4200 in the browser’s address bar, we are

redirected to http://localhost:4200/home automatically.

At this point, we just see the message that you aren’t

attending any upcoming conferences because we haven’t

added any conferences yet. Let’s add the view that will allow

us to add a conference next.

Building the add-conference view

Next, let’s add a view which will present a form to the user to

allow them to add the details for a conference they are

attending. We can use the CLI to scaffold out the new

component as we did when creating the home component.

Enter the following command in your terminal, ensuring the

terminal is focused on the root folder of the project:

ng g c add-conference

The CLI will create a new folder in the app directory called

add-conference, and inside this folder add the template,

stylesheet, class, and test files for the new component, and

update the AppModule to load the new component. The CLI

output should reflect these changes:

Figure 13.11: CLI output of the ng generate command on Windows

First of all, let’s update the new template. Open up the add-

conference.component.html file inside the new add-

conference directory, and replace the default contents with

the following code:

<h1>Add New Conference</h1>

<form [formGroup]=”conferenceForm”>

<label for=”name”>Conference name[*]:</label>

<input id=”name” formControlName=”name”>

<label for=”img”>Logo:</label>

<div class=”logo-container”>

<input #logo type=”file” accept=”image/*”

(change)=”uploadLogo(logo)”>

</div>

<label for=”startDate”>Start date[*]:</label>

<input type=”datetime-local” formControlName=”startDateTime”>

<label for=”endDate”>End date[*]:</label>

<input type=”datetime-local” formControlName=”endDateTime”>

<label for=”desc”>Description[*]:</label>

<textarea id=”desc” formControlName=”desc”></textarea>

<button [disabled]=”!conferenceForm.valid”

(click)=”save()”>Save</button>

</form>

We start with a h1 element for the title of the form. Following

the heading is a form element containing an Angular form

directive called formGroup. This directive is used to link a form

in a template with a form object in a class. We haven’t added

this yet, so expect an error in the editor on this line to begin

with – we’ll add the required TypeScript next.

Inside the form, we have a series of mostly label and input

element pairs. For accessibility, each of the labels is

associated with its corresponding form control with the for

attribute, which matches the id of the form control it is

paired with.

Most of the input elements, as well as the textarea, but not

the image upload control, have an attribute called

formControlName. This is another special Angular directive that

links each of the individual form controls with an

UntypedFormControl object inside the UntypedFormGroup object,

again, we’ll add these in the class file shortly.

The image upload input element, used to upload a logo for

the conference, is a little different; it has a template

reference variable #logo, and instead of using the

formControlName directive, it instead binds to the change

event.

We also provide an img element and use the *ngIf directive to

control whether the element appears in the DOM or not. If

the logoDataSrc property of the component class, which will

be a string, has a length, the element will appear, and if not,

it won’t. We can also bind the src attribute of the image to

this same logoDataSrc property. Both the image and the input

are wrapped in a container div for styling purposes.

The handler function that the change event will be handled by

is called uploadLogo, and the handler function will be passed a

reference to the input itself – we can use the template

reference variable here but note that we do not use the hash

symbol when passing it to the method.

The last item in the form is a button that will be used to

submit the form. This element also binds to an event – the

click event and attaches a handler called save. We can also

add a binding for the disabled attribute so that the button is

only clickable when the form is considered valid.

Let’s move on now to add the logic for this component. Open

up the add-conference.component.ts file in the editor. It

will have the standard component boilerplate added by the

CLI during creation.

First, we’ll need to import a couple of things from Angular in

order to work with forms. Add the following code

immediately after the Component import on the first line of the

file:

import { UntypedFormGroup, UntypedFormControl, Validators }

from ‘@angular/forms’;

We need to import the UntypedFormGroup and UntypedFormControl

classes so that we can build the required objects that will

store the values from the form on the page.

We also import the Validators class from Angular’s forms

module, which provides a range of common validation

functions to make it easier to add form validation on the

front-end, which is often a complex and error-prone task to

do manually.

Now let’s create the form and form controls used by the

template. Add the following code inside the

AddConferenceComponent class:

protected logoDataSrc = ‘’;

protected conferenceForm = new UntypedFormGroup({

name: new UntypedFormControl(‘’, Validators.required),

logo: new UntypedFormControl(‘’),

startDateTime: new UntypedFormControl(‘’,

Validators.required),

endDateTime: new UntypedFormControl(‘’,

Validators.required),

desc: new UntypedFormControl(‘’, Validators.required),

});

The first property, which is marked as protected so that it can

be accessed by the template but can’t be changed from

outside of the AddConferenceClass component or any classes

that extend it, is the logoDataSrc property that is used by the

img element of the upload control.

We can initialize this with an empty string, which is why we

used the length property of this string to control whether the

image is visible or not – this empty string initializer will not

cause the image to appear before it has been updated with a

proper value. We can avoid specifying a type of string here

as TypeScript will be able to infer it from the assignment.

We’ve also added another protected property to the class

called conferenceForm and initialized it using the

UntypedFormGroup constructor that we imported from the

Angular forms module.

This constructor takes an object where each of the keys in

the object matches the name of a form control in the

template, and the value of each is an object created with the

UntypedFormControl constructor, which we also imported from

Angular.

This constructor takes two parameters in most cases; the

first parameter is the initial value of the control, which in

most cases can be an empty string, to begin with. If we were

loading a partially completed form, we could pre-populate

the values of these controls with any values the user had

previously entered, although we don’t need to cater for that

here.

The second parameter of the UntypedFormControl constructor,

which we pass for each of the controls except the upload

control, is the required property of the Validators class, which

we also imported from Angular.

This tells Angular that each of these form controls is required

and must be completed for the form to be considered valid.

When the form is in this state, the button in the template to

save the conference will become enabled.

Next, we should add the change event handler for the logo

upload control. To handle user uploads fully, a back end is

needed to process and store uploaded files. We aren’t

working with a back end, so we won’t be fully handling this

process. Instead, we will convert the image to a base64

encoded string and simply show whatever image the user

chooses.

Inside the AddConferenceComponent class, after the code that we

have already added, add the following method:

public uploadLogo(input: HTMLInputElement): void {

const files: FileList | null = input.files;

const firstFile: File | null = (files instanceof FileList)

? files[0]

: null;

const reader: FileReader = new FileReader();

reader.addEventListener(‘load’, (event:

ProgressEvent<FileReader>) => {

if (event.target?.result) {

const value = event.target.result as string;

this.conferenceForm.patchValue({

logo: value,

});

this.logoDataSrc = value;

}

});

if (firstFile) {

reader.readAsDataURL(firstFile);

}

}

The uploadLogo method is passed a parameter called input

which will be of the type HTMLInputElement. The method

doesn’t have a useful return so we can mark it as void.

Inside the method, we first try to get the list of files stored in

the files property of the input parameter. The type of this

variable will be either a FileList object or null, so we use a

union type of these two possible values.

Next, we try to extract the first file from the list of files that

we obtained in the previous line. As the files variable may

be null, we need to check whether the variable has the

expected type, so we use a ternary expression that checks

whether files is an instance of the FileList class. If it is, we

can store the first file in the files array using files[0], and if

it isn’t, we can store the value of null. This makes the type of

this second variable, firstFile, another union, this time a

union of File | null.

Next, we create another variable called reader. This will be of

the type FileReader and is created using the FileReader

constructor. We then add a handler to the file reader using

the addEventListener method; the first argument to this

method is the event we want to handle, load in this case.

The second argument is a callback function that will be

invoked whenever the event occurs.

This callback function will receive a single argument called

event, which will be an event object. In order to access the

correct properties of an event object triggered by a file

reader, we need to set the type of the parameter passed to

the callback function to the generic type

ProgressEvent<FileReader>.

Inside the callback function, we can first check whether the

event has a target property, and if so, whether the target

property has a property called result. We use the optional

property chaining operator (?) here to avoid errors if the

target property does not exist for some reason.

If the target and result properties do exist, we first store the

value in a variable called value. Because this result property

may be one of several types, including a string, we use the

as operator here to explicitly mark the variable as having the

string type.

Once we have the value, we can update the logo

UntypedFormControl in the conferenceForm object using Angular’s

patchValue method, which is available in all UntypedFormGroup

instances. This method takes an object where we can set the

value of the inner UntypedFormControl objects, by specifying

the name of the control as a key in this object, and the value

to set, although in this case we just want to update the logo

control.

