
30 Days
Learn to manage code repositories like a pro

Git Repository
Management in

30 Days
Learn to manage code repositories like a pro

Sumit Jaiswal

www.bpbonline.com

http://www.bpbonline.com

ii ■

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-071

www.bpbonline.com

http://www.bpbonline.com

■ iii

iv ■

About the Author

Sumit Jaiswal has been engaged in software development for over 11 years, serving
as a technical leader and software engineer on several projects utilizing Open­
Source Technologies. He is currently a Principal Engineer at Ansible by RedHat.
Meanwhile, he has obtained multiple Kubernetes and Security certifications.
Furthermore, the author speaks at international conferences and writes technical
blogs on Open-Source-related topics.

■ v

About the Reviewer

Paul Oluyege is an Innovative, Result and Data-driven Software Engineer and
Manager. His professional experience of about 10 years cut across software
development, process management, people management, project management
and product management. He currently leads and manages a cross-functional
development team of 20 members building and maintaining both new and existing
products in multiple domains (Fintech, E-commerce B2B, B2C, SAAS, Logistics).
Alongside, he is a tech author, tech coach and mentor.

vi ■

Acknowledgement

I want to express my deepest gratitude to my family and friends for their unwavering
support and encouragement throughout this book's writing, especially my wife
Kanika and my daughter Anika.

I am also grateful to BPB Publications for their guidance and expertise in bringing
this book to fruition. It was a long journey of revising this book, with valuable
participation and collaboration of reviewers, technical experts, and editors.

I would also like to acknowledge the valuable contributions of my colleagues and
co-worker during many years working in the tech industry, who have taught me
so much and provided valuable feedback on my work.

Finally, I would like to thank all the readers who have taken an interest in my
book and for their support in making it a reality. Your encouragement has been
invaluable.

■ vii

Preface

Git Repository Management in 30 Days welcomes you!

This book will give you a complete and practical approach to managing Git
repositories. This book will help you grasp Git and take control of you are code,
whether you're a newbie or an experienced developer.

Git is a critical tool for code management in modern software development. It
lets engineers effectively track changes, collaborate with others, and manage code
versions. Git, on the other hand, can be difficult and overwhelming for people
who are new to it. This is where this book comes into play. This guide has been
created to help you learn Git systematically and logically, with lessons that will
take you from novice to expert in 30 days.

Each chapter of this book delves into a different facet of Git, beginning with
the fundamentals of version control and progressing to more advanced topics
like branching, merging, and rebasing. Collaboration, troubleshooting, and best
practices for optimizing your productivity will also be covered. By the end of this
book, you'll be able to confidently manage code repositories, interact with others,
and streamline your development process.

With clear explanations, real-world examples, and step-by-step directions, this
book is intended to be practical and approachable. We've also included challenges
to help you put what you've learned into practise and improve your skills. This
book is for you if you are a student, a nonexpert, or a professional developer.

Thank you for your interest in "Git Repository Management in 30 Days". We
hope you find it useful and educational, and we look forward to assisting you in
mastering Git and advancing your development abilities!

Chapter 1: Introduction to Git and GitHub - This is the introductory chapter.
Source control is one of the key concepts and tools that is widely used in the
software development process and without which DevOps makes little sense as
it helps to bring collaboration and transparency between the development and
operation teams. One of the most popular and well-liked source control systems
is GIT, which is elaborated and extended by GitHub. This chapter covers the
configuration and setup of GIT on various operating systems, as well as the
creation of a GitHub account.

viii ■

Chapter 2: Getting Started and Understanding Git and GitHub - Git and GitHub
go hand in hand, but users should be aware of the differences that define each
other's roles in the software development process. Any system or tool used to store
and manage changes to projects over time is referred to as version control. The key
advantages of source control include standardizing coding practices, parallelizing
development activities, and eliminating dependencies. This chapter covers all the
details around version control and goes on to examine Git in depth and detail,
allowing you to clear a few basics about Git and make the learning process go
more smoothly. Discussing Git gradually leads to the distinctions between Git and
GitHub.

Chapter 3: Git Branching, Merging, and Rebasing - This chapter focuses on
the essential capabilities of Git and GitHub, as well as how they complement
each other in the software development and DevOps processes. It addresses the
essential ideas of GIT as well as the basic day-to-day processes and commands
that you may encounter while using the Git source control.

Chapter 4: Deleting, Renaming, and Ignoring Files in Git - This chapter builds
on what readers learned in the previous chapter and allows you to make the final
decision before pushing and committing changes to source control. This process
of committing changes to the GitHub repo may include renaming, deleting, and
ignoring files in the project.

Chapter 5: Collaborating Towards Your/Other Larger Projects over GitHub - This
chapter discusses all of the process-related and critical aspects that should be kept
in mind and followed before attempting to contribute to an open-source project
that is being followed and used by a larger community from all over the world,
as opposed to maintaining and contributing to a repo maintained by a single user.

Chapter 6: Contributing Towards Open-Source Project Repo - As one of the
most important applications of using Git and GitHub together is how users can
contribute to open-source projects that are part of GitHub, and having worked in
open-source projects for quite some time, I've gained insights into how one should
approach their contributions towards an open-source way of working and process,
and one very important aspect of this is raising PR and issues over GitHub open
source projects in a way that can get the most traction and help.

Chapter 7: Tags and Releases Using Git - This chapter goes over all of the Git and
GitHub processes and important points to remember. Git only stores four kinds of
objects in its object store: blobs, trees, commits, and tags. Managing releases using

■ ix

Git and GitHub is a basic and straightforward procedure, and we will learn all
about the principles and underlying commands involved.

Chapter 8: Undo or Refresh all the Work Done - This chapter focuses on Git's
undo/refresh functionality, discussing all of the principles that Git exposes to
assist users to achieve similar functionalities, as well as how employing GitHub
processes and workflows can aid and make the corresponding job seamless and
efficient.

Chapter 9: Most Commonly Used Git Commands - This chapter is essentially a
summary of all of the chapters that we have gone through together. It will assist
all users, whether beginner, intermediate, or advanced, in referring to this chapter
whenever they may find it useful.

x ■

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/aqascyr

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Git-Repository-Management-in-30-Days.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

https://rebrand.ly/aqascyr
https://github.com/bpbpublications/Git-Repository-Management-in-30-Days
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

■ xi

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

mailto:business@bpbonline.com
http://www.bpbonline.com
http://www.bpbonline.com
https://discord.bpbonline.com

xii ■

Table of Contents

1. Introduction to Git and GitHub ... 1

Structure ... 1

Objectives... 2

What is version control ... 2

Local Version Control Systems .. 3

Centralized Version Control Systems .. 4

Distributed Version Control Systems .. 4

Git History ... 5

What is Git .. 6

Git three States .. 8

Getting started with Git .. 9

Linux/Unix ... 10

Mac OS ... 15

Windows ... 16

Introducing GitHub... 24

Creating and configuring the GitHub account .. 25

Conclusion ... 30

Multiple choice questions.. 30

Answers .. 32

Key terms ... 32

Points to remember ...33

2. Getting Started and Understanding Git and GitHub ... 35

Structure ... 35

Objectives... 36

Difference between Git and GitHub ... 36

GitHub fundamental... 39

Creating a repository on GitHub... 41

Committing changes to your repository ... 46

■ xiii

Conclusion ... 48

Multiple choice questions.. 49

Answers .. 49

Key terms ... 49

Points to remember ...50

Further reading .. 50

3. Git Branching, Merging, and Rebasing ... 51

Structure ... 51

Objectives... 52

Introducing Git options ... 52

Git options ... 52

Git commands ... 55

Starting a working area .. 56

Git init - Initialize Git repository .. 57

Git clone - Clone a Git repository into a new directory .. 60

Work on the current change .. 66

Git add - Adding file contents to the index... 66

Mv - Move or rename a file, a directory, or a symlink..68

Restore - Restore working tree files..69

rm - Remove files from the working tree and from the index................................. 72

sparse-checkout - Initialize and modify the sparse-checkout.................................. 74

To examine the history and state ofthe repository.. 74

bisect...74

diff .. 76

grep...79

log...80

show..81

status... 82

To grow, mark and tweak your repo history..86

branch.. 86

Commit.. 90

xiv ■

Merge .. 92

Rebase ... 93

Tag .. 97

To collaborate over repository .. 102

fetch .. 102

Pull ... 105

Push .. 107

Conclusion ..111

Multiple choice questions... 111

Answers .. 112

Key terms ... 112

Points to remember ... 113

Further reading .. 114

4. Deleting, Renaming, and Ignoring Files in Git... 115

Structure ... 115

Objectives... 116

Delete the Git file ... 116

Options ... 116

Examples ... 117

Git rm cached .. 118

Undo before Commit command ... 119

Git rename files .. 120

Method 1 ... 120

Method 2 ... 122

Git branching... 123

Local vs remote Git branch .. 123

Working of Git commit ... 125

Ignoring the files using .gitignore ... 125

The .gitignorefiles...126

The .gitignore patterns, that is, file structure..126

.gitignore sample...129

■ xv

Global .gitignore ... 129

Ignoring a previously committed file..129

Stashing an ignored file... 131

Debugging .gitignore File.. 131

Git commit: save the staged changes.. 132

How Git commits differs from SVNs ... 132

Options ... 133

Examples ... 134

Conclusion ... 136

Multiple choice questions.. 136

Answers .. 138

Key terms ... 138

Points to remember ... 138

Further reading .. 139

5. Collaborating Towards Your/Other Larger Projects over GitHub 141

Structure ... 141

Objectives... 142

Clone and fork the GitHub repository .. 142

Cloning, forking, and duplicating ... 142

Cloning repository .. 143

Forking repository .. 144

Duplicating repository .. 145

Why forking repository is needed... 147

Creating a Pull request from forked repository .. 149

Contributing to single repository .. 150

Moving your changes to new branch ... 151

Make the source repository the upstream remote setting 152

Fork the repo ... 152

Set your forked repository as the origin remote: .. 152

Send your branch to the forked copy ... 153

Create a new pull request .. 153

xvi ■

Collaborating on pull request .. 153

Collaborators’ involvement in the pull request .. 154

Pull request review process ... 154

Commenting over a pull request .. 155

Contributing to a pull request ... 155

Testing pull request ... 156

Merging pull request .. 157

Who should merge the pull request .. 157

Git Aliases .. 158

Conclusion ... 159

Multiple choice questions.. 159

Answers .. 160

Key terms ... 160

Points to remember ... 161

Further reading .. 162

6. Contributing Towards Open-Source Project Repo ... 163

Introduction... 163

Structure ... 163

Objectives... 164

Understanding a pull request ... 164

Nature of a pull request... 164

Git pull .. 165

Git pull from remote branch .. 169

Git force pull ... 169

A complete GitHub workflow .. 170

GitHub Workflow with pull requests ... 171

Fork Workflow with pull requests ... 171

GitHub for Code distribution .. 172

Open a pull request over GitHub.. 172

Opening a pull request ... 175

Describing the pull request ... 176

■ xvii

Adding reviewers... 177

Adding assignees ... 177

Adding labels .. 178

Adding projects and milestones .. 178

Creating the pull request .. 178

Writing a good pull request ... 179

Maintaining the focus ... 180

Suggesting changes ... 181

Finish review .. 183

Merging Pull Request .. 184

Writing a great bug report ... 185

Characteristics of a quality software bug report .. 186

Effective bug reporting..188

Pushing code and opening a pull request over GitHub 189

Summary.. 190

Conclusion ... 190

Multiple choice questions.. 190

Answers .. 191

Further readings... 192

7. Tags and Releases Using Git .. 193

Structure ... 193

Objectives... 194

Release tags versus release branches .. 194

Git Tag .. 195

Git Create tag ... 196

Annotated tag .. 196

Light-weighted tag ... 197

Git list tag... 198

Tagging old commits ... 199

Git Push tag ... 200

Git Delete tag ... 202

xviii ■

Delete remote repository tag .. 203

Delete multiple tags .. 203

Git checkout tags.. 204

Retagging/Replacing old tags .. 204

Git branch ..205

Git main branch ... 206

Operations on branches ... 206

Cherry-Pick commit for reuse...209

Need for Cherry-Picking.. 210

Git Stash for code reusability .. 212

Git stash branch ... 213

Save Git Stash .. 214

List Git Stash.. 214

Apply Git Stash .. 214

Git stash changes ... 215

Re-applying your stashed changes .. 216

Git stash branch ... 217

Git stash cleaning .. 218

Conclusion ... 218

Multiple choice questions..218

Answers .. 219

Key terms ... 220

Points to remember ...220

Further reading .. 221

8. Undo or Refresh all the Work Done .. 223

Structure ... 223

Objectives... 224

Undo and refresh changes in Git... 224

Navigating log..226

Git log Oneline...226

Git log Log-Size ... 227

■ xix

Git log Stat ... 227

Git log graph .. 228

Filtering the commit history .. 229

Git reflog versus Git log..233

Git revert .. 233

Git revert to previous commit .. 234

Git reset .. 236

Git reset hard ..237

Git reset mixed .. 238

Git reset soft .. 239

Git reset to commit .. 240

Resetting versus reverting .. 240

Amend Git commit..240

Changing most recent Git commit message ...241

Changing committed files..241

Interactive rebase ... 242

Interactive rebasing at work... 242

Squash commits together .. 244

Rebase on top of main ... 246

Re-writing history risks .. 247

Conclusion ... 247

Multiple choice questions..247

Answers .. 248

Points to remember ...249

Further readings... 249

9. Most Commonly Used Git Commands...251

Structure ... 251

Objectives... 252

Git config .. 252

Git init.. 253

Git clone ... 253

xx ■

Git status .. 254

Git add.. 254

Git commit ... 255

Git push.. 255

Git branch ..255

Git checkout... 256

Git merge.. 257

Git pull ... 257

Git log .. 258

Git show ... 258

Git diff.. 258

Git tag .. 258

Git rm... 259

Git stash.. 259

Git reset .. 260

Git revert .. 260

Git remote .. 261

Git fetch .. 261

Conclusion ... 261

Multiple choice questions..262

Answers .. 263

Key terms ... 263

Further reading .. 264

Index... 265 -269

Chapter 1

Introduction to
Git and
GitHub

Source control is one of the key concepts and tools used extensively in software
development. With it, DevOps makes more sense as it helps bring collaboration
and transparency between the development and the operation teams. The tracking

and management of code changes are known as source control, and it ensures that
developers are constantly working on the correct version of the source. One of the
most used and loved by community source control is Git, which is elaborated and
extended by GitHub. This chapter is about the configuration and setup of Git over
different flavors of Operating System (OS) and setting up an account over GitHub.

Structure
In this chapter, we will cover the following topics:

• Version Control

• Introducing Git and GitHub

• Getting started with Git

o Linus/Unix

o Mac OS

o Windows

• Creating and configuring the GitHub account

2 ■ Git Repository Management in 30 Days

Objectives
After reading this chapter, you will get an understanding of What is source version
control, and the Git version control. You will also get equipped with introducing Git
and GitHub. You will also understand the running instance of Git and the difference
between Git and GitHub. By the end of this chapter, you will have learned how to
create an account on GitHub.

Once completed, you will learn about different types of version control systems, and
how they evolved and resulted in the creation of Git. And as we progress through
the chapter, we will go through all the information and requirements needed to
follow along and complete all the examples and concepts discussed in the upcoming
chapters, making the reading and development process easily consumable.

What is version control
Version control, also known as source control, refers to tracking and managing
changes to code. This ensures that developers are always working on the right
version of the source code.

NOT 50 LONG AGO.

Figure 1.1: Why version control (credit: smutch)

Why should you care? Version control is a system that records changes to a file or set
of files over time so that you can recall specific versions later.

Introduction to Git and GitHub ■ 3

Figure 1.2: Version control importance

Version control allows the developers the flexibility of making mistakes without
worrying that they will have to start over the project/work. Basically, version control
keeps track of all the changes at any time. If there is a need to undo any particular
change, it can be done on the fly. Version control systems went through a series of
evolutions with time and as project complexity grew.

Local Version Control Systems
The local version control system approach is very basic and simple, but it is also
incredibly error prone. That is because it is extremely easy for the user to forget
which directory they are in, and thus, they can mistakenly either write to the wrong
file or copy over the entire files they do not mean to.

To avoid the above discussed issue, developers worked on the concept of local
Version Control Systems (VCSs), which is a local database located on your local
computer, in which every file change is stored as a patch. Every patch set contains
only the changes made to the file since its last version.

Figure 1.3: Local version control

4 ■ Git Repository Management in 30 Days

Centralized Version Control Systems
Centralized Version Management Systems (CVCSs) resolve the likely issues and
challenges local version control systems face. The requirement to collaborate with
developers on alternative systems became a recurring issue that developers and
creators noticed over time. Systems (such as CVCS, Subversion, and Perforce) have
a single server that contains all the versioned files. Various users use it to check out
the files from a central location, so CVCS is still popular and is alternatively used
instead of the local version control system.

Figure 1.4: Centralized version control

Distributed Version Control Systems
Distributed Version Control Systems (DVCSs), such as Git, Mercurial, Bazaar, or
Darcs, each clone of the repository is the full backup of the repository data. This,
in turn, means that when the user takes the latest snapshot of the files, DVCS takes
the full mirror back of the repository. This includes the complete history of the
repository. It helps when the server hosting the repository crashes, and any of the
users’ repositories can be copied back up to the server to help restore the repository
content onto the server.

Introduction to Git and GitHub ■ 5

Figure 1.5: Distributed version control

Git History
Like numerous extraordinary things in everyday life, Git started with a touch of
innovative obliteration and blazing debate.

The Linux OS kernel is a free and open-source OS with extreme opportunities. For
a large portion of the lifetime of Linux piece support (1991-2002), changes to the
operating system were passed around as patches and archived files. In 2002, the
Linux OS project started utilizing a restrictive DVCS called BitKeeper.

In 2005, the agreement between the DVCS system BitKeeper and the community
that had worked on its Kernel got revoked, and thus BitKeeper being used as a free
tool got renounced too. This resulted in the Linux community (particularly Linus
Torvalds, the creator of Linux) working and developing their own tool based on the
learnings when using BitKeeper. Linux community also prioritized the goals which
they wanted in the new system. They are as follows:

Design that is simpler and easier to use:

Well-rounded support for non-linear development (that is, working on thousands of
parallel branches)

Distributed Completely:

Should be able to handle large projects like the Linux kernel efficiently and with zero
tolerance (speed and data size)

6 ■ Git Repository Management in 30 Days

Git became self-hosted on April 7 with this commit:

commit e83c5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager from hell

Figure 1.6: Git first commit

Shortly thereafter, the first Linux commit was made:

commit ldal77e4c3f41524e886b7flb8a0clfc7321cac2
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Sat Apr 16 15:20:36 2005 -0700

Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a
separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when
imported into git - space that would just make the early git days unnecessarily complicated, when we don’t
have a lot of good infrastructure for it.

Let it rip!

Figure 1.7: Linux first commit

From the time Git came into existence around 2005, it has evolved and matured into
a tool that is easy to use and yet inherited and extends all the capabilities of DVCS. It
also ticked all the initial use cases and principles it was built upon, which is why it is
lightning-fast and very efficient for large projects. It also has an incredible branching
system for non-linear development.

What is Git
This section is a key to understanding the underlying concept and principles upon
which Git is built. If you follow this section keenly, you can learn how Git works
fundamentally and use the concepts and knowledge to use Git effectively when you
start using the same for your projects. As discussed previously in the chapter Git is a
distributed version control system. Other version control systems are also available
in the market, but Git functions differently and stores the information differently.

mailto:torvalds@ppc970.osdl.org
mailto:torvalds@ppc970.osdl.org

Introduction to Git and GitHub ■ 7

Figure 1.8: Git User experience

A major difference between Git and any other version control system (VCS) is how
they store information. Other VCS store data as a rundown of record-based changes.
These different frameworks like (Central Version control system, Subversion,
Perforce, Bazaar, and so on) think about the data they store like a bunch of records
and the progressions made to each of the records over the long haul (this is more
commonly represented as delta-based variant control).

On the other hand, Git considers its record information more like a series of smaller
snapshots of the filesystem. With Git, each time users commit or save the state of
the user's project, Git essentially snaps a photo of what every one of your records
resembles at that point and stores a reference to that depiction. To be effective, if
records have not changed, Git does not store them again. Simply a connection to the
past indistinguishable records has already been effectively stored. Git considers its
data to be more like a stream of snapshots.

Simply put, every time a change is made to the filesystem, Git just merges those
changes with the already present ones instead of replacing or overriding the existing
content.

Figure 1.9: Git Features

8 ■ Git Repository Management in 30 Days

Git has a high level of performance and integrity:

Most Git operations are done locally and only need local files and objects. On
the contrary, other VCSs have network latency overhead which gives Git a major
performance boost as the entire history of the project files is stored over your local
disk and is thus available instantaneously.

This also gives you the freedom to work remotely or without network connectivity
as you can save your changes to your local copy. Once back online, you can push the
required changes to the repo, whereas other VCSs do not have this flexibility.

When it comes to Integrity and Git knowing things, there is no way any file can
be updated or modified without Git knowing it, and this is taken care of by Git's
checksum in place. Everything in Git is check summed before it is stored and is then
referred to by that checksum.

SHA-1 hash is used for the checksum by Git, and you will see these hash values all
the time as, Git stores everything in its database not by file name but by the hash
value of its contents.

Git three States
Git principally works based on three stages, as depicted in Figure 1.10, and the files
stored under Git can either be in a modified, staged, or committed state:

Figure 1.10: GIT 3 states

Modified: It means that the user has changed/edited the file but has not made the
changes to their GitHub repository database yet.

Staged: It means that the user has marked a modified file in its current version,
which is supposed or will go into the user’s next commit snapshot.

Introduction to Git and GitHub ■ 9

Committed: The users’ GitHub repository data changes are safely stored in the
users’ local database.

This leads us to the three main sections of a Git project: the working tree, the staging
area, and the Git directory.

Figure 1.11: Working tree, staging area, and Git directory (source: Git)

The Git working tree is a single checked-out version of the project, where the files
are pulled out from a compressed database from the Git directory. And this is then
placed over the user's disk for them to use, update and modify.

The staging area is a file, generally contained in the user’s Git directory, which
generally stores the information about what would go into the next commit.
Technically and more precisely, it is called Git parlance, which is the “index,” but the
phrase “staging area” also works.

The Git repository directory is the place where Git stores the metadata and item
information base for the user's project. This is the most important aspect of Git,
duplicated when users clone a Git repository from a different computer.

The usual Git workflow is a process that goes as follows:

Users modify the files in their working tree. Users then selectively stage those
changes they want to be part of their next commit, adding only those changes to
their respective staging area. Users do a commit, which will take the files as they are
in the staging area and then stores that particular snapshot permanently in their Git
repository directory.

Getting started with Git
In this section of the chapter, we will go through some of the basics of Git, its
installation and setup procedure on your work machine.

10 ■ Git Repository Management in 30 Days

This chapter will cover Git installation on the three most used OS platforms:

• Linux/Unix

• Windows

• Mac OS

We will go through the installation steps for each installation process via screenshots.
All installation shown here will be done through command line, that is, CLI, as Git
and GitHub are coupled. All its functions can easily be controlled via CLI. Working
over CLI is more efficient than working over UI based.

We will start the installation process in the preceding order of OS platforms:

Linux/Unix
For Linux/Unix platform, the installation process is very similar for all the available
platforms with different commands based on the flavors of Linux/Unix.

1. For all the commands, you can visit the Git website (refer to Figure 1.1):

https://git-scm.com/

https://git-scm.com/downloads

❖ git -distributed-is-the-new-centralized Q, Search entire site...

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

About
The advantages of Git compared
to other source control systems.

Documentation
Command reference pages. Pro
Git book content, videos and
other material.

Latest source Release
2.39-0
Release Notes (2022-12-12)

Downloads
GUI clients and binary releases
for all major platforms.

Community
Get involved! Bug reporting,
mailing list, chat, development
and more.

Download for Mac

Mac GUIs QU Tarballs

Sff Windows Build El Source Code

Pro
Git Pro Git by Scott Chacon and Ben Straub is available to read online for free. Dead

tree versions are available on Amazon.com.

Figure 1.12: Git Homepage

https://git-scm.com/
https://git-scm.com/downloads
Amazon.com

Introduction to Git and GitHub ■ 11

2. Then, browse to the Download section. It will open the page as shown in the
following figure:

❖ git -everything-is-local Q_ Search entire site...

About
Documentation
Downloads

GUI Clients
Logos

Community

The entire Pro Git book
written by Scott Chacon and
Ben Straub is available to read
online for free. Dead tree
versions are available on
Amazon.com.

Downloads
V macOS ffff Windows

Linux/Unix

Older releases are available and the Git source
repository is on GitHub.

GUI Clients Logos
Git comes with built-in GUI tools (git-gui, Various Git logos in PNG (bitmap) and EPS
gitk), but there are several third-party tools for (vector) formats are available for use in online
users looking for a platform-specific and print projects,
experience.

View Logos —►
View GUI Clients —*

Git via Git

If you already have Git installed, you can get the latest development version via Git itself:

git clone https://github.com/git/git
You can also always browse the current contents of the git repository using the web interface.

Figure 1.13 : Downloads page

Amazon.com
https://github.com/git/git

12 ■ Git Repository Management in 30 Days

3. From there, click on Linux/Unix download section, which will take you to
the page shown in the following figure. It guides on how to install Git over
different flavors of Linux/Unix:

Download for Linux and Unix
It is easiest to install Git on Linux using the preferred package manager of your Linux distribution. If you
prefer to build from source, you can find tarballs on kemel.org. The latest version is 2.31.1.

Debian/Ubuntu
For the latest stable version for your release of Debian/Ubuntu

apt-get install git
For Ubuntu, this PPA provides the latest stable upstream Git version

add-apt-repository ppa:git-core/ppa # apt update; apt install git
Fedora
yum install git (up to Fedora 21)
dnf install git (Fedora 22 and later)

Gentoo
emerge —ask —verbose dev-vcs/git

Arch Linux
pacman -S git

openSUSE
zypper install git

Mageia
urpmi git

Nix/NixOS
nix-env -i git

FreeBSD
pkg install git

Solaris 9/10/11 (OpenCSW)
pkgutil -i git

Solaris 11 Express
pkg install developer/versioning/git

OpenBSD
pkg_add git

Alpine
$ apk add git

Red Hat Enterprise Linux, Oracle Linux, CentOS, Scientific Linux, et al.
RHEL and derivatives typically ship older versions of git. You can download a tarball and build from
source, or use a 3rd-party repository such as the IUS Community Project to obtain a more recent version
of g't.

Slitaz
$ tazpkg get-install git

Figure 1.14 : Git Download version

Here, we have used the Ubuntu example, a Linux-based Operating System that
belongs to the Debian family of Linux. Since it is Linux based, it is freely available
for use and is open source. Here, Ubuntu version 20.04 is used.

kemel.org

Introduction to Git and GitHub ■ 13

We will not go through the installation procedure for Ubuntu, so I assume you are
up and running with the Ubuntu box, which needs to install and configure Git. Let
us begin the installation procedure:

1. Check if the ubuntu box is updated and upgraded by running the following:
sudo apt-get update

sudo apt-get upgrade

2. Once the Ubuntu image is updated and upgraded, try running git command.
If the box is freshly installed or does not have Git installed, you should see
the results shown in the following screenshot:

sumtt0sumit-VirtualBox:~$
sumtt0sumtt-VtrtualBox: $ git

Command 'git' not found, but can be installed with:

sudo apt install git

sumit@sumtt-VirtualBox: $ Q

Figure 1.15 : Git Ubuntu installation (a)

3. Now, for installing Git, we need to run the following command:
sudo apt install git

Activities Q Terminal * May 29 13:50

o Fl sumltiJJsumit-VIrtualBox: -

sumitgsumit-VirtualBox: $
sumtt(3sumtt-vtrtualBox:-$
sunttQsumtt-VtrtiialBox: git

Command 'git' not found, but can be installed with:

A sudo apt install git

sumttgsuntt-VirtualBox: $ sudo apt install git
[sudo] password for sumit:

”2 Reading package lists... Done
Building dependency tree
Reading state Information... Done

j The following additional packages will be installed:
~ git-man liberror-perl

Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gut gitk
gitweb gtt-cvs git-mediawiki git-svn

The following NEW packages will be installed:
git git-man liberror-perl

6 upgraded, 3 newly installed, 0 to remove and 1 not upgraded.
Need to get 5,468 kB of archives.
After this operation, 38.4 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Get:l http://in.archive.ubuntu.com/ubuntu focal/main amd64 liberror-perl all 0.17029-1 [26.5 kB]
Get:2 http://in.archive.ubuntu.com/ubuntu focal-updates/main amd64 git-man all l:2.25.1-lubuntu3.1 [884 kB]
Get:3 http://in.archtve.ubuntu.com/ubuntu focal-updates/main amd64 git amd64 l:2.25.1-lubuntu3.1 [4,557 kB]
Fetched 5,468 kB in Os (19.4 HB/s)
Selecting previously unselected package liberror-perl.
(Reading database ... 160742 files and directories currently installed.)
Preparing to unpack __ /ltberror-perl_0.17629-l_all.deb __
Unpacking liberror-perl (0.17629-1) ...
Selecting previously unselected package git-man.
Preparing to unpack .../git-man_l%3a2.25.1-lubuntu3.1_all.deb ...
Unpacking git-man (1:2.25.l-lubuntu3.1) ...
Selecting previously unselected package git.
Preparing to unpack .../git_l%3a2.25.1-lubuntu3.I_amd64.deb ...
Unpacking git (1:2.25.l-lubuntu3.1) ...
Setting up liberror-perl (0.17629-1) ...
Setting up git-man (1:2.25.l-lubuntu3.1) ...
Setting up git (1:2.25.l-lubuntu3.1) ...
Processing triggers for man-db (2.9.1-1) ...
sumttQsumit-VirtualBox: $ |

Figure 1.16: Git Ubuntu installation (b)

http://in.archive.ubuntu.com/ubuntu
http://in.archive.ubuntu.com/ubuntu
http://in.archtve.ubuntu.com/ubuntu

14 ■ Git Repository Management in 30 Days

4. To verify if Git is successfully installed, run the following command:
git --version

Activities 0 Terminal ▼

sumttgsumit-VirtualBox: $
sunttQsuntt-VIrtualBox:
sumltgsumit-VirtualBax: $ git
git version 2.25.1
sui'ittgsumit-VirtualBox: $ |

--version

May 29 13:52

sumlt@>sumlt-VlrtualBox: -

Figure 1.17: Git Ubuntu installation (c)

5. And, if you run the Git command, it should show all the GIT options:
git

Figure 1.18: Git Ubuntu installation (d)

Introduction to Git and GitHub ■ 15

Mac OS
We have seen that the installation process for Linux and Mac OS are very similar.
Here, we will function through the command line Git, not the GUI application.

For Mac OS installation either you can directly run the command:
- brew install git,

or

Browse down to the Git website and click on Mac OS download information. Git
will show the command that you can use to download the Git. At the time of writing
this book, the following is the screenshot of the Git Mac OS download page:

Download for macOS
There are several options for installing Git on macOS. Note that any non-source distributions are provided

by third parties, and may not be up to date with the latest source release.

Homebrew

Install homebrew if you don't already have it, then:

$ brew install git

Xcode

Apple ships a binary package of Git with Xcode.

Binary installer

Tim Harper provides an installer for Git. The latest version is 2.31.0, which was released 2 months ago, on

2021-03-16.

Building from Source

If you prefer to build from source, you can find tarballs on kernel.org. The latest version is 2.31.1.

Installing git-gui

If you would like to install git-gui and gitk, gifs commit GUI and interactive history browser, you can do

so using homebrew

$ brew install git-gui

Figure 1.19: Git Mac installation instructions

Once the installation via brew completes, to verify if the installation is working as
expected, run the following command:

• Git

• Git -version

kernel.org

16 ■ Git Repository Management in 30 Days

Also, if the installation was done successfully and as expected, you should see
similar results as shown in the following screenshot:

-» ~ git
usage: git [—version] [—help] [-C <path>] [-c <name>=<value>]

[—exec-path[-<path>]] [—html-path] [—man-path] [—info-path]
[-p | —paginate | -P | —no-pager] [--no-replace-objects] [—bare]
[—git-dir=<path>] [—work-tree=<path>] [—namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index

exami ne the history and state (see also: git help revisions)
bi sect Use binary search to find the commit that introduced a bug
diff Show changes between •commi ts, commi t and working tree, etc
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects
status Show the working tree status

grow, mark and tweak your common history
branch List, create, or delete branches
commit Record changes to the repository
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
reset Reset current HEAD to the specified state
switch Switch branches
tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)
fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

-» - git version
git version 2.24.3 (Apple Git-128)

Figure 1.20: Mac post Git installation

Windows
With windows, the process is slightly different since Git provides the UI-based
installer, where users can select the default settings with which users want their Git
installed and work out of the box. Please follow the steps as shown via screenshots,
and at the end of this, the reader should have Git working over Windows box as it
worked in Linux/Mac via the Windows command line.

Introduction to Git and GitHub ■ 17

1. To verify if the windows box has Git already installed, use the command as
follows:

• git, or

• git -version

For either of the commands, if Git is not already installed, you should see a
Windows error of 'git' not being recognized.

Figure 1.21: Git check via Windows command prompt

2. To install Git on your windows box, visit the Git official website page and
click on the Download tab to traverse the download pagcf/>r downloading
the Windows installer. Click on download via Windows icon, and your
installer should start to download as shown in the following screenshot:

**

Figure 1.22: Git Windows installer download

18 ■ Git Repository Management in 30 Days

3. Once downloaded, the Git installer should be visible in the download folder
or any specific path you might have set as follows:

Figure 1.23: Git Windows installer

4. Before beginning the installation process via the Git windows installer, please
know that, unlike Linux/Mac installation, the Windows installer will ask for
defaults that you need to set before the installation can begin. While most
default settings are already selected, the installer should be kept as is unless
you need to update specific changes for your respective Git installation.
Here we will discuss a few defaults you can edit as suggested or keep the
installer’s defaults.

Introduction to Git and GitHub ■ 19

Git 2.31.1 Setup

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, dick Next.

GNU General Public License
Version 2, June 1991

Copyri^it (C) 1989, 1991 Free Software Foundation, inc.
>9 Terplt Place - Suite 330. Boston. MA 02111-1307. USA

Everyone is permitted to copy and distribute verbatim copies
of tnis license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to Guarantee vour freedom to share and chance v

https: //gitf or windows. or g/---

Next I Cancel

Figure 1.24: Git installer Windows installation (a)

5. In the following installer page, you can select/deselect various options based
on your need. For example, you can wish for Git to install the GUI or not, but
here, we will continue with the default installer settings. However, you can
make changes based on your requirements, as all options are configurable.

Figure 1.25: Git installer Windows installation (b)

20 ■ Git Repository Management in 30 Days

6. Now, we have updated the default from Let Git decide to Override the default
branch name for new repository. This modification was made because I want
my new default Git repository branch to be called main, which is the new
standard. In the past, many Git repositories you encountered for your open­
source contribution, were labeled as master or some other name. Also, at
this point, please do not stress out by seeing the default branch, as we will
discuss what they are and what purpose they serve in depth in the upcoming
chapters.

' Git2.31.1 Setup —

Adjusting the name of the initial branch in new repositories
What would you like Git to name the initial branch after 'git inif?

O Let Git decide

Let Git use its default branch name (currently: ’master’) for the initial branch
in newly created repositories. Hie Git project intends to change ths default to
a more inclusive name in the near future.

Override the default branch name for new repositories

NEW! Many teams already renamed ther default branches; common choices are
’main’’, rtrunk’ and "development’. Specify the name 'git inif should use for the
initial branch:

main

This setting does not affect existing repositories.

https://gitforwindows.org/--

Back Next Cancel

Figure 1.26: Git installer Windows installation (c)

7. At this step of the installation, you will be asked for the Git HTTPS connection
library. If you want to update the default, which is the OpenSSL library, to

https://gitforwindows.org/

Introduction to Git and GitHub ■ 21

Windows native, you can certainly do that.

O Git2.31.1 Setup

Choosing HTTPS transport backend
Which SSL/TLS library would you like Git to use for HTTPS connections?

® Use the OpenSSL library

Server certificates will be validated using the ca-bundle.art file.

Qi Use the native Windows Secure Channel library

Server certificates will be validated using Windows Certificate Stores.
This option also allows you to use your company's internal Root CA certificates
distributed e.g. via Active Directory Domain Services.

https: //gitFor windows. or g/---

Back | Next | Cancel

Figure 1.27: Git installer Windows installation (d)

8. The installation process also checks if the user wants to install MinTTY for
all the Git operations or just wants to continue with the Windows command
prompt. Here, I have restarted the installation with the Windows default
console, which is also more convenient for integration prospects.

Grt 2.31.1 Setup — □ X

Configuring the terminal emulator to use with Grt Bash
Which terminal emulator do you want to use with your Git Bash?

O Use MinTTY (the default terminal of MSYS2)

Git Bash will use MinTTY as terminal emulator,, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via 'winpty ” to work in MinTTY.

® Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe-), which works well
with Win32 console programs such as interactive Python or node.js, but has a
very limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

https://gitForwindows.org/--

Back | Next | Cancel

Figure 1.28: Git installer Windows installation €

https://gitForwindows.org/

22 ■ Git Repository Management in 30 Days

9. There are other installer steps, and I have continued with the installer’s
default settings. Once you press install, Git will start the installation in either
the default directory or any specific directory you might have chosen during
installation.

Git2.31.1 Setup

Installing
Please wait while Setup installs Git on your computer.

Extracting files...
C:program Files\Git\usr^ibVjawk\fhmatdi.dll

https:/ / g itf or windows. org /---

| Cancel |

Figure 1.29: Git installer Windows installation (f)

10. Once the installation completes, you can check for Git commands directly
via the Windows command line as follows:
• git -version

• Git

Please refer to the following screenshot:

Figure 1.30: Git installer Windows installation (g)

Introduction to Git and GitHub ■ 23

11. Once the installation is complete, the user can check if it has taken effect by
running git version command. This will also help check the version of Git
installed via the Windows console, as shown in the following figure:

Figure 1.31: Git check via Windows command prompt

24 ■ Git Repository Management in 30 Days

12. Post successful installation of Git, if the user runs git command, it should
result in supported commands as shown in the following screenshot:

C:\>git
usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
[--super-prefix=<path>] [--config-env=<name>=<envvar>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index
sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects
status Show the working tree status

grow, mark and tweak your common history
branch List, create, or delete branches
commit Record changes to the repository
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
reset Reset current HEAD to the specified state
switch Switch branches
tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)
fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

C:\>_

Figure 1.32: Git windows installation successful

Now, you are all set to run Git and work as expected on your desired OS platform.
Let us now check how you can set up an account at GitHub and then manage your
Git via GitHub.

Introducing GitHub
You must understand some key underlying concepts to work efficiently and
effectively with Git and GitHub. Below discussed features are the key features and
most common features/terms that you will come across. Each of the discussed
features has a short description and an example of they might be used in the project.

Introduction to Git and GitHub ■ 25

Creating and configuring the GitHub
account
A GitHub account is needed to manage your code repository. Internally, it manages
your repository concerning all the core functionality of your repository content
using Git.

Before you can do all sorts of work/automation on your repository for your Open­
source work, you need to create an account, and the following screenshot-based
steps will help you create and manage your GitHub login account.

1. You can skip this section or follow along if you already have a login account
over GitHub. Please visit the GitHub homepage and click on the sign-up
link:

https://github.com/

Once you click the sign-up link, you should get a page like the following
screenshot, where you are expected to enter your desired username, email,
and password. There will also be a puzzle for you to solve to confirm that
some automated Bot is not creating the account.