We can also manually set the value of the logoDataSrc

property of our component using the same value that we

patched into the form. Remember, this value will be a

base64 encoded string representation of the image the user

selected in the file selection dialog that appears when the

Choose file button is clicked.

Last of all in the uploadLogo method, we can check whether

the firstFile variable has a truthy value, and if so, we can

call the readAsDataUrl method of the file reader and pass it to

the File object stored in the firstFile variable. This will

trigger the load event to be fired by the file reader, and this

in turn will trigger the callback function we passed to the

addEventListener method will be invoked.

Now we need to add the save method, which will be invoked

when the Save button on the page is clicked. This button will

become enabled when all of the required fields in the form

have been completed.

Add the following method after the uploadLogo method inside

the AddConferenceComponent class:

public save(): void {

console.log(‘form’, this.conferenceForm.value);

}

We’ve added a new public method called save and set the

return value to void, as the method won’t be returning a

useful value. We could also use protected here to allow the

method to be visible to the template but safe from being

overwritten accidentally by another class.

At this point, we don’t have any facility really to deal with the

storage and retrieval of data. For now, let’s just log the

values from the form to the console – we’ll add a very simple

data handling mechanism a little later and then come back

and fix up this method once this mechanism is in place.

All UntypedFormGroup objects in Angular have a value property,

and as long as the form has been completed, it will contain

an object with keys for each control in the group, where each

key contains the values entered into each field.

We can also add some very basic styling to this component,

just to lay the form controls out nicely. Open up the empty

add-conference.component.scss file and add the

following code:

label, input, textarea { width: 100%; }

input, textarea {

box-sizing: border-box;

margin: 0.5rem 0 1rem;

padding: 0.25rem 0.75rem;

&[type=”file”] { padding-left: 0; }

&.ng-touched.ng-invalid { border: 1px solid red; }

}

.logo-container {

display: flex;

img {

width: 4rem;

height: auto;

margin-right: 0.5rem;

& + [type=”file”] { padding-top: 0.5rem; }

}

}

button {

display: block;

margin-top: 1.5rem;

}

We won’t focus on this aspect of the example too deeply, but

most of the styling added here should be quite self-

explanatory. The only styles that really warrant discussion

are the styles for input elements or textarea elements that

have both the special Angular classes ng-touched and ng-

invalid.

These are classes that Angular will maintain in the HTML

template for us automatically based on the state of the

controls. The form controls will all start out with the ng-

invalid classes, which will remain on the elements until the

fields have been completed because the fields are marked as

required in the class file.

The ng-touched class will only be added once the field has

been focused by the user, so requiring both ng-touched and

ng-invalid classes to be present ensures the error styling is

not applied before the user has even interacted with the

form controls.

There are just a couple more things we need to do before we

can see this new component in the browser. There are two

types of forms in Angular, template-driven forms, and

reactive forms. Both have their strengths and weaknesses,

but in this example, we used reactive forms. Therefore, we

will need to import the ReactiveFormsModule into our app

module.

Open up app.module.ts. First, we should add the import to

the top of the file, directly after the existing Angular imports:

import { ReactiveFormsModule } from ‘@angular/forms’;

We can then add the imported item to the imports array in

the NgModule decorator:

imports: [

BrowserModule,

AppRoutingModule,

ReactiveFormsModule,

],

Lastly, we need to add the route for our new component.

Open up the app-routing.module.ts file and import the

AddConferenceComponent at the top of the file:

import { AddConferenceComponent } from ‘./add-conference/add-

conference.component’;

Now we need to add a new route object to the routes array. It

should go before the object with the empty path as it’s a

more specific route:

{ path: ‘add’, component: AddConferenceComponent },

At this point, we should have everything in place to view the

new component in the browser:

Figure 13.12: Part of the add conference view in the Chrome browser on

Windows

We should find that once we’ve completed all the required

fields, the save button becomes enabled.

If we focus on one of the fields but don’t enter anything and

then focus on another field, the error styling should appear

around the field that was left uncompleted. We should also

find that when we click the Save button, the form values are

posted to the console.

The logo control should allow us to select an image from our

computer and then display whatever image was selected to

the left of the Choose file button:

Figure 13.13: A preview of the image to upload in Chrome on Windows

The application now has the home view to display a list of all

conferences, and a form-based view to add conferences.

Let’s now add the view for an individual conference, as I

mentioned earlier, the component to display a single

conference will be the biggest and most complicated of the

components.

Adding the conferences view

We’ll follow a very similar process to build this view that we

followed when adding the previous two components, namely

we will:

1. Use the Angular CLI to scaffold the new component

2. Add the template

3. Add the component class

4. Add the styling

5. Add the routing and any additional app-wide tweaks that

may be necessary

We can start the process of creating the new component by

scaffolding it out using the Angular CLI so that all the

required files are created for us in the correct locations

automatically. Run the following command in the terminal,

ensuring the terminal is focused on the project directory:

ng g c view-conference

As before, the CLI output will list the created and updated

files, and the end result will be a new directory in the app

directory called view-conference, which contains new

HTML, SCSS, TS, and Spec files ready for us to start

customizing.

As before, we can add the new component’s template first of

all. Open up the newly created view-

conference.component.html file and replace the default

contents with the following new code:

<div class=”card-container”>

<header>

<img *ngIf=”conf.logo” [src]=”conf.logo.src”

[title]=”conf.logo.title” />

<h1>{{ conf.title }}</h1>

<time>

{{ conf.startDateTime | date: ‘short’ }} –

{{ conf.endDateTime | date: ‘short’ }}

</time>

</header>

<article>

<div>{{ conf.description }}</div>

<div *ngFor=”let day of [].constructor(days); let i =

index”>

<h1>Day {{ i + 1 }}</h1>

<section *ngFor=”let talk of conf.talks”>

<div *ngIf=”talk.day === i + 1”>

<h1>{{ talk.title }}</h1>

<time>{{ talk.duration }}</time>

<div class=”speaker”>

<h2>{{ talk.speaker.name }}</h2>

</div>

<p>{{ talk.description }}</p>

</div>

</section>

</div>

</article>

</div>

For the outer container, we use a simple div and reuse the

card-container class to pick up our basic layout styles. Inside

this, we have a header element which contains the logo for

the conference, the title of the conference, and a time

element for the start and end dates and times.

Each of the startDateTime and endDateTime template bindings

also makes use of an Angular formatting tool called a pipe. In

this case, we are using the built-in date pipe: | date: ‘short’,

which formats the date to a more readable form. We don’t

need to do anything special to use this pipe as it’s one of

Angular’s built-in ones, however, by default the date pipe

uses the locale en-US. We’ll see how to change this to another

locale shortly. After the header is an article element which

contains the description of the conference.

Following the description, we use a div that makes use of

Angular’s *ngFor directive to repeat the div and its contents n

times based on the condition within quotes. Although we’ve

used this directive before, this is the most complex example

of this directive that we’ve seen so far.

This component will have a numerical property called days,

which specifies how many days the conference runs. In order

to iterate this number as if it were an array, we can use the

constructor method of an array literal and pass in the

numerical days property of the component to the constructor.

This will give us a temporary array with a length that

matches the number of days the conference is on.

This expression also uses a special property of the *ngFor

directive called index – we capture a template variable called

i and set it to the current value of index, which means that

inside this block of markup, i will indicate the current day of

the conference. We add 1 to this number because arrays

begin at the index zero, so if we didn’t do this, the first day

of a conference would be day 0.

Inside the outer *ngFor block we have a heading for the

current day, and then we will use a repeated section element

for each talk on that day of the conference. This time the

*ngFor loop is based on the talks property of the conference.

Inside the inner *ngFor we added a div element that uses the

*ngIf directive to only display a talk if the day property of the

talk matches the current i template variable of the index of

the outer *ngFor. This will ensure that any talks with a day

value of 1 will be displayed under day 1, and so on and so

forth for each of the talks. Inside each talk, we then render

the title, duration, description, and speaker information.

Now let’s move on and add the TypeScript. For this

component, we are going to need to install a third-party

utility to work with dates called date-fns. We can install this

from NPM using the terminal, let’s do that now. Enter the

following command in your terminal:

npm install date-fns

Next, open up the class file view-

conference.component.ts. In this example, we will be

using one of Angular’s life-cycle methods called ngOnInit to

automatically call some initialization code when this

component is created. We should add an interface called

OnInit to the first import statement in the file:

import { Component, OnInit } from ‘@angular/core’;

Next, we need to import a class from Angular called

ActivatedRoute:

import { ActivatedRoute } from ‘@angular/router’;

Next, we can import a utility function from the date-fns

package we just installed:

import { differenceInCalendarDays } from ‘date-fns’;

We also need to import the Conference interface from our

model file:

import { Conference } from ‘../model’;

Now we need to update the class to specify that the

component uses the OnInit interface that we imported from

Angular. Change the class declaration so that it appears like

this:

export class ViewConferenceComponent implements OnInit {

}

Now let’s add the properties and methods required by the

class, starting with the properties. Add these inside the class:

protected confs: Conference[] = [];

protected conf: Conference = {} as unknown as Conference;

protected days = 0;

We have a protected property called confs. This will be used to

store all the conferences the user has added, and will be of

the type Conference[] – an array of objects that implement the

Conference interface. We can initialize this to an empty array

to begin with.

Following this is another protected property called conf. This

will be of the type Conference as it will just be a single

conference, and will be used to display the correct

conference based on the path in the URL.

We can initialize this property to an empty object, but

because the type is specified as Conference, we can’t just use

an empty object without creating an error in the editor. We

can instead cast the empty object first to the type unknown,

then to the type Conference and this will keep the compiler

happy until we can set this properly.

Lastly, we have the protected property days which will indicate

how many days the conference runs. We can initialize this to

the value 0. Again, we will set this property in just a moment.

In order to make the ActivatedRoute class that we imported

from Angular available for us to use inside our component

class, we need to add a constructor to our own class and use

it to inject the imported class:

constructor(private route: ActivatedRoute) { }

An instance of the ActivatedRoute class will be available under

the private route property inside the class.

Next, we need to perform some setup for our component

when it is initially created. We can do this using the ngOnInit

lifecycle method:

public ngOnInit(): void {

const confId = Number(this.route.snapshot.paramMap.get(‘id’));

const conf = this.confs.find((conf) => conf.id === confId);

this.days = this.calculateDays();

}

The method has to be public as it will be called by Angular

when the component is created. It also doesn’t have a useful

return, so we mark it as void.

Inside the method, we first get the id parameter from the

path in the browser’s address bar. When navigating to this

view from the list of conferences on the home component,

the URL in the browser’s address bar will look like this:

/view-conference/1

The /1 at the end corresponds to the id property of the

conference that was clicked in the list on the home

component.

We need to know what this parameter is so that we can

display the correct conference. We can get the value from

the instance of the ActivatedRoute class in the property route.

This object will have a property called snapshot which

contains a snapshot of the current URL. The paramMap property

of the snapshot contains all the route parameters and we

can get a parameter by name using the get method. In this

case, that would give us the string value of 1. The confId

variable has a type of number, however, so we can convert

this string value to a number using the Number constructor.

Once we have the id of the conference to display stored in

the confId variable, we can then set the conf property of the

class to the correct Conference object by filtering the confs

array where all the conferences are stored by the confId

variable. The filter method returns a new array of all the

matching items, but as long as the conferences all have

unique Ids, there should only be one object in the returned

array, so we can extract this item using square-bracket

notation directly after the filter method.

Once we have the correct Conference object in the conf

property, we can then calculate the number of days the

conference is running for and set the days property of the

class, which is used by the template. We do this using the

return value of the calculateDays method. Let’s add this

method next:

private calculateDays(): number {

const start = new Date(this.conf.startDateTime);

const end = new Date(this.conf.endDateTime);

return differenceInCalendarDays(end, start) + 1;

}

The calculateDays method doesn’t need to be accessed

outside of the class so we can mark it as private. The return

type is set to number. Inside the method, we first create two

variables, start and end, and assign new Date instances from

the startDateTime and endDataTime properties of the Conference

object stored in the conf property of the class.

We can then return the value returned by the

differenceInCalendarDays function that we imported from the

date-fns library. However, we need to add 1 to this value, the

reason for this is that otherwise, if a conference only ran for

one day, the differenceInCalendarDays method would return

zero, or for a conference that started on one day and ended

the next day, the function would return 1. So, we always

need to increment this value by 1 to obtain the correct

number of days.

In order to see the view working in the browser, we’ll need to

have some Conference objects stored somewhere to use, but

we don’t yet have any data in place to display. Just so we

have some initial data to display, we can push a fake object

into the confs array using the empty constructor.

It’s best to avoid using the constructor in Angular

components as we don’t have any control over when it gets

called, but as we are just using this for some temporary

data, we can go ahead and update the constructor body of

the class so that it appears like this:

this.confs.push({

id: 1,

title: ‘TypeScript Conference’,

startDateTime: ‘2024-05-04T09:00:00Z’,

endDateTime: ‘2024-05-05T17:00:00Z’,

description: ‘A fun-filled weekend of pure TypeScript…’,

talks: [

{

title: ‘Keynote with Anders Hejlsberg’,

speaker: { name: ‘Anders Hejlsberg’ },

duration: ‘2 hours’,

day: 1,

description: ‘An incredible keynote speech on the future of

TypeScript’,

},

{

title: ‘Latest TypeScript features’,

speaker: { name: ‘Daniel Rosenwasser’ },

duration: ‘1 hour’,

day: 2,

description: ‘All the latest TypeScript features you can

use today’,

}

]

});

We’ve added a single conference that consists of two talks,

one on day one of the conference, and the second on day

two. It isn’t much, but it should be enough just to test that

everything is working as expected.

Now we need to add some basic styling for the component,

just to make the view presentable, and so the elements are

laid out in a sensible order rather than being all over the

place.

Open up the view-conference.component.scss file and

add the following code:

h1 { font-size: 3rem; }

header, article { width: 100%; }

header {

img {

float: left;

margin: 0 1rem 0.5rem 0;

}

time {

display: block;

margin-bottom: 0.75rem;

}

}

article {

clear: left;

& > div:not(:last-of-type) { margin-bottom: 1rem; }

}

section {

h1 { font-size: 2.5rem; }

}

We’re intentionally keeping the discussion of styling to a

minimum, and as before, there isn’t anything too complex

going on with the styling for this component, so we won’t

dwell on the specifics here.

All that is left to do at this point is for us to add the new

routing for this component. In app-routing.module.ts, first

import the new ViewConferenceComponent at the top of the file:

import { ViewConferenceComponent } from ‘./view-

conference/view-conference.component’;

Now add the following new route object, making sure to add

it above the route object with the empty path:

{ path: ‘view-conference/:id’, component:

ViewConferenceComponent },

As with other routes, we have added, the route object

consists of a string path, which corresponds to the path part

of the URL in the browser’s address bar, and a component to

load when that route is matched.

This time however, we are using a route parameter of :id to

specify that the path will end with a dynamic conference id

so that the correct component will be loaded, depending on

which conference in the list on the home component was

clicked.

Changing the default locale

I mentioned earlier that although we don’t have to do

anything special to use Angular’s date pipe, it will be locked

to the default en-US locale. We can very easily change the

default locale of the whole application using Angular. Let’s do

that now quickly.

Open up the main.ts file in the src folder of the project. At

the top of the file, we need to import a special token called

LOCALE_ID from the Angular core:

import { LOCALE_ID } from ‘@angular/core’;

Now we can override this by passing a configuration object

as the second parameter to the bootstrapModule method.

Change the call to this method so that it appears like this:

platformBrowserDynamic().bootstrapModule(AppModule, {

providers: [{provide: LOCALE_ID, useValue: navigator.language

}]

})

.catch(err => console.error(err));

The configuration object has a key called providers which

takes an array of objects. Each object in this array has a key

called provide, which is set to the LOCAL_ID token we imported,

and a key called useValue. This second key is where we set

the locale ID that we would like to use in our application. In

this case, we can use navigator.language to use whatever

locale the user’s browser is set to.

What we are saying to Angular here basically is, wherever

the token LOCALE_ID is used, use the value specified in the

useValue key of the object. There are various parts of Angular

which use this LOCALE_ID token internally, such as the date

pipe we used in the view-conference.component

template.

We should now have everything in place to see the view-

conference component in the browser. With the ng serve

command running, enter the following URL in the browser’s

address bar:

http://localhost:4200/view-conference/1

Remember. The /1 on the end of the path needs to match the

id property of one of the Conference objects in the view-

component class. In this case, it matches the test object we

added to the constructor.