Figure 1.33: GitHub account creation (a)

https://github.com/

26 ■ Git Repository Management in 30 Days

Fill in all the required details for creating the GitHub account, as shown in figure 1.34:

Figure 1.34: GitHub account creation (b)

2. Once you have signed up successfully, you will be logged in to your account,
and you should see the welcome page as follows:

Introduction to Git and GitHub ■ 27

Welcome to GitHub

What kind of work do you do, mainly?

Studnnt

UX A design

Data 8. Analytics Marketing S Sales

A moderate amount

What do you plan to use GitHub for?
(Select ue to 31

Figure 1.35: GitHub account creation (c)

3. Now, traverse to the upper right corner of the page and select the setting
under your accounts page. You should see the page as shown in the following
screenshot and then click on account security. Once you click that from the left
pane, your profile will appear. You should see the option for changing your
existing password and enabling two-factor authentication for your account.
It is advisable to enable two-factor authentication wherever the respective
option is available. In case of data breach, it will keep your account doubly
protected.

Figure 1.36: GitHub account creation (d)

28 ■ Git Repository Management in 30 Days

4. Browse to the account security tab to enable 2FA for your GitHub account, as
shown in the following figure:

Figure 1.37: GitHub account creation (e)

5. Once you enable 2FA, you must log in with your login password and
authentication token.

Introduction to Git and GitHub ■ 29

o
Two-factor authentication

Authentication code What's this?

[I

Verify

Q Open the two-factor authentication app on
your device to view your authentication
code and verify your identity.

Having problems?

• Enter a two-factor recovery code
• Can't access your two-factor device or

valid recovery codes?

Terms Privacy Security Contact GitHub

Figure 1.38: GitHub account creation (f)

6. Once you enable two-factor authentication, most of the other configurations
are requirement based, which you can enable/disable based on your need.
The following screenshot of my account, which might seem cluttered as I
have been using GitHub for more than 5 years now:

Figure 1.39: GitHub account (a)

30 ■ Git Repository Management in 30 Days

7. In the following figure, you can see the home page of the GitHub account
once you login:

Figure 1.40: GitHub account (b)

Conclusion
This is the end of this chapter, where we were able to set up our Git and our GitHub
login account. In the next chapter, the stage is set for us to dive deeper into the
content of Git and how GitHub encapsulates the working and functionalities of Git.

Multiple choice questions
1. Which one of the following is true with respect to version control system?

a. Keeping file names and hierarchies consistent and organize

b. Documenting changes

c. Automatically creating a backup of your work

d. All of the above

2. Choose the correct statement for Git?

a. A commit containing one small change to a project is not practical

b. Each version of the project is called a branch

c. Git is a developer's IDE

d. Git helps manage the history of the project

Introduction to Git and GitHub ■ 31

3. Choose the correct statement for Git branches

a. By default, a commit does not belong to a branch

b. The default branch is named "devel"

c. The default branch is named "main"

d. A branch contains a small part of the project

4. Which one of the following is true with respect to Git?

a. Git implements distributed version control

b. Git implements centralized version control

c. Git does not scale large projects

d. Git is owned by a single company

5. Git documentation URL address?

a. www.github.com

b. www.git-scm.com/

c. www.git-scm.com/doc

d. www.git-scm.com/downloads

6. 2FA is an acronym for?

a. Two-factor addresses

b. Two-factor authentication

c. Two-factor attributes

d. Two-factor arms

7. Command to check the installed version of Git?

a. git version

b. git --version

c. git -version

d. Both a and b

http://www.github.com
http://www.git-scm.com/
http://www.git-scm.com/doc
http://www.git-scm.com/downloads

32 ■ Git Repository Management in 30 Days

8. In Git, what is the location called where the commit history of a project is
kept?

a. Staging area

b. Remote repository

c. Branch

d. Working tree

Answers
1. d

2. d

3. c

4. a

5. c

6. b

7. d

8. a

Key terms
• Version control:

o Local version control systems (LVCS)

o Centralized version control systems (CVS)

o Distributed version control systems (DVCS)

• Git 3 States:

o Modified

o Staged

o Committed

Introduction to Git and GitHub ■ 33

Points to remember
• Git installation is supported on all the three major OS platforms macOS,

windows, Linux/Unix.

• Git installation is required to make it useful as intended by GitHub, as
GitHub makes use of all Git features exposed.

• You should enable GitHub 2FA for your account to be sure that your account
is not compromised easily.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 2

Getting Started and
Understanding

Git and GitHub

Now that you have Git and GitHub up and running on your system, let us
understand why Git and GitHub are required, with their importance and
relevance when it comes to open-source ways of development or development

across teams and locations in general.

This chapter is divided into inter-related sub-topics and follows a flow that makes
it easier for readers to grasp the background and concept in an informative and
simpler way.

Structure
In this chapter, we will cover the following topics:

• Difference between Git and GitHub

• GitHub fundamental

• Creating a repository on GitHub

• Committing changes to your repository

36 ■ Git Repository Management in 30 Days

Objectives
After reading this chapter, you will be able to differentiate between Git and GitHub,
as both are often used in context with each other. At the end of the chapter, we will
create a GitHub repository and do our 1st commit to the newly created repo.

Difference between Git and GitHub
Git and GitHub are two entities that work hand in hand to give way to a centralized
development process. A creative illustration of the same can be seen in the following
figure:

Figure 2.1: Git is not GitHub

Git is a source/version control system, a version control system is software designed
to keep track of all the changes made to a record over a period of time. As discussed
in previous chapter, Git is a distributed version control system type, where each
of the users working on a project over Git has their copy which internally has a
complete history of the project and not just the current state of the records.

GitHub is a platform where you can upload a copy of your Git repo (shorthand
for repository), hosted on GitHub.com. GitHub thus acts as a cloud-based hosting
service. GitHub, along with the maintenance of your Git repo does various other
tasks, which ultimately allows you to collaborate easily with other people on
your projects across all geographies. It provides a centralized location to share
the repository, and a web-based interface to access and operate. In the upcoming
chapters, we will discuss multiple practical and functional features like forking, Pull
Requests, Issues, Projects, and GitHub Wikis. These features allow you to specify,
discuss, and review changes with your team efficiently and effectively. The Git logo
can be seen in the following figure:

GitHub.com

Getting Started and Understanding Git and GitHub ■ 37

Figure 2.2: Git logo

There are numerous benefits of using Git, even when users are working independently
and editing text files. The benefits are as follows:

• Undo changes
One of the most relevant features is the ability to undo the change, which
means if a user makes any mistake, they can revert the changes to a previous
point in time and recover their past version of their work.

• Complete history of the changes
If the user wants to verify the state of the project in a past time like a day,
week, month, or even a year ago, the user can go ahead and check out any
previous version of the project to verify exactly the state of project files at
that point in time.

• Documenting the changes made
For real-time project scenarios where different people collaborate, it becomes
hard to track why a particular change was made. This issue is resolved by
having commit messages in Git, which makes it easy to document for future
reference.

• Change anything or everything
Git gives the user the power to recover a previous version of the project, and
as the process is straightforward and easy, the user gets the confidence to
make any changes that the user wants. Users can always revert to an earlier
work version if the changes do not work out.

• Multiple streams of history
Users can maintain multiple branches of history to experiment with changes
in their work content or build different features independently. Once the
changes are finalized, they can be merged back into the main branch or
deleted if the changes do not work out.

38 ■ Git Repository Management in 30 Days

If you are working with a larger team, users get added advantages and a wider
range of benefits when using Git to keep track of their project-related changes. Some
of the key advantages of Git when working with a team are as follows:

• Ability to resolve conflicts

With Git, multiple people working on the project can collaborate and work
on the same file simultaneously. In most cases, Git can automatically merge
the changes from different team members. Sometimes if it cannot, Git will
display all the user conflicts. Then, the user can resolve the conflicts and
merge the intended changes.

• Independent streams of history

As different people work and collaborate on the project, each user can work
on different branches, which allows other users to work independently on
separate features. When the changes are ready, they can be merged without
any issues.

Figure 2.3: GitHub logo

GitHub is significantly more than simply a spot to store your Git repositories.
It gives multiple advantages, including the ability to do the following:

• Document requirements

GitHub provides multiple ways to document the team roadmaps where the
team can report bugs or track upcoming features that team members are
supposed to work on.

• Collaborate on independent streams of history

GitHub branches and pull requests help the team to collaborate and work on
different branches and features.

• Review process

Users can get to the list of the pull request (PR). They can track all the
different features currently worked on by the team. By clicking any available

Getting Started and Understanding Git and GitHub ■ 39

pull requests, they can easily track the latest progress and all the discussions
about the PR changes. A team can have their Continuous Integration (CI)
server in place, which can run the tests for the changes and help the reviewer
approve them before they are accepted and merged into the main repository.

• Track team progress

Traversing through the pull requests commit history allows the team to see
what the team has been working on and its progress.

GitHub fundamental
Users must first understand fundamental concepts to work efficiently and effectively
with Git and GitHub. The key features and most common features/terms that you
will come across are discussed below; each of these have a short description and an
example of how they might be used in the project.

• Commit

At whatever point users save their work changes in either one or more files,
users can create a new commit in Git. A commit is, therefore, a snapshot of
the user's entire repository, not just of one or two files. So more commonly,
after the user has changed files, the user will want to update the repository
by taking a new snapshot. Example usage: "We should submit respective
progressions and finally push them up to GitHub."

• Commit message

Whenever a user makes a commit to the PR, a user is expected to make
the commit with a commit message, and this commit message might seem
like an overhead if you are starting anew. Still, it is invaluable information
when it comes to tracking the commit history and checking the reason for a
particular commit to the branch. Example usage: “Committing the change to fix
the recursive base condition to avoid infinite loop error. “

• Branch

A branch is an autonomous series of commits out of the way that a user can
use to evaluate an analysis or work on creating a new feature. Example usage:
“It’s better to create a branch to implement the idea of new search functionality.”

• main branch

When a user creates a new Git project, there’s a default branch that gets
created which is called main. This branch is the parent branch where finally
all the commit land, and once the changes are finalized and verified, the
main branch from where changes are pushed to production. Example usage:
“It’s highly recommended that user never makes commit directly to main.”

40 ■ Git Repository Management in 30 Days

• Feature (or topic) branch

When users start working on new functionality, users should create a new
branch called a feature or a topic branch. Example usage: “We have got too many
feature branches; we should now focus on getting one or two of these finished and
into production.”

• Release branch

For a project where the team must maintain multiple software versions, in
turn, supporting old, released versions for customers. A release branch is
needed, which would be the place where all required fixes and updates will
get merged. Technically, there is no difference between a feature and a release
branch, but the segregation is useful when the project is discussed within the
team. Example usage: “We need to release a patch to fix the security bug on all of
the supported release branches.”

• Merge

A merger is the final push of the completed work from one branch to the
main or different branch to incorporate changes into the respective branch.
Most of the time, you will merge the content from your feature/topic branch
to your main branch. Example usage: “Awesome work on the 'security' feature.
Could you merge it into the main so that we can push it to the production?”

• Tag
A specific tag is a reference point to a specific historic commit. Tags are most
used to tag a particular production release, letting the team/users know
which versions of the code went to production with the particular tagged
release. Example usage: “Let us tag this release as 1.0 and push it to production.”

• Checkout

Checking out simply means that the user is trying to get to a different version
of the project to check and verify the file’s state at the time of commit. Usually,
users will check out from a branch to verify the work done, which means
that anything committed in Git can also be checked out. Example usage: “I
need to check out the last released tag. As there’s a bug in production that I need to
replicate and fix.”

• Pull request

Initially, a PR meant that someone from the team or community would
assess the work and fix that your PR was supposed to resolve, and then
provide feedback before it would be merged into the corresponding project
main branch.

Getting Started and Understanding Git and GitHub ■ 41

However, pull requests are now commonly utilized before the above process
and can either discuss a potential feature or the actual fix. "You should go
ahead and write a new pull request for the voting feature; this will allow the team
and the community to provide comments on the PR feature."

• Issue

An issue, as the name suggests, is the GitHub feature used to discuss
features, track bugs, or both in the project. Example usage: “the login feature is
not working as intended over supported mobile platforms. Please go ahead and create
an issue on GitHub documenting the steps to reproduce the bug?”

• Clone

Frequently, you will need to download a duplicate of the venture from
GitHub to deal with it locally. The way towards duplicating the GitHub
repository to your local PC is called cloning. Example usage: “Please clone the
GitHub repository, fix the bug, and then push the fix back up to GitHub repo.”

• Fork

Now and then, you do not have the necessary consent and permission to
make changes straightforwardly to the project. Also, maybe it is an open­
source project composed of individuals where you do not have a clue, or a
task composed by one more gathering at your organization that you do not
work with a lot. On the off chance that you need to submit changes to such
a project, first, you need to duplicate the project under your client account
on GitHub. That cycle is called forking the GitHub repository. You could
then clone it, make changes, and submit them back to the project using a
pull request. Example usage: “It’d be lovely to see how you’d rewrite the home
page marketing copy. You can fork the project GitHub repository and submit a pull
request with your proposed changes.”

At this point, going through all this terminology might seem a bit overwhelming but
do not worry! All this worry would start to fade when you start working on some
real projects, and this would start making more sense, and you will be comfortable
using the above-discussed terminology and its use case. In the upcoming chapter,
we will go through the various elements you might have seen/observed in a GitHub
project and how to use the discussed features to get a sense of progress on a project.

Creating a repository on GitHub
Before we can start playing around with Git and operate the same via GitHub, we
need to create a repository. You need to first make it on GitHub, and as you have
already created an account over GitHub, creating the GitHub repo using the account

42 ■ Git Repository Management in 30 Days

is a few steps task. It is a step-by-step process which is listed as follows, along with
screenshots for you to follow along in an easier and more precise manner:

1. First, log in to your GitHub account (), and once
you are logged in, you will be displayed with the GitHub home page. If you
have recently created your account, it should look similar to the following
screenshot.

https://github.com/login

Despite that, if you log in to your GitHub account, the layout should be
almost similar.

To create a new repository, tap the Create repository button from the GitHub
home page.

Figure 2.4: To create New GitHub repo - 1

2. You can also create a new repository using the ‘+’ on the upper right-hand
side and then clicking on the new repository, as shown in the following
screenshot:

https://github.com/login

Getting Started and Understanding Git and GitHub ■ 43

PVIIIKhMtH IUMI Marketplace UpWO

Create your first project
n«*dj te buWntf! CrMM (reppt-tory
ter * no* Meo <v lr >'»g cnei on «r riling
repository bo keep conlr’tout k>g Io II.

Leant Git and GitHub wilhoiM any code!
Useigthe Hello Wwkigukfe, you’ll create a repository, start a branch, write comments, and ooen a pull request.

ffeco-otiLtfrny AH activity

XMO» inM id ’fol KOMtf M»
introOtxe youreel'
The racirtl way 10 Introduce yourw* or. (riMuh it ttf cmiteg □ RFApMP In 3 repository)Mul you* You tan mart rwrv;

Wsrtiig with t iown?
CKHr* rt IxMt tor MCabwtW Sot uo *o
organization to rn arose tlw way your iearr
wxfci Knieiiier. ana oer access io mix*
leaiuw.

oisTisi t?i s I Coctinuo

Discover interesting projects and people to populate your personal news
feed.
Your news ‘eed helps you keep up with recent activity on reposbiaries you watch or star and people you tallcw

Eiyiiore OiEHUB

? WH>p! ire <«<l srows wj rw^s fos cecalt »j rofcw ird repewuria ycrj wat:* w Mi'.
5i Sueseves te vem re«i tree

(J © m r aw- k*>S Ah

Figure 2.5: To create New GitHub repo - 2

3. On the new repository, you will see a few options that you can select based
on your project’s needs.

Figure 2.6: To create New GitHub repo - 3

4. Each of the options available on the “Create a new repository” page has its
own purpose, as discussed as follows:

44 ■ Git Repository Management in 30 Days

a. Repository name: This will be the name of the GitHub repository, and
once created, you cannot rename the respective repo to something else,
so be careful while naming your GitHub repository.

b. Type of GitHub repository, it can either be a Public or Private repo. As
the name suggests, if you work with an open-source project, you will go
with Public. If you want the GitHub repo to not be open for the world to
access, you can make your GitHub repo Private and make the project part
of your organization. Only people who are a part of your organization
or to whom you, as a project administrator, give access, can access the
project. For the rest of the world, the project and its content will not be
accessible.

c. Readme file: This is a very basic option if you select GitHub. While
creating your repository, you would also create a dummy Readme file
with the GitHub project name and can update the file's content later
when you start working on your project. This is optional, as you can also
check in your Readme file later after the project is created with all the
required content.

d. .Gitignore: If you wish to configure Git to ignore files and not check in
to the GitHub repository, pick this option. When you commit, .Gitignore
informs GIT which files and directories to ignore.

e. License: Public repositories on GitHub are often used to share open­
source software. For your repository to truly be open source, you must
license it so that other people are free to use, change, and distribute the
software. There are various license types available, and you can choose
one based on your requirement. To read further about the available
licenses, refer to this link:

https://docs.GitHub.com/en/repositories/managing-your-repositorys-
settings-and-features/customizing-your-repository/licensing-a-
repository#searching-GitHub-by-license-type

https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository%2523searching-GitHub-by-license-type

Getting Started and Understanding Git and GitHub ■ 45

Figure 2.7: Create a new GitHub repository page

5. Once you fill the above-discussed field and press Create repository, GitHub
will create a new project repository under your GitHub. Now that GitHub
has created a new repository for your project with the given name, you can
start working on your project and start pushing content to your project.

Q sumitjaiswalO7/GitHub1O1

Q Actions □ Projects LD wlkl insights © settings

K main * KI branch 0 tags

sumitjaiswalO? Initial commit

D LICENSE

□ README,md

Initial commit

initial commit

Go to file add file • ± Code » | About @

No description, website, or topics
tiTfiacca new ©1 caul mi I provided.

now m Roadmo

now Apachc-ro License

README.md

GitHub101

Releases

Packages

02021 WtfWA he. twits piMcy secLtitu stews Decs cornea oitHW enclrg *Pl Tracing Blog Aoojt

Figure 2.8 : Newly created GitHub repository page

The above-discussed steps will help you create your own GitHub repo. Once created,
you can explore all the available options and tabs that GitHub gives you with the
project. Also, we will discuss the project's available tabs and its available options in
the upcoming chapters.

46 ■ Git Repository Management in 30 Days

Committing changes to your repository
As the new GitHub repository is in place now, let us check how you can make
commit changes to your newly created repository directly via GitHub Graphical
User Interface (GUI) without involving any command line or firing any of the
available Git commands.

1. Currently, the newly created GitHub repository GitHub101 does not have
any content, and the license and the readme files are generated by the GitHub
engine while creating a new GitHub repository. Now, let us try to update the
README.md file content directly from GitHub User Interface (UI). For that,
you only need to click the edit (pencil) button available on the right-hand
side of the Readme file, as shown in the following screenshot:

Pull requests Issues Marketplace Explore

Q sumitjaiswal07/GitHub101

<> code <3 iast.es II Pull reauesta Q actions □ Projects LD wiki Q Security Lii insights © settings

K main * KI branch 0 taps

•W> sumitjaiswalO? Initial commit

D LICENSE

□ README,md

Initial commit

initial commit

Go to llle Add file • ± Code » | About @

No description, website, or topics
tiTfiacna new ©1 caul mi I provided.

now m Roadmo

now Apache-ro License

README, rod

GitHub101

Releases

Packages

e?02i citbuo, tw. twits w»ecy swwtw stews Paes cornea oitHW Fnclrg API Training Slog Aoojt

Figure 2.9 : GitHub101 project page

2. With the edit page opened for GitHub101, I have added a short description
to the README.md file “- This is TEST Description” in addition to the #
GitHub101 heading added by GitHub when the project was created, as
shown in the following screenshot:

iast.es

Getting Started and Understanding Git and GitHub ■ 47

B sumitiaisvjal07/GitHiitfl01

ocaae 0 lssu« tl Jul requests Q Aalbns ft W|K3 CO wiki 0 E«urny l^lnslgnts $ Settys

GitHubifn ,* ReADMEmd

<> Bin tic <& RtwIcw

J |J «.u^

Figure 2.10 : Edit README.md for the GitHub101 project

3. Using the GitHub preview tab, you can verify the changes, and if the changes
you have made are intended and as expected, you can push the changes to
take effect on your GitHub repository. You can see in the screenshot below
(Figure 2.11) how the changes made to the readme file are rendered and how
they will look when the changes take effect.

As I am satisfied and have verified the intended changes, I can push/commit
the changes directly to my GitHub101 repo main branch or create a new
branch for the change and create a Pull request (PR). You can merge the
PR once someone reviews and approves the changes. This is the preferred/
advised way to make changes to your README. But, at this point, since
we have verified the intended changes, we can go ahead and commit the

48 ■ Git Repository Management in 30 Days

changes directly, and once done, respective changes would take effect to the
GitHub101 repo, as shown in the following screenshot:

t sumitjaiswalO7 I GitHub101

<> Code 0 Issues J*. Pull requests © Actions P3 Projects CO Wiki © Security L'Insights Settings

GitHub101

■ Show diff

Commit changes

a Commit crime"/wme ,otn store",

Cancel

Figure 2.11 : Edit the readme file and commit changes

4. The Committed description change in the Readme file has now taken effect
and is displayed as updated in the following screenshot:

Figure 2.12: GitHub101 repo with updated Readme description

Going by the process of committing changes to the GitHub repository, now you
should have gained a fair understanding of GitHub’s new repository and how to
maintain it.

Conclusion
This is the end of this chapter where we were able to get things started with Git and
GitHub and have fun creating a new GitHub repository and make changes to the
newly created GitHub repository.

Getting Started and Understanding Git and GitHub ■ 49

In the next chapter, the stage is set for us to dive deeper into the content of Git and
how GitHub encapsulates the working and functionalities of Git.

Multiple choice questions
1. Git remote repository is offline. In that reference which one of the following

is true?

a. You cannot continue an offline project, and you’ll need to start over

b. You must wait for the remote repository to become available.

c. You can continue to work, but only with the project's current version.

d. You can continue to work with the local repository.

2. Which is true for GitHub?

a. Version control system

b. Cloud-based hosting service

c. Keep track of the changes in the project over a period of time

d. Helps to maintain Git repo and in collaborating amongst teams in
different geographies

Answers
1. c
2. d

Key terms
• GitHub commonly used terms:

o Commit

o Commit message

o Branch

o main branch

o Feature (or topic) branch

o Release branch

o Merge

o Tag

o Checkout

50 ■ Git Repository Management in 30 Days

o Pull request

o Issue

o Wiki

o Clone

o Fork

• Commonly used Acronyms

o GH - GitHub

o User Interface (UI)

o Graphical User Interface (GUI)

Points to remember
• Git is a version control system of type distributed version control system.

• Git and GitHub are two entities that work hand in hand to give way to a
centralized development process.

• The default branch of a GitHub repo is “main,” and all the Pull request/PR
that gets merged to the GitHub repository gets merged to the “main” branch.

Further reading
• For more history and reference around the discussed topics in this chapter,

you can check out the Git official documentation for getting started and
GitHub documentation:

o Getting started with Git: https://Git-scm.com/book/en/v2/Getting-
Started-About-Version-Control

o Getting started with GitHub: https://docs.GitHub.com/en/get-
started/quickstart

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://Git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.GitHub.com/en/get-started/quickstart
https://discord.bpbonline.com

Chapter 3

Git Branching,
Merging, and

Rebasing

Now that you have Git and GitHub installed, let us explore why they are required,
as well as their value and relevance when it comes to open-source software
development or software application development across teams and regions in

general.

This chapter is organized into interconnected sub-topics and follows a flow that
allows readers to grasp the background and concept in an informative and simplified
manner.

This chapter is about the core functionality of Git and GitHub and how one
complements the other in the software development life cycle and DevOps.

Structure
In this chapter, we will cover the following topics:

• Introducing Git options

• Git commands

o To start a working area

o To work on the current change

o To examine the history and state of the repository

52 ■ Git Repository Management in 30 Days

o To grow, mark and tweak your repo history

o To collaborate over repository

Objectives
The key concepts discussed in the chapter lets you use Git and its available commands
for regular day-to-day Git operations and processes. Git commands that you will
come across in this chapter will serve as the building blocks and lay the foundation
for your learning and working with Git as your version source control.

This chapter assumes you are up and running with Git on your Linux, Windows, or
Mac machines.

Introducing Git options
This section of the chapter deals with all and everything about Git.

Git is a fast, scalable, distributed revision control system with an extensive command
set that allows high-level operations and full access to the internals.

Now that you have a basic understanding of how Git works and its usefulness when
it comes to the version control system, it is time to dive deep into the Git operations
and commands that makes Git a prominent tool when it comes to the software
development lifecycle.

Git options
Multiple command options are available with Git. Just fire the git command that
would result in the git command options as:

-i ~ git

usage: git [—version] [—help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [—html-path] [--man-path] [--info-path]

[-p | —paginate | -P | —no-pager] [—no-replace-objects] [—bare]

[—git-dir=<path>] [—work-tree=<path>] [—namespace=<name>]

<command> [<args>]

Figure 3.1: Git options

We will first go through the Git options commands and then discuss Git's remaining
output later in the chapter. Git options are as follows:

• -version: This git command outputs the Git version that is currently
installed on the machine.

Git Branching, Merging, and Rebasing ■ 53

• --help

This git command outputs an overview and a list of the most frequently used
commands. All the available commands are printed if the option —all or -a
is used.

If a Git command is run with --help, it will result in the respective Git
command's manual page.

• -C <path>

This option lets the user run the Git command from the specified <path>
instead of the current working directory. When several -C <path> options
are specified, each non-absolute -C <path> is evaluated in relation to the -C
<path> before it. If the Git option is present but empty, for example, -C "",
the current working directory remains unchanged.

This option affects the options that expect path names, such as —git-dir and
—work-tree, in that the path names are interpreted relative to the working
directory because of the -C option.

The following invocations, for example, are equivalent:

Figure 3.2: Git path specifier

• -c <name>=<value>
Give the command a configuration parameter. Values from configuration
files will be overridden by the value provided.

The <name> must follow the format specified by Git config (subkeys separated
by dots).

NOTE: If the user omits = From the option command as git -c foo.bar ...

It's an allowed operation, and Git in such case, sets foo.bar to the Boolean
true value. But, in case of empty value like git -c foo.bar= ... the foo.bar
will be set to an empty string where Git will convert it too false.

• --exec-path[=<path>]

Wherever your core Git programs are installed is the path. The Git EXEC
PATH environment option can also be used to regulate this.

If no path is specified, Git will display the current configuration before
exiting.

54 ■ Git Repository Management in 30 Days

• --html-path

This Git command will exit after printing the path where Git's HTML
documentation is installed, without the trailing slash.

• --man-path

This Git option command results into the “manpath” for the man pages in
the version of Git installed on the machine.

• --info-path

This command results into the path where the Information files document
the version of Git installed on the machine and exits.

• -p | --paginate

This will pipe all output into less (or if set, $PAGER) if standard output is
a terminal. This overrides the pager.<cmd> configuration options (see the
Configuration Mechanism section below).

If you want to Pipe all the output into less, the standard output is terminal.

• -P | --no-pager

This tells Git to not pipe the output into a pager.

• --no-replace-objects

This tells Git to not use replacement reference to replace Git objects.

• --bare

This will treat the given Git repository as Bare repository and if GIT_DIR env
is not set, it will be set to the current working directory.

• --git-dir=<path>

Set the repository's path (".git" directory). The GIT_DIR environment
variable can also be used to regulate this. It can be a relative or absolute path
to the current working directory.

Specifying the location of the ". git" directory using this option (or GIT_
DIR environment variable) turns off the repository discovery that tries to
find a directory with ". git" subdirectory (which is how the repository and
the top-level of the working tree are discovered) and tells Git that you are at
the top level of the working tree. If you are not at the top-level directory of
the working tree, you should tell Git where the top-level of the working tree
is, with the --work-tree=<path> option (or GIT_WORK_TREE environment
variable).

Git Branching, Merging, and Rebasing ■ 55

If you just want to run Git as if it was started in <path> then use git -C
<path>.

• --work-tree=<path>

Create a shortcut to the working tree. It can be a relative or an absolute path
to the current working directory. The GIT_WORK_TREE environment variable,
as well as the core, can be used to control this.

It is a variable for work-tree configuration.

• --namespace=<path>

This is equivalent to setting GIT_NAMESPACE environment variable

There are few other Git options that are available, and you can read more
about it in the Git’s official document page: https://git-scm.com/docs/git#_
options

Git commands
The following section of this chapter deals with various Git commands that you
will come across during your day-to-day Git operations and working. Each of these
commands are categorized based on its working as follows:

• To start a working area:

o init: Creating an empty Git repository or reinitialize an existing one.

o clone: Cloning a repository into a new directory.

• To work on the current change:

o add: Adding file contents to the index

o mv: Moving or renaming a file, a directory, or a symlink

o restore: Restoring working tree files

o rm: Removing files from the working tree and the index

o sparse-checkout: Initializing and modifing the sparse-checkout

• To examine the history and state of the repository:

o bisect: Using binary search to find the commit that introduced a
bug

o diff: Showing changes between commits, commit and working tree,
etc.

o grep: Printing lines matching a pattern

https://git-scm.com/docs/git%2523_

56 ■ Git Repository Management in 30 Days

o log: Showing commit logs

o show: Showing various types of objects

o status: Showing the working tree status

• To grow, mark and tweak your repo history:

o branch: List, create, or delete branches

o commit: Recording changes to the repository

o merge: Joining two or more development histories together

o rebase: Reapplying commits on top of another base tip

o reset: Reset current HEAD to the specified state

o switch: Switching branches

o tag: Create, list, delete or verify a tag object signed with GPG

• To collaborate over repository:

o fetch: Downloading objects and refs from another repository

o pull: Fetching from and integrating with another repository or a
local branch

o push: Updating remote refs along with associated objects

This seems to be too clustered information, but need not get worried as these are the
commands which you will find most familiar by the end of this book.

We will discuss and go over each of these commands individually and, go over the
commands in different use-case scenarios.

Let us now discuss each of the Git commands one-by-one to get a better understanding
regarding the working and importance of the respective commands:

Starting a working area
As the name suggests, this Git command section will walk you through the process
of setting up a Git repository for a new or existing project.

This guide assumes a basic understanding of a command-line interface, and will
cover the following high-level topics:

• Creating a new Git repository

• Cloning a pre-existing Git repository

• Adding a modified version of a file to the repository

• Setting up a Git repository for remote collaboration

Git Branching, Merging, and Rebasing ■ 57

What is a Git repository?

A Git repository is a virtual location for your project's files.

It allows you to save versions of your code that you can access whenever you want.

Git init - Initialize Git repository
The git init command initiates the creation of a new Git repository. It can be used to
convert an un-versioned project to a Git repository or create a new, empty repository.
Since most other Git commands are inaccessible outside an initialized repository,
this is typically the first command you will run in a new project.

This will also result in the creation of a new main branch.

When you run git init for the first time, it creates a .git subdirectory in your
current working directory that will contain all the Git metadata with respect to the
newly created repository.

Subdirectories for objects, references, and template files are included in this
metadata. In addition, a HEAD file is created, which points to the currently checked-
out commit.

Sometimes there might be projects or user’s need where .git subdirectory needs
to be outside your current working directory. In that case, you can mention the
custom path either by setting the $GIT_DIR under your environment or else, pass
--separate-git-dir along with the custom path.

Git Init usage:
git init command is the most straightforward way of setting up your repository
when compared to other version-controlled systems. There is no explicit need to
generate your project repository, input files, and so on. There are two ways in which
you can initialize your directory:

1. To get a working Git repository, simply cd into your project subdirectory and
run the git init command in your terminal.

~ mkdir git_repo/

~ Is -1
total 4
drwxrwxr-x 2 ubuntu ubuntu 4096 Jul 13 11:42 git_repo

* cd git_repo/

~ git init
Initialized empty Git repository in /home/ubuntu/git_repo/.git/
~ Is -la
total 12
drwxrwxr-x 3 ubuntu ubuntu 4096 Jul 13 11:43 .
drwxr-xr-x 5 ubuntu ubuntu 4096 Jul 13 11:42 ..
drwxrwxr-x 7 ubuntu ubuntu 4096 Jul 13 11:43 .git

Figure 3.3: Git init working - option 1

58 ■ Git Repository Management in 30 Days

2. To keep track of project changes, convert the directory into a Git repository.
To generate a new .git subdirectory, create a new Git repository in a specific
directory.

~ Is -1
total 0

~ git init git_repo
Initialized empty Git repository in /home/ubuntu/git_repo/.git/

~ Is -la git_repo
total 12
drwxrwxr-x 3 ubuntu ubuntu 4096 Jul 13 13:31 .
drwxr-xr-x 5 ubuntu ubuntu 4096 Jul 13 13:31 ..
drwxrwxr-x 7 ubuntu ubuntu 4096 Jul 13 13:31 .git

Figure 3.4: Git init working - option 2

After running git init on your project directory, if you see a .git subdirectory
with the repository, meta-information gets created. Run the init command again
on the same project directory, it will not overwrite the existing .git configuration.

Options:

We will be discussing the most commonly used Git INIT options. Those are as
follows:

git init [-q | --quiet] [—bare] [—template=<template_directory>]
[--separate-git-dir <git dir>] [--object-format=<format>]
[-b <branch-name> | —initial-branch=<branch-name>]
[—shared[=<permissions>]] [directory]

Figure 3.5: Git init options

• -q, --quiet

As the name suggests, when appended with git init it will only print
error and warning messages; all other output will be suppressed.

• --bare

To create a shared repository -bare flag should be passed with git init.
Repository created using -bare flag does not have a working directory,
which is the reason why committing or making changes to the repository is
not possible.

Git Branching, Merging, and Rebasing ■ 59

Figure 3.6: Git bare command

Most commonly, bare repositories are used to create a remote central repository.

• --template

This command specifies the directory from which the templates will be used:

Figure 3.7: Git template command

Git Templates enable you to create a new repository with a predefined .git
subdirectory.

A template can be configured to have default directories and files that will be
copied to a new repository .git subdirectory.

The default Git templates are typically located in the /usr/share/git-
core/templates directory, but this may differ depending on your machine
operating system.

60 ■ Git Repository Management in 30 Days

• --separate-git-dir

Separate git dir option is used to make a text file with the path to the
actual repository :

Figure 3.8: Git separate git dir command

This file serves as a filesystem-independent Git symbolic link to the repository.

It is commonly used in scenarios where you want to keep system configuration
dotfiles like .bashrc, .viminfo, .ssh, etc in the system home directory while
keeping .git over a separate location.

If the Git history has grown quite large, the project demands to move it to
different high-capacity drives.

• -b/--mitial-branch

In the newly created repository, use the specified name for the first branch.

If no name is specified, the default name is used (currently main, the name
can be customized via the init.defaultBranch configuration variable).

Examples:

Begin a new Git repository for an existing code base:

- cd /path/to/my/codebase
~ git init
- git add .
~ git commit

Figure 3.9 : Git init working example

1. Make a directory called /path/to/my/codebase/.git .

2. Fill in the index with all existing files.

3. Consider the repository first state to be the first commit in history.

Git clone - Clone a Git repository into a new directory
In many instances, you may want to download a copy of a project from GitHub so
that you can work on it locally. Cloning is the process of copying the repository to
your computer.

Git Branching, Merging, and Rebasing ■ 61

It is simple and easy to use this command. All we need is the URL of the repository we
want to clone. GitHub provides the URL in the bottom-right corner of the repository
home page, as shown in the following screenshot:

0 Clone ©

HTTPS SSH GitHubCLI

https://github.eom/j ustjais/Git_101.gi |°1

Use Git or checkout with SVN using the web URL.

Open with GitHub Desktop

[J) Download ZIP

Figure 3.10 : Git clone GitHub repository

To copy the GitHub repository link, click on the clipboard icon on right hand side
of the link.

Now, to clone the repository you can follow these steps:

1. Open the command line and browse to the location where you want to clone
the respective GitHub repository.

2. I have taken the demo Git_101 GitHub repo and will be cloning the repo
under my home_folder/Git_101 folder

3. Now, at the final step run the command as:

Figure 3.11: Git clone GitHub repository - command line - a

4. Once you run the respective command, Git will clone the mentioned
repository from the GitHub URL provided as:

■■MH
- » git clone * https://github.com/justjais/Git_101.git
Cloning into 'Git_101'...
remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (4/4), 12.50 KiB | 639.00 KiB/s, done.
->

- » ~ cd Git_101
- » Git_101 git: (main)

Figure 3.12: Git clone GitHub repository - command line - b

https://github.eom/j
https://github.com/justjais/Git_101.git

62 ■ Git Repository Management in 30 Days

With this, Git created a new Git 101 folder containing our downloaded repository.

Inside, we will find a README.md file, which is standard for a GitHub repository.

You can describe your repository to users who come across it in this file using the
common markdown markup language.

Git's collaboration

If a project is already set up in a central repository, the most common way for users
to obtain a development copy is with the git clone command.

Cloning, like git init, is typically a one-time operation.

All version control operations and collaborations are managed through a developer's
local repository once they have obtained a working copy.

Working with Git is fundamentally different from working with source version
control tools like Apache Subversion (SVN) as shown in the following figure:

Figure 3.13: SVN (Apache Subversion) repository architecture

Unlike SVN, which is based on the relationship between the central repository and
the working copy, Git's collaboration model is built on repository-to-repository
interaction.

Users can push or pull commits directly from one repository to another instead of
checking a working copy into SVN's central repository, as shown in the following
figure:

Git Branching, Merging, and Rebasing ■ 63

Figure 3.14: Git repo collaboration

Git Clone usage:

Git clone makes a duplicate clone copy of the already existing Git repository. The
original repository can be either on the local filesystem or on a remote machine that
supports the supported protocols.

This is why Git clone is majorly used to point to an existing repository and create a
clone or copy of that repository in a different directory of the user's choice.

It is very similar to SVN checkout, but here the "working copy" is a full-fledged Git
repository that maintains its history and files independently from the original Git
repository which might be present on a remote server or more conveniently over
GitHub.

Figure 3.15: Git clone

64 ■ Git Repository Management in 30 Days

Options:

We will be discussing the most commonly used Git CLONE as follows:

git clone [—template=<template_directory>]
[-1] [—s] [—no-hardlinks] [-q] [-n] [--bare] [--mirror]
[-o <name>] [-b <name>] [-u <upload-pack>] [—reference

<repository>]
[—dissociate] [--separate-git-dir <git dir>]
[—depth <depth>] [--[no-]single-branch] [—no-tags]
[—recurse-submodules[=<pathspec>]] [--[no-]shallow

-submodules]
[—[no-]remote-submodules] [--jobs <n>] [—sparse]
[—filter=<filter>] [—] <repository>
[<directory>]

Figure 3.16: Git clone options

• -l/--local

When the repository to clone from is on a local machine, this flag bypasses
the normal "Git aware" transport mechanism and clones the repository
by creating a copy of HEAD as well as everything in the objects and refs'
directories.

To save space, the files in the .git/objects/ directory are hard linked
whenever possible.

• -b <name>/--branch <name>

If there is a need to clone the Git repository based out of a particular tag/
name; then, this option is utilized. This is the branch that will be checked out
in a non-bare repository.

• --bare

Create a bare Git repository, that is, rather than creating and storing
administrative files in /. git, make it in $GIT DIR.

Since there is nowhere to check the working tree, this obviously implies --no­
checkout option is used.

The remote branch heads are also copied directly to the corresponding local
branch heads, without being mapped to refs/remotes/origin/.

This option is commonly used when you have to make a repository where
there are no remote-tracking branches or when no configuration variables
are needed.

Git Branching, Merging, and Rebasing ■ 65

• --depth <depth>

To make a shallow clone with a history limited to the number of commits
specified. Unless user specifies --no-single-branch, which thus fetching
the histories near the tips of all branches, and implies Git --single-branch.

git clone -depth=l <repo>

Figure 3.17 : Git clone shallow copy

In the preceding example, I am trying to clone a repository where depth is
set to 1 which internally means that only the latest commit is included in
the cloned repo. Shallow cloning is used or becomes necessary for the Git
repository which has an extensive history, that might sometimes result in
scaling issue or disk space limit issue.

Shallow cloning is thus commonly used to avoid the above-discussed issue.

• --mirror
Create a copy of the source repository.

In contrast to --bare, --mirror not only maps local branches of the source
to local branches of the target, but it also maps all refs (including remote­
tracking branches, notes, and so on) and configures a ref-spec so that all
these refs are overwritten by a git remote update in the target repository.

• --template

Passing the template parameter with git clone implies that it clones the
repository at <repo location> and applies the template from <template
directory> to the newly created local branch.

git clone —template=<template_directory> <repo location>

Figure 3.18 : Git clone template

Visit the official Git clone documentation page for a comprehensive list of other git
clone options.

Git Init vs Git Clone
It is important to note that the terms git init and git clone are frequently used
interchangeably. They can both be used to "initialize a new git repository" at a high
level.

66 ■ Git Repository Management in 30 Days

Git clone, on the other hand, is reliant on git init. To make a copy of an existing
repository, use git clone. To create a new repository, Git clone first calls git init.
The data is then copied from the existing repository, with a new set of working files.

Work on the current change
This section of the book discusses the commands that are relevant with respect to
Git branch current changes. Let us go through all the commands that are commonly
used to work with Git branch current changes.

Git add - Adding file contents to the index
The command git add adds changes in the working directory to the staging area.
This command is used to tell Git that you want to include updates to a specific file
in the next commit. However, to record changes, you must also run git commit.
Both work in conjunction with each other. Along with git push, you can compose
fundamental Git workflow.

In addition to the commands listed above, the git status command is required to
determine the current state of the working directory and the staging area it is in as
shown in the following screenshot:

Figure 3.19: Git add flow

As we already know, basic edit/stage/commit pattern governs project development.
To understand the above figure, we need to understand the difference between the
working directory and staging area.

• Working area
In a nutshell, the working area contains all the files that are not in the staging
area. Git is not in charge of them. They are pretty much just in your local
directory. They are also known as untracked files.

The working area is similar to the scratch space; it is where you can add new
content, modify existing, and delete content. If the content you modify or
delete is in your repository, you will not lose it.

Git Branching, Merging, and Rebasing ■ 67

• Staging area
Git staging area is one of Git’s unique and characteristic features and is
also considered a part of Git’s 3 trees along with the commit and working
directory. You can think of it as a buffer between the current working
directory and project commit history.

The staging area allows the user to have all the relevant and related changes
group into highly focused snapshots and commit them as one to project
history.

Options:
We will be discussing the most commonly used Git ADD options as follows:

git add [—verbose | -v] [--dry-run | -n] [—force | -f] [--interactive | -i] [--patch | -p]
[—edit | -e] [—[no-]all | —[no-]ignore-removal | [—update | -u]]

[—intent-to-add | -N] [—refresh] [—ignore-errors] [—ignore-missing] [—renormalize]
[—chmod=(+|-)x] [--pathspec-from-file=<file> [--pathspec-file-nul]]

[—] [<pathspec>...]

Figure 3.20: Git add available options

• -n, --dry-run

This option will not add the file(s) and will simply indicate whether the file
exists and/or will be ignored.

• -f, --force

This option allows adding otherwise ignored files.

• -P, --patch

Select the chunk patch between the index and the work tree interactively and
add them to the index. This allows the user to evaluate the differences before
adding changed information to the index.

This also executes add --interactive but skips the initial command menu
and goes straight to the patch sub-command. Thus, it helps the user select a
chunk of changes and stage the same for the next commit.

Examples:

1. Git add stages all the changes in the <file> for the next commit.

Figure 3.21: Git add filename

68 ■ Git Repository Management in 30 Days

2. Git Add stages all the changes in the <directory> for the next commit.

Figure 3.22: Git add directory

3. Git Add stages all the changed file in the directory.

Figure 3.23: Git add all

Mv - Move or rename a file, a directory, or a symlink
This command helps rename the file, giving the previous file name and the new
name you want to give the file. This will mark your modification as ready for commit.

Options:

Figure 3.24: Git mv options

We will be discussing the most commonly used Git CLONE options as follows:

• -f, --force
Even if the file exists, force renaming or relocating a file.

• -k
Moving or rename operations that would result in an error situation should
be avoided. An error occurs when a source does not exist or is not controlled
by Git, or when it would overwrite an existing file unless the -f option is
used.

Examples:

1. Change the old_filename to new_filename

Figure 3.25: Git mv file

Git Branching, Merging, and Rebasing ■ 69

2. To check the status if the effect has taken place and registered, check with
git status command:

git status
> # On branch temp-branch
> # Changes to be committed:
> # (use "git reset HEAD ..." to unstage)
> #
> # renamed: old_filename -> new_filename
> #

Figure 3.26 : Git mv status

Restore - Restore working tree files
The git restore command is used to restore or delete uncommitted local
modifications to files.

Options:

git restore [<options>][—source=<tree>][—staged]
[--worktree][--] <pathspec>...

git restore [<options>][—source=<tree>][—staged]
[--worktree] --pathspec-from-file=<file>
[--pathspec-file-nul]

git restore (—pl—patch)[<options>][—source=<tree>]
[--staged][--worktree][—][<pathspec>...]

Figure 3.27 : Git restore options

We will be discussing the most commonly used Git RESTORE options as follows:

• -s <tree>, --source=<tree>

Restore the working tree files with the provided tree's content.

It is a standard practice to describe the source tree by specifying a commit,
branch, or tag that corresponds to it.

If no arguments are supplied, the contents are restored from HEAD if
--staged is specified, otherwise from the index.

In a particular scenario, where there is just one merge base, you can use
"A...B" as a shorthand for the merge base of A and B. You can leave out only
one of A and B, in which case HEAD is used.

70 ■ Git Repository Management in 30 Days

• -p, --patch

Select chunks in the difference between the restore source and the restore
location interactively.

To understand how to use the --patch mode, go to the “Interactive Mode”
section of git-add.

It should be noted that --patch accepts no path-spec and will urge you to
restore any changed paths.

• -W, --worktree, -S, --staged

Set the location of the restoration. If neither option is given, the working tree
is restored by default. The --staged option will simply restore the index.

Working trees are restored when parameters are specified.

Examples:

1. To restore a file, use git restore <file_name>.

Figure 3.28: Git restore file

Below is the working example output and you can see that, we used git restore to
remove a file's local modification.

- > Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main'*

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

deleted: temp/__ init__ .py

no changes added to commit (use "git add" and/or "git commit -a")

- » Git_101 git: (main) X
■ + Git_101 git: (main) X git restore temp/__ init___.py
- » Git_101 git: (main)
- » Git_101 git: (main) git status
On branch main
Your branch is up to date with 1origin/main',

nothing to commitr working tree clean

Figure 3.29: Git restore file restore status

Git Branching, Merging, and Rebasing ■ 71

2. To Un-stage a file from the staging area use this:

git restore —staged temp_example.txt

Figure 3.30 : Git restore -staged syntax

In the working example output, you can see that the specified file is un­
staged, but the files' local modifications are still present.

-_______________________________________ Git_101 git: (main) vi temp/__ init__ .py*
- » Git_101 git: (main) X
- » Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main1.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: temp/__ init__ .py

no changes added to commit (use "git add" and/or "git commit -a")

- » Git_101 git: (main) X
• Git_101 git: (main) X git add temp/__ init__ .py*
- » Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main’.

Changes to be committed:

(use "git restore —staged <file>..." to unstage)
modified: temp/__ init__ .py

- » Git_101 git: (main) X git restore —staged temp/__ init__ .py

- » Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main1.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>...” to discard changes in working directory)

modified: temp/__ init__ .py

no changes added to commit (use "git add" and/or "git commit -a")

- » Git_101 git: (main) X

Figure 3.31 : Git restore -staged working example

3. To restore a file from a particular commit follow this command:

git restore —source e0f98da test_exanple.txt

Figure 3.32: Git restore -source using a specific commit

72 ■ Git Repository Management in 30 Days

The source option can be used to restore a file from a certain commit. By
default, restore will use the contents of the HEAD directory.

In the preceding command, we are restoring a file from a previously
mentioned commit.

rm - Remove files from the working tree and from the
index
The git rm command is used to delete a single file or a group of files. Git rm's
primary job is to delete tracked files from the Git index. It is also used to remove files
from the staging index as well as the working directory.

Options:

git rm [-f | --force] [-n] [-r] [—cached] [--ignore-unmatch]
[--quiet] [--pathspec-from-file=<file> [--pathspec-file-nul]]
[--] [<pathspec>...]

Figure 3.34: Git rm options

We will be discussing the most commonly used Git RM options and those are as
follows:

• -f, - -force

This option overrides the up-to-date check.

• -n, --dry-run

Do not delete anything. Instead, just display if they exist in the index and
would be deleted by the command otherwise. Therefore, dry run acts as a
safeguard which tells the user what all files it would have removed.

Git Branching, Merging, and Rebasing ■ 73

• -r

-r here signifies recursive delete, when a directory is given to delete. It will
delete the directory and all the content inside it.

• --cached

This option is used to unstage and delete routes from the index alone.
Working tree files will be left alone, whether they have been changed or not.

• --ignore-unmatch

Even when no files were found, exit with a status of zero. This is commonly
used when git rm is a part of a script, and it gracefully fails in error
circumstances.

• -q, --quiet

For each file deleted, git rm usually generates one line (in the form of a rm
command). This option disables that output.

Examples:

1. Delete all the filenames with .txt extension from the index under
Documentation directory as shown in the following figure:

Figure 3.35: Git rm directory

In this example, the asterisk * is quoted from the shell, which allows Git,
rather than the command-line shell, to extend the pathnames of files and
subdirectories in the Documentation/ directory.

2. This example applies the force option to target all git-.sh files using a
wildcard.

*

Figure 3.36: Git rm file

Note, the force option removes the target files from the working directory as
well as the staging index.

3. git rm changes are not permanent, and if user needs to undo the changes it
can be done as the update is made to staging index. The changes need to be

74 ■ Git Repository Management in 30 Days

available under git log history, and needs to be committed first. Command
to undo the changes is as follows:

Figure 3.37: Git reset

git reset head undo the changes made by git rm, and will roll back the
current staging index and working directory to the HEAD commit.

Similar, undo functionality can be achieved via git checkout ., which
restores the most recent version of a file from HEAD.

Figure 3.38: Git checkout

sparse-checkout - Initialize and modify the sparse-
checkout
Git sparse-checkout initializes and customizes the sparse-checkout configuration,
which restricts the checkout to a set of routes defined by a pattern list.

Options :

git sparse-checkout <subcommand> [options]

Figure 3.39 : Git sparse-checkout file

To examine the history and state of the
repository
For examining the Git History, we can use the following command line Git commands:

bisect
To locate the commit that caused a problem, use binary search. Git bisect gives
you a way out of the tedious task of checking out recent commit to search for broken
commit. Instead, Git bisect lets you walk through recent commits and lets you verify
if the commit contains the broken commit.

Git Branching, Merging, and Rebasing ■ 75

Options:

git bisect <subcommand> <options>

Figure 3.40 : Git bisect - 1

The goal of git bisect is to detect a specific regression by running a binary search
through history.

Let us assume you have the following history of development:

Figure 3.41: Git bisect - 2

You are aware that your application is not operating properly at the current revision,
even though it was working perfectly at revision 0.

As a result, regression was most likely introduced in commits 1, 2, 3, 4, and current.

You may try checking each commit, build it, and seeing whether the regression is
still present.

This can take a long time if there are a lot of commits. This is a linear search, which
can be significantly improved by using a binary search.

The git bisect command accomplishes this. It seeks to cut the number of possibly
problematic revisions in half at each level.

git stash save
git bisect start
git bisect bad
git bisect good 0
Bisecting: 2 revisions left to test after this (roughly 2 steps)
[< ... sha ... >] 3

Figure 3.42 : Git bisect - 3

Git will checkout a commit after this command. It will commit 3 in our instance. You
must create your script and validate that the regression is present. If the regression

76 ■ Git Repository Management in 30 Days

is present, you will additionally need to notify git the status of this revision with git
bisect bad, or git bisect good when it is not.

git bisect good
Bisecting: 0 revisions left to test after this (roughly 1 step)
[< ... sha ... >] 4

Figure 3.43 : Git bisect - 4

After that, it will check another commit, 3 or 4 (as there are only two commits).
Assume it chose number four. We update the script after it has been built to ensure
that the regression is present.

git bisect bad
Bisecting: 0 revisions left to test after this (roughly 1 step)
[< . . . sha ... >] 3

Figure 3.44 : Git bisect - 5

We put the most recent revision, 3, to the test. We inform Git because that is the
source of the regression:

git bisect bad
< ... sha ... > is the first bad commit
< ... commit message ... >

Figure 3.45 : Git bisect - 6

We just had to evaluate three variants (2, 3, 4) in this basic circumstance, rather than
three (1, 2, 3,). This is a minor victory, but is significant because our history is so brief.
We should expect to test 1 + log2 N commits with git bisect instead of roughly
N/2 commits with a linear search if the search range is N commits.

You can examine the commit that caused the regression once you have identified
it. After that, you may run git bisect reset to restore everything to its previous
condition before using the git bisect command.

diff
git diff is a multi-purpose Git command that performs a diff on Git data sources
when run. Commits, branches, files, and other data sources are examples of data
sources.

The git diff command, along with git status and git log, is frequently used
to examine the current state of a Git repository.

Git Branching, Merging, and Rebasing ■ 77

Options:

git diff
git diff
git diff
git diff
git diff
git diff

[<options>]
[<options>]
[<options>]
[<options>]
[<options>]
[<options>]

[<comniit>] [—] [<path>.,.]
—cached [<coitimit>] [--] [<path>...]
<commit> [--merge-base] [<commit>...] <commit> [--] [<path>...]
<commit>...<commit>] [--] [<path>...]
<blob> <blob>]
-no-index [--] <path> <path>]

Figure 3.46 : Git diff - 1

• Compare all changes and changes since last commit

Without specifying a file path, git diff compares changes across the whole
repository. By default, git diff will display any changes that have not been
committed since the last commit.

git diff

Figure 3.47 : Git diff - 2

• Compare files from two separate git commits

Git refs can be provided to git diff to compare commits. HEAD, tags, and
branch names are some examples of refs.

Every Git commit has a commit ID, which you can find by running a git
log. You may also use git diff with this commit ID.

commit c21ff5c97f52e265e3974027f9a36158937eb9ec
Author: Sumit Jaiswal
Date: Fri Aug 27 12:32:49 2021 +0530

fix comment

commit f41ce854974252bd8f6a99c2f507clc27f2c4022
Author: Sumit Jaiswal
Date: Fri Aug 27 12:09:58 2021 +0530

add changelog

commit el86d6d31822dfe63837af8dcae46d943a4a0638
Author: Sumit Jaiswal
Date: Fri Aug 27 12:07:22 2021 +0530

fix code for the issue 120

Figure 3.48 : Git diff-3

78 ■ Git Repository Management in 30 Days

To get the diff between two Commit IDs, we can do as done in the following figure:

gi diff c21ff5c97f52e265e3974027f9a36158937eb9ec f41ce854974252bd8f6a99c2f507clc27f2c4022

Figure 3.49 : Git diff - 4

• Compare Git Branch

Git Branches are compared in the same way as all other ref inputs are in git
diff.

The dot operator is demonstrated in the following snippet.

The two dots indicate that the diff input is the tip of both branches. If the
dots are removed and a space is utilized between the branches, the result is
the same.

By adjusting the first input parameter branch1, the three-dot operator
starts the diff. It transforms branch1 into a reference to the shared common
ancestor commit between the two diff inputs, branch1's shared ancestor and
the ancestor of the other-feature-shared branch.

As the tip of the other feature branch, the last parameter input parameter
remains intact.

git diff <branchl>..<branch2>
git diff <branchl>...<branch2>

Figure 3.50 : Git diff - 5

• Compare two files from different branch

To compare a specific file across different branches, provide git diff the
file's path as the third parameter.

git diff <branch 1> < branch 2> <path/filename>

Figure 3.51 : Git diff - 6

An explicit file path parameter can be provided to the git diff command.

The diff operation will be scoped to the provided file when a file path is passed to
git diff. This is illustrated in the examples below.

Git Branching, Merging, and Rebasing ■ 79

Figure 3.52: Git diff - 7

This will compare the specific changes in the working directory to the index,
presenting the changes that have not yet been staged.

By default, git diff performs the comparison against the HEAD branch.

Figure 3.53: Git diff - 8

When using the --cached option with git diff, the diff compares the staged changes
to the local repository. The options --cached and --staged are interchangeable.

grep
Git grep searches for filter/pattern in the work tree monitored files, blobs in the
index file, or blobs of certain tree items. Filters are a collection of one or more search
phrases separated by newlines. When used as a search expression, an empty string
matches all lines.

Options:

Figure 3.54: Git grep - 1

To find commit content (that is, real lines of code rather than commit messages and
the like), perform the following:

Figure 3.55: Git grep - 2

If you wish to confine the search to a certain subtree (for example, "plugins/
modules"), use the rev-list subcommand and grep together:

git grep <regexp> $(git rev-list —all — plugins/modules) — plugins/modules

Figure 3.56: Git grep - 3

80 ■ Git Repository Management in 30 Days

This will look for regexp patterns in all your commit content.

Since rev-list will return the revisions list where all the changes to plugins/modules
occurred, you must additionally give the path to grep so that it will just search in
plugins/modules.

Consider the scenario: The same <regexp> could be found by grep on additional
files in the same revision given by rev-list (even if there was no change to that file on
that revision).

Few other relevant and useful example are:

git grep <regexp>

Search for regex in working tree

gi grep -1 -e <regexpl> --and -e <regexp2>

Search working tree for lines of text matching regexpl and line of text matching regexp2

gi grep -1 -e <regexpl> --and -e <regexp2>

Look through the working tree for files that include lines of text that match the regexpl and regexp2 regular expressions,

gi grep <regexp> $(git rev-list --all)

Search all revisions for text matching <regexp>

Figure 3.57 : Git grep - 4

log
The git log command displays snapshots that have been committed. It is used to
list and filter the project's history, as well as search for specific modifications.

In contrast to git status, which controls the working directory and staging area,
git log only operates on the committed history.

'COMMITTED HISTORY'

Figure 3.58 : Git log -1

Options:

Git Log options:

git log [<options>] [<revision-range>] [[—] <path>...]
git show [<options>] <object>...

Figure 3.59: Git log - 2

Git Branching, Merging, and Rebasing ■ 81

The following example will provide a complete diff of all the modifications made by
the author to the file learning_git.txt.

Figure 3.60: Git log - 3

When comparing branches, the .. syntax is utilized.

The following example gives a quick summary of all the commits that are in
<branch_name> instead of the main branch.

git log —oneline main..<branch_name>

Figure 3.61 : Git log - 4

show
The git-show is a command-line utility that displays additional information about
Git objects such as blobs, trees, tags, and commits.

git-show reacts differently depending on the type of object.

When we work with Git, we see the .git folder, which contains many subdirectories,
one of which is the .git/objects directory, which contains information about
various types of objects such as blobs, trees, commits, and tags.

• Blob object: stores the file's contents.

• Tree object: a list of all the files in our repository, each with a pointer to the
blob object assigned to it.

• Commit object returns a pointer to the object's tree.

• Tag object: Display the tag message as well as any other objects associated
with the tag (object name, object type, tag name).

82 ■ Git Repository Management in 30 Days

We use the command git show to see more information about these objects.

We have made changes to the file pull_101.md and committed the changes, now
using the git show command directly, we can check in the below figure what all
information is shown in the command output:

-» Git_101 git: (main} gi show
commit fdad70b728f67241fd97ae498d270f4febla61bl(HEAD->main, tag: 1.1.0, tag:1.0.0, origin/main, origin/HEAD)
Merge: efd4ea4 cdb75e0
Author: Sumit Jaiswal <justjais@gmail.com>
Date: Mon Jun 27 14:48:16 2022 +0530

Merge pull request #2 from justjais/test_workPR

Adding text to pull_101 readme file

Figure 3.62 : Git show

We can infer two things from the output of the git show command.

• The commit message and the pointer pointing to the HEAD.

• The second thing that can be seen is the various versions of the file.

If we pass the specific commit ID which is not the latest commit, we will not get

HEAD->main as the respective commit is not pointing to the HEAD.

-» Git_101 git:(main) git show 5fc03926898f2bd531c49e38584c2036c9df08ff
commit 5fc03926898f2bd531c49e38584c2036c9df08ff
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Thu Jun 23 18:19:42 2022 +0530

Adding text to pull_101 readme

diff --git a/temp/pull—101.md b/temp/pull_101.md
index f214544..CC13842 100644 “
----- a/temp/pull_101.md
+++ b/temp/pull_101.md
@@ -1 +1,2 @@
This file is a placeholder for PULL request.
+Pull 101: Starting point to Pull request

Figure 3.63 : Git show with commit ID

Git show is a powerful command for inspecting objects in a Git repository. It is
possible to use it to target specific files at specific revisions.

When you run git show on a commit range, it will show you the individual commits
that fall within that range.

status
The git status command displays information about the current working directory
and staging area. It allows you to observe staged changes as well as files that Git
does not track.

mailto:justjais@gmail.com
mailto:sjaiswal@redhat.com

Git Branching, Merging, and Rebasing ■ 83

There is no information about the committed project history in the Status output.
Use the git log command to do this. The git status command simply shows the
status of the git add and git commit commands.

Working Directory Stage Snapshot

GIT STATUS
Figure 3.64 : Git status -1

Options:

Git status options:

git status [<options>] [—] <pathspec>...

Figure 3.65 : Git status - 2

• Clean working tree
Before we get started with the git status command, let us have a look at
what the git status looks like when no modifications have been made.
To check the status, launch git bash and execute the status command on the
directory you want to check.

*» Git_101 git: (main) git status
On branch main
nothing to commit, working tree clean

Figure 3.66 : Git status - 3

New file in working tree

When we add a file to the repository, the repository's state changes.

84 ■ Git Repository Management in 30 Days

Let us use the touch command to make a file. Now use the status command
to check the status. Please refer the following terminal output:

■> Git 101 git: (main) touch learn git.txt
■» Git_101 git: (main) X git status
On branch main
Untracked files:

(use "git add <file>..." to include in what will be committed)
learn_git.txt

nothing added to commit but untracked files present (use "git add" to track)

Figure 3.67 : Git status - 4

The status is nothing added to commit but untracked files present
(use "git add" to track) as we can see from the preceding output. The
suggestions are also displayed by the status command.

It suggests using the git add command to track the file, as seen in the above
result.

■» Git_101 git: (main) X git status
On branch main

Changes to be committed:
(use "git restore —staged <file>..." to unstage)

new file: learn git.txt

Figure 3.68 : Git status - 5

We can observe from the preceding output the file's state after the staging
changes to be committed. We can verify the status before making a quick
decision. This command will assist us in avoiding modifications we do not
wish to make. Let us commit it and then see how it is doing. Consider the
following result:

-» Git_101 git: (main) git status
On branch main
nothing to commit, working tree clean

Figure 3.69: Git status - 6

Git Branching, Merging, and Rebasing ■ 85

We can verify the current condition of the file after it has been committed as
clean as it was before.

• Modify file in Working tree
Let us see what happens when an existing file is changed. To alter a file, use
the echo command to update an existing file, which will add the text to the
given file. Next, verify the repository's status.

■ » Git_101 git:(main) echo "Modify existing file content" > learn_git.txt
■ » Git_101 git: (main) X git status
On branch main

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>.to discard changes in working directory)

modified: learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 3.70 : Git status - 7

Once the changes are staged, added to repository, and modified files are
committed, we can verify the status of the Git repository again using git
status. Once again, it should be clean.

• Delete file in Working tree
Now, if we go and delete the file that we created and committed to the earlier
step using rm command and check the status of the working tree using git
status, we can verify that git reports one of the files is deleted from the
working tree.

- Git_101 git; (main) rm learn_git.txt*
- » Git_101 git: (main) X git status
On branch main

Changes not staged for commit:
(use "git add/rm <file>.to update what will be committed)
(use "git restore <file>...” to discard changes in working directory)

deleted: learn__git. txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 3.71 : Git status - 8

86 ■ Git Repository Management in 30 Days

To grow, mark and tweak your repo history
In this section, we will go through the Git command to grow and mark the Git history.

branch
The git branch command makes it possible to create, list, and remove branches.
It does not enable you to move between branches or reassemble a branched history.

As a response, git branch is integrated with the operations git checkout and
git merge.

Branches indicate a single development line which in case of Git is main. They can be
used to request a new working directory, staging area, or project history.

Creating separate branch lines for two different features by two different developers
in branches will allow developers to work on them in parallel while keeping the
main branch free of under-development or problematic code.

Figure 3.72: Git branch -1

Most version control systems provide branching as a feature. Git branches serve as
a link to a snapshot of your modifications. When you plan to fix issues or add new
features, you create a new branch to encapsulate the changes. This assists you in
cleaning up the past of the future before integrating it.

Git branches are an important component of every developer's workflow. Git saves
the branch as a reference to a commit, rather than copying files from one location to
another.

Options:

git branch [<options>] [-r | -a] [—merged] [-no-merged]
git branch [<options>] [-1] [-f] <branch-name> [<start-point>]
git branch [<options>] [-r] (-d | -D) <branch-name>...
git branch [<options>] (-m | -M) [<old-branch>] <new-branch>
git branch [<options>] (-c | -C) [<old-branch>] <new-branch>
git branch [<options>] [-r | -a] [—points-at]
git branch [<options>] [-r | -a] [—format]

Figure 3.73: Git branch - 2

Git Branching, Merging, and Rebasing ■ 87

• Create Branch

The git branch command can be used to create a new branch:

git branch <branch_name>

Figure 3.74 : Git branch - 3

This command will be executed as follows:

-» Git_101 git: (main) git branch dev_branch_l
-» Git_101 git: (main)

Figure 3.75 : Git branch - 4

This will create the dev_branch_1 branch in the Git directory locally.

• List Branch

To list the available branches in the repository, we may either use git branch
--list or the git branch command:

-» Git_101 git: (main) git branch
dev branch 1

* main
-» Git_101 git: (main) git branch —list

dev_branch_l
* main

Figure 3.76 : Git branch - 5

Both these commands are listing the repository's available branches. The
sign * denotes the branch that is presently active.

• Rename Branch

The Git branch command may be used to rename the branch. Use the
following command to rename a branch:

git branch -m Cbranch old name> Cbranch new name>

Figure 3.77 : Git branch - 6

88 ■ Git Repository Management in 30 Days

If we execute the git branch with rename tag, we will be able to rename the
input branch as:

-» Git_101 git: (main) git branch -m dev_branch_l rename_dev_branch_l
* main

rename dev branch 1

Figure 3.78 : Git branch - 7

You can see from the above console output that the branch dev_branch_1
got renamed to rename_dev_branch_1.

• Delete Branch
You may delete a remote or local git branch using the Git application. The
local branch is the Git branch that is available on your local development
system; deleting the local branch will only affect the local modifications on
your machine, not your GitHub project.

If you want to delete/remove a branch remotely, this will have an impact on
your GitHub project main branch.

o Delete/Remove a Remote branch

The Git desktop application allows you to remove a remote branch.
To remove a remote branch, execute the following command:

git push origin --delete <branch name>

Figure 3.79 : Git branch - 8

Run output:

■» Git_101 git: (main) git push origin --delete update_readme
To https://github.com/justjais/Git 101.git
- [deleted] update_readme

Figure 3.80 : Git branch - 9

This deletes the branch update_readme remotely from GitHub, and
you can verify the same by checking the available git branch and
your local update_readme branch should remain intact.

o Delete/Remove a Local branch

https://github.com/justjais/Git

Git Branching, Merging, and Rebasing ■ 89

The Git desktop application allows you to remove a local branch. To
remove a local branch, execute the following command:

git branch -D <branch name>

Figure 3.81 : Git branch - 10

Run output:

-» Git_101 git: (main) git branch -D update_readme
Deleted branch update_readme (was 056bb29).

Figure 3.82 : Git branch - 11

Now, if you run the git branch on your local machine, update_
readme will not be shown under available git branches.

• Switch Branch
You may swap between branches without committing with Git. The Git
checkout command allows you to move back and forth between git branches.
The following command is used to switch between the branches:

git checkout <branch name>

Figure 3.83 : Git branch - 12

You can switch from main to any other branch available on your git repository
without making any commit.

-» Git_101 git: (main) git checkout dev_branch
Switched to branch 'dev_branch'
■» Git_101 git: (dev_branch)

Figure 3.84 : Git branch - 13

The branch is switched from main to dev_branch without committing, as
shown in figure 3.81.

• Merge Branch
You may merge the other branch with the one that is presently active in Git.
The git merge command can be used to merge two branches.

90 ■ Git Repository Management in 30 Days

To merge the branches, use the following command:

git merge <branch name>

Figure 3.85 : Git bra.nc'h - 14

Run output:

■» Git_101 git: (main) git merge devjbranch
Already up to date.

Figure 3.86 : Git bra.nc'h - 15

The main branch merged with dev_branch as seen in the output above.
Since I did not commit anything before merging, the output appears to be
up to date.

Commit
The Git commit command saves the project's current staged changes. Commits
are used to document a project's current status. Git asks before altering committed
snapshots, so they are regarded as safe versions of a project.

Git add is used before executing git commit to promote changes to the project,
which will subsequently be saved in a commit.

Commits are the project's snapshots. Every commit is saved in the repository's main
branch. We can undo the commits or go back to an earlier version. Since each commit
has its unique commit-id, two separate commits will never overwrite each other.

The Secure Hash Algorithm (SHA) algorithm generates this commit-id, which is a
cryptographic number.

Options :

git commit [<options>] [--] <pathspec>...

Figure 3.87 : Git commit - 1

The commit command saves the modifications and assigns a commit-id to them.
Without any arguments, the commit command will launch the default text editor
and prompt for a commit message.

Git Branching, Merging, and Rebasing ■ 91

In this editor, we may write our commit message. In this example, I have updated
the content of the file learn_git.txt and am trying to commit the changes.

Figure 3.88: Git commit - 2

The command will launch a default text editor and prompt us with a commit message
as we type it. Here, updating file content is my commit message.

updating file content
Please enter the commit message for your changes. Lines starting
with will be ignored, and an empty message aborts the commit.
#
On branch dev_branch_l
You are currently bisecting, started from branch 'main'.
#
Changes to be committed:
modified: learn_git.txt
#

Figure 3.89 : Git commit - 3

To verify the successful git commit, we can check the logs using git log command:

■+ Git_101 git: (dev_branch) X git commit
commit 3d84d5b97dcea8bed29b033074bbed8bc3345e98 (HEAD -> dev_branch_l)
Author: Sumit Jaiswal
Date: Mon Aug 30 00:17:48 2021 +0530

updating file content

Figure 3.90 : Git commit - 4

We can verify the output with commit-id, author detail, date and time, and the
commit message information.

• Git commit -a
The -a option of the commit command allows you to specify specific
commits. It is used to commit all changes' snapshots. This option solely takes
into account files that have previously been uploaded to Git. The newly
generated files will not be committed.

92 ■ Git Repository Management in 30 Days

Check the repository's status and issue the commit command as follows:

Figure 3.91: Git commit - 5

Firing git commits with -a tag will only commit the files that have already
been added. The files that have not been staged will not be committed.

• Git commit -m
You may write the commit message on the command line using the -m
option of the commit command. The text editor will not be prompted by this
command :

git commit -m "commit message"

Figure 3.92 : Git commit - 6

Run output:

■» Git_101 git: (dev_branch) X git commit -m "updating file content"
[dev_branch 056bb39] Introduced "learn_git"
1 file changed, 1 insertions (+), 0 deletions(-)
create mode 100644 learn_git.txt

Figure 3.93 : Git commit - 7

In the above output, a learn_git.txt is committed to our dev_branch
repository with a commit message. The same can be verified using git log
command.

Merge
Git merge is a process to connect the branched histories. It combines the development
histories of two or more things. You can easily take the data produced by git branch
and merge it into a single branch using the git merge command.

A group of commits will be combined into a single, unified history using git merge.
Typically, two branches are combined using git merge.

The idea behind Git Merge is to combine multiple sequences of commits stored in
different branches into a unified history, or, to put it another way, in a single branch.

Git Branching, Merging, and Rebasing ■ 93

When we try to merge two branches, Git takes two commit pointers and looks for a
common base commit in the two git branches.

When Git locates the common base commit, it automatically generates a merge
commit and merges each pending merge commit sequentially. Git performs all
these processes, and if there are any conflicts, Git displays them using appropriate
merging algorithms.

Rebase
Rebasing is the process of applying commitments once more on top of a base trip. It is
employed to combine several commits from several branches into a single commit. It
serves as a substitute for the git merge command. The process of merging is linear.
A series of commits are moved or combined into a new base commit throughout this
process.

Rebasing works best and is most understandable when used in conjunction with a
feature branching methodology.

Git rebase is regarded as a possible replacement for the git merge command. Merge
is always a record that moves forward. In contrast, Rebase is a powerful history­
rewriting tool in git. It sequentially merges several commits.

Consider that you have two commits in your feature branch and four commits in
your main branch. If you merge this, all commits will be merged at once. However,
if you rebase it, it will be merged linearly, as depicted in the following figure:

Figure.3.94: Git rebase

94 ■ Git Repository Management in 30 Days

Rebasing is the process of altering the base of your branch from one commit to
another, giving the impression that your branch was created from a different commit.
Git does this internally by generating new commits and applying them to the chosen
base.

It is important to understand that, despite the branch looking similar, it contains
entirely new changes.

Options:

git rebase [-i | —interactive] [<options>] [—exec <cmd>]
[--onto <newbase> | -keep-base] [<upstream> [<branch>]]

git rebase [-i | —interactive] [<options>] [—exec <cmd>] [—onto <newbase>]
—root [<branch>]

git rebase (--continue | --skip | —abort | —quit | —edit-todo | —show-current-patch)

Figure 3.95: Git rebase options

When we make some changes to the main branch and feature branch, respective
branches, whether the main or feature branch, can both be rebased.

Track the modifications with the git log command. You should check out the
branch you want to rebase to. To perform the rebase we need to use the following
syntax:

git rebase <branch name>

Resolve any conflicts in the branch and then execute the following commands to
continue making modifications. To determine the status:

Figure 3.96: Git rebase syntax

To continue with the changes made, we need to run the following command:

Figure 3.97: Git status check

Figure 3.98: Git rebase continue

Git Branching, Merging, and Rebasing ■ 95

The changes can be skipped using the following command:

Figure 3.99: Git rebase skip

Once the rebasing is completed and there is no merge conflict, we can force push the
commit to the origin as:

Figure 3.100: Git force push

If another user has rebased and force-pushed to the branch you are committing to,
a git pull will override all changes you have made based on that prior branch with
the forcibly pushed tip.

Fortunately, you can obtain the record of the remote branch using git reflog. A ref
before it was rebased can be found in the remote branch's reflog.

You can then use the --onto option to rebase your branch against that remote
reference.

Git rebase can be invoked using the --onto command-line parameter. When you
use git rebase --onto, the command expands to:

git rebase —onto <new base-branch name> <old base-branch name>

Figure 3.101: Git rebase --onto

The --onto command enables a more sophisticated type of rebase that permits
specific refs to be passed as rebase recommendations.

Git Interactive Rebase
Git supports Interactive Rebase, a powerful tool that allows you to edit, rewrite,
reorganize, and more, on existing commits. Interactive Rebase can only be used on
the currently checked-out branch. As a result, place your local HEAD branch in the
sidebar.

96 ■ Git Repository Management in 30 Days

Git interactive rebase can be used with the rebase command; simply type -i after
the rebase command. The letter i here stands for interactive. This rebase-interactive
syntax is as follows:

Figure 3.102: Git rebase -I

Standard Vs Interactive Rebase
Standard and Interactive are the two distinct Git rebase modes:

In standard mode, Git rebase automatically collects commits from your active
working branch and applies them to the passed branch's head.

On the other hand, instead of simply gathering everything and dumping it into the
passed branch, Git's interactive rebase mode allows you to change specific commits
as the process progresses. You can edit the history and remove, divide, or change
previous commits if you use interactive mode.

Merge Vs Rebase
When to use the merge command and rebase is a frequently asked question among
Git users. Both commands are similar since they merge changes from various
branches of a repository.

Rebasing is not encouraged on a shared branch because it results in inconsistent
repositories. Individuals may find that rebasing is more beneficial than merging. If
you want to see the entire history, utilize the merge. Merge keeps track of all previous
commits, whereas rebase creates a new one.

Another important point one should keep in mind is that merge can be used with both
public and private branches, while rebase is not done ideally over public branches.
During the process, merge preserves the Git history, while rebase re-writes it.

Reset
The Git reset command is a powerful and flexible tool for reverting changes. The
commit tree (HEAD), the staging index, and the working directory are Git's three
internal state management mechanisms.

Figure 3.103: Git reset

Git Branching, Merging, and Rebasing ■ 97

Options:

git reset [-q] [<tree-ish>] [—] <pathspec>...
git reset [-q] [--pathspec-from-file=<file> [--pathspec-file-nul]] [<tree-ish>]
git reset (--patch | -p) [<tree-ish>] [—] [<pathspec>..
git reset [--soft | --mixed [-N] | --hard | --merge | —keep] [-q] [<commit>]

Figure 3.104: Git reset options

There are three primary ways to invoke the git reset command:

• --hard

• --mixed

• --soft

Git is a tool that restores HEAD's state to a predetermined state. For Git, it serves as
a time machine. You can hop back and forth among different commits. The specific
trees that Git uses to manage your file's content are affected by each of these reset
modifications. Git reset can also work on complete commit objects or on a file-by-file
basis.

Each of these reset changes has an impact on the specific trees that git uses to manage
your file and its contents.

Tag
Git Tags highlight a particular period in Git history. A commit stage can be marked
as relevant by using tags. It is mostly used to indicate the starting point of a project.
A commit can be tagged for later use.

Like branches, once launched, tags do not alter. Any number of tags can be placed
on a single branch or several branches.

A tag is analogous to a branch that never changes. On the other hand, Tags, unlike
branches, have no history of commits after being created.

98 ■ Git Repository Management in 30 Days

There are numerous branches in the following figure. In the repository, each of these
versions has a tag.

Figure 3.105: Git Tag - 1

Options:

Git Tag options:

git tag [-a | -s | -u <keyid>] [-f] [-m <msg> | -F <file>] [-e]
<tagname> [<commit> | <object>]

git tag -d <tagname>...
git tag [-n[<num>]] -1 [—contains <commit>] [—no-contains <commit>]

[--points-at <object>] [--column[=<options>] | --no-column]
[—create-reflog] [—sort=<key>] [—format=<format>]
[—merged <commit>] [—no-merged <commit>] [<pattern>...]

git tag -v [—format=<format>] <tagname>...

Figure 3.106: Git tag options

Two types of available Git Tags are:

• Annotated tag

• Light-weighted tag

These two tags are comparable, but they differ in terms of the number of stored
Metadata.

The recommended strategy is to treat Lightweight tags as private and Annotated
tags as public. Extra meta data is kept in annotated tags, such as the tagger's name,
email address, and date.

Git Branching, Merging, and Rebasing ■ 99

For a public release, this information is crucial. Lightweight tags, which are basically
"bookmarks" on a commit, are excellent for building rapid links to pertinent commits
because they only provide a name and a hyperlink to the commit.

• Creating a Light-Weighted Tag

Lightweight tags serve the purpose of designating a location in the repository.
It is often a commit that is kept in a file. To keep it lightweight, it does not
save extraneous data.