We should now see the test data displayed in the

component:

Figure 13.14: The view-conference view in the Chrome browser on Windows

However, if we try to access a conference that doesn’t exist,

by trying to access the URL http://localhost:4200/view-

conference/2 at this point for example, we’ll see an empty

page with some errors in the browser console. We can

handle this scenario by detecting when a conference doesn’t

exist and redirecting to a page-not-found component.

Adding a page not found component

Let’s add the new not-found component first. We can do that

by entering the following command in the terminal, as we

have done when creating other components:

ng generate component not-found

This will generate all the new files for the new component

inside a folder called not-found in the app directory.

First, we can update the template; open the file not-

found.component.html and replace the existing code with

the following:

<h1>Page Not Found!</h1>

<p>The conference you are trying to view could not be found.

</p>

<p>Please check the address you entered into your browser.</p>

<p>Try returning to the home page.

</p>

We can keep the template very simple and just display a

simple heading and a short message indicating that the page

could not be found. We can also include a link back to the

home page; here we use the routerLink directive that we

have used elsewhere.

The component won’t have any special behavior, so we don’t

need to update the class file for this component at all. It also

doesn’t require any custom styling, so we won’t need to

update the stylesheet for the component at all either.

Instead, we can move straight on to adding the new routing

required for this component to work as expected and be

displayed at the appropriate time.

Open up the app-routing.module.ts file and first import

the new NotFoundComponent so that we can route to it:

import { NotFoundComponent } from ‘./not-found/not-

found.component’;

Now add the following new object directly after the object

with an empty path (instead of directly before it, as we’ve

done previously):

{ path: ‘**’, component: NotFoundComponent },

This type of route, with the path set to a double asterisk, is

known as a wildcard path. Angular will match this route any

time a route not known to Angular is requested. You can

think of it as a fallback route that will be used when no valid

route is matched. This is why it needs to come last, after all

the other routes.

Now we can handle an unknown conference being requested

via the URL’s address bar back in the view-

conference.component.ts file. Inside the file, we need to

update the existing import for ActivatedRoute – update it so

that it appears as follows:

import { ActivatedRoute, Router } from ‘@angular/router’;

We will also need to import the Router class from Angular,

and we will need to inject it into the constructor of our class

in order to use it.

Update the constructor on line 18 so that it appears like this:

constructor(private route: ActivatedRoute, private router:

Router) {

Now an instance of the Router class will be available inside

our component in the router property.

Finally, change the ngOnInit method so that it appears like

this:

public ngOnInit(): void {

const confId = Number(this.route.snapshot.paramMap.get(‘id’));

const conf = this.confs.filter((conf) => conf.id === confId)

[0];

if (!conf) {

this.router.navigateByUrl(‘/not-found’);

} else {

this.conf = conf;

this.days = this.calculateDays();

}

}

We’ve changed the method so that the value returned from

the filter method is saved to a variable called conf instead of

being set directly as the conf property of the class. If this

variable is undefined, we can use the navigateByUrl method of

the router to navigate to the path /not-found. As we don’t

have a route object for this route, it will trigger the wildcard

route and Angular will display the not-found component.

If the variable is defined, we can go ahead and save the

variable to the property of the class and calculate the

number of days the conference spans as we did previously.

We should now find that we are redirected to the not-found

component if we try to access a conference that doesn’t

exist:

Figure 13.15: The not-found component in Chrome on Windows

Handling unexpected situations, such as when the user

requests a URL that doesn’t exist, is key to keeping the

application running and being able to respond to the need of

the user.

At this point, all of our components are now in place. At the

moment, though, we don’t have any real data to use, as the

add view doesn’t save the conference after it is added, and

the home and view-conference views aren’t getting the real

conferences to display. Let’s finish up this practical example

by wiring things up so that any conferences added by the

user can be saved, and these saved conferences can be

loaded in the required places.

Handling data

We need a simple way to store and retrieve data in the

example application. Typically, this would involve making

HTTP requests to the back end, which would return the

appropriate data from the database. We don’t have a back-

end, or a database, but we can still create a service in our

application to handle the data that we will be using.

In Angular, a service is an injectable class containing

functionality that is intended to be shared and used by

multiple components. Unlike components, services don’t

have an associated template or any stylesheets, they are

just standalone TypeScript files.

Let’s create a new service using the CLI now; in your

terminal run the following command:

ng generate service data

This will create two new files in the app directory of the

project – a file containing the actual service called

data.service.ts, and a unit test file called

data.service.spec.ts:

Figure 13.16: Output of generating a service in the terminal on Windows

Open up the data.service.ts file in the editor.

The file initially contains just a small amount of Angular

boiler-plate. Most notable is the Injectable decorator

imported from Angular. This decorator is used to make the

service injectable to any other component in the application,

as it will be provided in the root module of the application.

Aside from the decorator, this file just defines a class called

DataService, containing just an empty constructor. We won’t

be using the constructor as we don’t need to inject any other

dependencies into the service, so go ahead and remove the

constructor.

We’ll also need to import a class from RXJS. RXJS is a third-

party library for creating reactive code that makes working

with asynchronous code easier and which is included with

Angular by default. It is based on the concept of Observables

– special objects that we can subscribe to in order to receive

a stream of updates to a particular value.

Observables are similar to Promises conceptually, but offer

significantly more functionality, and they are often used in

places where previously a Promise would be used, such as

when making requests to the back-end for data.

Add the following code to the top of the file after the existing

import statement:

import { Subject } from ‘rxjs’;

We can also import our Conference interface, which we’ll also

be making use of inside the service:

import { Conference } from ‘./model’;

For our simple data storage and retrieval needs here, we will

use the browser’s LocalStorage API, so will add methods to the

class to handle getting data from local storage or saving it to

local storage.

First of all, the class will need some properties. Add the

following code inside the DataService class:

public getConferences$: Subject<Conference[]> = new Subject();

public setConferences$: Subject<void | Error> = new Subject();

We create two new public properties called getConferences$

and setConferences$ – these properties are observable so it’s a

convention to add a dollar sign to the end of the name. Each

of these will contain an instance of the Subject class we

imported, and we can use this as a generic type as well.

The type for the first property, getConferences$, has an inner

type of Conference[], that is, it will be a Subject containing an

array of Conference objects. The type for the second property,

setConferences$, has an inner type of the union void | Error

because when this observable is triggered, the next handler

doesn’t need to receive a value – we’re using it to signal

something has happened, not fetch data. The Error type is

included in the union in case an error occurs as subscribers

will be passed an error in this case.

Now add the following method after the two properties:

public getConferences(): void {

const confs = localStorage.getItem(‘conferences’);

if (confs) {

this.getConferences$.next(JSON.parse(confs));

} else {

this.getConferences$.next([]);

}

}

The method is marked as public and has a return type of

void. We first attempt to get a property of the localStorage

global object called conferences using the getItem method. This

method will either return the string value contained in local

storage or null if the key was not found.

If the confs variable is truthy, we can call the next method of

the subject stored in the getConferences$ property of the class,

passing the result of using JSON.parse to parse the string

returned by localStorage into an array.

If the confs variable is falsey, we can just pass an empty

array to the subject, which will in turn result in any

subscribers to this observable receiving an empty array. This

should be all we need to do to handle the retrieval of data.

Lastly, add the following method after the one we just

added:

public setConferences(conferences: Conference[]): void {

const confs = localStorage.getItem(‘conferences’);

if (confs) {

localStorage.removeItem(‘conferences’);

}

try {

localStorage.setItem(‘conferences’,

JSON.stringify(conferences));

this.setConferences$.next();

} catch (err) {

this.setConferences$.error(err);

}

}

The setConferences method is also public and also has a void

return, but this method will also be passed an array of

Conference objects as a parameter called conferences.

Inside the method, we also try to get anything stored in the

conferences key of the localStorage global object, but this

time, if the key does exist and contains a string value, we

delete it using the removeItem method of localStorage.

We then use a try catch statement to try to set a value to

localStorage using the setItem method, which takes the name

of the key to set and the string to set as the value. We can

get the string to save using JSON.stringify to convert the

array of Conference objects into a string. After storing the

data, we then call the next method of the setConferences$

subject and pass it the value true to indicate success.

The catch block will pass an error and here, we can call the

error method of the subject, and pass in the error received

by catch. The catch block may be invoked if, for example, the

user has run out of space in local storage, or has local

storage disabled in the browser.