In a light-weighted tag, a command-line option like -a, -s, or -m is not
provided; instead, a tag name is passed like:

Figure 3.107: Git Lightweight Tag

To tag the Git_101 project as 1.0.0, we can use the following lightweight
syntax:

Figure 3.108: Git Lightweight Tag example

Once the tagging is successful, the user can check the tag via git show
command:

-» Git_101 git: (main) git tag 1.0.0
•+ Git_101 git: (main) git show 1.0.0
commit fdad70b728f67241fd97ae498d270f4febla61bl (HEAD -> main, tag: 1.0.0, origin/main, origin/HEAD)
Merge: efd4ea4 cdb75e0
Author: Sumit Jaiswal <justjais@gmail.com>
Date: Mon Jun 27 14:48:16 2022 +0530

Merge pull request #2 from justjais/test_workPR

Adding text to pull_101 readme file

Figure 3.109: Git show Tag example

• Creating an Annotated tag

Annotated tags provide supplementary Metadata like the name of the
developer, their email address, the date, and more. They are kept in the Git
database as a collection of objects.

It is advised to create an annotated tag if you are pointing and storing a final
version of any project. However, you can construct a lightweight tag if you

mailto:justjais@gmail.com

100 ■ Git Repository Management in 30 Days

only want to make a temporary mark or do not want to disclose information.
For the project to be released to the public, the information given in annotated
tags is crucial.

There are other choices for annotation, such as the ability to add a message
for the project. To create the annotated tag, we use the following syntax:

Figure 3.110: Git Annotated Tag

Users can tag the project stating the message and verify if the project is tagged
successfully using the git show command:

■* Git_101 git: (main) git tag 1.1.0 -m "Tagging to mark 1.1.0 release"
-» Git_101 git: (main) git show 1.0.0
tag 1.1.0
Tagger: Sumit Jaiswal <sjaiswal@redhat.com?
Date: Thu Dec 1 12:10:25 2022 +0530

Tagging to mark 1.1.0 release
commit fdad70b728f67241fd97ae498d270f4febla61bl (HEAD -> main, tag: 1.1.0, tag: 1.0.0, origin/main,
or i gin / HEAD)

Merge: efd4ea4 cdb75e0
Author: Sumit Jaiswal <justjais@gmail.com?
Date: Mon Jun 27 14:48:16 2022 +0530

Merge pull request #2 from justjais/test_workPR

Adding text to pull 101 readme file

Figure 3.111 : Git Annotated Tag working example

• List Tags
The most popular choice for listing all the repository's accessible tags is via
git tag command:

■ git:(main) git tag
1.0.0
1.1.0

Figure 3.112 : Git Tag example

• Git Push Tag
Tags can be pushed to a GitHub server project. Other team members will
benefit from knowing where to choose an update.

On a GitHub server account, it will appear as a release point. The git
push command makes it easy to push tags by providing a few particular
arguments.

mailto:sjaiswal@redhat.com
mailto:justjais@gmail.com

Git Branching, Merging, and Rebasing ■ 101

• Git push origin

To push any particular tag by using the git push command, we can use the
following syntax:

git push origin <tagname>

Figure 3.113 : Git push origin Tag

• Git Delete Tag

A tag can always be removed from the repository using Git. Use the command
listed below to delete an existing tag:

git push —d <tagname> # or,
git push --delete <tagname>

Figure 3.114 : Git delete Tag

We can also delete multiple tags using the following command:

Figure 3.115: Git delete multiple Tag

In conclusion, tagging is an extra method to take a snapshot of a Git repository.
Tags are the semantic version numbers that serve as identifying tags and correlate
to software release cycles. Creation, modification, and deletion of tags are primarily
controlled by the Git tag command.

Annotated and lightweight tags are the two different categories. Annotated tags are
often preferable since they hold more useful meta-information about the tag. The
Git commands, git push and git checkout were also addressed in this chapter.

102 ■ Git Repository Management in 30 Days

To collaborate over repository
Git collaboration is done via available Git commands: Fetch, Pull, and Push as shown
in the following figure:

Figure 3.116: Git collaboration Fetch, Pull, Push

fetch
This command downloads the objects and refs. (A Git reference (git ref) is a file that
contains a Git commit SHA-1 hash) From another Git repository, Git "fetch" is a
command that downloads commit, objects, and references from another repository.
It pulls tags and branches from one or more repositories.

It contains repositories as well as the objects required to complete their histories to
keep remote-tracking branches up to date.

Figure 3.117: Git fetch

Git Branching, Merging, and Rebasing ■ 103

Options:

git fetch [<options>] [<repository> [<refspec>...]]
git fetch [<options>] <group>
git fetch —multiple [<options>] [(<repository> | <group>)...]
git fetch —all [<options>]

Figure 3.118 : Git fetch CLI options

The update from remote-tracking branches is pulled using the git fetch command.
We may also download updates that have been pushed to our remote branches onto
our local development machine.

As we all know, a branch is a subset of our repository's core code. Thus, remote­
tracking branches are those that have been configured to pull and push from a
remote repository.

Git fetch remote repository:
We can use the fetch command to get the whole repository from a repository URL,
just like we can with the pull command.

git fetch depository URL>

Figure 3.119 : Git fetch syntax

Run output:

-» Git_101 git: (main) git fetch https://github.com/justjais/Git_101.git
From https://github.com/justjais/Git_101

* branch HEAD -> FETCH_HEAD

Figure 3.120 : Git fetch output

The entire repository was retrieved from a remote URL in the above result, as the
main branch is already up to date, fetch command did not update the local repository.

Git fetch specific branch:
From a repository, we may retrieve a specific branch. It will only use a certain branch
to access the element. Take a look at the following output:

git fetch Cbranch URL> Cbranch name>

Figure 3.121: Git fetch over specific branch

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101

104 ■ Git Repository Management in 30 Days

Run output:

■+ Git_101 git: (main) git fetch https://github.com/justjais/Git_101.git devjbranch
remote: Enumerating objects: 34, done.
remote: Counting objects: 100% (34/34), done.
remote: Compressing objects: 100% (15/15), done.
remote: Total 19 (delta 13), reused 7 (delta 4), pack-reused 0
Unpacking objects: 100% (19/19), 3.37 KiB | 93.00 KiB/s, done.
From https://github.com/justjais/Git_101.git

* branch HEAD -> FETCH_HEAD

Figure 3.122: Git fetch output over specific branch output

The specific branch dev_branch in the report has fetched data from a remote URL.

Git fetch all branch:

The Git fetch command allows you to get all branches from a remote repository at
the same time.

Figure 3.123: Git fetch all

Run output:

■+ Git_101 git: (main) git fetch —all
Fetching origin
remote: Enumerating objects: 1, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 1 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (1/1), 625 bytes | 312.00 KiB/s, done.
From https://github.com/justjais/Git_101

6c30e21..9alb8ff main -> origin/main

Figure 3.124: Git fetch all output

All the branches have been fetched from the Git_101 repository.

Git fetch to synchronize local repository

Assume that a member of your team has merged some new functionality to your
remote repository.

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101

Git Branching, Merging, and Rebasing ■ 105

Use the git fetch command to add these updates to your local repository. The
following fetch command help update your local repository with remote branch
changes and updates.

Figure 3.125: Git fetch origin

Run output:

■+ Git_101 git: (main) git fetch —all
remote: Enumerating objects: 34, done,
remote: Counting objects: 100% (34/34), done,
remote: Compressing objects: 100% (15/15), done,
remote: Total 19 (delta 13), reused 7 (delta 4), pack-reused 0
Unpacking objects: 100% (19/19), 3.37 KiB | 93.00 KiB/s, done.
From https://github.com/justjais/Git_101

46b06f9..433bc48 main -> origin/main
* [new branch] dev_branch -> origin/dev_branch

Figure 3.126: Git fetch output

New features of the remote repository have been updated to my local system in the
presented output. The branch dev_branch and associated objects are added to the
local repository in this output. Git fetch can retrieve from a single named repository
or URL, or many repositories at the same time.

It is possible to think of it as a safe version of the git pull commands. The git
fetch command downloads the remote material but does not change the working
state of your local repo. It will fetch the origin remote by default if no remote server
is provided.

Pull
The git pull command downloads and merges changes from a remote repository
into the local repository.

Git pull is a command that combines the commands git fetch and git merge.
When receiving data from GitHub, the word "pull" is used. It gets changed from

https://github.com/justjais/Git_101

106 ■ Git Repository Management in 30 Days

the remote server and merges them into your local working directory. To pull a
repository, use the git pull command.

Local Repository

Figure 3.127: Git Pull request

A pull request is a way for the developer to update the rest of the team that they have
completed a feature.

The developer submits a pull request using their remote server account once their
feature branch is complete. The pull request informs all team members that they
must evaluate and integrate the work into the master branch.

The following figure shows how pull works across different places and how it differs
from other related operations:

Figure 3.128: Git Pull request example view

Git Branching, Merging, and Rebasing ■ 107

Push
The Git push command syncs the contents of the local and remote repositories.

The opposite of fetching is pushing. Git push exports the material to the remote
branches, whereas git fetch imports it to the local branches.

The term “push” refers to the process of copying material from a local repository to
a distant repository.

The act of pushing commits from your local repository to a remote repository is
known as pushing. Pushing has the potential to overwrite modifications; care should
be exercised when pushing.

Figure 3.129: Git Push

Options :

Pushing into the repository is done with the git push command. Push may be
thought of as a mechanism for transferring commits between local and remote
repositories.

Figure 3.130: Git Push options

• --all

When used, this will push refs for all branches.

• --prune

It gets rid of remote branches that do not have a local equivalent.

108 ■ Git Repository Management in 30 Days

This means that if a remote branch, such as a dev_branch, does not exist
locally, it will be deleted.

• --force

Even if the result is a non-fast-forward merging, the push is forced. Before
using the, --force option make sure none have pulled the commits.

• --mirror

It is used to replicate the repository to a remote location. Local references
that have been updated or generated will be pushed to the remote end. On
the remote end, it may be forced to update.

The remote end will be cleared of the deleted references.

• --dry-run

The commands are being tested by Dry Run. All this is done except for the
repository original update.

• --tags

To push all local tags.

• --delete

It deletes the specified remote branch.

Git push origin main:

Git push origin main is a command-line method that allows you to specify a remote
branch and directory. This command aids you in selecting your primary branch and
repository when you have several branches and directories.

The word origin often refers to the remote repository, whereas main is the primary
branch. As a result, the complete command git push origin main moves the local
content to the remote location's main branch.

Figure 3.131: Git Push origin

Let us understand this via working scenario. We will first verify the branch status
using git status command to check if repository status is clean and then make
update in repository content.

Git Branching, Merging, and Rebasing ■ 109

-» Git_101 git: (main) git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

Figure 3.132 : Git status check

Once verified that branch has no pending changes, we can move to the step where
we can modify the file or do required changes in repository content.

■» Git_101 git: (main) mv learn_git.txt temp
■» Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main'.
Changes not staged for commit:

(use "git add/rm <file>..to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

deleted: learn_git.txt
Untracked files:

(use "git add <file>..to include in what will be committed)
temp/learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 3.133 : Git status check

Here, we will move the learn_git.txt file to temp folder and once done we can
verify the same using git status command which confirms the expected change.

-» Git_101 git: (main) X git add .
-» Git_101 git: (main) X git commit
[main blb4cca] move file dir
1 file changed, 0 insertions(+), 0 deletions(-)
rename learn_git.txt => tempZlearn_git.txt (100%)

L___ i

Figure 3.134 : Git commit

Now, as we want to commit the changes to the remote repository, we will use git
add . which stages multiple files in one step. We are trying to make two changes
in this scenario, moving the file from one directory to another and removing the file
from the existing directory. We can now simply commit to the changes.

110 ■ Git Repository Management in 30 Days

In the local repository, the file is moved to the new directory and is completely
tracked. We can now push it to origin main as:

-» Git_101 git: (main) git push origin main
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 388 bytes | 388.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/justjais/Git_101.git

febe99d..blb4cca main -> main

Figure 3.135 : Git push origin

Git force push :

You can use Git force push to push a local repository to a remote server without
dealing with conflicts.

git push <remote branch> -f
or, git push <remote branch> —force

Figure 3.136 : Git push --force

The -f suffix is used to abbreviate the word force. The branch may be of any branch
name, and the remote can be any remote site like GitHub, Subversion, or any other
git service. We may use git push origin main -f as an example.

Both the remote and the branch can be omitted.

When both the remote and the branch are missing, the default action is decided by
the git config variable push.default.

Figure 3.137: Git push --force

Forcing a repository to be pushed has several effects, one of which is that it may
replace work that you wish to preserve. If there are fresh commits on the remote that
you did not expect, the force pushing with a lease option can cause the push to fail.

If we think of it in terms of Git, we can argue that if the remote includes untracked
commits, it will fail.

https://github.com/justjais/Git_101.git

Git Branching, Merging, and Rebasing ■ 111

git push <remote branch> --force-with-lease

Figure 3.138: Git push -force-with-lease

Conclusion
This is the end of this chapter and the contents we discussed in this chapter are the
building block and soul of the Git version control system. The more fluent you get
will all the discussed terms and their respective usages and application, the efficient
you will become in using Git and GitHub.

In the next chapter, we will continue to build on the knowledge we gained in this
chapter and discuss a few of the Git concepts in more depth.

Multiple choice questions
1. How to delete git branch locally?

a. git push --force

b. git push origin -delete <branch name>

c. git branch -D <branch name>

d. git pull origin <branch name>

2. Choose the correct syntax for Git force push which fails when there are
untracked commits?

a. git push --force

b. git push -force-with-lease

c. git push origin -delete <branch name>

d. git branch -D <branch name>

3. Git command to move files from the working tree and from the index?

a. delete

b. push

c. rm

d. mv

112 ■ Git Repository Management in 30 Days

4. Git command to switch between two git branches?

a. rebase

b. switch

c. merge

d. init

5. Git downloads remote git repo locally.

a. Init

b. clone

c. pull

d. mv

6. Git collaborate commands?

a. Bisect, Diff, Log

b. Add, Remove, Restore

c. Fetch, Pull, Push

d. Merge, Commit, Rebase

Answers
1. c

2. b

3. d

4. b

5. b

6. c

Key terms
• Start a working area

o init

o clone

• Work on the current change:

o add

Git Branching, Merging, and Rebasing ■ 113

o mv

o restore

o rm

o sparse-checkout

• Examine the history and state of the repository:

o bisect

o diff

o grep

o log

o show

o status

• Grow, mark and tweak your repo history:

o branch

o commit

o merge

o rebase

o reset

o switch

o tag

• Collaborate over repository:

o fetch

o pull

o push

Points to remember
• Git is a version control system of type Distributed version control system.

• Git and GitHub are two different entity which work hand-in-hand to give
way to a centralized development process.

• Default branch of a GitHub repo is “main” and all the Pull request/PR that
gets merged to GitHub repo gets merged too “main” branch.

114 ■ Git Repository Management in 30 Days

Further reading
For more history and reference around the discussed topics in this chapter,
you can check out the Git official documentation for getting started and GitHub
documentation:

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 4

Deleting,
Renaming, and

Ignoring Files in Git

Now, that you have GIT and GitHub up and running on your system let us
understand why Git and GitHub are required. We will also understand its
importance and relevance when it comes to open-source way of development or

development across teams and location in general.

This chapter is divided into sub-topics which are inter-related and follows a flow
which makes it easier for the readers to grasp on to the background and concept
in an informative and simpler way. This chapter builds on what we learned in
the previous chapter and allows you to make a final decision before pushing and
committing changes to source control.

Structure
In this chapter, we will cover the following topics:

• Delete the Git file

• Git rm cached

• Git rename files

• Git branching

• Ignoring the files using .gitignore

• Git commit : save the staged changes

116 ■ Git Repository Management in 30 Days

Objectives
This chapter builds on the process of committing changes to the GitHub repo that
may entail renaming, deleting, or ignoring files in the project. All these ideas will be
covered in full in this chapter.

This chapter assumes that you are up and running with Git on your Linux, Windows,
or Mac machines. The examples in this chapter were run on a Mac, but they should
work similarly on a Linux or Windows machine.

Delete the Git file
The term rm stands for remove in Git. It is used to delete a single or a group of files.
Git rm’s primary job is to delete tracked files from the Git index. It can also be used
to delete files from the working directory as well as the staging index. An illustration
of Git delete can be seen in the following figure:

Figure 4.1: Git Delete

The files that are being removed must be appropriate for the branch. In the index,
no changes to their content can be staged. Otherwise, the removal process can be
difficult, and it may not occur at all. However, the -f option can be used to force it.

Options
Git delete command line options are as follows:

git rm [-f | —force] [-n] [-r] [—cached] [—ignore-unmatch]
[—quiet] [--pathspec-from-file=<file> [—pathspec-file-nul]]
[—] [<pathspec>...]

Figure 4.2: Git Delete command line options

We will be discussing the most used Git rm options as follows:

• -f, - -force

Deleting, Renaming, and Ignoring Files in Git ■ 117

Git’s safety check to ensure that the files in HEAD match the current content
in the staging index and working directory is overridden using the -f option.

• -n, --dry-run

The dry run option provides a safety net that runs the git rm command
but does not remove the files. Simply put, it will display the files that would
have been deleted.

• -r

When using git rm in recursive mode, it will remove a target directory and
all of its contents. When a leading directory name is specified, -r tag allows
recursive removal.

• --cached

The cached option specifies that only the staging index should be removed.
The files in the working directory will be left alone even if modified.

• --ignore-unmatch

Even if no files were found, this command will terminate with a 0 sigterm unix
status. The value 0 indicates that the command was successfully executed.

When using git rm as part of a larger shell script that needs to fail gracefully,
the -ignore-unmatch option can be very useful.

• -q, --quiet

For each file removed, git rm usually prints one line (in the form of a rm
command). This setting disables the output.

Examples
It is easy to remove files from our repository; simply delete them and commit.

learn_git.txt, temp_1.txt, temp_2.txt, rm_temp.txt are the four files in the
repository.

- » Git_101 git: (main) Is temp
__init__ .py learn_git.txt rm_temp.txt temp_l.txt temp_2.txt
- » Git_101 git: (main)
- » Git_101 git: (main) git status
On branch main
Your branch is up to date with 'origin/main1.

nothing to commit, working tree clean
■ » Git_101 git: (main)

Figure 4.3: Git status check

118 ■ Git Repository Management in 30 Days

Now, we want to delete the rm_temp.txt file from temp directory:

- » Git_101 git: (main) Is temp
 __ init__ .py learn_git.txt rm_temp.txt temp_l.txt temp_2.txt

-> Git_101 git: (main) git rm rm_temp.txt
rm 'temp/rm_temp.txt1

-* Git_101 git: (main) X git status
Your branch is up to date with 1origin/main1.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

deleted: rm_temp.txt

Figure 4.4 : Git status once file is deleted

However, the rm_temp file is still there in our repository:

-» Git 101 git: (main) git commit -am "rm temp deleted"

[main 7a4caa8] rm_temp deleted
1 file changed, 19 deletions(-)
delete mode 100644 rm temp.txt

Figure 4.5 : Git commit the changes with message

It is no longer there, and the rm_temp has been deleted.

So, deleting a file from a repository is as simple as deleting and committing.

Git rm cached
At times, you may want to remove files from Git but keep them in your local
repository. In other words, you do not want your file to be shared on Git.

Git allows you to do so. The cached option is used in this scenario.

It specifies that the removal will only affect the staging index and not the repository.
Let us say we wish to remove a file from Git. We will use the git rm command with
the cached option to remove rm_temp.txt.

The file will be deleted from the version control system but can still be tracked in
the repository using the appropriate command. It can also be added to the version
control system again. Use the status command to check the file's status:

Deleting, Renaming, and Ignoring Files in Git ■ 119

-» Git 101 git: (main) git rm —cached rm temp.txt

rm rm temp. txt

■+ Git_101 git: (main) git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

deleted: rm_temp.txt

Untracked files:

(use "git add <file>...” to include in what will be committed)

rm_temp.txt

Figure 4.6 : Git rm cache

The rm_temp.txt file is erased from the repository/version control system, but may
be tracked in the repository, as seen in the above report.

Undo before Commit command
The git rm command is not permanent and can be undone after it has been run.
The most common and straightforward method to do so is to use the git reset
command.

These changes will not be saved until the repository is updated with a new commit.

The following is how the git reset command will be used:

■* Git_101 git: (main) git reset HEAD

or,

-» Git_101 git: (main) git reset —hard

Figure 4.7 : Git reset

The above instruction will return the head to its original position.

120 ■ Git Repository Management in 30 Days

As a result, it will revert to its prior position. Consider the following result:

- » Git 101 git: (main) X git reset HEAD
- » Git_101 git: (main) git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean
- » Git_101 git: (main)

Figure 4.8 : Git reset status

Only the current branch is affected by git rm. The working directory and staging
index trees are the only ones that get removed. Until a new commit is made, it is not
saved in the repository history.

The following tables shows the difference between git revert and git reset:

git revert git reset
This command is used to create a fresh commit
that undoes the prior commit's changes.

This command is used to undo any
modifications made locally in the git
repository.

Using this command adds a new history to
the project without modifying the existing
history.

This command operates on the commit
history, git index, and the working
directory.

Table 4.1: Git revert Vs Git reset

Git rename files
There are two ways in which we can rename our files in the git repository which are
as follows:

Method 1
1. In a working folder, rename a file. We would like to rename the temp to

chapter04.

2. First, we rename the file in our working directory as follows:

■» Git_101 git: (main) mv temp.txt chapter04.txt
■» Git_101 git: (main) Is
chapter01.txt chapter02.txt chapter03.txt chapter04.txt

Figure 4.9: Git rename files - 01

Deleting, Renaming, and Ignoring Files in Git ■ 121

3. With the above changes done, we can check the repository status using the
git status command:

-» Git_101 git: (main) X gil status
On branch main
Changes not staged for commit:

(use "git add/rm ..." to update what will be committed)
(use "git checkout — ..." to discard changes in working directory)

deleted: temp.txt

Untracked files:
(use "git add ..." to include in what will be committed)

chaptered.txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 4.10 : Git rename files - 02

4. The git believes that temp.txt has been removed and that chapter04.txt
has been inserted.

5. On the repo, we should now remove temp.txt and add chapter04.txt:

-» Git_101 git: (main) X gii rm temp.txt
rm 'temp.text'
-» Git_101 git: (main) X gii add chapter04.txt

Figure 4.11 : Git rename files - 03

6. Check the status again, and you will see that Git has figured out that all we
did was rename the file!

-> Git_101 git: (main) X gii status
On branch main
Changes to be committed:

(use "git reset HEAD ..." to unstage)

renamed: temp.txt -> chapter04.txt

Figure 4.12 : Git rename files - 04

122 ■ Git Repository Management in 30 Days

7. Now, we can commit the changes to the repository as:

■» Git_101 git: (main) X git commit -m "renamed temp to chapter04"
[main edlm7f8] renamed temp as chapter04
1 file changed, 0 insertions(+), 0 deletions(-)
rename temp.txt => chapter04.txt (100%)

Figure 4.13 : Git rename files - 05

Method 2
Another way of renaming the file is using git mv command, as:

■» Git_101 git: (main) git mv temp.txt chapter04.txt

Figure 4.14 : Git rename files - 06

Now when we check the status again, Git understands that we have renamed it:

-» Git_101 git: (main) X git status
On branch main
Changes to be committed:

(use "git reset head ..." to unstage)

renamed: temp.txt -> chapter04.txt

Figure 4.15 : Git rename files - 07

We can now just commit the changes with the commit message and check the status
to verify if the commit is done as expected.

- > Git_101 git: (main) X git commit -m "renamed temp to chapter04"
[main edlm?q4] temp->chapter04
1 file changed, 0 insertions (+), 0 deletions(-)
rename temp.txt => chapter04.txt (100%)

- » Git_101 git: (main)
- > Git_101 git: (main) git status
On branch main
nothing to commit, working directory clean

Figure 4.16: Git rename files - 08

Deleting, Renaming, and Ignoring Files in Git ■ 123

Git branching
Git branches are an essential element of any developer's workflow. Branches are
a reference to a snapshot of the Git changes you have made. Branching can help
tidy up the history of changes made before combining/merging them into the main
branch. Branches represent a single development item and can be used to request a
new working directory, staging area, or project history.

The segregation of development for different features in different branches allows
you to work on them simultaneously, while keeping the main branch free of
problematic code.

The git branch command creates, lists, and deletes branches, but does not allow you
to switch between them or reassemble a splintered history.

Local vs remote Git branch
A local branch is a snapshot that exists on the developer's system. Only the local
user has access to it. A remote branch is a branch that is located at a remote location
which can be accessed by multiple users. A locally cached copy of a remote branch
is referred to as a remote tracking branch.

The git push command with the -u option can be used to push a newly made
branch to a remote repository. This will establish a remote tracking branch on your
machine.

Using the git fetch or git pull commands, update and sync the remote-tracking
branch with the remote branch.

Using the git fetch/git merge or git pull commands, update and sync the
local remote-tracking branch with the remote branch.

A local tracking branch tracks another branch locally. The majority of local tracking
branches follow a remote-tracking branch.

When using git push -u to push a local branch to the origin, the local branch
<NewBranch> follows the remote-tracking branch <origin/NewBranch>.

When working on a project with a team, it is important to rename or remote branches
in Git.

124 ■ Git Repository Management in 30 Days

Let us now rename a local branch:

1. Use the git branch command with the -m option to rename the local branch
to the new name as:

■+ Git_101 git: (main) git branch -m <old-name> <new-name>

2.

Figure 4.17: Git branch syntax

Use the following command to delete the old branch on remote (assuming
the remote name is origin, which is by default):

Git_101 git: (main) git push origin —delete <old-name>

Figure 4.18: Git delete old branch - 01

3. Alternatively, you can speed up the process of deleting the remote branch by
doing something like this:

Figure 4.19: Git delete old branch - 02

4. Now, we have to push the new name of the repost that we want to update:

Figure 4.20: Git push the new name

5. Use the -u parameter with the git push command to reset the upstream
branch for the

new-name local branch:

-» Git_101 git: (main) git push origin -u <new-name>

Figure 4.21: Upstream new name via Git push

Deleting, Renaming, and Ignoring Files in Git ■ 125

Working of Git commit
The local repository is where Git snapshots are committed.

Git allows you to collect commits in a local repository rather than making a change
and instantly committing it to the central repository. Splitting a feature across
commits, grouping similar commits, and cleaning up local history before committing
it to the central repository all have their advantages.

This also allows the developers to work in a private environment.

Ignoring the files using .gitignore
A .gitignore file indicates which files Git should ignore since they are intentionally
untracked.

Git's file system is divided into three categories:

• Tracked: Tracked files are the files that have been previously staged or
committed.

• Untracked: Untracked files are the files that have not been previously staged
or committed.

Ignored: Ignored files are those that git has decided to ignore.

Figure 4.22: Git ignore

User may not always wish to send files to a remote repository over GitHub. In Git,
we can select which files to ignore. We must instruct Git to disregard those files.

Ignored files are usually remnants and machine-generated files. These files should
not be committed unless they are derived from your repository source.

The following are some files that are frequently overlooked:

• Runtime files like log, lock, cache, or temporary files.

126 ■ Git Repository Management in 30 Days

• Files with sensitive information, such as passwords or API keys.

• Compiled code, like file extension of .o, .pyc, and .class files.

• Build output directories, like: /bin, /out, or /target.

• Files generated at runtime, like: .log, .lock, or .tmp.

• Development IDE config files, like: .idea/workspace.xml.

• Hidden system files, like: .DS_Store or Thumbs.db

You can tell Git which files and directories to ignore when you commit by placing a
.gitignore file in the root directory of your project.

Commit the .gitignore file to your repository to share the ignore rules with other
users that clone it.

The .gitignore files
Git ignore files is a file or a folder that contains all of the files we want to ignore. Files
that are not needed to complete the project are ignored by the developers. Many
ignored files are created by Git itself and are almost always hidden. You can specify
the ignore files in a variety of ways.

A .gitignore file in the repository's root folder can be used to keep track of the files
that are ignored. To disregard a file, there is no specific command. When you have
new files that you want to ignore, you must manually change and commit the + file.

There is no explicit git ignore command; instead, anytime you have new files to
ignore, you must change and commit the .gitignore file manually.

Patterns in the .gitignore files are compared against file names in your repository
to decide whether they should be ignored or not.

The .gitignore patterns, that is, file structure
Each line of the .gitignore file contains a pattern for which files or folders should be
ignored. It matches filenames with wildcard characters using globbing patterns.

If you have files or folders that include a wildcard pattern, you can escape the
character with a single backslash (\).

• Comments
Comments are lines that begin with a hash mark (#) and are disregarded.
Empty lines can be used to improve the file's readability and to group
relevant pattern lines.

Deleting, Renaming, and Ignoring Files in Git ■ 127

• Slash
A directory separator is represented by the slash symbol (/). The slash at the
start of a pattern refers to the directory where the .gitignore file is located.
If the pattern begins with a slash, it only matches files and directories in the
repository's root directory.
The pattern matches files and folders in any directory or subdirectory if it
does not begin with a slash. When a pattern ends in a slash, it only matches
directories.
All files and subdirectories in a directory are disregarded when it is ignored.

• Literal file names
A literal file name with no special characters is the most straightforward
pattern as shown in the following table:

Table 4.2: Literal file name

Pattern Example matches
/access.log access.log
access.log access.log

logs/access.log
var/logs/access.log

build/ build

• Wildcard symbols
(*) - The asterisk symbol matches zero or more characters as shown in the
following table: (**)

(**) - Two adjacent asterisk icons denote any file or zero or more folders.

Table 4.3: Wildcard symbols - 01

Pattern Example matches
*.log error.log

logs/debug.log
build/logs/error.log

128 ■ Git Repository Management in 30 Days

It only matches directories when preceded by a slash (/) as shown in the
following table:

Table 4.4: Wildcard symbols - 02

Pattern Example matches
logs/** Matches anything inside the

log's directory.
**/build var/build

/build
build

foo/**/bar foo/bar
foo/*/bar

(?) - The question mark matches any single character.

Pattern Example matches
access?.log access0.log

access0_1.log
accessABC.log

temp?? temp0

temp0_1

tempABC
foo/**/bar foo/bar

foo/*/bar

Table 4.5: Wildcard symbols - 03

• Negating patterns

Any file that was ignored by the previous pattern is negated (re-included)
by a pattern that starts with an exclamation mark (!).

The only exception is the re-inclusion of a file if its parent directory is
excluded.

Table 4.6: Negating Pattern table

Pattern Example matches
*.log
!error.log

Files which will not be ignored: error.log
or logs/error.log

Deleting, Renaming, and Ignoring Files in Git ■ 129

.gitignore sample
Following files are considered as .gitignore files:

Byte-compiled / optimized / DLL files
__ pycache__ /
* .py[cod]
*$py.class
Ignore the node_modules directory
nodejnodules/
Ignore Logs
logs
* . log
Ignore the build directory
/dist
/temp*
The file containing environment variables
. env
Ignore IDE specific files
.idea/
.vscode/
* . sw*

Figure 4.23: Git ignore files

Global .gitignore
We have already established that a project can contain multiple .gitignore
files. However, Git enables us to create a global .gitignore file that can be used
throughout the project. Run the following command on the terminal to generate a
global .gitignore:

Figure 4.24: Git ignore global

Global ignore rules are very handy for disregarding specific files that you never
want to commit, such as sensitive data files or compiled executables.

Ignoring a previously committed file
You have a file called bug_fix_sample.py in your Git repository that you previously
required but is not needed anymore, since you have changed the design of the
implementation. Now, the fix is more efficient and passes all the required test cases
as well.

130 ■ Git Repository Management in 30 Days

Adding a file to the .gitignore file is an excellent approach to ignore untracked
files, but you may override this by using git add -f on the file to force its inclusion
in the index.

But how can you get Git to ignore committed files and stop them from showing up
as available to commit every time you make a change?

Solution to the issue is putting the file to .gitignore:

• To begin, add the file to your .gitignore file

• The file will be removed from the index as a result of this action

(Specified by the --cached parameter). This also deletes it, but not from your hard
drive:

git rm —cached sample/bug_fix_sample.py

Figure 4.25: Git ignore committed files

• Using the following command will delete all files in the specified folder:

Figure 4.26: Delete files from folder

• If you want to verify the changes beforehand you can run the above command
with --dry-run tag as:

git rm --dry-run -r --cached sample

Figure 4.27: Git rm dryrun command

• Continue to make changes to other files and commit.

The ignored file will remain on your hard drive and will be ignored in the future:

Figure 4.28: Git commit ignored changes

Deleting, Renaming, and Ignoring Files in Git ■ 131

Stashing an ignored file
Git stash is a useful Git tool for temporarily stacking and undoing local changes
so that you can apply them again later. As you might expect, by default, git stash
ignores ignored files and only stores changes to Git-tracked files.

You can use the --all option with git stash to save changes to ignored and untracked
files as well.

Debugging .gitignore File
At times it can be difficult to figure out why a file is being ignored, especially if you
are working with multiple .gitignore files or complex patterns.

The git check-ignore tool with the -v option, that allows Git to display details
about the matching pattern, is useful in this situation.

For example, to check why the /temp folder is ignored you would run:

Figure 4.29: Verify ignored files - 01

In the path to the .gitignore file, the number of the matching line, and the actual
pattern are all displayed in the output:

Figure 4.30: Verify ignored files - 02

To get all of the ignored files, the --ignored option is used with git status
command:

Figure 4.31: Check all the ignored files

You can use the .gitignore file to prevent files from being checked into the
repository. The file contains globbing patterns that advise you which files and
directories to ignore.

132 ■ Git Repository Management in 30 Days

Git commit: save the staged changes
The git commit command saves all of the projects presently staged changes.
Commits are used to document a project's current state. Git asks before modifying
committed snapshots, so they are regarded as safe versions of a project.

The git commit command takes a snapshot of the current state of the project's
changes. Committed snapshots are "secure" versions of a project that Git will never
modify unless you specifically request it to. The git adds command used to promote
or 'stage' changes to the project that will be saved in a commit before running the
git commit.

In Git, when we add a file, it goes into the staging area. To fetch updates from the
staging area to the repository, use the commit command. The staging and committing
processes are intertwined. Staging allows us to continue making changes to the
repository and committing allows us to record these changes in the version control
system when we want to share them.

Git add is used before running git commit promoting changes to the project,
which will then be saved in a commit. Git commit and git add are two of the most
frequently used commands.

Commits are the project's snapshots. Every commit is saved in the repository's
master branch. We can undo the commits or go back to an earlier version. Since each
commit has its commit-id, two separate commits will never overwrite each other.

The Secure Hash Algorithm (SHA) algorithm generates this commit-id, which is a
cryptographic number.

How Git commits differs from SVNs
A commit in SVN pushes changes from a local SVN client to a centralized shared
SVN repository at a remote location.

Repositories are distributed in Git, Snapshots are committed to the local repository,
and no interaction with other Git repositories are required. Git uses snapshots,
whereas SVN keeps track of file differences. A diff is created and compared to the
original file added to the repository in a svn commit. Every commit in Git saves the
content of all the files. Git takes a snapshot of how the current file looks and saves a
reference to it when committing or saving the project's state. Git does not store a file
again if it has not changed.

Deleting, Renaming, and Ignoring Files in Git ■ 133

Recording File Diff SVN

Figure 4.32: SVN commit Vs Git Commit

Recording Snapshots Git

Git commits can be pushed to any remote repository at any time.

The commit models of SVN and Git are very distinct, but because of the common
terminology, they are sometimes mistaken. If you are switching from SVN to Git,
it is important to understand that commits are cheap in Git and should be utilized
frequently.

Unlike SVN commits, which need a remote request, Git commits are performed
locally with a more efficient algorithm.

By using the same set of settings, the --dry-run option can be used to acquire a
summary of what is included by any of the respective git commit options for the
next commit (options and paths).

Options
Git commit command line options are as follows:

Figure 4.33: Git commit command line options

• -a, --all
Commits a snapshot of the working directory's changes. Only changes to
files that have been tracked are included.

• -m, - -message
Creates a commit using the commit message supplied. By default, git
commit launches the locally configured text editor and prompts you to type
a commit message.

134 ■ Git Repository Management in 30 Days

• --interactive

To add files interactively.

• -n, --no-verify
To bypass pre-commit and commit-msg hooks.

• -am

Creates a commit for all staged changes and takes an inline commit message
by combining the -a and -m arguments.

• --amend

Changes the previous commit. The preceding commit is updated with staged
changes. This command modifies the previously provided commit message
and opens the system's predefined text editor.

• --dry-run

Does not create a commit, instead, displays a list of routes to be committed,
pathways with local modifications that will be left uncommitted, and
untracked paths.

Examples
The git101.txt file with altered content on the current branch is shown in the
following example. To commit the staged snapshot of the file, use the git add
command to stage it first:

Figure 4.34: Git add file

The git101.txt file will be moved to the Git staging area after running git add.

To see the output, run the git status command.

- » Git_101 git: (main) git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
new file: gitl01.txt

Figure 4.35: Git status after adding file

Deleting, Renaming, and Ignoring Files in Git ■ 135

git101. txt will be saved with the next commit, according to the green status. The
commit is made by running the git commit command as:

Figure 4.36: Git commit changes after adding file

If there are multiple files to commit to stage, all the modified/new files, you can add
them to the stage by running the command git add ., and once all the required
files are staged you can commit them as:

Figure 4.37: Git commit

This results into commit window like:

updating two files
Enter the commit message of your changes. Lines that start
with will be ignored, an empty message breaks off the commit.
On branch main
Changes needed to be committed:
(use "git reset HEAD ..." to unstage)
#
modified: gitl01.txt, temp.txt

Figure 4.38: Git commit changes output

Here, you can enter the commit message (example, updating two files) and save the
changes. This will commit the changes to your Git repository.

The first line of the commit message is commonly used as the subject line, similar to
an email. The remainder of the log message is referred to as the body and is used to
provide information about the commit change set. Many developers choose to use
the present tense in their commit messages as well.

This makes them read more like repository actions, making many history-rewriting
processes easier to understand:

Figure 4.39: Git commit update and amend

136 ■ Git Repository Management in 30 Days

A shortcut command for power users that combines the -a and -m parameters. This
combination creates an inline commit message and quickly commits all of the staged
modifications.

Figure 4.40: Git commit amend

The commit command has a new level of functionality with --amend parameter.
Passing this option modifies the previous commit. Staged changes will be applied to
the previous commit rather than creating a new one.

This command will launch the system's preset text editor and prompt you to alter
the commit message you previously specified.

The git commit command is one of Git's most important features. To pick the
modifications that will be staged for the next commit, use the git add command first.

Then, using git commit, a snapshot of the staged changes along a timeline of a Git
project's history is created. On the next page, you may learn more about how to use
git add. The git status command can be used to see how the staging area and
pending commits are doing.

Conclusion
This is the end of this chapter and the contents we discussed in this chapter are the
building block and soul of the Git version control system. The more fluent you get
will all the discussed terms and their respective usages and application, the more
efficient you'll become in using Git and GitHub as well.

In the next chapter, we will continue to build on the knowledge we gained in this
chapter and discuss a few of the GitHub concepts including the best practices for
writing and raising the pull request for any open-source project over GitHub in
more depth.

Multiple choice questions
1. How to amend to git commit?

a. git commit -m

b. git commit -am

c. git commit --amend

d. git add .

Deleting, Renaming, and Ignoring Files in Git ■ 137

2. How to add multiple files to git staged area

a. git commit -m

b. git push --force-with-lease

c. git branch -D <branch name>

d. git add .

3. Command to verify if the file removed using git rm is as expected?

a. git rm

b. git commit

c. git rm --dry-run

d. git status

4. Git command to check the status of files which are staged to the repository?

a. git commit

b. git status

c. git add .

d. git commit --amend

5. How to undo a bad commit that has already been pushed?

a. git add .

b. git rm <filename>

c. git commit

d. git revert <commit name>

6. How to remove the file from git index without actually removing it from
the local file system?

a. git rm

b. git stash

c. git reset

d. git commit

138 ■ Git Repository Management in 30 Days

Answers
1. b

2. d

3. c

4. b

5. d

6. c

Key terms
• Git rename

• Git delete:

o rm

• Gitignore files

• Git commit

• Git revert Vs Git reset

Points to remember
• To avoid making the same error again, instead of using the git rm command,

we can use the git reset command to remove the file from the staged
version and then add it to the .gitignore file.

• To revert a bad commit that is already pushed, a new commit can be created
that reverts changes done in the bad commit. It can be done using git
revert <name of bad commit>.

• It is preferable to create a new commit rather than amend an existing one:

o It is acceptable only if the commit message is changed or destroyed,
but, there may be instances where the contents of the commits are
changed. As a result, vital information linked with the commit is lost.

o Excessive use of git commit --amend can have serious consequences,
since the modest commit amend might grow and accumulate unrelated
modifications over time.

o The command git reset --mixed is used to undo changes to the
working directory and git index.

Deleting, Renaming, and Ignoring Files in Git ■ 139

Further reading
For more history and reference around the discussed topics in this chapter,
you can check out the Git official documentation for getting started and GitHub
documentation:

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-
Started-About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 5

Collaborating
Towards Your/Other
Larger Projects over

GitHub
Now, that you have Git and GitHub up and running on your system, let us

understand why Git and GitHub are required and its importance and relevance
when it comes to open-source way of development or development across teams

and location in general.

This chapter discusses all of the process-related and critical aspects that should
be considered and followed before contributing to an open-source project that is
followed and used by a larger community from all over the world; as well as how this
differs significantly from maintaining and contributing to a single-user repository.

Structure
In this chapter, we will cover the following topics:

• Clone and fork the GitHub repository

• Why forking repository is needed

• Creating a Pull request from forked repository

• Contributing to single repository

• Collaborating on Pull request

• Git Aliases

142 ■ Git Repository Management in 30 Days

Objectives
This chapter builds on what we learned in the previous chapter and allows you to
make a final decision before pushing and committing changes to source control. This
process of committing changes to the GitHub repo may entail renaming, deleting, or
ignoring files in the project. All these ideas will be covered in detail in this chapter.

This chapter assumes that you are up and running with Git on your Linux, Windows
or Mac machines.

Clone and fork the GitHub repository
Cloning is the act of creating a copy of any target repository in Git. The destination
repository might be either remote or local. You can create a local duplicate of your
repository by cloning it from the remote repository. You can also sync any two
repositories.

A partial replica of a repository is a fork. When you fork a repository, you can
freely test and debug modifications without harming the original project. The most
common use of forking is to propose changes for bug fixes in remote repositories.

You will often work on repositories where you are neither the owner nor a
collaborator. If you wish to do anything other than browsing these files, you will
need to fork the repository.

This section defines forking, demonstrates the process, and contrasts forking with
cloning and duplicating.

We will discuss about forking code and contributing to it. If the user has already
made changes to a clone before forking, this section also shows you how to get the
code you want to contribute into a fork. Before we get into cloning and forking
details, we need to understand the difference between the respective terms and
duplication.

Cloning, forking, and duplicating
You can make a local copy of the project on your computer when you clone a GitHub
repository. A GitHub repository can be cloned by forking it, which copies it onto
your GitHub.com account. The original GitHub repository and the one you forked
will still be linked, enabling you to push changes you make to the original copy and
pull changes made to the original repository into your copy.

A repository gets duplicated when a copy is created that no longer contains a
connection to the original repository. Duplication makes it more challenging
to submit changes back into the original GitHub repository, it is not typically a
component of an open-source workflow.

GitHub.com

Collaborating Towards Your/Other Larger Projects over GitHub ■ 143

However, there are situations when duplicating a repository might be practical, such
as when the original project is no longer active, and you want to keep it going with
your fork.

Cloning repository
A GitHub repository can be copied locally by cloning it. By doing this, you can avoid
editing the source files of the original repository directly and instead make all of
your changes locally. To clone a GitHub repository, you can either use:

• GitHub desktop client () orhttps://desktop.github.com/

• Operating System command line

Here, I will be using command line for all the GitHub operation.

Let us consider that you want to clone a repository. You can either work on the
project together or clone it for your learning.

Find that project on GitHub and select the Code drop-down to reveal the repository's
URL as shown in the following screenshot:

Figure 5.1: Get Github repo clone link via Code

Any public repository can be cloned, allowing you to execute the code on your
machine and edit it. However, if you do not have push rights to the remote repository,
you would not be able to push those changes back to it.

https://desktop.github.com/

144 ■ Git Repository Management in 30 Days

Copy the repository's URL, then launch a terminal window and type the following
command:

■+ Self_test git clone https://github.com/justjais/Git_101.git
Cloning into 'Git 101'...
remote: Enumerating objects: 109, done.
remote: Counting objects: 100% (109/109), done.
remote: Compressing objects: 100% (66/66), done.
Recremote: Total 109 (delta 32), reused 94 (delta 24), pack-reused 0
Receiving objects: 100% (109/109), 22.41 KiB | 717.00 KiB/s, done.
Resolving deltas: 100% (32/32), done.

Figure 5.2 : Clone GitHub repo using code clone link

Once a repository has been copied to your local machine, you can examine and edit
its metadata in your terminal. Go to a directory where you have a GitHub repository
in the terminal after opening it.

With the following command, you can find out where the remote/target repository
is:

Git_101 git:(main) git remote -v
origin https://github.com/justjais/Git_101.git (fetch)
origin https://github.com/justjais/Git_101.git (push)

Figure 5.3 : GitHub repo remote target information

You should see the same origin URLs to retrieve and push if you had cloned the
Git_101 repository. You should be able to see that user "justjais" is the owner of the
remote repository, not your username.

You will not get any information back if you attempt to use the command on a Git
repository that lacks a remote origin (that is, one that is not hosted on GitHub.com
or another remote location).

Forking repository
A repository is copied in a fork. To experiment with modifications without impacting
the original project, fork a repository.

When you fork a repository, you create your own unique copy of it that is a part of
an account belonging to a separate organisation or individual, and the modifications
you make to the fork have no impact on the original repository unless you use a pull
request to merge your changes back into the respective GitHub repository. Your fork
of the GitHub repository is entirely independent of the source repository.

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
GitHub.com

Collaborating Towards Your/Other Larger Projects over GitHub ■ 145

There are three main arguments for forking another person's repository:

• First, download a copy of the repo and play around with it. In that situation,
you would clone the repository to your local hard drive using GitHub
desktop/command line after forking the repository to your own account on
the GitHub website.

• Secondly, using the fork and clone method will allow you to switch between
branches in the forked repository and possibly feed edits back to the original
repository using the Git system.

• Lastly, the ability to contribute to a project for which you do not have the
write (that is, push) access is the other prime motivation for forking. When
working on major open-source projects, many contributors—some of whom
may not even be known to the repository owners—may be involved.

For forking a repository of your choice, go to the repo's home page and click the
Fork button on the top right to fork the repository. Use https://github.com/justjais/
Git 101 to practice forking and contributing to a public repository if you would like.

Duplicating repository
You can use a specific command to clone a repository, mirror-push to the new
repository to keep a mirror of it without forking it.

A repository without a working directory is known as a bare git repository. In
essence, you can only change the contents in the .git folder of your ordinary git
repository, not the checked-out files.

It is helpful for server-based repositories when no work should be taking place at all.
This refers to a directory that is not used to create your project, run tests, or change
files. Cloning, pushing, pulling, and fetching is still possible while using less disc
space. Since it lacks a working directory, it performs add and commit poorly.

To duplicate GitHub repository, we need to perform the following steps via git:

1. Create a bare clone of the repository:

Self_Test git clone —bare https://github.com/justjais/Git_101.git
Cloning into bare repository 'Git_101.git'...
remote: Enumerating objects: 109, done.
remote: Counting objects: 100% (109/109), done.
remote: Compressing objects: 100% (66/66), done.
remote: Total 109 (delta 32), reused 94 (delta 24), pack-reused 0
Receiving objects: 100% (109/109), 22.41 KiB | 132.00 KiB/s, done.
Resolving deltas: 100% (32/32), done.

Figure 5.4: Github bare repo

https://github.com/justjais/
https://github.com/justjais/Git_101.git

146 ■ Git Repository Management in 30 Days

2. Mirror-push to the new repository:

-» Self_Test cd Git_101.git
■» Git_101 git:(main) git push --mirror https://github.com/justjais/Git-101-new.git

Figure 5.5: Github mirror push repo

3. Remove the local temporary repository you set up in the earlier step:

* Oit^lOL git: 4uin)
* sell tit Alt 101*

Figure 5.6 : Delete the old GitHub repo

We can also mirror a GitHub repository to another location by following these steps:

1. Make a repository bare-metal mirrored clone:

■» Self_Test git clone --mirror https://github.com/justjais/Git-101.git

Figure 5.7 : Bare metal clone

2. Update the push location to your mirror:

Figure 5.8: Bare metal clone

A mirrored clone includes all remote branches and tags, just like a bare clone
does, but all local references are replaced every time you fetch, keeping the
copy identical to the original repository.

Pushing to your mirror is made easier by setting the URL for pushes.

3. Update the push location to your mirror:

-» Git_101 git: (main) git fetch -p origin
-» Git_101 git: (main) gi‘ push --mirror

Figure 5.9: Mirror repo push location

https://github.com/justjais/Git-101-new.git
https://github.com/justjais/Git-101.git

Collaborating Towards Your/Other Larger Projects over GitHub ■ 147

Why forking repository is needed
Adding code to repositories where you are not the owner, or an explicit collaborator
is an important part of the GitHub process and mission. As the goal of open source
is to promote cooperation among software professionals all over the world.

You can contact the repository owner and ask to be a collaborator to join an open­
source project. However, since adding you as a collaborator would grant you push
permissions to the repository, the owner is unlikely to do so if they are unaware of
your identity.

As a contributor, you will first need to earn the repository owner’s trust. However,
to fork a repository, you do not need any permission. To demonstrate how you can
benefit the project, you can make your contributions and share them with the owner.

Go to the repo's home page and click the Fork button in the top right to fork the
repository. To begin with, you can fork the Git_101 repo, ref: https://github.com/
justjais/Git_101, to test forking and contributing to a public repository.

Figure 5.10: Forking GitHub repo push button

0 justjais/Git_101 Public Pin ©Unwatch 2 * y Fork
i

0 - j Star 0

<> Code Q Issues n Pull requests 0 Actions 0 Projects CD Wiki 0 Security hi Insights 0 Settings
\

P main’ P 2 branches 2 tags Go to file Add file - Code ’ About $ FORKING
GIT 101 - Guide to get started with Git REPOSITORY

justjais Merge pull request #2 from ju$tjais/test_workPR - fdad70b on 27 Jun 034 commits and GH

|| temp fix review comment 3 months ago CD Readme

»p GPL-3.0 license
D LICENSE Initial commit 15 months ago

i? 0 stars
H README.md Initial commit 15 months ago <2> 2 watching

Y O forks
README.md

Releases
Git_1O1

0 2 tags

GIT 101 - Guide to get started with Git and GH Create a new release

https://github.com/

148 ■ Git Repository Management in 30 Days

Once you click on the Fork button, you will be taken to a page where you can provide
information against the repo you are trying to fork, as shown in the following figure:

After filling in the required details for forking the parent repository, the user can
click on the Create fork button to go ahead with the forked repository creation. The
forked repository once created will appear as shown in the following screenshot:

Figure 5.12: Forked GitHub Child repo

Collaborating Towards Your/Other Larger Projects over GitHub ■ 149

Once you have your forked copy of the repository, you can clone it on your local
computer to begin editing it.

Creating a Pull request from forked
repository
Those who are unfamiliar with distributed version control systems like Git may find
the idea of having it remote to be puzzling. When you clone a GitHub repository,
the entire repository is present on your local computer. You may be tempted to think
that the copy of the repository on GitHub is the official one. Git, however, does not
have the concept of official. The official copy is whatever the project team decides.

Git does support the idea of a remote file, which is the pointer to a different location's
hosting of the same Git repository.

A remote can also be a path to the location that contains a copy of the repository;
often, remote is a URL to a Git-hosting platform like GitHub. Git adds a remote
named origin with the location (often a URL) from where you cloned a repository
when you do so. However, you can add more than one remote to a Git repository to
represent other places from where you might want to push and pull updates.

For instance, you might wish to have a remote named upstream that points to the
original repository if you clone a fork of a repository. You might wish to set the
upstream remote if you clone the repository using the command line.

Run the git remote -v command in the directory where you cloned the repository
to see both the forked remote origin and original remote upstream:

Figure 5.13: Forked GitHub repo remote config

Now, to add the upstream parent repo to this forked repository we use the following
command:

■ » Git_101 git:(main) gii remote add upstream https://github.com/justjais/Git_101.git
■ Git_101 git: (main) gii remote -v*
origin https://github.com/<your github ID>/Git_101.git (fetch)
origin https://github.com/<your github ID>/Git_101.git (push)
upstream https://github.com/justjais/Git_101.git (fetch)
upstream https://github.com/justjais/Git_101.git (push)

Figure 5.14: Add Parent forked GitHub repo as upstream remote repository

https://github.com/justjais/Git_101.git
https://github.com/%253cyour
https://github.com/%253cyour
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git

150 ■ Git Repository Management in 30 Days

Your username is stored in the origin, which is where you fetch/pull changes from
and push changes to. (<your github ID> in this example).

The upstream holds the username of the original author, which is where the original
code is located and where you eventually want to contribute the code (justjais in
this example).

Contributing to single repository
Your forked repo must be linked to the upstream repo. To ensure that you get the
most recent version when you make modifications, you should be able to retrieve or
pull any updates made to the original code into your own.

For instance, imagine you cloned and forked a website project a week ago to change
the Product page. Someone else altered the Product page while you were working on
those alterations.

Their changes can clash with yours, or they might add something fresh that you
wish to incorporate into your adjustments. It makes it reasonable to pull those
modifications into your repository before submitting your own to the original
repository. It increases the likelihood that the owner will accept your modifications
and decreases the likelihood that they will conflict with those others are making to
the Product page.

- » Git_101 git: (main) git fetch upstream
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
from https://github.com/justjais/Git_101.git

Figure 5.15: Update the forked repo with upstream changes

Now, to pull any upstream changes that might not be updated to local repository we
can run the following command:

■» Git_101 git: (main) gi1 pull -v —progress upstream main
POST git-upload-pack (321 bytes)

From https://github.com/justjais/Git_101
* branch main -> FETCH HEAD
* [new branch] main -> upstream/main

Already up to date.

Figure 5.16: Pull upstream branch changes to local repository

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101

Collaborating Towards Your/Other Larger Projects over GitHub ■ 151

Once we have pulled all the latest available changes from the parent repository to
our local repository, we can check out a new branch for creating a pull request from
the local repository as:

-> Git_101 git: (main) git checkout -b new_branch
Switched to a new branch 'new_branch'

-» Git_101 git: (new_branch)

Figure 5.17: Checkout new branch

Forgetting to fork a repository before attempting to contribute is a typical mistake
people make. One example of how you might end up in this circumstance is described
in the scenario that follows.

You clone a repository onto your local machine, edit the source code, push your
changes to main, and you are done. However, a sinister-looking error message
follows.

You are informed by the error message that you lack the authorization to push to
this repository. The repository should have been forked first.. Making all of your
modifications in a branch is a smart approach, as we advise in the book. To correct
this error, fork the repository, modify the remote URLs for your local repository to
link to your fork, and then push your changes.

These steps can assist you get out of this pickle even if this procedure can be
challenging:

Moving your changes to new branch
Move your changes to a new branch as soon as you realize you are aiming for the
wrong remote repository. You do not want to unintentionally add the laborious
work you have just accomplished to the original, upstream branch's modifications.

This phase can be challenging, but fortunately, you can make use of many useful Git
Aliases (discussed in detail in next section of the chapter) to assist.

-» Git 101 git: (main) gi1 migrate new branch
Switched to a new branch 'new_branch'
Branch 'main’ set up to track remote branch 'main' from 'origin'.
Current branch new_branch is up to date.

Figure 5.18: Git migrate new branch

152 ■ Git Repository Management in 30 Days

Verify the existence of the new branch using git status command, as:

-» Git_101 git: (new_branch) git status
On branch new-branch

nothing to commit, working tree clean

Figure 5.19 : Status check for the new branch

Make the source repository the upstream
remote setting
Type the following command over console to add an upstream remote branch to
your local repository as:

■+ Git_101 git:(main) git remote add upstream https://github.com/justjais/Git_101.git
■+ Git_101 git: (main)

Figure 5.20 : Add remote branch to local repository

Verify that the upstream remote was properly added:

-» Git_101 git: (main) git remote -v
origin https://github.com/justjais/Git_101.git (fetch)
origin https://github.com/justjais/Git_101.git (push)
upstream https://github.com/justjais/Git_101.git (fetch)
upstream https://github.com/justjais/Git_101.git (push)

Figure 5.21 : Verify for remote repo

Fork the repo
If you go to Github.com, browse the original repository and select Fork from the
GitHub drop-down menu on the repo's home page.

When the page reloads, your customized version of the repository with a link to the
original repository should appear.

Set your forked repository as the origin remote:
You can modify your remote origin to be your version after you have your fork of
the repository:

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git
Github.com

Collaborating Towards Your/Other Larger Projects over GitHub ■ 153

■» Git_101 git:(main) git remote set-url origin https://github.com/temp-user/Git_101.git

Figure 5.22 : Set remote origin

Check the remote settings for the local repository now and verify if the settings are
as expected:

■+ Git 101 git: (main) git remote -v
origin https://github.com/temp-user/Git_101.git (fetch)

origin https://github.com/temo-user/Git_101.git (push)

upstream https://github.com/justjais/Git 101.git (fetch)

upstream https://github.com/justjais/Git_101.git (push)

Figure 5.23 : Verify remote repository settings

Send your branch to the forked copy
You are currently in the same situation as if you had first forked the repository before
cloning. You can publish your branch once again in the editor.

Create a new pull request
Now, with all the settings in place as expected you can easily create a pull request
using your forked repository and once the Pull request (PR) gets created the PR will
be shown at the upstream repository as discussed in earlier chapter.

Collaborating on pull request
The purpose of pull requests is to initiate a discussion about a suggested change,
which is typically either a new feature or a bug fix. Pull requests were once only
made after coding was finished to ask someone to incorporate a finished set of
changes, but they are now used in a few other ways as well.

If you are confident in a change, you can still start a new branch, make your changes,
and then wait to submit a pull request until you are finished. The aim of the pull
request in this situation is simply to confirm that the rest of your team supports the
modifications you made before they are merged into main branch and deployed to
production.

Pull requests can also be used in different ways. Team members/collaborators
frequently create pull requests for features they would like to discuss at their
workspaces.

https://github.com/temp-user/Git_101.git
https://github.com/temp-user/Git_101.git
https://github.com/temo-user/Git_101.git
https://github.com/justjais/Git
https://github.com/justjais/Git_101.git

154 ■ Git Repository Management in 30 Days

Therefore, if you have an idea for a modification but are unsure, think about creating
a branch which we have discussed in Chapter 4, Deleting, Renaming, and Ignoring Files
in Git, starting with the least amount of work possible, perhaps just a brief text file
outlining it. A pull request can be made after a commit has been made to the branch
to start a conversation regarding the concept.

Generic steps involved before a pull request is ready to get merged to the main
repository are:

Collaborators’ involvement in the pull request
When making a pull request, @mention the team members you would like to
receive comments from. To achieve this, start a sentence with @ and then the GitHub
username in the pull request or in a comment on the pull request.

As you start typing, the username will automatically finish if the individual is either
the owner or a collaborator on the repository. Additionally, you can start entering
the user's displayed name (which can be set in your public profile).

You could make a comment saying something like, "Hey @brntbeer, mind looking
at this PR and letting me know what you think?" You can also send messages like, ’'f
you needed my opinion on some work”, “How you have been doing.”

Depending on the people you are working with, the language's formality will
vary, although pull request comments are generally written in a formal manner as
you might know the collaborator who might be your team member, or you might
contribute to an open-source project where you want your contribution to be
accepted by moderators.

Pull request review process
If you go to the main page and click the Pull requests button at the top, you will find a
list of all the open pull requests. This will allow you to see what people are working
on within a repository.

A reasonable rule of thumb is to limit the number of open pull requests per developer
in a private repository. In general, you want to have as few open pull requests as
possible because it is more beneficial to keep the team focused on closing up existing
features than beginning new ones.

Additionally, to make them simpler to review, pull requests should be for tiny,
iterative modifications. A branch will live longer and be more challenging to properly
examine as more changes are added to it. Even though you cannot always avoid
them, you should keep an eye out for these "long-lived" branches.

Collaborating Towards Your/Other Larger Projects over GitHub ■ 155

Thing to be note here is, since anybody can submit a pull request, it can occasionally
take a while for the core project team to examine, accept, and/or close them, the
number of open pull requests for open-source projects will often be substantially
higher.

Click on a pull request to visit the pull request detail page when you discover one
you want to examine.

Commenting over a pull request
Reviewing any pull request that you might be interested in is a crucial element of
working with a development team. Nothing is more demoralizing than working on
a feature for a few days, submitting a pull request, and receiving zero response.

Remember to take the time to examine other people's work so they are not tempted
to merge it in without at least one or more people having a look at it. By default,
anyone can merge their pull request into the upstream main branch as long as they
have the write access, but this practice should ideally be avoided.

Alternatively, you can utilize protected branches to enforce certain approval
workflows if you would prefer that this not be the case. Make sure to check out any
pull requests that you have been @mentioned in as soon as you can and offer some
insightful criticism.

Letting the person know you will give it a favourable review soon is sometimes
valuable feedback. Even if you are not specifically mentioned, it is a good idea to take
a little time out of your day to make sure you examine any pending pull requests
and offer your opinions to ensure that everyone is aware of the project's direction.

Commenting on pull requests is one of the more frequent opportunities for interaction
in a team, especially one that does not always work in the same office. As a result, it
is frequently a good idea to inject some humour into the encounters.

Animated GIFs are another option to give your GitHub comments some extra colour.
While most animated GIFs are far larger and more visually striking than emojis,
which are often modest, they are a terrific way to truly lighten the atmosphere or
express strong support (or opposition) for a change or opinion.

Drag and drop an animated GIF (or any other picture) into the comment box of a
pull request, and it will be immediately posted.

Contributing to a pull request
It is straightforward to make changes to someone else's pull request. You may want
to alter a pull request directly on occasion.

156 ■ Git Repository Management in 30 Days

To improve how a newly added page appears in your preferred browser, you may
wish to alter the marketing content, legal disclaimer, or even the CSS.

Testing pull request
Before approving a pull request that includes significant code changes that you
cannot just inspect visually if you have the necessary permissions, you should
download a copy of the repository.

Check out the branch to which the pull request pertains, run the automated tests
to see that they are all passing, then execute the code and perhaps perform some
manual testing to ensure it appears to be solid.

Setting up automated testing that will execute for you and submit its results back
to the pull request is a simpler and best practice choice. You may ask for artifacts
showing testing done as part of the CI/CD pipeline or manual testing from the
original developer who raised the PR.

This can be set up in a repository's protected branch settings along with needed
reviews.

Also, GitHub has introduced GitHub actions which can actually take care of pull
request testing and can run set of tests designed by repo owner/organization in the
form of Unit, Integration and Sanity tests as shown in figure 5.24. Once this GitHub
action tasks turns green either the reviewer can merge the pull request manually
or it can also be merged automatically using GitHub actions if the rules are set
accordingly. We will not be discussing GitHub actions here as it is beyond the scope
of this book.

Figure 5.24: Testing done via GitHub actions

Collaborating Towards Your/Other Larger Projects over GitHub ■ 157

Merging pull request
Users can click the big green Merge pull request button when they are ready to merge
a pull request.

Figure 5.25: Merging Pull request

Then, GitHub will require a commit message (the default will be the title of the pull
request and an indication that this commit came in from a pull request merge).

After entering, the pull request will be merged and closed as soon as you click the
Confirm merge button.

Figure 5.26: Confirm merging Pull request

Most open-source projects have a procedure in place for closing pull requests. Before
a pull request is merged, project owners/moderators will request that one or two
individuals who are not the pull request's primary author submit +1 to approve the
PR changes.

In general, it is preferable to "move fast and break things" than to have multiple
people who need to approve every pull request before it can be merged. Keep in
mind that you can always undo a merge.

Who should merge the pull request
One question that frequently arises is whether the person who created the pull
request should merge it or someone else. It is often a good practice to block the
person who authored the pull request should be able merge the pull request.

158 ■ Git Repository Management in 30 Days

The policy that "the individual who created a pull request cannot merge it" is one
that many organizations adopt.

The individual who initiated the pull request is typically the one with the most
knowledge of the changes.

As a result, whenever their work gets merged in, that individual should be ready in
case something unforeseen breaks. Asking PR author to perform the merging is one
of the simplest methods to ensure that they are available.

As a result, PR author should be allowed to merge in their own pull requests
but making sure that they do so only when they have received at least a few +1/
approvals from the team or until all other necessary workflows and statuses have
been completed.

Git Aliases
Git Aliases is a feature that can make using Git easier, simpler, and more acquainted
to you. We would not use aliases anywhere in this book for clarity, but if you plan to
use Git frequently, you should be aware of them.

Git config makes it simple to create an alias for each command if you do not want to
input the complete text of each one.

It should be noted that there is no git alias command. The git config command
and the Git configuration files are used to create aliases. The creation of aliases can
be done in a local or global scope, just like other configuration parameters.

Let us understand this with some examples for better understanding:

- » Git_101 git: (main) git config —global alias.co checkout
- » Git_101 git: (main) git config —global branchalias.br
- » Git_101 git: (main) git config —global alias.ci commit
• + Git_101 git: (main) git config —global alias.st status

Figure 5.27: Git Aliases examples

This implies that you only need to type git ci rather than git commit. You will
likely use other commands regularly as you continue to use Git; do not be afraid to
create new aliases.

Using this method, you may also create commands that you believe ought to be
there. You can create your unstage alias to Git, for instance, to fix the usability issue
you observed with unstaging a file:

Figure 5.28: Git Aliases unstage alias

alias.br

Collaborating Towards Your/Other Larger Projects over GitHub ■ 159

Consequently, these two commands are equivalent:

Figure 5.29: Git Aliases unstage alias git equivalent

As you can see, Git substitutes the new command for the value of the alias. But,
instead of executing a Git subcommand, you could prefer to execute an external
command. In that situation,”!” character is used to begin the command. This is
helpful if you want to create your own tools that integrate with a Git repository.

Figure 5.30: Git Aliases external command example

In conclusion, Git aliases are an effective workflow tool that enables the creation of
shortcuts for commonly used Git commands. Git aliases will help you develop code
more quickly and effectively.

Aliases can be used to combine several Git commands into a single more developer­
friendly command. The git config command, which essentially edits local or global
Git config files, is used to build git aliases.

Conclusion
This is the end of this chapter and the topics discussed are the building blocks and
soul of the Git version control system. The more fluent you get will all the discussed
terms and their respective usages and application, the more efficient you will become
in using Git and GitHub as well.

In the next chapter, we will continue building on the knowledge we gained in this
chapter and discuss a few of the Git concepts in more depth.

Multiple choice questions
1. Which git command gets your repository off GitHub and onto your

computer?

a. git push

b. git fork

c. git commit

d. git clone

160 ■ Git Repository Management in 30 Days

2. How do you duplicate a repository, so you may solve it on your own
GitHub account?

a. Fork a GitHub repo using GitHub interface

b. git fork

c. git clone

d. git pull-request

3. What is the use of forked repo?

a. Utilize someone else's project as a foundation for your own

b. Used to iterate on ideas or modifications before submitting them to
the upstream repository

c. Both a and b

d. None of the above

4. How can you determine whether your local Git repository has changed
since your last commit?

a. git status

b. git diff

c. git commit

d. git check

5. Git command to give the frequently used Git command a generic alias
instead of using the long usual command line syntax?

a. git alias

b. git config --global alias

c. git push

d. git add

Answers
1. d 2. a 3. b 4. a 5. b

Key terms
• Start a working area

o init

o Clone

Collaborating Towards Your/Other Larger Projects over GitHub ■ 161

• Work on the current change:
o add
o mv
o restore
o rm

• sparse checkout examine the history and state of the repository:
o bisect
o diff

o grep
o log
o show
o status

• Grow, mark and tweak your repo history:
o branch
o commit
o merge
o rebase
o reset
o switch
o tag

• Collaborate over repository:
o fetch
o pull
o push

Points to remember
Recommended pull request strategies. When handling pull requests, it is a good
idea to keep the following in mind:

• For everything, create pull requests.
Make sure to work on a branch if you wish to fix a bug or add a new feature
and then submit a pull request to gather feedback before merging your
changes into master.

• Make the PR headings informative.
To understand what is going on, other team members will examine the pull
requests. They should be able to tell what you are working on from the title.

162 ■ Git Repository Management in 30 Days

• Spend some time commenting.

Even if no one mentions you, take this action. It will increase the overall
quality of the job and provide you with a clear understanding of the project’s
status.

• Mention relevant users in the PR.

By @mentioning the relevant users, you may ensure that marketing, legal,
and the operations team notice your pull request and increase the likelihood
that you will receive feedback.

• Run all the tests.

Ensure that at least one developer checks out the proper branch, downloads
the most recent changes from a pull request and executes your automated
tests.

This should be a part of the CI CD pipeline and should be used as a gateway
by the reviewer(s).

• Simply scanning the code visually for non-trivial changes is insufficient.

Clearly define your approval process for pull requests.

• Before a pull request is merged, most open-source projects demand that one
or two authors who are not the pull request's lead author examine it and give
their approval.

Further reading
For more history and reference around the discussed topics in this chapter you can
check out the Git and GitHub’s official documentation for getting started:

• Pull request over GitHub:
collaborating-with-pull-requests/proposing-changes-to-your-work-with-
pull-requests/creating-a-pull-request

https://docs.github.com/en/pull-requests/

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://docs.github.com/en/pull-requests/
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 6

Contributing
Towards

Open-Source Project
Repo

Introduction
Now that you have Git and GitHub up and running on your system, let us understand
why Git and GitHub are required and their importance and relevance when it comes
to open-source ways of development or development across teams and location in
general.

This chapter discusses all the process-related and critical aspects that should be kept
in mind and followed before simply trying to contribute to an open-source project
that is being followed and used by a larger community from all over the world, as
well as how this varies significantly from maintaining and contributing to a single­
user repository.

Structure
In this chapter, we will cover the following topics:

• Understanding a pull request

• Open a pull request over GitHub

• Writing a great bug report

• Pushing code and opening a pull request over GitHub

164 ■ Git Repository Management in 30 Days

Objectives
This chapter builds on what we learned in the previous chapter and allows you to
make a final decision before pushing and committing changes to source control.

This process of committing changes to the GitHub repo may entail renaming,
deleting, or ignoring files in the project. All these ideas will be covered in detail in
this chapter.

This chapter assumes you have Git up and running under your Linux, Windows, or
Mac machines.

Understanding a pull request
A pull request is a request for a repository's maintainer to pull in some code.

Pull requests are a way for a developer to notify the rest of the team that they have
finished working on a feature/bug fix. The developer submits a pull request to their
GitHub account after their feature branch is complete. This lets the developer inform
teammates concerned that the code has to be reviewed and merged into the main
branch.

Figure 6.1: To demonstrate the Pull request flow

This formal technique for sharing commits has a considerably more efficient workflow
than existing collaboration models. With a simple script, SVN and Git, both can send
notice emails; however, when it comes to discussing changes, developers often have
to rely on email threads. This can become haphazard, especially when it comes to
follow-up commits.

Nature of a pull request
If you are proposing that another developer (example, the project maintainer) pull
a branch from your repository into their repository when you submit a pull request.
To submit a pull request, you must supply four pieces of information:

Contributing Towards Open-Source Project Repo ■ 165

• Source repository

• Source branch

• Destination repository

• Destination branch

Git pull
The pull request is used to fetch changes (commits) from a remote repository and
store them locally. It synchronizes the local and remote-tracking branches.

-*• Git_101 git: (main) git pull <option> [depository URLXrefspec>. .]

Figure 6.2: Pull request syntax

Remote tracking branches have been configured to push and retrieve data from a
remote repository. It is just a compilation of the fetch and merges commands. It
begins by retrieving changes from a remote repository and combining them with the
local repository where syntax parameters are as follows:

• <option>

Options are commands that can be used as an additional option in a specific
command.

-q (quiet), -v (verbose), -e (edit), and more options are available.

• <repository URL>

A repository URL is the URL of your remote repository or an alias for the
same, such as GitHub or another Git site, where you have placed your
original repositories.

This is how you can implement Git pull:

1. Go to your GitHub account and pick the repository you wish to clone to get
this URL.

2. Then, from the repository menu, select the clone or download option.

166 ■ Git Repository Management in 30 Days

3. A new pop-up window will appear; from the list of options, select Clone with
HTTPS as shown in the following screenshot:

Figure 6.3: Git_101 clone repository

4. Copy the repository highlighted from the Clone->HTTPS

5. It is critical to understand how Git works.

Let us look at an example to see how it works and how to put it to use. Assume, I
have added a new file to my remote repository of project Git_101 called pull_101.
md under project temp directory.

1. To begin, select the Create a File option from the repository sub-functions.

2. After that, select the file name and make any necessary changes. Consider
the following screenshot:

Git_1011 temp I pulLl01.md Cancel changes

< > Edit new file <•> Preview Spaces i 2 S No wrap

1 # This file is a placeholder for PULL request.

Figure 6.4: Add new file to Git_101 repository - I

3. Select a commit message and file description at the bottom of the page.

4. Choose whether to establish a new branch or commit it to the main branch
directly. Consider the following screenshot:

Contributing Towards Open-Source Project Repo ■ 167

Commit new file

Create pull_101.md

Add an optional extended description...

[justjais@gmail.com_____________________ » j

Choose which email address to associate with this commit

<S)-o- Commit directly to the main branch.

O 1*1 Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit new file Cancel

Figure 6.5: Add new file to Git_101 repository - II

5. The changes have now been successfully made.

Perform a git pull on your cloned repository to pull these changes into your local
repository. For the pull command, there are a variety of choices.

Using the Git pull command, we can pull a remote repository. It is the default
setting:

Figure 6.6: Git pull default

The git pull command is used to obtain the repository's freshly updated items
in the output below. It is the git pull command's default version. It will update
the newly produced file pull_101.md in the local repository, as well as any linked
objects.

-* Git_101 git: (main) git pull
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), 796 bytes | 113.00 KiB/s, done.
From https://github.com/justjais/Git_101

blb4cca.,efd4ea4 main -> origin/main
Merge made by the 'recursive' strategy.

temp/pull_101.md | 1 +
1 file changed, 1 insertion(+)
create mode 100644 temp/pull_101.md

Figure 6.7: Git pull in action

mailto:justjais@gmail.com
thub.com/justjais/Git_101

168 ■ Git Repository Management in 30 Days

The pull_101.md file is added to the local repository, as shown in the output below.
Git pull is the same as git fetch origin head and git merge origin head. The
present branch's head is referred to as the ref:

Git_101 git:(main) tree

|---- LICENSE
|---- README.md
1---- temp

|---- ----init__ .py
|---- learn_git.txt
|---- new_main_file.txt
1---- pull_101.md

1 directory, 6 files

Figure 6.8 : Git pull output

There is another way to get to the repository. Using the git pull command, we can
pull the repository.

-» Git_101 git:(main) git pull <option> <remote branch name>
-* Git_101 git: (main) git pull origin main

Figure 6.9 : Git pull origin syntax

The term origin refers to the repository's physical location from which the remote
repository can be accessed. The primary branch of the project is called Main.
(Previously called Master).

► Git_101 git:(main) gi fetch -all
From https://github.com/justjais/Git 101
* branch main -> FETCH_HEAD
Already up to date.

Figure 6.10 : Git pull origin main in action

It will replace the data in the local repository with data from a distant repository. You
can look up your repository's remote location.

Use the following command to check the repository's remote location:

Figure 6.11: Git remote syntax

https://github.com/justjais/Git

Contributing Towards Open-Source Project Repo ■ 169

Both fetch and push locations are displayed in the output.

-» Git_101 git: (main) git remote -v
origin https://github.com/justjais/Git_101.git (fetch)
origin https://github.com/justjais/Git_101.git (push)

Figure 6.12: Git remote in action

Git pull from remote branch
Git allows you to fetch a specific branch. Using the git pull command to fetch a
remote branch is identical to the technique described in the previous section of Git
remote. The only difference is that we must copy the URL of the branch we wish to
pull followed by the branch name. For example, git pull origin feature/bugFix. To
accomplish so, we will pick a particular branch:

■» Git_101 git: (main) git pull <remote branch URL>

Figure 6.13: Git pull remote branch syntax

Git force pull
Git force pull allows you to pull your repository at any time and at any cost. Consider
the following scenario:

• You made a local change to a file and another team member made a remote
change to it. So, when are you going to fetch the repository? This could cause
a dispute.

• Force pull is a technique for overwriting files. If we wish to undo all the
modifications in the local repository, we can pull it influentially and replace
it. To force pull a repository, follow the steps below:

1. Download the latest updates from the remote using the git fetch
command without merging or rebasing.

Figure 6.14: Git fetch

https://github.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git

170 ■ Git Repository Management in 30 Days

2. If everything is already updated in the branch, you should receive
the output below, else the local repository branch will be updated
with all remote branches:

Figure 6.15: Git fetch in action

3. To reset the master branch with the updates you fetched from the
remote, use the git reset command. The hard option is used to
replace all the files in the local repository with those from the remote
repository. This comes handy in scenarios like, you have committed
changes in your local branch that you want to revert.

-» Git_101 git: (main) git reset —hard <branch name>
■» Git_101 git: (main) git reset —hard main

Figure 6.16 : Git reset -hard

git reset actual command run:

-» Git_101 git: (main) git reset --hard main
HEAD is now at bb76e56 Merge branch 'main' of https://github.com/justjais/Git_101

Figure 6.17 : Git reset -hard in action

A complete GitHub workflow
The GitHub workflow manages cooperation using a shared GitHub repository, and
developers create features in isolated branches. Rather than merging them directly
into main branch, developers should file a pull request to start a conversation about
the feature before it is merged into the main codebase.

https://github.com/justjais/Git_101

Contributing Towards Open-Source Project Repo ■ 171

Figure 6.18: GitHub Workflow

The destination repository and the source repository of a pull request will always be
the same because there is only one public repository in the GitHub Workflow. The
primary branch is usually designated as the destination branch, and the developer
will typically designate their feature branch as the source branch.

GitHub Workflow with pull requests
The GitHub Workflow specifies a rigid branching model built around the project
release. Developers can easily discuss a release or maintenance branch while they
are working on it by adding pull requests to the GitHub Workflow.

When a feature, release, or hotfix branch has to be reviewed, a developer simply
submits a pull request, and the rest of the team is notified via GitHub. This is exactly
how pull requests work in the GitHub Workflow.

Release and hotfix branches are often merged into both checked out branch and
main. All of these mergers can be explicitly managed using pull requests.

Fork Workflow with pull requests
Instead of pushing a finished feature to a shared repository, a developer uses the
forking workflow to publish it to their public repository. Once it is prepared for
review, they submit a pull request to the project maintainer.

Since the project maintainer has no means of knowing when another developer
has submitted changes to their GitHub repository, the notification feature of pull
requests is especially helpful in this scenario.

The source repository for a pull request will be different from its destination
repository because each developer has their forked public repository. The source

172 ■ Git Repository Management in 30 Days

branch is the one that has the suggested changes, and the source repository is the
developer's open repository.

The official project is the destination repository, and the main branch is the
destination branch if the developer is attempting to integrate the feature into the
primary codebase.