At this point, we’re ready to start using the service. The first

place we need to use it is in the HomeComponent, so open the

file home.component.ts and first of all, import the

DataService after the import for Conference:

import { DataService } from ‘../data.service’;

Now we can inject the service into the component in the

same way that we injected the Router. Update the constructor

so that it appears like this:

constructor(private router: Router, private dataService:

DataService) {}

We store an instance of the DataService in the private

property dataService, making it available inside the class.

We also need to import a class from RXJS called Subscription

as we will be subscribing to the observable properties of the

data service. Add the following import to the top of the file:

import { Subscription } from ‘rxjs’;

In this component, we will want to try to get the data as soon

as the component is loaded, so we’ll want to make use of the

ngOnInit method as we did earlier. This time we will also use

another life-cycle method, the ngOnDestroy method. We should

import both of these things from the existing @angular/core

module. Change the import statement on the first line of the

file so that it looks like this:

import { Component, OnInit, OnDestroy } from ‘@angular/core’;

Now we need to specify that the class implements these

interfaces. Update the class declaration so that it appears

like this:

export class HomeComponent implements OnInit, OnDestroy {

Now we need to add a new property to the class, and add it

before the constructor:

private subs: Subscription[] = [];

We define a private property called subs with a type of

Subscription[], and initialize it with an empty array.

Now we can add the ngOnInit method:

public ngOnInit(): void {

this.subs.push(

this.dataService.getConferences$.subscribe((conferences:

Conference[]) => {

this.confs = conferences;

})

);

this.dataService.getConferences();

}

The getConferences$ observable object of the dataService has a

method called subscribe which returns a Subscription object,

which we add to the subs array using the push method. The

subscribe method takes a callback function which will be

passed the value emitted by the observable object, so inside

this callback function, we can just set the received

conferences to the confs property.

After subscribing to the getConferences$ observable, we then

need to actually try to get the data by calling the

getConferences method of the service.

Now let’s add the ngOnDestroy method, which we need to use

to unsubscribe from the getConferences$ observable,

otherwise, we could cause a memory leak. Add the following

method:

public ngOnDestroy(): void {

this.subs.forEach((sub) => sub.unsubscribe());

}

We can use the forEach method of the subs array to call the

unsubscribe method of each subscription. In this example, we

only have a single subscription, but this technique scales

well for larger components that may be subscribing to

numerous observables.

Now let’s look at saving data using the data service. One

place we need to do this is in the add component. Open up

add-conference.component.ts. In this file, we need to

import the OnInit and OnDestroy interfaces from Angular:

import { Component, OnInit, OnDestroy } from ‘@angular/core’;

We also need the Subscription class from RXJS again:

import { Subscription } from ‘rxjs’;

And, we’ll need the DataService:

import { DataService } from ‘../data.service’;

As well as the Conference interface:

import { Conference } from ‘../model’;

Now that we’ve added all the required new imports, we next

need to mark the class as implementing the OnInit and

OnDestroy interfaces:

export class AddConferenceComponent implements OnInit,

OnDestroy {

As with the home component, we can also add a private subs

property to store observable subscriptions in:

private subs: Subscription[] = [];

Let’s also add a new private property to the class to store

the existing conferences, if there are any:

private confs: Conference[] = [];

This class doesn’t have a constructor, so we’ll need to add

one in order to inject the DataService. Add the following code

before the uploadLogo method:

constructor(private dataService: DataService) {}

We can use the ngOnInit method to subscribe to both the

getConferences$ observable that we added to the home

component and the setConferences$ observable of the

DataService.

We’ll need to use the setConferences$ observable to save the

data, but in order to generate the next id for the conference

being added, we’ll need to get the list of existing

conferences to see what the last id that was used was.

public ngOnInit(): void {

this.subs.push(

this.dataService.getConferences$.subscribe((conferences:

Conference[]) => {

this.confs = conferences;

}),

this.dataService.setConferences$.subscribe({

next: () => this.resetForm(),

error: (error) => console.log(error),

})

);

this.dataService.getConferences();

}

The method is similar to the version we used in the home

component, except that this time we pass an object to the

subscribe method with next and error keys containing callback

functions to be invoked when the observable emits a value

or throws an error. We can use the next method to call a new

method called resetForm, which we’ll add shortly. We can also

add a simple error handler that logs any errors to the console

for debugging purposes, as this observable has the

capability to emit errors.

Now we can add an ngOnDestroy method to handle

unsubscribing from any observables. It’s identical to the

previous ngOnDestroy method:

public ngOnDestroy(): void {

this.subs.forEach((sub) => sub.unsubscribe());

}

At the bottom of the file is a save method. Update this

method so that it appears like this:

public save(): void {

const lastId = this.confs.pop()?.id ?? 0;

const logo = this.conferenceForm.get(‘logo’)?.value ||

undefined;

const desc = this.conferenceForm.get(‘desc’)?.value ?? ‘’;

this.confs.push({

id: lastId + 1,

title: this.conferenceForm.get(‘name’)?.value ?? ‘’,

startDateTime:

this.conferenceForm.get(‘startDateTime’)?.value ?? ‘’,

endDateTime: this.conferenceForm.get(‘endDateTime’)?.value

?? ‘’,

description: desc,

shortDescription: (desc.length > 150) ? desc.slice(0, 150)

: desc,

logo: (logo) ? { src: logo } : undefined,

});

this.dataService.setConferences(this.confs);

}

Inside the method, we first try to get the id property of the

last Conference object in the confs array using the pop method.

If the array is empty, we use the nullish coalescing operator

to set the variable to 0.

We then get the value property of the UntypedFormControl

called desc. UntypedFormGroup objects have a method called get

to get a particular UntypedFormControl by name.

Even though we know this field will have some kind of value

in order for the Save button to become enabled in order to

call the method in the first place, we still need to use the

optional chaining operator after the get method just in case

the method returns undefined, and the nullish coalescing

operator to set the variable to an empty string just in case

the value property is undefined.

We then try to get the UntypedFormControl called logo. This

form field doesn’t have the required validator attached to it,

and therefore may actually be undefined. If it has a value, we

get the value, and if it doesn’t, we set the variable to

undefined instead.

At this point, we can push a new Conference object into the

confs array. We pass the push method on an object and map

the values of the form controls in the form to the correct

property names in the object.

We can create the shortDescription property of the object by

using the slice method to get the first 150 characters of the

desc variable if its length is greater than 150 characters, or

we can just reuse the whole variable if it is less than 150

characters.

If the logo variable has a value, we can create an object with

an src property, as this is the format required by the

Conference interface, or we can use the value undefined as

the property is optional.

Lastly, we can call the setConferences method of the

dataService and pass it to the confs array, which will trigger

one of either the next or error handlers that we passed to the

observable.

Our last task in this file is to add the resetForm method to the

class that I mentioned earlier:

private resetForm(): void {

this.conferenceForm.reset();

this.logoDataSrc = ‘’;

}

All we need to do is call the reset method of the

UntypedFormGroup, which will clear the fields and reset the state

of the form, and set the logoDataSrc property of the class back

to an empty string;

At this point, we should be able to go to the add view, fill out

the add conference form, and see that an array of Conferences

is stored in local storage under the domain localhost:

Figure 13.17: LocalStorage area in the Chrome browser on Windows

There’s one more place where we need to use the

DataService, and that is in the view conference component,

which at the moment is using a fake conference object that

we added in the constructor.

Open up the view-conference.component.ts file and first

of all, let’s import the DataService and Subscription class from

RXJS:

import { DataService } from ‘../data.service’;

import { Subscription } from ‘rxjs’;

We should also import the OnDestroy interface from Angular to

handle cleaning up the subscription we now need to make:

import { Component, OnInit, OnDestroy } from ‘@angular/core’;

Once OnDestroy is imported, we should add it to the list of

classes that this class implements, Change the class

declaration on line 15 so that it appears like this:

export class ViewConferenceComponent implements OnInit,

OnDestroy {

We’ll also need the usual subs property to store the

observable in:

private subs: Subscription[] = [];

Next, remove the code inside the constructor, and inject the

DataService. It should end up looking like this:

constructor(

private route: ActivatedRoute,

private router: Router,

private dataService: DataService,

) {}

The class already contains an ngOnInit method for us to use

to get the array of conferences, we’ll just need to change it

to use the dataService. Change the method so that it appears

like this:

public ngOnInit(): void {

const confId = Number(this.route.snapshot.paramMap.get(‘id’));

this.subs.push(

this.dataService.getConferences$.subscribe((conferences:

Conference[]) => {

this.confs = conferences;

const conf = this.confs.filter((conf) => conf.id ===

confId)[0];

if (!conf) {

this.router.navigateByUrl(‘/not-found’);

} else {

this.conf = conf;

this.days = this.calculateDays();

}

})

);

this.dataService.getConferences();

}

It’s very similar to what was there before except we’ve

added the same subscription to getConferences$ that we used

in the home component.