GitHub for Code distribution
The Feature branch workflow manages cooperation using a shared GitHub
repository, and developers create features in isolated branches. Rather than merging
them into the main, developers should file a pull request to start a conversation
about the feature before it is merged into the main codebase.

The first step is to make a new branch. When using Git, it is usual practice to create a
new branch before writing new code. We directly committed code to the main branch
in the examples while learning about Pull requests. We offered that as a shortcut to
keep things simple.

Now, we will work on a new branch and do things the right way in this section. This
is for a very crucial reason. A pull request is not made up of a random collection of
modifications or commits.

A branch is always associated with a pull request. A pull request, in other terms, is a
request to merge two branches into one.

While a pull request can target any branch (except its own), the most common
situation is to target the repository's primary branch, which is usually named main.

■> Git_101 git: (main) git checkout -b origin/understand_PR

Figure 6.19 : GitHub Workflow

This link between pull requests and branches is why, when starting new work, you
should create a new branch. For this example, we will call the branch understand_
PR, but you may call it whatever you wish by replacing understand_PR with your
branch name in the command shown in figure 6.19

Open a pull request over GitHub
You need a repository to push code to GitHub. Select a repository and open it. Clone
your forked copy to your local workstation after forking the BPB repository.

Contributing Towards Open-Source Project Repo ■ 173

0 justjais/Git_101 Public Ct Pi" 0 Unwatch 2 - Y Peak d | £ Star

O Code Q Issues U Pull requests ® Actions E Projects CD Wiki 0 Security Insights Settings—
F main- F1 branch ^2 tags Go to file Add file - Code • About §

GIT 101 - Guide to get started with Git
justjais Create pull_1Q1 readme efd4ea4 yesterday Q 31 commits and GH

M temp Create pull_101 readme yesterday CD Readme

$ GPL-3.0 license
D LICENSE Initial commit 11 months ago

☆ 0 stars
B README.md Initial comm it 11 months ago ® 2 watching

Y 0 forks

README, md

Releases
Git_101

i<> 2 tags

GIT 101 - Guide to get started with Git and GH Create a new release

Figure 6.20 : Git fork the repo

Clone the forked repo to your local system and once done check for the set repo via
the command git remote -v. It should show fetch and push repo as your cloned
fork repo link. Now, you may want to add the parent repo as an upstream repo to
your local repo to keep your forked local repository with the latest changes made to
the upstream parent repo by other developers on the team. To add upstream branch
to your forked local repository, use the following command:

-» Git_101 git:(main) git remote add upstream https://github.com/justjais/Git_101.git

Figure 6.21 : Git remote add upstream repository

Now if you run the git remote -v command, it should give you the following
output:

-» Git_101 git: (main) git remote -v
origin https://github.com/<your github_id>/ibm.qradar.git (fetch)
origin https://github.com/<your github_id>/ibm.qradar.git (push)
upstream https://githiA.com/justjais/Git_101.git (fetch)
upstream https://github.com/justjais/Git_101.git (push)

Figure 6.22 : Git remote in action

The first step is to make a new branch. When using Git, it is a usual practice to create
a new branch before writing new code. While a pull request can target any branch
(except its own), the most common situation is to target the repository's primary
branch, which is usually named main (previously referred as master).

This link between pull requests and branches is why, when starting new work, you
should create a new branch. For this example, the branch is referred to as test_

https://github.com/justjais/Git_101.git
https://github.com/%253cyour
thub.com/%253cyour
https://githiA.com/justjais/Git_101.git
https://github.com/justjais/Git_101.git

174 ■ Git Repository Management in 30 Days

workPR; however, you are free to give it any other name by substituting your branch
name for test_workPR in the command below:

■+ Git_101 git:(main) git checkout -b test_workPR origin/main

Figure 6.23 : Git checkout in action

We can now make a commit in the branch we created. The particulars of the commit's
contents are not relevant for this example. Any file that you choose can be edited,
for example, by adding text at the end. You can also manually edit the pull_101.
md file located in the Git_101 temp directory if you are using the practice repository
we set up.

■ » Git_101 git:(test_workPR) echo "Pull 101: Starting point to Pull request" » temp/pull_101 .md
- » Git_101 git:(test_workPR) X cat temp/pull_101.md

This file is a placeholder for PULL request.
Pull 101: Starting point to Pull request

Figure 6.24 : Update pull_101.md file content

Commit the modifications you have made to the file. To commit all your modifications,
for instance, use the git add . command. The commit message should be something
readable for the commit made. The most crucial element is to have a commit in a
branch other than the main branch that you can work with.

■» Git_101 git: (test_workPR) git add .
-> Git_101 git: (test_workPR) git commit -m "Adding text to pull_101 readme"
[test workPR 5fc0392] Adding text to pull 101 readme
1 file changed, 1 insertion(+)

Figure 6.25 : Git commit in action

Now that the changes are committed to the test_workPR branch, we will push the
changes to the same branch in the remote repository to open a pull request against
the parent repository as:

Contributing Towards Open-Source Project Repo ■ 175

-» Git_101 git:(test_workPR) git push origin test_workPR
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Delta compression using up to 12 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 401 bytes | 401.00 KiB/s, done.
Total 4 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects,
remote:
remote: Create a pull request for 'test_workPR' on GitHub by visiting:
remote: https://github.com/justjais/Git_101/pull/new/test_workPR
remote:
To https://github.com/justjais/Git_101.git

* [new branch] test_workPR -> test_workPR

Figure 6.26 : Git push in action

Git is instructed to push local commits to a remote repository using the git push
command.

Opening a pull request
Your GitHub.com repository needs to have at least one branch aside from the default
branch before you can start a pull request.

The branch in our example is called test_workPR branch, but you might have given
yours a different name. To start a pull request, go to the Git_101 repository's page
on GitHub.com as shown in the following screenshot:

Figure 6.27: GitHub repo pull request notification

https://github.com/justjais/Git_101/pull/new/test_workPR
https://github.com/justjais/Git_101.git
GitHub.com
GitHub.com

176 ■ Git Repository Management in 30 Days

To access the Open a pull request page, click the Compare & pull request button as seen
in the screenshot below. The default branch for the repository is the target branch,
into which you want to merge your modifications.

Your Branch Branch Status

Create Pull Rquest
Button

Figure 6.28: GitHub Pull Request

The target branch is listed next to your branch, which is followed by a status indicating
whether your branch can be merged into the target branch. The pull request title is
the same as the most recent commit message, which in this case is, Adding text to
pull_101 readme, and your pull request description is blank.

Describing the pull request
You can enter a summary and description from the Open a pull request page. For
commit messages, GitHub has established conventions.

The majority of these practices, such as mentioning people using the @USERNAME
format, are also supported in pull requests. So, if I use @justjais in the PR
description, I will get a notification as @justjais is my GitHub Username/ID.

The #ISSUEID format can be used to refer to problems and other pull requests.

A good pull request requires a lot of work. Most projects already have a set of norms
that developers adhere to when making a pull request; if not, we will examine the
considerations and points to keep in mind in a later portion of this chapter.

Contributing Towards Open-Source Project Repo ■ 177

Adding reviewers
A collection of pull request choices is located to the right of the summary and
description boxes.

You can designate one or more individuals to review your pull request using the first
option, Reviewers. Adding reviewers:

1. To get a list of people you can mention, click the gear. You can begin typing
to narrow down the list of users in repositories with a lot of users.

Reviewers £□?

Request up to 15 reviewers

[Type or choose a user

Nothing to show

Figure 6.29 : GitHub Pull Request reviewers' tab

2. To add a user to the list of reviewers, click on each one.

3. When you finish creating the pull request, the reviewers you have added are
informed right away.

4. When clicked on reviewers' tab, it displays the list of reviewers’ who are a
part of the respective GitHub project repository.

Since I am the only contributor to the Git 101 project currently, it is a personal
project. However, like all open-source projects, when you click on the reviewers'
page, members of the project are automatically populated as suggestions.

Adding assignees
An option to specify assignees comes after the Reviewer as a choice. The individual
who needs to act on the pull request is known as an assignee.

A pull request frequently signifies work in progress rather than the finished product
of some task. You will assign the pull request to the appropriate person if extra work
needs to be done on it.

To list the assignees:
1. To view a list of assignees, click the Assignees tab. The assignee dialogue box

functions exactly like the reviewers' dialogue box, which was covered in the
part before this one. You have the option of choosing one or more assignees.

178 ■ Git Repository Management in 30 Days

2. To add a user to the list of reviewers, click on each one.

It is usually better to designate just one person to oversee the following action.

Assignees JoJ

Assign up to 10 people to this pull request

[Type or choose a user

Suggestions

justjais Sumit Jaiswal

Figure 6.30 : GitHub Pull Request assignees’ tab

In the likelihood that, many assignees believe the other assignees oversee, the job is
decreased when only one person is assigned.

Adding labels
Labels function the same manner for pull requests as the title implies as a method of
determining what to work on next. To make it easier for you to choose what to work
on, or what to review next, they offer handy categorization and context.

Although you can use the same set of labels on issues and pull requests, some labels
make more sense for issues than for requests, and vice versa. For instance, many
repositories feature a label called "ready for review" just for pull requests.

Additionally, labels can be used to initiate any response specified in a label action.

Adding projects and milestones
You can define the project board and milestone that this Pull request belongs to
using the last Projects and Milestones options.

Creating the pull request
Click the Create pull request button to save all your work and to start the pull request
once you have written the pull request and chosen all of its options.

A pull request I made on my repository is shown in the following screenshot:

Contributing Towards Open-Source Project Repo ■ 179

Figure 6.31: GitHub Pull Request

Writing a good pull request
Pull requests are where an open-source project's interaction with users takes place.

When you contribute to a project, your pull request is your opportunity to convince
the project's developers that your code deserves to be merged into the main branch.
So, be sure to put your best foot forward.

• Clear purpose
You should aim to be both succinct and informative. The synopsis, for
instance, needs to be explicit about the pull request's goal. On the page listing
pull requests, only the summary is displayed. Readers should be able to get
a sense of the PR's content.

Here are a few illustrations of effective pull request summaries:

• Adds the website's About page.

• Reduce boilerplate JavaScript library setup code.

• Extract and separate the error handling from the internals.

The goal of the pull request should be more thoroughly explained in the
description. Make it obvious what the pull request aims to do but do not
write a book about it.

180 ■ Git Repository Management in 30 Days

Maintaining the focus
A pull request should not include a cluster of irrelevant changes, just like a commit
should not. Multiple commits may be included in a pull request, but they must all be
pertinent to the job at hand. You may also use the rebase command to merge multiple
commits in your local repository to make it more understandable. For example, a
Commit for correcting a spelling mistake is not something that you would want to
have as a separate commit while submitting your PR.

You can often tell that a pull request is doing too much when crafting a clear
description of what the pull request does is tough. Keep the pull request to an
acceptable size, even if it just contains one significant change. It is challenging to
review a big pull request.

Break the task down into smaller steps and submit multiple smaller pull requests for
each one if the pull request pertains to a particularly broad task.

Be aware of your audience
Knowing your audience before you start writing can assist you to concentrate your
words on the information that will be most valuable to them. Many audiences could
benefit from a pull request. While it is vital to consider your entire audiences, your
main attention should be on those who will examine your pull request and decide
whether to merge it. They tend to be very busy, so you want to make their life easy.

Although the project maintainers are your main target audience, you must always
keep in mind that the pull request will be read by a large number of people. That
audience may be the entire world for an open-source project. So, be sure to speak in
a respectful, cordial, and inclusive manner.

Defining a call to action
When asking for feedback on a pull request, you must be very specific.

Make it explicit from the beginning, for instance, if the pull request is a work in
progress to prevent people from wasting their time examining it. Tags like <WIP> for
Work in Progress or <DNM> Do not merge are often used.

Reviewing a pull request
When reviewing modified files, you can add comments to particular lines of code to
highlight issues, provide improvements, or simply acknowledge someone's amazing
coding expertise. If the destination branch has changed significantly after the source
branch was rebased, it is recommended to request a rebase before reviewing.

Contributing Towards Open-Source Project Repo ■ 181

Positive and motivating remarks create a friendly and cooperative atmosphere.
Maintainers frequently overlook how intimidating it might be to submit your first
piece of code to a project.

We advise initiating a review rather than adding individual comments as you go
because a review results in a more comprehensive and useful code review. When
evaluating code, it frequently happens that something you read later in the review
prompts you to realize that a previous comment needs to be revised or even removed.

Before sending anything to the author, a review enables you to make these
modifications. You can review your review before publishing it using this option.

Figure 6.32: GitHub Pull Request review comment

Suggesting changes
Sometimes when reviewing code, you come across a portion where you think it
would be quicker to just fix the code rather than try to convey what needs to be
addressed verbally.

Or perhaps you find several little mistakes, like typos, where correcting them instead
of commenting on each one of them will make less errors and consume less time.

182 ■ Git Repository Management in 30 Days

For these situations, GitHub supports suggesting a change via a pull request
comment that the author can apply with a click.

Figure 6.33: GitHub Pull Request review suggested change tab

After you have entered the suggested changes, if you click on preview tab, your
suggested suggestion will be displayed as shown in the following screenshot:

Figure 6.34: GitHub Pull Request review suggested change

Contributing Towards Open-Source Project Repo ■ 183

Finish review
Once you have offered all your suggestions, you may wrap up the review so that
the author can start addressing all of your insightful feedback. Click the Finish your
review button at the bottom of each outstanding remark to complete the review.

You will come across a form where you can enter a general overview of the pull
request. This form gives you the chance to mention any review remarks that are
not related to any particular lines of code. Additionally, it is an excellent chance
to express general approval, voice general concerns, recommend follow-up actions,
and so forth.

Check one of the options after you have typed your remark to show where you
stand on the pull request. The comment form with review options is shown in the
following screenshot:

0/1 files viewed @ Review changes -

Finish your review X

Write Preview H B Z iE <> c3 :E ‘E 0 @

minor cosmetic comment|

G

Attach files by dragging & dropping, selecting or pasting them. CD
(B) Comment

Submit general feedback without explicit approval.

Q Approve
Submit feedback and approve merging these changes.

O Request changes
Submit feedback that must be addressed before merging.

Submit review

Figure 6.35: GitHub Pull Request review complete

184 ■ Git Repository Management in 30 Days

Merging Pull Request
The developer who submitted the Pull request (PR) must fix the reviewer's comment,
upload the changes, and wait for the reviewer to approve before merging the PR.

The developer will be able to merge the PR if he has permission to do so. In larger
open-source projects, manual merge permissions are not permitted, and the PR
is only merged automatically once the project's continuous integration setup has
completed its processing. In some projects, the reviewer also has permission to
merge the project.

- » Git_101 git:(test_workPR) vi temp/pull_101.md
- » Git_101 git: (test_workPR) X git add .
- » Git_101 git:(test_workPR) X git commit -m "fix review comment"

[test_workPR cdb75e0] fix review comment
1 file changed, 2 insertions(+), 2 deletions(-)

- » Git_101 git:(test_workPR) git push origin test_workPR
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 353 bytes | 353.00 KiB/s, done.
Total 4 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

To https://github.com/justjais/Git_101.git
5fc0392..cdb75e0 test workPR -> test workPR

Figure 6.37: Fixing review comment and pushing the change

https://github.com/justjais/Git_101.git

Contributing Towards Open-Source Project Repo ■ 185

With the review comment fix uploaded, and if everything looks good, we are OK to
merge the pull request by clicking on the Merge pull request button as shown in the
following screenshot:

Figure 6.38: Merging Pull request

Writing a great bug report
Your bug report's chances of being fixed increase if it is effective. Therefore, how
well you report a defect will determine whether it is fixed. The ability to report a bug
is only a skill, and in this section, we will explain to the reader how to develop it.

Figure 6.39: Bug report

The good, the bad, and the ugly of bug reports will all be discussed in this section.
Additionally, we will provide some advice on how to create bug/PR reports that
your developers will adore.

The developer will most likely reject a bug reported incorrectly by a bug reporter
and label it irreproducible.

186 ■ Git Repository Management in 30 Days

Characteristics of a quality software bug report
A bug report can be written by anyone. But not everyone can create a good bug
report. An ordinary bug report and a good bug report should be distinguishable
from one another.

How do you tell a good bug report from a bad one? Apply the traits and methods
listed below to report an issue:

• Having a clearly defined bug number

Give each bug report a special identification number. You may then use this
to locate the bug record. This special number will be produced automatically
each time you report a bug if you are using an automated bug-reporting
program. Keep track of how many bugs you reported, along with a brief
explanation of each one.

• Reproducible

A bug that cannot be reproduced will never be fixed. The procedures
to reproduce the bug should be stated in unambiguous terms. Make no
assumptions or shortcuts when reproducing. It is simple to reproduce and
fix the bug that is presented step by step.

• Be Particular: Avoid writing an essay about the issue.

To ensure that the bug reports adhere to the best practices established by
testers and developers throughout time, you can use the simple checklist.

• Title

Be short and precise. Make sure the bug's description is concise and includes
the location or category. The developer will have an easier time subsequently
finding and merging any duplicates if your report has a clear title.

When developers analyze it, they will be able to identify the problem right
away and determine whether or not to investigate it by examining the other
components of the bug report.

• Summary

You might include a brief report summary if you feel your title is insufficient.

By brief we mean, give the time and circumstances around the bug in as
few words as you can. Important keywords should be included in your title
and description because they might be used in searches, as was already
explained.

Contributing Towards Open-Source Project Repo ■ 187

• Issue Type
Giving the person who triages the bug report information about the bug
report—whether it is a bug request, feature request, or doc fix update—gives
them an early sense of whom to allocate the relevant bug.

This facilitates quick action against the reported bug.

• Component and version information

The brief name of the following module, plugin, task, or feature; if in doubt,
make your best assumption.

Reporting the software version, you noticed the bug in will also assist
developers prioritize fixing it in the version you reported.

• Expected vs. actual results

Now, spend some time explaining to your developer what you anticipated
(this is commonly referred to as the user story) and what occurred. For
example:

Expected result: The format for the date should be "dd/mm/yyyy".
Actual result: The date is displayed in the format "mm/dd/yyyy"
instead.

• Steps to reproduce

This is your chance to share the instructions required to reproduce the
bug! Always assume that your developer is unaware of the bug you have
discovered, and how they can fix it.

The steps to be taken should be detailed, simple to comprehend, and
condensed. The main objective of this stage is for your developer to encounter
the bug.

• Screenshot

There are a thousand words in a picture. Take a screenshot of the failure with
the appropriate captions to show the flaw. Light red hue is used to highlight
unexpected error notifications. This highlights the necessary area.

• Environment

Depending on the environment, websites and apps might behave extremely
differently. For developers, this is very crucial information.

188 ■ Git Repository Management in 30 Days

• Severity and priority

Your developer can determine how quickly a bug should be repaired by
specifying the issue’s severity or priority. The extent of the impact your bug
has on your website or product can be used to gauge its severity.

After determining this, you can categorize it as:

• Critical

• Major

• Minor

• Trivial

• Enhancement

Repository/Content developer can choose which bug to look at and address first,
based on the priority. Here, you have three options:

• High

• Medium

• Low

You will often be in charge of determining the severity and priority as the bug
reporter.

Effective bug reporting
An essential component of software testing is bug reporting. Effective bug reports
communicate clearly with the development team to prevent misunderstandings or
errors.

A good bug report should be concise and unambiguous, without any important
details being omitted. Any ambiguity causes miscommunication and slows down
the development process. One of the most crucial yet underappreciated aspects of
the testing life cycle is the documenting and reporting of defects.

When reporting an issue, excellent writing is crucial. The main thing a bug reporter
should remember is to avoid writing in a directive manner in the report. This
undermines morale and fosters unproductive working relationships.

Do not presume that the developer erred and that you can be tough with them.
It is crucial to confirm whether the bug has already been reported before filing a
complaint.

The testing process is hampered by duplicate bugs. View the complete list of known
bugs. The developers may occasionally be aware of the problem and choose to

Contributing Towards Open-Source Project Repo ■ 189

disregard it in the next releases. It is also possible to use any of the available bug
tracking tools, which check for duplicate bugs automatically. To find any duplicate
bugs, it is better to search manually.

You need to ensure that the report should provide information about how and
where the crucial details are. The report should specify in detail how the test was
conducted and the precise location of the issue. The bug should be simple for the
reader to recreate and locate.

Remember that the goal of creating a bug report is to help the developer see the
issue. They need to understand the flaw from the bug report clearly. Do not forget to
give the developer all the information they need.

Additionally, keep in mind that a bug report will be saved for later use and should
be properly written with the necessary details. To describe your bugs, use clear
sentences and straightforward language. Avoid making comments that are unclear
and waste the reviewer's time.

Each bug should be reported separately. If a bug report has numerous issues, you
cannot close it until every issue is fixed.

Therefore, it is best to break the problems into different bugs. This guarantees that every
bug can be dealt with individually. A developer can replicate a bug at their terminal
with the aid of a well-written bug report. They can also diagnose the problem with
the aid of this.

Pushing code and opening a pull request
over GitHub
The Feature Branch Workflow, the Gitflow Workflow, and the Forking Workflow
can all be used with pull requests. Pull requests, on the other hand, necessitate two
independent branches or repositories, thus they would not work with the Centralized
Workflow.

Pull requests are used differently in each of these workflows, but the general
procedure is as follows:

1. On their local repo, a developer creates the feature in a dedicated branch.

2. The branch is pushed to a public GitHub repository by the developer.

3. The developer submits a GitHub pull request.

4. The reviewer/repositories maintainer of the team looks at the code, debates
it, and makes changes. The ideal flow should be to incorporate most of the
change in a branch, test, and then incorporate back to the main branch.

190 ■ Git Repository Management in 30 Days

5. The feature is merged into the official repository, and the pull request is
closed by the project maintainer.

You generate and submit a pull request when you write code that you want to
contribute to a repository. Some proposed changes to the target repository are
included in your code. A pull request is how you submit these modifications
to the repository's maintainer. It allows repository administrators to assess the
modifications and decide whether to accept, reject, or request additional changes.

Summary
Bug report must without a doubt be a professional-grade document. Since this is
the primary means of communication between the tester, developer, and manager,
concentrate on producing effective bug reports and give it some time.

The fundamental duty of every tester is to provide a quality bug report, and
managers should make their staff aware of this. Your efforts to produce a quality bug
report will not only conserve corporate resources but also foster a positive working
relationship between you and the developers.

Conclusion
The topics we have discussed in this chapter are the building block and soul of the
Git pull request and its associated used terms.

The software development lifecycle includes two crucial processes: pull requests
and code reviews. As a result, there is also plenty of excellent advice available for
carrying out these tasks properly, more than we can cover in a single chapter.

In the next chapter, we will continue to build on the knowledge we gained in this
chapter and discuss a few of the Git concepts in more depth.

Multiple choice questions
1. Command to check all the remote branch in your local Git repository?

a. git remote

b. git remote -v

c. git remote -a

d. git pull

Contributing Towards Open-Source Project Repo ■ 191

2. Command to checkout branch from your main branch?

a. git checkout

b. git checkout -a

c. git checkout -b

d. git checkout -b <branch_name> origin/main

3. How can you tag a Bug ID under your PR description?

a. #BUGID

b. !BUGID

c. @BUGID

d. &BUGID

4. How can you notify a member from the team in the pull request?

a. #USERNAME

b. &USERNAME

c. @USERNAME

d. %USERNAME

5. Can a developer who has raised a PR approve the PR?

a. True

b. False

6. What are the usual bug priority levels?

a. high

b. medium

c. low

d. All the above

Answers
1. b

2. d

3. a

4. c

5. b

6. d

192 ■ Git Repository Management in 30 Days

Further readings
For more information and reference around the discussed topics of this chapter
you can check out the Git official documentation for getting started and GitHub
documentation

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 7

Tags and
Releases Using

Git

This chapter discusses all the Git and GitHub related processes and critical aspects
that should be kept in mind. Git places only four types of objects in the object
store: the blobs, trees, commits, and tags.

Managing releases using Git and the GitHub is a simple and uncomplicated process,
and we will learn all about the concepts and underlying commands used to achieve
the process.

Structure
In this chapter, we will cover the following topics:

• Release tags versus release branches

• Git tag

• Git list tag

• Git branch

• Cherry-Pick commit for reuse

• Git Stash for code reusability

194 ■ Git Repository Management in 30 Days

Objectives
This chapter builds on what we learned in the previous chapter and allows us to
make a final decision before pushing and committing changes to source control.

This process of committing changes to the GitHub repo may entail renaming,
deleting, or ignoring files in the project, and all these ideas will be covered in detail
in this chapter.

This chapter assumes that you have an up and running Git on your Linux, windows
or Mac machines.

Release tags versus release branches
When you are working on many features or have a team working on multiple
features/bugs, branches come in handy. In such a situation, say a team of 5, each
individual can be allocated a different issue. They can work on and fix that issue on
his or her branch (most Git hosting services can do this automatically).

If you are done developing the feature and tested it, you can simply make a merge
request to have it merged with the main branch. This helps in ensuring that:

• Before merging the code to the main branch, the project owner can inspect it
and do a code review before pushing it to the main branch.

• Only well-reviewed work is pushed to the main branch, making sure that
the code is always stable.

Assume you have coded numerous features this way and merged them into the
main branch. Your product is now ready to be released as a new version. Tagging
comes handy in this situation. After a few modifications have been merged into
main, users can tag the most recent merged commit with a new release tag, such as
version-1.1.

The added benefit of tagging is that you may include change logs and release notes
in each of the tags you work on, ensuring that your development cycle remains
consistent over time.

Git has CI functionality that can produce tagged releases to a container and deploy
them automatically.

Tagging can substantially aid your “release cycle” in the following ways:

1. Merge features into main from branches.

2. Add tags when you have a large number of features.

3. Automatic deployment to a staging server.

Tags and Releases Using Git ■ 195

4. Test the release.

5. Release it to production if everything looks good.

So, branches come in handy for scenarios where you have a large team, Branching
can help you code unique features or fix bugs (while keeping the main branch clean).

Tags are useful for remembering certain points in your commit history, such as
releases. If something goes wrong after a release, you can always go back to the
previous tag, fix the problem, and re-release it.

Git Tag
Tags mark a particular point in Git's history. Tags are used to indicate whether a
commit stage is relevant. A commit can be tagged for future reference, and can be
mostly used to indicate the beginning of a project, such as v1.0.

Tags are similar to branches, they do not alter. A branch or separate branches can
have any number of tags. The tags on various branches are shown in the following
figure:

Figure 7.1: Git tag

There are two types of tags:

• Annotated tag

• Light-weighted tag

Both tags are similar, but they differ in terms of the number of Metadata they can
store.

196 ■ Git Repository Management in 30 Days

Git Create tag
To make a tag, go to the branch where you wish to make a tag and checkout.

Figure 7.2: Git create tag

Replace <tagname> with a meaningful identifier for the repo's current state at the
time the tag is created. The use of version numbers, such as git tag v1.0, is a typical
pattern. Annotated and lightweight tags are the two types of tags supported by Git.
The lightweight tag was produced in the preceding example.

The quantity of associated metadata stored by Lightweight tags and Annotated
tags differs. Annotated tags should be considered public, while Lightweight tags
should be considered private. Extra metadata is stored in annotated tags, such as
the tagger's name, email, and date. This is critical information for a public release.
Lightweight tags are simply committed 'bookmarks,' consisting of only a name and
a pointer to a commit.

Annotated tag
Annotated tags are tags that store additional metadata such as the developer's name,
email address, date, and other information. In the Git database, they are saved as a
collection of objects.

It is advisable to create an annotated tag when pointing and storing a final version of
any project. You can create a lightweight tag if you only want to make a momentary
mark or do not want to share information.

The data given in annotated tags are required for the project's public release. There are
more annotation options available, such as adding a message for project annotation.

Figure 7.3: Git annotated tag

The command above will make a tag with a message. Annotated tags include extra
information such as the author's name and other project-related details.

■» Git_101 git: (main) git tag gitlOlvl.O -m "release point for gitlOlvl.O"

Figure 7.4: Git annotated tag in action

Tags and Releases Using Git ■ 197

In the main branch of my project's repository, the above command will produce an
annotated tag git101v1.0.

When we present an annotated tag, extra information about the tag will be displayed.

-» Git_101 git: (main) git show gitlOlvl.O
tag gitlOlvl.O
Tagger: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Sep 12 13:34:48 2021 +0530

release point for gitlOlvl.O

commit 652ec3flaaclafccc93el2e6068d665f07525ba5 (HEAD -> main, tag: gitlOlvl.O)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

interactive new msg in file

diff --git a/learn_git.txt b/temp/learn_git.txt
similarity index 100%
rename from learn_git.txt
rename to temp71earn_git.txt

Figure 7.5: Git show tag

Light-weighted tag
Another sort of tag supported by Git is the Light-weighted tag. Both tags have the
same goal: to mark a location in the repository. It is usually a commit that is saved in
a file. To make it light-weight, it does not store unwarranted data.

This command generates a lightweight tag with the name v1.0. The -a, -s, and -m
parameters are not used to create lightweight tags. Lightweight tags create a new tag
checksum and store it in the .git/ directory of the project's repo.

Figure 7.6: Git lightweight tag

mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com

198 ■ Git Repository Management in 30 Days

The above output will generate the projectv1.0 light-weight tag. It will have a smaller
output than a tag that has been annotated.

•+ Git_101 git: (main) git show gitlOlvl.O
commit 652ec3fIaaclafcco93el2e6068d665f07525ba5 (HEAD -> main, tag: gitlOlvl.O)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

interactive new msg in file

diff —git aZlearn_git.txt bZtempZlearn_git.txt
similarity index 100%
rename from learn_git.txt
rename to tempZlearn_git.txt

Figure 7.7: Git show lightweight tag

Git list tag
We can make a list of the tags that are available in our repository. There are three
ways for displaying the tags in the repository:

• git tag

• git show

• git tag -l "."*

Git tag is the most common way to get a list of all the tags available in the repository.

Figure 7.8: Git tag output

To check details about specific tag, git show command comes in handy as:

mailto:sjaiswal@redhat.com

Tags and Releases Using Git ■ 199

-> Git_101 git: (main) gi show gitlOlvl.O
commit 652ec3flaaclafccc93el2e6068d665f07525ba5 (HEAD -> main, tag: gitlOlvl.O)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

interactive new msg in file

diff —git a/learn_git.txt b/temp/learn_git.txt
similarity index 100%
rename from learn git.txt
rename to temp/learn_git.txt

Figure 7.9: Git show output

It is also a one-of-a-kind command-line utility that uses a wildcard pattern to display
the available tags. Assume we have ten tags, such as v1.0, v1.1, v1.2, and so on, up to
v1.10. Then, using the tag pattern v, we can list all the v patterns.

Figure 7.10: Git tag pattern

As you can see from the above CLI output, I was able to extract the two tags beginning
with git as output and filter out the tag named test project.

-* Git_101 git: (main) git tag
gitlOlvl.0
gitlOlvl.l
test_jaro jectvl. O

-» Git_101 git: (main) git tag -1 "git*"
gitlOlvl.0
gitlOlvl.l

Figure 7.11 : Git tag pattern in action

Tagging old commits
Git tag will create a tag on the commit that HEAD is referencing by default. Alternatively,
you can use git tag to refer to a specific commit. Instead of defaulting to HEAD, the
given commit will be tagged.

mailto:sjaiswal@redhat.com

200 ■ Git Repository Management in 30 Days

Use the git log command to get a list of older commits:

-» Git_101 git: (main) git log —prety=oneline
652ec3flaaclafccc93el2e6068d665f07525ba5
febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
136f2a9877ee78d70347fda4c33740ac3d92e7fa
9alb8ff6a66c971ea802011b285326bll38d4b3b
09cd056e67c3e96dba761bcdl8d38a0c44f3fbdd

(HEAD -> main) move file dir
reset
move file directory
Merge pull request #1 from justjais/dev_branch_l
(origin/dev_branch_l, dev_branch_l) remove unwanted

Figure 7.12 : Git log output

The command git log produces a list of commits. We will use the top-most commit
Merge branch 'feature' for the new tag in this example. To tag the Git, we will need
to refer to commit SHA hash:

Git_101 git:(main) gii tag -a test_vl.O 652ec3flaaclafccc93el2e6068d665f07525ba5

Figure 7.13 : Git tag commit

The Git tag command above will produce a new annotated commit for the commit
we picked in the previous git log example, labelled test_v1.0.

■+ Git_101 git: (main) git log —pretty=oneline
652ec3flaaclafccc93el2e6068d665f07525ba5 (HEAD -> main, tag: test_vl.O) move file dir
febe99ddc9dla8a2b8e75a826c2ad29c2dec8453 reset
136f2a9877ee78d70347fda4c33740ac3d92e7fa move file directory
9alb8ff6a66c971ea802011b285326bll38d4b3b Merge pull request #1 from justjais/dev_branch_l
09cd056e67c3e96dba761bcdl8d38a0c44f3fbdd (origin/dev_branch_l, dev_branch_l) remove unwanted

Figure 7.14 : Git commit id tagged

Git Push tag
We can add tags to a project on a remote server. It will aid other team members in
determining where to look for an update.

On a remote server account, it will appear as a release point. The git push command
makes it easier to push tags by providing some special arguments.

• Git push origin <tagname>

Using the git push command, we may push any specific tag, as:

Figure 7.15: Git push origin

Tags and Releases Using Git ■ 201

The command above creates a release point for the supplied tag name. Consider the
following scenario:

I have added some tags to my local repository that I want to push to my GitHub
account. Then I must execute the command listed above. Consider the following
figure, which depicts the present state of my remote repository.

< > Code 0 Issues ft Pull requests © Actions 05 Projects CO Wiki 0 Security R Insights ® Settings

Releases Tags

There aren't any releases here
You can create a release to package software, along with release notes

and links to binary files, for other people to use. Learn more about
releases in our docs.

Figure 7.16 : GitHub repo page (remote repository)

Release at this point is shown as none. Now, if we push the tag to our remote
repository as:

-» Git_101 git:(main) git push origin testProject_vl.0
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 12 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 555 bytes | 555.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/justjais/Git_101.git

* [new tag] testProject_vl.0 ->

Figure 7.17 : GitHub push origin tag output

My testProject_v1.0 tag has been uploaded to the remote repository. The
repository's current state will be changed.

Figure 7.18: GitHub remote repo is tagged

We can download it as a zip and tar file.

• The git push origin --tag/ git push --tags:

https://github.com/justjais/Git_101.git

202 ■ Git Repository Management in 30 Days

This command will simultaneously push all the available tags. It will generate as
many release points as there are tags in the repository.

Figure 7.19: GitHub push origin -tags

All accessible tags from the local repository will be pushed to the remote repository
using the preceding command:

-» Git_101 git: (main) git tag
gitlOlvl. 0
gitlOlvl.l
testProject_vl.0
(END)

-* Git_101 git: (main) git push origin --tags
Total 0 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/justjais/Git_101.git
* [new tag] gitlOlvl.0 -> gitlOlvl.0
* [new tag] gitlOlvl.l -> gitlOlvl.l

Figure 7.20: GitHub push origin -tags output

The release point has been updated as tags have been pushed to the remote server
origin. Take a look at the following repository snapshot:

Figure 7.21: GitHub remote repo updated with all tags

In the above result, the release point is modified based on tags. All 3 tags are updated
now as expected.

Git Delete tag
At any time, Git allows you to remove a tag from the repository. Run the following
command to remove a tag:

https://github.com/justjais/Git_101.git

Tags and Releases Using Git ■ 203

Figure 7.22: Git delete tag command

The command above will remove a specific tag from the local repository. If I wish to
remove my tag git101v1.0, it can be done as:

Figure 7.23: Git delete tag output

The tag git101v1.0 has been deleted from the local repository.

Delete remote repository tag
A tag can also be removed from the remote server. Run the following command to
remove a tag from the remote repository:

Figure 7.24: Git tag delete from remote repo

The command above will remove the tag supplied from the remote repository.

•* Git_101 git:(main) git push origin —delete gitlOlvl.O
To https://github.com/justjais/Git_101.git
- [deleted] gitlOlvl.O

Figure 7.25: Git tag delete from remote repo output

Delete multiple tags
With a single command, we may erase multiple tags. To delete multiple tags at the
same time we use the following command:

• From Local Repository

Figure 7.26: Git multiple tag delete from local repo

https://github.com/justjais/Git_101.git

204 ■ Git Repository Management in 30 Days

• From remote repository:

Figure 7.27: Git multiple tag delete from remote repo

Git checkout tags
Using the git checkout command, you may see the current status of a repo at a
certain tag.

■» Git_101 git: (main) git checkout <tagname>

Figure 7.28: Git checkout tags output

The repo is placed in a detached HEAD state after checkout. This implies that any
modifications you make will not be reflected in the tag. They will start over with a
new detached commit. This new detached commit will not belong to any branch and
will only be accessible via the SHA hash of the commit.

As a result, whenever you make changes in a detached HEAD state, it is advisable
to create a new branch.

Retagging/Replacing old tags
Git will throw an error if you try to create a tag with the same identifier as an existing
tag:

Figure 7.29: Git tag on existing tags

Git will also throw an error if you try to tag a previous commit with an existing tag
identifier.

If you need to change an existing tag, you must use the -f FORCE option.

Figure 7.30: Git tag on existing tags output

Tags and Releases Using Git ■ 205

The 652ec3f1aac1afccc93e12e6068d665f07525ba5 commit will be mapped to
the git101v1.1 tag identifier when the above command is run.

It will overwrite any existing git101v1.1 tag content.

Tagging is another way for creating a snapshot of a Git repository. Tagging has
long been used to construct meaningful version number identifier tags for software
release cycles. The primary driver of tag generation, modification, and deletion is
the git tag command.

Annotated tags and lightweight tags are the two types of tags. Annotated tags are
often preferable since they hold more useful meta data about the tag.

Git branch
Most current version control systems include branching as a feature. Branching in
other VCSs can be a time and disc-space-consuming procedure. Branches are an
integral aspect of the Git development process. They provide a shortcut to a snapshot
of your modifications.

You create a new branch to encapsulate your changes when you wish to add a new
feature or solve a bug, no matter how big or tiny. This makes it more difficult for
unstable code to be merged into the main code base, and also allows you to clean up
the history of your future branch before merging it into the main branch.

Figure 7.31: Git Branch

The preceding figure depicts a repository with two development lines, one for feature
I and the other for a feature II. It keeps the main branch clean of problematic code.

Git branches' implementation is far more lightweight than other version control
system architectures. Git keeps a branch as a reference to a commit, rather than
transferring files from directory to directory. A branch, in this sense, indicates the
end of a sequence of commits rather than a container for commits. The commit
relationships are used to derive a branch's history.

206 ■ Git Repository Management in 30 Days

Git main branch
In Git, the default branch name for new repositories created on GitHub is now the
main. It is created when the project's first commit is made. You are assigned a main
branch to the starting commit point when you make your first commit. When you
start committing, the main branch pointer advances automatically. There can only be
one main branch in a repository.

The main branch is the one where all the changes are eventually merged back in. It
is possible to think of it as your project's official working version.

Operations on branches
On Git branches, we may conduct a variety of tasks. Create, list, rename, and delete
branches with the git branch command. The git checkout and git merge commands
perform a variety of operations on branches. As a result, the git branch works in
tandem with the git checkout and git merge commands.

The following are the operations that can be carried out on a branch:

• Create branch

The git branch command can be used to create a new branch.

■» Git_101 git: (main) git branch <branch name>

Figure 7.32: Git Branch command

We can use the following command to create the B1 branch in the Git
directory locally:

-» Git_101 git: (main) git branch test_branch

Figure 7.33: Git Branch command working

• List branch

We can list all the available branches in your repository by using any of two
git branch command:

■ + Git_101 git: (main) git branch --list
- » Git_101 git: (main) git branch

Figure 7.34: Git Branch list

Tags and Releases Using Git ■ 207

Both commands display a list of the repository's available branches. The
symbol * denotes a branch that is currently active which in this case is the
main branch.

- ■ Git 101 git: (main) git branch
dev_branch_l
* main
test_branch

*

Git_101 git: (main) git branch —list
dev_branch_l
* main
test_branch

Figure 7.35 : Git Branch list output

In this case we have just three branches, one named as dev_branch_1, other
as test_branch which we just created and the main branch.

• Delete Branch
You can delete a branch without losing any history once you are done
working on it and merged it into the main branch.

■+ Git_101 git: (main) git branch -d <branch name>

■» Git_101 git: (main) git branch —delete <branch name>

Figure 7.36 : Git Branch delete supported commands

--delete/-d/-D any of the 3 delete supported commands will delete the
existing branch test_branch from the local repository.

Git_101 git: (main) git branch —delete test_branch
Deleted branch test_branch (was 652ec3f).

Figure 7.37 : Git Branch delete command run

• Delete Remote Branch

To delete a remote branch from the Git remote repository, we need to use the
following command:

-* Git_101 git: (main) git push origin --delete Cbranch name>

Figure 7.38: Git Remote Branch delete

208 ■ Git Repository Management in 30 Days

Using the remote branch delete command, we have deleted the dev
branch_1 from the remote repository.

■» Git_101 git: (main) git push origin —delete dev_branch_l
To https://github.com/justjais/Git_101.git
- [deleted] dev branch 1

Figure 7.39: Git Remote Branch delete in action

• Switch Branch

You can switch between branches without committing with Git. The git
checkout command allows you to swap between two branches.

Figure 7.40: Git Switch branch syntax

To switch from main branch to test_branch, we need to checkout the test_branch:

•» Git_101 git: (main) git checkout test branch
Switched to branch 'test_branch'

■» Git_101 git: (test_branch) git branch
main

* test branch

Figure 7.41 : Git Switch main->test_branch

Vice-versa, if we need to switch from test_branch to main branch, we need to
checkout the main branch as:

■» Git_101 git: (testjbranch) git checkout main
Switched to branch 'main'

■» Git_101 git: (main) git branch
* main

test branch

Figure 7.42 : Git Switch test_branch->main

https://github.com/justjais/Git_101.git

Tags and Releases Using Git ■ 209

• Rename branch

Using the Git branch command, we may rename the branch:

■+ Git__101 git: (main) git branch -m <old branch name> <new branch name>

Figure 7.43 : Git rename branch syntax

To rename the existing test_branch to rename_test_branch, we can run the
following command:

■» Git_101 git:(main) git branch -m test_branch rename_test_branch
-» Git_101 git: (main) git branch

* main
rename_test_branch

Figure 7.44: Git rename branch in action

The Git branch command and Git's branching behavior were discussed in the
above section. The major functions of the git branch command are to create, list,
rename, and delete branches.

Cherry-Pick commit for reuse
git cherry-pick is a command that allows you to pick random Git commits by
reference and append them to the current working HEAD. Picking a commit from
one branch and applying it to another is known as cherry-picking.

For undoing modifications, git cherry-pick can be handy. Let us imagine a
commit is made to the wrong branch. You can now switch to the correct branch and
cherry-pick the commit for placement.

Figure 7.45: Git cherry-pick

210 ■ Git Repository Management in 30 Days

The primary goal of a cherry-pick is to apply the modifications made by a previous
commit. A cherry-pick examines a prior commit in the repository's history and
applies the changes from that commit to the current working tree. Although the
definition is simple, cherry-picking a commit or even cherry-picking from another
branch becomes more difficult.

Cherry-picking is a useful tool but is not always the best decision. It may result in
duplicate commits and other situations in which alternate merges are favored over
cherry-picking. It comes in handy in a few situations. It differs from other methods,
such as the merge and rebase commands. Merge and Rebase can be applied to many
commits in another branch.

Need for Cherry-Picking
Assume you are working on a medium- to large-scale project with a team of
developers. You wish to apply some of the changes suggested by another team
member to your main project, but not all of them. Since coordinating changes across
several Git branches can be difficult, you may not want to merge one entire branch
into another.

Only one or two explicit commits are required. Cherry-picking is the process of
incorporating changes from other branches into your main project branch.

Cherry-Picking scenarios:

• Accidently make a commit in a wrong branch

Git cherry-pick is useful for applying changes that were made on the wrong
branch. Assume we wish to commit to the master branch, but accidentally
commit to another branch.

■ » Git_101 git: (testjbranch) touch tempZnew_main_file.txt
■ » Git_101 git: (testjbranch) gif add temp/new_main_file.txt
■ » Git 101 git:{test branch) git commit -m "new proposed changes meant for main branch"

[testjoranch a6edc53] new proposed changes meant for main branch
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 temp/new_main_file.txt

Figure 7.46 : Git cherry-pick in action - I

In the preceding example, I intended to commit to the main branch, but
mistakenly committed to the test_branch. We will use git pull to merge
all the changes from the test_branch into the main branch, but for this
particular commit we will use git cherry-pick.

Tags and Releases Using Git ■ 211

■> Git_101 git: (testjbranch) git log
commit a6edc534744533472450ec924fcccea41425709b (HEAD -> test_branch)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Sep 12 23:49:07 2021 +0530

new proposed changes meant for main branch

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (origin/main, origin/HEAD)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

Figure 7.47 : Git cherry-pick in action - II

To verify the commit history, I used the git log command. Copy the
commit-id for the main branch that you want to make. Switch to the main
branch now and cherry-pick it.

■» Git_101 git: (test_branch) git checkout main
Switched to branch ’main'

■» Git 101 git:(test branch) git cherry-pick a6edc534744533472450ec924fcccea41425709b
[main 31b84f0] new proposed changes meant for main branch
Date: Sun Sep 12 23:49:07 2021 +0530
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 temp/new_main_file.txt

-> Git_101 git:(test_branch) git log
commit 31b84f0025e2cl49810df792c63d765e7b5d080e (HEAD -> main)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Sep 12 23:49:07 2021 +0530

new proposed changes meant for main branch

Figure 7.48: Git cherry-pick in action - III

We can see from the output that I used the git cherry-pick command to
paste the commit id and added it to my main branch. We can verify it using
the git log command.

• Changes suggested by another team member were implemented

Adjusting as suggested by another team member is another example of
cherry-picking. Assume one of my team members made a change to the
primary project and recommends it to the rest of the team.

After you have reviewed it, you can cherry-pick it.

Cherry picking is a powerful and convenient command that comes in handy
in a variety of situations.

mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com

212 ■ Git Repository Management in 30 Days

Git Stash for code reusability
Git Stash stores (or stashes) modifications you have made to your working copy so
you can work on something else and then come back to the changes made earlier.
When you wish to transfer branches but are working on an unfinished part of your
current project, it is sometimes difficult to stash current branch changes. You do not
want to commit to work that is not finished. You can do this with Git stashing. You
can switch branches without committing the current branch with the git stash
command.

The attributes and role of stashing in terms of repository and working directory are
shown in the following figure:

Figure 7.49: Git Stash

The term "stash" means "to safely store something in a secret spot." Git works in the
same way as git stash saves your data safely without committing it.

Stashing saves the state of your working directory, which is currently incomplete,
for later use. With git stash, you have a lot of possibilities. The following are some
relevant options:

• Git stash

• Git stash save

• Git stash list

• Git stash apply

• Git stash changes

Tags and Releases Using Git ■ 213

• Git stash pop

• Git stash drop

• Git stash clear

Git stash branch
Let us look at a real-life example. I made modifications to my Git_101 project in two
files from two different branches. I am in shambles, and I have not finished editing
any files yet.

As a result, I would like to keep it for later usage. We can save it in its current state by
stashing it. Let us take a peek at the repository's present state before we stash. Run
the git status command to see the repository's current status.

Let us now alter the file content in the repo, save the changes, and run the git
status command as follows:

-» Git_101 git:(test_branch)X git status
On branch main
Your branch and 'origin/main' have diverged,
and have 2 and 1 different commits each, respectively,
(use "git pull" to merge the remote branch into yours)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>.to discard changes in working directory)
modified: temp/learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 7.50 : Git status

You can see from the above result that there is 1 untracked file in the repository:
temp/learn_git.txt. We can use the git stash command to save it temporarily.

■» Git_101 git: (testjbranch)x git stash
Saved working directory and index state WIP on main: 31b84f0 new proposed changes meant for main branch

■» Git_101 git:(test_branch) git status
On branch main
nothing to commit, working tree clean

Figure 7.51 : Git stash in action

Above result shows that the work is saved with the git stash command in the
specified output. We may look at the repository's status. The output is just stored in
its current location and the directory has now been cleaned. We can flip between the
branches and work on them.

214 ■ Git Repository Management in 30 Days

Save Git Stash
Saving Stashes with the message. Changes can be saved with a message in Git using
following command:

-» Git_101 git:(test_branch) git stash save <stashing message>

Figure 7.52 : Git stash save syntax

Following stash will be saved with the provided message, as:

■* Git_101 git:(test_branch)X git stash save "Stash the updated file changes"
Saved working directory and index state On main: Stash the updated file changes

-* Git_101 git: (test_branch) git status
On branch main
nothing to commit, working tree clean

Figure 7.53 : Git stash save in action

List Git Stash
To check the Stored Stashes, we can run the following command:

•+ Git_101 git: (test_branch) git stash list
stash@{0}: On main: Stash the updated file changes
stash@{l): WIP on main: 31b84f0 new proposed changes meant for main branch

Figure 7.54 : Git stash list in action

As we can see from the above screenshot, since we made two calls to git stash,
both the changes can be tracked via git stash list command as stash@{0}:
stash@{1}: and so on.

Apply Git Stash
Using the git stash command, you can re-apply the modifications you just saved.
Use the git stash command followed by the apply option to apply the commit.

-» Git_101 git: (test_branch) git stash apply
On branch main
Changes not staged for commit:
(use "git add <file>..to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: temp/learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")

Figure 7.55: Git stash apply in action

Tags and Releases Using Git ■ 215

The preceding output restores the previous stash. If you check the repository's status
now, you will see the changes that have been made to the file.

To apply a certain commit to several stashes, use the git stash apply command
followed by the stash index id. It is employed in the following ways:

Figure 7.56: Git stash apply with id syntax

If we apply the git stash apply command with specific ID again, git will throw
an error to add/stash the previous stash and then proceed with the changes of stash
with specific ID, as:

■» Git_101 git:(test_branch) X git stash apply stash@{l}
error: Your local changes to the following files would be overwritten by merge:

temp/learn_git.txt
Please commit your changes or stash them before you merge.
Aborting

Figure 7.57 : Git stash apply with id in action

Git stash changes
We can keep track of where the stashes are and how they have changed. Run the
following command to observe the changes in the file before and after the stash
operation:

-» Git_101 git: (test_branch) X git stash show
temp/learn git.txt | 2 +­
1 file changed, 1 insertion(+), 1 deletion(-)

Figure 7.58 : Git stash show in action

We can keep track of every change made to the file. Use the following command to
see the file's altered content:

- » Git_101 git: (test_branch) X git stash show -p
diff —git a/temp/learn_git. txt b/temp/learn_git.txt
index 403df72.,910713e 100644
- a/temp/learn_git.txt
+++ b/temp/learn git.txt
@@ -1 +1 @@
-Modify existing file content
+ Modify existing file content

Figure 7.59: Git stash show partial in action

216 ■ Git Repository Management in 30 Days

Re-applying your stashed changes
With git stash pop, you can re-apply previously stashed changes, as:

■ Git_101 git: (main) git status
On branch main

*

nothing to commit, working tree clean

- > Git_101 git: (main) git stash pop
On branch main
Your branch and 1origin/main’ have diverged,
and have 2 and 1 different commits each, respectively,
(use "git pull" to merge the remote branch into yours)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: temp/learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (a7b001101f82345f8bb247dddb7a69889466eba2)

Figure 7.60 : Git stash pop

When you pop your stash, the changes are removed from your stash and reapplied
to your working copy. Alternatively, yo can use git stash apply to reapply the
changes to your working copy and keep them in your stash:

The git stash apply and git stash pop commands are very similar.

The stash pop command, which deletes the stash from the stack after it is applied,
is the key distinction between these two commands.

• Stashing Ignored/Untracked files

When you run git stash by default, it will save the following files:

o Alterations you have made to your index (staged changes)

o Alterations to files currently being tracked by Git (unstaged changes)

However, it will not stash:

• Fresh files that have not been staged in your working copy

• Files that were ignored

If we create a new file temp/new test file.txt but do not stage it and instead do a git
stash on the branch, but as the file was not added to the working stage, git stash
will not stash it.

Tags and Releases Using Git ■ 217

- » Git_101 git: (main) X git status
On branch main

Changes not staged for commit:
(use "git add <file>.to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: temp/learn_git.txt

Untracked files:
(use "git add <file>.to include in what will be committed)
temp/new_test_file.txt

no changes added to commit (use "git add" and/or "git commit -a")
■ » Git_101 git: (main) X gii stash

Saved working directory and index state WIP on main: 31b84f0 new proposed changes meant for main branch

Figure 7.61 : Git stash in action for untracked change

If we check the status again, we can see the newly added file under untracked
changes:

■» Git 101 git: (main) X git status
On branch main

Untracked files:
(use "git add <file>..." to include in what will be committed)
temp/new_test_file.txt

no changes added to commit (use "git add" and/or "git commit -a1')

Figure 7.62 : Git status for untracked change

The -u option (or --include-untracked) instructs git stash to save your untracked
files as well:

-» Git_101 git: (main) X gi: stash -u
Saved working directory and index state WIP on main: 31b84f0 new proposed changes meant for main branch

■» Git_101 git: (main) git status
On branch main
no changes added to commit (use ''git add" and/or "git commit -a")

Figure 7.63 : Git stash -u in action

Git stash branch
If you have saved some work on a certain branch and want to keep working on it.
Then, during the merging process, it may cause a conflict. As a result, it is a good
idea to keep working on a distinct branch.

218 ■ Git Repository Management in 30 Days

To avoid conflicts, the git stash branch command allows the user to stash work
on a separate branch.

This command will establish a new branch and transfer all the previously saved
work to it.

■» Git_101 git:(main) git stash branch <branch name>

Figure 7.64 : Git stash branch

Git stash cleaning
You can delete a stash using git stash drop if you decide you do not need it any
longer. Git stash list - forget the stash index to be deleted, followed by git stash
drop stash@ and the desired index - stash@{index}

•+ Git_101 git:(main) git stash drop stash@{0}
Dropped stash@{0} (4f8f08b0e3278b03bd0d55df25269f4bc58bl30a)

Figure 7.65 : Git stash drop in action

Conclusion
This is the end of this chapter and the contents we discussed in this chapter are the
building block and soul of the Git version control system. The more fluent you get
will all the discussed terms and their respective usages and application, the efficient
you will become in using Git and GitHub as well.

In the next chapter, we will continue building on the knowledge we gained in this
chapter and discuss a few of the Git concepts in more depth.

Multiple choice questions
1. Command to filter tag by name/pattern from available Git tags?

a. git show

b. git tag list

c. git list tag

d. git tag -l "."*

Tags and Releases Using Git ■ 219

2. Command to delete remote branch from remote Git repository?

a. git branch -D

b. git push origin --delete

c. git delete branch

d. git branch origin --delete

3. Git command to switch between different branches?

a. git checkout

b. git branch

c. git log

d. git push

4. What are the two types of Git tags?

a. Hard-weighted tag and Light-weighted tag

b. Light-weighted tag and Annotated tag

c. Annotated tag and Hard-weighted tag

d. None of the above

5. Command to stash untracked changes?

a. git stash pop

b. git stash clear

c. git stash apply

d. git stash -u

6. Git command to pick random Git commits by reference?

a. git branch

b. git cherry-pick

c. git tag

d. git log

Answers
1. d

2. b

3. a

220 ■ Git Repository Management in 30 Days

4. d

5. d

6. b

Key terms
• Tag a particular point in Git History

o Tag

• Relevant Stash options are:

o Git stash

o Git stash save

o Git stash list

o Git stash apply

o Git stash changes

o Git stash pop

o Git stash drop

o Git stash clear

o Git stash branch

• Delete a local branch:

o git branch -D

o git branch --delete

• Delete a remote branch from remote repository:

o git push origin --delete

Points to remember
• Annotated tags and lightweight tags are the two types of tags. Annotated

tags are often preferable since they hold more useful meta data about the tag.

• Branches come in handy for scenarios where you have a large team, Branching
can help you code unique features or fix bugs.

• Git cherry-pick is useful for applying changes that were made on the wrong
branch by mistake.

• To delete all your stashes at once, user can use git stash clear command.

Tags and Releases Using Git ■ 221

Further reading
For more history and reference around the discussed topics in this chapter you
can check out the Git official documentation for getting started and GitHub
documentation:

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 8

Undo or Refresh
all the

Work Done

The ability to "undo" your mistakes is one of the most useful aspects of any version
control system. In Git, the term "undo" can refer to a variety of things.

Git saves a snapshot of your repository at that precise point in time when you make
a new commit; later, you can use Git to go back to an earlier version of your project.

This chapter discusses all the process-related and critical aspects that should be kept
in mind and followed before undoing changes in Git.

Structure
In this chapter, we will cover the following topics:

• Undo and refresh changes in Git

• Git revert

• Git reset

• Amend Git commit

• Interactive rebase

224 ■ Git Repository Management in 30 Days

Objectives
This chapter focuses on Git's undo/refresh feature and covers all the principles
that Git exposes to assist users achieve similar functionality, as well as how GitHub
processes and workflows can aid in making the job more fluid and efficient.

This chapter assumes that you are up and running with Git on your Linux, Windows
or Mac machines. After reading this chapter, you should have all the resources
necessary to reverse changes made to a Git repository.

The commands covered in this chapter can be confusing at times, but if you consider
how they affect the working directory, staged snapshot, and commit history, it should
be simpler to determine which command is appropriate for the current development
task.

Undo and refresh changes in Git
At any stage of your development lifecycle using Git and GitHub, you can undo
something at any time. We will go over a few basic tools for reversing changes in
this section.

However, you cannot always undo some of these undo's’, so be careful.

One of the most common undos’ occurs when you commit too soon and may forget
to add some files or make a mistake in your commit message. This chapter deals
with all the underlying concepts for undoing changes in Git.

The advantage of using a version control system is that it keeps track of changes. These
records allow us to obtain information such as commits, discover who contributed
what, determine where issues were introduced, and undo incorrect changes.

However, all of this information will be useless if we are unable to explore it. The
git log command can help us with this.

Git log is a command for reviewing and reading the history of everything that
happens in a repository. This command displays previous commits, allowing you to
know who made what changes in the repository.

A git log can be used with a variety of parameters to make history more specific.
The git log command can be used to list, filter, and display commit history in a
variety of ways.

Type the following command into the terminal to run a simple git log command:

Figure 8.1: Git log

Undo or Refresh all the Work Done ■ 225

This will display the entire commit history in an interactive terminal for us to view
and navigate as shown in the following screenshot:

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

commit 136f2a9877ee78d70347fda4c33740ac3d92e7fa
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:09:06 2021 +0530

move file directory

commit 9alb8ff6a66c971ea802011b285326bll38d4b3b
Merge: 6c30e21 09cd056
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 01:23:20 2021 +0530

Merge pull request #1 from justjais/dev_branch_l

Edit Dev branch 1

Figure 8.2 : Git log output

The git log is a record of commits in general. These commits are displayed in
reverse chronological sequence (the last commit will be shown on the top). It also
contains a variety of other details that are incredibly valuable when more than one
person is working on the repository. The following information can be found in a
git log:

• The Secure Hash Algorithm (SHA) algorithm generates a 40-character
checksum data called a commit hash. It is a one-of-a-kind number.

• Commit Author metadata includes information such as the author's name
and email address.

• Commit Date metadata: This is a date timestamp for the commit time.

• The commit title/message is a summary of the commit provided in the
commit message.

The default log is useful for getting a fast overview of what is going on in the
repository. However, it takes up a lot of space, and you can only see a few commits
at a time.

mailto:sumit@email.com
mailto:sumit@email.com
mailto:sumit@email.com
mailto:sumit@email.com

226 ■ Git Repository Management in 30 Days

Navigating log
Git scrolls through the commit history using the Less terminal pager. You can use the
following commands to traverse it:

• To scroll down by one line, press j

• To scroll up by one line, press k

• To scroll down by one page, press the spacebar or the page down button

• To scroll up by one page, press the spacebar or the Page Up button

• To stop the log, press b or the Page Up button

Git log Oneline
If we simply need to list the unique section of the commit id together with the
author's message, we may use the --oneline option to print a single line about each
commit. This is a great way to gain a high-level overview of your project.

The output of git log --oneline will usually look like this:

blb4cca (HEAD -> main, origin/main, origin/HEAD) move file dir
febe99d reset
136f2a9 move file directory
9alb8ff Merge pull request #1 from justjais/dev_branch_l

Figure 8.3 : Git log -oneline output

In most cases, the —oneline flag forces the git log to show:

• One commit per line

• The first seven characters of the SHA

• The message of a commit

Using the git log command, we may limit the number of output commits. If you
want fewer commits, use this command to reduce the complexity. Include the <n>
option to limit the output of the git log.

If we just want to see the past 3 commits, we may use the git log command with the
-3 parameter and for condensed information same can be passed with --oneline
command option as shown in the following screenshot:

-> Git_101 git: (main) git log -3
-* Git_101 git: (main) git log -3 —oneline

Figure 8.4: Git log limited output

Undo or Refresh all the Work Done ■ 227

The skip command, on the other hand, will remove the top <n> commits.

-* Git_101 git: (main) git log --skip 3
•* Git_101 git: (main) git log —skip 3 —oneline

Figure 8.5: Git log --skip

Git log Log-Size
The log-size option in Git informs you about the log size. After typing the command,
it generates an additional line with log-size <number>:

Figure 8.6: Git log -log-size

When you run this command, you will see that a new line called log size and
number appears in the console. This is the length of the commit message in bytes, as
required by many tools. They can allot exact space for saving the commit message in
advance by reading this number.

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
log size 102
Author: Sumit Jaiswal <sumit@email, com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
log size 94
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

Figure 8.7: Git log -log-size output

Git log Stat
The log command shows you which files have been changed. It also includes a
summary line showing the total records that have been modified, and the number
of lines.

-» Git_101 git: (main) git log --stat
-» Git_101 git:(main) git log —stat <commit_id>

Figure 8.8: Git log -stat

mailto:sumit@email.com

228 ■ Git Repository Management in 30 Days

The stat option is used to show the following information:

• The modified files

• Number of lines that have been added or removed from the document.

• Summary line of the total number of records that are modified.

• The lines that have been added to or removed from the document.

In Figure 8.9, we can see that all the commits reported are repository modifications:

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

learn_git.txt => tempZlearn_git.txt | 0
1 file changed, 0 insertions(+), 0 deletions(-)

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

tempZlearn_git.txt | 1
1 file changed, 1 deletion(-)

commit 136f2a9877ee78d70347fda4c33740ac3d92e7fa
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:09:06 2021 +0530

move file directory

tempZlearn_git.txt | 1 +
1 file changed, 1 insertion(+)

Figure 8.9: Git log -stat output

Git log graph
The Git log command displays your Git log as a graph. Run the git log command
with the --graph option to see the commits as a graph.

Figure 8.10: Git log -graph

mailto:sumit@email.com
mailto:sumit@email.com
mailto:sumit@email.com

Undo or Refresh all the Work Done ■ 229

One of the advantages of using this command is that it allows you to see how
commits have merged and git history was built.

* commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
I Author: Sumit Jaiswal < >sumit@email.com
| Date: Mon Aug 30 12:11:13 2021 +0530
I
| move file dir
I
* commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
| Author: Sumit Jaiswal <sumit0email.com>
| Date: Mon Aug 30 12:10:26 2021 +0530
I
I reset
I
* commit 136f2a9877ee78d70347fda4c33740ac3d92e7fa
| Author: Sumit Jaiswal <sumit@email.com>
| Date: Mon Aug 30 12:09:06 2021 +0530
I
I move file directory

Figure 8.11: Git log -graph output

The asterisk indicates which branch the commit was made on, therefore, the graph
above shows that the b1b4cca0 commit was made on the feature xyz branch,
whereas the others were made on other branches.

Filtering the commit history
We can screen the output to meet our requirements. It is a unique Git feature. On
output, we can apply a variety of filters such as amount, date, author, and more.
Each filter has its own set of requirements. They can be utilized to implement some
output navigation operations.

• Filter commits by author

We may need to filter commits based on the author's name in some
circumstances. To filter and show only the provided author, we will use
--author and enter the author's name as shown in the following screenshot:

Figure 8.12: Git log -author

mailto:sumit@email.com
sumit0email.com
mailto:sumit@email.com

230 ■ Git Repository Management in 30 Days

This command accepts a regular expression and returns a list of authors' commits
that match that pattern. You can also use the specific name rather than the pattern as
shown in the following screenshot:

■+ Git_101 git: (main) git log —authors"Sumit"
commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

-* Git_101 git: (main) git log —authors"@email.com"
commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

Figure 8.13: Git log -author filter output

We can see that all the commits by the author are listed in the above report. As we
know that the author's email is linked to the author's name, we can use the author's
email as a pattern or an exact search.

We can achieve this by using wildcards like "@email.com." We can track the commits
of authors who use different email service like Gmail, Outlook, Yahoo, and so on.

• Filter commits by content

We may filter commits based on the content of the commit. If we want to
search and filter for a specific modification, this will be quite handy. We will
use the -S option and a filter phrase. Keep in mind that this could take a
while because it will search all commits that are not indexed for quick search.

You can use git log -S to find all occurrences of a string in your repo's
history.

mailto:sumit@email.com
mailto:sumit@email.com
email.com
mailto:sumit@email.com
mailto:sumit@email.com
email.com

Undo or Refresh all the Work Done ■ 231

It is great for recovering deleted code.

Figure 8.14: Git log content filter

• Filter commits by date and time

The output can be filtered by date and time. To specify the date, we must
use the --after or --before arguments. Both arguments accept a variety
of date formats.

-» Git_101 git:(main) git log —after="yy-mm-dd"
■+ Git_101 git:(main) git log —before="yy-mm-dd"

Figure 8.15 : Git log date and time filter

Consider the following output:

-> Git_101 git:(main) git log —after="21-08-01"
commit blb4cca0cb4009b0be5332b248c8b782el8f302f (HEAD -> main, origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal Csumit@email,com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

Figure 8.16 : Git log date and time filter after output

All commits after "2021-08-01" are listed in the above command.

We can also keep track of the commits that occurred between the two dates. Pass
a statement reference --before and -after the date to track the commits made
between two dates.

mailto:sumit@email.com

232 ■ Git Repository Management in 30 Days

Let us say we want to keep track of commits from "2021-08-01" to "2021-08-21"
The command will be executed as follows:

-» Git_101 git: (main} git log —after="21-08-01" —before="21-08-21"
commit 063eafa082decad7c2b66d4e3dcl313ebdaae061
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Aug 1 15:57:23 2021 +0530

added 8th line

commit 89ced37e366fbdl8775de5ca3524018a85d2cld2
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Aug 1 15:57:13 2021 +0530

added 7th line

commit 68a7832616ff9e76dl0b97200421521245da5456
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sun Aug 1 15:56:58 2021 +0530

added 6th line

Figure 8.17 : Git log date and time filter after and before output

• Filter commits by commit message

Figure 8.18: Git log grep

The commit message will be used to filter the commits. We can use the grep option,
which will function similarly to the author option.

-> Git_101 git: (main) git log —grep="reset"
commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

Figure 8.19: Git log grep output

The result above shows all the commits with the term commit in their commit
statement.

There are a variety of other filtering options available, including file name, commit
numbers, and more but the above discussed ones are used most.

mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com

Undo or Refresh all the Work Done ■ 233

Git reflog versus Git log
The main difference between git reflog and git log is that the log is a public
record of the repository's commit history, while the reflog is private.

The git log is duplicated as a part of the git repository after a push, fetch, or
pull. On the other side, the git reflog is not included. The reflog is a file in
.gitlogsrefsheads that keeps track of local commits for a given branch and
excludes any commits that may have been cut away by git trash collection.

The git log, on the other hand, provides a historical commit traversal for a branch
that starts with the most recent commit and ends with the branch's very first commit.

While git reflog is extremely useful for recovering lost branches and commits,
it also has several drawbacks. For example, reference logs are stored locally and
cannot be pushed or fetched from a remote repository. They normally expire or are
erased after a certain length of time to save disc space.

Git revert
The git revert command is an 'undo' command and is not a standard undo
procedure. Rather than removing the commit from the project history, it determines
how to invert the modifications made by the commit and adds a new commit with
the inverse content.

This prevents Git from losing history, which is critical for maintaining the integrity
of your revision history and collaborating with confidence.

Figure 8.20: Git revert in action

When you wish to apply the inverse of a commit from your project history, reverting
is the way to go. This is useful if you are trying to trace down a bug and discover
that it was caused by a single commit. Rather than manually going in, fixing it, and
committing a fresh snapshot, you may automate it.

Figure 8.21: Git revert command

234 ■ Git Repository Management in 30 Days

Furthermore, we can state that git revert records certain new changes that are the
polar opposite of earlier commits. Git revert has the following options that are
available to the users for reverting the changes.

• Options:

Procedures such as editing, no editing, cleanup, and more are available with
Git revert. Let us have a look at these possibilities in more detail:

<commit>

To undo a commit, use the commit option. The commit reference id is required
to roll back a commit. It can be accessed using the git log command.

- e, <--edit>

Before retracting the commit, it is useful to change the commit message.

In the git revert command, it is a default option.

- n/--no edit

This option does not initiate the use of a text editor. It will reverse the most
recent commit.

- n/--no-commit

The revert command, in general, commits by default. The no-commit
option prevents you from committing automatically. Furthermore, if you use
this option, your index does not have to match the HEAD commit.

The no-commit option is useful for undoing the effects of multiple commits
in a row on your index.

- m parent-number /--mainline parent-number

It is used to undo the merger process. We cannot revert a merge in most cases
since we do not know which side of the merging should be regarded as the
mainline.

We can give the parent's number and revert allows us to undo the change concerning
that parent.

Git revert to previous commit
Let us assume you have made a change to your project learn_git.txt file. Later
you remember that you made a mistake by committing to the wrong file or branch.

If you now want to revert the changes, you can. Git gives you the ability to go back
and fix your mistakes.

Undo or Refresh all the Work Done ■ 235

“--
■» Git_101 git: (main) X git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: temp/learn_git.txt

no changes added to commit (use "git add" and/or "git commit -a")
-» Git_101 git: (main) X git add .

Git_101 git: (main) X git commit -m "add new msg in file"
[main 4ele05d] add new msg in file
1 file changed, 1 insertion(+), 1 deletion(-)

Figure 8.22 : Git status check

I have made changes to learn_git.txt, as you can see from the output above. The
git revert command can be used to undo it. We will need a commit to undo the
changes.

-» Git_101 git: (main) git log
commit 4ele05d26409e816fcab722694a503c4c3bb3ec3 (HEAD -> main)
Author: Sumit Jaiswal <sumit@email.com>
Date: Sat Sep 11 19:36:51 2021 +0530

add new msg in file

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (origin/main, origin/HEAD)
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

commit febe99ddc9dla8a2b8e75a826c2ad29c2dec8453
Author: Sumit Jaiswal <sumit@email.com>
Date: Mon Aug 30 12:10:26 2021 +0530

reset

Figure 8.23 : Git log output

I have copied the most recent commit-ish to roll back in the above output. On this
commit, I will now do a revert operation. It will function as follows:

Figure 8.24: Git revert in action

The changes made to the repository have been reverted, as you can see from the
output above.

mailto:sumit@email.com
mailto:sumit@email.com
mailto:sumit@email.com

236 ■ Git Repository Management in 30 Days

The git revert command is a forward-moving undo operation that allows you to
undo changes securely.

A revert creates a new commit that reverses the modifications indicated, rather than
deleting or orphaning commits in the commit history.

Git reset
Git reset command is a powerful tool for reverting changes. There are three main
types of invocation. The command-line parameters corresponding these forms are:

• --soft

• --mixed

• --hard

The three arguments are The Commit Tree (HEAD), The Staging Index, and The
Working Directory, which are Git's three internal state management mechanisms.

To put it another way, Git is a tool that resets the current state of HEAD to a specific
state. It is a complex and flexible tool for reversing modifications. Git can use it as
a time machine. You can navigate between the many commits by jumping up and
down. Each of these reset options has an impact on the specific trees that Git uses to
process your file's content.

Additionally, git reset can be used to reset entire commit objects or individual
files. Each of these reset options has an impact on the trees that git uses to manage
your file and its contents.

Figure 8.25: Git reset

Undo or Refresh all the Work Done ■ 237

For creating and reverting commits, Git employs an index (staging area), HEAD,
and working directory. If you are not sure what Head, trees, and index mean, check
out Git Index and Git Head.

You can change the file and stage into the index from the working directory. You can
choose what you wish to include in your next commit in the staging area. A commit
object is a hashed version of the information that has been cryptographically signed.

It contains Metadata and points that are needed to turn on earlier commits.

Git reset hard
It will first update the index with the contents of the commits and then move the
Head. It is the simplest, riskiest, and most commonly employed method as shown
in the following screenshot:

- » Git_101 git: (main) touch temp/test_reset. txt
- » Git_101 git:(main) X git add tempZtest_reset.txt
■ + Git_101 git: (main) X git status

On branch main
Your branch is ahead of 'origin/main' by 2 commits.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore —staged <file>..." to unstage)

new file: tempZtest_reset.txt
- » Git_101 git: (main) X git log

commit 939ad0854al7191ab2afd5f630a60271ddclc850 (HEAD -> main)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sat Sep 11 19:48:30 2021 +0530

Revert "add new msg in file"

This reverts commit 4ele05d26409e816fcab722694a503c4c3bb3ec3 .

commit 4ele05d26409e816fcab722694a503c4c3bb3ec3
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Sat Sep 11 19:36:51 2021 +0530

add new msg in file

commit blb4cca0cb4009b0be5332b248c8b782el8f302f (originZmain, originZHEAD)
Author: Sumit Jaiswal <sjaiswal@redhat.com>
Date: Mon Aug 30 12:11:13 2021 +0530

move file dir

Figure 8.26: Git reset -hard in action

The --hard option modifies the Commit History and updates the ref pointers to
the selected commit. The staging index and working directory must then be reset
to reflect the commit that was selected. The working directory and any previously
outstanding commits to the staging index are reset to match the commit tree. Any
pending work will be lost as a result.

1. I have added a file named test_reset.txt to the output above and
double-checked the repository's status. Because I have not committed the

mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com
mailto:sjaiswal@redhat.com

238 ■ Git Repository Management in 30 Days

modifications, we can see that the current head position has not altered. I am
going to use the reset --hard option now.

2. The --hard option operates on the repository that is currently available.
This option will undo the adjustments and restore the Head's position prior
to the most recent alterations. The available adjustments will be removed
from the staging area.

3. Following the hard reset, we can see that there is nothing to commit in my
repository because the reset hard option deleted all the changes to match the
current Head's status with the prior one. So, the file test_reset.txt has
been removed from the repository.

In general, the reset hard mode does the following tasks:

• The HEAD pointer will be moved.

• The staging area will be updated with the material that the HEAD is pointing
to.

• The working directory will be updated to match the staging area.

Git reset mixed
The git reset command has a mixed option as a default. If no arguments are
passed, the --mixed option is used by default by the git reset command as shown
in the following screenshot:

- » Git 101 git: (main) touch temp/test reset.txt
- » Git_101 git: (main) X git status

On branch main
Your branch is ahead of 'origin/main' by 2 commits.

(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

temp/test_reset.txt

nothing added to commit but untracked files present (use "git add" to track)
- » Git_101 git: (main) X git add .
- » Git_101 git: (main) X git status

On branch main
Your branch is ahead of 'origin/main’ by 2 commits.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore —staged <file>..." to unstage)

new file: tempZtest_reset.txt

Figure 8.27: Git reset -mixed in action -1

Undo or Refresh all the Work Done ■ 239

The ref points are updated with a mixed choice. In addition, the staging area was
reset to the state of a certain commit. The changes that were left undone were copied
to the working directory.

- » Git_101 git: (main) X git reset —mixed
■ » Git_101 git: (main) X git status

On branch main
Your branch is ahead of 1origin/main' by 2 commits.

(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

temp/test_reset.txt

nothing added to commit but untracked files present (use "git add" to track)

Figure 8.28: Git reset -mixed in action - II

The above command will reset the Head's status, but it will not erase any data from
the staging area in order to match the Head's location.

We can see from the above output that we used the git reset -mixed command
to reset the position of the Head. We also double-checked the repository's status. As
we can see, this command has had no effect on the repository's status. As a result, it
is evident that mixed mode does not remove any data from the staging area.

The reset mixed mode, in general, performs the following tasks:

• The HEAD pointer will be moved.

• The material that the HEAD is pointing to will be updated in the staging
area.

Unlike Git hard mode, it does not update the working directory. It merely updates
the index, not the working tree, and then creates a report of the files that haven't
been updated.

Git reset soft
The soft option has no effect on the index file or working tree, but it does reset the
Head, like all other choices. When the soft mode is activated, the ref points are
updated, and the resets come to a halt. It will work in the same way as the git
amend command. It is not a command from a higher authority. It was once seen to be
a waste of time by developers.

Figure 8.29: Git reset -soft

240 ■ Git Repository Management in 30 Days

It is typically utilized to adjust the head's position.

Git reset to commit
Sometimes, we may need to reset a specific commit from time to time, and Git allows
us to do so. We can go back to a previous commit. To reset it, use the git reset
command with any parameter supported by reset. It will reset the provided commit
by using the default behavior of a command.

The following is the syntax for resetting commit:

Figure 8.30: Git reset to commit

Here the option can either be: - -hard, - -mixed, or -soft

Resetting versus reverting
It is vital to remember that git revert just undoes a single commit; it does not "revert"
a project to its former state by removing all future commits. This is referred to as a
reset rather than a revert in Git.

Compared to resetting, reverting has two significant advantages:

• It is a "safe" procedure for commits that have already been published to a
shared repository because it does not modify the project history.

• Git revert can target a specific commit at any point of time in the history, but
git reset can only go backward from the current commit. If you wanted
to undo an old commit with git reset, for example, you must erase all
commits that came after the target commit, then remove the target commit
and re-commit all subsequent commits. Needless to say, this is not a really
elegant undo method.

Amend Git commit
The git commit --amend command makes it easy to make changes to the most
recent commit. Instead of initiating a new commit, it allows you to integrate staged
modifications with the prior one. It can also be used to make minor changes to a
prior commit statement without affecting the snapshot. However, amending does
not simply change the most recent commit; it completely replaces it, making the
altered commit a new entity with its ref.

Undo or Refresh all the Work Done ■ 241

Figure 8.31: Git commit --amend

It will appear to Git as a fresh new commit. There are a few frequent instances in
which you might want to use git commit --amend.

Changing most recent Git commit message
Let us imagine you just committed, and your commit log message had an error. You
can edit the preceding commit's message without affecting the snapshot if you use
this command when nothing is staged.

In the course of your daily development, you will make premature commitments
regularly. It is all too simple to forget to stage a file or mis-format your commit
message.

The --amend flag is a handy technique to correct these minor errors.

Figure 8.32: Git commit -amend -m

Using the -m option, you can send a new message directly from the command line
without having to open an editor.

Changing committed files
The scenario depicted in the following example is a common one in Git-based
development.

Let us imagine we have updated a few files and want to commit them all in a single
snapshot, but we fail to include one of them the first time. It is as simple as staging
the other file and committing with the —amend command to fix the error

To summarise, git commit --amend allows you to add new staged modifications
to the most recent commit. With a --amend the commit, you can add or remove
modifications from the Git staging area.