Inside the handler passed to the subscribe method, we can

store the returned conferences in the confs property and do

all of the same things that we were doing before – handling

an unknown conference id and calculating the number of

days the conference is on for.

Now we just need to add an ngOnDestroy method to tidy up the

subscription. It can be identical to the other usages of the

method:

public ngOnDestroy(): void {

this.subs.forEach((sub) => sub.unsubscribe());

}

Now we should be able to go to the route view-conference/1

and see the component stored in local storage. If a

component isn’t displayed, you can add one using the form

in the add view but note that the form does not capture any

data for the talks in a conference at this point, so no talks

will be displayed for the conference.

Now that we have a data service, we can go ahead and

remove the temporary data that we pushed into the confs

array earlier in the chapter from the constructor of the

ViewConferenceComponent class.

We should also find at this point that if we visit the home

route of the application again now, we can see the

conference from local storage displayed instead of the

message that no conferences have been added:

Figure 13.18: The completed Home screen in Chrome on Windows

Unit testing

As we’ve made many changes to the application, the initial

unit tests are no longer passing. We should fix these up.

The tests for the app component are looking in the template

of the component for a span element containing the text

“conferences-app is running!”, but this is one of the elements

we removed from this template right back at the start of

building the app. We can go ahead and remove the test with

the description “should render title” from the file

app.component.spec.ts.

In the file add-conference.component.spec.ts. there is

one issue that needs to be fixed. In the add conference

component, we are using some Angular forms features, so in

this test file, we will also need to import the

ReactiveFormsModule from Angular:

import { ReactiveFormsModule } from ‘@angular/forms’;

We can then add a key called imports to the object passed to

the configureTestingModule method on line 11, and pass an

array containing the ReactiveFormsModule:

imports: [ReactiveFormsModule],

Finally, in the file view-conference.component.spec.ts,

we will need to import the RouterTestingModule from Angular:

import { RouterTestingModule } from ‘@angular/router/testing’;

We can then add an imports key to the object passed to the

configureTestingModule method in this file:

imports: [RouterTestingModule],

This should fix all of the failing tests, getting them back to a

passing state.

When we generated the data service earlier in the chapter,

the CLI created a unit test file for us containing a default

test. Let’s open the file called data.service.spec.ts in the

app directory. It should contain the following code:

import { TestBed } from ‘@angular/core/testing’;

import { DataService } from ‘./data.service’;

describe(‘DataService’, () => {

let service: DataService;

beforeEach(() => {

TestBed.configureTestingModule({});

service = TestBed.inject(DataService);

});

it(‘should be created’, () => {

expect(service).toBeTruthy();

});

});

The file imports the TestBed utility from Angular, and the

actual DataService so it can be tested. The test framework in

use in this project is Jasmine, so the test is wrapped in an

outer describe function which is passed a string describing

the thing being tested, and an arrow function that will be

invoked when the test is run. The describe function is

basically a container for one or more individual tests.

Inside the arrow function we first create a variable called

service to contain an instance of the service and then use a

function called beforeEach, which will be invoked before each

test is run and which we can use to perform any setup that

may be needed.

In this case the configureTestingModule method of the TestBed

class is used to create an empty Angular module for testing

purposes and assigns an instance of the DataService to the

service variable using the inject method of the TestBed.

Individual tests in Jasmine are create with the it function.

This function also takes a string as the first parameter, which

describes what is being tested, and an arrow function which

will be invoked to run the test. In this file, which was

generated by Angular, it is just testing that the service

variable has a truthy value using the expect function and the

toBeTruthy matcher. We can remove this test from the file and

add one that actually tests one of the methods in the data

service. Delete the whole it function from the file.

First of all, we can import the Conference interface as the top

of the file:

import { Conference } from ‘./model’;

Now we can add a new describe function as a container for

the tests relating to the getConferences method:

describe(‘getConferences()’, () => {

let fakeConferences: Conference[];

});

We can add the method name as the test description, and

inside the arrow function we can declare a new variable

called fakeConferences and specify it is of the type Conference[].

Now, directly after the fakeConferences variable, inside the

arrow function, add the following code:

beforeEach(() => {

fakeConferences = [{ id: ‘test’ }] as unknown as

Conference[];

spyOn(service.getConferences$, ‘next’);

spyOn(localStorage, ‘getItem’)

.and.returnValue(JSON.stringify(fakeConferences));

});

Inside the beforeEach arrow function we first assign the

fakeConferences variable with an array containing a single

object that has a single property called id. To avoid adding all

of the properties required by the Conference interface to this

test object, we can double-case it first to unknown and then to

the Conference[] type that we want to use.

Next we use Jasmine’s spyOn function to record all calls to the

next method of the service’s getConferences$ observable. We

can then use the spyOn function again to spy on on the getItem

method of localStorage, but this time we can also use the

and.returnValue function to control what the getItem method

returns. In this case, we can use JSON.stringify to produce a

string version of the fakeConferences array.

Now we can add the test itself:

it(‘calls the next method of the getConferences$ observable’,

() => {

service.getConferences();

expect(service.getConferences$.next)

.toHaveBeenCalledWith(fakeConferences);

});

We use the it function and describe what is being tested in

the first parameter. Inside the arrow function we can call the

getConferences method of the service and then use the expect

function in conjunction with the toHaveBeenCalledWith matcher

to check that the next method of the getConferences$

observable was called and that it was passed the

fakeConferences array.

We can now run the tests for the project using the ng test

command in the terminal, and we should find that the test

passes and that the method we tested is behaving in the

expected way.

Continuing with the example

application

You should now have a fully functional, but very small,

reference application, but there are many improvements or

new features that could still be added to it. In order to

continue applying what you have learned about TypeScript,

and Angular, why not try adding one or more of the following

features:

A slick new theme – the styling for the example

application is minimal, as this is a book about TypeScript

rather than SCSS. There are many styling improvements

that could be made, including a better color palette, an

improved layout, or some better imagery.

Update the form in the add component to capture all the

required information for a conference, including all the

talks that will be taking place.

Break out some of the nested interface objects from the

examples, such as the speaker object from the Talk

interface or the logo object from the Conference interface,

into their own interfaces or type aliases.

Consider incorporating new interfaces to describe

different kinds of data structures in the app. For

example, consider adding an interface for speakers that

includes properties like avatar, name, experience, etc.

Improve the test coverage for the application by adding

additional unit tests in the existing spec files for each

component we created during this chapter.

Extend the application so that it can support

conferences with multiple tracks. The talks for each

track should be grouped accordingly, and the UI updated

to display the different tracks - a typical tabbed interface

could work well here.

Conclusion

In this final chapter of the book, we have seen how to put

some of the information we have learned into practice by

building a fully functioning, entirely front-end example

application. We’ve seen how the Angular framework

naturally leads to TypeScript development as the framework

itself is written in TypeScript. The framework also gives us

fully functional build tools that let us build, test, and lint the

applications we build, making Angular a great choice for

modern professional web application development.

Although this is the end of the book, it will not be the end of

your TypeScript journeys. As you read these words, the latest

version of TypeScript is being created and prepared for

release, with an ever-growing feature-set, and no sign of

disappearing, you are sure to be learning about TypeScript

for some time to come.