Even if no modifications have been staged, a --amend command will prompt you
to edit the last commit message log. When using --amend on commits that are
shared with other team members, be cautious. Amending a commit that has been
shared with another user may need perplexing and time-consuming merge conflict
resolutions.

242 ■ Git Repository Management in 30 Days

Interactive rebase
The term "interactive rebasing" is a misnomer for a very valuable Git feature. Rebase
and interactive rebase have little in common from the user's perspective.

Git rebase helps in rebasing the commits from one branch to another, one by one, in
order. Git offers an interesting option called --interactive (-i), which opens an
editor with a list of commits that are about to be updated. This list accepts commands,
allowing the user to make changes to the list before rebasing.

You can use interactive rebase to clean your commits before pushing them to the
server. You can use interactive rebasing to:

• Git Squash your commits to make the commit history more compact and
easier to read. Before distributing modifications to others, squash is a good
tool for group-specific alterations.

• With the intriguing interactive rebase command, you may combine many
commits into a single commit. If you use Git, you are probably aware of the
necessity of squashing a commit. Many times, especially if you are on an
open-source contributor, you will need to submit a pull request (PR) with
squashed commits. You can even squash commits if you have previously
created a PR.

• Make changes to the message for your commits.

• Fixup is similar to squash, only it does not pause to ask for a new message.

• Delete to remove a commit.

Interactive rebasing at work
Let us say we want to rephrase one of the check-in comments of the past four
commits.

We did git rebase -i HEAD4 and got the following output:

Undo or Refresh all the Work Done ■ 243

- » Git_101 git: (main) git rebase -i HEAD~4
pick febe99d reset
pick blb4cca move file dir
pick 4ele05d add new msg in file
pick 939ad08 Revert "add new msg in file"

Rebase 136f2a9..939ad08 onto 136f2a9 (4 commands)
#
Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup [-C | -c] <commit> = like "squash" but keep only the previous
commit's log message, unless -C is used, in which case
keep only this commit's message; -c is same as -C but
opens the editor
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with 'git rebase —continue')
d, drop <commit> = remove commit
1, label <label> = label current HEAD with a name
t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <online>]
. create a merge commit using the original merge commit's
. message (or the oneline, if no original merge commit was
. specified); use -c <commit> to reword the commit message
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.

Figure 8.33 : Git rebase -i HEAD~4 - I

From oldest to newest, we can observe the four most recent commits.

Examine the comment just below the list of commits. The action is set to "pick" by
default, implying that the commit will be reapplied with no changes to its content
or message.

The repository will be unaffected if you save and execute this file. If I include
"rephrase" (abbreviated as "r") in a commit, it signals that I want to make changes to
the subsequent changes.

-» Git_101 git: (main) git rebase -i HEAD~4
pick febe99d reset
pick blb4cca move file dir
r 4ele05d add new msg in file
pick 939ad08 Revert "add new msg in file"

Figure 8.34 : Git rebase -i HEAD~4 - II

244 ■ Git Repository Management in 30 Days

When I save and exit the editor, git will do the procedures outlined above, bringing
me back into the editor as if I had changed commit 4e1e05d.

interactive new msg in file

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#
Date: Sat Sep 11 19:36:51 2021 +0530
#
interactive rebase in progress; onto 136f2a9
Last commands done (3 commands done):
pick blb4cca move file dir
reword 4ele05d add new msg in file
Next command to do (1 remaining command):
pick 939ad08 Revert "add new msg in file"
You are currently editing a commit while rebasing branch 'main1 on '136f2a9'.
#
Changes to be committed:
modified: temp/learn_git.txt

Figure 8.35 : Git rebase -i HEAD~4 - III

I make changes to the commit message from add -> interactive, save, and exit the
editor. The following is the result:

[detached HEAD f7c8c40] interactive new msg in file
Date: Sat Sep 11 19:36:51 2021 +0530
1 file changed, 1 insertion(+), 1 deletion(-)

Successfully rebased and updated refs/heads/main.

Figure 8.36 : Git rebase -i HEAD~4 - III

The commit message for commit 4e1e05d has been changed to "interactive new
msg in file."

Now that you have learned how to edit the message of any commit, you can try it
on your own.

Squash commits together
Rebase interactive also provides us with the following commands:

• squash (s) merges the commit into the previous one (the one in the line
before)

• Fixup (f) acts similarly to squash (s) but discards the message of this commit

Undo or Refresh all the Work Done ■ 245

We will keep working on the rebase example started earlier as shown in the following
screenshot:

-> Git_101 git: (main) git rebase -i HEAD-4
pick febe99d reset
pick blb4cca move file dir
s 4ele05d interactive new msg in file
f 939ad08 Revert "add new msg in file"

Figure 8.37 : Git rebase -i HEAD~4 -1

The editor would have added the third commit message, which had already been
commented out for us when it was saved, as follows:

This is a combination of 3 commits.
This is the 1st commit message:

move file dir

This is the commit message #2:

interactive new msg in file

The commit message #3 will be skipped:

Revert "add new msg in file"
#
This reverts commit 4ele05d26409e816fcab722694a503c4c3bb3ec3 .

Please enter the commit message for your changes. Lines starting
with will be ignored, and an empty message aborts the commit.
#
Date: Mon Aug 30 12:11:13 2021 +0530
#
interactive rebase in progress; onto 136f2a9
Last commands done (4 commands done):
squash f7c8c40 interactive new msg in file
fixup ee9651f Revert "add new msg in file"
No commands remaining.
You are currently rebasing branch ’main' on '136f2a9'.
#
Changes to be committed:
renamed: learn_git.txt -> temp71earn_git.txt

Figure 8.38: Git rebase -i HEAD~4 - II

Save, and outputs:

[detached HEAD 652ec3f] move file dir
Date: Mon Aug 30 12:11:13 2021 +0530
1 file changed, 0 insertions(+), 0 deletions(-)
rename learn_git.txt => tempZlearn_git.txt (100%)

Successfully rebased and updated refs/heads/main.

Figure 8.39: Git rebase -i HEAD~4 - III

246 ■ Git Repository Management in 30 Days

Rebase on top of main
We fork an open-source library, begin work on a feature branch, and the upstream
project's main branch progresses.

This is what our history looks like:

A—B—C feature
/

D-- E-- F---G upstream/main

Figure 8.40: Git rebase main - I

The library maintainer requests that we "rebase on top of main" so that any merge
conflicts between the two branches may be resolved and our changeset remains
intact. The maintainer would want to see a history that looks somewhat like this:

A1 —B'—C' feature
/

D-- E---F---G upstream/main

Figure 8.41: Git rebase main - II

We wish to reapply our commits to upstream's main one by one, in order. Sounds
like the rebase command's description!

Let us look at the commands that will get us to the desired scenario:

Point our 'upstream' remote to the original fork
git remote add upstream https://github.com/justjais/Git_101.git

Fetch latest commits from upstream' (the original fork)
git fetch upstream

Checkout our feature branch
git checkout feature

Reapply it onto upstream’s master
git rebase upstream/master

Fix conflicts, then git rebase —continue', repeat until done
Push to our fork
git push --force origin feature

Figure 8.42: Git rebase main - III

https://github.com/justjais/Git_101.git

Undo or Refresh all the Work Done ■ 247

Re-writing history risks
Did you notice the --force option in the previous git push command? This
signifies that the repository's history is being overwritten. This is always safe to do
in commits that we do not share with other team members, or on our branches (see
my initials in the example of this blog post).

However, if you forcibly push editions that have already been shared with the team,
that is, commits that exist outside of my repository, Git will signal that something is
wrong. Users will receive unexpected error messages and may accidentally roll back
past commits while attempting to address the associated merge conflicts.

This issue generates a real message, and if you're concerned, you can always try it on
a temporary copy of your repositories.

Rewriting history entails deleting old commits and replacing them with new ones
that are similar but not identical. Your team members will have to re-merge their
work if others base their work on your earlier commits, and then you rewrite and
force-push your commits (if they notice the potential loss).

Conclusion
This is the end of this chapter and the contents we discussed is the building block
and soul of the Git version control system. The more fluent you get will all the
discussed terms and their respective usages and application, the more efficient you
will become in using Git and GitHub.

In the next chapter, we will continue to build on the knowledge we gained in this
chapter and discuss few Git concepts in more depth.

Multiple choice questions
1. How to amend to git commit?

a. git commit -m

b. git commit -am

c. git commit --amend

d. git add .

2. How to squash files while doing interactive rebase?
a. git squash
b. git add .
c. git rebase
d. git rebase -i HEAD~3 -> s

248 ■ Git Repository Management in 30 Days

3. Git reset changes that effects only staging snapshot and commit history?

a. git revert

b. git reset --hard

c. git reset --mixed

d. git reset --soft

4. Git command that is extremely useful for recovering lost branches and
commits?

a. git log

b. git reflog

c. git add .

d. git commit --amend

5. How to check condensed log via git log command?

a. git log

b. git log --oneline

c. git log --stat

d. git log --log-size

6. How to remove the file from git index without actually removing it from
the local file system?

a. git rm

b. git stash

c. git reset

d. git commit

Answers
1. c

2. d

3. b

4. b

5. b

6. c

Undo or Refresh all the Work Done ■ 249

Points to remember
• To avoid making the same error again, instead of using the git rm command,

we can use the git reset command to remove the file from the staged
version and then add it to the .gitignore file.

• To revert a bad commit that is already pushed, a new commit can be created
that reverts changes done in the bad commit. It can be done using git
revert <name of bad commit>.

• It is usually preferable to create a new commit rather than amend an existing
one:

o It is acceptable if only the commit message is changed or destroyed,
but there may be instances where the contents of the commits are
changed. As a result, vital information linked with the commit is lost.

o Excessive use of git commit --amend can have serious consequences,
since the modest commit amend might grow and accumulate
unrelated modifications over time.

• The command git reset --mixed is used to undo changes to the working
directory and git index.

Further readings
For more history and reference around the discussed topics in this chapter you
can check out the Git official documentation for getting started and GitHub
documentation

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Chapter 9

Most Commonly
Used Git

Commands

Git is widely used in the software industry. It is a crucial component of daily
development and is more prominent if you work in a team.

Learning how to utilize all the many commands in Git takes some time and getting
used to. Some commands, however, are employed more frequently (some daily).

Therefore, we will go over the most popular and commonly used Git commands in
this chapter that every developer should be familiar with.

Structure
In this chapter, we will cover the following most used Git commands:

• Git config

• Git init

• Git clone

• Git status

• Git add

• Git commit

• Git push

252 ■ Git Repository Management in 30 Days

• Git branch

• Git checkout

• Git merge

• Git pull

• Git log

• Git show

• Git diff

• Git tag

• Git rm

• Git stash

• Git reset

• Git revert

• Git remote

• Git fetch

Objectives
This chapter essentially serves as a summary of the most frequently used Git
commands that we have studied together. All users, whether novice, experienced,
or expert, can refer to this chapter whenever they have questions about how to use
Git commands because it tries to address most common use case scenarios.

This chapter assumes you are up and running Git under your Linux, Windows or
Mac machines.

Git config
Git needs to be configured before you can use it. You can enter the login and email
address that will be associated with your commits using this command.

This command specifies the author's name and email address to be used with your
commits.

sets up Git with users' name
- » Git_101 git: (main) git config —global user.name "<Users' Full-Name>"
sets up Git with users' email id
- » Git_101 git: (main) git config —global user.email "<Users' Email ID>"

Figure 9.1: git config command

Most Commonly Used Git Commands ■ 253

Git init
You cannot do anything with a Git repository until you create one in order to make
commits or do anything else with it. A new Git repository will be created using the
git init command. The init subcommand, is useful because it performs all the
initial setup for a repository. It stands for "initialise".

We will look at what it does shortly. Git keeps track of everything by creating the
required directories and files with the git init command.

Note the "." at the beginning of the directory name; this denotes that it will be hidden
on Mac/Linux systems. All of these files are saved in this directory.

In order to keep its files structured in other subdirectories, Git will create a hidden.
git directory and use it.

initialise a Git repo
-* - git init

Figure 9.2: git init command

Git clone
Git Clone helps clone an existing repository into a new directory. It is the command
we will be running on the terminal. The Git repository you want to clone is specified
via a path (usually a URL) in the git clone command. Git clone is the command,
and the argument is the location of the Git repository you wish to clone.

The website where we will be working on this project is located on the GitHub
repository. Git clone creates a local working copy of the source code from a remote
repository. The code is automatically downloaded to your local system when you
clone a repository. This will transfer project files from a remote repository to our
local system.

The original location will be added as a remote location if you have permission to do
so, enabling you to pull changes from and submit changes to it.

To get a repository from an existing URL, use this command:

Clone a remote Git repo
■ » ~ git clone repo-url>https://github.com/<git

Figure 9.3: git init command

https://github.com/%253cgit

254 ■ Git Repository Management in 30 Days

Git status
Our key to understanding Git is the git status command. It will let us know what
Git is thinking and how Git perceives the current state of our repository.

Always use the git status command when you are first starting. Starting it after
any other command is a good idea. This will help you learn Git and prevent you
from assuming (perhaps incorrectly) about the status of your files or repository.

The information that the git status tool displays will vary depending on the
condition of your files, working directory, and repository as shown in the following
screenshot:

Figure 9.4: git status command

Git add
Use the git add command to move files from the working directory to the staging
index. You can contrast your local version with the version of the remote repository
by using the git add command, which stores your modifications in a file in the
staging area.

Use the git add command to add your new or modified file to the staging area
before committing it.

To add particular files, using the following command, files are added to the staging
area:

Add particular files to staging area
- > Git_101 git: (main) git add <filel> <file2>.. ,<fileN>

Figure 9.5: git add files -1

To add all the files, use the following command which adds one or more files to the
staging area in order:

Add all changed files to staging area
■» Git_101 git: (main) git add .

Figure 9.6: git add files - II

Most Commonly Used Git Commands ■ 255

Git commit
The most often used Git command can be this one. It is used when we have finished
developing anything and want to save our changes (maybe after a specific task or
issue).

Git commit is comparable to creating a development checkpoint that you can return
to at a later time. This command stores the commit id of the changes made to the Git
repository along with a log message.

With git commit, the changes are recorded in your repository. Every time you
commit your code changes, you must also add a brief explanation of the modifications
that were done. This commit statement makes the modifications easier for others to
understand.

commit the changes to remote repo
■» Git_101 git:(main) git commit -m "commit message for the changes"

Figure 9.7 : git commit changes

Git push
The contents of your local repository are pushed to the remote repository you added
with this command. Pushing commit will send the commits from your main branch
to the remote repository.

A named branch will be created in the remote repository if it does not already exist
as shown in the following screenshot:

git push changes
- > Git_101 git: (main) git push <remote> <branch-name>
Newly created branch, need to be uploaded as
■ » Git_101 git: (main) git push -u origin <branch-name>
- » Git_101 git: (main) git push --set-upstream <remote> <branch-name>

Figure 9.8 : git push changes

Git branch
With the git branch, you can add a new branch to an existing one, display all
existing branches, and remove a branch. This command is used to carry out actions
on the selected branch. Git will withdraw all the files and directories from the commit
that the branch refers to, when you execute this command. Git will also delete all
files and folders from the Working Directory it is tracking (files that Git tracks are
preserved in the repository, so nothing is lost).

256 ■ Git Repository Management in 30 Days

1. Create a new local branch by using the following command:

git branch
-» Git_101 git: (main) git branch <branch-name>

Figure 9.9 : git branch

2. Use the following command to push the new branch into the remote
repository:

git push branch
-» Git_101 git: (main) git push -u <remote> <branch-name>

Figure 9.10 : git push remote branch

3. To view branches:

list branch
■» Git_101 git: (main) git branch/ git branch —list

Figure 9.11 : List git branch

4. To delete the branches:

Delete branch
■+ Git_101 git: (main) git branch -d <branch-name>

Figure 9.12 : Delete git branch

Git checkout
The git checkout command can be used to switch to an already-existing branch
or create a new branch and switch to it. To do this, you need to have the branch you
wish to switch to in your local system and need to commit or stash any changes you
have made to your current branch.

You can check out files by using git checkout command. Git will withdraw all the
files and directories from the commit that the branch refers to from the repository
when you execute this command. Git will also delete all files and folders from the
Working Directory it is tracking (files that Git tracks are preserved in the repository,
so nothing is lost).

Most Commonly Used Git Commands ■ 257

Figure 9.13: Checkout git branch

You must take care of the following issues to effectively switch between branches:

• Before switching, the modifications in your current branch must be
committed or stored.

• The branch you want to visit should be available in your local repository.

Git merge
This command merges the history of the selected branch into the current branch.
Your branch is joined to the parent branch using the git merge command.

The parent branch may be a development branch or a main branch, depending on
your workflow. It will automatically create a new commit if there are no conflicts.

Before using the git merge command, you must be on the branch you want to
merge with your parent branch. This command merges the history of the selected
branch into the current branch as shown in the following screenshot:

merge branch
-» Git_101 git: (main) git merge <branch-name>

Figure 9.14: Merge git branch

Before merging your branches, make sure your development branch has the most
recent version; otherwise, conflicts or other undesirable issues may arise.

Git pull
The git pull command fetches the contents of the remote repository and integrates
them into your local repository.

Git pull makes sure you have the most recent information from your colleagues by
bringing the most recent changes from the remote server into the local repository.

merge remote changes to local
-> Git_101 git: (main) git pull

Figure 9.15: Git pull

258 ■ Git Repository Management in 30 Days

Git log
To view every commit made to a repository, use the git log command. This
command shows a history of each commit made to the active branch.

Figure 9.16: Git log

Git show
This command displays the modifications to the commit's metadata and content:

Figure 9.17: Git show commit metadata

Git diff
Git diff displays the differences between your current working directory and your
staging directory.

Commits, branches, files, and other types of data sources are examples where Git
diff comes handy. When examining the current state of our Git repository, the git
diff command is frequently used in conjunction with the git status and git log
commands as shown in the following screenshot:

Figure 9.18: Git diff

To obtain the specifics of commit IDs, we use git log as shown in the following
screenshot:

Git tag
Git tag command is used to add tags to the provided commit referenced by an ID:

Figure 9.19: Git tag

Most Commonly Used Git Commands ■ 259

Git rm
This command stages the deletion while removing the file from your working
directory as shown in the following screenshot:

Figure 9.20: Git rm

Git stash
Git stash is used to store (changes) safely in a hidden place (the stash stack).

• All the changes in the tracked files are temporarily stored by this command:

Figure 9.21: Git stash -1

• This command restores the most recently saved files:

Figure 9.22: Git stash - II

• This command lists each change set that has been stored:

Figure 9.23: Git stash - III

• The most recent stored files are deleted by this command:

Figure 9.24: Git stash - IV

260 ■ Git Repository Management in 30 Days

Git reset
git reset is used to restore the working tree to its most recent committed state.

• This command unstages the file while maintaining its contents:

Figure 9.25: Git reset -1

• This command restores the local changes and undoes all commits that came
before the one that is provided:

Figure 9.26: Git reset - II

• The following command returns to the given commit while erasing all
previous history:

Figure 9.27: Git reset - III

Git revert
We occasionally need to reverse the adjustments we have made. Depending on what
we require, there are several ways to reverse our modifications locally or remotely,
but we must use these commands carefully to prevent unintended deletions.

Then, all we have to do is write the hash code next to the commit we want to undo:

-» Git_101 git: (main) git revert <commit-id>

Figure 9.28: Git revert

Utilizing git revert has the benefit of not affecting the commit history. This
indicates that every commit, including those that have been reverted, is still visible
in your history.

Most Commonly Used Git Commands ■ 261

Everything, in this case, happens locally unless we push them to the remote
repository, which is another safety step.

Git revert is the best method for undoing our commits because it is safer to use.

Git remote
To connect your local repository to the remote server, use this command:

•+ Git 101 git:(main) git remote add <origin/upstream> <remote repository URL>

Figure 9.29: Git remote

Git fetch
Git gathers any commit from the target branch that is not already in our current
branch when we run the git fetch command and stores it in our local repository.

But it does not integrate it into our current branch as shown in the following
screenshot:

Figure 9.30: Git fetch

This is very helpful when working on something that would fail if we updated our
files but still need to maintain our updated repository as current. We utilize merge
to include the commits into our master branch.

It pulls every branch from the repository. Additionally, it gets all the necessary files
and commits from another repository.

Conclusion
This is the end of the chapter. We discussed the most frequent Git commands that
developers and testers use in their daily work.

Given that this is the book's final chapter, I want to emphasize the fact that learning
GitHub inside and out takes time. You must first become proficient in a variety of
specialized GitHub features. One component of this knowledge is knowing how to
automate the creation of a pull request or the linking of issues to a project board. To
contribute to projects efficiently and meaningfully, it is also crucial to start mastering
facets of software engineering as a whole.

262 ■ Git Repository Management in 30 Days

A further strategy to master GitHub is to become a productive community participant.

Simply trying is one of the best methods to learn anything. Trying always results in
learning.

When you try something and fail, you learn from your mistakes and gain an
understanding of how it operates.

Success teaches you what to do the next time!

Multiple choice questions
1. How to check the remote config in your local repository?

a. git remote
b. git remote -v
c. git revert
d. git status

2. How to add multiple files to git staged area?
a. git commit -m
b. git push --force-with-lease
c. git branch -D <branch name>
d. git add .

3. Command to get the commit from the target branch that isn't already in
our current branch?

a. git fetch
b. git commit
c. git stash
d. git status

4. Git command to configure user credentials to use the git as expected?
a. git commit
b. git config
c. git add .
d. git commit --amend

5. Command to undo a bad commit that was pushed by mistake?
a. git add .
b. git revert <commit name>

Most Commonly Used Git Commands ■ 263

c. git rm <filename>
d. git commit

6. Git command to remove the file from git index without actually removing
from the local file system?

a. git rm
b. git stash
c. git reset
d. git commit

Answers
1. b

2. d

3. a

4. b

5. b

6. c

Key terms
• Start a working area

o init
o Clone

• Work on the current change:
o add
o mv

o restore
o rm

• sparse-checkoutExamine the history and state of the repository:
o bisect
o diff
o grep
o log

264 ■ Git Repository Management in 30 Days

o show
o status

• Grow, mark and tweak your repo history:
o branch
o commit
o merge
o rebase
o reset
o switch
o tag

• Collaborate over repository:
o fetch
o pull
o push

Further reading
For more history and reference around the discussed topics in this chapter you
can check out the Git official documentation for getting started and GitHub
documentation

• Getting started with Git: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

• Getting started with GitHub:
quickstart

https://docs.github.com/en/get-started/

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/
https://discord.bpbonline.com

Index

Symbols
.Gitignore 44
.gitignore files 125, 126

debugging 131
global .gitignore 129
patterns 126-128
sample 129

A
Annotated Tag

creating 99, 100
Apache Subversion (SVN) 62

B
bug report

characteristics 186-188
effective bug report 188, 189
writing 185

C
Centralized Version Management

Systems (CVCSs) 4
cherry-picking

need for 210, 211
using 209, 210

cloning 142
committed file

ignoring 129, 130
Continuous Integration (CI) 39

D
Distributed Version Control

Systems (DVCSs) 4

F
fetch command 102, 103

all branch 104

266 ■ Git Repository Management in 30 Days

local repository, synchronizing 104,
105

remote repository 103
specific branch 103, 104

forked repository
pull request, creating from 149

G
Git 6, 36

advantages 38, 39
benefits 37
changes, refreshing 224, 225
changes, undoing 224, 225
collaboration 62
committed state 9
features 7, 8
history 5, 6
installation, on Linux/Unix 10-14
installation, on Mac OS 15, 16
installation, on Windows 16-24
modified state 8
staged state 8
working with 9, 10

Git add 254
git add command 66
Git Aliases 158, 159
Git branch 123, 205, 255, 256

Git main branch 206
local vs remote 123, 124
operations 206-209

Git branch current changes 66
file contents, adding to index 66-68
file, moving 68, 69
file, renaming 68
files, removing from index 72-74

sparse-checkout, initializing 74
sparse-checkout, modifying 74
working tree files, removing 72-74
working tree files, restoring 69-72

Git checkout 256, 257
Git clone 60, 61, 253

usage 63-65
versus, Git Init 65, 66

Git collaboration 102
fetch 102, 103
pull 105, 106
push 107-109

Git commands 55, 56
working area 56

Git commit 132, 255
--amend option 240, 241
command line options 133, 134
commit message, changing 241
committed files, changing 241
examples 134-136
versus SVNs 132, 133
working with 125

git commit command 66
Git config 252
Git create tag 196
Git diff 258
Git fetch 261
Git file

delete command line options 116, 117
deleting 116
examples 117, 118
renaming 120-122

Git history
bisect 74-76
branch 86-90

Index ■ 267

commit 90-92
diff 76-79
grep 79, 80
log 80, 81
merge 92, 93
rebase 93-95
show 81, 82
status 82-85
tag 97

GitHub 24, 36
configuring 25-30
creating 25-30
for code distribution 172
fundamental 39-41
pull request, describing 176
pull request, opening 172-176

GitHub repository
changes, committing 46-48
cloning 142-144
creating 41-45
duplicating 145, 146
forking 142-145
forking, need for 147, 148

GitHub workflow 170, 171
fork workflow, with pull requests 171
with pull requests 171

Git init 57, 253
Git Interactive Rebase 95, 96

versus, Standard Rebase 96
Git list tag 198, 199

Git checkout tags 204
Git delete tag 202, 203
Git push tag 200-202
multiple tags, deleting 203, 204
old commits, tagging 199, 200

old tags, retagging/replacing 204, 205
remote repository tag, deleting 203

Git logs 258
commit history, filtering 229-232
graph 228, 229
log size 227
navigation log 226
oneline 226
stat 227, 228
versus, Git reflog 233

Git merge 257
Git options 52-55
Git pull 165, 257

from remote branch 169
Git force pull 169, 170
implementing 165-168

Git push 66, 255
Git push origin 101
Git remote 261
Git repository 57

cloning, into directory 60, 61
initializing 57-60

Git reset 236, 237, 260
hard in action 237
-- hard option 238
mixed option 238, 239
resetting, versus reverting 240
soft option 239
to commit 240

git restore command 69
Git revert 233, 234, 260, 261

to previous commit 234-236
Git rm cached 118, 119

undo before commit command 119,
120

268 ■ Git Repository Management in 30 Days

Git rm command 72, 259
Git show 258
Git stash 259
Git Stash, for code reusability 212

applying 214, 215
branch 213, 217, 218
changes 215
listing 214
saving 214
stashed changes, re-applying 216, 217

Git status 66, 254
Git Tags 97, 195, 258

Annotated Tag 196, 197
Annotated Tag, creating 99, 100
Delete Tag 101
Light-Weighted Tag 197, 198
Light-Weighted Tag, creating 99
List Tags 100
Push Tags 100
types 98

Graphical User Interface (GUI) 46

I
ignored files 125, 126

stashing 131
interactive rebasing 242

at work 242-244
history risks, re-writing 247
rebase on top of main 246
squash 244, 245

L
Light-Weighted Tag

creating 99
List tags 100
local Version Control Systems (VCSs) 3

M
merge command

versus rebase command 96

P
pull command 105, 106
pull request 38, 47, 164

assignees, adding 177, 178
changes, suggesting 181, 182
creating 178
creating, from forked repository 149
focus, maintaining 180
labels, adding 178
merging 184, 185
milestones, adding 178
nature 164
opening, by pushing code 189, 190
project board, adding 178
review, completing 183, 184
reviewers, adding 177
reviewing 180, 181
writing 179

push command 107
Git force push 110
Git push origin main 108, 109

Push Tag 100

R
release tags

versus release branches 194, 195
reset command 96, 97

S
Secure Hash Algorithm (SHA)

algorithm 132, 225
single repository, contributing to 150,

151

Index ■ 269

branch, sending to forked copy 153
changes, moving to branch 151
collaborators’ involvement, in pull

request 154
forked repository, setting as

remote 152, 153
pull request, commenting over 155
pull request, contributing to 155
pull request, creating 153, 154
pull request, merging 157, 158
pull request review process 154, 155
pull request, testing 156
repo, forking 152
upstream remote branch, adding 152

T
tag 97, 98
tracked files 125

U
untracked files 125

V
version control 2, 3

Centralized Version Management
Systems (CVCSs) 4

Distributed Version Control
Systems (DVCSs) 4

Local Version Control Systems 3

	30 Days

	UK | UAE | INDIA | SINGAPORE

	About the Author

	About the Reviewer

	Acknowledgement

	Preface

	Code Bundle and Coloured Images

	https://rebrand.ly/aqascyr

	Errata

	Piracy

	If you are interested in becoming an author

	Reviews

	Join our book's Discord space

	Table of Contents

	Introduction to Git and GitHub

	Structure

	Objectives

	What is version control

	Local Version Control Systems

	Centralized Version Control Systems

	Distributed Version Control Systems

	Git History

	What is Git

	Git three States

	Getting started with Git

	Linux/Unix

	❖ git

	❖ git

	Mac OS

	Windows

	•	Git

	Introducing GitHub

	Creating and configuring the GitHub account

	o

	Conclusion

	Multiple choice questions

	1.	Which one of the following is true with respect to version control system?

	2.	Choose the correct statement for Git?

	3.	Choose the correct statement for Git branches

	4.	Which one of the following is true with respect to Git?

	5.	Git documentation URL address?

	6.	2FA is an acronym for?

	7.	Command to check the installed version of Git?

	Answers

	Key terms

	Points to remember

	Join our book's Discord space

	Getting Started and Understanding Git and GitHub

	Structure

	Objectives

	Difference between Git and GitHub

	GitHub fundamental

	Creating a repository on GitHub

	Committing changes to your repository

	Conclusion

	Multiple choice questions

	1.	Git remote repository is offline. In that reference which one of the following is true?

	2.	Which is true for GitHub?

	Answers

	Key terms

	Points to remember

	Further reading

	Join our book's Discord space

	Git Branching, Merging, and Rebasing

	Structure

	Objectives

	Introducing Git options

	Git options

	•	--help

	•	-C <path>

	•	-c <name>=<value>

	•	--exec-path[=<path>]

	•	--html-path

	•	--man-path

	•	--info-path

	•	--bare

	•	--work-tree=<path>

	•	--namespace=<path>

	Git commands

	Starting a working area

	Git init - Initialize Git repository

	•	-q, --quiet

	•	--bare

	•	--separate-git-dir

	•	-b/--mitial-branch

	Git clone - Clone a Git repository into a new directory

	Git Clone usage:

	Options:

	•	-l/--local

	•	-b <name>/--branch <name>

	•	--bare

	•	--depth <depth>

	git clone -depth=l <repo>

	•	--mirror

	•	--template

	git clone —template=<template_directory> <repo location>

	Work on the current change

	Git add - Adding file contents to the index

	•	Staging area

	•	-n, --dry-run

	•	-f, --force

	•	-P, --patch

	Mv - Move or rename a file, a directory, or a symlink

	•	-f, --force

	•	-k

	Restore - Restore working tree files

	rm - Remove files from the working tree and from the index

	Options:

	•	-f, - -force

	•	-n, --dry-run

	•	-r

	•	--cached

	•	--ignore-unmatch

	•	-q, --quiet

	sparse-checkout - Initialize and modify the sparse- checkout

	To examine the history and state of the repository

	bisect

	Options:

	diff

	Options:

	• Compare all changes and changes since last commit

	• Compare files from two separate git commits

	• Compare Git Branch

	git diff <branchl>..<branch2>

	git diff <branchl>...<branch2>

	git diff <branch 1> < branch 2> <path/filename>

	grep

	log

	Options:

	Git Log options:

	git log —oneline main..<branch_name>

	show

	status

	GIT STATUS

	git status [<options>] [—] <pathspec>...

	• Clean working tree

	New file in working tree

	To grow, mark and tweak your repo history

	branch

	• Create Branch

	git branch <branch_name>

	• List Branch

	• Rename Branch

	git branch -m Cbranch old name> Cbranch new name>

	• Delete Branch

	git merge <branch name>

	Commit

	•	Git commit -a

	•	Git commit -m

	git commit -m "commit message"

	Merge

	Rebase

	Options:

	Tag

	Options:

	Git Tag options:

	• Creating an Annotated tag

	• List Tags

	•	Git Push Tag

	•	Git push origin

	• Git Delete Tag

	git push —d <tagname> # or, git push --delete <tagname>

	To collaborate over repository

	fetch

	Options:

	Git fetch remote repository:

	git fetch depository URL>

	Git fetch specific branch:

	git fetch Cbranch URL> Cbranch name>

	Git fetch all branch:

	Pull

	Push

	Options :

	•	--all

	•	--prune

	•	--force

	•	--mirror

	•	--dry-run

	•	--tags

	•	--delete

	Git push origin main:

	Git force push :

	git push <remote branch> -f

	or, git push <remote branch> —force

	git push <remote branch> --force-with-lease

	Conclusion

	Multiple choice questions

	1.	How to delete git branch locally?

	2.	Choose the correct syntax for Git force push which fails when there are untracked commits?

	3.	Git command to move files from the working tree and from the index?

	4.	Git command to switch between two git branches?

	5.	Git downloads remote git repo locally.

	6.	Git collaborate commands?

	Answers

	Key terms

	Points to remember

	Further reading

	Join our book's Discord space

	Deleting, Renaming, and Ignoring Files in Git

	Structure

	Objectives

	Delete the Git file

	Options

	•	-n, --dry-run

	•	-r

	•	--cached

	•	--ignore-unmatch

	•	-q, --quiet

	Examples

	Git rm cached

	Undo before Commit command

	-» Git_101 git: (main) git reset —hard

	Git rename files

	Method 1

	Method 2

	■» Git_101 git: (main) git mv temp.txt chapter04.txt

	Git branching

	Local vs remote Git branch

	■+ Git_101 git: (main) git branch -m <old-name> <new-name>

	Git_101 git: (main) git push origin —delete <old-name>

	Working of Git commit

	Ignoring the files using .gitignore

	The .gitignore files

	The .gitignore patterns, that is, file structure

	.gitignore sample

	Global .gitignore

	Ignoring a previously committed file

	git rm —cached sample/bug_fix_sample.py

	Stashing an ignored file

	Debugging .gitignore File

	Git commit: save the staged changes

	How Git commits differs from SVNs

	Options

	•	-m, - -message

	•	--interactive

	•	-n, --no-verify

	•	-am

	•	--amend

	•	--dry-run

	Examples

	Conclusion

	Multiple choice questions

	1.	How to amend to git commit?

	2.	How to add multiple files to git staged area

	3.	Command to verify if the file removed using git rm is as expected?

	4.	Git command to check the status of files which are staged to the repository?

	5.	How to undo a bad commit that has already been pushed?

	6.	How to remove the file from git index without actually removing it from the local file system?

	Answers

	Key terms

	Points to remember

	Further reading

	Join our book's Discord space

	Structure

	Objectives

	Clone and fork the GitHub repository

	Cloning, forking, and duplicating

	Cloning repository

	Forking repository

	Duplicating repository

	Why forking repository is needed

	Creating a Pull request from forked repository

	Contributing to single repository

	Moving your changes to new branch

	Make the source repository the upstream remote setting

	Fork the repo

	Set your forked repository as the origin remote:

	Send your branch to the forked copy

	Create a new pull request

	Collaborating on pull request

	Collaborators’ involvement in the pull request

	Pull request review process

	Commenting over a pull request

	Contributing to a pull request

	Testing pull request

	Merging pull request

	Who should merge the pull request

	Git Aliases

	Conclusion

	Multiple choice questions

	1.	Which git command gets your repository off GitHub and onto your computer?

	2.	How do you duplicate a repository, so you may solve it on your own GitHub account?

	3.	What is the use of forked repo?

	4.	How can you determine whether your local Git repository has changed since your last commit?

	5.	Git command to give the frequently used Git command a generic alias instead of using the long usual command line syntax?

	Answers

	Key terms

	Points to remember

	Further reading

	Join our book's Discord space

	Introduction

	Structure

	Objectives

	Understanding a pull request

	Nature of a pull request

	Git pull

	Git pull from remote branch

	Git force pull

	A complete GitHub workflow

	GitHub Workflow with pull requests

	Fork Workflow with pull requests

	GitHub for Code distribution

	Open a pull request over GitHub

	Opening a pull request

	Describing the pull request

	Adding reviewers

	Adding assignees

	Suggestions

	Adding labels

	Adding projects and milestones

	Creating the pull request

	Writing a good pull request

	Maintaining the focus

	Suggesting changes

	Finish review

	Merging Pull Request

	Writing a great bug report

	Characteristics of a quality software bug report

	•	Reproducible

	•	Title

	•	Summary

	•	Issue Type

	•	Component and version information

	•	Expected vs. actual results

	•	Steps to reproduce

	•	Screenshot

	•	Environment

	•	Severity and priority

	Effective bug reporting

	Pushing code and opening a pull request over GitHub

	Summary

	Conclusion

	Multiple choice questions

	1.	Command to check all the remote branch in your local Git repository?

	Answers

	Further readings

	Join our book's Discord space

	Tags and Releases Using Git

	Structure

	Objectives

	Release tags versus release branches

	Git Tag

	Git Create tag

	Annotated tag

	Light-weighted tag

	Git list tag

	Tagging old commits

	Git Push tag

	Git Delete tag

	Delete remote repository tag

	Delete multiple tags

	Git checkout tags

	Retagging/Replacing old tags

	Git branch

	Git main branch

	Operations on branches

	• Create branch

	• List branch

	• Delete Branch

	• Rename branch

	Cherry-Pick commit for reuse

	Need for Cherry-Picking

	• Changes suggested by another team member were implemented

	Git Stash for code reusability

	Git stash branch

	Save Git Stash

	List Git Stash

	Apply Git Stash

	Git stash changes

	Re-applying your stashed changes

	•	Stashing Ignored/Untracked files

	Git stash branch

	Git stash cleaning

	Conclusion

	Multiple choice questions

	1.	Command to filter tag by name/pattern from available Git tags?

	2.	Command to delete remote branch from remote Git repository?

	3.	Git command to switch between different branches?

	4.	What are the two types of Git tags?

	5.	Command to stash untracked changes?

	6.	Git command to pick random Git commits by reference?

	Answers

	Key terms

	Points to remember

	Further reading

	Join our book's Discord space

	Undo or Refresh all the

	Work Done

	Structure

	Objectives

	Undo and refresh changes in Git

	Navigating log

	Git log Oneline

	Git log Log-Size

	Git log Stat

	Git log graph

	Filtering the commit history

	Git reflog versus Git log

	Git revert

	<commit>

	Git revert to previous commit

	Git reset

	Git reset hard

	Git reset mixed

	Git reset soft

	Git reset to commit

	Resetting versus reverting

	Amend Git commit

	Changing most recent Git commit message

	Changing committed files

	Interactive rebase

	Interactive rebasing at work

	Squash commits together

	Save, and outputs:

	Rebase on top of main

	Re-writing history risks

	Conclusion

	Multiple choice questions

	1.	How to amend to git commit?

	2.	How to squash files while doing interactive rebase?

	Answers

	Points to remember

	Further readings

	Join our book's Discord space

	Most Commonly Used Git

	Commands

	Structure

	Objectives

	Git config

	Git init

	Git clone

	Git status

	Git add

	Git commit

	Git push

	Git branch

	Git checkout

	Git merge

	Git pull

	Git log

	Git show

	Git diff

	Git tag

	Git rm

	Git stash

	Git reset

	Git revert

	Git remote

	Git fetch

	Conclusion

	Multiple choice questions

	1.	How to check the remote config in your local repository?

	2.	How to add multiple files to git staged area?

	3.	Command to get the commit from the target branch that isn't already in our current branch?

	4.	Git command to configure user credentials to use the git as expected?

	5.	Command to undo a bad commit that was pushed by mistake?

	6.	Git command to remove the file from git index without actually removing from the local file system?

	Answers

	Key terms

	Further reading

	Join our book's Discord space

	Index

	Symbols

	A

	B

	C

	D

	F

	G

	I

	L

	M

	P

	R

	T

	U

	V