References

https://angular.io/guide/router

https://angular.io/guide/reactive-forms

https://developer.mozilla.org/en-

US/docs/Web/API/Window/localStorage

https://angular.io/guide/router
https://angular.io/guide/reactive-forms
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Index

Symbols

--build flag

about 85

building 81-85

--clean flag 85

--dry flag 85, 86

--force flag 86

--verbose flag 86

--watch flag 87

--clean flag 85

--dry flag 85, 86

--force flag 86

--help command 75

.js files

d.ts files, generating 96-98

--listFilesOnly 72, 73

--showConfig flag 74, 75

--verbose flag 86

--version flag 71, 72

--watch flag 87

A

abstract class

about 220, 221

methods 222, 223

properties 221, 222

access modifier

about 204

getters 208, 209

private members, in JavaScript 207

private modifier 205, 206

public modifier 205

setters 208, 209

AMD dependency 310

AMD module 310

any type

about 46

parameter 47, 48

application

serving 349

application shell

creating 351-355

array

about 138

read-only array 141, 142

type inference 139-141

arrow function

about 165, 166

overloading 184, 185

type inference 167

as operator

about 49, 50

compound casting 52

down-casting 50

older type-casting syntax 53

assertion function 245-249

awaited utility 267, 268

B

barrel files

about 310, 311

nested barrels 312

baseUrl configuration property 301

bigint type

about 40, 41

operator *, avoiding 41

boolean type 42

build tasks

application, serving 349, 350

linting 347-349

running 345

unit test 345, 346

built-ins

augmenting 323

C

call signatures 176-178

capitalize template 265, 266

class declarations 198, 199

classes

declaring 327, 328

class expressions 199

CLI flags

about 70

--help command 75

--listFilesOnly 72, 73

--showConfig flag 74, 75

--version flag 71, 72

Cmder

reference link 16

CommonJS modules

declaring 328-330

UMD modules, declaring 330-332

compiled files

inspecting 69, 70

compiled modules 297, 298

compiler directives

about 307

AMD dependency 310

AMD module 310

no default lib 309

reference lib 309

reference path 308

reference types 309

compound casting 51, 52

computed enum 127, 128

conditional types 257, 258

configuration options

about 27

baseUrl 28

exclude 27

files 27

include 27

outDir 29

paths 28

resolveJsonModule 29

rootDir 28

top-level options 29

const

using 249-251

constant enum 127, 128

constructor

about 200-202

overloading 203

ConstructorParameters utility 269, 270

D

data model

creating 355-357

declaration files

creating 316

publishing 333

publishing, to Definitely Typed repository 334

publishing, with library 333

types, testing 338, 339

decorators 225-227

default exports

declaring 326, 327

Definitely Typed repository

about 334

index.d.ts 335, 336

reference link 334

tsconfig.json 337, 338

dependencies

code editor, installing 18

installing 16

Node.js, installing on Mac 18

Node.js, installing on Windows 16, 17

version numbers 16

destructured parameter 170-173

discriminated union 243-245

down-casting

about 50

EventTarget type 51

d.ts files

generating 93-95

generating, from .js files 96-98

dynamic type system 4

E

enumerated type (enum)

about 116

computed enum 127, 128

constant enum 127, 128

heterogeneous enum 126, 127

inlining enum 131-133

keyof operator 133, 134

literal enum 129-131

never type 120-123

numeric enums 116-120

reverse mapping 120

string enum 124-126

environment variables 80, 81

excludeDirectories 80

excludeFiles 80

Exclude utility 270, 271

Extract utility 271, 272

F

fallbackPolling option

about 79

dynamicPriority 79

dynamicPriorityPolling 79

fixedChunkSize 79

fixedInterval 79

fixedPollingInterval 79

priorityInterval 79

priorityPollingInterval 79

synchronousWatchDirectory 79

function overloading 181-183

functions

type Inference 164, 165

function type expressions 175, 176

function type interface 178

G

generator functions 185-191

generic

about 139, 254

classes 255

functions 256, 257

interface 254

types 255

generic class 223-225

generic function

about 191, 192

constraints 193, 194

generic object types 155-158

getRefNumber 54

global functions

declaring 322

global libraries

declaring 316-320

global variables

declaring 322

H

heterogeneous enum 126, 127

Homebrew

reference link 18

I

indexed access type 258, 259

index signature 152, 153, 211, 212

inheritance 217-219

inlining enum 131-133

in operator

narrowing with 240

instanceof operator

narrowing with 238-241

InstanceType utility 273, 274

Intellisense

enhancing, with JSDoc 320, 321

interface

about 102-108

extending 109-112

implementing 212, 213

merging 108, 109

intersections 154, 155

J

JavaScript

private members 207

JavaScript build tools

integrating with 87

TypeScript webpack, configuring 88-91

webpack, integrating 87, 88

JSDoc

used, for enhancing Intellisense 320, 321

JSDoc annotations

any type 34, 35

JSDoc tool

about 30

reference link 31

K

keyof operator

about 134

using 133

L

linting 347-349

literal enum 129-131

literal type 55, 56

literal union type 56, 57

M

Mac

used, for installing Node.js 18

Mandatory type 280

mapped types

about 260

property keys, remapping 263

property modifiers, adding 261, 262

property modifiers, removing 261, 262

modular libraries

declaring 324, 325

module augmentation 313, 314

module configuration property 299, 300

module-related configuration options

about 298

baseUrl configuration property 301

module configuration property 299, 300

moduleResolution property 301

moduleSuffixes configuration property 303, 304

paths configuration property 301, 302

resolveJsonModule configuration property 304

rootDirs configuration property 302, 303

typeRoots configuration property 303

module resolution 305-307

moduleResolution property 301

moduleSuffixes configuration property 303, 304

N

namespace

about 113, 114

merging 115

narrowing 232, 233

nested barrels 312

never type 49, 120-123

no default lib 309

Node.js

installing, on Mac 18

reference link 17

node_modules 21

NonMandator type 280

NonNullable utility 274, 275

non-null assertion operator 60

null 43, 44

null values

handling 237

number 42, 43

numeric enums 116-120

O

object type

about 146-151

property modifiers 151, 152

older type-casting syntax 53

old-lib.js file 96

OmitThisParameter utility 278, 279

Omit utility 276, 277

optional parameters 167, 168

P

parameter properties 204

Parameters utility 281, 282

parameter type annotation 162-164

Partial utility 280, 281

paths configuration property 301, 302

pause and resume model 185

Pick utility 282, 283

primitive types

about 40

bigint type 40, 41

boolean type 42

null type 43, 44

number type 42, 43

string type 44

symbol type 44, 45

undefined type 45

private members

in JavaScript 207

private modifier 205, 206

project configuration

updating 30

property keys

remapping 263

property modifiers

adding 261, 262

removing 261, 262

public modifier 205

R

read-only array 141, 142

read-only tuple 146

Readonly utility 284, 285

Readonly utility type 158, 159

Record utility 285, 286

reference application

example 405

reference lib 309

reference path 308

reference types 309

Required utility 287, 288

resolveJsonModule configuration property 304

rest arguments 169, 170

rest parameters 168, 169

return type annotation 162-164

ReturnType utility 288

reverse mapping 120

reverse method 96, 113

rootDirs configuration property 302, 303

S

skipLibCheck 26

static blocks 215-217

static class members 214, 215

static type system 4

strict umbrella options

noImplicitAny 26

noImplicitThis 26

strictBindCallApply 26

strictFunctionTypes 26

strictNullChecks 26

strictPropertyInCatchVariables 26

useUnknownInCatchVariables 26

string 44

string enum 124-126

symbol type 44, 45

synchronousWatchDirectory 79

T

template literal types

about 264, 265

capitalize template 265

uncapitalize template 266

uppercase template 267

third-party libraries

using 92, 93

this parameter 179-181, 209-211

ThisParameterType utility 289, 290

ThisType utility 290, 291

truthiness type guards 234, 235

tsconfig.json file

about 20

used, for configuring TypeScript 22

tuple

about 142-145

optional element 145

read-only tuple 146

rest element 145

type aliases 57, 58

type assertion 59, 60

type-driven development 12, 13

type guards

about 234

narrowing, with in operator 240, 241

narrowing, with instanceof operator 238-240

narrowing, with typeof operator 236, 237

null values, handling 237, 238

truthiness type guards 234, 235

type inference

for arrow function 167

for functions 164, 165

typeof operator

narrowing with 236, 237

type-only export 296, 297

type-only import 296, 297

type predicate

narrowing with 241-243

typeRoots configuration property 303

TypeScript

about 1, 2

advantages 4

aspects 22

bugs, preventing 8

components 2, 3

configuring, with tsconfig.json file 22, 23

disadvantages 7

type system 3

using 9, 10, 11

TypeScript, advantages

about 4

bugs, catching 4, 5

future language features 6

readability 5

refactoring 6

TypeScript checking

default behavior 31, 32

enabling, in JavaScript 30, 31

JSDoc annotations, adding 33, 34

project structure, example 36

type checking, enabling 32

TypeScript compiler (tsc) 19

TypeScript design patterns 227-229

TypeScript files

compiling 64-68

TypeScript globally

installing 19

TypeScript modules

about 294

exporting 294-296

importing 294-296

TypeScript project

creating 19, 20

installing, locally 21, 22

tsconfig.json file 20

TypeScript project, configuration options enabled

about 23

esModuleInterop 24

forceConsistentCasingInFileNames 25

module 24

skipLibCheck 26

strict mode 25

target 23

TypeScript webpack

configuring 88-91

U

UMD modules

declaring 330-332

uncapitalize template 266

undefined type 45

union type 53-55

unit test 345, 346

unknown type 48, 49

uppercase template 267

utility types

about 267

awaited utility 267, 268

ConstructorParameters utility 269, 270

Exclude utility 270, 271

Extract utility 271, 272

InstanceType utility 272-274

NonNullable utility 274, 275

OmitThisParameter utility 278, 279

Omit utility 276, 277

Parameters utility 281, 282

Partial utility 280, 281

Pick utility 282, 283

Readonly utility 284, 285

Record utility 285, 286

Required utility 287, 288

ReturnType utility 288

ThisParameterType utility 289, 290

ThisType utility 290, 291

V

view

conferences view, adding 376-384

data, handling 390-401

page not found component, adding 387-389

unit testing 402-405

views

add-conference view, building 366-376

adding 357

default locale, modifying 385

home view 358-363

router, adding 364-366

Visual Studio Code

installing 18

void return type 173-175

W

watchDirectory option

about 78

dynamicPriorityPolling 78

fixedChunkSizePolling 78

fixedPollingInterval 78

watchFile option

about 78

dynamicPriorityPolling 78

fixedChunkSizePolling 78

fixedPollingInterval 78

priorityPollingInterval 78

useFsEventsOnParentDirectory 78

watch mode

assumeChangesOnlyAffectDirectDependencies 80

environment variables 80, 81

excludeDirectories 80

excludeFiles 80

fallbackPolling option 79

synchronousWatchDirectory 79

using 76, 77

watchDirectory option 78

watchFile option 78

webpack

about 88

integrating with 87, 88

widening 233, 234

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Technical Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to TypeScript and its Benefits
	Introduction
	Structure
	Introduction to TypeScript
	A short history of TypeScript
	Main components of TypeScript

	TypeScript’s type system
	Advantages of using TypeScript
	Catching bugs
	Readability
	Refactoring
	Future language features

	Disadvantages of TypeScript
	The ways in which TypeScript prevents bugs
	Steps to begin using TypeScript
	Type-driven development
	Conclusion
	References

	2. Setting up a Development Environment
	Introduction
	Structure
	Installing dependencies
	Version numbers
	Installing Node.js On Windows
	Installing Node.js on Mac
	Installing a code editor

	Installing TypeScript globally
	Creating a new TypeScript project
	The tsconfig.json file

	Installing TypeScript locally to a project
	Configuring TypeScript with tsconfig.json
	Default enabled configuration options
	target
	module
	esModuleInterop
	forceConsistentCasingInFileNames
	strict
	skipLibCheck

	Commonly used configuration options
	files
	include
	exclude
	baseUrl
	rootDir
	paths
	outDir
	resolveJsonModule
	Top-level configuration options

	Updating the project configuration
	Enabling TypeScript checking in JavaScript
	Default behavior
	Enabling type checking
	Adding JSDoc annotations
	Example project structure and use

	Conclusion
	References

	3. Basic Type Annotations
	Introduction
	Structure
	Primitive types
	BigInt
	Boolean
	Number
	Null
	String
	Symbol
	Undefined

	The any type
	The unknown type
	The never type
	The as operator
	Down-casting
	Compound casting
	Older type-casting syntax

	Union types
	Literal types
	Literal union types

	Type aliases
	Type assertion
	Non-null assertion operator
	Conclusion
	References

	4. Using the TypeScript Compiler
	Introduction
	Structure
	Compiling our TypeScript files
	Inspecting compiled files
	CLI flags
	--version
	--listFilesOnly
	--showConfig
	--help

	Using watch mode
	watchFile
	watchDirectory
	fallbackPolling
	synchronousWatchDirectory
	excludeDirectories
	excludeFiles
	assumeChangesOnlyAffectDirectDependencies
	Environment variables

	Building projects
	Build-specific flags

	Integrating with other build tools
	Integrating with webpack
	TypeScript webpack configuration

	Using third-party libraries
	Generating .d.ts files
	Generating d.ts files from .js files
	Conclusion
	References

	5. Enums, Interfaces, and Namespaces
	Introduction
	Structure
	Interfaces
	Interface merging
	Extending interfaces

	Namespaces
	Namespace merging

	Enums
	Numeric enums
	Reverse mapping
	Exhaustiveness and the never type
	String enums
	Heterogeneous enums
	Computed and constant enums
	Literal enums
	Inlining enums
	Using the keyof operator

	Conclusion
	References

	6. Objects, Arrays, and Tuples in TypeScript
	Introduction
	Structure
	Arrays
	Array type inference
	Read-only arrays

	Tuples
	Optional elements in tuples
	Rest elements in tuples
	Read-only tuples

	Object types
	Property modifiers

	Index signatures
	Intersections
	Generic object types
	Readonly utility type
	Conclusion
	References

	7. Functions in TypeScript
	Introduction
	Structure
	Parameter Type and Return Type Annotations
	Type Inference for Functions
	Arrow Functions
	Type Inference for Arrow Functions
	Optional Parameters
	Rest Parameters
	Rest Arguments

	Destructured Parameters
	Void return type
	Function Type Expressions
	Call signatures
	Function Type Interfaces
	This Parameter
	Function overloads
	Overloading Arrow Functions

	Generator functions
	Generic functions
	Generic Function Constraints
	Conclusion
	References

	8. Classes in TypeScript
	Introduction
	Structure
	Class Declarations
	Class Expressions
	Constructors
	Constructor Overloading
	Parameter Properties

	Access Modifiers
	Private Members in JavaScript
	Getters and Setters

	This Parameter
	Index Signatures
	Implementing an Interface
	Static Class Members
	Static Blocks

	Inheritance
	Abstract Classes
	Abstract Properties
	Abstract Methods

	Generic Classes
	Decorators
	TypeScript Design Patterns
	Conclusion
	References

	9. Control Flow Analysis
	Introduction
	Structure
	Narrowing
	Widening
	Type Guards
	Truthiness Type Guards
	Narrowing with Typeof
	Handling null Values
	Narrowing with Instanceof
	Narrowing with the in Operator

	Narrowing with Type Predicates
	Discriminated Unions
	Assertion Functions
	Using as const
	Conclusion
	References

	10. Manipulating Types
	Introduction
	Structure
	Generics
	Generic Interfaces
	Generic Types
	Generic Classes
	Generic Functions

	Conditional Types
	Indexed Access Types
	Mapped Types
	Adding and Removing Property Modifiers
	Remapping Property Keys

	Template Literal Types
	Capitalize
	Uncapitalize
	Uppercase

	Utility Types
	Awaited
	ConstructorParameters
	Exclude
	Extract
	InstanceType
	NonNullable
	Omit
	OmitThisParameter
	Partial
	Parameters
	Pick
	Readonly
	Record
	Required
	ReturnType
	ThisParameterType
	ThisType

	Conclusion
	References

	11. TypeScript Modules
	Introduction
	Structure
	Modules in TypeScript
	Importing and exporting modules
	Type-only imports and exports
	Compiled modules

	Module-related configuration options
	Module
	Module resolution
	Base URL
	Paths
	Rootdirs
	Type roots
	Module suffixes
	Resolve JSON module

	Module resolution
	Compiler directives
	Reference path
	Reference types
	Reference lib
	No default lib
	AMD module
	AMD dependency

	Barrel files
	Nested barrels

	Augmenting modules
	Conclusion
	References

	12. Creating Declaration Files
	Introduction
	Structure
	Creating declaration files
	Declaring global libraries
	Enhancing Intellisense with JSDoc
	Declaring global functions and variables
	Augmenting built-ins
	Declaring modular libraries
	Declaring default exports
	Declaring classes
	Declaring CommonJS modules
	Declaring UMD modules

	Publishing declarations
	Publishing with the library
	Publishing to Definitely Typed
	Testing types

	Conclusion
	References

	13. Building a Conference App with Angular and TypeScript
	Introduction
	Structure
	Getting started
	Running build tasks
	Unit tests
	Linting
	Serving the application

	Creating the application shell
	Creating a data model

	Adding views
	Home view
	Adding routing
	Building the add-conference view
	Adding the conferences view
	Changing the default locale
	Adding a page not found component
	Handling data
	Unit testing

	Continuing with the example application
	Conclusion
	References

	Index

